1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/bio.h> 10 #include <linux/sort.h> 11 #include <linux/btrfs.h> 12 #include "async-thread.h" 13 14 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) 15 16 extern struct mutex uuid_mutex; 17 18 #define BTRFS_STRIPE_LEN SZ_64K 19 20 struct buffer_head; 21 22 struct btrfs_io_geometry { 23 /* remaining bytes before crossing a stripe */ 24 u64 len; 25 /* offset of logical address in chunk */ 26 u64 offset; 27 /* length of single IO stripe */ 28 u64 stripe_len; 29 /* number of stripe where address falls */ 30 u64 stripe_nr; 31 /* offset of address in stripe */ 32 u64 stripe_offset; 33 /* offset of raid56 stripe into the chunk */ 34 u64 raid56_stripe_offset; 35 }; 36 37 /* 38 * Use sequence counter to get consistent device stat data on 39 * 32-bit processors. 40 */ 41 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 42 #include <linux/seqlock.h> 43 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 44 #define btrfs_device_data_ordered_init(device) \ 45 seqcount_init(&device->data_seqcount) 46 #else 47 #define btrfs_device_data_ordered_init(device) do { } while (0) 48 #endif 49 50 #define BTRFS_DEV_STATE_WRITEABLE (0) 51 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 52 #define BTRFS_DEV_STATE_MISSING (2) 53 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 54 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 55 56 struct btrfs_device { 57 struct list_head dev_list; /* device_list_mutex */ 58 struct list_head dev_alloc_list; /* chunk mutex */ 59 struct list_head post_commit_list; /* chunk mutex */ 60 struct btrfs_fs_devices *fs_devices; 61 struct btrfs_fs_info *fs_info; 62 63 struct rcu_string *name; 64 65 u64 generation; 66 67 struct block_device *bdev; 68 69 /* the mode sent to blkdev_get */ 70 fmode_t mode; 71 72 unsigned long dev_state; 73 blk_status_t last_flush_error; 74 75 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 76 seqcount_t data_seqcount; 77 #endif 78 79 /* the internal btrfs device id */ 80 u64 devid; 81 82 /* size of the device in memory */ 83 u64 total_bytes; 84 85 /* size of the device on disk */ 86 u64 disk_total_bytes; 87 88 /* bytes used */ 89 u64 bytes_used; 90 91 /* optimal io alignment for this device */ 92 u32 io_align; 93 94 /* optimal io width for this device */ 95 u32 io_width; 96 /* type and info about this device */ 97 u64 type; 98 99 /* minimal io size for this device */ 100 u32 sector_size; 101 102 /* physical drive uuid (or lvm uuid) */ 103 u8 uuid[BTRFS_UUID_SIZE]; 104 105 /* 106 * size of the device on the current transaction 107 * 108 * This variant is update when committing the transaction, 109 * and protected by chunk mutex 110 */ 111 u64 commit_total_bytes; 112 113 /* bytes used on the current transaction */ 114 u64 commit_bytes_used; 115 116 /* for sending down flush barriers */ 117 struct bio *flush_bio; 118 struct completion flush_wait; 119 120 /* per-device scrub information */ 121 struct scrub_ctx *scrub_ctx; 122 123 struct btrfs_work work; 124 125 /* readahead state */ 126 atomic_t reada_in_flight; 127 u64 reada_next; 128 struct reada_zone *reada_curr_zone; 129 struct radix_tree_root reada_zones; 130 struct radix_tree_root reada_extents; 131 132 /* disk I/O failure stats. For detailed description refer to 133 * enum btrfs_dev_stat_values in ioctl.h */ 134 int dev_stats_valid; 135 136 /* Counter to record the change of device stats */ 137 atomic_t dev_stats_ccnt; 138 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 139 140 struct extent_io_tree alloc_state; 141 }; 142 143 /* 144 * If we read those variants at the context of their own lock, we needn't 145 * use the following helpers, reading them directly is safe. 146 */ 147 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 148 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 149 static inline u64 \ 150 btrfs_device_get_##name(const struct btrfs_device *dev) \ 151 { \ 152 u64 size; \ 153 unsigned int seq; \ 154 \ 155 do { \ 156 seq = read_seqcount_begin(&dev->data_seqcount); \ 157 size = dev->name; \ 158 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 159 return size; \ 160 } \ 161 \ 162 static inline void \ 163 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 164 { \ 165 preempt_disable(); \ 166 write_seqcount_begin(&dev->data_seqcount); \ 167 dev->name = size; \ 168 write_seqcount_end(&dev->data_seqcount); \ 169 preempt_enable(); \ 170 } 171 