1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/bio.h> 10 #include <linux/sort.h> 11 #include <linux/btrfs.h> 12 #include "async-thread.h" 13 14 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) 15 16 extern struct mutex uuid_mutex; 17 18 #define BTRFS_STRIPE_LEN SZ_64K 19 20 struct buffer_head; 21 struct btrfs_pending_bios { 22 struct bio *head; 23 struct bio *tail; 24 }; 25 26 /* 27 * Use sequence counter to get consistent device stat data on 28 * 32-bit processors. 29 */ 30 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 31 #include <linux/seqlock.h> 32 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 33 #define btrfs_device_data_ordered_init(device) \ 34 seqcount_init(&device->data_seqcount) 35 #else 36 #define btrfs_device_data_ordered_init(device) do { } while (0) 37 #endif 38 39 #define BTRFS_DEV_STATE_WRITEABLE (0) 40 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 41 #define BTRFS_DEV_STATE_MISSING (2) 42 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 43 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 44 45 struct btrfs_device { 46 struct list_head dev_list; 47 struct list_head dev_alloc_list; 48 struct btrfs_fs_devices *fs_devices; 49 struct btrfs_fs_info *fs_info; 50 51 struct rcu_string *name; 52 53 u64 generation; 54 55 spinlock_t io_lock ____cacheline_aligned; 56 int running_pending; 57 /* regular prio bios */ 58 struct btrfs_pending_bios pending_bios; 59 /* sync bios */ 60 struct btrfs_pending_bios pending_sync_bios; 61 62 struct block_device *bdev; 63 64 /* the mode sent to blkdev_get */ 65 fmode_t mode; 66 67 unsigned long dev_state; 68 blk_status_t last_flush_error; 69 int flush_bio_sent; 70 71 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 72 seqcount_t data_seqcount; 73 #endif 74 75 /* the internal btrfs device id */ 76 u64 devid; 77 78 /* size of the device in memory */ 79 u64 total_bytes; 80 81 /* size of the device on disk */ 82 u64 disk_total_bytes; 83 84 /* bytes used */ 85 u64 bytes_used; 86 87 /* optimal io alignment for this device */ 88 u32 io_align; 89 90 /* optimal io width for this device */ 91 u32 io_width; 92 /* type and info about this device */ 93 u64 type; 94 95 /* minimal io size for this device */ 96 u32 sector_size; 97 98 /* physical drive uuid (or lvm uuid) */ 99 u8 uuid[BTRFS_UUID_SIZE]; 100 101 /* 102 * size of the device on the current transaction 103 * 104 * This variant is update when committing the transaction, 105 * and protected by device_list_mutex 106 */ 107 u64 commit_total_bytes; 108 109 /* bytes used on the current transaction */ 110 u64 commit_bytes_used; 111 /* 112 * used to manage the device which is resized 113 * 114 * It is protected by chunk_lock. 115 */ 116 struct list_head resized_list; 117 118 /* for sending down flush barriers */ 119 struct bio *flush_bio; 120 struct completion flush_wait; 121 122 /* per-device scrub information */ 123 struct scrub_ctx *scrub_ctx; 124 125 struct btrfs_work work; 126 struct rcu_head rcu; 127 128 /* readahead state */ 129 atomic_t reada_in_flight; 130 u64 reada_next; 131 struct reada_zone *reada_curr_zone; 132 struct radix_tree_root reada_zones; 133 struct radix_tree_root reada_extents; 134 135 /* disk I/O failure stats. For detailed description refer to 136 * enum btrfs_dev_stat_values in ioctl.h */ 137 int dev_stats_valid; 138 139 /* Counter to record the change of device stats */ 140 atomic_t dev_stats_ccnt; 141 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 142 }; 143 144 /* 145 * If we read those variants at the context of their own lock, we needn't 146 * use the following helpers, reading them directly is safe. 147 */ 148 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 149 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 150 static inline u64 \ 151 btrfs_device_get_##name(const struct btrfs_device *dev) \ 152 { \ 153 u64 size; \ 154 unsigned int seq; \ 155 \ 156 do { \ 157 seq = read_seqcount_begin(&dev->data_seqcount); \ 158 size = dev->name; \ 159 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 160 return size; \ 161 } \ 162 \ 163 static inline void \ 164 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 165 { \ 166 preempt_disable(); \ 167 write_seqcount_begin(&dev->data_seqcount); \ 168 dev->name = size; \ 169 write_seqcount_end(&dev->data_seqcount); \ 