1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "bio.h" 21 22 /* Maximum number of zones to report per blkdev_report_zones() call */ 23 #define BTRFS_REPORT_NR_ZONES 4096 24 /* Invalid allocation pointer value for missing devices */ 25 #define WP_MISSING_DEV ((u64)-1) 26 /* Pseudo write pointer value for conventional zone */ 27 #define WP_CONVENTIONAL ((u64)-2) 28 29 /* 30 * Location of the first zone of superblock logging zone pairs. 31 * 32 * - primary superblock: 0B (zone 0) 33 * - first copy: 512G (zone starting at that offset) 34 * - second copy: 4T (zone starting at that offset) 35 */ 36 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 37 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 38 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 39 40 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 41 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 42 43 /* Number of superblock log zones */ 44 #define BTRFS_NR_SB_LOG_ZONES 2 45 46 /* 47 * Minimum of active zones we need: 48 * 49 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 50 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 51 * - 1 zone for tree-log dedicated block group 52 * - 1 zone for relocation 53 */ 54 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 55 56 /* 57 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 58 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 59 * We do not expect the zone size to become larger than 8GiB or smaller than 60 * 4MiB in the near future. 61 */ 62 #define BTRFS_MAX_ZONE_SIZE SZ_8G 63 #define BTRFS_MIN_ZONE_SIZE SZ_4M 64 65 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 66 67 static inline bool sb_zone_is_full(const struct blk_zone *zone) 68 { 69 return (zone->cond == BLK_ZONE_COND_FULL) || 70 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 71 } 72 73 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 74 { 75 struct blk_zone *zones = data; 76 77 memcpy(&zones[idx], zone, sizeof(*zone)); 78 79 return 0; 80 } 81 82 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 83 u64 *wp_ret) 84 { 85 bool empty[BTRFS_NR_SB_LOG_ZONES]; 86 bool full[BTRFS_NR_SB_LOG_ZONES]; 87 sector_t sector; 88 int i; 89 90 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 91 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 92 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 93 full[i] = sb_zone_is_full(&zones[i]); 94 } 95 96 /* 97 * Possible states of log buffer zones 98 * 99 * Empty[0] In use[0] Full[0] 100 * Empty[1] * 0 1 101 * In use[1] x x 1 102 * Full[1] 0 0 C 103 * 104 * Log position: 105 * *: Special case, no superblock is written 106 * 0: Use write pointer of zones[0] 107 * 1: Use write pointer of zones[1] 108 * C: Compare super blocks from zones[0] and zones[1], use the latest 109 * one determined by generation 110 * x: Invalid state 111 */ 112 113 if (empty[0] && empty[1]) { 114 /* Special case to distinguish no superblock to read */ 115 *wp_ret = zones[0].start << SECTOR_SHIFT; 116 return -ENOENT; 117 } else if (full[0] && full[1]) { 118 /* Compare two super blocks */ 119 struct address_space *mapping = bdev->bd_inode->i_mapping; 120 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 121 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 122 int i; 123 124 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 125 u64 bytenr; 126 127 bytenr = ((zones[i].start + zones[i].len) 128 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE; 129 130 page[i] = read_cache_page_gfp(mapping, 131 bytenr >> PAGE_SHIFT, GFP_NOFS); 132 if (IS_ERR(page[i])) { 133 if (i == 1) 134 btrfs_release_disk_super(super[0]); 135 return PTR_ERR(page[i]); 136 } 137 super[i] = page_address(page[i]); 138 } 139 140 if (btrfs_super_generation(super[0]) > 141 btrfs_super_generation(super[1])) 142 sector = zones[1].start; 143 else 144 sector = zones[0].start; 145 146 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 147 btrfs_release_disk_super(super[i]); 148 } else if (!full[0] && (empty[1] || full[1])) { 149 sector = zones[0].wp; 150 } else if (full[0]) { 151 sector = zones[1].wp; 152 } else { 153 return -EUCLEAN; 154 } 155 *wp_ret = sector << SECTOR_SHIFT; 156 return 0; 157 } 158 159 /* 160 * Get the first zone number of the superblock mirror 161 */ 162 static inline u32 sb_zone_number(int shift, int mirror) 163 { 164 u64 zone = U64_MAX; 165 166 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 167 switch (mirror) { 168 case 0: zone = 0; break; 169 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 170 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 171 } 172 173 ASSERT(zone <= U32_MAX); 174 175 return (u32)zone; 176 } 177 178 static inline sector_t zone_start_sector(u32 zone_number, 179 struct block_device *bdev) 180 { 181 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 182 } 183 184 static inline u64 zone_start_physical(u32 zone_number, 185 struct btrfs_zoned_device_info *zone_info) 186 { 187 return (u64)zone_number << zone_info->zone_size_shift; 188 } 189 190 /* 191 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 192 * device into static sized chunks and fake a conventional zone on each of 193 * them. 194 */ 195 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 196 struct blk_zone *zones, unsigned int nr_zones) 197 { 198 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 199 sector_t bdev_size = bdev_nr_sectors(device->bdev); 200 unsigned int i; 201 202 pos >>= SECTOR_SHIFT; 203 for (i = 0; i < nr_zones; i++) { 204 zones[i].start = i * zone_sectors + pos; 205 zones[i].len = zone_sectors; 206 zones[i].capacity = zone_sectors; 207 zones[i].wp = zones[i].start + zone_sectors; 208 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 209 zones[i].cond = BLK_ZONE_COND_NOT_WP; 210 211 if (zones[i].wp >= bdev_size) { 212 i++; 213 break; 214 } 215 } 216 217 return i; 218 } 219 220 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 221 struct blk_zone *zones, unsigned int *nr_zones) 222 { 223 struct btrfs_zoned_device_info *zinfo = device->zone_info; 224 int ret; 225 226 if (!*nr_zones) 227 return 0; 228 229 if (!bdev_is_zoned(device->bdev)) { 230 ret = emulate_report_zones(device, pos, zones, *nr_zones); 231 *nr_zones = ret; 232 return 0; 233 } 234 235 /* Check cache */ 236 if (zinfo->zone_cache) { 237 unsigned int i; 238 u32 zno; 239 240 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 241 zno = pos >> zinfo->zone_size_shift; 242 /* 243 * We cannot report zones beyond the zone end. So, it is OK to 244 * cap *nr_zones to at the end. 245 */ 246 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 247 248 for (i = 0; i < *nr_zones; i++) { 249 struct blk_zone *zone_info; 250 251 zone_info = &zinfo->zone_cache[zno + i]; 252 if (!zone_info->len) 253 break; 254 } 255 256 if (i == *nr_zones) { 257 /* Cache hit on all the zones */ 258 memcpy(zones, zinfo->zone_cache + zno, 259 sizeof(*zinfo->zone_cache) * *nr_zones); 260 return 0; 261 } 262 } 263 264 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 265 copy_zone_info_cb, zones); 266 if (ret < 0) { 267 btrfs_err_in_rcu(device->fs_info, 268 "zoned: failed to read zone %llu on %s (devid %llu)", 269 pos, rcu_str_deref(device->name), 270 device->devid); 271 return ret; 272 } 273 *nr_zones = ret; 274 if (!ret) 275 return -EIO; 276 277 /* Populate cache */ 278 if (zinfo->zone_cache) { 279 u32 zno = pos >> zinfo->zone_size_shift; 280 281 memcpy(zinfo->zone_cache + zno, zones, 282 sizeof(*zinfo->zone_cache) * *nr_zones); 283 } 284 285 return 0; 286 } 287 288 /* The emulated zone size is determined from the size of device extent */ 289 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 290 { 291 struct btrfs_path *path; 292 struct btrfs_root *root = fs_info->dev_root; 293 struct btrfs_key key; 294 struct extent_buffer *leaf; 295 struct btrfs_dev_extent *dext; 296 int ret = 0; 297 298 key.objectid = 1; 299 key.type = BTRFS_DEV_EXTENT_KEY; 300 key.offset = 0; 301 302 path = btrfs_alloc_path(); 303 if (!path) 304 return -ENOMEM; 305 306 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 307 if (ret < 0) 308 goto out; 309 310 