1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "super.h"
19 #include "fs.h"
20 #include "accessors.h"
21 #include "bio.h"
22
23 /* Maximum number of zones to report per blkdev_report_zones() call */
24 #define BTRFS_REPORT_NR_ZONES 4096
25 /* Invalid allocation pointer value for missing devices */
26 #define WP_MISSING_DEV ((u64)-1)
27 /* Pseudo write pointer value for conventional zone */
28 #define WP_CONVENTIONAL ((u64)-2)
29
30 /*
31 * Location of the first zone of superblock logging zone pairs.
32 *
33 * - primary superblock: 0B (zone 0)
34 * - first copy: 512G (zone starting at that offset)
35 * - second copy: 4T (zone starting at that offset)
36 */
37 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
38 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
39 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
40
41 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43
44 /* Number of superblock log zones */
45 #define BTRFS_NR_SB_LOG_ZONES 2
46
47 /*
48 * Minimum of active zones we need:
49 *
50 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52 * - 1 zone for tree-log dedicated block group
53 * - 1 zone for relocation
54 */
55 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
56
57 /*
58 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60 * We do not expect the zone size to become larger than 8GiB or smaller than
61 * 4MiB in the near future.
62 */
63 #define BTRFS_MAX_ZONE_SIZE SZ_8G
64 #define BTRFS_MIN_ZONE_SIZE SZ_4M
65
66 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67
68 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
69 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
70
sb_zone_is_full(const struct blk_zone * zone)71 static inline bool sb_zone_is_full(const struct blk_zone *zone)
72 {
73 return (zone->cond == BLK_ZONE_COND_FULL) ||
74 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75 }
76
copy_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)77 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
78 {
79 struct blk_zone *zones = data;
80
81 memcpy(&zones[idx], zone, sizeof(*zone));
82
83 return 0;
84 }
85
sb_write_pointer(struct block_device * bdev,struct blk_zone * zones,u64 * wp_ret)86 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
87 u64 *wp_ret)
88 {
89 bool empty[BTRFS_NR_SB_LOG_ZONES];
90 bool full[BTRFS_NR_SB_LOG_ZONES];
91 sector_t sector;
92 int i;
93
94 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
95 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
96 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
97 full[i] = sb_zone_is_full(&zones[i]);
98 }
99
100 /*
101 * Possible states of log buffer zones
102 *
103 * Empty[0] In use[0] Full[0]
104 * Empty[1] * 0 1
105 * In use[1] x x 1
106 * Full[1] 0 0 C
107 *
108 * Log position:
109 * *: Special case, no superblock is written
110 * 0: Use write pointer of zones[0]
111 * 1: Use write pointer of zones[1]
112 * C: Compare super blocks from zones[0] and zones[1], use the latest
113 * one determined by generation
114 * x: Invalid state
115 */
116
117 if (empty[0] && empty[1]) {
118 /* Special case to distinguish no superblock to read */
119 *wp_ret = zones[0].start << SECTOR_SHIFT;
120 return -ENOENT;
121 } else if (full[0] && full[1]) {
122 /* Compare two super blocks */
123 struct address_space *mapping = bdev->bd_inode->i_mapping;
124 struct page *page[BTRFS_NR_SB_LOG_ZONES];
125 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
126 int i;
127
128 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131 BTRFS_SUPER_INFO_SIZE;
132
133 page[i] = read_cache_page_gfp(mapping,
134 bytenr >> PAGE_SHIFT, GFP_NOFS);
135 if (IS_ERR(page[i])) {
136 if (i == 1)
137 btrfs_release_disk_super(super[0]);
138 return PTR_ERR(page[i]);
139 }
140 super[i] = page_address(page[i]);
141 }
142
143 if (btrfs_super_generation(super[0]) >
144 btrfs_super_generation(super[1]))
145 sector = zones[1].start;
146 else
147 sector = zones[0].start;
148
149 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150 btrfs_release_disk_super(super[i]);
151 } else if (!full[0] && (empty[1] || full[1])) {
152 sector = zones[0].wp;
153 } else if (full[0]) {
154 sector = zones[1].wp;
155 } else {
156 return -EUCLEAN;
157 }
158 *wp_ret = sector << SECTOR_SHIFT;
159 return 0;
160 }
161
162 /*
163 * Get the first zone number of the superblock mirror
164 */
sb_zone_number(int shift,int mirror)165 static inline u32 sb_zone_number(int shift, int mirror)
166 {
167 u64 zone = U64_MAX;
168
169 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170 switch (mirror) {
171 case 0: zone = 0; break;
172 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174 }
175
176 ASSERT(zone <= U32_MAX);
177
178 return (u32)zone;
179 }
180
zone_start_sector(u32 zone_number,struct block_device * bdev)181 static inline sector_t zone_start_sector(u32 zone_number,
182 struct block_device *bdev)
183 {
184 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185 }
186
zone_start_physical(u32 zone_number,struct btrfs_zoned_device_info * zone_info)187 static inline u64 zone_start_physical(u32 zone_number,
188 struct btrfs_zoned_device_info *zone_info)
189 {
190 return (u64)zone_number << zone_info->zone_size_shift;
191 }
192
193 /*
194 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195 * device into static sized chunks and fake a conventional zone on each of
196 * them.
197 */
emulate_report_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int nr_zones)198 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199 struct blk_zone *zones, unsigned int nr_zones)
200 {
201 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202 sector_t bdev_size = bdev_nr_sectors(device->bdev);
203 unsigned int i;
204
205 pos >>= SECTOR_SHIFT;
206 for (i = 0; i < nr_zones; i++) {
207 zones[i].start = i * zone_sectors + pos;
208 zones[i].len = zone_sectors;
209 zones[i].capacity = zone_sectors;
210 zones[i].wp = zones[i].start + zone_sectors;
211 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212 zones[i].cond = BLK_ZONE_COND_NOT_WP;
213
214 if (zones[i].wp >= bdev_size) {
215 i++;
216 break;
217 }
218 }
219
220 return i;
221 }
222
btrfs_get_dev_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int * nr_zones)223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224 struct blk_zone *zones, unsigned int *nr_zones)
225 {
226 struct btrfs_zoned_device_info *zinfo = device->zone_info;
227 int ret;
228
229 if (!*nr_zones)
230 return 0;
231
232 if (!bdev_is_zoned(device->bdev)) {
233 ret = emulate_report_zones(device, pos, zones, *nr_zones);
234 *nr_zones = ret;
235 return 0;
236 }
237
238 /* Check cache */
239 if (zinfo->zone_cache) {
240 unsigned int i;
241 u32 zno;
242
243 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244 zno = pos >> zinfo->zone_size_shift;
245 /*
246 * We cannot report zones beyond the zone end. So, it is OK to
247 * cap *nr_zones to at the end.
248 */
249 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250
251 for (i = 0; i < *nr_zones; i++) {
252 struct blk_zone *zone_info;
253
254 zone_info = &zinfo->zone_cache[zno + i];
255 if (!zone_info->len)
256 break;
257 }
258
259 if (i == *nr_zones) {
260 /* Cache hit on all the zones */
261 memcpy(zones, zinfo->zone_cache + zno,
262 sizeof(*zinfo->zone_cache) * *nr_zones);
263 return 0;
264 }
265 }
266
267 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268 copy_zone_info_cb, zones);
269 if (ret < 0) {
270 btrfs_err_in_rcu(device->fs_info,
271 "zoned: failed to read zone %llu on %s (devid %llu)",
272 pos, rcu_str_deref(device->name),
273 device->devid);
274 return ret;
275 }
276 *nr_zones = ret;
277 if (!ret)
278 return -EIO;
279
280 /* Populate cache */
281 if (zinfo->zone_cache) {
282 u32 zno = pos >> zinfo->zone_size_shift;
283
284 memcpy(zinfo->zone_cache + zno, zones,
285 sizeof(*zinfo->zone_cache) * *nr_zones);
286 }
287
288 return 0;
289 }
290
291 /* The emulated zone size is determined from the size of device extent */
calculate_emulated_zone_size(struct btrfs_fs_info * fs_info)292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293 {
294 struct btrfs_path *path;
295 struct btrfs_root *root = fs_info->dev_root;
296 struct btrfs_key key;
297 struct extent_buffer *leaf;
298 struct btrfs_dev_extent *dext;
299 int ret = 0;
300
301 key.objectid = 1;
302 key.type = BTRFS_DEV_EXTENT_KEY;
303 key.offset = 0;
304
305 path = btrfs_alloc_path();
306 if (!path)
307 return -ENOMEM;
308
309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310 if (ret < 0)
311 goto out;
312
313 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314 ret = btrfs_next_leaf(root, path);
315 if (ret < 0)
316 goto out;
317 /* No dev extents at all? Not good */
318 if (ret > 0) {
319 ret = -EUCLEAN;
320 goto out;
321 }
322 }
323
324 leaf = path->nodes[0];
325 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327 ret = 0;
328
329 out:
330 btrfs_free_path(path);
331
332 return ret;
333 }
334
btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info * fs_info)335 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
336 {
337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
338 struct btrfs_device *device;
339 int ret = 0;
340
341 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
342 if (!btrfs_fs_incompat(fs_info, ZONED))
343 return 0;
344
345 mutex_lock(&fs_devices->device_list_mutex);
346 list_for_each_entry(device, &fs_devices->devices, dev_list) {
347 /* We can skip reading of zone info for missing devices */
348 if (!device->bdev)
349 continue;
350
351 ret = btrfs_get_dev_zone_info(device, true);
352 if (ret)
353 break;
354 }
355 mutex_unlock(&fs_devices->device_list_mutex);
356
357 return ret;
358 }
359
btrfs_get_dev_zone_info(struct btrfs_device * device,bool populate_cache)360 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
361 {
362 struct btrfs_fs_info *fs_info = device->fs_info;
363 struct btrfs_zoned_device_info *zone_info = NULL;
364 struct block_device *bdev = device->bdev;
365 unsigned int max_active_zones;
366 unsigned int nactive;
367 sector_t nr_sectors;
368 sector_t sector = 0;
369 struct blk_zone *zones = NULL;
370 unsigned int i, nreported = 0, nr_zones;
371 sector_t zone_sectors;
372 char *model, *emulated;
373 int ret;
374
375 /*
376 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
377 * yet be set.
