xref: /openbmc/linux/fs/btrfs/zoned.c (revision 0f0e5f5b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "fs.h"
19 #include "accessors.h"
20 
21 /* Maximum number of zones to report per blkdev_report_zones() call */
22 #define BTRFS_REPORT_NR_ZONES   4096
23 /* Invalid allocation pointer value for missing devices */
24 #define WP_MISSING_DEV ((u64)-1)
25 /* Pseudo write pointer value for conventional zone */
26 #define WP_CONVENTIONAL ((u64)-2)
27 
28 /*
29  * Location of the first zone of superblock logging zone pairs.
30  *
31  * - primary superblock:    0B (zone 0)
32  * - first copy:          512G (zone starting at that offset)
33  * - second copy:           4T (zone starting at that offset)
34  */
35 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
36 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
37 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
38 
39 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
41 
42 /* Number of superblock log zones */
43 #define BTRFS_NR_SB_LOG_ZONES 2
44 
45 /*
46  * Minimum of active zones we need:
47  *
48  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50  * - 1 zone for tree-log dedicated block group
51  * - 1 zone for relocation
52  */
53 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
54 
55 /*
56  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58  * We do not expect the zone size to become larger than 8GiB or smaller than
59  * 4MiB in the near future.
60  */
61 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
62 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
63 
64 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
65 
66 static inline bool sb_zone_is_full(const struct blk_zone *zone)
67 {
68 	return (zone->cond == BLK_ZONE_COND_FULL) ||
69 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
70 }
71 
72 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
73 {
74 	struct blk_zone *zones = data;
75 
76 	memcpy(&zones[idx], zone, sizeof(*zone));
77 
78 	return 0;
79 }
80 
81 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
82 			    u64 *wp_ret)
83 {
84 	bool empty[BTRFS_NR_SB_LOG_ZONES];
85 	bool full[BTRFS_NR_SB_LOG_ZONES];
86 	sector_t sector;
87 	int i;
88 
89 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
90 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
91 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
92 		full[i] = sb_zone_is_full(&zones[i]);
93 	}
94 
95 	/*
96 	 * Possible states of log buffer zones
97 	 *
98 	 *           Empty[0]  In use[0]  Full[0]
99 	 * Empty[1]         *          0        1
100 	 * In use[1]        x          x        1
101 	 * Full[1]          0          0        C
102 	 *
103 	 * Log position:
104 	 *   *: Special case, no superblock is written
105 	 *   0: Use write pointer of zones[0]
106 	 *   1: Use write pointer of zones[1]
107 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
108 	 *      one determined by generation
109 	 *   x: Invalid state
110 	 */
111 
112 	if (empty[0] && empty[1]) {
113 		/* Special case to distinguish no superblock to read */
114 		*wp_ret = zones[0].start << SECTOR_SHIFT;
115 		return -ENOENT;
116 	} else if (full[0] && full[1]) {
117 		/* Compare two super blocks */
118 		struct address_space *mapping = bdev->bd_inode->i_mapping;
119 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
120 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
121 		int i;
122 
123 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
124 			u64 bytenr;
125 
126 			bytenr = ((zones[i].start + zones[i].len)
127 				   << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
128 
129 			page[i] = read_cache_page_gfp(mapping,
130 					bytenr >> PAGE_SHIFT, GFP_NOFS);
131 			if (IS_ERR(page[i])) {
132 				if (i == 1)
133 					btrfs_release_disk_super(super[0]);
134 				return PTR_ERR(page[i]);
135 			}
136 			super[i] = page_address(page[i]);
137 		}
138 
139 		if (btrfs_super_generation(super[0]) >
140 		    btrfs_super_generation(super[1]))
141 			sector = zones[1].start;
142 		else
143 			sector = zones[0].start;
144 
145 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
146 			btrfs_release_disk_super(super[i]);
147 	} else if (!full[0] && (empty[1] || full[1])) {
148 		sector = zones[0].wp;
149 	} else if (full[0]) {
150 		sector = zones[1].wp;
151 	} else {
152 		return -EUCLEAN;
153 	}
154 	*wp_ret = sector << SECTOR_SHIFT;
155 	return 0;
156 }
157 
158 /*
159  * Get the first zone number of the superblock mirror
160  */
161 static inline u32 sb_zone_number(int shift, int mirror)
162 {
163 	u64 zone;
164 
165 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
166 	switch (mirror) {
167 	case 0: zone = 0; break;
168 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
169 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
170 	}
171 
172 	ASSERT(zone <= U32_MAX);
173 
174 	return (u32)zone;
175 }
176 
177 static inline sector_t zone_start_sector(u32 zone_number,
178 					 struct block_device *bdev)
179 {
180 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
181 }
182 
183 static inline u64 zone_start_physical(u32 zone_number,
184 				      struct btrfs_zoned_device_info *zone_info)
185 {
186 	return (u64)zone_number << zone_info->zone_size_shift;
187 }
188 
189 /*
190  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
191  * device into static sized chunks and fake a conventional zone on each of
192  * them.
193  */
194 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
195 				struct blk_zone *zones, unsigned int nr_zones)
196 {
197 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
198 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
199 	unsigned int i;
200 
201 	pos >>= SECTOR_SHIFT;
202 	for (i = 0; i < nr_zones; i++) {
203 		zones[i].start = i * zone_sectors + pos;
204 		zones[i].len = zone_sectors;
205 		zones[i].capacity = zone_sectors;
206 		zones[i].wp = zones[i].start + zone_sectors;
207 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
208 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
209 
210 		if (zones[i].wp >= bdev_size) {
211 			i++;
212 			break;
213 		}
214 	}
215 
216 	return i;
217 }
218 
219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
220 			       struct blk_zone *zones, unsigned int *nr_zones)
221 {
222 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
223 	u32 zno;
224 	int ret;
225 
226 	if (!*nr_zones)
227 		return 0;
228 
229 	if (!bdev_is_zoned(device->bdev)) {
230 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
231 		*nr_zones = ret;
232 		return 0;
233 	}
234 
235 	/* Check cache */
236 	if (zinfo->zone_cache) {
237 		unsigned int i;
238 
239 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
240 		zno = pos >> zinfo->zone_size_shift;
241 		/*
242 		 * We cannot report zones beyond the zone end. So, it is OK to
243 		 * cap *nr_zones to at the end.
244 		 */
245 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
246 
247 		for (i = 0; i < *nr_zones; i++) {
248 			struct blk_zone *zone_info;
249 
250 			zone_info = &zinfo->zone_cache[zno + i];
251 			if (!zone_info->len)
252 				break;
253 		}
254 
255 		if (i == *nr_zones) {
256 			/* Cache hit on all the zones */
257 			memcpy(zones, zinfo->zone_cache + zno,
258 			       sizeof(*zinfo->zone_cache) * *nr_zones);
259 			return 0;
260 		}
261 	}
262 
263 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
264 				  copy_zone_info_cb, zones);
265 	if (ret < 0) {
266 		btrfs_err_in_rcu(device->fs_info,
267 				 "zoned: failed to read zone %llu on %s (devid %llu)",
268 				 pos, rcu_str_deref(device->name),
269 				 device->devid);
270 		return ret;
271 	}
272 	*nr_zones = ret;
273 	if (!ret)
274 		return -EIO;
275 
276 	/* Populate cache */
277 	if (zinfo->zone_cache)
278 		memcpy(zinfo->zone_cache + zno, zones,
279 		       sizeof(*zinfo->zone_cache) * *nr_zones);
280 
281 	return 0;
282 }
283 
284 /* The emulated zone size is determined from the size of device extent */
285 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
286 {
287 	struct btrfs_path *path;
288 	struct btrfs_root *root = fs_info->dev_root;
289 	struct btrfs_key key;
290 	struct extent_buffer *leaf;
291 	struct btrfs_dev_extent *dext;
292 	int ret = 0;
293 
294 	key.objectid = 1;
295 	key.type = BTRFS_DEV_EXTENT_KEY;
296 	key.offset = 0;
297 
298 	path = btrfs_alloc_path();
299 	if (!path)
300 		return -ENOMEM;
301 
302 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
303 	if (ret < 0)
304 		goto out;
305 
306 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
307 		ret = btrfs_next_leaf(root, path);
308 		if (ret < 0)
309 			goto out;
310 		/* No dev extents at all? Not good */
311 		if (ret > 0) {
312 			ret = -EUCLEAN;
313 			goto out;
314 		}
315 	}
316 
317 	leaf = path->nodes[0];
318 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
319 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
320 	ret = 0;
321 
322 out:
323 	btrfs_free_path(path);
324 
325 	return ret;
326 }
327 
328 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
329 {
330 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
331 	struct btrfs_device *device;
332 	int ret = 0;
333 
334 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
335 	if (!btrfs_fs_incompat(fs_info, ZONED))
336 		return 0;
337 
338 	mutex_lock(&fs_devices->device_list_mutex);
339 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
340 		/* We can skip reading of zone info for missing devices */
341 		if (!device->bdev)
342 			continue;
343 
344 		ret = btrfs_get_dev_zone_info(device, true);
345 		if (ret)
346 			break;
347 	}
348 	mutex_unlock(&fs_devices->device_list_mutex);
349 
350 	return ret;
351 }
352 
353 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
354 {
355 	struct btrfs_fs_info *fs_info = device->fs_info;
356 	struct btrfs_zoned_device_info *zone_info = NULL;
357 	struct block_device *bdev = device->bdev;
358 	unsigned int max_active_zones;
359 	unsigned int nactive;
360 	sector_t nr_sectors;
361 	sector_t sector = 0;
362 	struct blk_zone *zones = NULL;
363 	unsigned int i, nreported = 0, nr_zones;
364 	sector_t zone_sectors;
365 	char *model, *emulated;
366 	int ret;
367 
368 	/*
369 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
370 	 * yet be set.