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 311 ret = btrfs_next_leaf(root, path); 312 if (ret < 0) 313 goto out; 314 /* No dev extents at all? Not good */ 315 if (ret > 0) { 316 ret = -EUCLEAN; 317 goto out; 318 } 319 } 320 321 leaf = path->nodes[0]; 322 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 323 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 324 ret = 0; 325 326 out: 327 btrfs_free_path(path); 328 329 return ret; 330 } 331 332 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 333 { 334 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 335 struct btrfs_device *device; 336 int ret = 0; 337 338 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 339 if (!btrfs_fs_incompat(fs_info, ZONED)) 340 return 0; 341 342 mutex_lock(&fs_devices->device_list_mutex); 343 list_for_each_entry(device, &fs_devices->devices, dev_list) { 344 /* We can skip reading of zone info for missing devices */ 345 if (!device->bdev) 346 continue; 347 348 ret = btrfs_get_dev_zone_info(device, true); 349 if (ret) 350 break; 351 } 352 mutex_unlock(&fs_devices->device_list_mutex); 353 354 return ret; 355 } 356 357 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 358 { 359 struct btrfs_fs_info *fs_info = device->fs_info; 360 struct btrfs_zoned_device_info *zone_info = NULL; 361 struct block_device *bdev = device->bdev; 362 unsigned int max_active_zones; 363 unsigned int nactive; 364 sector_t nr_sectors; 365 sector_t sector = 0; 366 struct blk_zone *zones = NULL; 367 unsigned int i, nreported = 0, nr_zones; 368 sector_t zone_sectors; 369 char *model, *emulated; 370 int ret; 371 372 /* 373 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 374 * yet be set. 375 */ 376 if (!btrfs_fs_incompat(fs_info, ZONED)) 377 return 0; 378 379 if (device->zone_info) 380 return 0; 381 382 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 383 if (!zone_info) 384 return -ENOMEM; 385 386 device->zone_info = zone_info; 387 388 if (!bdev_is_zoned(bdev)) { 389 if (!fs_info->zone_size) { 390 ret = calculate_emulated_zone_size(fs_info); 391 if (ret) 392 goto out; 393 } 394 395 ASSERT(fs_info->zone_size); 396 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 397 } else { 398 zone_sectors = bdev_zone_sectors(bdev); 399 } 400 401 ASSERT(is_power_of_two_u64(zone_sectors)); 402 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 403 404 /* We reject devices with a zone size larger than 8GB */ 405 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 406 btrfs_err_in_rcu(fs_info, 407 "zoned: %s: zone size %llu larger than supported maximum %llu", 408 rcu_str_deref(device->name), 409 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 410 ret = -EINVAL; 411 goto out; 412 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 413 btrfs_err_in_rcu(fs_info, 414 "zoned: %s: zone size %llu smaller than supported minimum %u", 415 rcu_str_deref(device->name), 416 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 417 ret = -EINVAL; 418 goto out; 419 } 420 421 nr_sectors = bdev_nr_sectors(bdev); 422 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 423 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 424 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 425 zone_info->nr_zones++; 426 427 max_active_zones = bdev_max_active_zones(bdev); 428 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 429 btrfs_err_in_rcu(fs_info, 430 "zoned: %s: max active zones %u is too small, need at least %u active zones", 431 rcu_str_deref(device->name), max_active_zones, 432 BTRFS_MIN_ACTIVE_ZONES); 433 ret = -EINVAL; 434 goto out; 435 } 436 zone_info->max_active_zones = max_active_zones; 437 438 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 439 if (!zone_info->seq_zones) { 440 ret = -ENOMEM; 441 goto out; 442 } 443 444 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 445 if (!zone_info->empty_zones) { 446 ret = -ENOMEM; 447 goto out; 448 } 449 450 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 451 if (!zone_info->active_zones) { 452 ret = -ENOMEM; 453 goto out; 454 } 455 456 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 457 if (!zones) { 458 ret = -ENOMEM; 459 goto out; 460 } 461 462 /* 463 * Enable zone cache only for a zoned device. On a non-zoned device, we 464 * fill the zone info with emulated CONVENTIONAL zones, so no need to 465 * use the cache. 466 */ 467 if (populate_cache && bdev_is_zoned(device->bdev)) { 468 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) * 469 zone_info->nr_zones); 470 if (!zone_info->zone_cache) { 471 btrfs_err_in_rcu(device->fs_info, 472 "zoned: failed to allocate zone cache for %s", 473 rcu_str_deref(device->name)); 474 ret = -ENOMEM; 475 goto out; 476 } 477 } 478 479 /* Get zones type */ 480 nactive = 0; 481 while (sector < nr_sectors) { 482 nr_zones = BTRFS_REPORT_NR_ZONES; 483 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 484 &nr_zones); 485 if (ret) 486 goto out; 487 488 for (i = 0; i < nr_zones; i++) { 489 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 490 __set_bit(nreported, zone_info->seq_zones); 491 switch (zones[i].cond) { 492 case BLK_ZONE_COND_EMPTY: 493 __set_bit(nreported, zone_info->empty_zones); 494 break; 495 case BLK_ZONE_COND_IMP_OPEN: 496 case BLK_ZONE_COND_EXP_OPEN: 497 case BLK_ZONE_COND_CLOSED: 498 __set_bit(nreported, zone_info->active_zones); 499 nactive++; 500 break; 501 } 502 nreported++; 503 } 504 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 505 } 506 507 if (nreported != zone_info->nr_zones) { 508 btrfs_err_in_rcu(device->fs_info, 509 "inconsistent number of zones on %s (%u/%u)", 510 rcu_str_deref(device->name), nreported, 511 zone_info->nr_zones); 512 ret = -EIO; 513 goto out; 514 } 515 516 if (max_active_zones) { 517 if (nactive > max_active_zones) { 518 btrfs_err_in_rcu(device->fs_info, 519 "zoned: %u active zones on %s exceeds max_active_zones %u", 520 nactive, rcu_str_deref(device->name), 521 max_active_zones); 522 ret = -EIO; 523 goto out; 524 } 525 atomic_set(&zone_info->active_zones_left, 526 max_active_zones - nactive); 527 /* Overcommit does not work well with active zone tacking. */ 528 set_bit(BTRFS_FS_NO_OVERCOMMIT, &fs_info->flags); 529 } 530 531 /* Validate superblock log */ 532 nr_zones = BTRFS_NR_SB_LOG_ZONES; 533 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 534 u32 sb_zone; 535 u64 sb_wp; 536 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 537 538 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 539 if (sb_zone + 1 >= zone_info->nr_zones) 540 continue; 541 542 ret = btrfs_get_dev_zones(device, 543 zone_start_physical(sb_zone, zone_info), 544 &zone_info->sb_zones[sb_pos], 545 &nr_zones); 546 if (ret) 547 goto out; 548 549 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 550 btrfs_err_in_rcu(device->fs_info, 551 "zoned: failed to read super block log zone info at devid %llu zone %u", 552 device->devid, sb_zone); 553 ret = -EUCLEAN; 554 goto out; 555 } 556 557 /* 558 * If zones[0] is conventional, always use the beginning of the 559 * zone to record superblock. No need to validate in that case. 560 */ 561 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 562 BLK_ZONE_TYPE_CONVENTIONAL) 563 continue; 564 565 ret = sb_write_pointer(device->bdev, 566 &zone_info->sb_zones[sb_pos], &sb_wp); 567 if (ret != -ENOENT && ret) { 568 btrfs_err_in_rcu(device->fs_info, 569 "zoned: super block log zone corrupted devid %llu zone %u", 570 device->devid, sb_zone); 571 ret = -EUCLEAN; 572 goto out; 573 } 574 } 575 576 577 kvfree(zones); 578 579 switch (bdev_zoned_model(bdev)) { 580 case BLK_ZONED_HM: 581 model = "host-managed zoned"; 582 emulated = ""; 583 break; 584 case BLK_ZONED_HA: 585 model = "host-aware zoned"; 586 emulated = ""; 587 break; 588 case BLK_ZONED_NONE: 589 model = "regular"; 590 emulated = "emulated "; 591 break; 592 default: 593 /* Just in case */ 594 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 595 bdev_zoned_model(bdev), 596 rcu_str_deref(device->name)); 597 ret = -EOPNOTSUPP; 598 goto out_free_zone_info; 599 } 600 601 btrfs_info_in_rcu(fs_info, 602 "%s block device %s, %u %szones of %llu bytes", 603 