xref: /openbmc/linux/fs/btrfs/volumes.c (revision f220d3eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32 	[BTRFS_RAID_RAID10] = {
33 		.sub_stripes	= 2,
34 		.dev_stripes	= 1,
35 		.devs_max	= 0,	/* 0 == as many as possible */
36 		.devs_min	= 4,
37 		.tolerated_failures = 1,
38 		.devs_increment	= 2,
39 		.ncopies	= 2,
40 		.raid_name	= "raid10",
41 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
42 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
43 	},
44 	[BTRFS_RAID_RAID1] = {
45 		.sub_stripes	= 1,
46 		.dev_stripes	= 1,
47 		.devs_max	= 2,
48 		.devs_min	= 2,
49 		.tolerated_failures = 1,
50 		.devs_increment	= 2,
51 		.ncopies	= 2,
52 		.raid_name	= "raid1",
53 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
54 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
55 	},
56 	[BTRFS_RAID_DUP] = {
57 		.sub_stripes	= 1,
58 		.dev_stripes	= 2,
59 		.devs_max	= 1,
60 		.devs_min	= 1,
61 		.tolerated_failures = 0,
62 		.devs_increment	= 1,
63 		.ncopies	= 2,
64 		.raid_name	= "dup",
65 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
66 		.mindev_error	= 0,
67 	},
68 	[BTRFS_RAID_RAID0] = {
69 		.sub_stripes	= 1,
70 		.dev_stripes	= 1,
71 		.devs_max	= 0,
72 		.devs_min	= 2,
73 		.tolerated_failures = 0,
74 		.devs_increment	= 1,
75 		.ncopies	= 1,
76 		.raid_name	= "raid0",
77 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
78 		.mindev_error	= 0,
79 	},
80 	[BTRFS_RAID_SINGLE] = {
81 		.sub_stripes	= 1,
82 		.dev_stripes	= 1,
83 		.devs_max	= 1,
84 		.devs_min	= 1,
85 		.tolerated_failures = 0,
86 		.devs_increment	= 1,
87 		.ncopies	= 1,
88 		.raid_name	= "single",
89 		.bg_flag	= 0,
90 		.mindev_error	= 0,
91 	},
92 	[BTRFS_RAID_RAID5] = {
93 		.sub_stripes	= 1,
94 		.dev_stripes	= 1,
95 		.devs_max	= 0,
96 		.devs_min	= 2,
97 		.tolerated_failures = 1,
98 		.devs_increment	= 1,
99 		.ncopies	= 2,
100 		.raid_name	= "raid5",
101 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
102 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
103 	},
104 	[BTRFS_RAID_RAID6] = {
105 		.sub_stripes	= 1,
106 		.dev_stripes	= 1,
107 		.devs_max	= 0,
108 		.devs_min	= 3,
109 		.tolerated_failures = 2,
110 		.devs_increment	= 1,
111 		.ncopies	= 3,
112 		.raid_name	= "raid6",
113 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
114 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
115 	},
116 };
117 
118 const char *get_raid_name(enum btrfs_raid_types type)
119 {
120 	if (type >= BTRFS_NR_RAID_TYPES)
121 		return NULL;
122 
123 	return btrfs_raid_array[type].raid_name;
124 }
125 
126 static int init_first_rw_device(struct btrfs_trans_handle *trans,
127 				struct btrfs_fs_info *fs_info);
128 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
129 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
132 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
133 			     enum btrfs_map_op op,
134 			     u64 logical, u64 *length,
135 			     struct btrfs_bio **bbio_ret,
136 			     int mirror_num, int need_raid_map);
137 
138 /*
139  * Device locking
140  * ==============
141  *
142  * There are several mutexes that protect manipulation of devices and low-level
143  * structures like chunks but not block groups, extents or files
144  *
145  * uuid_mutex (global lock)
146  * ------------------------
147  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
148  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
149  * device) or requested by the device= mount option
150  *
151  * the mutex can be very coarse and can cover long-running operations
152  *
153  * protects: updates to fs_devices counters like missing devices, rw devices,
154  * seeding, structure cloning, openning/closing devices at mount/umount time
155  *
156  * global::fs_devs - add, remove, updates to the global list
157  *
158  * does not protect: manipulation of the fs_devices::devices list!
159  *
160  * btrfs_device::name - renames (write side), read is RCU
161  *
162  * fs_devices::device_list_mutex (per-fs, with RCU)
163  * ------------------------------------------------
164  * protects updates to fs_devices::devices, ie. adding and deleting
165  *
166  * simple list traversal with read-only actions can be done with RCU protection
167  *
168  * may be used to exclude some operations from running concurrently without any
169  * modifications to the list (see write_all_supers)
170  *
171  * balance_mutex
172  * -------------
173  * protects balance structures (status, state) and context accessed from
174  * several places (internally, ioctl)
175  *
176  * chunk_mutex
177  * -----------
178  * protects chunks, adding or removing during allocation, trim or when a new
179  * device is added/removed
180  *
181  * cleaner_mutex
182  * -------------
183  * a big lock that is held by the cleaner thread and prevents running subvolume
184  * cleaning together with relocation or delayed iputs
185  *
186  *
187  * Lock nesting
188  * ============
189  *
190  * uuid_mutex
191  *   volume_mutex
192  *     device_list_mutex
193  *       chunk_mutex
194  *     balance_mutex
195  *
196  *
197  * Exclusive operations, BTRFS_FS_EXCL_OP
198  * ======================================
199  *
200  * Maintains the exclusivity of the following operations that apply to the
201  * whole filesystem and cannot run in parallel.
202  *
203  * - Balance (*)
204  * - Device add
205  * - Device remove
206  * - Device replace (*)
207  * - Resize
208  *
209  * The device operations (as above) can be in one of the following states:
210  *
211  * - Running state
212  * - Paused state
213  * - Completed state
214  *
215  * Only device operations marked with (*) can go into the Paused state for the
216  * following reasons:
217  *
218  * - ioctl (only Balance can be Paused through ioctl)
219  * - filesystem remounted as read-only
220  * - filesystem unmounted and mounted as read-only
221  * - system power-cycle and filesystem mounted as read-only
222  * - filesystem or device errors leading to forced read-only
223  *
224  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
225  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
226  * A device operation in Paused or Running state can be canceled or resumed
227  * either by ioctl (Balance only) or when remounted as read-write.
228  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
229  * completed.
230  */
231 
232 DEFINE_MUTEX(uuid_mutex);
233 static LIST_HEAD(fs_uuids);
234 struct list_head *btrfs_get_fs_uuids(void)
235 {
236 	return &fs_uuids;
237 }
238 
239 /*
240  * alloc_fs_devices - allocate struct btrfs_fs_devices
241  * @fsid:	if not NULL, copy the uuid to fs_devices::fsid
242  *
243  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
244  * The returned struct is not linked onto any lists and can be destroyed with
245  * kfree() right away.
