1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/bio.h> 10 #include <linux/sort.h> 11 #include <linux/btrfs.h> 12 #include "async-thread.h" 13 14 extern struct mutex uuid_mutex; 15 16 #define BTRFS_STRIPE_LEN SZ_64K 17 18 struct buffer_head; 19 struct btrfs_pending_bios { 20 struct bio *head; 21 struct bio *tail; 22 }; 23 24 /* 25 * Use sequence counter to get consistent device stat data on 26 * 32-bit processors. 27 */ 28 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 29 #include <linux/seqlock.h> 30 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 31 #define btrfs_device_data_ordered_init(device) \ 32 seqcount_init(&device->data_seqcount) 33 #else 34 #define btrfs_device_data_ordered_init(device) do { } while (0) 35 #endif 36 37 #define BTRFS_DEV_STATE_WRITEABLE (0) 38 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 39 #define BTRFS_DEV_STATE_MISSING (2) 40 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 41 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 42 43 struct btrfs_device { 44 struct list_head dev_list; 45 struct list_head dev_alloc_list; 46 struct btrfs_fs_devices *fs_devices; 47 struct btrfs_fs_info *fs_info; 48 49 struct rcu_string *name; 50 51 u64 generation; 52 53 spinlock_t io_lock ____cacheline_aligned; 54 int running_pending; 55 /* regular prio bios */ 56 struct btrfs_pending_bios pending_bios; 57 /* sync bios */ 58 struct btrfs_pending_bios pending_sync_bios; 59 60 struct block_device *bdev; 61 62 /* the mode sent to blkdev_get */ 63 fmode_t mode; 64 65 unsigned long dev_state; 66 blk_status_t last_flush_error; 67 int flush_bio_sent; 68 69 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 70 seqcount_t data_seqcount; 71 #endif 72 73 /* the internal btrfs device id */ 74 u64 devid; 75 76 /* size of the device in memory */ 77 u64 total_bytes; 78 79 /* size of the device on disk */ 80 u64 disk_total_bytes; 81 82 /* bytes used */ 83 u64 bytes_used; 84 85 /* optimal io alignment for this device */ 86 u32 io_align; 87 88 /* optimal io width for this device */ 89 u32 io_width; 90 /* type and info about this device */ 91 u64 type; 92 93 /* minimal io size for this device */ 94 u32 sector_size; 95 96 /* physical drive uuid (or lvm uuid) */ 97 u8 uuid[BTRFS_UUID_SIZE]; 98 99 /* 100 * size of the device on the current transaction 101 * 102 * This variant is update when committing the transaction, 103 * and protected by device_list_mutex 104 */ 105 u64 commit_total_bytes; 106 107 /* bytes used on the current transaction */ 108 u64 commit_bytes_used; 109 /* 110 * used to manage the device which is resized 111 * 112 * It is protected by chunk_lock. 113 */ 114 struct list_head resized_list; 115 116 /* for sending down flush barriers */ 117 struct bio *flush_bio; 118 struct completion flush_wait; 119 120 /* per-device scrub information */ 121 struct scrub_ctx *scrub_ctx; 122 123 struct btrfs_work work; 124 struct rcu_head rcu; 125 126 /* readahead state */ 127 atomic_t reada_in_flight; 128 u64 reada_next; 129 struct reada_zone *reada_curr_zone; 130 struct radix_tree_root reada_zones; 131 struct radix_tree_root reada_extents; 132 133 /* disk I/O failure stats. For detailed description refer to 134 * enum btrfs_dev_stat_values in ioctl.h */ 135 int dev_stats_valid; 136 137 /* Counter to record the change of device stats */ 138 atomic_t dev_stats_ccnt; 139 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 140 }; 141 142 /* 143 * If we read those variants at the context of their own lock, we needn't 144 * use the following helpers, reading them directly is safe. 145 */ 146 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 147 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 148 static inline u64 \ 149 btrfs_device_get_##name(const struct btrfs_device *dev) \ 150 { \ 151 u64 size; \ 152 unsigned int seq; \ 153 \ 154 do { \ 155 seq = read_seqcount_begin(&dev->data_seqcount); \ 156 size = dev->name; \ 157 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 158 return size; \ 159 } \ 160 \ 161 static inline void \ 162 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 163 { \ 164 preempt_disable(); \ 165 write_seqcount_begin(&dev->data_seqcount); \ 166 dev->name = size; \ 167 write_seqcount_end(&dev->data_seqcount); \ 168 preempt_enable(); \ 169 } 170 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT) 171 