1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/bio.h> 8 #include <linux/slab.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 #include "discard.h" 34 35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 36 [BTRFS_RAID_RAID10] = { 37 .sub_stripes = 2, 38 .dev_stripes = 1, 39 .devs_max = 0, /* 0 == as many as possible */ 40 .devs_min = 4, 41 .tolerated_failures = 1, 42 .devs_increment = 2, 43 .ncopies = 2, 44 .nparity = 0, 45 .raid_name = "raid10", 46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 48 }, 49 [BTRFS_RAID_RAID1] = { 50 .sub_stripes = 1, 51 .dev_stripes = 1, 52 .devs_max = 2, 53 .devs_min = 2, 54 .tolerated_failures = 1, 55 .devs_increment = 2, 56 .ncopies = 2, 57 .nparity = 0, 58 .raid_name = "raid1", 59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 61 }, 62 [BTRFS_RAID_RAID1C3] = { 63 .sub_stripes = 1, 64 .dev_stripes = 1, 65 .devs_max = 3, 66 .devs_min = 3, 67 .tolerated_failures = 2, 68 .devs_increment = 3, 69 .ncopies = 3, 70 .nparity = 0, 71 .raid_name = "raid1c3", 72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 74 }, 75 [BTRFS_RAID_RAID1C4] = { 76 .sub_stripes = 1, 77 .dev_stripes = 1, 78 .devs_max = 4, 79 .devs_min = 4, 80 .tolerated_failures = 3, 81 .devs_increment = 4, 82 .ncopies = 4, 83 .nparity = 0, 84 .raid_name = "raid1c4", 85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 87 }, 88 [BTRFS_RAID_DUP] = { 89 .sub_stripes = 1, 90 .dev_stripes = 2, 91 .devs_max = 1, 92 .devs_min = 1, 93 .tolerated_failures = 0, 94 .devs_increment = 1, 95 .ncopies = 2, 96 .nparity = 0, 97 .raid_name = "dup", 98 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 99 .mindev_error = 0, 100 }, 101 [BTRFS_RAID_RAID0] = { 102 .sub_stripes = 1, 103 .dev_stripes = 1, 104 .devs_max = 0, 105 .devs_min = 2, 106 .tolerated_failures = 0, 107 .devs_increment = 1, 108 .ncopies = 1, 109 .nparity = 0, 110 .raid_name = "raid0", 111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 112 .mindev_error = 0, 113 }, 114 [BTRFS_RAID_SINGLE] = { 115 .sub_stripes = 1, 116 .dev_stripes = 1, 117 .devs_max = 1, 118 .devs_min = 1, 119 .tolerated_failures = 0, 120 .devs_increment = 1, 121 .ncopies = 1, 122 .nparity = 0, 123 .raid_name = "single", 124 .bg_flag = 0, 125 .mindev_error = 0, 126 }, 127 [BTRFS_RAID_RAID5] = { 128 .sub_stripes = 1, 129 .dev_stripes = 1, 130 .devs_max = 0, 131 .devs_min = 2, 132 .tolerated_failures = 1, 133 .devs_increment = 1, 134 .ncopies = 1, 135 .nparity = 1, 136 .raid_name = "raid5", 137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 139 }, 140 [BTRFS_RAID_RAID6] = { 141 .sub_stripes = 1, 142 .dev_stripes = 1, 143 .devs_max = 0, 144 .devs_min = 3, 145 .tolerated_failures = 2, 146 .devs_increment = 1, 147 .ncopies = 1, 148 .nparity = 2, 149 .raid_name = "raid6", 150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 152 }, 153 }; 154 155 const char *btrfs_bg_type_to_raid_name(u64 flags) 156 { 157 const int index = btrfs_bg_flags_to_raid_index(flags); 158 159 if (index >= BTRFS_NR_RAID_TYPES) 160 return NULL; 161 162 return btrfs_raid_array[index].raid_name; 163 } 164 165 /* 166 * Fill @buf with textual description of @bg_flags, no more than @size_buf 167 * bytes including terminating null byte. 168 */ 169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 170 { 171 int i; 172 int ret; 173 char *bp = buf; 174 u64 flags = bg_flags; 175 u32 size_bp = size_buf; 176 177 if (!flags) { 178 strcpy(bp, "NONE"); 179 return; 180 } 181 182 #define DESCRIBE_FLAG(flag, desc) \ 183 do { \ 184 if (flags & (flag)) { \ 185 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 186 if (ret < 0 || ret >= size_bp) \ 187 goto out_overflow; \ 188 size_bp -= ret; \ 189 bp += ret; \ 190 flags &= ~(flag); \ 191 } \ 192 } while (0) 193 194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 197 198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 201 btrfs_raid_array[i].raid_name); 202 #undef DESCRIBE_FLAG 203 204 if (flags) { 205 ret = snprintf(bp, size_bp, "0x%llx|", flags); 206 size_bp -= ret; 207 } 208 209 if (size_bp < size_buf) 210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 211 212 /* 213 * The text is trimmed, it's up to the caller to provide sufficiently 214 * large buffer 215 */ 216 out_overflow:; 217 } 218 219 static int init_first_rw_device(struct btrfs_trans_handle *trans); 220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 224 enum btrfs_map_op op, 225 u64 logical, u64 *length, 226 struct btrfs_bio **bbio_ret, 227 int mirror_num, int need_raid_map); 228 229 /* 230 * Device locking 231 * ============== 232 * 233 * There are several mutexes that protect manipulation of devices and low-level 234 * structures like chunks but not block groups, extents or files 235 * 236 * uuid_mutex (global lock) 237 * ------------------------ 238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 240 * device) or requested by the device= mount option 241 * 242 * the mutex can be very coarse and can cover long-running operations 243 * 244 * protects: updates to fs_devices counters like missing devices, rw devices, 245 * seeding, structure cloning, opening/closing devices at mount/umount time 246 * 247 * global::fs_devs - add, remove, updates to the global list 248 * 249 * does not protect: manipulation of the fs_devices::devices list! 250 * 251 * btrfs_device::name - renames (write side), read is RCU 252 * 253 * fs_devices::device_list_mutex (per-fs, with RCU) 254 * ------------------------------------------------ 255 * protects updates to fs_devices::devices, ie. adding and deleting 256 * 257 * simple list traversal with read-only actions can be done with RCU protection 258 * 259 * may be used to exclude some operations from running concurrently without any 260 * modifications to the list (see write_all_supers) 261 * 262 * balance_mutex 263 * ------------- 264 * protects balance structures (status, state) and context accessed from 265 * several places (internally, ioctl) 266 * 267 * chunk_mutex 268 * ----------- 269 * protects chunks, adding or removing during allocation, trim or when a new 270 * device is added/removed. Additionally it also protects post_commit_list of 271 * individual devices, since they can be added to the transaction's 272 * post_commit_list only with chunk_mutex held. 273 * 274 * cleaner_mutex 275 * ------------- 276 * a big lock that is held by the cleaner thread and prevents running subvolume 277 * cleaning together with relocation or delayed iputs 278 * 279 * 280 * Lock nesting 281 * ============ 282 * 283 * uuid_mutex 284 * volume_mutex 285 * device_list_mutex 286 * chunk_mutex 287 * balance_mutex 288 * 289 * 290 * Exclusive operations, BTRFS_FS_EXCL_OP 291 * ====================================== 292 * 293 * Maintains the exclusivity of the following operations that apply to the 294 * whole filesystem and cannot run in parallel. 295 * 296 * - Balance (*) 297 * - Device add 298 * - Device remove 299 * - Device replace (*) 300 * - Resize 301 * 302 * The device operations (as above) can be in one of the following states: 303 * 304 * - Running state 305 * - Paused state 306 * - Completed state 307 * 308 * Only device operations marked with (*) can go into the Paused state for the 309 * following reasons: 310 * 311 * - ioctl (only Balance can be Paused through ioctl) 312 * - filesystem remounted as read-only 313 * - filesystem unmounted and mounted as read-only 314 * - system power-cycle and filesystem mounted as read-only 315 * - filesystem or device errors leading to forced read-only 316 * 317 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. 318 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. 319 * A device operation in Paused or Running state can be canceled or resumed 320 * either by ioctl (Balance only) or when remounted as read-write. 321 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or 322 * completed. 323 */ 324 325 DEFINE_MUTEX(uuid_mutex); 326 static LIST_HEAD(fs_uuids); 327 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 328 { 329 return &fs_uuids; 330 } 331 332 /* 333 * alloc_fs_devices - allocate struct btrfs_fs_devices 334 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 335 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 336 * 337 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 338 * The returned struct is not linked onto any lists and can be destroyed with 339 * kfree() right away. 340 */ 341 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 342 const u8 *metadata_fsid) 343 { 344 struct btrfs_fs_devices *fs_devs; 345 346 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 347 if (!fs_devs) 348 return ERR_PTR(-ENOMEM); 349 350 mutex_init(&fs_devs->device_list_mutex); 351 352 INIT_LIST_HEAD(&fs_devs->devices); 353 INIT_LIST_HEAD(&fs_devs->alloc_list); 354 INIT_LIST_HEAD(&fs_devs->fs_list); 355 if (fsid) 356 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 357 358 if (metadata_fsid) 359 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 360 else if (fsid) 361 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 362 363 return fs_devs; 364 } 365 366 void btrfs_free_device(struct btrfs_device *device) 367 { 368 WARN_ON(!list_empty(&device->post_commit_list)); 369 rcu_string_free(device->name); 370 extent_io_tree_release(&device->alloc_state); 371 bio_put(device->flush_bio); 372 kfree(device); 373 } 374 375 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 376 { 377 struct btrfs_device *device; 378 WARN_ON(fs_devices->opened); 379 while (!list_empty(&fs_devices->devices)) { 380 device = list_entry(fs_devices->devices.next, 381 struct btrfs_device, dev_list); 382 list_del(&device->dev_list); 383 btrfs_free_device(device); 384 } 385 kfree(fs_devices); 386 } 387 388 void __exit btrfs_cleanup_fs_uuids(void) 389 { 390 struct btrfs_fs_devices *fs_devices; 391 392 while (!list_empty(&fs_uuids)) { 393 fs_devices = list_entry(fs_uuids.next, 394 struct btrfs_fs_devices, fs_list); 395 list_del(&fs_devices->fs_list); 396 free_fs_devices(fs_devices); 397 } 398 } 399 400 /* 401 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 402 * Returned struct is not linked onto any lists and must be destroyed using 403 * btrfs_free_device. 404 */ 405 static struct btrfs_device *__alloc_device(void) 406 { 407 struct btrfs_device *dev; 408 409 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 410 if (!dev) 411 return ERR_PTR(-ENOMEM); 412 413 /* 414 * Preallocate a bio that's always going to be used for flushing device 415 * barriers and matches the device lifespan 416 */ 417 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 418 if (!dev->flush_bio) { 419 kfree(dev); 420 return ERR_PTR(-ENOMEM); 421 } 422 423 INIT_LIST_HEAD(&dev->dev_list); 424 INIT_LIST_HEAD(&dev->dev_alloc_list); 425 INIT_LIST_HEAD(&dev->post_commit_list); 426 427 atomic_set(&dev->reada_in_flight, 0); 428 atomic_set(&dev->dev_stats_ccnt, 0); 429 btrfs_device_data_ordered_init(dev); 430 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 431 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 432 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL); 433 434 return dev; 435 } 436 437 static noinline struct btrfs_fs_devices *find_fsid( 438 const u8 *fsid, const u8 *metadata_fsid) 439 { 440 struct btrfs_fs_devices *fs_devices; 441 442 ASSERT(fsid); 443 444 /* Handle non-split brain cases */ 445 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 446 if (metadata_fsid) { 447 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 448 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 449 BTRFS_FSID_SIZE) == 0) 450 return fs_devices; 451 } else { 452 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 453 return fs_devices; 454 } 455 } 456 return NULL; 457 } 458 459 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 460 struct btrfs_super_block *disk_super) 461 { 462 463 struct btrfs_fs_devices *fs_devices; 464 465 /* 466 * Handle scanned device having completed its fsid change but 467 * belonging to a fs_devices that was created by first scanning 468 * a device which didn't have its fsid/metadata_uuid changed 469 * at all and the CHANGING_FSID_V2 flag set. 470 */ 471 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 472 if (fs_devices->fsid_change && 473 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 474 BTRFS_FSID_SIZE) == 0 && 475 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 476 BTRFS_FSID_SIZE) == 0) { 477 return fs_devices; 478 } 479 } 480 /* 481 * Handle scanned device having completed its fsid change but 482 * belonging to a fs_devices that was created by a device that 483 * has an outdated pair of fsid/metadata_uuid and 484 * CHANGING_FSID_V2 flag set. 485 */ 486 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 487 if (fs_devices->fsid_change && 488 memcmp(fs_devices->metadata_uuid, 489 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 490 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 491 BTRFS_FSID_SIZE) == 0) { 492 return fs_devices; 493 } 494 } 495 496 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 497 } 498 499 500 static int 501 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 502 int flush, struct block_device **bdev, 503 struct buffer_head **bh) 504 { 505 int ret; 506 507 *bdev = blkdev_get_by_path(device_path, flags, holder); 508 509 if (IS_ERR(*bdev)) { 510 ret = PTR_ERR(*bdev); 511 goto error; 512 } 513 514 if (flush) 515 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 516 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 517 if (ret) { 518 blkdev_put(*bdev, flags); 519 goto error; 520 } 521 invalidate_bdev(*bdev); 522 *bh = btrfs_read_dev_super(*bdev); 523 if (IS_ERR(*bh)) { 524 ret = PTR_ERR(*bh); 525 blkdev_put(*bdev, flags); 526 goto error; 527 } 528 529 return 0; 530 531 error: 532 *bdev = NULL; 533 *bh = NULL; 534 return ret; 535 } 536 537 static bool device_path_matched(const char *path, struct btrfs_device *device) 538 { 539 int found; 540 541 rcu_read_lock(); 542 found = strcmp(rcu_str_deref(device->name), path); 543 rcu_read_unlock(); 544 545 return found == 0; 546 } 547 548 /* 549 * Search and remove all stale (devices which are not mounted) devices. 550 * When both inputs are NULL, it will search and release all stale devices. 551 * path: Optional. When provided will it release all unmounted devices 552 * matching this path only. 553 * skip_dev: Optional. Will skip this device when searching for the stale 554 * devices. 555 * Return: 0 for success or if @path is NULL. 556 * -EBUSY if @path is a mounted device. 557 * -ENOENT if @path does not match any device in the list. 558 */ 559 static int btrfs_free_stale_devices(const char *path, 560 struct btrfs_device *skip_device) 561 { 562 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 563 struct btrfs_device *device, *tmp_device; 564 int ret = 0; 565 566 if (path) 567 ret = -ENOENT; 568 569 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 570 571 mutex_lock(&fs_devices->device_list_mutex); 572 list_for_each_entry_safe(device, tmp_device, 573 &fs_devices->devices, dev_list) { 574 if (skip_device && skip_device == device) 575 continue; 576 if (path && !device->name) 577 continue; 578 if (path && !device_path_matched(path, device)) 579 continue; 580 if (fs_devices->opened) { 581 /* for an already deleted device return 0 */ 582 if (path && ret != 0) 583 ret = -EBUSY; 584 break; 585 } 586 587 /* delete the stale device */ 588 fs_devices->num_devices--; 589 list_del(&device->dev_list); 590 btrfs_free_device(device); 591 592 ret = 0; 593 if (fs_devices->num_devices == 0) 594 break; 595 } 596 mutex_unlock(&fs_devices->device_list_mutex); 597 598 if (fs_devices->num_devices == 0) { 599 btrfs_sysfs_remove_fsid(fs_devices); 600 list_del(&fs_devices->fs_list); 601 free_fs_devices(fs_devices); 602 } 603 } 604 605 return ret; 606 } 607 608 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 609 struct btrfs_device *device, fmode_t flags, 610 void *holder) 611 { 612 struct request_queue *q; 613 struct block_device *bdev; 614 struct buffer_head *bh; 615 struct btrfs_super_block *disk_super; 616 u64 devid; 617 int ret; 618 619 if (device->bdev) 620 return -EINVAL; 621 if (!device->name) 622 return -EINVAL; 623 624 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 625 &bdev, &bh); 626 if (ret) 627 return ret; 628 629 disk_super = (struct btrfs_super_block *)bh->b_data; 630 devid = btrfs_stack_device_id(&disk_super->dev_item); 631 if (devid != device->devid) 632 goto error_brelse; 633 634 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 635 goto error_brelse; 636 637 device->generation = btrfs_super_generation(disk_super); 638 639 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 640 if (btrfs_super_incompat_flags(disk_super) & 641 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 642 pr_err( 643 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 644 goto error_brelse; 645 } 646 647 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 648 fs_devices->seeding = true; 649 } else { 650 if (bdev_read_only(bdev)) 651 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 652 else 653 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 654 } 655 656 q = bdev_get_queue(bdev); 657 if (!blk_queue_nonrot(q)) 658 fs_devices->rotating = true; 659 660 device->bdev = bdev; 661 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 662 device->mode = flags; 663 664 fs_devices->open_devices++; 665 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 666 device->devid != BTRFS_DEV_REPLACE_DEVID) { 667 fs_devices->rw_devices++; 668 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 669 } 670 brelse(bh); 671 672 return 0; 673 674 error_brelse: 675 brelse(bh); 676 blkdev_put(bdev, flags); 677 678 return -EINVAL; 679 } 680 681 /* 682 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 683 * being created with a disk that has already completed its fsid change. Such 684 * disk can belong to an fs which has its FSID changed or to one which doesn't. 685 * Handle both cases here. 686 */ 687 static struct btrfs_fs_devices *find_fsid_inprogress( 688 struct btrfs_super_block *disk_super) 689 { 690 struct btrfs_fs_devices *fs_devices; 691 692 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 693 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 694 BTRFS_FSID_SIZE) != 0 && 695 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 696 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 697 return fs_devices; 698 } 699 } 700 701 return find_fsid(disk_super->fsid, NULL); 702 } 703 704 705 static struct btrfs_fs_devices *find_fsid_changed( 706 struct btrfs_super_block *disk_super) 707 { 708 struct btrfs_fs_devices *fs_devices; 709 710 /* 711 * Handles the case where scanned device is part of an fs that had 712 * multiple successful changes of FSID but curently device didn't 713 * observe it. Meaning our fsid will be different than theirs. We need 714 * to handle two subcases : 715 * 1 - The fs still continues to have different METADATA/FSID uuids. 716 * 2 - The fs is switched back to its original FSID (METADATA/FSID 717 * are equal). 718 */ 719 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 720 /* Changed UUIDs */ 721 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 722 BTRFS_FSID_SIZE) != 0 && 723 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 724 BTRFS_FSID_SIZE) == 0 && 725 memcmp(fs_devices->fsid, disk_super->fsid, 726 BTRFS_FSID_SIZE) != 0) 727 return fs_devices; 728 729 /* Unchanged UUIDs */ 730 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 731 BTRFS_FSID_SIZE) == 0 && 732 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 733 BTRFS_FSID_SIZE) == 0) 734 return fs_devices; 735 } 736 737 return NULL; 738 } 739 740 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 741 struct btrfs_super_block *disk_super) 742 { 743 struct btrfs_fs_devices *fs_devices; 744 745 /* 746 * Handle the case where the scanned device is part of an fs whose last 747 * metadata UUID change reverted it to the original FSID. At the same 748 * time * fs_devices was first created by another constitutent device 749 * which didn't fully observe the operation. This results in an 750 * btrfs_fs_devices created with metadata/fsid different AND 751 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 752 * fs_devices equal to the FSID of the disk. 753 */ 754 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 755 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 756 BTRFS_FSID_SIZE) != 0 && 757 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 758 BTRFS_FSID_SIZE) == 0 && 759 fs_devices->fsid_change) 760 return fs_devices; 761 } 762 763 return NULL; 764 } 765 /* 766 * Add new device to list of registered devices 767 * 768 * Returns: 769 * device pointer which was just added or updated when successful 770 * error pointer when failed 771 */ 772 static noinline struct btrfs_device *device_list_add(const char *path, 773 struct btrfs_super_block *disk_super, 774 bool *new_device_added) 775 { 776 struct btrfs_device *device; 777 struct btrfs_fs_devices *fs_devices = NULL; 778 struct rcu_string *name; 779 u64 found_transid = btrfs_super_generation(disk_super); 780 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 781 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 782 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 783 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 784 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 785 786 if (fsid_change_in_progress) { 787 if (!has_metadata_uuid) 788 fs_devices = find_fsid_inprogress(disk_super); 789 else 790 fs_devices = find_fsid_changed(disk_super); 791 } else if (has_metadata_uuid) { 792 fs_devices = find_fsid_with_metadata_uuid(disk_super); 793 } else { 794 fs_devices = find_fsid_reverted_metadata(disk_super); 795 if (!fs_devices) 796 fs_devices = find_fsid(disk_super->fsid, NULL); 797 } 798 799 800 if (!fs_devices) { 801 if (has_metadata_uuid) 802 fs_devices = alloc_fs_devices(disk_super->fsid, 803 disk_super->metadata_uuid); 804 else 805 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 806 807 if (IS_ERR(fs_devices)) 808 return ERR_CAST(fs_devices); 809 810 fs_devices->fsid_change = fsid_change_in_progress; 811 812 mutex_lock(&fs_devices->device_list_mutex); 813 list_add(&fs_devices->fs_list, &fs_uuids); 814 815 device = NULL; 816 } else { 817 mutex_lock(&fs_devices->device_list_mutex); 818 device = btrfs_find_device(fs_devices, devid, 819 disk_super->dev_item.uuid, NULL, false); 820 821 /* 822 * If this disk has been pulled into an fs devices created by 823 * a device which had the CHANGING_FSID_V2 flag then replace the 824 * metadata_uuid/fsid values of the fs_devices. 825 */ 826 if (fs_devices->fsid_change && 827 found_transid > fs_devices->latest_generation) { 828 memcpy(fs_devices->fsid, disk_super->fsid, 829 BTRFS_FSID_SIZE); 830 831 if (has_metadata_uuid) 832 memcpy(fs_devices->metadata_uuid, 833 disk_super->metadata_uuid, 834 BTRFS_FSID_SIZE); 835 else 836 memcpy(fs_devices->metadata_uuid, 837 disk_super->fsid, BTRFS_FSID_SIZE); 838 839 fs_devices->fsid_change = false; 840 } 841 } 842 843 if (!device) { 844 if (fs_devices->opened) { 845 mutex_unlock(&fs_devices->device_list_mutex); 846 return ERR_PTR(-EBUSY); 847 } 848 849 device = btrfs_alloc_device(NULL, &devid, 850 disk_super->dev_item.uuid); 851 if (IS_ERR(device)) { 852 mutex_unlock(&fs_devices->device_list_mutex); 853 /* we can safely leave the fs_devices entry around */ 854 return device; 855 } 856 857 name = rcu_string_strdup(path, GFP_NOFS); 858 if (!name) { 859 btrfs_free_device(device); 860 mutex_unlock(&fs_devices->device_list_mutex); 861 return ERR_PTR(-ENOMEM); 862 } 863 rcu_assign_pointer(device->name, name); 864 865 list_add_rcu(&device->dev_list, &fs_devices->devices); 866 fs_devices->num_devices++; 867 868 device->fs_devices = fs_devices; 869 *new_device_added = true; 870 871 if (disk_super->label[0]) 872 pr_info( 873 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 874 disk_super->label, devid, found_transid, path, 875 current->comm, task_pid_nr(current)); 876 else 877 pr_info( 878 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 879 disk_super->fsid, devid, found_transid, path, 880 current->comm, task_pid_nr(current)); 881 882 } else if (!device->name || strcmp(device->name->str, path)) { 883 /* 884 * When FS is already mounted. 885 * 1. If you are here and if the device->name is NULL that 886 * means this device was missing at time of FS mount. 887 * 2. If you are here and if the device->name is different 888 * from 'path' that means either 889 * a. The same device disappeared and reappeared with 890 * different name. or 891 * b. The missing-disk-which-was-replaced, has 892 * reappeared now. 893 * 894 * We must allow 1 and 2a above. But 2b would be a spurious 895 * and unintentional. 896 * 897 * Further in case of 1 and 2a above, the disk at 'path' 898 * would have missed some transaction when it was away and 899 * in case of 2a the stale bdev has to be updated as well. 900 * 2b must not be allowed at all time. 901 */ 902 903 /* 904 * For now, we do allow update to btrfs_fs_device through the 905 * btrfs dev scan cli after FS has been mounted. We're still 906 * tracking a problem where systems fail mount by subvolume id 907 * when we reject replacement on a mounted FS. 908 */ 909 if (!fs_devices->opened && found_transid < device->generation) { 910 /* 911 * That is if the FS is _not_ mounted and if you 912 * are here, that means there is more than one 913 * disk with same uuid and devid.We keep the one 914 * with larger generation number or the last-in if 915 * generation are equal. 916 */ 917 mutex_unlock(&fs_devices->device_list_mutex); 918 return ERR_PTR(-EEXIST); 919 } 920 921 /* 922 * We are going to replace the device path for a given devid, 923 * make sure it's the same device if the device is mounted 924 */ 925 if (device->bdev) { 926 struct block_device *path_bdev; 927 928 path_bdev = lookup_bdev(path); 929 if (IS_ERR(path_bdev)) { 930 mutex_unlock(&fs_devices->device_list_mutex); 931 return ERR_CAST(path_bdev); 932 } 933 934 if (device->bdev != path_bdev) { 935 bdput(path_bdev); 936 mutex_unlock(&fs_devices->device_list_mutex); 937 btrfs_warn_in_rcu(device->fs_info, 938 "duplicate device fsid:devid for %pU:%llu old:%s new:%s", 939 disk_super->fsid, devid, 940 rcu_str_deref(device->name), path); 941 return ERR_PTR(-EEXIST); 942 } 943 bdput(path_bdev); 944 btrfs_info_in_rcu(device->fs_info, 945 "device fsid %pU devid %llu moved old:%s new:%s", 946 disk_super->fsid, devid, 947 rcu_str_deref(device->name), path); 948 } 949 950 name = rcu_string_strdup(path, GFP_NOFS); 951 if (!name) { 952 mutex_unlock(&fs_devices->device_list_mutex); 953 return ERR_PTR(-ENOMEM); 954 } 955 rcu_string_free(device->name); 956 rcu_assign_pointer(device->name, name); 957 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 958 fs_devices->missing_devices--; 959 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 960 } 961 } 962 963 /* 964 * Unmount does not free the btrfs_device struct but would zero 965 * generation along with most of the other members. So just update 966 * it back. We need it to pick the disk with largest generation 967 * (as above). 968 */ 969 if (!fs_devices->opened) { 970 device->generation = found_transid; 971 fs_devices->latest_generation = max_t(u64, found_transid, 972 fs_devices->latest_generation); 973 } 974 975 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 976 977 mutex_unlock(&fs_devices->device_list_mutex); 978 return device; 979 } 980 981 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 982 { 983 struct btrfs_fs_devices *fs_devices; 984 struct btrfs_device *device; 985 struct btrfs_device *orig_dev; 986 int ret = 0; 987 988 fs_devices = alloc_fs_devices(orig->fsid, NULL); 989 if (IS_ERR(fs_devices)) 990 return fs_devices; 991 992 mutex_lock(&orig->device_list_mutex); 993 fs_devices->total_devices = orig->total_devices; 994 995 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 996 struct rcu_string *name; 997 998 device = btrfs_alloc_device(NULL, &orig_dev->devid, 999 orig_dev->uuid); 1000 if (IS_ERR(device)) { 1001 ret = PTR_ERR(device); 1002 goto error; 1003 } 1004 1005 /* 1006 * This is ok to do without rcu read locked because we hold the 1007 * uuid mutex so nothing we touch in here is going to disappear. 