378 */
379 if (!btrfs_fs_incompat(fs_info, ZONED))
380 return 0;
381
382 if (device->zone_info)
383 return 0;
384
385 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
386 if (!zone_info)
387 return -ENOMEM;
388
389 device->zone_info = zone_info;
390
391 if (!bdev_is_zoned(bdev)) {
392 if (!fs_info->zone_size) {
393 ret = calculate_emulated_zone_size(fs_info);
394 if (ret)
395 goto out;
396 }
397
398 ASSERT(fs_info->zone_size);
399 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
400 } else {
401 zone_sectors = bdev_zone_sectors(bdev);
402 }
403
404 ASSERT(is_power_of_two_u64(zone_sectors));
405 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
406
407 /* We reject devices with a zone size larger than 8GB */
408 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
409 btrfs_err_in_rcu(fs_info,
410 "zoned: %s: zone size %llu larger than supported maximum %llu",
411 rcu_str_deref(device->name),
412 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
413 ret = -EINVAL;
414 goto out;
415 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
416 btrfs_err_in_rcu(fs_info,
417 "zoned: %s: zone size %llu smaller than supported minimum %u",
418 rcu_str_deref(device->name),
419 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
420 ret = -EINVAL;
421 goto out;
422 }
423
424 nr_sectors = bdev_nr_sectors(bdev);
425 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
426 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
427 if (!IS_ALIGNED(nr_sectors, zone_sectors))
428 zone_info->nr_zones++;
429
430 max_active_zones = bdev_max_active_zones(bdev);
431 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
432 btrfs_err_in_rcu(fs_info,
433 "zoned: %s: max active zones %u is too small, need at least %u active zones",
434 rcu_str_deref(device->name), max_active_zones,
435 BTRFS_MIN_ACTIVE_ZONES);
436 ret = -EINVAL;
437 goto out;
438 }
439 zone_info->max_active_zones = max_active_zones;
440
441 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
442 if (!zone_info->seq_zones) {
443 ret = -ENOMEM;
444 goto out;
445 }
446
447 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
448 if (!zone_info->empty_zones) {
449 ret = -ENOMEM;
450 goto out;
451 }
452
453 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454 if (!zone_info->active_zones) {
455 ret = -ENOMEM;
456 goto out;
457 }
458
459 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
460 if (!zones) {
461 ret = -ENOMEM;
462 goto out;
463 }
464
465 /*
466 * Enable zone cache only for a zoned device. On a non-zoned device, we
467 * fill the zone info with emulated CONVENTIONAL zones, so no need to
468 * use the cache.
469 */
470 if (populate_cache && bdev_is_zoned(device->bdev)) {
471 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
472 sizeof(struct blk_zone));
473 if (!zone_info->zone_cache) {
474 btrfs_err_in_rcu(device->fs_info,
475 "zoned: failed to allocate zone cache for %s",
476 rcu_str_deref(device->name));
477 ret = -ENOMEM;
478 goto out;
479 }
480 }
481
482 /* Get zones type */
483 nactive = 0;
484 while (sector < nr_sectors) {
485 nr_zones = BTRFS_REPORT_NR_ZONES;
486 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
487 &nr_zones);
488 if (ret)
489 goto out;
490
491 for (i = 0; i < nr_zones; i++) {
492 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
493 __set_bit(nreported, zone_info->seq_zones);
494 switch (zones[i].cond) {
495 case BLK_ZONE_COND_EMPTY:
496 __set_bit(nreported, zone_info->empty_zones);
497 break;
498 case BLK_ZONE_COND_IMP_OPEN:
499 case BLK_ZONE_COND_EXP_OPEN:
500 case BLK_ZONE_COND_CLOSED:
501 __set_bit(nreported, zone_info->active_zones);
502 nactive++;
503 break;
504 }
505 nreported++;
506 }
507 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
508 }
509
510 if (nreported != zone_info->nr_zones) {
511 btrfs_err_in_rcu(device->fs_info,
512 "inconsistent number of zones on %s (%u/%u)",
513 rcu_str_deref(device->name), nreported,
514 zone_info->nr_zones);
515 ret = -EIO;
516 goto out;
517 }
518
519 if (max_active_zones) {
520 if (nactive > max_active_zones) {
521 btrfs_err_in_rcu(device->fs_info,
522 "zoned: %u active zones on %s exceeds max_active_zones %u",
523 nactive, rcu_str_deref(device->name),
524 max_active_zones);
525 ret = -EIO;
526 goto out;
527 }
528 atomic_set(&zone_info->active_zones_left,
529 max_active_zones - nactive);
530 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
531 }
532
533 /* Validate superblock log */
534 nr_zones = BTRFS_NR_SB_LOG_ZONES;
535 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536 u32 sb_zone;
537 u64 sb_wp;
538 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539
540 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541 if (sb_zone + 1 >= zone_info->nr_zones)
542 continue;
543
544 ret = btrfs_get_dev_zones(device,
545 zone_start_physical(sb_zone, zone_info),
546 &zone_info->sb_zones[sb_pos],
547 &nr_zones);
548 if (ret)
549 goto out;
550
551 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552 btrfs_err_in_rcu(device->fs_info,
553 "zoned: failed to read super block log zone info at devid %llu zone %u",
554 device->devid, sb_zone);
555 ret = -EUCLEAN;
556 goto out;
557 }
558
559 /*
560 * If zones[0] is conventional, always use the beginning of the
561 * zone to record superblock. No need to validate in that case.
562 */
563 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564 BLK_ZONE_TYPE_CONVENTIONAL)
565 continue;
566
567 ret = sb_write_pointer(device->bdev,
568 &zone_info->sb_zones[sb_pos], &sb_wp);
569 if (ret != -ENOENT && ret) {
570 btrfs_err_in_rcu(device->fs_info,
571 "zoned: super block log zone corrupted devid %llu zone %u",
572 device->devid, sb_zone);
573 ret = -EUCLEAN;
574 goto out;
575 }
576 }
577
578
579 kvfree(zones);
580
581 switch (bdev_zoned_model(bdev)) {
582 case BLK_ZONED_HM:
583 model = "host-managed zoned";
584 emulated = "";
585 break;
586 case BLK_ZONED_HA:
587 model = "host-aware zoned";
588 emulated = "";
589 break;
590 case BLK_ZONED_NONE:
591 model = "regular";
592 emulated = "emulated ";
593 break;
594 default:
595 /* Just in case */
596 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
597 bdev_zoned_model(bdev),
598 rcu_str_deref(device->name));
599 ret = -EOPNOTSUPP;
600 goto out_free_zone_info;
601 }
602
603 btrfs_info_in_rcu(fs_info,
604 "%s block device %s, %u %szones of %llu bytes",
605 model, rcu_str_deref(device->name), zone_info->nr_zones,
606 emulated, zone_info->zone_size);
607
608 return 0;
609
610 out:
611 kvfree(zones);
612 out_free_zone_info:
613 btrfs_destroy_dev_zone_info(device);
614
615 return ret;
616 }
617
btrfs_destroy_dev_zone_info(struct btrfs_device * device)618 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
619 {
620 struct btrfs_zoned_device_info *zone_info = device->zone_info;
621
622 if (!zone_info)
623 return;
624
625 bitmap_free(zone_info->active_zones);
626 bitmap_free(zone_info->seq_zones);
627 bitmap_free(zone_info->empty_zones);
628 vfree(zone_info->zone_cache);
629 kfree(zone_info);
630 device->zone_info = NULL;
631 }
632
btrfs_clone_dev_zone_info(struct btrfs_device * orig_dev)633 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
634 {
635 struct btrfs_zoned_device_info *zone_info;
636
637 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
638 if (!zone_info)
639 return NULL;
640
641 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
642 if (!zone_info->seq_zones)
643 goto out;
644
645 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
646 zone_info->nr_zones);
647
648 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
649 if (!zone_info->empty_zones)
650 goto out;
651
652 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
653 zone_info->nr_zones);
654
655 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
656 if (!zone_info->active_zones)
657 goto out;
658
659 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
660 zone_info->nr_zones);
661 zone_info->zone_cache = NULL;
662
663 return zone_info;
664
665 out:
666 bitmap_free(zone_info->seq_zones);
667 bitmap_free(zone_info->empty_zones);
668 bitmap_free(zone_info->active_zones);
669 kfree(zone_info);
670 return NULL;
671 }
672
btrfs_get_dev_zone(struct btrfs_device * device,u64 pos,struct blk_zone * zone)673 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
674 struct blk_zone *zone)
675 {
676 unsigned int nr_zones = 1;
677 int ret;
678
679 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
680 if (ret != 0 || !nr_zones)
681 return ret ? ret : -EIO;
682
683 return 0;
684 }
685
btrfs_check_for_zoned_device(struct btrfs_fs_info * fs_info)686 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
687 {
688 struct btrfs_device *device;
689
690 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691 if (device->bdev &&
692 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
693 btrfs_err(fs_info,
694 "zoned: mode not enabled but zoned device found: %pg",
695 device->bdev);
696 return -EINVAL;
697 }
698 }
699
700 return 0;
701 }
702
btrfs_check_zoned_mode(struct btrfs_fs_info * fs_info)703 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
704 {
705 struct queue_limits *lim = &fs_info->limits;
706 struct btrfs_device *device;
707 u64 zone_size = 0;
708 int ret;
709
710 /*
711 * Host-Managed devices can't be used without the ZONED flag. With the
712 * ZONED all devices can be used, using zone emulation if required.
