1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 #include "super.h" 19 #include "fs.h" 20 #include "accessors.h" 21 #include "bio.h" 22 23 /* Maximum number of zones to report per blkdev_report_zones() call */ 24 #define BTRFS_REPORT_NR_ZONES 4096 25 /* Invalid allocation pointer value for missing devices */ 26 #define WP_MISSING_DEV ((u64)-1) 27 /* Pseudo write pointer value for conventional zone */ 28 #define WP_CONVENTIONAL ((u64)-2) 29 30 /* 31 * Location of the first zone of superblock logging zone pairs. 32 * 33 * - primary superblock: 0B (zone 0) 34 * - first copy: 512G (zone starting at that offset) 35 * - second copy: 4T (zone starting at that offset) 36 */ 37 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 38 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 39 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 40 41 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 42 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 43 44 /* Number of superblock log zones */ 45 #define BTRFS_NR_SB_LOG_ZONES 2 46 47 /* 48 * Minimum of active zones we need: 49 * 50 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 51 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 52 * - 1 zone for tree-log dedicated block group 53 * - 1 zone for relocation 54 */ 55 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 56 57 /* 58 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 59 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 60 * We do not expect the zone size to become larger than 8GiB or smaller than 61 * 4MiB in the near future. 62 */ 63 #define BTRFS_MAX_ZONE_SIZE SZ_8G 64 #define BTRFS_MIN_ZONE_SIZE SZ_4M 65 66 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 67 68 static inline bool sb_zone_is_full(const struct blk_zone *zone) 69 { 70 return (zone->cond == BLK_ZONE_COND_FULL) || 71 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 72 } 73 74 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 75 { 76 struct blk_zone *zones = data; 77 78 memcpy(&zones[idx], zone, sizeof(*zone)); 79 80 return 0; 81 } 82 83 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 84 u64 *wp_ret) 85 { 86 bool empty[BTRFS_NR_SB_LOG_ZONES]; 87 bool full[BTRFS_NR_SB_LOG_ZONES]; 88 sector_t sector; 89 int i; 90 91 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 92 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 93 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 94 full[i] = sb_zone_is_full(&zones[i]); 95 } 96 97 /* 98 * Possible states of log buffer zones 99 * 100 * Empty[0] In use[0] Full[0] 101 * Empty[1] * 0 1 102 * In use[1] x x 1 103 * Full[1] 0 0 C 104 * 105 * Log position: 106 * *: Special case, no superblock is written 107 * 0: Use write pointer of zones[0] 108 * 1: Use write pointer of zones[1] 109 * C: Compare super blocks from zones[0] and zones[1], use the latest 110 * one determined by generation 111 * x: Invalid state 112 */ 113 114 if (empty[0] && empty[1]) { 115 /* Special case to distinguish no superblock to read */ 116 *wp_ret = zones[0].start << SECTOR_SHIFT; 117 return -ENOENT; 118 } else if (full[0] && full[1]) { 119 /* Compare two super blocks */ 120 struct address_space *mapping = bdev->bd_inode->i_mapping; 121 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 122 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 123 int i; 124 125 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 126 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; 127 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - 128 BTRFS_SUPER_INFO_SIZE; 129 130 page[i] = read_cache_page_gfp(mapping, 131 bytenr >> PAGE_SHIFT, GFP_NOFS); 132 if (IS_ERR(page[i])) { 133 if (i == 1) 134 btrfs_release_disk_super(super[0]); 135 return PTR_ERR(page[i]); 136 } 137 super[i] = page_address(page[i]); 138 } 139 140 if (btrfs_super_generation(super[0]) > 141 btrfs_super_generation(super[1])) 142 sector = zones[1].start; 143 else 144 sector = zones[0].start; 145 146 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 147 btrfs_release_disk_super(super[i]); 148 } else if (!full[0] && (empty[1] || full[1])) { 149 sector = zones[0].wp; 150 } else if (full[0]) { 151 sector = zones[1].wp; 152 } else { 153 return -EUCLEAN; 154 } 155 *wp_ret = sector << SECTOR_SHIFT; 156 return 0; 157 } 158 159 /* 160 * Get the first zone number of the superblock mirror 161 */ 162 static inline u32 sb_zone_number(int shift, int mirror) 163 { 164 u64 zone = U64_MAX; 165 166 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 167 switch (mirror) { 168 case 0: zone = 0; break; 169 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 170 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 171 } 172 173 ASSERT(zone <= U32_MAX); 174 175 return (u32)zone; 176 } 177 178 static inline sector_t zone_start_sector(u32 zone_number, 179 struct block_device *bdev) 180 { 181 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 182 } 183 184 static inline u64 zone_start_physical(u32 zone_number, 185 struct btrfs_zoned_device_info *zone_info) 186 { 187 return (u64)zone_number << zone_info->zone_size_shift; 188 } 189 190 /* 191 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 192 * device into static sized chunks and fake a conventional zone on each of 193 * them. 194 */ 195 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 196 struct blk_zone *zones, unsigned int nr_zones) 197 { 198 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 199 sector_t bdev_size = bdev_nr_sectors(device->bdev); 200 unsigned int i; 201 202 pos >>= SECTOR_SHIFT; 203 for (i = 0; i < nr_zones; i++) { 204 zones[i].start = i * zone_sectors + pos; 205 zones[i].len = zone_sectors; 206 zones[i].capacity = zone_sectors; 207 zones[i].wp = zones[i].start + zone_sectors; 208 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 209 zones[i].cond = BLK_ZONE_COND_NOT_WP; 210 211 if (zones[i].wp >= bdev_size) { 212 i++; 213 break; 214 } 215 } 216 217 return i; 218 } 219 220 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 221 struct blk_zone *zones, unsigned int *nr_zones) 222 { 223 struct btrfs_zoned_device_info *zinfo = device->zone_info; 224 int ret; 225 226 if (!*nr_zones) 227 return 0; 228 229 if (!bdev_is_zoned(device->bdev)) { 230 ret = emulate_report_zones(device, pos, zones, *nr_zones); 231 *nr_zones = ret; 232 return 0; 233 } 234 235 /* Check cache */ 236 if (zinfo->zone_cache) { 237 unsigned int i; 238 u32 zno; 239 240 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 241 zno = pos >> zinfo->zone_size_shift; 242 /* 243 * We cannot report zones beyond the zone end. So, it is OK to 244 * cap *nr_zones to at the end. 245 */ 246 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 247 248 for (i = 0; i < *nr_zones; i++) { 249 struct blk_zone *zone_info; 250 251 zone_info = &zinfo->zone_cache[zno + i]; 252 if (!zone_info->len) 253 break; 254 } 255 256 if (i == *nr_zones) { 257 /* Cache hit on all the zones */ 258 memcpy(zones, zinfo->zone_cache + zno, 259 sizeof(*zinfo->zone_cache) * *nr_zones); 260 return 0; 261 } 262 } 263 264 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 265 copy_zone_info_cb, zones); 266 if (ret < 0) { 267 btrfs_err_in_rcu(device->fs_info, 268 "zoned: failed to read zone %llu on %s (devid %llu)", 269 pos, rcu_str_deref(device->name), 270 device->devid); 271 return ret; 272 } 273 *nr_zones = ret; 274 if (!ret) 275 return -EIO; 276 277 /* Populate cache */ 278 if (zinfo->zone_cache) { 279 u32 zno = pos >> zinfo->zone_size_shift; 280 281 memcpy(zinfo->zone_cache + zno, zones, 282 sizeof(*zinfo->zone_cache) * *nr_zones); 283 } 284 285 return 0; 286 } 287 288 /* The emulated zone size is determined from the size of device extent */ 289 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 290 { 291 struct btrfs_path *path; 292 struct btrfs_root *root = fs_info->dev_root; 293 struct btrfs_key key; 294 struct extent_buffer *leaf; 295 struct btrfs_dev_extent *dext; 296 int ret = 0; 297 298 key.objectid = 1; 299 key.type = BTRFS_DEV_EXTENT_KEY; 300 key.offset = 0; 301 302 path = btrfs_alloc_path(); 303 if (!path) 304 return -ENOMEM; 305 306 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 307 if (ret < 0) 308 goto out; 309 310 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 311 