xref: /openbmc/linux/fs/btrfs/volumes.h (revision 31e67366)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_VOLUMES_H
7 #define BTRFS_VOLUMES_H
8 
9 #include <linux/bio.h>
10 #include <linux/sort.h>
11 #include <linux/btrfs.h>
12 #include "async-thread.h"
13 
14 #define BTRFS_MAX_DATA_CHUNK_SIZE	(10ULL * SZ_1G)
15 
16 extern struct mutex uuid_mutex;
17 
18 #define BTRFS_STRIPE_LEN	SZ_64K
19 
20 struct btrfs_io_geometry {
21 	/* remaining bytes before crossing a stripe */
22 	u64 len;
23 	/* offset of logical address in chunk */
24 	u64 offset;
25 	/* length of single IO stripe */
26 	u64 stripe_len;
27 	/* number of stripe where address falls */
28 	u64 stripe_nr;
29 	/* offset of address in stripe */
30 	u64 stripe_offset;
31 	/* offset of raid56 stripe into the chunk */
32 	u64 raid56_stripe_offset;
33 };
34 
35 /*
36  * Use sequence counter to get consistent device stat data on
37  * 32-bit processors.
38  */
39 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
40 #include <linux/seqlock.h>
41 #define __BTRFS_NEED_DEVICE_DATA_ORDERED
42 #define btrfs_device_data_ordered_init(device)	\
43 	seqcount_init(&device->data_seqcount)
44 #else
45 #define btrfs_device_data_ordered_init(device) do { } while (0)
46 #endif
47 
48 #define BTRFS_DEV_STATE_WRITEABLE	(0)
49 #define BTRFS_DEV_STATE_IN_FS_METADATA	(1)
50 #define BTRFS_DEV_STATE_MISSING		(2)
51 #define BTRFS_DEV_STATE_REPLACE_TGT	(3)
52 #define BTRFS_DEV_STATE_FLUSH_SENT	(4)
53 #define BTRFS_DEV_STATE_NO_READA	(5)
54 
55 struct btrfs_zoned_device_info;
56 
57 struct btrfs_device {
58 	struct list_head dev_list; /* device_list_mutex */
59 	struct list_head dev_alloc_list; /* chunk mutex */
60 	struct list_head post_commit_list; /* chunk mutex */
61 	struct btrfs_fs_devices *fs_devices;
62 	struct btrfs_fs_info *fs_info;
63 
64 	struct rcu_string __rcu *name;
65 
66 	u64 generation;
67 
68 	struct block_device *bdev;
69 
70 	struct btrfs_zoned_device_info *zone_info;
71 
72 	/* the mode sent to blkdev_get */
73 	fmode_t mode;
74 
75 	unsigned long dev_state;
76 	blk_status_t last_flush_error;
77 
78 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
79 	seqcount_t data_seqcount;
80 #endif
81 
82 	/* the internal btrfs device id */
83 	u64 devid;
84 
85 	/* size of the device in memory */
86 	u64 total_bytes;
87 
88 	/* size of the device on disk */
89 	u64 disk_total_bytes;
90 
91 	/* bytes used */
92 	u64 bytes_used;
93 
94 	/* optimal io alignment for this device */
95 	u32 io_align;
96 
97 	/* optimal io width for this device */
98 	u32 io_width;
99 	/* type and info about this device */
100 	u64 type;
101 
102 	/* minimal io size for this device */
103 	u32 sector_size;
104 
105 	/* physical drive uuid (or lvm uuid) */
106 	u8 uuid[BTRFS_UUID_SIZE];
107 
108 	/*
109 	 * size of the device on the current transaction
110 	 *
111 	 * This variant is update when committing the transaction,
112 	 * and protected by chunk mutex
113 	 */
114 	u64 commit_total_bytes;
115 
116 	/* bytes used on the current transaction */
117 	u64 commit_bytes_used;
118 
119 	/* for sending down flush barriers */
120 	struct bio *flush_bio;
121 	struct completion flush_wait;
122 
123 	/* per-device scrub information */
124 	struct scrub_ctx *scrub_ctx;
125 
126 	/* readahead state */
127 	atomic_t reada_in_flight;
128 	u64 reada_next;
129 	struct reada_zone *reada_curr_zone;
130 	struct radix_tree_root reada_zones;
131 	struct radix_tree_root reada_extents;
132 
133 	/* disk I/O failure stats. For detailed description refer to
134 	 * enum btrfs_dev_stat_values in ioctl.h */
135 	int dev_stats_valid;
136 
137 	/* Counter to record the change of device stats */
138 	atomic_t dev_stats_ccnt;
139 	atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
140 
141 	struct extent_io_tree alloc_state;
142 
143 	struct completion kobj_unregister;
144 	/* For sysfs/FSID/devinfo/devid/ */
145 	struct kobject devid_kobj;
146 };
147 
148 /*
149  * If we read those variants at the context of their own lock, we needn't
150  * use the following helpers, reading them directly is safe.