713 */
714 if (!btrfs_fs_incompat(fs_info, ZONED))
715 return btrfs_check_for_zoned_device(fs_info);
716
717 blk_set_stacking_limits(lim);
718
719 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
720 struct btrfs_zoned_device_info *zone_info = device->zone_info;
721
722 if (!device->bdev)
723 continue;
724
725 if (!zone_size) {
726 zone_size = zone_info->zone_size;
727 } else if (zone_info->zone_size != zone_size) {
728 btrfs_err(fs_info,
729 "zoned: unequal block device zone sizes: have %llu found %llu",
730 zone_info->zone_size, zone_size);
731 return -EINVAL;
732 }
733
734 /*
735 * With the zoned emulation, we can have non-zoned device on the
736 * zoned mode. In this case, we don't have a valid max zone
737 * append size.
738 */
739 if (bdev_is_zoned(device->bdev)) {
740 blk_stack_limits(lim,
741 &bdev_get_queue(device->bdev)->limits,
742 0);
743 }
744 }
745
746 /*
747 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
748 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
749 * check the alignment here.
750 */
751 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752 btrfs_err(fs_info,
753 "zoned: zone size %llu not aligned to stripe %u",
754 zone_size, BTRFS_STRIPE_LEN);
755 return -EINVAL;
756 }
757
758 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759 btrfs_err(fs_info, "zoned: mixed block groups not supported");
760 return -EINVAL;
761 }
762
763 fs_info->zone_size = zone_size;
764 /*
765 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
766 * Technically, we can have multiple pages per segment. But, since
767 * we add the pages one by one to a bio, and cannot increase the
768 * metadata reservation even if it increases the number of extents, it
769 * is safe to stick with the limit.
770 */
771 fs_info->max_zone_append_size = ALIGN_DOWN(
772 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
773 (u64)lim->max_sectors << SECTOR_SHIFT,
774 (u64)lim->max_segments << PAGE_SHIFT),
775 fs_info->sectorsize);
776 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
777 if (fs_info->max_zone_append_size < fs_info->max_extent_size)
778 fs_info->max_extent_size = fs_info->max_zone_append_size;
779
780 /*
781 * Check mount options here, because we might change fs_info->zoned
782 * from fs_info->zone_size.
783 */
784 ret = btrfs_check_mountopts_zoned(fs_info);
785 if (ret)
786 return ret;
787
788 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
789 return 0;
790 }
791
btrfs_check_mountopts_zoned(struct btrfs_fs_info * info)792 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
793 {
794 if (!btrfs_is_zoned(info))
795 return 0;
796
797 /*
798 * Space cache writing is not COWed. Disable that to avoid write errors
799 * in sequential zones.
800 */
801 if (btrfs_test_opt(info, SPACE_CACHE)) {
802 btrfs_err(info, "zoned: space cache v1 is not supported");
803 return -EINVAL;
804 }
805
806 if (btrfs_test_opt(info, NODATACOW)) {
807 btrfs_err(info, "zoned: NODATACOW not supported");
808 return -EINVAL;
809 }
810
811 btrfs_clear_and_info(info, DISCARD_ASYNC,
812 "zoned: async discard ignored and disabled for zoned mode");
813
814 return 0;
815 }
816
sb_log_location(struct block_device * bdev,struct blk_zone * zones,int rw,u64 * bytenr_ret)817 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
818 int rw, u64 *bytenr_ret)
819 {
820 u64 wp;
821 int ret;
822
823 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
824 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
825 return 0;
826 }
827
828 ret = sb_write_pointer(bdev, zones, &wp);
829 if (ret != -ENOENT && ret < 0)
830 return ret;
831
832 if (rw == WRITE) {
833 struct blk_zone *reset = NULL;
834
835 if (wp == zones[0].start << SECTOR_SHIFT)
836 reset = &zones[0];
837 else if (wp == zones[1].start << SECTOR_SHIFT)
838 reset = &zones[1];
839
840 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
841 ASSERT(sb_zone_is_full(reset));
842
843 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
844 reset->start, reset->len,
845 GFP_NOFS);
846 if (ret)
847 return ret;
848
849 reset->cond = BLK_ZONE_COND_EMPTY;
850 reset->wp = reset->start;
851 }
852 } else if (ret != -ENOENT) {
853 /*
854 * For READ, we want the previous one. Move write pointer to
855 * the end of a zone, if it is at the head of a zone.
856 */
857 u64 zone_end = 0;
858
859 if (wp == zones[0].start << SECTOR_SHIFT)
860 zone_end = zones[1].start + zones[1].capacity;
861 else if (wp == zones[1].start << SECTOR_SHIFT)
862 zone_end = zones[0].start + zones[0].capacity;
863 if (zone_end)
864 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
865 BTRFS_SUPER_INFO_SIZE);
866
867 wp -= BTRFS_SUPER_INFO_SIZE;
868 }
869
870 *bytenr_ret = wp;
871 return 0;
872
873 }
874
btrfs_sb_log_location_bdev(struct block_device * bdev,int mirror,int rw,u64 * bytenr_ret)875 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
876 u64 *bytenr_ret)
877 {
878 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
879 sector_t zone_sectors;
880 u32 sb_zone;
881 int ret;
882 u8 zone_sectors_shift;
883 sector_t nr_sectors;
884 u32 nr_zones;
885
886 if (!bdev_is_zoned(bdev)) {
887 *bytenr_ret = btrfs_sb_offset(mirror);
888 return 0;
889 }
890
891 ASSERT(rw == READ || rw == WRITE);
892
893 zone_sectors = bdev_zone_sectors(bdev);
894 if (!is_power_of_2(zone_sectors))
895 return -EINVAL;
896 zone_sectors_shift = ilog2(zone_sectors);
897 nr_sectors = bdev_nr_sectors(bdev);
898 nr_zones = nr_sectors >> zone_sectors_shift;
899
900 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
901 if (sb_zone + 1 >= nr_zones)
902 return -ENOENT;
903
904 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
905 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
906 zones);
907 if (ret < 0)
908 return ret;
909 if (ret != BTRFS_NR_SB_LOG_ZONES)
910 return -EIO;
911
912 return sb_log_location(bdev, zones, rw, bytenr_ret);
913 }
914
btrfs_sb_log_location(struct btrfs_device * device,int mirror,int rw,u64 * bytenr_ret)915 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
916 u64 *bytenr_ret)
917 {
918 struct btrfs_zoned_device_info *zinfo = device->zone_info;
919 u32 zone_num;
920
921 /*
922 * For a zoned filesystem on a non-zoned block device, use the same
923 * super block locations as regular filesystem. Doing so, the super
924 * block can always be retrieved and the zoned flag of the volume
925 * detected from the super block information.
926 */
927 if (!bdev_is_zoned(device->bdev)) {
928 *bytenr_ret = btrfs_sb_offset(mirror);
929 return 0;
930 }
931
932 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
933 if (zone_num + 1 >= zinfo->nr_zones)
934 return -ENOENT;
935
936 return sb_log_location(device->bdev,
937 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
938 rw, bytenr_ret);
939 }
940
is_sb_log_zone(struct btrfs_zoned_device_info * zinfo,int mirror)941 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
942 int mirror)
943 {
944 u32 zone_num;
945
946 if (!zinfo)
947 return false;
948
949 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
950 if (zone_num + 1 >= zinfo->nr_zones)
951 return false;
952
953 if (!test_bit(zone_num, zinfo->seq_zones))
954 return false;
955
956 return true;
957 }
958
btrfs_advance_sb_log(struct btrfs_device * device,int mirror)959 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
960 {
961 struct btrfs_zoned_device_info *zinfo = device->zone_info;
962 struct blk_zone *zone;
963 int i;
964
965 if (!is_sb_log_zone(zinfo, mirror))
966 return 0;
967
968 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
969 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
970 /* Advance the next zone */
971 if (zone->cond == BLK_ZONE_COND_FULL) {
972 zone++;
973 continue;
974 }
975
976 if (zone->cond == BLK_ZONE_COND_EMPTY)
977 zone->cond = BLK_ZONE_COND_IMP_OPEN;
978
979 zone->wp += SUPER_INFO_SECTORS;
980
981 if (sb_zone_is_full(zone)) {
982 /*
983 * No room left to write new superblock. Since
984 * superblock is written with REQ_SYNC, it is safe to
985 * finish the zone now.
986 *
987 * If the write pointer is exactly at the capacity,
988 * explicit ZONE_FINISH is not necessary.
