xref: /openbmc/linux/fs/btrfs/zoned.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "super.h"
19 #include "fs.h"
20 #include "accessors.h"
21 #include "bio.h"
22 
23 /* Maximum number of zones to report per blkdev_report_zones() call */
24 #define BTRFS_REPORT_NR_ZONES   4096
25 /* Invalid allocation pointer value for missing devices */
26 #define WP_MISSING_DEV ((u64)-1)
27 /* Pseudo write pointer value for conventional zone */
28 #define WP_CONVENTIONAL ((u64)-2)
29 
30 /*
31  * Location of the first zone of superblock logging zone pairs.
32  *
33  * - primary superblock:    0B (zone 0)
34  * - first copy:          512G (zone starting at that offset)
35  * - second copy:           4T (zone starting at that offset)
36  */
37 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
38 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
39 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
40 
41 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43 
44 /* Number of superblock log zones */
45 #define BTRFS_NR_SB_LOG_ZONES 2
46 
47 /*
48  * Minimum of active zones we need:
49  *
50  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52  * - 1 zone for tree-log dedicated block group
53  * - 1 zone for relocation
54  */
55 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
56 
57 /*
58  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60  * We do not expect the zone size to become larger than 8GiB or smaller than
61  * 4MiB in the near future.
62  */
63 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
64 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
65 
66 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67 
68 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
69 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
70 
71 static inline bool sb_zone_is_full(const struct blk_zone *zone)
72 {
73 	return (zone->cond == BLK_ZONE_COND_FULL) ||
74 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75 }
76 
77 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
78 {
79 	struct blk_zone *zones = data;
80 
81 	memcpy(&zones[idx], zone, sizeof(*zone));
82 
83 	return 0;
84 }
85 
86 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
87 			    u64 *wp_ret)
88 {
89 	bool empty[BTRFS_NR_SB_LOG_ZONES];
90 	bool full[BTRFS_NR_SB_LOG_ZONES];
91 	sector_t sector;
92 	int i;
93 
94 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
95 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
96 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
97 		full[i] = sb_zone_is_full(&zones[i]);
98 	}
99 
100 	/*
101 	 * Possible states of log buffer zones
102 	 *
103 	 *           Empty[0]  In use[0]  Full[0]
104 	 * Empty[1]         *          0        1
105 	 * In use[1]        x          x        1
106 	 * Full[1]          0          0        C
107 	 *
108 	 * Log position:
109 	 *   *: Special case, no superblock is written
110 	 *   0: Use write pointer of zones[0]
111 	 *   1: Use write pointer of zones[1]
112 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
113 	 *      one determined by generation
114 	 *   x: Invalid state
115 	 */
116 
117 	if (empty[0] && empty[1]) {
118 		/* Special case to distinguish no superblock to read */
119 		*wp_ret = zones[0].start << SECTOR_SHIFT;
120 		return -ENOENT;
121 	} else if (full[0] && full[1]) {
122 		/* Compare two super blocks */
123 		struct address_space *mapping = bdev->bd_inode->i_mapping;
124 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
125 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
126 		int i;
127 
128 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129 			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130 			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131 						BTRFS_SUPER_INFO_SIZE;
132 
133 			page[i] = read_cache_page_gfp(mapping,
134 					bytenr >> PAGE_SHIFT, GFP_NOFS);
135 			if (IS_ERR(page[i])) {
136 				if (i == 1)
137 					btrfs_release_disk_super(super[0]);
138 				return PTR_ERR(page[i]);
139 			}
140 			super[i] = page_address(page[i]);
141 		}
142 
143 		if (btrfs_super_generation(super[0]) >
144 		    btrfs_super_generation(super[1]))
145 			sector = zones[1].start;
146 		else
147 			sector = zones[0].start;
148 
149 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150 			btrfs_release_disk_super(super[i]);
151 	} else if (!full[0] && (empty[1] || full[1])) {
152 		sector = zones[0].wp;
153 	} else if (full[0]) {
154 		sector = zones[1].wp;
155 	} else {
156 		return -EUCLEAN;
157 	}
158 	*wp_ret = sector << SECTOR_SHIFT;
159 	return 0;
160 }
161 
162 /*
163  * Get the first zone number of the superblock mirror
164  */
165 static inline u32 sb_zone_number(int shift, int mirror)
166 {
167 	u64 zone = U64_MAX;
168 
169 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170 	switch (mirror) {
171 	case 0: zone = 0; break;
172 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174 	}
175 
176 	ASSERT(zone <= U32_MAX);
177 
178 	return (u32)zone;
179 }
180 
181 static inline sector_t zone_start_sector(u32 zone_number,
182 					 struct block_device *bdev)
183 {
184 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185 }
186 
187 static inline u64 zone_start_physical(u32 zone_number,
188 				      struct btrfs_zoned_device_info *zone_info)
189 {
190 	return (u64)zone_number << zone_info->zone_size_shift;
191 }
192 
193 /*
194  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195  * device into static sized chunks and fake a conventional zone on each of
196  * them.
197  */
198 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199 				struct blk_zone *zones, unsigned int nr_zones)
200 {
201 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
203 	unsigned int i;
204 
205 	pos >>= SECTOR_SHIFT;
206 	for (i = 0; i < nr_zones; i++) {
207 		zones[i].start = i * zone_sectors + pos;
208 		zones[i].len = zone_sectors;
209 		zones[i].capacity = zone_sectors;
210 		zones[i].wp = zones[i].start + zone_sectors;
211 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
213 
214 		if (zones[i].wp >= bdev_size) {
215 			i++;
216 			break;
217 		}
218 	}
219 
220 	return i;
221 }
222 
223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224 			       struct blk_zone *zones, unsigned int *nr_zones)
225 {
226 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
227 	int ret;
228 
229 	if (!*nr_zones)
230 		return 0;
231 
232 	if (!bdev_is_zoned(device->bdev)) {
233 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
234 		*nr_zones = ret;
235 		return 0;
236 	}
237 
238 	/* Check cache */
239 	if (zinfo->zone_cache) {
240 		unsigned int i;
241 		u32 zno;
242 
243 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244 		zno = pos >> zinfo->zone_size_shift;
245 		/*
246 		 * We cannot report zones beyond the zone end. So, it is OK to
247 		 * cap *nr_zones to at the end.
248 		 */
249 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250 
251 		for (i = 0; i < *nr_zones; i++) {
252 			struct blk_zone *zone_info;
253 
254 			zone_info = &zinfo->zone_cache[zno + i];
255 			if (!zone_info->len)
256 				break;
257 		}
258 
259 		if (i == *nr_zones) {
260 			/* Cache hit on all the zones */
261 			memcpy(zones, zinfo->zone_cache + zno,
262 			       sizeof(*zinfo->zone_cache) * *nr_zones);
263 			return 0;
264 		}
265 	}
266 
267 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268 				  copy_zone_info_cb, zones);
269 	if (ret < 0) {
270 		btrfs_err_in_rcu(device->fs_info,
271 				 "zoned: failed to read zone %llu on %s (devid %llu)",
272 				 pos, rcu_str_deref(device->name),
273 				 device->devid);
274 		return ret;
275 	}
276 	*nr_zones = ret;
277 	if (!ret)
278 		return -EIO;
279 
280 	/* Populate cache */
281 	if (zinfo->zone_cache) {
282 		u32 zno = pos >> zinfo->zone_size_shift;
283 
284 		memcpy(zinfo->zone_cache + zno, zones,
285 		       sizeof(*zinfo->zone_cache) * *nr_zones);
286 	}
287 
288 	return 0;
289 }
290 
291 /* The emulated zone size is determined from the size of device extent */
292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293 {
294 	struct btrfs_path *path;
295 	struct btrfs_root *root = fs_info->dev_root;
296 	struct btrfs_key key;
297 	struct extent_buffer *leaf;
298 	struct btrfs_dev_extent *dext;
299 	int ret = 0;
300 
301 	key.objectid = 1;
302 	key.type = BTRFS_DEV_EXTENT_KEY;
303 	key.offset = 0;
304 
305 	path = btrfs_alloc_path();
306 	if (!path)
307 		return -ENOMEM;
308 
309 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310 	if (ret < 0)
311 		goto out;
312 
313 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314 		ret = btrfs_next_leaf(root, path);
315 		if (ret < 0)
316 			goto out;
317 		/* No dev extents at all? Not good */
318 		if (ret > 0) {
319 			ret = -EUCLEAN;
320 			goto out;
321 		}
322 	}
323 
324 	leaf = path->nodes[0];
325 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327 	ret = 0;
328 
329 out:
330 	btrfs_free_path(path);
331 
332 	return ret;
333 }
334 
335 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
336 {
337 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
338 	struct btrfs_device *device;
339 	int ret = 0;
340 
341 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
342 	if (!btrfs_fs_incompat(fs_info, ZONED))
343 		return 0;
344 
345 	mutex_lock(&fs_devices->device_list_mutex);
346 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
347 		/* We can skip reading of zone info for missing devices */
348 		if (!device->bdev)
349 			continue;
350 
351 		ret = btrfs_get_dev_zone_info(device, true);
352 		if (ret)
353 			break;
354 	}
355 	mutex_unlock(&fs_devices->device_list_mutex);
356 
357 	return ret;
358 }
359 
360 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
361 {
362 	struct btrfs_fs_info *fs_info = device->fs_info;
363 	struct btrfs_zoned_device_info *zone_info = NULL;
364 	struct block_device *bdev = device->bdev;
365 	unsigned int max_active_zones;
366 	unsigned int nactive;
367 	sector_t nr_sectors;
368 	sector_t sector = 0;
369 	struct blk_zone *zones = NULL;
370 	unsigned int i, nreported = 0, nr_zones;
371 	sector_t zone_sectors;
372 	char *model, *emulated;
373 	int ret;
374 
375 	/*
376 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
377 	 * yet be set.
