xref: /openbmc/linux/fs/btrfs/volumes.c (revision fa0dadde)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38 
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
40 					 BTRFS_BLOCK_GROUP_RAID10 | \
41 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
42 
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 	[BTRFS_RAID_RAID10] = {
45 		.sub_stripes	= 2,
46 		.dev_stripes	= 1,
47 		.devs_max	= 0,	/* 0 == as many as possible */
48 		.devs_min	= 2,
49 		.tolerated_failures = 1,
50 		.devs_increment	= 2,
51 		.ncopies	= 2,
52 		.nparity        = 0,
53 		.raid_name	= "raid10",
54 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
55 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 	},
57 	[BTRFS_RAID_RAID1] = {
58 		.sub_stripes	= 1,
59 		.dev_stripes	= 1,
60 		.devs_max	= 2,
61 		.devs_min	= 2,
62 		.tolerated_failures = 1,
63 		.devs_increment	= 2,
64 		.ncopies	= 2,
65 		.nparity        = 0,
66 		.raid_name	= "raid1",
67 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
68 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 	},
70 	[BTRFS_RAID_RAID1C3] = {
71 		.sub_stripes	= 1,
72 		.dev_stripes	= 1,
73 		.devs_max	= 3,
74 		.devs_min	= 3,
75 		.tolerated_failures = 2,
76 		.devs_increment	= 3,
77 		.ncopies	= 3,
78 		.nparity        = 0,
79 		.raid_name	= "raid1c3",
80 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
81 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 	},
83 	[BTRFS_RAID_RAID1C4] = {
84 		.sub_stripes	= 1,
85 		.dev_stripes	= 1,
86 		.devs_max	= 4,
87 		.devs_min	= 4,
88 		.tolerated_failures = 3,
89 		.devs_increment	= 4,
90 		.ncopies	= 4,
91 		.nparity        = 0,
92 		.raid_name	= "raid1c4",
93 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
94 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 	},
96 	[BTRFS_RAID_DUP] = {
97 		.sub_stripes	= 1,
98 		.dev_stripes	= 2,
99 		.devs_max	= 1,
100 		.devs_min	= 1,
101 		.tolerated_failures = 0,
102 		.devs_increment	= 1,
103 		.ncopies	= 2,
104 		.nparity        = 0,
105 		.raid_name	= "dup",
106 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
107 		.mindev_error	= 0,
108 	},
109 	[BTRFS_RAID_RAID0] = {
110 		.sub_stripes	= 1,
111 		.dev_stripes	= 1,
112 		.devs_max	= 0,
113 		.devs_min	= 1,
114 		.tolerated_failures = 0,
115 		.devs_increment	= 1,
116 		.ncopies	= 1,
117 		.nparity        = 0,
118 		.raid_name	= "raid0",
119 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
120 		.mindev_error	= 0,
121 	},
122 	[BTRFS_RAID_SINGLE] = {
123 		.sub_stripes	= 1,
124 		.dev_stripes	= 1,
125 		.devs_max	= 1,
126 		.devs_min	= 1,
127 		.tolerated_failures = 0,
128 		.devs_increment	= 1,
129 		.ncopies	= 1,
130 		.nparity        = 0,
131 		.raid_name	= "single",
132 		.bg_flag	= 0,
133 		.mindev_error	= 0,
134 	},
135 	[BTRFS_RAID_RAID5] = {
136 		.sub_stripes	= 1,
137 		.dev_stripes	= 1,
138 		.devs_max	= 0,
139 		.devs_min	= 2,
140 		.tolerated_failures = 1,
141 		.devs_increment	= 1,
142 		.ncopies	= 1,
143 		.nparity        = 1,
144 		.raid_name	= "raid5",
145 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
146 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 	},
148 	[BTRFS_RAID_RAID6] = {
149 		.sub_stripes	= 1,
150 		.dev_stripes	= 1,
151 		.devs_max	= 0,
152 		.devs_min	= 3,
153 		.tolerated_failures = 2,
154 		.devs_increment	= 1,
155 		.ncopies	= 1,
156 		.nparity        = 2,
157 		.raid_name	= "raid6",
158 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
159 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 	},
161 };
162 
163 /*
164  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165  * can be used as index to access btrfs_raid_array[].
166  */
167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170 
171 	if (!profile)
172 		return BTRFS_RAID_SINGLE;
173 
174 	return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176 
177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 	const int index = btrfs_bg_flags_to_raid_index(flags);
180 
181 	if (index >= BTRFS_NR_RAID_TYPES)
182 		return NULL;
183 
184 	return btrfs_raid_array[index].raid_name;
185 }
186 
187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190 
191 	return btrfs_raid_array[index].nparity;
192 }
193 
194 /*
195  * Fill @buf with textual description of @bg_flags, no more than @size_buf
196  * bytes including terminating null byte.
197  */
198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 	int i;
201 	int ret;
202 	char *bp = buf;
203 	u64 flags = bg_flags;
204 	u32 size_bp = size_buf;
205 
206 	if (!flags) {
207 		strcpy(bp, "NONE");
208 		return;
209 	}
210 
211 #define DESCRIBE_FLAG(flag, desc)						\
212 	do {								\
213 		if (flags & (flag)) {					\
214 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
215 			if (ret < 0 || ret >= size_bp)			\
216 				goto out_overflow;			\
217 			size_bp -= ret;					\
218 			bp += ret;					\
219 			flags &= ~(flag);				\
220 		}							\
221 	} while (0)
222 
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226 
227 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 			      btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232 
233 	if (flags) {
234 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 		size_bp -= ret;
236 	}
237 
238 	if (size_bp < size_buf)
239 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240 
241 	/*
242 	 * The text is trimmed, it's up to the caller to provide sufficiently
243 	 * large buffer
244 	 */
245 out_overflow:;
246 }
247 
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 
252 /*
253  * Device locking
254  * ==============
255  *
256  * There are several mutexes that protect manipulation of devices and low-level
257  * structures like chunks but not block groups, extents or files
258  *
259  * uuid_mutex (global lock)
260  * ------------------------
261  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263  * device) or requested by the device= mount option
264  *
265  * the mutex can be very coarse and can cover long-running operations
266  *
267  * protects: updates to fs_devices counters like missing devices, rw devices,
268  * seeding, structure cloning, opening/closing devices at mount/umount time
269  *
270  * global::fs_devs - add, remove, updates to the global list
271  *
272  * does not protect: manipulation of the fs_devices::devices list in general
273  * but in mount context it could be used to exclude list modifications by eg.
274  * scan ioctl
275  *
276  * btrfs_device::name - renames (write side), read is RCU
277  *
278  * fs_devices::device_list_mutex (per-fs, with RCU)
279  * ------------------------------------------------
280  * protects updates to fs_devices::devices, ie. adding and deleting
281  *
282  * simple list traversal with read-only actions can be done with RCU protection
283  *
284  * may be used to exclude some operations from running concurrently without any
285  * modifications to the list (see write_all_supers)
286  *
287  * Is not required at mount and close times, because our device list is
288  * protected by the uuid_mutex at that point.
289  *
290  * balance_mutex
291  * -------------
292  * protects balance structures (status, state) and context accessed from
293  * several places (internally, ioctl)
294  *
295  * chunk_mutex
296  * -----------
297  * protects chunks, adding or removing during allocation, trim or when a new
298  * device is added/removed. Additionally it also protects post_commit_list of
299  * individual devices, since they can be added to the transaction's
300  * post_commit_list only with chunk_mutex held.
301  *
302  * cleaner_mutex
303  * -------------
304  * a big lock that is held by the cleaner thread and prevents running subvolume
305  * cleaning together with relocation or delayed iputs
306  *
307  *
308  * Lock nesting
309  * ============
310  *
311  * uuid_mutex
312  *   device_list_mutex
313  *     chunk_mutex
314  *   balance_mutex
315  *
316  *
317  * Exclusive operations
318  * ====================
319  *
320  * Maintains the exclusivity of the following operations that apply to the
321  * whole filesystem and cannot run in parallel.
322  *
323  * - Balance (*)
324  * - Device add
325  * - Device remove
326  * - Device replace (*)
327  * - Resize
328  *
329  * The device operations (as above) can be in one of the following states:
330  *
331  * - Running state
332  * - Paused state
333  * - Completed state
334  *
335  * Only device operations marked with (*) can go into the Paused state for the
336  * following reasons:
337  *
338  * - ioctl (only Balance can be Paused through ioctl)
339  * - filesystem remounted as read-only
340  * - filesystem unmounted and mounted as read-only
341  * - system power-cycle and filesystem mounted as read-only
342  * - filesystem or device errors leading to forced read-only
343  *
344  * The status of exclusive operation is set and cleared atomically.
345  * During the course of Paused state, fs_info::exclusive_operation remains set.
346  * A device operation in Paused or Running state can be canceled or resumed
347  * either by ioctl (Balance only) or when remounted as read-write.
348  * The exclusive status is cleared when the device operation is canceled or
349  * completed.
350  */
351 
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355 {
356 	return &fs_uuids;
357 }
358 
359 /*
360  * alloc_fs_devices - allocate struct btrfs_fs_devices
361  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
362  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
363  *
364  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365  * The returned struct is not linked onto any lists and can be destroyed with
366  * kfree() right away.
367  */
368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 						 const u8 *metadata_fsid)
370 {
371 	struct btrfs_fs_devices *fs_devs;
372 
373 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
374 	if (!fs_devs)
375 		return ERR_PTR(-ENOMEM);
376 
377 	mutex_init(&fs_devs->device_list_mutex);
378 
379 	INIT_LIST_HEAD(&fs_devs->devices);
380 	INIT_LIST_HEAD(&fs_devs->alloc_list);
381 	INIT_LIST_HEAD(&fs_devs->fs_list);
382 	INIT_LIST_HEAD(&fs_devs->seed_list);
383 	if (fsid)
384 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
385 
386 	if (metadata_fsid)
387 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
388 	else if (fsid)
389 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
390 
391 	return fs_devs;
392 }
393 
394 void btrfs_free_device(struct btrfs_device *device)
395 {
396 	WARN_ON(!list_empty(&device->post_commit_list));
397 	rcu_string_free(device->name);
398 	btrfs_destroy_dev_zone_info(device);
399 	kfree(device);
400 }
401 
402 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
403 {
404 	struct btrfs_device *device;
405 
406 	WARN_ON(fs_devices->opened);
407 	while (!list_empty(&fs_devices->devices)) {
408 		device = list_entry(fs_devices->devices.next,
409 				    struct btrfs_device, dev_list);
410 		list_del(&device->dev_list);
411 		btrfs_free_device(device);
412 	}
413 	kfree(fs_devices);
414 }
415 
416 void __exit btrfs_cleanup_fs_uuids(void)
417 {
418 	struct btrfs_fs_devices *fs_devices;
419 
420 	while (!list_empty(&fs_uuids)) {
421 		fs_devices = list_entry(fs_uuids.next,
422 					struct btrfs_fs_devices, fs_list);
423 		list_del(&fs_devices->fs_list);
424 		free_fs_devices(fs_devices);
425 	}
426 }
427 
428 static noinline struct btrfs_fs_devices *find_fsid(
429 		const u8 *fsid, const u8 *metadata_fsid)
430 {
431 	struct btrfs_fs_devices *fs_devices;
432 
433 	ASSERT(fsid);
434 
435 	/* Handle non-split brain cases */
436 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
437 		if (metadata_fsid) {
438 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
439 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
440 				      BTRFS_FSID_SIZE) == 0)
441 				return fs_devices;
442 		} else {
443 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
444 				return fs_devices;
445 		}
446 	}
447 	return NULL;
448 }
449 
450 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
451 				struct btrfs_super_block *disk_super)
452 {
453 
454 	struct btrfs_fs_devices *fs_devices;
455 
456 	/*
457 	 * Handle scanned device having completed its fsid change but
458 	 * belonging to a fs_devices that was created by first scanning
459 	 * a device which didn't have its fsid/metadata_uuid changed
460 	 * at all and the CHANGING_FSID_V2 flag set.
461 	 */
462 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
463 		if (fs_devices->fsid_change &&
464 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
465 			   BTRFS_FSID_SIZE) == 0 &&
466 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
467 			   BTRFS_FSID_SIZE) == 0) {
468 			return fs_devices;
469 		}
470 	}
471 	/*
472 	 * Handle scanned device having completed its fsid change but
473 	 * belonging to a fs_devices that was created by a device that
474 	 * has an outdated pair of fsid/metadata_uuid and
475 	 * CHANGING_FSID_V2 flag set.
476 	 */
477 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
478 		if (fs_devices->fsid_change &&
479 		    memcmp(fs_devices->metadata_uuid,
480 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
481 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
482 			   BTRFS_FSID_SIZE) == 0) {
483 			return fs_devices;
484 		}
485 	}
486 
487 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
488 }
489 
490 
491 static int
492 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
493 		      int flush, struct block_device **bdev,
494 		      struct btrfs_super_block **disk_super)
495 {
496 	int ret;
497 
498 	*bdev = blkdev_get_by_path(device_path, flags, holder);
499 
500 	if (IS_ERR(*bdev)) {
501 		ret = PTR_ERR(*bdev);
502 		goto error;
503 	}
504 
505 	if (flush)
506 		sync_blockdev(*bdev);
507 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
508 	if (ret) {
509 		blkdev_put(*bdev, flags);
510 		goto error;
511 	}
512 	invalidate_bdev(*bdev);
513 	*disk_super = btrfs_read_dev_super(*bdev);
514 	if (IS_ERR(*disk_super)) {
515 		ret = PTR_ERR(*disk_super);
516 		blkdev_put(*bdev, flags);
517 		goto error;
518 	}
519 
520 	return 0;
521 
522 error:
523 	*bdev = NULL;
524 	return ret;
525 }
526 
527 /*
528  *  Search and remove all stale devices (which are not mounted).  When both
529  *  inputs are NULL, it will search and release all stale devices.
530  *
531  *  @devt:         Optional. When provided will it release all unmounted devices
532  *                 matching this devt only.
533  *  @skip_device:  Optional. Will skip this device when searching for the stale
534  *                 devices.
535  *
536  *  Return:	0 for success or if @devt is 0.
537  *		-EBUSY if @devt is a mounted device.
538  *		-ENOENT if @devt does not match any device in the list.
539  */
540 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
541 {
542 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
543 	struct btrfs_device *device, *tmp_device;
544 	int ret = 0;
545 
546 	lockdep_assert_held(&uuid_mutex);
547 
548 	if (devt)
549 		ret = -ENOENT;
550 
551 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
552 
553 		mutex_lock(&fs_devices->device_list_mutex);
554 		list_for_each_entry_safe(device, tmp_device,
555 					 &fs_devices->devices, dev_list) {
556 			if (skip_device && skip_device == device)
557 				continue;
558 			if (devt && devt != device->devt)
559 				continue;
560 			if (fs_devices->opened) {
561 				/* for an already deleted device return 0 */
562 				if (devt && ret != 0)
563 					ret = -EBUSY;
564 				break;
565 			}
566 
567 			/* delete the stale device */
568 			fs_devices->num_devices--;
569 			list_del(&device->dev_list);
570 			btrfs_free_device(device);
571 
572 			ret = 0;
573 		}
574 		mutex_unlock(&fs_devices->device_list_mutex);
575 
576 		if (fs_devices->num_devices == 0) {
577 			btrfs_sysfs_remove_fsid(fs_devices);
578 			list_del(&fs_devices->fs_list);
579 			free_fs_devices(fs_devices);
580 		}
581 	}
582 
583 	return ret;
584 }
585 
586 /*
587  * This is only used on mount, and we are protected from competing things
588  * messing with our fs_devices by the uuid_mutex, thus we do not need the
589  * fs_devices->device_list_mutex here.
590  */
591 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
592 			struct btrfs_device *device, fmode_t flags,
593 			void *holder)
594 {
595 	struct block_device *bdev;
596 	struct btrfs_super_block *disk_super;
597 	u64 devid;
598 	int ret;
599 
600 	if (device->bdev)
601 		return -EINVAL;
602 	if (!device->name)
603 		return -EINVAL;
604 
605 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
606 				    &bdev, &disk_super);
607 	if (ret)
608 		return ret;
609 
610 	devid = btrfs_stack_device_id(&disk_super->dev_item);
611 	if (devid != device->devid)
612 		goto error_free_page;
613 
614 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
615 		goto error_free_page;
616 
617 	device->generation = btrfs_super_generation(disk_super);
618 
619 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
620 		if (btrfs_super_incompat_flags(disk_super) &
621 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
622 			pr_err(
623 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
624 			goto error_free_page;
625 		}
626 
627 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
628 		fs_devices->seeding = true;
629 	} else {
630 		if (bdev_read_only(bdev))
631 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
632 		else
633 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
634 	}
635 
636 	if (!bdev_nonrot(bdev))
637 		fs_devices->rotating = true;
638 
639 	if (bdev_max_discard_sectors(bdev))
640 		fs_devices->discardable = true;
641 
642 	device->bdev = bdev;
643 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
644 	device->mode = flags;
645 
646 	fs_devices->open_devices++;
647 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
648 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
649 		fs_devices->rw_devices++;
650 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
651 	}
652 	btrfs_release_disk_super(disk_super);
653 
654 	return 0;
655 
656 error_free_page:
657 	btrfs_release_disk_super(disk_super);
658 	blkdev_put(bdev, flags);
659 
660 	return -EINVAL;
661 }
662 
663 /*
664  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
665  * being created with a disk that has already completed its fsid change. Such
666  * disk can belong to an fs which has its FSID changed or to one which doesn't.
667  * Handle both cases here.
668  */
669 static struct btrfs_fs_devices *find_fsid_inprogress(
670 					struct btrfs_super_block *disk_super)
671 {
672 	struct btrfs_fs_devices *fs_devices;
673 
674 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
675 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
676 			   BTRFS_FSID_SIZE) != 0 &&
677 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
678 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
679 			return fs_devices;
680 		}
681 	}
682 
683 	return find_fsid(disk_super->fsid, NULL);
684 }
685 
686 
687 static struct btrfs_fs_devices *find_fsid_changed(
688 					struct btrfs_super_block *disk_super)
689 {
690 	struct btrfs_fs_devices *fs_devices;
691 
692 	/*
693 	 * Handles the case where scanned device is part of an fs that had
694 	 * multiple successful changes of FSID but currently device didn't
695 	 * observe it. Meaning our fsid will be different than theirs. We need
696 	 * to handle two subcases :
697 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
698 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
699 	 *  are equal).
700 	 */
701 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
702 		/* Changed UUIDs */
703 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
704 			   BTRFS_FSID_SIZE) != 0 &&
705 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
706 			   BTRFS_FSID_SIZE) == 0 &&
707 		    memcmp(fs_devices->fsid, disk_super->fsid,
708 			   BTRFS_FSID_SIZE) != 0)
709 			return fs_devices;
710 
711 		/* Unchanged UUIDs */
712 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
713 			   BTRFS_FSID_SIZE) == 0 &&
714 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
715 			   BTRFS_FSID_SIZE) == 0)
716 			return fs_devices;
717 	}
718 
719 	return NULL;
720 }
721 
722 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
723 				struct btrfs_super_block *disk_super)
724 {
725 	struct btrfs_fs_devices *fs_devices;
726 
727 	/*
728 	 * Handle the case where the scanned device is part of an fs whose last
729 	 * metadata UUID change reverted it to the original FSID. At the same
730 	 * time fs_devices was first created by another constituent device
731 	 * which didn't fully observe the operation. This results in an
732 	 * btrfs_fs_devices created with metadata/fsid different AND
733 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
734 	 * fs_devices equal to the FSID of the disk.
735 	 */
736 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
737 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
738 			   BTRFS_FSID_SIZE) != 0 &&
739 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
740 			   BTRFS_FSID_SIZE) == 0 &&
741 		    fs_devices->fsid_change)
742 			return fs_devices;
743 	}
744 
745 	return NULL;
746 }
747 /*
748  * Add new device to list of registered devices
749  *
750  * Returns:
751  * device pointer which was just added or updated when successful
752  * error pointer when failed
753  */
754 static noinline struct btrfs_device *device_list_add(const char *path,
755 			   struct btrfs_super_block *disk_super,
756 			   bool *new_device_added)
757 {
758 	struct btrfs_device *device;
759 	struct btrfs_fs_devices *fs_devices = NULL;
760 	struct rcu_string *name;
761 	u64 found_transid = btrfs_super_generation(disk_super);
762 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
763 	dev_t path_devt;
764 	int error;
765 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
766 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
767 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
768 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
769 
770 	error = lookup_bdev(path, &path_devt);
771 	if (error) {
772 		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
773 			  path, error);
774 		return ERR_PTR(error);
775 	}
776 
777 	if (fsid_change_in_progress) {
778 		if (!has_metadata_uuid)
779 			fs_devices = find_fsid_inprogress(disk_super);
780 		else
781 			fs_devices = find_fsid_changed(disk_super);
782 	} else if (has_metadata_uuid) {
783 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
784 	} else {
785 		fs_devices = find_fsid_reverted_metadata(disk_super);
786 		if (!fs_devices)
787 			fs_devices = find_fsid(disk_super->fsid, NULL);
788 	}
789 
790 
791 	if (!fs_devices) {
792 		if (has_metadata_uuid)
793 			fs_devices = alloc_fs_devices(disk_super->fsid,
794 						      disk_super->metadata_uuid);
795 		else
796 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
797 
798 		if (IS_ERR(fs_devices))
799 			return ERR_CAST(fs_devices);
800 
801 		fs_devices->fsid_change = fsid_change_in_progress;
802 
803 		mutex_lock(&fs_devices->device_list_mutex);
804 		list_add(&fs_devices->fs_list, &fs_uuids);
805 
806 		device = NULL;
807 	} else {
808 		struct btrfs_dev_lookup_args args = {
809 			.devid = devid,
810 			.uuid = disk_super->dev_item.uuid,
811 		};
812 
813 		mutex_lock(&fs_devices->device_list_mutex);
814 		device = btrfs_find_device(fs_devices, &args);
815 
816 		/*
817 		 * If this disk has been pulled into an fs devices created by
818 		 * a device which had the CHANGING_FSID_V2 flag then replace the
819 		 * metadata_uuid/fsid values of the fs_devices.
820 		 */
821 		if (fs_devices->fsid_change &&
822 		    found_transid > fs_devices->latest_generation) {
823 			memcpy(fs_devices->fsid, disk_super->fsid,
824 					BTRFS_FSID_SIZE);
825 
826 			if (has_metadata_uuid)
827 				memcpy(fs_devices->metadata_uuid,
828 				       disk_super->metadata_uuid,
829 				       BTRFS_FSID_SIZE);
830 			else
831 				memcpy(fs_devices->metadata_uuid,
832 				       disk_super->fsid, BTRFS_FSID_SIZE);
833 
834 			fs_devices->fsid_change = false;
835 		}
836 	}
837 
838 	if (!device) {
839 		unsigned int nofs_flag;
840 
841 		if (fs_devices->opened) {
842 			btrfs_err(NULL,
843 		"device %s belongs to fsid %pU, and the fs is already mounted",
844 				  path, fs_devices->fsid);
845 			mutex_unlock(&fs_devices->device_list_mutex);
846 			return ERR_PTR(-EBUSY);
847 		}
848 
849 		nofs_flag = memalloc_nofs_save();
850 		device = btrfs_alloc_device(NULL, &devid,
851 					    disk_super->dev_item.uuid, path);
852 		memalloc_nofs_restore(nofs_flag);
853 		if (IS_ERR(device)) {
854 			mutex_unlock(&fs_devices->device_list_mutex);
855 			/* we can safely leave the fs_devices entry around */
856 			return device;
857 		}
858 
859 		device->devt = path_devt;
860 
861 		list_add_rcu(&device->dev_list, &fs_devices->devices);
862 		fs_devices->num_devices++;
863 
864 		device->fs_devices = fs_devices;
865 		*new_device_added = true;
866 
867 		if (disk_super->label[0])
868 			pr_info(
869 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
870 				disk_super->label, devid, found_transid, path,
871 				current->comm, task_pid_nr(current));
872 		else
873 			pr_info(
874 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
875 				disk_super->fsid, devid, found_transid, path,
876 				current->comm, task_pid_nr(current));
877 
878 	} else if (!device->name || strcmp(device->name->str, path)) {
879 		/*
880 		 * When FS is already mounted.
881 		 * 1. If you are here and if the device->name is NULL that
882 		 *    means this device was missing at time of FS mount.
883 		 * 2. If you are here and if the device->name is different
884 		 *    from 'path' that means either
885 		 *      a. The same device disappeared and reappeared with
886 		 *         different name. or
887 		 *      b. The missing-disk-which-was-replaced, has
888 		 *         reappeared now.
889 		 *
890 		 * We must allow 1 and 2a above. But 2b would be a spurious
891 		 * and unintentional.
892 		 *
893 		 * Further in case of 1 and 2a above, the disk at 'path'
894 		 * would have missed some transaction when it was away and
895 		 * in case of 2a the stale bdev has to be updated as well.
896 		 * 2b must not be allowed at all time.
897 		 */
898 
899 		/*
900 		 * For now, we do allow update to btrfs_fs_device through the
901 		 * btrfs dev scan cli after FS has been mounted.  We're still
902 		 * tracking a problem where systems fail mount by subvolume id
903 		 * when we reject replacement on a mounted FS.
904 		 */
905 		if (!fs_devices->opened && found_transid < device->generation) {
906 			/*
907 			 * That is if the FS is _not_ mounted and if you
908 			 * are here, that means there is more than one
909 			 * disk with same uuid and devid.We keep the one
910 			 * with larger generation number or the last-in if
911 			 * generation are equal.
912 			 */
913 			mutex_unlock(&fs_devices->device_list_mutex);
914 			btrfs_err(NULL,
915 "device %s already registered with a higher generation, found %llu expect %llu",
916 				  path, found_transid, device->generation);
917 			return ERR_PTR(-EEXIST);
918 		}
919 
920 		/*
921 		 * We are going to replace the device path for a given devid,
922 		 * make sure it's the same device if the device is mounted
923 		 *
924 		 * NOTE: the device->fs_info may not be reliable here so pass
925 		 * in a NULL to message helpers instead. This avoids a possible
926 		 * use-after-free when the fs_info and fs_info->sb are already
927 		 * torn down.
928 		 */
929 		if (device->bdev) {
930 			if (device->devt != path_devt) {
931 				mutex_unlock(&fs_devices->device_list_mutex);
932 				btrfs_warn_in_rcu(NULL,
933 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
934 						  path, devid, found_transid,
935 						  current->comm,
936 						  task_pid_nr(current));
937 				return ERR_PTR(-EEXIST);
938 			}
939 			btrfs_info_in_rcu(NULL,
940 	"devid %llu device path %s changed to %s scanned by %s (%d)",
941 					  devid, btrfs_dev_name(device),
942 					  path, current->comm,
943 					  task_pid_nr(current));
944 		}
945 
946 		name = rcu_string_strdup(path, GFP_NOFS);
947 		if (!name) {
948 			mutex_unlock(&fs_devices->device_list_mutex);
949 			return ERR_PTR(-ENOMEM);
950 		}
951 		rcu_string_free(device->name);
952 		rcu_assign_pointer(device->name, name);
953 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
954 			fs_devices->missing_devices--;
955 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
956 		}
957 		device->devt = path_devt;
958 	}
959 
960 	/*
961 	 * Unmount does not free the btrfs_device struct but would zero
962 	 * generation along with most of the other members. So just update
963 	 * it back. We need it to pick the disk with largest generation
964 	 * (as above).
965 	 */
966 	if (!fs_devices->opened) {
967 		device->generation = found_transid;
968 		fs_devices->latest_generation = max_t(u64, found_transid,
969 						fs_devices->latest_generation);
970 	}
971 
972 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
973 
974 	mutex_unlock(&fs_devices->device_list_mutex);
975 	return device;
976 }
977 
978 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
979 {
980 	struct btrfs_fs_devices *fs_devices;
981 	struct btrfs_device *device;
982 	struct btrfs_device *orig_dev;
983 	int ret = 0;
984 
985 	lockdep_assert_held(&uuid_mutex);
986 
987 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
988 	if (IS_ERR(fs_devices))
989 		return fs_devices;
990 
991 	fs_devices->total_devices = orig->total_devices;
992 
993 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
994 		const char *dev_path = NULL;
995 
996 		/*
997 		 * This is ok to do without RCU read locked because we hold the
998 		 * uuid mutex so nothing we touch in here is going to disappear.
999 		 */
1000 		if (orig_dev->name)
1001 			dev_path = orig_dev->name->str;
1002 
1003 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1004 					    orig_dev->uuid, dev_path);
1005 		if (IS_ERR(device)) {
1006 			ret = PTR_ERR(device);
1007 			goto error;
1008 		}
1009 
1010 		if (orig_dev->zone_info) {
1011 			struct btrfs_zoned_device_info *zone_info;
1012 
1013 			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1014 			if (!zone_info) {
1015 				btrfs_free_device(device);
1016 				ret = -ENOMEM;
1017 				goto error;
1018 			}
1019 			device->zone_info = zone_info;
1020 		}
1021 
1022 		list_add(&device->dev_list, &fs_devices->devices);
1023 		device->fs_devices = fs_devices;
1024 		fs_devices->num_devices++;
1025 	}
1026 	return fs_devices;
1027 error:
1028 	free_fs_devices(fs_devices);
1029 	return ERR_PTR(ret);
1030 }
1031 
1032 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1033 				      struct btrfs_device **latest_dev)
1034 {
1035 	struct btrfs_device *device, *next;
1036 
1037 	/* This is the initialized path, it is safe to release the devices. */
1038 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1039 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1040 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1041 				      &device->dev_state) &&
1042 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1043 				      &device->dev_state) &&
1044 			    (!*latest_dev ||
1045 			     device->generation > (*latest_dev)->generation)) {
1046 				*latest_dev = device;
1047 			}
1048 			continue;
1049 		}
1050 
1051 		/*
1052 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1053 		 * in btrfs_init_dev_replace() so just continue.
1054 		 */
1055 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1056 			continue;
1057 
1058 		if (device->bdev) {
1059 			blkdev_put(device->bdev, device->mode);
1060 			device->bdev = NULL;
1061 			fs_devices->open_devices--;
1062 		}
1063 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1064 			list_del_init(&device->dev_alloc_list);
1065 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1066 			fs_devices->rw_devices--;
1067 		}
1068 		list_del_init(&device->dev_list);
1069 		fs_devices->num_devices--;
1070 		btrfs_free_device(device);
1071 	}
1072 
1073 }
1074 
1075 /*
1076  * After we have read the system tree and know devids belonging to this
1077  * filesystem, remove the device which does not belong there.
