xref: /openbmc/linux/fs/btrfs/volumes.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 	[BTRFS_RAID_RAID10] = {
37 		.sub_stripes	= 2,
38 		.dev_stripes	= 1,
39 		.devs_max	= 0,	/* 0 == as many as possible */
40 		.devs_min	= 4,
41 		.tolerated_failures = 1,
42 		.devs_increment	= 2,
43 		.ncopies	= 2,
44 		.nparity        = 0,
45 		.raid_name	= "raid10",
46 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 	},
49 	[BTRFS_RAID_RAID1] = {
50 		.sub_stripes	= 1,
51 		.dev_stripes	= 1,
52 		.devs_max	= 2,
53 		.devs_min	= 2,
54 		.tolerated_failures = 1,
55 		.devs_increment	= 2,
56 		.ncopies	= 2,
57 		.nparity        = 0,
58 		.raid_name	= "raid1",
59 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 	},
62 	[BTRFS_RAID_RAID1C3] = {
63 		.sub_stripes	= 1,
64 		.dev_stripes	= 1,
65 		.devs_max	= 3,
66 		.devs_min	= 3,
67 		.tolerated_failures = 2,
68 		.devs_increment	= 3,
69 		.ncopies	= 3,
70 		.nparity        = 0,
71 		.raid_name	= "raid1c3",
72 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
73 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 	},
75 	[BTRFS_RAID_RAID1C4] = {
76 		.sub_stripes	= 1,
77 		.dev_stripes	= 1,
78 		.devs_max	= 4,
79 		.devs_min	= 4,
80 		.tolerated_failures = 3,
81 		.devs_increment	= 4,
82 		.ncopies	= 4,
83 		.nparity        = 0,
84 		.raid_name	= "raid1c4",
85 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
86 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 	},
88 	[BTRFS_RAID_DUP] = {
89 		.sub_stripes	= 1,
90 		.dev_stripes	= 2,
91 		.devs_max	= 1,
92 		.devs_min	= 1,
93 		.tolerated_failures = 0,
94 		.devs_increment	= 1,
95 		.ncopies	= 2,
96 		.nparity        = 0,
97 		.raid_name	= "dup",
98 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99 		.mindev_error	= 0,
100 	},
101 	[BTRFS_RAID_RAID0] = {
102 		.sub_stripes	= 1,
103 		.dev_stripes	= 1,
104 		.devs_max	= 0,
105 		.devs_min	= 2,
106 		.tolerated_failures = 0,
107 		.devs_increment	= 1,
108 		.ncopies	= 1,
109 		.nparity        = 0,
110 		.raid_name	= "raid0",
111 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112 		.mindev_error	= 0,
113 	},
114 	[BTRFS_RAID_SINGLE] = {
115 		.sub_stripes	= 1,
116 		.dev_stripes	= 1,
117 		.devs_max	= 1,
118 		.devs_min	= 1,
119 		.tolerated_failures = 0,
120 		.devs_increment	= 1,
121 		.ncopies	= 1,
122 		.nparity        = 0,
123 		.raid_name	= "single",
124 		.bg_flag	= 0,
125 		.mindev_error	= 0,
126 	},
127 	[BTRFS_RAID_RAID5] = {
128 		.sub_stripes	= 1,
129 		.dev_stripes	= 1,
130 		.devs_max	= 0,
131 		.devs_min	= 2,
132 		.tolerated_failures = 1,
133 		.devs_increment	= 1,
134 		.ncopies	= 1,
135 		.nparity        = 1,
136 		.raid_name	= "raid5",
137 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 	},
140 	[BTRFS_RAID_RAID6] = {
141 		.sub_stripes	= 1,
142 		.dev_stripes	= 1,
143 		.devs_max	= 0,
144 		.devs_min	= 3,
145 		.tolerated_failures = 2,
146 		.devs_increment	= 1,
147 		.ncopies	= 1,
148 		.nparity        = 2,
149 		.raid_name	= "raid6",
150 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152 	},
153 };
154 
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157 	const int index = btrfs_bg_flags_to_raid_index(flags);
158 
159 	if (index >= BTRFS_NR_RAID_TYPES)
160 		return NULL;
161 
162 	return btrfs_raid_array[index].raid_name;
163 }
164 
165 /*
166  * Fill @buf with textual description of @bg_flags, no more than @size_buf
167  * bytes including terminating null byte.
168  */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171 	int i;
172 	int ret;
173 	char *bp = buf;
174 	u64 flags = bg_flags;
175 	u32 size_bp = size_buf;
176 
177 	if (!flags) {
178 		strcpy(bp, "NONE");
179 		return;
180 	}
181 
182 #define DESCRIBE_FLAG(flag, desc)						\
183 	do {								\
184 		if (flags & (flag)) {					\
185 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
186 			if (ret < 0 || ret >= size_bp)			\
187 				goto out_overflow;			\
188 			size_bp -= ret;					\
189 			bp += ret;					\
190 			flags &= ~(flag);				\
191 		}							\
192 	} while (0)
193 
194 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197 
198 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 			      btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203 
204 	if (flags) {
205 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 		size_bp -= ret;
207 	}
208 
209 	if (size_bp < size_buf)
210 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211 
212 	/*
213 	 * The text is trimmed, it's up to the caller to provide sufficiently
214 	 * large buffer
215 	 */
216 out_overflow:;
217 }
218 
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 			     enum btrfs_map_op op,
225 			     u64 logical, u64 *length,
226 			     struct btrfs_bio **bbio_ret,
227 			     int mirror_num, int need_raid_map);
228 
229 /*
230  * Device locking
231  * ==============
232  *
233  * There are several mutexes that protect manipulation of devices and low-level
234  * structures like chunks but not block groups, extents or files
235  *
236  * uuid_mutex (global lock)
237  * ------------------------
238  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240  * device) or requested by the device= mount option
241  *
242  * the mutex can be very coarse and can cover long-running operations
243  *
244  * protects: updates to fs_devices counters like missing devices, rw devices,
245  * seeding, structure cloning, opening/closing devices at mount/umount time
246  *
247  * global::fs_devs - add, remove, updates to the global list
248  *
249  * does not protect: manipulation of the fs_devices::devices list in general
250  * but in mount context it could be used to exclude list modifications by eg.
251  * scan ioctl
252  *
253  * btrfs_device::name - renames (write side), read is RCU
254  *
255  * fs_devices::device_list_mutex (per-fs, with RCU)
256  * ------------------------------------------------
257  * protects updates to fs_devices::devices, ie. adding and deleting
258  *
259  * simple list traversal with read-only actions can be done with RCU protection
260  *
261  * may be used to exclude some operations from running concurrently without any
262  * modifications to the list (see write_all_supers)
263  *
264  * Is not required at mount and close times, because our device list is
265  * protected by the uuid_mutex at that point.
266  *
267  * balance_mutex
268  * -------------
269  * protects balance structures (status, state) and context accessed from
270  * several places (internally, ioctl)
271  *
272  * chunk_mutex
273  * -----------
274  * protects chunks, adding or removing during allocation, trim or when a new
275  * device is added/removed. Additionally it also protects post_commit_list of
276  * individual devices, since they can be added to the transaction's
277  * post_commit_list only with chunk_mutex held.
278  *
279  * cleaner_mutex
280  * -------------
281  * a big lock that is held by the cleaner thread and prevents running subvolume
282  * cleaning together with relocation or delayed iputs
283  *
284  *
285  * Lock nesting
286  * ============
287  *
288  * uuid_mutex
289  *   device_list_mutex
290  *     chunk_mutex
291  *   balance_mutex
292  *
293  *
294  * Exclusive operations, BTRFS_FS_EXCL_OP
295  * ======================================
296  *
297  * Maintains the exclusivity of the following operations that apply to the
298  * whole filesystem and cannot run in parallel.
299  *
300  * - Balance (*)
301  * - Device add
302  * - Device remove
303  * - Device replace (*)
304  * - Resize
305  *
306  * The device operations (as above) can be in one of the following states:
307  *
308  * - Running state
309  * - Paused state
310  * - Completed state
311  *
312  * Only device operations marked with (*) can go into the Paused state for the
313  * following reasons:
314  *
315  * - ioctl (only Balance can be Paused through ioctl)
316  * - filesystem remounted as read-only
317  * - filesystem unmounted and mounted as read-only
318  * - system power-cycle and filesystem mounted as read-only
319  * - filesystem or device errors leading to forced read-only
320  *
321  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
322  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
323  * A device operation in Paused or Running state can be canceled or resumed
324  * either by ioctl (Balance only) or when remounted as read-write.
325  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
326  * completed.
327  */
328 
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333 	return &fs_uuids;
334 }
335 
336 /*
337  * alloc_fs_devices - allocate struct btrfs_fs_devices
338  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
339  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
340  *
341  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342  * The returned struct is not linked onto any lists and can be destroyed with
343  * kfree() right away.
344  */
345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346 						 const u8 *metadata_fsid)
347 {
348 	struct btrfs_fs_devices *fs_devs;
349 
350 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 	if (!fs_devs)
352 		return ERR_PTR(-ENOMEM);
353 
354 	mutex_init(&fs_devs->device_list_mutex);
355 
356 	INIT_LIST_HEAD(&fs_devs->devices);
357 	INIT_LIST_HEAD(&fs_devs->alloc_list);
358 	INIT_LIST_HEAD(&fs_devs->fs_list);
359 	if (fsid)
360 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
361 
362 	if (metadata_fsid)
363 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
364 	else if (fsid)
365 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
366 
367 	return fs_devs;
368 }
369 
370 void btrfs_free_device(struct btrfs_device *device)
371 {
372 	WARN_ON(!list_empty(&device->post_commit_list));
373 	rcu_string_free(device->name);
374 	extent_io_tree_release(&device->alloc_state);
375 	bio_put(device->flush_bio);
376 	kfree(device);
377 }
378 
379 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
380 {
381 	struct btrfs_device *device;
382 	WARN_ON(fs_devices->opened);
383 	while (!list_empty(&fs_devices->devices)) {
384 		device = list_entry(fs_devices->devices.next,
385 				    struct btrfs_device, dev_list);
386 		list_del(&device->dev_list);
387 		btrfs_free_device(device);
388 	}
389 	kfree(fs_devices);
390 }
391 
392 void __exit btrfs_cleanup_fs_uuids(void)
393 {
394 	struct btrfs_fs_devices *fs_devices;
395 
396 	while (!list_empty(&fs_uuids)) {
397 		fs_devices = list_entry(fs_uuids.next,
398 					struct btrfs_fs_devices, fs_list);
399 		list_del(&fs_devices->fs_list);
400 		free_fs_devices(fs_devices);
401 	}
402 }
403 
404 /*
405  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
406  * Returned struct is not linked onto any lists and must be destroyed using
407  * btrfs_free_device.
408  */
409 static struct btrfs_device *__alloc_device(void)
410 {
411 	struct btrfs_device *dev;
412 
413 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
414 	if (!dev)
415 		return ERR_PTR(-ENOMEM);
416 
417 	/*
418 	 * Preallocate a bio that's always going to be used for flushing device
419 	 * barriers and matches the device lifespan
420 	 */
421 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
422 	if (!dev->flush_bio) {
423 		kfree(dev);
424 		return ERR_PTR(-ENOMEM);
425 	}
426 
427 	INIT_LIST_HEAD(&dev->dev_list);
428 	INIT_LIST_HEAD(&dev->dev_alloc_list);
429 	INIT_LIST_HEAD(&dev->post_commit_list);
430 
431 	atomic_set(&dev->reada_in_flight, 0);
432 	atomic_set(&dev->dev_stats_ccnt, 0);
433 	btrfs_device_data_ordered_init(dev);
434 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
435 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436 	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
437 
438 	return dev;
439 }
440 
441 static noinline struct btrfs_fs_devices *find_fsid(
442 		const u8 *fsid, const u8 *metadata_fsid)
443 {
444 	struct btrfs_fs_devices *fs_devices;
445 
446 	ASSERT(fsid);
447 
448 	/* Handle non-split brain cases */
449 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
450 		if (metadata_fsid) {
451 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
452 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
453 				      BTRFS_FSID_SIZE) == 0)
454 				return fs_devices;
455 		} else {
456 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
457 				return fs_devices;
458 		}
459 	}
460 	return NULL;
461 }
462 
463 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
464 				struct btrfs_super_block *disk_super)
465 {
466 
467 	struct btrfs_fs_devices *fs_devices;
468 
469 	/*
470 	 * Handle scanned device having completed its fsid change but
471 	 * belonging to a fs_devices that was created by first scanning
472 	 * a device which didn't have its fsid/metadata_uuid changed
473 	 * at all and the CHANGING_FSID_V2 flag set.
474 	 */
475 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
476 		if (fs_devices->fsid_change &&
477 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
478 			   BTRFS_FSID_SIZE) == 0 &&
479 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
480 			   BTRFS_FSID_SIZE) == 0) {
481 			return fs_devices;
482 		}
483 	}
484 	/*
485 	 * Handle scanned device having completed its fsid change but
486 	 * belonging to a fs_devices that was created by a device that
487 	 * has an outdated pair of fsid/metadata_uuid and
488 	 * CHANGING_FSID_V2 flag set.
489 	 */
490 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
491 		if (fs_devices->fsid_change &&
492 		    memcmp(fs_devices->metadata_uuid,
493 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
494 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
495 			   BTRFS_FSID_SIZE) == 0) {
496 			return fs_devices;
497 		}
498 	}
499 
500 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
501 }
502 
503 
504 static int
505 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
506 		      int flush, struct block_device **bdev,
507 		      struct btrfs_super_block **disk_super)
508 {
509 	int ret;
510 
511 	*bdev = blkdev_get_by_path(device_path, flags, holder);
512 
513 	if (IS_ERR(*bdev)) {
514 		ret = PTR_ERR(*bdev);
515 		goto error;
516 	}
517 
518 	if (flush)
519 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
520 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
521 	if (ret) {
522 		blkdev_put(*bdev, flags);
523 		goto error;
524 	}
525 	invalidate_bdev(*bdev);
526 	*disk_super = btrfs_read_dev_super(*bdev);
527 	if (IS_ERR(*disk_super)) {
528 		ret = PTR_ERR(*disk_super);
529 		blkdev_put(*bdev, flags);
530 		goto error;
531 	}
532 
533 	return 0;
534 
535 error:
536 	*bdev = NULL;
537 	return ret;
538 }
539 
540 static bool device_path_matched(const char *path, struct btrfs_device *device)
541 {
542 	int found;
543 
544 	rcu_read_lock();
545 	found = strcmp(rcu_str_deref(device->name), path);
546 	rcu_read_unlock();
547 
548 	return found == 0;
549 }
550 
551 /*
552  *  Search and remove all stale (devices which are not mounted) devices.
553  *  When both inputs are NULL, it will search and release all stale devices.
554  *  path:	Optional. When provided will it release all unmounted devices
555  *		matching this path only.
556  *  skip_dev:	Optional. Will skip this device when searching for the stale
557  *		devices.
558  *  Return:	0 for success or if @path is NULL.
559  * 		-EBUSY if @path is a mounted device.
560  * 		-ENOENT if @path does not match any device in the list.
561  */
562 static int btrfs_free_stale_devices(const char *path,
563 				     struct btrfs_device *skip_device)
564 {
565 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
566 	struct btrfs_device *device, *tmp_device;
567 	int ret = 0;
568 
569 	if (path)
570 		ret = -ENOENT;
571 
572 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573 
574 		mutex_lock(&fs_devices->device_list_mutex);
575 		list_for_each_entry_safe(device, tmp_device,
576 					 &fs_devices->devices, dev_list) {
577 			if (skip_device && skip_device == device)
578 				continue;
579 			if (path && !device->name)
580 				continue;
581 			if (path && !device_path_matched(path, device))
582 				continue;
583 			if (fs_devices->opened) {
584 				/* for an already deleted device return 0 */
585 				if (path && ret != 0)
586 					ret = -EBUSY;
587 				break;
588 			}
589 
590 			/* delete the stale device */
591 			fs_devices->num_devices--;
592 			list_del(&device->dev_list);
593 			btrfs_free_device(device);
594 
595 			ret = 0;
596 			if (fs_devices->num_devices == 0)
597 				break;
598 		}
599 		mutex_unlock(&fs_devices->device_list_mutex);
600 
601 		if (fs_devices->num_devices == 0) {
602 			btrfs_sysfs_remove_fsid(fs_devices);
603 			list_del(&fs_devices->fs_list);
604 			free_fs_devices(fs_devices);
605 		}
606 	}
607 
608 	return ret;
609 }
610 
611 /*
612  * This is only used on mount, and we are protected from competing things
613  * messing with our fs_devices by the uuid_mutex, thus we do not need the
614  * fs_devices->device_list_mutex here.
615  */
616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
617 			struct btrfs_device *device, fmode_t flags,
618 			void *holder)
619 {
620 	struct request_queue *q;
621 	struct block_device *bdev;
622 	struct btrfs_super_block *disk_super;
623 	u64 devid;
624 	int ret;
625 
626 	if (device->bdev)
627 		return -EINVAL;
628 	if (!device->name)
629 		return -EINVAL;
630 
631 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632 				    &bdev, &disk_super);
633 	if (ret)
634 		return ret;
635 
636 	devid = btrfs_stack_device_id(&disk_super->dev_item);
637 	if (devid != device->devid)
638 		goto error_free_page;
639 
640 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641 		goto error_free_page;
642 
643 	device->generation = btrfs_super_generation(disk_super);
644 
645 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 		if (btrfs_super_incompat_flags(disk_super) &
647 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
648 			pr_err(
649 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
650 			goto error_free_page;
651 		}
652 
653 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 		fs_devices->seeding = true;
655 	} else {
656 		if (bdev_read_only(bdev))
657 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658 		else
659 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 	}
661 
662 	q = bdev_get_queue(bdev);
663 	if (!blk_queue_nonrot(q))
664 		fs_devices->rotating = true;
665 
666 	device->bdev = bdev;
667 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 	device->mode = flags;
669 
670 	fs_devices->open_devices++;
671 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
672 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
673 		fs_devices->rw_devices++;
674 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675 	}
676 	btrfs_release_disk_super(disk_super);
677 
678 	return 0;
679 
680 error_free_page:
681 	btrfs_release_disk_super(disk_super);
682 	blkdev_put(bdev, flags);
683 
684 	return -EINVAL;
685 }
686 
687 /*
688  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689  * being created with a disk that has already completed its fsid change. Such
690  * disk can belong to an fs which has its FSID changed or to one which doesn't.
691  * Handle both cases here.
692  */
693 static struct btrfs_fs_devices *find_fsid_inprogress(
694 					struct btrfs_super_block *disk_super)
695 {
696 	struct btrfs_fs_devices *fs_devices;
697 
698 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
699 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
700 			   BTRFS_FSID_SIZE) != 0 &&
701 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
702 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
703 			return fs_devices;
704 		}
705 	}
706 
707 	return find_fsid(disk_super->fsid, NULL);
708 }
709 
710 
711 static struct btrfs_fs_devices *find_fsid_changed(
712 					struct btrfs_super_block *disk_super)
713 {
714 	struct btrfs_fs_devices *fs_devices;
715 
716 	/*
717 	 * Handles the case where scanned device is part of an fs that had
718 	 * multiple successful changes of FSID but curently device didn't
719 	 * observe it. Meaning our fsid will be different than theirs. We need
720 	 * to handle two subcases :
721 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
722 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
723 	 *  are equal).
724 	 */
725 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726 		/* Changed UUIDs */
727 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
728 			   BTRFS_FSID_SIZE) != 0 &&
729 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
730 			   BTRFS_FSID_SIZE) == 0 &&
731 		    memcmp(fs_devices->fsid, disk_super->fsid,
732 			   BTRFS_FSID_SIZE) != 0)
733 			return fs_devices;
734 
735 		/* Unchanged UUIDs */
736 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 			   BTRFS_FSID_SIZE) == 0 &&
738 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 			   BTRFS_FSID_SIZE) == 0)
740 			return fs_devices;
741 	}
742 
743 	return NULL;
744 }
745 
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 				struct btrfs_super_block *disk_super)
748 {
749 	struct btrfs_fs_devices *fs_devices;
750 
751 	/*
752 	 * Handle the case where the scanned device is part of an fs whose last
753 	 * metadata UUID change reverted it to the original FSID. At the same
754 	 * time * fs_devices was first created by another constitutent device
755 	 * which didn't fully observe the operation. This results in an
756 	 * btrfs_fs_devices created with metadata/fsid different AND
757 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 	 * fs_devices equal to the FSID of the disk.
759 	 */
760 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
762 			   BTRFS_FSID_SIZE) != 0 &&
763 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
764 			   BTRFS_FSID_SIZE) == 0 &&
765 		    fs_devices->fsid_change)
766 			return fs_devices;
767 	}
768 
769 	return NULL;
770 }
771 /*
772  * Add new device to list of registered devices
773  *
774  * Returns:
775  * device pointer which was just added or updated when successful
776  * error pointer when failed
777  */
778 static noinline struct btrfs_device *device_list_add(const char *path,
779 			   struct btrfs_super_block *disk_super,
780 			   bool *new_device_added)
781 {
782 	struct btrfs_device *device;
783 	struct btrfs_fs_devices *fs_devices = NULL;
784 	struct rcu_string *name;
785 	u64 found_transid = btrfs_super_generation(disk_super);
786 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
788 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
790 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791 
792 	if (fsid_change_in_progress) {
793 		if (!has_metadata_uuid)
794 			fs_devices = find_fsid_inprogress(disk_super);
795 		else
796 			fs_devices = find_fsid_changed(disk_super);
797 	} else if (has_metadata_uuid) {
798 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
799 	} else {
800 		fs_devices = find_fsid_reverted_metadata(disk_super);
801 		if (!fs_devices)
802 			fs_devices = find_fsid(disk_super->fsid, NULL);
803 	}
804 
805 
806 	if (!fs_devices) {
807 		if (has_metadata_uuid)
808 			fs_devices = alloc_fs_devices(disk_super->fsid,
809 						      disk_super->metadata_uuid);
810 		else
811 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
812 
813 		if (IS_ERR(fs_devices))
814 			return ERR_CAST(fs_devices);
815 
816 		fs_devices->fsid_change = fsid_change_in_progress;
817 
818 		mutex_lock(&fs_devices->device_list_mutex);
819 		list_add(&fs_devices->fs_list, &fs_uuids);
820 
821 		device = NULL;
822 	} else {
823 		mutex_lock(&fs_devices->device_list_mutex);
824 		device = btrfs_find_device(fs_devices, devid,
825 				disk_super->dev_item.uuid, NULL, false);
826 
827 		/*
828 		 * If this disk has been pulled into an fs devices created by
829 		 * a device which had the CHANGING_FSID_V2 flag then replace the
830 		 * metadata_uuid/fsid values of the fs_devices.
831 		 */
832 		if (fs_devices->fsid_change &&
833 		    found_transid > fs_devices->latest_generation) {
834 			memcpy(fs_devices->fsid, disk_super->fsid,
835 					BTRFS_FSID_SIZE);
836 
837 			if (has_metadata_uuid)
838 				memcpy(fs_devices->metadata_uuid,
839 				       disk_super->metadata_uuid,
840 				       BTRFS_FSID_SIZE);
841 			else
842 				memcpy(fs_devices->metadata_uuid,
843 				       disk_super->fsid, BTRFS_FSID_SIZE);
844 
845 			fs_devices->fsid_change = false;
846 		}
847 	}
848 
849 	if (!device) {
850 		if (fs_devices->opened) {
851 			mutex_unlock(&fs_devices->device_list_mutex);
852 			return ERR_PTR(-EBUSY);
853 		}
854 
855 		device = btrfs_alloc_device(NULL, &devid,
856 					    disk_super->dev_item.uuid);
857 		if (IS_ERR(device)) {
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			/* we can safely leave the fs_devices entry around */
860 			return device;
861 		}
862 
863 		name = rcu_string_strdup(path, GFP_NOFS);
864 		if (!name) {
865 			btrfs_free_device(device);
866 			mutex_unlock(&fs_devices->device_list_mutex);
867 			return ERR_PTR(-ENOMEM);
868 		}
869 		rcu_assign_pointer(device->name, name);
870 
871 		list_add_rcu(&device->dev_list, &fs_devices->devices);
872 		fs_devices->num_devices++;
873 
874 		device->fs_devices = fs_devices;
875 		*new_device_added = true;
876 
877 		if (disk_super->label[0])
878 			pr_info(
879 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
880 				disk_super->label, devid, found_transid, path,
881 				current->comm, task_pid_nr(current));
882 		else
883 			pr_info(
884 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
885 				disk_super->fsid, devid, found_transid, path,
886 				current->comm, task_pid_nr(current));
887 
888 	} else if (!device->name || strcmp(device->name->str, path)) {
889 		/*
890 		 * When FS is already mounted.
891 		 * 1. If you are here and if the device->name is NULL that
892 		 *    means this device was missing at time of FS mount.
893 		 * 2. If you are here and if the device->name is different
894 		 *    from 'path' that means either
895 		 *      a. The same device disappeared and reappeared with
896 		 *         different name. or
897 		 *      b. The missing-disk-which-was-replaced, has
898 		 *         reappeared now.
899 		 *
900 		 * We must allow 1 and 2a above. But 2b would be a spurious
901 		 * and unintentional.
902 		 *
903 		 * Further in case of 1 and 2a above, the disk at 'path'
904 		 * would have missed some transaction when it was away and
905 		 * in case of 2a the stale bdev has to be updated as well.
906 		 * 2b must not be allowed at all time.
907 		 */
908 
909 		/*
910 		 * For now, we do allow update to btrfs_fs_device through the
911 		 * btrfs dev scan cli after FS has been mounted.  We're still
912 		 * tracking a problem where systems fail mount by subvolume id
913 		 * when we reject replacement on a mounted FS.
914 		 */
915 		if (!fs_devices->opened && found_transid < device->generation) {
916 			/*
917 			 * That is if the FS is _not_ mounted and if you
918 			 * are here, that means there is more than one
919 			 * disk with same uuid and devid.We keep the one
920 			 * with larger generation number or the last-in if
921 			 * generation are equal.
922 			 */
923 			mutex_unlock(&fs_devices->device_list_mutex);
924 			return ERR_PTR(-EEXIST);
925 		}
926 
927 		/*
928 		 * We are going to replace the device path for a given devid,
929 		 * make sure it's the same device if the device is mounted
930 		 */
931 		if (device->bdev) {
932 			struct block_device *path_bdev;
933 
934 			path_bdev = lookup_bdev(path);
935 			if (IS_ERR(path_bdev)) {
936 				mutex_unlock(&fs_devices->device_list_mutex);
937 				return ERR_CAST(path_bdev);
938 			}
939 
940 			if (device->bdev != path_bdev) {
941 				bdput(path_bdev);
942 				mutex_unlock(&fs_devices->device_list_mutex);
943 				btrfs_warn_in_rcu(device->fs_info,
944 			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
945 					disk_super->fsid, devid,
946 					rcu_str_deref(device->name), path);
947 				return ERR_PTR(-EEXIST);
948 			}
949 			bdput(path_bdev);
950 			btrfs_info_in_rcu(device->fs_info,
951 				"device fsid %pU devid %llu moved old:%s new:%s",
952 				disk_super->fsid, devid,
953 				rcu_str_deref(device->name), path);
954 		}
955 
956 		name = rcu_string_strdup(path, GFP_NOFS);
957 		if (!name) {
958 			mutex_unlock(&fs_devices->device_list_mutex);
959 			return ERR_PTR(-ENOMEM);
960 		}
961 		rcu_string_free(device->name);
962 		rcu_assign_pointer(device->name, name);
963 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
964 			fs_devices->missing_devices--;
965 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
966 		}
967 	}
968 
969 	/*
970 	 * Unmount does not free the btrfs_device struct but would zero
971 	 * generation along with most of the other members. So just update
972 	 * it back. We need it to pick the disk with largest generation
973 	 * (as above).
974 	 */
975 	if (!fs_devices->opened) {
976 		device->generation = found_transid;
977 		fs_devices->latest_generation = max_t(u64, found_transid,
978 						fs_devices->latest_generation);
979 	}
980 
981 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
982 
983 	mutex_unlock(&fs_devices->device_list_mutex);
984 	return device;
985 }
986 
987 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
988 {
989 	struct btrfs_fs_devices *fs_devices;
990 	struct btrfs_device *device;
991 	struct btrfs_device *orig_dev;
992 	int ret = 0;
993 
994 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
995 	if (IS_ERR(fs_devices))
996 		return fs_devices;
997 
998 	mutex_lock(&orig->device_list_mutex);
999 	fs_devices->total_devices = orig->total_devices;
1000 
1001 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002 		struct rcu_string *name;
1003 
1004 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 					    orig_dev->uuid);
1006 		if (IS_ERR(device)) {
1007 			ret = PTR_ERR(device);
1008 			goto error;
1009 		}
1010 
1011 		/*
1012 		 * This is ok to do without rcu read locked because we hold the
1013 		 * uuid mutex so nothing we touch in here is going to disappear.
1014 		 */
1015 		if (orig_dev->name) {
1016 			name = rcu_string_strdup(orig_dev->name->str,
1017 					GFP_KERNEL);
1018 			if (!name) {
1019 				btrfs_free_device(device);
1020 				ret = -ENOMEM;
1021 				goto error;
1022 			}
1023 			rcu_assign_pointer(device->name, name);
1024 		}
1025 
1026 		list_add(&device->dev_list, &fs_devices->devices);
1027 		device->fs_devices = fs_devices;
1028 		fs_devices->num_devices++;
1029 	}
1030 	mutex_unlock(&orig->device_list_mutex);
1031 	return fs_devices;
1032 error:
1033 	mutex_unlock(&orig->device_list_mutex);
1034 	free_fs_devices(fs_devices);
1035 	return ERR_PTR(ret);
1036 }
1037 
1038 /*
1039  * After we have read the system tree and know devids belonging to
1040  * this filesystem, remove the device which does not belong there.