ret = btrfs_next_leaf(root, path); 312 if (ret < 0) 313 goto out; 314 /* No dev extents at all? Not good */ 315 if (ret > 0) { 316 ret = -EUCLEAN; 317 goto out; 318 } 319 } 320 321 leaf = path->nodes[0]; 322 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 323 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 324 ret = 0; 325 326 out: 327 btrfs_free_path(path); 328 329 return ret; 330 } 331 332 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 333 { 334 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 335 struct btrfs_device *device; 336 int ret = 0; 337 338 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 339 if (!btrfs_fs_incompat(fs_info, ZONED)) 340 return 0; 341 342 mutex_lock(&fs_devices->device_list_mutex); 343 list_for_each_entry(device, &fs_devices->devices, dev_list) { 344 /* We can skip reading of zone info for missing devices */ 345 if (!device->bdev) 346 continue; 347 348 ret = btrfs_get_dev_zone_info(device, true); 349 if (ret) 350 break; 351 } 352 mutex_unlock(&fs_devices->device_list_mutex); 353 354 return ret; 355 } 356 357 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 358 { 359 struct btrfs_fs_info *fs_info = device->fs_info; 360 struct btrfs_zoned_device_info *zone_info = NULL; 361 struct block_device *bdev = device->bdev; 362 unsigned int max_active_zones; 363 unsigned int nactive; 364 sector_t nr_sectors; 365 sector_t sector = 0; 366 struct blk_zone *zones = NULL; 367 unsigned int i, nreported = 0, nr_zones; 368 sector_t zone_sectors; 369 char *model, *emulated; 370 int ret; 371 372 /* 373 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 374 * yet be set. 375 */ 376 if (!btrfs_fs_incompat(fs_info, ZONED)) 377 return 0; 378 379 if (device->zone_info) 380 return 0; 381 382 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 383 if (!zone_info) 384 return -ENOMEM; 385 386 device->zone_info = zone_info; 387 388 if (!bdev_is_zoned(bdev)) { 389 if (!fs_info->zone_size) { 390 ret = calculate_emulated_zone_size(fs_info); 391 if (ret) 392 goto out; 393 } 394 395 ASSERT(fs_info->zone_size); 396 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 397 } else { 398 zone_sectors = bdev_zone_sectors(bdev); 399 } 400 401 ASSERT(is_power_of_two_u64(zone_sectors)); 402 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 403 404 /* We reject devices with a zone size larger than 8GB */ 405 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 406 btrfs_err_in_rcu(fs_info, 407 "zoned: %s: zone size %llu larger than supported maximum %llu", 408 rcu_str_deref(device->name), 409 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 410 ret = -EINVAL; 411 goto out; 412 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 413 btrfs_err_in_rcu(fs_info, 414 "zoned: %s: zone size %llu smaller than supported minimum %u", 415 rcu_str_deref(device->name), 416 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 417 ret = -EINVAL; 418 goto out; 419 } 420 421 nr_sectors = bdev_nr_sectors(bdev); 422 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 423 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 424 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 425 zone_info->nr_zones++; 426 427 max_active_zones = bdev_max_active_zones(bdev); 428 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 429 btrfs_err_in_rcu(fs_info, 430 "zoned: %s: max active zones %u is too small, need at least %u active zones", 431 rcu_str_deref(device->name), max_active_zones, 432 BTRFS_MIN_ACTIVE_ZONES); 433 ret = -EINVAL; 434 goto out; 435 } 436 zone_info->max_active_zones = max_active_zones; 437 438 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 439 if (!zone_info->seq_zones) { 440 ret = -ENOMEM; 441 goto out; 442 } 443 444 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 445 if (!zone_info->empty_zones) { 446 ret = -ENOMEM; 447 goto out; 448 } 449 450 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 451 if (!zone_info->active_zones) { 452 ret = -ENOMEM; 453 goto out; 454 } 455 456 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 457 if (!zones) { 458 ret = -ENOMEM; 459 goto out; 460 } 461 462 /* 463 * Enable zone cache only for a zoned device. On a non-zoned device, we 464 * fill the zone info with emulated CONVENTIONAL zones, so no need to 465 * use the cache. 466 */ 467 if (populate_cache && bdev_is_zoned(device->bdev)) { 468 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) * 469 zone_info->nr_zones); 470 if (!zone_info->zone_cache) { 471 btrfs_err_in_rcu(device->fs_info, 472 "zoned: failed to allocate zone cache for %s", 473 rcu_str_deref(device->name)); 474 ret = -ENOMEM; 475 goto out; 476 } 477 } 478 479 /* Get zones type */ 480 nactive = 0; 481 while (sector < nr_sectors) { 482 nr_zones = BTRFS_REPORT_NR_ZONES; 483 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 484 &nr_zones); 485 if (ret) 486 goto out; 487 488 for (i = 0; i < nr_zones; i++) { 489 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 490 __set_bit(nreported, zone_info->seq_zones); 491 switch (zones[i].cond) { 492 case BLK_ZONE_COND_EMPTY: 493 __set_bit(nreported, zone_info->empty_zones); 494 break; 495 case BLK_ZONE_COND_IMP_OPEN: 496 case BLK_ZONE_COND_EXP_OPEN: 497 case BLK_ZONE_COND_CLOSED: 498 __set_bit(nreported, zone_info->active_zones); 499 nactive++; 500 break; 501 } 502 nreported++; 503 } 504 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 505 } 506 507 if (nreported != zone_info->nr_zones) { 508 btrfs_err_in_rcu(device->fs_info, 509 "inconsistent number of zones on %s (%u/%u)", 510 rcu_str_deref(device->name), nreported, 511 zone_info->nr_zones); 512 ret = -EIO; 513 goto out; 514 } 515 516 if (max_active_zones) { 517 if (nactive > max_active_zones) { 518 btrfs_err_in_rcu(device->fs_info, 519 "zoned: %u active zones on %s exceeds max_active_zones %u", 520 nactive, rcu_str_deref(device->name), 521 max_active_zones); 522 ret = -EIO; 523 goto out; 524 } 525 atomic_set(&zone_info->active_zones_left, 526 max_active_zones - nactive); 527 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); 528 } 529 530 /* Validate superblock log */ 531 nr_zones = BTRFS_NR_SB_LOG_ZONES; 532 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 533 u32 sb_zone; 534 u64 sb_wp; 535 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 536 537 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 538 if (sb_zone + 1 >= zone_info->nr_zones) 539 continue; 540 541 ret = btrfs_get_dev_zones(device, 542 zone_start_physical(sb_zone, zone_info), 543 &zone_info->sb_zones[sb_pos], 544 &nr_zones); 545 if (ret) 546 goto out; 547 548 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 549 btrfs_err_in_rcu(device->fs_info, 550 "zoned: failed to read super block log zone info at devid %llu zone %u", 551 device->devid, sb_zone); 552 ret = -EUCLEAN; 553 goto out; 554 } 555 556 /* 557 * If zones[0] is conventional, always use the beginning of the 558 * zone to record superblock. No need to validate in that case. 559 */ 560 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 561 BLK_ZONE_TYPE_CONVENTIONAL) 562 continue; 563 564 ret = sb_write_pointer(device->bdev, 565 &zone_info->sb_zones[sb_pos], &sb_wp); 566 if (ret != -ENOENT && ret) { 567 btrfs_err_in_rcu(device->fs_info, 568 "zoned: super block log zone corrupted devid %llu zone %u", 569 device->devid, sb_zone); 570 ret = -EUCLEAN; 571 goto out; 572 } 573 } 574 575 576 kvfree(zones); 577 578 switch (bdev_zoned_model(bdev)) { 579 case BLK_ZONED_HM: 580 model = "host-managed zoned"; 581 emulated = ""; 582 break; 583 case BLK_ZONED_HA: 584 model = "host-aware zoned"; 585 emulated = ""; 586 break; 587 case BLK_ZONED_NONE: 588 model = "regular"; 589 emulated = "emulated "; 590 break; 591 default: 592 /* Just in case */ 593 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 594 bdev_zoned_model(bdev), 595 rcu_str_deref(device->name)); 596 ret = -EOPNOTSUPP; 597 goto out_free_zone_info; 598 } 599 600 btrfs_info_in_rcu(fs_info, 601 "%s block device %s, %u %szones of %llu bytes", 602 model, rcu_str_deref(device->name), zone_info->nr_zones, 603 emulated, zone_info->zone_size); 604 605 return 0; 606 607 out: 608 kvfree(zones); 609 out_free_zone_info: 610 btrfs_destroy_dev_zone_info(device); 611 612 return ret; 613 } 614 615 