378 	 */
379 	if (!btrfs_fs_incompat(fs_info, ZONED))
380 		return 0;
381 
382 	if (device->zone_info)
383 		return 0;
384 
385 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
386 	if (!zone_info)
387 		return -ENOMEM;
388 
389 	device->zone_info = zone_info;
390 
391 	if (!bdev_is_zoned(bdev)) {
392 		if (!fs_info->zone_size) {
393 			ret = calculate_emulated_zone_size(fs_info);
394 			if (ret)
395 				goto out;
396 		}
397 
398 		ASSERT(fs_info->zone_size);
399 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
400 	} else {
401 		zone_sectors = bdev_zone_sectors(bdev);
402 	}
403 
404 	ASSERT(is_power_of_two_u64(zone_sectors));
405 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
406 
407 	/* We reject devices with a zone size larger than 8GB */
408 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
409 		btrfs_err_in_rcu(fs_info,
410 		"zoned: %s: zone size %llu larger than supported maximum %llu",
411 				 rcu_str_deref(device->name),
412 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
413 		ret = -EINVAL;
414 		goto out;
415 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
416 		btrfs_err_in_rcu(fs_info,
417 		"zoned: %s: zone size %llu smaller than supported minimum %u",
418 				 rcu_str_deref(device->name),
419 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
420 		ret = -EINVAL;
421 		goto out;
422 	}
423 
424 	nr_sectors = bdev_nr_sectors(bdev);
425 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
426 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
427 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
428 		zone_info->nr_zones++;
429 
430 	max_active_zones = bdev_max_active_zones(bdev);
431 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
432 		btrfs_err_in_rcu(fs_info,
433 "zoned: %s: max active zones %u is too small, need at least %u active zones",
434 				 rcu_str_deref(device->name), max_active_zones,
435 				 BTRFS_MIN_ACTIVE_ZONES);
436 		ret = -EINVAL;
437 		goto out;
438 	}
439 	zone_info->max_active_zones = max_active_zones;
440 
441 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
442 	if (!zone_info->seq_zones) {
443 		ret = -ENOMEM;
444 		goto out;
445 	}
446 
447 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
448 	if (!zone_info->empty_zones) {
449 		ret = -ENOMEM;
450 		goto out;
451 	}
452 
453 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454 	if (!zone_info->active_zones) {
455 		ret = -ENOMEM;
456 		goto out;
457 	}
458 
459 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
460 	if (!zones) {
461 		ret = -ENOMEM;
462 		goto out;
463 	}
464 
465 	/*
466 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
467 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
468 	 * use the cache.
469 	 */
470 	if (populate_cache && bdev_is_zoned(device->bdev)) {
471 		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
472 						sizeof(struct blk_zone));
473 		if (!zone_info->zone_cache) {
474 			btrfs_err_in_rcu(device->fs_info,
475 				"zoned: failed to allocate zone cache for %s",
476 				rcu_str_deref(device->name));
477 			ret = -ENOMEM;
478 			goto out;
479 		}
480 	}
481 
482 	/* Get zones type */
483 	nactive = 0;
484 	while (sector < nr_sectors) {
485 		nr_zones = BTRFS_REPORT_NR_ZONES;
486 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
487 					  &nr_zones);
488 		if (ret)
489 			goto out;
490 
491 		for (i = 0; i < nr_zones; i++) {
492 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
493 				__set_bit(nreported, zone_info->seq_zones);
494 			switch (zones[i].cond) {
495 			case BLK_ZONE_COND_EMPTY:
496 				__set_bit(nreported, zone_info->empty_zones);
497 				break;
498 			case BLK_ZONE_COND_IMP_OPEN:
499 			case BLK_ZONE_COND_EXP_OPEN:
500 			case BLK_ZONE_COND_CLOSED:
501 				__set_bit(nreported, zone_info->active_zones);
502 				nactive++;
503 				break;
504 			}
505 			nreported++;
506 		}
507 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
508 	}
509 
510 	if (nreported != zone_info->nr_zones) {
511 		btrfs_err_in_rcu(device->fs_info,
512 				 "inconsistent number of zones on %s (%u/%u)",
513 				 rcu_str_deref(device->name), nreported,
514 				 zone_info->nr_zones);
515 		ret = -EIO;
516 		goto out;
517 	}
518 
519 	if (max_active_zones) {
520 		if (nactive > max_active_zones) {
521 			btrfs_err_in_rcu(device->fs_info,
522 			"zoned: %u active zones on %s exceeds max_active_zones %u",
523 					 nactive, rcu_str_deref(device->name),
524 					 max_active_zones);
525 			ret = -EIO;
526 			goto out;
527 		}
528 		atomic_set(&zone_info->active_zones_left,
529 			   max_active_zones - nactive);
530 		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
531 	}
532 
533 	/* Validate superblock log */
534 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
535 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536 		u32 sb_zone;
537 		u64 sb_wp;
538 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539 
540 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541 		if (sb_zone + 1 >= zone_info->nr_zones)
542 			continue;
543 
544 		ret = btrfs_get_dev_zones(device,
545 					  zone_start_physical(sb_zone, zone_info),
546 					  &zone_info->sb_zones[sb_pos],
547 					  &nr_zones);
548 		if (ret)
549 			goto out;
550 
551 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552 			btrfs_err_in_rcu(device->fs_info,
553 	"zoned: failed to read super block log zone info at devid %llu zone %u",
554 					 device->devid, sb_zone);
555 			ret = -EUCLEAN;
556 			goto out;
557 		}
558 
559 		/*
560 		 * If zones[0] is conventional, always use the beginning of the
561 		 * zone to record superblock. No need to validate in that case.
562 		 */
563 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564 		    BLK_ZONE_TYPE_CONVENTIONAL)
565 			continue;
566 
567 		ret = sb_write_pointer(device->bdev,
568 				       &zone_info->sb_zones[sb_pos], &sb_wp);
569 		if (ret != -ENOENT && ret) {
570 			btrfs_err_in_rcu(device->fs_info,
571 			"zoned: super block log zone corrupted devid %llu zone %u",
572 					 device->devid, sb_zone);
573 			ret = -EUCLEAN;
574 			goto out;
575 		}
576 	}
577 
578 
579 	kvfree(zones);
580 
581 	switch (bdev_zoned_model(bdev)) {
582 	case BLK_ZONED_HM:
583 		model = "host-managed zoned";
584 		emulated = "";
585 		break;
586 	case BLK_ZONED_HA:
587 		model = "host-aware zoned";
588 		emulated = "";
589 		break;
590 	case BLK_ZONED_NONE:
591 		model = "regular";
592 		emulated = "emulated ";
593 		break;
594 	default:
595 		/* Just in case */
596 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597 				 bdev_zoned_model(bdev),
598 				 rcu_str_deref(device->name));
599 		ret = -EOPNOTSUPP;
600 		goto out_free_zone_info;
601 	}
602 
603 	btrfs_info_in_rcu(fs_info,
604 		"%s block device %s, %u %szones of %llu bytes",
605 		model, rcu_str_deref(device->name), zone_info->nr_zones,
606 		emulated, zone_info->zone_size);
607 
608 	return 0;
609 
610 out:
611 	kvfree(zones);
612 out_free_zone_info:
613 	btrfs_destroy_dev_zone_info(device);
614 
615 	return ret;
616 }
617 
618 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619 {
620 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
621 
622 	if (!zone_info)
623 		return;
624 
625 	bitmap_free(zone_info->active_zones);
626 	bitmap_free(zone_info->seq_zones);
627 	bitmap_free(zone_info->empty_zones);
628 	vfree(zone_info->zone_cache);
629 	kfree(zone_info);
630 	device->zone_info = NULL;
631 }
632 
633 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
634 {
635 	struct btrfs_zoned_device_info *zone_info;
636 
637 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
638 	if (!zone_info)
639 		return NULL;
640 
641 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
642 	if (!zone_info->seq_zones)
643 		goto out;
644 
645 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
646 		    zone_info->nr_zones);
647 
648 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
649 	if (!zone_info->empty_zones)
650 		goto out;
651 
652 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
653 		    zone_info->nr_zones);
654 
655 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
656 	if (!zone_info->active_zones)
657 		goto out;
658 
659 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
660 		    zone_info->nr_zones);
661 	zone_info->zone_cache = NULL;
662 
663 	return zone_info;
664 
665 out:
666 	bitmap_free(zone_info->seq_zones);
667 	bitmap_free(zone_info->empty_zones);
668 	bitmap_free(zone_info->active_zones);
669 	kfree(zone_info);
670 	return NULL;
671 }
672 
673 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
674 		       struct blk_zone *zone)
675 {
676 	unsigned int nr_zones = 1;
677 	int ret;
678 
679 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
680 	if (ret != 0 || !nr_zones)
681 		return ret ? ret : -EIO;
682 
683 	return 0;
684 }
685 
686 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
687 {
688 	struct btrfs_device *device;
689 
690 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691 		if (device->bdev &&
692 		    bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
693 			btrfs_err(fs_info,
694 				"zoned: mode not enabled but zoned device found: %pg",
695 				device->bdev);
696 			return -EINVAL;
697 		}
698 	}
699 
700 	return 0;
701 }
702 
703 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
704 {
705 	struct queue_limits *lim = &fs_info->limits;
706 	struct btrfs_device *device;
707 	u64 zone_size = 0;
708 	int ret;
709 
710 	/*
711 	 * Host-Managed devices can't be used without the ZONED flag.  With the
712 	 * ZONED all devices can be used, using zone emulation if required.