1078  */
1079 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1080 {
1081 	struct btrfs_device *latest_dev = NULL;
1082 	struct btrfs_fs_devices *seed_dev;
1083 
1084 	mutex_lock(&uuid_mutex);
1085 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1086 
1087 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1088 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1089 
1090 	fs_devices->latest_dev = latest_dev;
1091 
1092 	mutex_unlock(&uuid_mutex);
1093 }
1094 
1095 static void btrfs_close_bdev(struct btrfs_device *device)
1096 {
1097 	if (!device->bdev)
1098 		return;
1099 
1100 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1101 		sync_blockdev(device->bdev);
1102 		invalidate_bdev(device->bdev);
1103 	}
1104 
1105 	blkdev_put(device->bdev, device->mode);
1106 }
1107 
1108 static void btrfs_close_one_device(struct btrfs_device *device)
1109 {
1110 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1111 
1112 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1113 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1114 		list_del_init(&device->dev_alloc_list);
1115 		fs_devices->rw_devices--;
1116 	}
1117 
1118 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1119 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1120 
1121 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1122 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1123 		fs_devices->missing_devices--;
1124 	}
1125 
1126 	btrfs_close_bdev(device);
1127 	if (device->bdev) {
1128 		fs_devices->open_devices--;
1129 		device->bdev = NULL;
1130 	}
1131 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1132 	btrfs_destroy_dev_zone_info(device);
1133 
1134 	device->fs_info = NULL;
1135 	atomic_set(&device->dev_stats_ccnt, 0);
1136 	extent_io_tree_release(&device->alloc_state);
1137 
1138 	/*
1139 	 * Reset the flush error record. We might have a transient flush error
1140 	 * in this mount, and if so we aborted the current transaction and set
1141 	 * the fs to an error state, guaranteeing no super blocks can be further
1142 	 * committed. However that error might be transient and if we unmount the
1143 	 * filesystem and mount it again, we should allow the mount to succeed
1144 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1145 	 * filesystem again we still get flush errors, then we will again abort
1146 	 * any transaction and set the error state, guaranteeing no commits of
1147 	 * unsafe super blocks.
1148 	 */
1149 	device->last_flush_error = 0;
1150 
1151 	/* Verify the device is back in a pristine state  */
1152 	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1153 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1154 	WARN_ON(!list_empty(&device->dev_alloc_list));
1155 	WARN_ON(!list_empty(&device->post_commit_list));
1156 }
1157 
1158 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1159 {
1160 	struct btrfs_device *device, *tmp;
1161 
1162 	lockdep_assert_held(&uuid_mutex);
1163 
1164 	if (--fs_devices->opened > 0)
1165 		return;
1166 
1167 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1168 		btrfs_close_one_device(device);
1169 
1170 	WARN_ON(fs_devices->open_devices);
1171 	WARN_ON(fs_devices->rw_devices);
1172 	fs_devices->opened = 0;
1173 	fs_devices->seeding = false;
1174 	fs_devices->fs_info = NULL;
1175 }
1176 
1177 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1178 {
1179 	LIST_HEAD(list);
1180 	struct btrfs_fs_devices *tmp;
1181 
1182 	mutex_lock(&uuid_mutex);
1183 	close_fs_devices(fs_devices);
1184 	if (!fs_devices->opened) {
1185 		list_splice_init(&fs_devices->seed_list, &list);
1186 
1187 		/*
1188 		 * If the struct btrfs_fs_devices is not assembled with any
1189 		 * other device, it can be re-initialized during the next mount
1190 		 * without the needing device-scan step. Therefore, it can be
1191 		 * fully freed.
1192 		 */
1193 		if (fs_devices->num_devices == 1) {
1194 			list_del(&fs_devices->fs_list);
1195 			free_fs_devices(fs_devices);
1196 		}
1197 	}
1198 
1199 
1200 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1201 		close_fs_devices(fs_devices);
1202 		list_del(&fs_devices->seed_list);
1203 		free_fs_devices(fs_devices);
1204 	}
1205 	mutex_unlock(&uuid_mutex);
1206 }
1207 
1208 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1209 				fmode_t flags, void *holder)
1210 {
1211 	struct btrfs_device *device;
1212 	struct btrfs_device *latest_dev = NULL;
1213 	struct btrfs_device *tmp_device;
1214 
1215 	flags |= FMODE_EXCL;
1216 
1217 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1218 				 dev_list) {
1219 		int ret;
1220 
1221 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1222 		if (ret == 0 &&
1223 		    (!latest_dev || device->generation > latest_dev->generation)) {
1224 			latest_dev = device;
1225 		} else if (ret == -ENODATA) {
1226 			fs_devices->num_devices--;
1227 			list_del(&device->dev_list);
1228 			btrfs_free_device(device);
1229 		}
1230 	}
1231 	if (fs_devices->open_devices == 0)
1232 		return -EINVAL;
1233 
1234 	fs_devices->opened = 1;
1235 	fs_devices->latest_dev = latest_dev;
1236 	fs_devices->total_rw_bytes = 0;
1237 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1238 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1239 
1240 	return 0;
1241 }
1242 
1243 static int devid_cmp(void *priv, const struct list_head *a,
1244 		     const struct list_head *b)
1245 {
1246 	const struct btrfs_device *dev1, *dev2;
1247 
1248 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1249 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1250 
1251 	if (dev1->devid < dev2->devid)
1252 		return -1;
1253 	else if (dev1->devid > dev2->devid)
1254 		return 1;
1255 	return 0;
1256 }
1257 
1258 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1259 		       fmode_t flags, void *holder)
1260 {
1261 	int ret;
1262 
1263 	lockdep_assert_held(&uuid_mutex);
1264 	/*
1265 	 * The device_list_mutex cannot be taken here in case opening the
1266 	 * underlying device takes further locks like open_mutex.
1267 	 *
1268 	 * We also don't need the lock here as this is called during mount and
1269 	 * exclusion is provided by uuid_mutex
1270 	 */
1271 
1272 	if (fs_devices->opened) {
1273 		fs_devices->opened++;
1274 		ret = 0;
1275 	} else {
1276 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1277 		ret = open_fs_devices(fs_devices, flags, holder);
1278 	}
1279 
1280 	return ret;
1281 }
1282 
1283 void btrfs_release_disk_super(struct btrfs_super_block *super)
1284 {
1285 	struct page *page = virt_to_page(super);
1286 
1287 	put_page(page);
1288 }
1289 
1290 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1291 						       u64 bytenr, u64 bytenr_orig)
1292 {
1293 	struct btrfs_super_block *disk_super;
1294 	struct page *page;
1295 	void *p;
1296 	pgoff_t index;
1297 
1298 	/* make sure our super fits in the device */
1299 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1300 		return ERR_PTR(-EINVAL);
1301 
1302 	/* make sure our super fits in the page */
1303 	if (sizeof(*disk_super) > PAGE_SIZE)
1304 		return ERR_PTR(-EINVAL);
1305 
1306 	/* make sure our super doesn't straddle pages on disk */
1307 	index = bytenr >> PAGE_SHIFT;
1308 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1309 		return ERR_PTR(-EINVAL);
1310 
1311 	/* pull in the page with our super */
1312 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1313 
1314 	if (IS_ERR(page))
1315 		return ERR_CAST(page);
1316 
1317 	p = page_address(page);
1318 
1319 	/* align our pointer to the offset of the super block */
1320 	disk_super = p + offset_in_page(bytenr);
1321 
1322 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1323 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1324 		btrfs_release_disk_super(p);
1325 		return ERR_PTR(-EINVAL);
1326 	}
1327 
1328 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1329 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1330 
1331 	return disk_super;
1332 }
1333 
1334 int btrfs_forget_devices(dev_t devt)
1335 {
1336 	int ret;
1337 
1338 	mutex_lock(&uuid_mutex);
1339 	ret = btrfs_free_stale_devices(devt, NULL);
1340 	mutex_unlock(&uuid_mutex);
1341 
1342 	return ret;
1343 }
1344 
1345 /*
1346  * Look for a btrfs signature on a device. This may be called out of the mount path
1347  * and we are not allowed to call set_blocksize during the scan. The superblock
1348  * is read via pagecache
1349  */
1350 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1351 					   void *holder)
1352 {
1353 	struct btrfs_super_block *disk_super;
1354 	bool new_device_added = false;
1355 	struct btrfs_device *device = NULL;
1356 	struct block_device *bdev;
1357 	u64 bytenr, bytenr_orig;
1358 	int ret;
1359 
1360 	lockdep_assert_held(&uuid_mutex);
1361 
1362 	/*
1363 	 * we would like to check all the supers, but that would make
1364 	 * a btrfs mount succeed after a mkfs from a different FS.
1365 	 * So, we need to add a special mount option to scan for
1366 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1367 	 */
1368 
1369 	/*
1370 	 * Avoid using flag |= FMODE_EXCL here, as the systemd-udev may
1371 	 * initiate the device scan which may race with the user's mount
1372 	 * or mkfs command, resulting in failure.
1373 	 * Since the device scan is solely for reading purposes, there is
1374 	 * no need for FMODE_EXCL. Additionally, the devices are read again
1375 	 * during the mount process. It is ok to get some inconsistent
1376 	 * values temporarily, as the device paths of the fsid are the only
1377 	 * required information for assembling the volume.
1378 	 */
1379 	bdev = blkdev_get_by_path(path, flags, holder);
1380 	if (IS_ERR(bdev))
1381 		return ERR_CAST(bdev);
1382 
1383 	bytenr_orig = btrfs_sb_offset(0);
1384 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1385 	if (ret) {
1386 		device = ERR_PTR(ret);
1387 		goto error_bdev_put;
1388 	}
1389 
1390 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1391 	if (IS_ERR(disk_super)) {
1392 		device = ERR_CAST(disk_super);
1393 		goto error_bdev_put;
1394 	}
1395 
1396 	device = device_list_add(path, disk_super, &new_device_added);
1397 	if (!IS_ERR(device) && new_device_added)
1398 		btrfs_free_stale_devices(device->devt, device);
1399 
1400 	btrfs_release_disk_super(disk_super);
1401 
1402 error_bdev_put:
1403 	blkdev_put(bdev, flags);
1404 
1405 	return device;
1406 }
1407 
1408 /*
1409  * Try to find a chunk that intersects [start, start + len] range and when one
1410  * such is found, record the end of it in *start
1411  */
1412 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1413 				    u64 len)
1414 {
1415 	u64 physical_start, physical_end;
1416 
1417 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1418 
1419 	if (!find_first_extent_bit(&device->alloc_state, *start,
1420 				   &physical_start, &physical_end,
1421 				   CHUNK_ALLOCATED, NULL)) {
1422 
1423 		if (in_range(physical_start, *start, len) ||
1424 		    in_range(*start, physical_start,
1425 			     physical_end - physical_start)) {
1426 			*start = physical_end + 1;
1427 			return true;
1428 		}
1429 	}
1430 	return false;
1431 }
1432 
1433 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1434 {
1435 	switch (device->fs_devices->chunk_alloc_policy) {
1436 	case BTRFS_CHUNK_ALLOC_REGULAR:
1437 		return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1438 	case BTRFS_CHUNK_ALLOC_ZONED:
1439 		/*
1440 		 * We don't care about the starting region like regular
1441 		 * allocator, because we anyway use/reserve the first two zones
1442 		 * for superblock logging.
1443 		 */
1444 		return ALIGN(start, device->zone_info->zone_size);
1445 	default:
1446 		BUG();
1447 	}
1448 }
1449 
1450 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1451 					u64 *hole_start, u64 *hole_size,
1452 					u64 num_bytes)
1453 {
1454 	u64 zone_size = device->zone_info->zone_size;
1455 	u64 pos;
1456 	int ret;
1457 	bool changed = false;
1458 
1459 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1460 
1461 	while (*hole_size > 0) {
1462 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1463 						   *hole_start + *hole_size,
1464 						   num_bytes);
1465 		if (pos != *hole_start) {
1466 			*hole_size = *hole_start + *hole_size - pos;
1467 			*hole_start = pos;
1468 			changed = true;
1469 			if (*hole_size < num_bytes)
1470 				break;
1471 		}
1472 
1473 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1474 
1475 		/* Range is ensured to be empty */
1476 		if (!ret)
1477 			return changed;
1478 
1479 		/* Given hole range was invalid (outside of device) */
1480 		if (ret == -ERANGE) {
1481 			*hole_start += *hole_size;
1482 			*hole_size = 0;
1483 			return true;
1484 		}
1485 
1486 		*hole_start += zone_size;
1487 		*hole_size -= zone_size;
1488 		changed = true;
1489 	}
1490 
1491 	return changed;
1492 }
1493 
1494 /*
1495  * Check if specified hole is suitable for allocation.
1496  *
1497  * @device:	the device which we have the hole
1498  * @hole_start: starting position of the hole
1499  * @hole_size:	the size of the hole
1500  * @num_bytes:	the size of the free space that we need
1501  *
1502  * This function may modify @hole_start and @hole_size to reflect the suitable
1503  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1504  */
1505 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1506 				  u64 *hole_size, u64 num_bytes)
1507 {
1508 	bool changed = false;
1509 	u64 hole_end = *hole_start + *hole_size;
1510 
1511 	for (;;) {
1512 		/*
1513 		 * Check before we set max_hole_start, otherwise we could end up
1514 		 * sending back this offset anyway.
1515 		 */
1516 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1517 			if (hole_end >= *hole_start)
1518 				*hole_size = hole_end - *hole_start;
1519 			else
1520 				*hole_size = 0;
1521 			changed = true;
1522 		}
1523 
1524 		switch (device->fs_devices->chunk_alloc_policy) {
1525 		case BTRFS_CHUNK_ALLOC_REGULAR:
1526 			/* No extra check */
1527 			break;
1528 		case BTRFS_CHUNK_ALLOC_ZONED:
1529 			if (dev_extent_hole_check_zoned(device, hole_start,
1530 							hole_size, num_bytes)) {
1531 				changed = true;
1532 				/*
1533 				 * The changed hole can contain pending extent.
1534 				 * Loop again to check that.
1535 				 */
1536 				continue;
1537 			}
1538 			break;
1539 		default:
1540 			BUG();
1541 		}
1542 
1543 		break;
1544 	}
1545 
1546 	return changed;
1547 }
1548 
1549 /*
1550  * Find free space in the specified device.
1551  *
1552  * @device:	  the device which we search the free space in
1553  * @num_bytes:	  the size of the free space that we need
1554  * @search_start: the position from which to begin the search
1555  * @start:	  store the start of the free space.
1556  * @len:	  the size of the free space. that we find, or the size
1557  *		  of the max free space if we don't find suitable free space
1558  *
1559  * This does a pretty simple search, the expectation is that it is called very
1560  * infrequently and that a given device has a small number of extents.
1561  *
1562  * @start is used to store the start of the free space if we find. But if we
1563  * don't find suitable free space, it will be used to store the start position
1564  * of the max free space.
1565  *
1566  * @len is used to store the size of the free space that we find.
1567  * But if we don't find suitable free space, it is used to store the size of
1568  * the max free space.
1569  *
1570  * NOTE: This function will search *commit* root of device tree, and does extra
1571  * check to ensure dev extents are not double allocated.
1572  * This makes the function safe to allocate dev extents but may not report
1573  * correct usable device space, as device extent freed in current transaction
1574  * is not reported as available.
1575  */
1576 static int find_free_dev_extent_start(struct btrfs_device *device,
1577 				u64 num_bytes, u64 search_start, u64 *start,
1578 				u64 *len)
1579 {
1580 	struct btrfs_fs_info *fs_info = device->fs_info;
1581 	struct btrfs_root *root = fs_info->dev_root;
1582 	struct btrfs_key key;
1583 	struct btrfs_dev_extent *dev_extent;
1584 	struct btrfs_path *path;
1585 	u64 hole_size;
1586 	u64 max_hole_start;
1587 	u64 max_hole_size;
1588 	u64 extent_end;
1589 	u64 search_end = device->total_bytes;
1590 	int ret;
1591 	int slot;
1592 	struct extent_buffer *l;
1593 
1594 	search_start = dev_extent_search_start(device, search_start);
1595 
1596 	WARN_ON(device->zone_info &&
1597 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1598 
1599 	path = btrfs_alloc_path();
1600 	if (!path)
1601 		return -ENOMEM;
1602 
1603 	max_hole_start = search_start;
1604 	max_hole_size = 0;
1605 
1606 again:
1607 	if (search_start >= search_end ||
1608 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1609 		ret = -ENOSPC;
1610 		goto out;
1611 	}
1612 
1613 	path->reada = READA_FORWARD;
1614 	path->search_commit_root = 1;
1615 	path->skip_locking = 1;
1616 
1617 	key.objectid = device->devid;
1618 	key.offset = search_start;
1619 	key.type = BTRFS_DEV_EXTENT_KEY;
1620 
1621 	ret = btrfs_search_backwards(root, &key, path);
1622 	if (ret < 0)
1623 		goto out;
1624 
1625 	while (search_start < search_end) {
1626 		l = path->nodes[0];
1627 		slot = path->slots[0];
1628 		if (slot >= btrfs_header_nritems(l)) {
1629 			ret = btrfs_next_leaf(root, path);
1630 			if (ret == 0)
1631 				continue;
1632 			if (ret < 0)
1633 				goto out;
1634 
1635 			break;
1636 		}
1637 		btrfs_item_key_to_cpu(l, &key, slot);
1638 
1639 		if (key.objectid < device->devid)
1640 			goto next;
1641 
1642 		if (key.objectid > device->devid)
1643 			break;
1644 
1645 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1646 			goto next;
1647 
1648 		if (key.offset > search_end)
1649 			break;
1650 
1651 		if (key.offset > search_start) {
1652 			hole_size = key.offset - search_start;
1653 			dev_extent_hole_check(device, &search_start, &hole_size,
1654 					      num_bytes);
1655 
1656 			if (hole_size > max_hole_size) {
1657 				max_hole_start = search_start;
1658 				max_hole_size = hole_size;
1659 			}
1660 
1661 			/*
1662 			 * If this free space is greater than which we need,
1663 			 * it must be the max free space that we have found
1664 			 * until now, so max_hole_start must point to the start
1665 			 * of this free space and the length of this free space
1666 			 * is stored in max_hole_size. Thus, we return
1667 			 * max_hole_start and max_hole_size and go back to the
1668 			 * caller.
1669 			 */
1670 			if (hole_size >= num_bytes) {
1671 				ret = 0;
1672 				goto out;
1673 			}
1674 		}
1675 
1676 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1677 		extent_end = key.offset + btrfs_dev_extent_length(l,
1678 								  dev_extent);
1679 		if (extent_end > search_start)
1680 			search_start = extent_end;
1681 next:
1682 		path->slots[0]++;
1683 		cond_resched();
1684 	}
1685 
1686 	/*
1687 	 * At this point, search_start should be the end of
1688 	 * allocated dev extents, and when shrinking the device,
1689 	 * search_end may be smaller than search_start.
1690 	 */
1691 	if (search_end > search_start) {
1692 		hole_size = search_end - search_start;
1693 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1694 					  num_bytes)) {
1695 			btrfs_release_path(path);
1696 			goto again;
1697 		}
1698 
1699 		if (hole_size > max_hole_size) {
1700 			max_hole_start = search_start;
1701 			max_hole_size = hole_size;
1702 		}
1703 	}
1704 
1705 	/* See above. */
1706 	if (max_hole_size < num_bytes)
1707 		ret = -ENOSPC;
1708 	else
1709 		ret = 0;
1710 
1711 	ASSERT(max_hole_start + max_hole_size <= search_end);
1712 out:
1713 	btrfs_free_path(path);
1714 	*start = max_hole_start;
1715 	if (len)
1716 		*len = max_hole_size;
1717 	return ret;
1718 }
1719 
1720 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1721 			 u64 *start, u64 *len)
1722 {
1723 	/* FIXME use last free of some kind */
1724 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1725 }
1726 
1727 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1728 			  struct btrfs_device *device,
1729 			  u64 start, u64 *dev_extent_len)
1730 {
1731 	struct btrfs_fs_info *fs_info = device->fs_info;
1732 	struct btrfs_root *root = fs_info->dev_root;
1733 	int ret;
1734 	struct btrfs_path *path;
1735 	struct btrfs_key key;
1736 	struct btrfs_key found_key;
1737 	struct extent_buffer *leaf = NULL;
1738 	struct btrfs_dev_extent *extent = NULL;
1739 
1740 	path = btrfs_alloc_path();
1741 	if (!path)
1742 		return -ENOMEM;
1743 
1744 	key.objectid = device->devid;
1745 	key.offset = start;
1746 	key.type = BTRFS_DEV_EXTENT_KEY;
1747 again:
1748 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1749 	if (ret > 0) {
1750 		ret = btrfs_previous_item(root, path, key.objectid,
1751 					  BTRFS_DEV_EXTENT_KEY);
1752 		if (ret)
1753 			goto out;
1754 		leaf = path->nodes[0];
1755 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1756 		extent = btrfs_item_ptr(leaf, path->slots[0],
1757 					struct btrfs_dev_extent);
1758 		BUG_ON(found_key.offset > start || found_key.offset +
1759 		       btrfs_dev_extent_length(leaf, extent) < start);
1760 		key = found_key;
1761 		btrfs_release_path(path);
1762 		goto again;
1763 	} else if (ret == 0) {
1764 		leaf = path->nodes[0];
1765 		extent = btrfs_item_ptr(leaf, path->slots[0],
1766 					struct btrfs_dev_extent);
1767 	} else {
1768 		goto out;
1769 	}
1770 
1771 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1772 
1773 	ret = btrfs_del_item(trans, root, path);
1774 	if (ret == 0)
1775 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1776 out:
1777 	btrfs_free_path(path);
1778 	return ret;
1779 }
1780 
1781 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1782 {
1783 	struct extent_map_tree *em_tree;
1784 	struct extent_map *em;
1785 	struct rb_node *n;
1786 	u64 ret = 0;
1787 
1788 	em_tree = &fs_info->mapping_tree;
1789 	read_lock(&em_tree->lock);
1790 	n = rb_last(&em_tree->map.rb_root);
1791 	if (n) {
1792 		em = rb_entry(n, struct extent_map, rb_node);
1793 		ret = em->start + em->len;
1794 	}
1795 	read_unlock(&em_tree->lock);
1796 
1797 	return ret;
1798 }
1799 
1800 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1801 				    u64 *devid_ret)
1802 {
1803 	int ret;
1804 	struct btrfs_key key;
1805 	struct btrfs_key found_key;
1806 	struct btrfs_path *path;
1807 
1808 	path = btrfs_alloc_path();
1809 	if (!path)
1810 		return -ENOMEM;
1811 
1812 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1813 	key.type = BTRFS_DEV_ITEM_KEY;
1814 	key.offset = (u64)-1;
1815 
1816 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1817 	if (ret < 0)
1818 		goto error;
1819 
1820 	if (ret == 0) {
1821 		/* Corruption */
1822 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1823 		ret = -EUCLEAN;
1824 		goto error;
1825 	}
1826 
1827 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1828 				  BTRFS_DEV_ITEMS_OBJECTID,
1829 				  BTRFS_DEV_ITEM_KEY);
1830 	if (ret) {
1831 		*devid_ret = 1;
1832 	} else {
1833 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1834 				      path->slots[0]);
1835 		*devid_ret = found_key.offset + 1;
1836 	}
1837 	ret = 0;
1838 error:
1839 	btrfs_free_path(path);
1840 	return ret;
1841 }
1842 
1843 /*
1844  * the device information is stored in the chunk root
1845  * the btrfs_device struct should be fully filled in
1846  */
1847 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1848 			    struct btrfs_device *device)
1849 {
1850 	int ret;
1851 	struct btrfs_path *path;
1852 	struct btrfs_dev_item *dev_item;
1853 	struct extent_buffer *leaf;
1854 	struct btrfs_key key;
1855 	unsigned long ptr;
1856 
1857 	path = btrfs_alloc_path();
1858 	if (!path)
1859 		return -ENOMEM;
1860 
1861 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1862 	key.type = BTRFS_DEV_ITEM_KEY;
1863 	key.offset = device->devid;
1864 
1865 	btrfs_reserve_chunk_metadata(trans, true);
1866 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1867 				      &key, sizeof(*dev_item));
1868 	btrfs_trans_release_chunk_metadata(trans);
1869 	if (ret)
1870 		goto out;
1871 
1872 	leaf = path->nodes[0];
1873 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1874 
1875 	btrfs_set_device_id(leaf, dev_item, device->devid);
1876 	btrfs_set_device_generation(leaf, dev_item, 0);
1877 	btrfs_set_device_type(leaf, dev_item, device->type);
1878 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1879 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1880 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1881 	btrfs_set_device_total_bytes(leaf, dev_item,
1882 				     btrfs_device_get_disk_total_bytes(device));
1883 	btrfs_set_device_bytes_used(leaf, dev_item,
1884 				    btrfs_device_get_bytes_used(device));
1885 	btrfs_set_device_group(leaf, dev_item, 0);
1886 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1887 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1888 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1889 
1890 	ptr = btrfs_device_uuid(dev_item);
1891 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1892 	ptr = btrfs_device_fsid(dev_item);
1893 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1894 			    ptr, BTRFS_FSID_SIZE);
1895 	btrfs_mark_buffer_dirty(leaf);
1896 
1897 	ret = 0;
1898 out:
1899 	btrfs_free_path(path);
1900 	return ret;
1901 }
1902 
1903 /*
1904  * Function to update ctime/mtime for a given device path.
1905  * Mainly used for ctime/mtime based probe like libblkid.
1906  *
1907  * We don't care about errors here, this is just to be kind to userspace.
1908  */
1909 static void update_dev_time(const char *device_path)
1910 {
1911 	struct path path;
1912 	struct timespec64 now;
1913 	int ret;
1914 
1915 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1916 	if (ret)
1917 		return;
1918 
1919 	now = current_time(d_inode(path.dentry));
1920 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1921 	path_put(&path);
1922 }
1923 
1924 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1925 			     struct btrfs_device *device)
1926 {
1927 	struct btrfs_root *root = device->fs_info->chunk_root;
1928 	int ret;
1929 	struct btrfs_path *path;
1930 	struct btrfs_key key;
1931 
1932 	path = btrfs_alloc_path();
1933 	if (!path)
1934 		return -ENOMEM;
1935 
1936 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1937 	key.type = BTRFS_DEV_ITEM_KEY;
1938 	key.offset = device->devid;
1939 
1940 	btrfs_reserve_chunk_metadata(trans, false);
1941 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1942 	btrfs_trans_release_chunk_metadata(trans);
1943 	if (ret) {
1944 		if (ret > 0)
1945 			ret = -ENOENT;
1946 		goto out;
1947 	}
1948 
1949 	ret = btrfs_del_item(trans, root, path);
1950 out:
1951 	btrfs_free_path(path);
1952 	return ret;
1953 }
1954 
1955 /*
1956  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1957  * filesystem. It's up to the caller to adjust that number regarding eg. device
1958  * replace.
1959  */
1960 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1961 		u64 num_devices)
1962 {
1963 	u64 all_avail;
1964 	unsigned seq;
1965 	int i;
1966 
1967 	do {
1968 		seq = read_seqbegin(&fs_info->profiles_lock);
1969 
1970 		all_avail = fs_info->avail_data_alloc_bits |
1971 			    fs_info->avail_system_alloc_bits |
1972 			    fs_info->avail_metadata_alloc_bits;
1973 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1974 
1975 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1976 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1977 			continue;
1978 
1979 		if (num_devices < btrfs_raid_array[i].devs_min)
1980 			return btrfs_raid_array[i].mindev_error;
1981 	}
1982 
1983 	return 0;
1984 }
1985 
1986 static struct btrfs_device * btrfs_find_next_active_device(
1987 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1988 {
1989 	struct btrfs_device *next_device;
1990 
1991 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1992 		if (next_device != device &&
1993 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1994 		    && next_device->bdev)
1995 			return next_device;
1996 	}
1997 
1998 	return NULL;
1999 }
2000 
2001 /*
2002  * Helper function to check if the given device is part of s_bdev / latest_dev
2003  * and replace it with the provided or the next active device, in the context
2004  * where this function called, there should be always be another device (or
2005  * this_dev) which is active.
2006  */
2007 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2008 					    struct btrfs_device *next_device)
2009 {
2010 	struct btrfs_fs_info *fs_info = device->fs_info;
2011 
2012 	if (!next_device)
2013 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2014 							    device);
2015 	ASSERT(next_device);
2016 
2017 	if (fs_info->sb->s_bdev &&
2018 			(fs_info->sb->s_bdev == device->bdev))
2019 		fs_info->sb->s_bdev = next_device->bdev;
2020 
2021 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2022 		fs_info->fs_devices->latest_dev = next_device;
2023 }
2024 
2025 /*
2026  * Return btrfs_fs_devices::num_devices excluding the device that's being
2027  * currently replaced.
2028  */
2029 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2030 {
2031 	u64 num_devices = fs_info->fs_devices->num_devices;
2032 
2033 	down_read(&fs_info->dev_replace.rwsem);
2034 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2035 		ASSERT(num_devices > 1);
2036 		num_devices--;
2037 	}
2038 	up_read(&fs_info->dev_replace.rwsem);
2039 
2040 	return num_devices;
2041 }
2042 
2043 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2044 				     struct block_device *bdev, int copy_num)
2045 {
2046 	struct btrfs_super_block *disk_super;
2047 	const size_t len = sizeof(disk_super->magic);
2048 	const u64 bytenr = btrfs_sb_offset(copy_num);
2049 	int ret;
2050 
2051 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2052 	if (IS_ERR(disk_super))
2053 		return;
2054 
2055 	memset(&disk_super->magic, 0, len);
2056 	folio_mark_dirty(virt_to_folio(disk_super));
2057 	btrfs_release_disk_super(disk_super);
2058 
2059 	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2060 	if (ret)
2061 		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2062 			copy_num, ret);
2063 }
2064 
2065 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2066 			       struct block_device *bdev,
2067 			       const char *device_path)
2068 {
2069 	int copy_num;
2070 
2071 	if (!bdev)
2072 		return;
2073 
2074 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2075 		if (bdev_is_zoned(bdev))
2076 			btrfs_reset_sb_log_zones(bdev, copy_num);
2077 		else
2078 			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2079 	}
2080 
2081 	/* Notify udev that device has changed */
2082 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2083 
2084 	/* Update ctime/mtime for device path for libblkid */
2085 	update_dev_time(device_path);
2086 }
2087 
2088 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2089 		    struct btrfs_dev_lookup_args *args,
2090 		    struct block_device **bdev, fmode_t *mode)
2091 {
2092 	struct btrfs_trans_handle *trans;
2093 	struct btrfs_device *device;
2094 	struct btrfs_fs_devices *cur_devices;
2095 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096 	u64 num_devices;
2097 	int ret = 0;
2098 
2099 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2100 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2101 		return -EINVAL;
2102 	}
2103 
2104 	/*
2105 	 * The device list in fs_devices is accessed without locks (neither
2106 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2107 	 * filesystem and another device rm cannot run.