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 616 { 617 struct btrfs_zoned_device_info *zone_info = device->zone_info; 618 619 if (!zone_info) 620 return; 621 622 bitmap_free(zone_info->active_zones); 623 bitmap_free(zone_info->seq_zones); 624 bitmap_free(zone_info->empty_zones); 625 vfree(zone_info->zone_cache); 626 kfree(zone_info); 627 device->zone_info = NULL; 628 } 629 630 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 631 { 632 struct btrfs_zoned_device_info *zone_info; 633 634 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 635 if (!zone_info) 636 return NULL; 637 638 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 639 if (!zone_info->seq_zones) 640 goto out; 641 642 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 643 zone_info->nr_zones); 644 645 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 646 if (!zone_info->empty_zones) 647 goto out; 648 649 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 650 zone_info->nr_zones); 651 652 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 653 if (!zone_info->active_zones) 654 goto out; 655 656 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 657 zone_info->nr_zones); 658 zone_info->zone_cache = NULL; 659 660 return zone_info; 661 662 out: 663 bitmap_free(zone_info->seq_zones); 664 bitmap_free(zone_info->empty_zones); 665 bitmap_free(zone_info->active_zones); 666 kfree(zone_info); 667 return NULL; 668 } 669 670 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 671 struct blk_zone *zone) 672 { 673 unsigned int nr_zones = 1; 674 int ret; 675 676 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 677 if (ret != 0 || !nr_zones) 678 return ret ? ret : -EIO; 679 680 return 0; 681 } 682 683 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 684 { 685 struct btrfs_device *device; 686 687 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 688 if (device->bdev && 689 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) { 690 btrfs_err(fs_info, 691 "zoned: mode not enabled but zoned device found: %pg", 692 device->bdev); 693 return -EINVAL; 694 } 695 } 696 697 return 0; 698 } 699 700 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 701 { 702 struct queue_limits *lim = &fs_info->limits; 703 struct btrfs_device *device; 704 u64 zone_size = 0; 705 int ret; 706 707 /* 708 * Host-Managed devices can't be used without the ZONED flag. With the 709 * ZONED all devices can be used, using zone emulation if required. 710 */ 711 if (!btrfs_fs_incompat(fs_info, ZONED)) 712 return btrfs_check_for_zoned_device(fs_info); 713 714 blk_set_stacking_limits(lim); 715 716 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 717 struct btrfs_zoned_device_info *zone_info = device->zone_info; 718 719 if (!device->bdev) 720 continue; 721 722 if (!zone_size) { 723 zone_size = zone_info->zone_size; 724 } else if (zone_info->zone_size != zone_size) { 725 btrfs_err(fs_info, 726 "zoned: unequal block device zone sizes: have %llu found %llu", 727 zone_info->zone_size, zone_size); 728 return -EINVAL; 729 } 730 731 /* 732 * With the zoned emulation, we can have non-zoned device on the 733 * zoned mode. In this case, we don't have a valid max zone 734 * append size. 735 */ 736 if (bdev_is_zoned(device->bdev)) { 737 blk_stack_limits(lim, 738 &bdev_get_queue(device->bdev)->limits, 739 0); 740 } 741 } 742 743 /* 744 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 745 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 746 * check the alignment here. 747 */ 748 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 749 btrfs_err(fs_info, 750 "zoned: zone size %llu not aligned to stripe %u", 751 zone_size, BTRFS_STRIPE_LEN); 752 return -EINVAL; 753 } 754 755 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 756 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 757 return -EINVAL; 758 } 759 760 fs_info->zone_size = zone_size; 761 /* 762 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 763 * Technically, we can have multiple pages per segment. But, since 764 * we add the pages one by one to a bio, and cannot increase the 765 * metadata reservation even if it increases the number of extents, it 766 * is safe to stick with the limit. 767 */ 768 fs_info->max_zone_append_size = ALIGN_DOWN( 769 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 770 (u64)lim->max_sectors << SECTOR_SHIFT, 771 (u64)lim->max_segments << PAGE_SHIFT), 772 fs_info->sectorsize); 773 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 774 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 775 fs_info->max_extent_size = fs_info->max_zone_append_size; 776 777 /* 778 * Check mount options here, because we might change fs_info->zoned 779 * from fs_info->zone_size. 780 */ 781 ret = btrfs_check_mountopts_zoned(fs_info); 782 if (ret) 783 return ret; 784 785 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 786 return 0; 787 } 788 789 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 790 { 791 if (!btrfs_is_zoned(info)) 792 return 0; 793 794 /* 795 * Space cache writing is not COWed. Disable that to avoid write errors 796 * in sequential zones. 797 */ 798 if (btrfs_test_opt(info, SPACE_CACHE)) { 799 btrfs_err(info, "zoned: space cache v1 is not supported"); 800 return -EINVAL; 801 } 802 803 if (btrfs_test_opt(info, NODATACOW)) { 804 btrfs_err(info, "zoned: NODATACOW not supported"); 805 return -EINVAL; 806 } 807 808 btrfs_clear_and_info(info, DISCARD_ASYNC, 809 "zoned: async discard ignored and disabled for zoned mode"); 810 811 return 0; 812 } 813 814 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 815 int rw, u64 *bytenr_ret) 816 { 817 u64 wp; 818 int ret; 819 820 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 821 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 822 return 0; 823 } 824 825 ret = sb_write_pointer(bdev, zones, &wp); 826 if (ret != -ENOENT && ret < 0) 827 return ret; 828 829 if (rw == WRITE) { 830 struct blk_zone *reset = NULL; 831 832 if (wp == zones[0].start << SECTOR_SHIFT) 833 reset = &zones[0]; 834 else if (wp == zones[1].start << SECTOR_SHIFT) 835 reset = &zones[1]; 836 837 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 838 ASSERT(sb_zone_is_full(reset)); 839 840 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 841 reset->start, reset->len, 842 GFP_NOFS); 843 if (ret) 844 return ret; 845 846 reset->cond = BLK_ZONE_COND_EMPTY; 847 reset->wp = reset->start; 848 } 849 } else if (ret != -ENOENT) { 850 /* 851 * For READ, we want the previous one. Move write pointer to 852 * the end of a zone, if it is at the head of a zone. 853 */ 854 u64 zone_end = 0; 855 856 if (wp == zones[0].start << SECTOR_SHIFT) 857 zone_end = zones[1].start + zones[1].capacity; 858 else if (wp == zones[1].start << SECTOR_SHIFT) 859 zone_end = zones[0].start + zones[0].capacity; 860 if (zone_end) 861 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 862 BTRFS_SUPER_INFO_SIZE); 863 864 wp -= BTRFS_SUPER_INFO_SIZE; 865 } 866 867 *bytenr_ret = wp; 868 return 0; 869 870 } 871 872 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 873 u64 *bytenr_ret) 874 { 875 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 876 sector_t zone_sectors; 877 u32 sb_zone; 878 int ret; 879 u8 zone_sectors_shift; 880 sector_t nr_sectors; 881 u32 nr_zones; 882 883 if (!bdev_is_zoned(bdev)) { 884 *bytenr_ret = btrfs_sb_offset(mirror); 885 return 0; 886 } 887 888 ASSERT(rw == READ || rw == WRITE); 889 890 zone_sectors = bdev_zone_sectors(bdev); 891 if (!is_power_of_2(zone_sectors)) 892 return -EINVAL; 893 zone_sectors_shift = ilog2(zone_sectors); 894 nr_sectors = bdev_nr_sectors(bdev); 895 nr_zones = nr_sectors >> zone_sectors_shift; 896 897 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 898 if (sb_zone + 1 >= nr_zones) 899 return -ENOENT; 900 901 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 902 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 903 zones); 904 if (ret < 0) 905 return ret; 906 if (ret != BTRFS_NR_SB_LOG_ZONES) 907 return -EIO; 908 909 return sb_log_location(bdev, zones, rw, bytenr_ret); 910 } 911 912 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 913 u64 *bytenr_ret) 914 { 915 struct btrfs_zoned_device_info *zinfo = device->zone_info; 916 u32 zone_num; 917 918 /* 919 * For a zoned filesystem on a non-zoned block device, use the same 920 * super block locations as regular filesystem. Doing so, the super 921 * block can always be retrieved and the zoned flag of the volume 922 * detected from the super block information. 