1041  */
1042 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1043 {
1044 	struct btrfs_device *device, *next;
1045 	struct btrfs_device *latest_dev = NULL;
1046 
1047 	mutex_lock(&uuid_mutex);
1048 again:
1049 	/* This is the initialized path, it is safe to release the devices. */
1050 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1051 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1052 							&device->dev_state)) {
1053 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 			     &device->dev_state) &&
1055 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1056 				      &device->dev_state) &&
1057 			     (!latest_dev ||
1058 			      device->generation > latest_dev->generation)) {
1059 				latest_dev = device;
1060 			}
1061 			continue;
1062 		}
1063 
1064 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1065 			/*
1066 			 * In the first step, keep the device which has
1067 			 * the correct fsid and the devid that is used
1068 			 * for the dev_replace procedure.
1069 			 * In the second step, the dev_replace state is
1070 			 * read from the device tree and it is known
1071 			 * whether the procedure is really active or
1072 			 * not, which means whether this device is
1073 			 * used or whether it should be removed.
1074 			 */
1075 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1076 						  &device->dev_state)) {
1077 				continue;
1078 			}
1079 		}
1080 		if (device->bdev) {
1081 			blkdev_put(device->bdev, device->mode);
1082 			device->bdev = NULL;
1083 			fs_devices->open_devices--;
1084 		}
1085 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1086 			list_del_init(&device->dev_alloc_list);
1087 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1088 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1089 				      &device->dev_state))
1090 				fs_devices->rw_devices--;
1091 		}
1092 		list_del_init(&device->dev_list);
1093 		fs_devices->num_devices--;
1094 		btrfs_free_device(device);
1095 	}
1096 
1097 	if (fs_devices->seed) {
1098 		fs_devices = fs_devices->seed;
1099 		goto again;
1100 	}
1101 
1102 	fs_devices->latest_bdev = latest_dev->bdev;
1103 
1104 	mutex_unlock(&uuid_mutex);
1105 }
1106 
1107 static void btrfs_close_bdev(struct btrfs_device *device)
1108 {
1109 	if (!device->bdev)
1110 		return;
1111 
1112 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1113 		sync_blockdev(device->bdev);
1114 		invalidate_bdev(device->bdev);
1115 	}
1116 
1117 	blkdev_put(device->bdev, device->mode);
1118 }
1119 
1120 static void btrfs_close_one_device(struct btrfs_device *device)
1121 {
1122 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1123 
1124 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1125 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1126 		list_del_init(&device->dev_alloc_list);
1127 		fs_devices->rw_devices--;
1128 	}
1129 
1130 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1131 		fs_devices->missing_devices--;
1132 
1133 	btrfs_close_bdev(device);
1134 	if (device->bdev) {
1135 		fs_devices->open_devices--;
1136 		device->bdev = NULL;
1137 	}
1138 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1139 
1140 	device->fs_info = NULL;
1141 	atomic_set(&device->dev_stats_ccnt, 0);
1142 	extent_io_tree_release(&device->alloc_state);
1143 
1144 	/* Verify the device is back in a pristine state  */
1145 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1146 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1147 	ASSERT(list_empty(&device->dev_alloc_list));
1148 	ASSERT(list_empty(&device->post_commit_list));
1149 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1150 }
1151 
1152 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1153 {
1154 	struct btrfs_device *device, *tmp;
1155 
1156 	if (--fs_devices->opened > 0)
1157 		return 0;
1158 
1159 	mutex_lock(&fs_devices->device_list_mutex);
1160 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1161 		btrfs_close_one_device(device);
1162 	}
1163 	mutex_unlock(&fs_devices->device_list_mutex);
1164 
1165 	WARN_ON(fs_devices->open_devices);
1166 	WARN_ON(fs_devices->rw_devices);
1167 	fs_devices->opened = 0;
1168 	fs_devices->seeding = false;
1169 
1170 	return 0;
1171 }
1172 
1173 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1174 {
1175 	struct btrfs_fs_devices *seed_devices = NULL;
1176 	int ret;
1177 
1178 	mutex_lock(&uuid_mutex);
1179 	ret = close_fs_devices(fs_devices);
1180 	if (!fs_devices->opened) {
1181 		seed_devices = fs_devices->seed;
1182 		fs_devices->seed = NULL;
1183 	}
1184 	mutex_unlock(&uuid_mutex);
1185 
1186 	while (seed_devices) {
1187 		fs_devices = seed_devices;
1188 		seed_devices = fs_devices->seed;
1189 		close_fs_devices(fs_devices);
1190 		free_fs_devices(fs_devices);
1191 	}
1192 	return ret;
1193 }
1194 
1195 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1196 				fmode_t flags, void *holder)
1197 {
1198 	struct btrfs_device *device;
1199 	struct btrfs_device *latest_dev = NULL;
1200 
1201 	flags |= FMODE_EXCL;
1202 
1203 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1204 		/* Just open everything we can; ignore failures here */
1205 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1206 			continue;
1207 
1208 		if (!latest_dev ||
1209 		    device->generation > latest_dev->generation)
1210 			latest_dev = device;
1211 	}
1212 	if (fs_devices->open_devices == 0)
1213 		return -EINVAL;
1214 
1215 	fs_devices->opened = 1;
1216 	fs_devices->latest_bdev = latest_dev->bdev;
1217 	fs_devices->total_rw_bytes = 0;
1218 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1219 
1220 	return 0;
1221 }
1222 
1223 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1224 {
1225 	struct btrfs_device *dev1, *dev2;
1226 
1227 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1228 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1229 
1230 	if (dev1->devid < dev2->devid)
1231 		return -1;
1232 	else if (dev1->devid > dev2->devid)
1233 		return 1;
1234 	return 0;
1235 }
1236 
1237 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1238 		       fmode_t flags, void *holder)
1239 {
1240 	int ret;
1241 
1242 	lockdep_assert_held(&uuid_mutex);
1243 	/*
1244 	 * The device_list_mutex cannot be taken here in case opening the
1245 	 * underlying device takes further locks like bd_mutex.
1246 	 *
1247 	 * We also don't need the lock here as this is called during mount and
1248 	 * exclusion is provided by uuid_mutex
1249 	 */
1250 
1251 	if (fs_devices->opened) {
1252 		fs_devices->opened++;
1253 		ret = 0;
1254 	} else {
1255 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1256 		ret = open_fs_devices(fs_devices, flags, holder);
1257 	}
1258 
1259 	return ret;
1260 }
1261 
1262 void btrfs_release_disk_super(struct btrfs_super_block *super)
1263 {
1264 	struct page *page = virt_to_page(super);
1265 
1266 	put_page(page);
1267 }
1268 
1269 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1270 						       u64 bytenr)
1271 {
1272 	struct btrfs_super_block *disk_super;
1273 	struct page *page;
1274 	void *p;
1275 	pgoff_t index;
1276 
1277 	/* make sure our super fits in the device */
1278 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1279 		return ERR_PTR(-EINVAL);
1280 
1281 	/* make sure our super fits in the page */
1282 	if (sizeof(*disk_super) > PAGE_SIZE)
1283 		return ERR_PTR(-EINVAL);
1284 
1285 	/* make sure our super doesn't straddle pages on disk */
1286 	index = bytenr >> PAGE_SHIFT;
1287 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1288 		return ERR_PTR(-EINVAL);
1289 
1290 	/* pull in the page with our super */
1291 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1292 
1293 	if (IS_ERR(page))
1294 		return ERR_CAST(page);
1295 
1296 	p = page_address(page);
1297 
1298 	/* align our pointer to the offset of the super block */
1299 	disk_super = p + offset_in_page(bytenr);
1300 
1301 	if (btrfs_super_bytenr(disk_super) != bytenr ||
1302 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1303 		btrfs_release_disk_super(p);
1304 		return ERR_PTR(-EINVAL);
1305 	}
1306 
1307 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1308 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1309 
1310 	return disk_super;
1311 }
1312 
1313 int btrfs_forget_devices(const char *path)
1314 {
1315 	int ret;
1316 
1317 	mutex_lock(&uuid_mutex);
1318 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1319 	mutex_unlock(&uuid_mutex);
1320 
1321 	return ret;
1322 }
1323 
1324 /*
1325  * Look for a btrfs signature on a device. This may be called out of the mount path
1326  * and we are not allowed to call set_blocksize during the scan. The superblock
1327  * is read via pagecache
1328  */
1329 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1330 					   void *holder)
1331 {
1332 	struct btrfs_super_block *disk_super;
1333 	bool new_device_added = false;
1334 	struct btrfs_device *device = NULL;
1335 	struct block_device *bdev;
1336 	u64 bytenr;
1337 
1338 	lockdep_assert_held(&uuid_mutex);
1339 
1340 	/*
1341 	 * we would like to check all the supers, but that would make
1342 	 * a btrfs mount succeed after a mkfs from a different FS.
1343 	 * So, we need to add a special mount option to scan for
1344 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1345 	 */
1346 	bytenr = btrfs_sb_offset(0);
1347 	flags |= FMODE_EXCL;
1348 
1349 	bdev = blkdev_get_by_path(path, flags, holder);
1350 	if (IS_ERR(bdev))
1351 		return ERR_CAST(bdev);
1352 
1353 	disk_super = btrfs_read_disk_super(bdev, bytenr);
1354 	if (IS_ERR(disk_super)) {
1355 		device = ERR_CAST(disk_super);
1356 		goto error_bdev_put;
1357 	}
1358 
1359 	device = device_list_add(path, disk_super, &new_device_added);
1360 	if (!IS_ERR(device)) {
1361 		if (new_device_added)
1362 			btrfs_free_stale_devices(path, device);
1363 	}
1364 
1365 	btrfs_release_disk_super(disk_super);
1366 
1367 error_bdev_put:
1368 	blkdev_put(bdev, flags);
1369 
1370 	return device;
1371 }
1372 
1373 /*
1374  * Try to find a chunk that intersects [start, start + len] range and when one
1375  * such is found, record the end of it in *start
1376  */
1377 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1378 				    u64 len)
1379 {
1380 	u64 physical_start, physical_end;
1381 
1382 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1383 
1384 	if (!find_first_extent_bit(&device->alloc_state, *start,
1385 				   &physical_start, &physical_end,
1386 				   CHUNK_ALLOCATED, NULL)) {
1387 
1388 		if (in_range(physical_start, *start, len) ||
1389 		    in_range(*start, physical_start,
1390 			     physical_end - physical_start)) {
1391 			*start = physical_end + 1;
1392 			return true;
1393 		}
1394 	}
1395 	return false;
1396 }
1397 
1398 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1399 {
1400 	switch (device->fs_devices->chunk_alloc_policy) {
1401 	case BTRFS_CHUNK_ALLOC_REGULAR:
1402 		/*
1403 		 * We don't want to overwrite the superblock on the drive nor
1404 		 * any area used by the boot loader (grub for example), so we
1405 		 * make sure to start at an offset of at least 1MB.
1406 		 */
1407 		return max_t(u64, start, SZ_1M);
1408 	default:
1409 		BUG();
1410 	}
1411 }
1412 
1413 /**
1414  * dev_extent_hole_check - check if specified hole is suitable for allocation
1415  * @device:	the device which we have the hole
1416  * @hole_start: starting position of the hole
1417  * @hole_size:	the size of the hole
1418  * @num_bytes:	the size of the free space that we need
1419  *
1420  * This function may modify @hole_start and @hole_end to reflect the suitable
1421  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1422  */
1423 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1424 				  u64 *hole_size, u64 num_bytes)
1425 {
1426 	bool changed = false;
1427 	u64 hole_end = *hole_start + *hole_size;
1428 
1429 	/*
1430 	 * Check before we set max_hole_start, otherwise we could end up
1431 	 * sending back this offset anyway.
1432 	 */
1433 	if (contains_pending_extent(device, hole_start, *hole_size)) {
1434 		if (hole_end >= *hole_start)
1435 			*hole_size = hole_end - *hole_start;
1436 		else
1437 			*hole_size = 0;
1438 		changed = true;
1439 	}
1440 
1441 	switch (device->fs_devices->chunk_alloc_policy) {
1442 	case BTRFS_CHUNK_ALLOC_REGULAR:
1443 		/* No extra check */
1444 		break;
1445 	default:
1446 		BUG();
1447 	}
1448 
1449 	return changed;
1450 }
1451 
1452 /*
1453  * find_free_dev_extent_start - find free space in the specified device
1454  * @device:	  the device which we search the free space in
1455  * @num_bytes:	  the size of the free space that we need
1456  * @search_start: the position from which to begin the search
1457  * @start:	  store the start of the free space.
1458  * @len:	  the size of the free space. that we find, or the size
1459  *		  of the max free space if we don't find suitable free space
1460  *
1461  * this uses a pretty simple search, the expectation is that it is
1462  * called very infrequently and that a given device has a small number
1463  * of extents
1464  *
1465  * @start is used to store the start of the free space if we find. But if we
1466  * don't find suitable free space, it will be used to store the start position
1467  * of the max free space.
1468  *
1469  * @len is used to store the size of the free space that we find.
1470  * But if we don't find suitable free space, it is used to store the size of
1471  * the max free space.
1472  *
1473  * NOTE: This function will search *commit* root of device tree, and does extra
1474  * check to ensure dev extents are not double allocated.
1475  * This makes the function safe to allocate dev extents but may not report
1476  * correct usable device space, as device extent freed in current transaction
1477  * is not reported as avaiable.
1478  */
1479 static int find_free_dev_extent_start(struct btrfs_device *device,
1480 				u64 num_bytes, u64 search_start, u64 *start,
1481 				u64 *len)
1482 {
1483 	struct btrfs_fs_info *fs_info = device->fs_info;
1484 	struct btrfs_root *root = fs_info->dev_root;
1485 	struct btrfs_key key;
1486 	struct btrfs_dev_extent *dev_extent;
1487 	struct btrfs_path *path;
1488 	u64 hole_size;
1489 	u64 max_hole_start;
1490 	u64 max_hole_size;
1491 	u64 extent_end;
1492 	u64 search_end = device->total_bytes;
1493 	int ret;
1494 	int slot;
1495 	struct extent_buffer *l;
1496 
1497 	search_start = dev_extent_search_start(device, search_start);
1498 
1499 	path = btrfs_alloc_path();
1500 	if (!path)
1501 		return -ENOMEM;
1502 
1503 	max_hole_start = search_start;
1504 	max_hole_size = 0;
1505 
1506 again:
1507 	if (search_start >= search_end ||
1508 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1509 		ret = -ENOSPC;
1510 		goto out;
1511 	}
1512 
1513 	path->reada = READA_FORWARD;
1514 	path->search_commit_root = 1;
1515 	path->skip_locking = 1;
1516 
1517 	key.objectid = device->devid;
1518 	key.offset = search_start;
1519 	key.type = BTRFS_DEV_EXTENT_KEY;
1520 
1521 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1522 	if (ret < 0)
1523 		goto out;
1524 	if (ret > 0) {
1525 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1526 		if (ret < 0)
1527 			goto out;
1528 	}
1529 
1530 	while (1) {
1531 		l = path->nodes[0];
1532 		slot = path->slots[0];
1533 		if (slot >= btrfs_header_nritems(l)) {
1534 			ret = btrfs_next_leaf(root, path);
1535 			if (ret == 0)
1536 				continue;
1537 			if (ret < 0)
1538 				goto out;
1539 
1540 			break;
1541 		}
1542 		btrfs_item_key_to_cpu(l, &key, slot);
1543 
1544 		if (key.objectid < device->devid)
1545 			goto next;
1546 
1547 		if (key.objectid > device->devid)
1548 			break;
1549 
1550 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1551 			goto next;
1552 
1553 		if (key.offset > search_start) {
1554 			hole_size = key.offset - search_start;
1555 			dev_extent_hole_check(device, &search_start, &hole_size,
1556 					      num_bytes);
1557 
1558 			if (hole_size > max_hole_size) {
1559 				max_hole_start = search_start;
1560 				max_hole_size = hole_size;
1561 			}
1562 
1563 			/*
1564 			 * If this free space is greater than which we need,
1565 			 * it must be the max free space that we have found
1566 			 * until now, so max_hole_start must point to the start
1567 			 * of this free space and the length of this free space
1568 			 * is stored in max_hole_size. Thus, we return
1569 			 * max_hole_start and max_hole_size and go back to the
1570 			 * caller.
1571 			 */
1572 			if (hole_size >= num_bytes) {
1573 				ret = 0;
1574 				goto out;
1575 			}
1576 		}
1577 
1578 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1579 		extent_end = key.offset + btrfs_dev_extent_length(l,
1580 								  dev_extent);
1581 		if (extent_end > search_start)
1582 			search_start = extent_end;
1583 next:
1584 		path->slots[0]++;
1585 		cond_resched();
1586 	}
1587 
1588 	/*
1589 	 * At this point, search_start should be the end of
1590 	 * allocated dev extents, and when shrinking the device,
1591 	 * search_end may be smaller than search_start.
1592 	 */
1593 	if (search_end > search_start) {
1594 		hole_size = search_end - search_start;
1595 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1596 					  num_bytes)) {
1597 			btrfs_release_path(path);
1598 			goto again;
1599 		}
1600 
1601 		if (hole_size > max_hole_size) {
1602 			max_hole_start = search_start;
1603 			max_hole_size = hole_size;
1604 		}
1605 	}
1606 
1607 	/* See above. */
1608 	if (max_hole_size < num_bytes)
1609 		ret = -ENOSPC;
1610 	else
1611 		ret = 0;
1612 
1613 out:
1614 	btrfs_free_path(path);
1615 	*start = max_hole_start;
1616 	if (len)
1617 		*len = max_hole_size;
1618 	return ret;
1619 }
1620 
1621 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1622 			 u64 *start, u64 *len)
1623 {
1624 	/* FIXME use last free of some kind */
1625 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1626 }
1627 
1628 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1629 			  struct btrfs_device *device,
1630 			  u64 start, u64 *dev_extent_len)
1631 {
1632 	struct btrfs_fs_info *fs_info = device->fs_info;
1633 	struct btrfs_root *root = fs_info->dev_root;
1634 	int ret;
1635 	struct btrfs_path *path;
1636 	struct btrfs_key key;
1637 	struct btrfs_key found_key;
1638 	struct extent_buffer *leaf = NULL;
1639 	struct btrfs_dev_extent *extent = NULL;
1640 
1641 	path = btrfs_alloc_path();
1642 	if (!path)
1643 		return -ENOMEM;
1644 
1645 	key.objectid = device->devid;
1646 	key.offset = start;
1647 	key.type = BTRFS_DEV_EXTENT_KEY;
1648 again:
1649 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1650 	if (ret > 0) {
1651 		ret = btrfs_previous_item(root, path, key.objectid,
1652 					  BTRFS_DEV_EXTENT_KEY);
1653 		if (ret)
1654 			goto out;
1655 		leaf = path->nodes[0];
1656 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1657 		extent = btrfs_item_ptr(leaf, path->slots[0],
1658 					struct btrfs_dev_extent);
1659 		BUG_ON(found_key.offset > start || found_key.offset +
1660 		       btrfs_dev_extent_length(leaf, extent) < start);
1661 		key = found_key;
1662 		btrfs_release_path(path);
1663 		goto again;
1664 	} else if (ret == 0) {
1665 		leaf = path->nodes[0];
1666 		extent = btrfs_item_ptr(leaf, path->slots[0],
1667 					struct btrfs_dev_extent);
1668 	} else {
1669 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1670 		goto out;
1671 	}
1672 
1673 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1674 
1675 	ret = btrfs_del_item(trans, root, path);
1676 	if (ret) {
1677 		btrfs_handle_fs_error(fs_info, ret,
1678 				      "Failed to remove dev extent item");
1679 	} else {
1680 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1681 	}
1682 out:
1683 	btrfs_free_path(path);
1684 	return ret;
1685 }
1686 
1687 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1688 				  struct btrfs_device *device,
1689 				  u64 chunk_offset, u64 start, u64 num_bytes)
1690 {
1691 	int ret;
1692 	struct btrfs_path *path;
1693 	struct btrfs_fs_info *fs_info = device->fs_info;
1694 	struct btrfs_root *root = fs_info->dev_root;
1695 	struct btrfs_dev_extent *extent;
1696 	struct extent_buffer *leaf;
1697 	struct btrfs_key key;
1698 
1699 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1700 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1701 	path = btrfs_alloc_path();
1702 	if (!path)
1703 		return -ENOMEM;
1704 
1705 	key.objectid = device->devid;
1706 	key.offset = start;
1707 	key.type = BTRFS_DEV_EXTENT_KEY;
1708 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1709 				      sizeof(*extent));
1710 	if (ret)
1711 		goto out;
1712 
1713 	leaf = path->nodes[0];
1714 	extent = btrfs_item_ptr(leaf, path->slots[0],
1715 				struct btrfs_dev_extent);
1716 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1717 					BTRFS_CHUNK_TREE_OBJECTID);
1718 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1719 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1720 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1721 
1722 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1723 	btrfs_mark_buffer_dirty(leaf);
1724 out:
1725 	btrfs_free_path(path);
1726 	return ret;
1727 }
1728 
1729 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1730 {
1731 	struct extent_map_tree *em_tree;
1732 	struct extent_map *em;
1733 	struct rb_node *n;
1734 	u64 ret = 0;
1735 
1736 	em_tree = &fs_info->mapping_tree;
1737 	read_lock(&em_tree->lock);
1738 	n = rb_last(&em_tree->map.rb_root);
1739 	if (n) {
1740 		em = rb_entry(n, struct extent_map, rb_node);
1741 		ret = em->start + em->len;
1742 	}
1743 	read_unlock(&em_tree->lock);
1744 
1745 	return ret;
1746 }
1747 
1748 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1749 				    u64 *devid_ret)
1750 {
1751 	int ret;
1752 	struct btrfs_key key;
1753 	struct btrfs_key found_key;
1754 	struct btrfs_path *path;
1755 
1756 	path = btrfs_alloc_path();
1757 	if (!path)
1758 		return -ENOMEM;
1759 
1760 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1761 	key.type = BTRFS_DEV_ITEM_KEY;
1762 	key.offset = (u64)-1;
1763 
1764 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1765 	if (ret < 0)
1766 		goto error;
1767 
1768 	if (ret == 0) {
1769 		/* Corruption */
1770 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1771 		ret = -EUCLEAN;
1772 		goto error;
1773 	}
1774 
1775 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1776 				  BTRFS_DEV_ITEMS_OBJECTID,
1777 				  BTRFS_DEV_ITEM_KEY);
1778 	if (ret) {
1779 		*devid_ret = 1;
1780 	} else {
1781 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1782 				      path->slots[0]);
1783 		*devid_ret = found_key.offset + 1;
1784 	}
1785 	ret = 0;
1786 error:
1787 	btrfs_free_path(path);
1788 	return ret;
1789 }
1790 
1791 /*
1792  * the device information is stored in the chunk root
1793  * the btrfs_device struct should be fully filled in
1794  */
1795 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1796 			    struct btrfs_device *device)
1797 {
1798 	int ret;
1799 	struct btrfs_path *path;
1800 	struct btrfs_dev_item *dev_item;
1801 	struct extent_buffer *leaf;
1802 	struct btrfs_key key;
1803 	unsigned long ptr;
1804 
1805 	path = btrfs_alloc_path();
1806 	if (!path)
1807 		return -ENOMEM;
1808 
1809 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1810 	key.type = BTRFS_DEV_ITEM_KEY;
1811 	key.offset = device->devid;
1812 
1813 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1814 				      &key, sizeof(*dev_item));
1815 	if (ret)
1816 		goto out;
1817 
1818 	leaf = path->nodes[0];
1819 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1820 
1821 	btrfs_set_device_id(leaf, dev_item, device->devid);
1822 	btrfs_set_device_generation(leaf, dev_item, 0);
1823 	btrfs_set_device_type(leaf, dev_item, device->type);
1824 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1825 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1826 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1827 	btrfs_set_device_total_bytes(leaf, dev_item,
1828 				     btrfs_device_get_disk_total_bytes(device));
1829 	btrfs_set_device_bytes_used(leaf, dev_item,
1830 				    btrfs_device_get_bytes_used(device));
1831 	btrfs_set_device_group(leaf, dev_item, 0);
1832 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1833 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1834 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1835 
1836 	ptr = btrfs_device_uuid(dev_item);
1837 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1838 	ptr = btrfs_device_fsid(dev_item);
1839 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1840 			    ptr, BTRFS_FSID_SIZE);
1841 	btrfs_mark_buffer_dirty(leaf);
1842 
1843 	ret = 0;
1844 out:
1845 	btrfs_free_path(path);
1846 	return ret;
1847 }
1848 
1849 /*
1850  * Function to update ctime/mtime for a given device path.
1851  * Mainly used for ctime/mtime based probe like libblkid.
1852  */
1853 static void update_dev_time(const char *path_name)
1854 {
1855 	struct file *filp;
1856 
1857 	filp = filp_open(path_name, O_RDWR, 0);
1858 	if (IS_ERR(filp))
1859 		return;
1860 	file_update_time(filp);
1861 	filp_close(filp, NULL);
1862 }
1863 
1864 static int btrfs_rm_dev_item(struct btrfs_device *device)
1865 {
1866 	struct btrfs_root *root = device->fs_info->chunk_root;
1867 	int ret;
1868 	struct btrfs_path *path;
1869 	struct btrfs_key key;
1870 	struct btrfs_trans_handle *trans;
1871 
1872 	path = btrfs_alloc_path();
1873 	if (!path)
1874 		return -ENOMEM;
1875 
1876 	trans = btrfs_start_transaction(root, 0);
1877 	if (IS_ERR(trans)) {
1878 		btrfs_free_path(path);
1879 		return PTR_ERR(trans);
1880 	}
1881 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1882 	key.type = BTRFS_DEV_ITEM_KEY;
1883 	key.offset = device->devid;
1884 
1885 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1886 	if (ret) {
1887 		if (ret > 0)
1888 			ret = -ENOENT;
1889 		btrfs_abort_transaction(trans, ret);
1890 		btrfs_end_transaction(trans);
1891 		goto out;
1892 	}
1893 
1894 	ret = btrfs_del_item(trans, root, path);
1895 	if (ret) {
1896 		btrfs_abort_transaction(trans, ret);
1897 		btrfs_end_transaction(trans);
1898 	}
1899 
1900 out:
1901 	btrfs_free_path(path);
1902 	if (!ret)
1903 		ret = btrfs_commit_transaction(trans);
1904 	return ret;
1905 }
1906 
1907 /*
1908  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1909  * filesystem. It's up to the caller to adjust that number regarding eg. device
1910  * replace.
1911  */
1912 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1913 		u64 num_devices)
1914 {
1915 	u64 all_avail;
1916 	unsigned seq;
1917 	int i;
1918 
1919 	do {
1920 		seq = read_seqbegin(&fs_info->profiles_lock);
1921 
1922 		all_avail = fs_info->avail_data_alloc_bits |
1923 			    fs_info->avail_system_alloc_bits |
1924 			    fs_info->avail_metadata_alloc_bits;
1925 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1926 
1927 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1928 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1929 			continue;
1930 
1931 		if (num_devices < btrfs_raid_array[i].devs_min) {
1932 			int ret = btrfs_raid_array[i].mindev_error;
1933 
1934 			if (ret)
1935 				return ret;
1936 		}
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 static struct btrfs_device * btrfs_find_next_active_device(
1943 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1944 {
1945 	struct btrfs_device *next_device;
1946 
1947 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1948 		if (next_device != device &&
1949 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1950 		    && next_device->bdev)
1951 			return next_device;
1952 	}
1953 
1954 	return NULL;
1955 }
1956 
1957 /*
1958  * Helper function to check if the given device is part of s_bdev / latest_bdev
1959  * and replace it with the provided or the next active device, in the context
1960  * where this function called, there should be always be another device (or
1961  * this_dev) which is active.
1962  */
1963 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1964 				     struct btrfs_device *this_dev)
1965 {
1966 	struct btrfs_fs_info *fs_info = device->fs_info;
1967 	struct btrfs_device *next_device;
1968 
1969 	if (this_dev)
1970 		next_device = this_dev;
1971 	else
1972 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1973 								device);
1974 	ASSERT(next_device);
1975 
1976 	if (fs_info->sb->s_bdev &&
1977 			(fs_info->sb->s_bdev == device->bdev))
1978 		fs_info->sb->s_bdev = next_device->bdev;
1979 
1980 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1981 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1982 }
1983 
1984 /*
1985  * Return btrfs_fs_devices::num_devices excluding the device that's being
1986  * currently replaced.
