xref: /openbmc/linux/fs/btrfs/xattr.c (revision e3de9b15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/init.h>
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include <linux/rwsem.h>
10 #include <linux/xattr.h>
11 #include <linux/security.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/iversion.h>
14 #include <linux/sched/mm.h>
15 #include "ctree.h"
16 #include "btrfs_inode.h"
17 #include "transaction.h"
18 #include "xattr.h"
19 #include "disk-io.h"
20 #include "props.h"
21 #include "locking.h"
22 
23 int btrfs_getxattr(struct inode *inode, const char *name,
24 				void *buffer, size_t size)
25 {
26 	struct btrfs_dir_item *di;
27 	struct btrfs_root *root = BTRFS_I(inode)->root;
28 	struct btrfs_path *path;
29 	struct extent_buffer *leaf;
30 	int ret = 0;
31 	unsigned long data_ptr;
32 
33 	path = btrfs_alloc_path();
34 	if (!path)
35 		return -ENOMEM;
36 
37 	/* lookup the xattr by name */
38 	di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
39 			name, strlen(name), 0);
40 	if (!di) {
41 		ret = -ENODATA;
42 		goto out;
43 	} else if (IS_ERR(di)) {
44 		ret = PTR_ERR(di);
45 		goto out;
46 	}
47 
48 	leaf = path->nodes[0];
49 	/* if size is 0, that means we want the size of the attr */
50 	if (!size) {
51 		ret = btrfs_dir_data_len(leaf, di);
52 		goto out;
53 	}
54 
55 	/* now get the data out of our dir_item */
56 	if (btrfs_dir_data_len(leaf, di) > size) {
57 		ret = -ERANGE;
58 		goto out;
59 	}
60 
61 	/*
62 	 * The way things are packed into the leaf is like this
63 	 * |struct btrfs_dir_item|name|data|
64 	 * where name is the xattr name, so security.foo, and data is the
65 	 * content of the xattr.  data_ptr points to the location in memory
66 	 * where the data starts in the in memory leaf
67 	 */
68 	data_ptr = (unsigned long)((char *)(di + 1) +
69 				   btrfs_dir_name_len(leaf, di));
70 	read_extent_buffer(leaf, buffer, data_ptr,
71 			   btrfs_dir_data_len(leaf, di));
72 	ret = btrfs_dir_data_len(leaf, di);
73 
74 out:
75 	btrfs_free_path(path);
76 	return ret;
77 }
78 
79 int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode,
80 		   const char *name, const void *value, size_t size, int flags)
81 {
82 	struct btrfs_dir_item *di = NULL;
83 	struct btrfs_root *root = BTRFS_I(inode)->root;
84 	struct btrfs_fs_info *fs_info = root->fs_info;
85 	struct btrfs_path *path;
86 	size_t name_len = strlen(name);
87 	int ret = 0;
88 
89 	ASSERT(trans);
90 
91 	if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
92 		return -ENOSPC;
93 
94 	path = btrfs_alloc_path();
95 	if (!path)
96 		return -ENOMEM;
97 	path->skip_release_on_error = 1;
98 
99 	if (!value) {
100 		di = btrfs_lookup_xattr(trans, root, path,
101 				btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
102 		if (!di && (flags & XATTR_REPLACE))
103 			ret = -ENODATA;
104 		else if (IS_ERR(di))
105 			ret = PTR_ERR(di);
106 		else if (di)
107 			ret = btrfs_delete_one_dir_name(trans, root, path, di);
108 		goto out;
109 	}
110 
111 	/*
112 	 * For a replace we can't just do the insert blindly.
113 	 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
114 	 * doesn't exist. If it exists, fall down below to the insert/replace
115 	 * path - we can't race with a concurrent xattr delete, because the VFS
116 	 * locks the inode's i_mutex before calling setxattr or removexattr.