713 	 */
714 	if (!btrfs_fs_incompat(fs_info, ZONED))
715 		return btrfs_check_for_zoned_device(fs_info);
716 
717 	blk_set_stacking_limits(lim);
718 
719 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
720 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
721 
722 		if (!device->bdev)
723 			continue;
724 
725 		if (!zone_size) {
726 			zone_size = zone_info->zone_size;
727 		} else if (zone_info->zone_size != zone_size) {
728 			btrfs_err(fs_info,
729 		"zoned: unequal block device zone sizes: have %llu found %llu",
730 				  zone_info->zone_size, zone_size);
731 			return -EINVAL;
732 		}
733 
734 		/*
735 		 * With the zoned emulation, we can have non-zoned device on the
736 		 * zoned mode. In this case, we don't have a valid max zone
737 		 * append size.
738 		 */
739 		if (bdev_is_zoned(device->bdev)) {
740 			blk_stack_limits(lim,
741 					 &bdev_get_queue(device->bdev)->limits,
742 					 0);
743 		}
744 	}
745 
746 	/*
747 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
748 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
749 	 * check the alignment here.
750 	 */
751 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752 		btrfs_err(fs_info,
753 			  "zoned: zone size %llu not aligned to stripe %u",
754 			  zone_size, BTRFS_STRIPE_LEN);
755 		return -EINVAL;
756 	}
757 
758 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
760 		return -EINVAL;
761 	}
762 
763 	fs_info->zone_size = zone_size;
764 	/*
765 	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
766 	 * Technically, we can have multiple pages per segment. But, since
767 	 * we add the pages one by one to a bio, and cannot increase the
768 	 * metadata reservation even if it increases the number of extents, it
769 	 * is safe to stick with the limit.
770 	 */
771 	fs_info->max_zone_append_size = ALIGN_DOWN(
772 		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
773 		     (u64)lim->max_sectors << SECTOR_SHIFT,
774 		     (u64)lim->max_segments << PAGE_SHIFT),
775 		fs_info->sectorsize);
776 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
777 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
778 		fs_info->max_extent_size = fs_info->max_zone_append_size;
779 
780 	/*
781 	 * Check mount options here, because we might change fs_info->zoned
782 	 * from fs_info->zone_size.
783 	 */
784 	ret = btrfs_check_mountopts_zoned(fs_info);
785 	if (ret)
786 		return ret;
787 
788 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
789 	return 0;
790 }
791 
792 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
793 {
794 	if (!btrfs_is_zoned(info))
795 		return 0;
796 
797 	/*
798 	 * Space cache writing is not COWed. Disable that to avoid write errors
799 	 * in sequential zones.
800 	 */
801 	if (btrfs_test_opt(info, SPACE_CACHE)) {
802 		btrfs_err(info, "zoned: space cache v1 is not supported");
803 		return -EINVAL;
804 	}
805 
806 	if (btrfs_test_opt(info, NODATACOW)) {
807 		btrfs_err(info, "zoned: NODATACOW not supported");
808 		return -EINVAL;
809 	}
810 
811 	btrfs_clear_and_info(info, DISCARD_ASYNC,
812 			"zoned: async discard ignored and disabled for zoned mode");
813 
814 	return 0;
815 }
816 
817 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
818 			   int rw, u64 *bytenr_ret)
819 {
820 	u64 wp;
821 	int ret;
822 
823 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
824 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
825 		return 0;
826 	}
827 
828 	ret = sb_write_pointer(bdev, zones, &wp);
829 	if (ret != -ENOENT && ret < 0)
830 		return ret;
831 
832 	if (rw == WRITE) {
833 		struct blk_zone *reset = NULL;
834 
835 		if (wp == zones[0].start << SECTOR_SHIFT)
836 			reset = &zones[0];
837 		else if (wp == zones[1].start << SECTOR_SHIFT)
838 			reset = &zones[1];
839 
840 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
841 			ASSERT(sb_zone_is_full(reset));
842 
843 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
844 					       reset->start, reset->len,
845 					       GFP_NOFS);
846 			if (ret)
847 				return ret;
848 
849 			reset->cond = BLK_ZONE_COND_EMPTY;
850 			reset->wp = reset->start;
851 		}
852 	} else if (ret != -ENOENT) {
853 		/*
854 		 * For READ, we want the previous one. Move write pointer to
855 		 * the end of a zone, if it is at the head of a zone.
856 		 */
857 		u64 zone_end = 0;
858 
859 		if (wp == zones[0].start << SECTOR_SHIFT)
860 			zone_end = zones[1].start + zones[1].capacity;
861 		else if (wp == zones[1].start << SECTOR_SHIFT)
862 			zone_end = zones[0].start + zones[0].capacity;
863 		if (zone_end)
864 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
865 					BTRFS_SUPER_INFO_SIZE);
866 
867 		wp -= BTRFS_SUPER_INFO_SIZE;
868 	}
869 
870 	*bytenr_ret = wp;
871 	return 0;
872 
873 }
874 
875 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
876 			       u64 *bytenr_ret)
877 {
878 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
879 	sector_t zone_sectors;
880 	u32 sb_zone;
881 	int ret;
882 	u8 zone_sectors_shift;
883 	sector_t nr_sectors;
884 	u32 nr_zones;
885 
886 	if (!bdev_is_zoned(bdev)) {
887 		*bytenr_ret = btrfs_sb_offset(mirror);
888 		return 0;
889 	}
890 
891 	ASSERT(rw == READ || rw == WRITE);
892 
893 	zone_sectors = bdev_zone_sectors(bdev);
894 	if (!is_power_of_2(zone_sectors))
895 		return -EINVAL;
896 	zone_sectors_shift = ilog2(zone_sectors);
897 	nr_sectors = bdev_nr_sectors(bdev);
898 	nr_zones = nr_sectors >> zone_sectors_shift;
899 
900 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
901 	if (sb_zone + 1 >= nr_zones)
902 		return -ENOENT;
903 
904 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
905 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
906 				  zones);
907 	if (ret < 0)
908 		return ret;
909 	if (ret != BTRFS_NR_SB_LOG_ZONES)
910 		return -EIO;
911 
912 	return sb_log_location(bdev, zones, rw, bytenr_ret);
913 }
914 
915 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
916 			  u64 *bytenr_ret)
917 {
918 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
919 	u32 zone_num;
920 
921 	/*
922 	 * For a zoned filesystem on a non-zoned block device, use the same
923 	 * super block locations as regular filesystem. Doing so, the super
924 	 * block can always be retrieved and the zoned flag of the volume
925 	 * detected from the super block information.
926 	 */
927 	if (!bdev_is_zoned(device->bdev)) {
928 		*bytenr_ret = btrfs_sb_offset(mirror);
929 		return 0;
930 	}
931 
932 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
933 	if (zone_num + 1 >= zinfo->nr_zones)
934 		return -ENOENT;
935 
936 	return sb_log_location(device->bdev,
937 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
938 			       rw, bytenr_ret);
939 }
940 
941 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
942 				  int mirror)
943 {
944 	u32 zone_num;
945 
946 	if (!zinfo)
947 		return false;
948 
949 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
950 	if (zone_num + 1 >= zinfo->nr_zones)
951 		return false;
952 
953 	if (!test_bit(zone_num, zinfo->seq_zones))
954 		return false;
955 
956 	return true;
957 }
958 
959 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
960 {
961 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
962 	struct blk_zone *zone;
963 	int i;
964 
965 	if (!is_sb_log_zone(zinfo, mirror))
966 		return 0;
967 
968 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
969 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
970 		/* Advance the next zone */
971 		if (zone->cond == BLK_ZONE_COND_FULL) {
972 			zone++;
973 			continue;
974 		}
975 
976 		if (zone->cond == BLK_ZONE_COND_EMPTY)
977 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
978 
979 		zone->wp += SUPER_INFO_SECTORS;
980 
981 		if (sb_zone_is_full(zone)) {
982 			/*
983 			 * No room left to write new superblock. Since
984 			 * superblock is written with REQ_SYNC, it is safe to
985 			 * finish the zone now.
986 			 *
987 			 * If the write pointer is exactly at the capacity,
988 			 * explicit ZONE_FINISH is not necessary.