1987  */
1988 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1989 {
1990 	u64 num_devices = fs_info->fs_devices->num_devices;
1991 
1992 	down_read(&fs_info->dev_replace.rwsem);
1993 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1994 		ASSERT(num_devices > 1);
1995 		num_devices--;
1996 	}
1997 	up_read(&fs_info->dev_replace.rwsem);
1998 
1999 	return num_devices;
2000 }
2001 
2002 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2003 			       struct block_device *bdev,
2004 			       const char *device_path)
2005 {
2006 	struct btrfs_super_block *disk_super;
2007 	int copy_num;
2008 
2009 	if (!bdev)
2010 		return;
2011 
2012 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2013 		struct page *page;
2014 		int ret;
2015 
2016 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2017 		if (IS_ERR(disk_super))
2018 			continue;
2019 
2020 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2021 
2022 		page = virt_to_page(disk_super);
2023 		set_page_dirty(page);
2024 		lock_page(page);
2025 		/* write_on_page() unlocks the page */
2026 		ret = write_one_page(page);
2027 		if (ret)
2028 			btrfs_warn(fs_info,
2029 				"error clearing superblock number %d (%d)",
2030 				copy_num, ret);
2031 		btrfs_release_disk_super(disk_super);
2032 
2033 	}
2034 
2035 	/* Notify udev that device has changed */
2036 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2037 
2038 	/* Update ctime/mtime for device path for libblkid */
2039 	update_dev_time(device_path);
2040 }
2041 
2042 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2043 		u64 devid)
2044 {
2045 	struct btrfs_device *device;
2046 	struct btrfs_fs_devices *cur_devices;
2047 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2048 	u64 num_devices;
2049 	int ret = 0;
2050 
2051 	mutex_lock(&uuid_mutex);
2052 
2053 	num_devices = btrfs_num_devices(fs_info);
2054 
2055 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2056 	if (ret)
2057 		goto out;
2058 
2059 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2060 
2061 	if (IS_ERR(device)) {
2062 		if (PTR_ERR(device) == -ENOENT &&
2063 		    strcmp(device_path, "missing") == 0)
2064 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2065 		else
2066 			ret = PTR_ERR(device);
2067 		goto out;
2068 	}
2069 
2070 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2071 		btrfs_warn_in_rcu(fs_info,
2072 		  "cannot remove device %s (devid %llu) due to active swapfile",
2073 				  rcu_str_deref(device->name), device->devid);
2074 		ret = -ETXTBSY;
2075 		goto out;
2076 	}
2077 
2078 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2079 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2080 		goto out;
2081 	}
2082 
2083 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2084 	    fs_info->fs_devices->rw_devices == 1) {
2085 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2086 		goto out;
2087 	}
2088 
2089 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2090 		mutex_lock(&fs_info->chunk_mutex);
2091 		list_del_init(&device->dev_alloc_list);
2092 		device->fs_devices->rw_devices--;
2093 		mutex_unlock(&fs_info->chunk_mutex);
2094 	}
2095 
2096 	mutex_unlock(&uuid_mutex);
2097 	ret = btrfs_shrink_device(device, 0);
2098 	mutex_lock(&uuid_mutex);
2099 	if (ret)
2100 		goto error_undo;
2101 
2102 	/*
2103 	 * TODO: the superblock still includes this device in its num_devices
2104 	 * counter although write_all_supers() is not locked out. This
2105 	 * could give a filesystem state which requires a degraded mount.
2106 	 */
2107 	ret = btrfs_rm_dev_item(device);
2108 	if (ret)
2109 		goto error_undo;
2110 
2111 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2112 	btrfs_scrub_cancel_dev(device);
2113 
2114 	/*
2115 	 * the device list mutex makes sure that we don't change
2116 	 * the device list while someone else is writing out all
2117 	 * the device supers. Whoever is writing all supers, should
2118 	 * lock the device list mutex before getting the number of
2119 	 * devices in the super block (super_copy). Conversely,
2120 	 * whoever updates the number of devices in the super block
2121 	 * (super_copy) should hold the device list mutex.
2122 	 */
2123 
2124 	/*
2125 	 * In normal cases the cur_devices == fs_devices. But in case
2126 	 * of deleting a seed device, the cur_devices should point to
2127 	 * its own fs_devices listed under the fs_devices->seed.
2128 	 */
2129 	cur_devices = device->fs_devices;
2130 	mutex_lock(&fs_devices->device_list_mutex);
2131 	list_del_rcu(&device->dev_list);
2132 
2133 	cur_devices->num_devices--;
2134 	cur_devices->total_devices--;
2135 	/* Update total_devices of the parent fs_devices if it's seed */
2136 	if (cur_devices != fs_devices)
2137 		fs_devices->total_devices--;
2138 
2139 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2140 		cur_devices->missing_devices--;
2141 
2142 	btrfs_assign_next_active_device(device, NULL);
2143 
2144 	if (device->bdev) {
2145 		cur_devices->open_devices--;
2146 		/* remove sysfs entry */
2147 		btrfs_sysfs_remove_devices_dir(fs_devices, device);
2148 	}
2149 
2150 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2151 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2152 	mutex_unlock(&fs_devices->device_list_mutex);
2153 
2154 	/*
2155 	 * at this point, the device is zero sized and detached from
2156 	 * the devices list.  All that's left is to zero out the old
2157 	 * supers and free the device.
2158 	 */
2159 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2160 		btrfs_scratch_superblocks(fs_info, device->bdev,
2161 					  device->name->str);
2162 
2163 	btrfs_close_bdev(device);
2164 	synchronize_rcu();
2165 	btrfs_free_device(device);
2166 
2167 	if (cur_devices->open_devices == 0) {
2168 		while (fs_devices) {
2169 			if (fs_devices->seed == cur_devices) {
2170 				fs_devices->seed = cur_devices->seed;
2171 				break;
2172 			}
2173 			fs_devices = fs_devices->seed;
2174 		}
2175 		cur_devices->seed = NULL;
2176 		close_fs_devices(cur_devices);
2177 		free_fs_devices(cur_devices);
2178 	}
2179 
2180 out:
2181 	mutex_unlock(&uuid_mutex);
2182 	return ret;
2183 
2184 error_undo:
2185 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2186 		mutex_lock(&fs_info->chunk_mutex);
2187 		list_add(&device->dev_alloc_list,
2188 			 &fs_devices->alloc_list);
2189 		device->fs_devices->rw_devices++;
2190 		mutex_unlock(&fs_info->chunk_mutex);
2191 	}
2192 	goto out;
2193 }
2194 
2195 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2196 {
2197 	struct btrfs_fs_devices *fs_devices;
2198 
2199 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2200 
2201 	/*
2202 	 * in case of fs with no seed, srcdev->fs_devices will point
2203 	 * to fs_devices of fs_info. However when the dev being replaced is
2204 	 * a seed dev it will point to the seed's local fs_devices. In short
2205 	 * srcdev will have its correct fs_devices in both the cases.
2206 	 */
2207 	fs_devices = srcdev->fs_devices;
2208 
2209 	list_del_rcu(&srcdev->dev_list);
2210 	list_del(&srcdev->dev_alloc_list);
2211 	fs_devices->num_devices--;
2212 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2213 		fs_devices->missing_devices--;
2214 
2215 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2216 		fs_devices->rw_devices--;
2217 
2218 	if (srcdev->bdev)
2219 		fs_devices->open_devices--;
2220 }
2221 
2222 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2223 {
2224 	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2225 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2226 
2227 	mutex_lock(&uuid_mutex);
2228 
2229 	btrfs_close_bdev(srcdev);
2230 	synchronize_rcu();
2231 	btrfs_free_device(srcdev);
2232 
2233 	/* if this is no devs we rather delete the fs_devices */
2234 	if (!fs_devices->num_devices) {
2235 		struct btrfs_fs_devices *tmp_fs_devices;
2236 
2237 		/*
2238 		 * On a mounted FS, num_devices can't be zero unless it's a
2239 		 * seed. In case of a seed device being replaced, the replace
2240 		 * target added to the sprout FS, so there will be no more
2241 		 * device left under the seed FS.
2242 		 */
2243 		ASSERT(fs_devices->seeding);
2244 
2245 		tmp_fs_devices = fs_info->fs_devices;
2246 		while (tmp_fs_devices) {
2247 			if (tmp_fs_devices->seed == fs_devices) {
2248 				tmp_fs_devices->seed = fs_devices->seed;
2249 				break;
2250 			}
2251 			tmp_fs_devices = tmp_fs_devices->seed;
2252 		}
2253 		fs_devices->seed = NULL;
2254 		close_fs_devices(fs_devices);
2255 		free_fs_devices(fs_devices);
2256 	}
2257 	mutex_unlock(&uuid_mutex);
2258 }
2259 
2260 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2261 {
2262 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2263 
2264 	mutex_lock(&fs_devices->device_list_mutex);
2265 
2266 	btrfs_sysfs_remove_devices_dir(fs_devices, tgtdev);
2267 
2268 	if (tgtdev->bdev)
2269 		fs_devices->open_devices--;
2270 
2271 	fs_devices->num_devices--;
2272 
2273 	btrfs_assign_next_active_device(tgtdev, NULL);
2274 
2275 	list_del_rcu(&tgtdev->dev_list);
2276 
2277 	mutex_unlock(&fs_devices->device_list_mutex);
2278 
2279 	/*
2280 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2281 	 * may lead to a call to btrfs_show_devname() which will try
2282 	 * to hold device_list_mutex. And here this device
2283 	 * is already out of device list, so we don't have to hold
2284 	 * the device_list_mutex lock.
2285 	 */
2286 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2287 				  tgtdev->name->str);
2288 
2289 	btrfs_close_bdev(tgtdev);
2290 	synchronize_rcu();
2291 	btrfs_free_device(tgtdev);
2292 }
2293 
2294 static struct btrfs_device *btrfs_find_device_by_path(
2295 		struct btrfs_fs_info *fs_info, const char *device_path)
2296 {
2297 	int ret = 0;
2298 	struct btrfs_super_block *disk_super;
2299 	u64 devid;
2300 	u8 *dev_uuid;
2301 	struct block_device *bdev;
2302 	struct btrfs_device *device;
2303 
2304 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2305 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2306 	if (ret)
2307 		return ERR_PTR(ret);
2308 
2309 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2310 	dev_uuid = disk_super->dev_item.uuid;
2311 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2312 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2313 					   disk_super->metadata_uuid, true);
2314 	else
2315 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2316 					   disk_super->fsid, true);
2317 
2318 	btrfs_release_disk_super(disk_super);
2319 	if (!device)
2320 		device = ERR_PTR(-ENOENT);
2321 	blkdev_put(bdev, FMODE_READ);
2322 	return device;
2323 }
2324 
2325 /*
2326  * Lookup a device given by device id, or the path if the id is 0.
2327  */
2328 struct btrfs_device *btrfs_find_device_by_devspec(
2329 		struct btrfs_fs_info *fs_info, u64 devid,
2330 		const char *device_path)
2331 {
2332 	struct btrfs_device *device;
2333 
2334 	if (devid) {
2335 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2336 					   NULL, true);
2337 		if (!device)
2338 			return ERR_PTR(-ENOENT);
2339 		return device;
2340 	}
2341 
2342 	if (!device_path || !device_path[0])
2343 		return ERR_PTR(-EINVAL);
2344 
2345 	if (strcmp(device_path, "missing") == 0) {
2346 		/* Find first missing device */
2347 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2348 				    dev_list) {
2349 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2350 				     &device->dev_state) && !device->bdev)
2351 				return device;
2352 		}
2353 		return ERR_PTR(-ENOENT);
2354 	}
2355 
2356 	return btrfs_find_device_by_path(fs_info, device_path);
2357 }
2358 
2359 /*
2360  * does all the dirty work required for changing file system's UUID.
2361  */
2362 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2363 {
2364 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2365 	struct btrfs_fs_devices *old_devices;
2366 	struct btrfs_fs_devices *seed_devices;
2367 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2368 	struct btrfs_device *device;
2369 	u64 super_flags;
2370 
2371 	lockdep_assert_held(&uuid_mutex);
2372 	if (!fs_devices->seeding)
2373 		return -EINVAL;
2374 
2375 	seed_devices = alloc_fs_devices(NULL, NULL);
2376 	if (IS_ERR(seed_devices))
2377 		return PTR_ERR(seed_devices);
2378 
2379 	old_devices = clone_fs_devices(fs_devices);
2380 	if (IS_ERR(old_devices)) {
2381 		kfree(seed_devices);
2382 		return PTR_ERR(old_devices);
2383 	}
2384 
2385 	list_add(&old_devices->fs_list, &fs_uuids);
2386 
2387 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2388 	seed_devices->opened = 1;
2389 	INIT_LIST_HEAD(&seed_devices->devices);
2390 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2391 	mutex_init(&seed_devices->device_list_mutex);
2392 
2393 	mutex_lock(&fs_devices->device_list_mutex);
2394 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2395 			      synchronize_rcu);
2396 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2397 		device->fs_devices = seed_devices;
2398 
2399 	mutex_lock(&fs_info->chunk_mutex);
2400 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2401 	mutex_unlock(&fs_info->chunk_mutex);
2402 
2403 	fs_devices->seeding = false;
2404 	fs_devices->num_devices = 0;
2405 	fs_devices->open_devices = 0;
2406 	fs_devices->missing_devices = 0;
2407 	fs_devices->rotating = false;
2408 	fs_devices->seed = seed_devices;
2409 
2410 	generate_random_uuid(fs_devices->fsid);
2411 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2412 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2413 	mutex_unlock(&fs_devices->device_list_mutex);
2414 
2415 	super_flags = btrfs_super_flags(disk_super) &
2416 		      ~BTRFS_SUPER_FLAG_SEEDING;
2417 	btrfs_set_super_flags(disk_super, super_flags);
2418 
2419 	return 0;
2420 }
2421 
2422 /*
2423  * Store the expected generation for seed devices in device items.
2424  */
2425 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2426 {
2427 	struct btrfs_fs_info *fs_info = trans->fs_info;
2428 	struct btrfs_root *root = fs_info->chunk_root;
2429 	struct btrfs_path *path;
2430 	struct extent_buffer *leaf;
2431 	struct btrfs_dev_item *dev_item;
2432 	struct btrfs_device *device;
2433 	struct btrfs_key key;
2434 	u8 fs_uuid[BTRFS_FSID_SIZE];
2435 	u8 dev_uuid[BTRFS_UUID_SIZE];
2436 	u64 devid;
2437 	int ret;
2438 
2439 	path = btrfs_alloc_path();
2440 	if (!path)
2441 		return -ENOMEM;
2442 
2443 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2444 	key.offset = 0;
2445 	key.type = BTRFS_DEV_ITEM_KEY;
2446 
2447 	while (1) {
2448 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2449 		if (ret < 0)
2450 			goto error;
2451 
2452 		leaf = path->nodes[0];
2453 next_slot:
2454 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2455 			ret = btrfs_next_leaf(root, path);
2456 			if (ret > 0)
2457 				break;
2458 			if (ret < 0)
2459 				goto error;
2460 			leaf = path->nodes[0];
2461 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2462 			btrfs_release_path(path);
2463 			continue;
2464 		}
2465 
2466 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2467 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2468 		    key.type != BTRFS_DEV_ITEM_KEY)
2469 			break;
2470 
2471 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2472 					  struct btrfs_dev_item);
2473 		devid = btrfs_device_id(leaf, dev_item);
2474 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2475 				   BTRFS_UUID_SIZE);
2476 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2477 				   BTRFS_FSID_SIZE);
2478 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2479 					   fs_uuid, true);
2480 		BUG_ON(!device); /* Logic error */
2481 
2482 		if (device->fs_devices->seeding) {
2483 			btrfs_set_device_generation(leaf, dev_item,
2484 						    device->generation);
2485 			btrfs_mark_buffer_dirty(leaf);
2486 		}
2487 
2488 		path->slots[0]++;
2489 		goto next_slot;
2490 	}
2491 	ret = 0;
2492 error:
2493 	btrfs_free_path(path);
2494 	return ret;
2495 }
2496 
2497 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2498 {
2499 	struct btrfs_root *root = fs_info->dev_root;
2500 	struct request_queue *q;
2501 	struct btrfs_trans_handle *trans;
2502 	struct btrfs_device *device;
2503 	struct block_device *bdev;
2504 	struct super_block *sb = fs_info->sb;
2505 	struct rcu_string *name;
2506 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2507 	u64 orig_super_total_bytes;
2508 	u64 orig_super_num_devices;
2509 	int seeding_dev = 0;
2510 	int ret = 0;
2511 	bool unlocked = false;
2512 
2513 	if (sb_rdonly(sb) && !fs_devices->seeding)
2514 		return -EROFS;
2515 
2516 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2517 				  fs_info->bdev_holder);
2518 	if (IS_ERR(bdev))
2519 		return PTR_ERR(bdev);
2520 
2521 	if (fs_devices->seeding) {
2522 		seeding_dev = 1;
2523 		down_write(&sb->s_umount);
2524 		mutex_lock(&uuid_mutex);
2525 	}
2526 
2527 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2528 
2529 	mutex_lock(&fs_devices->device_list_mutex);
2530 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2531 		if (device->bdev == bdev) {
2532 			ret = -EEXIST;
2533 			mutex_unlock(
2534 				&fs_devices->device_list_mutex);
2535 			goto error;
2536 		}
2537 	}
2538 	mutex_unlock(&fs_devices->device_list_mutex);
2539 
2540 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2541 	if (IS_ERR(device)) {
2542 		/* we can safely leave the fs_devices entry around */
2543 		ret = PTR_ERR(device);
2544 		goto error;
2545 	}
2546 
2547 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2548 	if (!name) {
2549 		ret = -ENOMEM;
2550 		goto error_free_device;
2551 	}
2552 	rcu_assign_pointer(device->name, name);
2553 
2554 	trans = btrfs_start_transaction(root, 0);
2555 	if (IS_ERR(trans)) {
2556 		ret = PTR_ERR(trans);
2557 		goto error_free_device;
2558 	}
2559 
2560 	q = bdev_get_queue(bdev);
2561 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2562 	device->generation = trans->transid;
2563 	device->io_width = fs_info->sectorsize;
2564 	device->io_align = fs_info->sectorsize;
2565 	device->sector_size = fs_info->sectorsize;
2566 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2567 					 fs_info->sectorsize);
2568 	device->disk_total_bytes = device->total_bytes;
2569 	device->commit_total_bytes = device->total_bytes;
2570 	device->fs_info = fs_info;
2571 	device->bdev = bdev;
2572 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2573 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2574 	device->mode = FMODE_EXCL;
2575 	device->dev_stats_valid = 1;
2576 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2577 
2578 	if (seeding_dev) {
2579 		sb->s_flags &= ~SB_RDONLY;
2580 		ret = btrfs_prepare_sprout(fs_info);
2581 		if (ret) {
2582 			btrfs_abort_transaction(trans, ret);
2583 			goto error_trans;
2584 		}
2585 	}
2586 
2587 	device->fs_devices = fs_devices;
2588 
2589 	mutex_lock(&fs_devices->device_list_mutex);
2590 	mutex_lock(&fs_info->chunk_mutex);
2591 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2592 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2593 	fs_devices->num_devices++;
2594 	fs_devices->open_devices++;
2595 	fs_devices->rw_devices++;
2596 	fs_devices->total_devices++;
2597 	fs_devices->total_rw_bytes += device->total_bytes;
2598 
2599 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2600 
2601 	if (!blk_queue_nonrot(q))
2602 		fs_devices->rotating = true;
2603 
2604 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2605 	btrfs_set_super_total_bytes(fs_info->super_copy,
2606 		round_down(orig_super_total_bytes + device->total_bytes,
2607 			   fs_info->sectorsize));
2608 
2609 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2610 	btrfs_set_super_num_devices(fs_info->super_copy,
2611 				    orig_super_num_devices + 1);
2612 
2613 	/* add sysfs device entry */
2614 	btrfs_sysfs_add_devices_dir(fs_devices, device);
2615 
2616 	/*
2617 	 * we've got more storage, clear any full flags on the space
2618 	 * infos
2619 	 */
2620 	btrfs_clear_space_info_full(fs_info);
2621 
2622 	mutex_unlock(&fs_info->chunk_mutex);
2623 	mutex_unlock(&fs_devices->device_list_mutex);
2624 
2625 	if (seeding_dev) {
2626 		mutex_lock(&fs_info->chunk_mutex);
2627 		ret = init_first_rw_device(trans);
2628 		mutex_unlock(&fs_info->chunk_mutex);
2629 		if (ret) {
2630 			btrfs_abort_transaction(trans, ret);
2631 			goto error_sysfs;
2632 		}
2633 	}
2634 
2635 	ret = btrfs_add_dev_item(trans, device);
2636 	if (ret) {
2637 		btrfs_abort_transaction(trans, ret);
2638 		goto error_sysfs;
2639 	}
2640 
2641 	if (seeding_dev) {
2642 		ret = btrfs_finish_sprout(trans);
2643 		if (ret) {
2644 			btrfs_abort_transaction(trans, ret);
2645 			goto error_sysfs;
2646 		}
2647 
2648 		btrfs_sysfs_update_sprout_fsid(fs_devices,
2649 				fs_info->fs_devices->fsid);
2650 	}
2651 
2652 	ret = btrfs_commit_transaction(trans);
2653 
2654 	if (seeding_dev) {
2655 		mutex_unlock(&uuid_mutex);
2656 		up_write(&sb->s_umount);
2657 		unlocked = true;
2658 
2659 		if (ret) /* transaction commit */
2660 			return ret;
2661 
2662 		ret = btrfs_relocate_sys_chunks(fs_info);
2663 		if (ret < 0)
2664 			btrfs_handle_fs_error(fs_info, ret,
2665 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2666 		trans = btrfs_attach_transaction(root);
2667 		if (IS_ERR(trans)) {
2668 			if (PTR_ERR(trans) == -ENOENT)
2669 				return 0;
2670 			ret = PTR_ERR(trans);
2671 			trans = NULL;
2672 			goto error_sysfs;
2673 		}
2674 		ret = btrfs_commit_transaction(trans);
2675 	}
2676 
2677 	/*
2678 	 * Now that we have written a new super block to this device, check all
2679 	 * other fs_devices list if device_path alienates any other scanned
2680 	 * device.
2681 	 * We can ignore the return value as it typically returns -EINVAL and
2682 	 * only succeeds if the device was an alien.
2683 	 */
2684 	btrfs_forget_devices(device_path);
2685 
2686 	/* Update ctime/mtime for blkid or udev */
2687 	update_dev_time(device_path);
2688 
2689 	return ret;
2690 
2691 error_sysfs:
2692 	btrfs_sysfs_remove_devices_dir(fs_devices, device);
2693 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2694 	mutex_lock(&fs_info->chunk_mutex);
2695 	list_del_rcu(&device->dev_list);
2696 	list_del(&device->dev_alloc_list);
2697 	fs_info->fs_devices->num_devices--;
2698 	fs_info->fs_devices->open_devices--;
2699 	fs_info->fs_devices->rw_devices--;
2700 	fs_info->fs_devices->total_devices--;
2701 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2702 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2703 	btrfs_set_super_total_bytes(fs_info->super_copy,
2704 				    orig_super_total_bytes);
2705 	btrfs_set_super_num_devices(fs_info->super_copy,
2706 				    orig_super_num_devices);
2707 	mutex_unlock(&fs_info->chunk_mutex);
2708 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2709 error_trans:
2710 	if (seeding_dev)
2711 		sb->s_flags |= SB_RDONLY;
2712 	if (trans)
2713 		btrfs_end_transaction(trans);
2714 error_free_device:
2715 	btrfs_free_device(device);
2716 error:
2717 	blkdev_put(bdev, FMODE_EXCL);
2718 	if (seeding_dev && !unlocked) {
2719 		mutex_unlock(&uuid_mutex);
2720 		up_write(&sb->s_umount);
2721 	}
2722 	return ret;
2723 }
2724 
2725 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2726 					struct btrfs_device *device)
2727 {
2728 	int ret;
2729 	struct btrfs_path *path;
2730 	struct btrfs_root *root = device->fs_info->chunk_root;
2731 	struct btrfs_dev_item *dev_item;
2732 	struct extent_buffer *leaf;
2733 	struct btrfs_key key;
2734 
2735 	path = btrfs_alloc_path();
2736 	if (!path)
2737 		return -ENOMEM;
2738 
2739 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2740 	key.type = BTRFS_DEV_ITEM_KEY;
2741 	key.offset = device->devid;
2742 
2743 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2744 	if (ret < 0)
2745 		goto out;
2746 
2747 	if (ret > 0) {
2748 		ret = -ENOENT;
2749 		goto out;
2750 	}
2751 
2752 	leaf = path->nodes[0];
2753 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2754 
2755 	btrfs_set_device_id(leaf, dev_item, device->devid);
2756 	btrfs_set_device_type(leaf, dev_item, device->type);
2757 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2758 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2759 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2760 	btrfs_set_device_total_bytes(leaf, dev_item,
2761 				     btrfs_device_get_disk_total_bytes(device));
2762 	btrfs_set_device_bytes_used(leaf, dev_item,
2763 				    btrfs_device_get_bytes_used(device));
2764 	btrfs_mark_buffer_dirty(leaf);
2765 
2766 out:
2767 	btrfs_free_path(path);
2768 	return ret;
2769 }
2770 
2771 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2772 		      struct btrfs_device *device, u64 new_size)
2773 {
2774 	struct btrfs_fs_info *fs_info = device->fs_info;
2775 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2776 	u64 old_total;
2777 	u64 diff;
2778 
2779 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2780 		return -EACCES;
2781 
2782 	new_size = round_down(new_size, fs_info->sectorsize);
2783 
2784 	mutex_lock(&fs_info->chunk_mutex);
2785 	old_total = btrfs_super_total_bytes(super_copy);
2786 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2787 
2788 	if (new_size <= device->total_bytes ||
2789 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2790 		mutex_unlock(&fs_info->chunk_mutex);
2791 		return -EINVAL;
2792 	}
2793 
2794 	btrfs_set_super_total_bytes(super_copy,
2795 			round_down(old_total + diff, fs_info->sectorsize));
2796 	device->fs_devices->total_rw_bytes += diff;
2797 
2798 	btrfs_device_set_total_bytes(device, new_size);
2799 	btrfs_device_set_disk_total_bytes(device, new_size);
2800 	btrfs_clear_space_info_full(device->fs_info);
2801 	if (list_empty(&device->post_commit_list))
2802 		list_add_tail(&device->post_commit_list,
2803 			      &trans->transaction->dev_update_list);
2804 	mutex_unlock(&fs_info->chunk_mutex);
2805 
2806 	return btrfs_update_device(trans, device);
2807 }
2808 
2809 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2810 {
2811 	struct btrfs_fs_info *fs_info = trans->fs_info;
2812 	struct btrfs_root *root = fs_info->chunk_root;
2813 	int ret;
2814 	struct btrfs_path *path;
2815 	struct btrfs_key key;
2816 
2817 	path = btrfs_alloc_path();
2818 	if (!path)
2819 		return -ENOMEM;
2820 
2821 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2822 	key.offset = chunk_offset;
2823 	key.type = BTRFS_CHUNK_ITEM_KEY;
2824 
2825 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2826 	if (ret < 0)
2827 		goto out;
2828 	else if (ret > 0) { /* Logic error or corruption */
2829 		btrfs_handle_fs_error(fs_info, -ENOENT,
2830 				      "Failed lookup while freeing chunk.");
2831 		ret = -ENOENT;
2832 		goto out;
2833 	}
2834 
2835 	ret = btrfs_del_item(trans, root, path);
2836 	if (ret < 0)
2837 		btrfs_handle_fs_error(fs_info, ret,
2838 				      "Failed to delete chunk item.");
2839 out:
2840 	btrfs_free_path(path);
2841 	return ret;
2842 }
2843 
2844 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2845 {
2846 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2847 	struct btrfs_disk_key *disk_key;
2848 	struct btrfs_chunk *chunk;
2849 	u8 *ptr;
2850 	int ret = 0;
2851 	u32 num_stripes;
2852 	u32 array_size;
2853 	u32 len = 0;
2854 	u32 cur;
2855 	struct btrfs_key key;
2856 
2857 	mutex_lock(&fs_info->chunk_mutex);
2858 	array_size = btrfs_super_sys_array_size(super_copy);
2859 
2860 	ptr = super_copy->sys_chunk_array;
2861 	cur = 0;
2862 
2863 	while (cur < array_size) {
2864 		disk_key = (struct btrfs_disk_key *)ptr;
2865 		btrfs_disk_key_to_cpu(&key, disk_key);
2866 
2867 		len = sizeof(*disk_key);
2868 
2869 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2870 			chunk = (struct btrfs_chunk *)(ptr + len);
2871 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2872 			len += btrfs_chunk_item_size(num_stripes);
2873 		} else {
2874 			ret = -EIO;
2875 			break;
2876 		}
2877 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2878 		    key.offset == chunk_offset) {
2879 			memmove(ptr, ptr + len, array_size - (cur + len));
2880 			array_size -= len;
2881 			btrfs_set_super_sys_array_size(super_copy, array_size);
2882 		} else {
2883 			ptr += len;
2884 			cur += len;
2885 		}
2886 	}
2887 	mutex_unlock(&fs_info->chunk_mutex);
2888 	return ret;
2889 }
2890 
2891 /*
2892  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2893  * @logical: Logical block offset in bytes.
2894  * @length: Length of extent in bytes.
2895  *
2896  * Return: Chunk mapping or ERR_PTR.