model, rcu_str_deref(device->name), zone_info->nr_zones, 604 emulated, zone_info->zone_size); 605 606 return 0; 607 608 out: 609 kvfree(zones); 610 out_free_zone_info: 611 btrfs_destroy_dev_zone_info(device); 612 613 return ret; 614 } 615 616 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 617 { 618 struct btrfs_zoned_device_info *zone_info = device->zone_info; 619 620 if (!zone_info) 621 return; 622 623 bitmap_free(zone_info->active_zones); 624 bitmap_free(zone_info->seq_zones); 625 bitmap_free(zone_info->empty_zones); 626 vfree(zone_info->zone_cache); 627 kfree(zone_info); 628 device->zone_info = NULL; 629 } 630 631 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 632 { 633 struct btrfs_zoned_device_info *zone_info; 634 635 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 636 if (!zone_info) 637 return NULL; 638 639 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 640 if (!zone_info->seq_zones) 641 goto out; 642 643 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 644 zone_info->nr_zones); 645 646 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 647 if (!zone_info->empty_zones) 648 goto out; 649 650 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 651 zone_info->nr_zones); 652 653 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 654 if (!zone_info->active_zones) 655 goto out; 656 657 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 658 zone_info->nr_zones); 659 zone_info->zone_cache = NULL; 660 661 return zone_info; 662 663 out: 664 bitmap_free(zone_info->seq_zones); 665 bitmap_free(zone_info->empty_zones); 666 bitmap_free(zone_info->active_zones); 667 kfree(zone_info); 668 return NULL; 669 } 670 671 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 672 struct blk_zone *zone) 673 { 674 unsigned int nr_zones = 1; 675 int ret; 676 677 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 678 if (ret != 0 || !nr_zones) 679 return ret ? ret : -EIO; 680 681 return 0; 682 } 683 684 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 685 { 686 struct btrfs_device *device; 687 688 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 689 if (device->bdev && 690 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) { 691 btrfs_err(fs_info, 692 "zoned: mode not enabled but zoned device found: %pg", 693 device->bdev); 694 return -EINVAL; 695 } 696 } 697 698 return 0; 699 } 700 701 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 702 { 703 struct queue_limits *lim = &fs_info->limits; 704 struct btrfs_device *device; 705 u64 zone_size = 0; 706 int ret; 707 708 /* 709 * Host-Managed devices can't be used without the ZONED flag. With the 710 * ZONED all devices can be used, using zone emulation if required. 711 */ 712 if (!btrfs_fs_incompat(fs_info, ZONED)) 713 return btrfs_check_for_zoned_device(fs_info); 714 715 blk_set_stacking_limits(lim); 716 717 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 718 struct btrfs_zoned_device_info *zone_info = device->zone_info; 719 720 if (!device->bdev) 721 continue; 722 723 if (!zone_size) { 724 zone_size = zone_info->zone_size; 725 } else if (zone_info->zone_size != zone_size) { 726 btrfs_err(fs_info, 727 "zoned: unequal block device zone sizes: have %llu found %llu", 728 zone_info->zone_size, zone_size); 729 return -EINVAL; 730 } 731 732 /* 733 * With the zoned emulation, we can have non-zoned device on the 734 * zoned mode. In this case, we don't have a valid max zone 735 * append size. 736 */ 737 if (bdev_is_zoned(device->bdev)) { 738 blk_stack_limits(lim, 739 &bdev_get_queue(device->bdev)->limits, 740 0); 741 } 742 } 743 744 /* 745 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 746 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 747 * check the alignment here. 748 */ 749 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 750 btrfs_err(fs_info, 751 "zoned: zone size %llu not aligned to stripe %u", 752 zone_size, BTRFS_STRIPE_LEN); 753 return -EINVAL; 754 } 755 756 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 757 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 758 return -EINVAL; 759 } 760 761 fs_info->zone_size = zone_size; 762 /* 763 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 764 * Technically, we can have multiple pages per segment. But, since 765 * we add the pages one by one to a bio, and cannot increase the 766 * metadata reservation even if it increases the number of extents, it 767 * is safe to stick with the limit. 768 */ 769 fs_info->max_zone_append_size = ALIGN_DOWN( 770 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 771 (u64)lim->max_sectors << SECTOR_SHIFT, 772 (u64)lim->max_segments << PAGE_SHIFT), 773 fs_info->sectorsize); 774 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 775 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 776 fs_info->max_extent_size = fs_info->max_zone_append_size; 777 778 /* 779 * Check mount options here, because we might change fs_info->zoned 780 * from fs_info->zone_size. 781 */ 782 ret = btrfs_check_mountopts_zoned(fs_info); 783 if (ret) 784 return ret; 785 786 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 787 return 0; 788 } 789 790 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 791 { 792 if (!btrfs_is_zoned(info)) 793 return 0; 794 795 /* 796 * Space cache writing is not COWed. Disable that to avoid write errors 797 * in sequential zones. 798 */ 799 if (btrfs_test_opt(info, SPACE_CACHE)) { 800 btrfs_err(info, "zoned: space cache v1 is not supported"); 801 return -EINVAL; 802 } 803 804 if (btrfs_test_opt(info, NODATACOW)) { 805 btrfs_err(info, "zoned: NODATACOW not supported"); 806 return -EINVAL; 807 } 808 809 return 0; 810 } 811 812 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 813 int rw, u64 *bytenr_ret) 814 { 815 u64 wp; 816 int ret; 817 818 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 819 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 820 return 0; 821 } 822 823 ret = sb_write_pointer(bdev, zones, &wp); 824 if (ret != -ENOENT && ret < 0) 825 return ret; 826 827 if (rw == WRITE) { 828 struct blk_zone *reset = NULL; 829 830 if (wp == zones[0].start << SECTOR_SHIFT) 831 reset = &zones[0]; 832 else if (wp == zones[1].start << SECTOR_SHIFT) 833 reset = &zones[1]; 834 835 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 836 ASSERT(sb_zone_is_full(reset)); 837 838 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 839 reset->start, reset->len, 840 GFP_NOFS); 841 if (ret) 842 return ret; 843 844 reset->cond = BLK_ZONE_COND_EMPTY; 845 reset->wp = reset->start; 846 } 847 } else if (ret != -ENOENT) { 848 /* 849 * For READ, we want the previous one. Move write pointer to 850 * the end of a zone, if it is at the head of a zone. 851 */ 852 u64 zone_end = 0; 853 854 if (wp == zones[0].start << SECTOR_SHIFT) 855 zone_end = zones[1].start + zones[1].capacity; 856 else if (wp == zones[1].start << SECTOR_SHIFT) 857 zone_end = zones[0].start + zones[0].capacity; 858 if (zone_end) 859 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 860 BTRFS_SUPER_INFO_SIZE); 861 862 wp -= BTRFS_SUPER_INFO_SIZE; 863 } 864 865 *bytenr_ret = wp; 866 return 0; 867 868 } 869 870 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 871 u64 *bytenr_ret) 872 { 873 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 874 sector_t zone_sectors; 875 u32 sb_zone; 876 int ret; 877 u8 zone_sectors_shift; 878 sector_t nr_sectors; 879 u32 nr_zones; 880 881 if (!bdev_is_zoned(bdev)) { 882 *bytenr_ret = btrfs_sb_offset(mirror); 883 return 0; 884 } 885 886 ASSERT(rw == READ || rw == WRITE); 887 888 zone_sectors = bdev_zone_sectors(bdev); 889 if (!is_power_of_2(zone_sectors)) 890 return -EINVAL; 891 zone_sectors_shift = ilog2(zone_sectors); 892 nr_sectors = bdev_nr_sectors(bdev); 893 nr_zones = nr_sectors >> zone_sectors_shift; 894 895 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 896 if (sb_zone + 1 >= nr_zones) 897 return -ENOENT; 898 899 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 900 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 901 zones); 902 if (ret < 0) 903 return ret; 904 if (ret != BTRFS_NR_SB_LOG_ZONES) 905 return -EIO; 906 907 return sb_log_location(bdev, zones, rw, bytenr_ret); 908 } 909 910 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 911 u64 *bytenr_ret) 912 { 913 struct btrfs_zoned_device_info *zinfo = device->zone_info; 914 u32 zone_num; 915 916 /* 917 * For a zoned filesystem on a non-zoned block device, use the same 918 * super block locations as regular filesystem. Doing so, the super 919 * block can always be retrieved and the zoned flag of the volume 920 * detected from the super block information. 