989 			 */
990 			if (zone->wp != zone->start + zone->capacity) {
991 				int ret;
992 
993 				ret = blkdev_zone_mgmt(device->bdev,
994 						REQ_OP_ZONE_FINISH, zone->start,
995 						zone->len, GFP_NOFS);
996 				if (ret)
997 					return ret;
998 			}
999 
1000 			zone->wp = zone->start + zone->len;
1001 			zone->cond = BLK_ZONE_COND_FULL;
1002 		}
1003 		return 0;
1004 	}
1005 
1006 	/* All the zones are FULL. Should not reach here. */
1007 	ASSERT(0);
1008 	return -EIO;
1009 }
1010 
1011 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1012 {
1013 	sector_t zone_sectors;
1014 	sector_t nr_sectors;
1015 	u8 zone_sectors_shift;
1016 	u32 sb_zone;
1017 	u32 nr_zones;
1018 
1019 	zone_sectors = bdev_zone_sectors(bdev);
1020 	zone_sectors_shift = ilog2(zone_sectors);
1021 	nr_sectors = bdev_nr_sectors(bdev);
1022 	nr_zones = nr_sectors >> zone_sectors_shift;
1023 
1024 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1025 	if (sb_zone + 1 >= nr_zones)
1026 		return -ENOENT;
1027 
1028 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1029 				zone_start_sector(sb_zone, bdev),
1030 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1031 }
1032 
1033 /*
1034  * Find allocatable zones within a given region.
1035  *
1036  * @device:	the device to allocate a region on
1037  * @hole_start: the position of the hole to allocate the region
1038  * @num_bytes:	size of wanted region
1039  * @hole_end:	the end of the hole
1040  * @return:	position of allocatable zones
1041  *
1042  * Allocatable region should not contain any superblock locations.
1043  */
1044 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1045 				 u64 hole_end, u64 num_bytes)
1046 {
1047 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1048 	const u8 shift = zinfo->zone_size_shift;
1049 	u64 nzones = num_bytes >> shift;
1050 	u64 pos = hole_start;
1051 	u64 begin, end;
1052 	bool have_sb;
1053 	int i;
1054 
1055 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1056 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1057 
1058 	while (pos < hole_end) {
1059 		begin = pos >> shift;
1060 		end = begin + nzones;
1061 
1062 		if (end > zinfo->nr_zones)
1063 			return hole_end;
1064 
1065 		/* Check if zones in the region are all empty */
1066 		if (btrfs_dev_is_sequential(device, pos) &&
1067 		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1068 			pos += zinfo->zone_size;
1069 			continue;
1070 		}
1071 
1072 		have_sb = false;
1073 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1074 			u32 sb_zone;
1075 			u64 sb_pos;
1076 
1077 			sb_zone = sb_zone_number(shift, i);
1078 			if (!(end <= sb_zone ||
1079 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1080 				have_sb = true;
1081 				pos = zone_start_physical(
1082 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1083 				break;
1084 			}
1085 
1086 			/* We also need to exclude regular superblock positions */
1087 			sb_pos = btrfs_sb_offset(i);
1088 			if (!(pos + num_bytes <= sb_pos ||
1089 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1090 				have_sb = true;
1091 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1092 					    zinfo->zone_size);
1093 				break;
1094 			}
1095 		}
1096 		if (!have_sb)
1097 			break;
1098 	}
1099 
1100 	return pos;
1101 }
1102 
1103 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1104 {
1105 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1106 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1107 
1108 	/* We can use any number of zones */
1109 	if (zone_info->max_active_zones == 0)
1110 		return true;
1111 
1112 	if (!test_bit(zno, zone_info->active_zones)) {
1113 		/* Active zone left? */
1114 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1115 			return false;
1116 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1117 			/* Someone already set the bit */
1118 			atomic_inc(&zone_info->active_zones_left);
1119 		}
1120 	}
1121 
1122 	return true;
1123 }
1124 
1125 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1126 {
1127 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1128 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1129 
1130 	/* We can use any number of zones */
1131 	if (zone_info->max_active_zones == 0)
1132 		return;
1133 
1134 	if (test_and_clear_bit(zno, zone_info->active_zones))
1135 		atomic_inc(&zone_info->active_zones_left);
1136 }
1137 
1138 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1139 			    u64 length, u64 *bytes)
1140 {
1141 	int ret;
1142 
1143 	*bytes = 0;
1144 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1145 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1146 			       GFP_NOFS);
1147 	if (ret)
1148 		return ret;
1149 
1150 	*bytes = length;
1151 	while (length) {
1152 		btrfs_dev_set_zone_empty(device, physical);
1153 		btrfs_dev_clear_active_zone(device, physical);
1154 		physical += device->zone_info->zone_size;
1155 		length -= device->zone_info->zone_size;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1162 {
1163 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1164 	const u8 shift = zinfo->zone_size_shift;
1165 	unsigned long begin = start >> shift;
1166 	unsigned long nbits = size >> shift;
1167 	u64 pos;
1168 	int ret;
1169 
1170 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1171 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1172 
1173 	if (begin + nbits > zinfo->nr_zones)
1174 		return -ERANGE;
1175 
1176 	/* All the zones are conventional */
1177 	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1178 		return 0;
1179 
1180 	/* All the zones are sequential and empty */
1181 	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1182 	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1183 		return 0;
1184 
1185 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1186 		u64 reset_bytes;
1187 
1188 		if (!btrfs_dev_is_sequential(device, pos) ||
1189 		    btrfs_dev_is_empty_zone(device, pos))
1190 			continue;
1191 
1192 		/* Free regions should be empty */
1193 		btrfs_warn_in_rcu(
1194 			device->fs_info,
1195 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1196 			rcu_str_deref(device->name), device->devid, pos >> shift);
1197 		WARN_ON_ONCE(1);
1198 
1199 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1200 					      &reset_bytes);
1201 		if (ret)
1202 			return ret;
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 /*
1209  * Calculate an allocation pointer from the extent allocation information
1210  * for a block group consist of conventional zones. It is pointed to the
1211  * end of the highest addressed extent in the block group as an allocation
1212  * offset.
1213  */
1214 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1215 				   u64 *offset_ret, bool new)
1216 {
1217 	struct btrfs_fs_info *fs_info = cache->fs_info;
1218 	struct btrfs_root *root;
1219 	struct btrfs_path *path;
1220 	struct btrfs_key key;
1221 	struct btrfs_key found_key;
1222 	int ret;
1223 	u64 length;
1224 
1225 	/*
1226 	 * Avoid  tree lookups for a new block group, there's no use for it.
1227 	 * It must always be 0.
1228 	 *
1229 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1230 	 * For new a block group, this function is called from
1231 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1232 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1233 	 * buffer locks to avoid deadlock.
1234 	 */
1235 	if (new) {
1236 		*offset_ret = 0;
1237 		return 0;
1238 	}
1239 
1240 	path = btrfs_alloc_path();
1241 	if (!path)
1242 		return -ENOMEM;
1243 
1244 	key.objectid = cache->start + cache->length;
1245 	key.type = 0;
1246 	key.offset = 0;
1247 
1248 	root = btrfs_extent_root(fs_info, key.objectid);
1249 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1250 	/* We should not find the exact match */
1251 	if (!ret)
1252 		ret = -EUCLEAN;
1253 	if (ret < 0)
1254 		goto out;
1255 
1256 	ret = btrfs_previous_extent_item(root, path, cache->start);
1257 	if (ret) {
1258 		if (ret == 1) {
1259 			ret = 0;
1260 			*offset_ret = 0;
1261 		}
1262 		goto out;
1263 	}
1264 
1265 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1266 
1267 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1268 		length = found_key.offset;
1269 	else
1270 		length = fs_info->nodesize;
1271 
1272 	if (!(found_key.objectid >= cache->start &&
1273 	       found_key.objectid + length <= cache->start + cache->length)) {
1274 		ret = -EUCLEAN;
1275 		goto out;
1276 	}
1277 	*offset_ret = found_key.objectid + length - cache->start;
1278 	ret = 0;
1279 
1280 out:
1281 	btrfs_free_path(path);
1282 	return ret;
1283 }
1284 
1285 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1286 {
1287 	struct btrfs_fs_info *fs_info = cache->fs_info;
1288 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1289 	struct extent_map *em;
1290 	struct map_lookup *map;
1291 	struct btrfs_device *device;
1292 	u64 logical = cache->start;
1293 	u64 length = cache->length;
1294 	int ret;
1295 	int i;
1296 	unsigned int nofs_flag;
1297 	u64 *alloc_offsets = NULL;
1298 	u64 *caps = NULL;
1299 	u64 *physical = NULL;
1300 	unsigned long *active = NULL;
1301 	u64 last_alloc = 0;
1302 	u32 num_sequential = 0, num_conventional = 0;
1303 
1304 	if (!btrfs_is_zoned(fs_info))
1305 		return 0;
1306 
1307 	/* Sanity check */
1308 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1309 		btrfs_err(fs_info,
1310 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1311 			  logical, length, fs_info->zone_size);
1312 		return -EIO;
1313 	}
1314 
1315 	/* Get the chunk mapping */
1316 	read_lock(&em_tree->lock);
1317 	em = lookup_extent_mapping(em_tree, logical, length);
1318 	read_unlock(&em_tree->lock);
1319 
1320 	if (!em)
1321 		return -EINVAL;
1322 
1323 	map = em->map_lookup;
1324 
1325 	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1326 	if (!cache->physical_map) {
1327 		ret = -ENOMEM;
1328 		goto out;
1329 	}
1330 
1331 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1332 	if (!alloc_offsets) {
1333 		ret = -ENOMEM;
1334 		goto out;
1335 	}
1336 
1337 	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1338 	if (!caps) {
1339 		ret = -ENOMEM;
1340 		goto out;
1341 	}
1342 
1343 	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1344 	if (!physical) {
1345 		ret = -ENOMEM;
1346 		goto out;
1347 	}
1348 
1349 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1350 	if (!active) {
1351 		ret = -ENOMEM;
1352 		goto out;
1353 	}
1354 
1355 	for (i = 0; i < map->num_stripes; i++) {
1356 		bool is_sequential;
1357 		struct blk_zone zone;
1358 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1359 		int dev_replace_is_ongoing = 0;
1360 
1361 		device = map->stripes[i].dev;
1362 		physical[i] = map->stripes[i].physical;
1363 
1364 		if (device->bdev == NULL) {
1365 			alloc_offsets[i] = WP_MISSING_DEV;
1366 			continue;
1367 		}
1368 
1369 		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1370 		if (is_sequential)
1371 			num_sequential++;
1372 		else
1373 			num_conventional++;
1374 
1375 		/*
1376 		 * Consider a zone as active if we can allow any number of
1377 		 * active zones.