989 */
990 if (zone->wp != zone->start + zone->capacity) {
991 int ret;
992
993 ret = blkdev_zone_mgmt(device->bdev,
994 REQ_OP_ZONE_FINISH, zone->start,
995 zone->len, GFP_NOFS);
996 if (ret)
997 return ret;
998 }
999
1000 zone->wp = zone->start + zone->len;
1001 zone->cond = BLK_ZONE_COND_FULL;
1002 }
1003 return 0;
1004 }
1005
1006 /* All the zones are FULL. Should not reach here. */
1007 ASSERT(0);
1008 return -EIO;
1009 }
1010
btrfs_reset_sb_log_zones(struct block_device * bdev,int mirror)1011 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1012 {
1013 sector_t zone_sectors;
1014 sector_t nr_sectors;
1015 u8 zone_sectors_shift;
1016 u32 sb_zone;
1017 u32 nr_zones;
1018
1019 zone_sectors = bdev_zone_sectors(bdev);
1020 zone_sectors_shift = ilog2(zone_sectors);
1021 nr_sectors = bdev_nr_sectors(bdev);
1022 nr_zones = nr_sectors >> zone_sectors_shift;
1023
1024 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1025 if (sb_zone + 1 >= nr_zones)
1026 return -ENOENT;
1027
1028 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1029 zone_start_sector(sb_zone, bdev),
1030 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1031 }
1032
1033 /*
1034 * Find allocatable zones within a given region.
1035 *
1036 * @device: the device to allocate a region on
1037 * @hole_start: the position of the hole to allocate the region
1038 * @num_bytes: size of wanted region
1039 * @hole_end: the end of the hole
1040 * @return: position of allocatable zones
1041 *
1042 * Allocatable region should not contain any superblock locations.
1043 */
btrfs_find_allocatable_zones(struct btrfs_device * device,u64 hole_start,u64 hole_end,u64 num_bytes)1044 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1045 u64 hole_end, u64 num_bytes)
1046 {
1047 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1048 const u8 shift = zinfo->zone_size_shift;
1049 u64 nzones = num_bytes >> shift;
1050 u64 pos = hole_start;
1051 u64 begin, end;
1052 bool have_sb;
1053 int i;
1054
1055 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1056 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1057
1058 while (pos < hole_end) {
1059 begin = pos >> shift;
1060 end = begin + nzones;
1061
1062 if (end > zinfo->nr_zones)
1063 return hole_end;
1064
1065 /* Check if zones in the region are all empty */
1066 if (btrfs_dev_is_sequential(device, pos) &&
1067 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1068 pos += zinfo->zone_size;
1069 continue;
1070 }
1071
1072 have_sb = false;
1073 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1074 u32 sb_zone;
1075 u64 sb_pos;
1076
1077 sb_zone = sb_zone_number(shift, i);
1078 if (!(end <= sb_zone ||
1079 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1080 have_sb = true;
1081 pos = zone_start_physical(
1082 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1083 break;
1084 }
1085
1086 /* We also need to exclude regular superblock positions */
1087 sb_pos = btrfs_sb_offset(i);
1088 if (!(pos + num_bytes <= sb_pos ||
1089 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1090 have_sb = true;
1091 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1092 zinfo->zone_size);
1093 break;
1094 }
1095 }
1096 if (!have_sb)
1097 break;
1098 }
1099
1100 return pos;
1101 }
1102
btrfs_dev_set_active_zone(struct btrfs_device * device,u64 pos)1103 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1104 {
1105 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1106 unsigned int zno = (pos >> zone_info->zone_size_shift);
1107
1108 /* We can use any number of zones */
1109 if (zone_info->max_active_zones == 0)
1110 return true;
1111
1112 if (!test_bit(zno, zone_info->active_zones)) {
1113 /* Active zone left? */
1114 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1115 return false;
1116 if (test_and_set_bit(zno, zone_info->active_zones)) {
1117 /* Someone already set the bit */
1118 atomic_inc(&zone_info->active_zones_left);
1119 }
1120 }
1121
1122 return true;
1123 }
1124
btrfs_dev_clear_active_zone(struct btrfs_device * device,u64 pos)1125 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1126 {
1127 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1128 unsigned int zno = (pos >> zone_info->zone_size_shift);
1129
1130 /* We can use any number of zones */
1131 if (zone_info->max_active_zones == 0)
1132 return;
1133
1134 if (test_and_clear_bit(zno, zone_info->active_zones))
1135 atomic_inc(&zone_info->active_zones_left);
1136 }
1137
btrfs_reset_device_zone(struct btrfs_device * device,u64 physical,u64 length,u64 * bytes)1138 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1139 u64 length, u64 *bytes)
1140 {
1141 int ret;
1142
1143 *bytes = 0;
1144 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1145 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1146 GFP_NOFS);
1147 if (ret)
1148 return ret;
1149
1150 *bytes = length;
1151 while (length) {
1152 btrfs_dev_set_zone_empty(device, physical);
1153 btrfs_dev_clear_active_zone(device, physical);
1154 physical += device->zone_info->zone_size;
1155 length -= device->zone_info->zone_size;
1156 }
1157
1158 return 0;
1159 }
1160
btrfs_ensure_empty_zones(struct btrfs_device * device,u64 start,u64 size)1161 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1162 {
1163 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1164 const u8 shift = zinfo->zone_size_shift;
1165 unsigned long begin = start >> shift;
1166 unsigned long nbits = size >> shift;
1167 u64 pos;
1168 int ret;
1169
1170 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1171 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1172
1173 if (begin + nbits > zinfo->nr_zones)
1174 return -ERANGE;
1175
1176 /* All the zones are conventional */
1177 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1178 return 0;
1179
1180 /* All the zones are sequential and empty */
1181 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1182 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1183 return 0;
1184
1185 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1186 u64 reset_bytes;
1187
1188 if (!btrfs_dev_is_sequential(device, pos) ||
1189 btrfs_dev_is_empty_zone(device, pos))
1190 continue;
1191
1192 /* Free regions should be empty */
1193 btrfs_warn_in_rcu(
1194 device->fs_info,
1195 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1196 rcu_str_deref(device->name), device->devid, pos >> shift);
1197 WARN_ON_ONCE(1);
1198
1199 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1200 &reset_bytes);
1201 if (ret)
1202 return ret;
1203 }
1204
1205 return 0;
1206 }
1207
1208 /*
1209 * Calculate an allocation pointer from the extent allocation information
1210 * for a block group consist of conventional zones. It is pointed to the
1211 * end of the highest addressed extent in the block group as an allocation
1212 * offset.
1213 */
calculate_alloc_pointer(struct btrfs_block_group * cache,u64 * offset_ret,bool new)1214 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1215 u64 *offset_ret, bool new)
1216 {
1217 struct btrfs_fs_info *fs_info = cache->fs_info;
1218 struct btrfs_root *root;
1219 struct btrfs_path *path;
1220 struct btrfs_key key;
1221 struct btrfs_key found_key;
1222 int ret;
1223 u64 length;
1224
1225 /*
1226 * Avoid tree lookups for a new block group, there's no use for it.
1227 * It must always be 0.
1228 *
1229 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1230 * For new a block group, this function is called from
1231 * btrfs_make_block_group() which is already taking the chunk mutex.
1232 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1233 * buffer locks to avoid deadlock.
1234 */
1235 if (new) {
1236 *offset_ret = 0;
1237 return 0;
1238 }
1239
1240 path = btrfs_alloc_path();
1241 if (!path)
1242 return -ENOMEM;
1243
1244 key.objectid = cache->start + cache->length;
1245 key.type = 0;
1246 key.offset = 0;
1247
1248 root = btrfs_extent_root(fs_info, key.objectid);
1249 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1250 /* We should not find the exact match */
1251 if (!ret)
1252 ret = -EUCLEAN;
1253 if (ret < 0)
1254 goto out;
1255
1256 ret = btrfs_previous_extent_item(root, path, cache->start);
1257 if (ret) {
1258 if (ret == 1) {
1259 ret = 0;
1260 *offset_ret = 0;
1261 }
1262 goto out;
1263 }
1264
1265 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1266
1267 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1268 length = found_key.offset;
1269 else
1270 length = fs_info->nodesize;
1271
1272 if (!(found_key.objectid >= cache->start &&
1273 found_key.objectid + length <= cache->start + cache->length)) {
1274 ret = -EUCLEAN;
1275 goto out;
1276 }
1277 *offset_ret = found_key.objectid + length - cache->start;
1278 ret = 0;
1279
1280 out:
1281 btrfs_free_path(path);
1282 return ret;
1283 }
1284
1285 struct zone_info {
1286 u64 physical;
1287 u64 capacity;
1288 u64 alloc_offset;
1289 };
1290
btrfs_load_zone_info(struct btrfs_fs_info * fs_info,int zone_idx,struct zone_info * info,unsigned long * active,struct map_lookup * map)1291 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1292 struct zone_info *info, unsigned long *active,
1293 struct map_lookup *map)
1294 {
1295 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1296 struct btrfs_device *device;
1297 int dev_replace_is_ongoing = 0;
1298 unsigned int nofs_flag;
1299 struct blk_zone zone;
1300 int ret;
1301
1302 info->physical = map->stripes[zone_idx].physical;
1303
1304 down_read(&dev_replace->rwsem);
1305 device = map->stripes[zone_idx].dev;
1306
1307 if (!device->bdev) {
1308 up_read(&dev_replace->rwsem);
1309 info->alloc_offset = WP_MISSING_DEV;
1310 return 0;
1311 }
1312
1313 /* Consider a zone as active if we can allow any number of active zones. */
1314 if (!device->zone_info->max_active_zones)
1315 __set_bit(zone_idx, active);
1316
1317 if (!btrfs_dev_is_sequential(device, info->physical)) {
1318 up_read(&dev_replace->rwsem);
1319 info->alloc_offset = WP_CONVENTIONAL;
1320 return 0;
1321 }
1322
1323 /* This zone will be used for allocation, so mark this zone non-empty. */
1324 btrfs_dev_clear_zone_empty(device, info->physical);
1325
1326 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1327 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1328 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1329
1330 /*
1331 * The group is mapped to a sequential zone. Get the zone write pointer
1332 * to determine the allocation offset within the zone.