246  */
247 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
248 {
249 	struct btrfs_fs_devices *fs_devs;
250 
251 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
252 	if (!fs_devs)
253 		return ERR_PTR(-ENOMEM);
254 
255 	mutex_init(&fs_devs->device_list_mutex);
256 
257 	INIT_LIST_HEAD(&fs_devs->devices);
258 	INIT_LIST_HEAD(&fs_devs->resized_devices);
259 	INIT_LIST_HEAD(&fs_devs->alloc_list);
260 	INIT_LIST_HEAD(&fs_devs->fs_list);
261 	if (fsid)
262 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
263 
264 	return fs_devs;
265 }
266 
267 void btrfs_free_device(struct btrfs_device *device)
268 {
269 	rcu_string_free(device->name);
270 	bio_put(device->flush_bio);
271 	kfree(device);
272 }
273 
274 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
275 {
276 	struct btrfs_device *device;
277 	WARN_ON(fs_devices->opened);
278 	while (!list_empty(&fs_devices->devices)) {
279 		device = list_entry(fs_devices->devices.next,
280 				    struct btrfs_device, dev_list);
281 		list_del(&device->dev_list);
282 		btrfs_free_device(device);
283 	}
284 	kfree(fs_devices);
285 }
286 
287 static void btrfs_kobject_uevent(struct block_device *bdev,
288 				 enum kobject_action action)
289 {
290 	int ret;
291 
292 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
293 	if (ret)
294 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
295 			action,
296 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
297 			&disk_to_dev(bdev->bd_disk)->kobj);
298 }
299 
300 void __exit btrfs_cleanup_fs_uuids(void)
301 {
302 	struct btrfs_fs_devices *fs_devices;
303 
304 	while (!list_empty(&fs_uuids)) {
305 		fs_devices = list_entry(fs_uuids.next,
306 					struct btrfs_fs_devices, fs_list);
307 		list_del(&fs_devices->fs_list);
308 		free_fs_devices(fs_devices);
309 	}
310 }
311 
312 /*
313  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
314  * Returned struct is not linked onto any lists and must be destroyed using
315  * btrfs_free_device.
316  */
317 static struct btrfs_device *__alloc_device(void)
318 {
319 	struct btrfs_device *dev;
320 
321 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322 	if (!dev)
323 		return ERR_PTR(-ENOMEM);
324 
325 	/*
326 	 * Preallocate a bio that's always going to be used for flushing device
327 	 * barriers and matches the device lifespan
328 	 */
329 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
330 	if (!dev->flush_bio) {
331 		kfree(dev);
332 		return ERR_PTR(-ENOMEM);
333 	}
334 
335 	INIT_LIST_HEAD(&dev->dev_list);
336 	INIT_LIST_HEAD(&dev->dev_alloc_list);
337 	INIT_LIST_HEAD(&dev->resized_list);
338 
339 	spin_lock_init(&dev->io_lock);
340 
341 	atomic_set(&dev->reada_in_flight, 0);
342 	atomic_set(&dev->dev_stats_ccnt, 0);
343 	btrfs_device_data_ordered_init(dev);
344 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
346 
347 	return dev;
348 }
349 
350 /*
351  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
352  * return NULL.
353  *
354  * If devid and uuid are both specified, the match must be exact, otherwise
355  * only devid is used.
356  */
357 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
358 		u64 devid, const u8 *uuid)
359 {
360 	struct btrfs_device *dev;
361 
362 	list_for_each_entry(dev, &fs_devices->devices, dev_list) {
363 		if (dev->devid == devid &&
364 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
365 			return dev;
366 		}
367 	}
368 	return NULL;
369 }
370 
371 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
372 {
373 	struct btrfs_fs_devices *fs_devices;
374 
375 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
376 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
377 			return fs_devices;
378 	}
379 	return NULL;
380 }
381 
382 static int
383 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
384 		      int flush, struct block_device **bdev,
385 		      struct buffer_head **bh)
386 {
387 	int ret;
388 
389 	*bdev = blkdev_get_by_path(device_path, flags, holder);
390 
391 	if (IS_ERR(*bdev)) {
392 		ret = PTR_ERR(*bdev);
393 		goto error;
394 	}
395 
396 	if (flush)
397 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
398 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
399 	if (ret) {
400 		blkdev_put(*bdev, flags);
401 		goto error;
402 	}
403 	invalidate_bdev(*bdev);
404 	*bh = btrfs_read_dev_super(*bdev);
405 	if (IS_ERR(*bh)) {
406 		ret = PTR_ERR(*bh);
407 		blkdev_put(*bdev, flags);
408 		goto error;
409 	}
410 
411 	return 0;
412 
413 error:
414 	*bdev = NULL;
415 	*bh = NULL;
416 	return ret;
417 }
418 
419 static void requeue_list(struct btrfs_pending_bios *pending_bios,
420 			struct bio *head, struct bio *tail)
421 {
422 
423 	struct bio *old_head;
424 
425 	old_head = pending_bios->head;
426 	pending_bios->head = head;
427 	if (pending_bios->tail)
428 		tail->bi_next = old_head;
429 	else
430 		pending_bios->tail = tail;
431 }
432 
433 /*
434  * we try to collect pending bios for a device so we don't get a large
435  * number of procs sending bios down to the same device.  This greatly
436  * improves the schedulers ability to collect and merge the bios.
437  *
438  * But, it also turns into a long list of bios to process and that is sure
439  * to eventually make the worker thread block.  The solution here is to
440  * make some progress and then put this work struct back at the end of
441  * the list if the block device is congested.  This way, multiple devices
442  * can make progress from a single worker thread.
443  */
444 static noinline void run_scheduled_bios(struct btrfs_device *device)
445 {
446 	struct btrfs_fs_info *fs_info = device->fs_info;
447 	struct bio *pending;
448 	struct backing_dev_info *bdi;
449 	struct btrfs_pending_bios *pending_bios;
450 	struct bio *tail;
451 	struct bio *cur;
452 	int again = 0;
453 	unsigned long num_run;
454 	unsigned long batch_run = 0;
455 	unsigned long last_waited = 0;
456 	int force_reg = 0;
457 	int sync_pending = 0;
458 	struct blk_plug plug;
459 
460 	/*
461 	 * this function runs all the bios we've collected for
462 	 * a particular device.  We don't want to wander off to
463 	 * another device without first sending all of these down.
464 	 * So, setup a plug here and finish it off before we return
465 	 */
466 	blk_start_plug(&plug);
467 
468 	bdi = device->bdev->bd_bdi;
469 
470 loop:
471 	spin_lock(&device->io_lock);
472 
473 loop_lock:
474 	num_run = 0;
475 
476 	/* take all the bios off the list at once and process them
477 	 * later on (without the lock held).  But, remember the
478 	 * tail and other pointers so the bios can be properly reinserted
479 	 * into the list if we hit congestion
480 	 */
481 	if (!force_reg && device->pending_sync_bios.head) {
482 		pending_bios = &device->pending_sync_bios;
483 		force_reg = 1;
484 	} else {
485 		pending_bios = &device->pending_bios;
486 		force_reg = 0;
487 	}
488 
489 	pending = pending_bios->head;
490 	tail = pending_bios->tail;
491 	WARN_ON(pending && !tail);
492 
493 	/*
494 	 * if pending was null this time around, no bios need processing
495 	 * at all and we can stop.  Otherwise it'll loop back up again
496 	 * and do an additional check so no bios are missed.
497 	 *
498 	 * device->running_pending is used to synchronize with the
499 	 * schedule_bio code.
500 	 */
501 	if (device->pending_sync_bios.head == NULL &&
502 	    device->pending_bios.head == NULL) {
503 		again = 0;
504 		device->running_pending = 0;
505 	} else {
506 		again = 1;
507 		device->running_pending = 1;
508 	}
509 
510 	pending_bios->head = NULL;
511 	pending_bios->tail = NULL;
512 
513 	spin_unlock(&device->io_lock);
514 
515 	while (pending) {
516 
517 		rmb();
518 		/* we want to work on both lists, but do more bios on the
519 		 * sync list than the regular list
520 		 */
521 		if ((num_run > 32 &&
522 		    pending_bios != &device->pending_sync_bios &&
523 		    device->pending_sync_bios.head) ||
524 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
525 		    device->pending_bios.head)) {
526 			spin_lock(&device->io_lock);
527 			requeue_list(pending_bios, pending, tail);
528 			goto loop_lock;
529 		}
530 
531 		cur = pending;
532 		pending = pending->bi_next;
533 		cur->bi_next = NULL;
534 
535 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
536 
537 		/*
538 		 * if we're doing the sync list, record that our
539 		 * plug has some sync requests on it
540 		 *
541 		 * If we're doing the regular list and there are
542 		 * sync requests sitting around, unplug before
543 		 * we add more
544 		 */
545 		if (pending_bios == &device->pending_sync_bios) {
546 			sync_pending = 1;
547 		} else if (sync_pending) {
548 			blk_finish_plug(&plug);
549 			blk_start_plug(&plug);
550 			sync_pending = 0;
551 		}
552 
553 		btrfsic_submit_bio(cur);
554 		num_run++;
555 		batch_run++;
556 
557 		cond_resched();
558 
559 		/*
560 		 * we made progress, there is more work to do and the bdi
561 		 * is now congested.  Back off and let other work structs
562 		 * run instead
563 		 */
564 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
565 		    fs_info->fs_devices->open_devices > 1) {
566 			struct io_context *ioc;
567 
568 			ioc = current->io_context;
569 
570 			/*
571 			 * the main goal here is that we don't want to
572 			 * block if we're going to be able to submit
573 			 * more requests without blocking.