921 */ 922 if (!bdev_is_zoned(device->bdev)) { 923 *bytenr_ret = btrfs_sb_offset(mirror); 924 return 0; 925 } 926 927 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 928 if (zone_num + 1 >= zinfo->nr_zones) 929 return -ENOENT; 930 931 return sb_log_location(device->bdev, 932 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 933 rw, bytenr_ret); 934 } 935 936 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 937 int mirror) 938 { 939 u32 zone_num; 940 941 if (!zinfo) 942 return false; 943 944 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 945 if (zone_num + 1 >= zinfo->nr_zones) 946 return false; 947 948 if (!test_bit(zone_num, zinfo->seq_zones)) 949 return false; 950 951 return true; 952 } 953 954 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 955 { 956 struct btrfs_zoned_device_info *zinfo = device->zone_info; 957 struct blk_zone *zone; 958 int i; 959 960 if (!is_sb_log_zone(zinfo, mirror)) 961 return 0; 962 963 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 964 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 965 /* Advance the next zone */ 966 if (zone->cond == BLK_ZONE_COND_FULL) { 967 zone++; 968 continue; 969 } 970 971 if (zone->cond == BLK_ZONE_COND_EMPTY) 972 zone->cond = BLK_ZONE_COND_IMP_OPEN; 973 974 zone->wp += SUPER_INFO_SECTORS; 975 976 if (sb_zone_is_full(zone)) { 977 /* 978 * No room left to write new superblock. Since 979 * superblock is written with REQ_SYNC, it is safe to 980 * finish the zone now. 981 * 982 * If the write pointer is exactly at the capacity, 983 * explicit ZONE_FINISH is not necessary. 984 */ 985 if (zone->wp != zone->start + zone->capacity) { 986 int ret; 987 988 ret = blkdev_zone_mgmt(device->bdev, 989 REQ_OP_ZONE_FINISH, zone->start, 990 zone->len, GFP_NOFS); 991 if (ret) 992 return ret; 993 } 994 995 zone->wp = zone->start + zone->len; 996 zone->cond = BLK_ZONE_COND_FULL; 997 } 998 return 0; 999 } 1000 1001 /* All the zones are FULL. Should not reach here. */ 1002 ASSERT(0); 1003 return -EIO; 1004 } 1005 1006 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 1007 { 1008 sector_t zone_sectors; 1009 sector_t nr_sectors; 1010 u8 zone_sectors_shift; 1011 u32 sb_zone; 1012 u32 nr_zones; 1013 1014 zone_sectors = bdev_zone_sectors(bdev); 1015 zone_sectors_shift = ilog2(zone_sectors); 1016 nr_sectors = bdev_nr_sectors(bdev); 1017 nr_zones = nr_sectors >> zone_sectors_shift; 1018 1019 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1020 if (sb_zone + 1 >= nr_zones) 1021 return -ENOENT; 1022 1023 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1024 zone_start_sector(sb_zone, bdev), 1025 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 1026 } 1027 1028 /* 1029 * Find allocatable zones within a given region. 1030 * 1031 * @device: the device to allocate a region on 1032 * @hole_start: the position of the hole to allocate the region 1033 * @num_bytes: size of wanted region 1034 * @hole_end: the end of the hole 1035 * @return: position of allocatable zones 1036 * 1037 * Allocatable region should not contain any superblock locations. 1038 */ 1039 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1040 u64 hole_end, u64 num_bytes) 1041 { 1042 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1043 const u8 shift = zinfo->zone_size_shift; 1044 u64 nzones = num_bytes >> shift; 1045 u64 pos = hole_start; 1046 u64 begin, end; 1047 bool have_sb; 1048 int i; 1049 1050 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1051 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1052 1053 while (pos < hole_end) { 1054 begin = pos >> shift; 1055 end = begin + nzones; 1056 1057 if (end > zinfo->nr_zones) 1058 return hole_end; 1059 1060 /* Check if zones in the region are all empty */ 1061 if (btrfs_dev_is_sequential(device, pos) && 1062 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { 1063 pos += zinfo->zone_size; 1064 continue; 1065 } 1066 1067 have_sb = false; 1068 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1069 u32 sb_zone; 1070 u64 sb_pos; 1071 1072 sb_zone = sb_zone_number(shift, i); 1073 if (!(end <= sb_zone || 1074 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1075 have_sb = true; 1076 pos = zone_start_physical( 1077 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1078 break; 1079 } 1080 1081 /* We also need to exclude regular superblock positions */ 1082 sb_pos = btrfs_sb_offset(i); 1083 if (!(pos + num_bytes <= sb_pos || 1084 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1085 have_sb = true; 1086 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1087 zinfo->zone_size); 1088 break; 1089 } 1090 } 1091 if (!have_sb) 1092 break; 1093 } 1094 1095 return pos; 1096 } 1097 1098 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1099 { 1100 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1101 unsigned int zno = (pos >> zone_info->zone_size_shift); 1102 1103 /* We can use any number of zones */ 1104 if (zone_info->max_active_zones == 0) 1105 return true; 1106 1107 if (!test_bit(zno, zone_info->active_zones)) { 1108 /* Active zone left? */ 1109 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1110 return false; 1111 if (test_and_set_bit(zno, zone_info->active_zones)) { 1112 /* Someone already set the bit */ 1113 atomic_inc(&zone_info->active_zones_left); 1114 } 1115 } 1116 1117 return true; 1118 } 1119 1120 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1121 { 1122 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1123 unsigned int zno = (pos >> zone_info->zone_size_shift); 1124 1125 /* We can use any number of zones */ 1126 if (zone_info->max_active_zones == 0) 1127 return; 1128 1129 if (test_and_clear_bit(zno, zone_info->active_zones)) 1130 atomic_inc(&zone_info->active_zones_left); 1131 } 1132 1133 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1134 u64 length, u64 *bytes) 1135 { 1136 int ret; 1137 1138 *bytes = 0; 1139 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1140 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1141 GFP_NOFS); 1142 if (ret) 1143 return ret; 1144 1145 *bytes = length; 1146 while (length) { 1147 btrfs_dev_set_zone_empty(device, physical); 1148 btrfs_dev_clear_active_zone(device, physical); 1149 physical += device->zone_info->zone_size; 1150 length -= device->zone_info->zone_size; 1151 } 1152 1153 return 0; 1154 } 1155 1156 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1157 { 1158 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1159 const u8 shift = zinfo->zone_size_shift; 1160 unsigned long begin = start >> shift; 1161 unsigned long end = (start + size) >> shift; 1162 u64 pos; 1163 int ret; 1164 1165 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1166 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1167 1168 if (end > zinfo->nr_zones) 1169 return -ERANGE; 1170 1171 /* All the zones are conventional */ 1172 if (find_next_bit(zinfo->seq_zones, begin, end) == end) 1173 return 0; 1174 1175 /* All the zones are sequential and empty */ 1176 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end && 1177 find_next_zero_bit(zinfo->empty_zones, begin, end) == end) 1178 return 0; 1179 1180 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1181 u64 reset_bytes; 1182 1183 if (!btrfs_dev_is_sequential(device, pos) || 1184 btrfs_dev_is_empty_zone(device, pos)) 1185 continue; 1186 1187 /* Free regions should be empty */ 1188 btrfs_warn_in_rcu( 1189 device->fs_info, 1190 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1191 rcu_str_deref(device->name), device->devid, pos >> shift); 1192 WARN_ON_ONCE(1); 1193 1194 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1195 &reset_bytes); 1196 if (ret) 1197 return ret; 1198 } 1199 1200 return 0; 1201 } 1202 1203 /* 1204 * Calculate an allocation pointer from the extent allocation information 1205 * for a block group consist of conventional zones. It is pointed to the 1206 * end of the highest addressed extent in the block group as an allocation 1207 * offset. 