1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include "ctree.h" 8 #include "volumes.h" 9 #include "zoned.h" 10 #include "rcu-string.h" 11 #include "disk-io.h" 12 #include "block-group.h" 13 #include "transaction.h" 14 #include "dev-replace.h" 15 #include "space-info.h" 16 17 /* Maximum number of zones to report per blkdev_report_zones() call */ 18 #define BTRFS_REPORT_NR_ZONES 4096 19 /* Invalid allocation pointer value for missing devices */ 20 #define WP_MISSING_DEV ((u64)-1) 21 /* Pseudo write pointer value for conventional zone */ 22 #define WP_CONVENTIONAL ((u64)-2) 23 24 /* 25 * Location of the first zone of superblock logging zone pairs. 26 * 27 * - primary superblock: 0B (zone 0) 28 * - first copy: 512G (zone starting at that offset) 29 * - second copy: 4T (zone starting at that offset) 30 */ 31 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 32 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 33 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 34 35 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 36 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 37 38 /* Number of superblock log zones */ 39 #define BTRFS_NR_SB_LOG_ZONES 2 40 41 /* 42 * Maximum supported zone size. Currently, SMR disks have a zone size of 43 * 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. We do not 44 * expect the zone size to become larger than 8GiB in the near future. 45 */ 46 #define BTRFS_MAX_ZONE_SIZE SZ_8G 47 48 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 49 { 50 struct blk_zone *zones = data; 51 52 memcpy(&zones[idx], zone, sizeof(*zone)); 53 54 return 0; 55 } 56 57 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 58 u64 *wp_ret) 59 { 60 bool empty[BTRFS_NR_SB_LOG_ZONES]; 61 bool full[BTRFS_NR_SB_LOG_ZONES]; 62 sector_t sector; 63 64 ASSERT(zones[0].type != BLK_ZONE_TYPE_CONVENTIONAL && 65 zones[1].type != BLK_ZONE_TYPE_CONVENTIONAL); 66 67 empty[0] = (zones[0].cond == BLK_ZONE_COND_EMPTY); 68 empty[1] = (zones[1].cond == BLK_ZONE_COND_EMPTY); 69 full[0] = (zones[0].cond == BLK_ZONE_COND_FULL); 70 full[1] = (zones[1].cond == BLK_ZONE_COND_FULL); 71 72 /* 73 * Possible states of log buffer zones 74 * 75 * Empty[0] In use[0] Full[0] 76 * Empty[1] * x 0 77 * In use[1] 0 x 0 78 * Full[1] 1 1 C 79 * 80 * Log position: 81 * *: Special case, no superblock is written 82 * 0: Use write pointer of zones[0] 83 * 1: Use write pointer of zones[1] 84 * C: Compare super blocks from zones[0] and zones[1], use the latest 85 * one determined by generation 86 * x: Invalid state 87 */ 88 89 if (empty[0] && empty[1]) { 90 /* Special case to distinguish no superblock to read */ 91 *wp_ret = zones[0].start << SECTOR_SHIFT; 92 return -ENOENT; 93 } else if (full[0] && full[1]) { 94 /* Compare two super blocks */ 95 struct address_space *mapping = bdev->bd_inode->i_mapping; 96 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 97 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 98 int i; 99 100 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 101 u64 bytenr; 102 103 bytenr = ((zones[i].start + zones[i].len) 104 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE; 105 106 page[i] = read_cache_page_gfp(mapping, 107 bytenr >> PAGE_SHIFT, GFP_NOFS); 108 if (IS_ERR(page[i])) { 109 if (i == 1) 110 btrfs_release_disk_super(super[0]); 111 return PTR_ERR(page[i]); 112 } 113 super[i] = page_address(page[i]); 114 } 115 116 if (super[0]->generation > super[1]->generation) 117 sector = zones[1].start; 118 else 119 sector = zones[0].start; 120 121 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 122 btrfs_release_disk_super(super[i]); 123 } else if (!full[0] && (empty[1] || full[1])) { 124 sector = zones[0].wp; 125 } else if (full[0]) { 126 sector = zones[1].wp; 127 } else { 128 return -EUCLEAN; 129 } 130 *wp_ret = sector << SECTOR_SHIFT; 131 return 0; 132 } 133 134 /* 135 * Get the first zone number of the superblock mirror 136 */ 137 static inline u32 sb_zone_number(int shift, int mirror) 138 { 139 u64 zone; 140 141 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 142 switch (mirror) { 143 case 0: zone = 0; break; 144 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 145 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 146 } 147 148 ASSERT(zone <= U32_MAX); 149 150 return (u32)zone; 151 } 152 153 static inline sector_t zone_start_sector(u32 zone_number, 154 struct block_device *bdev) 155 { 156 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 157 } 158 159 static inline u64 zone_start_physical(u32 zone_number, 160 struct btrfs_zoned_device_info *zone_info) 161 { 162 return (u64)zone_number << zone_info->zone_size_shift; 163 } 164 165 /* 166 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 167 * device into static sized chunks and fake a conventional zone on each of 168 * them. 169 */ 170 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 171 struct blk_zone *zones, unsigned int nr_zones) 172 { 173 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 174 sector_t bdev_size = bdev_nr_sectors(device->bdev); 175 unsigned int i; 176 177 pos >>= SECTOR_SHIFT; 178 for (i = 0; i < nr_zones; i++) { 179 zones[i].start = i * zone_sectors + pos; 180 zones[i].len = zone_sectors; 181 zones[i].capacity = zone_sectors; 182 zones[i].wp = zones[i].start + zone_sectors; 183 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 184 zones[i].cond = BLK_ZONE_COND_NOT_WP; 185 186 if (zones[i].wp >= bdev_size) { 187 i++; 188 break; 189 } 190 } 191 192 return i; 193 } 194 195 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 196 struct blk_zone *zones, unsigned int *nr_zones) 197 { 198 int ret; 199 200 if (!