2108 	 */
2109 	num_devices = btrfs_num_devices(fs_info);
2110 
2111 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2112 	if (ret)
2113 		return ret;
2114 
2115 	device = btrfs_find_device(fs_info->fs_devices, args);
2116 	if (!device) {
2117 		if (args->missing)
2118 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2119 		else
2120 			ret = -ENOENT;
2121 		return ret;
2122 	}
2123 
2124 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2125 		btrfs_warn_in_rcu(fs_info,
2126 		  "cannot remove device %s (devid %llu) due to active swapfile",
2127 				  btrfs_dev_name(device), device->devid);
2128 		return -ETXTBSY;
2129 	}
2130 
2131 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2132 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2133 
2134 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2135 	    fs_info->fs_devices->rw_devices == 1)
2136 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2137 
2138 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2139 		mutex_lock(&fs_info->chunk_mutex);
2140 		list_del_init(&device->dev_alloc_list);
2141 		device->fs_devices->rw_devices--;
2142 		mutex_unlock(&fs_info->chunk_mutex);
2143 	}
2144 
2145 	ret = btrfs_shrink_device(device, 0);
2146 	if (ret)
2147 		goto error_undo;
2148 
2149 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2150 	if (IS_ERR(trans)) {
2151 		ret = PTR_ERR(trans);
2152 		goto error_undo;
2153 	}
2154 
2155 	ret = btrfs_rm_dev_item(trans, device);
2156 	if (ret) {
2157 		/* Any error in dev item removal is critical */
2158 		btrfs_crit(fs_info,
2159 			   "failed to remove device item for devid %llu: %d",
2160 			   device->devid, ret);
2161 		btrfs_abort_transaction(trans, ret);
2162 		btrfs_end_transaction(trans);
2163 		return ret;
2164 	}
2165 
2166 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2167 	btrfs_scrub_cancel_dev(device);
2168 
2169 	/*
2170 	 * the device list mutex makes sure that we don't change
2171 	 * the device list while someone else is writing out all
2172 	 * the device supers. Whoever is writing all supers, should
2173 	 * lock the device list mutex before getting the number of
2174 	 * devices in the super block (super_copy). Conversely,
2175 	 * whoever updates the number of devices in the super block
2176 	 * (super_copy) should hold the device list mutex.
2177 	 */
2178 
2179 	/*
2180 	 * In normal cases the cur_devices == fs_devices. But in case
2181 	 * of deleting a seed device, the cur_devices should point to
2182 	 * its own fs_devices listed under the fs_devices->seed_list.
2183 	 */
2184 	cur_devices = device->fs_devices;
2185 	mutex_lock(&fs_devices->device_list_mutex);
2186 	list_del_rcu(&device->dev_list);
2187 
2188 	cur_devices->num_devices--;
2189 	cur_devices->total_devices--;
2190 	/* Update total_devices of the parent fs_devices if it's seed */
2191 	if (cur_devices != fs_devices)
2192 		fs_devices->total_devices--;
2193 
2194 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2195 		cur_devices->missing_devices--;
2196 
2197 	btrfs_assign_next_active_device(device, NULL);
2198 
2199 	if (device->bdev) {
2200 		cur_devices->open_devices--;
2201 		/* remove sysfs entry */
2202 		btrfs_sysfs_remove_device(device);
2203 	}
2204 
2205 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2206 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2207 	mutex_unlock(&fs_devices->device_list_mutex);
2208 
2209 	/*
2210 	 * At this point, the device is zero sized and detached from the
2211 	 * devices list.  All that's left is to zero out the old supers and
2212 	 * free the device.
2213 	 *
2214 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2215 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2216 	 * block device and it's dependencies.  Instead just flush the device
2217 	 * and let the caller do the final blkdev_put.
2218 	 */
2219 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2220 		btrfs_scratch_superblocks(fs_info, device->bdev,
2221 					  device->name->str);
2222 		if (device->bdev) {
2223 			sync_blockdev(device->bdev);
2224 			invalidate_bdev(device->bdev);
2225 		}
2226 	}
2227 
2228 	*bdev = device->bdev;
2229 	*mode = device->mode;
2230 	synchronize_rcu();
2231 	btrfs_free_device(device);
2232 
2233 	/*
2234 	 * This can happen if cur_devices is the private seed devices list.  We
2235 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2236 	 * to be held, but in fact we don't need that for the private
2237 	 * seed_devices, we can simply decrement cur_devices->opened and then
2238 	 * remove it from our list and free the fs_devices.
2239 	 */
2240 	if (cur_devices->num_devices == 0) {
2241 		list_del_init(&cur_devices->seed_list);
2242 		ASSERT(cur_devices->opened == 1);
2243 		cur_devices->opened--;
2244 		free_fs_devices(cur_devices);
2245 	}
2246 
2247 	ret = btrfs_commit_transaction(trans);
2248 
2249 	return ret;
2250 
2251 error_undo:
2252 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2253 		mutex_lock(&fs_info->chunk_mutex);
2254 		list_add(&device->dev_alloc_list,
2255 			 &fs_devices->alloc_list);
2256 		device->fs_devices->rw_devices++;
2257 		mutex_unlock(&fs_info->chunk_mutex);
2258 	}
2259 	return ret;
2260 }
2261 
2262 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2263 {
2264 	struct btrfs_fs_devices *fs_devices;
2265 
2266 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2267 
2268 	/*
2269 	 * in case of fs with no seed, srcdev->fs_devices will point
2270 	 * to fs_devices of fs_info. However when the dev being replaced is
2271 	 * a seed dev it will point to the seed's local fs_devices. In short
2272 	 * srcdev will have its correct fs_devices in both the cases.
2273 	 */
2274 	fs_devices = srcdev->fs_devices;
2275 
2276 	list_del_rcu(&srcdev->dev_list);
2277 	list_del(&srcdev->dev_alloc_list);
2278 	fs_devices->num_devices--;
2279 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2280 		fs_devices->missing_devices--;
2281 
2282 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2283 		fs_devices->rw_devices--;
2284 
2285 	if (srcdev->bdev)
2286 		fs_devices->open_devices--;
2287 }
2288 
2289 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2290 {
2291 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2292 
2293 	mutex_lock(&uuid_mutex);
2294 
2295 	btrfs_close_bdev(srcdev);
2296 	synchronize_rcu();
2297 	btrfs_free_device(srcdev);
2298 
2299 	/* if this is no devs we rather delete the fs_devices */
2300 	if (!fs_devices->num_devices) {
2301 		/*
2302 		 * On a mounted FS, num_devices can't be zero unless it's a
2303 		 * seed. In case of a seed device being replaced, the replace
2304 		 * target added to the sprout FS, so there will be no more
2305 		 * device left under the seed FS.
2306 		 */
2307 		ASSERT(fs_devices->seeding);
2308 
2309 		list_del_init(&fs_devices->seed_list);
2310 		close_fs_devices(fs_devices);
2311 		free_fs_devices(fs_devices);
2312 	}
2313 	mutex_unlock(&uuid_mutex);
2314 }
2315 
2316 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2317 {
2318 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2319 
2320 	mutex_lock(&fs_devices->device_list_mutex);
2321 
2322 	btrfs_sysfs_remove_device(tgtdev);
2323 
2324 	if (tgtdev->bdev)
2325 		fs_devices->open_devices--;
2326 
2327 	fs_devices->num_devices--;
2328 
2329 	btrfs_assign_next_active_device(tgtdev, NULL);
2330 
2331 	list_del_rcu(&tgtdev->dev_list);
2332 
2333 	mutex_unlock(&fs_devices->device_list_mutex);
2334 
2335 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2336 				  tgtdev->name->str);
2337 
2338 	btrfs_close_bdev(tgtdev);
2339 	synchronize_rcu();
2340 	btrfs_free_device(tgtdev);
2341 }
2342 
2343 /*
2344  * Populate args from device at path.
2345  *
2346  * @fs_info:	the filesystem
2347  * @args:	the args to populate
2348  * @path:	the path to the device
2349  *
2350  * This will read the super block of the device at @path and populate @args with
2351  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2352  * lookup a device to operate on, but need to do it before we take any locks.
2353  * This properly handles the special case of "missing" that a user may pass in,
2354  * and does some basic sanity checks.  The caller must make sure that @path is
2355  * properly NUL terminated before calling in, and must call
2356  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2357  * uuid buffers.
2358  *
2359  * Return: 0 for success, -errno for failure
2360  */
2361 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2362 				 struct btrfs_dev_lookup_args *args,
2363 				 const char *path)
2364 {
2365 	struct btrfs_super_block *disk_super;
2366 	struct block_device *bdev;
2367 	int ret;
2368 
2369 	if (!path || !path[0])
2370 		return -EINVAL;
2371 	if (!strcmp(path, "missing")) {
2372 		args->missing = true;
2373 		return 0;
2374 	}
2375 
2376 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2377 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2378 	if (!args->uuid || !args->fsid) {
2379 		btrfs_put_dev_args_from_path(args);
2380 		return -ENOMEM;
2381 	}
2382 
2383 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2384 				    &bdev, &disk_super);
2385 	if (ret) {
2386 		btrfs_put_dev_args_from_path(args);
2387 		return ret;
2388 	}
2389 
2390 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2391 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2392 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2393 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2394 	else
2395 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2396 	btrfs_release_disk_super(disk_super);
2397 	blkdev_put(bdev, FMODE_READ);
2398 	return 0;
2399 }
2400 
2401 /*
2402  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2403  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2404  * that don't need to be freed.
2405  */
2406 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2407 {
2408 	kfree(args->uuid);
2409 	kfree(args->fsid);
2410 	args->uuid = NULL;
2411 	args->fsid = NULL;
2412 }
2413 
2414 struct btrfs_device *btrfs_find_device_by_devspec(
2415 		struct btrfs_fs_info *fs_info, u64 devid,
2416 		const char *device_path)
2417 {
2418 	BTRFS_DEV_LOOKUP_ARGS(args);
2419 	struct btrfs_device *device;
2420 	int ret;
2421 
2422 	if (devid) {
2423 		args.devid = devid;
2424 		device = btrfs_find_device(fs_info->fs_devices, &args);
2425 		if (!device)
2426 			return ERR_PTR(-ENOENT);
2427 		return device;
2428 	}
2429 
2430 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2431 	if (ret)
2432 		return ERR_PTR(ret);
2433 	device = btrfs_find_device(fs_info->fs_devices, &args);
2434 	btrfs_put_dev_args_from_path(&args);
2435 	if (!device)
2436 		return ERR_PTR(-ENOENT);
2437 	return device;
2438 }
2439 
2440 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2441 {
2442 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2443 	struct btrfs_fs_devices *old_devices;
2444 	struct btrfs_fs_devices *seed_devices;
2445 
2446 	lockdep_assert_held(&uuid_mutex);
2447 	if (!fs_devices->seeding)
2448 		return ERR_PTR(-EINVAL);
2449 
2450 	/*
2451 	 * Private copy of the seed devices, anchored at
2452 	 * fs_info->fs_devices->seed_list
2453 	 */
2454 	seed_devices = alloc_fs_devices(NULL, NULL);
2455 	if (IS_ERR(seed_devices))
2456 		return seed_devices;
2457 
2458 	/*
2459 	 * It's necessary to retain a copy of the original seed fs_devices in
2460 	 * fs_uuids so that filesystems which have been seeded can successfully
2461 	 * reference the seed device from open_seed_devices. This also supports
2462 	 * multiple fs seed.
2463 	 */
2464 	old_devices = clone_fs_devices(fs_devices);
2465 	if (IS_ERR(old_devices)) {
2466 		kfree(seed_devices);
2467 		return old_devices;
2468 	}
2469 
2470 	list_add(&old_devices->fs_list, &fs_uuids);
2471 
2472 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2473 	seed_devices->opened = 1;
2474 	INIT_LIST_HEAD(&seed_devices->devices);
2475 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2476 	mutex_init(&seed_devices->device_list_mutex);
2477 
2478 	return seed_devices;
2479 }
2480 
2481 /*
2482  * Splice seed devices into the sprout fs_devices.
2483  * Generate a new fsid for the sprouted read-write filesystem.
2484  */
2485 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2486 			       struct btrfs_fs_devices *seed_devices)
2487 {
2488 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2489 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2490 	struct btrfs_device *device;
2491 	u64 super_flags;
2492 
2493 	/*
2494 	 * We are updating the fsid, the thread leading to device_list_add()
2495 	 * could race, so uuid_mutex is needed.
2496 	 */
2497 	lockdep_assert_held(&uuid_mutex);
2498 
2499 	/*
2500 	 * The threads listed below may traverse dev_list but can do that without
2501 	 * device_list_mutex:
2502 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2503 	 * - Various dev_list readers - are using RCU.
2504 	 * - btrfs_ioctl_fitrim() - is using RCU.
2505 	 *
2506 	 * For-read threads as below are using device_list_mutex:
2507 	 * - Readonly scrub btrfs_scrub_dev()
2508 	 * - Readonly scrub btrfs_scrub_progress()
2509 	 * - btrfs_get_dev_stats()
2510 	 */
2511 	lockdep_assert_held(&fs_devices->device_list_mutex);
2512 
2513 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2514 			      synchronize_rcu);
2515 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2516 		device->fs_devices = seed_devices;
2517 
2518 	fs_devices->seeding = false;
2519 	fs_devices->num_devices = 0;
2520 	fs_devices->open_devices = 0;
2521 	fs_devices->missing_devices = 0;
2522 	fs_devices->rotating = false;
2523 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2524 
2525 	generate_random_uuid(fs_devices->fsid);
2526 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2527 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2528 
2529 	super_flags = btrfs_super_flags(disk_super) &
2530 		      ~BTRFS_SUPER_FLAG_SEEDING;
2531 	btrfs_set_super_flags(disk_super, super_flags);
2532 }
2533 
2534 /*
2535  * Store the expected generation for seed devices in device items.
2536  */
2537 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2538 {
2539 	BTRFS_DEV_LOOKUP_ARGS(args);
2540 	struct btrfs_fs_info *fs_info = trans->fs_info;
2541 	struct btrfs_root *root = fs_info->chunk_root;
2542 	struct btrfs_path *path;
2543 	struct extent_buffer *leaf;
2544 	struct btrfs_dev_item *dev_item;
2545 	struct btrfs_device *device;
2546 	struct btrfs_key key;
2547 	u8 fs_uuid[BTRFS_FSID_SIZE];
2548 	u8 dev_uuid[BTRFS_UUID_SIZE];
2549 	int ret;
2550 
2551 	path = btrfs_alloc_path();
2552 	if (!path)
2553 		return -ENOMEM;
2554 
2555 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2556 	key.offset = 0;
2557 	key.type = BTRFS_DEV_ITEM_KEY;
2558 
2559 	while (1) {
2560 		btrfs_reserve_chunk_metadata(trans, false);
2561 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2562 		btrfs_trans_release_chunk_metadata(trans);
2563 		if (ret < 0)
2564 			goto error;
2565 
2566 		leaf = path->nodes[0];
2567 next_slot:
2568 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2569 			ret = btrfs_next_leaf(root, path);
2570 			if (ret > 0)
2571 				break;
2572 			if (ret < 0)
2573 				goto error;
2574 			leaf = path->nodes[0];
2575 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2576 			btrfs_release_path(path);
2577 			continue;
2578 		}
2579 
2580 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2581 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2582 		    key.type != BTRFS_DEV_ITEM_KEY)
2583 			break;
2584 
2585 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2586 					  struct btrfs_dev_item);
2587 		args.devid = btrfs_device_id(leaf, dev_item);
2588 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2589 				   BTRFS_UUID_SIZE);
2590 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2591 				   BTRFS_FSID_SIZE);
2592 		args.uuid = dev_uuid;
2593 		args.fsid = fs_uuid;
2594 		device = btrfs_find_device(fs_info->fs_devices, &args);
2595 		BUG_ON(!device); /* Logic error */
2596 
2597 		if (device->fs_devices->seeding) {
2598 			btrfs_set_device_generation(leaf, dev_item,
2599 						    device->generation);
2600 			btrfs_mark_buffer_dirty(leaf);
2601 		}
2602 
2603 		path->slots[0]++;
2604 		goto next_slot;
2605 	}
2606 	ret = 0;
2607 error:
2608 	btrfs_free_path(path);
2609 	return ret;
2610 }
2611 
2612 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2613 {
2614 	struct btrfs_root *root = fs_info->dev_root;
2615 	struct btrfs_trans_handle *trans;
2616 	struct btrfs_device *device;
2617 	struct block_device *bdev;
2618 	struct super_block *sb = fs_info->sb;
2619 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2620 	struct btrfs_fs_devices *seed_devices = NULL;
2621 	u64 orig_super_total_bytes;
2622 	u64 orig_super_num_devices;
2623 	int ret = 0;
2624 	bool seeding_dev = false;
2625 	bool locked = false;
2626 
2627 	if (sb_rdonly(sb) && !fs_devices->seeding)
2628 		return -EROFS;
2629 
2630 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2631 				  fs_info->bdev_holder);
2632 	if (IS_ERR(bdev))
2633 		return PTR_ERR(bdev);
2634 
2635 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2636 		ret = -EINVAL;
2637 		goto error;
2638 	}
2639 
2640 	if (fs_devices->seeding) {
2641 		seeding_dev = true;
2642 		down_write(&sb->s_umount);
2643 		mutex_lock(&uuid_mutex);
2644 		locked = true;
2645 	}
2646 
2647 	sync_blockdev(bdev);
2648 
2649 	rcu_read_lock();
2650 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2651 		if (device->bdev == bdev) {
2652 			ret = -EEXIST;
2653 			rcu_read_unlock();
2654 			goto error;
2655 		}
2656 	}
2657 	rcu_read_unlock();
2658 
2659 	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2660 	if (IS_ERR(device)) {
2661 		/* we can safely leave the fs_devices entry around */
2662 		ret = PTR_ERR(device);
2663 		goto error;
2664 	}
2665 
2666 	device->fs_info = fs_info;
2667 	device->bdev = bdev;
2668 	ret = lookup_bdev(device_path, &device->devt);
2669 	if (ret)
2670 		goto error_free_device;
2671 
2672 	ret = btrfs_get_dev_zone_info(device, false);
2673 	if (ret)
2674 		goto error_free_device;
2675 
2676 	trans = btrfs_start_transaction(root, 0);
2677 	if (IS_ERR(trans)) {
2678 		ret = PTR_ERR(trans);
2679 		goto error_free_zone;
2680 	}
2681 
2682 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2683 	device->generation = trans->transid;
2684 	device->io_width = fs_info->sectorsize;
2685 	device->io_align = fs_info->sectorsize;
2686 	device->sector_size = fs_info->sectorsize;
2687 	device->total_bytes =
2688 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2689 	device->disk_total_bytes = device->total_bytes;
2690 	device->commit_total_bytes = device->total_bytes;
2691 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2692 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2693 	device->mode = FMODE_EXCL;
2694 	device->dev_stats_valid = 1;
2695 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2696 
2697 	if (seeding_dev) {
2698 		btrfs_clear_sb_rdonly(sb);
2699 
2700 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2701 		seed_devices = btrfs_init_sprout(fs_info);
2702 		if (IS_ERR(seed_devices)) {
2703 			ret = PTR_ERR(seed_devices);
2704 			btrfs_abort_transaction(trans, ret);
2705 			goto error_trans;
2706 		}
2707 	}
2708 
2709 	mutex_lock(&fs_devices->device_list_mutex);
2710 	if (seeding_dev) {
2711 		btrfs_setup_sprout(fs_info, seed_devices);
2712 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2713 						device);
2714 	}
2715 
2716 	device->fs_devices = fs_devices;
2717 
2718 	mutex_lock(&fs_info->chunk_mutex);
2719 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2720 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2721 	fs_devices->num_devices++;
2722 	fs_devices->open_devices++;
2723 	fs_devices->rw_devices++;
2724 	fs_devices->total_devices++;
2725 	fs_devices->total_rw_bytes += device->total_bytes;
2726 
2727 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2728 
2729 	if (!bdev_nonrot(bdev))
2730 		fs_devices->rotating = true;
2731 
2732 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2733 	btrfs_set_super_total_bytes(fs_info->super_copy,
2734 		round_down(orig_super_total_bytes + device->total_bytes,
2735 			   fs_info->sectorsize));
2736 
2737 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2738 	btrfs_set_super_num_devices(fs_info->super_copy,
2739 				    orig_super_num_devices + 1);
2740 
2741 	/*
2742 	 * we've got more storage, clear any full flags on the space
2743 	 * infos
2744 	 */
2745 	btrfs_clear_space_info_full(fs_info);
2746 
2747 	mutex_unlock(&fs_info->chunk_mutex);
2748 
2749 	/* Add sysfs device entry */
2750 	btrfs_sysfs_add_device(device);
2751 
2752 	mutex_unlock(&fs_devices->device_list_mutex);
2753 
2754 	if (seeding_dev) {
2755 		mutex_lock(&fs_info->chunk_mutex);
2756 		ret = init_first_rw_device(trans);
2757 		mutex_unlock(&fs_info->chunk_mutex);
2758 		if (ret) {
2759 			btrfs_abort_transaction(trans, ret);
2760 			goto error_sysfs;
2761 		}
2762 	}
2763 
2764 	ret = btrfs_add_dev_item(trans, device);
2765 	if (ret) {
2766 		btrfs_abort_transaction(trans, ret);
2767 		goto error_sysfs;
2768 	}
2769 
2770 	if (seeding_dev) {
2771 		ret = btrfs_finish_sprout(trans);
2772 		if (ret) {
2773 			btrfs_abort_transaction(trans, ret);
2774 			goto error_sysfs;
2775 		}
2776 
2777 		/*
2778 		 * fs_devices now represents the newly sprouted filesystem and
2779 		 * its fsid has been changed by btrfs_sprout_splice().
2780 		 */
2781 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2782 	}
2783 
2784 	ret = btrfs_commit_transaction(trans);
2785 
2786 	if (seeding_dev) {
2787 		mutex_unlock(&uuid_mutex);
2788 		up_write(&sb->s_umount);
2789 		locked = false;
2790 
2791 		if (ret) /* transaction commit */
2792 			return ret;
2793 
2794 		ret = btrfs_relocate_sys_chunks(fs_info);
2795 		if (ret < 0)
2796 			btrfs_handle_fs_error(fs_info, ret,
2797 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2798 		trans = btrfs_attach_transaction(root);
2799 		if (IS_ERR(trans)) {
2800 			if (PTR_ERR(trans) == -ENOENT)
2801 				return 0;
2802 			ret = PTR_ERR(trans);
2803 			trans = NULL;
2804 			goto error_sysfs;
2805 		}
2806 		ret = btrfs_commit_transaction(trans);
2807 	}
2808 
2809 	/*
2810 	 * Now that we have written a new super block to this device, check all
2811 	 * other fs_devices list if device_path alienates any other scanned
2812 	 * device.
2813 	 * We can ignore the return value as it typically returns -EINVAL and
2814 	 * only succeeds if the device was an alien.
2815 	 */
2816 	btrfs_forget_devices(device->devt);
2817 
2818 	/* Update ctime/mtime for blkid or udev */
2819 	update_dev_time(device_path);
2820 
2821 	return ret;
2822 
2823 error_sysfs:
2824 	btrfs_sysfs_remove_device(device);
2825 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2826 	mutex_lock(&fs_info->chunk_mutex);
2827 	list_del_rcu(&device->dev_list);
2828 	list_del(&device->dev_alloc_list);
2829 	fs_info->fs_devices->num_devices--;
2830 	fs_info->fs_devices->open_devices--;
2831 	fs_info->fs_devices->rw_devices--;
2832 	fs_info->fs_devices->total_devices--;
2833 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2834 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2835 	btrfs_set_super_total_bytes(fs_info->super_copy,
2836 				    orig_super_total_bytes);
2837 	btrfs_set_super_num_devices(fs_info->super_copy,
2838 				    orig_super_num_devices);
2839 	mutex_unlock(&fs_info->chunk_mutex);
2840 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2841 error_trans:
2842 	if (seeding_dev)
2843 		btrfs_set_sb_rdonly(sb);
2844 	if (trans)
2845 		btrfs_end_transaction(trans);
2846 error_free_zone:
2847 	btrfs_destroy_dev_zone_info(device);
2848 error_free_device:
2849 	btrfs_free_device(device);
2850 error:
2851 	blkdev_put(bdev, FMODE_EXCL);
2852 	if (locked) {
2853 		mutex_unlock(&uuid_mutex);
2854 		up_write(&sb->s_umount);
2855 	}
2856 	return ret;
2857 }
2858 
2859 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2860 					struct btrfs_device *device)
2861 {
2862 	int ret;
2863 	struct btrfs_path *path;
2864 	struct btrfs_root *root = device->fs_info->chunk_root;
2865 	struct btrfs_dev_item *dev_item;
2866 	struct extent_buffer *leaf;
2867 	struct btrfs_key key;
2868 
2869 	path = btrfs_alloc_path();
2870 	if (!path)
2871 		return -ENOMEM;
2872 
2873 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2874 	key.type = BTRFS_DEV_ITEM_KEY;
2875 	key.offset = device->devid;
2876 
2877 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2878 	if (ret < 0)
2879 		goto out;
2880 
2881 	if (ret > 0) {
2882 		ret = -ENOENT;
2883 		goto out;
2884 	}
2885 
2886 	leaf = path->nodes[0];
2887 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2888 
2889 	btrfs_set_device_id(leaf, dev_item, device->devid);
2890 	btrfs_set_device_type(leaf, dev_item, device->type);
2891 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2892 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2893 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2894 	btrfs_set_device_total_bytes(leaf, dev_item,
2895 				     btrfs_device_get_disk_total_bytes(device));
2896 	btrfs_set_device_bytes_used(leaf, dev_item,
2897 				    btrfs_device_get_bytes_used(device));
2898 	btrfs_mark_buffer_dirty(leaf);
2899 
2900 out:
2901 	btrfs_free_path(path);
2902 	return ret;
2903 }
2904 
2905 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2906 		      struct btrfs_device *device, u64 new_size)
2907 {
2908 	struct btrfs_fs_info *fs_info = device->fs_info;
2909 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2910 	u64 old_total;
2911 	u64 diff;
2912 	int ret;
2913 
2914 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2915 		return -EACCES;
2916 
2917 	new_size = round_down(new_size, fs_info->sectorsize);
2918 
2919 	mutex_lock(&fs_info->chunk_mutex);
2920 	old_total = btrfs_super_total_bytes(super_copy);
2921 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2922 
2923 	if (new_size <= device->total_bytes ||
2924 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2925 		mutex_unlock(&fs_info->chunk_mutex);
2926 		return -EINVAL;
2927 	}
2928 
2929 	btrfs_set_super_total_bytes(super_copy,
2930 			round_down(old_total + diff, fs_info->sectorsize));
2931 	device->fs_devices->total_rw_bytes += diff;
2932 
2933 	btrfs_device_set_total_bytes(device, new_size);
2934 	btrfs_device_set_disk_total_bytes(device, new_size);
2935 	btrfs_clear_space_info_full(device->fs_info);
2936 	if (list_empty(&device->post_commit_list))
2937 		list_add_tail(&device->post_commit_list,
2938 			      &trans->transaction->dev_update_list);
2939 	mutex_unlock(&fs_info->chunk_mutex);
2940 
2941 	btrfs_reserve_chunk_metadata(trans, false);
2942 	ret = btrfs_update_device(trans, device);
2943 	btrfs_trans_release_chunk_metadata(trans);
2944 
2945 	return ret;
2946 }
2947 
2948 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2949 {
2950 	struct btrfs_fs_info *fs_info = trans->fs_info;
2951 	struct btrfs_root *root = fs_info->chunk_root;
2952 	int ret;
2953 	struct btrfs_path *path;
2954 	struct btrfs_key key;
2955 
2956 	path = btrfs_alloc_path();
2957 	if (!path)
2958 		return -ENOMEM;
2959 
2960 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2961 	key.offset = chunk_offset;
2962 	key.type = BTRFS_CHUNK_ITEM_KEY;
2963 
2964 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2965 	if (ret < 0)
2966 		goto out;
2967 	else if (ret > 0) { /* Logic error or corruption */
2968 		btrfs_handle_fs_error(fs_info, -ENOENT,
2969 				      "Failed lookup while freeing chunk.");
2970 		ret = -ENOENT;
2971 		goto out;
2972 	}
2973 
2974 	ret = btrfs_del_item(trans, root, path);
2975 	if (ret < 0)
2976 		btrfs_handle_fs_error(fs_info, ret,
2977 				      "Failed to delete chunk item.");
2978 out:
2979 	btrfs_free_path(path);
2980 	return ret;
2981 }
2982 
2983 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2984 {
2985 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2986 	struct btrfs_disk_key *disk_key;
2987 	struct btrfs_chunk *chunk;
2988 	u8 *ptr;
2989 	int ret = 0;
2990 	u32 num_stripes;
2991 	u32 array_size;
2992 	u32 len = 0;
2993 	u32 cur;
2994 	struct btrfs_key key;
2995 
2996 	lockdep_assert_held(&fs_info->chunk_mutex);
2997 	array_size = btrfs_super_sys_array_size(super_copy);
2998 
2999 	ptr = super_copy->sys_chunk_array;
3000 	cur = 0;
3001 
3002 	while (cur < array_size) {
3003 		disk_key = (struct btrfs_disk_key *)ptr;
3004 		btrfs_disk_key_to_cpu(&key, disk_key);
3005 
3006 		len = sizeof(*disk_key);
3007 
3008 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3009 			chunk = (struct btrfs_chunk *)(ptr + len);
3010 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3011 			len += btrfs_chunk_item_size(num_stripes);
3012 		} else {
3013 			ret = -EIO;
3014 			break;
3015 		}
3016 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3017 		    key.offset == chunk_offset) {
3018 			memmove(ptr, ptr + len, array_size - (cur + len));
3019 			array_size -= len;
3020 			btrfs_set_super_sys_array_size(super_copy, array_size);
3021 		} else {
3022 			ptr += len;
3023 			cur += len;
3024 		}
3025 	}
3026 	return ret;
3027 }
3028 
3029 /*
3030  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3031  * @logical: Logical block offset in bytes.
3032  * @length: Length of extent in bytes.
3033  *
3034  * Return: Chunk mapping or ERR_PTR.
