1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 #include "fs.h" 19 #include "accessors.h" 20 21 /* Maximum number of zones to report per blkdev_report_zones() call */ 22 #define BTRFS_REPORT_NR_ZONES 4096 23 /* Invalid allocation pointer value for missing devices */ 24 #define WP_MISSING_DEV ((u64)-1) 25 /* Pseudo write pointer value for conventional zone */ 26 #define WP_CONVENTIONAL ((u64)-2) 27 28 /* 29 * Location of the first zone of superblock logging zone pairs. 30 * 31 * - primary superblock: 0B (zone 0) 32 * - first copy: 512G (zone starting at that offset) 33 * - second copy: 4T (zone starting at that offset) 34 */ 35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 38 39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 41 42 /* Number of superblock log zones */ 43 #define BTRFS_NR_SB_LOG_ZONES 2 44 45 /* 46 * Minimum of active zones we need: 47 * 48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 50 * - 1 zone for tree-log dedicated block group 51 * - 1 zone for relocation 52 */ 53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 54 55 /* 56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 58 * We do not expect the zone size to become larger than 8GiB or smaller than 59 * 4MiB in the near future. 60 */ 61 #define BTRFS_MAX_ZONE_SIZE SZ_8G 62 #define BTRFS_MIN_ZONE_SIZE SZ_4M 63 64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 65 66 static inline bool sb_zone_is_full(const struct blk_zone *zone) 67 { 68 return (zone->cond == BLK_ZONE_COND_FULL) || 69 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 70 } 71 72 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 73 { 74 struct blk_zone *zones = data; 75 76 memcpy(&zones[idx], zone, sizeof(*zone)); 77 78 return 0; 79 } 80 81 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 82 u64 *wp_ret) 83 { 84 bool empty[BTRFS_NR_SB_LOG_ZONES]; 85 bool full[BTRFS_NR_SB_LOG_ZONES]; 86 sector_t sector; 87 int i; 88 89 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 90 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 91 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 92 full[i] = sb_zone_is_full(&zones[i]); 93 } 94 95 /* 96 * Possible states of log buffer zones 97 * 98 * Empty[0] In use[0] Full[0] 99 * Empty[1] * 0 1 100 * In use[1] x x 1 101 * Full[1] 0 0 C 102 * 103 * Log position: 104 * *: Special case, no superblock is written 105 * 0: Use write pointer of zones[0] 106 * 1: Use write pointer of zones[1] 107 * C: Compare super blocks from zones[0] and zones[1], use the latest 108 * one determined by generation 109 * x: Invalid state 110 */ 111 112 if (empty[0] && empty[1]) { 113 /* Special case to distinguish no superblock to read */ 114 *wp_ret = zones[0].start << SECTOR_SHIFT; 115 return -ENOENT; 116 } else if (full[0] && full[1]) { 117 /* Compare two super blocks */ 118 struct address_space *mapping = bdev->bd_inode->i_mapping; 119 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 120 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 121 int i; 122 123 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 124 u64 bytenr; 125 126 bytenr = ((zones[i].start + zones[i].len) 127 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE; 128 129 page[i] = read_cache_page_gfp(mapping, 130 bytenr >> PAGE_SHIFT, GFP_NOFS); 131 if (IS_ERR(page[i])) { 132 if (i == 1) 133 btrfs_release_disk_super(super[0]); 134 return PTR_ERR(page[i]); 135 } 136 super[i] = page_address(page[i]); 137 } 138 139 if (btrfs_super_generation(super[0]) > 140 btrfs_super_generation(super[1])) 141 sector = zones[1].start; 142 else 143 sector = zones[0].start; 144 145 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 146 btrfs_release_disk_super(super[i]); 147 } else if (!full[0] && (empty[1] || full[1])) { 148 sector = zones[0].wp; 149 } else if (full[0]) { 150 sector = zones[1].wp; 151 } else { 152 return -EUCLEAN; 153 } 154 *wp_ret = sector << SECTOR_SHIFT; 155 return 0; 156 } 157 158 /* 159 * Get the first zone number of the superblock mirror 160 */ 161 static inline u32 sb_zone_number(int shift, int mirror) 162 { 163 u64 zone; 164 165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 166 switch (mirror) { 167 case 0: zone = 0; break; 168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 170 } 171 172 ASSERT(zone <= U32_MAX); 173 174 return (u32)zone; 175 } 176 177 static inline sector_t zone_start_sector(u32 zone_number, 178 struct block_device *bdev) 179 { 180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 181 } 182 183 static inline u64 zone_start_physical(u32 zone_number, 184 struct btrfs_zoned_device_info *zone_info) 185 { 186 return (u64)zone_number << zone_info->zone_size_shift; 187 } 188 189 /* 190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 191 * device into static sized chunks and fake a conventional zone on each of 192 * them. 193 */ 194 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 195 struct blk_zone *zones, unsigned int nr_zones) 196 { 197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 198 sector_t bdev_size = bdev_nr_sectors(device->bdev); 199 unsigned int i; 200 201 pos >>= SECTOR_SHIFT; 202 for (i = 0; i < nr_zones; i++) { 203 zones[i].start = i * zone_sectors + pos; 204 zones[i].len = zone_sectors; 205 zones[i].capacity = zone_sectors; 206 zones[i].wp = zones[i].start + zone_sectors; 207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 208 zones[i].cond = BLK_ZONE_COND_NOT_WP; 209 210 if (zones[i].wp >= bdev_size) { 211 i++; 212 break; 213 } 214 } 215 216 return i; 217 } 218 219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 220 struct blk_zone *zones, unsigned int *nr_zones) 221 { 222 struct btrfs_zoned_device_info *zinfo = device->zone_info; 223 u32 zno; 224 int ret; 225 226 if (!*nr_zones) 227 return 0; 228 229 if (!bdev_is_zoned(device->bdev)) { 230 ret = emulate_report_zones(device, pos, zones, *nr_zones); 231 *nr_zones = ret; 232 return 0; 233 } 234 235 /* Check cache */ 236 if (zinfo->zone_cache) { 237 unsigned int i; 238 239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 240 zno = pos >> zinfo->zone_size_shift; 241 /* 242 * We cannot report zones beyond the zone end. So, it is OK to 243 * cap *nr_zones to at the end. 244 */ 245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 246 247 for (i = 0; i < *nr_zones; i++) { 248 struct blk_zone *zone_info; 249 250 zone_info = &zinfo->zone_cache[zno + i]; 251 if (!zone_info->len) 252 break; 253 } 254 255 if (i == *nr_zones) { 256 /* Cache hit on all the zones */ 257 memcpy(zones, zinfo->zone_cache + zno, 258 sizeof(*zinfo->zone_cache) * *nr_zones); 259 return 0; 260 } 261 } 262 263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 264 copy_zone_info_cb, zones); 265 if (ret < 0) { 266 btrfs_err_in_rcu(device->fs_info, 267 "zoned: failed to read zone %llu on %s (devid %llu)", 268 pos, rcu_str_deref(device->name), 269 device->devid); 270 return ret; 271 } 272 *nr_zones = ret; 273 if (!ret) 274 return -EIO; 275 276 /* Populate cache */ 277 if (zinfo->zone_cache) 278 memcpy(zinfo->zone_cache + zno, zones, 279 sizeof(*zinfo->zone_cache) * *nr_zones); 280 281 return 0; 282 } 283 284 /* The emulated zone size is determined from the size of device extent */ 285 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 286 { 287 struct btrfs_path *path; 288 struct btrfs_root *root = fs_info->dev_root; 289 struct btrfs_key key; 290 struct extent_buffer *leaf; 291 struct btrfs_dev_extent *dext; 292 int ret = 0; 293 294 key.objectid = 1; 295 key.type = BTRFS_DEV_EXTENT_KEY; 296 key.offset = 0; 297 298 path = btrfs_alloc_path(); 299 if (!path) 300 return -ENOMEM; 301 302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 303 if (ret < 0) 304 goto out; 305 306 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 307 ret = btrfs_next_leaf(root, path); 308 if (ret < 0) 309 goto out; 310 /* No dev extents at all? Not good */ 311 if (ret > 0) { 312 ret = -EUCLEAN; 313 goto out; 314 } 315 } 316 317 leaf = path->nodes[0]; 318 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 319 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 320 ret = 0; 321 322 