*nr_zones) 201 return 0; 202 203 if (!bdev_is_zoned(device->bdev)) { 204 ret = emulate_report_zones(device, pos, zones, *nr_zones); 205 *nr_zones = ret; 206 return 0; 207 } 208 209 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 210 copy_zone_info_cb, zones); 211 if (ret < 0) { 212 btrfs_err_in_rcu(device->fs_info, 213 "zoned: failed to read zone %llu on %s (devid %llu)", 214 pos, rcu_str_deref(device->name), 215 device->devid); 216 return ret; 217 } 218 *nr_zones = ret; 219 if (!ret) 220 return -EIO; 221 222 return 0; 223 } 224 225 /* The emulated zone size is determined from the size of device extent */ 226 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 227 { 228 struct btrfs_path *path; 229 struct btrfs_root *root = fs_info->dev_root; 230 struct btrfs_key key; 231 struct extent_buffer *leaf; 232 struct btrfs_dev_extent *dext; 233 int ret = 0; 234 235 key.objectid = 1; 236 key.type = BTRFS_DEV_EXTENT_KEY; 237 key.offset = 0; 238 239 path = btrfs_alloc_path(); 240 if (!path) 241 return -ENOMEM; 242 243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 244 if (ret < 0) 245 goto out; 246 247 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 248 ret = btrfs_next_item(root, path); 249 if (ret < 0) 250 goto out; 251 /* No dev extents at all? Not good */ 252 if (ret > 0) { 253 ret = -EUCLEAN; 254 goto out; 255 } 256 } 257 258 leaf = path->nodes[0]; 259 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 260 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 261 ret = 0; 262 263 out: 264 btrfs_free_path(path); 265 266 return ret; 267 } 268 269 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 270 { 271 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 272 struct btrfs_device *device; 273 int ret = 0; 274 275 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 276 if (!btrfs_fs_incompat(fs_info, ZONED)) 277 return 0; 278 279 mutex_lock(&fs_devices->device_list_mutex); 280 list_for_each_entry(device, &fs_devices->devices, dev_list) { 281 /* We can skip reading of zone info for missing devices */ 282 if (!device->bdev) 283 continue; 284 285 ret = btrfs_get_dev_zone_info(device); 286 if (ret) 287 break; 288 } 289 mutex_unlock(&fs_devices->device_list_mutex); 290 291 return ret; 292 } 293 294 int btrfs_get_dev_zone_info(struct btrfs_device *device) 295 { 296 struct btrfs_fs_info *fs_info = device->fs_info; 297 struct btrfs_zoned_device_info *zone_info = NULL; 298 struct block_device *bdev = device->bdev; 299 struct request_queue *queue = bdev_get_queue(bdev); 300 sector_t nr_sectors; 301 sector_t sector = 0; 302 struct blk_zone *zones = NULL; 303 unsigned int i, nreported = 0, nr_zones; 304 sector_t zone_sectors; 305 char *model, *emulated; 306 int ret; 307 308 /* 309 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 310 * yet be set. 311 */ 312 if (!btrfs_fs_incompat(fs_info, ZONED)) 313 return 0; 314 315 if (device->zone_info) 316 return 0; 317 318 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 319 if (!zone_info) 320 return -ENOMEM; 321 322 if (!bdev_is_zoned(bdev)) { 323 if (!fs_info->zone_size) { 324 ret = calculate_emulated_zone_size(fs_info); 325 if (ret) 326 goto out; 327 } 328 329 ASSERT(fs_info->zone_size); 330 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 331 } else { 332 zone_sectors = bdev_zone_sectors(bdev); 333 } 334 335 /* Check if it's power of 2 (see is_power_of_2) */ 336 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0); 337 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 338 339 /* We reject devices with a zone size larger than 8GB */ 340 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 341 btrfs_err_in_rcu(fs_info, 342 "zoned: %s: zone size %llu larger than supported maximum %llu", 343 rcu_str_deref(device->name), 344 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 345 ret = -EINVAL; 346 goto out; 347 } 348 349 nr_sectors = bdev_nr_sectors(bdev); 350 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 351 zone_info->max_zone_append_size = 352 (u64)queue_max_zone_append_sectors(queue) << SECTOR_SHIFT; 353 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 354 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 355 zone_info->nr_zones++; 356 357 if (bdev_is_zoned(bdev) && zone_info->max_zone_append_size == 0) { 358 btrfs_err(fs_info, "zoned: device %pg does not support zone append", 359 bdev); 360 ret = -EINVAL; 361 goto out; 362 } 363 364 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 365 if (!zone_info->seq_zones) { 366 ret = -ENOMEM; 367 goto out; 368 } 369 370 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 371 if (!zone_info->empty_zones) { 372 ret = -ENOMEM; 373 goto out; 374 } 375 376 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 377 if (!zones) { 378 ret = -ENOMEM; 379 goto out; 380 } 381 382 /* Get zones type */ 383 while (sector < nr_sectors) { 384 nr_zones = BTRFS_REPORT_NR_ZONES; 385 