2897  */
2898 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2899 				       u64 logical, u64 length)
2900 {
2901 	struct extent_map_tree *em_tree;
2902 	struct extent_map *em;
2903 
2904 	em_tree = &fs_info->mapping_tree;
2905 	read_lock(&em_tree->lock);
2906 	em = lookup_extent_mapping(em_tree, logical, length);
2907 	read_unlock(&em_tree->lock);
2908 
2909 	if (!em) {
2910 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2911 			   logical, length);
2912 		return ERR_PTR(-EINVAL);
2913 	}
2914 
2915 	if (em->start > logical || em->start + em->len < logical) {
2916 		btrfs_crit(fs_info,
2917 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2918 			   logical, length, em->start, em->start + em->len);
2919 		free_extent_map(em);
2920 		return ERR_PTR(-EINVAL);
2921 	}
2922 
2923 	/* callers are responsible for dropping em's ref. */
2924 	return em;
2925 }
2926 
2927 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2928 {
2929 	struct btrfs_fs_info *fs_info = trans->fs_info;
2930 	struct extent_map *em;
2931 	struct map_lookup *map;
2932 	u64 dev_extent_len = 0;
2933 	int i, ret = 0;
2934 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2935 
2936 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2937 	if (IS_ERR(em)) {
2938 		/*
2939 		 * This is a logic error, but we don't want to just rely on the
2940 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2941 		 * do anything we still error out.
2942 		 */
2943 		ASSERT(0);
2944 		return PTR_ERR(em);
2945 	}
2946 	map = em->map_lookup;
2947 	mutex_lock(&fs_info->chunk_mutex);
2948 	check_system_chunk(trans, map->type);
2949 	mutex_unlock(&fs_info->chunk_mutex);
2950 
2951 	/*
2952 	 * Take the device list mutex to prevent races with the final phase of
2953 	 * a device replace operation that replaces the device object associated
2954 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2955 	 */
2956 	mutex_lock(&fs_devices->device_list_mutex);
2957 	for (i = 0; i < map->num_stripes; i++) {
2958 		struct btrfs_device *device = map->stripes[i].dev;
2959 		ret = btrfs_free_dev_extent(trans, device,
2960 					    map->stripes[i].physical,
2961 					    &dev_extent_len);
2962 		if (ret) {
2963 			mutex_unlock(&fs_devices->device_list_mutex);
2964 			btrfs_abort_transaction(trans, ret);
2965 			goto out;
2966 		}
2967 
2968 		if (device->bytes_used > 0) {
2969 			mutex_lock(&fs_info->chunk_mutex);
2970 			btrfs_device_set_bytes_used(device,
2971 					device->bytes_used - dev_extent_len);
2972 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2973 			btrfs_clear_space_info_full(fs_info);
2974 			mutex_unlock(&fs_info->chunk_mutex);
2975 		}
2976 
2977 		ret = btrfs_update_device(trans, device);
2978 		if (ret) {
2979 			mutex_unlock(&fs_devices->device_list_mutex);
2980 			btrfs_abort_transaction(trans, ret);
2981 			goto out;
2982 		}
2983 	}
2984 	mutex_unlock(&fs_devices->device_list_mutex);
2985 
2986 	ret = btrfs_free_chunk(trans, chunk_offset);
2987 	if (ret) {
2988 		btrfs_abort_transaction(trans, ret);
2989 		goto out;
2990 	}
2991 
2992 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2993 
2994 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2995 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2996 		if (ret) {
2997 			btrfs_abort_transaction(trans, ret);
2998 			goto out;
2999 		}
3000 	}
3001 
3002 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3003 	if (ret) {
3004 		btrfs_abort_transaction(trans, ret);
3005 		goto out;
3006 	}
3007 
3008 out:
3009 	/* once for us */
3010 	free_extent_map(em);
3011 	return ret;
3012 }
3013 
3014 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3015 {
3016 	struct btrfs_root *root = fs_info->chunk_root;
3017 	struct btrfs_trans_handle *trans;
3018 	struct btrfs_block_group *block_group;
3019 	int ret;
3020 
3021 	/*
3022 	 * Prevent races with automatic removal of unused block groups.
3023 	 * After we relocate and before we remove the chunk with offset
3024 	 * chunk_offset, automatic removal of the block group can kick in,
3025 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3026 	 *
3027 	 * Make sure to acquire this mutex before doing a tree search (dev
3028 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3029 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3030 	 * we release the path used to search the chunk/dev tree and before
3031 	 * the current task acquires this mutex and calls us.
3032 	 */
3033 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3034 
3035 	/* step one, relocate all the extents inside this chunk */
3036 	btrfs_scrub_pause(fs_info);
3037 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3038 	btrfs_scrub_continue(fs_info);
3039 	if (ret)
3040 		return ret;
3041 
3042 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3043 	if (!block_group)
3044 		return -ENOENT;
3045 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3046 	btrfs_put_block_group(block_group);
3047 
3048 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3049 						     chunk_offset);
3050 	if (IS_ERR(trans)) {
3051 		ret = PTR_ERR(trans);
3052 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3053 		return ret;
3054 	}
3055 
3056 	/*
3057 	 * step two, delete the device extents and the
3058 	 * chunk tree entries
3059 	 */
3060 	ret = btrfs_remove_chunk(trans, chunk_offset);
3061 	btrfs_end_transaction(trans);
3062 	return ret;
3063 }
3064 
3065 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3066 {
3067 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3068 	struct btrfs_path *path;
3069 	struct extent_buffer *leaf;
3070 	struct btrfs_chunk *chunk;
3071 	struct btrfs_key key;
3072 	struct btrfs_key found_key;
3073 	u64 chunk_type;
3074 	bool retried = false;
3075 	int failed = 0;
3076 	int ret;
3077 
3078 	path = btrfs_alloc_path();
3079 	if (!path)
3080 		return -ENOMEM;
3081 
3082 again:
3083 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3084 	key.offset = (u64)-1;
3085 	key.type = BTRFS_CHUNK_ITEM_KEY;
3086 
3087 	while (1) {
3088 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3089 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3090 		if (ret < 0) {
3091 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3092 			goto error;
3093 		}
3094 		BUG_ON(ret == 0); /* Corruption */
3095 
3096 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3097 					  key.type);
3098 		if (ret)
3099 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3100 		if (ret < 0)
3101 			goto error;
3102 		if (ret > 0)
3103 			break;
3104 
3105 		leaf = path->nodes[0];
3106 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3107 
3108 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3109 				       struct btrfs_chunk);
3110 		chunk_type = btrfs_chunk_type(leaf, chunk);
3111 		btrfs_release_path(path);
3112 
3113 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3114 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3115 			if (ret == -ENOSPC)
3116 				failed++;
3117 			else
3118 				BUG_ON(ret);
3119 		}
3120 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3121 
3122 		if (found_key.offset == 0)
3123 			break;
3124 		key.offset = found_key.offset - 1;
3125 	}
3126 	ret = 0;
3127 	if (failed && !retried) {
3128 		failed = 0;
3129 		retried = true;
3130 		goto again;
3131 	} else if (WARN_ON(failed && retried)) {
3132 		ret = -ENOSPC;
3133 	}
3134 error:
3135 	btrfs_free_path(path);
3136 	return ret;
3137 }
3138 
3139 /*
3140  * return 1 : allocate a data chunk successfully,
3141  * return <0: errors during allocating a data chunk,
3142  * return 0 : no need to allocate a data chunk.
3143  */
3144 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3145 				      u64 chunk_offset)
3146 {
3147 	struct btrfs_block_group *cache;
3148 	u64 bytes_used;
3149 	u64 chunk_type;
3150 
3151 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3152 	ASSERT(cache);
3153 	chunk_type = cache->flags;
3154 	btrfs_put_block_group(cache);
3155 
3156 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3157 		return 0;
3158 
3159 	spin_lock(&fs_info->data_sinfo->lock);
3160 	bytes_used = fs_info->data_sinfo->bytes_used;
3161 	spin_unlock(&fs_info->data_sinfo->lock);
3162 
3163 	if (!bytes_used) {
3164 		struct btrfs_trans_handle *trans;
3165 		int ret;
3166 
3167 		trans =	btrfs_join_transaction(fs_info->tree_root);
3168 		if (IS_ERR(trans))
3169 			return PTR_ERR(trans);
3170 
3171 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3172 		btrfs_end_transaction(trans);
3173 		if (ret < 0)
3174 			return ret;
3175 		return 1;
3176 	}
3177 
3178 	return 0;
3179 }
3180 
3181 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3182 			       struct btrfs_balance_control *bctl)
3183 {
3184 	struct btrfs_root *root = fs_info->tree_root;
3185 	struct btrfs_trans_handle *trans;
3186 	struct btrfs_balance_item *item;
3187 	struct btrfs_disk_balance_args disk_bargs;
3188 	struct btrfs_path *path;
3189 	struct extent_buffer *leaf;
3190 	struct btrfs_key key;
3191 	int ret, err;
3192 
3193 	path = btrfs_alloc_path();
3194 	if (!path)
3195 		return -ENOMEM;
3196 
3197 	trans = btrfs_start_transaction(root, 0);
3198 	if (IS_ERR(trans)) {
3199 		btrfs_free_path(path);
3200 		return PTR_ERR(trans);
3201 	}
3202 
3203 	key.objectid = BTRFS_BALANCE_OBJECTID;
3204 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3205 	key.offset = 0;
3206 
3207 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3208 				      sizeof(*item));
3209 	if (ret)
3210 		goto out;
3211 
3212 	leaf = path->nodes[0];
3213 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3214 
3215 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3216 
3217 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3218 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3219 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3220 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3221 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3222 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3223 
3224 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3225 
3226 	btrfs_mark_buffer_dirty(leaf);
3227 out:
3228 	btrfs_free_path(path);
3229 	err = btrfs_commit_transaction(trans);
3230 	if (err && !ret)
3231 		ret = err;
3232 	return ret;
3233 }
3234 
3235 static int del_balance_item(struct btrfs_fs_info *fs_info)
3236 {
3237 	struct btrfs_root *root = fs_info->tree_root;
3238 	struct btrfs_trans_handle *trans;
3239 	struct btrfs_path *path;
3240 	struct btrfs_key key;
3241 	int ret, err;
3242 
3243 	path = btrfs_alloc_path();
3244 	if (!path)
3245 		return -ENOMEM;
3246 
3247 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3248 	if (IS_ERR(trans)) {
3249 		btrfs_free_path(path);
3250 		return PTR_ERR(trans);
3251 	}
3252 
3253 	key.objectid = BTRFS_BALANCE_OBJECTID;
3254 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3255 	key.offset = 0;
3256 
3257 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3258 	if (ret < 0)
3259 		goto out;
3260 	if (ret > 0) {
3261 		ret = -ENOENT;
3262 		goto out;
3263 	}
3264 
3265 	ret = btrfs_del_item(trans, root, path);
3266 out:
3267 	btrfs_free_path(path);
3268 	err = btrfs_commit_transaction(trans);
3269 	if (err && !ret)
3270 		ret = err;
3271 	return ret;
3272 }
3273 
3274 /*
3275  * This is a heuristic used to reduce the number of chunks balanced on
3276  * resume after balance was interrupted.
3277  */
3278 static void update_balance_args(struct btrfs_balance_control *bctl)
3279 {
3280 	/*
3281 	 * Turn on soft mode for chunk types that were being converted.
3282 	 */
3283 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3284 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3285 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3286 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3287 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3288 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3289 
3290 	/*
3291 	 * Turn on usage filter if is not already used.  The idea is
3292 	 * that chunks that we have already balanced should be
3293 	 * reasonably full.  Don't do it for chunks that are being
3294 	 * converted - that will keep us from relocating unconverted
3295 	 * (albeit full) chunks.
3296 	 */
3297 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3298 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3299 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3300 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3301 		bctl->data.usage = 90;
3302 	}
3303 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3304 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3305 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3306 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3307 		bctl->sys.usage = 90;
3308 	}
3309 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3310 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3311 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3312 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3313 		bctl->meta.usage = 90;
3314 	}
3315 }
3316 
3317 /*
3318  * Clear the balance status in fs_info and delete the balance item from disk.
3319  */
3320 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3321 {
3322 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3323 	int ret;
3324 
3325 	BUG_ON(!fs_info->balance_ctl);
3326 
3327 	spin_lock(&fs_info->balance_lock);
3328 	fs_info->balance_ctl = NULL;
3329 	spin_unlock(&fs_info->balance_lock);
3330 
3331 	kfree(bctl);
3332 	ret = del_balance_item(fs_info);
3333 	if (ret)
3334 		btrfs_handle_fs_error(fs_info, ret, NULL);
3335 }
3336 
3337 /*
3338  * Balance filters.  Return 1 if chunk should be filtered out
3339  * (should not be balanced).
3340  */
3341 static int chunk_profiles_filter(u64 chunk_type,
3342 				 struct btrfs_balance_args *bargs)
3343 {
3344 	chunk_type = chunk_to_extended(chunk_type) &
3345 				BTRFS_EXTENDED_PROFILE_MASK;
3346 
3347 	if (bargs->profiles & chunk_type)
3348 		return 0;
3349 
3350 	return 1;
3351 }
3352 
3353 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3354 			      struct btrfs_balance_args *bargs)
3355 {
3356 	struct btrfs_block_group *cache;
3357 	u64 chunk_used;
3358 	u64 user_thresh_min;
3359 	u64 user_thresh_max;
3360 	int ret = 1;
3361 
3362 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3363 	chunk_used = cache->used;
3364 
3365 	if (bargs->usage_min == 0)
3366 		user_thresh_min = 0;
3367 	else
3368 		user_thresh_min = div_factor_fine(cache->length,
3369 						  bargs->usage_min);
3370 
3371 	if (bargs->usage_max == 0)
3372 		user_thresh_max = 1;
3373 	else if (bargs->usage_max > 100)
3374 		user_thresh_max = cache->length;
3375 	else
3376 		user_thresh_max = div_factor_fine(cache->length,
3377 						  bargs->usage_max);
3378 
3379 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3380 		ret = 0;
3381 
3382 	btrfs_put_block_group(cache);
3383 	return ret;
3384 }
3385 
3386 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3387 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3388 {
3389 	struct btrfs_block_group *cache;
3390 	u64 chunk_used, user_thresh;
3391 	int ret = 1;
3392 
3393 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3394 	chunk_used = cache->used;
3395 
3396 	if (bargs->usage_min == 0)
3397 		user_thresh = 1;
3398 	else if (bargs->usage > 100)
3399 		user_thresh = cache->length;
3400 	else
3401 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3402 
3403 	if (chunk_used < user_thresh)
3404 		ret = 0;
3405 
3406 	btrfs_put_block_group(cache);
3407 	return ret;
3408 }
3409 
3410 static int chunk_devid_filter(struct extent_buffer *leaf,
3411 			      struct btrfs_chunk *chunk,
3412 			      struct btrfs_balance_args *bargs)
3413 {
3414 	struct btrfs_stripe *stripe;
3415 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3416 	int i;
3417 
3418 	for (i = 0; i < num_stripes; i++) {
3419 		stripe = btrfs_stripe_nr(chunk, i);
3420 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3421 			return 0;
3422 	}
3423 
3424 	return 1;
3425 }
3426 
3427 static u64 calc_data_stripes(u64 type, int num_stripes)
3428 {
3429 	const int index = btrfs_bg_flags_to_raid_index(type);
3430 	const int ncopies = btrfs_raid_array[index].ncopies;
3431 	const int nparity = btrfs_raid_array[index].nparity;
3432 
3433 	if (nparity)
3434 		return num_stripes - nparity;
3435 	else
3436 		return num_stripes / ncopies;
3437 }
3438 
3439 /* [pstart, pend) */
3440 static int chunk_drange_filter(struct extent_buffer *leaf,
3441 			       struct btrfs_chunk *chunk,
3442 			       struct btrfs_balance_args *bargs)
3443 {
3444 	struct btrfs_stripe *stripe;
3445 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3446 	u64 stripe_offset;
3447 	u64 stripe_length;
3448 	u64 type;
3449 	int factor;
3450 	int i;
3451 
3452 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3453 		return 0;
3454 
3455 	type = btrfs_chunk_type(leaf, chunk);
3456 	factor = calc_data_stripes(type, num_stripes);
3457 
3458 	for (i = 0; i < num_stripes; i++) {
3459 		stripe = btrfs_stripe_nr(chunk, i);
3460 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3461 			continue;
3462 
3463 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3464 		stripe_length = btrfs_chunk_length(leaf, chunk);
3465 		stripe_length = div_u64(stripe_length, factor);
3466 
3467 		if (stripe_offset < bargs->pend &&
3468 		    stripe_offset + stripe_length > bargs->pstart)
3469 			return 0;
3470 	}
3471 
3472 	return 1;
3473 }
3474 
3475 /* [vstart, vend) */
3476 static int chunk_vrange_filter(struct extent_buffer *leaf,
3477 			       struct btrfs_chunk *chunk,
3478 			       u64 chunk_offset,
3479 			       struct btrfs_balance_args *bargs)
3480 {
3481 	if (chunk_offset < bargs->vend &&
3482 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3483 		/* at least part of the chunk is inside this vrange */
3484 		return 0;
3485 
3486 	return 1;
3487 }
3488 
3489 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3490 			       struct btrfs_chunk *chunk,
3491 			       struct btrfs_balance_args *bargs)
3492 {
3493 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3494 
3495 	if (bargs->stripes_min <= num_stripes
3496 			&& num_stripes <= bargs->stripes_max)
3497 		return 0;
3498 
3499 	return 1;
3500 }
3501 
3502 static int chunk_soft_convert_filter(u64 chunk_type,
3503 				     struct btrfs_balance_args *bargs)
3504 {
3505 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3506 		return 0;
3507 
3508 	chunk_type = chunk_to_extended(chunk_type) &
3509 				BTRFS_EXTENDED_PROFILE_MASK;
3510 
3511 	if (bargs->target == chunk_type)
3512 		return 1;
3513 
3514 	return 0;
3515 }
3516 
3517 static int should_balance_chunk(struct extent_buffer *leaf,
3518 				struct btrfs_chunk *chunk, u64 chunk_offset)
3519 {
3520 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3521 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3522 	struct btrfs_balance_args *bargs = NULL;
3523 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3524 
3525 	/* type filter */
3526 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3527 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3528 		return 0;
3529 	}
3530 
3531 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3532 		bargs = &bctl->data;
3533 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3534 		bargs = &bctl->sys;
3535 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3536 		bargs = &bctl->meta;
3537 
3538 	/* profiles filter */
3539 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3540 	    chunk_profiles_filter(chunk_type, bargs)) {
3541 		return 0;
3542 	}
3543 
3544 	/* usage filter */
3545 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3546 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3547 		return 0;
3548 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3549 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3550 		return 0;
3551 	}
3552 
3553 	/* devid filter */
3554 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3555 	    chunk_devid_filter(leaf, chunk, bargs)) {
3556 		return 0;
3557 	}
3558 
3559 	/* drange filter, makes sense only with devid filter */
3560 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3561 	    chunk_drange_filter(leaf, chunk, bargs)) {
3562 		return 0;
3563 	}
3564 
3565 	/* vrange filter */
3566 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3567 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3568 		return 0;
3569 	}
3570 
3571 	/* stripes filter */
3572 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3573 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3574 		return 0;
3575 	}
3576 
3577 	/* soft profile changing mode */
3578 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3579 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3580 		return 0;
3581 	}
3582 
3583 	/*
3584 	 * limited by count, must be the last filter
3585 	 */
3586 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3587 		if (bargs->limit == 0)
3588 			return 0;
3589 		else
3590 			bargs->limit--;
3591 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3592 		/*
3593 		 * Same logic as the 'limit' filter; the minimum cannot be
3594 		 * determined here because we do not have the global information
3595 		 * about the count of all chunks that satisfy the filters.
3596 		 */
3597 		if (bargs->limit_max == 0)
3598 			return 0;
3599 		else
3600 			bargs->limit_max--;
3601 	}
3602 
3603 	return 1;
3604 }
3605 
3606 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3607 {
3608 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3609 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3610 	u64 chunk_type;
3611 	struct btrfs_chunk *chunk;
3612 	struct btrfs_path *path = NULL;
3613 	struct btrfs_key key;
3614 	struct btrfs_key found_key;
3615 	struct extent_buffer *leaf;
3616 	int slot;
3617 	int ret;
3618 	int enospc_errors = 0;
3619 	bool counting = true;
3620 	/* The single value limit and min/max limits use the same bytes in the */
3621 	u64 limit_data = bctl->data.limit;
3622 	u64 limit_meta = bctl->meta.limit;
3623 	u64 limit_sys = bctl->sys.limit;
3624 	u32 count_data = 0;
3625 	u32 count_meta = 0;
3626 	u32 count_sys = 0;
3627 	int chunk_reserved = 0;
3628 
3629 	path = btrfs_alloc_path();
3630 	if (!path) {
3631 		ret = -ENOMEM;
3632 		goto error;
3633 	}
3634 
3635 	/* zero out stat counters */
3636 	spin_lock(&fs_info->balance_lock);
3637 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3638 	spin_unlock(&fs_info->balance_lock);
3639 again:
3640 	if (!counting) {
3641 		/*
3642 		 * The single value limit and min/max limits use the same bytes
3643 		 * in the
3644 		 */
3645 		bctl->data.limit = limit_data;
3646 		bctl->meta.limit = limit_meta;
3647 		bctl->sys.limit = limit_sys;
3648 	}
3649 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3650 	key.offset = (u64)-1;
3651 	key.type = BTRFS_CHUNK_ITEM_KEY;
3652 
3653 	while (1) {
3654 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3655 		    atomic_read(&fs_info->balance_cancel_req)) {
3656 			ret = -ECANCELED;
3657 			goto error;
3658 		}
3659 
3660 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3661 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3662 		if (ret < 0) {
3663 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3664 			goto error;
3665 		}
3666 
3667 		/*
3668 		 * this shouldn't happen, it means the last relocate
3669 		 * failed
3670 		 */
3671 		if (ret == 0)
3672 			BUG(); /* FIXME break ? */
3673 
3674 		ret = btrfs_previous_item(chunk_root, path, 0,
3675 					  BTRFS_CHUNK_ITEM_KEY);
3676 		if (ret) {
3677 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3678 			ret = 0;
3679 			break;
3680 		}
3681 
3682 		leaf = path->nodes[0];
3683 		slot = path->slots[0];
3684 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3685 
3686 		if (found_key.objectid != key.objectid) {
3687 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3688 			break;
3689 		}
3690 
3691 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3692 		chunk_type = btrfs_chunk_type(leaf, chunk);
3693 
3694 		if (!counting) {
3695 			spin_lock(&fs_info->balance_lock);
3696 			bctl->stat.considered++;
3697 			spin_unlock(&fs_info->balance_lock);
3698 		}
3699 
3700 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3701 
3702 		btrfs_release_path(path);
3703 		if (!ret) {
3704 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3705 			goto loop;
3706 		}
3707 
3708 		if (counting) {
3709 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3710 			spin_lock(&fs_info->balance_lock);
3711 			bctl->stat.expected++;
3712 			spin_unlock(&fs_info->balance_lock);
3713 
3714 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3715 				count_data++;
3716 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3717 				count_sys++;
3718 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3719 				count_meta++;
3720 
3721 			goto loop;
3722 		}
3723 
3724 		/*
3725 		 * Apply limit_min filter, no need to check if the LIMITS
3726 		 * filter is used, limit_min is 0 by default
3727 		 */
3728 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3729 					count_data < bctl->data.limit_min)
3730 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3731 					count_meta < bctl->meta.limit_min)
3732 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3733 					count_sys < bctl->sys.limit_min)) {
3734 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3735 			goto loop;
3736 		}
3737 
3738 		if (!chunk_reserved) {
3739 			/*
3740 			 * We may be relocating the only data chunk we have,
3741 			 * which could potentially end up with losing data's
3742 			 * raid profile, so lets allocate an empty one in
3743 			 * advance.
3744 			 */
3745 			ret = btrfs_may_alloc_data_chunk(fs_info,
3746 							 found_key.offset);
3747 			if (ret < 0) {
3748 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3749 				goto error;
3750 			} else if (ret == 1) {
3751 				chunk_reserved = 1;
3752 			}
3753 		}
3754 
3755 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3756 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3757 		if (ret == -ENOSPC) {
3758 			enospc_errors++;
3759 		} else if (ret == -ETXTBSY) {
3760 			btrfs_info(fs_info,
3761 	   "skipping relocation of block group %llu due to active swapfile",
3762 				   found_key.offset);
3763 			ret = 0;
3764 		} else if (ret) {
3765 			goto error;
3766 		} else {
3767 			spin_lock(&fs_info->balance_lock);
3768 			bctl->stat.completed++;
3769 			spin_unlock(&fs_info->balance_lock);
3770 		}
3771 loop:
3772 		if (found_key.offset == 0)
3773 			break;
3774 		key.offset = found_key.offset - 1;
3775 	}
3776 
3777 	if (counting) {
3778 		btrfs_release_path(path);
3779 		counting = false;
3780 		goto again;
3781 	}
3782 error:
3783 	btrfs_free_path(path);
3784 	if (enospc_errors) {
3785 		btrfs_info(fs_info, "%d enospc errors during balance",
3786 			   enospc_errors);
3787 		if (!ret)
3788 			ret = -ENOSPC;
3789 	}
3790 
3791 	return ret;
3792 }
3793 
3794 /**
3795  * alloc_profile_is_valid - see if a given profile is valid and reduced
3796  * @flags: profile to validate
3797  * @extended: if true @flags is treated as an extended profile
3798  */
3799 static int alloc_profile_is_valid(u64 flags, int extended)
3800 {
3801 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3802 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3803 
3804 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3805 
3806 	/* 1) check that all other bits are zeroed */
3807 	if (flags & ~mask)
3808 		return 0;
3809 
3810 	/* 2) see if profile is reduced */
3811 	if (flags == 0)
3812 		return !extended; /* "0" is valid for usual profiles */
3813 
3814 	return has_single_bit_set(flags);
3815 }
3816 
3817 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3818 {
3819 	/* cancel requested || normal exit path */
3820 	return atomic_read(&fs_info->balance_cancel_req) ||
3821 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3822 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3823 }
3824 
3825 /*
3826  * Validate target profile against allowed profiles and return true if it's OK.
3827  * Otherwise print the error message and return false.
3828  */
3829 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3830 		const struct btrfs_balance_args *bargs,
3831 		u64 allowed, const char *type)
3832 {
3833 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3834 		return true;
3835 
3836 	/* Profile is valid and does not have bits outside of the allowed set */
3837 	if (alloc_profile_is_valid(bargs->target, 1) &&
3838 	    (bargs->target & ~allowed) == 0)
3839 		return true;
3840 
3841 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3842 			type, btrfs_bg_type_to_raid_name(bargs->target));
3843 	return false;
3844 }
3845 
3846 /*
3847  * Fill @buf with textual description of balance filter flags @bargs, up to
3848  * @size_buf including the terminating null. The output may be trimmed if it
3849  * does not fit into the provided buffer.
3850  */
3851 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3852 				 u32 size_buf)
3853 {
3854 	int ret;
3855 	u32 size_bp = size_buf;
3856 	char *bp = buf;
3857 	u64 flags = bargs->flags;
3858 	char tmp_buf[128] = {'\0'};
3859 
3860 	if (!flags)
3861 		return;
3862 
3863 #define CHECK_APPEND_NOARG(a)						\
3864 	do {								\
3865 		ret = snprintf(bp, size_bp, (a));			\
3866 		if (ret < 0 || ret >= size_bp)				\
3867 			goto out_overflow;				\
3868 		size_bp -= ret;						\
3869 		bp += ret;						\
3870 	} while (0)
3871 
3872 #define CHECK_APPEND_1ARG(a, v1)					\
3873 	do {								\
3874 		ret = snprintf(bp, size_bp, (a), (v1));			\
3875 		if (ret < 0 || ret >= size_bp)				\
3876 			goto out_overflow;				\
3877 		size_bp -= ret;						\
3878 		bp += ret;						\
3879 	} while (0)
3880 
3881 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3882 	do {								\
3883 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3884 		if (ret < 0 || ret >= size_bp)				\
3885 			goto out_overflow;				\
3886 		size_bp -= ret;						\
3887 		bp += ret;						\
3888 	} while (0)
3889 
3890 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3891 		CHECK_APPEND_1ARG("convert=%s,",
3892 				  btrfs_bg_type_to_raid_name(bargs->target));
3893 
3894 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3895 		CHECK_APPEND_NOARG("soft,");
3896 
3897 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3898 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3899 					    sizeof(tmp_buf));
3900 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3901 	}
3902 
3903 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3904 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3905 
3906 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3907 		CHECK_APPEND_2ARG("usage=%u..%u,",
3908 				  bargs->usage_min, bargs->usage_max);
3909 
3910 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3911 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3912 
3913 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3914 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3915 				  bargs->pstart, bargs->pend);
3916 
3917 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3918 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3919 				  bargs->vstart, bargs->vend);
3920 
3921 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3922 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3923 
3924 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3925 		CHECK_APPEND_2ARG("limit=%u..%u,",
3926 				bargs->limit_min, bargs->limit_max);
3927 
3928 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3929 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3930 				  bargs->stripes_min, bargs->stripes_max);
3931 
3932 #undef CHECK_APPEND_2ARG
3933 #undef CHECK_APPEND_1ARG
3934 #undef CHECK_APPEND_NOARG
3935 
3936 out_overflow:
3937 
3938 	if (size_bp < size_buf)
3939 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3940 	else
3941 		buf[0] = '\0';
3942 }
3943 
3944 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3945 {
3946 	u32 size_buf = 1024;
3947 	char tmp_buf[192] = {'\0'};
3948 	char *buf;
3949 	char *bp;
3950 	u32 size_bp = size_buf;
3951 	int ret;
3952 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3953 
3954 	buf = kzalloc(size_buf, GFP_KERNEL);
3955 	if (!buf)
3956 		return;
3957 
3958 	bp = buf;
3959 
3960 #define CHECK_APPEND_1ARG(a, v1)					\
3961 	do {								\
3962 		ret = snprintf(bp, size_bp, (a), (v1));			\
3963 		if (ret < 0 || ret >= size_bp)				\
3964 			goto out_overflow;				\
3965 		size_bp -= ret;						\
3966 		bp += ret;						\
3967 	} while (0)
3968 
3969 	if (bctl->flags & BTRFS_BALANCE_FORCE)
3970 		CHECK_APPEND_1ARG("%s", "-f ");
3971 
3972 	if (bctl->flags & BTRFS_BALANCE_DATA) {
3973 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3974 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3975 	}
3976 
3977 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
3978 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3979 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3980 	}
3981 
3982 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3983 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3984 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3985 	}
3986 
3987 #undef CHECK_APPEND_1ARG
3988 
3989 out_overflow:
3990 
3991 	if (size_bp < size_buf)
3992 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3993 	btrfs_info(fs_info, "balance: %s %s",
3994 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
3995 		   "resume" : "start", buf);
3996 
3997 	kfree(buf);
3998 }
3999 
4000 /*
4001  * Should be called with balance mutexe held
4002  */
4003 int btrfs_balance(struct btrfs_fs_info *fs_info,
4004 		  struct btrfs_balance_control *bctl,
4005 		  struct btrfs_ioctl_balance_args *bargs)
4006 {
4007 	u64 meta_target, data_target;
4008 	u64 allowed;
4009 	int mixed = 0;
4010 	int ret;
4011 	u64 num_devices;
4012 	unsigned seq;
4013 	bool reducing_redundancy;
4014 	int i;
4015 
4016 	if (btrfs_fs_closing(fs_info) ||
4017 	    atomic_read(&fs_info->balance_pause_req) ||
4018 	    btrfs_should_cancel_balance(fs_info)) {
4019 		ret = -EINVAL;
4020 		goto out;
4021 	}
4022 
4023 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4024 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4025 		mixed = 1;
4026 
4027 	/*
4028 	 * In case of mixed groups both data and meta should be picked,
4029 	 * and identical options should be given for both of them.