out: 323 btrfs_free_path(path); 324 325 return ret; 326 } 327 328 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 329 { 330 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 331 struct btrfs_device *device; 332 int ret = 0; 333 334 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 335 if (!btrfs_fs_incompat(fs_info, ZONED)) 336 return 0; 337 338 mutex_lock(&fs_devices->device_list_mutex); 339 list_for_each_entry(device, &fs_devices->devices, dev_list) { 340 /* We can skip reading of zone info for missing devices */ 341 if (!device->bdev) 342 continue; 343 344 ret = btrfs_get_dev_zone_info(device, true); 345 if (ret) 346 break; 347 } 348 mutex_unlock(&fs_devices->device_list_mutex); 349 350 return ret; 351 } 352 353 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 354 { 355 struct btrfs_fs_info *fs_info = device->fs_info; 356 struct btrfs_zoned_device_info *zone_info = NULL; 357 struct block_device *bdev = device->bdev; 358 unsigned int max_active_zones; 359 unsigned int nactive; 360 sector_t nr_sectors; 361 sector_t sector = 0; 362 struct blk_zone *zones = NULL; 363 unsigned int i, nreported = 0, nr_zones; 364 sector_t zone_sectors; 365 char *model, *emulated; 366 int ret; 367 368 /* 369 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 370 * yet be set. 371 */ 372 if (!btrfs_fs_incompat(fs_info, ZONED)) 373 return 0; 374 375 if (device->zone_info) 376 return 0; 377 378 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 379 if (!zone_info) 380 return -ENOMEM; 381 382 device->zone_info = zone_info; 383 384 if (!bdev_is_zoned(bdev)) { 385 if (!fs_info->zone_size) { 386 ret = calculate_emulated_zone_size(fs_info); 387 if (ret) 388 goto out; 389 } 390 391 ASSERT(fs_info->zone_size); 392 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 393 } else { 394 zone_sectors = bdev_zone_sectors(bdev); 395 } 396 397 ASSERT(is_power_of_two_u64(zone_sectors)); 398 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 399 400 /* We reject devices with a zone size larger than 8GB */ 401 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 402 btrfs_err_in_rcu(fs_info, 403 "zoned: %s: zone size %llu larger than supported maximum %llu", 404 rcu_str_deref(device->name), 405 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 406 ret = -EINVAL; 407 goto out; 408 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 409 btrfs_err_in_rcu(fs_info, 410 "zoned: %s: zone size %llu smaller than supported minimum %u", 411 rcu_str_deref(device->name), 412 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 413 ret = -EINVAL; 414 goto out; 415 } 416 417 nr_sectors = bdev_nr_sectors(bdev); 418 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 419 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 420 /* 421 * We limit max_zone_append_size also by max_segments * 422 * PAGE_SIZE. Technically, we can have multiple pages per segment. But, 423 * since btrfs adds the pages one by one to a bio, and btrfs cannot 424 * increase the metadata reservation even if it increases the number of 425 * extents, it is safe to stick with the limit. 426 * 427 * With the zoned emulation, we can have non-zoned device on the zoned 428 * mode. In this case, we don't have a valid max zone append size. So, 429 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size. 430 */ 431 if (bdev_is_zoned(bdev)) { 432 zone_info->max_zone_append_size = min_t(u64, 433 (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT, 434 (u64)bdev_max_segments(bdev) << PAGE_SHIFT); 435 } else { 436 zone_info->max_zone_append_size = 437 (u64)bdev_max_segments(bdev) << PAGE_SHIFT; 438 } 439 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 440 zone_info->nr_zones++; 441 442 max_active_zones = bdev_max_active_zones(bdev); 443 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 444 btrfs_err_in_rcu(fs_info, 445 "zoned: %s: max active zones %u is too small, need at least %u active zones", 446 rcu_str_deref(device->name), max_active_zones, 447 BTRFS_MIN_ACTIVE_ZONES); 448 ret = -EINVAL; 449 goto out; 450 } 451 zone_info->max_active_zones = max_active_zones; 452 453 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 454 if (!zone_info->seq_zones) { 455 ret = -ENOMEM; 456 goto out; 457 } 458 459 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 460 if (!zone_info->empty_zones) { 461 ret = -ENOMEM; 462 goto out; 463 } 464 465 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 466 if (!zone_info->active_zones) { 467 ret = -ENOMEM; 468 goto out; 469 } 470 471 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 472 if (!zones) { 473 ret = -ENOMEM; 474 goto out; 475 } 476 477 /* 478 * Enable zone cache only for a zoned device. On a non-zoned device, we 479 * fill the zone info with emulated CONVENTIONAL zones, so no need to 480 * use the cache. 481 */ 482 if (populate_cache && bdev_is_zoned(device->bdev)) { 483 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) * 484 zone_info->nr_zones); 485 if (!zone_info->zone_cache) { 486 btrfs_err_in_rcu(device->fs_info, 487 "zoned: failed to allocate zone cache for %s", 488 rcu_str_deref(device->name)); 489 ret = -ENOMEM; 490 goto out; 491 } 492 } 493 494 /* Get zones type */ 495 nactive = 0; 496 while (sector < nr_sectors) { 497 nr_zones = BTRFS_REPORT_NR_ZONES; 498 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 499 &nr_zones); 500 if (ret) 501 goto out; 502 503 for (i = 0; i < nr_zones; i++) { 504 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 505 __set_bit(nreported, zone_info->seq_zones); 506 switch (zones[i].cond) { 507 case BLK_ZONE_COND_EMPTY: 508 __set_bit(nreported, zone_info->empty_zones); 509 break; 510 case BLK_ZONE_COND_IMP_OPEN: 511 case BLK_ZONE_COND_EXP_OPEN: 512 case BLK_ZONE_COND_CLOSED: 513 __set_bit(nreported, zone_info->active_zones); 514 nactive++; 515 break; 516 } 517 nreported++; 518 } 519 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 520 } 521 522 if (nreported != zone_info->nr_zones) { 523 btrfs_err_in_rcu(device->fs_info, 524 "inconsistent number of zones on %s (%u/%u)", 525 rcu_str_deref(device->name), nreported, 526 zone_info->nr_zones); 527 ret = -EIO; 528 goto out; 529 } 530 531 if (max_active_zones) { 532 if (nactive > max_active_zones) { 533 btrfs_err_in_rcu(device->fs_info, 534 "zoned: %u active zones on %s exceeds max_active_zones %u", 535 nactive, rcu_str_deref(device->name), 536 max_active_zones); 537 ret = -EIO; 538 goto out; 539 } 540 atomic_set(&zone_info->active_zones_left, 541 max_active_zones - nactive); 542 } 543 544 /* Validate superblock log */ 545 nr_zones = BTRFS_NR_SB_LOG_ZONES; 546 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 547 u32 sb_zone; 548 u64 sb_wp; 549 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 550 551 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 552 if (sb_zone + 1 >= zone_info->nr_zones) 553 continue; 554 555 ret = btrfs_get_dev_zones(device, 556 zone_start_physical(sb_zone, zone_info), 557 &zone_info->sb_zones[sb_pos], 558 &nr_zones); 559 if (ret) 560 goto out; 561 562 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 563 btrfs_err_in_rcu(device->fs_info, 564 "zoned: failed to read super block log zone info at devid %llu zone %u", 565 device->devid, sb_zone); 566 ret = -EUCLEAN; 567 goto out; 568 } 569 570 /* 571 * If zones[0] is conventional, always use the beginning of the 572 * zone to record superblock. No need to validate in that case. 573 */ 574 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 575 BLK_ZONE_TYPE_CONVENTIONAL) 576 continue; 577 578 ret = sb_write_pointer(device->bdev, 579 &zone_info->sb_zones[sb_pos], &sb_wp); 580 if (ret != -ENOENT && ret) { 581 btrfs_err_in_rcu(device->fs_info, 582 "zoned: super block log zone corrupted devid %llu zone %u", 583 device->devid, sb_zone); 584 ret = -EUCLEAN; 585 goto out; 586 } 587 } 588 589 590 kvfree(zones); 591 592 switch (bdev_zoned_model(bdev)) { 593 case BLK_ZONED_HM: 594 model = "host-managed zoned"; 595 emulated = ""; 596 break; 597 case BLK_ZONED_HA: 598 model = "host-aware zoned"; 599 emulated = ""; 600 break; 601 case BLK_ZONED_NONE: 602 model = "regular"; 603 emulated = "emulated "; 604 break; 605 default: 606 /* Just in case */ 607 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 608 bdev_zoned_model(bdev), 609 rcu_str_deref(device->name)); 610 ret = -EOPNOTSUPP; 611 goto out_free_zone_info; 612 } 613 614 btrfs_info_in_rcu(fs_info, 615 "%s block device %s, %u %szones of %llu bytes", 616 model, rcu_str_deref(device->name), zone_info->nr_zones, 617 emulated, zone_info->zone_size); 618 619 return 0; 620 621 out: 622 kvfree(zones); 623 out_free_zone_info: 624 btrfs_destroy_dev_zone_info(device); 625 626 return ret; 627 } 628 629 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 630 { 631 struct btrfs_zoned_device_info *zone_info = device->zone_info; 632 633 if (!zone_info) 634 return; 635 636 bitmap_free(zone_info->active_zones); 637 bitmap_free(zone_info->seq_zones); 638 bitmap_free(zone_info->empty_zones); 639 vfree(zone_info->zone_cache); 640 kfree(zone_info); 641 device->zone_info = NULL; 642 } 643 644 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 645 { 646 struct btrfs_zoned_device_info *zone_info; 647 648 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 649 if (!zone_info) 650 return NULL; 651 652 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 653 if (!zone_info->seq_zones) 654 goto out; 655 656 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 657 zone_info->nr_zones); 658 659 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 660 if (!zone_info->empty_zones) 661 goto out; 662 663 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 664 zone_info->nr_zones); 665 666 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 667 if (!zone_info->active_zones) 668 goto out; 669 670 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 671 zone_info->nr_zones); 672 zone_info->zone_cache = NULL; 673 674 return zone_info; 675 676 out: 677 bitmap_free(zone_info->seq_zones); 678 bitmap_free(zone_info->empty_zones); 679 bitmap_free(zone_info->active_zones); 680 kfree(zone_info); 681 return NULL; 682 } 683 684 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 685 struct blk_zone *zone) 686 { 687 unsigned int nr_zones = 1; 688 int ret; 689 690 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 691 if (ret != 0 || !nr_zones) 692 return ret ? ret : -EIO; 693 694 return 0; 695 } 696 697 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 698 { 699 struct btrfs_device *device; 700 701 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 702 if (device->bdev && 703 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) { 704 btrfs_err(fs_info, 705 "zoned: mode not enabled but zoned device found: %pg", 706 device->bdev); 707 return -EINVAL; 708 } 709 } 710 711 return 0; 712 } 713 714 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 715 { 716 struct btrfs_device *device; 717 u64 zone_size = 0; 718 u64 max_zone_append_size = 0; 719 int ret; 720 721 /* 722 * Host-Managed devices can't be used without the ZONED flag. With the 723 * ZONED all devices can be used, using zone emulation if required. 724 */ 725 if (!btrfs_fs_incompat(fs_info, ZONED)) 726 return btrfs_check_for_zoned_device(fs_info); 727 728 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 729 struct btrfs_zoned_device_info *zone_info = device->zone_info; 730 731 if (!device->bdev) 732 continue; 733 734 if (!zone_size) { 735 zone_size = zone_info->zone_size; 736 } else if (zone_info->zone_size != zone_size) { 737 btrfs_err(fs_info, 738 "zoned: unequal block device zone sizes: have %llu found %llu", 739 zone_info->zone_size, zone_size); 740 return -EINVAL; 741 } 742 if (!max_zone_append_size || 743 (zone_info->max_zone_append_size && 744 zone_info->max_zone_append_size < max_zone_append_size)) 745 max_zone_append_size = zone_info->max_zone_append_size; 746 } 747 748 /* 749 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 750 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 751 * check the alignment here. 752 */ 753 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 754 btrfs_err(fs_info, 755 "zoned: zone size %llu not aligned to stripe %u", 756 zone_size, BTRFS_STRIPE_LEN); 757 return -EINVAL; 758 } 759 760 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 761 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 762 return -EINVAL; 763 } 764 765 fs_info->zone_size = zone_size; 766 fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size, 767 fs_info->sectorsize); 768 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 769 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 770 fs_info->max_extent_size = fs_info->max_zone_append_size; 771 772 /* 773 * Check mount options here, because we might change fs_info->zoned 774 * from fs_info->zone_size. 775 */ 776 ret = btrfs_check_mountopts_zoned(fs_info); 777 if (ret) 778 return ret; 779 780 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 781 return 0; 782 } 783 784 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 785 { 786 if (!btrfs_is_zoned(info)) 787 return 0; 788 789 /* 790 * Space cache writing is not COWed. Disable that to avoid write errors 791 * in sequential zones. 792 */ 793 if (btrfs_test_opt(info, SPACE_CACHE)) { 794 btrfs_err(info, "zoned: space cache v1 is not supported"); 795 return -EINVAL; 796 } 797 798 if (btrfs_test_opt(info, NODATACOW)) { 799 btrfs_err(info, "zoned: NODATACOW not supported"); 800 return -EINVAL; 801 } 802 803 return 0; 804 } 805 806 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 807 int rw, u64 *bytenr_ret) 808 { 809 u64 wp; 810 int ret; 811 812 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 813 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 814 return 0; 815 } 816 817 ret = sb_write_pointer(bdev, zones, &wp); 818 if (ret != -ENOENT && ret < 0) 819 return ret; 820 821 if (rw == WRITE) { 822 struct blk_zone *reset = NULL; 823 824 if (wp == zones[0].start << SECTOR_SHIFT) 825 reset = &zones[0]; 826 else if (wp == zones[1].start << SECTOR_SHIFT) 827 reset = &zones[1]; 828 829 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 830 ASSERT(sb_zone_is_full(reset)); 831 832 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 833 reset->start, reset->len, 834 GFP_NOFS); 835 if (ret) 836 return ret; 837 838 reset->cond = BLK_ZONE_COND_EMPTY; 839 reset->wp = reset->start; 840 } 841 } else if (ret != -ENOENT) { 842 /* 843 * For READ, we want the previous one. Move write pointer to 844 * the end of a zone, if it is at the head of a zone. 845 */ 846 u64 zone_end = 0; 847 848 if (wp == zones[0].start << SECTOR_SHIFT) 849 zone_end = zones[1].start + zones[1].capacity; 850 else if (wp == zones[1].start << SECTOR_SHIFT) 851 zone_end = zones[0].start + zones[0].capacity; 852 if (zone_end) 853 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 854 BTRFS_SUPER_INFO_SIZE); 855 856 wp -= BTRFS_SUPER_INFO_SIZE; 857 } 858 859 *bytenr_ret = wp; 860 return 0; 861 862 } 863 864 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 865 u64 *bytenr_ret) 866 { 867 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 868 sector_t zone_sectors; 869 u32 sb_zone; 870 int ret; 871 u8 zone_sectors_shift; 872 sector_t nr_sectors; 873 u32 nr_zones; 874 875 if (!bdev_is_zoned(bdev)) { 876 *bytenr_ret = btrfs_sb_offset(mirror); 877 return 0; 878 } 879 880 ASSERT(rw == READ || rw == WRITE); 881 882 zone_sectors = bdev_zone_sectors(bdev); 883 if (!is_power_of_2(zone_sectors)) 884 return -EINVAL; 885 zone_sectors_shift = ilog2(zone_sectors); 886 nr_sectors = bdev_nr_sectors(bdev); 887 nr_zones = nr_sectors >> zone_sectors_shift; 888 889 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 890 if (sb_zone + 1 >= nr_zones) 891 return -ENOENT; 892 893 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 894 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 895 zones); 896 if (ret < 0) 897 return ret; 898 if (ret != BTRFS_NR_SB_LOG_ZONES) 899 return -EIO; 900 901 return sb_log_location(bdev, zones, rw, bytenr_ret); 902 } 903 904 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 905 u64 *bytenr_ret) 906 { 907 struct btrfs_zoned_device_info *zinfo = device->zone_info; 908 u32 zone_num; 909 910 /* 911 * For a zoned filesystem on a non-zoned block device, use the same 912 * super block locations as regular filesystem. Doing so, the super 913 * block can always be retrieved and the zoned flag of the volume 914 * detected from the super block information. 