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 386 &nr_zones); 387 if (ret) 388 goto out; 389 390 for (i = 0; i < nr_zones; i++) { 391 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 392 __set_bit(nreported, zone_info->seq_zones); 393 if (zones[i].cond == BLK_ZONE_COND_EMPTY) 394 __set_bit(nreported, zone_info->empty_zones); 395 nreported++; 396 } 397 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 398 } 399 400 if (nreported != zone_info->nr_zones) { 401 btrfs_err_in_rcu(device->fs_info, 402 "inconsistent number of zones on %s (%u/%u)", 403 rcu_str_deref(device->name), nreported, 404 zone_info->nr_zones); 405 ret = -EIO; 406 goto out; 407 } 408 409 /* Validate superblock log */ 410 nr_zones = BTRFS_NR_SB_LOG_ZONES; 411 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 412 u32 sb_zone; 413 u64 sb_wp; 414 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 415 416 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 417 if (sb_zone + 1 >= zone_info->nr_zones) 418 continue; 419 420 ret = btrfs_get_dev_zones(device, 421 zone_start_physical(sb_zone, zone_info), 422 &zone_info->sb_zones[sb_pos], 423 &nr_zones); 424 if (ret) 425 goto out; 426 427 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 428 btrfs_err_in_rcu(device->fs_info, 429 "zoned: failed to read super block log zone info at devid %llu zone %u", 430 device->devid, sb_zone); 431 ret = -EUCLEAN; 432 goto out; 433 } 434 435 /* 436 * If zones[0] is conventional, always use the beginning of the 437 * zone to record superblock. No need to validate in that case. 438 */ 439 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 440 BLK_ZONE_TYPE_CONVENTIONAL) 441 continue; 442 443 ret = sb_write_pointer(device->bdev, 444 &zone_info->sb_zones[sb_pos], &sb_wp); 445 if (ret != -ENOENT && ret) { 446 btrfs_err_in_rcu(device->fs_info, 447 "zoned: super block log zone corrupted devid %llu zone %u", 448 device->devid, sb_zone); 449 ret = -EUCLEAN; 450 goto out; 451 } 452 } 453 454 455 kfree(zones); 456 457 device->zone_info = zone_info; 458 459 switch (bdev_zoned_model(bdev)) { 460 case BLK_ZONED_HM: 461 model = "host-managed zoned"; 462 emulated = ""; 463 break; 464 case BLK_ZONED_HA: 465 model = "host-aware zoned"; 466 emulated = ""; 467 break; 468 case BLK_ZONED_NONE: 469 model = "regular"; 470 emulated = "emulated "; 471 break; 472 default: 473 /* Just in case */ 474 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 475 bdev_zoned_model(bdev), 476 rcu_str_deref(device->name)); 477 ret = -EOPNOTSUPP; 478 goto out_free_zone_info; 479 } 480 481 btrfs_info_in_rcu(fs_info, 482 "%s block device %s, %u %szones of %llu bytes", 483 model, rcu_str_deref(device->name), zone_info->nr_zones, 484 emulated, zone_info->zone_size); 485 486 return 0; 487 488 out: 489 kfree(zones); 490 out_free_zone_info: 491 bitmap_free(zone_info->empty_zones); 492 bitmap_free(zone_info->seq_zones); 493 kfree(zone_info); 494 device->zone_info = NULL; 495 496 return ret; 497 } 498 499 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 500 { 501 struct btrfs_zoned_device_info *zone_info = device->zone_info; 502 503 if (!zone_info) 504 return; 505 506 bitmap_free(zone_info->seq_zones); 507 bitmap_free(zone_info->empty_zones); 508 kfree(zone_info); 509 device->zone_info = NULL; 510 } 511 512 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 513 struct blk_zone *zone) 514 { 515 unsigned int nr_zones = 1; 516 int ret; 517 518 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 519 if (ret != 0 || !nr_zones) 520 return ret ? ret : -EIO; 521 522 return 0; 523 } 524 525 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 526 { 527 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 528 struct btrfs_device *device; 529 u64 zoned_devices = 0; 530 u64 nr_devices = 0; 531 u64 zone_size = 0; 532 u64 max_zone_append_size = 0; 533 const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED); 534 int ret = 0; 535 536 /* Count zoned devices */ 537 list_for_each_entry(device, &fs_devices->devices, dev_list) { 538 enum blk_zoned_model model; 539 540 if (!device->bdev) 541 continue; 542 543 model = bdev_zoned_model(device->bdev); 544 /* 545 * A Host-Managed zoned device must be used as a zoned device. 546 * A Host-Aware zoned device and a non-zoned devices can be 547 * treated as a zoned device, if ZONED flag is enabled in the 548 * superblock. 549 */ 550 if (model == BLK_ZONED_HM || 551 (model == BLK_ZONED_HA && incompat_zoned) || 552 (model == BLK_ZONED_NONE && incompat_zoned)) { 553 struct btrfs_zoned_device_info *zone_info = 554 device->zone_info; 555 556 zone_info = device->zone_info; 557 zoned_devices++; 558 if (!zone_size) { 559 zone_size = zone_info->zone_size; 560 } else if (zone_info->zone_size != zone_size) { 561 btrfs_err(fs_info, 562 "zoned: unequal block device zone sizes: have %llu found %llu", 563 device->zone_info->zone_size, 564 zone_size); 565 ret = -EINVAL; 566 goto out; 567 } 568 if (!max_zone_append_size || 569 (zone_info->max_zone_append_size && 570 zone_info->max_zone_append_size < max_zone_append_size)) 571 max_zone_append_size = 572 zone_info->max_zone_append_size; 573 } 574 nr_devices++; 575 } 576 577 if (!zoned_devices && !incompat_zoned) 578 goto out; 579 580 if (!zoned_devices && incompat_zoned) { 581 /* No zoned block device