3035  */
3036 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3037 				       u64 logical, u64 length)
3038 {
3039 	struct extent_map_tree *em_tree;
3040 	struct extent_map *em;
3041 
3042 	em_tree = &fs_info->mapping_tree;
3043 	read_lock(&em_tree->lock);
3044 	em = lookup_extent_mapping(em_tree, logical, length);
3045 	read_unlock(&em_tree->lock);
3046 
3047 	if (!em) {
3048 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3049 			   logical, length);
3050 		return ERR_PTR(-EINVAL);
3051 	}
3052 
3053 	if (em->start > logical || em->start + em->len < logical) {
3054 		btrfs_crit(fs_info,
3055 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3056 			   logical, length, em->start, em->start + em->len);
3057 		free_extent_map(em);
3058 		return ERR_PTR(-EINVAL);
3059 	}
3060 
3061 	/* callers are responsible for dropping em's ref. */
3062 	return em;
3063 }
3064 
3065 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3066 			     struct map_lookup *map, u64 chunk_offset)
3067 {
3068 	int i;
3069 
3070 	/*
3071 	 * Removing chunk items and updating the device items in the chunks btree
3072 	 * requires holding the chunk_mutex.
3073 	 * See the comment at btrfs_chunk_alloc() for the details.
3074 	 */
3075 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3076 
3077 	for (i = 0; i < map->num_stripes; i++) {
3078 		int ret;
3079 
3080 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3081 		if (ret)
3082 			return ret;
3083 	}
3084 
3085 	return btrfs_free_chunk(trans, chunk_offset);
3086 }
3087 
3088 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3089 {
3090 	struct btrfs_fs_info *fs_info = trans->fs_info;
3091 	struct extent_map *em;
3092 	struct map_lookup *map;
3093 	u64 dev_extent_len = 0;
3094 	int i, ret = 0;
3095 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3096 
3097 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3098 	if (IS_ERR(em)) {
3099 		/*
3100 		 * This is a logic error, but we don't want to just rely on the
3101 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3102 		 * do anything we still error out.
3103 		 */
3104 		ASSERT(0);
3105 		return PTR_ERR(em);
3106 	}
3107 	map = em->map_lookup;
3108 
3109 	/*
3110 	 * First delete the device extent items from the devices btree.
3111 	 * We take the device_list_mutex to avoid racing with the finishing phase
3112 	 * of a device replace operation. See the comment below before acquiring
3113 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3114 	 * because that can result in a deadlock when deleting the device extent
3115 	 * items from the devices btree - COWing an extent buffer from the btree
3116 	 * may result in allocating a new metadata chunk, which would attempt to
3117 	 * lock again fs_info->chunk_mutex.
3118 	 */
3119 	mutex_lock(&fs_devices->device_list_mutex);
3120 	for (i = 0; i < map->num_stripes; i++) {
3121 		struct btrfs_device *device = map->stripes[i].dev;
3122 		ret = btrfs_free_dev_extent(trans, device,
3123 					    map->stripes[i].physical,
3124 					    &dev_extent_len);
3125 		if (ret) {
3126 			mutex_unlock(&fs_devices->device_list_mutex);
3127 			btrfs_abort_transaction(trans, ret);
3128 			goto out;
3129 		}
3130 
3131 		if (device->bytes_used > 0) {
3132 			mutex_lock(&fs_info->chunk_mutex);
3133 			btrfs_device_set_bytes_used(device,
3134 					device->bytes_used - dev_extent_len);
3135 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3136 			btrfs_clear_space_info_full(fs_info);
3137 			mutex_unlock(&fs_info->chunk_mutex);
3138 		}
3139 	}
3140 	mutex_unlock(&fs_devices->device_list_mutex);
3141 
3142 	/*
3143 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3144 	 *
3145 	 * 1) Just like with the first phase of the chunk allocation, we must
3146 	 *    reserve system space, do all chunk btree updates and deletions, and
3147 	 *    update the system chunk array in the superblock while holding this
3148 	 *    mutex. This is for similar reasons as explained on the comment at
3149 	 *    the top of btrfs_chunk_alloc();
3150 	 *
3151 	 * 2) Prevent races with the final phase of a device replace operation
3152 	 *    that replaces the device object associated with the map's stripes,
3153 	 *    because the device object's id can change at any time during that
3154 	 *    final phase of the device replace operation
3155 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3156 	 *    replaced device and then see it with an ID of
3157 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3158 	 *    the device item, which does not exists on the chunk btree.
3159 	 *    The finishing phase of device replace acquires both the
3160 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3161 	 *    safe by just acquiring the chunk_mutex.
3162 	 */
3163 	trans->removing_chunk = true;
3164 	mutex_lock(&fs_info->chunk_mutex);
3165 
3166 	check_system_chunk(trans, map->type);
3167 
3168 	ret = remove_chunk_item(trans, map, chunk_offset);
3169 	/*
3170 	 * Normally we should not get -ENOSPC since we reserved space before
3171 	 * through the call to check_system_chunk().
3172 	 *
3173 	 * Despite our system space_info having enough free space, we may not
3174 	 * be able to allocate extents from its block groups, because all have
3175 	 * an incompatible profile, which will force us to allocate a new system
3176 	 * block group with the right profile, or right after we called
3177 	 * check_system_space() above, a scrub turned the only system block group
3178 	 * with enough free space into RO mode.
3179 	 * This is explained with more detail at do_chunk_alloc().
3180 	 *
3181 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3182 	 */
3183 	if (ret == -ENOSPC) {
3184 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3185 		struct btrfs_block_group *sys_bg;
3186 
3187 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3188 		if (IS_ERR(sys_bg)) {
3189 			ret = PTR_ERR(sys_bg);
3190 			btrfs_abort_transaction(trans, ret);
3191 			goto out;
3192 		}
3193 
3194 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3195 		if (ret) {
3196 			btrfs_abort_transaction(trans, ret);
3197 			goto out;
3198 		}
3199 
3200 		ret = remove_chunk_item(trans, map, chunk_offset);
3201 		if (ret) {
3202 			btrfs_abort_transaction(trans, ret);
3203 			goto out;
3204 		}
3205 	} else if (ret) {
3206 		btrfs_abort_transaction(trans, ret);
3207 		goto out;
3208 	}
3209 
3210 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3211 
3212 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3213 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3214 		if (ret) {
3215 			btrfs_abort_transaction(trans, ret);
3216 			goto out;
3217 		}
3218 	}
3219 
3220 	mutex_unlock(&fs_info->chunk_mutex);
3221 	trans->removing_chunk = false;
3222 
3223 	/*
3224 	 * We are done with chunk btree updates and deletions, so release the
3225 	 * system space we previously reserved (with check_system_chunk()).
3226 	 */
3227 	btrfs_trans_release_chunk_metadata(trans);
3228 
3229 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3230 	if (ret) {
3231 		btrfs_abort_transaction(trans, ret);
3232 		goto out;
3233 	}
3234 
3235 out:
3236 	if (trans->removing_chunk) {
3237 		mutex_unlock(&fs_info->chunk_mutex);
3238 		trans->removing_chunk = false;
3239 	}
3240 	/* once for us */
3241 	free_extent_map(em);
3242 	return ret;
3243 }
3244 
3245 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3246 {
3247 	struct btrfs_root *root = fs_info->chunk_root;
3248 	struct btrfs_trans_handle *trans;
3249 	struct btrfs_block_group *block_group;
3250 	u64 length;
3251 	int ret;
3252 
3253 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3254 		btrfs_err(fs_info,
3255 			  "relocate: not supported on extent tree v2 yet");
3256 		return -EINVAL;
3257 	}
3258 
3259 	/*
3260 	 * Prevent races with automatic removal of unused block groups.
3261 	 * After we relocate and before we remove the chunk with offset
3262 	 * chunk_offset, automatic removal of the block group can kick in,
3263 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3264 	 *
3265 	 * Make sure to acquire this mutex before doing a tree search (dev
3266 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3267 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3268 	 * we release the path used to search the chunk/dev tree and before
3269 	 * the current task acquires this mutex and calls us.
3270 	 */
3271 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3272 
3273 	/* step one, relocate all the extents inside this chunk */
3274 	btrfs_scrub_pause(fs_info);
3275 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3276 	btrfs_scrub_continue(fs_info);
3277 	if (ret) {
3278 		/*
3279 		 * If we had a transaction abort, stop all running scrubs.
3280 		 * See transaction.c:cleanup_transaction() why we do it here.
3281 		 */
3282 		if (BTRFS_FS_ERROR(fs_info))
3283 			btrfs_scrub_cancel(fs_info);
3284 		return ret;
3285 	}
3286 
3287 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3288 	if (!block_group)
3289 		return -ENOENT;
3290 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3291 	length = block_group->length;
3292 	btrfs_put_block_group(block_group);
3293 
3294 	/*
3295 	 * On a zoned file system, discard the whole block group, this will
3296 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3297 	 * resetting the zone fails, don't treat it as a fatal problem from the
3298 	 * filesystem's point of view.
3299 	 */
3300 	if (btrfs_is_zoned(fs_info)) {
3301 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3302 		if (ret)
3303 			btrfs_info(fs_info,
3304 				"failed to reset zone %llu after relocation",
3305 				chunk_offset);
3306 	}
3307 
3308 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3309 						     chunk_offset);
3310 	if (IS_ERR(trans)) {
3311 		ret = PTR_ERR(trans);
3312 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3313 		return ret;
3314 	}
3315 
3316 	/*
3317 	 * step two, delete the device extents and the
3318 	 * chunk tree entries
3319 	 */
3320 	ret = btrfs_remove_chunk(trans, chunk_offset);
3321 	btrfs_end_transaction(trans);
3322 	return ret;
3323 }
3324 
3325 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3326 {
3327 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3328 	struct btrfs_path *path;
3329 	struct extent_buffer *leaf;
3330 	struct btrfs_chunk *chunk;
3331 	struct btrfs_key key;
3332 	struct btrfs_key found_key;
3333 	u64 chunk_type;
3334 	bool retried = false;
3335 	int failed = 0;
3336 	int ret;
3337 
3338 	path = btrfs_alloc_path();
3339 	if (!path)
3340 		return -ENOMEM;
3341 
3342 again:
3343 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3344 	key.offset = (u64)-1;
3345 	key.type = BTRFS_CHUNK_ITEM_KEY;
3346 
3347 	while (1) {
3348 		mutex_lock(&fs_info->reclaim_bgs_lock);
3349 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3350 		if (ret < 0) {
3351 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3352 			goto error;
3353 		}
3354 		BUG_ON(ret == 0); /* Corruption */
3355 
3356 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3357 					  key.type);
3358 		if (ret)
3359 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3360 		if (ret < 0)
3361 			goto error;
3362 		if (ret > 0)
3363 			break;
3364 
3365 		leaf = path->nodes[0];
3366 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3367 
3368 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3369 				       struct btrfs_chunk);
3370 		chunk_type = btrfs_chunk_type(leaf, chunk);
3371 		btrfs_release_path(path);
3372 
3373 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3374 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3375 			if (ret == -ENOSPC)
3376 				failed++;
3377 			else
3378 				BUG_ON(ret);
3379 		}
3380 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3381 
3382 		if (found_key.offset == 0)
3383 			break;
3384 		key.offset = found_key.offset - 1;
3385 	}
3386 	ret = 0;
3387 	if (failed && !retried) {
3388 		failed = 0;
3389 		retried = true;
3390 		goto again;
3391 	} else if (WARN_ON(failed && retried)) {
3392 		ret = -ENOSPC;
3393 	}
3394 error:
3395 	btrfs_free_path(path);
3396 	return ret;
3397 }
3398 
3399 /*
3400  * return 1 : allocate a data chunk successfully,
3401  * return <0: errors during allocating a data chunk,
3402  * return 0 : no need to allocate a data chunk.
3403  */
3404 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3405 				      u64 chunk_offset)
3406 {
3407 	struct btrfs_block_group *cache;
3408 	u64 bytes_used;
3409 	u64 chunk_type;
3410 
3411 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3412 	ASSERT(cache);
3413 	chunk_type = cache->flags;
3414 	btrfs_put_block_group(cache);
3415 
3416 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3417 		return 0;
3418 
3419 	spin_lock(&fs_info->data_sinfo->lock);
3420 	bytes_used = fs_info->data_sinfo->bytes_used;
3421 	spin_unlock(&fs_info->data_sinfo->lock);
3422 
3423 	if (!bytes_used) {
3424 		struct btrfs_trans_handle *trans;
3425 		int ret;
3426 
3427 		trans =	btrfs_join_transaction(fs_info->tree_root);
3428 		if (IS_ERR(trans))
3429 			return PTR_ERR(trans);
3430 
3431 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3432 		btrfs_end_transaction(trans);
3433 		if (ret < 0)
3434 			return ret;
3435 		return 1;
3436 	}
3437 
3438 	return 0;
3439 }
3440 
3441 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3442 			       struct btrfs_balance_control *bctl)
3443 {
3444 	struct btrfs_root *root = fs_info->tree_root;
3445 	struct btrfs_trans_handle *trans;
3446 	struct btrfs_balance_item *item;
3447 	struct btrfs_disk_balance_args disk_bargs;
3448 	struct btrfs_path *path;
3449 	struct extent_buffer *leaf;
3450 	struct btrfs_key key;
3451 	int ret, err;
3452 
3453 	path = btrfs_alloc_path();
3454 	if (!path)
3455 		return -ENOMEM;
3456 
3457 	trans = btrfs_start_transaction(root, 0);
3458 	if (IS_ERR(trans)) {
3459 		btrfs_free_path(path);
3460 		return PTR_ERR(trans);
3461 	}
3462 
3463 	key.objectid = BTRFS_BALANCE_OBJECTID;
3464 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3465 	key.offset = 0;
3466 
3467 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3468 				      sizeof(*item));
3469 	if (ret)
3470 		goto out;
3471 
3472 	leaf = path->nodes[0];
3473 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3474 
3475 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3476 
3477 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3478 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3479 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3480 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3481 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3482 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3483 
3484 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3485 
3486 	btrfs_mark_buffer_dirty(leaf);
3487 out:
3488 	btrfs_free_path(path);
3489 	err = btrfs_commit_transaction(trans);
3490 	if (err && !ret)
3491 		ret = err;
3492 	return ret;
3493 }
3494 
3495 static int del_balance_item(struct btrfs_fs_info *fs_info)
3496 {
3497 	struct btrfs_root *root = fs_info->tree_root;
3498 	struct btrfs_trans_handle *trans;
3499 	struct btrfs_path *path;
3500 	struct btrfs_key key;
3501 	int ret, err;
3502 
3503 	path = btrfs_alloc_path();
3504 	if (!path)
3505 		return -ENOMEM;
3506 
3507 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3508 	if (IS_ERR(trans)) {
3509 		btrfs_free_path(path);
3510 		return PTR_ERR(trans);
3511 	}
3512 
3513 	key.objectid = BTRFS_BALANCE_OBJECTID;
3514 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3515 	key.offset = 0;
3516 
3517 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3518 	if (ret < 0)
3519 		goto out;
3520 	if (ret > 0) {
3521 		ret = -ENOENT;
3522 		goto out;
3523 	}
3524 
3525 	ret = btrfs_del_item(trans, root, path);
3526 out:
3527 	btrfs_free_path(path);
3528 	err = btrfs_commit_transaction(trans);
3529 	if (err && !ret)
3530 		ret = err;
3531 	return ret;
3532 }
3533 
3534 /*
3535  * This is a heuristic used to reduce the number of chunks balanced on
3536  * resume after balance was interrupted.
3537  */
3538 static void update_balance_args(struct btrfs_balance_control *bctl)
3539 {
3540 	/*
3541 	 * Turn on soft mode for chunk types that were being converted.
3542 	 */
3543 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3544 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3545 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3546 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3547 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3548 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3549 
3550 	/*
3551 	 * Turn on usage filter if is not already used.  The idea is
3552 	 * that chunks that we have already balanced should be
3553 	 * reasonably full.  Don't do it for chunks that are being
3554 	 * converted - that will keep us from relocating unconverted
3555 	 * (albeit full) chunks.
3556 	 */
3557 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3558 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3559 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3560 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3561 		bctl->data.usage = 90;
3562 	}
3563 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3564 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3565 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3566 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3567 		bctl->sys.usage = 90;
3568 	}
3569 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3570 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3571 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3572 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3573 		bctl->meta.usage = 90;
3574 	}
3575 }
3576 
3577 /*
3578  * Clear the balance status in fs_info and delete the balance item from disk.
3579  */
3580 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3581 {
3582 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3583 	int ret;
3584 
3585 	BUG_ON(!fs_info->balance_ctl);
3586 
3587 	spin_lock(&fs_info->balance_lock);
3588 	fs_info->balance_ctl = NULL;
3589 	spin_unlock(&fs_info->balance_lock);
3590 
3591 	kfree(bctl);
3592 	ret = del_balance_item(fs_info);
3593 	if (ret)
3594 		btrfs_handle_fs_error(fs_info, ret, NULL);
3595 }
3596 
3597 /*
3598  * Balance filters.  Return 1 if chunk should be filtered out
3599  * (should not be balanced).
3600  */
3601 static int chunk_profiles_filter(u64 chunk_type,
3602 				 struct btrfs_balance_args *bargs)
3603 {
3604 	chunk_type = chunk_to_extended(chunk_type) &
3605 				BTRFS_EXTENDED_PROFILE_MASK;
3606 
3607 	if (bargs->profiles & chunk_type)
3608 		return 0;
3609 
3610 	return 1;
3611 }
3612 
3613 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3614 			      struct btrfs_balance_args *bargs)
3615 {
3616 	struct btrfs_block_group *cache;
3617 	u64 chunk_used;
3618 	u64 user_thresh_min;
3619 	u64 user_thresh_max;
3620 	int ret = 1;
3621 
3622 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3623 	chunk_used = cache->used;
3624 
3625 	if (bargs->usage_min == 0)
3626 		user_thresh_min = 0;
3627 	else
3628 		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3629 
3630 	if (bargs->usage_max == 0)
3631 		user_thresh_max = 1;
3632 	else if (bargs->usage_max > 100)
3633 		user_thresh_max = cache->length;
3634 	else
3635 		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3636 
3637 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3638 		ret = 0;
3639 
3640 	btrfs_put_block_group(cache);
3641 	return ret;
3642 }
3643 
3644 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3645 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3646 {
3647 	struct btrfs_block_group *cache;
3648 	u64 chunk_used, user_thresh;
3649 	int ret = 1;
3650 
3651 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3652 	chunk_used = cache->used;
3653 
3654 	if (bargs->usage_min == 0)
3655 		user_thresh = 1;
3656 	else if (bargs->usage > 100)
3657 		user_thresh = cache->length;
3658 	else
3659 		user_thresh = mult_perc(cache->length, bargs->usage);
3660 
3661 	if (chunk_used < user_thresh)
3662 		ret = 0;
3663 
3664 	btrfs_put_block_group(cache);
3665 	return ret;
3666 }
3667 
3668 static int chunk_devid_filter(struct extent_buffer *leaf,
3669 			      struct btrfs_chunk *chunk,
3670 			      struct btrfs_balance_args *bargs)
3671 {
3672 	struct btrfs_stripe *stripe;
3673 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3674 	int i;
3675 
3676 	for (i = 0; i < num_stripes; i++) {
3677 		stripe = btrfs_stripe_nr(chunk, i);
3678 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3679 			return 0;
3680 	}
3681 
3682 	return 1;
3683 }
3684 
3685 static u64 calc_data_stripes(u64 type, int num_stripes)
3686 {
3687 	const int index = btrfs_bg_flags_to_raid_index(type);
3688 	const int ncopies = btrfs_raid_array[index].ncopies;
3689 	const int nparity = btrfs_raid_array[index].nparity;
3690 
3691 	return (num_stripes - nparity) / ncopies;
3692 }
3693 
3694 /* [pstart, pend) */
3695 static int chunk_drange_filter(struct extent_buffer *leaf,
3696 			       struct btrfs_chunk *chunk,
3697 			       struct btrfs_balance_args *bargs)
3698 {
3699 	struct btrfs_stripe *stripe;
3700 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3701 	u64 stripe_offset;
3702 	u64 stripe_length;
3703 	u64 type;
3704 	int factor;
3705 	int i;
3706 
3707 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3708 		return 0;
3709 
3710 	type = btrfs_chunk_type(leaf, chunk);
3711 	factor = calc_data_stripes(type, num_stripes);
3712 
3713 	for (i = 0; i < num_stripes; i++) {
3714 		stripe = btrfs_stripe_nr(chunk, i);
3715 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3716 			continue;
3717 
3718 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3719 		stripe_length = btrfs_chunk_length(leaf, chunk);
3720 		stripe_length = div_u64(stripe_length, factor);
3721 
3722 		if (stripe_offset < bargs->pend &&
3723 		    stripe_offset + stripe_length > bargs->pstart)
3724 			return 0;
3725 	}
3726 
3727 	return 1;
3728 }
3729 
3730 /* [vstart, vend) */
3731 static int chunk_vrange_filter(struct extent_buffer *leaf,
3732 			       struct btrfs_chunk *chunk,
3733 			       u64 chunk_offset,
3734 			       struct btrfs_balance_args *bargs)
3735 {
3736 	if (chunk_offset < bargs->vend &&
3737 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3738 		/* at least part of the chunk is inside this vrange */
3739 		return 0;
3740 
3741 	return 1;
3742 }
3743 
3744 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3745 			       struct btrfs_chunk *chunk,
3746 			       struct btrfs_balance_args *bargs)
3747 {
3748 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3749 
3750 	if (bargs->stripes_min <= num_stripes
3751 			&& num_stripes <= bargs->stripes_max)
3752 		return 0;
3753 
3754 	return 1;
3755 }
3756 
3757 static int chunk_soft_convert_filter(u64 chunk_type,
3758 				     struct btrfs_balance_args *bargs)
3759 {
3760 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3761 		return 0;
3762 
3763 	chunk_type = chunk_to_extended(chunk_type) &
3764 				BTRFS_EXTENDED_PROFILE_MASK;
3765 
3766 	if (bargs->target == chunk_type)
3767 		return 1;
3768 
3769 	return 0;
3770 }
3771 
3772 static int should_balance_chunk(struct extent_buffer *leaf,
3773 				struct btrfs_chunk *chunk, u64 chunk_offset)
3774 {
3775 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3776 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3777 	struct btrfs_balance_args *bargs = NULL;
3778 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3779 
3780 	/* type filter */
3781 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3782 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3783 		return 0;
3784 	}
3785 
3786 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3787 		bargs = &bctl->data;
3788 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3789 		bargs = &bctl->sys;
3790 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3791 		bargs = &bctl->meta;
3792 
3793 	/* profiles filter */
3794 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3795 	    chunk_profiles_filter(chunk_type, bargs)) {
3796 		return 0;
3797 	}
3798 
3799 	/* usage filter */
3800 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3801 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3802 		return 0;
3803 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3804 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3805 		return 0;
3806 	}
3807 
3808 	/* devid filter */
3809 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3810 	    chunk_devid_filter(leaf, chunk, bargs)) {
3811 		return 0;
3812 	}
3813 
3814 	/* drange filter, makes sense only with devid filter */
3815 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3816 	    chunk_drange_filter(leaf, chunk, bargs)) {
3817 		return 0;
3818 	}
3819 
3820 	/* vrange filter */
3821 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3822 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3823 		return 0;
3824 	}
3825 
3826 	/* stripes filter */
3827 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3828 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3829 		return 0;
3830 	}
3831 
3832 	/* soft profile changing mode */
3833 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3834 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3835 		return 0;
3836 	}
3837 
3838 	/*
3839 	 * limited by count, must be the last filter
3840 	 */
3841 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3842 		if (bargs->limit == 0)
3843 			return 0;
3844 		else
3845 			bargs->limit--;
3846 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3847 		/*
3848 		 * Same logic as the 'limit' filter; the minimum cannot be
3849 		 * determined here because we do not have the global information
3850 		 * about the count of all chunks that satisfy the filters.
3851 		 */
3852 		if (bargs->limit_max == 0)
3853 			return 0;
3854 		else
3855 			bargs->limit_max--;
3856 	}
3857 
3858 	return 1;
3859 }
3860 
3861 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3862 {
3863 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3864 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3865 	u64 chunk_type;
3866 	struct btrfs_chunk *chunk;
3867 	struct btrfs_path *path = NULL;
3868 	struct btrfs_key key;
3869 	struct btrfs_key found_key;
3870 	struct extent_buffer *leaf;
3871 	int slot;
3872 	int ret;
3873 	int enospc_errors = 0;
3874 	bool counting = true;
3875 	/* The single value limit and min/max limits use the same bytes in the */
3876 	u64 limit_data = bctl->data.limit;
3877 	u64 limit_meta = bctl->meta.limit;
3878 	u64 limit_sys = bctl->sys.limit;
3879 	u32 count_data = 0;
3880 	u32 count_meta = 0;
3881 	u32 count_sys = 0;
3882 	int chunk_reserved = 0;
3883 
3884 	path = btrfs_alloc_path();
3885 	if (!path) {
3886 		ret = -ENOMEM;
3887 		goto error;
3888 	}
3889 
3890 	/* zero out stat counters */
3891 	spin_lock(&fs_info->balance_lock);
3892 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3893 	spin_unlock(&fs_info->balance_lock);
3894 again:
3895 	if (!counting) {
3896 		/*
3897 		 * The single value limit and min/max limits use the same bytes
3898 		 * in the
3899 		 */
3900 		bctl->data.limit = limit_data;
3901 		bctl->meta.limit = limit_meta;
3902 		bctl->sys.limit = limit_sys;
3903 	}
3904 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3905 	key.offset = (u64)-1;
3906 	key.type = BTRFS_CHUNK_ITEM_KEY;
3907 
3908 	while (1) {
3909 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3910 		    atomic_read(&fs_info->balance_cancel_req)) {
3911 			ret = -ECANCELED;
3912 			goto error;
3913 		}
3914 
3915 		mutex_lock(&fs_info->reclaim_bgs_lock);
3916 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3917 		if (ret < 0) {
3918 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3919 			goto error;
3920 		}
3921 
3922 		/*
3923 		 * this shouldn't happen, it means the last relocate
3924 		 * failed
3925 		 */
3926 		if (ret == 0)
3927 			BUG(); /* FIXME break ? */
3928 
3929 		ret = btrfs_previous_item(chunk_root, path, 0,
3930 					  BTRFS_CHUNK_ITEM_KEY);
3931 		if (ret) {
3932 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3933 			ret = 0;
3934 			break;
3935 		}
3936 
3937 		leaf = path->nodes[0];
3938 		slot = path->slots[0];
3939 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3940 
3941 		if (found_key.objectid != key.objectid) {
3942 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3943 			break;
3944 		}
3945 
3946 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3947 		chunk_type = btrfs_chunk_type(leaf, chunk);
3948 
3949 		if (!counting) {
3950 			spin_lock(&fs_info->balance_lock);
3951 			bctl->stat.considered++;
3952 			spin_unlock(&fs_info->balance_lock);
3953 		}
3954 
3955 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3956 
3957 		btrfs_release_path(path);
3958 		if (!ret) {
3959 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3960 			goto loop;
3961 		}
3962 
3963 		if (counting) {
3964 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3965 			spin_lock(&fs_info->balance_lock);
3966 			bctl->stat.expected++;
3967 			spin_unlock(&fs_info->balance_lock);
3968 
3969 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3970 				count_data++;
3971 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3972 				count_sys++;
3973 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3974 				count_meta++;
3975 
3976 			goto loop;
3977 		}
3978 
3979 		/*
3980 		 * Apply limit_min filter, no need to check if the LIMITS
3981 		 * filter is used, limit_min is 0 by default
3982 		 */
3983 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3984 					count_data < bctl->data.limit_min)
3985 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3986 					count_meta < bctl->meta.limit_min)
3987 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3988 					count_sys < bctl->sys.limit_min)) {
3989 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3990 			goto loop;
3991 		}
3992 
3993 		if (!chunk_reserved) {
3994 			/*
3995 			 * We may be relocating the only data chunk we have,
3996 			 * which could potentially end up with losing data's
3997 			 * raid profile, so lets allocate an empty one in
3998 			 * advance.
3999 			 */
4000 			ret = btrfs_may_alloc_data_chunk(fs_info,
4001 							 found_key.offset);
4002 			if (ret < 0) {
4003 				mutex_unlock(&fs_info->reclaim_bgs_lock);
4004 				goto error;
4005 			} else if (ret == 1) {
4006 				chunk_reserved = 1;
4007 			}
4008 		}
4009 
4010 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4011 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4012 		if (ret == -ENOSPC) {
4013 			enospc_errors++;
4014 		} else if (ret == -ETXTBSY) {
4015 			btrfs_info(fs_info,
4016 	   "skipping relocation of block group %llu due to active swapfile",
4017 				   found_key.offset);
4018 			ret = 0;
4019 		} else if (ret) {
4020 			goto error;
4021 		} else {
4022 			spin_lock(&fs_info->balance_lock);
4023 			bctl->stat.completed++;
4024 			spin_unlock(&fs_info->balance_lock);
4025 		}
4026 loop:
4027 		if (found_key.offset == 0)
4028 			break;
4029 		key.offset = found_key.offset - 1;
4030 	}
4031 
4032 	if (counting) {
4033 		btrfs_release_path(path);
4034 		counting = false;
4035 		goto again;
4036 	}
4037 error:
4038 	btrfs_free_path(path);
4039 	if (enospc_errors) {
4040 		btrfs_info(fs_info, "%d enospc errors during balance",
4041 			   enospc_errors);
4042 		if (!ret)
4043 			ret = -ENOSPC;
4044 	}
4045 
4046 	return ret;
4047 }
4048 
4049 /*
4050  * See if a given profile is valid and reduced.
4051  *
4052  * @flags:     profile to validate
4053  * @extended:  if true @flags is treated as an extended profile
4054  */
4055 static int alloc_profile_is_valid(u64 flags, int extended)
4056 {
4057 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4058 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4059 
4060 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4061 
4062 	/* 1) check that all other bits are zeroed */
4063 	if (flags & ~mask)
4064 		return 0;
4065 
4066 	/* 2) see if profile is reduced */
4067 	if (flags == 0)
4068 		return !extended; /* "0" is valid for usual profiles */
4069 
4070 	return has_single_bit_set(flags);
4071 }
4072 
4073 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4074 {
4075 	/* cancel requested || normal exit path */
4076 	return atomic_read(&fs_info->balance_cancel_req) ||
4077 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4078 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4079 }
4080 
4081 /*
4082  * Validate target profile against allowed profiles and return true if it's OK.
4083  * Otherwise print the error message and return false.
4084  */
4085 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4086 		const struct btrfs_balance_args *bargs,
4087 		u64 allowed, const char *type)
4088 {
4089 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4090 		return true;
4091 
4092 	/* Profile is valid and does not have bits outside of the allowed set */
4093 	if (alloc_profile_is_valid(bargs->target, 1) &&
4094 	    (bargs->target & ~allowed) == 0)
4095 		return true;
4096 
4097 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4098 			type, btrfs_bg_type_to_raid_name(bargs->target));
4099 	return false;
4100 }
4101 
4102 /*
4103  * Fill @buf with textual description of balance filter flags @bargs, up to
4104  * @size_buf including the terminating null. The output may be trimmed if it
4105  * does not fit into the provided buffer.