117 	 */
118 	if (flags & XATTR_REPLACE) {
119 		ASSERT(inode_is_locked(inode));
120 		di = btrfs_lookup_xattr(NULL, root, path,
121 				btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
122 		if (!di)
123 			ret = -ENODATA;
124 		else if (IS_ERR(di))
125 			ret = PTR_ERR(di);
126 		if (ret)
127 			goto out;
128 		btrfs_release_path(path);
129 		di = NULL;
130 	}
131 
132 	ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
133 				      name, name_len, value, size);
134 	if (ret == -EOVERFLOW) {
135 		/*
136 		 * We have an existing item in a leaf, split_leaf couldn't
137 		 * expand it. That item might have or not a dir_item that
138 		 * matches our target xattr, so lets check.
139 		 */
140 		ret = 0;
141 		btrfs_assert_tree_locked(path->nodes[0]);
142 		di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
143 		if (!di && !(flags & XATTR_REPLACE)) {
144 			ret = -ENOSPC;
145 			goto out;
146 		}
147 	} else if (ret == -EEXIST) {
148 		ret = 0;
149 		di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
150 		ASSERT(di); /* logic error */
151 	} else if (ret) {
152 		goto out;
153 	}
154 
155 	if (di && (flags & XATTR_CREATE)) {
156 		ret = -EEXIST;
157 		goto out;
158 	}
159 
160 	if (di) {
161 		/*
162 		 * We're doing a replace, and it must be atomic, that is, at
163 		 * any point in time we have either the old or the new xattr
164 		 * value in the tree. We don't want readers (getxattr and
165 		 * listxattrs) to miss a value, this is specially important
166 		 * for ACLs.
167 		 */
168 		const int slot = path->slots[0];
169 		struct extent_buffer *leaf = path->nodes[0];
170 		const u16 old_data_len = btrfs_dir_data_len(leaf, di);
171 		const u32 item_size = btrfs_item_size_nr(leaf, slot);
172 		const u32 data_size = sizeof(*di) + name_len + size;
173 		struct btrfs_item *item;
174 		unsigned long data_ptr;
175 		char *ptr;
176 
177 		if (size > old_data_len) {
178 			if (btrfs_leaf_free_space(leaf) <
179 			    (size - old_data_len)) {
180 				ret = -ENOSPC;
181 				goto out;
182 			}
183 		}
184 
185 		if (old_data_len + name_len + sizeof(*di) == item_size) {
186 			/* No other xattrs packed in the same leaf item. */
187 			if (size > old_data_len)
188 				btrfs_extend_item(fs_info, path,
189 						  size - old_data_len);
190 			else if (size < old_data_len)
191 				btrfs_truncate_item(fs_info, path,
192 						    data_size, 1);
193 		} else {
194 			/* There are other xattrs packed in the same item. */
195 			ret = btrfs_delete_one_dir_name(trans, root, path, di);
196 			if (ret)
197 				goto out;
198 			btrfs_extend_item(fs_info, path, data_size);
199 		}
200 
201 		item = btrfs_item_nr(slot);
202 		ptr = btrfs_item_ptr(leaf, slot, char);
203 		ptr += btrfs_item_size(leaf, item) - data_size;
204 		di = (struct btrfs_dir_item *)ptr;
205 		btrfs_set_dir_data_len(leaf, di, size);
206 		data_ptr = ((unsigned long)(di + 1)) + name_len;
207 		write_extent_buffer(leaf, value, data_ptr, size);
208 		btrfs_mark_buffer_dirty(leaf);
209 	} else {
210 		/*
211 		 * Insert, and we had space for the xattr, so path->slots[0] is
212 		 * where our xattr dir_item is and btrfs_insert_xattr_item()
213 		 * filled it.