1378 		 */
1379 		if (!device->zone_info->max_active_zones)
1380 			__set_bit(i, active);
1381 
1382 		if (!is_sequential) {
1383 			alloc_offsets[i] = WP_CONVENTIONAL;
1384 			continue;
1385 		}
1386 
1387 		/*
1388 		 * This zone will be used for allocation, so mark this zone
1389 		 * non-empty.
1390 		 */
1391 		btrfs_dev_clear_zone_empty(device, physical[i]);
1392 
1393 		down_read(&dev_replace->rwsem);
1394 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1395 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1396 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1397 		up_read(&dev_replace->rwsem);
1398 
1399 		/*
1400 		 * The group is mapped to a sequential zone. Get the zone write
1401 		 * pointer to determine the allocation offset within the zone.
1402 		 */
1403 		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1404 		nofs_flag = memalloc_nofs_save();
1405 		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1406 		memalloc_nofs_restore(nofs_flag);
1407 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1408 			ret = 0;
1409 			alloc_offsets[i] = WP_MISSING_DEV;
1410 			continue;
1411 		} else if (ret) {
1412 			goto out;
1413 		}
1414 
1415 		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1416 			btrfs_err_in_rcu(fs_info,
1417 	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1418 				zone.start << SECTOR_SHIFT,
1419 				rcu_str_deref(device->name), device->devid);
1420 			ret = -EIO;
1421 			goto out;
1422 		}
1423 
1424 		caps[i] = (zone.capacity << SECTOR_SHIFT);
1425 
1426 		switch (zone.cond) {
1427 		case BLK_ZONE_COND_OFFLINE:
1428 		case BLK_ZONE_COND_READONLY:
1429 			btrfs_err(fs_info,
1430 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1431 				  physical[i] >> device->zone_info->zone_size_shift,
1432 				  rcu_str_deref(device->name), device->devid);
1433 			alloc_offsets[i] = WP_MISSING_DEV;
1434 			break;
1435 		case BLK_ZONE_COND_EMPTY:
1436 			alloc_offsets[i] = 0;
1437 			break;
1438 		case BLK_ZONE_COND_FULL:
1439 			alloc_offsets[i] = caps[i];
1440 			break;
1441 		default:
1442 			/* Partially used zone */
1443 			alloc_offsets[i] =
1444 					((zone.wp - zone.start) << SECTOR_SHIFT);
1445 			__set_bit(i, active);
1446 			break;
1447 		}
1448 	}
1449 
1450 	if (num_sequential > 0)
1451 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1452 
1453 	if (num_conventional > 0) {
1454 		/* Zone capacity is always zone size in emulation */
1455 		cache->zone_capacity = cache->length;
1456 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1457 		if (ret) {
1458 			btrfs_err(fs_info,
1459 			"zoned: failed to determine allocation offset of bg %llu",
1460 				  cache->start);
1461 			goto out;
1462 		} else if (map->num_stripes == num_conventional) {
1463 			cache->alloc_offset = last_alloc;
1464 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1465 			goto out;
1466 		}
1467 	}
1468 
1469 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1470 	case 0: /* single */
1471 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1472 			btrfs_err(fs_info,
1473 			"zoned: cannot recover write pointer for zone %llu",
1474 				physical[0]);
1475 			ret = -EIO;
1476 			goto out;
1477 		}
1478 		cache->alloc_offset = alloc_offsets[0];
1479 		cache->zone_capacity = caps[0];
1480 		if (test_bit(0, active))
1481 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1482 		break;
1483 	case BTRFS_BLOCK_GROUP_DUP:
1484 		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1485 			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1486 			ret = -EINVAL;
1487 			goto out;
1488 		}
1489 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1490 			btrfs_err(fs_info,
1491 			"zoned: cannot recover write pointer for zone %llu",
1492 				physical[0]);
1493 			ret = -EIO;
1494 			goto out;
1495 		}
1496 		if (alloc_offsets[1] == WP_MISSING_DEV) {
1497 			btrfs_err(fs_info,
1498 			"zoned: cannot recover write pointer for zone %llu",
1499 				physical[1]);
1500 			ret = -EIO;
1501 			goto out;
1502 		}
1503 		if (alloc_offsets[0] != alloc_offsets[1]) {
1504 			btrfs_err(fs_info,
1505 			"zoned: write pointer offset mismatch of zones in DUP profile");
1506 			ret = -EIO;
1507 			goto out;
1508 		}
1509 		if (test_bit(0, active) != test_bit(1, active)) {
1510 			if (!btrfs_zone_activate(cache)) {
1511 				ret = -EIO;
1512 				goto out;
1513 			}
1514 		} else {
1515 			if (test_bit(0, active))
1516 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1517 					&cache->runtime_flags);
1518 		}
1519 		cache->alloc_offset = alloc_offsets[0];
1520 		cache->zone_capacity = min(caps[0], caps[1]);
1521 		break;
1522 	case BTRFS_BLOCK_GROUP_RAID1:
1523 	case BTRFS_BLOCK_GROUP_RAID0:
1524 	case BTRFS_BLOCK_GROUP_RAID10:
1525 	case BTRFS_BLOCK_GROUP_RAID5:
1526 	case BTRFS_BLOCK_GROUP_RAID6:
1527 		/* non-single profiles are not supported yet */
1528 	default:
1529 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1530 			  btrfs_bg_type_to_raid_name(map->type));
1531 		ret = -EINVAL;
1532 		goto out;
1533 	}
1534 
1535 out:
1536 	if (cache->alloc_offset > fs_info->zone_size) {
1537 		btrfs_err(fs_info,
1538 			"zoned: invalid write pointer %llu in block group %llu",
1539 			cache->alloc_offset, cache->start);
1540 		ret = -EIO;
1541 	}
1542 
1543 	if (cache->alloc_offset > cache->zone_capacity) {
1544 		btrfs_err(fs_info,
1545 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1546 			  cache->alloc_offset, cache->zone_capacity,
1547 			  cache->start);
1548 		ret = -EIO;
1549 	}
1550 
1551 	/* An extent is allocated after the write pointer */
1552 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1553 		btrfs_err(fs_info,
1554 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1555 			  logical, last_alloc, cache->alloc_offset);
1556 		ret = -EIO;
1557 	}
1558 
1559 	if (!ret) {
1560 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1561 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1562 			btrfs_get_block_group(cache);
1563 			spin_lock(&fs_info->zone_active_bgs_lock);
1564 			list_add_tail(&cache->active_bg_list,
1565 				      &fs_info->zone_active_bgs);
1566 			spin_unlock(&fs_info->zone_active_bgs_lock);
1567 		}
1568 	} else {
1569 		kfree(cache->physical_map);
1570 		cache->physical_map = NULL;
1571 	}
1572 	bitmap_free(active);
1573 	kfree(physical);
1574 	kfree(caps);
1575 	kfree(alloc_offsets);
1576 	free_extent_map(em);
1577 
1578 	return ret;
1579 }
1580 
1581 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1582 {
1583 	u64 unusable, free;
1584 
1585 	if (!btrfs_is_zoned(cache->fs_info))
1586 		return;
1587 
1588 	WARN_ON(cache->bytes_super != 0);
1589 	unusable = (cache->alloc_offset - cache->used) +
1590 		   (cache->length - cache->zone_capacity);
1591 	free = cache->zone_capacity - cache->alloc_offset;
1592 
1593 	/* We only need ->free_space in ALLOC_SEQ block groups */
1594 	cache->cached = BTRFS_CACHE_FINISHED;
1595 	cache->free_space_ctl->free_space = free;
1596 	cache->zone_unusable = unusable;
1597 }
1598 
1599 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1600 			    struct extent_buffer *eb)
1601 {
1602 	if (!btrfs_is_zoned(eb->fs_info) ||
1603 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN))
1604 		return;
1605 
1606 	ASSERT(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1607 
1608 	memzero_extent_buffer(eb, 0, eb->len);
1609 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1610 	set_extent_buffer_dirty(eb);
1611 	set_extent_bit(&trans->dirty_pages, eb->start, eb->start + eb->len - 1,
1612 			EXTENT_DIRTY | EXTENT_NOWAIT, NULL);
1613 }
1614 
1615 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1616 {
1617 	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1618 	struct btrfs_inode *inode = bbio->inode;
1619 	struct btrfs_fs_info *fs_info = bbio->fs_info;
1620 	struct btrfs_block_group *cache;
1621 	bool ret = false;
1622 
1623 	if (!btrfs_is_zoned(fs_info))
1624 		return false;
1625 
1626 	if (!inode || !is_data_inode(&inode->vfs_inode))
1627 		return false;
1628 
1629 	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1630 		return false;
1631 
1632 	/*
1633 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1634 	 * extent layout the relocation code has.