found on ZONED filesystem */ 582 btrfs_err(fs_info, 583 "zoned: no zoned devices found on a zoned filesystem"); 584 ret = -EINVAL; 585 goto out; 586 } 587 588 if (zoned_devices && !incompat_zoned) { 589 btrfs_err(fs_info, 590 "zoned: mode not enabled but zoned device found"); 591 ret = -EINVAL; 592 goto out; 593 } 594 595 if (zoned_devices != nr_devices) { 596 btrfs_err(fs_info, 597 "zoned: cannot mix zoned and regular devices"); 598 ret = -EINVAL; 599 goto out; 600 } 601 602 /* 603 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 604 * __btrfs_alloc_chunk(). Since we want stripe_len == zone_size, 605 * check the alignment here. 606 */ 607 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 608 btrfs_err(fs_info, 609 "zoned: zone size %llu not aligned to stripe %u", 610 zone_size, BTRFS_STRIPE_LEN); 611 ret = -EINVAL; 612 goto out; 613 } 614 615 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 616 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 617 ret = -EINVAL; 618 goto out; 619 } 620 621 fs_info->zone_size = zone_size; 622 fs_info->max_zone_append_size = max_zone_append_size; 623 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 624 625 /* 626 * Check mount options here, because we might change fs_info->zoned 627 * from fs_info->zone_size. 628 */ 629 ret = btrfs_check_mountopts_zoned(fs_info); 630 if (ret) 631 goto out; 632 633 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 634 out: 635 return ret; 636 } 637 638 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 639 { 640 if (!btrfs_is_zoned(info)) 641 return 0; 642 643 /* 644 * Space cache writing is not COWed. Disable that to avoid write errors 645 * in sequential zones. 646 */ 647 if (btrfs_test_opt(info, SPACE_CACHE)) { 648 btrfs_err(info, "zoned: space cache v1 is not supported"); 649 return -EINVAL; 650 } 651 652 if (btrfs_test_opt(info, NODATACOW)) { 653 btrfs_err(info, "zoned: NODATACOW not supported"); 654 return -EINVAL; 655 } 656 657 return 0; 658 } 659 660 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 661 int rw, u64 *bytenr_ret) 662 { 663 u64 wp; 664 int ret; 665 666 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 667 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 668 return 0; 669 } 670 671 ret = sb_write_pointer(bdev, zones, &wp); 672 if (ret != -ENOENT && ret < 0) 673 return ret; 674 675 if (rw == WRITE) { 676 struct blk_zone *reset = NULL; 677 678 if (wp == zones[0].start << SECTOR_SHIFT) 679 reset = &zones[0]; 680 else if (wp == zones[1].start << SECTOR_SHIFT) 681 reset = &zones[1]; 682 683 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 684 ASSERT(reset->cond == BLK_ZONE_COND_FULL); 685 686 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 687 reset->start, reset->len, 688 GFP_NOFS); 689 if (ret) 690 return ret; 691 692 reset->cond = BLK_ZONE_COND_EMPTY; 693 reset->wp = reset->start; 694 } 695 } else if (ret != -ENOENT) { 696 /* For READ, we want the precious one */ 697 if (wp == zones[0].start << SECTOR_SHIFT) 698 wp = (zones[1].start + zones[1].len) << SECTOR_SHIFT; 699 wp -= BTRFS_SUPER_INFO_SIZE; 700 } 701 702 *bytenr_ret = wp; 703 return 0; 704 705 } 706 707 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 708 u64 *bytenr_ret) 709 { 710 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 711 sector_t zone_sectors; 712 u32 sb_zone; 713 int ret; 714 u8 zone_sectors_shift; 715 sector_t nr_sectors; 716 u32 nr_zones; 717 718 if (!bdev_is_zoned(bdev)) { 719 *bytenr_ret = btrfs_sb_offset(mirror); 720 return 0; 721 } 722 723 ASSERT(rw == READ || rw == WRITE); 724 725 zone_sectors = bdev_zone_sectors(bdev); 726 if (!is_power_of_2(zone_sectors)) 727 return -EINVAL; 728 zone_sectors_shift = ilog2(zone_sectors); 729 nr_sectors = bdev_nr_sectors(bdev); 730 nr_zones = nr_sectors >> zone_sectors_shift; 731 732 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 733 if (sb_zone + 1 >= nr_zones) 734 return -ENOENT; 735 736 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 737 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 738 zones); 739 if (ret < 0) 740 return ret; 741 if (ret != BTRFS_NR_SB_LOG_ZONES) 742 return -EIO; 743 744 return sb_log_location(bdev, zones, rw, bytenr_ret); 745 } 746 747 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 748 u64 *bytenr_ret) 749 { 750 struct btrfs_zoned_device_info *zinfo = device->zone_info; 751 u32 zone_num; 752 753 /* 754 * For a zoned filesystem on a non-zoned block device, use the same 755 * super block locations as regular filesystem. Doing so, the super 756 * block can always be retrieved and the zoned flag of the volume 757 * detected from the super block information. 