1008 */ 1009 if (orig_dev->name) { 1010 name = rcu_string_strdup(orig_dev->name->str, 1011 GFP_KERNEL); 1012 if (!name) { 1013 btrfs_free_device(device); 1014 ret = -ENOMEM; 1015 goto error; 1016 } 1017 rcu_assign_pointer(device->name, name); 1018 } 1019 1020 list_add(&device->dev_list, &fs_devices->devices); 1021 device->fs_devices = fs_devices; 1022 fs_devices->num_devices++; 1023 } 1024 mutex_unlock(&orig->device_list_mutex); 1025 return fs_devices; 1026 error: 1027 mutex_unlock(&orig->device_list_mutex); 1028 free_fs_devices(fs_devices); 1029 return ERR_PTR(ret); 1030 } 1031 1032 /* 1033 * After we have read the system tree and know devids belonging to 1034 * this filesystem, remove the device which does not belong there. 1035 */ 1036 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1037 { 1038 struct btrfs_device *device, *next; 1039 struct btrfs_device *latest_dev = NULL; 1040 1041 mutex_lock(&uuid_mutex); 1042 again: 1043 /* This is the initialized path, it is safe to release the devices. */ 1044 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1045 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1046 &device->dev_state)) { 1047 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1048 &device->dev_state) && 1049 (!latest_dev || 1050 device->generation > latest_dev->generation)) { 1051 latest_dev = device; 1052 } 1053 continue; 1054 } 1055 1056 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 1057 /* 1058 * In the first step, keep the device which has 1059 * the correct fsid and the devid that is used 1060 * for the dev_replace procedure. 1061 * In the second step, the dev_replace state is 1062 * read from the device tree and it is known 1063 * whether the procedure is really active or 1064 * not, which means whether this device is 1065 * used or whether it should be removed. 1066 */ 1067 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1068 &device->dev_state)) { 1069 continue; 1070 } 1071 } 1072 if (device->bdev) { 1073 blkdev_put(device->bdev, device->mode); 1074 device->bdev = NULL; 1075 fs_devices->open_devices--; 1076 } 1077 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1078 list_del_init(&device->dev_alloc_list); 1079 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1080 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1081 &device->dev_state)) 1082 fs_devices->rw_devices--; 1083 } 1084 list_del_init(&device->dev_list); 1085 fs_devices->num_devices--; 1086 btrfs_free_device(device); 1087 } 1088 1089 if (fs_devices->seed) { 1090 fs_devices = fs_devices->seed; 1091 goto again; 1092 } 1093 1094 fs_devices->latest_bdev = latest_dev->bdev; 1095 1096 mutex_unlock(&uuid_mutex); 1097 } 1098 1099 static void btrfs_close_bdev(struct btrfs_device *device) 1100 { 1101 if (!device->bdev) 1102 return; 1103 1104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1105 sync_blockdev(device->bdev); 1106 invalidate_bdev(device->bdev); 1107 } 1108 1109 blkdev_put(device->bdev, device->mode); 1110 } 1111 1112 static void btrfs_close_one_device(struct btrfs_device *device) 1113 { 1114 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1115 1116 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1117 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1118 list_del_init(&device->dev_alloc_list); 1119 fs_devices->rw_devices--; 1120 } 1121 1122 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1123 fs_devices->missing_devices--; 1124 1125 btrfs_close_bdev(device); 1126 if (device->bdev) { 1127 fs_devices->open_devices--; 1128 device->bdev = NULL; 1129 } 1130 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1131 1132 device->fs_info = NULL; 1133 atomic_set(&device->dev_stats_ccnt, 0); 1134 extent_io_tree_release(&device->alloc_state); 1135 1136 /* Verify the device is back in a pristine state */ 1137 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1138 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1139 ASSERT(list_empty(&device->dev_alloc_list)); 1140 ASSERT(list_empty(&device->post_commit_list)); 1141 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1142 } 1143 1144 static int close_fs_devices(struct btrfs_fs_devices *fs_devices) 1145 { 1146 struct btrfs_device *device, *tmp; 1147 1148 if (--fs_devices->opened > 0) 1149 return 0; 1150 1151 mutex_lock(&fs_devices->device_list_mutex); 1152 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 1153 btrfs_close_one_device(device); 1154 } 1155 mutex_unlock(&fs_devices->device_list_mutex); 1156 1157 WARN_ON(fs_devices->open_devices); 1158 WARN_ON(fs_devices->rw_devices); 1159 fs_devices->opened = 0; 1160 fs_devices->seeding = false; 1161 1162 return 0; 1163 } 1164 1165 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1166 { 1167 struct btrfs_fs_devices *seed_devices = NULL; 1168 int ret; 1169 1170 mutex_lock(&uuid_mutex); 1171 ret = close_fs_devices(fs_devices); 1172 if (!fs_devices->opened) { 1173 seed_devices = fs_devices->seed; 1174 fs_devices->seed = NULL; 1175 } 1176 mutex_unlock(&uuid_mutex); 1177 1178 while (seed_devices) { 1179 fs_devices = seed_devices; 1180 seed_devices = fs_devices->seed; 1181 close_fs_devices(fs_devices); 1182 free_fs_devices(fs_devices); 1183 } 1184 return ret; 1185 } 1186 1187 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1188 fmode_t flags, void *holder) 1189 { 1190 struct btrfs_device *device; 1191 struct btrfs_device *latest_dev = NULL; 1192 int ret = 0; 1193 1194 flags |= FMODE_EXCL; 1195 1196 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1197 /* Just open everything we can; ignore failures here */ 1198 if (btrfs_open_one_device(fs_devices, device, flags, holder)) 1199 continue; 1200 1201 if (!latest_dev || 1202 device->generation > latest_dev->generation) 1203 latest_dev = device; 1204 } 1205 if (fs_devices->open_devices == 0) { 1206 ret = -EINVAL; 1207 goto out; 1208 } 1209 fs_devices->opened = 1; 1210 fs_devices->latest_bdev = latest_dev->bdev; 1211 fs_devices->total_rw_bytes = 0; 1212 out: 1213 return ret; 1214 } 1215 1216 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1217 { 1218 struct btrfs_device *dev1, *dev2; 1219 1220 dev1 = list_entry(a, struct btrfs_device, dev_list); 1221 dev2 = list_entry(b, struct btrfs_device, dev_list); 1222 1223 if (dev1->devid < dev2->devid) 1224 return -1; 1225 else if (dev1->devid > dev2->devid) 1226 return 1; 1227 return 0; 1228 } 1229 1230 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1231 fmode_t flags, void *holder) 1232 { 1233 int ret; 1234 1235 lockdep_assert_held(&uuid_mutex); 1236 1237 mutex_lock(&fs_devices->device_list_mutex); 1238 if (fs_devices->opened) { 1239 fs_devices->opened++; 1240 ret = 0; 1241 } else { 1242 list_sort(NULL, &fs_devices->devices, devid_cmp); 1243 ret = open_fs_devices(fs_devices, flags, holder); 1244 } 1245 mutex_unlock(&fs_devices->device_list_mutex); 1246 1247 return ret; 1248 } 1249 1250 static void btrfs_release_disk_super(struct page *page) 1251 { 1252 kunmap(page); 1253 put_page(page); 1254 } 1255 1256 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1257 struct page **page, 1258 struct btrfs_super_block **disk_super) 1259 { 1260 void *p; 1261 pgoff_t index; 1262 1263 /* make sure our super fits in the device */ 1264 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1265 return 1; 1266 1267 /* make sure our super fits in the page */ 1268 if (sizeof(**disk_super) > PAGE_SIZE) 1269 return 1; 1270 1271 /* make sure our super doesn't straddle pages on disk */ 1272 index = bytenr >> PAGE_SHIFT; 1273 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1274 return 1; 1275 1276 /* pull in the page with our super */ 1277 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1278 index, GFP_KERNEL); 1279 1280 if (IS_ERR_OR_NULL(*page)) 1281 return 1; 1282 1283 p = kmap(*page); 1284 1285 /* align our pointer to the offset of the super block */ 1286 *disk_super = p + offset_in_page(bytenr); 1287 1288 if (btrfs_super_bytenr(*disk_super) != bytenr || 1289 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1290 btrfs_release_disk_super(*page); 1291 return 1; 1292 } 1293 1294 if ((*disk_super)->label[0] && 1295 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1296 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1297 1298 return 0; 1299 } 1300 1301 int btrfs_forget_devices(const char *path) 1302 { 1303 int ret; 1304 1305 mutex_lock(&uuid_mutex); 1306 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1307 mutex_unlock(&uuid_mutex); 1308 1309 return ret; 1310 } 1311 1312 /* 1313 * Look for a btrfs signature on a device. This may be called out of the mount path 1314 * and we are not allowed to call set_blocksize during the scan. The superblock 1315 * is read via pagecache 1316 */ 1317 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1318 void *holder) 1319 { 1320 struct btrfs_super_block *disk_super; 1321 bool new_device_added = false; 1322 struct btrfs_device *device = NULL; 1323 struct block_device *bdev; 1324 struct page *page; 1325 u64 bytenr; 1326 1327 lockdep_assert_held(&uuid_mutex); 1328 1329 /* 1330 * we would like to check all the supers, but that would make 1331 * a btrfs mount succeed after a mkfs from a different FS. 1332 * So, we need to add a special mount option to scan for 1333 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1334 */ 1335 bytenr = btrfs_sb_offset(0); 1336 flags |= FMODE_EXCL; 1337 1338 bdev = blkdev_get_by_path(path, flags, holder); 1339 if (IS_ERR(bdev)) 1340 return ERR_CAST(bdev); 1341 1342 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { 1343 device = ERR_PTR(-EINVAL); 1344 goto error_bdev_put; 1345 } 1346 1347 device = device_list_add(path, disk_super, &new_device_added); 1348 if (!IS_ERR(device)) { 1349 if (new_device_added) 1350 btrfs_free_stale_devices(path, device); 1351 } 1352 1353 btrfs_release_disk_super(page); 1354 1355 error_bdev_put: 1356 blkdev_put(bdev, flags); 1357 1358 return device; 1359 } 1360 1361 /* 1362 * Try to find a chunk that intersects [start, start + len] range and when one 1363 * such is found, record the end of it in *start 1364 */ 1365 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1366 u64 len) 1367 { 1368 u64 physical_start, physical_end; 1369 1370 lockdep_assert_held(&device->fs_info->chunk_mutex); 1371 1372 if (!find_first_extent_bit(&device->alloc_state, *start, 1373 &physical_start, &physical_end, 1374 CHUNK_ALLOCATED, NULL)) { 1375 1376 if (in_range(physical_start, *start, len) || 1377 in_range(*start, physical_start, 1378 physical_end - physical_start)) { 1379 *start = physical_end + 1; 1380 return true; 1381 } 1382 } 1383 return false; 1384 } 1385 1386 1387 /* 1388 * find_free_dev_extent_start - find free space in the specified device 1389 * @device: the device which we search the free space in 1390 * @num_bytes: the size of the free space that we need 1391 * @search_start: the position from which to begin the search 1392 * @start: store the start of the free space. 1393 * @len: the size of the free space. that we find, or the size 1394 * of the max free space if we don't find suitable free space 1395 * 1396 * this uses a pretty simple search, the expectation is that it is 1397 * called very infrequently and that a given device has a small number 1398 * of extents 1399 * 1400 * @start is used to store the start of the free space if we find. But if we 1401 * don't find suitable free space, it will be used to store the start position 1402 * of the max free space. 1403 * 1404 * @len is used to store the size of the free space that we find. 1405 * But if we don't find suitable free space, it is used to store the size of 1406 * the max free space. 1407 * 1408 * NOTE: This function will search *commit* root of device tree, and does extra 1409 * check to ensure dev extents are not double allocated. 1410 * This makes the function safe to allocate dev extents but may not report 1411 * correct usable device space, as device extent freed in current transaction 1412 * is not reported as avaiable. 1413 */ 1414 static int find_free_dev_extent_start(struct btrfs_device *device, 1415 u64 num_bytes, u64 search_start, u64 *start, 1416 u64 *len) 1417 { 1418 struct btrfs_fs_info *fs_info = device->fs_info; 1419 struct btrfs_root *root = fs_info->dev_root; 1420 struct btrfs_key key; 1421 struct btrfs_dev_extent *dev_extent; 1422 struct btrfs_path *path; 1423 u64 hole_size; 1424 u64 max_hole_start; 1425 u64 max_hole_size; 1426 u64 extent_end; 1427 u64 search_end = device->total_bytes; 1428 int ret; 1429 int slot; 1430 struct extent_buffer *l; 1431 1432 /* 1433 * We don't want to overwrite the superblock on the drive nor any area 1434 * used by the boot loader (grub for example), so we make sure to start 1435 * at an offset of at least 1MB. 1436 */ 1437 search_start = max_t(u64, search_start, SZ_1M); 1438 1439 path = btrfs_alloc_path(); 1440 if (!path) 1441 return -ENOMEM; 1442 1443 max_hole_start = search_start; 1444 max_hole_size = 0; 1445 1446 again: 1447 if (search_start >= search_end || 1448 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1449 ret = -ENOSPC; 1450 goto out; 1451 } 1452 1453 path->reada = READA_FORWARD; 1454 path->search_commit_root = 1; 1455 path->skip_locking = 1; 1456 1457 key.objectid = device->devid; 1458 key.offset = search_start; 1459 key.type = BTRFS_DEV_EXTENT_KEY; 1460 1461 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1462 if (ret < 0) 1463 goto out; 1464 if (ret > 0) { 1465 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1466 if (ret < 0) 1467 goto out; 1468 } 1469 1470 while (1) { 1471 l = path->nodes[0]; 1472 slot = path->slots[0]; 1473 if (slot >= btrfs_header_nritems(l)) { 1474 ret = btrfs_next_leaf(root, path); 1475 if (ret == 0) 1476 continue; 1477 if (ret < 0) 1478 goto out; 1479 1480 break; 1481 } 1482 btrfs_item_key_to_cpu(l, &key, slot); 1483 1484 if (key.objectid < device->devid) 1485 goto next; 1486 1487 if (key.objectid > device->devid) 1488 break; 1489 1490 if (key.type != BTRFS_DEV_EXTENT_KEY) 1491 goto next; 1492 1493 if (key.offset > search_start) { 1494 hole_size = key.offset - search_start; 1495 1496 /* 1497 * Have to check before we set max_hole_start, otherwise 1498 * we could end up sending back this offset anyway. 1499 */ 1500 if (contains_pending_extent(device, &search_start, 1501 hole_size)) { 1502 if (key.offset >= search_start) 1503 hole_size = key.offset - search_start; 1504 else 1505 hole_size = 0; 1506 } 1507 1508 if (hole_size > max_hole_size) { 1509 max_hole_start = search_start; 1510 max_hole_size = hole_size; 1511 } 1512 1513 /* 1514 * If this free space is greater than which we need, 1515 * it must be the max free space that we have found 1516 * until now, so max_hole_start must point to the start 1517 * of this free space and the length of this free space 1518 * is stored in max_hole_size. Thus, we return 1519 * max_hole_start and max_hole_size and go back to the 1520 * caller. 1521 */ 1522 if (hole_size >= num_bytes) { 1523 ret = 0; 1524 goto out; 1525 } 1526 } 1527 1528 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1529 extent_end = key.offset + btrfs_dev_extent_length(l, 1530 dev_extent); 1531 if (extent_end > search_start) 1532 search_start = extent_end; 1533 next: 1534 path->slots[0]++; 1535 cond_resched(); 1536 } 1537 1538 /* 1539 * At this point, search_start should be the end of 1540 * allocated dev extents, and when shrinking the device, 1541 * search_end may be smaller than search_start. 1542 */ 1543 if (search_end > search_start) { 1544 hole_size = search_end - search_start; 1545 1546 if (contains_pending_extent(device, &search_start, hole_size)) { 1547 btrfs_release_path(path); 1548 goto again; 1549 } 1550 1551 if (hole_size > max_hole_size) { 1552 max_hole_start = search_start; 1553 max_hole_size = hole_size; 1554 } 1555 } 1556 1557 /* See above. */ 1558 if (max_hole_size < num_bytes) 1559 ret = -ENOSPC; 1560 else 1561 ret = 0; 1562 1563 out: 1564 btrfs_free_path(path); 1565 *start = max_hole_start; 1566 if (len) 1567 *len = max_hole_size; 1568 return ret; 1569 } 1570 1571 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1572 u64 *start, u64 *len) 1573 { 1574 /* FIXME use last free of some kind */ 1575 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1576 } 1577 1578 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1579 struct btrfs_device *device, 1580 u64 start, u64 *dev_extent_len) 1581 { 1582 struct btrfs_fs_info *fs_info = device->fs_info; 1583 struct btrfs_root *root = fs_info->dev_root; 1584 int ret; 1585 struct btrfs_path *path; 1586 struct btrfs_key key; 1587 struct btrfs_key found_key; 1588 struct extent_buffer *leaf = NULL; 1589 struct btrfs_dev_extent *extent = NULL; 1590 1591 path = btrfs_alloc_path(); 1592 if (!path) 1593 return -ENOMEM; 1594 1595 key.objectid = device->devid; 1596 key.offset = start; 1597 key.type = BTRFS_DEV_EXTENT_KEY; 1598 again: 1599 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1600 if (ret > 0) { 1601 ret = btrfs_previous_item(root, path, key.objectid, 1602 BTRFS_DEV_EXTENT_KEY); 1603 if (ret) 1604 goto out; 1605 leaf = path->nodes[0]; 1606 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1607 extent = btrfs_item_ptr(leaf, path->slots[0], 1608 struct btrfs_dev_extent); 1609 BUG_ON(found_key.offset > start || found_key.offset + 1610 btrfs_dev_extent_length(leaf, extent) < start); 1611 key = found_key; 1612 btrfs_release_path(path); 1613 goto again; 1614 } else if (ret == 0) { 1615 leaf = path->nodes[0]; 1616 extent = btrfs_item_ptr(leaf, path->slots[0], 1617 struct btrfs_dev_extent); 1618 } else { 1619 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1620 goto out; 1621 } 1622 1623 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1624 1625 ret = btrfs_del_item(trans, root, path); 1626 if (ret) { 1627 btrfs_handle_fs_error(fs_info, ret, 1628 "Failed to remove dev extent item"); 1629 } else { 1630 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1631 } 1632 out: 1633 btrfs_free_path(path); 1634 return ret; 1635 } 1636 1637 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1638 struct btrfs_device *device, 1639 u64 chunk_offset, u64 start, u64 num_bytes) 1640 { 1641 int ret; 1642 struct btrfs_path *path; 1643 struct btrfs_fs_info *fs_info = device->fs_info; 1644 struct btrfs_root *root = fs_info->dev_root; 1645 struct btrfs_dev_extent *extent; 1646 struct extent_buffer *leaf; 1647 struct btrfs_key key; 1648 1649 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1650 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1651 path = btrfs_alloc_path(); 1652 if (!path) 1653 return -ENOMEM; 1654 1655 key.objectid = device->devid; 1656 key.offset = start; 1657 key.type = BTRFS_DEV_EXTENT_KEY; 1658 ret = btrfs_insert_empty_item(trans, root, path, &key, 1659 sizeof(*extent)); 1660 if (ret) 1661 goto out; 1662 1663 leaf = path->nodes[0]; 1664 extent = btrfs_item_ptr(leaf, path->slots[0], 1665 struct btrfs_dev_extent); 1666 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1667 BTRFS_CHUNK_TREE_OBJECTID); 1668 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1669 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1670 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1671 1672 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1673 btrfs_mark_buffer_dirty(leaf); 1674 out: 1675 btrfs_free_path(path); 1676 return ret; 1677 } 1678 1679 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1680 { 1681 struct extent_map_tree *em_tree; 1682 struct extent_map *em; 1683 struct rb_node *n; 1684 u64 ret = 0; 1685 1686 em_tree = &fs_info->mapping_tree; 1687 read_lock(&em_tree->lock); 1688 n = rb_last(&em_tree->map.rb_root); 1689 if (n) { 1690 em = rb_entry(n, struct extent_map, rb_node); 1691 ret = em->start + em->len; 1692 } 1693 read_unlock(&em_tree->lock); 1694 1695 return ret; 1696 } 1697 1698 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1699 u64 *devid_ret) 1700 { 1701 int ret; 1702 struct btrfs_key key; 1703 struct btrfs_key found_key; 1704 struct btrfs_path *path; 1705 1706 path = btrfs_alloc_path(); 1707 if (!path) 1708 return -ENOMEM; 1709 1710 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1711 key.type = BTRFS_DEV_ITEM_KEY; 1712 key.offset = (u64)-1; 1713 1714 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1715 if (ret < 0) 1716 goto error; 1717 1718 if (ret == 0) { 1719 /* Corruption */ 1720 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1721 ret = -EUCLEAN; 1722 goto error; 1723 } 1724 1725 ret = btrfs_previous_item(fs_info->chunk_root, path, 1726 BTRFS_DEV_ITEMS_OBJECTID, 1727 BTRFS_DEV_ITEM_KEY); 1728 if (ret) { 1729 *devid_ret = 1; 1730 } else { 1731 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1732 path->slots[0]); 1733 *devid_ret = found_key.offset + 1; 1734 } 1735 ret = 0; 1736 error: 1737 btrfs_free_path(path); 1738 return ret; 1739 } 1740 1741 /* 1742 * the device information is stored in the chunk root 1743 * the btrfs_device struct should be fully filled in 1744 */ 1745 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1746 struct btrfs_device *device) 1747 { 1748 int ret; 1749 struct btrfs_path *path; 1750 struct btrfs_dev_item *dev_item; 1751 struct extent_buffer *leaf; 1752 struct btrfs_key key; 1753 unsigned long ptr; 1754 1755 path = btrfs_alloc_path(); 1756 if (!path) 1757 return -ENOMEM; 1758 1759 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1760 key.type = BTRFS_DEV_ITEM_KEY; 1761 key.offset = device->devid; 1762 1763 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1764 &key, sizeof(*dev_item)); 1765 if (ret) 1766 goto out; 1767 1768 leaf = path->nodes[0]; 1769 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1770 1771 btrfs_set_device_id(leaf, dev_item, device->devid); 1772 btrfs_set_device_generation(leaf, dev_item, 0); 1773 btrfs_set_device_type(leaf, dev_item, device->type); 1774 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1775 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1776 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1777 btrfs_set_device_total_bytes(leaf, dev_item, 1778 btrfs_device_get_disk_total_bytes(device)); 1779 btrfs_set_device_bytes_used(leaf, dev_item, 1780 btrfs_device_get_bytes_used(device)); 1781 btrfs_set_device_group(leaf, dev_item, 0); 1782 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1783 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1784 btrfs_set_device_start_offset(leaf, dev_item, 0); 1785 1786 ptr = btrfs_device_uuid(dev_item); 1787 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1788 ptr = btrfs_device_fsid(dev_item); 1789 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1790 ptr, BTRFS_FSID_SIZE); 1791 btrfs_mark_buffer_dirty(leaf); 1792 1793 ret = 0; 1794 out: 1795 btrfs_free_path(path); 1796 return ret; 1797 } 1798 1799 /* 1800 * Function to update ctime/mtime for a given device path. 1801 * Mainly used for ctime/mtime based probe like libblkid. 1802 */ 1803 static void update_dev_time(const char *path_name) 1804 { 1805 struct file *filp; 1806 1807 filp = filp_open(path_name, O_RDWR, 0); 1808 if (IS_ERR(filp)) 1809 return; 1810 file_update_time(filp); 1811 filp_close(filp, NULL); 1812 } 1813 1814 static int btrfs_rm_dev_item(struct btrfs_device *device) 1815 { 1816 struct btrfs_root *root = device->fs_info->chunk_root; 1817 int ret; 1818 struct btrfs_path *path; 1819 struct btrfs_key key; 1820 struct btrfs_trans_handle *trans; 1821 1822 path = btrfs_alloc_path(); 1823 if (!path) 1824 return -ENOMEM; 1825 1826 trans = btrfs_start_transaction(root, 0); 1827 if (IS_ERR(trans)) { 1828 btrfs_free_path(path); 1829 return PTR_ERR(trans); 1830 } 1831 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1832 key.type = BTRFS_DEV_ITEM_KEY; 1833 key.offset = device->devid; 1834 1835 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1836 if (ret) { 1837 if (ret > 0) 1838 ret = -ENOENT; 1839 btrfs_abort_transaction(trans, ret); 1840 btrfs_end_transaction(trans); 1841 goto out; 1842 } 1843 1844 ret = btrfs_del_item(trans, root, path); 1845 if (ret) { 1846 btrfs_abort_transaction(trans, ret); 1847 btrfs_end_transaction(trans); 1848 } 1849 1850 out: 1851 btrfs_free_path(path); 1852 if (!ret) 1853 ret = btrfs_commit_transaction(trans); 1854 return ret; 1855 } 1856 1857 /* 1858 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1859 * filesystem. It's up to the caller to adjust that number regarding eg. device 1860 * replace. 1861 */ 1862 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1863 u64 num_devices) 1864 { 1865 u64 all_avail; 1866 unsigned seq; 1867 int i; 1868 1869 do { 1870 seq = read_seqbegin(&fs_info->profiles_lock); 1871 1872 all_avail = fs_info->avail_data_alloc_bits | 1873 fs_info->avail_system_alloc_bits | 1874 fs_info->avail_metadata_alloc_bits; 1875 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1876 1877 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1878 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1879 continue; 1880 1881 if (num_devices < btrfs_raid_array[i].devs_min) { 1882 int ret = btrfs_raid_array[i].mindev_error; 1883 1884 if (ret) 1885 return ret; 1886 } 1887 } 1888 1889 return 0; 1890 } 1891 1892 static struct btrfs_device * btrfs_find_next_active_device( 1893 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1894 { 1895 struct btrfs_device *next_device; 1896 1897 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1898 if (next_device != device && 1899 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1900 && next_device->bdev) 1901 return next_device; 1902 } 1903 1904 return NULL; 1905 } 1906 1907 /* 1908 * Helper function to check if the given device is part of s_bdev / latest_bdev 1909 * and replace it with the provided or the next active device, in the context 1910 * where this function called, there should be always be another device (or 1911 * this_dev) which is active. 1912 */ 1913 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1914 struct btrfs_device *this_dev) 1915 { 1916 struct btrfs_fs_info *fs_info = device->fs_info; 1917 struct btrfs_device *next_device; 1918 1919 if (this_dev) 1920 next_device = this_dev; 1921 else 1922 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1923 device); 1924 ASSERT(next_device); 1925 1926 if (fs_info->sb->s_bdev && 1927 (fs_info->sb->s_bdev == device->bdev)) 1928 fs_info->sb->s_bdev = next_device->bdev; 1929 1930 if (fs_info->fs_devices->latest_bdev == device->bdev) 1931 fs_info->fs_devices->latest_bdev = next_device->bdev; 1932 } 1933 1934 /* 1935 * Return btrfs_fs_devices::num_devices excluding the device that's being 1936 * currently replaced. 