1333 */
1334 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1335 nofs_flag = memalloc_nofs_save();
1336 ret = btrfs_get_dev_zone(device, info->physical, &zone);
1337 memalloc_nofs_restore(nofs_flag);
1338 if (ret) {
1339 up_read(&dev_replace->rwsem);
1340 if (ret != -EIO && ret != -EOPNOTSUPP)
1341 return ret;
1342 info->alloc_offset = WP_MISSING_DEV;
1343 return 0;
1344 }
1345
1346 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1347 btrfs_err_in_rcu(fs_info,
1348 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1349 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1350 device->devid);
1351 up_read(&dev_replace->rwsem);
1352 return -EIO;
1353 }
1354
1355 info->capacity = (zone.capacity << SECTOR_SHIFT);
1356
1357 switch (zone.cond) {
1358 case BLK_ZONE_COND_OFFLINE:
1359 case BLK_ZONE_COND_READONLY:
1360 btrfs_err_in_rcu(fs_info,
1361 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1362 (info->physical >> device->zone_info->zone_size_shift),
1363 rcu_str_deref(device->name), device->devid);
1364 info->alloc_offset = WP_MISSING_DEV;
1365 break;
1366 case BLK_ZONE_COND_EMPTY:
1367 info->alloc_offset = 0;
1368 break;
1369 case BLK_ZONE_COND_FULL:
1370 info->alloc_offset = info->capacity;
1371 break;
1372 default:
1373 /* Partially used zone. */
1374 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1375 __set_bit(zone_idx, active);
1376 break;
1377 }
1378
1379 up_read(&dev_replace->rwsem);
1380
1381 return 0;
1382 }
1383
btrfs_load_block_group_single(struct btrfs_block_group * bg,struct zone_info * info,unsigned long * active)1384 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1385 struct zone_info *info,
1386 unsigned long *active)
1387 {
1388 if (info->alloc_offset == WP_MISSING_DEV) {
1389 btrfs_err(bg->fs_info,
1390 "zoned: cannot recover write pointer for zone %llu",
1391 info->physical);
1392 return -EIO;
1393 }
1394
1395 bg->alloc_offset = info->alloc_offset;
1396 bg->zone_capacity = info->capacity;
1397 if (test_bit(0, active))
1398 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1399 return 0;
1400 }
1401
btrfs_load_block_group_dup(struct btrfs_block_group * bg,struct map_lookup * map,struct zone_info * zone_info,unsigned long * active)1402 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1403 struct map_lookup *map,
1404 struct zone_info *zone_info,
1405 unsigned long *active)
1406 {
1407 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1408 btrfs_err(bg->fs_info,
1409 "zoned: profile DUP not yet supported on data bg");
1410 return -EINVAL;
1411 }
1412
1413 if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1414 btrfs_err(bg->fs_info,
1415 "zoned: cannot recover write pointer for zone %llu",
1416 zone_info[0].physical);
1417 return -EIO;
1418 }
1419 if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1420 btrfs_err(bg->fs_info,
1421 "zoned: cannot recover write pointer for zone %llu",
1422 zone_info[1].physical);
1423 return -EIO;
1424 }
1425 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1426 btrfs_err(bg->fs_info,
1427 "zoned: write pointer offset mismatch of zones in DUP profile");
1428 return -EIO;
1429 }
1430
1431 if (test_bit(0, active) != test_bit(1, active)) {
1432 if (!btrfs_zone_activate(bg))
1433 return -EIO;
1434 } else if (test_bit(0, active)) {
1435 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1436 }
1437
1438 bg->alloc_offset = zone_info[0].alloc_offset;
1439 bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1440 return 0;
1441 }
1442
btrfs_load_block_group_zone_info(struct btrfs_block_group * cache,bool new)1443 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1444 {
1445 struct btrfs_fs_info *fs_info = cache->fs_info;
1446 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1447 struct extent_map *em;
1448 struct map_lookup *map;
1449 u64 logical = cache->start;
1450 u64 length = cache->length;
1451 struct zone_info *zone_info = NULL;
1452 int ret;
1453 int i;
1454 unsigned long *active = NULL;
1455 u64 last_alloc = 0;
1456 u32 num_sequential = 0, num_conventional = 0;
1457
1458 if (!btrfs_is_zoned(fs_info))
1459 return 0;
1460
1461 /* Sanity check */
1462 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1463 btrfs_err(fs_info,
1464 "zoned: block group %llu len %llu unaligned to zone size %llu",
1465 logical, length, fs_info->zone_size);
1466 return -EIO;
1467 }
1468
1469 /* Get the chunk mapping */
1470 read_lock(&em_tree->lock);
1471 em = lookup_extent_mapping(em_tree, logical, length);
1472 read_unlock(&em_tree->lock);
1473
1474 if (!em)
1475 return -EINVAL;
1476
1477 map = em->map_lookup;
1478
1479 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1480 if (!cache->physical_map) {
1481 ret = -ENOMEM;
1482 goto out;
1483 }
1484
1485 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1486 if (!zone_info) {
1487 ret = -ENOMEM;
1488 goto out;
1489 }
1490
1491 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1492 if (!active) {
1493 ret = -ENOMEM;
1494 goto out;
1495 }
1496
1497 for (i = 0; i < map->num_stripes; i++) {
1498 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1499 if (ret)
1500 goto out;
1501
1502 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1503 num_conventional++;
1504 else
1505 num_sequential++;
1506 }
1507
1508 if (num_sequential > 0)
1509 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1510
1511 if (num_conventional > 0) {
1512 /* Zone capacity is always zone size in emulation */
1513 cache->zone_capacity = cache->length;
1514 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1515 if (ret) {
1516 btrfs_err(fs_info,
1517 "zoned: failed to determine allocation offset of bg %llu",
1518 cache->start);
1519 goto out;
1520 } else if (map->num_stripes == num_conventional) {
1521 cache->alloc_offset = last_alloc;
1522 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1523 goto out;
1524 }
1525 }
1526
1527 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1528 case 0: /* single */
1529 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1530 break;
1531 case BTRFS_BLOCK_GROUP_DUP:
1532 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1533 break;
1534 case BTRFS_BLOCK_GROUP_RAID1:
1535 case BTRFS_BLOCK_GROUP_RAID0:
1536 case BTRFS_BLOCK_GROUP_RAID10:
1537 case BTRFS_BLOCK_GROUP_RAID5:
1538 case BTRFS_BLOCK_GROUP_RAID6:
1539 /* non-single profiles are not supported yet */
1540 default:
1541 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1542 btrfs_bg_type_to_raid_name(map->type));
1543 ret = -EINVAL;
1544 goto out;
1545 }
1546
1547 out:
1548 if (cache->alloc_offset > fs_info->zone_size) {
1549 btrfs_err(fs_info,
1550 "zoned: invalid write pointer %llu in block group %llu",
1551 cache->alloc_offset, cache->start);
1552 ret = -EIO;
1553 }
1554
1555 if (cache->alloc_offset > cache->zone_capacity) {
1556 btrfs_err(fs_info,
1557 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1558 cache->alloc_offset, cache->zone_capacity,
1559 cache->start);
1560 ret = -EIO;
1561 }
1562
1563 /* An extent is allocated after the write pointer */
1564 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1565 btrfs_err(fs_info,
1566 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1567 logical, last_alloc, cache->alloc_offset);
1568 ret = -EIO;
1569 }
1570
1571 if (!ret) {
1572 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1573 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1574 btrfs_get_block_group(cache);
1575 spin_lock(&fs_info->zone_active_bgs_lock);
1576 list_add_tail(&cache->active_bg_list,
1577 &fs_info->zone_active_bgs);
1578 spin_unlock(&fs_info->zone_active_bgs_lock);
1579 }
1580 } else {
1581 kfree(cache->physical_map);
1582 cache->physical_map = NULL;
1583 }
1584 bitmap_free(active);
1585 kfree(zone_info);
1586 free_extent_map(em);
1587
1588 return ret;
1589 }
1590
btrfs_calc_zone_unusable(struct btrfs_block_group * cache)1591 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1592 {
1593 u64 unusable, free;
1594
1595 if (!btrfs_is_zoned(cache->fs_info))
1596 return;
1597
1598 WARN_ON(cache->bytes_super != 0);
1599 unusable = (cache->alloc_offset - cache->used) +
1600 (cache->length - cache->zone_capacity);
1601 free = cache->zone_capacity - cache->alloc_offset;
1602
1603 /* We only need ->free_space in ALLOC_SEQ block groups */
1604 cache->cached = BTRFS_CACHE_FINISHED;
1605 cache->free_space_ctl->free_space = free;
1606 cache->zone_unusable = unusable;
1607 }
1608
btrfs_redirty_list_add(struct btrfs_transaction * trans,struct extent_buffer * eb)1609 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1610 struct extent_buffer *eb)
1611 {
1612 if (!btrfs_is_zoned(eb->fs_info) ||
1613 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN))
1614 return;
1615
1616 ASSERT(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1617
1618 memzero_extent_buffer(eb, 0, eb->len);
1619 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1620 set_extent_buffer_dirty(eb);
1621 set_extent_bit(&trans->dirty_pages, eb->start, eb->start + eb->len - 1,
1622 EXTENT_DIRTY | EXTENT_NOWAIT, NULL);
1623 }
1624
btrfs_use_zone_append(struct btrfs_bio * bbio)1625 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1626 {
1627 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1628 struct btrfs_inode *inode = bbio->inode;
1629 struct btrfs_fs_info *fs_info = bbio->fs_info;
1630 struct btrfs_block_group *cache;
1631 bool ret = false;
1632
1633 if (!btrfs_is_zoned(fs_info))
1634 return false;
1635
1636 if (!inode || !is_data_inode(&inode->vfs_inode))
1637 return false;
1638
1639 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1640 return false;
1641
1642 /*
1643 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1644 * extent layout the relocation code has.