214 		 */
215 	}
216 out:
217 	btrfs_free_path(path);
218 	return ret;
219 }
220 
221 /*
222  * @value: "" makes the attribute to empty, NULL removes it
223  */
224 int btrfs_setxattr_trans(struct inode *inode, const char *name,
225 			 const void *value, size_t size, int flags)
226 {
227 	struct btrfs_root *root = BTRFS_I(inode)->root;
228 	struct btrfs_trans_handle *trans;
229 	int ret;
230 
231 	trans = btrfs_start_transaction(root, 2);
232 	if (IS_ERR(trans))
233 		return PTR_ERR(trans);
234 
235 	ret = btrfs_setxattr(trans, inode, name, value, size, flags);
236 	if (ret)
237 		goto out;
238 
239 	inode_inc_iversion(inode);
240 	inode->i_ctime = current_time(inode);
241 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
242 	ret = btrfs_update_inode(trans, root, inode);
243 	BUG_ON(ret);
244 out:
245 	btrfs_end_transaction(trans);
246 	return ret;
247 }
248 
249 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
250 {
251 	struct btrfs_key key;
252 	struct inode *inode = d_inode(dentry);
253 	struct btrfs_root *root = BTRFS_I(inode)->root;
254 	struct btrfs_path *path;
255 	int ret = 0;
256 	size_t total_size = 0, size_left = size;
257 
258 	/*
259 	 * ok we want all objects associated with this id.
260 	 * NOTE: we set key.offset = 0; because we want to start with the
261 	 * first xattr that we find and walk forward
262 	 */
263 	key.objectid = btrfs_ino(BTRFS_I(inode));
264 	key.type = BTRFS_XATTR_ITEM_KEY;
265 	key.offset = 0;
266 
267 	path = btrfs_alloc_path();
268 	if (!path)
269 		return -ENOMEM;
270 	path->reada = READA_FORWARD;
271 
272 	/* search for our xattrs */
273 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
274 	if (ret < 0)
275 		goto err;
276 
277 	while (1) {
278 		struct extent_buffer *leaf;
279 		int slot;
280 		struct btrfs_dir_item *di;
281 		struct btrfs_key found_key;
282 		u32 item_size;
283 		u32 cur;
284 
285 		leaf = path->nodes[0];
286 		slot = path->slots[0];
287 
288 		/* this is where we start walking through the path */
289 		if (slot >= btrfs_header_nritems(leaf)) {
290 			/*
291 			 * if we've reached the last slot in this leaf we need
292 			 * to go to the next leaf and reset everything
293 			 */
294 			ret = btrfs_next_leaf(root, path);
295 			if (ret < 0)
296 				goto err;
297 			else if (ret > 0)
298 				break;
299 			continue;
300 		}
301 
302 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
303 
304 		/* check to make sure this item is what we want */
305 		if (found_key.objectid != key.objectid)
306 			break;
307 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
308 			break;
309 		if (found_key.type < BTRFS_XATTR_ITEM_KEY)
310 			goto next_item;
311 
312 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
313 		item_size = btrfs_item_size_nr(leaf, slot);
314 		cur = 0;
315 		while (cur < item_size) {
316 			u16 name_len = btrfs_dir_name_len(leaf, di);
317 			u16 data_len = btrfs_dir_data_len(leaf, di);
318 			u32 this_len = sizeof(*di) + name_len + data_len;
319 			unsigned long name_ptr = (unsigned long)(di + 1);
320 
321 			total_size += name_len + 1;
322 			/*
323 			 * We are just looking for how big our buffer needs to
324 			 * be.