923 */ 924 if (!bdev_is_zoned(device->bdev)) { 925 *bytenr_ret = btrfs_sb_offset(mirror); 926 return 0; 927 } 928 929 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 930 if (zone_num + 1 >= zinfo->nr_zones) 931 return -ENOENT; 932 933 return sb_log_location(device->bdev, 934 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 935 rw, bytenr_ret); 936 } 937 938 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 939 int mirror) 940 { 941 u32 zone_num; 942 943 if (!zinfo) 944 return false; 945 946 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 947 if (zone_num + 1 >= zinfo->nr_zones) 948 return false; 949 950 if (!test_bit(zone_num, zinfo->seq_zones)) 951 return false; 952 953 return true; 954 } 955 956 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 957 { 958 struct btrfs_zoned_device_info *zinfo = device->zone_info; 959 struct blk_zone *zone; 960 int i; 961 962 if (!is_sb_log_zone(zinfo, mirror)) 963 return 0; 964 965 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 966 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 967 /* Advance the next zone */ 968 if (zone->cond == BLK_ZONE_COND_FULL) { 969 zone++; 970 continue; 971 } 972 973 if (zone->cond == BLK_ZONE_COND_EMPTY) 974 zone->cond = BLK_ZONE_COND_IMP_OPEN; 975 976 zone->wp += SUPER_INFO_SECTORS; 977 978 if (sb_zone_is_full(zone)) { 979 /* 980 * No room left to write new superblock. Since 981 * superblock is written with REQ_SYNC, it is safe to 982 * finish the zone now. 983 * 984 * If the write pointer is exactly at the capacity, 985 * explicit ZONE_FINISH is not necessary. 986 */ 987 if (zone->wp != zone->start + zone->capacity) { 988 int ret; 989 990 ret = blkdev_zone_mgmt(device->bdev, 991 REQ_OP_ZONE_FINISH, zone->start, 992 zone->len, GFP_NOFS); 993 if (ret) 994 return ret; 995 } 996 997 zone->wp = zone->start + zone->len; 998 zone->cond = BLK_ZONE_COND_FULL; 999 } 1000 return 0; 1001 } 1002 1003 /* All the zones are FULL. Should not reach here. */ 1004 ASSERT(0); 1005 return -EIO; 1006 } 1007 1008 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 1009 { 1010 sector_t zone_sectors; 1011 sector_t nr_sectors; 1012 u8 zone_sectors_shift; 1013 u32 sb_zone; 1014 u32 nr_zones; 1015 1016 zone_sectors = bdev_zone_sectors(bdev); 1017 zone_sectors_shift = ilog2(zone_sectors); 1018 nr_sectors = bdev_nr_sectors(bdev); 1019 nr_zones = nr_sectors >> zone_sectors_shift; 1020 1021 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1022 if (sb_zone + 1 >= nr_zones) 1023 return -ENOENT; 1024 1025 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1026 zone_start_sector(sb_zone, bdev), 1027 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 1028 } 1029 1030 /* 1031 * Find allocatable zones within a given region. 1032 * 1033 * @device: the device to allocate a region on 1034 * @hole_start: the position of the hole to allocate the region 1035 * @num_bytes: size of wanted region 1036 * @hole_end: the end of the hole 1037 * @return: position of allocatable zones 1038 * 1039 * Allocatable region should not contain any superblock locations. 1040 */ 1041 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1042 u64 hole_end, u64 num_bytes) 1043 { 1044 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1045 const u8 shift = zinfo->zone_size_shift; 1046 u64 nzones = num_bytes >> shift; 1047 u64 pos = hole_start; 1048 u64 begin, end; 1049 bool have_sb; 1050 int i; 1051 1052 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1053 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1054 1055 while (pos < hole_end) { 1056 begin = pos >> shift; 1057 end = begin + nzones; 1058 1059 if (end > zinfo->nr_zones) 1060 return hole_end; 1061 1062 /* Check if zones in the region are all empty */ 1063 if (btrfs_dev_is_sequential(device, pos) && 1064 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { 1065 pos += zinfo->zone_size; 1066 continue; 1067 } 1068 1069 have_sb = false; 1070 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1071 u32 sb_zone; 1072 u64 sb_pos; 1073 1074 sb_zone = sb_zone_number(shift, i); 1075 if (!(end <= sb_zone || 1076 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1077 have_sb = true; 1078 pos = zone_start_physical( 1079 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1080 break; 1081 } 1082 1083 /* We also need to exclude regular superblock positions */ 1084 sb_pos = btrfs_sb_offset(i); 1085 if (!(pos + num_bytes <= sb_pos || 1086 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1087 have_sb = true; 1088 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1089 zinfo->zone_size); 1090 break; 1091 } 1092 } 1093 if (!have_sb) 1094 break; 1095 } 1096 1097 return pos; 1098 } 1099 1100 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1101 { 1102 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1103 unsigned int zno = (pos >> zone_info->zone_size_shift); 1104 1105 /* We can use any number of zones */ 1106 if (zone_info->max_active_zones == 0) 1107 return true; 1108 1109 if (!test_bit(zno, zone_info->active_zones)) { 1110 /* Active zone left? */ 1111 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1112 return false; 1113 if (test_and_set_bit(zno, zone_info->active_zones)) { 1114 /* Someone already set the bit */ 1115 atomic_inc(&zone_info->active_zones_left); 1116 } 1117 } 1118 1119 return true; 1120 } 1121 1122 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1123 { 1124 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1125 unsigned int zno = (pos >> zone_info->zone_size_shift); 1126 1127 /* We can use any number of zones */ 1128 if (zone_info->max_active_zones == 0) 1129 return; 1130 1131 if (test_and_clear_bit(zno, zone_info->active_zones)) 1132 atomic_inc(&zone_info->active_zones_left); 1133 } 1134 1135 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1136 u64 length, u64 *bytes) 1137 { 1138 int ret; 1139 1140 *bytes = 0; 1141 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1142 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1143 GFP_NOFS); 1144 if (ret) 1145 return ret; 1146 1147 *bytes = length; 1148 while (length) { 1149 btrfs_dev_set_zone_empty(device, physical); 1150 btrfs_dev_clear_active_zone(device, physical); 1151 physical += device->zone_info->zone_size; 1152 length -= device->zone_info->zone_size; 1153 } 1154 1155 return 0; 1156 } 1157 1158 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1159 { 1160 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1161 const u8 shift = zinfo->zone_size_shift; 1162 unsigned long begin = start >> shift; 1163 unsigned long nbits = size >> shift; 1164 u64 pos; 1165 int ret; 1166 1167 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1168 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1169 1170 if (begin + nbits > zinfo->nr_zones) 1171 return -ERANGE; 1172 1173 /* All the zones are conventional */ 1174 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) 1175 return 0; 1176 1177 /* All the zones are sequential and empty */ 1178 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && 1179 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) 1180 return 0; 1181 1182 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1183 u64 reset_bytes; 1184 1185 if (!btrfs_dev_is_sequential(device, pos) || 1186 btrfs_dev_is_empty_zone(device, pos)) 1187 continue; 1188 1189 /* Free regions should be empty */ 1190 btrfs_warn_in_rcu( 1191 device->fs_info, 1192 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1193 rcu_str_deref(device->name), device->devid, pos >> shift); 1194 WARN_ON_ONCE(1); 1195 1196 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1197 &reset_bytes); 1198 if (ret) 1199 return ret; 1200 } 1201 1202 return 0; 1203 } 1204 1205 /* 1206 * Calculate an allocation pointer from the extent allocation information 1207 * for a block group consist of conventional zones. It is pointed to the 1208 * end of the highest addressed extent in the block group as an allocation 1209 * offset. 