1937 */ 1938 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1939 { 1940 u64 num_devices = fs_info->fs_devices->num_devices; 1941 1942 down_read(&fs_info->dev_replace.rwsem); 1943 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1944 ASSERT(num_devices > 1); 1945 num_devices--; 1946 } 1947 up_read(&fs_info->dev_replace.rwsem); 1948 1949 return num_devices; 1950 } 1951 1952 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 1953 u64 devid) 1954 { 1955 struct btrfs_device *device; 1956 struct btrfs_fs_devices *cur_devices; 1957 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1958 u64 num_devices; 1959 int ret = 0; 1960 1961 mutex_lock(&uuid_mutex); 1962 1963 num_devices = btrfs_num_devices(fs_info); 1964 1965 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 1966 if (ret) 1967 goto out; 1968 1969 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 1970 1971 if (IS_ERR(device)) { 1972 if (PTR_ERR(device) == -ENOENT && 1973 strcmp(device_path, "missing") == 0) 1974 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1975 else 1976 ret = PTR_ERR(device); 1977 goto out; 1978 } 1979 1980 if (btrfs_pinned_by_swapfile(fs_info, device)) { 1981 btrfs_warn_in_rcu(fs_info, 1982 "cannot remove device %s (devid %llu) due to active swapfile", 1983 rcu_str_deref(device->name), device->devid); 1984 ret = -ETXTBSY; 1985 goto out; 1986 } 1987 1988 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1989 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1990 goto out; 1991 } 1992 1993 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1994 fs_info->fs_devices->rw_devices == 1) { 1995 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1996 goto out; 1997 } 1998 1999 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2000 mutex_lock(&fs_info->chunk_mutex); 2001 list_del_init(&device->dev_alloc_list); 2002 device->fs_devices->rw_devices--; 2003 mutex_unlock(&fs_info->chunk_mutex); 2004 } 2005 2006 mutex_unlock(&uuid_mutex); 2007 ret = btrfs_shrink_device(device, 0); 2008 mutex_lock(&uuid_mutex); 2009 if (ret) 2010 goto error_undo; 2011 2012 /* 2013 * TODO: the superblock still includes this device in its num_devices 2014 * counter although write_all_supers() is not locked out. This 2015 * could give a filesystem state which requires a degraded mount. 2016 */ 2017 ret = btrfs_rm_dev_item(device); 2018 if (ret) 2019 goto error_undo; 2020 2021 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2022 btrfs_scrub_cancel_dev(device); 2023 2024 /* 2025 * the device list mutex makes sure that we don't change 2026 * the device list while someone else is writing out all 2027 * the device supers. Whoever is writing all supers, should 2028 * lock the device list mutex before getting the number of 2029 * devices in the super block (super_copy). Conversely, 2030 * whoever updates the number of devices in the super block 2031 * (super_copy) should hold the device list mutex. 2032 */ 2033 2034 /* 2035 * In normal cases the cur_devices == fs_devices. But in case 2036 * of deleting a seed device, the cur_devices should point to 2037 * its own fs_devices listed under the fs_devices->seed. 2038 */ 2039 cur_devices = device->fs_devices; 2040 mutex_lock(&fs_devices->device_list_mutex); 2041 list_del_rcu(&device->dev_list); 2042 2043 cur_devices->num_devices--; 2044 cur_devices->total_devices--; 2045 /* Update total_devices of the parent fs_devices if it's seed */ 2046 if (cur_devices != fs_devices) 2047 fs_devices->total_devices--; 2048 2049 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2050 cur_devices->missing_devices--; 2051 2052 btrfs_assign_next_active_device(device, NULL); 2053 2054 if (device->bdev) { 2055 cur_devices->open_devices--; 2056 /* remove sysfs entry */ 2057 btrfs_sysfs_rm_device_link(fs_devices, device); 2058 } 2059 2060 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2061 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2062 mutex_unlock(&fs_devices->device_list_mutex); 2063 2064 /* 2065 * at this point, the device is zero sized and detached from 2066 * the devices list. All that's left is to zero out the old 2067 * supers and free the device. 2068 */ 2069 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2070 btrfs_scratch_superblocks(device->bdev, device->name->str); 2071 2072 btrfs_close_bdev(device); 2073 synchronize_rcu(); 2074 btrfs_free_device(device); 2075 2076 if (cur_devices->open_devices == 0) { 2077 while (fs_devices) { 2078 if (fs_devices->seed == cur_devices) { 2079 fs_devices->seed = cur_devices->seed; 2080 break; 2081 } 2082 fs_devices = fs_devices->seed; 2083 } 2084 cur_devices->seed = NULL; 2085 close_fs_devices(cur_devices); 2086 free_fs_devices(cur_devices); 2087 } 2088 2089 out: 2090 mutex_unlock(&uuid_mutex); 2091 return ret; 2092 2093 error_undo: 2094 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2095 mutex_lock(&fs_info->chunk_mutex); 2096 list_add(&device->dev_alloc_list, 2097 &fs_devices->alloc_list); 2098 device->fs_devices->rw_devices++; 2099 mutex_unlock(&fs_info->chunk_mutex); 2100 } 2101 goto out; 2102 } 2103 2104 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2105 { 2106 struct btrfs_fs_devices *fs_devices; 2107 2108 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2109 2110 /* 2111 * in case of fs with no seed, srcdev->fs_devices will point 2112 * to fs_devices of fs_info. However when the dev being replaced is 2113 * a seed dev it will point to the seed's local fs_devices. In short 2114 * srcdev will have its correct fs_devices in both the cases. 2115 */ 2116 fs_devices = srcdev->fs_devices; 2117 2118 list_del_rcu(&srcdev->dev_list); 2119 list_del(&srcdev->dev_alloc_list); 2120 fs_devices->num_devices--; 2121 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2122 fs_devices->missing_devices--; 2123 2124 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2125 fs_devices->rw_devices--; 2126 2127 if (srcdev->bdev) 2128 fs_devices->open_devices--; 2129 } 2130 2131 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2132 { 2133 struct btrfs_fs_info *fs_info = srcdev->fs_info; 2134 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2135 2136 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { 2137 /* zero out the old super if it is writable */ 2138 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2139 } 2140 2141 btrfs_close_bdev(srcdev); 2142 synchronize_rcu(); 2143 btrfs_free_device(srcdev); 2144 2145 /* if this is no devs we rather delete the fs_devices */ 2146 if (!fs_devices->num_devices) { 2147 struct btrfs_fs_devices *tmp_fs_devices; 2148 2149 /* 2150 * On a mounted FS, num_devices can't be zero unless it's a 2151 * seed. In case of a seed device being replaced, the replace 2152 * target added to the sprout FS, so there will be no more 2153 * device left under the seed FS. 2154 */ 2155 ASSERT(fs_devices->seeding); 2156 2157 tmp_fs_devices = fs_info->fs_devices; 2158 while (tmp_fs_devices) { 2159 if (tmp_fs_devices->seed == fs_devices) { 2160 tmp_fs_devices->seed = fs_devices->seed; 2161 break; 2162 } 2163 tmp_fs_devices = tmp_fs_devices->seed; 2164 } 2165 fs_devices->seed = NULL; 2166 close_fs_devices(fs_devices); 2167 free_fs_devices(fs_devices); 2168 } 2169 } 2170 2171 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2172 { 2173 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2174 2175 mutex_lock(&fs_devices->device_list_mutex); 2176 2177 btrfs_sysfs_rm_device_link(fs_devices, tgtdev); 2178 2179 if (tgtdev->bdev) 2180 fs_devices->open_devices--; 2181 2182 fs_devices->num_devices--; 2183 2184 btrfs_assign_next_active_device(tgtdev, NULL); 2185 2186 list_del_rcu(&tgtdev->dev_list); 2187 2188 mutex_unlock(&fs_devices->device_list_mutex); 2189 2190 /* 2191 * The update_dev_time() with in btrfs_scratch_superblocks() 2192 * may lead to a call to btrfs_show_devname() which will try 2193 * to hold device_list_mutex. And here this device 2194 * is already out of device list, so we don't have to hold 2195 * the device_list_mutex lock. 2196 */ 2197 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2198 2199 btrfs_close_bdev(tgtdev); 2200 synchronize_rcu(); 2201 btrfs_free_device(tgtdev); 2202 } 2203 2204 static struct btrfs_device *btrfs_find_device_by_path( 2205 struct btrfs_fs_info *fs_info, const char *device_path) 2206 { 2207 int ret = 0; 2208 struct btrfs_super_block *disk_super; 2209 u64 devid; 2210 u8 *dev_uuid; 2211 struct block_device *bdev; 2212 struct buffer_head *bh; 2213 struct btrfs_device *device; 2214 2215 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2216 fs_info->bdev_holder, 0, &bdev, &bh); 2217 if (ret) 2218 return ERR_PTR(ret); 2219 disk_super = (struct btrfs_super_block *)bh->b_data; 2220 devid = btrfs_stack_device_id(&disk_super->dev_item); 2221 dev_uuid = disk_super->dev_item.uuid; 2222 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2223 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2224 disk_super->metadata_uuid, true); 2225 else 2226 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2227 disk_super->fsid, true); 2228 2229 brelse(bh); 2230 if (!device) 2231 device = ERR_PTR(-ENOENT); 2232 blkdev_put(bdev, FMODE_READ); 2233 return device; 2234 } 2235 2236 /* 2237 * Lookup a device given by device id, or the path if the id is 0. 2238 */ 2239 struct btrfs_device *btrfs_find_device_by_devspec( 2240 struct btrfs_fs_info *fs_info, u64 devid, 2241 const char *device_path) 2242 { 2243 struct btrfs_device *device; 2244 2245 if (devid) { 2246 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2247 NULL, true); 2248 if (!device) 2249 return ERR_PTR(-ENOENT); 2250 return device; 2251 } 2252 2253 if (!device_path || !device_path[0]) 2254 return ERR_PTR(-EINVAL); 2255 2256 if (strcmp(device_path, "missing") == 0) { 2257 /* Find first missing device */ 2258 list_for_each_entry(device, &fs_info->fs_devices->devices, 2259 dev_list) { 2260 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2261 &device->dev_state) && !device->bdev) 2262 return device; 2263 } 2264 return ERR_PTR(-ENOENT); 2265 } 2266 2267 return btrfs_find_device_by_path(fs_info, device_path); 2268 } 2269 2270 /* 2271 * does all the dirty work required for changing file system's UUID. 2272 */ 2273 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2274 { 2275 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2276 struct btrfs_fs_devices *old_devices; 2277 struct btrfs_fs_devices *seed_devices; 2278 struct btrfs_super_block *disk_super = fs_info->super_copy; 2279 struct btrfs_device *device; 2280 u64 super_flags; 2281 2282 lockdep_assert_held(&uuid_mutex); 2283 if (!fs_devices->seeding) 2284 return -EINVAL; 2285 2286 seed_devices = alloc_fs_devices(NULL, NULL); 2287 if (IS_ERR(seed_devices)) 2288 return PTR_ERR(seed_devices); 2289 2290 old_devices = clone_fs_devices(fs_devices); 2291 if (IS_ERR(old_devices)) { 2292 kfree(seed_devices); 2293 return PTR_ERR(old_devices); 2294 } 2295 2296 list_add(&old_devices->fs_list, &fs_uuids); 2297 2298 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2299 seed_devices->opened = 1; 2300 INIT_LIST_HEAD(&seed_devices->devices); 2301 INIT_LIST_HEAD(&seed_devices->alloc_list); 2302 mutex_init(&seed_devices->device_list_mutex); 2303 2304 mutex_lock(&fs_devices->device_list_mutex); 2305 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2306 synchronize_rcu); 2307 list_for_each_entry(device, &seed_devices->devices, dev_list) 2308 device->fs_devices = seed_devices; 2309 2310 mutex_lock(&fs_info->chunk_mutex); 2311 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2312 mutex_unlock(&fs_info->chunk_mutex); 2313 2314 fs_devices->seeding = false; 2315 fs_devices->num_devices = 0; 2316 fs_devices->open_devices = 0; 2317 fs_devices->missing_devices = 0; 2318 fs_devices->rotating = false; 2319 fs_devices->seed = seed_devices; 2320 2321 generate_random_uuid(fs_devices->fsid); 2322 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2323 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2324 mutex_unlock(&fs_devices->device_list_mutex); 2325 2326 super_flags = btrfs_super_flags(disk_super) & 2327 ~BTRFS_SUPER_FLAG_SEEDING; 2328 btrfs_set_super_flags(disk_super, super_flags); 2329 2330 return 0; 2331 } 2332 2333 /* 2334 * Store the expected generation for seed devices in device items. 2335 */ 2336 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2337 { 2338 struct btrfs_fs_info *fs_info = trans->fs_info; 2339 struct btrfs_root *root = fs_info->chunk_root; 2340 struct btrfs_path *path; 2341 struct extent_buffer *leaf; 2342 struct btrfs_dev_item *dev_item; 2343 struct btrfs_device *device; 2344 struct btrfs_key key; 2345 u8 fs_uuid[BTRFS_FSID_SIZE]; 2346 u8 dev_uuid[BTRFS_UUID_SIZE]; 2347 u64 devid; 2348 int ret; 2349 2350 path = btrfs_alloc_path(); 2351 if (!path) 2352 return -ENOMEM; 2353 2354 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2355 key.offset = 0; 2356 key.type = BTRFS_DEV_ITEM_KEY; 2357 2358 while (1) { 2359 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2360 if (ret < 0) 2361 goto error; 2362 2363 leaf = path->nodes[0]; 2364 next_slot: 2365 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2366 ret = btrfs_next_leaf(root, path); 2367 if (ret > 0) 2368 break; 2369 if (ret < 0) 2370 goto error; 2371 leaf = path->nodes[0]; 2372 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2373 btrfs_release_path(path); 2374 continue; 2375 } 2376 2377 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2378 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2379 key.type != BTRFS_DEV_ITEM_KEY) 2380 break; 2381 2382 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2383 struct btrfs_dev_item); 2384 devid = btrfs_device_id(leaf, dev_item); 2385 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2386 BTRFS_UUID_SIZE); 2387 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2388 BTRFS_FSID_SIZE); 2389 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2390 fs_uuid, true); 2391 BUG_ON(!device); /* Logic error */ 2392 2393 if (device->fs_devices->seeding) { 2394 btrfs_set_device_generation(leaf, dev_item, 2395 device->generation); 2396 btrfs_mark_buffer_dirty(leaf); 2397 } 2398 2399 path->slots[0]++; 2400 goto next_slot; 2401 } 2402 ret = 0; 2403 error: 2404 btrfs_free_path(path); 2405 return ret; 2406 } 2407 2408 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2409 { 2410 struct btrfs_root *root = fs_info->dev_root; 2411 struct request_queue *q; 2412 struct btrfs_trans_handle *trans; 2413 struct btrfs_device *device; 2414 struct block_device *bdev; 2415 struct super_block *sb = fs_info->sb; 2416 struct rcu_string *name; 2417 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2418 u64 orig_super_total_bytes; 2419 u64 orig_super_num_devices; 2420 int seeding_dev = 0; 2421 int ret = 0; 2422 bool unlocked = false; 2423 2424 if (sb_rdonly(sb) && !fs_devices->seeding) 2425 return -EROFS; 2426 2427 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2428 fs_info->bdev_holder); 2429 if (IS_ERR(bdev)) 2430 return PTR_ERR(bdev); 2431 2432 if (fs_devices->seeding) { 2433 seeding_dev = 1; 2434 down_write(&sb->s_umount); 2435 mutex_lock(&uuid_mutex); 2436 } 2437 2438 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2439 2440 mutex_lock(&fs_devices->device_list_mutex); 2441 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2442 if (device->bdev == bdev) { 2443 ret = -EEXIST; 2444 mutex_unlock( 2445 &fs_devices->device_list_mutex); 2446 goto error; 2447 } 2448 } 2449 mutex_unlock(&fs_devices->device_list_mutex); 2450 2451 device = btrfs_alloc_device(fs_info, NULL, NULL); 2452 if (IS_ERR(device)) { 2453 /* we can safely leave the fs_devices entry around */ 2454 ret = PTR_ERR(device); 2455 goto error; 2456 } 2457 2458 name = rcu_string_strdup(device_path, GFP_KERNEL); 2459 if (!name) { 2460 ret = -ENOMEM; 2461 goto error_free_device; 2462 } 2463 rcu_assign_pointer(device->name, name); 2464 2465 trans = btrfs_start_transaction(root, 0); 2466 if (IS_ERR(trans)) { 2467 ret = PTR_ERR(trans); 2468 goto error_free_device; 2469 } 2470 2471 q = bdev_get_queue(bdev); 2472 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2473 device->generation = trans->transid; 2474 device->io_width = fs_info->sectorsize; 2475 device->io_align = fs_info->sectorsize; 2476 device->sector_size = fs_info->sectorsize; 2477 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2478 fs_info->sectorsize); 2479 device->disk_total_bytes = device->total_bytes; 2480 device->commit_total_bytes = device->total_bytes; 2481 device->fs_info = fs_info; 2482 device->bdev = bdev; 2483 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2484 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2485 device->mode = FMODE_EXCL; 2486 device->dev_stats_valid = 1; 2487 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2488 2489 if (seeding_dev) { 2490 sb->s_flags &= ~SB_RDONLY; 2491 ret = btrfs_prepare_sprout(fs_info); 2492 if (ret) { 2493 btrfs_abort_transaction(trans, ret); 2494 goto error_trans; 2495 } 2496 } 2497 2498 device->fs_devices = fs_devices; 2499 2500 mutex_lock(&fs_devices->device_list_mutex); 2501 mutex_lock(&fs_info->chunk_mutex); 2502 list_add_rcu(&device->dev_list, &fs_devices->devices); 2503 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2504 fs_devices->num_devices++; 2505 fs_devices->open_devices++; 2506 fs_devices->rw_devices++; 2507 fs_devices->total_devices++; 2508 fs_devices->total_rw_bytes += device->total_bytes; 2509 2510 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2511 2512 if (!blk_queue_nonrot(q)) 2513 fs_devices->rotating = true; 2514 2515 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2516 btrfs_set_super_total_bytes(fs_info->super_copy, 2517 round_down(orig_super_total_bytes + device->total_bytes, 2518 fs_info->sectorsize)); 2519 2520 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2521 btrfs_set_super_num_devices(fs_info->super_copy, 2522 orig_super_num_devices + 1); 2523 2524 /* add sysfs device entry */ 2525 btrfs_sysfs_add_device_link(fs_devices, device); 2526 2527 /* 2528 * we've got more storage, clear any full flags on the space 2529 * infos 2530 */ 2531 btrfs_clear_space_info_full(fs_info); 2532 2533 mutex_unlock(&fs_info->chunk_mutex); 2534 mutex_unlock(&fs_devices->device_list_mutex); 2535 2536 if (seeding_dev) { 2537 mutex_lock(&fs_info->chunk_mutex); 2538 ret = init_first_rw_device(trans); 2539 mutex_unlock(&fs_info->chunk_mutex); 2540 if (ret) { 2541 btrfs_abort_transaction(trans, ret); 2542 goto error_sysfs; 2543 } 2544 } 2545 2546 ret = btrfs_add_dev_item(trans, device); 2547 if (ret) { 2548 btrfs_abort_transaction(trans, ret); 2549 goto error_sysfs; 2550 } 2551 2552 if (seeding_dev) { 2553 ret = btrfs_finish_sprout(trans); 2554 if (ret) { 2555 btrfs_abort_transaction(trans, ret); 2556 goto error_sysfs; 2557 } 2558 2559 btrfs_sysfs_update_sprout_fsid(fs_devices, 2560 fs_info->fs_devices->fsid); 2561 } 2562 2563 ret = btrfs_commit_transaction(trans); 2564 2565 if (seeding_dev) { 2566 mutex_unlock(&uuid_mutex); 2567 up_write(&sb->s_umount); 2568 unlocked = true; 2569 2570 if (ret) /* transaction commit */ 2571 return ret; 2572 2573 ret = btrfs_relocate_sys_chunks(fs_info); 2574 if (ret < 0) 2575 btrfs_handle_fs_error(fs_info, ret, 2576 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2577 trans = btrfs_attach_transaction(root); 2578 if (IS_ERR(trans)) { 2579 if (PTR_ERR(trans) == -ENOENT) 2580 return 0; 2581 ret = PTR_ERR(trans); 2582 trans = NULL; 2583 goto error_sysfs; 2584 } 2585 ret = btrfs_commit_transaction(trans); 2586 } 2587 2588 /* Update ctime/mtime for libblkid */ 2589 update_dev_time(device_path); 2590 return ret; 2591 2592 error_sysfs: 2593 btrfs_sysfs_rm_device_link(fs_devices, device); 2594 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2595 mutex_lock(&fs_info->chunk_mutex); 2596 list_del_rcu(&device->dev_list); 2597 list_del(&device->dev_alloc_list); 2598 fs_info->fs_devices->num_devices--; 2599 fs_info->fs_devices->open_devices--; 2600 fs_info->fs_devices->rw_devices--; 2601 fs_info->fs_devices->total_devices--; 2602 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2603 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2604 btrfs_set_super_total_bytes(fs_info->super_copy, 2605 orig_super_total_bytes); 2606 btrfs_set_super_num_devices(fs_info->super_copy, 2607 orig_super_num_devices); 2608 mutex_unlock(&fs_info->chunk_mutex); 2609 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2610 error_trans: 2611 if (seeding_dev) 2612 sb->s_flags |= SB_RDONLY; 2613 if (trans) 2614 btrfs_end_transaction(trans); 2615 error_free_device: 2616 btrfs_free_device(device); 2617 error: 2618 blkdev_put(bdev, FMODE_EXCL); 2619 if (seeding_dev && !unlocked) { 2620 mutex_unlock(&uuid_mutex); 2621 up_write(&sb->s_umount); 2622 } 2623 return ret; 2624 } 2625 2626 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2627 struct btrfs_device *device) 2628 { 2629 int ret; 2630 struct btrfs_path *path; 2631 struct btrfs_root *root = device->fs_info->chunk_root; 2632 struct btrfs_dev_item *dev_item; 2633 struct extent_buffer *leaf; 2634 struct btrfs_key key; 2635 2636 path = btrfs_alloc_path(); 2637 if (!path) 2638 return -ENOMEM; 2639 2640 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2641 key.type = BTRFS_DEV_ITEM_KEY; 2642 key.offset = device->devid; 2643 2644 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2645 if (ret < 0) 2646 goto out; 2647 2648 if (ret > 0) { 2649 ret = -ENOENT; 2650 goto out; 2651 } 2652 2653 leaf = path->nodes[0]; 2654 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2655 2656 btrfs_set_device_id(leaf, dev_item, device->devid); 2657 btrfs_set_device_type(leaf, dev_item, device->type); 2658 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2659 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2660 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2661 btrfs_set_device_total_bytes(leaf, dev_item, 2662 btrfs_device_get_disk_total_bytes(device)); 2663 btrfs_set_device_bytes_used(leaf, dev_item, 2664 btrfs_device_get_bytes_used(device)); 2665 btrfs_mark_buffer_dirty(leaf); 2666 2667 out: 2668 btrfs_free_path(path); 2669 return ret; 2670 } 2671 2672 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2673 struct btrfs_device *device, u64 new_size) 2674 { 2675 struct btrfs_fs_info *fs_info = device->fs_info; 2676 struct btrfs_super_block *super_copy = fs_info->super_copy; 2677 u64 old_total; 2678 u64 diff; 2679 2680 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2681 return -EACCES; 2682 2683 new_size = round_down(new_size, fs_info->sectorsize); 2684 2685 mutex_lock(&fs_info->chunk_mutex); 2686 old_total = btrfs_super_total_bytes(super_copy); 2687 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2688 2689 if (new_size <= device->total_bytes || 2690 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2691 mutex_unlock(&fs_info->chunk_mutex); 2692 return -EINVAL; 2693 } 2694 2695 btrfs_set_super_total_bytes(super_copy, 2696 round_down(old_total + diff, fs_info->sectorsize)); 2697 device->fs_devices->total_rw_bytes += diff; 2698 2699 btrfs_device_set_total_bytes(device, new_size); 2700 btrfs_device_set_disk_total_bytes(device, new_size); 2701 btrfs_clear_space_info_full(device->fs_info); 2702 if (list_empty(&device->post_commit_list)) 2703 list_add_tail(&device->post_commit_list, 2704 &trans->transaction->dev_update_list); 2705 mutex_unlock(&fs_info->chunk_mutex); 2706 2707 return btrfs_update_device(trans, device); 2708 } 2709 2710 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2711 { 2712 struct btrfs_fs_info *fs_info = trans->fs_info; 2713 struct btrfs_root *root = fs_info->chunk_root; 2714 int ret; 2715 struct btrfs_path *path; 2716 struct btrfs_key key; 2717 2718 path = btrfs_alloc_path(); 2719 if (!path) 2720 return -ENOMEM; 2721 2722 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2723 key.offset = chunk_offset; 2724 key.type = BTRFS_CHUNK_ITEM_KEY; 2725 2726 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2727 if (ret < 0) 2728 goto out; 2729 else if (ret > 0) { /* Logic error or corruption */ 2730 btrfs_handle_fs_error(fs_info, -ENOENT, 2731 "Failed lookup while freeing chunk."); 2732 ret = -ENOENT; 2733 goto out; 2734 } 2735 2736 ret = btrfs_del_item(trans, root, path); 2737 if (ret < 0) 2738 btrfs_handle_fs_error(fs_info, ret, 2739 "Failed to delete chunk item."); 2740 out: 2741 btrfs_free_path(path); 2742 return ret; 2743 } 2744 2745 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2746 { 2747 struct btrfs_super_block *super_copy = fs_info->super_copy; 2748 struct btrfs_disk_key *disk_key; 2749 struct btrfs_chunk *chunk; 2750 u8 *ptr; 2751 int ret = 0; 2752 u32 num_stripes; 2753 u32 array_size; 2754 u32 len = 0; 2755 u32 cur; 2756 struct btrfs_key key; 2757 2758 mutex_lock(&fs_info->chunk_mutex); 2759 array_size = btrfs_super_sys_array_size(super_copy); 2760 2761 ptr = super_copy->sys_chunk_array; 2762 cur = 0; 2763 2764 while (cur < array_size) { 2765 disk_key = (struct btrfs_disk_key *)ptr; 2766 btrfs_disk_key_to_cpu(&key, disk_key); 2767 2768 len = sizeof(*disk_key); 2769 2770 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2771 chunk = (struct btrfs_chunk *)(ptr + len); 2772 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2773 len += btrfs_chunk_item_size(num_stripes); 2774 } else { 2775 ret = -EIO; 2776 break; 2777 } 2778 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2779 key.offset == chunk_offset) { 2780 memmove(ptr, ptr + len, array_size - (cur + len)); 2781 array_size -= len; 2782 btrfs_set_super_sys_array_size(super_copy, array_size); 2783 } else { 2784 ptr += len; 2785 cur += len; 2786 } 2787 } 2788 mutex_unlock(&fs_info->chunk_mutex); 2789 return ret; 2790 } 2791 2792 /* 2793 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2794 * @logical: Logical block offset in bytes. 2795 * @length: Length of extent in bytes. 2796 * 2797 * Return: Chunk mapping or ERR_PTR. 2798 */ 2799 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2800 u64 logical, u64 length) 2801 { 2802 struct extent_map_tree *em_tree; 2803 struct extent_map *em; 2804 2805 em_tree = &fs_info->mapping_tree; 2806 read_lock(&em_tree->lock); 2807 em = lookup_extent_mapping(em_tree, logical, length); 2808 read_unlock(&em_tree->lock); 2809 2810 if (!em) { 2811 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2812 logical, length); 2813 return ERR_PTR(-EINVAL); 2814 } 2815 2816 if (em->start > logical || em->start + em->len < logical) { 2817 btrfs_crit(fs_info, 2818 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2819 logical, length, em->start, em->start + em->len); 2820 free_extent_map(em); 2821 return ERR_PTR(-EINVAL); 2822 } 2823 2824 /* callers are responsible for dropping em's ref. */ 2825 return em; 2826 } 2827 2828 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2829 { 2830 struct btrfs_fs_info *fs_info = trans->fs_info; 2831 struct extent_map *em; 2832 struct map_lookup *map; 2833 u64 dev_extent_len = 0; 2834 int i, ret = 0; 2835 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2836 2837 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2838 if (IS_ERR(em)) { 2839 /* 2840 * This is a logic error, but we don't want to just rely on the 2841 * user having built with ASSERT enabled, so if ASSERT doesn't 2842 * do anything we still error out. 2843 */ 2844 ASSERT(0); 2845 return PTR_ERR(em); 2846 } 2847 map = em->map_lookup; 2848 mutex_lock(&fs_info->chunk_mutex); 2849 check_system_chunk(trans, map->type); 2850 mutex_unlock(&fs_info->chunk_mutex); 2851 2852 /* 2853 * Take the device list mutex to prevent races with the final phase of 2854 * a device replace operation that replaces the device object associated 2855 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2856 */ 2857 mutex_lock(&fs_devices->device_list_mutex); 2858 for (i = 0; i < map->num_stripes; i++) { 2859 struct btrfs_device *device = map->stripes[i].dev; 2860 ret = btrfs_free_dev_extent(trans, device, 2861 map->stripes[i].physical, 2862 &dev_extent_len); 2863 if (ret) { 2864 mutex_unlock(&fs_devices->device_list_mutex); 2865 btrfs_abort_transaction(trans, ret); 2866 goto out; 2867 } 2868 2869 if (device->bytes_used > 0) { 2870 mutex_lock(&fs_info->chunk_mutex); 2871 btrfs_device_set_bytes_used(device, 2872 device->bytes_used - dev_extent_len); 2873 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2874 btrfs_clear_space_info_full(fs_info); 2875 mutex_unlock(&fs_info->chunk_mutex); 2876 } 2877 2878 ret = btrfs_update_device(trans, device); 2879 if (ret) { 2880 mutex_unlock(&fs_devices->device_list_mutex); 2881 btrfs_abort_transaction(trans, ret); 2882 goto out; 2883 } 2884 } 2885 mutex_unlock(&fs_devices->device_list_mutex); 2886 2887 ret = btrfs_free_chunk(trans, chunk_offset); 2888 if (ret) { 2889 btrfs_abort_transaction(trans, ret); 2890 goto out; 2891 } 2892 2893 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2894 2895 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2896 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2897 if (ret) { 2898 btrfs_abort_transaction(trans, ret); 2899 goto out; 2900 } 2901 } 2902 2903 ret = btrfs_remove_block_group(trans, chunk_offset, em); 2904 if (ret) { 2905 btrfs_abort_transaction(trans, ret); 2906 goto out; 2907 } 2908 2909 out: 2910 /* once for us */ 2911 free_extent_map(em); 2912 return ret; 2913 } 2914 2915 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2916 { 2917 struct btrfs_root *root = fs_info->chunk_root; 2918 struct btrfs_trans_handle *trans; 2919 struct btrfs_block_group *block_group; 2920 int ret; 2921 2922 /* 2923 * Prevent races with automatic removal of unused block groups. 