574 			 *
575 			 * This code does two great things, it pokes into
576 			 * the elevator code from a filesystem _and_
577 			 * it makes assumptions about how batching works.
578 			 */
579 			if (ioc && ioc->nr_batch_requests > 0 &&
580 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
581 			    (last_waited == 0 ||
582 			     ioc->last_waited == last_waited)) {
583 				/*
584 				 * we want to go through our batch of
585 				 * requests and stop.  So, we copy out
586 				 * the ioc->last_waited time and test
587 				 * against it before looping
588 				 */
589 				last_waited = ioc->last_waited;
590 				cond_resched();
591 				continue;
592 			}
593 			spin_lock(&device->io_lock);
594 			requeue_list(pending_bios, pending, tail);
595 			device->running_pending = 1;
596 
597 			spin_unlock(&device->io_lock);
598 			btrfs_queue_work(fs_info->submit_workers,
599 					 &device->work);
600 			goto done;
601 		}
602 	}
603 
604 	cond_resched();
605 	if (again)
606 		goto loop;
607 
608 	spin_lock(&device->io_lock);
609 	if (device->pending_bios.head || device->pending_sync_bios.head)
610 		goto loop_lock;
611 	spin_unlock(&device->io_lock);
612 
613 done:
614 	blk_finish_plug(&plug);
615 }
616 
617 static void pending_bios_fn(struct btrfs_work *work)
618 {
619 	struct btrfs_device *device;
620 
621 	device = container_of(work, struct btrfs_device, work);
622 	run_scheduled_bios(device);
623 }
624 
625 /*
626  *  Search and remove all stale (devices which are not mounted) devices.
627  *  When both inputs are NULL, it will search and release all stale devices.
628  *  path:	Optional. When provided will it release all unmounted devices
629  *		matching this path only.
630  *  skip_dev:	Optional. Will skip this device when searching for the stale
631  *		devices.
632  */
633 static void btrfs_free_stale_devices(const char *path,
634 				     struct btrfs_device *skip_device)
635 {
636 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
637 	struct btrfs_device *device, *tmp_device;
638 
639 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
640 		mutex_lock(&fs_devices->device_list_mutex);
641 		if (fs_devices->opened) {
642 			mutex_unlock(&fs_devices->device_list_mutex);
643 			continue;
644 		}
645 
646 		list_for_each_entry_safe(device, tmp_device,
647 					 &fs_devices->devices, dev_list) {
648 			int not_found = 0;
649 
650 			if (skip_device && skip_device == device)
651 				continue;
652 			if (path && !device->name)
653 				continue;
654 
655 			rcu_read_lock();
656 			if (path)
657 				not_found = strcmp(rcu_str_deref(device->name),
658 						   path);
659 			rcu_read_unlock();
660 			if (not_found)
661 				continue;
662 
663 			/* delete the stale device */
664 			fs_devices->num_devices--;
665 			list_del(&device->dev_list);
666 			btrfs_free_device(device);
667 
668 			if (fs_devices->num_devices == 0)
669 				break;
670 		}
671 		mutex_unlock(&fs_devices->device_list_mutex);
672 		if (fs_devices->num_devices == 0) {
673 			btrfs_sysfs_remove_fsid(fs_devices);
674 			list_del(&fs_devices->fs_list);
675 			free_fs_devices(fs_devices);
676 		}
677 	}
678 }
679 
680 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
681 			struct btrfs_device *device, fmode_t flags,
682 			void *holder)
683 {
684 	struct request_queue *q;
685 	struct block_device *bdev;
686 	struct buffer_head *bh;
687 	struct btrfs_super_block *disk_super;
688 	u64 devid;
689 	int ret;
690 
691 	if (device->bdev)
692 		return -EINVAL;
693 	if (!device->name)
694 		return -EINVAL;
695 
696 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
697 				    &bdev, &bh);
698 	if (ret)
699 		return ret;
700 
701 	disk_super = (struct btrfs_super_block *)bh->b_data;
702 	devid = btrfs_stack_device_id(&disk_super->dev_item);
703 	if (devid != device->devid)
704 		goto error_brelse;
705 
706 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
707 		goto error_brelse;
708 
709 	device->generation = btrfs_super_generation(disk_super);
710 
711 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
712 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
713 		fs_devices->seeding = 1;
714 	} else {
715 		if (bdev_read_only(bdev))
716 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
717 		else
718 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
719 	}
720 
721 	q = bdev_get_queue(bdev);
722 	if (!blk_queue_nonrot(q))
723 		fs_devices->rotating = 1;
724 
725 	device->bdev = bdev;
726 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
727 	device->mode = flags;
728 
729 	fs_devices->open_devices++;
730 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
731 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
732 		fs_devices->rw_devices++;
733 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
734 	}
735 	brelse(bh);
736 
737 	return 0;
738 
739 error_brelse:
740 	brelse(bh);
741 	blkdev_put(bdev, flags);
742 
743 	return -EINVAL;
744 }
745 
746 /*
747  * Add new device to list of registered devices
748  *
749  * Returns:
750  * device pointer which was just added or updated when successful
751  * error pointer when failed
752  */
753 static noinline struct btrfs_device *device_list_add(const char *path,
754 			   struct btrfs_super_block *disk_super,
755 			   bool *new_device_added)
756 {
757 	struct btrfs_device *device;
758 	struct btrfs_fs_devices *fs_devices;
759 	struct rcu_string *name;
760 	u64 found_transid = btrfs_super_generation(disk_super);
761 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
762 
763 	fs_devices = find_fsid(disk_super->fsid);
764 	if (!fs_devices) {
765 		fs_devices = alloc_fs_devices(disk_super->fsid);
766 		if (IS_ERR(fs_devices))
767 			return ERR_CAST(fs_devices);
768 
769 		mutex_lock(&fs_devices->device_list_mutex);
770 		list_add(&fs_devices->fs_list, &fs_uuids);
771 
772 		device = NULL;
773 	} else {
774 		mutex_lock(&fs_devices->device_list_mutex);
775 		device = find_device(fs_devices, devid,
776 				disk_super->dev_item.uuid);
777 	}
778 
779 	if (!device) {
780 		if (fs_devices->opened) {
781 			mutex_unlock(&fs_devices->device_list_mutex);
782 			return ERR_PTR(-EBUSY);
783 		}
784 
785 		device = btrfs_alloc_device(NULL, &devid,
786 					    disk_super->dev_item.uuid);
787 		if (IS_ERR(device)) {
788 			mutex_unlock(&fs_devices->device_list_mutex);
789 			/* we can safely leave the fs_devices entry around */
790 			return device;
791 		}
792 
793 		name = rcu_string_strdup(path, GFP_NOFS);
794 		if (!name) {
795 			btrfs_free_device(device);
796 			mutex_unlock(&fs_devices->device_list_mutex);
797 			return ERR_PTR(-ENOMEM);
798 		}
799 		rcu_assign_pointer(device->name, name);
800 
801 		list_add_rcu(&device->dev_list, &fs_devices->devices);
802 		fs_devices->num_devices++;
803 
804 		device->fs_devices = fs_devices;
805 		*new_device_added = true;
806 
807 		if (disk_super->label[0])
808 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
809 				disk_super->label, devid, found_transid, path);
810 		else
811 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
812 				disk_super->fsid, devid, found_transid, path);
813 
814 	} else if (!device->name || strcmp(device->name->str, path)) {
815 		/*
816 		 * When FS is already mounted.