4106  */
4107 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4108 				 u32 size_buf)
4109 {
4110 	int ret;
4111 	u32 size_bp = size_buf;
4112 	char *bp = buf;
4113 	u64 flags = bargs->flags;
4114 	char tmp_buf[128] = {'\0'};
4115 
4116 	if (!flags)
4117 		return;
4118 
4119 #define CHECK_APPEND_NOARG(a)						\
4120 	do {								\
4121 		ret = snprintf(bp, size_bp, (a));			\
4122 		if (ret < 0 || ret >= size_bp)				\
4123 			goto out_overflow;				\
4124 		size_bp -= ret;						\
4125 		bp += ret;						\
4126 	} while (0)
4127 
4128 #define CHECK_APPEND_1ARG(a, v1)					\
4129 	do {								\
4130 		ret = snprintf(bp, size_bp, (a), (v1));			\
4131 		if (ret < 0 || ret >= size_bp)				\
4132 			goto out_overflow;				\
4133 		size_bp -= ret;						\
4134 		bp += ret;						\
4135 	} while (0)
4136 
4137 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4138 	do {								\
4139 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4140 		if (ret < 0 || ret >= size_bp)				\
4141 			goto out_overflow;				\
4142 		size_bp -= ret;						\
4143 		bp += ret;						\
4144 	} while (0)
4145 
4146 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4147 		CHECK_APPEND_1ARG("convert=%s,",
4148 				  btrfs_bg_type_to_raid_name(bargs->target));
4149 
4150 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4151 		CHECK_APPEND_NOARG("soft,");
4152 
4153 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4154 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4155 					    sizeof(tmp_buf));
4156 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4157 	}
4158 
4159 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4160 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4161 
4162 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4163 		CHECK_APPEND_2ARG("usage=%u..%u,",
4164 				  bargs->usage_min, bargs->usage_max);
4165 
4166 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4167 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4168 
4169 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4170 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4171 				  bargs->pstart, bargs->pend);
4172 
4173 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4174 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4175 				  bargs->vstart, bargs->vend);
4176 
4177 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4178 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4179 
4180 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4181 		CHECK_APPEND_2ARG("limit=%u..%u,",
4182 				bargs->limit_min, bargs->limit_max);
4183 
4184 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4185 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4186 				  bargs->stripes_min, bargs->stripes_max);
4187 
4188 #undef CHECK_APPEND_2ARG
4189 #undef CHECK_APPEND_1ARG
4190 #undef CHECK_APPEND_NOARG
4191 
4192 out_overflow:
4193 
4194 	if (size_bp < size_buf)
4195 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4196 	else
4197 		buf[0] = '\0';
4198 }
4199 
4200 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4201 {
4202 	u32 size_buf = 1024;
4203 	char tmp_buf[192] = {'\0'};
4204 	char *buf;
4205 	char *bp;
4206 	u32 size_bp = size_buf;
4207 	int ret;
4208 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4209 
4210 	buf = kzalloc(size_buf, GFP_KERNEL);
4211 	if (!buf)
4212 		return;
4213 
4214 	bp = buf;
4215 
4216 #define CHECK_APPEND_1ARG(a, v1)					\
4217 	do {								\
4218 		ret = snprintf(bp, size_bp, (a), (v1));			\
4219 		if (ret < 0 || ret >= size_bp)				\
4220 			goto out_overflow;				\
4221 		size_bp -= ret;						\
4222 		bp += ret;						\
4223 	} while (0)
4224 
4225 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4226 		CHECK_APPEND_1ARG("%s", "-f ");
4227 
4228 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4229 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4230 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4231 	}
4232 
4233 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4234 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4235 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4236 	}
4237 
4238 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4239 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4240 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4241 	}
4242 
4243 #undef CHECK_APPEND_1ARG
4244 
4245 out_overflow:
4246 
4247 	if (size_bp < size_buf)
4248 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4249 	btrfs_info(fs_info, "balance: %s %s",
4250 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4251 		   "resume" : "start", buf);
4252 
4253 	kfree(buf);
4254 }
4255 
4256 /*
4257  * Should be called with balance mutexe held
4258  */
4259 int btrfs_balance(struct btrfs_fs_info *fs_info,
4260 		  struct btrfs_balance_control *bctl,
4261 		  struct btrfs_ioctl_balance_args *bargs)
4262 {
4263 	u64 meta_target, data_target;
4264 	u64 allowed;
4265 	int mixed = 0;
4266 	int ret;
4267 	u64 num_devices;
4268 	unsigned seq;
4269 	bool reducing_redundancy;
4270 	int i;
4271 
4272 	if (btrfs_fs_closing(fs_info) ||
4273 	    atomic_read(&fs_info->balance_pause_req) ||
4274 	    btrfs_should_cancel_balance(fs_info)) {
4275 		ret = -EINVAL;
4276 		goto out;
4277 	}
4278 
4279 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4280 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4281 		mixed = 1;
4282 
4283 	/*
4284 	 * In case of mixed groups both data and meta should be picked,
4285 	 * and identical options should be given for both of them.
4286 	 */
4287 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4288 	if (mixed && (bctl->flags & allowed)) {
4289 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4290 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4291 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4292 			btrfs_err(fs_info,
4293 	  "balance: mixed groups data and metadata options must be the same");
4294 			ret = -EINVAL;
4295 			goto out;
4296 		}
4297 	}
4298 
4299 	/*
4300 	 * rw_devices will not change at the moment, device add/delete/replace
4301 	 * are exclusive
4302 	 */
4303 	num_devices = fs_info->fs_devices->rw_devices;
4304 
4305 	/*
4306 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4307 	 * special bit for it, to make it easier to distinguish.  Thus we need
4308 	 * to set it manually, or balance would refuse the profile.
4309 	 */
4310 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4311 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4312 		if (num_devices >= btrfs_raid_array[i].devs_min)
4313 			allowed |= btrfs_raid_array[i].bg_flag;
4314 
4315 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4316 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4317 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4318 		ret = -EINVAL;
4319 		goto out;
4320 	}
4321 
4322 	/*
4323 	 * Allow to reduce metadata or system integrity only if force set for
4324 	 * profiles with redundancy (copies, parity)
4325 	 */
4326 	allowed = 0;
4327 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4328 		if (btrfs_raid_array[i].ncopies >= 2 ||
4329 		    btrfs_raid_array[i].tolerated_failures >= 1)
4330 			allowed |= btrfs_raid_array[i].bg_flag;
4331 	}
4332 	do {
4333 		seq = read_seqbegin(&fs_info->profiles_lock);
4334 
4335 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4336 		     (fs_info->avail_system_alloc_bits & allowed) &&
4337 		     !(bctl->sys.target & allowed)) ||
4338 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4339 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4340 		     !(bctl->meta.target & allowed)))
4341 			reducing_redundancy = true;
4342 		else
4343 			reducing_redundancy = false;
4344 
4345 		/* if we're not converting, the target field is uninitialized */
4346 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4347 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4348 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4349 			bctl->data.target : fs_info->avail_data_alloc_bits;
4350 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4351 
4352 	if (reducing_redundancy) {
4353 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4354 			btrfs_info(fs_info,
4355 			   "balance: force reducing metadata redundancy");
4356 		} else {
4357 			btrfs_err(fs_info,
4358 	"balance: reduces metadata redundancy, use --force if you want this");
4359 			ret = -EINVAL;
4360 			goto out;
4361 		}
4362 	}
4363 
4364 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4365 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4366 		btrfs_warn(fs_info,
4367 	"balance: metadata profile %s has lower redundancy than data profile %s",
4368 				btrfs_bg_type_to_raid_name(meta_target),
4369 				btrfs_bg_type_to_raid_name(data_target));
4370 	}
4371 
4372 	ret = insert_balance_item(fs_info, bctl);
4373 	if (ret && ret != -EEXIST)
4374 		goto out;
4375 
4376 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4377 		BUG_ON(ret == -EEXIST);
4378 		BUG_ON(fs_info->balance_ctl);
4379 		spin_lock(&fs_info->balance_lock);
4380 		fs_info->balance_ctl = bctl;
4381 		spin_unlock(&fs_info->balance_lock);
4382 	} else {
4383 		BUG_ON(ret != -EEXIST);
4384 		spin_lock(&fs_info->balance_lock);
4385 		update_balance_args(bctl);
4386 		spin_unlock(&fs_info->balance_lock);
4387 	}
4388 
4389 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4390 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4391 	describe_balance_start_or_resume(fs_info);
4392 	mutex_unlock(&fs_info->balance_mutex);
4393 
4394 	ret = __btrfs_balance(fs_info);
4395 
4396 	mutex_lock(&fs_info->balance_mutex);
4397 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4398 		btrfs_info(fs_info, "balance: paused");
4399 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4400 	}
4401 	/*
4402 	 * Balance can be canceled by:
4403 	 *
4404 	 * - Regular cancel request
4405 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4406 	 *
4407 	 * - Fatal signal to "btrfs" process
4408 	 *   Either the signal caught by wait_reserve_ticket() and callers
4409 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4410 	 *   got -ECANCELED.
4411 	 *   Either way, in this case balance_cancel_req = 0, and
4412 	 *   ret == -EINTR or ret == -ECANCELED.
4413 	 *
4414 	 * So here we only check the return value to catch canceled balance.
4415 	 */
4416 	else if (ret == -ECANCELED || ret == -EINTR)
4417 		btrfs_info(fs_info, "balance: canceled");
4418 	else
4419 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4420 
4421 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4422 
4423 	if (bargs) {
4424 		memset(bargs, 0, sizeof(*bargs));
4425 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4426 	}
4427 
4428 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4429 	    balance_need_close(fs_info)) {
4430 		reset_balance_state(fs_info);
4431 		btrfs_exclop_finish(fs_info);
4432 	}
4433 
4434 	wake_up(&fs_info->balance_wait_q);
4435 
4436 	return ret;
4437 out:
4438 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4439 		reset_balance_state(fs_info);
4440 	else
4441 		kfree(bctl);
4442 	btrfs_exclop_finish(fs_info);
4443 
4444 	return ret;
4445 }
4446 
4447 static int balance_kthread(void *data)
4448 {
4449 	struct btrfs_fs_info *fs_info = data;
4450 	int ret = 0;
4451 
4452 	sb_start_write(fs_info->sb);
4453 	mutex_lock(&fs_info->balance_mutex);
4454 	if (fs_info->balance_ctl)
4455 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4456 	mutex_unlock(&fs_info->balance_mutex);
4457 	sb_end_write(fs_info->sb);
4458 
4459 	return ret;
4460 }
4461 
4462 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4463 {
4464 	struct task_struct *tsk;
4465 
4466 	mutex_lock(&fs_info->balance_mutex);
4467 	if (!fs_info->balance_ctl) {
4468 		mutex_unlock(&fs_info->balance_mutex);
4469 		return 0;
4470 	}
4471 	mutex_unlock(&fs_info->balance_mutex);
4472 
4473 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4474 		btrfs_info(fs_info, "balance: resume skipped");
4475 		return 0;
4476 	}
4477 
4478 	spin_lock(&fs_info->super_lock);
4479 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4480 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4481 	spin_unlock(&fs_info->super_lock);
4482 	/*
4483 	 * A ro->rw remount sequence should continue with the paused balance
4484 	 * regardless of who pauses it, system or the user as of now, so set
4485 	 * the resume flag.
4486 	 */
4487 	spin_lock(&fs_info->balance_lock);
4488 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4489 	spin_unlock(&fs_info->balance_lock);
4490 
4491 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4492 	return PTR_ERR_OR_ZERO(tsk);
4493 }
4494 
4495 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4496 {
4497 	struct btrfs_balance_control *bctl;
4498 	struct btrfs_balance_item *item;
4499 	struct btrfs_disk_balance_args disk_bargs;
4500 	struct btrfs_path *path;
4501 	struct extent_buffer *leaf;
4502 	struct btrfs_key key;
4503 	int ret;
4504 
4505 	path = btrfs_alloc_path();
4506 	if (!path)
4507 		return -ENOMEM;
4508 
4509 	key.objectid = BTRFS_BALANCE_OBJECTID;
4510 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4511 	key.offset = 0;
4512 
4513 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4514 	if (ret < 0)
4515 		goto out;
4516 	if (ret > 0) { /* ret = -ENOENT; */
4517 		ret = 0;
4518 		goto out;
4519 	}
4520 
4521 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4522 	if (!bctl) {
4523 		ret = -ENOMEM;
4524 		goto out;
4525 	}
4526 
4527 	leaf = path->nodes[0];
4528 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4529 
4530 	bctl->flags = btrfs_balance_flags(leaf, item);
4531 	bctl->flags |= BTRFS_BALANCE_RESUME;
4532 
4533 	btrfs_balance_data(leaf, item, &disk_bargs);
4534 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4535 	btrfs_balance_meta(leaf, item, &disk_bargs);
4536 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4537 	btrfs_balance_sys(leaf, item, &disk_bargs);
4538 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4539 
4540 	/*
4541 	 * This should never happen, as the paused balance state is recovered
4542 	 * during mount without any chance of other exclusive ops to collide.
4543 	 *
4544 	 * This gives the exclusive op status to balance and keeps in paused
4545 	 * state until user intervention (cancel or umount). If the ownership
4546 	 * cannot be assigned, show a message but do not fail. The balance
4547 	 * is in a paused state and must have fs_info::balance_ctl properly
4548 	 * set up.
4549 	 */
4550 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4551 		btrfs_warn(fs_info,
4552 	"balance: cannot set exclusive op status, resume manually");
4553 
4554 	btrfs_release_path(path);
4555 
4556 	mutex_lock(&fs_info->balance_mutex);
4557 	BUG_ON(fs_info->balance_ctl);
4558 	spin_lock(&fs_info->balance_lock);
4559 	fs_info->balance_ctl = bctl;
4560 	spin_unlock(&fs_info->balance_lock);
4561 	mutex_unlock(&fs_info->balance_mutex);
4562 out:
4563 	btrfs_free_path(path);
4564 	return ret;
4565 }
4566 
4567 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4568 {
4569 	int ret = 0;
4570 
4571 	mutex_lock(&fs_info->balance_mutex);
4572 	if (!fs_info->balance_ctl) {
4573 		mutex_unlock(&fs_info->balance_mutex);
4574 		return -ENOTCONN;
4575 	}
4576 
4577 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4578 		atomic_inc(&fs_info->balance_pause_req);
4579 		mutex_unlock(&fs_info->balance_mutex);
4580 
4581 		wait_event(fs_info->balance_wait_q,
4582 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4583 
4584 		mutex_lock(&fs_info->balance_mutex);
4585 		/* we are good with balance_ctl ripped off from under us */
4586 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4587 		atomic_dec(&fs_info->balance_pause_req);
4588 	} else {
4589 		ret = -ENOTCONN;
4590 	}
4591 
4592 	mutex_unlock(&fs_info->balance_mutex);
4593 	return ret;
4594 }
4595 
4596 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4597 {
4598 	mutex_lock(&fs_info->balance_mutex);
4599 	if (!fs_info->balance_ctl) {
4600 		mutex_unlock(&fs_info->balance_mutex);
4601 		return -ENOTCONN;
4602 	}
4603 
4604 	/*
4605 	 * A paused balance with the item stored on disk can be resumed at
4606 	 * mount time if the mount is read-write. Otherwise it's still paused
4607 	 * and we must not allow cancelling as it deletes the item.
4608 	 */
4609 	if (sb_rdonly(fs_info->sb)) {
4610 		mutex_unlock(&fs_info->balance_mutex);
4611 		return -EROFS;
4612 	}
4613 
4614 	atomic_inc(&fs_info->balance_cancel_req);
4615 	/*
4616 	 * if we are running just wait and return, balance item is
4617 	 * deleted in btrfs_balance in this case
4618 	 */
4619 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4620 		mutex_unlock(&fs_info->balance_mutex);
4621 		wait_event(fs_info->balance_wait_q,
4622 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4623 		mutex_lock(&fs_info->balance_mutex);
4624 	} else {
4625 		mutex_unlock(&fs_info->balance_mutex);
4626 		/*
4627 		 * Lock released to allow other waiters to continue, we'll
4628 		 * reexamine the status again.
4629 		 */
4630 		mutex_lock(&fs_info->balance_mutex);
4631 
4632 		if (fs_info->balance_ctl) {
4633 			reset_balance_state(fs_info);
4634 			btrfs_exclop_finish(fs_info);
4635 			btrfs_info(fs_info, "balance: canceled");
4636 		}
4637 	}
4638 
4639 	BUG_ON(fs_info->balance_ctl ||
4640 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4641 	atomic_dec(&fs_info->balance_cancel_req);
4642 	mutex_unlock(&fs_info->balance_mutex);
4643 	return 0;
4644 }
4645 
4646 int btrfs_uuid_scan_kthread(void *data)
4647 {
4648 	struct btrfs_fs_info *fs_info = data;
4649 	struct btrfs_root *root = fs_info->tree_root;
4650 	struct btrfs_key key;
4651 	struct btrfs_path *path = NULL;
4652 	int ret = 0;
4653 	struct extent_buffer *eb;
4654 	int slot;
4655 	struct btrfs_root_item root_item;
4656 	u32 item_size;
4657 	struct btrfs_trans_handle *trans = NULL;
4658 	bool closing = false;
4659 
4660 	path = btrfs_alloc_path();
4661 	if (!path) {
4662 		ret = -ENOMEM;
4663 		goto out;
4664 	}
4665 
4666 	key.objectid = 0;
4667 	key.type = BTRFS_ROOT_ITEM_KEY;
4668 	key.offset = 0;
4669 
4670 	while (1) {
4671 		if (btrfs_fs_closing(fs_info)) {
4672 			closing = true;
4673 			break;
4674 		}
4675 		ret = btrfs_search_forward(root, &key, path,
4676 				BTRFS_OLDEST_GENERATION);
4677 		if (ret) {
4678 			if (ret > 0)
4679 				ret = 0;
4680 			break;
4681 		}
4682 
4683 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4684 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4685 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4686 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4687 			goto skip;
4688 
4689 		eb = path->nodes[0];
4690 		slot = path->slots[0];
4691 		item_size = btrfs_item_size(eb, slot);
4692 		if (item_size < sizeof(root_item))
4693 			goto skip;
4694 
4695 		read_extent_buffer(eb, &root_item,
4696 				   btrfs_item_ptr_offset(eb, slot),
4697 				   (int)sizeof(root_item));
4698 		if (btrfs_root_refs(&root_item) == 0)
4699 			goto skip;
4700 
4701 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4702 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4703 			if (trans)
4704 				goto update_tree;
4705 
4706 			btrfs_release_path(path);
4707 			/*
4708 			 * 1 - subvol uuid item
4709 			 * 1 - received_subvol uuid item
4710 			 */
4711 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4712 			if (IS_ERR(trans)) {
4713 				ret = PTR_ERR(trans);
4714 				break;
4715 			}
4716 			continue;
4717 		} else {
4718 			goto skip;
4719 		}
4720 update_tree:
4721 		btrfs_release_path(path);
4722 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4723 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4724 						  BTRFS_UUID_KEY_SUBVOL,
4725 						  key.objectid);
4726 			if (ret < 0) {
4727 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4728 					ret);
4729 				break;
4730 			}
4731 		}
4732 
4733 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4734 			ret = btrfs_uuid_tree_add(trans,
4735 						  root_item.received_uuid,
4736 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4737 						  key.objectid);
4738 			if (ret < 0) {
4739 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4740 					ret);
4741 				break;
4742 			}
4743 		}
4744 
4745 skip:
4746 		btrfs_release_path(path);
4747 		if (trans) {
4748 			ret = btrfs_end_transaction(trans);
4749 			trans = NULL;
4750 			if (ret)
4751 				break;
4752 		}
4753 
4754 		if (key.offset < (u64)-1) {
4755 			key.offset++;
4756 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4757 			key.offset = 0;
4758 			key.type = BTRFS_ROOT_ITEM_KEY;
4759 		} else if (key.objectid < (u64)-1) {
4760 			key.offset = 0;
4761 			key.type = BTRFS_ROOT_ITEM_KEY;
4762 			key.objectid++;
4763 		} else {
4764 			break;
4765 		}
4766 		cond_resched();
4767 	}
4768 
4769 out:
4770 	btrfs_free_path(path);
4771 	if (trans && !IS_ERR(trans))
4772 		btrfs_end_transaction(trans);
4773 	if (ret)
4774 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4775 	else if (!closing)
4776 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4777 	up(&fs_info->uuid_tree_rescan_sem);
4778 	return 0;
4779 }
4780 
4781 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4782 {
4783 	struct btrfs_trans_handle *trans;
4784 	struct btrfs_root *tree_root = fs_info->tree_root;
4785 	struct btrfs_root *uuid_root;
4786 	struct task_struct *task;
4787 	int ret;
4788 
4789 	/*
4790 	 * 1 - root node
4791 	 * 1 - root item
4792 	 */
4793 	trans = btrfs_start_transaction(tree_root, 2);
4794 	if (IS_ERR(trans))
4795 		return PTR_ERR(trans);
4796 
4797 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4798 	if (IS_ERR(uuid_root)) {
4799 		ret = PTR_ERR(uuid_root);
4800 		btrfs_abort_transaction(trans, ret);
4801 		btrfs_end_transaction(trans);
4802 		return ret;
4803 	}
4804 
4805 	fs_info->uuid_root = uuid_root;
4806 
4807 	ret = btrfs_commit_transaction(trans);
4808 	if (ret)
4809 		return ret;
4810 
4811 	down(&fs_info->uuid_tree_rescan_sem);
4812 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4813 	if (IS_ERR(task)) {
4814 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4815 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4816 		up(&fs_info->uuid_tree_rescan_sem);
4817 		return PTR_ERR(task);
4818 	}
4819 
4820 	return 0;
4821 }
4822 
4823 /*
4824  * shrinking a device means finding all of the device extents past
4825  * the new size, and then following the back refs to the chunks.
4826  * The chunk relocation code actually frees the device extent
4827  */
4828 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4829 {
4830 	struct btrfs_fs_info *fs_info = device->fs_info;
4831 	struct btrfs_root *root = fs_info->dev_root;
4832 	struct btrfs_trans_handle *trans;
4833 	struct btrfs_dev_extent *dev_extent = NULL;
4834 	struct btrfs_path *path;
4835 	u64 length;
4836 	u64 chunk_offset;
4837 	int ret;
4838 	int slot;
4839 	int failed = 0;
4840 	bool retried = false;
4841 	struct extent_buffer *l;
4842 	struct btrfs_key key;
4843 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4844 	u64 old_total = btrfs_super_total_bytes(super_copy);
4845 	u64 old_size = btrfs_device_get_total_bytes(device);
4846 	u64 diff;
4847 	u64 start;
4848 
4849 	new_size = round_down(new_size, fs_info->sectorsize);
4850 	start = new_size;
4851 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4852 
4853 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4854 		return -EINVAL;
4855 
4856 	path = btrfs_alloc_path();
4857 	if (!path)
4858 		return -ENOMEM;
4859 
4860 	path->reada = READA_BACK;
4861 
4862 	trans = btrfs_start_transaction(root, 0);
4863 	if (IS_ERR(trans)) {
4864 		btrfs_free_path(path);
4865 		return PTR_ERR(trans);
4866 	}
4867 
4868 	mutex_lock(&fs_info->chunk_mutex);
4869 
4870 	btrfs_device_set_total_bytes(device, new_size);
4871 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4872 		device->fs_devices->total_rw_bytes -= diff;
4873 		atomic64_sub(diff, &fs_info->free_chunk_space);
4874 	}
4875 
4876 	/*
4877 	 * Once the device's size has been set to the new size, ensure all
4878 	 * in-memory chunks are synced to disk so that the loop below sees them
4879 	 * and relocates them accordingly.
4880 	 */
4881 	if (contains_pending_extent(device, &start, diff)) {
4882 		mutex_unlock(&fs_info->chunk_mutex);
4883 		ret = btrfs_commit_transaction(trans);
4884 		if (ret)
4885 			goto done;
4886 	} else {
4887 		mutex_unlock(&fs_info->chunk_mutex);
4888 		btrfs_end_transaction(trans);
4889 	}
4890 
4891 again:
4892 	key.objectid = device->devid;
4893 	key.offset = (u64)-1;
4894 	key.type = BTRFS_DEV_EXTENT_KEY;
4895 
4896 	do {
4897 		mutex_lock(&fs_info->reclaim_bgs_lock);
4898 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4899 		if (ret < 0) {
4900 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4901 			goto done;
4902 		}
4903 
4904 		ret = btrfs_previous_item(root, path, 0, key.type);
4905 		if (ret) {
4906 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4907 			if (ret < 0)
4908 				goto done;
4909 			ret = 0;
4910 			btrfs_release_path(path);
4911 			break;
4912 		}
4913 
4914 		l = path->nodes[0];
4915 		slot = path->slots[0];
4916 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4917 
4918 		if (key.objectid != device->devid) {
4919 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4920 			btrfs_release_path(path);
4921 			break;
4922 		}
4923 
4924 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4925 		length = btrfs_dev_extent_length(l, dev_extent);
4926 
4927 		if (key.offset + length <= new_size) {
4928 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4929 			btrfs_release_path(path);
4930 			break;
4931 		}
4932 
4933 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4934 		btrfs_release_path(path);
4935 
4936 		/*
4937 		 * We may be relocating the only data chunk we have,
4938 		 * which could potentially end up with losing data's
4939 		 * raid profile, so lets allocate an empty one in
4940 		 * advance.
4941 		 */
4942 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4943 		if (ret < 0) {
4944 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4945 			goto done;
4946 		}
4947 
4948 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4949 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4950 		if (ret == -ENOSPC) {
4951 			failed++;
4952 		} else if (ret) {
4953 			if (ret == -ETXTBSY) {
4954 				btrfs_warn(fs_info,
4955 		   "could not shrink block group %llu due to active swapfile",
4956 					   chunk_offset);
4957 			}
4958 			goto done;
4959 		}
4960 	} while (key.offset-- > 0);
4961 
4962 	if (failed && !retried) {
4963 		failed = 0;
4964 		retried = true;
4965 		goto again;
4966 	} else if (failed && retried) {
4967 		ret = -ENOSPC;
4968 		goto done;
4969 	}
4970 
4971 	/* Shrinking succeeded, else we would be at "done". */
4972 	trans = btrfs_start_transaction(root, 0);
4973 	if (IS_ERR(trans)) {
4974 		ret = PTR_ERR(trans);
4975 		goto done;
4976 	}
4977 
4978 	mutex_lock(&fs_info->chunk_mutex);
4979 	/* Clear all state bits beyond the shrunk device size */
4980 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4981 			  CHUNK_STATE_MASK);
4982 
4983 	btrfs_device_set_disk_total_bytes(device, new_size);
4984 	if (list_empty(&device->post_commit_list))
4985 		list_add_tail(&device->post_commit_list,
4986 			      &trans->transaction->dev_update_list);
4987 
4988 	WARN_ON(diff > old_total);
4989 	btrfs_set_super_total_bytes(super_copy,
4990 			round_down(old_total - diff, fs_info->sectorsize));
4991 	mutex_unlock(&fs_info->chunk_mutex);
4992 
4993 	btrfs_reserve_chunk_metadata(trans, false);
4994 	/* Now btrfs_update_device() will change the on-disk size. */
4995 	ret = btrfs_update_device(trans, device);
4996 	btrfs_trans_release_chunk_metadata(trans);
4997 	if (ret < 0) {
4998 		btrfs_abort_transaction(trans, ret);
4999 		btrfs_end_transaction(trans);
5000 	} else {
5001 		ret = btrfs_commit_transaction(trans);
5002 	}
5003 done:
5004 	btrfs_free_path(path);
5005 	if (ret) {
5006 		mutex_lock(&fs_info->chunk_mutex);
5007 		btrfs_device_set_total_bytes(device, old_size);
5008 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5009 			device->fs_devices->total_rw_bytes += diff;
5010 		atomic64_add(diff, &fs_info->free_chunk_space);
5011 		mutex_unlock(&fs_info->chunk_mutex);
5012 	}
5013 	return ret;
5014 }
5015 
5016 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5017 			   struct btrfs_key *key,
5018 			   struct btrfs_chunk *chunk, int item_size)
5019 {
5020 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5021 	struct btrfs_disk_key disk_key;
5022 	u32 array_size;
5023 	u8 *ptr;
5024 
5025 	lockdep_assert_held(&fs_info->chunk_mutex);
5026 
5027 	array_size = btrfs_super_sys_array_size(super_copy);
5028 	if (array_size + item_size + sizeof(disk_key)
5029 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5030 		return -EFBIG;
5031 
5032 	ptr = super_copy->sys_chunk_array + array_size;
5033 	btrfs_cpu_key_to_disk(&disk_key, key);
5034 	memcpy(ptr, &disk_key, sizeof(disk_key));
5035 	ptr += sizeof(disk_key);
5036 	memcpy(ptr, chunk, item_size);
5037 	item_size += sizeof(disk_key);
5038 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5039 
5040 	return 0;
5041 }
5042 
5043 /*
5044  * sort the devices in descending order by max_avail, total_avail
5045  */
5046 static int btrfs_cmp_device_info(const void *a, const void *b)
5047 {
5048 	const struct btrfs_device_info *di_a = a;
5049 	const struct btrfs_device_info *di_b = b;
5050 
5051 	if (di_a->max_avail > di_b->max_avail)
5052 		return -1;
5053 	if (di_a->max_avail < di_b->max_avail)
5054 		return 1;
5055 	if (di_a->total_avail > di_b->total_avail)
5056 		return -1;
5057 	if (di_a->total_avail < di_b->total_avail)
5058 		return 1;
5059 	return 0;
5060 }
5061 
5062 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5063 {
5064 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5065 		return;
5066 
5067 	btrfs_set_fs_incompat(info, RAID56);
5068 }
5069 
5070 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5071 {
5072 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5073 		return;
5074 
5075 	btrfs_set_fs_incompat(info, RAID1C34);
5076 }
5077 
5078 /*
5079  * Structure used internally for btrfs_create_chunk() function.
5080  * Wraps needed parameters.