1208 */ 1209 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1210 u64 *offset_ret, bool new) 1211 { 1212 struct btrfs_fs_info *fs_info = cache->fs_info; 1213 struct btrfs_root *root; 1214 struct btrfs_path *path; 1215 struct btrfs_key key; 1216 struct btrfs_key found_key; 1217 int ret; 1218 u64 length; 1219 1220 /* 1221 * Avoid tree lookups for a new block group, there's no use for it. 1222 * It must always be 0. 1223 * 1224 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1225 * For new a block group, this function is called from 1226 * btrfs_make_block_group() which is already taking the chunk mutex. 1227 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1228 * buffer locks to avoid deadlock. 1229 */ 1230 if (new) { 1231 *offset_ret = 0; 1232 return 0; 1233 } 1234 1235 path = btrfs_alloc_path(); 1236 if (!path) 1237 return -ENOMEM; 1238 1239 key.objectid = cache->start + cache->length; 1240 key.type = 0; 1241 key.offset = 0; 1242 1243 root = btrfs_extent_root(fs_info, key.objectid); 1244 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1245 /* We should not find the exact match */ 1246 if (!ret) 1247 ret = -EUCLEAN; 1248 if (ret < 0) 1249 goto out; 1250 1251 ret = btrfs_previous_extent_item(root, path, cache->start); 1252 if (ret) { 1253 if (ret == 1) { 1254 ret = 0; 1255 *offset_ret = 0; 1256 } 1257 goto out; 1258 } 1259 1260 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1261 1262 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1263 length = found_key.offset; 1264 else 1265 length = fs_info->nodesize; 1266 1267 if (!(found_key.objectid >= cache->start && 1268 found_key.objectid + length <= cache->start + cache->length)) { 1269 ret = -EUCLEAN; 1270 goto out; 1271 } 1272 *offset_ret = found_key.objectid + length - cache->start; 1273 ret = 0; 1274 1275 out: 1276 btrfs_free_path(path); 1277 return ret; 1278 } 1279 1280 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1281 { 1282 struct btrfs_fs_info *fs_info = cache->fs_info; 1283 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1284 struct extent_map *em; 1285 struct map_lookup *map; 1286 struct btrfs_device *device; 1287 u64 logical = cache->start; 1288 u64 length = cache->length; 1289 int ret; 1290 int i; 1291 unsigned int nofs_flag; 1292 u64 *alloc_offsets = NULL; 1293 u64 *caps = NULL; 1294 u64 *physical = NULL; 1295 unsigned long *active = NULL; 1296 u64 last_alloc = 0; 1297 u32 num_sequential = 0, num_conventional = 0; 1298 1299 if (!btrfs_is_zoned(fs_info)) 1300 return 0; 1301 1302 /* Sanity check */ 1303 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1304 btrfs_err(fs_info, 1305 "zoned: block group %llu len %llu unaligned to zone size %llu", 1306 logical, length, fs_info->zone_size); 1307 return -EIO; 1308 } 1309 1310 /* Get the chunk mapping */ 1311 read_lock(&em_tree->lock); 1312 em = lookup_extent_mapping(em_tree, logical, length); 1313 read_unlock(&em_tree->lock); 1314 1315 if (!em) 1316 return -EINVAL; 1317 1318 map = em->map_lookup; 1319 1320 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS); 1321 if (!cache->physical_map) { 1322 ret = -ENOMEM; 1323 goto out; 1324 } 1325 1326 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1327 if (!alloc_offsets) { 1328 ret = -ENOMEM; 1329 goto out; 1330 } 1331 1332 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS); 1333 if (!caps) { 1334 ret = -ENOMEM; 1335 goto out; 1336 } 1337 1338 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS); 1339 if (!physical) { 1340 ret = -ENOMEM; 1341 goto out; 1342 } 1343 1344 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1345 if (!active) { 1346 ret = -ENOMEM; 1347 goto out; 1348 } 1349 1350 for (i = 0; i < map->num_stripes; i++) { 1351 bool is_sequential; 1352 struct blk_zone zone; 1353 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1354 int dev_replace_is_ongoing = 0; 1355 1356 device = map->stripes[i].dev; 1357 physical[i] = map->stripes[i].physical; 1358 1359 if (device->bdev == NULL) { 1360 alloc_offsets[i] = WP_MISSING_DEV; 1361 continue; 1362 } 1363 1364 is_sequential = btrfs_dev_is_sequential(device, physical[i]); 1365 if (is_sequential) 1366 num_sequential++; 1367 else 1368 num_conventional++; 1369 1370 /* 1371 * Consider a zone as active if we can allow any number of 1372 * active zones. 1373 */ 1374 if (!device->zone_info->max_active_zones) 1375 __set_bit(i, active); 1376 1377 if (!is_sequential) { 1378 alloc_offsets[i] = WP_CONVENTIONAL; 1379 continue; 1380 } 1381 1382 /* 1383 * This zone will be used for allocation, so mark this zone 1384 * non-empty. 1385 */ 1386 btrfs_dev_clear_zone_empty(device, physical[i]); 1387 1388 down_read(&dev_replace->rwsem); 1389 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1390 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1391 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]); 1392 up_read(&dev_replace->rwsem); 1393 1394 /* 1395 * The group is mapped to a sequential zone. Get the zone write 1396 * pointer to determine the allocation offset within the zone. 1397 */ 1398 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size)); 1399 nofs_flag = memalloc_nofs_save(); 1400 ret = btrfs_get_dev_zone(device, physical[i], &zone); 1401 memalloc_nofs_restore(nofs_flag); 1402 if (ret == -EIO || ret == -EOPNOTSUPP) { 1403 ret = 0; 1404 alloc_offsets[i] = WP_MISSING_DEV; 1405 continue; 1406 } else if (ret) { 1407 goto out; 1408 } 1409 1410 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1411 btrfs_err_in_rcu(fs_info, 1412 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1413 zone.start << SECTOR_SHIFT, 1414 rcu_str_deref(device->name), device->devid); 1415 ret = -EIO; 1416 goto out; 1417 } 1418 1419 caps[i] = (zone.capacity << SECTOR_SHIFT); 1420 1421 switch (zone.cond) { 1422 case BLK_ZONE_COND_OFFLINE: 1423 case BLK_ZONE_COND_READONLY: 1424 btrfs_err(fs_info, 1425 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1426 physical[i] >> device->zone_info->zone_size_shift, 1427 rcu_str_deref(device->name), device->devid); 1428 alloc_offsets[i] = WP_MISSING_DEV; 1429 break; 1430 case BLK_ZONE_COND_EMPTY: 1431 alloc_offsets[i] = 0; 1432 break; 1433 case BLK_ZONE_COND_FULL: 1434 alloc_offsets[i] = caps[i]; 1435 break; 1436 default: 1437 /* Partially used zone */ 1438 alloc_offsets[i] = 1439 ((zone.wp - zone.start) << SECTOR_SHIFT); 1440 __set_bit(i, active); 1441 break; 1442 } 1443 } 1444 1445 if (num_sequential > 0) 1446 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1447 1448 if (num_conventional > 0) { 1449 /* Zone capacity is always zone size in emulation */ 1450 cache->zone_capacity = cache->length; 1451 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1452 if (ret) { 1453 btrfs_err(fs_info, 1454 "zoned: failed to determine allocation offset of bg %llu", 1455 cache->start); 1456 goto out; 1457 } else if (map->num_stripes == num_conventional) { 1458 cache->alloc_offset = last_alloc; 1459 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1460 goto out; 1461 } 1462 } 1463 1464 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1465 case 0: /* single */ 1466 if (alloc_offsets[0] == WP_MISSING_DEV) { 1467 btrfs_err(fs_info, 1468 "zoned: cannot recover write pointer for zone %llu", 1469 physical[0]); 1470 ret = -EIO; 1471 goto out; 1472 } 1473 cache->alloc_offset = alloc_offsets[0]; 1474 cache->zone_capacity = caps[0]; 1475 if (test_bit(0, active)) 1476 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1477 break; 1478 case BTRFS_BLOCK_GROUP_DUP: 1479 if (map->type & BTRFS_BLOCK_GROUP_DATA) { 1480 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg"); 1481 ret = -EINVAL; 1482 goto out; 1483 } 1484 if (alloc_offsets[0] == WP_MISSING_DEV) { 1485 btrfs_err(fs_info, 1486 "zoned: cannot recover write pointer for zone %llu", 1487 physical[0]); 