170 preempt_enable(); \ 171 } 172 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT) 173 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 174 static inline u64 \ 175 btrfs_device_get_##name(const struct btrfs_device *dev) \ 176 { \ 177 u64 size; \ 178 \ 179 preempt_disable(); \ 180 size = dev->name; \ 181 preempt_enable(); \ 182 return size; \ 183 } \ 184 \ 185 static inline void \ 186 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 187 { \ 188 preempt_disable(); \ 189 dev->name = size; \ 190 preempt_enable(); \ 191 } 192 #else 193 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 194 static inline u64 \ 195 btrfs_device_get_##name(const struct btrfs_device *dev) \ 196 { \ 197 return dev->name; \ 198 } \ 199 \ 200 static inline void \ 201 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 202 { \ 203 dev->name = size; \ 204 } 205 #endif 206 207 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 208 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 209 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 210 211 struct btrfs_fs_devices { 212 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 213 struct list_head fs_list; 214 215 u64 num_devices; 216 u64 open_devices; 217 u64 rw_devices; 218 u64 missing_devices; 219 u64 total_rw_bytes; 220 u64 total_devices; 221 struct block_device *latest_bdev; 222 223 /* all of the devices in the FS, protected by a mutex 224 * so we can safely walk it to write out the supers without 225 * worrying about add/remove by the multi-device code. 226 * Scrubbing super can kick off supers writing by holding 227 * this mutex lock. 228 */ 229 struct mutex device_list_mutex; 230 struct list_head devices; 231 232 struct list_head resized_devices; 233 /* devices not currently being allocated */ 234 struct list_head alloc_list; 235 236 struct btrfs_fs_devices *seed; 237 int seeding; 238 239 int opened; 240 241 /* set when we find or add a device that doesn't have the 242 * nonrot flag set 243 */ 244 int rotating; 245 246 struct btrfs_fs_info *fs_info; 247 /* sysfs kobjects */ 248 struct kobject fsid_kobj; 249 struct kobject *device_dir_kobj; 250 struct completion kobj_unregister; 251 }; 252 253 #define BTRFS_BIO_INLINE_CSUM_SIZE 64 254 255 /* 256 * we need the mirror number and stripe index to be passed around 257 * the call chain while we are processing end_io (especially errors). 258 * Really, what we need is a btrfs_bio structure that has this info 259 * and is properly sized with its stripe array, but we're not there 260 * quite yet. We have our own btrfs bioset, and all of the bios 261 * we allocate are actually btrfs_io_bios. We'll cram as much of 262 * struct btrfs_bio as we can into this over time. 263 */ 264 typedef void (btrfs_io_bio_end_io_t) (struct btrfs_io_bio *bio, int err); 265 struct btrfs_io_bio { 266 unsigned int mirror_num; 267 unsigned int stripe_index; 268 u64 logical; 269 u8 *csum; 270 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE]; 271 u8 *csum_allocated; 272 btrfs_io_bio_end_io_t *end_io; 273 struct bvec_iter iter; 274 /* 275 * This member must come last, bio_alloc_bioset will allocate enough 276 * bytes for entire btrfs_io_bio but relies on bio being last. 277 */ 278 struct bio bio; 279 }; 280 281 static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio) 282 { 283 return container_of(bio, struct btrfs_io_bio, bio); 284 } 285 286 struct btrfs_bio_stripe { 287 struct btrfs_device *dev; 288 u64 physical; 289 u64 length; /* only used for discard mappings */ 290 }; 291 292 struct btrfs_bio; 293 typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err); 294 295 struct btrfs_bio { 296 refcount_t refs; 297 atomic_t stripes_pending; 298 struct btrfs_fs_info *fs_info; 299 u64 map_type; /* get from map_lookup->type */ 300 bio_end_io_t *end_io; 301 struct bio *orig_bio; 302 unsigned long flags; 303 void *private; 304 atomic_t error; 305 int max_errors; 306 int num_stripes; 307 int mirror_num; 308 int num_tgtdevs; 309 int *tgtdev_map; 310 /* 311 * logical block numbers for the start of each stripe 312 * The last one or two are p/q. These are sorted, 313 * so raid_map[0] is the start of our full stripe 314 */ 315 u64 *raid_map; 316 struct btrfs_bio_stripe stripes[]; 317 }; 318 319 struct btrfs_device_info { 320 