151  */
152 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
153 #define BTRFS_DEVICE_GETSET_FUNCS(name)					\
154 static inline u64							\
155 btrfs_device_get_##name(const struct btrfs_device *dev)			\
156 {									\
157 	u64 size;							\
158 	unsigned int seq;						\
159 									\
160 	do {								\
161 		seq = read_seqcount_begin(&dev->data_seqcount);		\
162 		size = dev->name;					\
163 	} while (read_seqcount_retry(&dev->data_seqcount, seq));	\
164 	return size;							\
165 }									\
166 									\
167 static inline void							\
168 btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
169 {									\
170 	preempt_disable();						\
171 	write_seqcount_begin(&dev->data_seqcount);			\
172 	dev->name = size;						\
173 	write_seqcount_end(&dev->data_seqcount);			\
174 	preempt_enable();						\
175 }
176 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
177 #define BTRFS_DEVICE_GETSET_FUNCS(name)					\
178 static inline u64							\
179 btrfs_device_get_##name(const struct btrfs_device *dev)			\
180 {									\
181 	u64 size;							\
182 									\
183 	preempt_disable();						\
184 	size = dev->name;						\
185 	preempt_enable();						\
186 	return size;							\
187 }									\
188 									\
189 static inline void							\
190 btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
191 {									\
192 	preempt_disable();						\
193 	dev->name = size;						\
194 	preempt_enable();						\
195 }
196 #else
197 #define BTRFS_DEVICE_GETSET_FUNCS(name)					\
198 static inline u64							\
199 btrfs_device_get_##name(const struct btrfs_device *dev)			\
200 {									\
201 	return dev->name;						\
202 }									\
203 									\
204 static inline void							\
205 btrfs_device_set_##name(struct btrfs_device *dev, u64 size)		\
206 {									\
207 	dev->name = size;						\
208 }
209 #endif
210 
211 BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
212 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
213 BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
214 
215 enum btrfs_chunk_allocation_policy {
216 	BTRFS_CHUNK_ALLOC_REGULAR,
217 	BTRFS_CHUNK_ALLOC_ZONED,
218 };
219 
220 /*
221  * Read policies for mirrored block group profiles, read picks the stripe based
222  * on these policies.
223  */
224 enum btrfs_read_policy {
225 	/* Use process PID to choose the stripe */
226 	BTRFS_READ_POLICY_PID,
227 	BTRFS_NR_READ_POLICY,
228 };
229 
230 struct btrfs_fs_devices {
231 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
232 	u8 metadata_uuid[BTRFS_FSID_SIZE];
233 	bool fsid_change;
234 	struct list_head fs_list;
235 
236 	u64 num_devices;
237 	u64 open_devices;
238 	u64 rw_devices;
239 	u64 missing_devices;
240 	u64 total_rw_bytes;
241 	u64 total_devices;
242 
243 	/* Highest generation number of seen devices */
244 	u64 latest_generation;
245 
246 	struct block_device *latest_bdev;
247 
248 	/* all of the devices in the FS, protected by a mutex
249 	 * so we can safely walk it to write out the supers without
250 	 * worrying about add/remove by the multi-device code.