1645 * Furthermore we have set aside own block-group from which only the
1646 * relocation "process" can allocate and make sure only one process at a
1647 * time can add pages to an extent that gets relocated, so it's safe to
1648 * use regular REQ_OP_WRITE for this special case.
1649 */
1650 if (btrfs_is_data_reloc_root(inode->root))
1651 return false;
1652
1653 cache = btrfs_lookup_block_group(fs_info, start);
1654 ASSERT(cache);
1655 if (!cache)
1656 return false;
1657
1658 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1659 btrfs_put_block_group(cache);
1660
1661 return ret;
1662 }
1663
btrfs_record_physical_zoned(struct btrfs_bio * bbio)1664 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1665 {
1666 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1667 struct btrfs_ordered_sum *sum = bbio->sums;
1668
1669 if (physical < bbio->orig_physical)
1670 sum->logical -= bbio->orig_physical - physical;
1671 else
1672 sum->logical += physical - bbio->orig_physical;
1673 }
1674
btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent * ordered,u64 logical)1675 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1676 u64 logical)
1677 {
1678 struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1679 struct extent_map *em;
1680
1681 ordered->disk_bytenr = logical;
1682
1683 write_lock(&em_tree->lock);
1684 em = search_extent_mapping(em_tree, ordered->file_offset,
1685 ordered->num_bytes);
1686 em->block_start = logical;
1687 free_extent_map(em);
1688 write_unlock(&em_tree->lock);
1689 }
1690
btrfs_zoned_split_ordered(struct btrfs_ordered_extent * ordered,u64 logical,u64 len)1691 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1692 u64 logical, u64 len)
1693 {
1694 struct btrfs_ordered_extent *new;
1695
1696 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1697 split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1698 ordered->num_bytes, len, logical))
1699 return false;
1700
1701 new = btrfs_split_ordered_extent(ordered, len);
1702 if (IS_ERR(new))
1703 return false;
1704 new->disk_bytenr = logical;
1705 btrfs_finish_one_ordered(new);
1706 return true;
1707 }
1708
btrfs_finish_ordered_zoned(struct btrfs_ordered_extent * ordered)1709 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1710 {
1711 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1712 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1713 struct btrfs_ordered_sum *sum;
1714 u64 logical, len;
1715
1716 /*
1717 * Write to pre-allocated region is for the data relocation, and so
1718 * it should use WRITE operation. No split/rewrite are necessary.
1719 */
1720 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1721 return;
1722
1723 ASSERT(!list_empty(&ordered->list));
1724 /* The ordered->list can be empty in the above pre-alloc case. */
1725 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1726 logical = sum->logical;
1727 len = sum->len;
1728
1729 while (len < ordered->disk_num_bytes) {
1730 sum = list_next_entry(sum, list);
1731 if (sum->logical == logical + len) {
1732 len += sum->len;
1733 continue;
1734 }
1735 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1736 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1737 btrfs_err(fs_info, "failed to split ordered extent");
1738 goto out;
1739 }
1740 logical = sum->logical;
1741 len = sum->len;
1742 }
1743
1744 if (ordered->disk_bytenr != logical)
1745 btrfs_rewrite_logical_zoned(ordered, logical);
1746
1747 out:
1748 /*
1749 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1750 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1751 * addresses and don't contain actual checksums. We thus must free them
1752 * here so that we don't attempt to log the csums later.
1753 */
1754 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1755 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1756 while ((sum = list_first_entry_or_null(&ordered->list,
1757 typeof(*sum), list))) {
1758 list_del(&sum->list);
1759 kfree(sum);
1760 }
1761 }
1762 }
1763
check_bg_is_active(struct btrfs_eb_write_context * ctx,struct btrfs_block_group ** active_bg)1764 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1765 struct btrfs_block_group **active_bg)
1766 {
1767 const struct writeback_control *wbc = ctx->wbc;
1768 struct btrfs_block_group *block_group = ctx->zoned_bg;
1769 struct btrfs_fs_info *fs_info = block_group->fs_info;
1770
1771 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1772 return true;
1773
1774 if (fs_info->treelog_bg == block_group->start) {
1775 if (!btrfs_zone_activate(block_group)) {
1776 int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1777
1778 if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1779 return false;
1780 }
1781 } else if (*active_bg != block_group) {
1782 struct btrfs_block_group *tgt = *active_bg;
1783
1784 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1785 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1786
1787 if (tgt) {
1788 /*
1789 * If there is an unsent IO left in the allocated area,
1790 * we cannot wait for them as it may cause a deadlock.
1791 */
1792 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1793 if (wbc->sync_mode == WB_SYNC_NONE ||
1794 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1795 return false;
1796 }
1797
1798 /* Pivot active metadata/system block group. */
1799 btrfs_zoned_meta_io_unlock(fs_info);
1800 wait_eb_writebacks(tgt);
1801 do_zone_finish(tgt, true);
1802 btrfs_zoned_meta_io_lock(fs_info);
1803 if (*active_bg == tgt) {
1804 btrfs_put_block_group(tgt);
1805 *active_bg = NULL;
1806 }
1807 }
1808 if (!btrfs_zone_activate(block_group))
1809 return false;
1810 if (*active_bg != block_group) {
1811 ASSERT(*active_bg == NULL);
1812 *active_bg = block_group;
1813 btrfs_get_block_group(block_group);
1814 }
1815 }
1816
1817 return true;
1818 }
1819
1820 /*
1821 * Check if @ctx->eb is aligned to the write pointer.
1822 *
1823 * Return:
1824 * 0: @ctx->eb is at the write pointer. You can write it.
1825 * -EAGAIN: There is a hole. The caller should handle the case.
1826 * -EBUSY: There is a hole, but the caller can just bail out.
1827 */
btrfs_check_meta_write_pointer(struct btrfs_fs_info * fs_info,struct btrfs_eb_write_context * ctx)1828 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1829 struct btrfs_eb_write_context *ctx)
1830 {
1831 const struct writeback_control *wbc = ctx->wbc;
1832 const struct extent_buffer *eb = ctx->eb;
1833 struct btrfs_block_group *block_group = ctx->zoned_bg;
1834
1835 if (!btrfs_is_zoned(fs_info))
1836 return 0;
1837
1838 if (block_group) {
1839 if (block_group->start > eb->start ||
1840 block_group->start + block_group->length <= eb->start) {
1841 btrfs_put_block_group(block_group);
1842 block_group = NULL;
1843 ctx->zoned_bg = NULL;
1844 }
1845 }
1846
1847 if (!block_group) {
1848 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1849 if (!block_group)
1850 return 0;
1851 ctx->zoned_bg = block_group;
1852 }
1853
1854 if (block_group->meta_write_pointer == eb->start) {
1855 struct btrfs_block_group **tgt;
1856
1857 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1858 return 0;
1859
1860 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1861 tgt = &fs_info->active_system_bg;
1862 else
1863 tgt = &fs_info->active_meta_bg;
1864 if (check_bg_is_active(ctx, tgt))
1865 return 0;
1866 }
1867
1868 /*
1869 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1870 * start writing this eb. In that case, we can just bail out.
1871 */
1872 if (block_group->meta_write_pointer > eb->start)
1873 return -EBUSY;
1874
1875 /* If for_sync, this hole will be filled with trasnsaction commit. */
1876 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1877 return -EAGAIN;
1878 return -EBUSY;
1879 }
1880
btrfs_zoned_issue_zeroout(struct btrfs_device * device,u64 physical,u64 length)1881 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1882 {
1883 if (!btrfs_dev_is_sequential(device, physical))
1884 return -EOPNOTSUPP;
1885
1886 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1887 length >> SECTOR_SHIFT, GFP_NOFS, 0);
1888 }
1889
read_zone_info(struct btrfs_fs_info * fs_info,u64 logical,struct blk_zone * zone)1890 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1891 struct blk_zone *zone)
1892 {
1893 struct btrfs_io_context *bioc = NULL;
1894 u64 mapped_length = PAGE_SIZE;
1895 unsigned int nofs_flag;
1896 int nmirrors;
1897 int i, ret;
1898
1899 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1900 &mapped_length, &bioc, NULL, NULL, 1);
1901 if (ret || !bioc || mapped_length < PAGE_SIZE) {
1902 ret = -EIO;
1903 goto out_put_bioc;
1904 }
1905
1906 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1907 ret = -EINVAL;
1908 goto out_put_bioc;
1909 }
1910
1911 nofs_flag = memalloc_nofs_save();
1912 nmirrors = (int)bioc->num_stripes;
1913 for (i = 0; i < nmirrors; i++) {
1914 u64 physical = bioc->stripes[i].physical;
1915 struct btrfs_device *dev = bioc->stripes[i].dev;
1916
1917 /* Missing device */
1918 if (!dev->bdev)
1919 continue;
1920
1921 ret = btrfs_get_dev_zone(dev, physical, zone);
1922 /* Failing device */
1923 if (ret == -EIO || ret == -EOPNOTSUPP)
1924 continue;
1925 break;
1926 }
1927 memalloc_nofs_restore(nofs_flag);
1928 out_put_bioc:
1929 btrfs_put_bioc(bioc);
1930 return ret;
1931 }
1932
1933 /*
1934 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1935 * filling zeros between @physical_pos to a write pointer of dev-replace
1936 * source device.