2924 * After we relocate and before we remove the chunk with offset 2925 * chunk_offset, automatic removal of the block group can kick in, 2926 * resulting in a failure when calling btrfs_remove_chunk() below. 2927 * 2928 * Make sure to acquire this mutex before doing a tree search (dev 2929 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2930 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2931 * we release the path used to search the chunk/dev tree and before 2932 * the current task acquires this mutex and calls us. 2933 */ 2934 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 2935 2936 /* step one, relocate all the extents inside this chunk */ 2937 btrfs_scrub_pause(fs_info); 2938 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 2939 btrfs_scrub_continue(fs_info); 2940 if (ret) 2941 return ret; 2942 2943 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 2944 if (!block_group) 2945 return -ENOENT; 2946 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 2947 btrfs_put_block_group(block_group); 2948 2949 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2950 chunk_offset); 2951 if (IS_ERR(trans)) { 2952 ret = PTR_ERR(trans); 2953 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2954 return ret; 2955 } 2956 2957 /* 2958 * step two, delete the device extents and the 2959 * chunk tree entries 2960 */ 2961 ret = btrfs_remove_chunk(trans, chunk_offset); 2962 btrfs_end_transaction(trans); 2963 return ret; 2964 } 2965 2966 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 2967 { 2968 struct btrfs_root *chunk_root = fs_info->chunk_root; 2969 struct btrfs_path *path; 2970 struct extent_buffer *leaf; 2971 struct btrfs_chunk *chunk; 2972 struct btrfs_key key; 2973 struct btrfs_key found_key; 2974 u64 chunk_type; 2975 bool retried = false; 2976 int failed = 0; 2977 int ret; 2978 2979 path = btrfs_alloc_path(); 2980 if (!path) 2981 return -ENOMEM; 2982 2983 again: 2984 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2985 key.offset = (u64)-1; 2986 key.type = BTRFS_CHUNK_ITEM_KEY; 2987 2988 while (1) { 2989 mutex_lock(&fs_info->delete_unused_bgs_mutex); 2990 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2991 if (ret < 0) { 2992 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 2993 goto error; 2994 } 2995 BUG_ON(ret == 0); /* Corruption */ 2996 2997 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2998 key.type); 2999 if (ret) 3000 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3001 if (ret < 0) 3002 goto error; 3003 if (ret > 0) 3004 break; 3005 3006 leaf = path->nodes[0]; 3007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3008 3009 chunk = btrfs_item_ptr(leaf, path->slots[0], 3010 struct btrfs_chunk); 3011 chunk_type = btrfs_chunk_type(leaf, chunk); 3012 btrfs_release_path(path); 3013 3014 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3015 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3016 if (ret == -ENOSPC) 3017 failed++; 3018 else 3019 BUG_ON(ret); 3020 } 3021 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3022 3023 if (found_key.offset == 0) 3024 break; 3025 key.offset = found_key.offset - 1; 3026 } 3027 ret = 0; 3028 if (failed && !retried) { 3029 failed = 0; 3030 retried = true; 3031 goto again; 3032 } else if (WARN_ON(failed && retried)) { 3033 ret = -ENOSPC; 3034 } 3035 error: 3036 btrfs_free_path(path); 3037 return ret; 3038 } 3039 3040 /* 3041 * return 1 : allocate a data chunk successfully, 3042 * return <0: errors during allocating a data chunk, 3043 * return 0 : no need to allocate a data chunk. 3044 */ 3045 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3046 u64 chunk_offset) 3047 { 3048 struct btrfs_block_group *cache; 3049 u64 bytes_used; 3050 u64 chunk_type; 3051 3052 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3053 ASSERT(cache); 3054 chunk_type = cache->flags; 3055 btrfs_put_block_group(cache); 3056 3057 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3058 return 0; 3059 3060 spin_lock(&fs_info->data_sinfo->lock); 3061 bytes_used = fs_info->data_sinfo->bytes_used; 3062 spin_unlock(&fs_info->data_sinfo->lock); 3063 3064 if (!bytes_used) { 3065 struct btrfs_trans_handle *trans; 3066 int ret; 3067 3068 trans = btrfs_join_transaction(fs_info->tree_root); 3069 if (IS_ERR(trans)) 3070 return PTR_ERR(trans); 3071 3072 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3073 btrfs_end_transaction(trans); 3074 if (ret < 0) 3075 return ret; 3076 return 1; 3077 } 3078 3079 return 0; 3080 } 3081 3082 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3083 struct btrfs_balance_control *bctl) 3084 { 3085 struct btrfs_root *root = fs_info->tree_root; 3086 struct btrfs_trans_handle *trans; 3087 struct btrfs_balance_item *item; 3088 struct btrfs_disk_balance_args disk_bargs; 3089 struct btrfs_path *path; 3090 struct extent_buffer *leaf; 3091 struct btrfs_key key; 3092 int ret, err; 3093 3094 path = btrfs_alloc_path(); 3095 if (!path) 3096 return -ENOMEM; 3097 3098 trans = btrfs_start_transaction(root, 0); 3099 if (IS_ERR(trans)) { 3100 btrfs_free_path(path); 3101 return PTR_ERR(trans); 3102 } 3103 3104 key.objectid = BTRFS_BALANCE_OBJECTID; 3105 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3106 key.offset = 0; 3107 3108 ret = btrfs_insert_empty_item(trans, root, path, &key, 3109 sizeof(*item)); 3110 if (ret) 3111 goto out; 3112 3113 leaf = path->nodes[0]; 3114 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3115 3116 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3117 3118 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3119 btrfs_set_balance_data(leaf, item, &disk_bargs); 3120 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3121 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3122 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3123 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3124 3125 btrfs_set_balance_flags(leaf, item, bctl->flags); 3126 3127 btrfs_mark_buffer_dirty(leaf); 3128 out: 3129 btrfs_free_path(path); 3130 err = btrfs_commit_transaction(trans); 3131 if (err && !ret) 3132 ret = err; 3133 return ret; 3134 } 3135 3136 static int del_balance_item(struct btrfs_fs_info *fs_info) 3137 { 3138 struct btrfs_root *root = fs_info->tree_root; 3139 struct btrfs_trans_handle *trans; 3140 struct btrfs_path *path; 3141 struct btrfs_key key; 3142 int ret, err; 3143 3144 path = btrfs_alloc_path(); 3145 if (!path) 3146 return -ENOMEM; 3147 3148 trans = btrfs_start_transaction(root, 0); 3149 if (IS_ERR(trans)) { 3150 btrfs_free_path(path); 3151 return PTR_ERR(trans); 3152 } 3153 3154 key.objectid = BTRFS_BALANCE_OBJECTID; 3155 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3156 key.offset = 0; 3157 3158 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3159 if (ret < 0) 3160 goto out; 3161 if (ret > 0) { 3162 ret = -ENOENT; 3163 goto out; 3164 } 3165 3166 ret = btrfs_del_item(trans, root, path); 3167 out: 3168 btrfs_free_path(path); 3169 err = btrfs_commit_transaction(trans); 3170 if (err && !ret) 3171 ret = err; 3172 return ret; 3173 } 3174 3175 /* 3176 * This is a heuristic used to reduce the number of chunks balanced on 3177 * resume after balance was interrupted. 3178 */ 3179 static void update_balance_args(struct btrfs_balance_control *bctl) 3180 { 3181 /* 3182 * Turn on soft mode for chunk types that were being converted. 3183 */ 3184 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3185 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3186 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3187 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3188 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3189 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3190 3191 /* 3192 * Turn on usage filter if is not already used. The idea is 3193 * that chunks that we have already balanced should be 3194 * reasonably full. Don't do it for chunks that are being 3195 * converted - that will keep us from relocating unconverted 3196 * (albeit full) chunks. 3197 */ 3198 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3199 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3200 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3201 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3202 bctl->data.usage = 90; 3203 } 3204 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3205 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3206 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3207 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3208 bctl->sys.usage = 90; 3209 } 3210 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3211 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3212 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3213 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3214 bctl->meta.usage = 90; 3215 } 3216 } 3217 3218 /* 3219 * Clear the balance status in fs_info and delete the balance item from disk. 3220 */ 3221 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3222 { 3223 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3224 int ret; 3225 3226 BUG_ON(!fs_info->balance_ctl); 3227 3228 spin_lock(&fs_info->balance_lock); 3229 fs_info->balance_ctl = NULL; 3230 spin_unlock(&fs_info->balance_lock); 3231 3232 kfree(bctl); 3233 ret = del_balance_item(fs_info); 3234 if (ret) 3235 btrfs_handle_fs_error(fs_info, ret, NULL); 3236 } 3237 3238 /* 3239 * Balance filters. Return 1 if chunk should be filtered out 3240 * (should not be balanced). 3241 */ 3242 static int chunk_profiles_filter(u64 chunk_type, 3243 struct btrfs_balance_args *bargs) 3244 { 3245 chunk_type = chunk_to_extended(chunk_type) & 3246 BTRFS_EXTENDED_PROFILE_MASK; 3247 3248 if (bargs->profiles & chunk_type) 3249 return 0; 3250 3251 return 1; 3252 } 3253 3254 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3255 struct btrfs_balance_args *bargs) 3256 { 3257 struct btrfs_block_group *cache; 3258 u64 chunk_used; 3259 u64 user_thresh_min; 3260 u64 user_thresh_max; 3261 int ret = 1; 3262 3263 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3264 chunk_used = cache->used; 3265 3266 if (bargs->usage_min == 0) 3267 user_thresh_min = 0; 3268 else 3269 user_thresh_min = div_factor_fine(cache->length, 3270 bargs->usage_min); 3271 3272 if (bargs->usage_max == 0) 3273 user_thresh_max = 1; 3274 else if (bargs->usage_max > 100) 3275 user_thresh_max = cache->length; 3276 else 3277 user_thresh_max = div_factor_fine(cache->length, 3278 bargs->usage_max); 3279 3280 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3281 ret = 0; 3282 3283 btrfs_put_block_group(cache); 3284 return ret; 3285 } 3286 3287 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3288 u64 chunk_offset, struct btrfs_balance_args *bargs) 3289 { 3290 struct btrfs_block_group *cache; 3291 u64 chunk_used, user_thresh; 3292 int ret = 1; 3293 3294 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3295 chunk_used = cache->used; 3296 3297 if (bargs->usage_min == 0) 3298 user_thresh = 1; 3299 else if (bargs->usage > 100) 3300 user_thresh = cache->length; 3301 else 3302 user_thresh = div_factor_fine(cache->length, bargs->usage); 3303 3304 if (chunk_used < user_thresh) 3305 ret = 0; 3306 3307 btrfs_put_block_group(cache); 3308 return ret; 3309 } 3310 3311 static int chunk_devid_filter(struct extent_buffer *leaf, 3312 struct btrfs_chunk *chunk, 3313 struct btrfs_balance_args *bargs) 3314 { 3315 struct btrfs_stripe *stripe; 3316 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3317 int i; 3318 3319 for (i = 0; i < num_stripes; i++) { 3320 stripe = btrfs_stripe_nr(chunk, i); 3321 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3322 return 0; 3323 } 3324 3325 return 1; 3326 } 3327 3328 static u64 calc_data_stripes(u64 type, int num_stripes) 3329 { 3330 const int index = btrfs_bg_flags_to_raid_index(type); 3331 const int ncopies = btrfs_raid_array[index].ncopies; 3332 const int nparity = btrfs_raid_array[index].nparity; 3333 3334 if (nparity) 3335 return num_stripes - nparity; 3336 else 3337 return num_stripes / ncopies; 3338 } 3339 3340 /* [pstart, pend) */ 3341 static int chunk_drange_filter(struct extent_buffer *leaf, 3342 struct btrfs_chunk *chunk, 3343 struct btrfs_balance_args *bargs) 3344 { 3345 struct btrfs_stripe *stripe; 3346 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3347 u64 stripe_offset; 3348 u64 stripe_length; 3349 u64 type; 3350 int factor; 3351 int i; 3352 3353 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3354 return 0; 3355 3356 type = btrfs_chunk_type(leaf, chunk); 3357 factor = calc_data_stripes(type, num_stripes); 3358 3359 for (i = 0; i < num_stripes; i++) { 3360 stripe = btrfs_stripe_nr(chunk, i); 3361 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3362 continue; 3363 3364 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3365 stripe_length = btrfs_chunk_length(leaf, chunk); 3366 stripe_length = div_u64(stripe_length, factor); 3367 3368 if (stripe_offset < bargs->pend && 3369 stripe_offset + stripe_length > bargs->pstart) 3370 return 0; 3371 } 3372 3373 return 1; 3374 } 3375 3376 /* [vstart, vend) */ 3377 static int chunk_vrange_filter(struct extent_buffer *leaf, 3378 struct btrfs_chunk *chunk, 3379 u64 chunk_offset, 3380 struct btrfs_balance_args *bargs) 3381 { 3382 if (chunk_offset < bargs->vend && 3383 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3384 /* at least part of the chunk is inside this vrange */ 3385 return 0; 3386 3387 return 1; 3388 } 3389 3390 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3391 struct btrfs_chunk *chunk, 3392 struct btrfs_balance_args *bargs) 3393 { 3394 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3395 3396 if (bargs->stripes_min <= num_stripes 3397 && num_stripes <= bargs->stripes_max) 3398 return 0; 3399 3400 return 1; 3401 } 3402 3403 static int chunk_soft_convert_filter(u64 chunk_type, 3404 struct btrfs_balance_args *bargs) 3405 { 3406 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3407 return 0; 3408 3409 chunk_type = chunk_to_extended(chunk_type) & 3410 BTRFS_EXTENDED_PROFILE_MASK; 3411 3412 if (bargs->target == chunk_type) 3413 return 1; 3414 3415 return 0; 3416 } 3417 3418 static int should_balance_chunk(struct extent_buffer *leaf, 3419 struct btrfs_chunk *chunk, u64 chunk_offset) 3420 { 3421 struct btrfs_fs_info *fs_info = leaf->fs_info; 3422 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3423 struct btrfs_balance_args *bargs = NULL; 3424 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3425 3426 /* type filter */ 3427 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3428 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3429 return 0; 3430 } 3431 3432 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3433 bargs = &bctl->data; 3434 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3435 bargs = &bctl->sys; 3436 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3437 bargs = &bctl->meta; 3438 3439 /* profiles filter */ 3440 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3441 chunk_profiles_filter(chunk_type, bargs)) { 3442 return 0; 3443 } 3444 3445 /* usage filter */ 3446 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3447 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3448 return 0; 3449 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3450 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3451 return 0; 3452 } 3453 3454 /* devid filter */ 3455 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3456 chunk_devid_filter(leaf, chunk, bargs)) { 3457 return 0; 3458 } 3459 3460 /* drange filter, makes sense only with devid filter */ 3461 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3462 chunk_drange_filter(leaf, chunk, bargs)) { 3463 return 0; 3464 } 3465 3466 /* vrange filter */ 3467 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3468 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3469 return 0; 3470 } 3471 3472 /* stripes filter */ 3473 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3474 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3475 return 0; 3476 } 3477 3478 /* soft profile changing mode */ 3479 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3480 chunk_soft_convert_filter(chunk_type, bargs)) { 3481 return 0; 3482 } 3483 3484 /* 3485 * limited by count, must be the last filter 3486 */ 3487 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3488 if (bargs->limit == 0) 3489 return 0; 3490 else 3491 bargs->limit--; 3492 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3493 /* 3494 * Same logic as the 'limit' filter; the minimum cannot be 3495 * determined here because we do not have the global information 3496 * about the count of all chunks that satisfy the filters. 3497 */ 3498 if (bargs->limit_max == 0) 3499 return 0; 3500 else 3501 bargs->limit_max--; 3502 } 3503 3504 return 1; 3505 } 3506 3507 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3508 { 3509 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3510 struct btrfs_root *chunk_root = fs_info->chunk_root; 3511 u64 chunk_type; 3512 struct btrfs_chunk *chunk; 3513 struct btrfs_path *path = NULL; 3514 struct btrfs_key key; 3515 struct btrfs_key found_key; 3516 struct extent_buffer *leaf; 3517 int slot; 3518 int ret; 3519 int enospc_errors = 0; 3520 bool counting = true; 3521 /* The single value limit and min/max limits use the same bytes in the */ 3522 u64 limit_data = bctl->data.limit; 3523 u64 limit_meta = bctl->meta.limit; 3524 u64 limit_sys = bctl->sys.limit; 3525 u32 count_data = 0; 3526 u32 count_meta = 0; 3527 u32 count_sys = 0; 3528 int chunk_reserved = 0; 3529 3530 path = btrfs_alloc_path(); 3531 if (!path) { 3532 ret = -ENOMEM; 3533 goto error; 3534 } 3535 3536 /* zero out stat counters */ 3537 spin_lock(&fs_info->balance_lock); 3538 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3539 spin_unlock(&fs_info->balance_lock); 3540 again: 3541 if (!counting) { 3542 /* 3543 * The single value limit and min/max limits use the same bytes 3544 * in the 3545 */ 3546 bctl->data.limit = limit_data; 3547 bctl->meta.limit = limit_meta; 3548 bctl->sys.limit = limit_sys; 3549 } 3550 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3551 key.offset = (u64)-1; 3552 key.type = BTRFS_CHUNK_ITEM_KEY; 3553 3554 while (1) { 3555 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3556 atomic_read(&fs_info->balance_cancel_req)) { 3557 ret = -ECANCELED; 3558 goto error; 3559 } 3560 3561 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3562 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3563 if (ret < 0) { 3564 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3565 goto error; 3566 } 3567 3568 /* 3569 * this shouldn't happen, it means the last relocate 3570 * failed 3571 */ 3572 if (ret == 0) 3573 BUG(); /* FIXME break ? */ 3574 3575 ret = btrfs_previous_item(chunk_root, path, 0, 3576 BTRFS_CHUNK_ITEM_KEY); 3577 if (ret) { 3578 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3579 ret = 0; 3580 break; 3581 } 3582 3583 leaf = path->nodes[0]; 3584 slot = path->slots[0]; 3585 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3586 3587 if (found_key.objectid != key.objectid) { 3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3589 break; 3590 } 3591 3592 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3593 chunk_type = btrfs_chunk_type(leaf, chunk); 3594 3595 if (!counting) { 3596 spin_lock(&fs_info->balance_lock); 3597 bctl->stat.considered++; 3598 spin_unlock(&fs_info->balance_lock); 3599 } 3600 3601 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3602 3603 btrfs_release_path(path); 3604 if (!ret) { 3605 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3606 goto loop; 3607 } 3608 3609 if (counting) { 3610 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3611 spin_lock(&fs_info->balance_lock); 3612 bctl->stat.expected++; 3613 spin_unlock(&fs_info->balance_lock); 3614 3615 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3616 count_data++; 3617 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3618 count_sys++; 3619 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3620 count_meta++; 3621 3622 goto loop; 3623 } 3624 3625 /* 3626 * Apply limit_min filter, no need to check if the LIMITS 3627 * filter is used, limit_min is 0 by default 3628 */ 3629 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3630 count_data < bctl->data.limit_min) 3631 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3632 count_meta < bctl->meta.limit_min) 3633 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3634 count_sys < bctl->sys.limit_min)) { 3635 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3636 goto loop; 3637 } 3638 3639 if (!chunk_reserved) { 3640 /* 3641 * We may be relocating the only data chunk we have, 3642 * which could potentially end up with losing data's 3643 * raid profile, so lets allocate an empty one in 3644 * advance. 3645 */ 3646 ret = btrfs_may_alloc_data_chunk(fs_info, 3647 found_key.offset); 3648 if (ret < 0) { 3649 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3650 goto error; 3651 } else if (ret == 1) { 3652 chunk_reserved = 1; 3653 } 3654 } 3655 3656 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3657 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3658 if (ret == -ENOSPC) { 3659 enospc_errors++; 3660 } else if (ret == -ETXTBSY) { 3661 btrfs_info(fs_info, 3662 "skipping relocation of block group %llu due to active swapfile", 3663 found_key.offset); 3664 ret = 0; 3665 } else if (ret) { 3666 goto error; 3667 } else { 3668 spin_lock(&fs_info->balance_lock); 3669 bctl->stat.completed++; 3670 spin_unlock(&fs_info->balance_lock); 3671 } 3672 loop: 3673 if (found_key.offset == 0) 3674 break; 3675 key.offset = found_key.offset - 1; 3676 } 3677 3678 if (counting) { 3679 btrfs_release_path(path); 3680 counting = false; 3681 goto again; 3682 } 3683 error: 3684 btrfs_free_path(path); 3685 if (enospc_errors) { 3686 btrfs_info(fs_info, "%d enospc errors during balance", 3687 enospc_errors); 3688 if (!ret) 3689 ret = -ENOSPC; 3690 } 3691 3692 return ret; 3693 } 3694 3695 /** 3696 * alloc_profile_is_valid - see if a given profile is valid and reduced 3697 * @flags: profile to validate 3698 * @extended: if true @flags is treated as an extended profile 3699 */ 3700 static int alloc_profile_is_valid(u64 flags, int extended) 3701 { 3702 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3703 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3704 3705 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3706 3707 /* 1) check that all other bits are zeroed */ 3708 if (flags & ~mask) 3709 return 0; 3710 3711 /* 2) see if profile is reduced */ 3712 if (flags == 0) 3713 return !extended; /* "0" is valid for usual profiles */ 3714 3715 return has_single_bit_set(flags); 3716 } 3717 3718 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3719 { 3720 /* cancel requested || normal exit path */ 3721 return atomic_read(&fs_info->balance_cancel_req) || 3722 (atomic_read(&fs_info->balance_pause_req) == 0 && 3723 atomic_read(&fs_info->balance_cancel_req) == 0); 3724 } 3725 3726 /* Non-zero return value signifies invalidity */ 3727 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3728 u64 allowed) 3729 { 3730 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3731 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3732 (bctl_arg->target & ~allowed))); 3733 } 3734 3735 /* 3736 * Fill @buf with textual description of balance filter flags @bargs, up to 3737 * @size_buf including the terminating null. The output may be trimmed if it 3738 * does not fit into the provided buffer. 3739 */ 3740 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3741 u32 size_buf) 3742 { 3743 int ret; 3744 u32 size_bp = size_buf; 3745 char *bp = buf; 3746 u64 flags = bargs->flags; 3747 char tmp_buf[128] = {'\0'}; 3748 3749 if (!flags) 3750 return; 3751 3752 #define CHECK_APPEND_NOARG(a) \ 3753 do { \ 3754 ret = snprintf(bp, size_bp, (a)); \ 3755 if (ret < 0 || ret >= size_bp) \ 3756 goto out_overflow; \ 3757 size_bp -= ret; \ 3758 bp += ret; \ 3759 } while (0) 3760 3761 #define CHECK_APPEND_1ARG(a, v1) \ 3762 do { \ 3763 ret = snprintf(bp, size_bp, (a), (v1)); \ 3764 if (ret < 0 || ret >= size_bp) \ 3765 goto out_overflow; \ 3766 size_bp -= ret; \ 3767 bp += ret; \ 3768 } while (0) 3769 3770 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3771 do { \ 3772 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3773 if (ret < 0 || ret >= size_bp) \ 3774 goto out_overflow; \ 3775 size_bp -= ret; \ 3776 bp += ret; \ 3777 } while (0) 3778 3779 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3780 CHECK_APPEND_1ARG("convert=%s,", 3781 btrfs_bg_type_to_raid_name(bargs->target)); 3782 3783 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3784 CHECK_APPEND_NOARG("soft,"); 3785 3786 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3787 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3788 sizeof(tmp_buf)); 3789 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3790 } 3791 3792 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3793 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3794 3795 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3796 CHECK_APPEND_2ARG("usage=%u..%u,", 3797 bargs->usage_min, bargs->usage_max); 3798 3799 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3800 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3801 3802 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3803 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3804 bargs->pstart, bargs->pend); 3805 3806 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3807 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3808 bargs->vstart, bargs->vend); 3809 3810 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3811 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3812 3813 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3814 CHECK_APPEND_2ARG("limit=%u..%u,", 3815 bargs->limit_min, bargs->limit_max); 3816 3817 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3818 CHECK_APPEND_2ARG("stripes=%u..%u,", 3819 bargs->stripes_min, bargs->stripes_max); 3820 3821 #undef CHECK_APPEND_2ARG 3822 #undef CHECK_APPEND_1ARG 3823 #undef CHECK_APPEND_NOARG 3824 3825 out_overflow: 3826 3827 if (size_bp < size_buf) 3828 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3829 else 3830 buf[0] = '\0'; 3831 } 3832 3833 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3834 { 3835 u32 size_buf = 1024; 3836 char tmp_buf[192] = {'\0'}; 3837 char *buf; 3838 char *bp; 3839 u32 size_bp = size_buf; 3840 int ret; 3841 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3842 3843 buf = kzalloc(size_buf, GFP_KERNEL); 3844 if (!buf) 3845 return; 3846 3847 bp = buf; 3848 3849 #define CHECK_APPEND_1ARG(a, v1) \ 3850 do { \ 3851 ret = snprintf(bp, size_bp, (a), (v1)); \ 3852 if (ret < 0 || ret >= size_bp) \ 3853 goto out_overflow; \ 3854 size_bp -= ret; \ 3855 bp += ret; \ 3856 } while (0) 3857 3858 if (bctl->flags & BTRFS_BALANCE_FORCE) 3859 CHECK_APPEND_1ARG("%s", "-f "); 3860 3861 if (bctl->flags & BTRFS_BALANCE_DATA) { 3862 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 3863 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 3864 } 3865 3866 if (bctl->flags & BTRFS_BALANCE_METADATA) { 3867 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 3868 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 3869 } 3870 3871 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 3872 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 3873 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 3874 } 3875 3876 #undef CHECK_APPEND_1ARG 3877 3878 out_overflow: 3879 3880 if (size_bp < size_buf) 3881 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 3882 btrfs_info(fs_info, "balance: %s %s", 3883 (bctl->flags & BTRFS_BALANCE_RESUME) ? 