915 */ 916 if (!bdev_is_zoned(device->bdev)) { 917 *bytenr_ret = btrfs_sb_offset(mirror); 918 return 0; 919 } 920 921 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 922 if (zone_num + 1 >= zinfo->nr_zones) 923 return -ENOENT; 924 925 return sb_log_location(device->bdev, 926 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 927 rw, bytenr_ret); 928 } 929 930 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 931 int mirror) 932 { 933 u32 zone_num; 934 935 if (!zinfo) 936 return false; 937 938 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 939 if (zone_num + 1 >= zinfo->nr_zones) 940 return false; 941 942 if (!test_bit(zone_num, zinfo->seq_zones)) 943 return false; 944 945 return true; 946 } 947 948 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 949 { 950 struct btrfs_zoned_device_info *zinfo = device->zone_info; 951 struct blk_zone *zone; 952 int i; 953 954 if (!is_sb_log_zone(zinfo, mirror)) 955 return 0; 956 957 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 958 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 959 /* Advance the next zone */ 960 if (zone->cond == BLK_ZONE_COND_FULL) { 961 zone++; 962 continue; 963 } 964 965 if (zone->cond == BLK_ZONE_COND_EMPTY) 966 zone->cond = BLK_ZONE_COND_IMP_OPEN; 967 968 zone->wp += SUPER_INFO_SECTORS; 969 970 if (sb_zone_is_full(zone)) { 971 /* 972 * No room left to write new superblock. Since 973 * superblock is written with REQ_SYNC, it is safe to 974 * finish the zone now. 975 * 976 * If the write pointer is exactly at the capacity, 977 * explicit ZONE_FINISH is not necessary. 978 */ 979 if (zone->wp != zone->start + zone->capacity) { 980 int ret; 981 982 ret = blkdev_zone_mgmt(device->bdev, 983 REQ_OP_ZONE_FINISH, zone->start, 984 zone->len, GFP_NOFS); 985 if (ret) 986 return ret; 987 } 988 989 zone->wp = zone->start + zone->len; 990 zone->cond = BLK_ZONE_COND_FULL; 991 } 992 return 0; 993 } 994 995 /* All the zones are FULL. Should not reach here. */ 996 ASSERT(0); 997 return -EIO; 998 } 999 1000 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 1001 { 1002 sector_t zone_sectors; 1003 sector_t nr_sectors; 1004 u8 zone_sectors_shift; 1005 u32 sb_zone; 1006 u32 nr_zones; 1007 1008 zone_sectors = bdev_zone_sectors(bdev); 1009 zone_sectors_shift = ilog2(zone_sectors); 1010 nr_sectors = bdev_nr_sectors(bdev); 1011 nr_zones = nr_sectors >> zone_sectors_shift; 1012 1013 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1014 if (sb_zone + 1 >= nr_zones) 1015 return -ENOENT; 1016 1017 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1018 zone_start_sector(sb_zone, bdev), 1019 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 1020 } 1021 1022 /* 1023 * Find allocatable zones within a given region. 1024 * 1025 * @device: the device to allocate a region on 1026 * @hole_start: the position of the hole to allocate the region 1027 * @num_bytes: size of wanted region 1028 * @hole_end: the end of the hole 1029 * @return: position of allocatable zones 1030 * 1031 * Allocatable region should not contain any superblock locations. 1032 */ 1033 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1034 u64 hole_end, u64 num_bytes) 1035 { 1036 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1037 const u8 shift = zinfo->zone_size_shift; 1038 u64 nzones = num_bytes >> shift; 1039 u64 pos = hole_start; 1040 u64 begin, end; 1041 bool have_sb; 1042 int i; 1043 1044 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1045 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1046 1047 while (pos < hole_end) { 1048 begin = pos >> shift; 1049 end = begin + nzones; 1050 1051 if (end > zinfo->nr_zones) 1052 return hole_end; 1053 1054 /* Check if zones in the region are all empty */ 1055 if (btrfs_dev_is_sequential(device, pos) && 1056 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { 1057 pos += zinfo->zone_size; 1058 continue; 1059 } 1060 1061 have_sb = false; 1062 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1063 u32 sb_zone; 1064 u64 sb_pos; 1065 1066 sb_zone = sb_zone_number(shift, i); 1067 if (!(end <= sb_zone || 1068 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1069 have_sb = true; 1070 pos = zone_start_physical( 1071 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1072 break; 1073 } 1074 1075 /* We also need to exclude regular superblock positions */ 1076 sb_pos = btrfs_sb_offset(i); 1077 if (!(pos + num_bytes <= sb_pos || 1078 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1079 have_sb = true; 1080 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1081 zinfo->zone_size); 1082 break; 1083 } 1084 } 1085 if (!have_sb) 1086 break; 1087 } 1088 1089 return pos; 1090 } 1091 1092 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1093 { 1094 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1095 unsigned int zno = (pos >> zone_info->zone_size_shift); 1096 1097 /* We can use any number of zones */ 1098 if (zone_info->max_active_zones == 0) 1099 return true; 1100 1101 if (!test_bit(zno, zone_info->active_zones)) { 1102 /* Active zone left? */ 1103 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1104 return false; 1105 if (test_and_set_bit(zno, zone_info->active_zones)) { 1106 /* Someone already set the bit */ 1107 atomic_inc(&zone_info->active_zones_left); 1108 } 1109 } 1110 1111 return true; 1112 } 1113 1114 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1115 { 1116 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1117 unsigned int zno = (pos >> zone_info->zone_size_shift); 1118 1119 /* We can use any number of zones */ 1120 if (zone_info->max_active_zones == 0) 1121 return; 1122 1123 if (test_and_clear_bit(zno, zone_info->active_zones)) 1124 atomic_inc(&zone_info->active_zones_left); 1125 } 1126 1127 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1128 u64 length, u64 *bytes) 1129 { 1130 int ret; 1131 1132 *bytes = 0; 1133 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1134 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1135 GFP_NOFS); 1136 if (ret) 1137 return ret; 1138 1139 *bytes = length; 1140 while (length) { 1141 btrfs_dev_set_zone_empty(device, physical); 1142 btrfs_dev_clear_active_zone(device, physical); 1143 physical += device->zone_info->zone_size; 1144 length -= device->zone_info->zone_size; 1145 } 1146 1147 return 0; 1148 } 1149 1150 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1151 { 1152 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1153 const u8 shift = zinfo->zone_size_shift; 1154 unsigned long begin = start >> shift; 1155 unsigned long end = (start + size) >> shift; 1156 u64 pos; 1157 int ret; 1158 1159 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1160 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1161 1162 if (end > zinfo->nr_zones) 1163 return -ERANGE; 1164 1165 /* All the zones are conventional */ 1166 if (find_next_bit(zinfo->seq_zones, begin, end) == end) 1167 return 0; 1168 1169 /* All the zones are sequential and empty */ 1170 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end && 1171 find_next_zero_bit(zinfo->empty_zones, begin, end) == end) 1172 return 0; 1173 1174 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1175 u64 reset_bytes; 1176 1177 if (!btrfs_dev_is_sequential(device, pos) || 1178 btrfs_dev_is_empty_zone(device, pos)) 1179 continue; 1180 1181 /* Free regions should be empty */ 1182 btrfs_warn_in_rcu( 1183 device->fs_info, 1184 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1185 rcu_str_deref(device->name), device->devid, pos >> shift); 1186 WARN_ON_ONCE(1); 1187 1188 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1189 &reset_bytes); 1190 if (ret) 1191 return ret; 1192 } 1193 1194 return 0; 1195 } 1196 1197 /* 1198 * Calculate an allocation pointer from the extent allocation information 1199 * for a block group consist of conventional zones. It is pointed to the 1200 * end of the highest addressed extent in the block group as an allocation 1201 * offset. 