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT) 172 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 173 static inline u64 \ 174 btrfs_device_get_##name(const struct btrfs_device *dev) \ 175 { \ 176 u64 size; \ 177 \ 178 preempt_disable(); \ 179 size = dev->name; \ 180 preempt_enable(); \ 181 return size; \ 182 } \ 183 \ 184 static inline void \ 185 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 186 { \ 187 preempt_disable(); \ 188 dev->name = size; \ 189 preempt_enable(); \ 190 } 191 #else 192 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 193 static inline u64 \ 194 btrfs_device_get_##name(const struct btrfs_device *dev) \ 195 { \ 196 return dev->name; \ 197 } \ 198 \ 199 static inline void \ 200 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 201 { \ 202 dev->name = size; \ 203 } 204 #endif 205 206 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 207 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 208 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 209 210 struct btrfs_fs_devices { 211 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 212 u8 metadata_uuid[BTRFS_FSID_SIZE]; 213 bool fsid_change; 214 struct list_head fs_list; 215 216 u64 num_devices; 217 u64 open_devices; 218 u64 rw_devices; 219 u64 missing_devices; 220 u64 total_rw_bytes; 221 u64 total_devices; 222 223 /* Highest generation number of seen devices */ 224 u64 latest_generation; 225 226 struct block_device *latest_bdev; 227 228 /* all of the devices in the FS, protected by a mutex 229 * so we can safely walk it to write out the supers without 230 * worrying about add/remove by the multi-device code. 231 * Scrubbing super can kick off supers writing by holding 232 * this mutex lock. 233 */ 234 struct mutex device_list_mutex; 235 236 /* List of all devices, protected by device_list_mutex */ 237 struct list_head devices; 238 239 /* 240 * Devices which can satisfy space allocation. Protected by 241 * chunk_mutex 242 */ 243 struct list_head alloc_list; 244 245 struct btrfs_fs_devices *seed; 246 bool seeding; 247 248 int opened; 249 250 /* set when we find or add a device that doesn't have the 251 * nonrot flag set 252 */ 253 bool rotating; 254 255 struct btrfs_fs_info *fs_info; 256 /* sysfs kobjects */ 257 struct kobject fsid_kobj; 258 struct kobject *device_dir_kobj; 259 struct completion kobj_unregister; 260 }; 261 262 #define BTRFS_BIO_INLINE_CSUM_SIZE 64 263 264 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ 265 - sizeof(struct btrfs_chunk)) \ 266 / sizeof(struct btrfs_stripe) + 1) 267 268 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 269 - 2 * sizeof(struct btrfs_disk_key) \ 270 - 2 * sizeof(struct btrfs_chunk)) \ 271 / sizeof(struct btrfs_stripe) + 1) 272 273 /* 274 * we need the mirror number and stripe index to be passed around 275 * the call chain while we are processing end_io (especially errors). 276 * Really, what we need is a btrfs_bio structure that has this info 277 * and is properly sized with its stripe array, but we're not there 278 * quite yet. We have our own btrfs bioset, and all of the bios 279 * we allocate are actually btrfs_io_bios. We'll cram as much of 280 * struct btrfs_bio as we can into this over time. 281 */ 282 struct btrfs_io_bio { 283 unsigned int mirror_num; 284 unsigned int stripe_index; 285 u64 logical; 286 u8 *csum; 287 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE]; 288 struct bvec_iter iter; 289 /* 290 * This member must come last, bio_alloc_bioset will allocate enough 291 * bytes for entire btrfs_io_bio but relies on bio being last. 292 */ 293 struct bio bio; 294 }; 295 296 static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio) 297 { 298 return container_of(bio, struct btrfs_io_bio, bio); 299 } 300 301 static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio) 302 { 303 if (io_bio->csum != io_bio->csum_inline) { 304 kfree(io_bio->csum); 305 io_bio->csum = NULL; 306 } 307 } 308 309 struct btrfs_bio_stripe { 310 struct btrfs_device *dev; 311 u64 physical; 312 u64 length; /* only used for discard mappings */ 313 }; 314 315 struct btrfs_bio { 316 refcount_t refs; 317 atomic_t stripes_pending; 318 struct btrfs_fs_info *fs_info; 319 u64 map_type; /* get from map_lookup->type */ 320 bio_end_io_t *end_io; 321 struct bio *orig_bio; 322 void *private; 323 atomic_t error; 324 int max_errors; 325 int num_stripes; 326 int mirror_num; 327 int num_tgtdevs; 328 int *tgtdev_map; 329 /* 330 * logical block numbers for the