3884 "resume" : "start", buf); 3885 3886 kfree(buf); 3887 } 3888 3889 /* 3890 * Should be called with balance mutexe held 3891 */ 3892 int btrfs_balance(struct btrfs_fs_info *fs_info, 3893 struct btrfs_balance_control *bctl, 3894 struct btrfs_ioctl_balance_args *bargs) 3895 { 3896 u64 meta_target, data_target; 3897 u64 allowed; 3898 int mixed = 0; 3899 int ret; 3900 u64 num_devices; 3901 unsigned seq; 3902 bool reducing_redundancy; 3903 int i; 3904 3905 if (btrfs_fs_closing(fs_info) || 3906 atomic_read(&fs_info->balance_pause_req) || 3907 atomic_read(&fs_info->balance_cancel_req)) { 3908 ret = -EINVAL; 3909 goto out; 3910 } 3911 3912 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3913 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3914 mixed = 1; 3915 3916 /* 3917 * In case of mixed groups both data and meta should be picked, 3918 * and identical options should be given for both of them. 3919 */ 3920 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3921 if (mixed && (bctl->flags & allowed)) { 3922 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3923 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3924 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3925 btrfs_err(fs_info, 3926 "balance: mixed groups data and metadata options must be the same"); 3927 ret = -EINVAL; 3928 goto out; 3929 } 3930 } 3931 3932 /* 3933 * rw_devices will not change at the moment, device add/delete/replace 3934 * are excluded by EXCL_OP 3935 */ 3936 num_devices = fs_info->fs_devices->rw_devices; 3937 3938 /* 3939 * SINGLE profile on-disk has no profile bit, but in-memory we have a 3940 * special bit for it, to make it easier to distinguish. Thus we need 3941 * to set it manually, or balance would refuse the profile. 3942 */ 3943 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3944 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 3945 if (num_devices >= btrfs_raid_array[i].devs_min) 3946 allowed |= btrfs_raid_array[i].bg_flag; 3947 3948 if (validate_convert_profile(&bctl->data, allowed)) { 3949 btrfs_err(fs_info, 3950 "balance: invalid convert data profile %s", 3951 btrfs_bg_type_to_raid_name(bctl->data.target)); 3952 ret = -EINVAL; 3953 goto out; 3954 } 3955 if (validate_convert_profile(&bctl->meta, allowed)) { 3956 btrfs_err(fs_info, 3957 "balance: invalid convert metadata profile %s", 3958 btrfs_bg_type_to_raid_name(bctl->meta.target)); 3959 ret = -EINVAL; 3960 goto out; 3961 } 3962 if (validate_convert_profile(&bctl->sys, allowed)) { 3963 btrfs_err(fs_info, 3964 "balance: invalid convert system profile %s", 3965 btrfs_bg_type_to_raid_name(bctl->sys.target)); 3966 ret = -EINVAL; 3967 goto out; 3968 } 3969 3970 /* 3971 * Allow to reduce metadata or system integrity only if force set for 3972 * profiles with redundancy (copies, parity) 3973 */ 3974 allowed = 0; 3975 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 3976 if (btrfs_raid_array[i].ncopies >= 2 || 3977 btrfs_raid_array[i].tolerated_failures >= 1) 3978 allowed |= btrfs_raid_array[i].bg_flag; 3979 } 3980 do { 3981 seq = read_seqbegin(&fs_info->profiles_lock); 3982 3983 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3984 (fs_info->avail_system_alloc_bits & allowed) && 3985 !(bctl->sys.target & allowed)) || 3986 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3987 (fs_info->avail_metadata_alloc_bits & allowed) && 3988 !(bctl->meta.target & allowed))) 3989 reducing_redundancy = true; 3990 else 3991 reducing_redundancy = false; 3992 3993 /* if we're not converting, the target field is uninitialized */ 3994 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3995 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 3996 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 3997 bctl->data.target : fs_info->avail_data_alloc_bits; 3998 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3999 4000 if (reducing_redundancy) { 4001 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4002 btrfs_info(fs_info, 4003 "balance: force reducing metadata redundancy"); 4004 } else { 4005 btrfs_err(fs_info, 4006 "balance: reduces metadata redundancy, use --force if you want this"); 4007 ret = -EINVAL; 4008 goto out; 4009 } 4010 } 4011 4012 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4013 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4014 btrfs_warn(fs_info, 4015 "balance: metadata profile %s has lower redundancy than data profile %s", 4016 btrfs_bg_type_to_raid_name(meta_target), 4017 btrfs_bg_type_to_raid_name(data_target)); 4018 } 4019 4020 if (fs_info->send_in_progress) { 4021 btrfs_warn_rl(fs_info, 4022 "cannot run balance while send operations are in progress (%d in progress)", 4023 fs_info->send_in_progress); 4024 ret = -EAGAIN; 4025 goto out; 4026 } 4027 4028 ret = insert_balance_item(fs_info, bctl); 4029 if (ret && ret != -EEXIST) 4030 goto out; 4031 4032 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4033 BUG_ON(ret == -EEXIST); 4034 BUG_ON(fs_info->balance_ctl); 4035 spin_lock(&fs_info->balance_lock); 4036 fs_info->balance_ctl = bctl; 4037 spin_unlock(&fs_info->balance_lock); 4038 } else { 4039 BUG_ON(ret != -EEXIST); 4040 spin_lock(&fs_info->balance_lock); 4041 update_balance_args(bctl); 4042 spin_unlock(&fs_info->balance_lock); 4043 } 4044 4045 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4046 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4047 describe_balance_start_or_resume(fs_info); 4048 mutex_unlock(&fs_info->balance_mutex); 4049 4050 ret = __btrfs_balance(fs_info); 4051 4052 mutex_lock(&fs_info->balance_mutex); 4053 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4054 btrfs_info(fs_info, "balance: paused"); 4055 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req)) 4056 btrfs_info(fs_info, "balance: canceled"); 4057 else 4058 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4059 4060 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4061 4062 if (bargs) { 4063 memset(bargs, 0, sizeof(*bargs)); 4064 btrfs_update_ioctl_balance_args(fs_info, bargs); 4065 } 4066 4067 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4068 balance_need_close(fs_info)) { 4069 reset_balance_state(fs_info); 4070 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4071 } 4072 4073 wake_up(&fs_info->balance_wait_q); 4074 4075 return ret; 4076 out: 4077 if (bctl->flags & BTRFS_BALANCE_RESUME) 4078 reset_balance_state(fs_info); 4079 else 4080 kfree(bctl); 4081 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4082 4083 return ret; 4084 } 4085 4086 static int balance_kthread(void *data) 4087 { 4088 struct btrfs_fs_info *fs_info = data; 4089 int ret = 0; 4090 4091 mutex_lock(&fs_info->balance_mutex); 4092 if (fs_info->balance_ctl) 4093 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4094 mutex_unlock(&fs_info->balance_mutex); 4095 4096 return ret; 4097 } 4098 4099 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4100 { 4101 struct task_struct *tsk; 4102 4103 mutex_lock(&fs_info->balance_mutex); 4104 if (!fs_info->balance_ctl) { 4105 mutex_unlock(&fs_info->balance_mutex); 4106 return 0; 4107 } 4108 mutex_unlock(&fs_info->balance_mutex); 4109 4110 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4111 btrfs_info(fs_info, "balance: resume skipped"); 4112 return 0; 4113 } 4114 4115 /* 4116 * A ro->rw remount sequence should continue with the paused balance 4117 * regardless of who pauses it, system or the user as of now, so set 4118 * the resume flag. 4119 */ 4120 spin_lock(&fs_info->balance_lock); 4121 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4122 spin_unlock(&fs_info->balance_lock); 4123 4124 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4125 return PTR_ERR_OR_ZERO(tsk); 4126 } 4127 4128 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4129 { 4130 struct btrfs_balance_control *bctl; 4131 struct btrfs_balance_item *item; 4132 struct btrfs_disk_balance_args disk_bargs; 4133 struct btrfs_path *path; 4134 struct extent_buffer *leaf; 4135 struct btrfs_key key; 4136 int ret; 4137 4138 path = btrfs_alloc_path(); 4139 if (!path) 4140 return -ENOMEM; 4141 4142 key.objectid = BTRFS_BALANCE_OBJECTID; 4143 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4144 key.offset = 0; 4145 4146 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4147 if (ret < 0) 4148 goto out; 4149 if (ret > 0) { /* ret = -ENOENT; */ 4150 ret = 0; 4151 goto out; 4152 } 4153 4154 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4155 if (!bctl) { 4156 ret = -ENOMEM; 4157 goto out; 4158 } 4159 4160 leaf = path->nodes[0]; 4161 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4162 4163 bctl->flags = btrfs_balance_flags(leaf, item); 4164 bctl->flags |= BTRFS_BALANCE_RESUME; 4165 4166 btrfs_balance_data(leaf, item, &disk_bargs); 4167 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4168 btrfs_balance_meta(leaf, item, &disk_bargs); 4169 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4170 btrfs_balance_sys(leaf, item, &disk_bargs); 4171 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4172 4173 /* 4174 * This should never happen, as the paused balance state is recovered 4175 * during mount without any chance of other exclusive ops to collide. 4176 * 4177 * This gives the exclusive op status to balance and keeps in paused 4178 * state until user intervention (cancel or umount). If the ownership 4179 * cannot be assigned, show a message but do not fail. The balance 4180 * is in a paused state and must have fs_info::balance_ctl properly 4181 * set up. 4182 */ 4183 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 4184 btrfs_warn(fs_info, 4185 "balance: cannot set exclusive op status, resume manually"); 4186 4187 mutex_lock(&fs_info->balance_mutex); 4188 BUG_ON(fs_info->balance_ctl); 4189 spin_lock(&fs_info->balance_lock); 4190 fs_info->balance_ctl = bctl; 4191 spin_unlock(&fs_info->balance_lock); 4192 mutex_unlock(&fs_info->balance_mutex); 4193 out: 4194 btrfs_free_path(path); 4195 return ret; 4196 } 4197 4198 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4199 { 4200 int ret = 0; 4201 4202 mutex_lock(&fs_info->balance_mutex); 4203 if (!fs_info->balance_ctl) { 4204 mutex_unlock(&fs_info->balance_mutex); 4205 return -ENOTCONN; 4206 } 4207 4208 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4209 atomic_inc(&fs_info->balance_pause_req); 4210 mutex_unlock(&fs_info->balance_mutex); 4211 4212 wait_event(fs_info->balance_wait_q, 4213 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4214 4215 mutex_lock(&fs_info->balance_mutex); 4216 /* we are good with balance_ctl ripped off from under us */ 4217 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4218 atomic_dec(&fs_info->balance_pause_req); 4219 } else { 4220 ret = -ENOTCONN; 4221 } 4222 4223 mutex_unlock(&fs_info->balance_mutex); 4224 return ret; 4225 } 4226 4227 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4228 { 4229 mutex_lock(&fs_info->balance_mutex); 4230 if (!fs_info->balance_ctl) { 4231 mutex_unlock(&fs_info->balance_mutex); 4232 return -ENOTCONN; 4233 } 4234 4235 /* 4236 * A paused balance with the item stored on disk can be resumed at 4237 * mount time if the mount is read-write. Otherwise it's still paused 4238 * and we must not allow cancelling as it deletes the item. 4239 */ 4240 if (sb_rdonly(fs_info->sb)) { 4241 mutex_unlock(&fs_info->balance_mutex); 4242 return -EROFS; 4243 } 4244 4245 atomic_inc(&fs_info->balance_cancel_req); 4246 /* 4247 * if we are running just wait and return, balance item is 4248 * deleted in btrfs_balance in this case 4249 */ 4250 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4251 mutex_unlock(&fs_info->balance_mutex); 4252 wait_event(fs_info->balance_wait_q, 4253 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4254 mutex_lock(&fs_info->balance_mutex); 4255 } else { 4256 mutex_unlock(&fs_info->balance_mutex); 4257 /* 4258 * Lock released to allow other waiters to continue, we'll 4259 * reexamine the status again. 4260 */ 4261 mutex_lock(&fs_info->balance_mutex); 4262 4263 if (fs_info->balance_ctl) { 4264 reset_balance_state(fs_info); 4265 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4266 btrfs_info(fs_info, "balance: canceled"); 4267 } 4268 } 4269 4270 BUG_ON(fs_info->balance_ctl || 4271 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4272 atomic_dec(&fs_info->balance_cancel_req); 4273 mutex_unlock(&fs_info->balance_mutex); 4274 return 0; 4275 } 4276 4277 static int btrfs_uuid_scan_kthread(void *data) 4278 { 4279 struct btrfs_fs_info *fs_info = data; 4280 struct btrfs_root *root = fs_info->tree_root; 4281 struct btrfs_key key; 4282 struct btrfs_path *path = NULL; 4283 int ret = 0; 4284 struct extent_buffer *eb; 4285 int slot; 4286 struct btrfs_root_item root_item; 4287 u32 item_size; 4288 struct btrfs_trans_handle *trans = NULL; 4289 4290 path = btrfs_alloc_path(); 4291 if (!path) { 4292 ret = -ENOMEM; 4293 goto out; 4294 } 4295 4296 key.objectid = 0; 4297 key.type = BTRFS_ROOT_ITEM_KEY; 4298 key.offset = 0; 4299 4300 while (1) { 4301 ret = btrfs_search_forward(root, &key, path, 4302 BTRFS_OLDEST_GENERATION); 4303 if (ret) { 4304 if (ret > 0) 4305 ret = 0; 4306 break; 4307 } 4308 4309 if (key.type != BTRFS_ROOT_ITEM_KEY || 4310 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4311 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4312 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4313 goto skip; 4314 4315 eb = path->nodes[0]; 4316 slot = path->slots[0]; 4317 item_size = btrfs_item_size_nr(eb, slot); 4318 if (item_size < sizeof(root_item)) 4319 goto skip; 4320 4321 read_extent_buffer(eb, &root_item, 4322 btrfs_item_ptr_offset(eb, slot), 4323 (int)sizeof(root_item)); 4324 if (btrfs_root_refs(&root_item) == 0) 4325 goto skip; 4326 4327 if (!btrfs_is_empty_uuid(root_item.uuid) || 4328 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4329 if (trans) 4330 goto update_tree; 4331 4332 btrfs_release_path(path); 4333 /* 4334 * 1 - subvol uuid item 4335 * 1 - received_subvol uuid item 4336 */ 4337 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4338 if (IS_ERR(trans)) { 4339 ret = PTR_ERR(trans); 4340 break; 4341 } 4342 continue; 4343 } else { 4344 goto skip; 4345 } 4346 update_tree: 4347 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4348 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4349 BTRFS_UUID_KEY_SUBVOL, 4350 key.objectid); 4351 if (ret < 0) { 4352 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4353 ret); 4354 break; 4355 } 4356 } 4357 4358 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4359 ret = btrfs_uuid_tree_add(trans, 4360 root_item.received_uuid, 4361 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4362 key.objectid); 4363 if (ret < 0) { 4364 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4365 ret); 4366 break; 4367 } 4368 } 4369 4370 skip: 4371 if (trans) { 4372 ret = btrfs_end_transaction(trans); 4373 trans = NULL; 4374 if (ret) 4375 break; 4376 } 4377 4378 btrfs_release_path(path); 4379 if (key.offset < (u64)-1) { 4380 key.offset++; 4381 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4382 key.offset = 0; 4383 key.type = BTRFS_ROOT_ITEM_KEY; 4384 } else if (key.objectid < (u64)-1) { 4385 key.offset = 0; 4386 key.type = BTRFS_ROOT_ITEM_KEY; 4387 key.objectid++; 4388 } else { 4389 break; 4390 } 4391 cond_resched(); 4392 } 4393 4394 out: 4395 btrfs_free_path(path); 4396 if (trans && !IS_ERR(trans)) 4397 btrfs_end_transaction(trans); 4398 if (ret) 4399 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4400 else 4401 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4402 up(&fs_info->uuid_tree_rescan_sem); 4403 return 0; 4404 } 4405 4406 /* 4407 * Callback for btrfs_uuid_tree_iterate(). 4408 * returns: 4409 * 0 check succeeded, the entry is not outdated. 4410 * < 0 if an error occurred. 4411 * > 0 if the check failed, which means the caller shall remove the entry. 4412 */ 4413 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4414 u8 *uuid, u8 type, u64 subid) 4415 { 4416 struct btrfs_key key; 4417 int ret = 0; 4418 struct btrfs_root *subvol_root; 4419 4420 if (type != BTRFS_UUID_KEY_SUBVOL && 4421 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4422 goto out; 4423 4424 key.objectid = subid; 4425 key.type = BTRFS_ROOT_ITEM_KEY; 4426 key.offset = (u64)-1; 4427 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4428 if (IS_ERR(subvol_root)) { 4429 ret = PTR_ERR(subvol_root); 4430 if (ret == -ENOENT) 4431 ret = 1; 4432 goto out; 4433 } 4434 4435 switch (type) { 4436 case BTRFS_UUID_KEY_SUBVOL: 4437 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4438 ret = 1; 4439 break; 4440 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4441 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4442 BTRFS_UUID_SIZE)) 4443 ret = 1; 4444 break; 4445 } 4446 4447 out: 4448 return ret; 4449 } 4450 4451 static int btrfs_uuid_rescan_kthread(void *data) 4452 { 4453 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4454 int ret; 4455 4456 /* 4457 * 1st step is to iterate through the existing UUID tree and 4458 * to delete all entries that contain outdated data. 4459 * 2nd step is to add all missing entries to the UUID tree. 4460 */ 4461 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4462 if (ret < 0) { 4463 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4464 up(&fs_info->uuid_tree_rescan_sem); 4465 return ret; 4466 } 4467 return btrfs_uuid_scan_kthread(data); 4468 } 4469 4470 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4471 { 4472 struct btrfs_trans_handle *trans; 4473 struct btrfs_root *tree_root = fs_info->tree_root; 4474 struct btrfs_root *uuid_root; 4475 struct task_struct *task; 4476 int ret; 4477 4478 /* 4479 * 1 - root node 4480 * 1 - root item 4481 */ 4482 trans = btrfs_start_transaction(tree_root, 2); 4483 if (IS_ERR(trans)) 4484 return PTR_ERR(trans); 4485 4486 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4487 if (IS_ERR(uuid_root)) { 4488 ret = PTR_ERR(uuid_root); 4489 btrfs_abort_transaction(trans, ret); 4490 btrfs_end_transaction(trans); 4491 return ret; 4492 } 4493 4494 fs_info->uuid_root = uuid_root; 4495 4496 ret = btrfs_commit_transaction(trans); 4497 if (ret) 4498 return ret; 4499 4500 down(&fs_info->uuid_tree_rescan_sem); 4501 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4502 if (IS_ERR(task)) { 4503 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4504 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4505 up(&fs_info->uuid_tree_rescan_sem); 4506 return PTR_ERR(task); 4507 } 4508 4509 return 0; 4510 } 4511 4512 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4513 { 4514 struct task_struct *task; 4515 4516 down(&fs_info->uuid_tree_rescan_sem); 4517 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4518 if (IS_ERR(task)) { 4519 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4520 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4521 up(&fs_info->uuid_tree_rescan_sem); 4522 return PTR_ERR(task); 4523 } 4524 4525 return 0; 4526 } 4527 4528 /* 4529 * shrinking a device means finding all of the device extents past 4530 * the new size, and then following the back refs to the chunks. 4531 * The chunk relocation code actually frees the device extent 4532 */ 4533 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4534 { 4535 struct btrfs_fs_info *fs_info = device->fs_info; 4536 struct btrfs_root *root = fs_info->dev_root; 4537 struct btrfs_trans_handle *trans; 4538 struct btrfs_dev_extent *dev_extent = NULL; 4539 struct btrfs_path *path; 4540 u64 length; 4541 u64 chunk_offset; 4542 int ret; 4543 int slot; 4544 int failed = 0; 4545 bool retried = false; 4546 struct extent_buffer *l; 4547 struct btrfs_key key; 4548 struct btrfs_super_block *super_copy = fs_info->super_copy; 4549 u64 old_total = btrfs_super_total_bytes(super_copy); 4550 u64 old_size = btrfs_device_get_total_bytes(device); 4551 u64 diff; 4552 u64 start; 4553 4554 new_size = round_down(new_size, fs_info->sectorsize); 4555 start = new_size; 4556 diff = round_down(old_size - new_size, fs_info->sectorsize); 4557 4558 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4559 return -EINVAL; 4560 4561 path = btrfs_alloc_path(); 4562 if (!path) 4563 return -ENOMEM; 4564 4565 path->reada = READA_BACK; 4566 4567 trans = btrfs_start_transaction(root, 0); 4568 if (IS_ERR(trans)) { 4569 btrfs_free_path(path); 4570 return PTR_ERR(trans); 4571 } 4572 4573 mutex_lock(&fs_info->chunk_mutex); 4574 4575 btrfs_device_set_total_bytes(device, new_size); 4576 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4577 device->fs_devices->total_rw_bytes -= diff; 4578 atomic64_sub(diff, &fs_info->free_chunk_space); 4579 } 4580 4581 /* 4582 * Once the device's size has been set to the new size, ensure all 4583 * in-memory chunks are synced to disk so that the loop below sees them 4584 * and relocates them accordingly. 4585 */ 4586 if (contains_pending_extent(device, &start, diff)) { 4587 mutex_unlock(&fs_info->chunk_mutex); 4588 ret = btrfs_commit_transaction(trans); 4589 if (ret) 4590 goto done; 4591 } else { 4592 mutex_unlock(&fs_info->chunk_mutex); 4593 btrfs_end_transaction(trans); 4594 } 4595 4596 again: 4597 key.objectid = device->devid; 4598 key.offset = (u64)-1; 4599 key.type = BTRFS_DEV_EXTENT_KEY; 4600 4601 do { 4602 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4603 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4604 if (ret < 0) { 4605 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4606 goto done; 4607 } 4608 4609 ret = btrfs_previous_item(root, path, 0, key.type); 4610 if (ret) 4611 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4612 if (ret < 0) 4613 goto done; 4614 if (ret) { 4615 ret = 0; 4616 btrfs_release_path(path); 4617 break; 4618 } 4619 4620 l = path->nodes[0]; 4621 slot = path->slots[0]; 4622 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4623 4624 if (key.objectid != device->devid) { 4625 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4626 btrfs_release_path(path); 4627 break; 4628 } 4629 4630 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4631 length = btrfs_dev_extent_length(l, dev_extent); 4632 4633 if (key.offset + length <= new_size) { 4634 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4635 btrfs_release_path(path); 4636 break; 4637 } 4638 4639 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4640 btrfs_release_path(path); 4641 4642 /* 4643 * We may be relocating the only data chunk we have, 4644 * which could potentially end up with losing data's 4645 * raid profile, so lets allocate an empty one in 4646 * advance. 4647 */ 4648 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4649 if (ret < 0) { 4650 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4651 goto done; 4652 } 4653 4654 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4655 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4656 if (ret == -ENOSPC) { 4657 failed++; 4658 } else if (ret) { 4659 if (ret == -ETXTBSY) { 4660 btrfs_warn(fs_info, 4661 "could not shrink block group %llu due to active swapfile", 4662 chunk_offset); 4663 } 4664 goto done; 4665 } 4666 } while (key.offset-- > 0); 4667 4668 if (failed && !retried) { 4669 failed = 0; 4670 retried = true; 4671 goto again; 4672 } else if (failed && retried) { 4673 ret = -ENOSPC; 4674 goto done; 4675 } 4676 4677 /* Shrinking succeeded, else we would be at "done". */ 4678 trans = btrfs_start_transaction(root, 0); 4679 if (IS_ERR(trans)) { 4680 ret = PTR_ERR(trans); 4681 goto done; 4682 } 4683 4684 mutex_lock(&fs_info->chunk_mutex); 4685 btrfs_device_set_disk_total_bytes(device, new_size); 4686 if (list_empty(&device->post_commit_list)) 4687 list_add_tail(&device->post_commit_list, 4688 &trans->transaction->dev_update_list); 4689 4690 WARN_ON(diff > old_total); 4691 btrfs_set_super_total_bytes(super_copy, 4692 round_down(old_total - diff, fs_info->sectorsize)); 4693 mutex_unlock(&fs_info->chunk_mutex); 4694 4695 /* Now btrfs_update_device() will change the on-disk size. */ 4696 ret = btrfs_update_device(trans, device); 4697 if (ret < 0) { 4698 btrfs_abort_transaction(trans, ret); 4699 btrfs_end_transaction(trans); 4700 } else { 4701 ret = btrfs_commit_transaction(trans); 4702 } 4703 done: 4704 btrfs_free_path(path); 4705 if (ret) { 4706 mutex_lock(&fs_info->chunk_mutex); 4707 btrfs_device_set_total_bytes(device, old_size); 4708 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4709 device->fs_devices->total_rw_bytes += diff; 4710 atomic64_add(diff, &fs_info->free_chunk_space); 4711 mutex_unlock(&fs_info->chunk_mutex); 4712 } 4713 return ret; 4714 } 4715 4716 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4717 struct btrfs_key *key, 4718 struct btrfs_chunk *chunk, int item_size) 4719 { 4720 struct btrfs_super_block *super_copy = fs_info->super_copy; 4721 struct btrfs_disk_key disk_key; 4722 u32 array_size; 4723 u8 *ptr; 4724 4725 mutex_lock(&fs_info->chunk_mutex); 4726 array_size = btrfs_super_sys_array_size(super_copy); 4727 if (array_size + item_size + sizeof(disk_key) 4728 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4729 mutex_unlock(&fs_info->chunk_mutex); 4730 return -EFBIG; 4731 } 4732 4733 ptr = super_copy->sys_chunk_array + array_size; 4734 btrfs_cpu_key_to_disk(&disk_key, key); 4735 memcpy(ptr, &disk_key, sizeof(disk_key)); 4736 ptr += sizeof(disk_key); 4737 memcpy(ptr, chunk, item_size); 4738 item_size += sizeof(disk_key); 4739 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4740 mutex_unlock(&fs_info->chunk_mutex); 4741 4742 return 0; 4743 } 4744 4745 /* 4746 * sort the devices in descending order by max_avail, total_avail 4747 */ 4748 static int btrfs_cmp_device_info(const void *a, const void *b) 4749 { 4750 const struct btrfs_device_info *di_a = a; 4751 const struct btrfs_device_info *di_b = b; 4752 4753 if (di_a->max_avail > di_b->max_avail) 4754 return -1; 4755 if (di_a->max_avail < di_b->max_avail) 4756 return 1; 4757 if (di_a->total_avail > di_b->total_avail) 4758 return -1; 4759 if (di_a->total_avail < di_b->total_avail) 4760 return 1; 4761 return 0; 4762 } 4763 4764 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4765 { 4766 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4767 return; 4768 4769 btrfs_set_fs_incompat(info, RAID56); 4770 } 4771 4772 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4773 { 4774 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4775 return; 4776 4777 btrfs_set_fs_incompat(info, RAID1C34); 4778 } 4779 4780 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4781 u64 start, u64 type) 4782 { 4783 struct btrfs_fs_info *info = trans->fs_info; 4784 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4785 struct btrfs_device *device; 4786 struct map_lookup *map = NULL; 4787 struct extent_map_tree *em_tree; 4788 struct extent_map *em; 4789 struct btrfs_device_info *devices_info = NULL; 4790 u64 total_avail; 4791 int num_stripes; /* total number of stripes to allocate */ 4792 int data_stripes; /* number of stripes that count for 4793 block group size */ 4794 int sub_stripes; /* sub_stripes info for map */ 4795 int dev_stripes; /* stripes per dev */ 4796 int devs_max; /* max devs to use */ 4797 int devs_min; /* min devs needed */ 4798 int devs_increment; /* ndevs has to be a multiple of this */ 4799 int ncopies; /* how many copies to data has */ 4800 int nparity; /* number of stripes worth of bytes to 4801 store parity information */ 4802 int ret; 4803 u64 max_stripe_size; 4804 u64 max_chunk_size; 4805 u64 stripe_size; 4806 u64 chunk_size; 4807 int ndevs; 4808 int i; 4809 int j; 4810 int index; 4811 4812 BUG_ON(!alloc_profile_is_valid(type, 0)); 4813 4814 if (list_empty(&fs_devices->alloc_list)) { 4815 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4816 btrfs_debug(info, "%s: no writable device", __func__); 4817 return -ENOSPC; 4818 } 4819 4820 index = btrfs_bg_flags_to_raid_index(type); 4821 4822 sub_stripes = btrfs_raid_array[index].sub_stripes; 4823 dev_stripes = btrfs_raid_array[index].dev_stripes; 4824 devs_max = btrfs_raid_array[index].devs_max; 4825 if (!devs_max) 4826 devs_max = BTRFS_MAX_DEVS(info); 4827 devs_min = btrfs_raid_array[index].devs_min; 4828 devs_increment = btrfs_raid_array[index].devs_increment; 4829 ncopies = btrfs_raid_array[index].ncopies; 4830 nparity = btrfs_raid_array[index].nparity; 4831 4832 if (type & BTRFS_BLOCK_GROUP_DATA) { 4833 max_stripe_size = SZ_1G; 4834 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4835 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4836 /* for larger filesystems, use larger metadata chunks */ 4837 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4838 max_stripe_size = SZ_1G; 4839 else 4840 max_stripe_size = SZ_256M; 4841 max_chunk_size = max_stripe_size; 4842 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4843 max_stripe_size = SZ_32M; 4844 max_chunk_size = 2 * max_stripe_size; 4845 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 4846 } else { 4847 btrfs_err(info, "invalid chunk type 0x%llx requested", 4848 type); 4849 BUG(); 4850 } 4851 4852 /* We don't want a chunk larger than 10% of writable space */ 4853 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4854 max_chunk_size); 4855 4856 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4857 GFP_NOFS); 4858 if (!devices_info) 4859 return -ENOMEM; 4860 4861 /* 4862 * in the first pass through the devices list, we gather information 4863 * about the available holes on each device. 