1937 */
btrfs_sync_zone_write_pointer(struct btrfs_device * tgt_dev,u64 logical,u64 physical_start,u64 physical_pos)1938 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1939 u64 physical_start, u64 physical_pos)
1940 {
1941 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1942 struct blk_zone zone;
1943 u64 length;
1944 u64 wp;
1945 int ret;
1946
1947 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1948 return 0;
1949
1950 ret = read_zone_info(fs_info, logical, &zone);
1951 if (ret)
1952 return ret;
1953
1954 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1955
1956 if (physical_pos == wp)
1957 return 0;
1958
1959 if (physical_pos > wp)
1960 return -EUCLEAN;
1961
1962 length = wp - physical_pos;
1963 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1964 }
1965
1966 /*
1967 * Activate block group and underlying device zones
1968 *
1969 * @block_group: the block group to activate
1970 *
1971 * Return: true on success, false otherwise
1972 */
btrfs_zone_activate(struct btrfs_block_group * block_group)1973 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1974 {
1975 struct btrfs_fs_info *fs_info = block_group->fs_info;
1976 struct map_lookup *map;
1977 struct btrfs_device *device;
1978 u64 physical;
1979 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
1980 bool ret;
1981 int i;
1982
1983 if (!btrfs_is_zoned(block_group->fs_info))
1984 return true;
1985
1986 map = block_group->physical_map;
1987
1988 spin_lock(&fs_info->zone_active_bgs_lock);
1989 spin_lock(&block_group->lock);
1990 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1991 ret = true;
1992 goto out_unlock;
1993 }
1994
1995 /* No space left */
1996 if (btrfs_zoned_bg_is_full(block_group)) {
1997 ret = false;
1998 goto out_unlock;
1999 }
2000
2001 for (i = 0; i < map->num_stripes; i++) {
2002 struct btrfs_zoned_device_info *zinfo;
2003 int reserved = 0;
2004
2005 device = map->stripes[i].dev;
2006 physical = map->stripes[i].physical;
2007 zinfo = device->zone_info;
2008
2009 if (zinfo->max_active_zones == 0)
2010 continue;
2011
2012 if (is_data)
2013 reserved = zinfo->reserved_active_zones;
2014 /*
2015 * For the data block group, leave active zones for one
2016 * metadata block group and one system block group.
2017 */
2018 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2019 ret = false;
2020 goto out_unlock;
2021 }
2022
2023 if (!btrfs_dev_set_active_zone(device, physical)) {
2024 /* Cannot activate the zone */
2025 ret = false;
2026 goto out_unlock;
2027 }
2028 if (!is_data)
2029 zinfo->reserved_active_zones--;
2030 }
2031
2032 /* Successfully activated all the zones */
2033 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2034 spin_unlock(&block_group->lock);
2035
2036 /* For the active block group list */
2037 btrfs_get_block_group(block_group);
2038 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2039 spin_unlock(&fs_info->zone_active_bgs_lock);
2040
2041 return true;
2042
2043 out_unlock:
2044 spin_unlock(&block_group->lock);
2045 spin_unlock(&fs_info->zone_active_bgs_lock);
2046 return ret;
2047 }
2048
wait_eb_writebacks(struct btrfs_block_group * block_group)2049 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2050 {
2051 struct btrfs_fs_info *fs_info = block_group->fs_info;
2052 const u64 end = block_group->start + block_group->length;
2053 struct radix_tree_iter iter;
2054 struct extent_buffer *eb;
2055 void __rcu **slot;
2056
2057 rcu_read_lock();
2058 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2059 block_group->start >> fs_info->sectorsize_bits) {
2060 eb = radix_tree_deref_slot(slot);
2061 if (!eb)
2062 continue;
2063 if (radix_tree_deref_retry(eb)) {
2064 slot = radix_tree_iter_retry(&iter);
2065 continue;
2066 }
2067
2068 if (eb->start < block_group->start)
2069 continue;
2070 if (eb->start >= end)
2071 break;
2072
2073 slot = radix_tree_iter_resume(slot, &iter);
2074 rcu_read_unlock();
2075 wait_on_extent_buffer_writeback(eb);
2076 rcu_read_lock();
2077 }
2078 rcu_read_unlock();
2079 }
2080
do_zone_finish(struct btrfs_block_group * block_group,bool fully_written)2081 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2082 {
2083 struct btrfs_fs_info *fs_info = block_group->fs_info;
2084 struct map_lookup *map;
2085 const bool is_metadata = (block_group->flags &
2086 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2087 int ret = 0;
2088 int i;
2089
2090 spin_lock(&block_group->lock);
2091 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2092 spin_unlock(&block_group->lock);
2093 return 0;
2094 }
2095
2096 /* Check if we have unwritten allocated space */
2097 if (is_metadata &&
2098 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2099 spin_unlock(&block_group->lock);
2100 return -EAGAIN;
2101 }
2102
2103 /*
2104 * If we are sure that the block group is full (= no more room left for
2105 * new allocation) and the IO for the last usable block is completed, we
2106 * don't need to wait for the other IOs. This holds because we ensure
2107 * the sequential IO submissions using the ZONE_APPEND command for data
2108 * and block_group->meta_write_pointer for metadata.
2109 */
2110 if (!fully_written) {
2111 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2112 spin_unlock(&block_group->lock);
2113 return -EAGAIN;
2114 }
2115 spin_unlock(&block_group->lock);
2116
2117 ret = btrfs_inc_block_group_ro(block_group, false);
2118 if (ret)
2119 return ret;
2120
2121 /* Ensure all writes in this block group finish */
2122 btrfs_wait_block_group_reservations(block_group);
2123 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2124 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2125 block_group->length);
2126 /* Wait for extent buffers to be written. */
2127 if (is_metadata)
2128 wait_eb_writebacks(block_group);
2129
2130 spin_lock(&block_group->lock);
2131
2132 /*
2133 * Bail out if someone already deactivated the block group, or
2134 * allocated space is left in the block group.
2135 */
2136 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2137 &block_group->runtime_flags)) {
2138 spin_unlock(&block_group->lock);
2139 btrfs_dec_block_group_ro(block_group);
2140 return 0;
2141 }
2142
2143 if (block_group->reserved ||
2144 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2145 &block_group->runtime_flags)) {
2146 spin_unlock(&block_group->lock);
2147 btrfs_dec_block_group_ro(block_group);
2148 return -EAGAIN;
2149 }
2150 }
2151
2152 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2153 block_group->alloc_offset = block_group->zone_capacity;
2154 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2155 block_group->meta_write_pointer = block_group->start +
2156 block_group->zone_capacity;
2157 block_group->free_space_ctl->free_space = 0;
2158 btrfs_clear_treelog_bg(block_group);
2159 btrfs_clear_data_reloc_bg(block_group);
2160 spin_unlock(&block_group->lock);
2161
2162 map = block_group->physical_map;
2163 for (i = 0; i < map->num_stripes; i++) {
2164 struct btrfs_device *device = map->stripes[i].dev;
2165 const u64 physical = map->stripes[i].physical;
2166 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2167
2168 if (zinfo->max_active_zones == 0)
2169 continue;
2170
2171 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2172 physical >> SECTOR_SHIFT,
2173 zinfo->zone_size >> SECTOR_SHIFT,
2174 GFP_NOFS);
2175
2176 if (ret)
2177 return ret;
2178
2179 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2180 zinfo->reserved_active_zones++;
2181 btrfs_dev_clear_active_zone(device, physical);
2182 }
2183
2184 if (!fully_written)
2185 btrfs_dec_block_group_ro(block_group);
2186
2187 spin_lock(&fs_info->zone_active_bgs_lock);
2188 ASSERT(!list_empty(&block_group->active_bg_list));
2189 list_del_init(&block_group->active_bg_list);
2190 spin_unlock(&fs_info->zone_active_bgs_lock);
2191
2192 /* For active_bg_list */
2193 btrfs_put_block_group(block_group);
2194
2195 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2196
2197 return 0;
2198 }
2199
btrfs_zone_finish(struct btrfs_block_group * block_group)2200 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2201 {
2202 if (!btrfs_is_zoned(block_group->fs_info))
2203 return 0;
2204
2205 return do_zone_finish(block_group, false);
2206 }
2207
btrfs_can_activate_zone(struct btrfs_fs_devices * fs_devices,u64 flags)2208 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2209 {
2210 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2211 struct btrfs_device *device;
2212 bool ret = false;
2213
2214 if (!btrfs_is_zoned(fs_info))
2215 return true;
2216
2217 /* Check if there is a device with active zones left */
2218 mutex_lock(&fs_info->chunk_mutex);
2219 spin_lock(&fs_info->zone_active_bgs_lock);
2220 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2221 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2222 int reserved = 0;
2223
2224 if (!device->bdev)
2225 continue;
2226
2227 if (!zinfo->max_active_zones) {
2228 ret = true;
2229 break;
2230 }
2231
2232 if (flags & BTRFS_BLOCK_GROUP_DATA)
2233 reserved = zinfo->reserved_active_zones;
2234
2235 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2236 case 0: /* single */
2237 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2238 break;
2239 case BTRFS_BLOCK_GROUP_DUP:
2240 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2241 break;