1202 */ 1203 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1204 u64 *offset_ret, bool new) 1205 { 1206 struct btrfs_fs_info *fs_info = cache->fs_info; 1207 struct btrfs_root *root; 1208 struct btrfs_path *path; 1209 struct btrfs_key key; 1210 struct btrfs_key found_key; 1211 int ret; 1212 u64 length; 1213 1214 /* 1215 * Avoid tree lookups for a new block group, there's no use for it. 1216 * It must always be 0. 1217 * 1218 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1219 * For new a block group, this function is called from 1220 * btrfs_make_block_group() which is already taking the chunk mutex. 1221 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1222 * buffer locks to avoid deadlock. 1223 */ 1224 if (new) { 1225 *offset_ret = 0; 1226 return 0; 1227 } 1228 1229 path = btrfs_alloc_path(); 1230 if (!path) 1231 return -ENOMEM; 1232 1233 key.objectid = cache->start + cache->length; 1234 key.type = 0; 1235 key.offset = 0; 1236 1237 root = btrfs_extent_root(fs_info, key.objectid); 1238 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1239 /* We should not find the exact match */ 1240 if (!ret) 1241 ret = -EUCLEAN; 1242 if (ret < 0) 1243 goto out; 1244 1245 ret = btrfs_previous_extent_item(root, path, cache->start); 1246 if (ret) { 1247 if (ret == 1) { 1248 ret = 0; 1249 *offset_ret = 0; 1250 } 1251 goto out; 1252 } 1253 1254 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1255 1256 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1257 length = found_key.offset; 1258 else 1259 length = fs_info->nodesize; 1260 1261 if (!(found_key.objectid >= cache->start && 1262 found_key.objectid + length <= cache->start + cache->length)) { 1263 ret = -EUCLEAN; 1264 goto out; 1265 } 1266 *offset_ret = found_key.objectid + length - cache->start; 1267 ret = 0; 1268 1269 out: 1270 btrfs_free_path(path); 1271 return ret; 1272 } 1273 1274 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1275 { 1276 struct btrfs_fs_info *fs_info = cache->fs_info; 1277 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1278 struct extent_map *em; 1279 struct map_lookup *map; 1280 struct btrfs_device *device; 1281 u64 logical = cache->start; 1282 u64 length = cache->length; 1283 int ret; 1284 int i; 1285 unsigned int nofs_flag; 1286 u64 *alloc_offsets = NULL; 1287 u64 *caps = NULL; 1288 u64 *physical = NULL; 1289 unsigned long *active = NULL; 1290 u64 last_alloc = 0; 1291 u32 num_sequential = 0, num_conventional = 0; 1292 1293 if (!btrfs_is_zoned(fs_info)) 1294 return 0; 1295 1296 /* Sanity check */ 1297 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1298 btrfs_err(fs_info, 1299 "zoned: block group %llu len %llu unaligned to zone size %llu", 1300 logical, length, fs_info->zone_size); 1301 return -EIO; 1302 } 1303 1304 /* Get the chunk mapping */ 1305 read_lock(&em_tree->lock); 1306 em = lookup_extent_mapping(em_tree, logical, length); 1307 read_unlock(&em_tree->lock); 1308 1309 if (!em) 1310 return -EINVAL; 1311 1312 map = em->map_lookup; 1313 1314 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS); 1315 if (!cache->physical_map) { 1316 ret = -ENOMEM; 1317 goto out; 1318 } 1319 1320 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1321 if (!alloc_offsets) { 1322 ret = -ENOMEM; 1323 goto out; 1324 } 1325 1326 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS); 1327 if (!caps) { 1328 ret = -ENOMEM; 1329 goto out; 1330 } 1331 1332 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS); 1333 if (!physical) { 1334 ret = -ENOMEM; 1335 goto out; 1336 } 1337 1338 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1339 if (!active) { 1340 ret = -ENOMEM; 1341 goto out; 1342 } 1343 1344 for (i = 0; i < map->num_stripes; i++) { 1345 bool is_sequential; 1346 struct blk_zone zone; 1347 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1348 int dev_replace_is_ongoing = 0; 1349 1350 device = map->stripes[i].dev; 1351 physical[i] = map->stripes[i].physical; 1352 1353 if (device->bdev == NULL) { 1354 alloc_offsets[i] = WP_MISSING_DEV; 1355 continue; 1356 } 1357 1358 is_sequential = btrfs_dev_is_sequential(device, physical[i]); 1359 if (is_sequential) 1360 num_sequential++; 1361 else 1362 num_conventional++; 1363 1364 /* 1365 * Consider a zone as active if we can allow any number of 1366 * active zones. 1367 */ 1368 if (!device->zone_info->max_active_zones) 1369 __set_bit(i, active); 1370 1371 if (!is_sequential) { 1372 alloc_offsets[i] = WP_CONVENTIONAL; 1373 continue; 1374 } 1375 1376 /* 1377 * This zone will be used for allocation, so mark this zone 1378 * non-empty. 1379 */ 1380 btrfs_dev_clear_zone_empty(device, physical[i]); 1381 1382 down_read(&dev_replace->rwsem); 1383 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1384 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1385 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]); 1386 up_read(&dev_replace->rwsem); 1387 1388 /* 1389 * The group is mapped to a sequential zone. Get the zone write 1390 * pointer to determine the allocation offset within the zone. 1391 */ 1392 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size)); 1393 nofs_flag = memalloc_nofs_save(); 1394 ret = btrfs_get_dev_zone(device, physical[i], &zone); 1395 memalloc_nofs_restore(nofs_flag); 1396 if (ret == -EIO || ret == -EOPNOTSUPP) { 1397 ret = 0; 1398 alloc_offsets[i] = WP_MISSING_DEV; 1399 continue; 1400 } else if (ret) { 1401 goto out; 1402 } 1403 1404 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1405 btrfs_err_in_rcu(fs_info, 1406 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1407 zone.start << SECTOR_SHIFT, 1408 rcu_str_deref(device->name), device->devid); 1409 ret = -EIO; 1410 goto out; 1411 } 1412 1413 caps[i] = (zone.capacity << SECTOR_SHIFT); 1414 1415 switch (zone.cond) { 1416 case BLK_ZONE_COND_OFFLINE: 1417 case BLK_ZONE_COND_READONLY: 1418 btrfs_err(fs_info, 1419 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1420 physical[i] >> device->zone_info->zone_size_shift, 1421 rcu_str_deref(device->name), device->devid); 1422 alloc_offsets[i] = WP_MISSING_DEV; 1423 break; 1424 case BLK_ZONE_COND_EMPTY: 1425 alloc_offsets[i] = 0; 1426 break; 1427 case BLK_ZONE_COND_FULL: 1428 alloc_offsets[i] = caps[i]; 1429 break; 1430 default: 1431 /* Partially used zone */ 1432 alloc_offsets[i] = 1433 ((zone.wp - zone.start) << SECTOR_SHIFT); 1434 __set_bit(i, active); 1435 break; 1436 } 1437 } 1438 1439 if (num_sequential > 0) 1440 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1441 1442 if (num_conventional > 0) { 1443 /* Zone capacity is always zone size in emulation */ 1444 cache->zone_capacity = cache->length; 1445 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1446 if (ret) { 1447 btrfs_err(fs_info, 1448 "zoned: failed to determine allocation offset of bg %llu", 1449 cache->start); 1450 goto out; 1451 } else if (map->num_stripes == num_conventional) { 1452 cache->alloc_offset = last_alloc; 1453 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1454 goto out; 1455 } 1456 } 1457 1458 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1459 case 0: /* single */ 1460 if (alloc_offsets[0] == WP_MISSING_DEV) { 1461 btrfs_err(fs_info, 1462 "zoned: cannot recover write pointer for zone %llu", 1463 physical[0]); 1464 ret = -EIO; 1465 goto out; 1466 } 1467 cache->alloc_offset = alloc_offsets[0]; 1468 cache->zone_capacity = caps[0]; 1469 if (test_bit(0, active)) 1470 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1471 break; 1472 case BTRFS_BLOCK_GROUP_DUP: 1473 if (map->type & BTRFS_BLOCK_GROUP_DATA) { 1474 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg"); 1475 ret = -EINVAL; 1476 goto out; 1477 } 1478 if (alloc_offsets[0] == WP_MISSING_DEV) { 1479 btrfs_err(fs_info, 1480 "zoned: cannot recover write pointer for zone %llu", 1481 physical[0]); 1482 ret = -EIO; 1483 goto out; 1484 } 1485 if (alloc_offsets[1] == WP_MISSING_DEV) { 1486 btrfs_err(fs_info, 1487 "zoned: cannot recover write pointer for zone %llu", 1488 physical[1]); 1489 ret = -EIO; 1490 