1488 ret = -EIO; 1489 goto out; 1490 } 1491 if (alloc_offsets[1] == WP_MISSING_DEV) { 1492 btrfs_err(fs_info, 1493 "zoned: cannot recover write pointer for zone %llu", 1494 physical[1]); 1495 ret = -EIO; 1496 goto out; 1497 } 1498 if (alloc_offsets[0] != alloc_offsets[1]) { 1499 btrfs_err(fs_info, 1500 "zoned: write pointer offset mismatch of zones in DUP profile"); 1501 ret = -EIO; 1502 goto out; 1503 } 1504 if (test_bit(0, active) != test_bit(1, active)) { 1505 if (!btrfs_zone_activate(cache)) { 1506 ret = -EIO; 1507 goto out; 1508 } 1509 } else { 1510 if (test_bit(0, active)) 1511 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1512 &cache->runtime_flags); 1513 } 1514 cache->alloc_offset = alloc_offsets[0]; 1515 cache->zone_capacity = min(caps[0], caps[1]); 1516 break; 1517 case BTRFS_BLOCK_GROUP_RAID1: 1518 case BTRFS_BLOCK_GROUP_RAID0: 1519 case BTRFS_BLOCK_GROUP_RAID10: 1520 case BTRFS_BLOCK_GROUP_RAID5: 1521 case BTRFS_BLOCK_GROUP_RAID6: 1522 /* non-single profiles are not supported yet */ 1523 default: 1524 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1525 btrfs_bg_type_to_raid_name(map->type)); 1526 ret = -EINVAL; 1527 goto out; 1528 } 1529 1530 out: 1531 if (cache->alloc_offset > fs_info->zone_size) { 1532 btrfs_err(fs_info, 1533 "zoned: invalid write pointer %llu in block group %llu", 1534 cache->alloc_offset, cache->start); 1535 ret = -EIO; 1536 } 1537 1538 if (cache->alloc_offset > cache->zone_capacity) { 1539 btrfs_err(fs_info, 1540 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1541 cache->alloc_offset, cache->zone_capacity, 1542 cache->start); 1543 ret = -EIO; 1544 } 1545 1546 /* An extent is allocated after the write pointer */ 1547 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1548 btrfs_err(fs_info, 1549 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1550 logical, last_alloc, cache->alloc_offset); 1551 ret = -EIO; 1552 } 1553 1554 if (!ret) { 1555 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1556 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1557 btrfs_get_block_group(cache); 1558 spin_lock(&fs_info->zone_active_bgs_lock); 1559 list_add_tail(&cache->active_bg_list, 1560 &fs_info->zone_active_bgs); 1561 spin_unlock(&fs_info->zone_active_bgs_lock); 1562 } 1563 } else { 1564 kfree(cache->physical_map); 1565 cache->physical_map = NULL; 1566 } 1567 bitmap_free(active); 1568 kfree(physical); 1569 kfree(caps); 1570 kfree(alloc_offsets); 1571 free_extent_map(em); 1572 1573 return ret; 1574 } 1575 1576 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1577 { 1578 u64 unusable, free; 1579 1580 if (!btrfs_is_zoned(cache->fs_info)) 1581 return; 1582 1583 WARN_ON(cache->bytes_super != 0); 1584 unusable = (cache->alloc_offset - cache->used) + 1585 (cache->length - cache->zone_capacity); 1586 free = cache->zone_capacity - cache->alloc_offset; 1587 1588 /* We only need ->free_space in ALLOC_SEQ block groups */ 1589 cache->cached = BTRFS_CACHE_FINISHED; 1590 cache->free_space_ctl->free_space = free; 1591 cache->zone_unusable = unusable; 1592 } 1593 1594 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1595 struct extent_buffer *eb) 1596 { 1597 struct btrfs_fs_info *fs_info = eb->fs_info; 1598 1599 if (!btrfs_is_zoned(fs_info) || 1600 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || 1601 !list_empty(&eb->release_list)) 1602 return; 1603 1604 set_extent_buffer_dirty(eb); 1605 set_extent_bits_nowait(&trans->dirty_pages, eb->start, 1606 eb->start + eb->len - 1, EXTENT_DIRTY); 1607 memzero_extent_buffer(eb, 0, eb->len); 1608 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1609 1610 spin_lock(&trans->releasing_ebs_lock); 1611 list_add_tail(&eb->release_list, &trans->releasing_ebs); 1612 spin_unlock(&trans->releasing_ebs_lock); 1613 atomic_inc(&eb->refs); 1614 } 1615 1616 void btrfs_free_redirty_list(struct btrfs_transaction *trans) 1617 { 1618 spin_lock(&trans->releasing_ebs_lock); 1619 while (!list_empty(&trans->releasing_ebs)) { 1620 struct extent_buffer *eb; 1621 1622 eb = list_first_entry(&trans->releasing_ebs, 1623 struct extent_buffer, release_list); 1624 list_del_init(&eb->release_list); 1625 free_extent_buffer(eb); 1626 } 1627 spin_unlock(&trans->releasing_ebs_lock); 1628 } 1629 1630 bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1631 { 1632 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1633 struct btrfs_inode *inode = bbio->inode; 1634 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1635 struct btrfs_block_group *cache; 1636 bool ret = false; 1637 1638 if (!btrfs_is_zoned(fs_info)) 1639 return false; 1640 1641 if (!is_data_inode(&inode->vfs_inode)) 1642 return false; 1643 1644 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1645 return false; 1646 1647 /* 1648 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1649 * extent layout the relocation code has. 1650 * Furthermore we have set aside own block-group from which only the 1651 * relocation "process" can allocate and make sure only one process at a 1652 * time can add pages to an extent that gets relocated, so it's safe to 1653 * use regular REQ_OP_WRITE for this special case. 1654 */ 1655 if (btrfs_is_data_reloc_root(inode->root)) 1656 return false; 1657 1658 cache = btrfs_lookup_block_group(fs_info, start); 1659 ASSERT(cache); 1660 if (!cache) 1661 return false; 1662 1663 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1664 btrfs_put_block_group(cache); 1665 1666 return ret; 1667 } 1668 1669 void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1670 { 1671 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1672 struct btrfs_ordered_extent *ordered; 1673 1674 ordered = btrfs_lookup_ordered_extent(bbio->inode, bbio->file_offset); 1675 if (WARN_ON(!ordered)) 1676 return; 1677 1678 ordered->physical = physical; 1679 btrfs_put_ordered_extent(ordered); 1680 } 1681 1682 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) 1683 { 1684 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1685 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1686 struct extent_map_tree *em_tree; 1687 struct extent_map *em; 1688 struct btrfs_ordered_sum *sum; 1689 u64 orig_logical = ordered->disk_bytenr; 1690 struct map_lookup *map; 1691 u64 physical = ordered->physical; 1692 u64 chunk_start_phys; 1693 u64 logical; 1694 1695 em = btrfs_get_chunk_map(fs_info, orig_logical, 1); 1696 if (IS_ERR(em)) 1697 return; 1698 map = em->map_lookup; 1699 chunk_start_phys = map->stripes[0].physical; 1700 1701 if (WARN_ON_ONCE(map->num_stripes > 1) || 1702 WARN_ON_ONCE((map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0) || 1703 WARN_ON_ONCE(physical < chunk_start_phys) || 1704 WARN_ON_ONCE(physical > chunk_start_phys + em->orig_block_len)) { 1705 free_extent_map(em); 1706 return; 1707 } 1708 logical = em->start + (physical - map->stripes[0].physical); 1709 free_extent_map(em); 1710 1711 if (orig_logical == logical) 1712 return; 1713 1714 ordered->disk_bytenr = logical; 1715 1716 em_tree = &inode->extent_tree; 1717 write_lock(&em_tree->lock); 1718 em = search_extent_mapping(em_tree, ordered->file_offset, 1719 ordered->num_bytes); 1720 em->block_start = logical; 1721 free_extent_map(em); 1722 write_unlock(&em_tree->lock); 1723 1724 list_for_each_entry(sum, &ordered->list, list) { 1725 if (logical < orig_logical) 1726 sum->bytenr -= orig_logical - logical; 1727 else 1728 sum->bytenr += logical - orig_logical; 1729 } 1730 } 1731 1732 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1733 struct extent_buffer *eb, 1734 struct btrfs_block_group **cache_ret) 1735 { 1736 struct btrfs_block_group *cache; 1737 bool ret = true; 1738 1739 if (!btrfs_is_zoned(fs_info)) 1740 return true; 1741 1742 cache = btrfs_lookup_block_group(fs_info, eb->start); 1743 if (!cache) 1744 return true; 1745 1746 if (cache->meta_write_pointer != eb->start) { 1747 btrfs_put_block_group(cache); 1748 cache = NULL; 1749 ret = false; 1750 } else { 1751 cache->meta_write_pointer = eb->start + eb->len; 1752 } 1753 1754 *cache_ret = cache; 1755 1756 return ret; 1757 } 1758 1759 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1760 struct extent_buffer *eb) 1761 { 1762 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1763 return; 1764 1765 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1766 cache->meta_write_pointer = eb->start; 1767 } 1768 1769 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1770 { 1771 if (!btrfs_dev_is_sequential(device, physical)) 1772 return -EOPNOTSUPP; 1773 1774 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1775 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1776 } 1777 1778 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1779 struct blk_zone *zone) 1780 { 1781 struct btrfs_io_context *bioc = NULL; 1782 u64 mapped_length = PAGE_SIZE; 1783 unsigned int nofs_flag; 1784 int nmirrors; 1785 int i, ret; 1786 1787 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1788 &mapped_length, &bioc); 1789 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1790 ret = -EIO; 1791 goto out_put_bioc; 1792 } 1793 1794 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1795 ret = -EINVAL; 1796 goto out_put_bioc; 1797 } 1798 1799 nofs_flag = memalloc_nofs_save(); 1800 nmirrors = (int)bioc->num_stripes; 1801 for (i = 0; i < nmirrors; i++) { 1802 u64 physical = bioc->stripes[i].physical; 1803 struct btrfs_device *dev = bioc->stripes[i].dev; 1804 1805 /* Missing device */ 1806 if (!dev->bdev) 1807 continue; 1808 1809 ret = btrfs_get_dev_zone(dev, physical, zone); 1810 /* Failing device */ 1811 if (ret == -EIO || ret == -EOPNOTSUPP) 1812 continue; 1813 break; 1814 } 1815 memalloc_nofs_restore(nofs_flag); 1816 out_put_bioc: 1817 btrfs_put_bioc(bioc); 1818 return ret; 1819 } 1820 1821 /* 1822 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1823 * filling zeros between @physical_pos to a write pointer of dev-replace 1824 * source device. 1825 */ 1826 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1827 u64 physical_start, u64 physical_pos) 1828 { 1829 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1830 struct blk_zone zone; 1831 u64 length; 1832 u64 wp; 1833 int ret; 1834 1835 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1836 return 0; 1837 1838 ret = read_zone_info(fs_info, logical, &zone); 1839 if (ret) 1840 return ret; 1841 1842 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1843 1844 if (physical_pos == wp) 1845 return 0; 1846 1847 if (physical_pos > wp) 1848 return -EUCLEAN; 1849 1850 length = wp - physical_pos; 1851 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1852 } 1853 1854 /* 1855 * Activate block group and underlying device zones 1856 * 1857 * @block_group: the block group to activate 1858 * 1859 * Return: true on success, false otherwise 1860 */ 1861 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 1862 { 1863 struct btrfs_fs_info *fs_info = block_group->fs_info; 1864 struct btrfs_space_info *space_info = block_group->space_info; 1865 struct map_lookup *map; 1866 struct btrfs_device *device; 1867 u64 physical; 1868 bool ret; 1869 int i; 1870 1871 if (!btrfs_is_zoned(block_group->fs_info)) 1872 return true; 1873 1874 map = block_group->physical_map; 1875 1876 spin_lock(&space_info->lock); 1877 spin_lock(&block_group->lock); 1878 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1879 ret = true; 1880 goto out_unlock; 1881 } 1882 1883 /* No space left */ 1884 if (btrfs_zoned_bg_is_full(block_group)) { 1885 ret = false; 1886 goto out_unlock; 1887 } 1888 1889 for (i = 0; i < map->num_stripes; i++) { 1890 device = map->stripes[i].dev; 1891 physical = map->stripes[i].physical; 1892 1893 if (device->zone_info->max_active_zones == 0) 1894 continue; 1895 1896 if (!btrfs_dev_set_active_zone(device, physical)) { 1897 /* Cannot activate the zone */ 1898 ret = false; 1899 goto out_unlock; 1900 } 1901 } 1902 1903 /* Successfully activated all the zones */ 1904 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 1905 space_info->active_total_bytes += block_group->length; 1906 spin_unlock(&block_group->lock); 1907 btrfs_try_granting_tickets(fs_info, space_info); 1908 spin_unlock(&space_info->lock); 1909 1910 /* For the active block group list */ 1911 btrfs_get_block_group(block_group); 1912 1913 spin_lock(&fs_info->zone_active_bgs_lock); 1914 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 1915 spin_unlock(&fs_info->zone_active_bgs_lock); 1916 1917 return true; 1918 1919 out_unlock: 1920 spin_unlock(&block_group->lock); 1921 spin_unlock(&space_info->lock); 1922 return ret; 1923 } 1924 1925 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 1926 { 1927 struct btrfs_fs_info *fs_info = block_group->fs_info; 1928 const u64 end = block_group->start + block_group->length; 1929 struct radix_tree_iter iter; 1930 struct extent_buffer *eb; 1931 void __rcu **slot; 1932 1933 rcu_read_lock(); 1934 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 1935 block_group->start >> fs_info->sectorsize_bits) { 1936 eb = radix_tree_deref_slot(slot); 1937 if (!eb) 1938 continue; 1939 if (radix_tree_deref_retry(eb)) { 1940 slot = radix_tree_iter_retry(&iter); 1941 continue; 1942 } 1943 1944 if (eb->start < block_group->start) 1945 continue; 1946 if (eb->start >= end) 1947 break; 1948 1949 slot = radix_tree_iter_resume(slot, &iter); 1950 rcu_read_unlock(); 1951 wait_on_extent_buffer_writeback(eb); 1952 rcu_read_lock(); 1953 } 1954 rcu_read_unlock(); 1955 } 1956 1957 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 1958 { 1959 struct btrfs_fs_info *fs_info = block_group->fs_info; 1960 struct map_lookup *map; 1961 const bool is_metadata = (block_group->flags & 1962 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 1963 int ret = 0; 1964 int i; 1965 1966 spin_lock(&block_group->lock); 1967 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1968 spin_unlock(&block_group->lock); 1969 return 0; 1970 } 1971 1972 /* Check if we have unwritten allocated space */ 1973 if (is_metadata && 1974 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 1975 spin_unlock(&block_group->lock); 1976 return -EAGAIN; 1977 } 1978 1979 /* 1980 * If we are sure that the block group is full (= no more room left for 1981 * new allocation) and the IO for the last usable block is completed, we 1982 * don't need to wait for the other IOs. This holds because we ensure 1983 * the sequential IO submissions using the ZONE_APPEND command for data 1984 * and block_group->meta_write_pointer for metadata. 1985 */ 1986 if (!fully_written) { 1987 spin_unlock(&block_group->lock); 1988 1989 ret = btrfs_inc_block_group_ro(block_group, false); 1990 if (ret) 1991 return ret; 1992 1993 /* Ensure all writes in this block group finish */ 1994 btrfs_wait_block_group_reservations(block_group); 1995 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 1996 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 1997 block_group->length); 1998 /* Wait for extent buffers to be written. */ 1999 if (is_metadata) 2000 wait_eb_writebacks(block_group); 2001 2002 spin_lock(&block_group->lock); 2003 2004 /* 2005 * Bail out if someone already deactivated the block group, or 2006 * allocated space is left in the block group. 