4864 */ 4865 ndevs = 0; 4866 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4867 u64 max_avail; 4868 u64 dev_offset; 4869 4870 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4871 WARN(1, KERN_ERR 4872 "BTRFS: read-only device in alloc_list\n"); 4873 continue; 4874 } 4875 4876 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4877 &device->dev_state) || 4878 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4879 continue; 4880 4881 if (device->total_bytes > device->bytes_used) 4882 total_avail = device->total_bytes - device->bytes_used; 4883 else 4884 total_avail = 0; 4885 4886 /* If there is no space on this device, skip it. */ 4887 if (total_avail == 0) 4888 continue; 4889 4890 ret = find_free_dev_extent(device, 4891 max_stripe_size * dev_stripes, 4892 &dev_offset, &max_avail); 4893 if (ret && ret != -ENOSPC) 4894 goto error; 4895 4896 if (ret == 0) 4897 max_avail = max_stripe_size * dev_stripes; 4898 4899 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) { 4900 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4901 btrfs_debug(info, 4902 "%s: devid %llu has no free space, have=%llu want=%u", 4903 __func__, device->devid, max_avail, 4904 BTRFS_STRIPE_LEN * dev_stripes); 4905 continue; 4906 } 4907 4908 if (ndevs == fs_devices->rw_devices) { 4909 WARN(1, "%s: found more than %llu devices\n", 4910 __func__, fs_devices->rw_devices); 4911 break; 4912 } 4913 devices_info[ndevs].dev_offset = dev_offset; 4914 devices_info[ndevs].max_avail = max_avail; 4915 devices_info[ndevs].total_avail = total_avail; 4916 devices_info[ndevs].dev = device; 4917 ++ndevs; 4918 } 4919 4920 /* 4921 * now sort the devices by hole size / available space 4922 */ 4923 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4924 btrfs_cmp_device_info, NULL); 4925 4926 /* 4927 * Round down to number of usable stripes, devs_increment can be any 4928 * number so we can't use round_down() 4929 */ 4930 ndevs -= ndevs % devs_increment; 4931 4932 if (ndevs < devs_min) { 4933 ret = -ENOSPC; 4934 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 4935 btrfs_debug(info, 4936 "%s: not enough devices with free space: have=%d minimum required=%d", 4937 __func__, ndevs, devs_min); 4938 } 4939 goto error; 4940 } 4941 4942 ndevs = min(ndevs, devs_max); 4943 4944 /* 4945 * The primary goal is to maximize the number of stripes, so use as 4946 * many devices as possible, even if the stripes are not maximum sized. 4947 * 4948 * The DUP profile stores more than one stripe per device, the 4949 * max_avail is the total size so we have to adjust. 4950 */ 4951 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); 4952 num_stripes = ndevs * dev_stripes; 4953 4954 /* 4955 * this will have to be fixed for RAID1 and RAID10 over 4956 * more drives 4957 */ 4958 data_stripes = (num_stripes - nparity) / ncopies; 4959 4960 /* 4961 * Use the number of data stripes to figure out how big this chunk 4962 * is really going to be in terms of logical address space, 4963 * and compare that answer with the max chunk size. If it's higher, 4964 * we try to reduce stripe_size. 4965 */ 4966 if (stripe_size * data_stripes > max_chunk_size) { 4967 /* 4968 * Reduce stripe_size, round it up to a 16MB boundary again and 4969 * then use it, unless it ends up being even bigger than the 4970 * previous value we had already. 4971 */ 4972 stripe_size = min(round_up(div_u64(max_chunk_size, 4973 data_stripes), SZ_16M), 4974 stripe_size); 4975 } 4976 4977 /* align to BTRFS_STRIPE_LEN */ 4978 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 4979 4980 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4981 if (!map) { 4982 ret = -ENOMEM; 4983 goto error; 4984 } 4985 map->num_stripes = num_stripes; 4986 4987 for (i = 0; i < ndevs; ++i) { 4988 for (j = 0; j < dev_stripes; ++j) { 4989 int s = i * dev_stripes + j; 4990 map->stripes[s].dev = devices_info[i].dev; 4991 map->stripes[s].physical = devices_info[i].dev_offset + 4992 j * stripe_size; 4993 } 4994 } 4995 map->stripe_len = BTRFS_STRIPE_LEN; 4996 map->io_align = BTRFS_STRIPE_LEN; 4997 map->io_width = BTRFS_STRIPE_LEN; 4998 map->type = type; 4999 map->sub_stripes = sub_stripes; 5000 5001 chunk_size = stripe_size * data_stripes; 5002 5003 trace_btrfs_chunk_alloc(info, map, start, chunk_size); 5004 5005 em = alloc_extent_map(); 5006 if (!em) { 5007 kfree(map); 5008 ret = -ENOMEM; 5009 goto error; 5010 } 5011 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5012 em->map_lookup = map; 5013 em->start = start; 5014 em->len = chunk_size; 5015 em->block_start = 0; 5016 em->block_len = em->len; 5017 em->orig_block_len = stripe_size; 5018 5019 em_tree = &info->mapping_tree; 5020 write_lock(&em_tree->lock); 5021 ret = add_extent_mapping(em_tree, em, 0); 5022 if (ret) { 5023 write_unlock(&em_tree->lock); 5024 free_extent_map(em); 5025 goto error; 5026 } 5027 write_unlock(&em_tree->lock); 5028 5029 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size); 5030 if (ret) 5031 goto error_del_extent; 5032 5033 for (i = 0; i < map->num_stripes; i++) { 5034 struct btrfs_device *dev = map->stripes[i].dev; 5035 5036 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size); 5037 if (list_empty(&dev->post_commit_list)) 5038 list_add_tail(&dev->post_commit_list, 5039 &trans->transaction->dev_update_list); 5040 } 5041 5042 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 5043 5044 free_extent_map(em); 5045 check_raid56_incompat_flag(info, type); 5046 check_raid1c34_incompat_flag(info, type); 5047 5048 kfree(devices_info); 5049 return 0; 5050 5051 error_del_extent: 5052 write_lock(&em_tree->lock); 5053 remove_extent_mapping(em_tree, em); 5054 write_unlock(&em_tree->lock); 5055 5056 /* One for our allocation */ 5057 free_extent_map(em); 5058 /* One for the tree reference */ 5059 free_extent_map(em); 5060 error: 5061 kfree(devices_info); 5062 return ret; 5063 } 5064 5065 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5066 u64 chunk_offset, u64 chunk_size) 5067 { 5068 struct btrfs_fs_info *fs_info = trans->fs_info; 5069 struct btrfs_root *extent_root = fs_info->extent_root; 5070 struct btrfs_root *chunk_root = fs_info->chunk_root; 5071 struct btrfs_key key; 5072 struct btrfs_device *device; 5073 struct btrfs_chunk *chunk; 5074 struct btrfs_stripe *stripe; 5075 struct extent_map *em; 5076 struct map_lookup *map; 5077 size_t item_size; 5078 u64 dev_offset; 5079 u64 stripe_size; 5080 int i = 0; 5081 int ret = 0; 5082 5083 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5084 if (IS_ERR(em)) 5085 return PTR_ERR(em); 5086 5087 map = em->map_lookup; 5088 item_size = btrfs_chunk_item_size(map->num_stripes); 5089 stripe_size = em->orig_block_len; 5090 5091 chunk = kzalloc(item_size, GFP_NOFS); 5092 if (!chunk) { 5093 ret = -ENOMEM; 5094 goto out; 5095 } 5096 5097 /* 5098 * Take the device list mutex to prevent races with the final phase of 5099 * a device replace operation that replaces the device object associated 5100 * with the map's stripes, because the device object's id can change 5101 * at any time during that final phase of the device replace operation 5102 * (dev-replace.c:btrfs_dev_replace_finishing()). 5103 */ 5104 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5105 for (i = 0; i < map->num_stripes; i++) { 5106 device = map->stripes[i].dev; 5107 dev_offset = map->stripes[i].physical; 5108 5109 ret = btrfs_update_device(trans, device); 5110 if (ret) 5111 break; 5112 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5113 dev_offset, stripe_size); 5114 if (ret) 5115 break; 5116 } 5117 if (ret) { 5118 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5119 goto out; 5120 } 5121 5122 stripe = &chunk->stripe; 5123 for (i = 0; i < map->num_stripes; i++) { 5124 device = map->stripes[i].dev; 5125 dev_offset = map->stripes[i].physical; 5126 5127 btrfs_set_stack_stripe_devid(stripe, device->devid); 5128 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5129 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5130 stripe++; 5131 } 5132 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5133 5134 btrfs_set_stack_chunk_length(chunk, chunk_size); 5135 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5136 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5137 btrfs_set_stack_chunk_type(chunk, map->type); 5138 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5139 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5140 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5141 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5142 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5143 5144 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5145 key.type = BTRFS_CHUNK_ITEM_KEY; 5146 key.offset = chunk_offset; 5147 5148 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5149 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5150 /* 5151 * TODO: Cleanup of inserted chunk root in case of 5152 * failure. 5153 */ 5154 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5155 } 5156 5157 out: 5158 kfree(chunk); 5159 free_extent_map(em); 5160 return ret; 5161 } 5162 5163 /* 5164 * Chunk allocation falls into two parts. The first part does work 5165 * that makes the new allocated chunk usable, but does not do any operation 5166 * that modifies the chunk tree. The second part does the work that 5167 * requires modifying the chunk tree. This division is important for the 5168 * bootstrap process of adding storage to a seed btrfs. 5169 */ 5170 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5171 { 5172 u64 chunk_offset; 5173 5174 lockdep_assert_held(&trans->fs_info->chunk_mutex); 5175 chunk_offset = find_next_chunk(trans->fs_info); 5176 return __btrfs_alloc_chunk(trans, chunk_offset, type); 5177 } 5178 5179 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5180 { 5181 struct btrfs_fs_info *fs_info = trans->fs_info; 5182 u64 chunk_offset; 5183 u64 sys_chunk_offset; 5184 u64 alloc_profile; 5185 int ret; 5186 5187 chunk_offset = find_next_chunk(fs_info); 5188 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5189 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 5190 if (ret) 5191 return ret; 5192 5193 sys_chunk_offset = find_next_chunk(fs_info); 5194 alloc_profile = btrfs_system_alloc_profile(fs_info); 5195 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5196 return ret; 5197 } 5198 5199 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5200 { 5201 const int index = btrfs_bg_flags_to_raid_index(map->type); 5202 5203 return btrfs_raid_array[index].tolerated_failures; 5204 } 5205 5206 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5207 { 5208 struct extent_map *em; 5209 struct map_lookup *map; 5210 int readonly = 0; 5211 int miss_ndevs = 0; 5212 int i; 5213 5214 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5215 if (IS_ERR(em)) 5216 return 1; 5217 5218 map = em->map_lookup; 5219 for (i = 0; i < map->num_stripes; i++) { 5220 if (test_bit(BTRFS_DEV_STATE_MISSING, 5221 &map->stripes[i].dev->dev_state)) { 5222 miss_ndevs++; 5223 continue; 5224 } 5225 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5226 &map->stripes[i].dev->dev_state)) { 5227 readonly = 1; 5228 goto end; 5229 } 5230 } 5231 5232 /* 5233 * If the number of missing devices is larger than max errors, 5234 * we can not write the data into that chunk successfully, so 5235 * set it readonly. 5236 */ 5237 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5238 readonly = 1; 5239 end: 5240 free_extent_map(em); 5241 return readonly; 5242 } 5243 5244 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5245 { 5246 struct extent_map *em; 5247 5248 while (1) { 5249 write_lock(&tree->lock); 5250 em = lookup_extent_mapping(tree, 0, (u64)-1); 5251 if (em) 5252 remove_extent_mapping(tree, em); 5253 write_unlock(&tree->lock); 5254 if (!em) 5255 break; 5256 /* once for us */ 5257 free_extent_map(em); 5258 /* once for the tree */ 5259 free_extent_map(em); 5260 } 5261 } 5262 5263 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5264 { 5265 struct extent_map *em; 5266 struct map_lookup *map; 5267 int ret; 5268 5269 em = btrfs_get_chunk_map(fs_info, logical, len); 5270 if (IS_ERR(em)) 5271 /* 5272 * We could return errors for these cases, but that could get 5273 * ugly and we'd probably do the same thing which is just not do 5274 * anything else and exit, so return 1 so the callers don't try 5275 * to use other copies. 5276 */ 5277 return 1; 5278 5279 map = em->map_lookup; 5280 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5281 ret = map->num_stripes; 5282 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5283 ret = map->sub_stripes; 5284 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5285 ret = 2; 5286 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5287 /* 5288 * There could be two corrupted data stripes, we need 5289 * to loop retry in order to rebuild the correct data. 5290 * 5291 * Fail a stripe at a time on every retry except the 5292 * stripe under reconstruction. 5293 */ 5294 ret = map->num_stripes; 5295 else 5296 ret = 1; 5297 free_extent_map(em); 5298 5299 down_read(&fs_info->dev_replace.rwsem); 5300 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5301 fs_info->dev_replace.tgtdev) 5302 ret++; 5303 up_read(&fs_info->dev_replace.rwsem); 5304 5305 return ret; 5306 } 5307 5308 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5309 u64 logical) 5310 { 5311 struct extent_map *em; 5312 struct map_lookup *map; 5313 unsigned long len = fs_info->sectorsize; 5314 5315 em = btrfs_get_chunk_map(fs_info, logical, len); 5316 5317 if (!WARN_ON(IS_ERR(em))) { 5318 map = em->map_lookup; 5319 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5320 len = map->stripe_len * nr_data_stripes(map); 5321 free_extent_map(em); 5322 } 5323 return len; 5324 } 5325 5326 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5327 { 5328 struct extent_map *em; 5329 struct map_lookup *map; 5330 int ret = 0; 5331 5332 em = btrfs_get_chunk_map(fs_info, logical, len); 5333 5334 if(!WARN_ON(IS_ERR(em))) { 5335 map = em->map_lookup; 5336 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5337 ret = 1; 5338 free_extent_map(em); 5339 } 5340 return ret; 5341 } 5342 5343 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5344 struct map_lookup *map, int first, 5345 int dev_replace_is_ongoing) 5346 { 5347 int i; 5348 int num_stripes; 5349 int preferred_mirror; 5350 int tolerance; 5351 struct btrfs_device *srcdev; 5352 5353 ASSERT((map->type & 5354 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5355 5356 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5357 num_stripes = map->sub_stripes; 5358 else 5359 num_stripes = map->num_stripes; 5360 5361 preferred_mirror = first + current->pid % num_stripes; 5362 5363 if (dev_replace_is_ongoing && 5364 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5365 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5366 srcdev = fs_info->dev_replace.srcdev; 5367 else 5368 srcdev = NULL; 5369 5370 /* 5371 * try to avoid the drive that is the source drive for a 5372 * dev-replace procedure, only choose it if no other non-missing 5373 * mirror is available 5374 */ 5375 for (tolerance = 0; tolerance < 2; tolerance++) { 5376 if (map->stripes[preferred_mirror].dev->bdev && 5377 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5378 return preferred_mirror; 5379 for (i = first; i < first + num_stripes; i++) { 5380 if (map->stripes[i].dev->bdev && 5381 (tolerance || map->stripes[i].dev != srcdev)) 5382 return i; 5383 } 5384 } 5385 5386 /* we couldn't find one that doesn't fail. Just return something 5387 * and the io error handling code will clean up eventually 5388 */ 5389 return preferred_mirror; 5390 } 5391 5392 static inline int parity_smaller(u64 a, u64 b) 5393 { 5394 return a > b; 5395 } 5396 5397 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5398 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5399 { 5400 struct btrfs_bio_stripe s; 5401 int i; 5402 u64 l; 5403 int again = 1; 5404 5405 while (again) { 5406 again = 0; 5407 for (i = 0; i < num_stripes - 1; i++) { 5408 if (parity_smaller(bbio->raid_map[i], 5409 bbio->raid_map[i+1])) { 5410 s = bbio->stripes[i]; 5411 l = bbio->raid_map[i]; 5412 bbio->stripes[i] = bbio->stripes[i+1]; 5413 bbio->raid_map[i] = bbio->raid_map[i+1]; 5414 bbio->stripes[i+1] = s; 5415 bbio->raid_map[i+1] = l; 5416 5417 again = 1; 5418 } 5419 } 5420 } 5421 } 5422 5423 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5424 { 5425 struct btrfs_bio *bbio = kzalloc( 5426 /* the size of the btrfs_bio */ 5427 sizeof(struct btrfs_bio) + 5428 /* plus the variable array for the stripes */ 5429 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5430 /* plus the variable array for the tgt dev */ 5431 sizeof(int) * (real_stripes) + 5432 /* 5433 * plus the raid_map, which includes both the tgt dev 5434 * and the stripes 5435 */ 5436 sizeof(u64) * (total_stripes), 5437 GFP_NOFS|__GFP_NOFAIL); 5438 5439 atomic_set(&bbio->error, 0); 5440 refcount_set(&bbio->refs, 1); 5441 5442 return bbio; 5443 } 5444 5445 void btrfs_get_bbio(struct btrfs_bio *bbio) 5446 { 5447 WARN_ON(!refcount_read(&bbio->refs)); 5448 refcount_inc(&bbio->refs); 5449 } 5450 5451 void btrfs_put_bbio(struct btrfs_bio *bbio) 5452 { 5453 if (!bbio) 5454 return; 5455 if (refcount_dec_and_test(&bbio->refs)) 5456 kfree(bbio); 5457 } 5458 5459 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5460 /* 5461 * Please note that, discard won't be sent to target device of device 5462 * replace. 5463 */ 5464 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5465 u64 logical, u64 *length_ret, 5466 struct btrfs_bio **bbio_ret) 5467 { 5468 struct extent_map *em; 5469 struct map_lookup *map; 5470 struct btrfs_bio *bbio; 5471 u64 length = *length_ret; 5472 u64 offset; 5473 u64 stripe_nr; 5474 u64 stripe_nr_end; 5475 u64 stripe_end_offset; 5476 u64 stripe_cnt; 5477 u64 stripe_len; 5478 u64 stripe_offset; 5479 u64 num_stripes; 5480 u32 stripe_index; 5481 u32 factor = 0; 5482 u32 sub_stripes = 0; 5483 u64 stripes_per_dev = 0; 5484 u32 remaining_stripes = 0; 5485 u32 last_stripe = 0; 5486 int ret = 0; 5487 int i; 5488 5489 /* discard always return a bbio */ 5490 ASSERT(bbio_ret); 5491 5492 em = btrfs_get_chunk_map(fs_info, logical, length); 5493 if (IS_ERR(em)) 5494 return PTR_ERR(em); 5495 5496 map = em->map_lookup; 5497 /* we don't discard raid56 yet */ 5498 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5499 ret = -EOPNOTSUPP; 5500 goto out; 5501 } 5502 5503 offset = logical - em->start; 5504 length = min_t(u64, em->start + em->len - logical, length); 5505 *length_ret = length; 5506 5507 stripe_len = map->stripe_len; 5508 /* 5509 * stripe_nr counts the total number of stripes we have to stride 5510 * to get to this block 5511 */ 5512 stripe_nr = div64_u64(offset, stripe_len); 5513 5514 /* stripe_offset is the offset of this block in its stripe */ 5515 stripe_offset = offset - stripe_nr * stripe_len; 5516 5517 stripe_nr_end = round_up(offset + length, map->stripe_len); 5518 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5519 stripe_cnt = stripe_nr_end - stripe_nr; 5520 stripe_end_offset = stripe_nr_end * map->stripe_len - 5521 (offset + length); 5522 /* 5523 * after this, stripe_nr is the number of stripes on this 5524 * device we have to walk to find the data, and stripe_index is 5525 * the number of our device in the stripe array 5526 */ 5527 num_stripes = 1; 5528 stripe_index = 0; 5529 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5530 BTRFS_BLOCK_GROUP_RAID10)) { 5531 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5532 sub_stripes = 1; 5533 else 5534 sub_stripes = map->sub_stripes; 5535 5536 factor = map->num_stripes / sub_stripes; 5537 num_stripes = min_t(u64, map->num_stripes, 5538 sub_stripes * stripe_cnt); 5539 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5540 stripe_index *= sub_stripes; 5541 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5542 &remaining_stripes); 5543 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5544 last_stripe *= sub_stripes; 5545 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5546 BTRFS_BLOCK_GROUP_DUP)) { 5547 num_stripes = map->num_stripes; 5548 } else { 5549 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5550 &stripe_index); 5551 } 5552 5553 bbio = alloc_btrfs_bio(num_stripes, 0); 5554 if (!bbio) { 5555 ret = -ENOMEM; 5556 goto out; 5557 } 5558 5559 for (i = 0; i < num_stripes; i++) { 5560 bbio->stripes[i].physical = 5561 map->stripes[stripe_index].physical + 5562 stripe_offset + stripe_nr * map->stripe_len; 5563 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5564 5565 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5566 BTRFS_BLOCK_GROUP_RAID10)) { 5567 bbio->stripes[i].length = stripes_per_dev * 5568 map->stripe_len; 5569 5570 if (i / sub_stripes < remaining_stripes) 5571 bbio->stripes[i].length += 5572 map->stripe_len; 5573 5574 /* 5575 * Special for the first stripe and 5576 * the last stripe: 5577 * 5578 * |-------|...|-------| 5579 * |----------| 5580 * off end_off 5581 */ 5582 if (i < sub_stripes) 5583 bbio->stripes[i].length -= 5584 stripe_offset; 5585 5586 if (stripe_index >= last_stripe && 5587 stripe_index <= (last_stripe + 5588 sub_stripes - 1)) 5589 bbio->stripes[i].length -= 5590 stripe_end_offset; 5591 5592 if (i == sub_stripes - 1) 5593 stripe_offset = 0; 5594 } else { 5595 bbio->stripes[i].length = length; 5596 } 5597 5598 stripe_index++; 5599 if (stripe_index == map->num_stripes) { 5600 stripe_index = 0; 5601 stripe_nr++; 5602 } 5603 } 5604 5605 *bbio_ret = bbio; 5606 bbio->map_type = map->type; 5607 bbio->num_stripes = num_stripes; 5608 out: 5609 free_extent_map(em); 5610 return ret; 5611 } 5612 5613 /* 5614 * In dev-replace case, for repair case (that's the only case where the mirror 5615 * is selected explicitly when calling btrfs_map_block), blocks left of the 5616 * left cursor can also be read from the target drive. 5617 * 5618 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5619 * array of stripes. 5620 * For READ, it also needs to be supported using the same mirror number. 5621 * 5622 * If the requested block is not left of the left cursor, EIO is returned. This 5623 * can happen because btrfs_num_copies() returns one more in the dev-replace 5624 * case. 5625 */ 5626 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5627 u64 logical, u64 length, 5628 u64 srcdev_devid, int *mirror_num, 5629 u64 *physical) 5630 { 5631 struct btrfs_bio *bbio = NULL; 5632 int num_stripes; 5633 int index_srcdev = 0; 5634 int found = 0; 5635 u64 physical_of_found = 0; 5636 int i; 5637 int ret = 0; 5638 5639 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5640 logical, &length, &bbio, 0, 0); 5641 if (ret) { 5642 ASSERT(bbio == NULL); 5643 return ret; 5644 } 5645 5646 num_stripes = bbio->num_stripes; 5647 if (*mirror_num > num_stripes) { 5648 /* 5649 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5650 * that means that the requested area is not left of the left 5651 * cursor 5652 */ 5653 btrfs_put_bbio(bbio); 5654 return -EIO; 5655 } 5656 5657 /* 5658 * process the rest of the function using the mirror_num of the source 5659 * drive. Therefore look it up first. At the end, patch the device 5660 * pointer to the one of the target drive. 5661 */ 5662 for (i = 0; i < num_stripes; i++) { 5663 if (bbio->stripes[i].dev->devid != srcdev_devid) 5664 continue; 5665 5666 /* 5667 * In case of DUP, in order to keep it simple, only add the 5668 * mirror with the lowest physical address 5669 */ 5670 if (found && 5671 physical_of_found <= bbio->stripes[i].physical) 5672 continue; 5673 5674 index_srcdev = i; 5675 found = 1; 5676 physical_of_found = bbio->stripes[i].physical; 5677 } 5678 5679 btrfs_put_bbio(bbio); 5680 5681 ASSERT(found); 5682 if (!found) 5683 return -EIO; 5684 5685 *mirror_num = index_srcdev + 1; 5686 *physical = physical_of_found; 5687 return ret; 5688 } 5689 5690 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5691 struct btrfs_bio **bbio_ret, 5692 struct btrfs_dev_replace *dev_replace, 5693 int *num_stripes_ret, int *max_errors_ret) 5694 { 5695 struct btrfs_bio *bbio = *bbio_ret; 5696 u64 srcdev_devid = dev_replace->srcdev->devid; 5697 int tgtdev_indexes = 0; 5698 int num_stripes = *num_stripes_ret; 5699 int max_errors = *max_errors_ret; 5700 int i; 5701 5702 if (op == BTRFS_MAP_WRITE) { 5703 int index_where_to_add; 5704 5705 /* 5706 * duplicate the write operations while the dev replace 5707 * procedure is running. Since the copying of the old disk to 5708 * the new disk takes place at run time while the filesystem is 5709 * mounted writable, the regular write operations to the old 5710 * disk have to be duplicated to go to the new disk as well. 5711 * 5712 * Note that device->missing is handled by the caller, and that 5713 * the write to the old disk is already set up in the stripes 5714 * array. 5715 */ 5716 index_where_to_add = num_stripes; 5717 for (i = 0; i < num_stripes; i++) { 5718 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5719 /* write to new disk, too */ 5720 struct btrfs_bio_stripe *new = 5721 bbio->stripes + index_where_to_add; 5722 struct btrfs_bio_stripe *old = 5723 bbio->stripes + i; 5724 5725 new->physical = old->physical; 5726 new->length = old->length; 5727 new->dev = dev_replace->tgtdev; 5728 bbio->tgtdev_map[i] = index_where_to_add; 5729 index_where_to_add++; 5730 max_errors++; 5731 tgtdev_indexes++; 5732 } 5733 } 5734 num_stripes = index_where_to_add; 5735 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5736 int index_srcdev = 0; 5737 int found = 0; 5738 u64 physical_of_found = 0; 5739 5740 /* 5741 * During the dev-replace procedure, the target drive can also 5742 * be used to read data in case it is needed to repair a corrupt 5743 * block elsewhere. This is possible if the requested area is 5744 * left of the left cursor. In this area, the target drive is a 5745 * full copy of the source drive. 