4030 	 */
4031 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4032 	if (mixed && (bctl->flags & allowed)) {
4033 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4034 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4035 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4036 			btrfs_err(fs_info,
4037 	  "balance: mixed groups data and metadata options must be the same");
4038 			ret = -EINVAL;
4039 			goto out;
4040 		}
4041 	}
4042 
4043 	/*
4044 	 * rw_devices will not change at the moment, device add/delete/replace
4045 	 * are excluded by EXCL_OP
4046 	 */
4047 	num_devices = fs_info->fs_devices->rw_devices;
4048 
4049 	/*
4050 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4051 	 * special bit for it, to make it easier to distinguish.  Thus we need
4052 	 * to set it manually, or balance would refuse the profile.
4053 	 */
4054 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4055 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4056 		if (num_devices >= btrfs_raid_array[i].devs_min)
4057 			allowed |= btrfs_raid_array[i].bg_flag;
4058 
4059 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4060 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4061 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4062 		ret = -EINVAL;
4063 		goto out;
4064 	}
4065 
4066 	/*
4067 	 * Allow to reduce metadata or system integrity only if force set for
4068 	 * profiles with redundancy (copies, parity)
4069 	 */
4070 	allowed = 0;
4071 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4072 		if (btrfs_raid_array[i].ncopies >= 2 ||
4073 		    btrfs_raid_array[i].tolerated_failures >= 1)
4074 			allowed |= btrfs_raid_array[i].bg_flag;
4075 	}
4076 	do {
4077 		seq = read_seqbegin(&fs_info->profiles_lock);
4078 
4079 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4080 		     (fs_info->avail_system_alloc_bits & allowed) &&
4081 		     !(bctl->sys.target & allowed)) ||
4082 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4083 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4084 		     !(bctl->meta.target & allowed)))
4085 			reducing_redundancy = true;
4086 		else
4087 			reducing_redundancy = false;
4088 
4089 		/* if we're not converting, the target field is uninitialized */
4090 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4091 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4092 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4093 			bctl->data.target : fs_info->avail_data_alloc_bits;
4094 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4095 
4096 	if (reducing_redundancy) {
4097 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4098 			btrfs_info(fs_info,
4099 			   "balance: force reducing metadata redundancy");
4100 		} else {
4101 			btrfs_err(fs_info,
4102 	"balance: reduces metadata redundancy, use --force if you want this");
4103 			ret = -EINVAL;
4104 			goto out;
4105 		}
4106 	}
4107 
4108 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4109 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4110 		btrfs_warn(fs_info,
4111 	"balance: metadata profile %s has lower redundancy than data profile %s",
4112 				btrfs_bg_type_to_raid_name(meta_target),
4113 				btrfs_bg_type_to_raid_name(data_target));
4114 	}
4115 
4116 	if (fs_info->send_in_progress) {
4117 		btrfs_warn_rl(fs_info,
4118 "cannot run balance while send operations are in progress (%d in progress)",
4119 			      fs_info->send_in_progress);
4120 		ret = -EAGAIN;
4121 		goto out;
4122 	}
4123 
4124 	ret = insert_balance_item(fs_info, bctl);
4125 	if (ret && ret != -EEXIST)
4126 		goto out;
4127 
4128 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4129 		BUG_ON(ret == -EEXIST);
4130 		BUG_ON(fs_info->balance_ctl);
4131 		spin_lock(&fs_info->balance_lock);
4132 		fs_info->balance_ctl = bctl;
4133 		spin_unlock(&fs_info->balance_lock);
4134 	} else {
4135 		BUG_ON(ret != -EEXIST);
4136 		spin_lock(&fs_info->balance_lock);
4137 		update_balance_args(bctl);
4138 		spin_unlock(&fs_info->balance_lock);
4139 	}
4140 
4141 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4142 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4143 	describe_balance_start_or_resume(fs_info);
4144 	mutex_unlock(&fs_info->balance_mutex);
4145 
4146 	ret = __btrfs_balance(fs_info);
4147 
4148 	mutex_lock(&fs_info->balance_mutex);
4149 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4150 		btrfs_info(fs_info, "balance: paused");
4151 	/*
4152 	 * Balance can be canceled by:
4153 	 *
4154 	 * - Regular cancel request
4155 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4156 	 *
4157 	 * - Fatal signal to "btrfs" process
4158 	 *   Either the signal caught by wait_reserve_ticket() and callers
4159 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4160 	 *   got -ECANCELED.
4161 	 *   Either way, in this case balance_cancel_req = 0, and
4162 	 *   ret == -EINTR or ret == -ECANCELED.
4163 	 *
4164 	 * So here we only check the return value to catch canceled balance.
4165 	 */
4166 	else if (ret == -ECANCELED || ret == -EINTR)
4167 		btrfs_info(fs_info, "balance: canceled");
4168 	else
4169 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4170 
4171 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4172 
4173 	if (bargs) {
4174 		memset(bargs, 0, sizeof(*bargs));
4175 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4176 	}
4177 
4178 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4179 	    balance_need_close(fs_info)) {
4180 		reset_balance_state(fs_info);
4181 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4182 	}
4183 
4184 	wake_up(&fs_info->balance_wait_q);
4185 
4186 	return ret;
4187 out:
4188 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4189 		reset_balance_state(fs_info);
4190 	else
4191 		kfree(bctl);
4192 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4193 
4194 	return ret;
4195 }
4196 
4197 static int balance_kthread(void *data)
4198 {
4199 	struct btrfs_fs_info *fs_info = data;
4200 	int ret = 0;
4201 
4202 	mutex_lock(&fs_info->balance_mutex);
4203 	if (fs_info->balance_ctl)
4204 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4205 	mutex_unlock(&fs_info->balance_mutex);
4206 
4207 	return ret;
4208 }
4209 
4210 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4211 {
4212 	struct task_struct *tsk;
4213 
4214 	mutex_lock(&fs_info->balance_mutex);
4215 	if (!fs_info->balance_ctl) {
4216 		mutex_unlock(&fs_info->balance_mutex);
4217 		return 0;
4218 	}
4219 	mutex_unlock(&fs_info->balance_mutex);
4220 
4221 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4222 		btrfs_info(fs_info, "balance: resume skipped");
4223 		return 0;
4224 	}
4225 
4226 	/*
4227 	 * A ro->rw remount sequence should continue with the paused balance
4228 	 * regardless of who pauses it, system or the user as of now, so set
4229 	 * the resume flag.
4230 	 */
4231 	spin_lock(&fs_info->balance_lock);
4232 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4233 	spin_unlock(&fs_info->balance_lock);
4234 
4235 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4236 	return PTR_ERR_OR_ZERO(tsk);
4237 }
4238 
4239 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4240 {
4241 	struct btrfs_balance_control *bctl;
4242 	struct btrfs_balance_item *item;
4243 	struct btrfs_disk_balance_args disk_bargs;
4244 	struct btrfs_path *path;
4245 	struct extent_buffer *leaf;
4246 	struct btrfs_key key;
4247 	int ret;
4248 
4249 	path = btrfs_alloc_path();
4250 	if (!path)
4251 		return -ENOMEM;
4252 
4253 	key.objectid = BTRFS_BALANCE_OBJECTID;
4254 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4255 	key.offset = 0;
4256 
4257 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4258 	if (ret < 0)
4259 		goto out;
4260 	if (ret > 0) { /* ret = -ENOENT; */
4261 		ret = 0;
4262 		goto out;
4263 	}
4264 
4265 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4266 	if (!bctl) {
4267 		ret = -ENOMEM;
4268 		goto out;
4269 	}
4270 
4271 	leaf = path->nodes[0];
4272 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4273 
4274 	bctl->flags = btrfs_balance_flags(leaf, item);
4275 	bctl->flags |= BTRFS_BALANCE_RESUME;
4276 
4277 	btrfs_balance_data(leaf, item, &disk_bargs);
4278 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4279 	btrfs_balance_meta(leaf, item, &disk_bargs);
4280 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4281 	btrfs_balance_sys(leaf, item, &disk_bargs);
4282 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4283 
4284 	/*
4285 	 * This should never happen, as the paused balance state is recovered
4286 	 * during mount without any chance of other exclusive ops to collide.
4287 	 *
4288 	 * This gives the exclusive op status to balance and keeps in paused
4289 	 * state until user intervention (cancel or umount). If the ownership
4290 	 * cannot be assigned, show a message but do not fail. The balance
4291 	 * is in a paused state and must have fs_info::balance_ctl properly
4292 	 * set up.
4293 	 */
4294 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4295 		btrfs_warn(fs_info,
4296 	"balance: cannot set exclusive op status, resume manually");
4297 
4298 	mutex_lock(&fs_info->balance_mutex);
4299 	BUG_ON(fs_info->balance_ctl);
4300 	spin_lock(&fs_info->balance_lock);
4301 	fs_info->balance_ctl = bctl;
4302 	spin_unlock(&fs_info->balance_lock);
4303 	mutex_unlock(&fs_info->balance_mutex);
4304 out:
4305 	btrfs_free_path(path);
4306 	return ret;
4307 }
4308 
4309 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4310 {
4311 	int ret = 0;
4312 
4313 	mutex_lock(&fs_info->balance_mutex);
4314 	if (!fs_info->balance_ctl) {
4315 		mutex_unlock(&fs_info->balance_mutex);
4316 		return -ENOTCONN;
4317 	}
4318 
4319 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4320 		atomic_inc(&fs_info->balance_pause_req);
4321 		mutex_unlock(&fs_info->balance_mutex);
4322 
4323 		wait_event(fs_info->balance_wait_q,
4324 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4325 
4326 		mutex_lock(&fs_info->balance_mutex);
4327 		/* we are good with balance_ctl ripped off from under us */
4328 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4329 		atomic_dec(&fs_info->balance_pause_req);
4330 	} else {
4331 		ret = -ENOTCONN;
4332 	}
4333 
4334 	mutex_unlock(&fs_info->balance_mutex);
4335 	return ret;
4336 }
4337 
4338 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4339 {
4340 	mutex_lock(&fs_info->balance_mutex);
4341 	if (!fs_info->balance_ctl) {
4342 		mutex_unlock(&fs_info->balance_mutex);
4343 		return -ENOTCONN;
4344 	}
4345 
4346 	/*
4347 	 * A paused balance with the item stored on disk can be resumed at
4348 	 * mount time if the mount is read-write. Otherwise it's still paused
4349 	 * and we must not allow cancelling as it deletes the item.
4350 	 */
4351 	if (sb_rdonly(fs_info->sb)) {
4352 		mutex_unlock(&fs_info->balance_mutex);
4353 		return -EROFS;
4354 	}
4355 
4356 	atomic_inc(&fs_info->balance_cancel_req);
4357 	/*
4358 	 * if we are running just wait and return, balance item is
4359 	 * deleted in btrfs_balance in this case
4360 	 */
4361 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4362 		mutex_unlock(&fs_info->balance_mutex);
4363 		wait_event(fs_info->balance_wait_q,
4364 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4365 		mutex_lock(&fs_info->balance_mutex);
4366 	} else {
4367 		mutex_unlock(&fs_info->balance_mutex);
4368 		/*
4369 		 * Lock released to allow other waiters to continue, we'll
4370 		 * reexamine the status again.
4371 		 */
4372 		mutex_lock(&fs_info->balance_mutex);
4373 
4374 		if (fs_info->balance_ctl) {
4375 			reset_balance_state(fs_info);
4376 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4377 			btrfs_info(fs_info, "balance: canceled");
4378 		}
4379 	}
4380 
4381 	BUG_ON(fs_info->balance_ctl ||
4382 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4383 	atomic_dec(&fs_info->balance_cancel_req);
4384 	mutex_unlock(&fs_info->balance_mutex);
4385 	return 0;
4386 }
4387 
4388 int btrfs_uuid_scan_kthread(void *data)
4389 {
4390 	struct btrfs_fs_info *fs_info = data;
4391 	struct btrfs_root *root = fs_info->tree_root;
4392 	struct btrfs_key key;
4393 	struct btrfs_path *path = NULL;
4394 	int ret = 0;
4395 	struct extent_buffer *eb;
4396 	int slot;
4397 	struct btrfs_root_item root_item;
4398 	u32 item_size;
4399 	struct btrfs_trans_handle *trans = NULL;
4400 	bool closing = false;
4401 
4402 	path = btrfs_alloc_path();
4403 	if (!path) {
4404 		ret = -ENOMEM;
4405 		goto out;
4406 	}
4407 
4408 	key.objectid = 0;
4409 	key.type = BTRFS_ROOT_ITEM_KEY;
4410 	key.offset = 0;
4411 
4412 	while (1) {
4413 		if (btrfs_fs_closing(fs_info)) {
4414 			closing = true;
4415 			break;
4416 		}
4417 		ret = btrfs_search_forward(root, &key, path,
4418 				BTRFS_OLDEST_GENERATION);
4419 		if (ret) {
4420 			if (ret > 0)
4421 				ret = 0;
4422 			break;
4423 		}
4424 
4425 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4426 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4427 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4428 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4429 			goto skip;
4430 
4431 		eb = path->nodes[0];
4432 		slot = path->slots[0];
4433 		item_size = btrfs_item_size_nr(eb, slot);
4434 		if (item_size < sizeof(root_item))
4435 			goto skip;
4436 
4437 		read_extent_buffer(eb, &root_item,
4438 				   btrfs_item_ptr_offset(eb, slot),
4439 				   (int)sizeof(root_item));
4440 		if (btrfs_root_refs(&root_item) == 0)
4441 			goto skip;
4442 
4443 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4444 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4445 			if (trans)
4446 				goto update_tree;
4447 
4448 			btrfs_release_path(path);
4449 			/*
4450 			 * 1 - subvol uuid item
4451 			 * 1 - received_subvol uuid item
4452 			 */
4453 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4454 			if (IS_ERR(trans)) {
4455 				ret = PTR_ERR(trans);
4456 				break;
4457 			}
4458 			continue;
4459 		} else {
4460 			goto skip;
4461 		}
4462 update_tree:
4463 		btrfs_release_path(path);
4464 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4465 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4466 						  BTRFS_UUID_KEY_SUBVOL,
4467 						  key.objectid);
4468 			if (ret < 0) {
4469 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4470 					ret);
4471 				break;
4472 			}
4473 		}
4474 
4475 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4476 			ret = btrfs_uuid_tree_add(trans,
4477 						  root_item.received_uuid,
4478 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4479 						  key.objectid);
4480 			if (ret < 0) {
4481 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4482 					ret);
4483 				break;
4484 			}
4485 		}
4486 
4487 skip:
4488 		btrfs_release_path(path);
4489 		if (trans) {
4490 			ret = btrfs_end_transaction(trans);
4491 			trans = NULL;
4492 			if (ret)
4493 				break;
4494 		}
4495 
4496 		if (key.offset < (u64)-1) {
4497 			key.offset++;
4498 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4499 			key.offset = 0;
4500 			key.type = BTRFS_ROOT_ITEM_KEY;
4501 		} else if (key.objectid < (u64)-1) {
4502 			key.offset = 0;
4503 			key.type = BTRFS_ROOT_ITEM_KEY;
4504 			key.objectid++;
4505 		} else {
4506 			break;
4507 		}
4508 		cond_resched();
4509 	}
4510 
4511 out:
4512 	btrfs_free_path(path);
4513 	if (trans && !IS_ERR(trans))
4514 		btrfs_end_transaction(trans);
4515 	if (ret)
4516 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4517 	else if (!closing)
4518 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4519 	up(&fs_info->uuid_tree_rescan_sem);
4520 	return 0;
4521 }
4522 
4523 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4524 {
4525 	struct btrfs_trans_handle *trans;
4526 	struct btrfs_root *tree_root = fs_info->tree_root;
4527 	struct btrfs_root *uuid_root;
4528 	struct task_struct *task;
4529 	int ret;
4530 
4531 	/*
4532 	 * 1 - root node
4533 	 * 1 - root item
4534 	 */
4535 	trans = btrfs_start_transaction(tree_root, 2);
4536 	if (IS_ERR(trans))
4537 		return PTR_ERR(trans);
4538 
4539 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4540 	if (IS_ERR(uuid_root)) {
4541 		ret = PTR_ERR(uuid_root);
4542 		btrfs_abort_transaction(trans, ret);
4543 		btrfs_end_transaction(trans);
4544 		return ret;
4545 	}
4546 
4547 	fs_info->uuid_root = uuid_root;
4548 
4549 	ret = btrfs_commit_transaction(trans);
4550 	if (ret)
4551 		return ret;
4552 
4553 	down(&fs_info->uuid_tree_rescan_sem);
4554 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4555 	if (IS_ERR(task)) {
4556 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4557 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4558 		up(&fs_info->uuid_tree_rescan_sem);
4559 		return PTR_ERR(task);
4560 	}
4561 
4562 	return 0;
4563 }
4564 
4565 /*
4566  * shrinking a device means finding all of the device extents past
4567  * the new size, and then following the back refs to the chunks.
4568  * The chunk relocation code actually frees the device extent
4569  */
4570 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4571 {
4572 	struct btrfs_fs_info *fs_info = device->fs_info;
4573 	struct btrfs_root *root = fs_info->dev_root;
4574 	struct btrfs_trans_handle *trans;
4575 	struct btrfs_dev_extent *dev_extent = NULL;
4576 	struct btrfs_path *path;
4577 	u64 length;
4578 	u64 chunk_offset;
4579 	int ret;
4580 	int slot;
4581 	int failed = 0;
4582 	bool retried = false;
4583 	struct extent_buffer *l;
4584 	struct btrfs_key key;
4585 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4586 	u64 old_total = btrfs_super_total_bytes(super_copy);
4587 	u64 old_size = btrfs_device_get_total_bytes(device);
4588 	u64 diff;
4589 	u64 start;
4590 
4591 	new_size = round_down(new_size, fs_info->sectorsize);
4592 	start = new_size;
4593 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4594 
4595 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4596 		return -EINVAL;
4597 
4598 	path = btrfs_alloc_path();
4599 	if (!path)
4600 		return -ENOMEM;
4601 
4602 	path->reada = READA_BACK;
4603 
4604 	trans = btrfs_start_transaction(root, 0);
4605 	if (IS_ERR(trans)) {
4606 		btrfs_free_path(path);
4607 		return PTR_ERR(trans);
4608 	}
4609 
4610 	mutex_lock(&fs_info->chunk_mutex);
4611 
4612 	btrfs_device_set_total_bytes(device, new_size);
4613 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4614 		device->fs_devices->total_rw_bytes -= diff;
4615 		atomic64_sub(diff, &fs_info->free_chunk_space);
4616 	}
4617 
4618 	/*
4619 	 * Once the device's size has been set to the new size, ensure all
4620 	 * in-memory chunks are synced to disk so that the loop below sees them
4621 	 * and relocates them accordingly.
4622 	 */
4623 	if (contains_pending_extent(device, &start, diff)) {
4624 		mutex_unlock(&fs_info->chunk_mutex);
4625 		ret = btrfs_commit_transaction(trans);
4626 		if (ret)
4627 			goto done;
4628 	} else {
4629 		mutex_unlock(&fs_info->chunk_mutex);
4630 		btrfs_end_transaction(trans);
4631 	}
4632 
4633 again:
4634 	key.objectid = device->devid;
4635 	key.offset = (u64)-1;
4636 	key.type = BTRFS_DEV_EXTENT_KEY;
4637 
4638 	do {
4639 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4640 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4641 		if (ret < 0) {
4642 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4643 			goto done;
4644 		}
4645 
4646 		ret = btrfs_previous_item(root, path, 0, key.type);
4647 		if (ret)
4648 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4649 		if (ret < 0)
4650 			goto done;
4651 		if (ret) {
4652 			ret = 0;
4653 			btrfs_release_path(path);
4654 			break;
4655 		}
4656 
4657 		l = path->nodes[0];
4658 		slot = path->slots[0];
4659 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4660 
4661 		if (key.objectid != device->devid) {
4662 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4663 			btrfs_release_path(path);
4664 			break;
4665 		}
4666 
4667 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4668 		length = btrfs_dev_extent_length(l, dev_extent);
4669 
4670 		if (key.offset + length <= new_size) {
4671 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4672 			btrfs_release_path(path);
4673 			break;
4674 		}
4675 
4676 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4677 		btrfs_release_path(path);
4678 
4679 		/*
4680 		 * We may be relocating the only data chunk we have,
4681 		 * which could potentially end up with losing data's
4682 		 * raid profile, so lets allocate an empty one in
4683 		 * advance.
4684 		 */
4685 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4686 		if (ret < 0) {
4687 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4688 			goto done;
4689 		}
4690 
4691 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4692 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4693 		if (ret == -ENOSPC) {
4694 			failed++;
4695 		} else if (ret) {
4696 			if (ret == -ETXTBSY) {
4697 				btrfs_warn(fs_info,
4698 		   "could not shrink block group %llu due to active swapfile",
4699 					   chunk_offset);
4700 			}
4701 			goto done;
4702 		}
4703 	} while (key.offset-- > 0);
4704 
4705 	if (failed && !retried) {
4706 		failed = 0;
4707 		retried = true;
4708 		goto again;
4709 	} else if (failed && retried) {
4710 		ret = -ENOSPC;
4711 		goto done;
4712 	}
4713 
4714 	/* Shrinking succeeded, else we would be at "done". */
4715 	trans = btrfs_start_transaction(root, 0);
4716 	if (IS_ERR(trans)) {
4717 		ret = PTR_ERR(trans);
4718 		goto done;
4719 	}
4720 
4721 	mutex_lock(&fs_info->chunk_mutex);
4722 	/* Clear all state bits beyond the shrunk device size */
4723 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4724 			  CHUNK_STATE_MASK);
4725 
4726 	btrfs_device_set_disk_total_bytes(device, new_size);
4727 	if (list_empty(&device->post_commit_list))
4728 		list_add_tail(&device->post_commit_list,
4729 			      &trans->transaction->dev_update_list);
4730 
4731 	WARN_ON(diff > old_total);
4732 	btrfs_set_super_total_bytes(super_copy,
4733 			round_down(old_total - diff, fs_info->sectorsize));
4734 	mutex_unlock(&fs_info->chunk_mutex);
4735 
4736 	/* Now btrfs_update_device() will change the on-disk size. */
4737 	ret = btrfs_update_device(trans, device);
4738 	if (ret < 0) {
4739 		btrfs_abort_transaction(trans, ret);
4740 		btrfs_end_transaction(trans);
4741 	} else {
4742 		ret = btrfs_commit_transaction(trans);
4743 	}
4744 done:
4745 	btrfs_free_path(path);
4746 	if (ret) {
4747 		mutex_lock(&fs_info->chunk_mutex);
4748 		btrfs_device_set_total_bytes(device, old_size);
4749 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4750 			device->fs_devices->total_rw_bytes += diff;
4751 		atomic64_add(diff, &fs_info->free_chunk_space);
4752 		mutex_unlock(&fs_info->chunk_mutex);
4753 	}
4754 	return ret;
4755 }
4756 
4757 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4758 			   struct btrfs_key *key,
4759 			   struct btrfs_chunk *chunk, int item_size)
4760 {
4761 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4762 	struct btrfs_disk_key disk_key;
4763 	u32 array_size;
4764 	u8 *ptr;
4765 
4766 	mutex_lock(&fs_info->chunk_mutex);
4767 	array_size = btrfs_super_sys_array_size(super_copy);
4768 	if (array_size + item_size + sizeof(disk_key)
4769 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4770 		mutex_unlock(&fs_info->chunk_mutex);
4771 		return -EFBIG;
4772 	}
4773 
4774 	ptr = super_copy->sys_chunk_array + array_size;
4775 	btrfs_cpu_key_to_disk(&disk_key, key);
4776 	memcpy(ptr, &disk_key, sizeof(disk_key));
4777 	ptr += sizeof(disk_key);
4778 	memcpy(ptr, chunk, item_size);
4779 	item_size += sizeof(disk_key);
4780 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4781 	mutex_unlock(&fs_info->chunk_mutex);
4782 
4783 	return 0;
4784 }
4785 
4786 /*
4787  * sort the devices in descending order by max_avail, total_avail
4788  */
4789 static int btrfs_cmp_device_info(const void *a, const void *b)
4790 {
4791 	const struct btrfs_device_info *di_a = a;
4792 	const struct btrfs_device_info *di_b = b;
4793 
4794 	if (di_a->max_avail > di_b->max_avail)
4795 		return -1;
4796 	if (di_a->max_avail < di_b->max_avail)
4797 		return 1;
4798 	if (di_a->total_avail > di_b->total_avail)
4799 		return -1;
4800 	if (di_a->total_avail < di_b->total_avail)
4801 		return 1;
4802 	return 0;
4803 }
4804 
4805 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4806 {
4807 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4808 		return;
4809 
4810 	btrfs_set_fs_incompat(info, RAID56);
4811 }
4812 
4813 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4814 {
4815 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4816 		return;
4817 
4818 	btrfs_set_fs_incompat(info, RAID1C34);
4819 }
4820 
4821 /*
4822  * Structure used internally for __btrfs_alloc_chunk() function.
4823  * Wraps needed parameters.
4824  */
4825 struct alloc_chunk_ctl {
4826 	u64 start;
4827 	u64 type;
4828 	/* Total number of stripes to allocate */
4829 	int num_stripes;
4830 	/* sub_stripes info for map */
4831 	int sub_stripes;
4832 	/* Stripes per device */
4833 	int dev_stripes;
4834 	/* Maximum number of devices to use */
4835 	int devs_max;
4836 	/* Minimum number of devices to use */
4837 	int devs_min;
4838 	/* ndevs has to be a multiple of this */
4839 	int devs_increment;
4840 	/* Number of copies */
4841 	int ncopies;
4842 	/* Number of stripes worth of bytes to store parity information */
4843 	int nparity;
4844 	u64 max_stripe_size;
4845 	u64 max_chunk_size;
4846 	u64 dev_extent_min;
4847 	u64 stripe_size;
4848 	u64 chunk_size;
4849 	int ndevs;
4850 };
4851 
4852 static void init_alloc_chunk_ctl_policy_regular(
4853 				struct btrfs_fs_devices *fs_devices,
4854 				struct alloc_chunk_ctl *ctl)
4855 {
4856 	u64 type = ctl->type;
4857 
4858 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4859 		ctl->max_stripe_size = SZ_1G;
4860 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4861 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4862 		/* For larger filesystems, use larger metadata chunks */
4863 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4864 			ctl->max_stripe_size = SZ_1G;
4865 		else
4866 			ctl->max_stripe_size = SZ_256M;
4867 		ctl->max_chunk_size = ctl->max_stripe_size;
4868 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4869 		ctl->max_stripe_size = SZ_32M;
4870 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4871 		ctl->devs_max = min_t(int, ctl->devs_max,
4872 				      BTRFS_MAX_DEVS_SYS_CHUNK);
4873 	} else {
4874 		BUG();
4875 	}
4876 
4877 	/* We don't want a chunk larger than 10% of writable space */
4878 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4879 				  ctl->max_chunk_size);
4880 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4881 }
4882 
4883 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4884 				 struct alloc_chunk_ctl *ctl)
4885 {
4886 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
4887 
4888 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4889 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4890 	ctl->devs_max = btrfs_raid_array[index].devs_max;
4891 	if (!ctl->devs_max)
4892 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4893 	ctl->devs_min = btrfs_raid_array[index].devs_min;
4894 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4895 	ctl->ncopies = btrfs_raid_array[index].ncopies;
4896 	ctl->nparity = btrfs_raid_array[index].nparity;
4897 	ctl->ndevs = 0;
4898 
4899 	switch (fs_devices->chunk_alloc_policy) {
4900 	case BTRFS_CHUNK_ALLOC_REGULAR:
4901 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4902 		break;
4903 	default:
4904 		BUG();
4905 	}
4906 }
4907 
4908 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4909 			      struct alloc_chunk_ctl *ctl,
4910 			      struct btrfs_device_info *devices_info)
4911 {
4912 	struct btrfs_fs_info *info = fs_devices->fs_info;
4913 	struct btrfs_device *device;
4914 	u64 total_avail;
4915 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4916 	int ret;
4917 	int ndevs = 0;
4918 	u64 max_avail;
4919 	u64 dev_offset;
4920 
4921 	/*
4922 	 * in the first pass through the devices list, we gather information
4923 	 * about the available holes on each device.