251 	 * Scrubbing super can kick off supers writing by holding
252 	 * this mutex lock.
253 	 */
254 	struct mutex device_list_mutex;
255 
256 	/* List of all devices, protected by device_list_mutex */
257 	struct list_head devices;
258 
259 	/*
260 	 * Devices which can satisfy space allocation. Protected by
261 	 * chunk_mutex
262 	 */
263 	struct list_head alloc_list;
264 
265 	struct list_head seed_list;
266 	bool seeding;
267 
268 	int opened;
269 
270 	/* set when we find or add a device that doesn't have the
271 	 * nonrot flag set
272 	 */
273 	bool rotating;
274 
275 	struct btrfs_fs_info *fs_info;
276 	/* sysfs kobjects */
277 	struct kobject fsid_kobj;
278 	struct kobject *devices_kobj;
279 	struct kobject *devinfo_kobj;
280 	struct completion kobj_unregister;
281 
282 	enum btrfs_chunk_allocation_policy chunk_alloc_policy;
283 
284 	/* Policy used to read the mirrored stripes */
285 	enum btrfs_read_policy read_policy;
286 };
287 
288 #define BTRFS_BIO_INLINE_CSUM_SIZE	64
289 
290 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
291 			- sizeof(struct btrfs_chunk))		\
292 			/ sizeof(struct btrfs_stripe) + 1)
293 
294 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
295 				- 2 * sizeof(struct btrfs_disk_key)	\
296 				- 2 * sizeof(struct btrfs_chunk))	\
297 				/ sizeof(struct btrfs_stripe) + 1)
298 
299 /*
300  * we need the mirror number and stripe index to be passed around
301  * the call chain while we are processing end_io (especially errors).
302  * Really, what we need is a btrfs_bio structure that has this info
303  * and is properly sized with its stripe array, but we're not there
304  * quite yet.  We have our own btrfs bioset, and all of the bios
305  * we allocate are actually btrfs_io_bios.  We'll cram as much of
306  * struct btrfs_bio as we can into this over time.
307  */
308 struct btrfs_io_bio {
309 	unsigned int mirror_num;
310 	struct btrfs_device *device;
311 	u64 logical;
312 	u8 *csum;
313 	u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
314 	struct bvec_iter iter;
315 	/*
316 	 * This member must come last, bio_alloc_bioset will allocate enough
317 	 * bytes for entire btrfs_io_bio but relies on bio being last.