5746 */ 5747 for (i = 0; i < num_stripes; i++) { 5748 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5749 /* 5750 * In case of DUP, in order to keep it simple, 5751 * only add the mirror with the lowest physical 5752 * address 5753 */ 5754 if (found && 5755 physical_of_found <= 5756 bbio->stripes[i].physical) 5757 continue; 5758 index_srcdev = i; 5759 found = 1; 5760 physical_of_found = bbio->stripes[i].physical; 5761 } 5762 } 5763 if (found) { 5764 struct btrfs_bio_stripe *tgtdev_stripe = 5765 bbio->stripes + num_stripes; 5766 5767 tgtdev_stripe->physical = physical_of_found; 5768 tgtdev_stripe->length = 5769 bbio->stripes[index_srcdev].length; 5770 tgtdev_stripe->dev = dev_replace->tgtdev; 5771 bbio->tgtdev_map[index_srcdev] = num_stripes; 5772 5773 tgtdev_indexes++; 5774 num_stripes++; 5775 } 5776 } 5777 5778 *num_stripes_ret = num_stripes; 5779 *max_errors_ret = max_errors; 5780 bbio->num_tgtdevs = tgtdev_indexes; 5781 *bbio_ret = bbio; 5782 } 5783 5784 static bool need_full_stripe(enum btrfs_map_op op) 5785 { 5786 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5787 } 5788 5789 /* 5790 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5791 * tuple. This information is used to calculate how big a 5792 * particular bio can get before it straddles a stripe. 5793 * 5794 * @fs_info - the filesystem 5795 * @logical - address that we want to figure out the geometry of 5796 * @len - the length of IO we are going to perform, starting at @logical 5797 * @op - type of operation - write or read 5798 * @io_geom - pointer used to return values 5799 * 5800 * Returns < 0 in case a chunk for the given logical address cannot be found, 5801 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5802 */ 5803 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5804 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5805 { 5806 struct extent_map *em; 5807 struct map_lookup *map; 5808 u64 offset; 5809 u64 stripe_offset; 5810 u64 stripe_nr; 5811 u64 stripe_len; 5812 u64 raid56_full_stripe_start = (u64)-1; 5813 int data_stripes; 5814 int ret = 0; 5815 5816 ASSERT(op != BTRFS_MAP_DISCARD); 5817 5818 em = btrfs_get_chunk_map(fs_info, logical, len); 5819 if (IS_ERR(em)) 5820 return PTR_ERR(em); 5821 5822 map = em->map_lookup; 5823 /* Offset of this logical address in the chunk */ 5824 offset = logical - em->start; 5825 /* Len of a stripe in a chunk */ 5826 stripe_len = map->stripe_len; 5827 /* Stripe wher this block falls in */ 5828 stripe_nr = div64_u64(offset, stripe_len); 5829 /* Offset of stripe in the chunk */ 5830 stripe_offset = stripe_nr * stripe_len; 5831 if (offset < stripe_offset) { 5832 btrfs_crit(fs_info, 5833 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5834 stripe_offset, offset, em->start, logical, stripe_len); 5835 ret = -EINVAL; 5836 goto out; 5837 } 5838 5839 /* stripe_offset is the offset of this block in its stripe */ 5840 stripe_offset = offset - stripe_offset; 5841 data_stripes = nr_data_stripes(map); 5842 5843 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5844 u64 max_len = stripe_len - stripe_offset; 5845 5846 /* 5847 * In case of raid56, we need to know the stripe aligned start 5848 */ 5849 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5850 unsigned long full_stripe_len = stripe_len * data_stripes; 5851 raid56_full_stripe_start = offset; 5852 5853 /* 5854 * Allow a write of a full stripe, but make sure we 5855 * don't allow straddling of stripes 5856 */ 5857 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5858 full_stripe_len); 5859 raid56_full_stripe_start *= full_stripe_len; 5860 5861 /* 5862 * For writes to RAID[56], allow a full stripeset across 5863 * all disks. For other RAID types and for RAID[56] 5864 * reads, just allow a single stripe (on a single disk). 5865 */ 5866 if (op == BTRFS_MAP_WRITE) { 5867 max_len = stripe_len * data_stripes - 5868 (offset - raid56_full_stripe_start); 5869 } 5870 } 5871 len = min_t(u64, em->len - offset, max_len); 5872 } else { 5873 len = em->len - offset; 5874 } 5875 5876 io_geom->len = len; 5877 io_geom->offset = offset; 5878 io_geom->stripe_len = stripe_len; 5879 io_geom->stripe_nr = stripe_nr; 5880 io_geom->stripe_offset = stripe_offset; 5881 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 5882 5883 out: 5884 /* once for us */ 5885 free_extent_map(em); 5886 return ret; 5887 } 5888 5889 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5890 enum btrfs_map_op op, 5891 u64 logical, u64 *length, 5892 struct btrfs_bio **bbio_ret, 5893 int mirror_num, int need_raid_map) 5894 { 5895 struct extent_map *em; 5896 struct map_lookup *map; 5897 u64 stripe_offset; 5898 u64 stripe_nr; 5899 u64 stripe_len; 5900 u32 stripe_index; 5901 int data_stripes; 5902 int i; 5903 int ret = 0; 5904 int num_stripes; 5905 int max_errors = 0; 5906 int tgtdev_indexes = 0; 5907 struct btrfs_bio *bbio = NULL; 5908 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5909 int dev_replace_is_ongoing = 0; 5910 int num_alloc_stripes; 5911 int patch_the_first_stripe_for_dev_replace = 0; 5912 u64 physical_to_patch_in_first_stripe = 0; 5913 u64 raid56_full_stripe_start = (u64)-1; 5914 struct btrfs_io_geometry geom; 5915 5916 ASSERT(bbio_ret); 5917 5918 if (op == BTRFS_MAP_DISCARD) 5919 return __btrfs_map_block_for_discard(fs_info, logical, 5920 length, bbio_ret); 5921 5922 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 5923 if (ret < 0) 5924 return ret; 5925 5926 em = btrfs_get_chunk_map(fs_info, logical, *length); 5927 ASSERT(!IS_ERR(em)); 5928 map = em->map_lookup; 5929 5930 *length = geom.len; 5931 stripe_len = geom.stripe_len; 5932 stripe_nr = geom.stripe_nr; 5933 stripe_offset = geom.stripe_offset; 5934 raid56_full_stripe_start = geom.raid56_stripe_offset; 5935 data_stripes = nr_data_stripes(map); 5936 5937 down_read(&dev_replace->rwsem); 5938 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5939 /* 5940 * Hold the semaphore for read during the whole operation, write is 5941 * requested at commit time but must wait. 5942 */ 5943 if (!dev_replace_is_ongoing) 5944 up_read(&dev_replace->rwsem); 5945 5946 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5947 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 5948 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 5949 dev_replace->srcdev->devid, 5950 &mirror_num, 5951 &physical_to_patch_in_first_stripe); 5952 if (ret) 5953 goto out; 5954 else 5955 patch_the_first_stripe_for_dev_replace = 1; 5956 } else if (mirror_num > map->num_stripes) { 5957 mirror_num = 0; 5958 } 5959 5960 num_stripes = 1; 5961 stripe_index = 0; 5962 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5963 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5964 &stripe_index); 5965 if (!need_full_stripe(op)) 5966 mirror_num = 1; 5967 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 5968 if (need_full_stripe(op)) 5969 num_stripes = map->num_stripes; 5970 else if (mirror_num) 5971 stripe_index = mirror_num - 1; 5972 else { 5973 stripe_index = find_live_mirror(fs_info, map, 0, 5974 dev_replace_is_ongoing); 5975 mirror_num = stripe_index + 1; 5976 } 5977 5978 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5979 if (need_full_stripe(op)) { 5980 num_stripes = map->num_stripes; 5981 } else if (mirror_num) { 5982 stripe_index = mirror_num - 1; 5983 } else { 5984 mirror_num = 1; 5985 } 5986 5987 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5988 u32 factor = map->num_stripes / map->sub_stripes; 5989 5990 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5991 stripe_index *= map->sub_stripes; 5992 5993 if (need_full_stripe(op)) 5994 num_stripes = map->sub_stripes; 5995 else if (mirror_num) 5996 stripe_index += mirror_num - 1; 5997 else { 5998 int old_stripe_index = stripe_index; 5999 stripe_index = find_live_mirror(fs_info, map, 6000 stripe_index, 6001 dev_replace_is_ongoing); 6002 mirror_num = stripe_index - old_stripe_index + 1; 6003 } 6004 6005 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6006 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6007 /* push stripe_nr back to the start of the full stripe */ 6008 stripe_nr = div64_u64(raid56_full_stripe_start, 6009 stripe_len * data_stripes); 6010 6011 /* RAID[56] write or recovery. Return all stripes */ 6012 num_stripes = map->num_stripes; 6013 max_errors = nr_parity_stripes(map); 6014 6015 *length = map->stripe_len; 6016 stripe_index = 0; 6017 stripe_offset = 0; 6018 } else { 6019 /* 6020 * Mirror #0 or #1 means the original data block. 6021 * Mirror #2 is RAID5 parity block. 6022 * Mirror #3 is RAID6 Q block. 6023 */ 6024 stripe_nr = div_u64_rem(stripe_nr, 6025 data_stripes, &stripe_index); 6026 if (mirror_num > 1) 6027 stripe_index = data_stripes + mirror_num - 2; 6028 6029 /* We distribute the parity blocks across stripes */ 6030 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6031 &stripe_index); 6032 if (!need_full_stripe(op) && mirror_num <= 1) 6033 mirror_num = 1; 6034 } 6035 } else { 6036 /* 6037 * after this, stripe_nr is the number of stripes on this 6038 * device we have to walk to find the data, and stripe_index is 6039 * the number of our device in the stripe array 6040 */ 6041 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6042 &stripe_index); 6043 mirror_num = stripe_index + 1; 6044 } 6045 if (stripe_index >= map->num_stripes) { 6046 btrfs_crit(fs_info, 6047 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6048 stripe_index, map->num_stripes); 6049 ret = -EINVAL; 6050 goto out; 6051 } 6052 6053 num_alloc_stripes = num_stripes; 6054 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6055 if (op == BTRFS_MAP_WRITE) 6056 num_alloc_stripes <<= 1; 6057 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6058 num_alloc_stripes++; 6059 tgtdev_indexes = num_stripes; 6060 } 6061 6062 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6063 if (!bbio) { 6064 ret = -ENOMEM; 6065 goto out; 6066 } 6067 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 6068 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 6069 6070 /* build raid_map */ 6071 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6072 (need_full_stripe(op) || mirror_num > 1)) { 6073 u64 tmp; 6074 unsigned rot; 6075 6076 bbio->raid_map = (u64 *)((void *)bbio->stripes + 6077 sizeof(struct btrfs_bio_stripe) * 6078 num_alloc_stripes + 6079 sizeof(int) * tgtdev_indexes); 6080 6081 /* Work out the disk rotation on this stripe-set */ 6082 div_u64_rem(stripe_nr, num_stripes, &rot); 6083 6084 /* Fill in the logical address of each stripe */ 6085 tmp = stripe_nr * data_stripes; 6086 for (i = 0; i < data_stripes; i++) 6087 bbio->raid_map[(i+rot) % num_stripes] = 6088 em->start + (tmp + i) * map->stripe_len; 6089 6090 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6091 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6092 bbio->raid_map[(i+rot+1) % num_stripes] = 6093 RAID6_Q_STRIPE; 6094 } 6095 6096 6097 for (i = 0; i < num_stripes; i++) { 6098 bbio->stripes[i].physical = 6099 map->stripes[stripe_index].physical + 6100 stripe_offset + 6101 stripe_nr * map->stripe_len; 6102 bbio->stripes[i].dev = 6103 map->stripes[stripe_index].dev; 6104 stripe_index++; 6105 } 6106 6107 if (need_full_stripe(op)) 6108 max_errors = btrfs_chunk_max_errors(map); 6109 6110 if (bbio->raid_map) 6111 sort_parity_stripes(bbio, num_stripes); 6112 6113 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6114 need_full_stripe(op)) { 6115 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6116 &max_errors); 6117 } 6118 6119 *bbio_ret = bbio; 6120 bbio->map_type = map->type; 6121 bbio->num_stripes = num_stripes; 6122 bbio->max_errors = max_errors; 6123 bbio->mirror_num = mirror_num; 6124 6125 /* 6126 * this is the case that REQ_READ && dev_replace_is_ongoing && 6127 * mirror_num == num_stripes + 1 && dev_replace target drive is 6128 * available as a mirror 6129 */ 6130 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6131 WARN_ON(num_stripes > 1); 6132 bbio->stripes[0].dev = dev_replace->tgtdev; 6133 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6134 bbio->mirror_num = map->num_stripes + 1; 6135 } 6136 out: 6137 if (dev_replace_is_ongoing) { 6138 lockdep_assert_held(&dev_replace->rwsem); 6139 /* Unlock and let waiting writers proceed */ 6140 up_read(&dev_replace->rwsem); 6141 } 6142 free_extent_map(em); 6143 return ret; 6144 } 6145 6146 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6147 u64 logical, u64 *length, 6148 struct btrfs_bio **bbio_ret, int mirror_num) 6149 { 6150 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6151 mirror_num, 0); 6152 } 6153 6154 /* For Scrub/replace */ 6155 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6156 u64 logical, u64 *length, 6157 struct btrfs_bio **bbio_ret) 6158 { 6159 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6160 } 6161 6162 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6163 { 6164 bio->bi_private = bbio->private; 6165 bio->bi_end_io = bbio->end_io; 6166 bio_endio(bio); 6167 6168 btrfs_put_bbio(bbio); 6169 } 6170 6171 static void btrfs_end_bio(struct bio *bio) 6172 { 6173 struct btrfs_bio *bbio = bio->bi_private; 6174 int is_orig_bio = 0; 6175 6176 if (bio->bi_status) { 6177 atomic_inc(&bbio->error); 6178 if (bio->bi_status == BLK_STS_IOERR || 6179 bio->bi_status == BLK_STS_TARGET) { 6180 unsigned int stripe_index = 6181 btrfs_io_bio(bio)->stripe_index; 6182 struct btrfs_device *dev; 6183 6184 BUG_ON(stripe_index >= bbio->num_stripes); 6185 dev = bbio->stripes[stripe_index].dev; 6186 if (dev->bdev) { 6187 if (bio_op(bio) == REQ_OP_WRITE) 6188 btrfs_dev_stat_inc_and_print(dev, 6189 BTRFS_DEV_STAT_WRITE_ERRS); 6190 else if (!(bio->bi_opf & REQ_RAHEAD)) 6191 btrfs_dev_stat_inc_and_print(dev, 6192 BTRFS_DEV_STAT_READ_ERRS); 6193 if (bio->bi_opf & REQ_PREFLUSH) 6194 btrfs_dev_stat_inc_and_print(dev, 6195 BTRFS_DEV_STAT_FLUSH_ERRS); 6196 } 6197 } 6198 } 6199 6200 if (bio == bbio->orig_bio) 6201 is_orig_bio = 1; 6202 6203 btrfs_bio_counter_dec(bbio->fs_info); 6204 6205 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6206 if (!is_orig_bio) { 6207 bio_put(bio); 6208 bio = bbio->orig_bio; 6209 } 6210 6211 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6212 /* only send an error to the higher layers if it is 6213 * beyond the tolerance of the btrfs bio 6214 */ 6215 if (atomic_read(&bbio->error) > bbio->max_errors) { 6216 bio->bi_status = BLK_STS_IOERR; 6217 } else { 6218 /* 6219 * this bio is actually up to date, we didn't 6220 * go over the max number of errors 6221 */ 6222 bio->bi_status = BLK_STS_OK; 6223 } 6224 6225 btrfs_end_bbio(bbio, bio); 6226 } else if (!is_orig_bio) { 6227 bio_put(bio); 6228 } 6229 } 6230 6231 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6232 u64 physical, int dev_nr) 6233 { 6234 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6235 struct btrfs_fs_info *fs_info = bbio->fs_info; 6236 6237 bio->bi_private = bbio; 6238 btrfs_io_bio(bio)->stripe_index = dev_nr; 6239 bio->bi_end_io = btrfs_end_bio; 6240 bio->bi_iter.bi_sector = physical >> 9; 6241 btrfs_debug_in_rcu(fs_info, 6242 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6243 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6244 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid, 6245 bio->bi_iter.bi_size); 6246 bio_set_dev(bio, dev->bdev); 6247 6248 btrfs_bio_counter_inc_noblocked(fs_info); 6249 6250 btrfsic_submit_bio(bio); 6251 } 6252 6253 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6254 { 6255 atomic_inc(&bbio->error); 6256 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6257 /* Should be the original bio. */ 6258 WARN_ON(bio != bbio->orig_bio); 6259 6260 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6261 bio->bi_iter.bi_sector = logical >> 9; 6262 if (atomic_read(&bbio->error) > bbio->max_errors) 6263 bio->bi_status = BLK_STS_IOERR; 6264 else 6265 bio->bi_status = BLK_STS_OK; 6266 btrfs_end_bbio(bbio, bio); 6267 } 6268 } 6269 6270 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6271 int mirror_num) 6272 { 6273 struct btrfs_device *dev; 6274 struct bio *first_bio = bio; 6275 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6276 u64 length = 0; 6277 u64 map_length; 6278 int ret; 6279 int dev_nr; 6280 int total_devs; 6281 struct btrfs_bio *bbio = NULL; 6282 6283 length = bio->bi_iter.bi_size; 6284 map_length = length; 6285 6286 btrfs_bio_counter_inc_blocked(fs_info); 6287 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6288 &map_length, &bbio, mirror_num, 1); 6289 if (ret) { 6290 btrfs_bio_counter_dec(fs_info); 6291 return errno_to_blk_status(ret); 6292 } 6293 6294 total_devs = bbio->num_stripes; 6295 bbio->orig_bio = first_bio; 6296 bbio->private = first_bio->bi_private; 6297 bbio->end_io = first_bio->bi_end_io; 6298 bbio->fs_info = fs_info; 6299 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6300 6301 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6302 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6303 /* In this case, map_length has been set to the length of 6304 a single stripe; not the whole write */ 6305 if (bio_op(bio) == REQ_OP_WRITE) { 6306 ret = raid56_parity_write(fs_info, bio, bbio, 6307 map_length); 6308 } else { 6309 ret = raid56_parity_recover(fs_info, bio, bbio, 6310 map_length, mirror_num, 1); 6311 } 6312 6313 btrfs_bio_counter_dec(fs_info); 6314 return errno_to_blk_status(ret); 6315 } 6316 6317 if (map_length < length) { 6318 btrfs_crit(fs_info, 6319 "mapping failed logical %llu bio len %llu len %llu", 6320 logical, length, map_length); 6321 BUG(); 6322 } 6323 6324 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6325 dev = bbio->stripes[dev_nr].dev; 6326 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6327 &dev->dev_state) || 6328 (bio_op(first_bio) == REQ_OP_WRITE && 6329 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6330 bbio_error(bbio, first_bio, logical); 6331 continue; 6332 } 6333 6334 if (dev_nr < total_devs - 1) 6335 bio = btrfs_bio_clone(first_bio); 6336 else 6337 bio = first_bio; 6338 6339 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6340 dev_nr); 6341 } 6342 btrfs_bio_counter_dec(fs_info); 6343 return BLK_STS_OK; 6344 } 6345 6346 /* 6347 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6348 * return NULL. 6349 * 6350 * If devid and uuid are both specified, the match must be exact, otherwise 6351 * only devid is used. 6352 * 6353 * If @seed is true, traverse through the seed devices. 6354 */ 6355 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6356 u64 devid, u8 *uuid, u8 *fsid, 6357 bool seed) 6358 { 6359 struct btrfs_device *device; 6360 6361 while (fs_devices) { 6362 if (!fsid || 6363 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6364 list_for_each_entry(device, &fs_devices->devices, 6365 dev_list) { 6366 if (device->devid == devid && 6367 (!uuid || memcmp(device->uuid, uuid, 6368 BTRFS_UUID_SIZE) == 0)) 6369 return device; 6370 } 6371 } 6372 if (seed) 6373 fs_devices = fs_devices->seed; 6374 else 6375 return NULL; 6376 } 6377 return NULL; 6378 } 6379 6380 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6381 u64 devid, u8 *dev_uuid) 6382 { 6383 struct btrfs_device *device; 6384 6385 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6386 if (IS_ERR(device)) 6387 return device; 6388 6389 list_add(&device->dev_list, &fs_devices->devices); 6390 device->fs_devices = fs_devices; 6391 fs_devices->num_devices++; 6392 6393 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6394 fs_devices->missing_devices++; 6395 6396 return device; 6397 } 6398 6399 /** 6400 * btrfs_alloc_device - allocate struct btrfs_device 6401 * @fs_info: used only for generating a new devid, can be NULL if 6402 * devid is provided (i.e. @devid != NULL). 6403 * @devid: a pointer to devid for this device. If NULL a new devid 6404 * is generated. 6405 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6406 * is generated. 6407 * 6408 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6409 * on error. Returned struct is not linked onto any lists and must be 6410 * destroyed with btrfs_free_device. 6411 */ 6412 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6413 const u64 *devid, 6414 const u8 *uuid) 6415 { 6416 struct btrfs_device *dev; 6417 u64 tmp; 6418 6419 if (WARN_ON(!devid && !fs_info)) 6420 return ERR_PTR(-EINVAL); 6421 6422 dev = __alloc_device(); 6423 if (IS_ERR(dev)) 6424 return dev; 6425 6426 if (devid) 6427 tmp = *devid; 6428 else { 6429 int ret; 6430 6431 ret = find_next_devid(fs_info, &tmp); 6432 if (ret) { 6433 btrfs_free_device(dev); 6434 return ERR_PTR(ret); 6435 } 6436 } 6437 dev->devid = tmp; 6438 6439 if (uuid) 6440 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6441 else 6442 generate_random_uuid(dev->uuid); 6443 6444 return dev; 6445 } 6446 6447 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6448 u64 devid, u8 *uuid, bool error) 6449 { 6450 if (error) 6451 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6452 devid, uuid); 6453 else 6454 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6455 devid, uuid); 6456 } 6457 6458 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6459 { 6460 int index = btrfs_bg_flags_to_raid_index(type); 6461 int ncopies = btrfs_raid_array[index].ncopies; 6462 const int nparity = btrfs_raid_array[index].nparity; 6463 int data_stripes; 6464 6465 if (nparity) 6466 data_stripes = num_stripes - nparity; 6467 else 6468 data_stripes = num_stripes / ncopies; 6469 6470 return div_u64(chunk_len, data_stripes); 6471 } 6472 6473 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6474 struct btrfs_chunk *chunk) 6475 { 6476 struct btrfs_fs_info *fs_info = leaf->fs_info; 6477 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6478 struct map_lookup *map; 6479 struct extent_map *em; 6480 u64 logical; 6481 u64 length; 6482 u64 devid; 6483 u8 uuid[BTRFS_UUID_SIZE]; 6484 int num_stripes; 6485 int ret; 6486 int i; 6487 6488 logical = key->offset; 6489 length = btrfs_chunk_length(leaf, chunk); 6490 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6491 6492 /* 6493 * Only need to verify chunk item if we're reading from sys chunk array, 6494 * as chunk item in tree block is already verified by tree-checker. 6495 */ 6496 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6497 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6498 if (ret) 6499 return ret; 6500 } 6501 6502 read_lock(&map_tree->lock); 6503 em = lookup_extent_mapping(map_tree, logical, 1); 6504 read_unlock(&map_tree->lock); 6505 6506 /* already mapped? */ 6507 if (em && em->start <= logical && em->start + em->len > logical) { 6508 free_extent_map(em); 6509 return 0; 6510 } else if (em) { 6511 free_extent_map(em); 6512 } 6513 6514 em = alloc_extent_map(); 6515 if (!em) 6516 return -ENOMEM; 6517 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6518 if (!map) { 6519 free_extent_map(em); 6520 return -ENOMEM; 6521 } 6522 6523 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6524 em->map_lookup = map; 6525 em->start = logical; 6526 em->len = length; 6527 em->orig_start = 0; 6528 em->block_start = 0; 6529 em->block_len = em->len; 6530 6531 map->num_stripes = num_stripes; 6532 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6533 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6534 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6535 map->type = btrfs_chunk_type(leaf, chunk); 6536 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6537 map->verified_stripes = 0; 6538 em->orig_block_len = calc_stripe_length(map->type, em->len, 6539 map->num_stripes); 6540 for (i = 0; i < num_stripes; i++) { 6541 map->stripes[i].physical = 6542 btrfs_stripe_offset_nr(leaf, chunk, i); 6543 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6544 read_extent_buffer(leaf, uuid, (unsigned long) 6545 btrfs_stripe_dev_uuid_nr(chunk, i), 6546 BTRFS_UUID_SIZE); 6547 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6548 devid, uuid, NULL, true); 6549 if (!map->stripes[i].dev && 6550 !btrfs_test_opt(fs_info, DEGRADED)) { 6551 free_extent_map(em); 6552 btrfs_report_missing_device(fs_info, devid, uuid, true); 6553 return -ENOENT; 6554 } 6555 if (!map->stripes[i].dev) { 6556 map->stripes[i].dev = 6557 add_missing_dev(fs_info->fs_devices, devid, 6558 uuid); 6559 if (IS_ERR(map->stripes[i].dev)) { 6560 free_extent_map(em); 6561 btrfs_err(fs_info, 6562 "failed to init missing dev %llu: %ld", 6563 devid, PTR_ERR(map->stripes[i].dev)); 6564 return PTR_ERR(map->stripes[i].dev); 6565 } 6566 btrfs_report_missing_device(fs_info, devid, uuid, false); 6567 } 6568 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6569 &(map->stripes[i].dev->dev_state)); 6570 6571 } 6572 6573 write_lock(&map_tree->lock); 6574 ret = add_extent_mapping(map_tree, em, 0); 6575 write_unlock(&map_tree->lock); 6576 if (ret < 0) { 6577 btrfs_err(fs_info, 6578 "failed to add chunk map, start=%llu len=%llu: %d", 6579 em->start, em->len, ret); 6580 } 6581 free_extent_map(em); 6582 6583 return ret; 6584 } 6585 6586 static void fill_device_from_item(struct extent_buffer *leaf, 6587 struct btrfs_dev_item *dev_item, 6588 struct btrfs_device *device) 6589 { 6590 unsigned long ptr; 6591 6592 device->devid = btrfs_device_id(leaf, dev_item); 6593 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6594 device->total_bytes = device->disk_total_bytes; 6595 device->commit_total_bytes = device->disk_total_bytes; 6596 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6597 device->commit_bytes_used = device->bytes_used; 6598 device->type = btrfs_device_type(leaf, dev_item); 6599 device->io_align = btrfs_device_io_align(leaf, dev_item); 6600 device->io_width = btrfs_device_io_width(leaf, dev_item); 6601 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6602 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6603 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6604 6605 ptr = btrfs_device_uuid(dev_item); 6606 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6607 } 6608 6609 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6610 u8 *fsid) 6611 { 6612 struct btrfs_fs_devices *fs_devices; 6613 int ret; 6614 6615 lockdep_assert_held(&uuid_mutex); 6616 ASSERT(fsid); 6617 6618 fs_devices = fs_info->fs_devices->seed; 6619 while (fs_devices) { 6620 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6621 return fs_devices; 6622 6623 fs_devices = fs_devices->seed; 6624 } 6625 6626 fs_devices = find_fsid(fsid, NULL); 6627 if (!fs_devices) { 6628 if (!btrfs_test_opt(fs_info, DEGRADED)) 6629 return ERR_PTR(-ENOENT); 6630 6631 fs_devices = alloc_fs_devices(fsid, NULL); 6632 if (IS_ERR(fs_devices)) 6633 return fs_devices; 6634 6635 fs_devices->seeding = true; 6636 fs_devices->opened = 1; 6637 return fs_devices; 6638 } 6639 6640 fs_devices = clone_fs_devices(fs_devices); 6641 if (IS_ERR(fs_devices)) 6642 return fs_devices; 6643 6644 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6645 if (ret) { 6646 free_fs_devices(fs_devices); 6647 fs_devices = ERR_PTR(ret); 6648 goto out; 6649 } 6650 6651 if (!fs_devices->seeding) { 6652 close_fs_devices(fs_devices); 6653 free_fs_devices(fs_devices); 6654 fs_devices = ERR_PTR(-EINVAL); 6655 goto out; 6656 } 6657 6658 fs_devices->seed = fs_info->fs_devices->seed; 6659 fs_info->fs_devices->seed = fs_devices; 6660 out: 6661 return fs_devices; 6662 } 6663 6664 static int read_one_dev(struct extent_buffer *leaf, 6665 struct btrfs_dev_item *dev_item) 6666 { 6667 struct btrfs_fs_info *fs_info = leaf->fs_info; 6668 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6669 struct btrfs_device *device; 6670 u64 devid; 6671 int ret; 6672 u8 fs_uuid[BTRFS_FSID_SIZE]; 6673 u8 dev_uuid[BTRFS_UUID_SIZE]; 6674 6675 devid = btrfs_device_id(leaf, dev_item); 6676 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6677 BTRFS_UUID_SIZE); 6678 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6679 BTRFS_FSID_SIZE); 6680 6681 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6682 fs_devices = open_seed_devices(fs_info, fs_uuid); 6683 if (IS_ERR(fs_devices)) 6684 return PTR_ERR(fs_devices); 6685 } 6686 6687 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6688 fs_uuid, true); 6689 if (!device) { 6690 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6691 btrfs_report_missing_device(fs_info, devid, 6692 dev_uuid, true); 6693 return -ENOENT; 6694 } 6695 6696 device = add_missing_dev(fs_devices, devid, dev_uuid); 6697 if (IS_ERR(device)) { 6698 btrfs_err(fs_info, 6699 "failed to add missing dev %llu: %ld", 6700 devid, PTR_ERR(device)); 6701 return PTR_ERR(device); 6702 } 6703 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6704 } else { 6705 if (!device->bdev) { 6706 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6707 btrfs_report_missing_device(fs_info, 6708 devid, dev_uuid, true); 6709 return -ENOENT; 6710 } 6711 btrfs_report_missing_device(fs_info, devid, 6712 dev_uuid, false); 6713 } 6714 6715 if (!device->bdev && 6716 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6717 /* 6718 * this happens when a device that was properly setup 6719 * in the device info lists suddenly goes bad. 6720 * device->bdev is NULL, and so we have to set 6721 * device->missing to one here 6722 */ 6723 device->fs_devices->missing_devices++; 6724 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6725 } 6726 6727 /* Move the device to its own fs_devices */ 6728 if (device->fs_devices != fs_devices) { 6729 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6730 &device->dev_state)); 6731 6732 list_move(&device->dev_list, &fs_devices->devices); 6733 device->fs_devices->num_devices--; 6734 fs_devices->num_devices++; 6735 6736 device->fs_devices->missing_devices--; 6737 fs_devices->missing_devices++; 6738 6739 device->fs_devices = fs_devices; 6740 } 6741 } 6742 6743 if (device->fs_devices != fs_info->fs_devices) { 6744 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6745 if (device->generation != 6746 btrfs_device_generation(leaf, dev_item)) 6747 return -EINVAL; 6748 } 6749 6750 fill_device_from_item(leaf, dev_item, device); 6751 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6752 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6753 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6754 device->fs_devices->total_rw_bytes += device->total_bytes; 6755 atomic64_add(device->total_bytes - device->bytes_used, 6756 &fs_info->free_chunk_space); 6757 } 6758 ret = 0; 6759 return ret; 6760 } 6761 6762 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6763 { 6764 struct btrfs_root *root = fs_info->tree_root; 6765 struct btrfs_super_block *super_copy = fs_info->super_copy; 6766 struct extent_buffer *sb; 6767 struct btrfs_disk_key *disk_key; 6768 struct btrfs_chunk *chunk; 6769 u8 *array_ptr; 6770 unsigned long sb_array_offset; 6771 int ret = 0; 6772 u32 num_stripes; 6773 u32 array_size; 6774 u32 len = 0; 6775 u32 cur_offset; 6776 u64 type; 6777 struct btrfs_key key; 6778 6779 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6780 /* 6781 * This will create extent buffer of nodesize, superblock size is 6782 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6783 * overallocate but we can keep it as-is, only the first page is used. 6784 */ 6785 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6786 if (IS_ERR(sb)) 6787 return PTR_ERR(sb); 6788 set_extent_buffer_uptodate(sb); 6789 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6790 /* 6791 * The sb extent buffer is artificial and just used to read the system array. 