4924 	 */
4925 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4926 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4927 			WARN(1, KERN_ERR
4928 			       "BTRFS: read-only device in alloc_list\n");
4929 			continue;
4930 		}
4931 
4932 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4933 					&device->dev_state) ||
4934 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4935 			continue;
4936 
4937 		if (device->total_bytes > device->bytes_used)
4938 			total_avail = device->total_bytes - device->bytes_used;
4939 		else
4940 			total_avail = 0;
4941 
4942 		/* If there is no space on this device, skip it. */
4943 		if (total_avail < ctl->dev_extent_min)
4944 			continue;
4945 
4946 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4947 					   &max_avail);
4948 		if (ret && ret != -ENOSPC)
4949 			return ret;
4950 
4951 		if (ret == 0)
4952 			max_avail = dev_extent_want;
4953 
4954 		if (max_avail < ctl->dev_extent_min) {
4955 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4956 				btrfs_debug(info,
4957 			"%s: devid %llu has no free space, have=%llu want=%llu",
4958 					    __func__, device->devid, max_avail,
4959 					    ctl->dev_extent_min);
4960 			continue;
4961 		}
4962 
4963 		if (ndevs == fs_devices->rw_devices) {
4964 			WARN(1, "%s: found more than %llu devices\n",
4965 			     __func__, fs_devices->rw_devices);
4966 			break;
4967 		}
4968 		devices_info[ndevs].dev_offset = dev_offset;
4969 		devices_info[ndevs].max_avail = max_avail;
4970 		devices_info[ndevs].total_avail = total_avail;
4971 		devices_info[ndevs].dev = device;
4972 		++ndevs;
4973 	}
4974 	ctl->ndevs = ndevs;
4975 
4976 	/*
4977 	 * now sort the devices by hole size / available space
4978 	 */
4979 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4980 	     btrfs_cmp_device_info, NULL);
4981 
4982 	return 0;
4983 }
4984 
4985 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4986 				      struct btrfs_device_info *devices_info)
4987 {
4988 	/* Number of stripes that count for block group size */
4989 	int data_stripes;
4990 
4991 	/*
4992 	 * The primary goal is to maximize the number of stripes, so use as
4993 	 * many devices as possible, even if the stripes are not maximum sized.
4994 	 *
4995 	 * The DUP profile stores more than one stripe per device, the
4996 	 * max_avail is the total size so we have to adjust.
4997 	 */
4998 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4999 				   ctl->dev_stripes);
5000 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5001 
5002 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5003 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5004 
5005 	/*
5006 	 * Use the number of data stripes to figure out how big this chunk is
5007 	 * really going to be in terms of logical address space, and compare
5008 	 * that answer with the max chunk size. If it's higher, we try to
5009 	 * reduce stripe_size.
5010 	 */
5011 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5012 		/*
5013 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5014 		 * then use it, unless it ends up being even bigger than the
5015 		 * previous value we had already.
5016 		 */
5017 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5018 							data_stripes), SZ_16M),
5019 				       ctl->stripe_size);
5020 	}
5021 
5022 	/* Align to BTRFS_STRIPE_LEN */
5023 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5024 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5025 
5026 	return 0;
5027 }
5028 
5029 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5030 			      struct alloc_chunk_ctl *ctl,
5031 			      struct btrfs_device_info *devices_info)
5032 {
5033 	struct btrfs_fs_info *info = fs_devices->fs_info;
5034 
5035 	/*
5036 	 * Round down to number of usable stripes, devs_increment can be any
5037 	 * number so we can't use round_down() that requires power of 2, while
5038 	 * rounddown is safe.
5039 	 */
5040 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5041 
5042 	if (ctl->ndevs < ctl->devs_min) {
5043 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5044 			btrfs_debug(info,
5045 	"%s: not enough devices with free space: have=%d minimum required=%d",
5046 				    __func__, ctl->ndevs, ctl->devs_min);
5047 		}
5048 		return -ENOSPC;
5049 	}
5050 
5051 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5052 
5053 	switch (fs_devices->chunk_alloc_policy) {
5054 	case BTRFS_CHUNK_ALLOC_REGULAR:
5055 		return decide_stripe_size_regular(ctl, devices_info);
5056 	default:
5057 		BUG();
5058 	}
5059 }
5060 
5061 static int create_chunk(struct btrfs_trans_handle *trans,
5062 			struct alloc_chunk_ctl *ctl,
5063 			struct btrfs_device_info *devices_info)
5064 {
5065 	struct btrfs_fs_info *info = trans->fs_info;
5066 	struct map_lookup *map = NULL;
5067 	struct extent_map_tree *em_tree;
5068 	struct extent_map *em;
5069 	u64 start = ctl->start;
5070 	u64 type = ctl->type;
5071 	int ret;
5072 	int i;
5073 	int j;
5074 
5075 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5076 	if (!map)
5077 		return -ENOMEM;
5078 	map->num_stripes = ctl->num_stripes;
5079 
5080 	for (i = 0; i < ctl->ndevs; ++i) {
5081 		for (j = 0; j < ctl->dev_stripes; ++j) {
5082 			int s = i * ctl->dev_stripes + j;
5083 			map->stripes[s].dev = devices_info[i].dev;
5084 			map->stripes[s].physical = devices_info[i].dev_offset +
5085 						   j * ctl->stripe_size;
5086 		}
5087 	}
5088 	map->stripe_len = BTRFS_STRIPE_LEN;
5089 	map->io_align = BTRFS_STRIPE_LEN;
5090 	map->io_width = BTRFS_STRIPE_LEN;
5091 	map->type = type;
5092 	map->sub_stripes = ctl->sub_stripes;
5093 
5094 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5095 
5096 	em = alloc_extent_map();
5097 	if (!em) {
5098 		kfree(map);
5099 		return -ENOMEM;
5100 	}
5101 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5102 	em->map_lookup = map;
5103 	em->start = start;
5104 	em->len = ctl->chunk_size;
5105 	em->block_start = 0;
5106 	em->block_len = em->len;
5107 	em->orig_block_len = ctl->stripe_size;
5108 
5109 	em_tree = &info->mapping_tree;
5110 	write_lock(&em_tree->lock);
5111 	ret = add_extent_mapping(em_tree, em, 0);
5112 	if (ret) {
5113 		write_unlock(&em_tree->lock);
5114 		free_extent_map(em);
5115 		return ret;
5116 	}
5117 	write_unlock(&em_tree->lock);
5118 
5119 	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5120 	if (ret)
5121 		goto error_del_extent;
5122 
5123 	for (i = 0; i < map->num_stripes; i++) {
5124 		struct btrfs_device *dev = map->stripes[i].dev;
5125 
5126 		btrfs_device_set_bytes_used(dev,
5127 					    dev->bytes_used + ctl->stripe_size);
5128 		if (list_empty(&dev->post_commit_list))
5129 			list_add_tail(&dev->post_commit_list,
5130 				      &trans->transaction->dev_update_list);
5131 	}
5132 
5133 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5134 		     &info->free_chunk_space);
5135 
5136 	free_extent_map(em);
5137 	check_raid56_incompat_flag(info, type);
5138 	check_raid1c34_incompat_flag(info, type);
5139 
5140 	return 0;
5141 
5142 error_del_extent:
5143 	write_lock(&em_tree->lock);
5144 	remove_extent_mapping(em_tree, em);
5145 	write_unlock(&em_tree->lock);
5146 
5147 	/* One for our allocation */
5148 	free_extent_map(em);
5149 	/* One for the tree reference */
5150 	free_extent_map(em);
5151 
5152 	return ret;
5153 }
5154 
5155 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5156 {
5157 	struct btrfs_fs_info *info = trans->fs_info;
5158 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5159 	struct btrfs_device_info *devices_info = NULL;
5160 	struct alloc_chunk_ctl ctl;
5161 	int ret;
5162 
5163 	lockdep_assert_held(&info->chunk_mutex);
5164 
5165 	if (!alloc_profile_is_valid(type, 0)) {
5166 		ASSERT(0);
5167 		return -EINVAL;
5168 	}
5169 
5170 	if (list_empty(&fs_devices->alloc_list)) {
5171 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5172 			btrfs_debug(info, "%s: no writable device", __func__);
5173 		return -ENOSPC;
5174 	}
5175 
5176 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5177 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5178 		ASSERT(0);
5179 		return -EINVAL;
5180 	}
5181 
5182 	ctl.start = find_next_chunk(info);
5183 	ctl.type = type;
5184 	init_alloc_chunk_ctl(fs_devices, &ctl);
5185 
5186 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5187 			       GFP_NOFS);
5188 	if (!devices_info)
5189 		return -ENOMEM;
5190 
5191 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5192 	if (ret < 0)
5193 		goto out;
5194 
5195 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5196 	if (ret < 0)
5197 		goto out;
5198 
5199 	ret = create_chunk(trans, &ctl, devices_info);
5200 
5201 out:
5202 	kfree(devices_info);
5203 	return ret;
5204 }
5205 
5206 /*
5207  * Chunk allocation falls into two parts. The first part does work
5208  * that makes the new allocated chunk usable, but does not do any operation
5209  * that modifies the chunk tree. The second part does the work that
5210  * requires modifying the chunk tree. This division is important for the
5211  * bootstrap process of adding storage to a seed btrfs.
5212  */
5213 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5214 			     u64 chunk_offset, u64 chunk_size)
5215 {
5216 	struct btrfs_fs_info *fs_info = trans->fs_info;
5217 	struct btrfs_root *extent_root = fs_info->extent_root;
5218 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5219 	struct btrfs_key key;
5220 	struct btrfs_device *device;
5221 	struct btrfs_chunk *chunk;
5222 	struct btrfs_stripe *stripe;
5223 	struct extent_map *em;
5224 	struct map_lookup *map;
5225 	size_t item_size;
5226 	u64 dev_offset;
5227 	u64 stripe_size;
5228 	int i = 0;
5229 	int ret = 0;
5230 
5231 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5232 	if (IS_ERR(em))
5233 		return PTR_ERR(em);
5234 
5235 	map = em->map_lookup;
5236 	item_size = btrfs_chunk_item_size(map->num_stripes);
5237 	stripe_size = em->orig_block_len;
5238 
5239 	chunk = kzalloc(item_size, GFP_NOFS);
5240 	if (!chunk) {
5241 		ret = -ENOMEM;
5242 		goto out;
5243 	}
5244 
5245 	/*
5246 	 * Take the device list mutex to prevent races with the final phase of
5247 	 * a device replace operation that replaces the device object associated
5248 	 * with the map's stripes, because the device object's id can change
5249 	 * at any time during that final phase of the device replace operation
5250 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5251 	 */
5252 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5253 	for (i = 0; i < map->num_stripes; i++) {
5254 		device = map->stripes[i].dev;
5255 		dev_offset = map->stripes[i].physical;
5256 
5257 		ret = btrfs_update_device(trans, device);
5258 		if (ret)
5259 			break;
5260 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5261 					     dev_offset, stripe_size);
5262 		if (ret)
5263 			break;
5264 	}
5265 	if (ret) {
5266 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5267 		goto out;
5268 	}
5269 
5270 	stripe = &chunk->stripe;
5271 	for (i = 0; i < map->num_stripes; i++) {
5272 		device = map->stripes[i].dev;
5273 		dev_offset = map->stripes[i].physical;
5274 
5275 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5276 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5277 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5278 		stripe++;
5279 	}
5280 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5281 
5282 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5283 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5284 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5285 	btrfs_set_stack_chunk_type(chunk, map->type);
5286 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5287 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5288 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5289 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5290 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5291 
5292 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5293 	key.type = BTRFS_CHUNK_ITEM_KEY;
5294 	key.offset = chunk_offset;
5295 
5296 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5297 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5298 		/*
5299 		 * TODO: Cleanup of inserted chunk root in case of
5300 		 * failure.
5301 		 */
5302 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5303 	}
5304 
5305 out:
5306 	kfree(chunk);
5307 	free_extent_map(em);
5308 	return ret;
5309 }
5310 
5311 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5312 {
5313 	struct btrfs_fs_info *fs_info = trans->fs_info;
5314 	u64 alloc_profile;
5315 	int ret;
5316 
5317 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5318 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5319 	if (ret)
5320 		return ret;
5321 
5322 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5323 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5324 	return ret;
5325 }
5326 
5327 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5328 {
5329 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5330 
5331 	return btrfs_raid_array[index].tolerated_failures;
5332 }
5333 
5334 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5335 {
5336 	struct extent_map *em;
5337 	struct map_lookup *map;
5338 	int readonly = 0;
5339 	int miss_ndevs = 0;
5340 	int i;
5341 
5342 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5343 	if (IS_ERR(em))
5344 		return 1;
5345 
5346 	map = em->map_lookup;
5347 	for (i = 0; i < map->num_stripes; i++) {
5348 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5349 					&map->stripes[i].dev->dev_state)) {
5350 			miss_ndevs++;
5351 			continue;
5352 		}
5353 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5354 					&map->stripes[i].dev->dev_state)) {
5355 			readonly = 1;
5356 			goto end;
5357 		}
5358 	}
5359 
5360 	/*
5361 	 * If the number of missing devices is larger than max errors,
5362 	 * we can not write the data into that chunk successfully, so
5363 	 * set it readonly.
5364 	 */
5365 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5366 		readonly = 1;
5367 end:
5368 	free_extent_map(em);
5369 	return readonly;
5370 }
5371 
5372 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5373 {
5374 	struct extent_map *em;
5375 
5376 	while (1) {
5377 		write_lock(&tree->lock);
5378 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5379 		if (em)
5380 			remove_extent_mapping(tree, em);
5381 		write_unlock(&tree->lock);
5382 		if (!em)
5383 			break;
5384 		/* once for us */
5385 		free_extent_map(em);
5386 		/* once for the tree */
5387 		free_extent_map(em);
5388 	}
5389 }
5390 
5391 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5392 {
5393 	struct extent_map *em;
5394 	struct map_lookup *map;
5395 	int ret;
5396 
5397 	em = btrfs_get_chunk_map(fs_info, logical, len);
5398 	if (IS_ERR(em))
5399 		/*
5400 		 * We could return errors for these cases, but that could get
5401 		 * ugly and we'd probably do the same thing which is just not do
5402 		 * anything else and exit, so return 1 so the callers don't try
5403 		 * to use other copies.
5404 		 */
5405 		return 1;
5406 
5407 	map = em->map_lookup;
5408 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5409 		ret = map->num_stripes;
5410 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5411 		ret = map->sub_stripes;
5412 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5413 		ret = 2;
5414 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5415 		/*
5416 		 * There could be two corrupted data stripes, we need
5417 		 * to loop retry in order to rebuild the correct data.
5418 		 *
5419 		 * Fail a stripe at a time on every retry except the
5420 		 * stripe under reconstruction.
5421 		 */
5422 		ret = map->num_stripes;
5423 	else
5424 		ret = 1;
5425 	free_extent_map(em);
5426 
5427 	down_read(&fs_info->dev_replace.rwsem);
5428 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5429 	    fs_info->dev_replace.tgtdev)
5430 		ret++;
5431 	up_read(&fs_info->dev_replace.rwsem);
5432 
5433 	return ret;
5434 }
5435 
5436 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5437 				    u64 logical)
5438 {
5439 	struct extent_map *em;
5440 	struct map_lookup *map;
5441 	unsigned long len = fs_info->sectorsize;
5442 
5443 	em = btrfs_get_chunk_map(fs_info, logical, len);
5444 
5445 	if (!WARN_ON(IS_ERR(em))) {
5446 		map = em->map_lookup;
5447 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5448 			len = map->stripe_len * nr_data_stripes(map);
5449 		free_extent_map(em);
5450 	}
5451 	return len;
5452 }
5453 
5454 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5455 {
5456 	struct extent_map *em;
5457 	struct map_lookup *map;
5458 	int ret = 0;
5459 
5460 	em = btrfs_get_chunk_map(fs_info, logical, len);
5461 
5462 	if(!WARN_ON(IS_ERR(em))) {
5463 		map = em->map_lookup;
5464 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5465 			ret = 1;
5466 		free_extent_map(em);
5467 	}
5468 	return ret;
5469 }
5470 
5471 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5472 			    struct map_lookup *map, int first,
5473 			    int dev_replace_is_ongoing)
5474 {
5475 	int i;
5476 	int num_stripes;
5477 	int preferred_mirror;
5478 	int tolerance;
5479 	struct btrfs_device *srcdev;
5480 
5481 	ASSERT((map->type &
5482 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5483 
5484 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5485 		num_stripes = map->sub_stripes;
5486 	else
5487 		num_stripes = map->num_stripes;
5488 
5489 	preferred_mirror = first + current->pid % num_stripes;
5490 
5491 	if (dev_replace_is_ongoing &&
5492 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5493 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5494 		srcdev = fs_info->dev_replace.srcdev;
5495 	else
5496 		srcdev = NULL;
5497 
5498 	/*
5499 	 * try to avoid the drive that is the source drive for a
5500 	 * dev-replace procedure, only choose it if no other non-missing
5501 	 * mirror is available
5502 	 */
5503 	for (tolerance = 0; tolerance < 2; tolerance++) {
5504 		if (map->stripes[preferred_mirror].dev->bdev &&
5505 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5506 			return preferred_mirror;
5507 		for (i = first; i < first + num_stripes; i++) {
5508 			if (map->stripes[i].dev->bdev &&
5509 			    (tolerance || map->stripes[i].dev != srcdev))
5510 				return i;
5511 		}
5512 	}
5513 
5514 	/* we couldn't find one that doesn't fail.  Just return something
5515 	 * and the io error handling code will clean up eventually
5516 	 */
5517 	return preferred_mirror;
5518 }
5519 
5520 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5521 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5522 {
5523 	int i;
5524 	int again = 1;
5525 
5526 	while (again) {
5527 		again = 0;
5528 		for (i = 0; i < num_stripes - 1; i++) {
5529 			/* Swap if parity is on a smaller index */
5530 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5531 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5532 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5533 				again = 1;
5534 			}
5535 		}
5536 	}
5537 }
5538 
5539 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5540 {
5541 	struct btrfs_bio *bbio = kzalloc(
5542 		 /* the size of the btrfs_bio */
5543 		sizeof(struct btrfs_bio) +
5544 		/* plus the variable array for the stripes */
5545 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5546 		/* plus the variable array for the tgt dev */
5547 		sizeof(int) * (real_stripes) +
5548 		/*
5549 		 * plus the raid_map, which includes both the tgt dev
5550 		 * and the stripes
5551 		 */
5552 		sizeof(u64) * (total_stripes),
5553 		GFP_NOFS|__GFP_NOFAIL);
5554 
5555 	atomic_set(&bbio->error, 0);
5556 	refcount_set(&bbio->refs, 1);
5557 
5558 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5559 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5560 
5561 	return bbio;
5562 }
5563 
5564 void btrfs_get_bbio(struct btrfs_bio *bbio)
5565 {
5566 	WARN_ON(!refcount_read(&bbio->refs));
5567 	refcount_inc(&bbio->refs);
5568 }
5569 
5570 void btrfs_put_bbio(struct btrfs_bio *bbio)
5571 {
5572 	if (!bbio)
5573 		return;
5574 	if (refcount_dec_and_test(&bbio->refs))
5575 		kfree(bbio);
5576 }
5577 
5578 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5579 /*
5580  * Please note that, discard won't be sent to target device of device
5581  * replace.
5582  */
5583 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5584 					 u64 logical, u64 *length_ret,
5585 					 struct btrfs_bio **bbio_ret)
5586 {
5587 	struct extent_map *em;
5588 	struct map_lookup *map;
5589 	struct btrfs_bio *bbio;
5590 	u64 length = *length_ret;
5591 	u64 offset;
5592 	u64 stripe_nr;
5593 	u64 stripe_nr_end;
5594 	u64 stripe_end_offset;
5595 	u64 stripe_cnt;
5596 	u64 stripe_len;
5597 	u64 stripe_offset;
5598 	u64 num_stripes;
5599 	u32 stripe_index;
5600 	u32 factor = 0;
5601 	u32 sub_stripes = 0;
5602 	u64 stripes_per_dev = 0;
5603 	u32 remaining_stripes = 0;
5604 	u32 last_stripe = 0;
5605 	int ret = 0;
5606 	int i;
5607 
5608 	/* discard always return a bbio */
5609 	ASSERT(bbio_ret);
5610 
5611 	em = btrfs_get_chunk_map(fs_info, logical, length);
5612 	if (IS_ERR(em))
5613 		return PTR_ERR(em);
5614 
5615 	map = em->map_lookup;
5616 	/* we don't discard raid56 yet */
5617 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5618 		ret = -EOPNOTSUPP;
5619 		goto out;
5620 	}
5621 
5622 	offset = logical - em->start;
5623 	length = min_t(u64, em->start + em->len - logical, length);
5624 	*length_ret = length;
5625 
5626 	stripe_len = map->stripe_len;
5627 	/*
5628 	 * stripe_nr counts the total number of stripes we have to stride
5629 	 * to get to this block
5630 	 */
5631 	stripe_nr = div64_u64(offset, stripe_len);
5632 
5633 	/* stripe_offset is the offset of this block in its stripe */
5634 	stripe_offset = offset - stripe_nr * stripe_len;
5635 
5636 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5637 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5638 	stripe_cnt = stripe_nr_end - stripe_nr;
5639 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5640 			    (offset + length);
5641 	/*
5642 	 * after this, stripe_nr is the number of stripes on this
5643 	 * device we have to walk to find the data, and stripe_index is
5644 	 * the number of our device in the stripe array
5645 	 */
5646 	num_stripes = 1;
5647 	stripe_index = 0;
5648 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5649 			 BTRFS_BLOCK_GROUP_RAID10)) {
5650 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5651 			sub_stripes = 1;
5652 		else
5653 			sub_stripes = map->sub_stripes;
5654 
5655 		factor = map->num_stripes / sub_stripes;
5656 		num_stripes = min_t(u64, map->num_stripes,
5657 				    sub_stripes * stripe_cnt);
5658 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5659 		stripe_index *= sub_stripes;
5660 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5661 					      &remaining_stripes);
5662 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5663 		last_stripe *= sub_stripes;
5664 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5665 				BTRFS_BLOCK_GROUP_DUP)) {
5666 		num_stripes = map->num_stripes;
5667 	} else {
5668 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5669 					&stripe_index);
5670 	}
5671 
5672 	bbio = alloc_btrfs_bio(num_stripes, 0);
5673 	if (!bbio) {
5674 		ret = -ENOMEM;
5675 		goto out;
5676 	}
5677 
5678 	for (i = 0; i < num_stripes; i++) {
5679 		bbio->stripes[i].physical =
5680 			map->stripes[stripe_index].physical +
5681 			stripe_offset + stripe_nr * map->stripe_len;
5682 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5683 
5684 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5685 				 BTRFS_BLOCK_GROUP_RAID10)) {
5686 			bbio->stripes[i].length = stripes_per_dev *
5687 				map->stripe_len;
5688 
5689 			if (i / sub_stripes < remaining_stripes)
5690 				bbio->stripes[i].length +=
5691 					map->stripe_len;
5692 
5693 			/*
5694 			 * Special for the first stripe and
5695 			 * the last stripe:
5696 			 *
5697 			 * |-------|...|-------|
5698 			 *     |----------|
5699 			 *    off     end_off
5700 			 */
5701 			if (i < sub_stripes)
5702 				bbio->stripes[i].length -=
5703 					stripe_offset;
5704 
5705 			if (stripe_index >= last_stripe &&
5706 			    stripe_index <= (last_stripe +
5707 					     sub_stripes - 1))
5708 				bbio->stripes[i].length -=
5709 					stripe_end_offset;
5710 
5711 			if (i == sub_stripes - 1)
5712 				stripe_offset = 0;
5713 		} else {
5714 			bbio->stripes[i].length = length;
5715 		}
5716 
5717 		stripe_index++;
5718 		if (stripe_index == map->num_stripes) {
5719 			stripe_index = 0;
5720 			stripe_nr++;
5721 		}
5722 	}
5723 
5724 	*bbio_ret = bbio;
5725 	bbio->map_type = map->type;
5726 	bbio->num_stripes = num_stripes;
5727 out:
5728 	free_extent_map(em);
5729 	return ret;
5730 }
5731 
5732 /*
5733  * In dev-replace case, for repair case (that's the only case where the mirror
5734  * is selected explicitly when calling btrfs_map_block), blocks left of the
5735  * left cursor can also be read from the target drive.
5736  *
5737  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5738  * array of stripes.
5739  * For READ, it also needs to be supported using the same mirror number.
5740  *
5741  * If the requested block is not left of the left cursor, EIO is returned. This
5742  * can happen because btrfs_num_copies() returns one more in the dev-replace
5743  * case.
5744  */
5745 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5746 					 u64 logical, u64 length,
5747 					 u64 srcdev_devid, int *mirror_num,
5748 					 u64 *physical)
5749 {
5750 	struct btrfs_bio *bbio = NULL;
5751 	int num_stripes;
5752 	int index_srcdev = 0;
5753 	int found = 0;
5754 	u64 physical_of_found = 0;
5755 	int i;
5756 	int ret = 0;
5757 
5758 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5759 				logical, &length, &bbio, 0, 0);
5760 	if (ret) {
5761 		ASSERT(bbio == NULL);
5762 		return ret;
5763 	}
5764 
5765 	num_stripes = bbio->num_stripes;
5766 	if (*mirror_num > num_stripes) {
5767 		/*
5768 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5769 		 * that means that the requested area is not left of the left
5770 		 * cursor
5771 		 */
5772 		btrfs_put_bbio(bbio);
5773 		return -EIO;
5774 	}
5775 
5776 	/*
5777 	 * process the rest of the function using the mirror_num of the source
5778 	 * drive. Therefore look it up first.  At the end, patch the device
5779 	 * pointer to the one of the target drive.
5780 	 */
5781 	for (i = 0; i < num_stripes; i++) {
5782 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5783 			continue;
5784 
5785 		/*
5786 		 * In case of DUP, in order to keep it simple, only add the
5787 		 * mirror with the lowest physical address
5788 		 */
5789 		if (found &&
5790 		    physical_of_found <= bbio->stripes[i].physical)
5791 			continue;
5792 
5793 		index_srcdev = i;
5794 		found = 1;
5795 		physical_of_found = bbio->stripes[i].physical;
5796 	}
5797 
5798 	btrfs_put_bbio(bbio);
5799 
5800 	ASSERT(found);
5801 	if (!found)
5802 		return -EIO;
5803 
5804 	*mirror_num = index_srcdev + 1;
5805 	*physical = physical_of_found;
5806 	return ret;
5807 }
5808 
5809 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5810 				      struct btrfs_bio **bbio_ret,
5811 				      struct btrfs_dev_replace *dev_replace,
5812 				      int *num_stripes_ret, int *max_errors_ret)
5813 {
5814 	struct btrfs_bio *bbio = *bbio_ret;
5815 	u64 srcdev_devid = dev_replace->srcdev->devid;
5816 	int tgtdev_indexes = 0;
5817 	int num_stripes = *num_stripes_ret;
5818 	int max_errors = *max_errors_ret;
5819 	int i;
5820 
5821 	if (op == BTRFS_MAP_WRITE) {
5822 		int index_where_to_add;
5823 
5824 		/*
5825 		 * duplicate the write operations while the dev replace
5826 		 * procedure is running. Since the copying of the old disk to
5827 		 * the new disk takes place at run time while the filesystem is
5828 		 * mounted writable, the regular write operations to the old
5829 		 * disk have to be duplicated to go to the new disk as well.
5830 		 *
5831 		 * Note that device->missing is handled by the caller, and that
5832 		 * the write to the old disk is already set up in the stripes
5833 		 * array.
5834 		 */
5835 		index_where_to_add = num_stripes;
5836 		for (i = 0; i < num_stripes; i++) {
5837 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5838 				/* write to new disk, too */
5839 				struct btrfs_bio_stripe *new =
5840 					bbio->stripes + index_where_to_add;
5841 				struct btrfs_bio_stripe *old =
5842 					bbio->stripes + i;
5843 
5844 				new->physical = old->physical;
5845 				new->length = old->length;
5846 				new->dev = dev_replace->tgtdev;
5847 				bbio->tgtdev_map[i] = index_where_to_add;
5848 				index_where_to_add++;
5849 				max_errors++;
5850 				tgtdev_indexes++;
5851 			}
5852 		}
5853 		num_stripes = index_where_to_add;
5854 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5855 		int index_srcdev = 0;
5856 		int found = 0;
5857 		u64 physical_of_found = 0;
5858 
5859 		/*
5860 		 * During the dev-replace procedure, the target drive can also
5861 		 * be used to read data in case it is needed to repair a corrupt
5862 		 * block elsewhere. This is possible if the requested area is
5863 		 * left of the left cursor. In this area, the target drive is a
5864 		 * full copy of the source drive.