371 	 */
372 	if (!btrfs_fs_incompat(fs_info, ZONED))
373 		return 0;
374 
375 	if (device->zone_info)
376 		return 0;
377 
378 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
379 	if (!zone_info)
380 		return -ENOMEM;
381 
382 	device->zone_info = zone_info;
383 
384 	if (!bdev_is_zoned(bdev)) {
385 		if (!fs_info->zone_size) {
386 			ret = calculate_emulated_zone_size(fs_info);
387 			if (ret)
388 				goto out;
389 		}
390 
391 		ASSERT(fs_info->zone_size);
392 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
393 	} else {
394 		zone_sectors = bdev_zone_sectors(bdev);
395 	}
396 
397 	ASSERT(is_power_of_two_u64(zone_sectors));
398 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
399 
400 	/* We reject devices with a zone size larger than 8GB */
401 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
402 		btrfs_err_in_rcu(fs_info,
403 		"zoned: %s: zone size %llu larger than supported maximum %llu",
404 				 rcu_str_deref(device->name),
405 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
406 		ret = -EINVAL;
407 		goto out;
408 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
409 		btrfs_err_in_rcu(fs_info,
410 		"zoned: %s: zone size %llu smaller than supported minimum %u",
411 				 rcu_str_deref(device->name),
412 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
413 		ret = -EINVAL;
414 		goto out;
415 	}
416 
417 	nr_sectors = bdev_nr_sectors(bdev);
418 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
419 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
420 	/*
421 	 * We limit max_zone_append_size also by max_segments *
422 	 * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
423 	 * since btrfs adds the pages one by one to a bio, and btrfs cannot
424 	 * increase the metadata reservation even if it increases the number of
425 	 * extents, it is safe to stick with the limit.
426 	 *
427 	 * With the zoned emulation, we can have non-zoned device on the zoned
428 	 * mode. In this case, we don't have a valid max zone append size. So,
429 	 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
430 	 */
431 	if (bdev_is_zoned(bdev)) {
432 		zone_info->max_zone_append_size = min_t(u64,
433 			(u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
434 			(u64)bdev_max_segments(bdev) << PAGE_SHIFT);
435 	} else {
436 		zone_info->max_zone_append_size =
437 			(u64)bdev_max_segments(bdev) << PAGE_SHIFT;
438 	}
439 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
440 		zone_info->nr_zones++;
441 
442 	max_active_zones = bdev_max_active_zones(bdev);
443 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
444 		btrfs_err_in_rcu(fs_info,
445 "zoned: %s: max active zones %u is too small, need at least %u active zones",
446 				 rcu_str_deref(device->name), max_active_zones,
447 				 BTRFS_MIN_ACTIVE_ZONES);
448 		ret = -EINVAL;
449 		goto out;
450 	}
451 	zone_info->max_active_zones = max_active_zones;
452 
453 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454 	if (!zone_info->seq_zones) {
455 		ret = -ENOMEM;
456 		goto out;
457 	}
458 
459 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
460 	if (!zone_info->empty_zones) {
461 		ret = -ENOMEM;
462 		goto out;
463 	}
464 
465 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
466 	if (!zone_info->active_zones) {
467 		ret = -ENOMEM;
468 		goto out;
469 	}
470 
471 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
472 	if (!zones) {
473 		ret = -ENOMEM;
474 		goto out;
475 	}
476 
477 	/*
478 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
479 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
480 	 * use the cache.
481 	 */
482 	if (populate_cache && bdev_is_zoned(device->bdev)) {
483 		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
484 						zone_info->nr_zones);
485 		if (!zone_info->zone_cache) {
486 			btrfs_err_in_rcu(device->fs_info,
487 				"zoned: failed to allocate zone cache for %s",
488 				rcu_str_deref(device->name));
489 			ret = -ENOMEM;
490 			goto out;
491 		}
492 	}
493 
494 	/* Get zones type */
495 	nactive = 0;
496 	while (sector < nr_sectors) {
497 		nr_zones = BTRFS_REPORT_NR_ZONES;
498 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
499 					  &nr_zones);
500 		if (ret)
501 			goto out;
502 
503 		for (i = 0; i < nr_zones; i++) {
504 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
505 				__set_bit(nreported, zone_info->seq_zones);
506 			switch (zones[i].cond) {
507 			case BLK_ZONE_COND_EMPTY:
508 				__set_bit(nreported, zone_info->empty_zones);
509 				break;
510 			case BLK_ZONE_COND_IMP_OPEN:
511 			case BLK_ZONE_COND_EXP_OPEN:
512 			case BLK_ZONE_COND_CLOSED:
513 				__set_bit(nreported, zone_info->active_zones);
514 				nactive++;
515 				break;
516 			}
517 			nreported++;
518 		}
519 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
520 	}
521 
522 	if (nreported != zone_info->nr_zones) {
523 		btrfs_err_in_rcu(device->fs_info,
524 				 "inconsistent number of zones on %s (%u/%u)",
525 				 rcu_str_deref(device->name), nreported,
526 				 zone_info->nr_zones);
527 		ret = -EIO;
528 		goto out;
529 	}
530 
531 	if (max_active_zones) {
532 		if (nactive > max_active_zones) {
533 			btrfs_err_in_rcu(device->fs_info,
534 			"zoned: %u active zones on %s exceeds max_active_zones %u",
535 					 nactive, rcu_str_deref(device->name),
536 					 max_active_zones);
537 			ret = -EIO;
538 			goto out;
539 		}
540 		atomic_set(&zone_info->active_zones_left,
541 			   max_active_zones - nactive);
542 		/* Overcommit does not work well with active zone tacking. */
543 		set_bit(BTRFS_FS_NO_OVERCOMMIT, &fs_info->flags);
544 	}
545 
546 	/* Validate superblock log */
547 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
548 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
549 		u32 sb_zone;
550 		u64 sb_wp;
551 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
552 
553 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
554 		if (sb_zone + 1 >= zone_info->nr_zones)
555 			continue;
556 
557 		ret = btrfs_get_dev_zones(device,
558 					  zone_start_physical(sb_zone, zone_info),
559 					  &zone_info->sb_zones[sb_pos],
560 					  &nr_zones);
561 		if (ret)
562 			goto out;
563 
564 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
565 			btrfs_err_in_rcu(device->fs_info,
566 	"zoned: failed to read super block log zone info at devid %llu zone %u",
567 					 device->devid, sb_zone);
568 			ret = -EUCLEAN;
569 			goto out;
570 		}
571 
572 		/*
573 		 * If zones[0] is conventional, always use the beginning of the
574 		 * zone to record superblock. No need to validate in that case.