325 			 */
326 			if (!size)
327 				goto next;
328 
329 			if (!buffer || (name_len + 1) > size_left) {
330 				ret = -ERANGE;
331 				goto err;
332 			}
333 
334 			read_extent_buffer(leaf, buffer, name_ptr, name_len);
335 			buffer[name_len] = '\0';
336 
337 			size_left -= name_len + 1;
338 			buffer += name_len + 1;
339 next:
340 			cur += this_len;
341 			di = (struct btrfs_dir_item *)((char *)di + this_len);
342 		}
343 next_item:
344 		path->slots[0]++;
345 	}
346 	ret = total_size;
347 
348 err:
349 	btrfs_free_path(path);
350 
351 	return ret;
352 }
353 
354 static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
355 				   struct dentry *unused, struct inode *inode,
356 				   const char *name, void *buffer, size_t size)
357 {
358 	name = xattr_full_name(handler, name);
359 	return btrfs_getxattr(inode, name, buffer, size);
360 }
361 
362 static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
363 				   struct dentry *unused, struct inode *inode,
364 				   const char *name, const void *buffer,
365 				   size_t size, int flags)
366 {
367 	name = xattr_full_name(handler, name);
368 	return btrfs_setxattr_trans(inode, name, buffer, size, flags);
369 }
370 
371 static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
372 					struct dentry *unused, struct inode *inode,
373 					const char *name, const void *value,
374 					size_t size, int flags)
375 {
376 	name = xattr_full_name(handler, name);
377 	return btrfs_set_prop_trans(inode, name, value, size, flags);
378 }
379 
380 static const struct xattr_handler btrfs_security_xattr_handler = {
381 	.prefix = XATTR_SECURITY_PREFIX,
382 	.get = btrfs_xattr_handler_get,
383 	.set = btrfs_xattr_handler_set,
384 };
385 
386 static const struct xattr_handler btrfs_trusted_xattr_handler = {
387 	.prefix = XATTR_TRUSTED_PREFIX,
388 	.get = btrfs_xattr_handler_get,
389 	.set = btrfs_xattr_handler_set,
390 };
391 
392 static const struct xattr_handler btrfs_user_xattr_handler = {
393 	.prefix = XATTR_USER_PREFIX,
394 	.get = btrfs_xattr_handler_get,
395 	.set = btrfs_xattr_handler_set,
396 };
397 
398 static const struct xattr_handler btrfs_btrfs_xattr_handler = {
399 	.prefix = XATTR_BTRFS_PREFIX,
400 	.get = btrfs_xattr_handler_get,
401 	.set = btrfs_xattr_handler_set_prop,
402 };
403 
404 const struct xattr_handler *btrfs_xattr_handlers[] = {
405 	&btrfs_security_xattr_handler,
406 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
407 	&posix_acl_access_xattr_handler,
408 	&posix_acl_default_xattr_handler,
409 #endif
410 	&btrfs_trusted_xattr_handler,
411 	&btrfs_user_xattr_handler,
412 	&btrfs_btrfs_xattr_handler,
413 	NULL,
414 };
415 
416 static int btrfs_initxattrs(struct inode *inode,
417 			    const struct xattr *xattr_array, void *fs_private)
418 {
419 	struct btrfs_trans_handle *trans = fs_private;
420 	const struct xattr *xattr;
421 	unsigned int nofs_flag;
422 	char *name;
423 	int err = 0;
424 
425 	/*
426 	 * We're holding a transaction handle, so use a NOFS memory allocation
427 	 * context to avoid deadlock if reclaim happens.
428 	 */
429 	nofs_flag = memalloc_nofs_save();
430 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
431 		name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
432 			       strlen(xattr->name) + 1, GFP_KERNEL);
433 		if (!name) {
434 			err = -ENOMEM;
435 			break;
436 		}
437 		strcpy(name, XATTR_SECURITY_PREFIX);
438 		strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
439 		err = btrfs_setxattr(trans, inode, name, xattr->value,
440 				     xattr->value_len, 0);
441 		kfree(name);
442 		if (err < 0)
443 			break;
444 	}
445 	memalloc_nofs_restore(nofs_flag);
446 	return err;
447 }
448 
449 int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
450 			      struct inode *inode, struct inode *dir,
451 			      const struct qstr *qstr)
452 {
453 	return security_inode_init_security(inode, dir, qstr,
454 					    &btrfs_initxattrs, trans);
455 }
456