5865 		 */
5866 		for (i = 0; i < num_stripes; i++) {
5867 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5868 				/*
5869 				 * In case of DUP, in order to keep it simple,
5870 				 * only add the mirror with the lowest physical
5871 				 * address
5872 				 */
5873 				if (found &&
5874 				    physical_of_found <=
5875 				     bbio->stripes[i].physical)
5876 					continue;
5877 				index_srcdev = i;
5878 				found = 1;
5879 				physical_of_found = bbio->stripes[i].physical;
5880 			}
5881 		}
5882 		if (found) {
5883 			struct btrfs_bio_stripe *tgtdev_stripe =
5884 				bbio->stripes + num_stripes;
5885 
5886 			tgtdev_stripe->physical = physical_of_found;
5887 			tgtdev_stripe->length =
5888 				bbio->stripes[index_srcdev].length;
5889 			tgtdev_stripe->dev = dev_replace->tgtdev;
5890 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5891 
5892 			tgtdev_indexes++;
5893 			num_stripes++;
5894 		}
5895 	}
5896 
5897 	*num_stripes_ret = num_stripes;
5898 	*max_errors_ret = max_errors;
5899 	bbio->num_tgtdevs = tgtdev_indexes;
5900 	*bbio_ret = bbio;
5901 }
5902 
5903 static bool need_full_stripe(enum btrfs_map_op op)
5904 {
5905 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5906 }
5907 
5908 /*
5909  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5910  *		       tuple. This information is used to calculate how big a
5911  *		       particular bio can get before it straddles a stripe.
5912  *
5913  * @fs_info - the filesystem
5914  * @logical - address that we want to figure out the geometry of
5915  * @len	    - the length of IO we are going to perform, starting at @logical
5916  * @op      - type of operation - write or read
5917  * @io_geom - pointer used to return values
5918  *
5919  * Returns < 0 in case a chunk for the given logical address cannot be found,
5920  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5921  */
5922 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5923 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5924 {
5925 	struct extent_map *em;
5926 	struct map_lookup *map;
5927 	u64 offset;
5928 	u64 stripe_offset;
5929 	u64 stripe_nr;
5930 	u64 stripe_len;
5931 	u64 raid56_full_stripe_start = (u64)-1;
5932 	int data_stripes;
5933 	int ret = 0;
5934 
5935 	ASSERT(op != BTRFS_MAP_DISCARD);
5936 
5937 	em = btrfs_get_chunk_map(fs_info, logical, len);
5938 	if (IS_ERR(em))
5939 		return PTR_ERR(em);
5940 
5941 	map = em->map_lookup;
5942 	/* Offset of this logical address in the chunk */
5943 	offset = logical - em->start;
5944 	/* Len of a stripe in a chunk */
5945 	stripe_len = map->stripe_len;
5946 	/* Stripe wher this block falls in */
5947 	stripe_nr = div64_u64(offset, stripe_len);
5948 	/* Offset of stripe in the chunk */
5949 	stripe_offset = stripe_nr * stripe_len;
5950 	if (offset < stripe_offset) {
5951 		btrfs_crit(fs_info,
5952 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5953 			stripe_offset, offset, em->start, logical, stripe_len);
5954 		ret = -EINVAL;
5955 		goto out;
5956 	}
5957 
5958 	/* stripe_offset is the offset of this block in its stripe */
5959 	stripe_offset = offset - stripe_offset;
5960 	data_stripes = nr_data_stripes(map);
5961 
5962 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5963 		u64 max_len = stripe_len - stripe_offset;
5964 
5965 		/*
5966 		 * In case of raid56, we need to know the stripe aligned start
5967 		 */
5968 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5969 			unsigned long full_stripe_len = stripe_len * data_stripes;
5970 			raid56_full_stripe_start = offset;
5971 
5972 			/*
5973 			 * Allow a write of a full stripe, but make sure we
5974 			 * don't allow straddling of stripes
5975 			 */
5976 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5977 					full_stripe_len);
5978 			raid56_full_stripe_start *= full_stripe_len;
5979 
5980 			/*
5981 			 * For writes to RAID[56], allow a full stripeset across
5982 			 * all disks. For other RAID types and for RAID[56]
5983 			 * reads, just allow a single stripe (on a single disk).
5984 			 */
5985 			if (op == BTRFS_MAP_WRITE) {
5986 				max_len = stripe_len * data_stripes -
5987 					  (offset - raid56_full_stripe_start);
5988 			}
5989 		}
5990 		len = min_t(u64, em->len - offset, max_len);
5991 	} else {
5992 		len = em->len - offset;
5993 	}
5994 
5995 	io_geom->len = len;
5996 	io_geom->offset = offset;
5997 	io_geom->stripe_len = stripe_len;
5998 	io_geom->stripe_nr = stripe_nr;
5999 	io_geom->stripe_offset = stripe_offset;
6000 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6001 
6002 out:
6003 	/* once for us */
6004 	free_extent_map(em);
6005 	return ret;
6006 }
6007 
6008 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6009 			     enum btrfs_map_op op,
6010 			     u64 logical, u64 *length,
6011 			     struct btrfs_bio **bbio_ret,
6012 			     int mirror_num, int need_raid_map)
6013 {
6014 	struct extent_map *em;
6015 	struct map_lookup *map;
6016 	u64 stripe_offset;
6017 	u64 stripe_nr;
6018 	u64 stripe_len;
6019 	u32 stripe_index;
6020 	int data_stripes;
6021 	int i;
6022 	int ret = 0;
6023 	int num_stripes;
6024 	int max_errors = 0;
6025 	int tgtdev_indexes = 0;
6026 	struct btrfs_bio *bbio = NULL;
6027 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6028 	int dev_replace_is_ongoing = 0;
6029 	int num_alloc_stripes;
6030 	int patch_the_first_stripe_for_dev_replace = 0;
6031 	u64 physical_to_patch_in_first_stripe = 0;
6032 	u64 raid56_full_stripe_start = (u64)-1;
6033 	struct btrfs_io_geometry geom;
6034 
6035 	ASSERT(bbio_ret);
6036 	ASSERT(op != BTRFS_MAP_DISCARD);
6037 
6038 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6039 	if (ret < 0)
6040 		return ret;
6041 
6042 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6043 	ASSERT(!IS_ERR(em));
6044 	map = em->map_lookup;
6045 
6046 	*length = geom.len;
6047 	stripe_len = geom.stripe_len;
6048 	stripe_nr = geom.stripe_nr;
6049 	stripe_offset = geom.stripe_offset;
6050 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6051 	data_stripes = nr_data_stripes(map);
6052 
6053 	down_read(&dev_replace->rwsem);
6054 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6055 	/*
6056 	 * Hold the semaphore for read during the whole operation, write is
6057 	 * requested at commit time but must wait.
6058 	 */
6059 	if (!dev_replace_is_ongoing)
6060 		up_read(&dev_replace->rwsem);
6061 
6062 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6063 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6064 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6065 						    dev_replace->srcdev->devid,
6066 						    &mirror_num,
6067 					    &physical_to_patch_in_first_stripe);
6068 		if (ret)
6069 			goto out;
6070 		else
6071 			patch_the_first_stripe_for_dev_replace = 1;
6072 	} else if (mirror_num > map->num_stripes) {
6073 		mirror_num = 0;
6074 	}
6075 
6076 	num_stripes = 1;
6077 	stripe_index = 0;
6078 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6079 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6080 				&stripe_index);
6081 		if (!need_full_stripe(op))
6082 			mirror_num = 1;
6083 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6084 		if (need_full_stripe(op))
6085 			num_stripes = map->num_stripes;
6086 		else if (mirror_num)
6087 			stripe_index = mirror_num - 1;
6088 		else {
6089 			stripe_index = find_live_mirror(fs_info, map, 0,
6090 					    dev_replace_is_ongoing);
6091 			mirror_num = stripe_index + 1;
6092 		}
6093 
6094 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6095 		if (need_full_stripe(op)) {
6096 			num_stripes = map->num_stripes;
6097 		} else if (mirror_num) {
6098 			stripe_index = mirror_num - 1;
6099 		} else {
6100 			mirror_num = 1;
6101 		}
6102 
6103 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6104 		u32 factor = map->num_stripes / map->sub_stripes;
6105 
6106 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6107 		stripe_index *= map->sub_stripes;
6108 
6109 		if (need_full_stripe(op))
6110 			num_stripes = map->sub_stripes;
6111 		else if (mirror_num)
6112 			stripe_index += mirror_num - 1;
6113 		else {
6114 			int old_stripe_index = stripe_index;
6115 			stripe_index = find_live_mirror(fs_info, map,
6116 					      stripe_index,
6117 					      dev_replace_is_ongoing);
6118 			mirror_num = stripe_index - old_stripe_index + 1;
6119 		}
6120 
6121 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6122 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6123 			/* push stripe_nr back to the start of the full stripe */
6124 			stripe_nr = div64_u64(raid56_full_stripe_start,
6125 					stripe_len * data_stripes);
6126 
6127 			/* RAID[56] write or recovery. Return all stripes */
6128 			num_stripes = map->num_stripes;
6129 			max_errors = nr_parity_stripes(map);
6130 
6131 			*length = map->stripe_len;
6132 			stripe_index = 0;
6133 			stripe_offset = 0;
6134 		} else {
6135 			/*
6136 			 * Mirror #0 or #1 means the original data block.
6137 			 * Mirror #2 is RAID5 parity block.
6138 			 * Mirror #3 is RAID6 Q block.
6139 			 */
6140 			stripe_nr = div_u64_rem(stripe_nr,
6141 					data_stripes, &stripe_index);
6142 			if (mirror_num > 1)
6143 				stripe_index = data_stripes + mirror_num - 2;
6144 
6145 			/* We distribute the parity blocks across stripes */
6146 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6147 					&stripe_index);
6148 			if (!need_full_stripe(op) && mirror_num <= 1)
6149 				mirror_num = 1;
6150 		}
6151 	} else {
6152 		/*
6153 		 * after this, stripe_nr is the number of stripes on this
6154 		 * device we have to walk to find the data, and stripe_index is
6155 		 * the number of our device in the stripe array
6156 		 */
6157 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6158 				&stripe_index);
6159 		mirror_num = stripe_index + 1;
6160 	}
6161 	if (stripe_index >= map->num_stripes) {
6162 		btrfs_crit(fs_info,
6163 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6164 			   stripe_index, map->num_stripes);
6165 		ret = -EINVAL;
6166 		goto out;
6167 	}
6168 
6169 	num_alloc_stripes = num_stripes;
6170 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6171 		if (op == BTRFS_MAP_WRITE)
6172 			num_alloc_stripes <<= 1;
6173 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6174 			num_alloc_stripes++;
6175 		tgtdev_indexes = num_stripes;
6176 	}
6177 
6178 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6179 	if (!bbio) {
6180 		ret = -ENOMEM;
6181 		goto out;
6182 	}
6183 
6184 	for (i = 0; i < num_stripes; i++) {
6185 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6186 			stripe_offset + stripe_nr * map->stripe_len;
6187 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6188 		stripe_index++;
6189 	}
6190 
6191 	/* build raid_map */
6192 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6193 	    (need_full_stripe(op) || mirror_num > 1)) {
6194 		u64 tmp;
6195 		unsigned rot;
6196 
6197 		/* Work out the disk rotation on this stripe-set */
6198 		div_u64_rem(stripe_nr, num_stripes, &rot);
6199 
6200 		/* Fill in the logical address of each stripe */
6201 		tmp = stripe_nr * data_stripes;
6202 		for (i = 0; i < data_stripes; i++)
6203 			bbio->raid_map[(i+rot) % num_stripes] =
6204 				em->start + (tmp + i) * map->stripe_len;
6205 
6206 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6207 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6208 			bbio->raid_map[(i+rot+1) % num_stripes] =
6209 				RAID6_Q_STRIPE;
6210 
6211 		sort_parity_stripes(bbio, num_stripes);
6212 	}
6213 
6214 	if (need_full_stripe(op))
6215 		max_errors = btrfs_chunk_max_errors(map);
6216 
6217 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6218 	    need_full_stripe(op)) {
6219 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6220 					  &max_errors);
6221 	}
6222 
6223 	*bbio_ret = bbio;
6224 	bbio->map_type = map->type;
6225 	bbio->num_stripes = num_stripes;
6226 	bbio->max_errors = max_errors;
6227 	bbio->mirror_num = mirror_num;
6228 
6229 	/*
6230 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6231 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6232 	 * available as a mirror
6233 	 */
6234 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6235 		WARN_ON(num_stripes > 1);
6236 		bbio->stripes[0].dev = dev_replace->tgtdev;
6237 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6238 		bbio->mirror_num = map->num_stripes + 1;
6239 	}
6240 out:
6241 	if (dev_replace_is_ongoing) {
6242 		lockdep_assert_held(&dev_replace->rwsem);
6243 		/* Unlock and let waiting writers proceed */
6244 		up_read(&dev_replace->rwsem);
6245 	}
6246 	free_extent_map(em);
6247 	return ret;
6248 }
6249 
6250 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6251 		      u64 logical, u64 *length,
6252 		      struct btrfs_bio **bbio_ret, int mirror_num)
6253 {
6254 	if (op == BTRFS_MAP_DISCARD)
6255 		return __btrfs_map_block_for_discard(fs_info, logical,
6256 						     length, bbio_ret);
6257 
6258 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6259 				 mirror_num, 0);
6260 }
6261 
6262 /* For Scrub/replace */
6263 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6264 		     u64 logical, u64 *length,
6265 		     struct btrfs_bio **bbio_ret)
6266 {
6267 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6268 }
6269 
6270 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6271 {
6272 	bio->bi_private = bbio->private;
6273 	bio->bi_end_io = bbio->end_io;
6274 	bio_endio(bio);
6275 
6276 	btrfs_put_bbio(bbio);
6277 }
6278 
6279 static void btrfs_end_bio(struct bio *bio)
6280 {
6281 	struct btrfs_bio *bbio = bio->bi_private;
6282 	int is_orig_bio = 0;
6283 
6284 	if (bio->bi_status) {
6285 		atomic_inc(&bbio->error);
6286 		if (bio->bi_status == BLK_STS_IOERR ||
6287 		    bio->bi_status == BLK_STS_TARGET) {
6288 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6289 
6290 			ASSERT(dev->bdev);
6291 			if (bio_op(bio) == REQ_OP_WRITE)
6292 				btrfs_dev_stat_inc_and_print(dev,
6293 						BTRFS_DEV_STAT_WRITE_ERRS);
6294 			else if (!(bio->bi_opf & REQ_RAHEAD))
6295 				btrfs_dev_stat_inc_and_print(dev,
6296 						BTRFS_DEV_STAT_READ_ERRS);
6297 			if (bio->bi_opf & REQ_PREFLUSH)
6298 				btrfs_dev_stat_inc_and_print(dev,
6299 						BTRFS_DEV_STAT_FLUSH_ERRS);
6300 		}
6301 	}
6302 
6303 	if (bio == bbio->orig_bio)
6304 		is_orig_bio = 1;
6305 
6306 	btrfs_bio_counter_dec(bbio->fs_info);
6307 
6308 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6309 		if (!is_orig_bio) {
6310 			bio_put(bio);
6311 			bio = bbio->orig_bio;
6312 		}
6313 
6314 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6315 		/* only send an error to the higher layers if it is
6316 		 * beyond the tolerance of the btrfs bio
6317 		 */
6318 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6319 			bio->bi_status = BLK_STS_IOERR;
6320 		} else {
6321 			/*
6322 			 * this bio is actually up to date, we didn't
6323 			 * go over the max number of errors
6324 			 */
6325 			bio->bi_status = BLK_STS_OK;
6326 		}
6327 
6328 		btrfs_end_bbio(bbio, bio);
6329 	} else if (!is_orig_bio) {
6330 		bio_put(bio);
6331 	}
6332 }
6333 
6334 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6335 			      u64 physical, struct btrfs_device *dev)
6336 {
6337 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6338 
6339 	bio->bi_private = bbio;
6340 	btrfs_io_bio(bio)->device = dev;
6341 	bio->bi_end_io = btrfs_end_bio;
6342 	bio->bi_iter.bi_sector = physical >> 9;
6343 	btrfs_debug_in_rcu(fs_info,
6344 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6345 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6346 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6347 		dev->devid, bio->bi_iter.bi_size);
6348 	bio_set_dev(bio, dev->bdev);
6349 
6350 	btrfs_bio_counter_inc_noblocked(fs_info);
6351 
6352 	btrfsic_submit_bio(bio);
6353 }
6354 
6355 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6356 {
6357 	atomic_inc(&bbio->error);
6358 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6359 		/* Should be the original bio. */
6360 		WARN_ON(bio != bbio->orig_bio);
6361 
6362 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6363 		bio->bi_iter.bi_sector = logical >> 9;
6364 		if (atomic_read(&bbio->error) > bbio->max_errors)
6365 			bio->bi_status = BLK_STS_IOERR;
6366 		else
6367 			bio->bi_status = BLK_STS_OK;
6368 		btrfs_end_bbio(bbio, bio);
6369 	}
6370 }
6371 
6372 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6373 			   int mirror_num)
6374 {
6375 	struct btrfs_device *dev;
6376 	struct bio *first_bio = bio;
6377 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6378 	u64 length = 0;
6379 	u64 map_length;
6380 	int ret;
6381 	int dev_nr;
6382 	int total_devs;
6383 	struct btrfs_bio *bbio = NULL;
6384 
6385 	length = bio->bi_iter.bi_size;
6386 	map_length = length;
6387 
6388 	btrfs_bio_counter_inc_blocked(fs_info);
6389 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6390 				&map_length, &bbio, mirror_num, 1);
6391 	if (ret) {
6392 		btrfs_bio_counter_dec(fs_info);
6393 		return errno_to_blk_status(ret);
6394 	}
6395 
6396 	total_devs = bbio->num_stripes;
6397 	bbio->orig_bio = first_bio;
6398 	bbio->private = first_bio->bi_private;
6399 	bbio->end_io = first_bio->bi_end_io;
6400 	bbio->fs_info = fs_info;
6401 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6402 
6403 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6404 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6405 		/* In this case, map_length has been set to the length of
6406 		   a single stripe; not the whole write */
6407 		if (bio_op(bio) == REQ_OP_WRITE) {
6408 			ret = raid56_parity_write(fs_info, bio, bbio,
6409 						  map_length);
6410 		} else {
6411 			ret = raid56_parity_recover(fs_info, bio, bbio,
6412 						    map_length, mirror_num, 1);
6413 		}
6414 
6415 		btrfs_bio_counter_dec(fs_info);
6416 		return errno_to_blk_status(ret);
6417 	}
6418 
6419 	if (map_length < length) {
6420 		btrfs_crit(fs_info,
6421 			   "mapping failed logical %llu bio len %llu len %llu",
6422 			   logical, length, map_length);
6423 		BUG();
6424 	}
6425 
6426 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6427 		dev = bbio->stripes[dev_nr].dev;
6428 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6429 						   &dev->dev_state) ||
6430 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6431 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6432 			bbio_error(bbio, first_bio, logical);
6433 			continue;
6434 		}
6435 
6436 		if (dev_nr < total_devs - 1)
6437 			bio = btrfs_bio_clone(first_bio);
6438 		else
6439 			bio = first_bio;
6440 
6441 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6442 	}
6443 	btrfs_bio_counter_dec(fs_info);
6444 	return BLK_STS_OK;
6445 }
6446 
6447 /*
6448  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6449  * return NULL.
6450  *
6451  * If devid and uuid are both specified, the match must be exact, otherwise
6452  * only devid is used.
6453  *
6454  * If @seed is true, traverse through the seed devices.
6455  */
6456 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6457 				       u64 devid, u8 *uuid, u8 *fsid,
6458 				       bool seed)
6459 {
6460 	struct btrfs_device *device;
6461 
6462 	while (fs_devices) {
6463 		if (!fsid ||
6464 		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6465 			list_for_each_entry(device, &fs_devices->devices,
6466 					    dev_list) {
6467 				if (device->devid == devid &&
6468 				    (!uuid || memcmp(device->uuid, uuid,
6469 						     BTRFS_UUID_SIZE) == 0))
6470 					return device;
6471 			}
6472 		}
6473 		if (seed)
6474 			fs_devices = fs_devices->seed;
6475 		else
6476 			return NULL;
6477 	}
6478 	return NULL;
6479 }
6480 
6481 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6482 					    u64 devid, u8 *dev_uuid)
6483 {
6484 	struct btrfs_device *device;
6485 	unsigned int nofs_flag;
6486 
6487 	/*
6488 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6489 	 * allocation, however we don't want to change btrfs_alloc_device() to
6490 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6491 	 * places.
6492 	 */
6493 	nofs_flag = memalloc_nofs_save();
6494 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6495 	memalloc_nofs_restore(nofs_flag);
6496 	if (IS_ERR(device))
6497 		return device;
6498 
6499 	list_add(&device->dev_list, &fs_devices->devices);
6500 	device->fs_devices = fs_devices;
6501 	fs_devices->num_devices++;
6502 
6503 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6504 	fs_devices->missing_devices++;
6505 
6506 	return device;
6507 }
6508 
6509 /**
6510  * btrfs_alloc_device - allocate struct btrfs_device
6511  * @fs_info:	used only for generating a new devid, can be NULL if
6512  *		devid is provided (i.e. @devid != NULL).
6513  * @devid:	a pointer to devid for this device.  If NULL a new devid
6514  *		is generated.
6515  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6516  *		is generated.
6517  *
6518  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6519  * on error.  Returned struct is not linked onto any lists and must be
6520  * destroyed with btrfs_free_device.
6521  */
6522 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6523 					const u64 *devid,
6524 					const u8 *uuid)
6525 {
6526 	struct btrfs_device *dev;
6527 	u64 tmp;
6528 
6529 	if (WARN_ON(!devid && !fs_info))
6530 		return ERR_PTR(-EINVAL);
6531 
6532 	dev = __alloc_device();
6533 	if (IS_ERR(dev))
6534 		return dev;
6535 
6536 	if (devid)
6537 		tmp = *devid;
6538 	else {
6539 		int ret;
6540 
6541 		ret = find_next_devid(fs_info, &tmp);
6542 		if (ret) {
6543 			btrfs_free_device(dev);
6544 			return ERR_PTR(ret);
6545 		}
6546 	}
6547 	dev->devid = tmp;
6548 
6549 	if (uuid)
6550 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6551 	else
6552 		generate_random_uuid(dev->uuid);
6553 
6554 	return dev;
6555 }
6556 
6557 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6558 					u64 devid, u8 *uuid, bool error)
6559 {
6560 	if (error)
6561 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6562 			      devid, uuid);
6563 	else
6564 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6565 			      devid, uuid);
6566 }
6567 
6568 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6569 {
6570 	int index = btrfs_bg_flags_to_raid_index(type);
6571 	int ncopies = btrfs_raid_array[index].ncopies;
6572 	const int nparity = btrfs_raid_array[index].nparity;
6573 	int data_stripes;
6574 
6575 	if (nparity)
6576 		data_stripes = num_stripes - nparity;
6577 	else
6578 		data_stripes = num_stripes / ncopies;
6579 
6580 	return div_u64(chunk_len, data_stripes);
6581 }
6582 
6583 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6584 			  struct btrfs_chunk *chunk)
6585 {
6586 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6587 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6588 	struct map_lookup *map;
6589 	struct extent_map *em;
6590 	u64 logical;
6591 	u64 length;
6592 	u64 devid;
6593 	u8 uuid[BTRFS_UUID_SIZE];
6594 	int num_stripes;
6595 	int ret;
6596 	int i;
6597 
6598 	logical = key->offset;
6599 	length = btrfs_chunk_length(leaf, chunk);
6600 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6601 
6602 	/*
6603 	 * Only need to verify chunk item if we're reading from sys chunk array,
6604 	 * as chunk item in tree block is already verified by tree-checker.
6605 	 */
6606 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6607 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6608 		if (ret)
6609 			return ret;
6610 	}
6611 
6612 	read_lock(&map_tree->lock);
6613 	em = lookup_extent_mapping(map_tree, logical, 1);
6614 	read_unlock(&map_tree->lock);
6615 
6616 	/* already mapped? */
6617 	if (em && em->start <= logical && em->start + em->len > logical) {
6618 		free_extent_map(em);
6619 		return 0;
6620 	} else if (em) {
6621 		free_extent_map(em);
6622 	}
6623 
6624 	em = alloc_extent_map();
6625 	if (!em)
6626 		return -ENOMEM;
6627 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6628 	if (!map) {
6629 		free_extent_map(em);
6630 		return -ENOMEM;
6631 	}
6632 
6633 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6634 	em->map_lookup = map;
6635 	em->start = logical;
6636 	em->len = length;
6637 	em->orig_start = 0;
6638 	em->block_start = 0;
6639 	em->block_len = em->len;
6640 
6641 	map->num_stripes = num_stripes;
6642 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6643 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6644 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6645 	map->type = btrfs_chunk_type(leaf, chunk);
6646 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6647 	map->verified_stripes = 0;
6648 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6649 						map->num_stripes);
6650 	for (i = 0; i < num_stripes; i++) {
6651 		map->stripes[i].physical =
6652 			btrfs_stripe_offset_nr(leaf, chunk, i);
6653 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6654 		read_extent_buffer(leaf, uuid, (unsigned long)
6655 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6656 				   BTRFS_UUID_SIZE);
6657 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6658 							devid, uuid, NULL, true);
6659 		if (!map->stripes[i].dev &&
6660 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6661 			free_extent_map(em);
6662 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6663 			return -ENOENT;
6664 		}
6665 		if (!map->stripes[i].dev) {
6666 			map->stripes[i].dev =
6667 				add_missing_dev(fs_info->fs_devices, devid,
6668 						uuid);
6669 			if (IS_ERR(map->stripes[i].dev)) {
6670 				free_extent_map(em);
6671 				btrfs_err(fs_info,
6672 					"failed to init missing dev %llu: %ld",
6673 					devid, PTR_ERR(map->stripes[i].dev));
6674 				return PTR_ERR(map->stripes[i].dev);
6675 			}
6676 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6677 		}
6678 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6679 				&(map->stripes[i].dev->dev_state));
6680 
6681 	}
6682 
6683 	write_lock(&map_tree->lock);
6684 	ret = add_extent_mapping(map_tree, em, 0);
6685 	write_unlock(&map_tree->lock);
6686 	if (ret < 0) {
6687 		btrfs_err(fs_info,
6688 			  "failed to add chunk map, start=%llu len=%llu: %d",
6689 			  em->start, em->len, ret);
6690 	}
6691 	free_extent_map(em);
6692 
6693 	return ret;
6694 }
6695 
6696 static void fill_device_from_item(struct extent_buffer *leaf,
6697 				 struct btrfs_dev_item *dev_item,
6698 				 struct btrfs_device *device)
6699 {
6700 	unsigned long ptr;
6701 
6702 	device->devid = btrfs_device_id(leaf, dev_item);
6703 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6704 	device->total_bytes = device->disk_total_bytes;
6705 	device->commit_total_bytes = device->disk_total_bytes;
6706 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6707 	device->commit_bytes_used = device->bytes_used;
6708 	device->type = btrfs_device_type(leaf, dev_item);
6709 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6710 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6711 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6712 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6713 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6714 
6715 	ptr = btrfs_device_uuid(dev_item);
6716 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6717 }
6718 
6719 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6720 						  u8 *fsid)
6721 {
6722 	struct btrfs_fs_devices *fs_devices;
6723 	int ret;
6724 
6725 	lockdep_assert_held(&uuid_mutex);
6726 	ASSERT(fsid);
6727 
6728 	fs_devices = fs_info->fs_devices->seed;
6729 	while (fs_devices) {
6730 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6731 			return fs_devices;
6732 
6733 		fs_devices = fs_devices->seed;
6734 	}
6735 
6736 	fs_devices = find_fsid(fsid, NULL);
6737 	if (!fs_devices) {
6738 		if (!btrfs_test_opt(fs_info, DEGRADED))
6739 			return ERR_PTR(-ENOENT);
6740 
6741 		fs_devices = alloc_fs_devices(fsid, NULL);
6742 		if (IS_ERR(fs_devices))
6743 			return fs_devices;
6744 
6745 		fs_devices->seeding = true;
6746 		fs_devices->opened = 1;
6747 		return fs_devices;
6748 	}
6749 
6750 	fs_devices = clone_fs_devices(fs_devices);
6751 	if (IS_ERR(fs_devices))
6752 		return fs_devices;
6753 
6754 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6755 	if (ret) {
6756 		free_fs_devices(fs_devices);
6757 		fs_devices = ERR_PTR(ret);
6758 		goto out;
6759 	}
6760 
6761 	if (!fs_devices->seeding) {
6762 		close_fs_devices(fs_devices);
6763 		free_fs_devices(fs_devices);
6764 		fs_devices = ERR_PTR(-EINVAL);
6765 		goto out;
6766 	}
6767 
6768 	fs_devices->seed = fs_info->fs_devices->seed;
6769 	fs_info->fs_devices->seed = fs_devices;
6770 out:
6771 	return fs_devices;
6772 }
6773 
6774 static int read_one_dev(struct extent_buffer *leaf,
6775 			struct btrfs_dev_item *dev_item)
6776 {
6777 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6778 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6779 	struct btrfs_device *device;
6780 	u64 devid;
6781 	int ret;
6782 	u8 fs_uuid[BTRFS_FSID_SIZE];
6783 	u8 dev_uuid[BTRFS_UUID_SIZE];
6784 
6785 	devid = btrfs_device_id(leaf, dev_item);
6786 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6787 			   BTRFS_UUID_SIZE);
6788 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6789 			   BTRFS_FSID_SIZE);
6790 
6791 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6792 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6793 		if (IS_ERR(fs_devices))
6794 			return PTR_ERR(fs_devices);
6795 	}
6796 
6797 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6798 				   fs_uuid, true);
6799 	if (!device) {
6800 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6801 			btrfs_report_missing_device(fs_info, devid,
6802 							dev_uuid, true);
6803 			return -ENOENT;
6804 		}
6805 
6806 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6807 		if (IS_ERR(device)) {
6808 			btrfs_err(fs_info,
6809 				"failed to add missing dev %llu: %ld",
6810 				devid, PTR_ERR(device));
6811 			return PTR_ERR(device);
6812 		}
6813 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6814 	} else {
6815 		if (!device->bdev) {
6816 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6817 				btrfs_report_missing_device(fs_info,
6818 						devid, dev_uuid, true);
6819 				return -ENOENT;
6820 			}
6821 			btrfs_report_missing_device(fs_info, devid,
6822 							dev_uuid, false);
6823 		}
6824 
6825 		if (!device->bdev &&
6826 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6827 			/*
6828 			 * this happens when a device that was properly setup
6829 			 * in the device info lists suddenly goes bad.