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 172 static inline u64 \ 173 btrfs_device_get_##name(const struct btrfs_device *dev) \ 174 { \ 175 u64 size; \ 176 \ 177 preempt_disable(); \ 178 size = dev->name; \ 179 preempt_enable(); \ 180 return size; \ 181 } \ 182 \ 183 static inline void \ 184 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 185 { \ 186 preempt_disable(); \ 187 dev->name = size; \ 188 preempt_enable(); \ 189 } 190 #else 191 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 192 static inline u64 \ 193 btrfs_device_get_##name(const struct btrfs_device *dev) \ 194 { \ 195 return dev->name; \ 196 } \ 197 \ 198 static inline void \ 199 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 200 { \ 201 dev->name = size; \ 202 } 203 #endif 204 205 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 206 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 207 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 208 209 struct btrfs_fs_devices { 210 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 211 struct list_head fs_list; 212 213 u64 num_devices; 214 u64 open_devices; 215 u64 rw_devices; 216 u64 missing_devices; 217 u64 total_rw_bytes; 218 u64 total_devices; 219 struct block_device *latest_bdev; 220 221 /* all of the devices in the FS, protected by a mutex 222 * so we can safely walk it to write out the supers without 223 * worrying about add/remove by the multi-device code. 224 * Scrubbing super can kick off supers writing by holding 225 * this mutex lock. 226 */ 227 struct mutex device_list_mutex; 228 struct list_head devices; 229 230 struct list_head resized_devices; 231 /* devices not currently being allocated */ 232 struct list_head alloc_list; 233 234 struct btrfs_fs_devices *seed; 235 int seeding; 236 237 int opened; 238 239 /* set when we find or add a device that doesn't have the 240 * nonrot flag set 241 */ 242 int rotating; 243 244 struct btrfs_fs_info *fs_info; 245 /* sysfs kobjects */ 246 struct kobject fsid_kobj; 247 struct kobject *device_dir_kobj; 248 struct completion kobj_unregister; 249 }; 250 251 #define BTRFS_BIO_INLINE_CSUM_SIZE 64 252 253 /* 254 * we need the mirror number and stripe index to be passed around 255 * the call chain while we are processing end_io (especially errors). 256 * Really, what we need is a btrfs_bio structure that has this info 257 * and is properly sized with its stripe array, but we're not there 258 * quite yet. We have our own btrfs bioset, and all of the bios 259 * we allocate are actually btrfs_io_bios. We'll cram as much of 260 * struct btrfs_bio as we can into this over time. 261 */ 262 typedef void (btrfs_io_bio_end_io_t) (struct btrfs_io_bio *bio, int err); 263 struct btrfs_io_bio { 264 unsigned int mirror_num; 265 unsigned int stripe_index; 266 u64 logical; 267 u8 *csum; 268 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE]; 269 u8 *csum_allocated; 270 btrfs_io_bio_end_io_t *end_io; 271 struct bvec_iter iter; 272 /* 273 * This member must come last, bio_alloc_bioset will allocate enough 274 * bytes for entire btrfs_io_bio but relies on bio being last. 275 */ 276 struct bio bio; 277 }; 278 279 static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio) 280 { 281 return container_of(bio, struct btrfs_io_bio, bio); 282 } 283 284 struct btrfs_bio_stripe { 285 struct btrfs_device *dev; 286 u64 physical; 287 u64 length; /* only used for discard mappings */ 288 }; 289 290 struct btrfs_bio; 291 typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err); 292 293 struct btrfs_bio { 294 refcount_t refs; 295 atomic_t stripes_pending; 296 struct btrfs_fs_info *fs_info; 297 u64 map_type; /* get from map_lookup->type */ 298 bio_end_io_t *end_io; 299 struct bio *orig_bio; 300 unsigned long flags; 301 void *private; 302 atomic_t error; 303 int max_errors; 304 int num_stripes; 305 int mirror_num; 306 int num_tgtdevs; 307 int *tgtdev_map; 308 /* 309 * logical block numbers for the start of each stripe 310 * The last one or two are p/q. These are sorted, 311 * so raid_map[0] is the start of our full stripe 312 */ 313 u64 *raid_map; 314 struct btrfs_bio_stripe stripes[]; 315 }; 316 317 struct btrfs_device_info { 318 struct btrfs_device *dev; 319 u64 dev_offset; 320 u64 max_avail; 321 u64 total_avail; 322 }; 323 324 struct btrfs_raid_attr { 325 int sub_stripes; /* sub_stripes info