1210 */ 1211 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1212 u64 *offset_ret, bool new) 1213 { 1214 struct btrfs_fs_info *fs_info = cache->fs_info; 1215 struct btrfs_root *root; 1216 struct btrfs_path *path; 1217 struct btrfs_key key; 1218 struct btrfs_key found_key; 1219 int ret; 1220 u64 length; 1221 1222 /* 1223 * Avoid tree lookups for a new block group, there's no use for it. 1224 * It must always be 0. 1225 * 1226 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1227 * For new a block group, this function is called from 1228 * btrfs_make_block_group() which is already taking the chunk mutex. 1229 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1230 * buffer locks to avoid deadlock. 1231 */ 1232 if (new) { 1233 *offset_ret = 0; 1234 return 0; 1235 } 1236 1237 path = btrfs_alloc_path(); 1238 if (!path) 1239 return -ENOMEM; 1240 1241 key.objectid = cache->start + cache->length; 1242 key.type = 0; 1243 key.offset = 0; 1244 1245 root = btrfs_extent_root(fs_info, key.objectid); 1246 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1247 /* We should not find the exact match */ 1248 if (!ret) 1249 ret = -EUCLEAN; 1250 if (ret < 0) 1251 goto out; 1252 1253 ret = btrfs_previous_extent_item(root, path, cache->start); 1254 if (ret) { 1255 if (ret == 1) { 1256 ret = 0; 1257 *offset_ret = 0; 1258 } 1259 goto out; 1260 } 1261 1262 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1263 1264 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1265 length = found_key.offset; 1266 else 1267 length = fs_info->nodesize; 1268 1269 if (!(found_key.objectid >= cache->start && 1270 found_key.objectid + length <= cache->start + cache->length)) { 1271 ret = -EUCLEAN; 1272 goto out; 1273 } 1274 *offset_ret = found_key.objectid + length - cache->start; 1275 ret = 0; 1276 1277 out: 1278 btrfs_free_path(path); 1279 return ret; 1280 } 1281 1282 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1283 { 1284 struct btrfs_fs_info *fs_info = cache->fs_info; 1285 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1286 struct extent_map *em; 1287 struct map_lookup *map; 1288 struct btrfs_device *device; 1289 u64 logical = cache->start; 1290 u64 length = cache->length; 1291 int ret; 1292 int i; 1293 unsigned int nofs_flag; 1294 u64 *alloc_offsets = NULL; 1295 u64 *caps = NULL; 1296 u64 *physical = NULL; 1297 unsigned long *active = NULL; 1298 u64 last_alloc = 0; 1299 u32 num_sequential = 0, num_conventional = 0; 1300 1301 if (!btrfs_is_zoned(fs_info)) 1302 return 0; 1303 1304 /* Sanity check */ 1305 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1306 btrfs_err(fs_info, 1307 "zoned: block group %llu len %llu unaligned to zone size %llu", 1308 logical, length, fs_info->zone_size); 1309 return -EIO; 1310 } 1311 1312 /* Get the chunk mapping */ 1313 read_lock(&em_tree->lock); 1314 em = lookup_extent_mapping(em_tree, logical, length); 1315 read_unlock(&em_tree->lock); 1316 1317 if (!em) 1318 return -EINVAL; 1319 1320 map = em->map_lookup; 1321 1322 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS); 1323 if (!cache->physical_map) { 1324 ret = -ENOMEM; 1325 goto out; 1326 } 1327 1328 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1329 if (!alloc_offsets) { 1330 ret = -ENOMEM; 1331 goto out; 1332 } 1333 1334 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS); 1335 if (!caps) { 1336 ret = -ENOMEM; 1337 goto out; 1338 } 1339 1340 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS); 1341 if (!physical) { 1342 ret = -ENOMEM; 1343 goto out; 1344 } 1345 1346 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1347 if (!active) { 1348 ret = -ENOMEM; 1349 goto out; 1350 } 1351 1352 for (i = 0; i < map->num_stripes; i++) { 1353 bool is_sequential; 1354 struct blk_zone zone; 1355 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1356 int dev_replace_is_ongoing = 0; 1357 1358 device = map->stripes[i].dev; 1359 physical[i] = map->stripes[i].physical; 1360 1361 if (device->bdev == NULL) { 1362 alloc_offsets[i] = WP_MISSING_DEV; 1363 continue; 1364 } 1365 1366 is_sequential = btrfs_dev_is_sequential(device, physical[i]); 1367 if (is_sequential) 1368 num_sequential++; 1369 else 1370 num_conventional++; 1371 1372 /* 1373 * Consider a zone as active if we can allow any number of 1374 * active zones. 1375 */ 1376 if (!device->zone_info->max_active_zones) 1377 __set_bit(i, active); 1378 1379 if (!is_sequential) { 1380 alloc_offsets[i] = WP_CONVENTIONAL; 1381 continue; 1382 } 1383 1384 /* 1385 * This zone will be used for allocation, so mark this zone 1386 * non-empty. 1387 */ 1388 btrfs_dev_clear_zone_empty(device, physical[i]); 1389 1390 down_read(&dev_replace->rwsem); 1391 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1392 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1393 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]); 1394 up_read(&dev_replace->rwsem); 1395 1396 /* 1397 * The group is mapped to a sequential zone. Get the zone write 1398 * pointer to determine the allocation offset within the zone. 1399 */ 1400 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size)); 1401 nofs_flag = memalloc_nofs_save(); 1402 ret = btrfs_get_dev_zone(device, physical[i], &zone); 1403 memalloc_nofs_restore(nofs_flag); 1404 if (ret == -EIO || ret == -EOPNOTSUPP) { 1405 ret = 0; 1406 alloc_offsets[i] = WP_MISSING_DEV; 1407 continue; 1408 } else if (ret) { 1409 goto out; 1410 } 1411 1412 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1413 btrfs_err_in_rcu(fs_info, 1414 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1415 zone.start << SECTOR_SHIFT, 1416 rcu_str_deref(device->name), device->devid); 1417 ret = -EIO; 1418 goto out; 1419 } 1420 1421 caps[i] = (zone.capacity << SECTOR_SHIFT); 1422 1423 switch (zone.cond) { 1424 case BLK_ZONE_COND_OFFLINE: 1425 case BLK_ZONE_COND_READONLY: 1426 btrfs_err(fs_info, 1427 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1428 physical[i] >> device->zone_info->zone_size_shift, 1429 rcu_str_deref(device->name), device->devid); 1430 alloc_offsets[i] = WP_MISSING_DEV; 1431 break; 1432 case BLK_ZONE_COND_EMPTY: 1433 alloc_offsets[i] = 0; 1434 break; 1435 case BLK_ZONE_COND_FULL: 1436 alloc_offsets[i] = caps[i]; 1437 break; 1438 default: 1439 /* Partially used zone */ 1440 alloc_offsets[i] = 1441 ((zone.wp - zone.start) << SECTOR_SHIFT); 1442 __set_bit(i, active); 1443 break; 1444 } 1445 } 1446 1447 if (num_sequential > 0) 1448 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1449 1450 if (num_conventional > 0) { 1451 /* Zone capacity is always zone size in emulation */ 1452 cache->zone_capacity = cache->length; 1453 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1454 if (ret) { 1455 btrfs_err(fs_info, 1456 "zoned: failed to determine allocation offset of bg %llu", 1457 cache->start); 1458 goto out; 1459 } else if (map->num_stripes == num_conventional) { 1460 cache->alloc_offset = last_alloc; 1461 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1462 goto out; 1463 } 1464 } 1465 1466 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1467 case 0: /* single */ 1468 if (alloc_offsets[0] == WP_MISSING_DEV) { 1469 btrfs_err(fs_info, 1470 "zoned: cannot recover write pointer for zone %llu", 1471 physical[0]); 1472 ret = -EIO; 1473 goto out; 1474 } 1475 cache->alloc_offset = alloc_offsets[0]; 1476 cache->zone_capacity = caps[0]; 1477 if (test_bit(0, active)) 1478 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1479 break; 1480 case BTRFS_BLOCK_GROUP_DUP: 1481 if (map->type & BTRFS_BLOCK_GROUP_DATA) { 1482 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg"); 1483 ret = -EINVAL; 1484 goto out; 1485 } 1486 if (alloc_offsets[0] == WP_MISSING_DEV) { 1487 btrfs_err(fs_info, 1488 "zoned: cannot recover write pointer for zone %llu", 1489 physical[0]); 1490 ret = -EIO; 1491 goto out; 1492 } 1493 if (alloc_offsets[1] == WP_MISSING_DEV) { 1494 btrfs_err(fs_info, 1495 "zoned: cannot recover write pointer for zone %llu", 1496 physical[1]); 1497 ret = -EIO; 1498 goto out; 1499 } 1500 if (alloc_offsets[0] != alloc_offsets[1]) { 1501 btrfs_err(fs_info, 1502 "zoned: write pointer offset mismatch of zones in DUP profile"); 1503 ret = -EIO; 1504 goto out; 1505 } 1506 if (test_bit(0, active) != test_bit(1, active)) { 1507 if (!btrfs_zone_activate(cache)) { 1508 ret = -EIO; 1509 goto out; 1510 } 