6830 			 * device->bdev is NULL, and so we have to set
6831 			 * device->missing to one here
6832 			 */
6833 			device->fs_devices->missing_devices++;
6834 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6835 		}
6836 
6837 		/* Move the device to its own fs_devices */
6838 		if (device->fs_devices != fs_devices) {
6839 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6840 							&device->dev_state));
6841 
6842 			list_move(&device->dev_list, &fs_devices->devices);
6843 			device->fs_devices->num_devices--;
6844 			fs_devices->num_devices++;
6845 
6846 			device->fs_devices->missing_devices--;
6847 			fs_devices->missing_devices++;
6848 
6849 			device->fs_devices = fs_devices;
6850 		}
6851 	}
6852 
6853 	if (device->fs_devices != fs_info->fs_devices) {
6854 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6855 		if (device->generation !=
6856 		    btrfs_device_generation(leaf, dev_item))
6857 			return -EINVAL;
6858 	}
6859 
6860 	fill_device_from_item(leaf, dev_item, device);
6861 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6862 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6863 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6864 		device->fs_devices->total_rw_bytes += device->total_bytes;
6865 		atomic64_add(device->total_bytes - device->bytes_used,
6866 				&fs_info->free_chunk_space);
6867 	}
6868 	ret = 0;
6869 	return ret;
6870 }
6871 
6872 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6873 {
6874 	struct btrfs_root *root = fs_info->tree_root;
6875 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6876 	struct extent_buffer *sb;
6877 	struct btrfs_disk_key *disk_key;
6878 	struct btrfs_chunk *chunk;
6879 	u8 *array_ptr;
6880 	unsigned long sb_array_offset;
6881 	int ret = 0;
6882 	u32 num_stripes;
6883 	u32 array_size;
6884 	u32 len = 0;
6885 	u32 cur_offset;
6886 	u64 type;
6887 	struct btrfs_key key;
6888 
6889 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6890 	/*
6891 	 * This will create extent buffer of nodesize, superblock size is
6892 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6893 	 * overallocate but we can keep it as-is, only the first page is used.
6894 	 */
6895 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6896 	if (IS_ERR(sb))
6897 		return PTR_ERR(sb);
6898 	set_extent_buffer_uptodate(sb);
6899 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6900 	/*
6901 	 * The sb extent buffer is artificial and just used to read the system array.
6902 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6903 	 * pages up-to-date when the page is larger: extent does not cover the
6904 	 * whole page and consequently check_page_uptodate does not find all
6905 	 * the page's extents up-to-date (the hole beyond sb),
6906 	 * write_extent_buffer then triggers a WARN_ON.
6907 	 *
6908 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6909 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6910 	 * to silence the warning eg. on PowerPC 64.
6911 	 */
6912 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6913 		SetPageUptodate(sb->pages[0]);
6914 
6915 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6916 	array_size = btrfs_super_sys_array_size(super_copy);
6917 
6918 	array_ptr = super_copy->sys_chunk_array;
6919 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6920 	cur_offset = 0;
6921 
6922 	while (cur_offset < array_size) {
6923 		disk_key = (struct btrfs_disk_key *)array_ptr;
6924 		len = sizeof(*disk_key);
6925 		if (cur_offset + len > array_size)
6926 			goto out_short_read;
6927 
6928 		btrfs_disk_key_to_cpu(&key, disk_key);
6929 
6930 		array_ptr += len;
6931 		sb_array_offset += len;
6932 		cur_offset += len;
6933 
6934 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6935 			btrfs_err(fs_info,
6936 			    "unexpected item type %u in sys_array at offset %u",
6937 				  (u32)key.type, cur_offset);
6938 			ret = -EIO;
6939 			break;
6940 		}
6941 
6942 		chunk = (struct btrfs_chunk *)sb_array_offset;
6943 		/*
6944 		 * At least one btrfs_chunk with one stripe must be present,
6945 		 * exact stripe count check comes afterwards
6946 		 */
6947 		len = btrfs_chunk_item_size(1);
6948 		if (cur_offset + len > array_size)
6949 			goto out_short_read;
6950 
6951 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6952 		if (!num_stripes) {
6953 			btrfs_err(fs_info,
6954 			"invalid number of stripes %u in sys_array at offset %u",
6955 				  num_stripes, cur_offset);
6956 			ret = -EIO;
6957 			break;
6958 		}
6959 
6960 		type = btrfs_chunk_type(sb, chunk);
6961 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6962 			btrfs_err(fs_info,
6963 			"invalid chunk type %llu in sys_array at offset %u",
6964 				  type, cur_offset);
6965 			ret = -EIO;
6966 			break;
6967 		}
6968 
6969 		len = btrfs_chunk_item_size(num_stripes);
6970 		if (cur_offset + len > array_size)
6971 			goto out_short_read;
6972 
6973 		ret = read_one_chunk(&key, sb, chunk);
6974 		if (ret)
6975 			break;
6976 
6977 		array_ptr += len;
6978 		sb_array_offset += len;
6979 		cur_offset += len;
6980 	}
6981 	clear_extent_buffer_uptodate(sb);
6982 	free_extent_buffer_stale(sb);
6983 	return ret;
6984 
6985 out_short_read:
6986 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6987 			len, cur_offset);
6988 	clear_extent_buffer_uptodate(sb);
6989 	free_extent_buffer_stale(sb);
6990 	return -EIO;
6991 }
6992 
6993 /*
6994  * Check if all chunks in the fs are OK for read-write degraded mount
6995  *
6996  * If the @failing_dev is specified, it's accounted as missing.
6997  *
6998  * Return true if all chunks meet the minimal RW mount requirements.
6999  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7000  */
7001 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7002 					struct btrfs_device *failing_dev)
7003 {
7004 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7005 	struct extent_map *em;
7006 	u64 next_start = 0;
7007 	bool ret = true;
7008 
7009 	read_lock(&map_tree->lock);
7010 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7011 	read_unlock(&map_tree->lock);
7012 	/* No chunk at all? Return false anyway */
7013 	if (!em) {
7014 		ret = false;
7015 		goto out;
7016 	}
7017 	while (em) {
7018 		struct map_lookup *map;
7019 		int missing = 0;
7020 		int max_tolerated;
7021 		int i;
7022 
7023 		map = em->map_lookup;
7024 		max_tolerated =
7025 			btrfs_get_num_tolerated_disk_barrier_failures(
7026 					map->type);
7027 		for (i = 0; i < map->num_stripes; i++) {
7028 			struct btrfs_device *dev = map->stripes[i].dev;
7029 
7030 			if (!dev || !dev->bdev ||
7031 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7032 			    dev->last_flush_error)
7033 				missing++;
7034 			else if (failing_dev && failing_dev == dev)
7035 				missing++;
7036 		}
7037 		if (missing > max_tolerated) {
7038 			if (!failing_dev)
7039 				btrfs_warn(fs_info,
7040 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7041 				   em->start, missing, max_tolerated);
7042 			free_extent_map(em);
7043 			ret = false;
7044 			goto out;
7045 		}
7046 		next_start = extent_map_end(em);
7047 		free_extent_map(em);
7048 
7049 		read_lock(&map_tree->lock);
7050 		em = lookup_extent_mapping(map_tree, next_start,
7051 					   (u64)(-1) - next_start);
7052 		read_unlock(&map_tree->lock);
7053 	}
7054 out:
7055 	return ret;
7056 }
7057 
7058 static void readahead_tree_node_children(struct extent_buffer *node)
7059 {
7060 	int i;
7061 	const int nr_items = btrfs_header_nritems(node);
7062 
7063 	for (i = 0; i < nr_items; i++) {
7064 		u64 start;
7065 
7066 		start = btrfs_node_blockptr(node, i);
7067 		readahead_tree_block(node->fs_info, start);
7068 	}
7069 }
7070 
7071 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7072 {
7073 	struct btrfs_root *root = fs_info->chunk_root;
7074 	struct btrfs_path *path;
7075 	struct extent_buffer *leaf;
7076 	struct btrfs_key key;
7077 	struct btrfs_key found_key;
7078 	int ret;
7079 	int slot;
7080 	u64 total_dev = 0;
7081 	u64 last_ra_node = 0;
7082 
7083 	path = btrfs_alloc_path();
7084 	if (!path)
7085 		return -ENOMEM;
7086 
7087 	/*
7088 	 * uuid_mutex is needed only if we are mounting a sprout FS
7089 	 * otherwise we don't need it.
7090 	 */
7091 	mutex_lock(&uuid_mutex);
7092 
7093 	/*
7094 	 * It is possible for mount and umount to race in such a way that
7095 	 * we execute this code path, but open_fs_devices failed to clear
7096 	 * total_rw_bytes. We certainly want it cleared before reading the
7097 	 * device items, so clear it here.
7098 	 */
7099 	fs_info->fs_devices->total_rw_bytes = 0;
7100 
7101 	/*
7102 	 * Read all device items, and then all the chunk items. All
7103 	 * device items are found before any chunk item (their object id
7104 	 * is smaller than the lowest possible object id for a chunk
7105 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7106 	 */
7107 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7108 	key.offset = 0;
7109 	key.type = 0;
7110 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7111 	if (ret < 0)
7112 		goto error;
7113 	while (1) {
7114 		struct extent_buffer *node;
7115 
7116 		leaf = path->nodes[0];
7117 		slot = path->slots[0];
7118 		if (slot >= btrfs_header_nritems(leaf)) {
7119 			ret = btrfs_next_leaf(root, path);
7120 			if (ret == 0)
7121 				continue;
7122 			if (ret < 0)
7123 				goto error;
7124 			break;
7125 		}
7126 		/*
7127 		 * The nodes on level 1 are not locked but we don't need to do
7128 		 * that during mount time as nothing else can access the tree
7129 		 */
7130 		node = path->nodes[1];
7131 		if (node) {
7132 			if (last_ra_node != node->start) {
7133 				readahead_tree_node_children(node);
7134 				last_ra_node = node->start;
7135 			}
7136 		}
7137 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7138 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7139 			struct btrfs_dev_item *dev_item;
7140 			dev_item = btrfs_item_ptr(leaf, slot,
7141 						  struct btrfs_dev_item);
7142 			ret = read_one_dev(leaf, dev_item);
7143 			if (ret)
7144 				goto error;
7145 			total_dev++;
7146 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7147 			struct btrfs_chunk *chunk;
7148 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7149 			mutex_lock(&fs_info->chunk_mutex);
7150 			ret = read_one_chunk(&found_key, leaf, chunk);
7151 			mutex_unlock(&fs_info->chunk_mutex);
7152 			if (ret)
7153 				goto error;
7154 		}
7155 		path->slots[0]++;
7156 	}
7157 
7158 	/*
7159 	 * After loading chunk tree, we've got all device information,
7160 	 * do another round of validation checks.
7161 	 */
7162 	if (total_dev != fs_info->fs_devices->total_devices) {
7163 		btrfs_err(fs_info,
7164 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7165 			  btrfs_super_num_devices(fs_info->super_copy),
7166 			  total_dev);
7167 		ret = -EINVAL;
7168 		goto error;
7169 	}
7170 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7171 	    fs_info->fs_devices->total_rw_bytes) {
7172 		btrfs_err(fs_info,
7173 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7174 			  btrfs_super_total_bytes(fs_info->super_copy),
7175 			  fs_info->fs_devices->total_rw_bytes);
7176 		ret = -EINVAL;
7177 		goto error;
7178 	}
7179 	ret = 0;
7180 error:
7181 	mutex_unlock(&uuid_mutex);
7182 
7183 	btrfs_free_path(path);
7184 	return ret;
7185 }
7186 
7187 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7188 {
7189 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7190 	struct btrfs_device *device;
7191 
7192 	while (fs_devices) {
7193 		mutex_lock(&fs_devices->device_list_mutex);
7194 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7195 			device->fs_info = fs_info;
7196 		mutex_unlock(&fs_devices->device_list_mutex);
7197 
7198 		fs_devices = fs_devices->seed;
7199 	}
7200 }
7201 
7202 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7203 				 const struct btrfs_dev_stats_item *ptr,
7204 				 int index)
7205 {
7206 	u64 val;
7207 
7208 	read_extent_buffer(eb, &val,
7209 			   offsetof(struct btrfs_dev_stats_item, values) +
7210 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7211 			   sizeof(val));
7212 	return val;
7213 }
7214 
7215 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7216 				      struct btrfs_dev_stats_item *ptr,
7217 				      int index, u64 val)
7218 {
7219 	write_extent_buffer(eb, &val,
7220 			    offsetof(struct btrfs_dev_stats_item, values) +
7221 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7222 			    sizeof(val));
7223 }
7224 
7225 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7226 {
7227 	struct btrfs_key key;
7228 	struct btrfs_root *dev_root = fs_info->dev_root;
7229 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7230 	struct extent_buffer *eb;
7231 	int slot;
7232 	int ret = 0;
7233 	struct btrfs_device *device;
7234 	struct btrfs_path *path = NULL;
7235 	int i;
7236 
7237 	path = btrfs_alloc_path();
7238 	if (!path)
7239 		return -ENOMEM;
7240 
7241 	mutex_lock(&fs_devices->device_list_mutex);
7242 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7243 		int item_size;
7244 		struct btrfs_dev_stats_item *ptr;
7245 
7246 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7247 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7248 		key.offset = device->devid;
7249 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7250 		if (ret) {
7251 			for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7252 				btrfs_dev_stat_set(device, i, 0);
7253 			device->dev_stats_valid = 1;
7254 			btrfs_release_path(path);
7255 			continue;
7256 		}
7257 		slot = path->slots[0];
7258 		eb = path->nodes[0];
7259 		item_size = btrfs_item_size_nr(eb, slot);
7260 
7261 		ptr = btrfs_item_ptr(eb, slot,
7262 				     struct btrfs_dev_stats_item);
7263 
7264 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7265 			if (item_size >= (1 + i) * sizeof(__le64))
7266 				btrfs_dev_stat_set(device, i,
7267 					btrfs_dev_stats_value(eb, ptr, i));
7268 			else
7269 				btrfs_dev_stat_set(device, i, 0);
7270 		}
7271 
7272 		device->dev_stats_valid = 1;
7273 		btrfs_dev_stat_print_on_load(device);
7274 		btrfs_release_path(path);
7275 	}
7276 	mutex_unlock(&fs_devices->device_list_mutex);
7277 
7278 	btrfs_free_path(path);
7279 	return ret < 0 ? ret : 0;
7280 }
7281 
7282 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7283 				struct btrfs_device *device)
7284 {
7285 	struct btrfs_fs_info *fs_info = trans->fs_info;
7286 	struct btrfs_root *dev_root = fs_info->dev_root;
7287 	struct btrfs_path *path;
7288 	struct btrfs_key key;
7289 	struct extent_buffer *eb;
7290 	struct btrfs_dev_stats_item *ptr;
7291 	int ret;
7292 	int i;
7293 
7294 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7295 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7296 	key.offset = device->devid;
7297 
7298 	path = btrfs_alloc_path();
7299 	if (!path)
7300 		return -ENOMEM;
7301 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7302 	if (ret < 0) {
7303 		btrfs_warn_in_rcu(fs_info,
7304 			"error %d while searching for dev_stats item for device %s",
7305 			      ret, rcu_str_deref(device->name));
7306 		goto out;
7307 	}
7308 
7309 	if (ret == 0 &&
7310 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7311 		/* need to delete old one and insert a new one */
7312 		ret = btrfs_del_item(trans, dev_root, path);
7313 		if (ret != 0) {
7314 			btrfs_warn_in_rcu(fs_info,
7315 				"delete too small dev_stats item for device %s failed %d",
7316 				      rcu_str_deref(device->name), ret);
7317 			goto out;
7318 		}
7319 		ret = 1;
7320 	}
7321 
7322 	if (ret == 1) {
7323 		/* need to insert a new item */
7324 		btrfs_release_path(path);
7325 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7326 					      &key, sizeof(*ptr));
7327 		if (ret < 0) {
7328 			btrfs_warn_in_rcu(fs_info,
7329 				"insert dev_stats item for device %s failed %d",
7330 				rcu_str_deref(device->name), ret);
7331 			goto out;
7332 		}
7333 	}
7334 
7335 	eb = path->nodes[0];
7336 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7337 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7338 		btrfs_set_dev_stats_value(eb, ptr, i,
7339 					  btrfs_dev_stat_read(device, i));
7340 	btrfs_mark_buffer_dirty(eb);
7341 
7342 out:
7343 	btrfs_free_path(path);
7344 	return ret;
7345 }
7346 
7347 /*
7348  * called from commit_transaction. Writes all changed device stats to disk.
7349  */
7350 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7351 {
7352 	struct btrfs_fs_info *fs_info = trans->fs_info;
7353 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7354 	struct btrfs_device *device;
7355 	int stats_cnt;
7356 	int ret = 0;
7357 
7358 	mutex_lock(&fs_devices->device_list_mutex);
7359 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7360 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7361 		if (!device->dev_stats_valid || stats_cnt == 0)
7362 			continue;
7363 
7364 
7365 		/*
7366 		 * There is a LOAD-LOAD control dependency between the value of
7367 		 * dev_stats_ccnt and updating the on-disk values which requires
7368 		 * reading the in-memory counters. Such control dependencies
7369 		 * require explicit read memory barriers.
7370 		 *
7371 		 * This memory barriers pairs with smp_mb__before_atomic in
7372 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7373 		 * barrier implied by atomic_xchg in
7374 		 * btrfs_dev_stats_read_and_reset
7375 		 */
7376 		smp_rmb();
7377 
7378 		ret = update_dev_stat_item(trans, device);
7379 		if (!ret)
7380 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7381 	}
7382 	mutex_unlock(&fs_devices->device_list_mutex);
7383 
7384 	return ret;
7385 }
7386 
7387 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7388 {
7389 	btrfs_dev_stat_inc(dev, index);
7390 	btrfs_dev_stat_print_on_error(dev);
7391 }
7392 
7393 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7394 {
7395 	if (!dev->dev_stats_valid)
7396 		return;
7397 	btrfs_err_rl_in_rcu(dev->fs_info,
7398 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7399 			   rcu_str_deref(dev->name),
7400 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7401 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7402 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7403 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7404 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7405 }
7406 
7407 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7408 {
7409 	int i;
7410 
7411 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7412 		if (btrfs_dev_stat_read(dev, i) != 0)
7413 			break;
7414 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7415 		return; /* all values == 0, suppress message */
7416 
7417 	btrfs_info_in_rcu(dev->fs_info,
7418 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7419 	       rcu_str_deref(dev->name),
7420 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7421 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7422 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7423 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7424 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7425 }
7426 
7427 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7428 			struct btrfs_ioctl_get_dev_stats *stats)
7429 {
7430 	struct btrfs_device *dev;
7431 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7432 	int i;
7433 
7434 	mutex_lock(&fs_devices->device_list_mutex);
7435 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7436 				true);
7437 	mutex_unlock(&fs_devices->device_list_mutex);
7438 
7439 	if (!dev) {
7440 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7441 		return -ENODEV;
7442 	} else if (!dev->dev_stats_valid) {
7443 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7444 		return -ENODEV;
7445 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7446 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7447 			if (stats->nr_items > i)
7448 				stats->values[i] =
7449 					btrfs_dev_stat_read_and_reset(dev, i);
7450 			else
7451 				btrfs_dev_stat_set(dev, i, 0);
7452 		}
7453 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7454 			   current->comm, task_pid_nr(current));
7455 	} else {
7456 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7457 			if (stats->nr_items > i)
7458 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7459 	}
7460 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7461 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7462 	return 0;
7463 }
7464 
7465 /*
7466  * Update the size and bytes used for each device where it changed.  This is
7467  * delayed since we would otherwise get errors while writing out the
7468  * superblocks.
7469  *
7470  * Must be invoked during transaction commit.
7471  */
7472 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7473 {
7474 	struct btrfs_device *curr, *next;
7475 
7476 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7477 
7478 	if (list_empty(&trans->dev_update_list))
7479 		return;
7480 
7481 	/*
7482 	 * We don't need the device_list_mutex here.  This list is owned by the
7483 	 * transaction and the transaction must complete before the device is
7484 	 * released.
7485 	 */
7486 	mutex_lock(&trans->fs_info->chunk_mutex);
7487 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7488 				 post_commit_list) {
7489 		list_del_init(&curr->post_commit_list);
7490 		curr->commit_total_bytes = curr->disk_total_bytes;
7491 		curr->commit_bytes_used = curr->bytes_used;
7492 	}
7493 	mutex_unlock(&trans->fs_info->chunk_mutex);
7494 }
7495 
7496 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7497 {
7498 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7499 	while (fs_devices) {
7500 		fs_devices->fs_info = fs_info;
7501 		fs_devices = fs_devices->seed;
7502 	}
7503 }
7504 
7505 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7506 {
7507 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7508 	while (fs_devices) {
7509 		fs_devices->fs_info = NULL;
7510 		fs_devices = fs_devices->seed;
7511 	}
7512 }
7513 
7514 /*
7515  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7516  */
7517 int btrfs_bg_type_to_factor(u64 flags)
7518 {
7519 	const int index = btrfs_bg_flags_to_raid_index(flags);
7520 
7521 	return btrfs_raid_array[index].ncopies;
7522 }
7523 
7524 
7525 
7526 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7527 				 u64 chunk_offset, u64 devid,
7528 				 u64 physical_offset, u64 physical_len)
7529 {
7530 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7531 	struct extent_map *em;
7532 	struct map_lookup *map;
7533 	struct btrfs_device *dev;
7534 	u64 stripe_len;
7535 	bool found = false;
7536 	int ret = 0;
7537 	int i;
7538 
7539 	read_lock(&em_tree->lock);
7540 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7541 	read_unlock(&em_tree->lock);
7542 
7543 	if (!em) {
7544 		btrfs_err(fs_info,
7545 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7546 			  physical_offset, devid);
7547 		ret = -EUCLEAN;
7548 		goto out;
7549 	}
7550 
7551 	map = em->map_lookup;
7552 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7553 	if (physical_len != stripe_len) {
7554 		btrfs_err(fs_info,
7555 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7556 			  physical_offset, devid, em->start, physical_len,
7557 			  stripe_len);
7558 		ret = -EUCLEAN;
7559 		goto out;
7560 	}
7561 
7562 	for (i = 0; i < map->num_stripes; i++) {
7563 		if (map->stripes[i].dev->devid == devid &&
7564 		    map->stripes[i].physical == physical_offset) {
7565 			found = true;
7566 			if (map->verified_stripes >= map->num_stripes) {
7567 				btrfs_err(fs_info,
7568 				"too many dev extents for chunk %llu found",
7569 					  em->start);
7570 				ret = -EUCLEAN;
7571 				goto out;
7572 			}
7573 			map->verified_stripes++;
7574 			break;
7575 		}
7576 	}
7577 	if (!found) {
7578 		btrfs_err(fs_info,
7579 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7580 			physical_offset, devid);
7581 		ret = -EUCLEAN;
7582 	}
7583 
7584 	/* Make sure no dev extent is beyond device bondary */
7585 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7586 	if (!dev) {
7587 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7588 		ret = -EUCLEAN;
7589 		goto out;
7590 	}
7591 
7592 	/* It's possible this device is a dummy for seed device */
7593 	if (dev->disk_total_bytes == 0) {
7594 		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7595 					NULL, false);
7596 		if (!dev) {
7597 			btrfs_err(fs_info, "failed to find seed devid %llu",
7598 				  devid);
7599 			ret = -EUCLEAN;
7600 			goto out;
7601 		}
7602 	}
7603 
7604 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7605 		btrfs_err(fs_info,
7606 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7607 			  devid, physical_offset, physical_len,
7608 			  dev->disk_total_bytes);
7609 		ret = -EUCLEAN;
7610 		goto out;
7611 	}
7612 out:
7613 	free_extent_map(em);
7614 	return ret;
7615 }
7616 
7617 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7618 {
7619 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7620 	struct extent_map *em;
7621 	struct rb_node *node;
7622 	int ret = 0;
7623 
7624 	read_lock(&em_tree->lock);
7625 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7626 		em = rb_entry(node, struct extent_map, rb_node);
7627 		if (em->map_lookup->num_stripes !=
7628 		    em->map_lookup->verified_stripes) {
7629 			btrfs_err(fs_info,
7630 			"chunk %llu has missing dev extent, have %d expect %d",
7631 				  em->start, em->map_lookup->verified_stripes,
7632 				  em->map_lookup->num_stripes);
7633 			ret = -EUCLEAN;
7634 			goto out;
7635 		}
7636 	}
7637 out:
7638 	read_unlock(&em_tree->lock);
7639 	return ret;
7640 }
7641 
7642 /*
7643  * Ensure that all dev extents are mapped to correct chunk, otherwise
7644  * later chunk allocation/free would cause unexpected behavior.
7645  *
7646  * NOTE: This will iterate through the whole device tree, which should be of
7647  * the same size level as the chunk tree.  This slightly increases mount time.
7648  */
7649 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7650 {
7651 	struct btrfs_path *path;
7652 	struct btrfs_root *root = fs_info->dev_root;
7653 	struct btrfs_key key;
7654 	u64 prev_devid = 0;
7655 	u64 prev_dev_ext_end = 0;
7656 	int ret = 0;
7657 
7658 	key.objectid = 1;
7659 	key.type = BTRFS_DEV_EXTENT_KEY;
7660 	key.offset = 0;
7661 
7662 	path = btrfs_alloc_path();
7663 	if (!path)
7664 		return -ENOMEM;
7665 
7666 	path->reada = READA_FORWARD;
7667 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7668 	if (ret < 0)
7669 		goto out;
7670 
7671 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7672 		ret = btrfs_next_item(root, path);
7673 		if (ret < 0)
7674 			goto out;
7675 		/* No dev extents at all? Not good */
7676 		if (ret > 0) {
7677 			ret = -EUCLEAN;
7678 			goto out;
7679 		}
7680 	}
7681 	while (1) {
7682 		struct extent_buffer *leaf = path->nodes[0];
7683 		struct btrfs_dev_extent *dext;
7684 		int slot = path->slots[0];
7685 		u64 chunk_offset;
7686 		u64 physical_offset;
7687 		u64 physical_len;
7688 		u64 devid;
7689 
7690 		btrfs_item_key_to_cpu(leaf, &key, slot);
7691 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7692 			break;
7693 		devid = key.objectid;
7694 		physical_offset = key.offset;
7695 
7696 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7697 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7698 		physical_len = btrfs_dev_extent_length(leaf, dext);
7699 
7700 		/* Check if this dev extent overlaps with the previous one */
7701 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7702 			btrfs_err(fs_info,
7703 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7704 				  devid, physical_offset, prev_dev_ext_end);
7705 			ret = -EUCLEAN;
7706 			goto out;
7707 		}
7708 
7709 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7710 					    physical_offset, physical_len);
7711 		if (ret < 0)
7712 			goto out;
7713 		prev_devid = devid;
7714 		prev_dev_ext_end = physical_offset + physical_len;
7715 
7716 		ret = btrfs_next_item(root, path);
7717 		if (ret < 0)
7718 			goto out;
7719 		if (ret > 0) {
7720 			ret = 0;
7721 			break;
7722 		}
7723 	}
7724 
7725 	/* Ensure all chunks have corresponding dev extents */
7726 	ret = verify_chunk_dev_extent_mapping(fs_info);
7727 out:
7728 	btrfs_free_path(path);
7729 	return ret;
7730 }
7731 
7732 /*
7733  * Check whether the given block group or device is pinned by any inode being
7734  * used as a swapfile.
7735  */
7736 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7737 {
7738 	struct btrfs_swapfile_pin *sp;
7739 	struct rb_node *node;
7740 
7741 	spin_lock(&fs_info->swapfile_pins_lock);
7742 	node = fs_info->swapfile_pins.rb_node;
7743 	while (node) {
7744 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7745 		if (ptr < sp->ptr)
7746 			node = node->rb_left;
7747 		else if (ptr > sp->ptr)
7748 			node = node->rb_right;
7749 		else
7750 			break;
7751 	}
7752 	spin_unlock(&fs_info->swapfile_pins_lock);
7753 	return node != NULL;
7754 }
7755