575 		 */
576 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
577 		    BLK_ZONE_TYPE_CONVENTIONAL)
578 			continue;
579 
580 		ret = sb_write_pointer(device->bdev,
581 				       &zone_info->sb_zones[sb_pos], &sb_wp);
582 		if (ret != -ENOENT && ret) {
583 			btrfs_err_in_rcu(device->fs_info,
584 			"zoned: super block log zone corrupted devid %llu zone %u",
585 					 device->devid, sb_zone);
586 			ret = -EUCLEAN;
587 			goto out;
588 		}
589 	}
590 
591 
592 	kvfree(zones);
593 
594 	switch (bdev_zoned_model(bdev)) {
595 	case BLK_ZONED_HM:
596 		model = "host-managed zoned";
597 		emulated = "";
598 		break;
599 	case BLK_ZONED_HA:
600 		model = "host-aware zoned";
601 		emulated = "";
602 		break;
603 	case BLK_ZONED_NONE:
604 		model = "regular";
605 		emulated = "emulated ";
606 		break;
607 	default:
608 		/* Just in case */
609 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
610 				 bdev_zoned_model(bdev),
611 				 rcu_str_deref(device->name));
612 		ret = -EOPNOTSUPP;
613 		goto out_free_zone_info;
614 	}
615 
616 	btrfs_info_in_rcu(fs_info,
617 		"%s block device %s, %u %szones of %llu bytes",
618 		model, rcu_str_deref(device->name), zone_info->nr_zones,
619 		emulated, zone_info->zone_size);
620 
621 	return 0;
622 
623 out:
624 	kvfree(zones);
625 out_free_zone_info:
626 	btrfs_destroy_dev_zone_info(device);
627 
628 	return ret;
629 }
630 
631 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
632 {
633 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
634 
635 	if (!zone_info)
636 		return;
637 
638 	bitmap_free(zone_info->active_zones);
639 	bitmap_free(zone_info->seq_zones);
640 	bitmap_free(zone_info->empty_zones);
641 	vfree(zone_info->zone_cache);
642 	kfree(zone_info);
643 	device->zone_info = NULL;
644 }
645 
646 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
647 {
648 	struct btrfs_zoned_device_info *zone_info;
649 
650 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
651 	if (!zone_info)
652 		return NULL;
653 
654 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
655 	if (!zone_info->seq_zones)
656 		goto out;
657 
658 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
659 		    zone_info->nr_zones);
660 
661 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
662 	if (!zone_info->empty_zones)
663 		goto out;
664 
665 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
666 		    zone_info->nr_zones);
667 
668 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
669 	if (!zone_info->active_zones)
670 		goto out;
671 
672 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
673 		    zone_info->nr_zones);
674 	zone_info->zone_cache = NULL;
675 
676 	return zone_info;
677 
678 out:
679 	bitmap_free(zone_info->seq_zones);
680 	bitmap_free(zone_info->empty_zones);
681 	bitmap_free(zone_info->active_zones);
682 	kfree(zone_info);
683 	return NULL;
684 }
685 
686 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
687 		       struct blk_zone *zone)
688 {
689 	unsigned int nr_zones = 1;
690 	int ret;
691 
692 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
693 	if (ret != 0 || !nr_zones)
694 		return ret ? ret : -EIO;
695 
696 	return 0;
697 }
698 
699 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
700 {
701 	struct btrfs_device *device;
702 
703 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
704 		if (device->bdev &&
705 		    bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
706 			btrfs_err(fs_info,
707 				"zoned: mode not enabled but zoned device found: %pg",
708 				device->bdev);
709 			return -EINVAL;
710 		}
711 	}
712 
713 	return 0;
714 }
715 
716 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
717 {
718 	struct btrfs_device *device;
719 	u64 zone_size = 0;
720 	u64 max_zone_append_size = 0;
721 	int ret;
722 
723 	/*
724 	 * Host-Managed devices can't be used without the ZONED flag.  With the
725 	 * ZONED all devices can be used, using zone emulation if required.
726 	 */
727 	if (!btrfs_fs_incompat(fs_info, ZONED))
728 		return btrfs_check_for_zoned_device(fs_info);
729 
730 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
731 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
732 
733 		if (!device->bdev)
734 			continue;
735 
736 		if (!zone_size) {
737 			zone_size = zone_info->zone_size;
738 		} else if (zone_info->zone_size != zone_size) {
739 			btrfs_err(fs_info,
740 		"zoned: unequal block device zone sizes: have %llu found %llu",
741 				  zone_info->zone_size, zone_size);
742 			return -EINVAL;
743 		}
744 		if (!max_zone_append_size ||
745 		    (zone_info->max_zone_append_size &&
746 		     zone_info->max_zone_append_size < max_zone_append_size))
747 			max_zone_append_size = zone_info->max_zone_append_size;
748 	}
749 
750 	/*
751 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
752 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
753 	 * check the alignment here.
754 	 */
755 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
756 		btrfs_err(fs_info,
757 			  "zoned: zone size %llu not aligned to stripe %u",
758 			  zone_size, BTRFS_STRIPE_LEN);
759 		return -EINVAL;
760 	}
761 
762 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
763 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
764 		return -EINVAL;
765 	}
766 
767 	fs_info->zone_size = zone_size;
768 	fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
769 						   fs_info->sectorsize);
770 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
771 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
772 		fs_info->max_extent_size = fs_info->max_zone_append_size;
773 
774 	/*
775 	 * Check mount options here, because we might change fs_info->zoned
776 	 * from fs_info->zone_size.
777 	 */
778 	ret = btrfs_check_mountopts_zoned(fs_info);
779 	if (ret)
780 		return ret;
781 
782 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
783 	return 0;
784 }
785 
786 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
787 {
788 	if (!btrfs_is_zoned(info))
789 		return 0;
790 
791 	/*
792 	 * Space cache writing is not COWed. Disable that to avoid write errors
793 	 * in sequential zones.
794 	 */
795 	if (btrfs_test_opt(info, SPACE_CACHE)) {
796 		btrfs_err(info, "zoned: space cache v1 is not supported");
797 		return -EINVAL;
798 	}
799 
800 	if (btrfs_test_opt(info, NODATACOW)) {
801 		btrfs_err(info, "zoned: NODATACOW not supported");
802 		return -EINVAL;
803 	}
804 
805 	return 0;
806 }
807 
808 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
809 			   int rw, u64 *bytenr_ret)
810 {
811 	u64 wp;
812 	int ret;
813 
814 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
815 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
816 		return 0;
817 	}
818 
819 	ret = sb_write_pointer(bdev, zones, &wp);
820 	if (ret != -ENOENT && ret < 0)
821 		return ret;
822 
823 	if (rw == WRITE) {
824 		struct blk_zone *reset = NULL;
825 
826 		if (wp == zones[0].start << SECTOR_SHIFT)
827 			reset = &zones[0];
828 		else if (wp == zones[1].start << SECTOR_SHIFT)
829 			reset = &zones[1];
830 
831 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
832 			ASSERT(sb_zone_is_full(reset));
833 
834 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
835 					       reset->start, reset->len,
836 					       GFP_NOFS);
837 			if (ret)
838 				return ret;
839 
840 			reset->cond = BLK_ZONE_COND_EMPTY;
841 			reset->wp = reset->start;
842 		}
843 	} else if (ret != -ENOENT) {
844 		/*
845 		 * For READ, we want the previous one. Move write pointer to
846 		 * the end of a zone, if it is at the head of a zone.
847 		 */
848 		u64 zone_end = 0;
849 
850 		if (wp == zones[0].start << SECTOR_SHIFT)
851 			zone_end = zones[1].start + zones[1].capacity;
852 		else if (wp == zones[1].start << SECTOR_SHIFT)
853 			zone_end = zones[0].start + zones[0].capacity;
854 		if (zone_end)
855 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
856 					BTRFS_SUPER_INFO_SIZE);
857 
858 		wp -= BTRFS_SUPER_INFO_SIZE;
859 	}
860 
861 	*bytenr_ret = wp;
862 	return 0;
863 
864 }
865 
866 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
867 			       u64 *bytenr_ret)
868 {
869 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
870 	sector_t zone_sectors;
871 	u32 sb_zone;
872 	int ret;
873 	u8 zone_sectors_shift;
874 	sector_t nr_sectors;
875 	u32 nr_zones;
876 
877 	if (!bdev_is_zoned(bdev)) {
878 		*bytenr_ret = btrfs_sb_offset(mirror);
879 		return 0;
880 	}
881 
882 	ASSERT(rw == READ || rw == WRITE);
883 
884 	zone_sectors = bdev_zone_sectors(bdev);
885 	if (!is_power_of_2(zone_sectors))
886 		return -EINVAL;
887 	zone_sectors_shift = ilog2(zone_sectors);
888 	nr_sectors = bdev_nr_sectors(bdev);
889 	nr_zones = nr_sectors >> zone_sectors_shift;
890 
891 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
892 	if (sb_zone + 1 >= nr_zones)
893 		return -ENOENT;
894 
895 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
896 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
897 				  zones);
898 	if (ret < 0)
899 		return ret;
900 	if (ret != BTRFS_NR_SB_LOG_ZONES)
901 		return -EIO;
902 
903 	return sb_log_location(bdev, zones, rw, bytenr_ret);
904 }
905 
906 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
907 			  u64 *bytenr_ret)
908 {
909 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
910 	u32 zone_num;
911 
912 	/*
913 	 * For a zoned filesystem on a non-zoned block device, use the same
914 	 * super block locations as regular filesystem. Doing so, the super
915 	 * block can always be retrieved and the zoned flag of the volume
916 	 * detected from the super block information.