5081  */
5082 struct alloc_chunk_ctl {
5083 	u64 start;
5084 	u64 type;
5085 	/* Total number of stripes to allocate */
5086 	int num_stripes;
5087 	/* sub_stripes info for map */
5088 	int sub_stripes;
5089 	/* Stripes per device */
5090 	int dev_stripes;
5091 	/* Maximum number of devices to use */
5092 	int devs_max;
5093 	/* Minimum number of devices to use */
5094 	int devs_min;
5095 	/* ndevs has to be a multiple of this */
5096 	int devs_increment;
5097 	/* Number of copies */
5098 	int ncopies;
5099 	/* Number of stripes worth of bytes to store parity information */
5100 	int nparity;
5101 	u64 max_stripe_size;
5102 	u64 max_chunk_size;
5103 	u64 dev_extent_min;
5104 	u64 stripe_size;
5105 	u64 chunk_size;
5106 	int ndevs;
5107 };
5108 
5109 static void init_alloc_chunk_ctl_policy_regular(
5110 				struct btrfs_fs_devices *fs_devices,
5111 				struct alloc_chunk_ctl *ctl)
5112 {
5113 	struct btrfs_space_info *space_info;
5114 
5115 	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5116 	ASSERT(space_info);
5117 
5118 	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5119 	ctl->max_stripe_size = ctl->max_chunk_size;
5120 
5121 	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5122 		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5123 
5124 	/* We don't want a chunk larger than 10% of writable space */
5125 	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5126 				  ctl->max_chunk_size);
5127 	ctl->dev_extent_min = ctl->dev_stripes << BTRFS_STRIPE_LEN_SHIFT;
5128 }
5129 
5130 static void init_alloc_chunk_ctl_policy_zoned(
5131 				      struct btrfs_fs_devices *fs_devices,
5132 				      struct alloc_chunk_ctl *ctl)
5133 {
5134 	u64 zone_size = fs_devices->fs_info->zone_size;
5135 	u64 limit;
5136 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5137 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5138 	u64 min_chunk_size = min_data_stripes * zone_size;
5139 	u64 type = ctl->type;
5140 
5141 	ctl->max_stripe_size = zone_size;
5142 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5143 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5144 						 zone_size);
5145 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5146 		ctl->max_chunk_size = ctl->max_stripe_size;
5147 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5148 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5149 		ctl->devs_max = min_t(int, ctl->devs_max,
5150 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5151 	} else {
5152 		BUG();
5153 	}
5154 
5155 	/* We don't want a chunk larger than 10% of writable space */
5156 	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5157 			       zone_size),
5158 		    min_chunk_size);
5159 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5160 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5161 }
5162 
5163 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5164 				 struct alloc_chunk_ctl *ctl)
5165 {
5166 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5167 
5168 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5169 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5170 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5171 	if (!ctl->devs_max)
5172 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5173 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5174 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5175 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5176 	ctl->nparity = btrfs_raid_array[index].nparity;
5177 	ctl->ndevs = 0;
5178 
5179 	switch (fs_devices->chunk_alloc_policy) {
5180 	case BTRFS_CHUNK_ALLOC_REGULAR:
5181 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5182 		break;
5183 	case BTRFS_CHUNK_ALLOC_ZONED:
5184 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5185 		break;
5186 	default:
5187 		BUG();
5188 	}
5189 }
5190 
5191 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5192 			      struct alloc_chunk_ctl *ctl,
5193 			      struct btrfs_device_info *devices_info)
5194 {
5195 	struct btrfs_fs_info *info = fs_devices->fs_info;
5196 	struct btrfs_device *device;
5197 	u64 total_avail;
5198 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5199 	int ret;
5200 	int ndevs = 0;
5201 	u64 max_avail;
5202 	u64 dev_offset;
5203 
5204 	/*
5205 	 * in the first pass through the devices list, we gather information
5206 	 * about the available holes on each device.
5207 	 */
5208 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5209 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5210 			WARN(1, KERN_ERR
5211 			       "BTRFS: read-only device in alloc_list\n");
5212 			continue;
5213 		}
5214 
5215 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5216 					&device->dev_state) ||
5217 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5218 			continue;
5219 
5220 		if (device->total_bytes > device->bytes_used)
5221 			total_avail = device->total_bytes - device->bytes_used;
5222 		else
5223 			total_avail = 0;
5224 
5225 		/* If there is no space on this device, skip it. */
5226 		if (total_avail < ctl->dev_extent_min)
5227 			continue;
5228 
5229 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5230 					   &max_avail);
5231 		if (ret && ret != -ENOSPC)
5232 			return ret;
5233 
5234 		if (ret == 0)
5235 			max_avail = dev_extent_want;
5236 
5237 		if (max_avail < ctl->dev_extent_min) {
5238 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5239 				btrfs_debug(info,
5240 			"%s: devid %llu has no free space, have=%llu want=%llu",
5241 					    __func__, device->devid, max_avail,
5242 					    ctl->dev_extent_min);
5243 			continue;
5244 		}
5245 
5246 		if (ndevs == fs_devices->rw_devices) {
5247 			WARN(1, "%s: found more than %llu devices\n",
5248 			     __func__, fs_devices->rw_devices);
5249 			break;
5250 		}
5251 		devices_info[ndevs].dev_offset = dev_offset;
5252 		devices_info[ndevs].max_avail = max_avail;
5253 		devices_info[ndevs].total_avail = total_avail;
5254 		devices_info[ndevs].dev = device;
5255 		++ndevs;
5256 	}
5257 	ctl->ndevs = ndevs;
5258 
5259 	/*
5260 	 * now sort the devices by hole size / available space
5261 	 */
5262 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5263 	     btrfs_cmp_device_info, NULL);
5264 
5265 	return 0;
5266 }
5267 
5268 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5269 				      struct btrfs_device_info *devices_info)
5270 {
5271 	/* Number of stripes that count for block group size */
5272 	int data_stripes;
5273 
5274 	/*
5275 	 * The primary goal is to maximize the number of stripes, so use as
5276 	 * many devices as possible, even if the stripes are not maximum sized.
5277 	 *
5278 	 * The DUP profile stores more than one stripe per device, the
5279 	 * max_avail is the total size so we have to adjust.
5280 	 */
5281 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5282 				   ctl->dev_stripes);
5283 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5284 
5285 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5286 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5287 
5288 	/*
5289 	 * Use the number of data stripes to figure out how big this chunk is
5290 	 * really going to be in terms of logical address space, and compare
5291 	 * that answer with the max chunk size. If it's higher, we try to
5292 	 * reduce stripe_size.
5293 	 */
5294 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5295 		/*
5296 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5297 		 * then use it, unless it ends up being even bigger than the
5298 		 * previous value we had already.
5299 		 */
5300 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5301 							data_stripes), SZ_16M),
5302 				       ctl->stripe_size);
5303 	}
5304 
5305 	/* Stripe size should not go beyond 1G. */
5306 	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5307 
5308 	/* Align to BTRFS_STRIPE_LEN */
5309 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5310 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5311 
5312 	return 0;
5313 }
5314 
5315 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5316 				    struct btrfs_device_info *devices_info)
5317 {
5318 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5319 	/* Number of stripes that count for block group size */
5320 	int data_stripes;
5321 
5322 	/*
5323 	 * It should hold because:
5324 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5325 	 */
5326 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5327 
5328 	ctl->stripe_size = zone_size;
5329 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5330 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5331 
5332 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5333 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5334 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5335 					     ctl->stripe_size) + ctl->nparity,
5336 				     ctl->dev_stripes);
5337 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5338 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5339 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5340 	}
5341 
5342 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5343 
5344 	return 0;
5345 }
5346 
5347 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5348 			      struct alloc_chunk_ctl *ctl,
5349 			      struct btrfs_device_info *devices_info)
5350 {
5351 	struct btrfs_fs_info *info = fs_devices->fs_info;
5352 
5353 	/*
5354 	 * Round down to number of usable stripes, devs_increment can be any
5355 	 * number so we can't use round_down() that requires power of 2, while
5356 	 * rounddown is safe.
5357 	 */
5358 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5359 
5360 	if (ctl->ndevs < ctl->devs_min) {
5361 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5362 			btrfs_debug(info,
5363 	"%s: not enough devices with free space: have=%d minimum required=%d",
5364 				    __func__, ctl->ndevs, ctl->devs_min);
5365 		}
5366 		return -ENOSPC;
5367 	}
5368 
5369 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5370 
5371 	switch (fs_devices->chunk_alloc_policy) {
5372 	case BTRFS_CHUNK_ALLOC_REGULAR:
5373 		return decide_stripe_size_regular(ctl, devices_info);
5374 	case BTRFS_CHUNK_ALLOC_ZONED:
5375 		return decide_stripe_size_zoned(ctl, devices_info);
5376 	default:
5377 		BUG();
5378 	}
5379 }
5380 
5381 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5382 			struct alloc_chunk_ctl *ctl,
5383 			struct btrfs_device_info *devices_info)
5384 {
5385 	struct btrfs_fs_info *info = trans->fs_info;
5386 	struct map_lookup *map = NULL;
5387 	struct extent_map_tree *em_tree;
5388 	struct btrfs_block_group *block_group;
5389 	struct extent_map *em;
5390 	u64 start = ctl->start;
5391 	u64 type = ctl->type;
5392 	int ret;
5393 	int i;
5394 	int j;
5395 
5396 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5397 	if (!map)
5398 		return ERR_PTR(-ENOMEM);
5399 	map->num_stripes = ctl->num_stripes;
5400 
5401 	for (i = 0; i < ctl->ndevs; ++i) {
5402 		for (j = 0; j < ctl->dev_stripes; ++j) {
5403 			int s = i * ctl->dev_stripes + j;
5404 			map->stripes[s].dev = devices_info[i].dev;
5405 			map->stripes[s].physical = devices_info[i].dev_offset +
5406 						   j * ctl->stripe_size;
5407 		}
5408 	}
5409 	map->io_align = BTRFS_STRIPE_LEN;
5410 	map->io_width = BTRFS_STRIPE_LEN;
5411 	map->type = type;
5412 	map->sub_stripes = ctl->sub_stripes;
5413 
5414 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5415 
5416 	em = alloc_extent_map();
5417 	if (!em) {
5418 		kfree(map);
5419 		return ERR_PTR(-ENOMEM);
5420 	}
5421 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5422 	em->map_lookup = map;
5423 	em->start = start;
5424 	em->len = ctl->chunk_size;
5425 	em->block_start = 0;
5426 	em->block_len = em->len;
5427 	em->orig_block_len = ctl->stripe_size;
5428 
5429 	em_tree = &info->mapping_tree;
5430 	write_lock(&em_tree->lock);
5431 	ret = add_extent_mapping(em_tree, em, 0);
5432 	if (ret) {
5433 		write_unlock(&em_tree->lock);
5434 		free_extent_map(em);
5435 		return ERR_PTR(ret);
5436 	}
5437 	write_unlock(&em_tree->lock);
5438 
5439 	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5440 	if (IS_ERR(block_group))
5441 		goto error_del_extent;
5442 
5443 	for (i = 0; i < map->num_stripes; i++) {
5444 		struct btrfs_device *dev = map->stripes[i].dev;
5445 
5446 		btrfs_device_set_bytes_used(dev,
5447 					    dev->bytes_used + ctl->stripe_size);
5448 		if (list_empty(&dev->post_commit_list))
5449 			list_add_tail(&dev->post_commit_list,
5450 				      &trans->transaction->dev_update_list);
5451 	}
5452 
5453 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5454 		     &info->free_chunk_space);
5455 
5456 	free_extent_map(em);
5457 	check_raid56_incompat_flag(info, type);
5458 	check_raid1c34_incompat_flag(info, type);
5459 
5460 	return block_group;
5461 
5462 error_del_extent:
5463 	write_lock(&em_tree->lock);
5464 	remove_extent_mapping(em_tree, em);
5465 	write_unlock(&em_tree->lock);
5466 
5467 	/* One for our allocation */
5468 	free_extent_map(em);
5469 	/* One for the tree reference */
5470 	free_extent_map(em);
5471 
5472 	return block_group;
5473 }
5474 
5475 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5476 					    u64 type)
5477 {
5478 	struct btrfs_fs_info *info = trans->fs_info;
5479 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5480 	struct btrfs_device_info *devices_info = NULL;
5481 	struct alloc_chunk_ctl ctl;
5482 	struct btrfs_block_group *block_group;
5483 	int ret;
5484 
5485 	lockdep_assert_held(&info->chunk_mutex);
5486 
5487 	if (!alloc_profile_is_valid(type, 0)) {
5488 		ASSERT(0);
5489 		return ERR_PTR(-EINVAL);
5490 	}
5491 
5492 	if (list_empty(&fs_devices->alloc_list)) {
5493 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5494 			btrfs_debug(info, "%s: no writable device", __func__);
5495 		return ERR_PTR(-ENOSPC);
5496 	}
5497 
5498 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5499 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5500 		ASSERT(0);
5501 		return ERR_PTR(-EINVAL);
5502 	}
5503 
5504 	ctl.start = find_next_chunk(info);
5505 	ctl.type = type;
5506 	init_alloc_chunk_ctl(fs_devices, &ctl);
5507 
5508 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5509 			       GFP_NOFS);
5510 	if (!devices_info)
5511 		return ERR_PTR(-ENOMEM);
5512 
5513 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5514 	if (ret < 0) {
5515 		block_group = ERR_PTR(ret);
5516 		goto out;
5517 	}
5518 
5519 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5520 	if (ret < 0) {
5521 		block_group = ERR_PTR(ret);
5522 		goto out;
5523 	}
5524 
5525 	block_group = create_chunk(trans, &ctl, devices_info);
5526 
5527 out:
5528 	kfree(devices_info);
5529 	return block_group;
5530 }
5531 
5532 /*
5533  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5534  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5535  * chunks.
5536  *
5537  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5538  * phases.
5539  */
5540 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5541 				     struct btrfs_block_group *bg)
5542 {
5543 	struct btrfs_fs_info *fs_info = trans->fs_info;
5544 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5545 	struct btrfs_key key;
5546 	struct btrfs_chunk *chunk;
5547 	struct btrfs_stripe *stripe;
5548 	struct extent_map *em;
5549 	struct map_lookup *map;
5550 	size_t item_size;
5551 	int i;
5552 	int ret;
5553 
5554 	/*
5555 	 * We take the chunk_mutex for 2 reasons:
5556 	 *
5557 	 * 1) Updates and insertions in the chunk btree must be done while holding
5558 	 *    the chunk_mutex, as well as updating the system chunk array in the
5559 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5560 	 *    details;
5561 	 *
5562 	 * 2) To prevent races with the final phase of a device replace operation
5563 	 *    that replaces the device object associated with the map's stripes,
5564 	 *    because the device object's id can change at any time during that
5565 	 *    final phase of the device replace operation
5566 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5567 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5568 	 *    which would cause a failure when updating the device item, which does
5569 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5570 	 *    Here we can't use the device_list_mutex because our caller already
5571 	 *    has locked the chunk_mutex, and the final phase of device replace
5572 	 *    acquires both mutexes - first the device_list_mutex and then the
5573 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5574 	 *    concurrent device replace.
5575 	 */
5576 	lockdep_assert_held(&fs_info->chunk_mutex);
5577 
5578 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5579 	if (IS_ERR(em)) {
5580 		ret = PTR_ERR(em);
5581 		btrfs_abort_transaction(trans, ret);
5582 		return ret;
5583 	}
5584 
5585 	map = em->map_lookup;
5586 	item_size = btrfs_chunk_item_size(map->num_stripes);
5587 
5588 	chunk = kzalloc(item_size, GFP_NOFS);
5589 	if (!chunk) {
5590 		ret = -ENOMEM;
5591 		btrfs_abort_transaction(trans, ret);
5592 		goto out;
5593 	}
5594 
5595 	for (i = 0; i < map->num_stripes; i++) {
5596 		struct btrfs_device *device = map->stripes[i].dev;
5597 
5598 		ret = btrfs_update_device(trans, device);
5599 		if (ret)
5600 			goto out;
5601 	}
5602 
5603 	stripe = &chunk->stripe;
5604 	for (i = 0; i < map->num_stripes; i++) {
5605 		struct btrfs_device *device = map->stripes[i].dev;
5606 		const u64 dev_offset = map->stripes[i].physical;
5607 
5608 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5609 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5610 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5611 		stripe++;
5612 	}
5613 
5614 	btrfs_set_stack_chunk_length(chunk, bg->length);
5615 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5616 	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5617 	btrfs_set_stack_chunk_type(chunk, map->type);
5618 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5619 	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5620 	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5621 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5622 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5623 
5624 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5625 	key.type = BTRFS_CHUNK_ITEM_KEY;
5626 	key.offset = bg->start;
5627 
5628 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5629 	if (ret)
5630 		goto out;
5631 
5632 	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5633 
5634 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5635 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5636 		if (ret)
5637 			goto out;
5638 	}
5639 
5640 out:
5641 	kfree(chunk);
5642 	free_extent_map(em);
5643 	return ret;
5644 }
5645 
5646 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5647 {
5648 	struct btrfs_fs_info *fs_info = trans->fs_info;
5649 	u64 alloc_profile;
5650 	struct btrfs_block_group *meta_bg;
5651 	struct btrfs_block_group *sys_bg;
5652 
5653 	/*
5654 	 * When adding a new device for sprouting, the seed device is read-only
5655 	 * so we must first allocate a metadata and a system chunk. But before
5656 	 * adding the block group items to the extent, device and chunk btrees,
5657 	 * we must first:
5658 	 *
5659 	 * 1) Create both chunks without doing any changes to the btrees, as
5660 	 *    otherwise we would get -ENOSPC since the block groups from the
5661 	 *    seed device are read-only;
5662 	 *
5663 	 * 2) Add the device item for the new sprout device - finishing the setup
5664 	 *    of a new block group requires updating the device item in the chunk
5665 	 *    btree, so it must exist when we attempt to do it. The previous step
5666 	 *    ensures this does not fail with -ENOSPC.
5667 	 *
5668 	 * After that we can add the block group items to their btrees:
5669 	 * update existing device item in the chunk btree, add a new block group
5670 	 * item to the extent btree, add a new chunk item to the chunk btree and
5671 	 * finally add the new device extent items to the devices btree.
5672 	 */
5673 
5674 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5675 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5676 	if (IS_ERR(meta_bg))
5677 		return PTR_ERR(meta_bg);
5678 
5679 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5680 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5681 	if (IS_ERR(sys_bg))
5682 		return PTR_ERR(sys_bg);
5683 
5684 	return 0;
5685 }
5686 
5687 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5688 {
5689 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5690 
5691 	return btrfs_raid_array[index].tolerated_failures;
5692 }
5693 
5694 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5695 {
5696 	struct extent_map *em;
5697 	struct map_lookup *map;
5698 	int miss_ndevs = 0;
5699 	int i;
5700 	bool ret = true;
5701 
5702 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5703 	if (IS_ERR(em))
5704 		return false;
5705 
5706 	map = em->map_lookup;
5707 	for (i = 0; i < map->num_stripes; i++) {
5708 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5709 					&map->stripes[i].dev->dev_state)) {
5710 			miss_ndevs++;
5711 			continue;
5712 		}
5713 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5714 					&map->stripes[i].dev->dev_state)) {
5715 			ret = false;
5716 			goto end;
5717 		}
5718 	}
5719 
5720 	/*
5721 	 * If the number of missing devices is larger than max errors, we can
5722 	 * not write the data into that chunk successfully.
5723 	 */
5724 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5725 		ret = false;
5726 end:
5727 	free_extent_map(em);
5728 	return ret;
5729 }
5730 
5731 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5732 {
5733 	struct extent_map *em;
5734 
5735 	while (1) {
5736 		write_lock(&tree->lock);
5737 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5738 		if (em)
5739 			remove_extent_mapping(tree, em);
5740 		write_unlock(&tree->lock);
5741 		if (!em)
5742 			break;
5743 		/* once for us */
5744 		free_extent_map(em);
5745 		/* once for the tree */
5746 		free_extent_map(em);
5747 	}
5748 }
5749 
5750 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5751 {
5752 	struct extent_map *em;
5753 	struct map_lookup *map;
5754 	enum btrfs_raid_types index;
5755 	int ret = 1;
5756 
5757 	em = btrfs_get_chunk_map(fs_info, logical, len);
5758 	if (IS_ERR(em))
5759 		/*
5760 		 * We could return errors for these cases, but that could get
5761 		 * ugly and we'd probably do the same thing which is just not do
5762 		 * anything else and exit, so return 1 so the callers don't try
5763 		 * to use other copies.
5764 		 */
5765 		return 1;
5766 
5767 	map = em->map_lookup;
5768 	index = btrfs_bg_flags_to_raid_index(map->type);
5769 
5770 	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5771 	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5772 		ret = btrfs_raid_array[index].ncopies;
5773 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5774 		ret = 2;
5775 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5776 		/*
5777 		 * There could be two corrupted data stripes, we need
5778 		 * to loop retry in order to rebuild the correct data.
5779 		 *
5780 		 * Fail a stripe at a time on every retry except the
5781 		 * stripe under reconstruction.
5782 		 */
5783 		ret = map->num_stripes;
5784 	free_extent_map(em);
5785 	return ret;
5786 }
5787 
5788 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5789 				    u64 logical)
5790 {
5791 	struct extent_map *em;
5792 	struct map_lookup *map;
5793 	unsigned long len = fs_info->sectorsize;
5794 
5795 	if (!btrfs_fs_incompat(fs_info, RAID56))
5796 		return len;
5797 
5798 	em = btrfs_get_chunk_map(fs_info, logical, len);
5799 
5800 	if (!WARN_ON(IS_ERR(em))) {
5801 		map = em->map_lookup;
5802 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5803 			len = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT;
5804 		free_extent_map(em);
5805 	}
5806 	return len;
5807 }
5808 
5809 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5810 {
5811 	struct extent_map *em;
5812 	struct map_lookup *map;
5813 	int ret = 0;
5814 
5815 	if (!btrfs_fs_incompat(fs_info, RAID56))
5816 		return 0;
5817 
5818 	em = btrfs_get_chunk_map(fs_info, logical, len);
5819 
5820 	if(!WARN_ON(IS_ERR(em))) {
5821 		map = em->map_lookup;
5822 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5823 			ret = 1;
5824 		free_extent_map(em);
5825 	}
5826 	return ret;
5827 }
5828 
5829 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5830 			    struct map_lookup *map, int first,
5831 			    int dev_replace_is_ongoing)
5832 {
5833 	int i;
5834 	int num_stripes;
5835 	int preferred_mirror;
5836 	int tolerance;
5837 	struct btrfs_device *srcdev;
5838 
5839 	ASSERT((map->type &
5840 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5841 
5842 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5843 		num_stripes = map->sub_stripes;
5844 	else
5845 		num_stripes = map->num_stripes;
5846 
5847 	switch (fs_info->fs_devices->read_policy) {
5848 	default:
5849 		/* Shouldn't happen, just warn and use pid instead of failing */
5850 		btrfs_warn_rl(fs_info,
5851 			      "unknown read_policy type %u, reset to pid",
5852 			      fs_info->fs_devices->read_policy);
5853 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5854 		fallthrough;
5855 	case BTRFS_READ_POLICY_PID:
5856 		preferred_mirror = first + (current->pid % num_stripes);
5857 		break;
5858 	}
5859 
5860 	if (dev_replace_is_ongoing &&
5861 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5862 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5863 		srcdev = fs_info->dev_replace.srcdev;
5864 	else
5865 		srcdev = NULL;
5866 
5867 	/*
5868 	 * try to avoid the drive that is the source drive for a
5869 	 * dev-replace procedure, only choose it if no other non-missing
5870 	 * mirror is available
5871 	 */
5872 	for (tolerance = 0; tolerance < 2; tolerance++) {
5873 		if (map->stripes[preferred_mirror].dev->bdev &&
5874 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5875 			return preferred_mirror;
5876 		for (i = first; i < first + num_stripes; i++) {
5877 			if (map->stripes[i].dev->bdev &&
5878 			    (tolerance || map->stripes[i].dev != srcdev))
5879 				return i;
5880 		}
5881 	}
5882 
5883 	/* we couldn't find one that doesn't fail.  Just return something
5884 	 * and the io error handling code will clean up eventually
5885 	 */
5886 	return preferred_mirror;
5887 }
5888 
5889 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5890 						       u16 total_stripes)
5891 {
5892 	struct btrfs_io_context *bioc;
5893 
5894 	bioc = kzalloc(
5895 		 /* The size of btrfs_io_context */
5896 		sizeof(struct btrfs_io_context) +
5897 		/* Plus the variable array for the stripes */
5898 		sizeof(struct btrfs_io_stripe) * (total_stripes),
5899 		GFP_NOFS);
5900 
5901 	if (!bioc)
5902 		return NULL;
5903 
5904 	refcount_set(&bioc->refs, 1);
5905 
5906 	bioc->fs_info = fs_info;
5907 	bioc->replace_stripe_src = -1;
5908 	bioc->full_stripe_logical = (u64)-1;
5909 
5910 	return bioc;
5911 }
5912 
5913 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5914 {
5915 	WARN_ON(!refcount_read(&bioc->refs));
5916 	refcount_inc(&bioc->refs);
5917 }
5918 
5919 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5920 {
5921 	if (!bioc)
5922 		return;
5923 	if (refcount_dec_and_test(&bioc->refs))
5924 		kfree(bioc);
5925 }
5926 
5927 /*
5928  * Please note that, discard won't be sent to target device of device
5929  * replace.
5930  */
5931 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5932 					       u64 logical, u64 *length_ret,
5933 					       u32 *num_stripes)
5934 {
5935 	struct extent_map *em;
5936 	struct map_lookup *map;
5937 	struct btrfs_discard_stripe *stripes;
5938 	u64 length = *length_ret;
5939 	u64 offset;
5940 	u32 stripe_nr;
5941 	u32 stripe_nr_end;
5942 	u32 stripe_cnt;
5943 	u64 stripe_end_offset;
5944 	u64 stripe_offset;
5945 	u32 stripe_index;
5946 	u32 factor = 0;
5947 	u32 sub_stripes = 0;
5948 	u32 stripes_per_dev = 0;
5949 	u32 remaining_stripes = 0;
5950 	u32 last_stripe = 0;
5951 	int ret;
5952 	int i;
5953 
5954 	em = btrfs_get_chunk_map(fs_info, logical, length);
5955 	if (IS_ERR(em))
5956 		return ERR_CAST(em);
5957 
5958 	map = em->map_lookup;
5959 
5960 	/* we don't discard raid56 yet */
5961 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5962 		ret = -EOPNOTSUPP;
5963 		goto out_free_map;
5964 	}
5965 
5966 	offset = logical - em->start;
5967 	length = min_t(u64, em->start + em->len - logical, length);
5968 	*length_ret = length;
5969 
5970 	/*
5971 	 * stripe_nr counts the total number of stripes we have to stride
5972 	 * to get to this block
5973 	 */
5974 	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5975 
5976 	/* stripe_offset is the offset of this block in its stripe */
5977 	stripe_offset = offset - (stripe_nr << BTRFS_STRIPE_LEN_SHIFT);
5978 
5979 	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5980 			BTRFS_STRIPE_LEN_SHIFT;
5981 	stripe_cnt = stripe_nr_end - stripe_nr;
5982 	stripe_end_offset = (stripe_nr_end << BTRFS_STRIPE_LEN_SHIFT) -
5983 			    (offset + length);
5984 	/*
5985 	 * after this, stripe_nr is the number of stripes on this
5986 	 * device we have to walk to find the data, and stripe_index is
5987 	 * the number of our device in the stripe array
5988 	 */
5989 	*num_stripes = 1;
5990 	stripe_index = 0;
5991 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5992 			 BTRFS_BLOCK_GROUP_RAID10)) {
5993 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5994 			sub_stripes = 1;
5995 		else
5996 			sub_stripes = map->sub_stripes;
5997 
5998 		factor = map->num_stripes / sub_stripes;
5999 		*num_stripes = min_t(u64, map->num_stripes,
6000 				    sub_stripes * stripe_cnt);
6001 		stripe_index = stripe_nr % factor;
6002 		stripe_nr /= factor;
6003 		stripe_index *= sub_stripes;
6004 
6005 		remaining_stripes = stripe_cnt % factor;
6006 		stripes_per_dev = stripe_cnt / factor;
6007 		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6008 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6009 				BTRFS_BLOCK_GROUP_DUP)) {
6010 		*num_stripes = map->num_stripes;
6011 	} else {
6012 		stripe_index = stripe_nr % map->num_stripes;
6013 		stripe_nr /= map->num_stripes;
6014 	}
6015 
6016 	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6017 	if (!stripes) {
6018 		ret = -ENOMEM;
6019 		goto out_free_map;
6020 	}
6021 
6022 	for (i = 0; i < *num_stripes; i++) {
6023 		stripes[i].physical =
6024 			map->stripes[stripe_index].physical +
6025 			stripe_offset + (stripe_nr << BTRFS_STRIPE_LEN_SHIFT);
6026 		stripes[i].dev = map->stripes[stripe_index].dev;
6027 
6028 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6029 				 BTRFS_BLOCK_GROUP_RAID10)) {
6030 			stripes[i].length = stripes_per_dev << BTRFS_STRIPE_LEN_SHIFT;
6031 
6032 			if (i / sub_stripes < remaining_stripes)
6033 				stripes[i].length += BTRFS_STRIPE_LEN;
6034 
6035 			/*
6036 			 * Special for the first stripe and
6037 			 * the last stripe:
6038 			 *
6039 			 * |-------|...|-------|
6040 			 *     |----------|
6041 			 *    off     end_off
6042 			 */
6043 			if (i < sub_stripes)
6044 				stripes[i].length -= stripe_offset;
6045 
6046 			if (stripe_index >= last_stripe &&
6047 			    stripe_index <= (last_stripe +
6048 					     sub_stripes - 1))
6049 				stripes[i].length -= stripe_end_offset;
6050 
6051 			if (i == sub_stripes - 1)
6052 				stripe_offset = 0;
6053 		} else {
6054 			stripes[i].length = length;
6055 		}
6056 
6057 		stripe_index++;
6058 		if (stripe_index == map->num_stripes) {
6059 			stripe_index = 0;
6060 			stripe_nr++;
6061 		}
6062 	}
6063 
6064 	free_extent_map(em);
6065 	return stripes;
6066 out_free_map:
6067 	free_extent_map(em);
6068 	return ERR_PTR(ret);
6069 }
6070 
6071 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6072 {
6073 	struct btrfs_block_group *cache;
6074 	bool ret;
6075 
6076 	/* Non zoned filesystem does not use "to_copy" flag */
6077 	if (!btrfs_is_zoned(fs_info))
6078 		return false;
6079 
6080 	cache = btrfs_lookup_block_group(fs_info, logical);
6081 
6082 	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6083 
6084 	btrfs_put_block_group(cache);
6085 	return ret;
6086 }
6087 
6088 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6089 				      struct btrfs_io_context *bioc,
6090 				      struct btrfs_dev_replace *dev_replace,
6091 				      u64 logical,
6092 				      int *num_stripes_ret, int *max_errors_ret)
6093 {
6094 	u64 srcdev_devid = dev_replace->srcdev->devid;
6095 	/*
6096 	 * At this stage, num_stripes is still the real number of stripes,
6097 	 * excluding the duplicated stripes.
6098 	 */
6099 	int num_stripes = *num_stripes_ret;
6100 	int nr_extra_stripes = 0;
6101 	int max_errors = *max_errors_ret;
6102 	int i;
6103 
6104 	/*
6105 	 * A block group which has "to_copy" set will eventually be copied by
6106 	 * the dev-replace process. We can avoid cloning IO here.