758 */ 759 if (!bdev_is_zoned(device->bdev)) { 760 *bytenr_ret = btrfs_sb_offset(mirror); 761 return 0; 762 } 763 764 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 765 if (zone_num + 1 >= zinfo->nr_zones) 766 return -ENOENT; 767 768 return sb_log_location(device->bdev, 769 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 770 rw, bytenr_ret); 771 } 772 773 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 774 int mirror) 775 { 776 u32 zone_num; 777 778 if (!zinfo) 779 return false; 780 781 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 782 if (zone_num + 1 >= zinfo->nr_zones) 783 return false; 784 785 if (!test_bit(zone_num, zinfo->seq_zones)) 786 return false; 787 788 return true; 789 } 790 791 void btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 792 { 793 struct btrfs_zoned_device_info *zinfo = device->zone_info; 794 struct blk_zone *zone; 795 796 if (!is_sb_log_zone(zinfo, mirror)) 797 return; 798 799 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 800 if (zone->cond != BLK_ZONE_COND_FULL) { 801 if (zone->cond == BLK_ZONE_COND_EMPTY) 802 zone->cond = BLK_ZONE_COND_IMP_OPEN; 803 804 zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT); 805 806 if (zone->wp == zone->start + zone->len) 807 zone->cond = BLK_ZONE_COND_FULL; 808 809 return; 810 } 811 812 zone++; 813 ASSERT(zone->cond != BLK_ZONE_COND_FULL); 814 if (zone->cond == BLK_ZONE_COND_EMPTY) 815 zone->cond = BLK_ZONE_COND_IMP_OPEN; 816 817 zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT); 818 819 if (zone->wp == zone->start + zone->len) 820 zone->cond = BLK_ZONE_COND_FULL; 821 } 822 823 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 824 { 825 sector_t zone_sectors; 826 sector_t nr_sectors; 827 u8 zone_sectors_shift; 828 u32 sb_zone; 829 u32 nr_zones; 830 831 zone_sectors = bdev_zone_sectors(bdev); 832 zone_sectors_shift = ilog2(zone_sectors); 833 nr_sectors = bdev_nr_sectors(bdev); 834 nr_zones = nr_sectors >> zone_sectors_shift; 835 836 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 837 if (sb_zone + 1 >= nr_zones) 838 return -ENOENT; 839 840 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 841 zone_start_sector(sb_zone, bdev), 842 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 843 } 844 845 /** 846 * btrfs_find_allocatable_zones - find allocatable zones within a given region 847 * 848 * @device: the device to allocate a region on 849 * @hole_start: the position of the hole to allocate the region 850 * @num_bytes: size of wanted region 851 * @hole_end: the end of the hole 852 * @return: position of allocatable zones 853 * 854 * Allocatable region should not contain any superblock locations. 855 */ 856 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 857 u64 hole_end, u64 num_bytes) 858 { 859 struct btrfs_zoned_device_info *zinfo = device->zone_info; 860 const u8 shift = zinfo->zone_size_shift; 861 u64 nzones = num_bytes >> shift; 862 u64 pos = hole_start; 863 u64 begin, end; 864 bool have_sb; 865 int i; 866 867 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 868 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 869 870 while (pos < hole_end) { 871 begin = pos >> shift; 872 end = begin + nzones; 873 874 if (end > zinfo->nr_zones) 875 return hole_end; 876 877 /* Check if zones in the region are all empty */ 878 if (btrfs_dev_is_sequential(device, pos) && 879 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { 880 pos += zinfo->zone_size; 881 continue; 882 } 883 884 have_sb = false; 885 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 886 u32 sb_zone; 887 u64 sb_pos; 888 889 sb_zone = sb_zone_number(shift, i); 890 if (!(end <= sb_zone || 891 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 892 have_sb = true; 893 pos = zone_start_physical( 894 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 895 break; 896 } 897 898 /* We also need to exclude regular superblock positions */ 899 sb_pos = btrfs_sb_offset(i); 900 if (!(pos + num_bytes <= sb_pos || 901 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 902 have_sb = true; 903 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 904 zinfo->zone_size); 905 break; 906 } 907 } 908 if (!have_sb) 909 break; 910 } 911 912 return pos; 913 } 914 915 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 916 u64 length, u64 *bytes) 917 { 918 int ret; 919 920 *bytes = 0; 921 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 922 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 923 GFP_NOFS); 924 if (ret) 925 return ret; 926 927 *bytes = length; 928 while (length) { 929 btrfs_dev_set_zone_empty(device, physical); 930 physical += device->zone_info->zone_size; 931 length -= device->zone_info->zone_size; 932 } 933 934 return 0; 935 } 936 937 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 938 { 939 struct btrfs_zoned_device_info *zinfo = device->zone_info; 940 const u8 shift = zinfo->zone_size_shift; 941 unsigned long begin = start >> shift; 942 unsigned long end = (start + size) >> shift; 943 u64 pos; 944 int ret; 945 946 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 947 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 948 949 if (end > zinfo->nr_zones) 950 return -ERANGE; 951 952 /* All the zones are conventional */ 953 if (find_next_bit(zinfo->seq_zones, begin, end) == end) 954 return 0; 955 956 /* All the zones are sequential and empty */ 957 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end && 958 find_next_zero_bit(zinfo->empty_zones, begin, end) == end) 959 return 0; 960 961 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 962 u64 reset_bytes; 963 964 if (!btrfs_dev_is_sequential(device, pos) || 965 btrfs_dev_is_empty_zone(device, pos)) 966 continue; 967 968 /* Free regions should be empty */ 969 btrfs_warn_in_rcu( 970 device->fs_info, 971 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 972 rcu_str_deref(device->name), device->devid, pos >> shift); 973 WARN_ON_ONCE(1); 974 975 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 976 &reset_bytes); 977 if (ret) 978 return ret; 979 } 980 981 return 0; 982 } 983 984 /* 985 * Calculate an allocation pointer from the extent allocation information 986 * for a block group consist of conventional zones. It is pointed to the 987 * end of the highest addressed extent in the block group as an allocation 988 * offset. 