goto out; 1491 } 1492 if (alloc_offsets[0] != alloc_offsets[1]) { 1493 btrfs_err(fs_info, 1494 "zoned: write pointer offset mismatch of zones in DUP profile"); 1495 ret = -EIO; 1496 goto out; 1497 } 1498 if (test_bit(0, active) != test_bit(1, active)) { 1499 if (!btrfs_zone_activate(cache)) { 1500 ret = -EIO; 1501 goto out; 1502 } 1503 } else { 1504 if (test_bit(0, active)) 1505 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1506 &cache->runtime_flags); 1507 } 1508 cache->alloc_offset = alloc_offsets[0]; 1509 cache->zone_capacity = min(caps[0], caps[1]); 1510 break; 1511 case BTRFS_BLOCK_GROUP_RAID1: 1512 case BTRFS_BLOCK_GROUP_RAID0: 1513 case BTRFS_BLOCK_GROUP_RAID10: 1514 case BTRFS_BLOCK_GROUP_RAID5: 1515 case BTRFS_BLOCK_GROUP_RAID6: 1516 /* non-single profiles are not supported yet */ 1517 default: 1518 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1519 btrfs_bg_type_to_raid_name(map->type)); 1520 ret = -EINVAL; 1521 goto out; 1522 } 1523 1524 out: 1525 if (cache->alloc_offset > fs_info->zone_size) { 1526 btrfs_err(fs_info, 1527 "zoned: invalid write pointer %llu in block group %llu", 1528 cache->alloc_offset, cache->start); 1529 ret = -EIO; 1530 } 1531 1532 if (cache->alloc_offset > cache->zone_capacity) { 1533 btrfs_err(fs_info, 1534 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1535 cache->alloc_offset, cache->zone_capacity, 1536 cache->start); 1537 ret = -EIO; 1538 } 1539 1540 /* An extent is allocated after the write pointer */ 1541 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1542 btrfs_err(fs_info, 1543 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1544 logical, last_alloc, cache->alloc_offset); 1545 ret = -EIO; 1546 } 1547 1548 if (!ret) { 1549 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1550 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1551 btrfs_get_block_group(cache); 1552 spin_lock(&fs_info->zone_active_bgs_lock); 1553 list_add_tail(&cache->active_bg_list, 1554 &fs_info->zone_active_bgs); 1555 spin_unlock(&fs_info->zone_active_bgs_lock); 1556 } 1557 } else { 1558 kfree(cache->physical_map); 1559 cache->physical_map = NULL; 1560 } 1561 bitmap_free(active); 1562 kfree(physical); 1563 kfree(caps); 1564 kfree(alloc_offsets); 1565 free_extent_map(em); 1566 1567 return ret; 1568 } 1569 1570 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1571 { 1572 u64 unusable, free; 1573 1574 if (!btrfs_is_zoned(cache->fs_info)) 1575 return; 1576 1577 WARN_ON(cache->bytes_super != 0); 1578 unusable = (cache->alloc_offset - cache->used) + 1579 (cache->length - cache->zone_capacity); 1580 free = cache->zone_capacity - cache->alloc_offset; 1581 1582 /* We only need ->free_space in ALLOC_SEQ block groups */ 1583 cache->cached = BTRFS_CACHE_FINISHED; 1584 cache->free_space_ctl->free_space = free; 1585 cache->zone_unusable = unusable; 1586 } 1587 1588 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1589 struct extent_buffer *eb) 1590 { 1591 struct btrfs_fs_info *fs_info = eb->fs_info; 1592 1593 if (!btrfs_is_zoned(fs_info) || 1594 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || 1595 !list_empty(&eb->release_list)) 1596 return; 1597 1598 set_extent_buffer_dirty(eb); 1599 set_extent_bits_nowait(&trans->dirty_pages, eb->start, 1600 eb->start + eb->len - 1, EXTENT_DIRTY); 1601 memzero_extent_buffer(eb, 0, eb->len); 1602 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1603 1604 spin_lock(&trans->releasing_ebs_lock); 1605 list_add_tail(&eb->release_list, &trans->releasing_ebs); 1606 spin_unlock(&trans->releasing_ebs_lock); 1607 atomic_inc(&eb->refs); 1608 } 1609 1610 void btrfs_free_redirty_list(struct btrfs_transaction *trans) 1611 { 1612 spin_lock(&trans->releasing_ebs_lock); 1613 while (!list_empty(&trans->releasing_ebs)) { 1614 struct extent_buffer *eb; 1615 1616 eb = list_first_entry(&trans->releasing_ebs, 1617 struct extent_buffer, release_list); 1618 list_del_init(&eb->release_list); 1619 free_extent_buffer(eb); 1620 } 1621 spin_unlock(&trans->releasing_ebs_lock); 1622 } 1623 1624 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start) 1625 { 1626 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1627 struct btrfs_block_group *cache; 1628 bool ret = false; 1629 1630 if (!btrfs_is_zoned(fs_info)) 1631 return false; 1632 1633 if (!is_data_inode(&inode->vfs_inode)) 1634 return false; 1635 1636 /* 1637 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1638 * extent layout the relocation code has. 1639 * Furthermore we have set aside own block-group from which only the 1640 * relocation "process" can allocate and make sure only one process at a 1641 * time can add pages to an extent that gets relocated, so it's safe to 1642 * use regular REQ_OP_WRITE for this special case. 1643 */ 1644 if (btrfs_is_data_reloc_root(inode->root)) 1645 return false; 1646 1647 cache = btrfs_lookup_block_group(fs_info, start); 1648 ASSERT(cache); 1649 if (!cache) 1650 return false; 1651 1652 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1653 btrfs_put_block_group(cache); 1654 1655 return ret; 1656 } 1657 1658 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset, 1659 struct bio *bio) 1660 { 1661 struct btrfs_ordered_extent *ordered; 1662 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 1663 1664 if (bio_op(bio) != REQ_OP_ZONE_APPEND) 1665 return; 1666 1667 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset); 1668 if (WARN_ON(!ordered)) 1669 return; 1670 1671 ordered->physical = physical; 1672 ordered->bdev = bio->bi_bdev; 1673 1674 btrfs_put_ordered_extent(ordered); 1675 } 1676 1677 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) 1678 { 1679 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1680 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1681 struct extent_map_tree *em_tree; 1682 struct extent_map *em; 1683 struct btrfs_ordered_sum *sum; 1684 u64 orig_logical = ordered->disk_bytenr; 1685 u64 *logical = NULL; 1686 int nr, stripe_len; 1687 1688 /* Zoned devices should not have partitions. So, we can assume it is 0 */ 1689 ASSERT(!bdev_is_partition(ordered->bdev)); 1690 if (WARN_ON(!ordered->bdev)) 1691 return; 1692 1693 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev, 1694 ordered->physical, &logical, &nr, 1695 &stripe_len))) 1696 goto out; 1697 1698 WARN_ON(nr != 1); 1699 1700 if (orig_logical == *logical) 1701 goto out; 1702 1703 ordered->disk_bytenr = *logical; 1704 1705 em_tree = &inode->extent_tree; 1706 write_lock(&em_tree->lock); 1707 em = search_extent_mapping(em_tree, ordered->file_offset, 1708 ordered->num_bytes); 1709 em->block_start = *logical; 1710 free_extent_map(em); 1711 write_unlock(&em_tree->lock); 1712 1713 list_for_each_entry(sum, &ordered->list, list) { 1714 if (*logical < orig_logical) 1715 sum->bytenr -= orig_logical - *logical; 1716 else 1717 sum->bytenr += *logical - orig_logical; 1718 } 1719 1720 out: 1721 kfree(logical); 1722 } 1723 1724 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1725 struct extent_buffer *eb, 1726 struct btrfs_block_group **cache_ret) 1727 { 1728 struct btrfs_block_group *cache; 1729 bool ret = true; 1730 1731 if (!btrfs_is_zoned(fs_info)) 1732 return true; 1733 1734 cache = btrfs_lookup_block_group(fs_info, eb->start); 1735 if (!cache) 1736 return true; 1737 1738 if (cache->meta_write_pointer != eb->start) { 1739 btrfs_put_block_group(cache); 1740 cache = NULL; 1741 ret = false; 1742 } else { 1743 cache->meta_write_pointer = eb->start + eb->len; 1744 } 1745 1746 *cache_ret = cache; 1747 1748 return ret; 1749 } 1750 1751 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1752 struct extent_buffer *eb) 1753 { 1754 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1755 return; 1756 1757 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1758 cache->meta_write_pointer = eb->start; 1759 } 1760 1761 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1762 { 1763 if (!btrfs_dev_is_sequential(device, physical)) 1764 return -EOPNOTSUPP; 1765 1766 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1767 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1768 } 1769 1770 