1635 	 * Furthermore we have set aside own block-group from which only the
1636 	 * relocation "process" can allocate and make sure only one process at a
1637 	 * time can add pages to an extent that gets relocated, so it's safe to
1638 	 * use regular REQ_OP_WRITE for this special case.
1639 	 */
1640 	if (btrfs_is_data_reloc_root(inode->root))
1641 		return false;
1642 
1643 	cache = btrfs_lookup_block_group(fs_info, start);
1644 	ASSERT(cache);
1645 	if (!cache)
1646 		return false;
1647 
1648 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1649 	btrfs_put_block_group(cache);
1650 
1651 	return ret;
1652 }
1653 
1654 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1655 {
1656 	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1657 	struct btrfs_ordered_sum *sum = bbio->sums;
1658 
1659 	if (physical < bbio->orig_physical)
1660 		sum->logical -= bbio->orig_physical - physical;
1661 	else
1662 		sum->logical += physical - bbio->orig_physical;
1663 }
1664 
1665 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1666 					u64 logical)
1667 {
1668 	struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1669 	struct extent_map *em;
1670 
1671 	ordered->disk_bytenr = logical;
1672 
1673 	write_lock(&em_tree->lock);
1674 	em = search_extent_mapping(em_tree, ordered->file_offset,
1675 				   ordered->num_bytes);
1676 	em->block_start = logical;
1677 	free_extent_map(em);
1678 	write_unlock(&em_tree->lock);
1679 }
1680 
1681 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1682 				      u64 logical, u64 len)
1683 {
1684 	struct btrfs_ordered_extent *new;
1685 
1686 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1687 	    split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1688 			     ordered->num_bytes, len, logical))
1689 		return false;
1690 
1691 	new = btrfs_split_ordered_extent(ordered, len);
1692 	if (IS_ERR(new))
1693 		return false;
1694 	new->disk_bytenr = logical;
1695 	btrfs_finish_one_ordered(new);
1696 	return true;
1697 }
1698 
1699 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1700 {
1701 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1702 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1703 	struct btrfs_ordered_sum *sum;
1704 	u64 logical, len;
1705 
1706 	/*
1707 	 * Write to pre-allocated region is for the data relocation, and so
1708 	 * it should use WRITE operation. No split/rewrite are necessary.
1709 	 */
1710 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1711 		return;
1712 
1713 	ASSERT(!list_empty(&ordered->list));
1714 	/* The ordered->list can be empty in the above pre-alloc case. */
1715 	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1716 	logical = sum->logical;
1717 	len = sum->len;
1718 
1719 	while (len < ordered->disk_num_bytes) {
1720 		sum = list_next_entry(sum, list);
1721 		if (sum->logical == logical + len) {
1722 			len += sum->len;
1723 			continue;
1724 		}
1725 		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1726 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1727 			btrfs_err(fs_info, "failed to split ordered extent");
1728 			goto out;
1729 		}
1730 		logical = sum->logical;
1731 		len = sum->len;
1732 	}
1733 
1734 	if (ordered->disk_bytenr != logical)
1735 		btrfs_rewrite_logical_zoned(ordered, logical);
1736 
1737 out:
1738 	/*
1739 	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1740 	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1741 	 * addresses and don't contain actual checksums.  We thus must free them
1742 	 * here so that we don't attempt to log the csums later.
1743 	 */
1744 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1745 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1746 		while ((sum = list_first_entry_or_null(&ordered->list,
1747 						       typeof(*sum), list))) {
1748 			list_del(&sum->list);
1749 			kfree(sum);
1750 		}
1751 	}
1752 }
1753 
1754 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1755 			       struct btrfs_block_group **active_bg)
1756 {
1757 	const struct writeback_control *wbc = ctx->wbc;
1758 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1759 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1760 
1761 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1762 		return true;
1763 
1764 	if (fs_info->treelog_bg == block_group->start) {
1765 		if (!btrfs_zone_activate(block_group)) {
1766 			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1767 
1768 			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1769 				return false;
1770 		}
1771 	} else if (*active_bg != block_group) {
1772 		struct btrfs_block_group *tgt = *active_bg;
1773 
1774 		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1775 		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1776 
1777 		if (tgt) {
1778 			/*
1779 			 * If there is an unsent IO left in the allocated area,
1780 			 * we cannot wait for them as it may cause a deadlock.
1781 			 */
1782 			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1783 				if (wbc->sync_mode == WB_SYNC_NONE ||
1784 				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1785 					return false;
1786 			}
1787 
1788 			/* Pivot active metadata/system block group. */
1789 			btrfs_zoned_meta_io_unlock(fs_info);
1790 			wait_eb_writebacks(tgt);
1791 			do_zone_finish(tgt, true);
1792 			btrfs_zoned_meta_io_lock(fs_info);
1793 			if (*active_bg == tgt) {
1794 				btrfs_put_block_group(tgt);
1795 				*active_bg = NULL;
1796 			}
1797 		}
1798 		if (!btrfs_zone_activate(block_group))
1799 			return false;
1800 		if (*active_bg != block_group) {
1801 			ASSERT(*active_bg == NULL);
1802 			*active_bg = block_group;
1803 			btrfs_get_block_group(block_group);
1804 		}
1805 	}
1806 
1807 	return true;
1808 }
1809 
1810 /*
1811  * Check if @ctx->eb is aligned to the write pointer.
1812  *
1813  * Return:
1814  *   0:        @ctx->eb is at the write pointer. You can write it.
1815  *   -EAGAIN:  There is a hole. The caller should handle the case.
1816  *   -EBUSY:   There is a hole, but the caller can just bail out.
1817  */
1818 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1819 				   struct btrfs_eb_write_context *ctx)
1820 {
1821 	const struct writeback_control *wbc = ctx->wbc;
1822 	const struct extent_buffer *eb = ctx->eb;
1823 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1824 
1825 	if (!btrfs_is_zoned(fs_info))
1826 		return 0;
1827 
1828 	if (block_group) {
1829 		if (block_group->start > eb->start ||
1830 		    block_group->start + block_group->length <= eb->start) {
1831 			btrfs_put_block_group(block_group);
1832 			block_group = NULL;
1833 			ctx->zoned_bg = NULL;
1834 		}
1835 	}
1836 
1837 	if (!block_group) {
1838 		block_group = btrfs_lookup_block_group(fs_info, eb->start);
1839 		if (!block_group)
1840 			return 0;
1841 		ctx->zoned_bg = block_group;
1842 	}
1843 
1844 	if (block_group->meta_write_pointer == eb->start) {
1845 		struct btrfs_block_group **tgt;
1846 
1847 		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1848 			return 0;
1849 
1850 		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1851 			tgt = &fs_info->active_system_bg;
1852 		else
1853 			tgt = &fs_info->active_meta_bg;
1854 		if (check_bg_is_active(ctx, tgt))
1855 			return 0;
1856 	}
1857 
1858 	/*
1859 	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1860 	 * start writing this eb. In that case, we can just bail out.
1861 	 */
1862 	if (block_group->meta_write_pointer > eb->start)
1863 		return -EBUSY;
1864 
1865 	/* If for_sync, this hole will be filled with trasnsaction commit. */
1866 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1867 		return -EAGAIN;
1868 	return -EBUSY;
1869 }
1870 
1871 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1872 {
1873 	if (!btrfs_dev_is_sequential(device, physical))
1874 		return -EOPNOTSUPP;
1875 
1876 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1877 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1878 }
1879 
1880 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1881 			  struct blk_zone *zone)
1882 {
1883 	struct btrfs_io_context *bioc = NULL;
1884 	u64 mapped_length = PAGE_SIZE;
1885 	unsigned int nofs_flag;
1886 	int nmirrors;
1887 	int i, ret;
1888 
1889 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1890 			      &mapped_length, &bioc, NULL, NULL, 1);
1891 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1892 		ret = -EIO;
1893 		goto out_put_bioc;
1894 	}
1895 
1896 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1897 		ret = -EINVAL;
1898 		goto out_put_bioc;
1899 	}
1900 
1901 	nofs_flag = memalloc_nofs_save();
1902 	nmirrors = (int)bioc->num_stripes;
1903 	for (i = 0; i < nmirrors; i++) {
1904 		u64 physical = bioc->stripes[i].physical;
1905 		struct btrfs_device *dev = bioc->stripes[i].dev;
1906 
1907 		/* Missing device */
1908 		if (!dev->bdev)
1909 			continue;
1910 
1911 		ret = btrfs_get_dev_zone(dev, physical, zone);
1912 		/* Failing device */
1913 		if (ret == -EIO || ret == -EOPNOTSUPP)
1914 			continue;
1915 		break;
1916 	}
1917 	memalloc_nofs_restore(nofs_flag);
1918 out_put_bioc:
1919 	btrfs_put_bioc(bioc);
1920 	return ret;
1921 }
1922 
1923 /*
1924  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1925  * filling zeros between @physical_pos to a write pointer of dev-replace
1926  * source device.