989 */ 990 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 991 u64 *offset_ret) 992 { 993 struct btrfs_fs_info *fs_info = cache->fs_info; 994 struct btrfs_root *root = fs_info->extent_root; 995 struct btrfs_path *path; 996 struct btrfs_key key; 997 struct btrfs_key found_key; 998 int ret; 999 u64 length; 1000 1001 path = btrfs_alloc_path(); 1002 if (!path) 1003 return -ENOMEM; 1004 1005 key.objectid = cache->start + cache->length; 1006 key.type = 0; 1007 key.offset = 0; 1008 1009 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1010 /* We should not find the exact match */ 1011 if (!ret) 1012 ret = -EUCLEAN; 1013 if (ret < 0) 1014 goto out; 1015 1016 ret = btrfs_previous_extent_item(root, path, cache->start); 1017 if (ret) { 1018 if (ret == 1) { 1019 ret = 0; 1020 *offset_ret = 0; 1021 } 1022 goto out; 1023 } 1024 1025 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1026 1027 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1028 length = found_key.offset; 1029 else 1030 length = fs_info->nodesize; 1031 1032 if (!(found_key.objectid >= cache->start && 1033 found_key.objectid + length <= cache->start + cache->length)) { 1034 ret = -EUCLEAN; 1035 goto out; 1036 } 1037 *offset_ret = found_key.objectid + length - cache->start; 1038 ret = 0; 1039 1040 out: 1041 btrfs_free_path(path); 1042 return ret; 1043 } 1044 1045 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1046 { 1047 struct btrfs_fs_info *fs_info = cache->fs_info; 1048 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1049 struct extent_map *em; 1050 struct map_lookup *map; 1051 struct btrfs_device *device; 1052 u64 logical = cache->start; 1053 u64 length = cache->length; 1054 u64 physical = 0; 1055 int ret; 1056 int i; 1057 unsigned int nofs_flag; 1058 u64 *alloc_offsets = NULL; 1059 u64 last_alloc = 0; 1060 u32 num_sequential = 0, num_conventional = 0; 1061 1062 if (!btrfs_is_zoned(fs_info)) 1063 return 0; 1064 1065 /* Sanity check */ 1066 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1067 btrfs_err(fs_info, 1068 "zoned: block group %llu len %llu unaligned to zone size %llu", 1069 logical, length, fs_info->zone_size); 1070 return -EIO; 1071 } 1072 1073 /* Get the chunk mapping */ 1074 read_lock(&em_tree->lock); 1075 em = lookup_extent_mapping(em_tree, logical, length); 1076 read_unlock(&em_tree->lock); 1077 1078 if (!em) 1079 return -EINVAL; 1080 1081 map = em->map_lookup; 1082 1083 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1084 if (!alloc_offsets) { 1085 free_extent_map(em); 1086 return -ENOMEM; 1087 } 1088 1089 for (i = 0; i < map->num_stripes; i++) { 1090 bool is_sequential; 1091 struct blk_zone zone; 1092 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1093 int dev_replace_is_ongoing = 0; 1094 1095 device = map->stripes[i].dev; 1096 physical = map->stripes[i].physical; 1097 1098 if (device->bdev == NULL) { 1099 alloc_offsets[i] = WP_MISSING_DEV; 1100 continue; 1101 } 1102 1103 is_sequential = btrfs_dev_is_sequential(device, physical); 1104 if (is_sequential) 1105 num_sequential++; 1106 else 1107 num_conventional++; 1108 1109 if (!is_sequential) { 1110 alloc_offsets[i] = WP_CONVENTIONAL; 1111 continue; 1112 } 1113 1114 /* 1115 * This zone will be used for allocation, so mark this zone 1116 * non-empty. 1117 */ 1118 btrfs_dev_clear_zone_empty(device, physical); 1119 1120 down_read(&dev_replace->rwsem); 1121 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1122 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1123 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical); 1124 up_read(&dev_replace->rwsem); 1125 1126 /* 1127 * The group is mapped to a sequential zone. Get the zone write 1128 * pointer to determine the allocation offset within the zone. 1129 */ 1130 WARN_ON(!IS_ALIGNED(physical, fs_info->zone_size)); 1131 nofs_flag = memalloc_nofs_save(); 1132 ret = btrfs_get_dev_zone(device, physical, &zone); 1133 memalloc_nofs_restore(nofs_flag); 1134 if (ret == -EIO || ret == -EOPNOTSUPP) { 1135 ret = 0; 1136 alloc_offsets[i] = WP_MISSING_DEV; 1137 continue; 1138 } else if (ret) { 1139 goto out; 1140 } 1141 1142 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1143 btrfs_err_in_rcu(fs_info, 1144 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1145 zone.start << SECTOR_SHIFT, 1146 rcu_str_deref(device->name), device->devid); 1147 ret = -EIO; 1148 goto out; 1149 } 1150 1151 switch (zone.cond) { 1152 case BLK_ZONE_COND_OFFLINE: 1153 case BLK_ZONE_COND_READONLY: 1154 btrfs_err(fs_info, 1155 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1156 physical >> device->zone_info->zone_size_shift, 1157 rcu_str_deref(device->name), device->devid); 1158 alloc_offsets[i] = WP_MISSING_DEV; 1159 break; 1160 case BLK_ZONE_COND_EMPTY: 1161 alloc_offsets[i] = 0; 1162 break; 1163 case BLK_ZONE_COND_FULL: 1164 alloc_offsets[i] = fs_info->zone_size; 1165 break; 1166 default: 1167 /* Partially used zone */ 1168 alloc_offsets[i] = 1169 ((zone.wp - zone.start) << SECTOR_SHIFT); 1170 break; 1171 } 1172 } 1173 1174 if (num_sequential > 0) 1175 cache->seq_zone = true; 1176 1177 if (num_conventional > 0) { 1178 /* 1179 * Avoid calling calculate_alloc_pointer() for new BG. It 1180 * is no use for new BG. It must be always 0. 