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1771 struct blk_zone *zone) 1772 { 1773 struct btrfs_io_context *bioc = NULL; 1774 u64 mapped_length = PAGE_SIZE; 1775 unsigned int nofs_flag; 1776 int nmirrors; 1777 int i, ret; 1778 1779 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1780 &mapped_length, &bioc); 1781 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1782 ret = -EIO; 1783 goto out_put_bioc; 1784 } 1785 1786 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1787 ret = -EINVAL; 1788 goto out_put_bioc; 1789 } 1790 1791 nofs_flag = memalloc_nofs_save(); 1792 nmirrors = (int)bioc->num_stripes; 1793 for (i = 0; i < nmirrors; i++) { 1794 u64 physical = bioc->stripes[i].physical; 1795 struct btrfs_device *dev = bioc->stripes[i].dev; 1796 1797 /* Missing device */ 1798 if (!dev->bdev) 1799 continue; 1800 1801 ret = btrfs_get_dev_zone(dev, physical, zone); 1802 /* Failing device */ 1803 if (ret == -EIO || ret == -EOPNOTSUPP) 1804 continue; 1805 break; 1806 } 1807 memalloc_nofs_restore(nofs_flag); 1808 out_put_bioc: 1809 btrfs_put_bioc(bioc); 1810 return ret; 1811 } 1812 1813 /* 1814 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1815 * filling zeros between @physical_pos to a write pointer of dev-replace 1816 * source device. 1817 */ 1818 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1819 u64 physical_start, u64 physical_pos) 1820 { 1821 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1822 struct blk_zone zone; 1823 u64 length; 1824 u64 wp; 1825 int ret; 1826 1827 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1828 return 0; 1829 1830 ret = read_zone_info(fs_info, logical, &zone); 1831 if (ret) 1832 return ret; 1833 1834 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1835 1836 if (physical_pos == wp) 1837 return 0; 1838 1839 if (physical_pos > wp) 1840 return -EUCLEAN; 1841 1842 length = wp - physical_pos; 1843 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1844 } 1845 1846 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info, 1847 u64 logical, u64 length) 1848 { 1849 struct btrfs_device *device; 1850 struct extent_map *em; 1851 struct map_lookup *map; 1852 1853 em = btrfs_get_chunk_map(fs_info, logical, length); 1854 if (IS_ERR(em)) 1855 return ERR_CAST(em); 1856 1857 map = em->map_lookup; 1858 /* We only support single profile for now */ 1859 device = map->stripes[0].dev; 1860 1861 free_extent_map(em); 1862 1863 return device; 1864 } 1865 1866 /* 1867 * Activate block group and underlying device zones 1868 * 1869 * @block_group: the block group to activate 1870 * 1871 * Return: true on success, false otherwise 1872 */ 1873 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 1874 { 1875 struct btrfs_fs_info *fs_info = block_group->fs_info; 1876 struct btrfs_space_info *space_info = block_group->space_info; 1877 struct map_lookup *map; 1878 struct btrfs_device *device; 1879 u64 physical; 1880 bool ret; 1881 int i; 1882 1883 if (!btrfs_is_zoned(block_group->fs_info)) 1884 return true; 1885 1886 map = block_group->physical_map; 1887 1888 spin_lock(&space_info->lock); 1889 spin_lock(&block_group->lock); 1890 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1891 ret = true; 1892 goto out_unlock; 1893 } 1894 1895 /* No space left */ 1896 if (btrfs_zoned_bg_is_full(block_group)) { 1897 ret = false; 1898 goto out_unlock; 1899 } 1900 1901 for (i = 0; i < map->num_stripes; i++) { 1902 device = map->stripes[i].dev; 1903 physical = map->stripes[i].physical; 1904 1905 if (device->zone_info->max_active_zones == 0) 1906 continue; 1907 1908 if (!btrfs_dev_set_active_zone(device, physical)) { 1909 /* Cannot activate the zone */ 1910 ret = false; 1911 goto out_unlock; 1912 } 1913 } 1914 1915 /* Successfully activated all the zones */ 1916 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 1917 space_info->active_total_bytes += block_group->length; 1918 spin_unlock(&block_group->lock); 1919 btrfs_try_granting_tickets(fs_info, space_info); 1920 spin_unlock(&space_info->lock); 1921 1922 /* For the active block group list */ 1923 btrfs_get_block_group(block_group); 1924 1925 spin_lock(&fs_info->zone_active_bgs_lock); 1926 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 1927 spin_unlock(&fs_info->zone_active_bgs_lock); 1928 1929 return true; 1930 1931 out_unlock: 1932 spin_unlock(&block_group->lock); 1933 spin_unlock(&space_info->lock); 1934 return ret; 1935 } 1936 1937 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 1938 { 1939 struct btrfs_fs_info *fs_info = block_group->fs_info; 1940 const u64 end = block_group->start + block_group->length; 1941 struct radix_tree_iter iter; 1942 struct extent_buffer *eb; 1943 void __rcu **slot; 1944 1945 rcu_read_lock(); 1946 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 1947 block_group->start >> fs_info->sectorsize_bits) { 1948 eb = radix_tree_deref_slot(slot); 1949 if (!eb) 1950 continue; 1951 if (radix_tree_deref_retry(eb)) { 1952 slot = radix_tree_iter_retry(&iter); 1953 continue; 1954 } 1955 1956 if (eb->start < block_group->start) 1957 continue; 1958 if (eb->start >= end) 1959 break; 1960 1961 slot = radix_tree_iter_resume(slot, &iter); 1962 rcu_read_unlock(); 1963 wait_on_extent_buffer_writeback(eb); 1964 rcu_read_lock(); 1965 } 1966 rcu_read_unlock(); 1967 } 1968 1969 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 1970 { 1971 struct btrfs_fs_info *fs_info = block_group->fs_info; 1972 struct map_lookup *map; 1973 const bool is_metadata = (block_group->flags & 1974 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 1975 int ret = 0; 1976 int i; 1977 1978 spin_lock(&block_group->lock); 1979 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1980 spin_unlock(&block_group->lock); 1981 return 0; 1982 } 1983 1984 /* Check if we have unwritten allocated space */ 1985 if (is_metadata && 1986 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 1987 spin_unlock(&block_group->lock); 1988 return -EAGAIN; 1989 } 1990 1991 /* 1992 * If we are sure that the block group is full (= no more room left for 1993 * new allocation) and the IO for the last usable block is completed, we 1994 * don't need to wait for the other IOs. This holds because we ensure 1995 * the sequential IO submissions using the ZONE_APPEND command for data 1996 * and block_group->meta_write_pointer for metadata. 1997 */ 1998 if (!fully_written) { 1999 spin_unlock(&block_group->lock); 2000 2001 ret = btrfs_inc_block_group_ro(block_group, false); 2002 if (ret) 2003 return ret; 2004 2005 /* Ensure all writes in this block group finish */ 2006 btrfs_wait_block_group_reservations(block_group); 2007 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2008 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 2009 block_group->length); 2010 /* Wait for extent buffers to be written. */ 2011 if (is_metadata) 2012 wait_eb_writebacks(block_group); 2013 2014 spin_lock(&block_group->lock); 2015 2016 /* 2017 * Bail out if someone already deactivated the block group, or 2018 * allocated space is left in the block group. 