start of each stripe 331 * The last one or two are p/q. These are sorted, 332 * so raid_map[0] is the start of our full stripe 333 */ 334 u64 *raid_map; 335 struct btrfs_bio_stripe stripes[]; 336 }; 337 338 struct btrfs_device_info { 339 struct btrfs_device *dev; 340 u64 dev_offset; 341 u64 max_avail; 342 u64 total_avail; 343 }; 344 345 struct btrfs_raid_attr { 346 u8 sub_stripes; /* sub_stripes info for map */ 347 u8 dev_stripes; /* stripes per dev */ 348 u8 devs_max; /* max devs to use */ 349 u8 devs_min; /* min devs needed */ 350 u8 tolerated_failures; /* max tolerated fail devs */ 351 u8 devs_increment; /* ndevs has to be a multiple of this */ 352 u8 ncopies; /* how many copies to data has */ 353 u8 nparity; /* number of stripes worth of bytes to store 354 * parity information */ 355 u8 mindev_error; /* error code if min devs requisite is unmet */ 356 const char raid_name[8]; /* name of the raid */ 357 u64 bg_flag; /* block group flag of the raid */ 358 }; 359 360 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 361 362 struct map_lookup { 363 u64 type; 364 int io_align; 365 int io_width; 366 u64 stripe_len; 367 int num_stripes; 368 int sub_stripes; 369 int verified_stripes; /* For mount time dev extent verification */ 370 struct btrfs_bio_stripe stripes[]; 371 }; 372 373 #define map_lookup_size(n) (sizeof(struct map_lookup) + \ 374 (sizeof(struct btrfs_bio_stripe) * (n))) 375 376 struct btrfs_balance_args; 377 struct btrfs_balance_progress; 378 struct btrfs_balance_control { 379 struct btrfs_balance_args data; 380 struct btrfs_balance_args meta; 381 struct btrfs_balance_args sys; 382 383 u64 flags; 384 385 struct btrfs_balance_progress stat; 386 }; 387 388 enum btrfs_map_op { 389 BTRFS_MAP_READ, 390 BTRFS_MAP_WRITE, 391 BTRFS_MAP_DISCARD, 392 BTRFS_MAP_GET_READ_MIRRORS, 393 }; 394 395 static inline enum btrfs_map_op btrfs_op(struct bio *bio) 396 { 397 switch (bio_op(bio)) { 398 case REQ_OP_DISCARD: 399 return BTRFS_MAP_DISCARD; 400 case REQ_OP_WRITE: 401 return BTRFS_MAP_WRITE; 402 default: 403 WARN_ON_ONCE(1); 404 /* fall through */ 405 case REQ_OP_READ: 406 return BTRFS_MAP_READ; 407 } 408 } 409 410 void btrfs_get_bbio(struct btrfs_bio *bbio); 411 void btrfs_put_bbio(struct btrfs_bio *bbio); 412 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 413 u64 logical, u64 *length, 414 struct btrfs_bio **bbio_ret, int mirror_num); 415 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 416 u64 logical, u64 *length, 417 struct btrfs_bio **bbio_ret); 418 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 419 u64 logical, u64 len, struct btrfs_io_geometry *io_geom); 420 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 421 u64 physical, u64 **logical, int *naddrs, int *stripe_len); 422 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 423 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 424 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type); 425 void btrfs_mapping_tree_free(struct extent_map_tree *tree); 426 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 427 int mirror_num); 428 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 429 fmode_t flags, void *holder); 430 struct btrfs_device *btrfs_scan_one_device(const char *path, 431 fmode_t flags, void *holder); 432 int btrfs_forget_devices(const char *path); 433 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 434 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step); 435 void btrfs_assign_next_active_device(struct btrfs_device *device, 436 struct btrfs_device *this_dev); 437 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, 438 u64 devid, 439 const char *devpath); 440 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 441 const u64 *devid, 442 const u8 *uuid); 443 void btrfs_free_device(struct btrfs_device *device); 444 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 445 const char *device_path, u64 devid); 446 void __exit btrfs_cleanup_fs_uuids(void); 447 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 448 int btrfs_grow_device(struct btrfs_trans_handle *trans, 449 struct btrfs_device *device, u64 new_size); 450 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 451 u64 devid, u8 *uuid, u8 *fsid, bool seed); 452 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 453 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 454 int btrfs_balance(struct btrfs_fs_info *fs_info, 455 struct btrfs_balance_control *bctl, 456 struct btrfs_ioctl_balance_args *bargs); 457 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); 458 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 459 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 460 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 461 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 462 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); 463 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info); 464 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset); 465 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 466 u64 *start, u64 *max_avail); 467 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 468 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 469 struct btrfs_ioctl_get_dev_stats *stats); 470 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 471 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 472 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); 473 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); 474 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); 475 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); 476 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path); 477 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, 478 u64 logical, u64 len); 479 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 480 u64 logical); 481 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 482 u64 chunk_offset, u64 chunk_size); 483 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); 484 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 485 u64 logical, u64 length); 486 487 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 488 int index) 489 { 490 atomic_inc(dev->dev_stat_values + index); 491 /* 492 * This memory barrier orders stores updating statistics before stores 493 * updating dev_stats_ccnt. 494 * 495 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 496 */ 497 smp_mb__before_atomic(); 498 atomic_inc(&dev->dev_stats_ccnt); 499 } 500 501 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 502 int index) 503 { 504 return atomic_read(dev->dev_stat_values + index); 505 } 506 507 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 508 int index) 509 { 510 int ret; 511 512 ret = atomic_xchg(dev->dev_stat_values + index, 0); 513 /* 514 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 515 * - RMW operations that have a return value are fully ordered; 516 * 517 * This implicit memory barriers is paired with the smp_rmb in 518 * btrfs_run_dev_stats 519 */ 520 atomic_inc(&dev->dev_stats_ccnt); 521 return ret; 522 } 523 524 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 525 int index, unsigned long val) 526 { 527 atomic_set(dev->dev_stat_values + index, val); 528 /* 529 * This memory barrier orders stores updating statistics before stores 530 * updating dev_stats_ccnt. 531 * 532 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 533 */ 534 smp_mb__before_atomic(); 535 atomic_inc(&dev->dev_stats_ccnt); 536 } 537 538 /* 539 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 540 * can be used as index to access btrfs_raid_array[]. 541 */ 542 static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags) 543 { 544 if (flags & BTRFS_BLOCK_GROUP_RAID10) 545 return BTRFS_RAID_RAID10; 546 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 547 return BTRFS_RAID_RAID1; 548 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3) 549 return BTRFS_RAID_RAID1C3; 550 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4) 551 return BTRFS_RAID_RAID1C4; 552 else if (flags & BTRFS_BLOCK_GROUP_DUP) 553 return BTRFS_RAID_DUP; 554 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 555 return BTRFS_RAID_RAID0; 556 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 557 return BTRFS_RAID_RAID5; 558 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 559 return BTRFS_RAID_RAID6; 560 561 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 562 } 563 564 void btrfs_commit_device_sizes(struct btrfs_transaction *trans); 565 566 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); 567 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info); 568 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info); 569 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 570 struct btrfs_device *failing_dev); 571 572 int btrfs_bg_type_to_factor(u64 flags); 573 const char *btrfs_bg_type_to_raid_name(u64 flags); 574 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); 575 576 #endif 577