817 		 * 1. If you are here and if the device->name is NULL that
818 		 *    means this device was missing at time of FS mount.
819 		 * 2. If you are here and if the device->name is different
820 		 *    from 'path' that means either
821 		 *      a. The same device disappeared and reappeared with
822 		 *         different name. or
823 		 *      b. The missing-disk-which-was-replaced, has
824 		 *         reappeared now.
825 		 *
826 		 * We must allow 1 and 2a above. But 2b would be a spurious
827 		 * and unintentional.
828 		 *
829 		 * Further in case of 1 and 2a above, the disk at 'path'
830 		 * would have missed some transaction when it was away and
831 		 * in case of 2a the stale bdev has to be updated as well.
832 		 * 2b must not be allowed at all time.
833 		 */
834 
835 		/*
836 		 * For now, we do allow update to btrfs_fs_device through the
837 		 * btrfs dev scan cli after FS has been mounted.  We're still
838 		 * tracking a problem where systems fail mount by subvolume id
839 		 * when we reject replacement on a mounted FS.
840 		 */
841 		if (!fs_devices->opened && found_transid < device->generation) {
842 			/*
843 			 * That is if the FS is _not_ mounted and if you
844 			 * are here, that means there is more than one
845 			 * disk with same uuid and devid.We keep the one
846 			 * with larger generation number or the last-in if
847 			 * generation are equal.
848 			 */
849 			mutex_unlock(&fs_devices->device_list_mutex);
850 			return ERR_PTR(-EEXIST);
851 		}
852 
853 		name = rcu_string_strdup(path, GFP_NOFS);
854 		if (!name) {
855 			mutex_unlock(&fs_devices->device_list_mutex);
856 			return ERR_PTR(-ENOMEM);
857 		}
858 		rcu_string_free(device->name);
859 		rcu_assign_pointer(device->name, name);
860 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
861 			fs_devices->missing_devices--;
862 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
863 		}
864 	}
865 
866 	/*
867 	 * Unmount does not free the btrfs_device struct but would zero
868 	 * generation along with most of the other members. So just update
869 	 * it back. We need it to pick the disk with largest generation
870 	 * (as above).
871 	 */
872 	if (!fs_devices->opened)
873 		device->generation = found_transid;
874 
875 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
876 
877 	mutex_unlock(&fs_devices->device_list_mutex);
878 	return device;
879 }
880 
881 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
882 {
883 	struct btrfs_fs_devices *fs_devices;
884 	struct btrfs_device *device;
885 	struct btrfs_device *orig_dev;
886 
887 	fs_devices = alloc_fs_devices(orig->fsid);
888 	if (IS_ERR(fs_devices))
889 		return fs_devices;
890 
891 	mutex_lock(&orig->device_list_mutex);
892 	fs_devices->total_devices = orig->total_devices;
893 
894 	/* We have held the volume lock, it is safe to get the devices. */
895 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
896 		struct rcu_string *name;
897 
898 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
899 					    orig_dev->uuid);
900 		if (IS_ERR(device))
901 			goto error;
902 
903 		/*
904 		 * This is ok to do without rcu read locked because we hold the
905 		 * uuid mutex so nothing we touch in here is going to disappear.
906 		 */
907 		if (orig_dev->name) {
908 			name = rcu_string_strdup(orig_dev->name->str,
909 					GFP_KERNEL);
910 			if (!name) {
911 				btrfs_free_device(device);
912 				goto error;
913 			}
914 			rcu_assign_pointer(device->name, name);
915 		}
916 
917 		list_add(&device->dev_list, &fs_devices->devices);
918 		device->fs_devices = fs_devices;
919 		fs_devices->num_devices++;
920 	}
921 	mutex_unlock(&orig->device_list_mutex);
922 	return fs_devices;
923 error:
924 	mutex_unlock(&orig->device_list_mutex);
925 	free_fs_devices(fs_devices);
926 	return ERR_PTR(-ENOMEM);
927 }
928 
929 /*
930  * After we have read the system tree and know devids belonging to
931  * this filesystem, remove the device which does not belong there.
932  */
933 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
934 {
935 	struct btrfs_device *device, *next;
936 	struct btrfs_device *latest_dev = NULL;
937 
938 	mutex_lock(&uuid_mutex);
939 again:
940 	/* This is the initialized path, it is safe to release the devices. */
941 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
942 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
943 							&device->dev_state)) {
944 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
945 			     &device->dev_state) &&
946 			     (!latest_dev ||
947 			      device->generation > latest_dev->generation)) {
948 				latest_dev = device;
949 			}
950 			continue;
951 		}
952 
953 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
954 			/*
955 			 * In the first step, keep the device which has
956 			 * the correct fsid and the devid that is used
957 			 * for the dev_replace procedure.
958 			 * In the second step, the dev_replace state is
959 			 * read from the device tree and it is known
960 			 * whether the procedure is really active or
961 			 * not, which means whether this device is
962 			 * used or whether it should be removed.
963 			 */
964 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
965 						  &device->dev_state)) {
966 				continue;
967 			}
968 		}
969 		if (device->bdev) {
970 			blkdev_put(device->bdev, device->mode);
971 			device->bdev = NULL;
972 			fs_devices->open_devices--;
973 		}
974 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975 			list_del_init(&device->dev_alloc_list);
976 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
977 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
978 				      &device->dev_state))
979 				fs_devices->rw_devices--;
980 		}
981 		list_del_init(&device->dev_list);
982 		fs_devices->num_devices--;
983 		btrfs_free_device(device);
984 	}
985 
986 	if (fs_devices->seed) {
987 		fs_devices = fs_devices->seed;
988 		goto again;
989 	}
990 
991 	fs_devices->latest_bdev = latest_dev->bdev;
992 
993 	mutex_unlock(&uuid_mutex);
994 }
995 
996 static void free_device_rcu(struct rcu_head *head)
997 {
998 	struct btrfs_device *device;
999 
1000 	device = container_of(head, struct btrfs_device, rcu);
1001 	btrfs_free_device(device);
1002 }
1003 
1004 static void btrfs_close_bdev(struct btrfs_device *device)
1005 {
1006 	if (!device->bdev)
1007 		return;
1008 
1009 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1010 		sync_blockdev(device->bdev);
1011 		invalidate_bdev(device->bdev);
1012 	}
1013 
1014 	blkdev_put(device->bdev, device->mode);
1015 }
1016 
1017 static void btrfs_close_one_device(struct btrfs_device *device)
1018 {
1019 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1020 	struct btrfs_device *new_device;
1021 	struct rcu_string *name;
1022 
1023 	if (device->bdev)
1024 		fs_devices->open_devices--;
1025 
1026 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1027 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1028 		list_del_init(&device->dev_alloc_list);
1029 		fs_devices->rw_devices--;
1030 	}
1031 
1032 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1033 		fs_devices->missing_devices--;
1034 
1035 	btrfs_close_bdev(device);
1036 
1037 	new_device = btrfs_alloc_device(NULL, &device->devid,
1038 					device->uuid);
1039 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1040 
1041 	/* Safe because we are under uuid_mutex */
1042 	if (device->name) {
1043 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1044 		BUG_ON(!name); /* -ENOMEM */
1045 		rcu_assign_pointer(new_device->name, name);
1046 	}
1047 
1048 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1049 	new_device->fs_devices = device->fs_devices;
1050 
1051 	call_rcu(&device->rcu, free_device_rcu);
1052 }
1053 
1054 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056 	struct btrfs_device *device, *tmp;