1927  */
1928 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1929 				    u64 physical_start, u64 physical_pos)
1930 {
1931 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1932 	struct blk_zone zone;
1933 	u64 length;
1934 	u64 wp;
1935 	int ret;
1936 
1937 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1938 		return 0;
1939 
1940 	ret = read_zone_info(fs_info, logical, &zone);
1941 	if (ret)
1942 		return ret;
1943 
1944 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1945 
1946 	if (physical_pos == wp)
1947 		return 0;
1948 
1949 	if (physical_pos > wp)
1950 		return -EUCLEAN;
1951 
1952 	length = wp - physical_pos;
1953 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1954 }
1955 
1956 /*
1957  * Activate block group and underlying device zones
1958  *
1959  * @block_group: the block group to activate
1960  *
1961  * Return: true on success, false otherwise
1962  */
1963 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1964 {
1965 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1966 	struct map_lookup *map;
1967 	struct btrfs_device *device;
1968 	u64 physical;
1969 	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
1970 	bool ret;
1971 	int i;
1972 
1973 	if (!btrfs_is_zoned(block_group->fs_info))
1974 		return true;
1975 
1976 	map = block_group->physical_map;
1977 
1978 	spin_lock(&block_group->lock);
1979 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1980 		ret = true;
1981 		goto out_unlock;
1982 	}
1983 
1984 	/* No space left */
1985 	if (btrfs_zoned_bg_is_full(block_group)) {
1986 		ret = false;
1987 		goto out_unlock;
1988 	}
1989 
1990 	spin_lock(&fs_info->zone_active_bgs_lock);
1991 	for (i = 0; i < map->num_stripes; i++) {
1992 		struct btrfs_zoned_device_info *zinfo;
1993 		int reserved = 0;
1994 
1995 		device = map->stripes[i].dev;
1996 		physical = map->stripes[i].physical;
1997 		zinfo = device->zone_info;
1998 
1999 		if (zinfo->max_active_zones == 0)
2000 			continue;
2001 
2002 		if (is_data)
2003 			reserved = zinfo->reserved_active_zones;
2004 		/*
2005 		 * For the data block group, leave active zones for one
2006 		 * metadata block group and one system block group.
2007 		 */
2008 		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2009 			ret = false;
2010 			spin_unlock(&fs_info->zone_active_bgs_lock);
2011 			goto out_unlock;
2012 		}
2013 
2014 		if (!btrfs_dev_set_active_zone(device, physical)) {
2015 			/* Cannot activate the zone */
2016 			ret = false;
2017 			spin_unlock(&fs_info->zone_active_bgs_lock);
2018 			goto out_unlock;
2019 		}
2020 		if (!is_data)
2021 			zinfo->reserved_active_zones--;
2022 	}
2023 	spin_unlock(&fs_info->zone_active_bgs_lock);
2024 
2025 	/* Successfully activated all the zones */
2026 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2027 	spin_unlock(&block_group->lock);
2028 
2029 	/* For the active block group list */
2030 	btrfs_get_block_group(block_group);
2031 
2032 	spin_lock(&fs_info->zone_active_bgs_lock);
2033 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2034 	spin_unlock(&fs_info->zone_active_bgs_lock);
2035 
2036 	return true;
2037 
2038 out_unlock:
2039 	spin_unlock(&block_group->lock);
2040 	return ret;
2041 }
2042 
2043 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2044 {
2045 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2046 	const u64 end = block_group->start + block_group->length;
2047 	struct radix_tree_iter iter;
2048 	struct extent_buffer *eb;
2049 	void __rcu **slot;
2050 
2051 	rcu_read_lock();
2052 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2053 				 block_group->start >> fs_info->sectorsize_bits) {
2054 		eb = radix_tree_deref_slot(slot);
2055 		if (!eb)
2056 			continue;
2057 		if (radix_tree_deref_retry(eb)) {
2058 			slot = radix_tree_iter_retry(&iter);
2059 			continue;
2060 		}
2061 
2062 		if (eb->start < block_group->start)
2063 			continue;
2064 		if (eb->start >= end)
2065 			break;
2066 
2067 		slot = radix_tree_iter_resume(slot, &iter);
2068 		rcu_read_unlock();
2069 		wait_on_extent_buffer_writeback(eb);
2070 		rcu_read_lock();
2071 	}
2072 	rcu_read_unlock();
2073 }
2074 
2075 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2076 {
2077 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2078 	struct map_lookup *map;
2079 	const bool is_metadata = (block_group->flags &
2080 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2081 	int ret = 0;
2082 	int i;
2083 
2084 	spin_lock(&block_group->lock);
2085 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2086 		spin_unlock(&block_group->lock);
2087 		return 0;
2088 	}
2089 
2090 	/* Check if we have unwritten allocated space */
2091 	if (is_metadata &&
2092 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2093 		spin_unlock(&block_group->lock);
2094 		return -EAGAIN;
2095 	}
2096 
2097 	/*
2098 	 * If we are sure that the block group is full (= no more room left for
2099 	 * new allocation) and the IO for the last usable block is completed, we
2100 	 * don't need to wait for the other IOs. This holds because we ensure
2101 	 * the sequential IO submissions using the ZONE_APPEND command for data
2102 	 * and block_group->meta_write_pointer for metadata.
2103 	 */
2104 	if (!fully_written) {
2105 		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2106 			spin_unlock(&block_group->lock);
2107 			return -EAGAIN;
2108 		}
2109 		spin_unlock(&block_group->lock);
2110 
2111 		ret = btrfs_inc_block_group_ro(block_group, false);
2112 		if (ret)
2113 			return ret;
2114 
2115 		/* Ensure all writes in this block group finish */
2116 		btrfs_wait_block_group_reservations(block_group);
2117 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2118 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2119 					 block_group->length);
2120 		/* Wait for extent buffers to be written. */
2121 		if (is_metadata)
2122 			wait_eb_writebacks(block_group);
2123 
2124 		spin_lock(&block_group->lock);
2125 
2126 		/*
2127 		 * Bail out if someone already deactivated the block group, or
2128 		 * allocated space is left in the block group.
2129 		 */
2130 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2131 			      &block_group->runtime_flags)) {
2132 			spin_unlock(&block_group->lock);
2133 			btrfs_dec_block_group_ro(block_group);
2134 			return 0;
2135 		}
2136 
2137 		if (block_group->reserved ||
2138 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2139 			     &block_group->runtime_flags)) {
2140 			spin_unlock(&block_group->lock);
2141 			btrfs_dec_block_group_ro(block_group);
2142 			return -EAGAIN;
2143 		}
2144 	}
2145 
2146 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2147 	block_group->alloc_offset = block_group->zone_capacity;
2148 	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2149 		block_group->meta_write_pointer = block_group->start +
2150 						  block_group->zone_capacity;
2151 	block_group->free_space_ctl->free_space = 0;
2152 	btrfs_clear_treelog_bg(block_group);
2153 	btrfs_clear_data_reloc_bg(block_group);
2154 	spin_unlock(&block_group->lock);
2155 
2156 	map = block_group->physical_map;
2157 	for (i = 0; i < map->num_stripes; i++) {
2158 		struct btrfs_device *device = map->stripes[i].dev;
2159 		const u64 physical = map->stripes[i].physical;
2160 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2161 
2162 		if (zinfo->max_active_zones == 0)
2163 			continue;
2164 
2165 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2166 				       physical >> SECTOR_SHIFT,
2167 				       zinfo->zone_size >> SECTOR_SHIFT,
2168 				       GFP_NOFS);
2169 
2170 		if (ret)
2171 			return ret;
2172 
2173 		if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2174 			zinfo->reserved_active_zones++;
2175 		btrfs_dev_clear_active_zone(device, physical);
2176 	}
2177 
2178 	if (!fully_written)
2179 		btrfs_dec_block_group_ro(block_group);
2180 
2181 	spin_lock(&fs_info->zone_active_bgs_lock);
2182 	ASSERT(!list_empty(&block_group->active_bg_list));
2183 	list_del_init(&block_group->active_bg_list);
2184 	spin_unlock(&fs_info->zone_active_bgs_lock);
2185 
2186 	/* For active_bg_list */
2187 	btrfs_put_block_group(block_group);
2188 
2189 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2190 
2191 	return 0;
2192 }
2193 
2194 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2195 {
2196 	if (!btrfs_is_zoned(block_group->fs_info))
2197 		return 0;
2198 
2199 	return do_zone_finish(block_group, false);
2200 }
2201 
2202 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2203 {
2204 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2205 	struct btrfs_device *device;
2206 	bool ret = false;
2207 
2208 	if (!btrfs_is_zoned(fs_info))
2209 		return true;
2210 
2211 	/* Check if there is a device with active zones left */
2212 	mutex_lock(&fs_info->chunk_mutex);
2213 	spin_lock(&fs_info->zone_active_bgs_lock);
2214 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2215 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2216 		int reserved = 0;
2217 
2218 		if (!device->bdev)
2219 			continue;
2220 
2221 		if (!zinfo->max_active_zones) {
2222 			ret = true;
2223 			break;
2224 		}
2225 
2226 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2227 			reserved = zinfo->reserved_active_zones;
2228 