1511 } else { 1512 if (test_bit(0, active)) 1513 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1514 &cache->runtime_flags); 1515 } 1516 cache->alloc_offset = alloc_offsets[0]; 1517 cache->zone_capacity = min(caps[0], caps[1]); 1518 break; 1519 case BTRFS_BLOCK_GROUP_RAID1: 1520 case BTRFS_BLOCK_GROUP_RAID0: 1521 case BTRFS_BLOCK_GROUP_RAID10: 1522 case BTRFS_BLOCK_GROUP_RAID5: 1523 case BTRFS_BLOCK_GROUP_RAID6: 1524 /* non-single profiles are not supported yet */ 1525 default: 1526 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1527 btrfs_bg_type_to_raid_name(map->type)); 1528 ret = -EINVAL; 1529 goto out; 1530 } 1531 1532 out: 1533 if (cache->alloc_offset > fs_info->zone_size) { 1534 btrfs_err(fs_info, 1535 "zoned: invalid write pointer %llu in block group %llu", 1536 cache->alloc_offset, cache->start); 1537 ret = -EIO; 1538 } 1539 1540 if (cache->alloc_offset > cache->zone_capacity) { 1541 btrfs_err(fs_info, 1542 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1543 cache->alloc_offset, cache->zone_capacity, 1544 cache->start); 1545 ret = -EIO; 1546 } 1547 1548 /* An extent is allocated after the write pointer */ 1549 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1550 btrfs_err(fs_info, 1551 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1552 logical, last_alloc, cache->alloc_offset); 1553 ret = -EIO; 1554 } 1555 1556 if (!ret) { 1557 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1558 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1559 btrfs_get_block_group(cache); 1560 spin_lock(&fs_info->zone_active_bgs_lock); 1561 list_add_tail(&cache->active_bg_list, 1562 &fs_info->zone_active_bgs); 1563 spin_unlock(&fs_info->zone_active_bgs_lock); 1564 } 1565 } else { 1566 kfree(cache->physical_map); 1567 cache->physical_map = NULL; 1568 } 1569 bitmap_free(active); 1570 kfree(physical); 1571 kfree(caps); 1572 kfree(alloc_offsets); 1573 free_extent_map(em); 1574 1575 return ret; 1576 } 1577 1578 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1579 { 1580 u64 unusable, free; 1581 1582 if (!btrfs_is_zoned(cache->fs_info)) 1583 return; 1584 1585 WARN_ON(cache->bytes_super != 0); 1586 1587 /* Check for block groups never get activated */ 1588 if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &cache->fs_info->flags) && 1589 cache->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM) && 1590 !test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags) && 1591 cache->alloc_offset == 0) { 1592 unusable = cache->length; 1593 free = 0; 1594 } else { 1595 unusable = (cache->alloc_offset - cache->used) + 1596 (cache->length - cache->zone_capacity); 1597 free = cache->zone_capacity - cache->alloc_offset; 1598 } 1599 1600 /* We only need ->free_space in ALLOC_SEQ block groups */ 1601 cache->cached = BTRFS_CACHE_FINISHED; 1602 cache->free_space_ctl->free_space = free; 1603 cache->zone_unusable = unusable; 1604 } 1605 1606 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1607 struct extent_buffer *eb) 1608 { 1609 if (!btrfs_is_zoned(eb->fs_info) || 1610 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)) 1611 return; 1612 1613 ASSERT(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1614 1615 memzero_extent_buffer(eb, 0, eb->len); 1616 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1617 set_extent_buffer_dirty(eb); 1618 set_extent_bit(&trans->dirty_pages, eb->start, eb->start + eb->len - 1, 1619 EXTENT_DIRTY | EXTENT_NOWAIT, NULL); 1620 } 1621 1622 bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1623 { 1624 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1625 struct btrfs_inode *inode = bbio->inode; 1626 struct btrfs_fs_info *fs_info = bbio->fs_info; 1627 struct btrfs_block_group *cache; 1628 bool ret = false; 1629 1630 if (!btrfs_is_zoned(fs_info)) 1631 return false; 1632 1633 if (!inode || !is_data_inode(&inode->vfs_inode)) 1634 return false; 1635 1636 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1637 return false; 1638 1639 /* 1640 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1641 * extent layout the relocation code has. 1642 * Furthermore we have set aside own block-group from which only the 1643 * relocation "process" can allocate and make sure only one process at a 1644 * time can add pages to an extent that gets relocated, so it's safe to 1645 * use regular REQ_OP_WRITE for this special case. 1646 */ 1647 if (btrfs_is_data_reloc_root(inode->root)) 1648 return false; 1649 1650 cache = btrfs_lookup_block_group(fs_info, start); 1651 ASSERT(cache); 1652 if (!cache) 1653 return false; 1654 1655 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1656 btrfs_put_block_group(cache); 1657 1658 return ret; 1659 } 1660 1661 void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1662 { 1663 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1664 struct btrfs_ordered_sum *sum = bbio->sums; 1665 1666 if (physical < bbio->orig_physical) 1667 sum->logical -= bbio->orig_physical - physical; 1668 else 1669 sum->logical += physical - bbio->orig_physical; 1670 } 1671 1672 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, 1673 u64 logical) 1674 { 1675 struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree; 1676 struct extent_map *em; 1677 1678 ordered->disk_bytenr = logical; 1679 1680 write_lock(&em_tree->lock); 1681 em = search_extent_mapping(em_tree, ordered->file_offset, 1682 ordered->num_bytes); 1683 em->block_start = logical; 1684 free_extent_map(em); 1685 write_unlock(&em_tree->lock); 1686 } 1687 1688 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, 1689 u64 logical, u64 len) 1690 { 1691 struct btrfs_ordered_extent *new; 1692 1693 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 1694 split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset, 1695 ordered->num_bytes, len, logical)) 1696 return false; 1697 1698 new = btrfs_split_ordered_extent(ordered, len); 1699 if (IS_ERR(new)) 1700 return false; 1701 new->disk_bytenr = logical; 1702 btrfs_finish_one_ordered(new); 1703 return true; 1704 } 1705 1706 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) 1707 { 1708 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1709 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1710 struct btrfs_ordered_sum *sum = 1711 list_first_entry(&ordered->list, typeof(*sum), list); 1712 u64 logical = sum->logical; 1713 u64 len = sum->len; 1714 1715 while (len < ordered->disk_num_bytes) { 1716 sum = list_next_entry(sum, list); 1717 if (sum->logical == logical + len) { 1718 len += sum->len; 1719 continue; 1720 } 1721 if (!btrfs_zoned_split_ordered(ordered, logical, len)) { 1722 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 1723 btrfs_err(fs_info, "failed to split ordered extent"); 1724 goto out; 1725 } 1726 logical = sum->logical; 1727 len = sum->len; 1728 } 1729 1730 if (ordered->disk_bytenr != logical) 1731 btrfs_rewrite_logical_zoned(ordered, logical); 1732 1733 out: 1734 /* 1735 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures 1736 * were allocated by btrfs_alloc_dummy_sum only to record the logical 1737 * addresses and don't contain actual checksums. We thus must free them 1738 * here so that we don't attempt to log the csums later. 