1057 
1058 	if (--fs_devices->opened > 0)
1059 		return 0;
1060 
1061 	mutex_lock(&fs_devices->device_list_mutex);
1062 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1063 		btrfs_close_one_device(device);
1064 	}
1065 	mutex_unlock(&fs_devices->device_list_mutex);
1066 
1067 	WARN_ON(fs_devices->open_devices);
1068 	WARN_ON(fs_devices->rw_devices);
1069 	fs_devices->opened = 0;
1070 	fs_devices->seeding = 0;
1071 
1072 	return 0;
1073 }
1074 
1075 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1076 {
1077 	struct btrfs_fs_devices *seed_devices = NULL;
1078 	int ret;
1079 
1080 	mutex_lock(&uuid_mutex);
1081 	ret = close_fs_devices(fs_devices);
1082 	if (!fs_devices->opened) {
1083 		seed_devices = fs_devices->seed;
1084 		fs_devices->seed = NULL;
1085 	}
1086 	mutex_unlock(&uuid_mutex);
1087 
1088 	while (seed_devices) {
1089 		fs_devices = seed_devices;
1090 		seed_devices = fs_devices->seed;
1091 		close_fs_devices(fs_devices);
1092 		free_fs_devices(fs_devices);
1093 	}
1094 	return ret;
1095 }
1096 
1097 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1098 				fmode_t flags, void *holder)
1099 {
1100 	struct btrfs_device *device;
1101 	struct btrfs_device *latest_dev = NULL;
1102 	int ret = 0;
1103 
1104 	flags |= FMODE_EXCL;
1105 
1106 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1107 		/* Just open everything we can; ignore failures here */
1108 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1109 			continue;
1110 
1111 		if (!latest_dev ||
1112 		    device->generation > latest_dev->generation)
1113 			latest_dev = device;
1114 	}
1115 	if (fs_devices->open_devices == 0) {
1116 		ret = -EINVAL;
1117 		goto out;
1118 	}
1119 	fs_devices->opened = 1;
1120 	fs_devices->latest_bdev = latest_dev->bdev;
1121 	fs_devices->total_rw_bytes = 0;
1122 out:
1123 	return ret;
1124 }
1125 
1126 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1127 {
1128 	struct btrfs_device *dev1, *dev2;
1129 
1130 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1131 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1132 
1133 	if (dev1->devid < dev2->devid)
1134 		return -1;
1135 	else if (dev1->devid > dev2->devid)
1136 		return 1;
1137 	return 0;
1138 }
1139 
1140 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1141 		       fmode_t flags, void *holder)
1142 {
1143 	int ret;
1144 
1145 	lockdep_assert_held(&uuid_mutex);
1146 
1147 	mutex_lock(&fs_devices->device_list_mutex);
1148 	if (fs_devices->opened) {
1149 		fs_devices->opened++;
1150 		ret = 0;
1151 	} else {
1152 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1153 		ret = open_fs_devices(fs_devices, flags, holder);
1154 	}
1155 	mutex_unlock(&fs_devices->device_list_mutex);
1156 
1157 	return ret;
1158 }
1159 
1160 static void btrfs_release_disk_super(struct page *page)
1161 {
1162 	kunmap(page);
1163 	put_page(page);
1164 }
1165 
1166 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1167 				 struct page **page,
1168 				 struct btrfs_super_block **disk_super)
1169 {
1170 	void *p;
1171 	pgoff_t index;
1172 
1173 	/* make sure our super fits in the device */
1174 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1175 		return 1;
1176 
1177 	/* make sure our super fits in the page */
1178 	if (sizeof(**disk_super) > PAGE_SIZE)
1179 		return 1;
1180 
1181 	/* make sure our super doesn't straddle pages on disk */
1182 	index = bytenr >> PAGE_SHIFT;
1183 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1184 		return 1;
1185 
1186 	/* pull in the page with our super */
1187 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1188 				   index, GFP_KERNEL);
1189 
1190 	if (IS_ERR_OR_NULL(*page))
1191 		return 1;
1192 
1193 	p = kmap(*page);
1194 
1195 	/* align our pointer to the offset of the super block */
1196 	*disk_super = p + (bytenr & ~PAGE_MASK);
1197 
1198 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1199 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1200 		btrfs_release_disk_super(*page);
1201 		return 1;
1202 	}
1203 
1204 	if ((*disk_super)->label[0] &&
1205 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1206 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1207 
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Look for a btrfs signature on a device. This may be called out of the mount path
1213  * and we are not allowed to call set_blocksize during the scan. The superblock
1214  * is read via pagecache
1215  */
1216 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1217 					   void *holder)
1218 {
1219 	struct btrfs_super_block *disk_super;
1220 	bool new_device_added = false;
1221 	struct btrfs_device *device = NULL;
1222 	struct block_device *bdev;
1223 	struct page *page;
1224 	u64 bytenr;
1225 
1226 	lockdep_assert_held(&uuid_mutex);
1227 
1228 	/*
1229 	 * we would like to check all the supers, but that would make
1230 	 * a btrfs mount succeed after a mkfs from a different FS.
1231 	 * So, we need to add a special mount option to scan for
1232 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1233 	 */
1234 	bytenr = btrfs_sb_offset(0);
1235 	flags |= FMODE_EXCL;
1236 
1237 	bdev = blkdev_get_by_path(path, flags, holder);
1238 	if (IS_ERR(bdev))
1239 		return ERR_CAST(bdev);
1240 
1241 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1242 		device = ERR_PTR(-EINVAL);
1243 		goto error_bdev_put;
1244 	}
1245 
1246 	device = device_list_add(path, disk_super, &new_device_added);
1247 	if (!IS_ERR(device)) {
1248 		if (new_device_added)
1249 			btrfs_free_stale_devices(path, device);
1250 	}
1251 
1252 	btrfs_release_disk_super(page);
1253 
1254 error_bdev_put:
1255 	blkdev_put(bdev, flags);
1256 
1257 	return device;
1258 }
1259 
1260 static int contains_pending_extent(struct btrfs_transaction *transaction,
1261 				   struct btrfs_device *device,
1262 				   u64 *start, u64 len)
1263 {
1264 	struct btrfs_fs_info *fs_info = device->fs_info;
1265 	struct extent_map *em;
1266 	struct list_head *search_list = &fs_info->pinned_chunks;
1267 	int ret = 0;
1268 	u64 physical_start = *start;
1269 
1270 	if (transaction)
1271 		search_list = &transaction->pending_chunks;
1272 again:
1273 	list_for_each_entry(em, search_list, list) {
1274 		struct map_lookup *map;
1275 		int i;
1276 
1277 		map = em->map_lookup;
1278 		for (i = 0; i < map->num_stripes; i++) {
1279 			u64 end;
1280 
1281 			if (map->stripes[i].dev != device)
1282 				continue;
1283 			if (map->stripes[i].physical >= physical_start + len ||
1284 			    map->stripes[i].physical + em->orig_block_len <=
1285 			    physical_start)
1286 				continue;
1287 			/*
1288 			 * Make sure that while processing the pinned list we do
1289 			 * not override our *start with a lower value, because
1290 			 * we can have pinned chunks that fall within this
1291 			 * device hole and that have lower physical addresses
1292 			 * than the pending chunks we processed before. If we
1293 			 * do not take this special care we can end up getting
1294 			 * 2 pending chunks that start at the same physical
1295 			 * device offsets because the end offset of a pinned
1296 			 * chunk can be equal to the start offset of some
1297 			 * pending chunk.
1298 			 */
1299 			end = map->stripes[i].physical + em->orig_block_len;
1300 			if (end > *start) {
1301 				*start = end;
1302 				ret = 1;
1303 			}
1304 		}
1305 	}
1306 	if (search_list != &fs_info->pinned_chunks) {
1307 		search_list = &fs_info->pinned_chunks;
1308 		goto again;
1309 	}
1310 
1311 	return ret;
1312 }
1313 
1314 
1315 /*
1316  * find_free_dev_extent_start - find free space in the specified device
1317  * @device:	  the device which we search the free space in
1318  * @num_bytes:	  the size of the free space that we need
1319  * @search_start: the position from which to begin the search
1320  * @start:	  store the start of the free space.