1181 * 1182 * Also, we have a lock chain of extent buffer lock -> 1183 * chunk mutex. For new BG, this function is called from 1184 * btrfs_make_block_group() which is already taking the 1185 * chunk mutex. Thus, we cannot call 1186 * calculate_alloc_pointer() which takes extent buffer 1187 * locks to avoid deadlock. 1188 */ 1189 if (new) { 1190 cache->alloc_offset = 0; 1191 goto out; 1192 } 1193 ret = calculate_alloc_pointer(cache, &last_alloc); 1194 if (ret || map->num_stripes == num_conventional) { 1195 if (!ret) 1196 cache->alloc_offset = last_alloc; 1197 else 1198 btrfs_err(fs_info, 1199 "zoned: failed to determine allocation offset of bg %llu", 1200 cache->start); 1201 goto out; 1202 } 1203 } 1204 1205 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1206 case 0: /* single */ 1207 if (alloc_offsets[0] == WP_MISSING_DEV) { 1208 btrfs_err(fs_info, 1209 "zoned: cannot recover write pointer for zone %llu", 1210 physical); 1211 ret = -EIO; 1212 goto out; 1213 } 1214 cache->alloc_offset = alloc_offsets[0]; 1215 break; 1216 case BTRFS_BLOCK_GROUP_DUP: 1217 case BTRFS_BLOCK_GROUP_RAID1: 1218 case BTRFS_BLOCK_GROUP_RAID0: 1219 case BTRFS_BLOCK_GROUP_RAID10: 1220 case BTRFS_BLOCK_GROUP_RAID5: 1221 case BTRFS_BLOCK_GROUP_RAID6: 1222 /* non-single profiles are not supported yet */ 1223 default: 1224 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1225 btrfs_bg_type_to_raid_name(map->type)); 1226 ret = -EINVAL; 1227 goto out; 1228 } 1229 1230 out: 1231 if (cache->alloc_offset > fs_info->zone_size) { 1232 btrfs_err(fs_info, 1233 "zoned: invalid write pointer %llu in block group %llu", 1234 cache->alloc_offset, cache->start); 1235 ret = -EIO; 1236 } 1237 1238 /* An extent is allocated after the write pointer */ 1239 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1240 btrfs_err(fs_info, 1241 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1242 logical, last_alloc, cache->alloc_offset); 1243 ret = -EIO; 1244 } 1245 1246 if (!ret) 1247 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1248 1249 kfree(alloc_offsets); 1250 free_extent_map(em); 1251 1252 return ret; 1253 } 1254 1255 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1256 { 1257 u64 unusable, free; 1258 1259 if (!btrfs_is_zoned(cache->fs_info)) 1260 return; 1261 1262 WARN_ON(cache->bytes_super != 0); 1263 unusable = cache->alloc_offset - cache->used; 1264 free = cache->length - cache->alloc_offset; 1265 1266 /* We only need ->free_space in ALLOC_SEQ block groups */ 1267 cache->last_byte_to_unpin = (u64)-1; 1268 cache->cached = BTRFS_CACHE_FINISHED; 1269 cache->free_space_ctl->free_space = free; 1270 cache->zone_unusable = unusable; 1271 1272 /* Should not have any excluded extents. Just in case, though */ 1273 btrfs_free_excluded_extents(cache); 1274 } 1275 1276 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1277 struct extent_buffer *eb) 1278 { 1279 struct btrfs_fs_info *fs_info = eb->fs_info; 1280 1281 if (!btrfs_is_zoned(fs_info) || 1282 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || 1283 !list_empty(&eb->release_list)) 1284 return; 1285 1286 set_extent_buffer_dirty(eb); 1287 set_extent_bits_nowait(&trans->dirty_pages, eb->start, 1288 eb->start + eb->len - 1, EXTENT_DIRTY); 1289 memzero_extent_buffer(eb, 0, eb->len); 1290 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1291 1292 spin_lock(&trans->releasing_ebs_lock); 1293 list_add_tail(&eb->release_list, &trans->releasing_ebs); 1294 spin_unlock(&trans->releasing_ebs_lock); 1295 atomic_inc(&eb->refs); 1296 } 1297 1298 void btrfs_free_redirty_list(struct btrfs_transaction *trans) 1299 { 1300 spin_lock(&trans->releasing_ebs_lock); 1301 while (!list_empty(&trans->releasing_ebs)) { 1302 struct extent_buffer *eb; 1303 1304 eb = list_first_entry(&trans->releasing_ebs, 1305 struct extent_buffer, release_list); 1306 list_del_init(&eb->release_list); 1307 free_extent_buffer(eb); 1308 } 1309 spin_unlock(&trans->releasing_ebs_lock); 1310 } 1311 1312 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start) 1313 { 1314 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1315 struct btrfs_block_group *cache; 1316 bool ret = false; 1317 1318 if (!btrfs_is_zoned(fs_info)) 1319 return false; 1320 1321 if (!fs_info->max_zone_append_size) 1322 return false; 1323 1324 if (!is_data_inode(&inode->vfs_inode)) 1325 return false; 1326 1327 cache = btrfs_lookup_block_group(fs_info, start); 1328 ASSERT(cache); 1329 if (!cache) 1330 return false; 1331 1332 ret = cache->seq_zone; 1333 btrfs_put_block_group(cache); 1334 1335 return ret; 1336 } 1337 1338 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset, 1339 struct bio *bio) 1340 { 1341 struct btrfs_ordered_extent *ordered; 1342 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 1343 1344 if (bio_op(bio) != REQ_OP_ZONE_APPEND) 1345 return; 1346 1347 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset); 1348 if (WARN_ON(!ordered)) 1349 return; 1350 