917 	 */
918 	if (!bdev_is_zoned(device->bdev)) {
919 		*bytenr_ret = btrfs_sb_offset(mirror);
920 		return 0;
921 	}
922 
923 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
924 	if (zone_num + 1 >= zinfo->nr_zones)
925 		return -ENOENT;
926 
927 	return sb_log_location(device->bdev,
928 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
929 			       rw, bytenr_ret);
930 }
931 
932 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
933 				  int mirror)
934 {
935 	u32 zone_num;
936 
937 	if (!zinfo)
938 		return false;
939 
940 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
941 	if (zone_num + 1 >= zinfo->nr_zones)
942 		return false;
943 
944 	if (!test_bit(zone_num, zinfo->seq_zones))
945 		return false;
946 
947 	return true;
948 }
949 
950 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
951 {
952 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
953 	struct blk_zone *zone;
954 	int i;
955 
956 	if (!is_sb_log_zone(zinfo, mirror))
957 		return 0;
958 
959 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
960 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
961 		/* Advance the next zone */
962 		if (zone->cond == BLK_ZONE_COND_FULL) {
963 			zone++;
964 			continue;
965 		}
966 
967 		if (zone->cond == BLK_ZONE_COND_EMPTY)
968 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
969 
970 		zone->wp += SUPER_INFO_SECTORS;
971 
972 		if (sb_zone_is_full(zone)) {
973 			/*
974 			 * No room left to write new superblock. Since
975 			 * superblock is written with REQ_SYNC, it is safe to
976 			 * finish the zone now.
977 			 *
978 			 * If the write pointer is exactly at the capacity,
979 			 * explicit ZONE_FINISH is not necessary.
980 			 */
981 			if (zone->wp != zone->start + zone->capacity) {
982 				int ret;
983 
984 				ret = blkdev_zone_mgmt(device->bdev,
985 						REQ_OP_ZONE_FINISH, zone->start,
986 						zone->len, GFP_NOFS);
987 				if (ret)
988 					return ret;
989 			}
990 
991 			zone->wp = zone->start + zone->len;
992 			zone->cond = BLK_ZONE_COND_FULL;
993 		}
994 		return 0;
995 	}
996 
997 	/* All the zones are FULL. Should not reach here. */
998 	ASSERT(0);
999 	return -EIO;
1000 }
1001 
1002 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1003 {
1004 	sector_t zone_sectors;
1005 	sector_t nr_sectors;
1006 	u8 zone_sectors_shift;
1007 	u32 sb_zone;
1008 	u32 nr_zones;
1009 
1010 	zone_sectors = bdev_zone_sectors(bdev);
1011 	zone_sectors_shift = ilog2(zone_sectors);
1012 	nr_sectors = bdev_nr_sectors(bdev);
1013 	nr_zones = nr_sectors >> zone_sectors_shift;
1014 
1015 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1016 	if (sb_zone + 1 >= nr_zones)
1017 		return -ENOENT;
1018 
1019 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1020 				zone_start_sector(sb_zone, bdev),
1021 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1022 }
1023 
1024 /*
1025  * Find allocatable zones within a given region.
1026  *
1027  * @device:	the device to allocate a region on
1028  * @hole_start: the position of the hole to allocate the region
1029  * @num_bytes:	size of wanted region
1030  * @hole_end:	the end of the hole
1031  * @return:	position of allocatable zones
1032  *
1033  * Allocatable region should not contain any superblock locations.
1034  */
1035 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1036 				 u64 hole_end, u64 num_bytes)
1037 {
1038 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1039 	const u8 shift = zinfo->zone_size_shift;
1040 	u64 nzones = num_bytes >> shift;
1041 	u64 pos = hole_start;
1042 	u64 begin, end;
1043 	bool have_sb;
1044 	int i;
1045 
1046 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1047 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1048 
1049 	while (pos < hole_end) {
1050 		begin = pos >> shift;
1051 		end = begin + nzones;
1052 
1053 		if (end > zinfo->nr_zones)
1054 			return hole_end;
1055 
1056 		/* Check if zones in the region are all empty */
1057 		if (btrfs_dev_is_sequential(device, pos) &&
1058 		    find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1059 			pos += zinfo->zone_size;
1060 			continue;
1061 		}
1062 
1063 		have_sb = false;
1064 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1065 			u32 sb_zone;
1066 			u64 sb_pos;
1067 
1068 			sb_zone = sb_zone_number(shift, i);
1069 			if (!(end <= sb_zone ||
1070 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1071 				have_sb = true;
1072 				pos = zone_start_physical(
1073 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1074 				break;
1075 			}
1076 
1077 			/* We also need to exclude regular superblock positions */
1078 			sb_pos = btrfs_sb_offset(i);
1079 			if (!(pos + num_bytes <= sb_pos ||
1080 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1081 				have_sb = true;
1082 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1083 					    zinfo->zone_size);
1084 				break;
1085 			}
1086 		}
1087 		if (!have_sb)
1088 			break;
1089 	}
1090 
1091 	return pos;
1092 }
1093 
1094 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1095 {
1096 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1097 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1098 
1099 	/* We can use any number of zones */
1100 	if (zone_info->max_active_zones == 0)
1101 		return true;
1102 
1103 	if (!test_bit(zno, zone_info->active_zones)) {
1104 		/* Active zone left? */
1105 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1106 			return false;
1107 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1108 			/* Someone already set the bit */
1109 			atomic_inc(&zone_info->active_zones_left);
1110 		}
1111 	}
1112 
1113 	return true;
1114 }
1115 
1116 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1117 {
1118 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1119 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1120 
1121 	/* We can use any number of zones */
1122 	if (zone_info->max_active_zones == 0)
1123 		return;
1124 
1125 	if (test_and_clear_bit(zno, zone_info->active_zones))
1126 		atomic_inc(&zone_info->active_zones_left);
1127 }
1128 
1129 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1130 			    u64 length, u64 *bytes)
1131 {
1132 	int ret;
1133 
1134 	*bytes = 0;
1135 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1136 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1137 			       GFP_NOFS);
1138 	if (ret)
1139 		return ret;
1140 
1141 	*bytes = length;
1142 	while (length) {
1143 		btrfs_dev_set_zone_empty(device, physical);
1144 		btrfs_dev_clear_active_zone(device, physical);
1145 		physical += device->zone_info->zone_size;
1146 		length -= device->zone_info->zone_size;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1153 {
1154 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1155 	const u8 shift = zinfo->zone_size_shift;
1156 	unsigned long begin = start >> shift;
1157 	unsigned long end = (start + size) >> shift;
1158 	u64 pos;
1159 	int ret;
1160 
1161 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1162 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1163 
1164 	if (end > zinfo->nr_zones)
1165 		return -ERANGE;
1166 
1167 	/* All the zones are conventional */
1168 	if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1169 		return 0;
1170 
1171 	/* All the zones are sequential and empty */
1172 	if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1173 	    find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1174 		return 0;
1175 
1176 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1177 		u64 reset_bytes;
1178 
1179 		if (!btrfs_dev_is_sequential(device, pos) ||
1180 		    btrfs_dev_is_empty_zone(device, pos))
1181 			continue;
1182 
1183 		/* Free regions should be empty */
1184 		btrfs_warn_in_rcu(
1185 			device->fs_info,
1186 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1187 			rcu_str_deref(device->name), device->devid, pos >> shift);
1188 		WARN_ON_ONCE(1);
1189 
1190 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1191 					      &reset_bytes);
1192 		if (ret)
1193 			return ret;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 /*
1200  * Calculate an allocation pointer from the extent allocation information
1201  * for a block group consist of conventional zones. It is pointed to the
1202  * end of the highest addressed extent in the block group as an allocation
1203  * offset.
1204  */
1205 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1206 				   u64 *offset_ret, bool new)
1207 {
1208 	struct btrfs_fs_info *fs_info = cache->fs_info;
1209 	struct btrfs_root *root;
1210 	struct btrfs_path *path;
1211 	struct btrfs_key key;
1212 	struct btrfs_key found_key;
1213 	int ret;
1214 	u64 length;
1215 
1216 	/*
1217 	 * Avoid  tree lookups for a new block group, there's no use for it.
1218 	 * It must always be 0.
1219 	 *
1220 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1221 	 * For new a block group, this function is called from
1222 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1223 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1224 	 * buffer locks to avoid deadlock.