1321  * @len:	  the size of the free space. that we find, or the size
1322  *		  of the max free space if we don't find suitable free space
1323  *
1324  * this uses a pretty simple search, the expectation is that it is
1325  * called very infrequently and that a given device has a small number
1326  * of extents
1327  *
1328  * @start is used to store the start of the free space if we find. But if we
1329  * don't find suitable free space, it will be used to store the start position
1330  * of the max free space.
1331  *
1332  * @len is used to store the size of the free space that we find.
1333  * But if we don't find suitable free space, it is used to store the size of
1334  * the max free space.
1335  */
1336 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337 			       struct btrfs_device *device, u64 num_bytes,
1338 			       u64 search_start, u64 *start, u64 *len)
1339 {
1340 	struct btrfs_fs_info *fs_info = device->fs_info;
1341 	struct btrfs_root *root = fs_info->dev_root;
1342 	struct btrfs_key key;
1343 	struct btrfs_dev_extent *dev_extent;
1344 	struct btrfs_path *path;
1345 	u64 hole_size;
1346 	u64 max_hole_start;
1347 	u64 max_hole_size;
1348 	u64 extent_end;
1349 	u64 search_end = device->total_bytes;
1350 	int ret;
1351 	int slot;
1352 	struct extent_buffer *l;
1353 
1354 	/*
1355 	 * We don't want to overwrite the superblock on the drive nor any area
1356 	 * used by the boot loader (grub for example), so we make sure to start
1357 	 * at an offset of at least 1MB.
1358 	 */
1359 	search_start = max_t(u64, search_start, SZ_1M);
1360 
1361 	path = btrfs_alloc_path();
1362 	if (!path)
1363 		return -ENOMEM;
1364 
1365 	max_hole_start = search_start;
1366 	max_hole_size = 0;
1367 
1368 again:
1369 	if (search_start >= search_end ||
1370 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1371 		ret = -ENOSPC;
1372 		goto out;
1373 	}
1374 
1375 	path->reada = READA_FORWARD;
1376 	path->search_commit_root = 1;
1377 	path->skip_locking = 1;
1378 
1379 	key.objectid = device->devid;
1380 	key.offset = search_start;
1381 	key.type = BTRFS_DEV_EXTENT_KEY;
1382 
1383 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384 	if (ret < 0)
1385 		goto out;
1386 	if (ret > 0) {
1387 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388 		if (ret < 0)
1389 			goto out;
1390 	}
1391 
1392 	while (1) {
1393 		l = path->nodes[0];
1394 		slot = path->slots[0];
1395 		if (slot >= btrfs_header_nritems(l)) {
1396 			ret = btrfs_next_leaf(root, path);
1397 			if (ret == 0)
1398 				continue;
1399 			if (ret < 0)
1400 				goto out;
1401 
1402 			break;
1403 		}
1404 		btrfs_item_key_to_cpu(l, &key, slot);
1405 
1406 		if (key.objectid < device->devid)
1407 			goto next;
1408 
1409 		if (key.objectid > device->devid)
1410 			break;
1411 
1412 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1413 			goto next;
1414 
1415 		if (key.offset > search_start) {
1416 			hole_size = key.offset - search_start;
1417 
1418 			/*
1419 			 * Have to check before we set max_hole_start, otherwise
1420 			 * we could end up sending back this offset anyway.
1421 			 */
1422 			if (contains_pending_extent(transaction, device,
1423 						    &search_start,
1424 						    hole_size)) {
1425 				if (key.offset >= search_start) {
1426 					hole_size = key.offset - search_start;
1427 				} else {
1428 					WARN_ON_ONCE(1);
1429 					hole_size = 0;
1430 				}
1431 			}
1432 
1433 			if (hole_size > max_hole_size) {
1434 				max_hole_start = search_start;
1435 				max_hole_size = hole_size;
1436 			}
1437 
1438 			/*
1439 			 * If this free space is greater than which we need,
1440 			 * it must be the max free space that we have found
1441 			 * until now, so max_hole_start must point to the start
1442 			 * of this free space and the length of this free space
1443 			 * is stored in max_hole_size. Thus, we return
1444 			 * max_hole_start and max_hole_size and go back to the
1445 			 * caller.
1446 			 */
1447 			if (hole_size >= num_bytes) {
1448 				ret = 0;
1449 				goto out;
1450 			}
1451 		}
1452 
1453 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454 		extent_end = key.offset + btrfs_dev_extent_length(l,
1455 								  dev_extent);
1456 		if (extent_end > search_start)
1457 			search_start = extent_end;
1458 next:
1459 		path->slots[0]++;
1460 		cond_resched();
1461 	}
1462 
1463 	/*
1464 	 * At this point, search_start should be the end of
1465 	 * allocated dev extents, and when shrinking the device,
1466 	 * search_end may be smaller than search_start.
1467 	 */
1468 	if (search_end > search_start) {
1469 		hole_size = search_end - search_start;
1470 
1471 		if (contains_pending_extent(transaction, device, &search_start,
1472 					    hole_size)) {
1473 			btrfs_release_path(path);
1474 			goto again;
1475 		}
1476 
1477 		if (hole_size > max_hole_size) {
1478 			max_hole_start = search_start;
1479 			max_hole_size = hole_size;
1480 		}
1481 	}
1482 
1483 	/* See above. */
1484 	if (max_hole_size < num_bytes)
1485 		ret = -ENOSPC;
1486 	else
1487 		ret = 0;
1488 
1489 out:
1490 	btrfs_free_path(path);
1491 	*start = max_hole_start;
1492 	if (len)
1493 		*len = max_hole_size;
1494 	return ret;
1495 }
1496 
1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498 			 struct btrfs_device *device, u64 num_bytes,
1499 			 u64 *start, u64 *len)
1500 {
1501 	/* FIXME use last free of some kind */
1502 	return find_free_dev_extent_start(trans->transaction, device,
1503 					  num_bytes, 0, start, len);
1504 }
1505 
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507 			  struct btrfs_device *device,
1508 			  u64 start, u64 *dev_extent_len)
1509 {
1510 	struct btrfs_fs_info *fs_info = device->fs_info;
1511 	struct btrfs_root *root = fs_info->dev_root;
1512 	int ret;
1513 	struct btrfs_path *path;
1514 	struct btrfs_key key;
1515 	struct btrfs_key found_key;
1516 	struct extent_buffer *leaf = NULL;
1517 	struct btrfs_dev_extent *extent = NULL;
1518 
1519 	path = btrfs_alloc_path();
1520 	if (!path)
1521 		return -ENOMEM;
1522 
1523 	key.objectid = device->devid;
1524 	key.offset = start;
1525 	key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528 	if (ret > 0) {
1529 		ret = btrfs_previous_item(root, path, key.objectid,
1530 					  BTRFS_DEV_EXTENT_KEY);
1531 		if (ret)
1532 			goto out;
1533 		leaf = path->nodes[0];
1534 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535 		extent = btrfs_item_ptr(leaf, path->slots[0],
1536 					struct btrfs_dev_extent);
1537 		BUG_ON(found_key.offset > start || found_key.offset +
1538 		       btrfs_dev_extent_length(leaf, extent) < start);
1539 		key = found_key;
1540 		btrfs_release_path(path);
1541 		goto again;
1542 	} else if (ret == 0) {
1543 		leaf = path->nodes[0];
1544 		extent = btrfs_item_ptr(leaf, path->slots[0],
1545 					struct btrfs_dev_extent);
1546 	} else {
1547 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548 		goto out;
1549 	}
1550 
1551 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552 
1553 	ret = btrfs_del_item(trans, root, path);
1554 	if (ret) {
1555 		btrfs_handle_fs_error(fs_info, ret,
1556 				      "Failed to remove dev extent item");
1557 	} else {
1558 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559 	}
1560 out:
1561 	btrfs_free_path(path);
1562 	return ret;
1563 }
1564 
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566 				  struct btrfs_device *device,
1567 				  u64 chunk_offset, u64 start, u64 num_bytes)
1568 {
1569 	int ret;
1570 	struct btrfs_path *path;
1571 	struct btrfs_fs_info *fs_info = device->fs_info;
1572 	struct btrfs_root *root = fs_info->dev_root;
1573 	struct btrfs_dev_extent *extent;