6792 * set_extent_buffer_uptodate() call does not properly mark all it's 6793 * pages up-to-date when the page is larger: extent does not cover the 6794 * whole page and consequently check_page_uptodate does not find all 6795 * the page's extents up-to-date (the hole beyond sb), 6796 * write_extent_buffer then triggers a WARN_ON. 6797 * 6798 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6799 * but sb spans only this function. Add an explicit SetPageUptodate call 6800 * to silence the warning eg. on PowerPC 64. 6801 */ 6802 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6803 SetPageUptodate(sb->pages[0]); 6804 6805 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6806 array_size = btrfs_super_sys_array_size(super_copy); 6807 6808 array_ptr = super_copy->sys_chunk_array; 6809 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6810 cur_offset = 0; 6811 6812 while (cur_offset < array_size) { 6813 disk_key = (struct btrfs_disk_key *)array_ptr; 6814 len = sizeof(*disk_key); 6815 if (cur_offset + len > array_size) 6816 goto out_short_read; 6817 6818 btrfs_disk_key_to_cpu(&key, disk_key); 6819 6820 array_ptr += len; 6821 sb_array_offset += len; 6822 cur_offset += len; 6823 6824 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 6825 btrfs_err(fs_info, 6826 "unexpected item type %u in sys_array at offset %u", 6827 (u32)key.type, cur_offset); 6828 ret = -EIO; 6829 break; 6830 } 6831 6832 chunk = (struct btrfs_chunk *)sb_array_offset; 6833 /* 6834 * At least one btrfs_chunk with one stripe must be present, 6835 * exact stripe count check comes afterwards 6836 */ 6837 len = btrfs_chunk_item_size(1); 6838 if (cur_offset + len > array_size) 6839 goto out_short_read; 6840 6841 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6842 if (!num_stripes) { 6843 btrfs_err(fs_info, 6844 "invalid number of stripes %u in sys_array at offset %u", 6845 num_stripes, cur_offset); 6846 ret = -EIO; 6847 break; 6848 } 6849 6850 type = btrfs_chunk_type(sb, chunk); 6851 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6852 btrfs_err(fs_info, 6853 "invalid chunk type %llu in sys_array at offset %u", 6854 type, cur_offset); 6855 ret = -EIO; 6856 break; 6857 } 6858 6859 len = btrfs_chunk_item_size(num_stripes); 6860 if (cur_offset + len > array_size) 6861 goto out_short_read; 6862 6863 ret = read_one_chunk(&key, sb, chunk); 6864 if (ret) 6865 break; 6866 6867 array_ptr += len; 6868 sb_array_offset += len; 6869 cur_offset += len; 6870 } 6871 clear_extent_buffer_uptodate(sb); 6872 free_extent_buffer_stale(sb); 6873 return ret; 6874 6875 out_short_read: 6876 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6877 len, cur_offset); 6878 clear_extent_buffer_uptodate(sb); 6879 free_extent_buffer_stale(sb); 6880 return -EIO; 6881 } 6882 6883 /* 6884 * Check if all chunks in the fs are OK for read-write degraded mount 6885 * 6886 * If the @failing_dev is specified, it's accounted as missing. 6887 * 6888 * Return true if all chunks meet the minimal RW mount requirements. 6889 * Return false if any chunk doesn't meet the minimal RW mount requirements. 6890 */ 6891 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 6892 struct btrfs_device *failing_dev) 6893 { 6894 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6895 struct extent_map *em; 6896 u64 next_start = 0; 6897 bool ret = true; 6898 6899 read_lock(&map_tree->lock); 6900 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 6901 read_unlock(&map_tree->lock); 6902 /* No chunk at all? Return false anyway */ 6903 if (!em) { 6904 ret = false; 6905 goto out; 6906 } 6907 while (em) { 6908 struct map_lookup *map; 6909 int missing = 0; 6910 int max_tolerated; 6911 int i; 6912 6913 map = em->map_lookup; 6914 max_tolerated = 6915 btrfs_get_num_tolerated_disk_barrier_failures( 6916 map->type); 6917 for (i = 0; i < map->num_stripes; i++) { 6918 struct btrfs_device *dev = map->stripes[i].dev; 6919 6920 if (!dev || !dev->bdev || 6921 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 6922 dev->last_flush_error) 6923 missing++; 6924 else if (failing_dev && failing_dev == dev) 6925 missing++; 6926 } 6927 if (missing > max_tolerated) { 6928 if (!failing_dev) 6929 btrfs_warn(fs_info, 6930 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 6931 em->start, missing, max_tolerated); 6932 free_extent_map(em); 6933 ret = false; 6934 goto out; 6935 } 6936 next_start = extent_map_end(em); 6937 free_extent_map(em); 6938 6939 read_lock(&map_tree->lock); 6940 em = lookup_extent_mapping(map_tree, next_start, 6941 (u64)(-1) - next_start); 6942 read_unlock(&map_tree->lock); 6943 } 6944 out: 6945 return ret; 6946 } 6947 6948 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 6949 { 6950 struct btrfs_root *root = fs_info->chunk_root; 6951 struct btrfs_path *path; 6952 struct extent_buffer *leaf; 6953 struct btrfs_key key; 6954 struct btrfs_key found_key; 6955 int ret; 6956 int slot; 6957 u64 total_dev = 0; 6958 6959 path = btrfs_alloc_path(); 6960 if (!path) 6961 return -ENOMEM; 6962 6963 /* 6964 * uuid_mutex is needed only if we are mounting a sprout FS 6965 * otherwise we don't need it. 6966 */ 6967 mutex_lock(&uuid_mutex); 6968 mutex_lock(&fs_info->chunk_mutex); 6969 6970 /* 6971 * Read all device items, and then all the chunk items. All 6972 * device items are found before any chunk item (their object id 6973 * is smaller than the lowest possible object id for a chunk 6974 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6975 */ 6976 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6977 key.offset = 0; 6978 key.type = 0; 6979 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6980 if (ret < 0) 6981 goto error; 6982 while (1) { 6983 leaf = path->nodes[0]; 6984 slot = path->slots[0]; 6985 if (slot >= btrfs_header_nritems(leaf)) { 6986 ret = btrfs_next_leaf(root, path); 6987 if (ret == 0) 6988 continue; 6989 if (ret < 0) 6990 goto error; 6991 break; 6992 } 6993 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6994 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6995 struct btrfs_dev_item *dev_item; 6996 dev_item = btrfs_item_ptr(leaf, slot, 6997 struct btrfs_dev_item); 6998 ret = read_one_dev(leaf, dev_item); 6999 if (ret) 7000 goto error; 7001 total_dev++; 7002 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7003 struct btrfs_chunk *chunk; 7004 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7005 ret = read_one_chunk(&found_key, leaf, chunk); 7006 if (ret) 7007 goto error; 7008 } 7009 path->slots[0]++; 7010 } 7011 7012 /* 7013 * After loading chunk tree, we've got all device information, 7014 * do another round of validation checks. 7015 */ 7016 if (total_dev != fs_info->fs_devices->total_devices) { 7017 btrfs_err(fs_info, 7018 "super_num_devices %llu mismatch with num_devices %llu found here", 7019 btrfs_super_num_devices(fs_info->super_copy), 7020 total_dev); 7021 ret = -EINVAL; 7022 goto error; 7023 } 7024 if (btrfs_super_total_bytes(fs_info->super_copy) < 7025 fs_info->fs_devices->total_rw_bytes) { 7026 btrfs_err(fs_info, 7027 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7028 btrfs_super_total_bytes(fs_info->super_copy), 7029 fs_info->fs_devices->total_rw_bytes); 7030 ret = -EINVAL; 7031 goto error; 7032 } 7033 ret = 0; 7034 error: 7035 mutex_unlock(&fs_info->chunk_mutex); 7036 mutex_unlock(&uuid_mutex); 7037 7038 btrfs_free_path(path); 7039 return ret; 7040 } 7041 7042 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7043 { 7044 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7045 struct btrfs_device *device; 7046 7047 while (fs_devices) { 7048 mutex_lock(&fs_devices->device_list_mutex); 7049 list_for_each_entry(device, &fs_devices->devices, dev_list) 7050 device->fs_info = fs_info; 7051 mutex_unlock(&fs_devices->device_list_mutex); 7052 7053 fs_devices = fs_devices->seed; 7054 } 7055 } 7056 7057 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7058 const struct btrfs_dev_stats_item *ptr, 7059 int index) 7060 { 7061 u64 val; 7062 7063 read_extent_buffer(eb, &val, 7064 offsetof(struct btrfs_dev_stats_item, values) + 7065 ((unsigned long)ptr) + (index * sizeof(u64)), 7066 sizeof(val)); 7067 return val; 7068 } 7069 7070 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7071 struct btrfs_dev_stats_item *ptr, 7072 int index, u64 val) 7073 { 7074 write_extent_buffer(eb, &val, 7075 offsetof(struct btrfs_dev_stats_item, values) + 7076 ((unsigned long)ptr) + (index * sizeof(u64)), 7077 sizeof(val)); 7078 } 7079 7080 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7081 { 7082 struct btrfs_key key; 7083 struct btrfs_root *dev_root = fs_info->dev_root; 7084 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7085 struct extent_buffer *eb; 7086 int slot; 7087 int ret = 0; 7088 struct btrfs_device *device; 7089 struct btrfs_path *path = NULL; 7090 int i; 7091 7092 path = btrfs_alloc_path(); 7093 if (!path) 7094 return -ENOMEM; 7095 7096 mutex_lock(&fs_devices->device_list_mutex); 7097 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7098 int item_size; 7099 struct btrfs_dev_stats_item *ptr; 7100 7101 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7102 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7103 key.offset = device->devid; 7104 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 7105 if (ret) { 7106 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7107 btrfs_dev_stat_set(device, i, 0); 7108 device->dev_stats_valid = 1; 7109 btrfs_release_path(path); 7110 continue; 7111 } 7112 slot = path->slots[0]; 7113 eb = path->nodes[0]; 7114 item_size = btrfs_item_size_nr(eb, slot); 7115 7116 ptr = btrfs_item_ptr(eb, slot, 7117 struct btrfs_dev_stats_item); 7118 7119 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7120 if (item_size >= (1 + i) * sizeof(__le64)) 7121 btrfs_dev_stat_set(device, i, 7122 btrfs_dev_stats_value(eb, ptr, i)); 7123 else 7124 btrfs_dev_stat_set(device, i, 0); 7125 } 7126 7127 device->dev_stats_valid = 1; 7128 btrfs_dev_stat_print_on_load(device); 7129 btrfs_release_path(path); 7130 } 7131 mutex_unlock(&fs_devices->device_list_mutex); 7132 7133 btrfs_free_path(path); 7134 return ret < 0 ? ret : 0; 7135 } 7136 7137 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7138 struct btrfs_device *device) 7139 { 7140 struct btrfs_fs_info *fs_info = trans->fs_info; 7141 struct btrfs_root *dev_root = fs_info->dev_root; 7142 struct btrfs_path *path; 7143 struct btrfs_key key; 7144 struct extent_buffer *eb; 7145 struct btrfs_dev_stats_item *ptr; 7146 int ret; 7147 int i; 7148 7149 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7150 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7151 key.offset = device->devid; 7152 7153 path = btrfs_alloc_path(); 7154 if (!path) 7155 return -ENOMEM; 7156 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7157 if (ret < 0) { 7158 btrfs_warn_in_rcu(fs_info, 7159 "error %d while searching for dev_stats item for device %s", 7160 ret, rcu_str_deref(device->name)); 7161 goto out; 7162 } 7163 7164 if (ret == 0 && 7165 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7166 /* need to delete old one and insert a new one */ 7167 ret = btrfs_del_item(trans, dev_root, path); 7168 if (ret != 0) { 7169 btrfs_warn_in_rcu(fs_info, 7170 "delete too small dev_stats item for device %s failed %d", 7171 rcu_str_deref(device->name), ret); 7172 goto out; 7173 } 7174 ret = 1; 7175 } 7176 7177 if (ret == 1) { 7178 /* need to insert a new item */ 7179 btrfs_release_path(path); 7180 ret = btrfs_insert_empty_item(trans, dev_root, path, 7181 &key, sizeof(*ptr)); 7182 if (ret < 0) { 7183 btrfs_warn_in_rcu(fs_info, 7184 "insert dev_stats item for device %s failed %d", 7185 rcu_str_deref(device->name), ret); 7186 goto out; 7187 } 7188 } 7189 7190 eb = path->nodes[0]; 7191 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7192 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7193 btrfs_set_dev_stats_value(eb, ptr, i, 7194 btrfs_dev_stat_read(device, i)); 7195 btrfs_mark_buffer_dirty(eb); 7196 7197 out: 7198 btrfs_free_path(path); 7199 return ret; 7200 } 7201 7202 /* 7203 * called from commit_transaction. Writes all changed device stats to disk. 7204 */ 7205 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7206 { 7207 struct btrfs_fs_info *fs_info = trans->fs_info; 7208 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7209 struct btrfs_device *device; 7210 int stats_cnt; 7211 int ret = 0; 7212 7213 mutex_lock(&fs_devices->device_list_mutex); 7214 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7215 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7216 if (!device->dev_stats_valid || stats_cnt == 0) 7217 continue; 7218 7219 7220 /* 7221 * There is a LOAD-LOAD control dependency between the value of 7222 * dev_stats_ccnt and updating the on-disk values which requires 7223 * reading the in-memory counters. Such control dependencies 7224 * require explicit read memory barriers. 7225 * 7226 * This memory barriers pairs with smp_mb__before_atomic in 7227 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7228 * barrier implied by atomic_xchg in 7229 * btrfs_dev_stats_read_and_reset 7230 */ 7231 smp_rmb(); 7232 7233 ret = update_dev_stat_item(trans, device); 7234 if (!ret) 7235 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7236 } 7237 mutex_unlock(&fs_devices->device_list_mutex); 7238 7239 return ret; 7240 } 7241 7242 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7243 { 7244 btrfs_dev_stat_inc(dev, index); 7245 btrfs_dev_stat_print_on_error(dev); 7246 } 7247 7248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7249 { 7250 if (!dev->dev_stats_valid) 7251 return; 7252 btrfs_err_rl_in_rcu(dev->fs_info, 7253 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7254 rcu_str_deref(dev->name), 7255 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7256 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7257 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7258 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7259 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7260 } 7261 7262 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7263 { 7264 int i; 7265 7266 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7267 if (btrfs_dev_stat_read(dev, i) != 0) 7268 break; 7269 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7270 return; /* all values == 0, suppress message */ 7271 7272 btrfs_info_in_rcu(dev->fs_info, 7273 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7274 rcu_str_deref(dev->name), 7275 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7276 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7277 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7278 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7279 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7280 } 7281 7282 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7283 struct btrfs_ioctl_get_dev_stats *stats) 7284 { 7285 struct btrfs_device *dev; 7286 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7287 int i; 7288 7289 mutex_lock(&fs_devices->device_list_mutex); 7290 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7291 true); 7292 mutex_unlock(&fs_devices->device_list_mutex); 7293 7294 if (!dev) { 7295 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7296 return -ENODEV; 7297 } else if (!dev->dev_stats_valid) { 7298 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7299 return -ENODEV; 7300 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7301 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7302 if (stats->nr_items > i) 7303 stats->values[i] = 7304 btrfs_dev_stat_read_and_reset(dev, i); 7305 else 7306 btrfs_dev_stat_set(dev, i, 0); 7307 } 7308 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7309 current->comm, task_pid_nr(current)); 7310 } else { 7311 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7312 if (stats->nr_items > i) 7313 stats->values[i] = btrfs_dev_stat_read(dev, i); 7314 } 7315 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7316 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7317 return 0; 7318 } 7319 7320 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7321 { 7322 struct buffer_head *bh; 7323 struct btrfs_super_block *disk_super; 7324 int copy_num; 7325 7326 if (!bdev) 7327 return; 7328 7329 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7330 copy_num++) { 7331 7332 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7333 continue; 7334 7335 disk_super = (struct btrfs_super_block *)bh->b_data; 7336 7337 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7338 set_buffer_dirty(bh); 7339 sync_dirty_buffer(bh); 7340 brelse(bh); 7341 } 7342 7343 /* Notify udev that device has changed */ 7344 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7345 7346 /* Update ctime/mtime for device path for libblkid */ 7347 update_dev_time(device_path); 7348 } 7349 7350 /* 7351 * Update the size and bytes used for each device where it changed. This is 7352 * delayed since we would otherwise get errors while writing out the 7353 * superblocks. 7354 * 7355 * Must be invoked during transaction commit. 7356 */ 7357 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7358 { 7359 struct btrfs_device *curr, *next; 7360 7361 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7362 7363 if (list_empty(&trans->dev_update_list)) 7364 return; 7365 7366 /* 7367 * We don't need the device_list_mutex here. This list is owned by the 7368 * transaction and the transaction must complete before the device is 7369 * released. 7370 */ 7371 mutex_lock(&trans->fs_info->chunk_mutex); 7372 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7373 post_commit_list) { 7374 list_del_init(&curr->post_commit_list); 7375 curr->commit_total_bytes = curr->disk_total_bytes; 7376 curr->commit_bytes_used = curr->bytes_used; 7377 } 7378 mutex_unlock(&trans->fs_info->chunk_mutex); 7379 } 7380 7381 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7382 { 7383 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7384 while (fs_devices) { 7385 fs_devices->fs_info = fs_info; 7386 fs_devices = fs_devices->seed; 7387 } 7388 } 7389 7390 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7391 { 7392 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7393 while (fs_devices) { 7394 fs_devices->fs_info = NULL; 7395 fs_devices = fs_devices->seed; 7396 } 7397 } 7398 7399 /* 7400 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7401 */ 7402 int btrfs_bg_type_to_factor(u64 flags) 7403 { 7404 const int index = btrfs_bg_flags_to_raid_index(flags); 7405 7406 return btrfs_raid_array[index].ncopies; 7407 } 7408 7409 7410 7411 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7412 u64 chunk_offset, u64 devid, 7413 u64 physical_offset, u64 physical_len) 7414 { 7415 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7416 struct extent_map *em; 7417 struct map_lookup *map; 7418 struct btrfs_device *dev; 7419 u64 stripe_len; 7420 bool found = false; 7421 int ret = 0; 7422 int i; 7423 7424 read_lock(&em_tree->lock); 7425 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7426 read_unlock(&em_tree->lock); 7427 7428 if (!em) { 7429 btrfs_err(fs_info, 7430 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7431 physical_offset, devid); 7432 ret = -EUCLEAN; 7433 goto out; 7434 } 7435 7436 map = em->map_lookup; 7437 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7438 if (physical_len != stripe_len) { 7439 btrfs_err(fs_info, 7440 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7441 physical_offset, devid, em->start, physical_len, 7442 stripe_len); 7443 ret = -EUCLEAN; 7444 goto out; 7445 } 7446 7447 for (i = 0; i < map->num_stripes; i++) { 7448 if (map->stripes[i].dev->devid == devid && 7449 map->stripes[i].physical == physical_offset) { 7450 found = true; 7451 if (map->verified_stripes >= map->num_stripes) { 7452 btrfs_err(fs_info, 7453 "too many dev extents for chunk %llu found", 7454 em->start); 7455 ret = -EUCLEAN; 7456 goto out; 7457 } 7458 map->verified_stripes++; 7459 break; 7460 } 7461 } 7462 if (!found) { 7463 btrfs_err(fs_info, 7464 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7465 physical_offset, devid); 7466 ret = -EUCLEAN; 7467 } 7468 7469 /* Make sure no dev extent is beyond device bondary */ 7470 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7471 if (!dev) { 7472 btrfs_err(fs_info, "failed to find devid %llu", devid); 7473 ret = -EUCLEAN; 7474 goto out; 7475 } 7476 7477 /* It's possible this device is a dummy for seed device */ 7478 if (dev->disk_total_bytes == 0) { 7479 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL, 7480 NULL, false); 7481 if (!dev) { 7482 btrfs_err(fs_info, "failed to find seed devid %llu", 7483 devid); 7484 ret = -EUCLEAN; 7485 goto out; 7486 } 7487 } 7488 7489 if (physical_offset + physical_len > dev->disk_total_bytes) { 7490 btrfs_err(fs_info, 7491 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7492 devid, physical_offset, physical_len, 7493 dev->disk_total_bytes); 7494 ret = -EUCLEAN; 7495 goto out; 7496 } 7497 out: 7498 free_extent_map(em); 7499 return ret; 7500 } 7501 7502 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7503 { 7504 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7505 struct extent_map *em; 7506 struct rb_node *node; 7507 int ret = 0; 7508 7509 read_lock(&em_tree->lock); 7510 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7511 em = rb_entry(node, struct extent_map, rb_node); 7512 if (em->map_lookup->num_stripes != 7513 em->map_lookup->verified_stripes) { 7514 btrfs_err(fs_info, 7515 "chunk %llu has missing dev extent, have %d expect %d", 7516 em->start, em->map_lookup->verified_stripes, 7517 em->map_lookup->num_stripes); 7518 ret = -EUCLEAN; 7519 goto out; 7520 } 7521 } 7522 out: 7523 read_unlock(&em_tree->lock); 7524 return ret; 7525 } 7526 7527 /* 7528 * Ensure that all dev extents are mapped to correct chunk, otherwise 7529 * later chunk allocation/free would cause unexpected behavior. 7530 * 7531 * NOTE: This will iterate through the whole device tree, which should be of 7532 * the same size level as the chunk tree. This slightly increases mount time. 7533 */ 7534 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7535 { 7536 struct btrfs_path *path; 7537 struct btrfs_root *root = fs_info->dev_root; 7538 struct btrfs_key key; 7539 u64 prev_devid = 0; 7540 u64 prev_dev_ext_end = 0; 7541 int ret = 0; 7542 7543 key.objectid = 1; 7544 key.type = BTRFS_DEV_EXTENT_KEY; 7545 key.offset = 0; 7546 7547 path = btrfs_alloc_path(); 7548 if (!path) 7549 return -ENOMEM; 7550 7551 path->reada = READA_FORWARD; 7552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7553 if (ret < 0) 7554 goto out; 7555 7556 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7557 ret = btrfs_next_item(root, path); 7558 if (ret < 0) 7559 goto out; 7560 /* No dev extents at all? Not good */ 7561 if (ret > 0) { 7562 ret = -EUCLEAN; 7563 goto out; 7564 } 7565 } 7566 while (1) { 7567 struct extent_buffer *leaf = path->nodes[0]; 7568 struct btrfs_dev_extent *dext; 7569 int slot = path->slots[0]; 7570 u64 chunk_offset; 7571 u64 physical_offset; 7572 u64 physical_len; 7573 u64 devid; 7574 7575 btrfs_item_key_to_cpu(leaf, &key, slot); 7576 if (key.type != BTRFS_DEV_EXTENT_KEY) 7577 break; 7578 devid = key.objectid; 7579 physical_offset = key.offset; 7580 7581 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7582 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7583 physical_len = btrfs_dev_extent_length(leaf, dext); 7584 7585 /* Check if this dev extent overlaps with the previous one */ 7586 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7587 btrfs_err(fs_info, 7588 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7589 devid, physical_offset, prev_dev_ext_end); 7590 ret = -EUCLEAN; 7591 goto out; 7592 } 7593 7594 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7595 physical_offset, physical_len); 7596 if (ret < 0) 7597 goto out; 7598 prev_devid = devid; 7599 prev_dev_ext_end = physical_offset + physical_len; 7600 7601 ret = btrfs_next_item(root, path); 7602 if (ret < 0) 7603 goto out; 7604 if (ret > 0) { 7605 ret = 0; 7606 break; 7607 } 7608 } 7609 7610 /* Ensure all chunks have corresponding dev extents */ 7611 ret = verify_chunk_dev_extent_mapping(fs_info); 7612 out: 7613 btrfs_free_path(path); 7614 return ret; 7615 } 7616 7617 /* 7618 * Check whether the given block group or device is pinned by any inode being 7619 * used as a swapfile. 7620 */ 7621 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7622 { 7623 struct btrfs_swapfile_pin *sp; 7624 struct rb_node *node; 7625 7626 spin_lock(&fs_info->swapfile_pins_lock); 7627 node = fs_info->swapfile_pins.rb_node; 7628 while (node) { 7629 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7630 if (ptr < sp->ptr) 7631 node = node->rb_left; 7632 else if (ptr > sp->ptr) 7633 node = node->rb_right; 7634 else 7635 break; 7636 } 7637 spin_unlock(&fs_info->swapfile_pins_lock); 7638 return node != NULL; 7639 } 7640