1225 	 */
1226 	if (new) {
1227 		*offset_ret = 0;
1228 		return 0;
1229 	}
1230 
1231 	path = btrfs_alloc_path();
1232 	if (!path)
1233 		return -ENOMEM;
1234 
1235 	key.objectid = cache->start + cache->length;
1236 	key.type = 0;
1237 	key.offset = 0;
1238 
1239 	root = btrfs_extent_root(fs_info, key.objectid);
1240 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1241 	/* We should not find the exact match */
1242 	if (!ret)
1243 		ret = -EUCLEAN;
1244 	if (ret < 0)
1245 		goto out;
1246 
1247 	ret = btrfs_previous_extent_item(root, path, cache->start);
1248 	if (ret) {
1249 		if (ret == 1) {
1250 			ret = 0;
1251 			*offset_ret = 0;
1252 		}
1253 		goto out;
1254 	}
1255 
1256 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1257 
1258 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1259 		length = found_key.offset;
1260 	else
1261 		length = fs_info->nodesize;
1262 
1263 	if (!(found_key.objectid >= cache->start &&
1264 	       found_key.objectid + length <= cache->start + cache->length)) {
1265 		ret = -EUCLEAN;
1266 		goto out;
1267 	}
1268 	*offset_ret = found_key.objectid + length - cache->start;
1269 	ret = 0;
1270 
1271 out:
1272 	btrfs_free_path(path);
1273 	return ret;
1274 }
1275 
1276 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1277 {
1278 	struct btrfs_fs_info *fs_info = cache->fs_info;
1279 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1280 	struct extent_map *em;
1281 	struct map_lookup *map;
1282 	struct btrfs_device *device;
1283 	u64 logical = cache->start;
1284 	u64 length = cache->length;
1285 	int ret;
1286 	int i;
1287 	unsigned int nofs_flag;
1288 	u64 *alloc_offsets = NULL;
1289 	u64 *caps = NULL;
1290 	u64 *physical = NULL;
1291 	unsigned long *active = NULL;
1292 	u64 last_alloc = 0;
1293 	u32 num_sequential = 0, num_conventional = 0;
1294 
1295 	if (!btrfs_is_zoned(fs_info))
1296 		return 0;
1297 
1298 	/* Sanity check */
1299 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1300 		btrfs_err(fs_info,
1301 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1302 			  logical, length, fs_info->zone_size);
1303 		return -EIO;
1304 	}
1305 
1306 	/* Get the chunk mapping */
1307 	read_lock(&em_tree->lock);
1308 	em = lookup_extent_mapping(em_tree, logical, length);
1309 	read_unlock(&em_tree->lock);
1310 
1311 	if (!em)
1312 		return -EINVAL;
1313 
1314 	map = em->map_lookup;
1315 
1316 	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1317 	if (!cache->physical_map) {
1318 		ret = -ENOMEM;
1319 		goto out;
1320 	}
1321 
1322 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1323 	if (!alloc_offsets) {
1324 		ret = -ENOMEM;
1325 		goto out;
1326 	}
1327 
1328 	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1329 	if (!caps) {
1330 		ret = -ENOMEM;
1331 		goto out;
1332 	}
1333 
1334 	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1335 	if (!physical) {
1336 		ret = -ENOMEM;
1337 		goto out;
1338 	}
1339 
1340 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1341 	if (!active) {
1342 		ret = -ENOMEM;
1343 		goto out;
1344 	}
1345 
1346 	for (i = 0; i < map->num_stripes; i++) {
1347 		bool is_sequential;
1348 		struct blk_zone zone;
1349 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1350 		int dev_replace_is_ongoing = 0;
1351 
1352 		device = map->stripes[i].dev;
1353 		physical[i] = map->stripes[i].physical;
1354 
1355 		if (device->bdev == NULL) {
1356 			alloc_offsets[i] = WP_MISSING_DEV;
1357 			continue;
1358 		}
1359 
1360 		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1361 		if (is_sequential)
1362 			num_sequential++;
1363 		else
1364 			num_conventional++;
1365 
1366 		/*
1367 		 * Consider a zone as active if we can allow any number of
1368 		 * active zones.
1369 		 */
1370 		if (!device->zone_info->max_active_zones)
1371 			__set_bit(i, active);
1372 
1373 		if (!is_sequential) {
1374 			alloc_offsets[i] = WP_CONVENTIONAL;
1375 			continue;
1376 		}
1377 
1378 		/*
1379 		 * This zone will be used for allocation, so mark this zone
1380 		 * non-empty.
1381 		 */
1382 		btrfs_dev_clear_zone_empty(device, physical[i]);
1383 
1384 		down_read(&dev_replace->rwsem);
1385 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1386 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1387 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1388 		up_read(&dev_replace->rwsem);
1389 
1390 		/*
1391 		 * The group is mapped to a sequential zone. Get the zone write
1392 		 * pointer to determine the allocation offset within the zone.
1393 		 */
1394 		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1395 		nofs_flag = memalloc_nofs_save();
1396 		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1397 		memalloc_nofs_restore(nofs_flag);
1398 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1399 			ret = 0;
1400 			alloc_offsets[i] = WP_MISSING_DEV;
1401 			continue;
1402 		} else if (ret) {
1403 			goto out;
1404 		}
1405 
1406 		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1407 			btrfs_err_in_rcu(fs_info,
1408 	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1409 				zone.start << SECTOR_SHIFT,
1410 				rcu_str_deref(device->name), device->devid);
1411 			ret = -EIO;
1412 			goto out;
1413 		}
1414 
1415 		caps[i] = (zone.capacity << SECTOR_SHIFT);
1416 
1417 		switch (zone.cond) {
1418 		case BLK_ZONE_COND_OFFLINE:
1419 		case BLK_ZONE_COND_READONLY:
1420 			btrfs_err(fs_info,
1421 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1422 				  physical[i] >> device->zone_info->zone_size_shift,
1423 				  rcu_str_deref(device->name), device->devid);
1424 			alloc_offsets[i] = WP_MISSING_DEV;
1425 			break;
1426 		case BLK_ZONE_COND_EMPTY:
1427 			alloc_offsets[i] = 0;
1428 			break;
1429 		case BLK_ZONE_COND_FULL:
1430 			alloc_offsets[i] = caps[i];
1431 			break;
1432 		default:
1433 			/* Partially used zone */
1434 			alloc_offsets[i] =
1435 					((zone.wp - zone.start) << SECTOR_SHIFT);
1436 			__set_bit(i, active);
1437 			break;
1438 		}
1439 	}
1440 
1441 	if (num_sequential > 0)
1442 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1443 
1444 	if (num_conventional > 0) {
1445 		/* Zone capacity is always zone size in emulation */
1446 		cache->zone_capacity = cache->length;
1447 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1448 		if (ret) {
1449 			btrfs_err(fs_info,
1450 			"zoned: failed to determine allocation offset of bg %llu",
1451 				  cache->start);
1452 			goto out;
1453 		} else if (map->num_stripes == num_conventional) {
1454 			cache->alloc_offset = last_alloc;
1455 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1456 			goto out;
1457 		}
1458 	}
1459 
1460 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1461 	case 0: /* single */
1462 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1463 			btrfs_err(fs_info,
1464 			"zoned: cannot recover write pointer for zone %llu",
1465 				physical[0]);
1466 			ret = -EIO;
1467 			goto out;
1468 		}
1469 		cache->alloc_offset = alloc_offsets[0];
1470 		cache->zone_capacity = caps[0];
1471 		if (test_bit(0, active))
1472 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1473 		break;
1474 	case BTRFS_BLOCK_GROUP_DUP:
1475 		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1476 			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1477 			ret = -EINVAL;
1478 			goto out;
1479 		}
1480 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1481 			btrfs_err(fs_info,
1482 			"zoned: cannot recover write pointer for zone %llu",
1483 				physical[0]);
1484 			ret = -EIO;
1485 			goto out;
1486 		}
1487 		if (alloc_offsets[1] == WP_MISSING_DEV) {
1488 			btrfs_err(fs_info,
1489 			"zoned: cannot recover write pointer for zone %llu",
1490 				physical[1]);
1491 			ret = -EIO;
1492 			goto out;
1493 		}
1494 		if (alloc_offsets[0] != alloc_offsets[1]) {
1495 			btrfs_err(fs_info,
1496 			"zoned: write pointer offset mismatch of zones in DUP profile");
1497 			ret = -EIO;
1498 			goto out;
1499 		}
1500 		if (test_bit(0, active) != test_bit(1, active)) {
1501 			if (!btrfs_zone_activate(cache)) {
1502 				ret = -EIO;
1503 				goto out;
1504 			}
1505 		} else {
1506 			if (test_bit(0, active))
1507 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1508 					&cache->runtime_flags);
1509 		}
1510 		cache->alloc_offset = alloc_offsets[0];
1511 		cache->zone_capacity = min(caps[0], caps[1]);
1512 		break;
1513 	case BTRFS_BLOCK_GROUP_RAID1:
1514 	case BTRFS_BLOCK_GROUP_RAID0:
1515 	case BTRFS_BLOCK_GROUP_RAID10:
1516 	case BTRFS_BLOCK_GROUP_RAID5:
1517 	case BTRFS_BLOCK_GROUP_RAID6:
1518 		/* non-single profiles are not supported yet */
1519 	default:
1520 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1521 			  btrfs_bg_type_to_raid_name(map->type));
1522 		ret = -EINVAL;
1523 		goto out;
1524 	}
1525 
1526 out:
1527 	if (cache->alloc_offset > fs_info->zone_size) {
1528 		btrfs_err(fs_info,
1529 			"zoned: invalid write pointer %llu in block group %llu",
1530 			cache->alloc_offset, cache->start);
1531 		ret = -EIO;
1532 	}
1533 
1534 	if (cache->alloc_offset > cache->zone_capacity) {
1535 		btrfs_err(fs_info,
1536 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1537 			  cache->alloc_offset, cache->zone_capacity,
1538 			  cache->start);
1539 		ret = -EIO;
1540 	}
1541 
1542 	/* An extent is allocated after the write pointer */
1543 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1544 		btrfs_err(fs_info,
1545 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1546 			  logical, last_alloc, cache->alloc_offset);
1547 		ret = -EIO;
1548 	}
1549 
1550 	if (!ret) {
1551 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1552 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1553 			btrfs_get_block_group(cache);
1554 			spin_lock(&fs_info->zone_active_bgs_lock);
1555 			list_add_tail(&cache->active_bg_list,
1556 				      &fs_info->zone_active_bgs);
1557 			spin_unlock(&fs_info->zone_active_bgs_lock);
1558 		}
1559 	} else {
1560 		kfree(cache->physical_map);
1561 		cache->physical_map = NULL;
1562 	}
1563 	bitmap_free(active);
1564 	kfree(physical);
1565 	kfree(caps);
1566 	kfree(alloc_offsets);
1567 	free_extent_map(em);
1568 
1569 	return ret;
1570 }
1571 
1572 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1573 {
1574 	u64 unusable, free;
1575 
1576 	if (!btrfs_is_zoned(cache->fs_info))
1577 		return;
1578 
1579 	WARN_ON(cache->bytes_super != 0);
1580 	unusable = (cache->alloc_offset - cache->used) +
1581 		   (cache->length - cache->zone_capacity);
1582 	free = cache->zone_capacity - cache->alloc_offset;
1583 
1584 	/* We only need ->free_space in ALLOC_SEQ block groups */
1585 	cache->cached = BTRFS_CACHE_FINISHED;
1586 	cache->free_space_ctl->free_space = free;
1587 	cache->zone_unusable = unusable;
1588 }
1589 
1590 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1591 			    struct extent_buffer *eb)
1592 {
1593 	struct btrfs_fs_info *fs_info = eb->fs_info;
1594 
1595 	if (!btrfs_is_zoned(fs_info) ||
1596 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1597 	    !list_empty(&eb->release_list))
1598 		return;
1599 
1600 	set_extent_buffer_dirty(eb);
1601 	set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1602 			       eb->start + eb->len - 1, EXTENT_DIRTY);
1603 	memzero_extent_buffer(eb, 0, eb->len);
1604 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1605 
1606 	spin_lock(&trans->releasing_ebs_lock);
1607 	list_add_tail(&eb->release_list, &trans->releasing_ebs);
1608 	spin_unlock(&trans->releasing_ebs_lock);
1609 	atomic_inc(&eb->refs);
1610 }
1611 
1612 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1613 {
1614 	spin_lock(&trans->releasing_ebs_lock);
1615 	while (!list_empty(&trans->releasing_ebs)) {
1616 		struct extent_buffer *eb;
1617 
1618 		eb = list_first_entry(&trans->releasing_ebs,
1619 				      struct extent_buffer, release_list);
1620 		list_del_init(&eb->release_list);
1621 		free_extent_buffer(eb);
1622 	}
1623 	spin_unlock(&trans->releasing_ebs_lock);
1624 }
1625 
1626 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1627 {
1628 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1629 	struct btrfs_block_group *cache;
1630 	bool ret = false;
1631 
1632 	if (!btrfs_is_zoned(fs_info))
1633 		return false;
1634 
1635 	if (!is_data_inode(&inode->vfs_inode))
1636 		return false;
1637 
1638 	/*
1639 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1640 	 * extent layout the relocation code has.
1641 	 * Furthermore we have set aside own block-group from which only the
1642 	 * relocation "process" can allocate and make sure only one process at a
1643 	 * time can add pages to an extent that gets relocated, so it's safe to
1644 	 * use regular REQ_OP_WRITE for this special case.
1645 	 */
1646 	if (btrfs_is_data_reloc_root(inode->root))
1647 		return false;
1648 
1649 	cache = btrfs_lookup_block_group(fs_info, start);
1650 	ASSERT(cache);
1651 	if (!cache)
1652 		return false;
1653 
1654 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1655 	btrfs_put_block_group(cache);
1656 
1657 	return ret;
1658 }
1659 
1660 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1661 				 struct bio *bio)
1662 {
1663 	struct btrfs_ordered_extent *ordered;
1664 	const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1665 
1666 	if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1667 		return;
1668 
1669 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1670 	if (WARN_ON(!ordered))
1671 		return;
1672 
1673 	ordered->physical = physical;
1674 	ordered->bdev = bio->bi_bdev;
1675 
1676 	btrfs_put_ordered_extent(ordered);
1677 }
1678 
1679 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1680 {
1681 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1682 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1683 	struct extent_map_tree *em_tree;
1684 	struct extent_map *em;
1685 	struct btrfs_ordered_sum *sum;
1686 	u64 orig_logical = ordered->disk_bytenr;
1687 	u64 *logical = NULL;
1688 	int nr, stripe_len;
1689 
1690 	/* Zoned devices should not have partitions. So, we can assume it is 0 */
1691 	ASSERT(!bdev_is_partition(ordered->bdev));
1692 	if (WARN_ON(!ordered->bdev))
1693 		return;
1694 
1695 	if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1696 				     ordered->physical, &logical, &nr,
1697 				     &stripe_len)))
1698 		goto out;
1699 
1700 	WARN_ON(nr != 1);
1701 
1702 	if (orig_logical == *logical)
1703 		goto out;
1704 
1705 	ordered->disk_bytenr = *logical;
1706 
1707 	em_tree = &inode->extent_tree;
1708 	write_lock(&em_tree->lock);
1709 	em = search_extent_mapping(em_tree, ordered->file_offset,
1710 				   ordered->num_bytes);
1711 	em->block_start = *logical;
1712 	free_extent_map(em);
1713 	write_unlock(&em_tree->lock);
1714 
1715 	list_for_each_entry(sum, &ordered->list, list) {
1716 		if (*logical < orig_logical)
1717 			sum->bytenr -= orig_logical - *logical;
1718 		else
1719 			sum->bytenr += *logical - orig_logical;
1720 	}
1721 
1722 out:
1723 	kfree(logical);
1724 }
1725 
1726 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1727 				    struct extent_buffer *eb,
1728 				    struct btrfs_block_group **cache_ret)
1729 {
1730 	struct btrfs_block_group *cache;
1731 	bool ret = true;
1732 
1733 	if (!btrfs_is_zoned(fs_info))
1734 		return true;
1735 
1736 	cache = btrfs_lookup_block_group(fs_info, eb->start);
1737 	if (!cache)
1738 		return true;
1739 
1740 	if (cache->meta_write_pointer != eb->start) {
1741 		btrfs_put_block_group(cache);
1742 		cache = NULL;
1743 		ret = false;
1744 	} else {
1745 		cache->meta_write_pointer = eb->start + eb->len;
1746 	}
1747 
1748 	*cache_ret = cache;
1749 
1750 	return ret;
1751 }
1752 
1753 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1754 				     struct extent_buffer *eb)
1755 {
1756 	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1757 		return;
1758 
1759 	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1760 	cache->meta_write_pointer = eb->start;
1761 }
1762 
1763 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1764 {
1765 	if (!btrfs_dev_is_sequential(device, physical))
1766 		return -EOPNOTSUPP;
1767 
1768 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1769 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1770 }
1771 
1772 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1773 			  struct blk_zone *zone)
1774 {
1775 	struct btrfs_io_context *bioc = NULL;
1776 	u64 mapped_length = PAGE_SIZE;
1777 	unsigned int nofs_flag;
1778 	int nmirrors;
1779 	int i, ret;
1780 
1781 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1782 			       &mapped_length, &bioc);
1783 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1784 		ret = -EIO;
1785 		goto out_put_bioc;
1786 	}
1787 
1788 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1789 		ret = -EINVAL;
1790 		goto out_put_bioc;
1791 	}
1792 
1793 	nofs_flag = memalloc_nofs_save();
1794 	nmirrors = (int)bioc->num_stripes;
1795 	for (i = 0; i < nmirrors; i++) {
1796 		u64 physical = bioc->stripes[i].physical;
1797 		struct btrfs_device *dev = bioc->stripes[i].dev;
1798 
1799 		/* Missing device */
1800 		if (!dev->bdev)
1801 			continue;
1802 
1803 		ret = btrfs_get_dev_zone(dev, physical, zone);
1804 		/* Failing device */
1805 		if (ret == -EIO || ret == -EOPNOTSUPP)
1806 			continue;
1807 		break;
1808 	}
1809 	memalloc_nofs_restore(nofs_flag);
1810 out_put_bioc:
1811 	btrfs_put_bioc(bioc);
1812 	return ret;
1813 }
1814 
1815 /*
1816  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1817  * filling zeros between @physical_pos to a write pointer of dev-replace
1818  * source device.