struct btrfs_device *dev; 321 u64 dev_offset; 322 u64 max_avail; 323 u64 total_avail; 324 }; 325 326 struct btrfs_raid_attr { 327 int sub_stripes; /* sub_stripes info for map */ 328 int dev_stripes; /* stripes per dev */ 329 int devs_max; /* max devs to use */ 330 int devs_min; /* min devs needed */ 331 int tolerated_failures; /* max tolerated fail devs */ 332 int devs_increment; /* ndevs has to be a multiple of this */ 333 int ncopies; /* how many copies to data has */ 334 int mindev_error; /* error code if min devs requisite is unmet */ 335 const char raid_name[8]; /* name of the raid */ 336 u64 bg_flag; /* block group flag of the raid */ 337 }; 338 339 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 340 341 struct map_lookup { 342 u64 type; 343 int io_align; 344 int io_width; 345 u64 stripe_len; 346 int num_stripes; 347 int sub_stripes; 348 int verified_stripes; /* For mount time dev extent verification */ 349 struct btrfs_bio_stripe stripes[]; 350 }; 351 352 #define map_lookup_size(n) (sizeof(struct map_lookup) + \ 353 (sizeof(struct btrfs_bio_stripe) * (n))) 354 355 struct btrfs_balance_args; 356 struct btrfs_balance_progress; 357 struct btrfs_balance_control { 358 struct btrfs_balance_args data; 359 struct btrfs_balance_args meta; 360 struct btrfs_balance_args sys; 361 362 u64 flags; 363 364 struct btrfs_balance_progress stat; 365 }; 366 367 enum btrfs_map_op { 368 BTRFS_MAP_READ, 369 BTRFS_MAP_WRITE, 370 BTRFS_MAP_DISCARD, 371 BTRFS_MAP_GET_READ_MIRRORS, 372 }; 373 374 static inline enum btrfs_map_op btrfs_op(struct bio *bio) 375 { 376 switch (bio_op(bio)) { 377 case REQ_OP_DISCARD: 378 return BTRFS_MAP_DISCARD; 379 case REQ_OP_WRITE: 380 return BTRFS_MAP_WRITE; 381 default: 382 WARN_ON_ONCE(1); 383 case REQ_OP_READ: 384 return BTRFS_MAP_READ; 385 } 386 } 387 388 void btrfs_get_bbio(struct btrfs_bio *bbio); 389 void btrfs_put_bbio(struct btrfs_bio *bbio); 390 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 391 u64 logical, u64 *length, 392 struct btrfs_bio **bbio_ret, int mirror_num); 393 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 394 u64 logical, u64 *length, 395 struct btrfs_bio **bbio_ret); 396 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 397 u64 physical, u64 **logical, int *naddrs, int *stripe_len); 398 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 399 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 400 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type); 401 void btrfs_mapping_init(struct btrfs_mapping_tree *tree); 402 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree); 403 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 404 int mirror_num, int async_submit); 405 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 406 fmode_t flags, void *holder); 407 struct btrfs_device *btrfs_scan_one_device(const char *path, 408 fmode_t flags, void *holder); 409 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 410 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step); 411 void btrfs_assign_next_active_device(struct btrfs_device *device, 412 struct btrfs_device *this_dev); 413 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, 414 u64 devid, 415 const char *devpath); 416 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 417 const u64 *devid, 418 const u8 *uuid); 419 void btrfs_free_device(struct btrfs_device *device); 420 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 421 const char *device_path, u64 devid); 422 void __exit btrfs_cleanup_fs_uuids(void); 423 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 424 int btrfs_grow_device(struct btrfs_trans_handle *trans, 425 struct btrfs_device *device, u64 new_size); 426 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 427 u8 *uuid, u8 *fsid); 428 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 429 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 430 int btrfs_balance(struct btrfs_fs_info *fs_info, 431 struct btrfs_balance_control *bctl, 432 struct btrfs_ioctl_balance_args *bargs); 433 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 434 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 435 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 436 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 437 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); 