for map */ 326 int dev_stripes; /* stripes per dev */ 327 int devs_max; /* max devs to use */ 328 int devs_min; /* min devs needed */ 329 int tolerated_failures; /* max tolerated fail devs */ 330 int devs_increment; /* ndevs has to be a multiple of this */ 331 int ncopies; /* how many copies to data has */ 332 int mindev_error; /* error code if min devs requisite is unmet */ 333 const char raid_name[8]; /* name of the raid */ 334 u64 bg_flag; /* block group flag of the raid */ 335 }; 336 337 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 338 339 struct map_lookup { 340 u64 type; 341 int io_align; 342 int io_width; 343 u64 stripe_len; 344 int num_stripes; 345 int sub_stripes; 346 struct btrfs_bio_stripe stripes[]; 347 }; 348 349 #define map_lookup_size(n) (sizeof(struct map_lookup) + \ 350 (sizeof(struct btrfs_bio_stripe) * (n))) 351 352 struct btrfs_balance_args; 353 struct btrfs_balance_progress; 354 struct btrfs_balance_control { 355 struct btrfs_balance_args data; 356 struct btrfs_balance_args meta; 357 struct btrfs_balance_args sys; 358 359 u64 flags; 360 361 struct btrfs_balance_progress stat; 362 }; 363 364 enum btrfs_map_op { 365 BTRFS_MAP_READ, 366 BTRFS_MAP_WRITE, 367 BTRFS_MAP_DISCARD, 368 BTRFS_MAP_GET_READ_MIRRORS, 369 }; 370 371 static inline enum btrfs_map_op btrfs_op(struct bio *bio) 372 { 373 switch (bio_op(bio)) { 374 case REQ_OP_DISCARD: 375 return BTRFS_MAP_DISCARD; 376 case REQ_OP_WRITE: 377 return BTRFS_MAP_WRITE; 378 default: 379 WARN_ON_ONCE(1); 380 case REQ_OP_READ: 381 return BTRFS_MAP_READ; 382 } 383 } 384 385 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 386 u64 end, u64 *length); 387 void btrfs_get_bbio(struct btrfs_bio *bbio); 388 void btrfs_put_bbio(struct btrfs_bio *bbio); 389 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 390 u64 logical, u64 *length, 391 struct btrfs_bio **bbio_ret, int mirror_num); 392 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 393 u64 logical, u64 *length, 394 struct btrfs_bio **bbio_ret); 395 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 396 u64 physical, u64 **logical, int *naddrs, int *stripe_len); 397 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 398 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 399 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 400 struct btrfs_fs_info *fs_info, u64 type); 401 void btrfs_mapping_init(struct btrfs_mapping_tree *tree); 402 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree); 403 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 404 int mirror_num, int async_submit); 405 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 406 fmode_t flags, void *holder); 407 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 408 struct btrfs_fs_devices **fs_devices_ret); 409 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 410 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step); 411 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info, 412 struct btrfs_device *device, struct btrfs_device *this_dev); 413 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, 414 const char *device_path, 415 struct btrfs_device **device); 416 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, 417 const char *devpath, 418 struct btrfs_device **device); 419 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 420 const u64 *devid, 421 const u8 *uuid); 422 void btrfs_free_device(struct btrfs_device *device); 423 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 424 const char *device_path, u64 devid); 425 void __exit btrfs_cleanup_fs_uuids(void); 426 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 427 int btrfs_grow_device(struct btrfs_trans_handle *trans, 428 struct btrfs_device *device, u64 new_size); 429 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 430 u8 *uuid, u8 *fsid); 431 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 432 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 433 int btrfs_balance(struct btrfs_fs_info *fs_info, 434 struct btrfs_balance_control *bctl, 435 struct btrfs_ioctl_balance_args *bargs); 436 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 437 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 438 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 439 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 440 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); 