1739 */ 1740 if ((inode->flags & BTRFS_INODE_NODATASUM) || 1741 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) { 1742 while ((sum = list_first_entry_or_null(&ordered->list, 1743 typeof(*sum), list))) { 1744 list_del(&sum->list); 1745 kfree(sum); 1746 } 1747 } 1748 } 1749 1750 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1751 struct extent_buffer *eb, 1752 struct btrfs_block_group **cache_ret) 1753 { 1754 struct btrfs_block_group *cache; 1755 bool ret = true; 1756 1757 if (!btrfs_is_zoned(fs_info)) 1758 return true; 1759 1760 cache = btrfs_lookup_block_group(fs_info, eb->start); 1761 if (!cache) 1762 return true; 1763 1764 if (cache->meta_write_pointer != eb->start) { 1765 btrfs_put_block_group(cache); 1766 cache = NULL; 1767 ret = false; 1768 } else { 1769 cache->meta_write_pointer = eb->start + eb->len; 1770 } 1771 1772 *cache_ret = cache; 1773 1774 return ret; 1775 } 1776 1777 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1778 struct extent_buffer *eb) 1779 { 1780 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1781 return; 1782 1783 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1784 cache->meta_write_pointer = eb->start; 1785 } 1786 1787 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1788 { 1789 if (!btrfs_dev_is_sequential(device, physical)) 1790 return -EOPNOTSUPP; 1791 1792 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1793 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1794 } 1795 1796 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1797 struct blk_zone *zone) 1798 { 1799 struct btrfs_io_context *bioc = NULL; 1800 u64 mapped_length = PAGE_SIZE; 1801 unsigned int nofs_flag; 1802 int nmirrors; 1803 int i, ret; 1804 1805 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1806 &mapped_length, &bioc, NULL, NULL, 1); 1807 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1808 ret = -EIO; 1809 goto out_put_bioc; 1810 } 1811 1812 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1813 ret = -EINVAL; 1814 goto out_put_bioc; 1815 } 1816 1817 nofs_flag = memalloc_nofs_save(); 1818 nmirrors = (int)bioc->num_stripes; 1819 for (i = 0; i < nmirrors; i++) { 1820 u64 physical = bioc->stripes[i].physical; 1821 struct btrfs_device *dev = bioc->stripes[i].dev; 1822 1823 /* Missing device */ 1824 if (!dev->bdev) 1825 continue; 1826 1827 ret = btrfs_get_dev_zone(dev, physical, zone); 1828 /* Failing device */ 1829 if (ret == -EIO || ret == -EOPNOTSUPP) 1830 continue; 1831 break; 1832 } 1833 memalloc_nofs_restore(nofs_flag); 1834 out_put_bioc: 1835 btrfs_put_bioc(bioc); 1836 return ret; 1837 } 1838 1839 /* 1840 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1841 * filling zeros between @physical_pos to a write pointer of dev-replace 1842 * source device. 1843 */ 1844 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1845 u64 physical_start, u64 physical_pos) 1846 { 1847 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1848 struct blk_zone zone; 1849 u64 length; 1850 u64 wp; 1851 int ret; 1852 1853 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1854 return 0; 1855 1856 ret = read_zone_info(fs_info, logical, &zone); 1857 if (ret) 1858 return ret; 1859 1860 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1861 1862 if (physical_pos == wp) 1863 return 0; 1864 1865 if (physical_pos > wp) 1866 return -EUCLEAN; 1867 1868 length = wp - physical_pos; 1869 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1870 } 1871 1872 /* 1873 * Activate block group and underlying device zones 1874 * 1875 * @block_group: the block group to activate 1876 * 1877 * Return: true on success, false otherwise 1878 */ 1879 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 1880 { 1881 struct btrfs_fs_info *fs_info = block_group->fs_info; 1882 struct btrfs_space_info *space_info = block_group->space_info; 1883 struct map_lookup *map; 1884 struct btrfs_device *device; 1885 u64 physical; 1886 bool ret; 1887 int i; 1888 1889 if (!btrfs_is_zoned(block_group->fs_info)) 1890 return true; 1891 1892 map = block_group->physical_map; 1893 1894 spin_lock(&space_info->lock); 1895 spin_lock(&block_group->lock); 1896 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1897 ret = true; 1898 goto out_unlock; 1899 } 1900 1901 /* No space left */ 1902 if (btrfs_zoned_bg_is_full(block_group)) { 1903 ret = false; 1904 goto out_unlock; 1905 } 1906 1907 for (i = 0; i < map->num_stripes; i++) { 1908 device = map->stripes[i].dev; 1909 physical = map->stripes[i].physical; 1910 1911 if (device->zone_info->max_active_zones == 0) 1912 continue; 1913 1914 if (!btrfs_dev_set_active_zone(device, physical)) { 1915 /* Cannot activate the zone */ 1916 ret = false; 1917 goto out_unlock; 1918 } 1919 } 1920 1921 /* Successfully activated all the zones */ 1922 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 1923 WARN_ON(block_group->alloc_offset != 0); 1924 if (block_group->zone_unusable == block_group->length) { 1925 block_group->zone_unusable = block_group->length - block_group->zone_capacity; 1926 space_info->bytes_zone_unusable -= block_group->zone_capacity; 1927 } 1928 spin_unlock(&block_group->lock); 1929 btrfs_try_granting_tickets(fs_info, space_info); 1930 spin_unlock(&space_info->lock); 1931 1932 /* For the active block group list */ 1933 btrfs_get_block_group(block_group); 1934 1935 spin_lock(&fs_info->zone_active_bgs_lock); 1936 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 1937 spin_unlock(&fs_info->zone_active_bgs_lock); 1938 1939 return true; 1940 1941 out_unlock: 1942 spin_unlock(&block_group->lock); 1943 spin_unlock(&space_info->lock); 1944 return ret; 1945 } 1946 1947 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 1948 { 1949 struct btrfs_fs_info *fs_info = block_group->fs_info; 1950 const u64 end = block_group->start + block_group->length; 1951 struct radix_tree_iter iter; 1952 struct extent_buffer *eb; 1953 void __rcu **slot; 1954 1955 rcu_read_lock(); 1956 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 1957 block_group->start >> fs_info->sectorsize_bits) { 1958 eb = radix_tree_deref_slot(slot); 1959 if (!eb) 1960 continue; 1961 if (radix_tree_deref_retry(eb)) { 1962 slot = radix_tree_iter_retry(&iter); 1963 continue; 1964 } 1965 1966 if (eb->start < block_group->start) 1967 continue; 1968 if (eb->start >= end) 1969 break; 1970 1971 slot = radix_tree_iter_resume(slot, &iter); 1972 rcu_read_unlock(); 1973 wait_on_extent_buffer_writeback(eb); 1974 rcu_read_lock(); 1975 } 1976 rcu_read_unlock(); 1977 } 1978 1979 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 1980 { 1981 struct btrfs_fs_info *fs_info = block_group->fs_info; 1982 struct map_lookup *map; 1983 const bool is_metadata = (block_group->flags & 1984 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 1985 int ret = 0; 1986 int i; 1987 1988 spin_lock(&block_group->lock); 1989 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1990 spin_unlock(&block_group->lock); 1991 return 0; 1992 } 1993 1994 /* Check if we have unwritten allocated space */ 1995 if (is_metadata && 1996 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 1997 spin_unlock(&block_group->lock); 1998 return -EAGAIN; 1999 } 2000 2001 /* 2002 * If we are sure that the block group is full (= no more room left for 2003 * new allocation) and the IO for the last usable block is completed, we 2004 * don't need to wait for the other IOs. This holds because we ensure 2005 * the sequential IO submissions using the ZONE_APPEND command for data 2006 * and block_group->meta_write_pointer for metadata. 2007 */ 2008 if (!fully_written) { 2009 spin_unlock(&block_group->lock); 2010 2011 ret = btrfs_inc_block_group_ro(block_group, false); 2012 if (ret) 2013 return ret; 2014 2015 /* Ensure all writes in this block group finish */ 2016 btrfs_wait_block_group_reservations(block_group); 2017 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2018 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 2019 block_group->length); 2020 /* Wait for extent buffers to be written. */ 2021 if (is_metadata) 2022 wait_eb_writebacks(block_group); 2023 2024 spin_lock(&block_group->lock); 2025 2026 /* 2027 * Bail out if someone already deactivated the block group, or 2028 * allocated space is left in the block group. 