2229 		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2230 		case 0: /* single */
2231 			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2232 			break;
2233 		case BTRFS_BLOCK_GROUP_DUP:
2234 			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2235 			break;
2236 		}
2237 		if (ret)
2238 			break;
2239 	}
2240 	spin_unlock(&fs_info->zone_active_bgs_lock);
2241 	mutex_unlock(&fs_info->chunk_mutex);
2242 
2243 	if (!ret)
2244 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2245 
2246 	return ret;
2247 }
2248 
2249 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2250 {
2251 	struct btrfs_block_group *block_group;
2252 	u64 min_alloc_bytes;
2253 
2254 	if (!btrfs_is_zoned(fs_info))
2255 		return;
2256 
2257 	block_group = btrfs_lookup_block_group(fs_info, logical);
2258 	ASSERT(block_group);
2259 
2260 	/* No MIXED_BG on zoned btrfs. */
2261 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2262 		min_alloc_bytes = fs_info->sectorsize;
2263 	else
2264 		min_alloc_bytes = fs_info->nodesize;
2265 
2266 	/* Bail out if we can allocate more data from this block group. */
2267 	if (logical + length + min_alloc_bytes <=
2268 	    block_group->start + block_group->zone_capacity)
2269 		goto out;
2270 
2271 	do_zone_finish(block_group, true);
2272 
2273 out:
2274 	btrfs_put_block_group(block_group);
2275 }
2276 
2277 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2278 {
2279 	struct btrfs_block_group *bg =
2280 		container_of(work, struct btrfs_block_group, zone_finish_work);
2281 
2282 	wait_on_extent_buffer_writeback(bg->last_eb);
2283 	free_extent_buffer(bg->last_eb);
2284 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2285 	btrfs_put_block_group(bg);
2286 }
2287 
2288 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2289 				   struct extent_buffer *eb)
2290 {
2291 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2292 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2293 		return;
2294 
2295 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2296 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2297 			  bg->start);
2298 		return;
2299 	}
2300 
2301 	/* For the work */
2302 	btrfs_get_block_group(bg);
2303 	atomic_inc(&eb->refs);
2304 	bg->last_eb = eb;
2305 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2306 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2307 }
2308 
2309 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2310 {
2311 	struct btrfs_fs_info *fs_info = bg->fs_info;
2312 
2313 	spin_lock(&fs_info->relocation_bg_lock);
2314 	if (fs_info->data_reloc_bg == bg->start)
2315 		fs_info->data_reloc_bg = 0;
2316 	spin_unlock(&fs_info->relocation_bg_lock);
2317 }
2318 
2319 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2320 {
2321 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2322 	struct btrfs_device *device;
2323 
2324 	if (!btrfs_is_zoned(fs_info))
2325 		return;
2326 
2327 	mutex_lock(&fs_devices->device_list_mutex);
2328 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2329 		if (device->zone_info) {
2330 			vfree(device->zone_info->zone_cache);
2331 			device->zone_info->zone_cache = NULL;
2332 		}
2333 	}
2334 	mutex_unlock(&fs_devices->device_list_mutex);
2335 }
2336 
2337 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2338 {
2339 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2340 	struct btrfs_device *device;
2341 	u64 used = 0;
2342 	u64 total = 0;
2343 	u64 factor;
2344 
2345 	ASSERT(btrfs_is_zoned(fs_info));
2346 
2347 	if (fs_info->bg_reclaim_threshold == 0)
2348 		return false;
2349 
2350 	mutex_lock(&fs_devices->device_list_mutex);
2351 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2352 		if (!device->bdev)
2353 			continue;
2354 
2355 		total += device->disk_total_bytes;
2356 		used += device->bytes_used;
2357 	}
2358 	mutex_unlock(&fs_devices->device_list_mutex);
2359 
2360 	factor = div64_u64(used * 100, total);
2361 	return factor >= fs_info->bg_reclaim_threshold;
2362 }
2363 
2364 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2365 				       u64 length)
2366 {
2367 	struct btrfs_block_group *block_group;
2368 
2369 	if (!btrfs_is_zoned(fs_info))
2370 		return;
2371 
2372 	block_group = btrfs_lookup_block_group(fs_info, logical);
2373 	/* It should be called on a previous data relocation block group. */
2374 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2375 
2376 	spin_lock(&block_group->lock);
2377 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2378 		goto out;
2379 
2380 	/* All relocation extents are written. */
2381 	if (block_group->start + block_group->alloc_offset == logical + length) {
2382 		/*
2383 		 * Now, release this block group for further allocations and
2384 		 * zone finish.
2385 		 */
2386 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2387 			  &block_group->runtime_flags);
2388 	}
2389 
2390 out:
2391 	spin_unlock(&block_group->lock);
2392 	btrfs_put_block_group(block_group);
2393 }
2394 
2395 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2396 {
2397 	struct btrfs_block_group *block_group;
2398 	struct btrfs_block_group *min_bg = NULL;
2399 	u64 min_avail = U64_MAX;
2400 	int ret;
2401 
2402 	spin_lock(&fs_info->zone_active_bgs_lock);
2403 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2404 			    active_bg_list) {
2405 		u64 avail;
2406 
2407 		spin_lock(&block_group->lock);
2408 		if (block_group->reserved || block_group->alloc_offset == 0 ||
2409 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2410 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2411 			spin_unlock(&block_group->lock);
2412 			continue;
2413 		}
2414 
2415 		avail = block_group->zone_capacity - block_group->alloc_offset;
2416 		if (min_avail > avail) {
2417 			if (min_bg)
2418 				btrfs_put_block_group(min_bg);
2419 			min_bg = block_group;
2420 			min_avail = avail;
2421 			btrfs_get_block_group(min_bg);
2422 		}
2423 		spin_unlock(&block_group->lock);
2424 	}
2425 	spin_unlock(&fs_info->zone_active_bgs_lock);
2426 
2427 	if (!min_bg)
2428 		return 0;
2429 
2430 	ret = btrfs_zone_finish(min_bg);
2431 	btrfs_put_block_group(min_bg);
2432 
2433 	return ret < 0 ? ret : 1;
2434 }
2435 
2436 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2437 				struct btrfs_space_info *space_info,
2438 				bool do_finish)
2439 {
2440 	struct btrfs_block_group *bg;
2441 	int index;
2442 
2443 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2444 		return 0;
2445 
2446 	for (;;) {
2447 		int ret;
2448 		bool need_finish = false;
2449 
2450 		down_read(&space_info->groups_sem);
2451 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2452 			list_for_each_entry(bg, &space_info->block_groups[index],
2453 					    list) {
2454 				if (!spin_trylock(&bg->lock))
2455 					continue;
2456 				if (btrfs_zoned_bg_is_full(bg) ||
2457 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2458 					     &bg->runtime_flags)) {
2459 					spin_unlock(&bg->lock);
2460 					continue;
2461 				}
2462 				spin_unlock(&bg->lock);
2463 
2464 				if (btrfs_zone_activate(bg)) {
2465 					up_read(&space_info->groups_sem);
2466 					return 1;
2467 				}
2468 
2469 				need_finish = true;
2470 			}
2471 		}
2472 		up_read(&space_info->groups_sem);
2473 
2474 		if (!do_finish || !need_finish)
2475 			break;
2476 
2477 		ret = btrfs_zone_finish_one_bg(fs_info);
2478 		if (ret == 0)
2479 			break;
2480 		if (ret < 0)
2481 			return ret;
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 /*
2488  * Reserve zones for one metadata block group, one tree-log block group, and one
2489  * system block group.
2490  */
2491 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2492 {
2493 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2494 	struct btrfs_block_group *block_group;
2495 	struct btrfs_device *device;
2496 	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
2497 	unsigned int metadata_reserve = 2;
2498 	/* Reserve a zone for SINGLE system block group. */
2499 	unsigned int system_reserve = 1;
2500 
2501 	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2502 		return;
2503 
2504 	/*
2505 	 * This function is called from the mount context. So, there is no
2506 	 * parallel process touching the bits. No need for read_seqretry().
2507 	 */
2508 	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2509 		metadata_reserve = 4;
2510 	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2511 		system_reserve = 2;
2512 
2513 	/* Apply the reservation on all the devices. */
2514 	mutex_lock(&fs_devices->device_list_mutex);
2515 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2516 		if (!device->bdev)
2517 			continue;
2518 
2519 		device->zone_info->reserved_active_zones =
2520 			metadata_reserve + system_reserve;
2521 	}
2522 	mutex_unlock(&fs_devices->device_list_mutex);
2523 
2524 	/* Release reservation for currently active block groups. */
2525 	spin_lock(&fs_info->zone_active_bgs_lock);
2526 	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2527 		struct map_lookup *map = block_group->physical_map;
2528 
2529 		if (!(block_group->flags &
2530 		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2531 			continue;
2532 
2533 		for (int i = 0; i < map->num_stripes; i++)
2534 			map->stripes[i].dev->zone_info->reserved_active_zones--;
2535 	}
2536 	spin_unlock(&fs_info->zone_active_bgs_lock);
2537 }
2538