318 	 */
319 	struct bio bio;
320 };
321 
322 static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
323 {
324 	return container_of(bio, struct btrfs_io_bio, bio);
325 }
326 
327 static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio)
328 {
329 	if (io_bio->csum != io_bio->csum_inline) {
330 		kfree(io_bio->csum);
331 		io_bio->csum = NULL;
332 	}
333 }
334 
335 struct btrfs_bio_stripe {
336 	struct btrfs_device *dev;
337 	u64 physical;
338 	u64 length; /* only used for discard mappings */
339 };
340 
341 struct btrfs_bio {
342 	refcount_t refs;
343 	atomic_t stripes_pending;
344 	struct btrfs_fs_info *fs_info;
345 	u64 map_type; /* get from map_lookup->type */
346 	bio_end_io_t *end_io;
347 	struct bio *orig_bio;
348 	void *private;
349 	atomic_t error;
350 	int max_errors;
351 	int num_stripes;
352 	int mirror_num;
353 	int num_tgtdevs;
354 	int *tgtdev_map;
355 	/*
356 	 * logical block numbers for the start of each stripe
357 	 * The last one or two are p/q.  These are sorted,
358 	 * so raid_map[0] is the start of our full stripe
359 	 */
360 	u64 *raid_map;
361 	struct btrfs_bio_stripe stripes[];
362 };
363 
364 struct btrfs_device_info {
365 	struct btrfs_device *dev;
366 	u64 dev_offset;
367 	u64 max_avail;
368 	u64 total_avail;
369 };
370 
371 struct btrfs_raid_attr {
372 	u8 sub_stripes;		/* sub_stripes info for map */
373 	u8 dev_stripes;		/* stripes per dev */
374 	u8 devs_max;		/* max devs to use */
375 	u8 devs_min;		/* min devs needed */
376 	u8 tolerated_failures;	/* max tolerated fail devs */
377 	u8 devs_increment;	/* ndevs has to be a multiple of this */
378 	u8 ncopies;		/* how many copies to data has */
379 	u8 nparity;		/* number of stripes worth of bytes to store
380 				 * parity information */
381 	u8 mindev_error;	/* error code if min devs requisite is unmet */
382 	const char raid_name[8]; /* name of the raid */
383 	u64 bg_flag;		/* block group flag of the raid */
384 };
385 
386 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
387 
388 struct map_lookup {
389 	u64 type;
390 	int io_align;
391 	int io_width;
392 	u64 stripe_len;
393 	int num_stripes;
394 	int sub_stripes;
395 	int verified_stripes; /* For mount time dev extent verification */
396 	struct btrfs_bio_stripe stripes[];
397 };
398 
399 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
400 			    (sizeof(struct btrfs_bio_stripe) * (n)))
401 
402 struct btrfs_balance_args;
403 struct btrfs_balance_progress;
404 struct btrfs_balance_control {
405 	struct btrfs_balance_args data;
406 	struct btrfs_balance_args meta;
407 	struct btrfs_balance_args sys;
408 
409 	u64 flags;
410 
411 	struct btrfs_balance_progress stat;
412 };
413 
414 enum btrfs_map_op {
415 	BTRFS_MAP_READ,
416 	BTRFS_MAP_WRITE,
417 	BTRFS_MAP_DISCARD,
418 	BTRFS_MAP_GET_READ_MIRRORS,
419 };
420 
421 static inline enum btrfs_map_op btrfs_op(struct bio *bio)
422 {
423 	switch (bio_op(bio)) {
424 	case REQ_OP_DISCARD:
425 		return BTRFS_MAP_DISCARD;
426 	case REQ_OP_WRITE:
427 	case REQ_OP_ZONE_APPEND:
428 		return BTRFS_MAP_WRITE;
429 	default:
430 		WARN_ON_ONCE(1);
431 		fallthrough;
432 	case REQ_OP_READ:
433 		return BTRFS_MAP_READ;
434 	}
435 }
436 
437 void btrfs_get_bbio(struct btrfs_bio *bbio);
438 void btrfs_put_bbio(struct btrfs_bio *bbio);
439 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
440 		    u64 logical, u64 *length,
441 		    struct btrfs_bio **bbio_ret, int mirror_num);
442 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
443 		     u64 logical, u64 *length,
444 		     struct btrfs_bio **bbio_ret);
445 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *map,
446 			  enum btrfs_map_op op, u64 logical, u64 len,
447 			  struct btrfs_io_geometry *io_geom);
448 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
449 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
450 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
451 void btrfs_mapping_tree_free(struct extent_map_tree *tree);
452 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
453 			   int mirror_num);
454 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
455 		       fmode_t flags, void *holder);
456 struct btrfs_device *btrfs_scan_one_device(const char *path,
457 					   fmode_t flags, void *holder);
458 int btrfs_forget_devices(const char *path);
459 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
460 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices);
461 void btrfs_assign_next_active_device(struct btrfs_device *device,
462 				     struct btrfs_device *this_dev);
463 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info,
464 						  u64 devid,
465 						  const char *devpath);
466 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
467 					const u64 *devid,
468 					const u8 *uuid);
469 void btrfs_free_device(struct btrfs_device *device);
470 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
471 		    const char *device_path, u64 devid);
472 void __exit btrfs_cleanup_fs_uuids(void);
473 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
474 int btrfs_grow_device(struct btrfs_trans_handle *trans,