1819  */
1820 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1821 				    u64 physical_start, u64 physical_pos)
1822 {
1823 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1824 	struct blk_zone zone;
1825 	u64 length;
1826 	u64 wp;
1827 	int ret;
1828 
1829 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1830 		return 0;
1831 
1832 	ret = read_zone_info(fs_info, logical, &zone);
1833 	if (ret)
1834 		return ret;
1835 
1836 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1837 
1838 	if (physical_pos == wp)
1839 		return 0;
1840 
1841 	if (physical_pos > wp)
1842 		return -EUCLEAN;
1843 
1844 	length = wp - physical_pos;
1845 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1846 }
1847 
1848 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1849 					    u64 logical, u64 length)
1850 {
1851 	struct btrfs_device *device;
1852 	struct extent_map *em;
1853 	struct map_lookup *map;
1854 
1855 	em = btrfs_get_chunk_map(fs_info, logical, length);
1856 	if (IS_ERR(em))
1857 		return ERR_CAST(em);
1858 
1859 	map = em->map_lookup;
1860 	/* We only support single profile for now */
1861 	device = map->stripes[0].dev;
1862 
1863 	free_extent_map(em);
1864 
1865 	return device;
1866 }
1867 
1868 /*
1869  * Activate block group and underlying device zones
1870  *
1871  * @block_group: the block group to activate
1872  *
1873  * Return: true on success, false otherwise
1874  */
1875 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1876 {
1877 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1878 	struct btrfs_space_info *space_info = block_group->space_info;
1879 	struct map_lookup *map;
1880 	struct btrfs_device *device;
1881 	u64 physical;
1882 	bool ret;
1883 	int i;
1884 
1885 	if (!btrfs_is_zoned(block_group->fs_info))
1886 		return true;
1887 
1888 	map = block_group->physical_map;
1889 
1890 	spin_lock(&space_info->lock);
1891 	spin_lock(&block_group->lock);
1892 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1893 		ret = true;
1894 		goto out_unlock;
1895 	}
1896 
1897 	/* No space left */
1898 	if (btrfs_zoned_bg_is_full(block_group)) {
1899 		ret = false;
1900 		goto out_unlock;
1901 	}
1902 
1903 	for (i = 0; i < map->num_stripes; i++) {
1904 		device = map->stripes[i].dev;
1905 		physical = map->stripes[i].physical;
1906 
1907 		if (device->zone_info->max_active_zones == 0)
1908 			continue;
1909 
1910 		if (!btrfs_dev_set_active_zone(device, physical)) {
1911 			/* Cannot activate the zone */
1912 			ret = false;
1913 			goto out_unlock;
1914 		}
1915 	}
1916 
1917 	/* Successfully activated all the zones */
1918 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1919 	space_info->active_total_bytes += block_group->length;
1920 	spin_unlock(&block_group->lock);
1921 	btrfs_try_granting_tickets(fs_info, space_info);
1922 	spin_unlock(&space_info->lock);
1923 
1924 	/* For the active block group list */
1925 	btrfs_get_block_group(block_group);
1926 
1927 	spin_lock(&fs_info->zone_active_bgs_lock);
1928 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1929 	spin_unlock(&fs_info->zone_active_bgs_lock);
1930 
1931 	return true;
1932 
1933 out_unlock:
1934 	spin_unlock(&block_group->lock);
1935 	spin_unlock(&space_info->lock);
1936 	return ret;
1937 }
1938 
1939 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1940 {
1941 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1942 	const u64 end = block_group->start + block_group->length;
1943 	struct radix_tree_iter iter;
1944 	struct extent_buffer *eb;
1945 	void __rcu **slot;
1946 
1947 	rcu_read_lock();
1948 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1949 				 block_group->start >> fs_info->sectorsize_bits) {
1950 		eb = radix_tree_deref_slot(slot);
1951 		if (!eb)
1952 			continue;
1953 		if (radix_tree_deref_retry(eb)) {
1954 			slot = radix_tree_iter_retry(&iter);
1955 			continue;
1956 		}
1957 
1958 		if (eb->start < block_group->start)
1959 			continue;
1960 		if (eb->start >= end)
1961 			break;
1962 
1963 		slot = radix_tree_iter_resume(slot, &iter);
1964 		rcu_read_unlock();
1965 		wait_on_extent_buffer_writeback(eb);
1966 		rcu_read_lock();
1967 	}
1968 	rcu_read_unlock();
1969 }
1970 
1971 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1972 {
1973 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1974 	struct map_lookup *map;
1975 	const bool is_metadata = (block_group->flags &
1976 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1977 	int ret = 0;
1978 	int i;
1979 
1980 	spin_lock(&block_group->lock);
1981 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1982 		spin_unlock(&block_group->lock);
1983 		return 0;
1984 	}
1985 
1986 	/* Check if we have unwritten allocated space */
1987 	if (is_metadata &&
1988 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1989 		spin_unlock(&block_group->lock);
1990 		return -EAGAIN;
1991 	}
1992 
1993 	/*
1994 	 * If we are sure that the block group is full (= no more room left for
1995 	 * new allocation) and the IO for the last usable block is completed, we
1996 	 * don't need to wait for the other IOs. This holds because we ensure
1997 	 * the sequential IO submissions using the ZONE_APPEND command for data
1998 	 * and block_group->meta_write_pointer for metadata.
1999 	 */
2000 	if (!fully_written) {
2001 		spin_unlock(&block_group->lock);
2002 
2003 		ret = btrfs_inc_block_group_ro(block_group, false);
2004 		if (ret)
2005 			return ret;
2006 
2007 		/* Ensure all writes in this block group finish */
2008 		btrfs_wait_block_group_reservations(block_group);
2009 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2010 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2011 					 block_group->length);
2012 		/* Wait for extent buffers to be written. */
2013 		if (is_metadata)
2014 			wait_eb_writebacks(block_group);
2015 
2016 		spin_lock(&block_group->lock);
2017 
2018 		/*
2019 		 * Bail out if someone already deactivated the block group, or
2020 		 * allocated space is left in the block group.