1574 	struct extent_buffer *leaf;
1575 	struct btrfs_key key;
1576 
1577 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1578 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1579 	path = btrfs_alloc_path();
1580 	if (!path)
1581 		return -ENOMEM;
1582 
1583 	key.objectid = device->devid;
1584 	key.offset = start;
1585 	key.type = BTRFS_DEV_EXTENT_KEY;
1586 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1587 				      sizeof(*extent));
1588 	if (ret)
1589 		goto out;
1590 
1591 	leaf = path->nodes[0];
1592 	extent = btrfs_item_ptr(leaf, path->slots[0],
1593 				struct btrfs_dev_extent);
1594 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1595 					BTRFS_CHUNK_TREE_OBJECTID);
1596 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1597 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1598 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599 
1600 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1601 	btrfs_mark_buffer_dirty(leaf);
1602 out:
1603 	btrfs_free_path(path);
1604 	return ret;
1605 }
1606 
1607 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1608 {
1609 	struct extent_map_tree *em_tree;
1610 	struct extent_map *em;
1611 	struct rb_node *n;
1612 	u64 ret = 0;
1613 
1614 	em_tree = &fs_info->mapping_tree.map_tree;
1615 	read_lock(&em_tree->lock);
1616 	n = rb_last(&em_tree->map);
1617 	if (n) {
1618 		em = rb_entry(n, struct extent_map, rb_node);
1619 		ret = em->start + em->len;
1620 	}
1621 	read_unlock(&em_tree->lock);
1622 
1623 	return ret;
1624 }
1625 
1626 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1627 				    u64 *devid_ret)
1628 {
1629 	int ret;
1630 	struct btrfs_key key;
1631 	struct btrfs_key found_key;
1632 	struct btrfs_path *path;
1633 
1634 	path = btrfs_alloc_path();
1635 	if (!path)
1636 		return -ENOMEM;
1637 
1638 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1639 	key.type = BTRFS_DEV_ITEM_KEY;
1640 	key.offset = (u64)-1;
1641 
1642 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1643 	if (ret < 0)
1644 		goto error;
1645 
1646 	BUG_ON(ret == 0); /* Corruption */
1647 
1648 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1649 				  BTRFS_DEV_ITEMS_OBJECTID,
1650 				  BTRFS_DEV_ITEM_KEY);
1651 	if (ret) {
1652 		*devid_ret = 1;
1653 	} else {
1654 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1655 				      path->slots[0]);
1656 		*devid_ret = found_key.offset + 1;
1657 	}
1658 	ret = 0;
1659 error:
1660 	btrfs_free_path(path);
1661 	return ret;
1662 }
1663 
1664 /*
1665  * the device information is stored in the chunk root
1666  * the btrfs_device struct should be fully filled in
1667  */
1668 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1669 			    struct btrfs_device *device)
1670 {
1671 	int ret;
1672 	struct btrfs_path *path;
1673 	struct btrfs_dev_item *dev_item;
1674 	struct extent_buffer *leaf;
1675 	struct btrfs_key key;
1676 	unsigned long ptr;
1677 
1678 	path = btrfs_alloc_path();
1679 	if (!path)
1680 		return -ENOMEM;
1681 
1682 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1683 	key.type = BTRFS_DEV_ITEM_KEY;
1684 	key.offset = device->devid;
1685 
1686 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1687 				      &key, sizeof(*dev_item));
1688 	if (ret)
1689 		goto out;
1690 
1691 	leaf = path->nodes[0];
1692 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1693 
1694 	btrfs_set_device_id(leaf, dev_item, device->devid);
1695 	btrfs_set_device_generation(leaf, dev_item, 0);
1696 	btrfs_set_device_type(leaf, dev_item, device->type);
1697 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1698 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1699 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1700 	btrfs_set_device_total_bytes(leaf, dev_item,
1701 				     btrfs_device_get_disk_total_bytes(device));
1702 	btrfs_set_device_bytes_used(leaf, dev_item,
1703 				    btrfs_device_get_bytes_used(device));
1704 	btrfs_set_device_group(leaf, dev_item, 0);
1705 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1706 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1707 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1708 
1709 	ptr = btrfs_device_uuid(dev_item);
1710 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1711 	ptr = btrfs_device_fsid(dev_item);
1712 	write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1713 	btrfs_mark_buffer_dirty(leaf);
1714 
1715 	ret = 0;
1716 out:
1717 	btrfs_free_path(path);
1718 	return ret;
1719 }
1720 
1721 /*
1722  * Function to update ctime/mtime for a given device path.
1723  * Mainly used for ctime/mtime based probe like libblkid.
1724  */
1725 static void update_dev_time(const char *path_name)
1726 {
1727 	struct file *filp;
1728 
1729 	filp = filp_open(path_name, O_RDWR, 0);
1730 	if (IS_ERR(filp))
1731 		return;
1732 	file_update_time(filp);
1733 	filp_close(filp, NULL);
1734 }
1735 
1736 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1737 			     struct btrfs_device *device)
1738 {
1739 	struct btrfs_root *root = fs_info->chunk_root;
1740 	int ret;
1741 	struct btrfs_path *path;
1742 	struct btrfs_key key;
1743 	struct btrfs_trans_handle *trans;
1744 
1745 	path = btrfs_alloc_path();
1746 	if (!path)
1747 		return -ENOMEM;
1748 
1749 	trans = btrfs_start_transaction(root, 0);
1750 	if (IS_ERR(trans)) {
1751 		btrfs_free_path(path);
1752 		return PTR_ERR(trans);
1753 	}
1754 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1755 	key.type = BTRFS_DEV_ITEM_KEY;
1756 	key.offset = device->devid;
1757 
1758 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1759 	if (ret) {
1760 		if (ret > 0)
1761 			ret = -ENOENT;
1762 		btrfs_abort_transaction(trans, ret);
1763 		btrfs_end_transaction(trans);
1764 		goto out;
1765 	}
1766 
1767 	ret = btrfs_del_item(trans, root, path);
1768 	if (ret) {
1769 		btrfs_abort_transaction(trans, ret);
1770 		btrfs_end_transaction(trans);
1771 	}
1772 
1773 out:
1774 	btrfs_free_path(path);
1775 	if (!ret)
1776 		ret = btrfs_commit_transaction(trans);
1777 	return ret;
1778 }
1779 
1780 /*
1781  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782  * filesystem. It's up to the caller to adjust that number regarding eg. device
1783  * replace.
1784  */
1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786 		u64 num_devices)
1787 {
1788 	u64 all_avail;
1789 	unsigned seq;
1790 	int i;
1791 
1792 	do {
1793 		seq = read_seqbegin(&fs_info->profiles_lock);
1794 
1795 		all_avail = fs_info->avail_data_alloc_bits |
1796 			    fs_info->avail_system_alloc_bits |
1797 			    fs_info->avail_metadata_alloc_bits;
1798 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1799 
1800 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1802 			continue;
1803 
1804 		if (num_devices < btrfs_raid_array[i].devs_min) {
1805 			int ret = btrfs_raid_array[i].mindev_error;
1806 
1807 			if (ret)
1808 				return ret;
1809 		}
1810 	}
1811 
1812 	return 0;
1813 }
1814 
1815 static struct btrfs_device * btrfs_find_next_active_device(
1816 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1817 {
1818 	struct btrfs_device *next_device;
1819 
1820 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821 		if (next_device != device &&
1822 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1823 		    && next_device->bdev)
1824 			return next_device;
1825 	}
1826 
1827 	return NULL;
1828 }
1829 
1830 /*
1831  * Helper function to check if the given device is part of s_bdev / latest_bdev
1832  * and replace it with the provided or the next active device, in the context
1833  * where this function called, there should be always be another device (or
1834  * this_dev) which is active.