1351 ordered->physical = physical; 1352 ordered->bdev = bio->bi_bdev; 1353 1354 btrfs_put_ordered_extent(ordered); 1355 } 1356 1357 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) 1358 { 1359 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1360 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1361 struct extent_map_tree *em_tree; 1362 struct extent_map *em; 1363 struct btrfs_ordered_sum *sum; 1364 u64 orig_logical = ordered->disk_bytenr; 1365 u64 *logical = NULL; 1366 int nr, stripe_len; 1367 1368 /* Zoned devices should not have partitions. So, we can assume it is 0 */ 1369 ASSERT(!bdev_is_partition(ordered->bdev)); 1370 if (WARN_ON(!ordered->bdev)) 1371 return; 1372 1373 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev, 1374 ordered->physical, &logical, &nr, 1375 &stripe_len))) 1376 goto out; 1377 1378 WARN_ON(nr != 1); 1379 1380 if (orig_logical == *logical) 1381 goto out; 1382 1383 ordered->disk_bytenr = *logical; 1384 1385 em_tree = &inode->extent_tree; 1386 write_lock(&em_tree->lock); 1387 em = search_extent_mapping(em_tree, ordered->file_offset, 1388 ordered->num_bytes); 1389 em->block_start = *logical; 1390 free_extent_map(em); 1391 write_unlock(&em_tree->lock); 1392 1393 list_for_each_entry(sum, &ordered->list, list) { 1394 if (*logical < orig_logical) 1395 sum->bytenr -= orig_logical - *logical; 1396 else 1397 sum->bytenr += *logical - orig_logical; 1398 } 1399 1400 out: 1401 kfree(logical); 1402 } 1403 1404 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1405 struct extent_buffer *eb, 1406 struct btrfs_block_group **cache_ret) 1407 { 1408 struct btrfs_block_group *cache; 1409 bool ret = true; 1410 1411 if (!btrfs_is_zoned(fs_info)) 1412 return true; 1413 1414 cache = *cache_ret; 1415 1416 if (cache && (eb->start < cache->start || 1417 cache->start + cache->length <= eb->start)) { 1418 btrfs_put_block_group(cache); 1419 cache = NULL; 1420 *cache_ret = NULL; 1421 } 1422 1423 if (!cache) 1424 cache = btrfs_lookup_block_group(fs_info, eb->start); 1425 1426 if (cache) { 1427 if (cache->meta_write_pointer != eb->start) { 1428 btrfs_put_block_group(cache); 1429 cache = NULL; 1430 ret = false; 1431 } else { 1432 cache->meta_write_pointer = eb->start + eb->len; 1433 } 1434 1435 *cache_ret = cache; 1436 } 1437 1438 return ret; 1439 } 1440 1441 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1442 struct extent_buffer *eb) 1443 { 1444 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1445 return; 1446 1447 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1448 cache->meta_write_pointer = eb->start; 1449 } 1450 1451 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1452 { 1453 if (!btrfs_dev_is_sequential(device, physical)) 1454 return -EOPNOTSUPP; 1455 1456 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1457 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1458 } 1459 1460 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1461 struct blk_zone *zone) 1462 { 1463 struct btrfs_bio *bbio = NULL; 1464 u64 mapped_length = PAGE_SIZE; 1465 unsigned int nofs_flag; 1466 int nmirrors; 1467 int i, ret; 1468 1469 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1470 &mapped_length, &bbio); 1471 if (ret || !bbio || mapped_length < PAGE_SIZE) { 1472 btrfs_put_bbio(bbio); 1473 return -EIO; 1474 } 1475 1476 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1477 return -EINVAL; 1478 1479 nofs_flag = memalloc_nofs_save(); 1480 nmirrors = (int)bbio->num_stripes; 1481 for (i = 0; i < nmirrors; i++) { 1482 u64 physical = bbio->stripes[i].physical; 1483 struct btrfs_device *dev = bbio->stripes[i].dev; 1484 1485 /* Missing device */ 1486 if (!dev->bdev) 1487 continue; 1488 1489 ret = btrfs_get_dev_zone(dev, physical, zone); 1490 /* Failing device */ 1491 if (ret == -EIO || ret == -EOPNOTSUPP) 1492 continue; 1493 break; 1494 } 1495 memalloc_nofs_restore(nofs_flag); 1496 1497 return ret; 1498 } 1499 1500 /* 1501 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1502 * filling zeros between @physical_pos to a write pointer of dev-replace 1503 * source device. 1504 */ 1505 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1506 u64 physical_start, u64 physical_pos) 1507 { 1508 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1509 struct blk_zone zone; 1510 u64 length; 1511 u64 wp; 1512 int ret; 1513 1514 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1515 return 0; 1516 1517 ret = read_zone_info(fs_info, logical, &zone); 1518 if (ret) 1519 return ret; 1520 1521 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1522 1523 if (physical_pos == wp) 1524 return 0; 1525 1526 if (physical_pos > wp) 1527 return -EUCLEAN; 1528 1529 length = wp - physical_pos; 1530 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1531 } 1532 1533 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info, 1534 u64 logical, u64 length) 1535 { 1536 struct btrfs_device *device; 1537 struct extent_map *em; 1538 struct map_lookup *map; 1539 1540 em = btrfs_get_chunk_map(fs_info, logical, length); 1541 if (IS_ERR(em)) 1542 return ERR_CAST(em); 1543 1544 map = em->map_lookup; 1545 /* We only support single profile for now */ 1546 ASSERT(map->num_stripes == 1); 1547 device = map->stripes[0].dev; 1548 1549 free_extent_map(em); 1550 1551 return device; 1552 } 1553