2021 		 */
2022 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2023 			      &block_group->runtime_flags)) {
2024 			spin_unlock(&block_group->lock);
2025 			btrfs_dec_block_group_ro(block_group);
2026 			return 0;
2027 		}
2028 
2029 		if (block_group->reserved) {
2030 			spin_unlock(&block_group->lock);
2031 			btrfs_dec_block_group_ro(block_group);
2032 			return -EAGAIN;
2033 		}
2034 	}
2035 
2036 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2037 	block_group->alloc_offset = block_group->zone_capacity;
2038 	block_group->free_space_ctl->free_space = 0;
2039 	btrfs_clear_treelog_bg(block_group);
2040 	btrfs_clear_data_reloc_bg(block_group);
2041 	spin_unlock(&block_group->lock);
2042 
2043 	map = block_group->physical_map;
2044 	for (i = 0; i < map->num_stripes; i++) {
2045 		struct btrfs_device *device = map->stripes[i].dev;
2046 		const u64 physical = map->stripes[i].physical;
2047 
2048 		if (device->zone_info->max_active_zones == 0)
2049 			continue;
2050 
2051 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2052 				       physical >> SECTOR_SHIFT,
2053 				       device->zone_info->zone_size >> SECTOR_SHIFT,
2054 				       GFP_NOFS);
2055 
2056 		if (ret)
2057 			return ret;
2058 
2059 		btrfs_dev_clear_active_zone(device, physical);
2060 	}
2061 
2062 	if (!fully_written)
2063 		btrfs_dec_block_group_ro(block_group);
2064 
2065 	spin_lock(&fs_info->zone_active_bgs_lock);
2066 	ASSERT(!list_empty(&block_group->active_bg_list));
2067 	list_del_init(&block_group->active_bg_list);
2068 	spin_unlock(&fs_info->zone_active_bgs_lock);
2069 
2070 	/* For active_bg_list */
2071 	btrfs_put_block_group(block_group);
2072 
2073 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2074 
2075 	return 0;
2076 }
2077 
2078 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2079 {
2080 	if (!btrfs_is_zoned(block_group->fs_info))
2081 		return 0;
2082 
2083 	return do_zone_finish(block_group, false);
2084 }
2085 
2086 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2087 {
2088 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2089 	struct btrfs_device *device;
2090 	bool ret = false;
2091 
2092 	if (!btrfs_is_zoned(fs_info))
2093 		return true;
2094 
2095 	/* Check if there is a device with active zones left */
2096 	mutex_lock(&fs_info->chunk_mutex);
2097 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2098 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2099 
2100 		if (!device->bdev)
2101 			continue;
2102 
2103 		if (!zinfo->max_active_zones ||
2104 		    atomic_read(&zinfo->active_zones_left)) {
2105 			ret = true;
2106 			break;
2107 		}
2108 	}
2109 	mutex_unlock(&fs_info->chunk_mutex);
2110 
2111 	if (!ret)
2112 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2113 
2114 	return ret;
2115 }
2116 
2117 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2118 {
2119 	struct btrfs_block_group *block_group;
2120 	u64 min_alloc_bytes;
2121 
2122 	if (!btrfs_is_zoned(fs_info))
2123 		return;
2124 
2125 	block_group = btrfs_lookup_block_group(fs_info, logical);
2126 	ASSERT(block_group);
2127 
2128 	/* No MIXED_BG on zoned btrfs. */
2129 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2130 		min_alloc_bytes = fs_info->sectorsize;
2131 	else
2132 		min_alloc_bytes = fs_info->nodesize;
2133 
2134 	/* Bail out if we can allocate more data from this block group. */
2135 	if (logical + length + min_alloc_bytes <=
2136 	    block_group->start + block_group->zone_capacity)
2137 		goto out;
2138 
2139 	do_zone_finish(block_group, true);
2140 
2141 out:
2142 	btrfs_put_block_group(block_group);
2143 }
2144 
2145 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2146 {
2147 	struct btrfs_block_group *bg =
2148 		container_of(work, struct btrfs_block_group, zone_finish_work);
2149 
2150 	wait_on_extent_buffer_writeback(bg->last_eb);
2151 	free_extent_buffer(bg->last_eb);
2152 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2153 	btrfs_put_block_group(bg);
2154 }
2155 
2156 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2157 				   struct extent_buffer *eb)
2158 {
2159 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2160 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2161 		return;
2162 
2163 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2164 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2165 			  bg->start);
2166 		return;
2167 	}
2168 
2169 	/* For the work */
2170 	btrfs_get_block_group(bg);
2171 	atomic_inc(&eb->refs);
2172 	bg->last_eb = eb;
2173 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2174 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2175 }
2176 
2177 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2178 {
2179 	struct btrfs_fs_info *fs_info = bg->fs_info;
2180 
2181 	spin_lock(&fs_info->relocation_bg_lock);
2182 	if (fs_info->data_reloc_bg == bg->start)
2183 		fs_info->data_reloc_bg = 0;
2184 	spin_unlock(&fs_info->relocation_bg_lock);
2185 }
2186 
2187 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2188 {
2189 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2190 	struct btrfs_device *device;
2191 
2192 	if (!btrfs_is_zoned(fs_info))
2193 		return;
2194 
2195 	mutex_lock(&fs_devices->device_list_mutex);
2196 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2197 		if (device->zone_info) {
2198 			vfree(device->zone_info->zone_cache);
2199 			device->zone_info->zone_cache = NULL;
2200 		}
2201 	}
2202 	mutex_unlock(&fs_devices->device_list_mutex);
2203 }
2204 
2205 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2206 {
2207 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2208 	struct btrfs_device *device;
2209 	u64 used = 0;
2210 	u64 total = 0;
2211 	u64 factor;
2212 
2213 	ASSERT(btrfs_is_zoned(fs_info));
2214 
2215 	if (fs_info->bg_reclaim_threshold == 0)
2216 		return false;
2217 
2218 	mutex_lock(&fs_devices->device_list_mutex);
2219 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2220 		if (!device->bdev)
2221 			continue;
2222 
2223 		total += device->disk_total_bytes;
2224 		used += device->bytes_used;
2225 	}
2226 	mutex_unlock(&fs_devices->device_list_mutex);
2227 
2228 	factor = div64_u64(used * 100, total);
2229 	return factor >= fs_info->bg_reclaim_threshold;
2230 }
2231 
2232 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2233 				       u64 length)
2234 {
2235 	struct btrfs_block_group *block_group;
2236 
2237 	if (!btrfs_is_zoned(fs_info))
2238 		return;
2239 
2240 	block_group = btrfs_lookup_block_group(fs_info, logical);
2241 	/* It should be called on a previous data relocation block group. */
2242 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2243 
2244 	spin_lock(&block_group->lock);
2245 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2246 		goto out;
2247 
2248 	/* All relocation extents are written. */
2249 	if (block_group->start + block_group->alloc_offset == logical + length) {
2250 		/* Now, release this block group for further allocations. */
2251 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2252 			  &block_group->runtime_flags);
2253 	}
2254 
2255 out:
2256 	spin_unlock(&block_group->lock);
2257 	btrfs_put_block_group(block_group);
2258 }
2259 
2260 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2261 {
2262 	struct btrfs_block_group *block_group;
2263 	struct btrfs_block_group *min_bg = NULL;
2264 	u64 min_avail = U64_MAX;
2265 	int ret;
2266 
2267 	spin_lock(&fs_info->zone_active_bgs_lock);
2268 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2269 			    active_bg_list) {
2270 		u64 avail;
2271 
2272 		spin_lock(&block_group->lock);
2273 		if (block_group->reserved ||
2274 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2275 			spin_unlock(&block_group->lock);
2276 			continue;
2277 		}
2278 
2279 		avail = block_group->zone_capacity - block_group->alloc_offset;
2280 		if (min_avail > avail) {
2281 			if (min_bg)
2282 				btrfs_put_block_group(min_bg);
2283 			min_bg = block_group;
2284 			min_avail = avail;
2285 			btrfs_get_block_group(min_bg);
2286 		}
2287 		spin_unlock(&block_group->lock);
2288 	}
2289 	spin_unlock(&fs_info->zone_active_bgs_lock);
2290 
2291 	if (!min_bg)
2292 		return 0;
2293 
2294 	ret = btrfs_zone_finish(min_bg);
2295 	btrfs_put_block_group(min_bg);
2296 
2297 	return ret < 0 ? ret : 1;
2298 }
2299 
2300 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2301 				struct btrfs_space_info *space_info,
2302 				bool do_finish)
2303 {
2304 	struct btrfs_block_group *bg;
2305 	int index;
2306 
2307 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2308 		return 0;
2309 
2310 	/* No more block groups to activate */
2311 	if (space_info->active_total_bytes == space_info->total_bytes)
2312 		return 0;
2313 
2314 	for (;;) {
2315 		int ret;
2316 		bool need_finish = false;
2317 
2318 		down_read(&space_info->groups_sem);
2319 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2320 			list_for_each_entry(bg, &space_info->block_groups[index],
2321 					    list) {
2322 				if (!spin_trylock(&bg->lock))
2323 					continue;
2324 				if (btrfs_zoned_bg_is_full(bg) ||
2325 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2326 					     &bg->runtime_flags)) {
2327 					spin_unlock(&bg->lock);
2328 					continue;
2329 				}
2330 				spin_unlock(&bg->lock);
2331 
2332 				if (btrfs_zone_activate(bg)) {
2333 					up_read(&space_info->groups_sem);
2334 					return 1;
2335 				}
2336 
2337 				need_finish = true;
2338 			}
2339 		}
2340 		up_read(&space_info->groups_sem);
2341 
2342 		if (!do_finish || !need_finish)
2343 			break;
2344 
2345 		ret = btrfs_zone_finish_one_bg(fs_info);
2346 		if (ret == 0)
2347 			break;
2348 		if (ret < 0)
2349 			return ret;
2350 	}
2351 
2352 	return 0;
2353 }
2354