2242 }
2243 if (ret)
2244 break;
2245 }
2246 spin_unlock(&fs_info->zone_active_bgs_lock);
2247 mutex_unlock(&fs_info->chunk_mutex);
2248
2249 if (!ret)
2250 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2251
2252 return ret;
2253 }
2254
btrfs_zone_finish_endio(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2255 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2256 {
2257 struct btrfs_block_group *block_group;
2258 u64 min_alloc_bytes;
2259
2260 if (!btrfs_is_zoned(fs_info))
2261 return;
2262
2263 block_group = btrfs_lookup_block_group(fs_info, logical);
2264 ASSERT(block_group);
2265
2266 /* No MIXED_BG on zoned btrfs. */
2267 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2268 min_alloc_bytes = fs_info->sectorsize;
2269 else
2270 min_alloc_bytes = fs_info->nodesize;
2271
2272 /* Bail out if we can allocate more data from this block group. */
2273 if (logical + length + min_alloc_bytes <=
2274 block_group->start + block_group->zone_capacity)
2275 goto out;
2276
2277 do_zone_finish(block_group, true);
2278
2279 out:
2280 btrfs_put_block_group(block_group);
2281 }
2282
btrfs_zone_finish_endio_workfn(struct work_struct * work)2283 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2284 {
2285 struct btrfs_block_group *bg =
2286 container_of(work, struct btrfs_block_group, zone_finish_work);
2287
2288 wait_on_extent_buffer_writeback(bg->last_eb);
2289 free_extent_buffer(bg->last_eb);
2290 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2291 btrfs_put_block_group(bg);
2292 }
2293
btrfs_schedule_zone_finish_bg(struct btrfs_block_group * bg,struct extent_buffer * eb)2294 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2295 struct extent_buffer *eb)
2296 {
2297 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2298 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2299 return;
2300
2301 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2302 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2303 bg->start);
2304 return;
2305 }
2306
2307 /* For the work */
2308 btrfs_get_block_group(bg);
2309 atomic_inc(&eb->refs);
2310 bg->last_eb = eb;
2311 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2312 queue_work(system_unbound_wq, &bg->zone_finish_work);
2313 }
2314
btrfs_clear_data_reloc_bg(struct btrfs_block_group * bg)2315 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2316 {
2317 struct btrfs_fs_info *fs_info = bg->fs_info;
2318
2319 spin_lock(&fs_info->relocation_bg_lock);
2320 if (fs_info->data_reloc_bg == bg->start)
2321 fs_info->data_reloc_bg = 0;
2322 spin_unlock(&fs_info->relocation_bg_lock);
2323 }
2324
btrfs_free_zone_cache(struct btrfs_fs_info * fs_info)2325 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2326 {
2327 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2328 struct btrfs_device *device;
2329
2330 if (!btrfs_is_zoned(fs_info))
2331 return;
2332
2333 mutex_lock(&fs_devices->device_list_mutex);
2334 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2335 if (device->zone_info) {
2336 vfree(device->zone_info->zone_cache);
2337 device->zone_info->zone_cache = NULL;
2338 }
2339 }
2340 mutex_unlock(&fs_devices->device_list_mutex);
2341 }
2342
btrfs_zoned_should_reclaim(struct btrfs_fs_info * fs_info)2343 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2344 {
2345 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2346 struct btrfs_device *device;
2347 u64 used = 0;
2348 u64 total = 0;
2349 u64 factor;
2350
2351 ASSERT(btrfs_is_zoned(fs_info));
2352
2353 if (fs_info->bg_reclaim_threshold == 0)
2354 return false;
2355
2356 mutex_lock(&fs_devices->device_list_mutex);
2357 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2358 if (!device->bdev)
2359 continue;
2360
2361 total += device->disk_total_bytes;
2362 used += device->bytes_used;
2363 }
2364 mutex_unlock(&fs_devices->device_list_mutex);
2365
2366 factor = div64_u64(used * 100, total);
2367 return factor >= fs_info->bg_reclaim_threshold;
2368 }
2369
btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2370 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2371 u64 length)
2372 {
2373 struct btrfs_block_group *block_group;
2374
2375 if (!btrfs_is_zoned(fs_info))
2376 return;
2377
2378 block_group = btrfs_lookup_block_group(fs_info, logical);
2379 /* It should be called on a previous data relocation block group. */
2380 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2381
2382 spin_lock(&block_group->lock);
2383 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2384 goto out;
2385
2386 /* All relocation extents are written. */
2387 if (block_group->start + block_group->alloc_offset == logical + length) {
2388 /*
2389 * Now, release this block group for further allocations and
2390 * zone finish.
2391 */
2392 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2393 &block_group->runtime_flags);
2394 }
2395
2396 out:
2397 spin_unlock(&block_group->lock);
2398 btrfs_put_block_group(block_group);
2399 }
2400
btrfs_zone_finish_one_bg(struct btrfs_fs_info * fs_info)2401 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2402 {
2403 struct btrfs_block_group *block_group;
2404 struct btrfs_block_group *min_bg = NULL;
2405 u64 min_avail = U64_MAX;
2406 int ret;
2407
2408 spin_lock(&fs_info->zone_active_bgs_lock);
2409 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2410 active_bg_list) {
2411 u64 avail;
2412
2413 spin_lock(&block_group->lock);
2414 if (block_group->reserved || block_group->alloc_offset == 0 ||
2415 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2416 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2417 spin_unlock(&block_group->lock);
2418 continue;
2419 }
2420
2421 avail = block_group->zone_capacity - block_group->alloc_offset;
2422 if (min_avail > avail) {
2423 if (min_bg)
2424 btrfs_put_block_group(min_bg);
2425 min_bg = block_group;
2426 min_avail = avail;
2427 btrfs_get_block_group(min_bg);
2428 }
2429 spin_unlock(&block_group->lock);
2430 }
2431 spin_unlock(&fs_info->zone_active_bgs_lock);
2432
2433 if (!min_bg)
2434 return 0;
2435
2436 ret = btrfs_zone_finish(min_bg);
2437 btrfs_put_block_group(min_bg);
2438
2439 return ret < 0 ? ret : 1;
2440 }
2441
btrfs_zoned_activate_one_bg(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool do_finish)2442 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2443 struct btrfs_space_info *space_info,
2444 bool do_finish)
2445 {
2446 struct btrfs_block_group *bg;
2447 int index;
2448
2449 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2450 return 0;
2451
2452 for (;;) {
2453 int ret;
2454 bool need_finish = false;
2455
2456 down_read(&space_info->groups_sem);
2457 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2458 list_for_each_entry(bg, &space_info->block_groups[index],
2459 list) {
2460 if (!spin_trylock(&bg->lock))
2461 continue;
2462 if (btrfs_zoned_bg_is_full(bg) ||
2463 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2464 &bg->runtime_flags)) {
2465 spin_unlock(&bg->lock);
2466 continue;
2467 }
2468 spin_unlock(&bg->lock);
2469
2470 if (btrfs_zone_activate(bg)) {
2471 up_read(&space_info->groups_sem);
2472 return 1;
2473 }
2474
2475 need_finish = true;
2476 }
2477 }
2478 up_read(&space_info->groups_sem);
2479
2480 if (!do_finish || !need_finish)
2481 break;
2482
2483 ret = btrfs_zone_finish_one_bg(fs_info);
2484 if (ret == 0)
2485 break;
2486 if (ret < 0)
2487 return ret;
2488 }
2489
2490 return 0;
2491 }
2492
2493 /*
2494 * Reserve zones for one metadata block group, one tree-log block group, and one
2495 * system block group.
2496 */
btrfs_check_active_zone_reservation(struct btrfs_fs_info * fs_info)2497 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2498 {
2499 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2500 struct btrfs_block_group *block_group;
2501 struct btrfs_device *device;
2502 /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2503 unsigned int metadata_reserve = 2;
2504 /* Reserve a zone for SINGLE system block group. */
2505 unsigned int system_reserve = 1;
2506
2507 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2508 return;
2509
2510 /*
2511 * This function is called from the mount context. So, there is no
2512 * parallel process touching the bits. No need for read_seqretry().
2513 */
2514 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2515 metadata_reserve = 4;
2516 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2517 system_reserve = 2;
2518
2519 /* Apply the reservation on all the devices. */
2520 mutex_lock(&fs_devices->device_list_mutex);
2521 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2522 if (!device->bdev)
2523 continue;
2524
2525 device->zone_info->reserved_active_zones =
2526 metadata_reserve + system_reserve;
2527 }
2528 mutex_unlock(&fs_devices->device_list_mutex);
2529
2530 /* Release reservation for currently active block groups. */
2531 spin_lock(&fs_info->zone_active_bgs_lock);
2532 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2533 struct map_lookup *map = block_group->physical_map;
2534
2535 if (!(block_group->flags &
2536 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2537 continue;
2538
2539 for (int i = 0; i < map->num_stripes; i++)
2540 map->stripes[i].dev->zone_info->reserved_active_zones--;
2541 }
2542 spin_unlock(&fs_info->zone_active_bgs_lock);
2543 }
2544