2007 */ 2008 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2009 &block_group->runtime_flags)) { 2010 spin_unlock(&block_group->lock); 2011 btrfs_dec_block_group_ro(block_group); 2012 return 0; 2013 } 2014 2015 if (block_group->reserved) { 2016 spin_unlock(&block_group->lock); 2017 btrfs_dec_block_group_ro(block_group); 2018 return -EAGAIN; 2019 } 2020 } 2021 2022 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2023 block_group->alloc_offset = block_group->zone_capacity; 2024 block_group->free_space_ctl->free_space = 0; 2025 btrfs_clear_treelog_bg(block_group); 2026 btrfs_clear_data_reloc_bg(block_group); 2027 spin_unlock(&block_group->lock); 2028 2029 map = block_group->physical_map; 2030 for (i = 0; i < map->num_stripes; i++) { 2031 struct btrfs_device *device = map->stripes[i].dev; 2032 const u64 physical = map->stripes[i].physical; 2033 2034 if (device->zone_info->max_active_zones == 0) 2035 continue; 2036 2037 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2038 physical >> SECTOR_SHIFT, 2039 device->zone_info->zone_size >> SECTOR_SHIFT, 2040 GFP_NOFS); 2041 2042 if (ret) 2043 return ret; 2044 2045 btrfs_dev_clear_active_zone(device, physical); 2046 } 2047 2048 if (!fully_written) 2049 btrfs_dec_block_group_ro(block_group); 2050 2051 spin_lock(&fs_info->zone_active_bgs_lock); 2052 ASSERT(!list_empty(&block_group->active_bg_list)); 2053 list_del_init(&block_group->active_bg_list); 2054 spin_unlock(&fs_info->zone_active_bgs_lock); 2055 2056 /* For active_bg_list */ 2057 btrfs_put_block_group(block_group); 2058 2059 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2060 2061 return 0; 2062 } 2063 2064 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2065 { 2066 if (!btrfs_is_zoned(block_group->fs_info)) 2067 return 0; 2068 2069 return do_zone_finish(block_group, false); 2070 } 2071 2072 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2073 { 2074 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2075 struct btrfs_device *device; 2076 bool ret = false; 2077 2078 if (!btrfs_is_zoned(fs_info)) 2079 return true; 2080 2081 /* Check if there is a device with active zones left */ 2082 mutex_lock(&fs_info->chunk_mutex); 2083 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2084 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2085 2086 if (!device->bdev) 2087 continue; 2088 2089 if (!zinfo->max_active_zones || 2090 atomic_read(&zinfo->active_zones_left)) { 2091 ret = true; 2092 break; 2093 } 2094 } 2095 mutex_unlock(&fs_info->chunk_mutex); 2096 2097 if (!ret) 2098 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2099 2100 return ret; 2101 } 2102 2103 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2104 { 2105 struct btrfs_block_group *block_group; 2106 u64 min_alloc_bytes; 2107 2108 if (!btrfs_is_zoned(fs_info)) 2109 return; 2110 2111 block_group = btrfs_lookup_block_group(fs_info, logical); 2112 ASSERT(block_group); 2113 2114 /* No MIXED_BG on zoned btrfs. */ 2115 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2116 min_alloc_bytes = fs_info->sectorsize; 2117 else 2118 min_alloc_bytes = fs_info->nodesize; 2119 2120 /* Bail out if we can allocate more data from this block group. */ 2121 if (logical + length + min_alloc_bytes <= 2122 block_group->start + block_group->zone_capacity) 2123 goto out; 2124 2125 do_zone_finish(block_group, true); 2126 2127 out: 2128 btrfs_put_block_group(block_group); 2129 } 2130 2131 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2132 { 2133 struct btrfs_block_group *bg = 2134 container_of(work, struct btrfs_block_group, zone_finish_work); 2135 2136 wait_on_extent_buffer_writeback(bg->last_eb); 2137 free_extent_buffer(bg->last_eb); 2138 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2139 btrfs_put_block_group(bg); 2140 } 2141 2142 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2143 struct extent_buffer *eb) 2144 { 2145 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2146 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2147 return; 2148 2149 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2150 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2151 bg->start); 2152 return; 2153 } 2154 2155 /* For the work */ 2156 btrfs_get_block_group(bg); 2157 atomic_inc(&eb->refs); 2158 bg->last_eb = eb; 2159 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2160 queue_work(system_unbound_wq, &bg->zone_finish_work); 2161 } 2162 2163 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2164 { 2165 struct btrfs_fs_info *fs_info = bg->fs_info; 2166 2167 spin_lock(&fs_info->relocation_bg_lock); 2168 if (fs_info->data_reloc_bg == bg->start) 2169 fs_info->data_reloc_bg = 0; 2170 spin_unlock(&fs_info->relocation_bg_lock); 2171 } 2172 2173 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2174 { 2175 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2176 struct btrfs_device *device; 2177 2178 if (!btrfs_is_zoned(fs_info)) 2179 return; 2180 2181 mutex_lock(&fs_devices->device_list_mutex); 2182 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2183 if (device->zone_info) { 2184 vfree(device->zone_info->zone_cache); 2185 device->zone_info->zone_cache = NULL; 2186 } 2187 } 2188 mutex_unlock(&fs_devices->device_list_mutex); 2189 } 2190 2191 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2192 { 2193 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2194 struct btrfs_device *device; 2195 u64 used = 0; 2196 u64 total = 0; 2197 u64 factor; 2198 2199 ASSERT(btrfs_is_zoned(fs_info)); 2200 2201 if (fs_info->bg_reclaim_threshold == 0) 2202 return false; 2203 2204 mutex_lock(&fs_devices->device_list_mutex); 2205 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2206 if (!device->bdev) 2207 continue; 2208 2209 total += device->disk_total_bytes; 2210 used += device->bytes_used; 2211 } 2212 mutex_unlock(&fs_devices->device_list_mutex); 2213 2214 factor = div64_u64(used * 100, total); 2215 return factor >= fs_info->bg_reclaim_threshold; 2216 } 2217 2218 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2219 u64 length) 2220 { 2221 struct btrfs_block_group *block_group; 2222 2223 if (!btrfs_is_zoned(fs_info)) 2224 return; 2225 2226 block_group = btrfs_lookup_block_group(fs_info, logical); 2227 /* It should be called on a previous data relocation block group. */ 2228 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2229 2230 spin_lock(&block_group->lock); 2231 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2232 goto out; 2233 2234 /* All relocation extents are written. */ 2235 if (block_group->start + block_group->alloc_offset == logical + length) { 2236 /* Now, release this block group for further allocations. */ 2237 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2238 &block_group->runtime_flags); 2239 } 2240 2241 out: 2242 spin_unlock(&block_group->lock); 2243 btrfs_put_block_group(block_group); 2244 } 2245 2246 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2247 { 2248 struct btrfs_block_group *block_group; 2249 struct btrfs_block_group *min_bg = NULL; 2250 u64 min_avail = U64_MAX; 2251 int ret; 2252 2253 spin_lock(&fs_info->zone_active_bgs_lock); 2254 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2255 active_bg_list) { 2256 u64 avail; 2257 2258 spin_lock(&block_group->lock); 2259 if (block_group->reserved || 2260 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) { 2261 spin_unlock(&block_group->lock); 2262 continue; 2263 } 2264 2265 avail = block_group->zone_capacity - block_group->alloc_offset; 2266 if (min_avail > avail) { 2267 if (min_bg) 2268 btrfs_put_block_group(min_bg); 2269 min_bg = block_group; 2270 min_avail = avail; 2271 btrfs_get_block_group(min_bg); 2272 } 2273 spin_unlock(&block_group->lock); 2274 } 2275 spin_unlock(&fs_info->zone_active_bgs_lock); 2276 2277 if (!min_bg) 2278 return 0; 2279 2280 ret = btrfs_zone_finish(min_bg); 2281 btrfs_put_block_group(min_bg); 2282 2283 return ret < 0 ? ret : 1; 2284 } 2285 2286 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2287 struct btrfs_space_info *space_info, 2288 bool do_finish) 2289 { 2290 struct btrfs_block_group *bg; 2291 int index; 2292 2293 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2294 return 0; 2295 2296 /* No more block groups to activate */ 2297 if (space_info->active_total_bytes == space_info->total_bytes) 2298 return 0; 2299 2300 for (;;) { 2301 int ret; 2302 bool need_finish = false; 2303 2304 down_read(&space_info->groups_sem); 2305 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2306 list_for_each_entry(bg, &space_info->block_groups[index], 2307 list) { 2308 if (!spin_trylock(&bg->lock)) 2309 continue; 2310 if (btrfs_zoned_bg_is_full(bg) || 2311 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2312 &bg->runtime_flags)) { 2313 spin_unlock(&bg->lock); 2314 continue; 2315 } 2316 spin_unlock(&bg->lock); 2317 2318 if (btrfs_zone_activate(bg)) { 2319 up_read(&space_info->groups_sem); 2320 return 1; 2321 } 2322 2323 need_finish = true; 2324 } 2325 } 2326 up_read(&space_info->groups_sem); 2327 2328 if (!do_finish || !need_finish) 2329 break; 2330 2331 ret = btrfs_zone_finish_one_bg(fs_info); 2332 if (ret == 0) 2333 break; 2334 if (ret < 0) 2335 return ret; 2336 } 2337 2338 return 0; 2339 } 2340