2029 */ 2030 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2031 &block_group->runtime_flags)) { 2032 spin_unlock(&block_group->lock); 2033 btrfs_dec_block_group_ro(block_group); 2034 return 0; 2035 } 2036 2037 if (block_group->reserved) { 2038 spin_unlock(&block_group->lock); 2039 btrfs_dec_block_group_ro(block_group); 2040 return -EAGAIN; 2041 } 2042 } 2043 2044 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2045 block_group->alloc_offset = block_group->zone_capacity; 2046 block_group->free_space_ctl->free_space = 0; 2047 btrfs_clear_treelog_bg(block_group); 2048 btrfs_clear_data_reloc_bg(block_group); 2049 spin_unlock(&block_group->lock); 2050 2051 map = block_group->physical_map; 2052 for (i = 0; i < map->num_stripes; i++) { 2053 struct btrfs_device *device = map->stripes[i].dev; 2054 const u64 physical = map->stripes[i].physical; 2055 2056 if (device->zone_info->max_active_zones == 0) 2057 continue; 2058 2059 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2060 physical >> SECTOR_SHIFT, 2061 device->zone_info->zone_size >> SECTOR_SHIFT, 2062 GFP_NOFS); 2063 2064 if (ret) 2065 return ret; 2066 2067 btrfs_dev_clear_active_zone(device, physical); 2068 } 2069 2070 if (!fully_written) 2071 btrfs_dec_block_group_ro(block_group); 2072 2073 spin_lock(&fs_info->zone_active_bgs_lock); 2074 ASSERT(!list_empty(&block_group->active_bg_list)); 2075 list_del_init(&block_group->active_bg_list); 2076 spin_unlock(&fs_info->zone_active_bgs_lock); 2077 2078 /* For active_bg_list */ 2079 btrfs_put_block_group(block_group); 2080 2081 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2082 2083 return 0; 2084 } 2085 2086 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2087 { 2088 if (!btrfs_is_zoned(block_group->fs_info)) 2089 return 0; 2090 2091 return do_zone_finish(block_group, false); 2092 } 2093 2094 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2095 { 2096 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2097 struct btrfs_device *device; 2098 bool ret = false; 2099 2100 if (!btrfs_is_zoned(fs_info)) 2101 return true; 2102 2103 /* Check if there is a device with active zones left */ 2104 mutex_lock(&fs_info->chunk_mutex); 2105 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2106 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2107 2108 if (!device->bdev) 2109 continue; 2110 2111 if (!zinfo->max_active_zones) { 2112 ret = true; 2113 break; 2114 } 2115 2116 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 2117 case 0: /* single */ 2118 ret = (atomic_read(&zinfo->active_zones_left) >= 1); 2119 break; 2120 case BTRFS_BLOCK_GROUP_DUP: 2121 ret = (atomic_read(&zinfo->active_zones_left) >= 2); 2122 break; 2123 } 2124 if (ret) 2125 break; 2126 } 2127 mutex_unlock(&fs_info->chunk_mutex); 2128 2129 if (!ret) 2130 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2131 2132 return ret; 2133 } 2134 2135 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2136 { 2137 struct btrfs_block_group *block_group; 2138 u64 min_alloc_bytes; 2139 2140 if (!btrfs_is_zoned(fs_info)) 2141 return; 2142 2143 block_group = btrfs_lookup_block_group(fs_info, logical); 2144 ASSERT(block_group); 2145 2146 /* No MIXED_BG on zoned btrfs. */ 2147 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2148 min_alloc_bytes = fs_info->sectorsize; 2149 else 2150 min_alloc_bytes = fs_info->nodesize; 2151 2152 /* Bail out if we can allocate more data from this block group. */ 2153 if (logical + length + min_alloc_bytes <= 2154 block_group->start + block_group->zone_capacity) 2155 goto out; 2156 2157 do_zone_finish(block_group, true); 2158 2159 out: 2160 btrfs_put_block_group(block_group); 2161 } 2162 2163 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2164 { 2165 struct btrfs_block_group *bg = 2166 container_of(work, struct btrfs_block_group, zone_finish_work); 2167 2168 wait_on_extent_buffer_writeback(bg->last_eb); 2169 free_extent_buffer(bg->last_eb); 2170 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2171 btrfs_put_block_group(bg); 2172 } 2173 2174 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2175 struct extent_buffer *eb) 2176 { 2177 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2178 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2179 return; 2180 2181 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2182 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2183 bg->start); 2184 return; 2185 } 2186 2187 /* For the work */ 2188 btrfs_get_block_group(bg); 2189 atomic_inc(&eb->refs); 2190 bg->last_eb = eb; 2191 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2192 queue_work(system_unbound_wq, &bg->zone_finish_work); 2193 } 2194 2195 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2196 { 2197 struct btrfs_fs_info *fs_info = bg->fs_info; 2198 2199 spin_lock(&fs_info->relocation_bg_lock); 2200 if (fs_info->data_reloc_bg == bg->start) 2201 fs_info->data_reloc_bg = 0; 2202 spin_unlock(&fs_info->relocation_bg_lock); 2203 } 2204 2205 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2206 { 2207 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2208 struct btrfs_device *device; 2209 2210 if (!btrfs_is_zoned(fs_info)) 2211 return; 2212 2213 mutex_lock(&fs_devices->device_list_mutex); 2214 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2215 if (device->zone_info) { 2216 vfree(device->zone_info->zone_cache); 2217 device->zone_info->zone_cache = NULL; 2218 } 2219 } 2220 mutex_unlock(&fs_devices->device_list_mutex); 2221 } 2222 2223 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2224 { 2225 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2226 struct btrfs_device *device; 2227 u64 used = 0; 2228 u64 total = 0; 2229 u64 factor; 2230 2231 ASSERT(btrfs_is_zoned(fs_info)); 2232 2233 if (fs_info->bg_reclaim_threshold == 0) 2234 return false; 2235 2236 mutex_lock(&fs_devices->device_list_mutex); 2237 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2238 if (!device->bdev) 2239 continue; 2240 2241 total += device->disk_total_bytes; 2242 used += device->bytes_used; 2243 } 2244 mutex_unlock(&fs_devices->device_list_mutex); 2245 2246 factor = div64_u64(used * 100, total); 2247 return factor >= fs_info->bg_reclaim_threshold; 2248 } 2249 2250 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2251 u64 length) 2252 { 2253 struct btrfs_block_group *block_group; 2254 2255 if (!btrfs_is_zoned(fs_info)) 2256 return; 2257 2258 block_group = btrfs_lookup_block_group(fs_info, logical); 2259 /* It should be called on a previous data relocation block group. */ 2260 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2261 2262 spin_lock(&block_group->lock); 2263 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2264 goto out; 2265 2266 /* All relocation extents are written. */ 2267 if (block_group->start + block_group->alloc_offset == logical + length) { 2268 /* Now, release this block group for further allocations. */ 2269 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2270 &block_group->runtime_flags); 2271 } 2272 2273 out: 2274 spin_unlock(&block_group->lock); 2275 btrfs_put_block_group(block_group); 2276 } 2277 2278 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2279 { 2280 struct btrfs_block_group *block_group; 2281 struct btrfs_block_group *min_bg = NULL; 2282 u64 min_avail = U64_MAX; 2283 int ret; 2284 2285 spin_lock(&fs_info->zone_active_bgs_lock); 2286 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2287 active_bg_list) { 2288 u64 avail; 2289 2290 spin_lock(&block_group->lock); 2291 if (block_group->reserved || block_group->alloc_offset == 0 || 2292 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) { 2293 spin_unlock(&block_group->lock); 2294 continue; 2295 } 2296 2297 avail = block_group->zone_capacity - block_group->alloc_offset; 2298 if (min_avail > avail) { 2299 if (min_bg) 2300 btrfs_put_block_group(min_bg); 2301 min_bg = block_group; 2302 min_avail = avail; 2303 btrfs_get_block_group(min_bg); 2304 } 2305 spin_unlock(&block_group->lock); 2306 } 2307 spin_unlock(&fs_info->zone_active_bgs_lock); 2308 2309 if (!min_bg) 2310 return 0; 2311 2312 ret = btrfs_zone_finish(min_bg); 2313 btrfs_put_block_group(min_bg); 2314 2315 return ret < 0 ? ret : 1; 2316 } 2317 2318 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2319 struct btrfs_space_info *space_info, 2320 bool do_finish) 2321 { 2322 struct btrfs_block_group *bg; 2323 int index; 2324 2325 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2326 return 0; 2327 2328 for (;;) { 2329 int ret; 2330 bool need_finish = false; 2331 2332 down_read(&space_info->groups_sem); 2333 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2334 list_for_each_entry(bg, &space_info->block_groups[index], 2335 list) { 2336 if (!spin_trylock(&bg->lock)) 2337 continue; 2338 if (btrfs_zoned_bg_is_full(bg) || 2339 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2340 &bg->runtime_flags)) { 2341 spin_unlock(&bg->lock); 2342 continue; 2343 } 2344 spin_unlock(&bg->lock); 2345 2346 if (btrfs_zone_activate(bg)) { 2347 up_read(&space_info->groups_sem); 2348 return 1; 2349 } 2350 2351 need_finish = true; 2352 } 2353 } 2354 up_read(&space_info->groups_sem); 2355 2356 if (!do_finish || !need_finish) 2357 break; 2358 2359 ret = btrfs_zone_finish_one_bg(fs_info); 2360 if (ret == 0) 2361 break; 2362 if (ret < 0) 2363 return ret; 2364 } 2365 2366 return 0; 2367 } 2368