6107 	 */
6108 	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6109 		return;
6110 
6111 	/*
6112 	 * Duplicate the write operations while the dev-replace procedure is
6113 	 * running. Since the copying of the old disk to the new disk takes
6114 	 * place at run time while the filesystem is mounted writable, the
6115 	 * regular write operations to the old disk have to be duplicated to go
6116 	 * to the new disk as well.
6117 	 *
6118 	 * Note that device->missing is handled by the caller, and that the
6119 	 * write to the old disk is already set up in the stripes array.
6120 	 */
6121 	for (i = 0; i < num_stripes; i++) {
6122 		struct btrfs_io_stripe *old = &bioc->stripes[i];
6123 		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6124 
6125 		if (old->dev->devid != srcdev_devid)
6126 			continue;
6127 
6128 		new->physical = old->physical;
6129 		new->dev = dev_replace->tgtdev;
6130 		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6131 			bioc->replace_stripe_src = i;
6132 		nr_extra_stripes++;
6133 	}
6134 
6135 	/* We can only have at most 2 extra nr_stripes (for DUP). */
6136 	ASSERT(nr_extra_stripes <= 2);
6137 	/*
6138 	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6139 	 * replace.
6140 	 * If we have 2 extra stripes, only choose the one with smaller physical.
6141 	 */
6142 	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6143 		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6144 		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6145 
6146 		/* Only DUP can have two extra stripes. */
6147 		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6148 
6149 		/*
6150 		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6151 		 * The extra stripe would still be there, but won't be accessed.
6152 		 */
6153 		if (first->physical > second->physical) {
6154 			swap(second->physical, first->physical);
6155 			swap(second->dev, first->dev);
6156 			nr_extra_stripes--;
6157 		}
6158 	}
6159 
6160 	*num_stripes_ret = num_stripes + nr_extra_stripes;
6161 	*max_errors_ret = max_errors + nr_extra_stripes;
6162 	bioc->replace_nr_stripes = nr_extra_stripes;
6163 }
6164 
6165 static bool need_full_stripe(enum btrfs_map_op op)
6166 {
6167 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6168 }
6169 
6170 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6171 			    u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6172 			    u64 *full_stripe_start)
6173 {
6174 	ASSERT(op != BTRFS_MAP_DISCARD);
6175 
6176 	/*
6177 	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6178 	 * the offset of this block in its stripe.
6179 	 */
6180 	*stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6181 	*stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6182 	ASSERT(*stripe_offset < U32_MAX);
6183 
6184 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6185 		unsigned long full_stripe_len = nr_data_stripes(map) <<
6186 						BTRFS_STRIPE_LEN_SHIFT;
6187 
6188 		/*
6189 		 * For full stripe start, we use previously calculated
6190 		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6191 		 * STRIPE_LEN.
6192 		 *
6193 		 * By this we can avoid u64 division completely.  And we have
6194 		 * to go rounddown(), not round_down(), as nr_data_stripes is
6195 		 * not ensured to be power of 2.
6196 		 */
6197 		*full_stripe_start =
6198 			rounddown(*stripe_nr, nr_data_stripes(map)) <<
6199 			BTRFS_STRIPE_LEN_SHIFT;
6200 
6201 		/*
6202 		 * For writes to RAID56, allow to write a full stripe set, but
6203 		 * no straddling of stripe sets.
6204 		 */
6205 		if (op == BTRFS_MAP_WRITE)
6206 			return full_stripe_len - (offset - *full_stripe_start);
6207 	}
6208 
6209 	/*
6210 	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6211 	 * a single disk).
6212 	 */
6213 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6214 		return BTRFS_STRIPE_LEN - *stripe_offset;
6215 	return U64_MAX;
6216 }
6217 
6218 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6219 			  u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
6220 {
6221 	dst->dev = map->stripes[stripe_index].dev;
6222 	dst->physical = map->stripes[stripe_index].physical +
6223 			stripe_offset + (stripe_nr << BTRFS_STRIPE_LEN_SHIFT);
6224 }
6225 
6226 int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6227 		      u64 logical, u64 *length,
6228 		      struct btrfs_io_context **bioc_ret,
6229 		      struct btrfs_io_stripe *smap, int *mirror_num_ret,
6230 		      int need_raid_map)
6231 {
6232 	struct extent_map *em;
6233 	struct map_lookup *map;
6234 	u64 map_offset;
6235 	u64 stripe_offset;
6236 	u32 stripe_nr;
6237 	u32 stripe_index;
6238 	int data_stripes;
6239 	int i;
6240 	int ret = 0;
6241 	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6242 	int num_stripes;
6243 	int num_copies;
6244 	int max_errors = 0;
6245 	struct btrfs_io_context *bioc = NULL;
6246 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6247 	int dev_replace_is_ongoing = 0;
6248 	u16 num_alloc_stripes;
6249 	u64 raid56_full_stripe_start = (u64)-1;
6250 	u64 max_len;
6251 
6252 	ASSERT(bioc_ret);
6253 	ASSERT(op != BTRFS_MAP_DISCARD);
6254 
6255 	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6256 	if (mirror_num > num_copies)
6257 		return -EINVAL;
6258 
6259 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6260 	if (IS_ERR(em))
6261 		return PTR_ERR(em);
6262 
6263 	map = em->map_lookup;
6264 	data_stripes = nr_data_stripes(map);
6265 
6266 	map_offset = logical - em->start;
6267 	max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6268 				   &stripe_offset, &raid56_full_stripe_start);
6269 	*length = min_t(u64, em->len - map_offset, max_len);
6270 
6271 	down_read(&dev_replace->rwsem);
6272 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6273 	/*
6274 	 * Hold the semaphore for read during the whole operation, write is
6275 	 * requested at commit time but must wait.
6276 	 */
6277 	if (!dev_replace_is_ongoing)
6278 		up_read(&dev_replace->rwsem);
6279 
6280 	num_stripes = 1;
6281 	stripe_index = 0;
6282 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6283 		stripe_index = stripe_nr % map->num_stripes;
6284 		stripe_nr /= map->num_stripes;
6285 		if (!need_full_stripe(op))
6286 			mirror_num = 1;
6287 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6288 		if (need_full_stripe(op))
6289 			num_stripes = map->num_stripes;
6290 		else if (mirror_num)
6291 			stripe_index = mirror_num - 1;
6292 		else {
6293 			stripe_index = find_live_mirror(fs_info, map, 0,
6294 					    dev_replace_is_ongoing);
6295 			mirror_num = stripe_index + 1;
6296 		}
6297 
6298 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6299 		if (need_full_stripe(op)) {
6300 			num_stripes = map->num_stripes;
6301 		} else if (mirror_num) {
6302 			stripe_index = mirror_num - 1;
6303 		} else {
6304 			mirror_num = 1;
6305 		}
6306 
6307 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6308 		u32 factor = map->num_stripes / map->sub_stripes;
6309 
6310 		stripe_index = (stripe_nr % factor) * map->sub_stripes;
6311 		stripe_nr /= factor;
6312 
6313 		if (need_full_stripe(op))
6314 			num_stripes = map->sub_stripes;
6315 		else if (mirror_num)
6316 			stripe_index += mirror_num - 1;
6317 		else {
6318 			int old_stripe_index = stripe_index;
6319 			stripe_index = find_live_mirror(fs_info, map,
6320 					      stripe_index,
6321 					      dev_replace_is_ongoing);
6322 			mirror_num = stripe_index - old_stripe_index + 1;
6323 		}
6324 
6325 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6326 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6327 			/*
6328 			 * Push stripe_nr back to the start of the full stripe
6329 			 * For those cases needing a full stripe, @stripe_nr
6330 			 * is the full stripe number.
6331 			 *
6332 			 * Originally we go raid56_full_stripe_start / full_stripe_len,
6333 			 * but that can be expensive.  Here we just divide
6334 			 * @stripe_nr with @data_stripes.
6335 			 */
6336 			stripe_nr /= data_stripes;
6337 
6338 			/* RAID[56] write or recovery. Return all stripes */
6339 			num_stripes = map->num_stripes;
6340 			max_errors = btrfs_chunk_max_errors(map);
6341 
6342 			/* Return the length to the full stripe end */
6343 			*length = min(logical + *length,
6344 				      raid56_full_stripe_start + em->start +
6345 				      (data_stripes << BTRFS_STRIPE_LEN_SHIFT)) - logical;
6346 			stripe_index = 0;
6347 			stripe_offset = 0;
6348 		} else {
6349 			/*
6350 			 * Mirror #0 or #1 means the original data block.
6351 			 * Mirror #2 is RAID5 parity block.
6352 			 * Mirror #3 is RAID6 Q block.
6353 			 */
6354 			stripe_index = stripe_nr % data_stripes;
6355 			stripe_nr /= data_stripes;
6356 			if (mirror_num > 1)
6357 				stripe_index = data_stripes + mirror_num - 2;
6358 
6359 			/* We distribute the parity blocks across stripes */
6360 			stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6361 			if (!need_full_stripe(op) && mirror_num <= 1)
6362 				mirror_num = 1;
6363 		}
6364 	} else {
6365 		/*
6366 		 * After this, stripe_nr is the number of stripes on this
6367 		 * device we have to walk to find the data, and stripe_index is
6368 		 * the number of our device in the stripe array
6369 		 */
6370 		stripe_index = stripe_nr % map->num_stripes;
6371 		stripe_nr /= map->num_stripes;
6372 		mirror_num = stripe_index + 1;
6373 	}
6374 	if (stripe_index >= map->num_stripes) {
6375 		btrfs_crit(fs_info,
6376 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6377 			   stripe_index, map->num_stripes);
6378 		ret = -EINVAL;
6379 		goto out;
6380 	}
6381 
6382 	num_alloc_stripes = num_stripes;
6383 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6384 	    op != BTRFS_MAP_READ)
6385 		/*
6386 		 * For replace case, we need to add extra stripes for extra
6387 		 * duplicated stripes.
6388 		 *
6389 		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6390 		 * 2 more stripes (DUP types, otherwise 1).
6391 		 */
6392 		num_alloc_stripes += 2;
6393 
6394 	/*
6395 	 * If this I/O maps to a single device, try to return the device and
6396 	 * physical block information on the stack instead of allocating an
6397 	 * I/O context structure.
6398 	 */
6399 	if (smap && num_alloc_stripes == 1 &&
6400 	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6401 	    (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6402 	     !dev_replace->tgtdev)) {
6403 		set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6404 		*mirror_num_ret = mirror_num;
6405 		*bioc_ret = NULL;
6406 		ret = 0;
6407 		goto out;
6408 	}
6409 
6410 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
6411 	if (!bioc) {
6412 		ret = -ENOMEM;
6413 		goto out;
6414 	}
6415 	bioc->map_type = map->type;
6416 
6417 	/*
6418 	 * For RAID56 full map, we need to make sure the stripes[] follows the
6419 	 * rule that data stripes are all ordered, then followed with P and Q
6420 	 * (if we have).
6421 	 *
6422 	 * It's still mostly the same as other profiles, just with extra rotation.
6423 	 */
6424 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6425 	    (need_full_stripe(op) || mirror_num > 1)) {
6426 		/*
6427 		 * For RAID56 @stripe_nr is already the number of full stripes
6428 		 * before us, which is also the rotation value (needs to modulo
6429 		 * with num_stripes).
6430 		 *
6431 		 * In this case, we just add @stripe_nr with @i, then do the
6432 		 * modulo, to reduce one modulo call.
6433 		 */
6434 		bioc->full_stripe_logical = em->start +
6435 			((stripe_nr * data_stripes) << BTRFS_STRIPE_LEN_SHIFT);
6436 		for (i = 0; i < num_stripes; i++)
6437 			set_io_stripe(&bioc->stripes[i], map,
6438 				      (i + stripe_nr) % num_stripes,
6439 				      stripe_offset, stripe_nr);
6440 	} else {
6441 		/*
6442 		 * For all other non-RAID56 profiles, just copy the target
6443 		 * stripe into the bioc.
6444 		 */
6445 		for (i = 0; i < num_stripes; i++) {
6446 			set_io_stripe(&bioc->stripes[i], map, stripe_index,
6447 				      stripe_offset, stripe_nr);
6448 			stripe_index++;
6449 		}
6450 	}
6451 
6452 	if (need_full_stripe(op))
6453 		max_errors = btrfs_chunk_max_errors(map);
6454 
6455 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6456 	    need_full_stripe(op)) {
6457 		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6458 					  &num_stripes, &max_errors);
6459 	}
6460 
6461 	*bioc_ret = bioc;
6462 	bioc->num_stripes = num_stripes;
6463 	bioc->max_errors = max_errors;
6464 	bioc->mirror_num = mirror_num;
6465 
6466 out:
6467 	if (dev_replace_is_ongoing) {
6468 		lockdep_assert_held(&dev_replace->rwsem);
6469 		/* Unlock and let waiting writers proceed */
6470 		up_read(&dev_replace->rwsem);
6471 	}
6472 	free_extent_map(em);
6473 	return ret;
6474 }
6475 
6476 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6477 		      u64 logical, u64 *length,
6478 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6479 {
6480 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6481 				 NULL, &mirror_num, 0);
6482 }
6483 
6484 /* For Scrub/replace */
6485 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6486 		     u64 logical, u64 *length,
6487 		     struct btrfs_io_context **bioc_ret)
6488 {
6489 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6490 				 NULL, NULL, 1);
6491 }
6492 
6493 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6494 				      const struct btrfs_fs_devices *fs_devices)
6495 {
6496 	if (args->fsid == NULL)
6497 		return true;
6498 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6499 		return true;
6500 	return false;
6501 }
6502 
6503 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6504 				  const struct btrfs_device *device)
6505 {
6506 	if (args->missing) {
6507 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6508 		    !device->bdev)
6509 			return true;
6510 		return false;
6511 	}
6512 
6513 	if (device->devid != args->devid)
6514 		return false;
6515 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6516 		return false;
6517 	return true;
6518 }
6519 
6520 /*
6521  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6522  * return NULL.
6523  *
6524  * If devid and uuid are both specified, the match must be exact, otherwise
6525  * only devid is used.
6526  */
6527 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6528 				       const struct btrfs_dev_lookup_args *args)
6529 {
6530 	struct btrfs_device *device;
6531 	struct btrfs_fs_devices *seed_devs;
6532 
6533 	if (dev_args_match_fs_devices(args, fs_devices)) {
6534 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6535 			if (dev_args_match_device(args, device))
6536 				return device;
6537 		}
6538 	}
6539 
6540 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6541 		if (!dev_args_match_fs_devices(args, seed_devs))
6542 			continue;
6543 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6544 			if (dev_args_match_device(args, device))
6545 				return device;
6546 		}
6547 	}
6548 
6549 	return NULL;
6550 }
6551 
6552 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6553 					    u64 devid, u8 *dev_uuid)
6554 {
6555 	struct btrfs_device *device;
6556 	unsigned int nofs_flag;
6557 
6558 	/*
6559 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6560 	 * allocation, however we don't want to change btrfs_alloc_device() to
6561 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6562 	 * places.
6563 	 */
6564 
6565 	nofs_flag = memalloc_nofs_save();
6566 	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6567 	memalloc_nofs_restore(nofs_flag);
6568 	if (IS_ERR(device))
6569 		return device;
6570 
6571 	list_add(&device->dev_list, &fs_devices->devices);
6572 	device->fs_devices = fs_devices;
6573 	fs_devices->num_devices++;
6574 
6575 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6576 	fs_devices->missing_devices++;
6577 
6578 	return device;
6579 }
6580 
6581 /*
6582  * Allocate new device struct, set up devid and UUID.
6583  *
6584  * @fs_info:	used only for generating a new devid, can be NULL if
6585  *		devid is provided (i.e. @devid != NULL).
6586  * @devid:	a pointer to devid for this device.  If NULL a new devid
6587  *		is generated.
6588  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6589  *		is generated.
6590  * @path:	a pointer to device path if available, NULL otherwise.
6591  *
6592  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6593  * on error.  Returned struct is not linked onto any lists and must be
6594  * destroyed with btrfs_free_device.
6595  */
6596 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6597 					const u64 *devid, const u8 *uuid,
6598 					const char *path)
6599 {
6600 	struct btrfs_device *dev;
6601 	u64 tmp;
6602 
6603 	if (WARN_ON(!devid && !fs_info))
6604 		return ERR_PTR(-EINVAL);
6605 
6606 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6607 	if (!dev)
6608 		return ERR_PTR(-ENOMEM);
6609 
6610 	INIT_LIST_HEAD(&dev->dev_list);
6611 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6612 	INIT_LIST_HEAD(&dev->post_commit_list);
6613 
6614 	atomic_set(&dev->dev_stats_ccnt, 0);
6615 	btrfs_device_data_ordered_init(dev);
6616 	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6617 
6618 	if (devid)
6619 		tmp = *devid;
6620 	else {
6621 		int ret;
6622 
6623 		ret = find_next_devid(fs_info, &tmp);
6624 		if (ret) {
6625 			btrfs_free_device(dev);
6626 			return ERR_PTR(ret);
6627 		}
6628 	}
6629 	dev->devid = tmp;
6630 
6631 	if (uuid)
6632 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6633 	else
6634 		generate_random_uuid(dev->uuid);
6635 
6636 	if (path) {
6637 		struct rcu_string *name;
6638 
6639 		name = rcu_string_strdup(path, GFP_KERNEL);
6640 		if (!name) {
6641 			btrfs_free_device(dev);
6642 			return ERR_PTR(-ENOMEM);
6643 		}
6644 		rcu_assign_pointer(dev->name, name);
6645 	}
6646 
6647 	return dev;
6648 }
6649 
6650 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6651 					u64 devid, u8 *uuid, bool error)
6652 {
6653 	if (error)
6654 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6655 			      devid, uuid);
6656 	else
6657 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6658 			      devid, uuid);
6659 }
6660 
6661 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6662 {
6663 	const struct map_lookup *map = em->map_lookup;
6664 	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6665 
6666 	return div_u64(em->len, data_stripes);
6667 }
6668 
6669 #if BITS_PER_LONG == 32
6670 /*
6671  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6672  * can't be accessed on 32bit systems.
6673  *
6674  * This function do mount time check to reject the fs if it already has
6675  * metadata chunk beyond that limit.
6676  */
6677 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6678 				  u64 logical, u64 length, u64 type)
6679 {
6680 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6681 		return 0;
6682 
6683 	if (logical + length < MAX_LFS_FILESIZE)
6684 		return 0;
6685 
6686 	btrfs_err_32bit_limit(fs_info);
6687 	return -EOVERFLOW;
6688 }
6689 
6690 /*
6691  * This is to give early warning for any metadata chunk reaching
6692  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6693  * Although we can still access the metadata, it's not going to be possible
6694  * once the limit is reached.
6695  */
6696 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6697 				  u64 logical, u64 length, u64 type)
6698 {
6699 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6700 		return;
6701 
6702 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6703 		return;
6704 
6705 	btrfs_warn_32bit_limit(fs_info);
6706 }
6707 #endif
6708 
6709 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6710 						  u64 devid, u8 *uuid)
6711 {
6712 	struct btrfs_device *dev;
6713 
6714 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6715 		btrfs_report_missing_device(fs_info, devid, uuid, true);
6716 		return ERR_PTR(-ENOENT);
6717 	}
6718 
6719 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6720 	if (IS_ERR(dev)) {
6721 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6722 			  devid, PTR_ERR(dev));
6723 		return dev;
6724 	}
6725 	btrfs_report_missing_device(fs_info, devid, uuid, false);
6726 
6727 	return dev;
6728 }
6729 
6730 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6731 			  struct btrfs_chunk *chunk)
6732 {
6733 	BTRFS_DEV_LOOKUP_ARGS(args);
6734 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6735 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6736 	struct map_lookup *map;
6737 	struct extent_map *em;
6738 	u64 logical;
6739 	u64 length;
6740 	u64 devid;
6741 	u64 type;
6742 	u8 uuid[BTRFS_UUID_SIZE];
6743 	int index;
6744 	int num_stripes;
6745 	int ret;
6746 	int i;
6747 
6748 	logical = key->offset;
6749 	length = btrfs_chunk_length(leaf, chunk);
6750 	type = btrfs_chunk_type(leaf, chunk);
6751 	index = btrfs_bg_flags_to_raid_index(type);
6752 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6753 
6754 #if BITS_PER_LONG == 32
6755 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6756 	if (ret < 0)
6757 		return ret;
6758 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6759 #endif
6760 
6761 	/*
6762 	 * Only need to verify chunk item if we're reading from sys chunk array,
6763 	 * as chunk item in tree block is already verified by tree-checker.
6764 	 */
6765 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6766 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6767 		if (ret)
6768 			return ret;
6769 	}
6770 
6771 	read_lock(&map_tree->lock);
6772 	em = lookup_extent_mapping(map_tree, logical, 1);
6773 	read_unlock(&map_tree->lock);
6774 
6775 	/* already mapped? */
6776 	if (em && em->start <= logical && em->start + em->len > logical) {
6777 		free_extent_map(em);
6778 		return 0;
6779 	} else if (em) {
6780 		free_extent_map(em);
6781 	}
6782 
6783 	em = alloc_extent_map();
6784 	if (!em)
6785 		return -ENOMEM;
6786 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6787 	if (!map) {
6788 		free_extent_map(em);
6789 		return -ENOMEM;
6790 	}
6791 
6792 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6793 	em->map_lookup = map;
6794 	em->start = logical;
6795 	em->len = length;
6796 	em->orig_start = 0;
6797 	em->block_start = 0;
6798 	em->block_len = em->len;
6799 
6800 	map->num_stripes = num_stripes;
6801 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6802 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6803 	map->type = type;
6804 	/*
6805 	 * We can't use the sub_stripes value, as for profiles other than
6806 	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6807 	 * older mkfs (<v5.4).
6808 	 * In that case, it can cause divide-by-zero errors later.
6809 	 * Since currently sub_stripes is fixed for each profile, let's
6810 	 * use the trusted value instead.
6811 	 */
6812 	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6813 	map->verified_stripes = 0;
6814 	em->orig_block_len = btrfs_calc_stripe_length(em);
6815 	for (i = 0; i < num_stripes; i++) {
6816 		map->stripes[i].physical =
6817 			btrfs_stripe_offset_nr(leaf, chunk, i);
6818 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6819 		args.devid = devid;
6820 		read_extent_buffer(leaf, uuid, (unsigned long)
6821 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6822 				   BTRFS_UUID_SIZE);
6823 		args.uuid = uuid;
6824 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6825 		if (!map->stripes[i].dev) {
6826 			map->stripes[i].dev = handle_missing_device(fs_info,
6827 								    devid, uuid);
6828 			if (IS_ERR(map->stripes[i].dev)) {
6829 				ret = PTR_ERR(map->stripes[i].dev);
6830 				free_extent_map(em);
6831 				return ret;
6832 			}
6833 		}
6834 
6835 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6836 				&(map->stripes[i].dev->dev_state));
6837 	}
6838 
6839 	write_lock(&map_tree->lock);
6840 	ret = add_extent_mapping(map_tree, em, 0);
6841 	write_unlock(&map_tree->lock);
6842 	if (ret < 0) {
6843 		btrfs_err(fs_info,
6844 			  "failed to add chunk map, start=%llu len=%llu: %d",
6845 			  em->start, em->len, ret);
6846 	}
6847 	free_extent_map(em);
6848 
6849 	return ret;
6850 }
6851 
6852 static void fill_device_from_item(struct extent_buffer *leaf,
6853 				 struct btrfs_dev_item *dev_item,
6854 				 struct btrfs_device *device)
6855 {
6856 	unsigned long ptr;
6857 
6858 	device->devid = btrfs_device_id(leaf, dev_item);
6859 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6860 	device->total_bytes = device->disk_total_bytes;
6861 	device->commit_total_bytes = device->disk_total_bytes;
6862 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6863 	device->commit_bytes_used = device->bytes_used;
6864 	device->type = btrfs_device_type(leaf, dev_item);
6865 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6866 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6867 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6868 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6869 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6870 
6871 	ptr = btrfs_device_uuid(dev_item);
6872 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6873 }
6874 
6875 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6876 						  u8 *fsid)
6877 {
6878 	struct btrfs_fs_devices *fs_devices;
6879 	int ret;
6880 
6881 	lockdep_assert_held(&uuid_mutex);
6882 	ASSERT(fsid);
6883 
6884 	/* This will match only for multi-device seed fs */
6885 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6886 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6887 			return fs_devices;
6888 
6889 
6890 	fs_devices = find_fsid(fsid, NULL);
6891 	if (!fs_devices) {
6892 		if (!btrfs_test_opt(fs_info, DEGRADED))
6893 			return ERR_PTR(-ENOENT);
6894 
6895 		fs_devices = alloc_fs_devices(fsid, NULL);
6896 		if (IS_ERR(fs_devices))
6897 			return fs_devices;
6898 
6899 		fs_devices->seeding = true;
6900 		fs_devices->opened = 1;
6901 		return fs_devices;
6902 	}
6903 
6904 	/*
6905 	 * Upon first call for a seed fs fsid, just create a private copy of the
6906 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6907 	 */
6908 	fs_devices = clone_fs_devices(fs_devices);
6909 	if (IS_ERR(fs_devices))
6910 		return fs_devices;
6911 
6912 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6913 	if (ret) {
6914 		free_fs_devices(fs_devices);
6915 		return ERR_PTR(ret);
6916 	}
6917 
6918 	if (!fs_devices->seeding) {
6919 		close_fs_devices(fs_devices);
6920 		free_fs_devices(fs_devices);
6921 		return ERR_PTR(-EINVAL);
6922 	}
6923 
6924 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6925 
6926 	return fs_devices;
6927 }
6928 
6929 static int read_one_dev(struct extent_buffer *leaf,
6930 			struct btrfs_dev_item *dev_item)
6931 {
6932 	BTRFS_DEV_LOOKUP_ARGS(args);
6933 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6934 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6935 	struct btrfs_device *device;
6936 	u64 devid;
6937 	int ret;
6938 	u8 fs_uuid[BTRFS_FSID_SIZE];
6939 	u8 dev_uuid[BTRFS_UUID_SIZE];
6940 
6941 	devid = btrfs_device_id(leaf, dev_item);
6942 	args.devid = devid;
6943 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6944 			   BTRFS_UUID_SIZE);
6945 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6946 			   BTRFS_FSID_SIZE);
6947 	args.uuid = dev_uuid;
6948 	args.fsid = fs_uuid;
6949 
6950 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6951 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6952 		if (IS_ERR(fs_devices))
6953 			return PTR_ERR(fs_devices);
6954 	}
6955 
6956 	device = btrfs_find_device(fs_info->fs_devices, &args);
6957 	if (!device) {
6958 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6959 			btrfs_report_missing_device(fs_info, devid,
6960 							dev_uuid, true);
6961 			return -ENOENT;
6962 		}
6963 
6964 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6965 		if (IS_ERR(device)) {
6966 			btrfs_err(fs_info,
6967 				"failed to add missing dev %llu: %ld",
6968 				devid, PTR_ERR(device));
6969 			return PTR_ERR(device);
6970 		}
6971 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6972 	} else {
6973 		if (!device->bdev) {
6974 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6975 				btrfs_report_missing_device(fs_info,
6976 						devid, dev_uuid, true);
6977 				return -ENOENT;
6978 			}
6979 			btrfs_report_missing_device(fs_info, devid,
6980 							dev_uuid, false);
6981 		}
6982 
6983 		if (!device->bdev &&
6984 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6985 			/*
6986 			 * this happens when a device that was properly setup
6987 			 * in the device info lists suddenly goes bad.
6988 			 * device->bdev is NULL, and so we have to set
6989 			 * device->missing to one here
6990 			 */
6991 			device->fs_devices->missing_devices++;
6992 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6993 		}
6994 
6995 		/* Move the device to its own fs_devices */
6996 		if (device->fs_devices != fs_devices) {
6997 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6998 							&device->dev_state));
6999 
7000 			list_move(&device->dev_list, &fs_devices->devices);
7001 			device->fs_devices->num_devices--;
7002 			fs_devices->num_devices++;
7003 
7004 			device->fs_devices->missing_devices--;
7005 			fs_devices->missing_devices++;
7006 
7007 			device->fs_devices = fs_devices;
7008 		}
7009 	}
7010 
7011 	if (device->fs_devices != fs_info->fs_devices) {
7012 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7013 		if (device->generation !=
7014 		    btrfs_device_generation(leaf, dev_item))
7015 			return -EINVAL;
7016 	}
7017 
7018 	fill_device_from_item(leaf, dev_item, device);
7019 	if (device->bdev) {
7020 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7021 
7022 		if (device->total_bytes > max_total_bytes) {
7023 			btrfs_err(fs_info,
7024 			"device total_bytes should be at most %llu but found %llu",
7025 				  max_total_bytes, device->total_bytes);
7026 			return -EINVAL;
7027 		}
7028 	}
7029 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7030 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7031 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7032 		device->fs_devices->total_rw_bytes += device->total_bytes;
7033 		atomic64_add(device->total_bytes - device->bytes_used,
7034 				&fs_info->free_chunk_space);
7035 	}
7036 	ret = 0;
7037 	return ret;
7038 }
7039 
7040 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7041 {
7042 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7043 	struct extent_buffer *sb;
7044 	struct btrfs_disk_key *disk_key;
7045 	struct btrfs_chunk *chunk;
7046 	u8 *array_ptr;
7047 	unsigned long sb_array_offset;
7048 	int ret = 0;
7049 	u32 num_stripes;
7050 	u32 array_size;
7051 	u32 len = 0;
7052 	u32 cur_offset;
7053 	u64 type;
7054 	struct btrfs_key key;
7055 
7056 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7057 
7058 	/*
7059 	 * We allocated a dummy extent, just to use extent buffer accessors.
7060 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7061 	 * that's fine, we will not go beyond system chunk array anyway.