438 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info); 439 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset); 440 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 441 struct btrfs_device *device, u64 num_bytes, 442 u64 search_start, u64 *start, u64 *max_avail); 443 int find_free_dev_extent(struct btrfs_trans_handle *trans, 444 struct btrfs_device *device, u64 num_bytes, 445 u64 *start, u64 *max_avail); 446 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 447 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 448 struct btrfs_ioctl_get_dev_stats *stats); 449 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 450 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 451 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 452 struct btrfs_fs_info *fs_info); 453 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); 454 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 455 struct btrfs_device *srcdev); 456 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); 457 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path); 458 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, 459 u64 logical, u64 len); 460 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 461 u64 logical); 462 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 463 u64 chunk_offset, u64 chunk_size); 464 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); 465 466 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 467 int index) 468 { 469 atomic_inc(dev->dev_stat_values + index); 470 /* 471 * This memory barrier orders stores updating statistics before stores 472 * updating dev_stats_ccnt. 473 * 474 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 475 */ 476 smp_mb__before_atomic(); 477 atomic_inc(&dev->dev_stats_ccnt); 478 } 479 480 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 481 int index) 482 { 483 return atomic_read(dev->dev_stat_values + index); 484 } 485 486 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 487 int index) 488 { 489 int ret; 490 491 ret = atomic_xchg(dev->dev_stat_values + index, 0); 492 /* 493 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 494 * - RMW operations that have a return value are fully ordered; 495 * 496 * This implicit memory barriers is paired with the smp_rmb in 497 * btrfs_run_dev_stats 498 */ 499 atomic_inc(&dev->dev_stats_ccnt); 500 return ret; 501 } 502 503 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 504 int index, unsigned long val) 505 { 506 atomic_set(dev->dev_stat_values + index, val); 507 /* 508 * This memory barrier orders stores updating statistics before stores 509 * updating dev_stats_ccnt. 510 * 511 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 512 */ 513 smp_mb__before_atomic(); 514 atomic_inc(&dev->dev_stats_ccnt); 515 } 516 517 static inline void btrfs_dev_stat_reset(struct btrfs_device *dev, 518 int index) 519 { 520 btrfs_dev_stat_set(dev, index, 0); 521 } 522 523 /* 524 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 525 * can be used as index to access btrfs_raid_array[]. 526 */ 527 static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags) 528 { 529 if (flags & BTRFS_BLOCK_GROUP_RAID10) 530 return BTRFS_RAID_RAID10; 531 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 532 return BTRFS_RAID_RAID1; 533 else if (flags & BTRFS_BLOCK_GROUP_DUP) 534 return BTRFS_RAID_DUP; 535 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 536 return BTRFS_RAID_RAID0; 537 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 538 return BTRFS_RAID_RAID5; 539 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 540 return BTRFS_RAID_RAID6; 541 542 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 543 } 544 545 const char *get_raid_name(enum btrfs_raid_types type); 546 547 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info); 548 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans); 549 550 struct list_head *btrfs_get_fs_uuids(void); 551 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info); 552 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info); 553 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 554 struct btrfs_device *failing_dev); 555 556 int btrfs_bg_type_to_factor(u64 flags); 557 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); 558 559 #endif 560