441 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info); 442 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset); 443 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 444 struct btrfs_device *device, u64 num_bytes, 445 u64 search_start, u64 *start, u64 *max_avail); 446 int find_free_dev_extent(struct btrfs_trans_handle *trans, 447 struct btrfs_device *device, u64 num_bytes, 448 u64 *start, u64 *max_avail); 449 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 450 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 451 struct btrfs_ioctl_get_dev_stats *stats); 452 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 453 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 454 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 455 struct btrfs_fs_info *fs_info); 456 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 457 struct btrfs_device *srcdev); 458 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 459 struct btrfs_device *srcdev); 460 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 461 struct btrfs_device *tgtdev); 462 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path); 463 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, 464 u64 logical, u64 len); 465 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 466 u64 logical); 467 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 468 struct btrfs_fs_info *fs_info, 469 u64 chunk_offset, u64 chunk_size); 470 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 471 struct btrfs_fs_info *fs_info, u64 chunk_offset); 472 473 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 474 int index) 475 { 476 atomic_inc(dev->dev_stat_values + index); 477 /* 478 * This memory barrier orders stores updating statistics before stores 479 * updating dev_stats_ccnt. 480 * 481 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 482 */ 483 smp_mb__before_atomic(); 484 atomic_inc(&dev->dev_stats_ccnt); 485 } 486 487 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 488 int index) 489 { 490 return atomic_read(dev->dev_stat_values + index); 491 } 492 493 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 494 int index) 495 { 496 int ret; 497 498 ret = atomic_xchg(dev->dev_stat_values + index, 0); 499 /* 500 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 501 * - RMW operations that have a return value are fully ordered; 502 * 503 * This implicit memory barriers is paired with the smp_rmb in 504 * btrfs_run_dev_stats 505 */ 506 atomic_inc(&dev->dev_stats_ccnt); 507 return ret; 508 } 509 510 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 511 int index, unsigned long val) 512 { 513 atomic_set(dev->dev_stat_values + index, val); 514 /* 515 * This memory barrier orders stores updating statistics before stores 516 * updating dev_stats_ccnt. 517 * 518 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 519 */ 520 smp_mb__before_atomic(); 521 atomic_inc(&dev->dev_stats_ccnt); 522 } 523 524 static inline void btrfs_dev_stat_reset(struct btrfs_device *dev, 525 int index) 526 { 527 btrfs_dev_stat_set(dev, index, 0); 528 } 529 530 /* 531 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 532 * can be used as index to access btrfs_raid_array[]. 533 */ 534 static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags) 535 { 536 if (flags & BTRFS_BLOCK_GROUP_RAID10) 537 return BTRFS_RAID_RAID10; 538 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 539 return BTRFS_RAID_RAID1; 540 else if (flags & BTRFS_BLOCK_GROUP_DUP) 541 return BTRFS_RAID_DUP; 542 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 543 return BTRFS_RAID_RAID0; 544 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 545 return BTRFS_RAID_RAID5; 546 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 547 return BTRFS_RAID_RAID6; 548 549 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 550 } 551 552 const char *get_raid_name(enum btrfs_raid_types type); 553 554 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info); 555 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans); 556 557 struct list_head *btrfs_get_fs_uuids(void); 558 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info); 559 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info); 560 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 561 struct btrfs_device *failing_dev); 562 563 #endif 564