7062 	 */
7063 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7064 	if (!sb)
7065 		return -ENOMEM;
7066 	set_extent_buffer_uptodate(sb);
7067 
7068 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7069 	array_size = btrfs_super_sys_array_size(super_copy);
7070 
7071 	array_ptr = super_copy->sys_chunk_array;
7072 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7073 	cur_offset = 0;
7074 
7075 	while (cur_offset < array_size) {
7076 		disk_key = (struct btrfs_disk_key *)array_ptr;
7077 		len = sizeof(*disk_key);
7078 		if (cur_offset + len > array_size)
7079 			goto out_short_read;
7080 
7081 		btrfs_disk_key_to_cpu(&key, disk_key);
7082 
7083 		array_ptr += len;
7084 		sb_array_offset += len;
7085 		cur_offset += len;
7086 
7087 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7088 			btrfs_err(fs_info,
7089 			    "unexpected item type %u in sys_array at offset %u",
7090 				  (u32)key.type, cur_offset);
7091 			ret = -EIO;
7092 			break;
7093 		}
7094 
7095 		chunk = (struct btrfs_chunk *)sb_array_offset;
7096 		/*
7097 		 * At least one btrfs_chunk with one stripe must be present,
7098 		 * exact stripe count check comes afterwards
7099 		 */
7100 		len = btrfs_chunk_item_size(1);
7101 		if (cur_offset + len > array_size)
7102 			goto out_short_read;
7103 
7104 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7105 		if (!num_stripes) {
7106 			btrfs_err(fs_info,
7107 			"invalid number of stripes %u in sys_array at offset %u",
7108 				  num_stripes, cur_offset);
7109 			ret = -EIO;
7110 			break;
7111 		}
7112 
7113 		type = btrfs_chunk_type(sb, chunk);
7114 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7115 			btrfs_err(fs_info,
7116 			"invalid chunk type %llu in sys_array at offset %u",
7117 				  type, cur_offset);
7118 			ret = -EIO;
7119 			break;
7120 		}
7121 
7122 		len = btrfs_chunk_item_size(num_stripes);
7123 		if (cur_offset + len > array_size)
7124 			goto out_short_read;
7125 
7126 		ret = read_one_chunk(&key, sb, chunk);
7127 		if (ret)
7128 			break;
7129 
7130 		array_ptr += len;
7131 		sb_array_offset += len;
7132 		cur_offset += len;
7133 	}
7134 	clear_extent_buffer_uptodate(sb);
7135 	free_extent_buffer_stale(sb);
7136 	return ret;
7137 
7138 out_short_read:
7139 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7140 			len, cur_offset);
7141 	clear_extent_buffer_uptodate(sb);
7142 	free_extent_buffer_stale(sb);
7143 	return -EIO;
7144 }
7145 
7146 /*
7147  * Check if all chunks in the fs are OK for read-write degraded mount
7148  *
7149  * If the @failing_dev is specified, it's accounted as missing.
7150  *
7151  * Return true if all chunks meet the minimal RW mount requirements.
7152  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7153  */
7154 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7155 					struct btrfs_device *failing_dev)
7156 {
7157 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7158 	struct extent_map *em;
7159 	u64 next_start = 0;
7160 	bool ret = true;
7161 
7162 	read_lock(&map_tree->lock);
7163 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7164 	read_unlock(&map_tree->lock);
7165 	/* No chunk at all? Return false anyway */
7166 	if (!em) {
7167 		ret = false;
7168 		goto out;
7169 	}
7170 	while (em) {
7171 		struct map_lookup *map;
7172 		int missing = 0;
7173 		int max_tolerated;
7174 		int i;
7175 
7176 		map = em->map_lookup;
7177 		max_tolerated =
7178 			btrfs_get_num_tolerated_disk_barrier_failures(
7179 					map->type);
7180 		for (i = 0; i < map->num_stripes; i++) {
7181 			struct btrfs_device *dev = map->stripes[i].dev;
7182 
7183 			if (!dev || !dev->bdev ||
7184 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7185 			    dev->last_flush_error)
7186 				missing++;
7187 			else if (failing_dev && failing_dev == dev)
7188 				missing++;
7189 		}
7190 		if (missing > max_tolerated) {
7191 			if (!failing_dev)
7192 				btrfs_warn(fs_info,
7193 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7194 				   em->start, missing, max_tolerated);
7195 			free_extent_map(em);
7196 			ret = false;
7197 			goto out;
7198 		}
7199 		next_start = extent_map_end(em);
7200 		free_extent_map(em);
7201 
7202 		read_lock(&map_tree->lock);
7203 		em = lookup_extent_mapping(map_tree, next_start,
7204 					   (u64)(-1) - next_start);
7205 		read_unlock(&map_tree->lock);
7206 	}
7207 out:
7208 	return ret;
7209 }
7210 
7211 static void readahead_tree_node_children(struct extent_buffer *node)
7212 {
7213 	int i;
7214 	const int nr_items = btrfs_header_nritems(node);
7215 
7216 	for (i = 0; i < nr_items; i++)
7217 		btrfs_readahead_node_child(node, i);
7218 }
7219 
7220 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7221 {
7222 	struct btrfs_root *root = fs_info->chunk_root;
7223 	struct btrfs_path *path;
7224 	struct extent_buffer *leaf;
7225 	struct btrfs_key key;
7226 	struct btrfs_key found_key;
7227 	int ret;
7228 	int slot;
7229 	int iter_ret = 0;
7230 	u64 total_dev = 0;
7231 	u64 last_ra_node = 0;
7232 
7233 	path = btrfs_alloc_path();
7234 	if (!path)
7235 		return -ENOMEM;
7236 
7237 	/*
7238 	 * uuid_mutex is needed only if we are mounting a sprout FS
7239 	 * otherwise we don't need it.
7240 	 */
7241 	mutex_lock(&uuid_mutex);
7242 
7243 	/*
7244 	 * It is possible for mount and umount to race in such a way that
7245 	 * we execute this code path, but open_fs_devices failed to clear
7246 	 * total_rw_bytes. We certainly want it cleared before reading the
7247 	 * device items, so clear it here.
7248 	 */
7249 	fs_info->fs_devices->total_rw_bytes = 0;
7250 
7251 	/*
7252 	 * Lockdep complains about possible circular locking dependency between
7253 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7254 	 * used for freeze procection of a fs (struct super_block.s_writers),
7255 	 * which we take when starting a transaction, and extent buffers of the
7256 	 * chunk tree if we call read_one_dev() while holding a lock on an
7257 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7258 	 * and at this point there can't be any concurrent task modifying the
7259 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7260 	 */
7261 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7262 	path->skip_locking = 1;
7263 
7264 	/*
7265 	 * Read all device items, and then all the chunk items. All
7266 	 * device items are found before any chunk item (their object id
7267 	 * is smaller than the lowest possible object id for a chunk
7268 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7269 	 */
7270 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7271 	key.offset = 0;
7272 	key.type = 0;
7273 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7274 		struct extent_buffer *node = path->nodes[1];
7275 
7276 		leaf = path->nodes[0];
7277 		slot = path->slots[0];
7278 
7279 		if (node) {
7280 			if (last_ra_node != node->start) {
7281 				readahead_tree_node_children(node);
7282 				last_ra_node = node->start;
7283 			}
7284 		}
7285 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7286 			struct btrfs_dev_item *dev_item;
7287 			dev_item = btrfs_item_ptr(leaf, slot,
7288 						  struct btrfs_dev_item);
7289 			ret = read_one_dev(leaf, dev_item);
7290 			if (ret)
7291 				goto error;
7292 			total_dev++;
7293 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7294 			struct btrfs_chunk *chunk;
7295 
7296 			/*
7297 			 * We are only called at mount time, so no need to take
7298 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7299 			 * we always lock first fs_info->chunk_mutex before
7300 			 * acquiring any locks on the chunk tree. This is a
7301 			 * requirement for chunk allocation, see the comment on
7302 			 * top of btrfs_chunk_alloc() for details.
7303 			 */
7304 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7305 			ret = read_one_chunk(&found_key, leaf, chunk);
7306 			if (ret)
7307 				goto error;
7308 		}
7309 	}
7310 	/* Catch error found during iteration */
7311 	if (iter_ret < 0) {
7312 		ret = iter_ret;
7313 		goto error;
7314 	}
7315 
7316 	/*
7317 	 * After loading chunk tree, we've got all device information,
7318 	 * do another round of validation checks.
7319 	 */
7320 	if (total_dev != fs_info->fs_devices->total_devices) {
7321 		btrfs_warn(fs_info,
7322 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7323 			  btrfs_super_num_devices(fs_info->super_copy),
7324 			  total_dev);
7325 		fs_info->fs_devices->total_devices = total_dev;
7326 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7327 	}
7328 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7329 	    fs_info->fs_devices->total_rw_bytes) {
7330 		btrfs_err(fs_info,
7331 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7332 			  btrfs_super_total_bytes(fs_info->super_copy),
7333 			  fs_info->fs_devices->total_rw_bytes);
7334 		ret = -EINVAL;
7335 		goto error;
7336 	}
7337 	ret = 0;
7338 error:
7339 	mutex_unlock(&uuid_mutex);
7340 
7341 	btrfs_free_path(path);
7342 	return ret;
7343 }
7344 
7345 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7346 {
7347 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7348 	struct btrfs_device *device;
7349 	int ret = 0;
7350 
7351 	fs_devices->fs_info = fs_info;
7352 
7353 	mutex_lock(&fs_devices->device_list_mutex);
7354 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7355 		device->fs_info = fs_info;
7356 
7357 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7358 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7359 			device->fs_info = fs_info;
7360 			ret = btrfs_get_dev_zone_info(device, false);
7361 			if (ret)
7362 				break;
7363 		}
7364 
7365 		seed_devs->fs_info = fs_info;
7366 	}
7367 	mutex_unlock(&fs_devices->device_list_mutex);
7368 
7369 	return ret;
7370 }
7371 
7372 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7373 				 const struct btrfs_dev_stats_item *ptr,
7374 				 int index)
7375 {
7376 	u64 val;
7377 
7378 	read_extent_buffer(eb, &val,
7379 			   offsetof(struct btrfs_dev_stats_item, values) +
7380 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7381 			   sizeof(val));
7382 	return val;
7383 }
7384 
7385 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7386 				      struct btrfs_dev_stats_item *ptr,
7387 				      int index, u64 val)
7388 {
7389 	write_extent_buffer(eb, &val,
7390 			    offsetof(struct btrfs_dev_stats_item, values) +
7391 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7392 			    sizeof(val));
7393 }
7394 
7395 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7396 				       struct btrfs_path *path)
7397 {
7398 	struct btrfs_dev_stats_item *ptr;
7399 	struct extent_buffer *eb;
7400 	struct btrfs_key key;
7401 	int item_size;
7402 	int i, ret, slot;
7403 
7404 	if (!device->fs_info->dev_root)
7405 		return 0;
7406 
7407 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7408 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7409 	key.offset = device->devid;
7410 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7411 	if (ret) {
7412 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7413 			btrfs_dev_stat_set(device, i, 0);
7414 		device->dev_stats_valid = 1;
7415 		btrfs_release_path(path);
7416 		return ret < 0 ? ret : 0;
7417 	}
7418 	slot = path->slots[0];
7419 	eb = path->nodes[0];
7420 	item_size = btrfs_item_size(eb, slot);
7421 
7422 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7423 
7424 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7425 		if (item_size >= (1 + i) * sizeof(__le64))
7426 			btrfs_dev_stat_set(device, i,
7427 					   btrfs_dev_stats_value(eb, ptr, i));
7428 		else
7429 			btrfs_dev_stat_set(device, i, 0);
7430 	}
7431 
7432 	device->dev_stats_valid = 1;
7433 	btrfs_dev_stat_print_on_load(device);
7434 	btrfs_release_path(path);
7435 
7436 	return 0;
7437 }
7438 
7439 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7440 {
7441 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7442 	struct btrfs_device *device;
7443 	struct btrfs_path *path = NULL;
7444 	int ret = 0;
7445 
7446 	path = btrfs_alloc_path();
7447 	if (!path)
7448 		return -ENOMEM;
7449 
7450 	mutex_lock(&fs_devices->device_list_mutex);
7451 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7452 		ret = btrfs_device_init_dev_stats(device, path);
7453 		if (ret)
7454 			goto out;
7455 	}
7456 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7457 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7458 			ret = btrfs_device_init_dev_stats(device, path);
7459 			if (ret)
7460 				goto out;
7461 		}
7462 	}
7463 out:
7464 	mutex_unlock(&fs_devices->device_list_mutex);
7465 
7466 	btrfs_free_path(path);
7467 	return ret;
7468 }
7469 
7470 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7471 				struct btrfs_device *device)
7472 {
7473 	struct btrfs_fs_info *fs_info = trans->fs_info;
7474 	struct btrfs_root *dev_root = fs_info->dev_root;
7475 	struct btrfs_path *path;
7476 	struct btrfs_key key;
7477 	struct extent_buffer *eb;
7478 	struct btrfs_dev_stats_item *ptr;
7479 	int ret;
7480 	int i;
7481 
7482 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7483 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7484 	key.offset = device->devid;
7485 
7486 	path = btrfs_alloc_path();
7487 	if (!path)
7488 		return -ENOMEM;
7489 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7490 	if (ret < 0) {
7491 		btrfs_warn_in_rcu(fs_info,
7492 			"error %d while searching for dev_stats item for device %s",
7493 				  ret, btrfs_dev_name(device));
7494 		goto out;
7495 	}
7496 
7497 	if (ret == 0 &&
7498 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7499 		/* need to delete old one and insert a new one */
7500 		ret = btrfs_del_item(trans, dev_root, path);
7501 		if (ret != 0) {
7502 			btrfs_warn_in_rcu(fs_info,
7503 				"delete too small dev_stats item for device %s failed %d",
7504 					  btrfs_dev_name(device), ret);
7505 			goto out;
7506 		}
7507 		ret = 1;
7508 	}
7509 
7510 	if (ret == 1) {
7511 		/* need to insert a new item */
7512 		btrfs_release_path(path);
7513 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7514 					      &key, sizeof(*ptr));
7515 		if (ret < 0) {
7516 			btrfs_warn_in_rcu(fs_info,
7517 				"insert dev_stats item for device %s failed %d",
7518 				btrfs_dev_name(device), ret);
7519 			goto out;
7520 		}
7521 	}
7522 
7523 	eb = path->nodes[0];
7524 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7525 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7526 		btrfs_set_dev_stats_value(eb, ptr, i,
7527 					  btrfs_dev_stat_read(device, i));
7528 	btrfs_mark_buffer_dirty(eb);
7529 
7530 out:
7531 	btrfs_free_path(path);
7532 	return ret;
7533 }
7534 
7535 /*
7536  * called from commit_transaction. Writes all changed device stats to disk.
7537  */
7538 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7539 {
7540 	struct btrfs_fs_info *fs_info = trans->fs_info;
7541 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7542 	struct btrfs_device *device;
7543 	int stats_cnt;
7544 	int ret = 0;
7545 
7546 	mutex_lock(&fs_devices->device_list_mutex);
7547 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7548 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7549 		if (!device->dev_stats_valid || stats_cnt == 0)
7550 			continue;
7551 
7552 
7553 		/*
7554 		 * There is a LOAD-LOAD control dependency between the value of
7555 		 * dev_stats_ccnt and updating the on-disk values which requires
7556 		 * reading the in-memory counters. Such control dependencies
7557 		 * require explicit read memory barriers.
7558 		 *
7559 		 * This memory barriers pairs with smp_mb__before_atomic in
7560 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7561 		 * barrier implied by atomic_xchg in
7562 		 * btrfs_dev_stats_read_and_reset
7563 		 */
7564 		smp_rmb();
7565 
7566 		ret = update_dev_stat_item(trans, device);
7567 		if (!ret)
7568 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7569 	}
7570 	mutex_unlock(&fs_devices->device_list_mutex);
7571 
7572 	return ret;
7573 }
7574 
7575 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7576 {
7577 	btrfs_dev_stat_inc(dev, index);
7578 
7579 	if (!dev->dev_stats_valid)
7580 		return;
7581 	btrfs_err_rl_in_rcu(dev->fs_info,
7582 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7583 			   btrfs_dev_name(dev),
7584 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7585 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7586 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7587 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7588 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7589 }
7590 
7591 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7592 {
7593 	int i;
7594 
7595 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7596 		if (btrfs_dev_stat_read(dev, i) != 0)
7597 			break;
7598 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7599 		return; /* all values == 0, suppress message */
7600 
7601 	btrfs_info_in_rcu(dev->fs_info,
7602 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7603 	       btrfs_dev_name(dev),
7604 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7605 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7606 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7607 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7608 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7609 }
7610 
7611 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7612 			struct btrfs_ioctl_get_dev_stats *stats)
7613 {
7614 	BTRFS_DEV_LOOKUP_ARGS(args);
7615 	struct btrfs_device *dev;
7616 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7617 	int i;
7618 
7619 	mutex_lock(&fs_devices->device_list_mutex);
7620 	args.devid = stats->devid;
7621 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7622 	mutex_unlock(&fs_devices->device_list_mutex);
7623 
7624 	if (!dev) {
7625 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7626 		return -ENODEV;
7627 	} else if (!dev->dev_stats_valid) {
7628 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7629 		return -ENODEV;
7630 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7631 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7632 			if (stats->nr_items > i)
7633 				stats->values[i] =
7634 					btrfs_dev_stat_read_and_reset(dev, i);
7635 			else
7636 				btrfs_dev_stat_set(dev, i, 0);
7637 		}
7638 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7639 			   current->comm, task_pid_nr(current));
7640 	} else {
7641 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7642 			if (stats->nr_items > i)
7643 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7644 	}
7645 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7646 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7647 	return 0;
7648 }
7649 
7650 /*
7651  * Update the size and bytes used for each device where it changed.  This is
7652  * delayed since we would otherwise get errors while writing out the
7653  * superblocks.
7654  *
7655  * Must be invoked during transaction commit.
7656  */
7657 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7658 {
7659 	struct btrfs_device *curr, *next;
7660 
7661 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7662 
7663 	if (list_empty(&trans->dev_update_list))
7664 		return;
7665 
7666 	/*
7667 	 * We don't need the device_list_mutex here.  This list is owned by the
7668 	 * transaction and the transaction must complete before the device is
7669 	 * released.
7670 	 */
7671 	mutex_lock(&trans->fs_info->chunk_mutex);
7672 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7673 				 post_commit_list) {
7674 		list_del_init(&curr->post_commit_list);
7675 		curr->commit_total_bytes = curr->disk_total_bytes;
7676 		curr->commit_bytes_used = curr->bytes_used;
7677 	}
7678 	mutex_unlock(&trans->fs_info->chunk_mutex);
7679 }
7680 
7681 /*
7682  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7683  */
7684 int btrfs_bg_type_to_factor(u64 flags)
7685 {
7686 	const int index = btrfs_bg_flags_to_raid_index(flags);
7687 
7688 	return btrfs_raid_array[index].ncopies;
7689 }
7690 
7691 
7692 
7693 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7694 				 u64 chunk_offset, u64 devid,
7695 				 u64 physical_offset, u64 physical_len)
7696 {
7697 	struct btrfs_dev_lookup_args args = { .devid = devid };
7698 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7699 	struct extent_map *em;
7700 	struct map_lookup *map;
7701 	struct btrfs_device *dev;
7702 	u64 stripe_len;
7703 	bool found = false;
7704 	int ret = 0;
7705 	int i;
7706 
7707 	read_lock(&em_tree->lock);
7708 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7709 	read_unlock(&em_tree->lock);
7710 
7711 	if (!em) {
7712 		btrfs_err(fs_info,
7713 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7714 			  physical_offset, devid);
7715 		ret = -EUCLEAN;
7716 		goto out;
7717 	}
7718 
7719 	map = em->map_lookup;
7720 	stripe_len = btrfs_calc_stripe_length(em);
7721 	if (physical_len != stripe_len) {
7722 		btrfs_err(fs_info,
7723 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7724 			  physical_offset, devid, em->start, physical_len,
7725 			  stripe_len);
7726 		ret = -EUCLEAN;
7727 		goto out;
7728 	}
7729 
7730 	/*
7731 	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7732 	 * space. Although kernel can handle it without problem, better to warn
7733 	 * the users.
7734 	 */
7735 	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7736 		btrfs_warn(fs_info,
7737 		"devid %llu physical %llu len %llu inside the reserved space",
7738 			   devid, physical_offset, physical_len);
7739 
7740 	for (i = 0; i < map->num_stripes; i++) {
7741 		if (map->stripes[i].dev->devid == devid &&
7742 		    map->stripes[i].physical == physical_offset) {
7743 			found = true;
7744 			if (map->verified_stripes >= map->num_stripes) {
7745 				btrfs_err(fs_info,
7746 				"too many dev extents for chunk %llu found",
7747 					  em->start);
7748 				ret = -EUCLEAN;
7749 				goto out;
7750 			}
7751 			map->verified_stripes++;
7752 			break;
7753 		}
7754 	}
7755 	if (!found) {
7756 		btrfs_err(fs_info,
7757 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7758 			physical_offset, devid);
7759 		ret = -EUCLEAN;
7760 	}
7761 
7762 	/* Make sure no dev extent is beyond device boundary */
7763 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7764 	if (!dev) {
7765 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7766 		ret = -EUCLEAN;
7767 		goto out;
7768 	}
7769 
7770 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7771 		btrfs_err(fs_info,
7772 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7773 			  devid, physical_offset, physical_len,
7774 			  dev->disk_total_bytes);
7775 		ret = -EUCLEAN;
7776 		goto out;
7777 	}
7778 
7779 	if (dev->zone_info) {
7780 		u64 zone_size = dev->zone_info->zone_size;
7781 
7782 		if (!IS_ALIGNED(physical_offset, zone_size) ||
7783 		    !IS_ALIGNED(physical_len, zone_size)) {
7784 			btrfs_err(fs_info,
7785 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7786 				  devid, physical_offset, physical_len);
7787 			ret = -EUCLEAN;
7788 			goto out;
7789 		}
7790 	}
7791 
7792 out:
7793 	free_extent_map(em);
7794 	return ret;
7795 }
7796 
7797 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7798 {
7799 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7800 	struct extent_map *em;
7801 	struct rb_node *node;
7802 	int ret = 0;
7803 
7804 	read_lock(&em_tree->lock);
7805 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7806 		em = rb_entry(node, struct extent_map, rb_node);
7807 		if (em->map_lookup->num_stripes !=
7808 		    em->map_lookup->verified_stripes) {
7809 			btrfs_err(fs_info,
7810 			"chunk %llu has missing dev extent, have %d expect %d",
7811 				  em->start, em->map_lookup->verified_stripes,
7812 				  em->map_lookup->num_stripes);
7813 			ret = -EUCLEAN;
7814 			goto out;
7815 		}
7816 	}
7817 out:
7818 	read_unlock(&em_tree->lock);
7819 	return ret;
7820 }
7821 
7822 /*
7823  * Ensure that all dev extents are mapped to correct chunk, otherwise
7824  * later chunk allocation/free would cause unexpected behavior.
7825  *
7826  * NOTE: This will iterate through the whole device tree, which should be of
7827  * the same size level as the chunk tree.  This slightly increases mount time.
7828  */
7829 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7830 {
7831 	struct btrfs_path *path;
7832 	struct btrfs_root *root = fs_info->dev_root;
7833 	struct btrfs_key key;
7834 	u64 prev_devid = 0;
7835 	u64 prev_dev_ext_end = 0;
7836 	int ret = 0;
7837 
7838 	/*
7839 	 * We don't have a dev_root because we mounted with ignorebadroots and
7840 	 * failed to load the root, so we want to skip the verification in this
7841 	 * case for sure.
7842 	 *
7843 	 * However if the dev root is fine, but the tree itself is corrupted
7844 	 * we'd still fail to mount.  This verification is only to make sure
7845 	 * writes can happen safely, so instead just bypass this check
7846 	 * completely in the case of IGNOREBADROOTS.
7847 	 */
7848 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7849 		return 0;
7850 
7851 	key.objectid = 1;
7852 	key.type = BTRFS_DEV_EXTENT_KEY;
7853 	key.offset = 0;
7854 
7855 	path = btrfs_alloc_path();
7856 	if (!path)
7857 		return -ENOMEM;
7858 
7859 	path->reada = READA_FORWARD;
7860 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7861 	if (ret < 0)
7862 		goto out;
7863 
7864 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7865 		ret = btrfs_next_leaf(root, path);
7866 		if (ret < 0)
7867 			goto out;
7868 		/* No dev extents at all? Not good */
7869 		if (ret > 0) {
7870 			ret = -EUCLEAN;
7871 			goto out;
7872 		}
7873 	}
7874 	while (1) {
7875 		struct extent_buffer *leaf = path->nodes[0];
7876 		struct btrfs_dev_extent *dext;
7877 		int slot = path->slots[0];
7878 		u64 chunk_offset;
7879 		u64 physical_offset;
7880 		u64 physical_len;
7881 		u64 devid;
7882 
7883 		btrfs_item_key_to_cpu(leaf, &key, slot);
7884 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7885 			break;
7886 		devid = key.objectid;
7887 		physical_offset = key.offset;
7888 
7889 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7890 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7891 		physical_len = btrfs_dev_extent_length(leaf, dext);
7892 
7893 		/* Check if this dev extent overlaps with the previous one */
7894 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7895 			btrfs_err(fs_info,
7896 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7897 				  devid, physical_offset, prev_dev_ext_end);
7898 			ret = -EUCLEAN;
7899 			goto out;
7900 		}
7901 
7902 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7903 					    physical_offset, physical_len);
7904 		if (ret < 0)
7905 			goto out;
7906 		prev_devid = devid;
7907 		prev_dev_ext_end = physical_offset + physical_len;
7908 
7909 		ret = btrfs_next_item(root, path);
7910 		if (ret < 0)
7911 			goto out;
7912 		if (ret > 0) {
7913 			ret = 0;
7914 			break;
7915 		}
7916 	}
7917 
7918 	/* Ensure all chunks have corresponding dev extents */
7919 	ret = verify_chunk_dev_extent_mapping(fs_info);
7920 out:
7921 	btrfs_free_path(path);
7922 	return ret;
7923 }
7924 
7925 /*
7926  * Check whether the given block group or device is pinned by any inode being
7927  * used as a swapfile.
7928  */
7929 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7930 {
7931 	struct btrfs_swapfile_pin *sp;
7932 	struct rb_node *node;
7933 
7934 	spin_lock(&fs_info->swapfile_pins_lock);
7935 	node = fs_info->swapfile_pins.rb_node;
7936 	while (node) {
7937 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7938 		if (ptr < sp->ptr)
7939 			node = node->rb_left;
7940 		else if (ptr > sp->ptr)
7941 			node = node->rb_right;
7942 		else
7943 			break;
7944 	}
7945 	spin_unlock(&fs_info->swapfile_pins_lock);
7946 	return node != NULL;
7947 }
7948 
7949 static int relocating_repair_kthread(void *data)
7950 {
7951 	struct btrfs_block_group *cache = data;
7952 	struct btrfs_fs_info *fs_info = cache->fs_info;
7953 	u64 target;
7954 	int ret = 0;
7955 
7956 	target = cache->start;
7957 	btrfs_put_block_group(cache);
7958 
7959 	sb_start_write(fs_info->sb);
7960 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7961 		btrfs_info(fs_info,
7962 			   "zoned: skip relocating block group %llu to repair: EBUSY",
7963 			   target);
7964 		sb_end_write(fs_info->sb);
7965 		return -EBUSY;
7966 	}
7967 
7968 	mutex_lock(&fs_info->reclaim_bgs_lock);
7969 
7970 	/* Ensure block group still exists */
7971 	cache = btrfs_lookup_block_group(fs_info, target);
7972 	if (!cache)
7973 		goto out;
7974 
7975 	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
7976 		goto out;
7977 
7978 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
7979 	if (ret < 0)
7980 		goto out;
7981 
7982 	btrfs_info(fs_info,
7983 		   "zoned: relocating block group %llu to repair IO failure",
7984 		   target);
7985 	ret = btrfs_relocate_chunk(fs_info, target);
7986 
7987 out:
7988 	if (cache)
7989 		btrfs_put_block_group(cache);
7990 	mutex_unlock(&fs_info->reclaim_bgs_lock);
7991 	btrfs_exclop_finish(fs_info);
7992 	sb_end_write(fs_info->sb);
7993 
7994 	return ret;
7995 }
7996 
7997 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
7998 {
7999 	struct btrfs_block_group *cache;
8000 
8001 	if (!btrfs_is_zoned(fs_info))
8002 		return false;
8003 
8004 	/* Do not attempt to repair in degraded state */
8005 	if (btrfs_test_opt(fs_info, DEGRADED))
8006 		return true;
8007 
8008 	cache = btrfs_lookup_block_group(fs_info, logical);
8009 	if (!cache)
8010 		return true;
8011 
8012 	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8013 		btrfs_put_block_group(cache);
8014 		return true;
8015 	}
8016 
8017 	kthread_run(relocating_repair_kthread, cache,
8018 		    "btrfs-relocating-repair");
8019 
8020 	return true;
8021 }
8022 
8023 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8024 				    struct btrfs_io_stripe *smap,
8025 				    u64 logical)
8026 {
8027 	int data_stripes = nr_bioc_data_stripes(bioc);
8028 	int i;
8029 
8030 	for (i = 0; i < data_stripes; i++) {
8031 		u64 stripe_start = bioc->full_stripe_logical +
8032 				   (i << BTRFS_STRIPE_LEN_SHIFT);
8033 
8034 		if (logical >= stripe_start &&
8035 		    logical < stripe_start + BTRFS_STRIPE_LEN)
8036 			break;
8037 	}
8038 	ASSERT(i < data_stripes);
8039 	smap->dev = bioc->stripes[i].dev;
8040 	smap->physical = bioc->stripes[i].physical +
8041 			((logical - bioc->full_stripe_logical) &
8042 			 BTRFS_STRIPE_LEN_MASK);
8043 }
8044 
8045 /*
8046  * Map a repair write into a single device.
8047  *
8048  * A repair write is triggered by read time repair or scrub, which would only
8049  * update the contents of a single device.
8050  * Not update any other mirrors nor go through RMW path.
8051  *
8052  * Callers should ensure:
8053  *
8054  * - Call btrfs_bio_counter_inc_blocked() first
8055  * - The range does not cross stripe boundary
8056  * - Has a valid @mirror_num passed in.
8057  */
8058 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8059 			   struct btrfs_io_stripe *smap, u64 logical,
8060 			   u32 length, int mirror_num)
8061 {
8062 	struct btrfs_io_context *bioc = NULL;
8063 	u64 map_length = length;
8064 	int mirror_ret = mirror_num;
8065 	int ret;
8066 
8067 	ASSERT(mirror_num > 0);
8068 
8069 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8070 				&bioc, smap, &mirror_ret, true);
8071 	if (ret < 0)
8072 		return ret;
8073 
8074 	/* The map range should not cross stripe boundary. */
8075 	ASSERT(map_length >= length);
8076 
8077 	/* Already mapped to single stripe. */
8078 	if (!bioc)
8079 		goto out;
8080 
8081 	/* Map the RAID56 multi-stripe writes to a single one. */
8082 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8083 		map_raid56_repair_block(bioc, smap, logical);
8084 		goto out;
8085 	}
8086 
8087 	ASSERT(mirror_num <= bioc->num_stripes);
8088 	smap->dev = bioc->stripes[mirror_num - 1].dev;
8089 	smap->physical = bioc->stripes[mirror_num - 1].physical;
8090 out:
8091 	btrfs_put_bioc(bioc);
8092 	ASSERT(smap->dev);
8093 	return 0;
8094 }
8095