475 		      struct btrfs_device *device, u64 new_size);
476 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
477 				       u64 devid, u8 *uuid, u8 *fsid);
478 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
479 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
480 int btrfs_balance(struct btrfs_fs_info *fs_info,
481 		  struct btrfs_balance_control *bctl,
482 		  struct btrfs_ioctl_balance_args *bargs);
483 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf);
484 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
485 int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
486 int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
487 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
488 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
489 int btrfs_uuid_scan_kthread(void *data);
490 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
491 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
492 			 u64 *start, u64 *max_avail);
493 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
494 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
495 			struct btrfs_ioctl_get_dev_stats *stats);
496 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
497 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
498 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans);
499 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
500 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev);
501 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
502 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
503 			   u64 logical, u64 len);
504 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
505 				    u64 logical);
506 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
507 			     u64 chunk_offset, u64 chunk_size);
508 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
509 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
510 				       u64 logical, u64 length);
511 void btrfs_release_disk_super(struct btrfs_super_block *super);
512 
513 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
514 				      int index)
515 {
516 	atomic_inc(dev->dev_stat_values + index);
517 	/*
518 	 * This memory barrier orders stores updating statistics before stores
519 	 * updating dev_stats_ccnt.
520 	 *
521 	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
522 	 */
523 	smp_mb__before_atomic();
524 	atomic_inc(&dev->dev_stats_ccnt);
525 }
526 
527 static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
528 				      int index)
529 {
530 	return atomic_read(dev->dev_stat_values + index);
531 }
532 
533 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
534 						int index)
535 {
536 	int ret;
537 
538 	ret = atomic_xchg(dev->dev_stat_values + index, 0);
539 	/*
540 	 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
541 	 * - RMW operations that have a return value are fully ordered;
542 	 *
543 	 * This implicit memory barriers is paired with the smp_rmb in
544 	 * btrfs_run_dev_stats
545 	 */
546 	atomic_inc(&dev->dev_stats_ccnt);
547 	return ret;
548 }
549 
550 static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
551 				      int index, unsigned long val)
552 {
553 	atomic_set(dev->dev_stat_values + index, val);
554 	/*
555 	 * This memory barrier orders stores updating statistics before stores
556 	 * updating dev_stats_ccnt.
557 	 *
558 	 * It pairs with smp_rmb() in btrfs_run_dev_stats().
559 	 */
560 	smp_mb__before_atomic();
561 	atomic_inc(&dev->dev_stats_ccnt);
562 }
563 
564 /*
565  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
566  * can be used as index to access btrfs_raid_array[].
567  */
568 static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
569 {
570 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
571 		return BTRFS_RAID_RAID10;
572 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
573 		return BTRFS_RAID_RAID1;
574 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
575 		return BTRFS_RAID_RAID1C3;
576 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
577 		return BTRFS_RAID_RAID1C4;
578 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
579 		return BTRFS_RAID_DUP;
580 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
581 		return BTRFS_RAID_RAID0;
582 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
583 		return BTRFS_RAID_RAID5;
584 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
585 		return BTRFS_RAID_RAID6;
586 
587 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
588 }
589 
590 void btrfs_commit_device_sizes(struct btrfs_transaction *trans);
591 
592 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void);
593 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
594 					struct btrfs_device *failing_dev);
595 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
596 			       struct block_device *bdev,
597 			       const char *device_path);
598 
599 int btrfs_bg_type_to_factor(u64 flags);
600 const char *btrfs_bg_type_to_raid_name(u64 flags);
601 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);
602 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical);
603 
604 #endif
605