2019 */ 2020 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2021 &block_group->runtime_flags)) { 2022 spin_unlock(&block_group->lock); 2023 btrfs_dec_block_group_ro(block_group); 2024 return 0; 2025 } 2026 2027 if (block_group->reserved) { 2028 spin_unlock(&block_group->lock); 2029 btrfs_dec_block_group_ro(block_group); 2030 return -EAGAIN; 2031 } 2032 } 2033 2034 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2035 block_group->alloc_offset = block_group->zone_capacity; 2036 block_group->free_space_ctl->free_space = 0; 2037 btrfs_clear_treelog_bg(block_group); 2038 btrfs_clear_data_reloc_bg(block_group); 2039 spin_unlock(&block_group->lock); 2040 2041 map = block_group->physical_map; 2042 for (i = 0; i < map->num_stripes; i++) { 2043 struct btrfs_device *device = map->stripes[i].dev; 2044 const u64 physical = map->stripes[i].physical; 2045 2046 if (device->zone_info->max_active_zones == 0) 2047 continue; 2048 2049 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2050 physical >> SECTOR_SHIFT, 2051 device->zone_info->zone_size >> SECTOR_SHIFT, 2052 GFP_NOFS); 2053 2054 if (ret) 2055 return ret; 2056 2057 btrfs_dev_clear_active_zone(device, physical); 2058 } 2059 2060 if (!fully_written) 2061 btrfs_dec_block_group_ro(block_group); 2062 2063 spin_lock(&fs_info->zone_active_bgs_lock); 2064 ASSERT(!list_empty(&block_group->active_bg_list)); 2065 list_del_init(&block_group->active_bg_list); 2066 spin_unlock(&fs_info->zone_active_bgs_lock); 2067 2068 /* For active_bg_list */ 2069 btrfs_put_block_group(block_group); 2070 2071 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2072 2073 return 0; 2074 } 2075 2076 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2077 { 2078 if (!btrfs_is_zoned(block_group->fs_info)) 2079 return 0; 2080 2081 return do_zone_finish(block_group, false); 2082 } 2083 2084 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2085 { 2086 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2087 struct btrfs_device *device; 2088 bool ret = false; 2089 2090 if (!btrfs_is_zoned(fs_info)) 2091 return true; 2092 2093 /* Check if there is a device with active zones left */ 2094 mutex_lock(&fs_info->chunk_mutex); 2095 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2096 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2097 2098 if (!device->bdev) 2099 continue; 2100 2101 if (!zinfo->max_active_zones || 2102 atomic_read(&zinfo->active_zones_left)) { 2103 ret = true; 2104 break; 2105 } 2106 } 2107 mutex_unlock(&fs_info->chunk_mutex); 2108 2109 if (!ret) 2110 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2111 2112 return ret; 2113 } 2114 2115 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2116 { 2117 struct btrfs_block_group *block_group; 2118 u64 min_alloc_bytes; 2119 2120 if (!btrfs_is_zoned(fs_info)) 2121 return; 2122 2123 block_group = btrfs_lookup_block_group(fs_info, logical); 2124 ASSERT(block_group); 2125 2126 /* No MIXED_BG on zoned btrfs. */ 2127 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2128 min_alloc_bytes = fs_info->sectorsize; 2129 else 2130 min_alloc_bytes = fs_info->nodesize; 2131 2132 /* Bail out if we can allocate more data from this block group. */ 2133 if (logical + length + min_alloc_bytes <= 2134 block_group->start + block_group->zone_capacity) 2135 goto out; 2136 2137 do_zone_finish(block_group, true); 2138 2139 out: 2140 btrfs_put_block_group(block_group); 2141 } 2142 2143 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2144 { 2145 struct btrfs_block_group *bg = 2146 container_of(work, struct btrfs_block_group, zone_finish_work); 2147 2148 wait_on_extent_buffer_writeback(bg->last_eb); 2149 free_extent_buffer(bg->last_eb); 2150 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2151 btrfs_put_block_group(bg); 2152 } 2153 2154 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2155 struct extent_buffer *eb) 2156 { 2157 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2158 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2159 return; 2160 2161 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2162 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2163 bg->start); 2164 return; 2165 } 2166 2167 /* For the work */ 2168 btrfs_get_block_group(bg); 2169 atomic_inc(&eb->refs); 2170 bg->last_eb = eb; 2171 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2172 queue_work(system_unbound_wq, &bg->zone_finish_work); 2173 } 2174 2175 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2176 { 2177 struct btrfs_fs_info *fs_info = bg->fs_info; 2178 2179 spin_lock(&fs_info->relocation_bg_lock); 2180 if (fs_info->data_reloc_bg == bg->start) 2181 fs_info->data_reloc_bg = 0; 2182 spin_unlock(&fs_info->relocation_bg_lock); 2183 } 2184 2185 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2186 { 2187 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2188 struct btrfs_device *device; 2189 2190 if (!btrfs_is_zoned(fs_info)) 2191 return; 2192 2193 mutex_lock(&fs_devices->device_list_mutex); 2194 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2195 if (device->zone_info) { 2196 vfree(device->zone_info->zone_cache); 2197 device->zone_info->zone_cache = NULL; 2198 } 2199 } 2200 mutex_unlock(&fs_devices->device_list_mutex); 2201 } 2202 2203 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2204 { 2205 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2206 struct btrfs_device *device; 2207 u64 used = 0; 2208 u64 total = 0; 2209 u64 factor; 2210 2211 ASSERT(btrfs_is_zoned(fs_info)); 2212 2213 if (fs_info->bg_reclaim_threshold == 0) 2214 return false; 2215 2216 mutex_lock(&fs_devices->device_list_mutex); 2217 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2218 if (!device->bdev) 2219 continue; 2220 2221 total += device->disk_total_bytes; 2222 used += device->bytes_used; 2223 } 2224 mutex_unlock(&fs_devices->device_list_mutex); 2225 2226 factor = div64_u64(used * 100, total); 2227 return factor >= fs_info->bg_reclaim_threshold; 2228 } 2229 2230 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2231 u64 length) 2232 { 2233 struct btrfs_block_group *block_group; 2234 2235 if (!btrfs_is_zoned(fs_info)) 2236 return; 2237 2238 block_group = btrfs_lookup_block_group(fs_info, logical); 2239 /* It should be called on a previous data relocation block group. */ 2240 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2241 2242 spin_lock(&block_group->lock); 2243 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2244 goto out; 2245 2246 /* All relocation extents are written. */ 2247 if (block_group->start + block_group->alloc_offset == logical + length) { 2248 /* Now, release this block group for further allocations. */ 2249 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2250 &block_group->runtime_flags); 2251 } 2252 2253 out: 2254 spin_unlock(&block_group->lock); 2255 btrfs_put_block_group(block_group); 2256 } 2257 2258 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2259 { 2260 struct btrfs_block_group *block_group; 2261 struct btrfs_block_group *min_bg = NULL; 2262 u64 min_avail = U64_MAX; 2263 int ret; 2264 2265 spin_lock(&fs_info->zone_active_bgs_lock); 2266 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2267 active_bg_list) { 2268 u64 avail; 2269 2270 spin_lock(&block_group->lock); 2271 if (block_group->reserved || 2272 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) { 2273 spin_unlock(&block_group->lock); 2274 continue; 2275 } 2276 2277 avail = block_group->zone_capacity - block_group->alloc_offset; 2278 if (min_avail > avail) { 2279 if (min_bg) 2280 btrfs_put_block_group(min_bg); 2281 min_bg = block_group; 2282 min_avail = avail; 2283 btrfs_get_block_group(min_bg); 2284 } 2285 spin_unlock(&block_group->lock); 2286 } 2287 spin_unlock(&fs_info->zone_active_bgs_lock); 2288 2289 if (!min_bg) 2290 return 0; 2291 2292 ret = btrfs_zone_finish(min_bg); 2293 btrfs_put_block_group(min_bg); 2294 2295 return ret < 0 ? ret : 1; 2296 } 2297 2298 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2299 struct btrfs_space_info *space_info, 2300 bool do_finish) 2301 { 2302 struct btrfs_block_group *bg; 2303 int index; 2304 2305 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2306 return 0; 2307 2308 /* No more block groups to activate */ 2309 if (space_info->active_total_bytes == space_info->total_bytes) 2310 return 0; 2311 2312 for (;;) { 2313 int ret; 2314 bool need_finish = false; 2315 2316 down_read(&space_info->groups_sem); 2317 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2318 list_for_each_entry(bg, &space_info->block_groups[index], 2319 list) { 2320 if (!spin_trylock(&bg->lock)) 2321 continue; 2322 if (btrfs_zoned_bg_is_full(bg) || 2323 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2324 &bg->runtime_flags)) { 2325 spin_unlock(&bg->lock); 2326 continue; 2327 } 2328 spin_unlock(&bg->lock); 2329 2330 if (btrfs_zone_activate(bg)) { 2331 up_read(&space_info->groups_sem); 2332 return 1; 2333 } 2334 2335 need_finish = true; 2336 } 2337 } 2338 up_read(&space_info->groups_sem); 2339 2340 if (!do_finish || !need_finish) 2341 break; 2342 2343 ret = btrfs_zone_finish_one_bg(fs_info); 2344 if (ret == 0) 2345 break; 2346 if (ret < 0) 2347 return ret; 2348 } 2349 2350 return 0; 2351 } 2352