1835  */
1836 void btrfs_assign_next_active_device(struct btrfs_device *device,
1837 				     struct btrfs_device *this_dev)
1838 {
1839 	struct btrfs_fs_info *fs_info = device->fs_info;
1840 	struct btrfs_device *next_device;
1841 
1842 	if (this_dev)
1843 		next_device = this_dev;
1844 	else
1845 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1846 								device);
1847 	ASSERT(next_device);
1848 
1849 	if (fs_info->sb->s_bdev &&
1850 			(fs_info->sb->s_bdev == device->bdev))
1851 		fs_info->sb->s_bdev = next_device->bdev;
1852 
1853 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1854 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1855 }
1856 
1857 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1858 		u64 devid)
1859 {
1860 	struct btrfs_device *device;
1861 	struct btrfs_fs_devices *cur_devices;
1862 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1863 	u64 num_devices;
1864 	int ret = 0;
1865 
1866 	mutex_lock(&uuid_mutex);
1867 
1868 	num_devices = fs_devices->num_devices;
1869 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1870 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1871 		WARN_ON(num_devices < 1);
1872 		num_devices--;
1873 	}
1874 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1875 
1876 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1877 	if (ret)
1878 		goto out;
1879 
1880 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1881 					   &device);
1882 	if (ret)
1883 		goto out;
1884 
1885 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1886 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1887 		goto out;
1888 	}
1889 
1890 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1891 	    fs_info->fs_devices->rw_devices == 1) {
1892 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1893 		goto out;
1894 	}
1895 
1896 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1897 		mutex_lock(&fs_info->chunk_mutex);
1898 		list_del_init(&device->dev_alloc_list);
1899 		device->fs_devices->rw_devices--;
1900 		mutex_unlock(&fs_info->chunk_mutex);
1901 	}
1902 
1903 	mutex_unlock(&uuid_mutex);
1904 	ret = btrfs_shrink_device(device, 0);
1905 	mutex_lock(&uuid_mutex);
1906 	if (ret)
1907 		goto error_undo;
1908 
1909 	/*
1910 	 * TODO: the superblock still includes this device in its num_devices
1911 	 * counter although write_all_supers() is not locked out. This
1912 	 * could give a filesystem state which requires a degraded mount.
1913 	 */
1914 	ret = btrfs_rm_dev_item(fs_info, device);
1915 	if (ret)
1916 		goto error_undo;
1917 
1918 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1919 	btrfs_scrub_cancel_dev(fs_info, device);
1920 
1921 	/*
1922 	 * the device list mutex makes sure that we don't change
1923 	 * the device list while someone else is writing out all
1924 	 * the device supers. Whoever is writing all supers, should
1925 	 * lock the device list mutex before getting the number of
1926 	 * devices in the super block (super_copy). Conversely,
1927 	 * whoever updates the number of devices in the super block
1928 	 * (super_copy) should hold the device list mutex.
1929 	 */
1930 
1931 	/*
1932 	 * In normal cases the cur_devices == fs_devices. But in case
1933 	 * of deleting a seed device, the cur_devices should point to
1934 	 * its own fs_devices listed under the fs_devices->seed.
1935 	 */
1936 	cur_devices = device->fs_devices;
1937 	mutex_lock(&fs_devices->device_list_mutex);
1938 	list_del_rcu(&device->dev_list);
1939 
1940 	cur_devices->num_devices--;
1941 	cur_devices->total_devices--;
1942 	/* Update total_devices of the parent fs_devices if it's seed */
1943 	if (cur_devices != fs_devices)
1944 		fs_devices->total_devices--;
1945 
1946 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1947 		cur_devices->missing_devices--;
1948 
1949 	btrfs_assign_next_active_device(device, NULL);
1950 
1951 	if (device->bdev) {
1952 		cur_devices->open_devices--;
1953 		/* remove sysfs entry */
1954 		btrfs_sysfs_rm_device_link(fs_devices, device);
1955 	}
1956 
1957 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1958 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1959 	mutex_unlock(&fs_devices->device_list_mutex);
1960 
1961 	/*
1962 	 * at this point, the device is zero sized and detached from
1963 	 * the devices list.  All that's left is to zero out the old
1964 	 * supers and free the device.
1965 	 */
1966 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1967 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1968 
1969 	btrfs_close_bdev(device);
1970 	call_rcu(&device->rcu, free_device_rcu);
1971 
1972 	if (cur_devices->open_devices == 0) {
1973 		while (fs_devices) {
1974 			if (fs_devices->seed == cur_devices) {
1975 				fs_devices->seed = cur_devices->seed;
1976 				break;
1977 			}
1978 			fs_devices = fs_devices->seed;
1979 		}
1980 		cur_devices->seed = NULL;
1981 		close_fs_devices(cur_devices);
1982 		free_fs_devices(cur_devices);
1983 	}
1984 
1985 out:
1986 	mutex_unlock(&uuid_mutex);
1987 	return ret;
1988 
1989 error_undo:
1990 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1991 		mutex_lock(&fs_info->chunk_mutex);
1992 		list_add(&device->dev_alloc_list,
1993 			 &fs_devices->alloc_list);
1994 		device->fs_devices->rw_devices++;
1995 		mutex_unlock(&fs_info->chunk_mutex);
1996 	}
1997 	goto out;
1998 }
1999 
2000 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2001 {
2002 	struct btrfs_fs_devices *fs_devices;
2003 
2004 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2005 
2006 	/*
2007 	 * in case of fs with no seed, srcdev->fs_devices will point
2008 	 * to fs_devices of fs_info. However when the dev being replaced is
2009 	 * a seed dev it will point to the seed's local fs_devices. In short
2010 	 * srcdev will have its correct fs_devices in both the cases.
2011 	 */
2012 	fs_devices = srcdev->fs_devices;
2013 
2014 	list_del_rcu(&srcdev->dev_list);
2015 	list_del(&srcdev->dev_alloc_list);
2016 	fs_devices->num_devices--;
2017 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2018 		fs_devices->missing_devices--;
2019 
2020 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2021 		fs_devices->rw_devices--;
2022 
2023 	if (srcdev->bdev)
2024 		fs_devices->open_devices--;
2025 }
2026 
2027 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2028 				      struct btrfs_device *srcdev)
2029 {
2030 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2031 
2032 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2033 		/* zero out the old super if it is writable */
2034 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2035 	}
2036 
2037 	btrfs_close_bdev(srcdev);
2038 	call_rcu(&srcdev->rcu, free_device_rcu);
2039 
2040 	/* if this is no devs we rather delete the fs_devices */
2041 	if (!fs_devices->num_devices) {
2042 		struct btrfs_fs_devices *tmp_fs_devices;
2043 
2044 		/*
2045 		 * On a mounted FS, num_devices can't be zero unless it's a
2046 		 * seed. In case of a seed device being replaced, the replace
2047 		 * target added to the sprout FS, so there will be no more
2048 		 * device left under the seed FS.
2049 		 */
2050 		ASSERT(fs_devices->seeding);
2051 
2052 		tmp_fs_devices = fs_info->fs_devices;
2053 		while (tmp_fs_devices) {
2054 			if (tmp_fs_devices->seed == fs_devices) {
2055 				tmp_fs_devices->seed = fs_devices->seed;
2056 				break;
2057 			}
2058 			tmp_fs_devices = tmp_fs_devices->seed;
2059 		}
2060 		fs_devices->seed = NULL;
2061 		close_fs_devices(fs_devices);
2062 		free_fs_devices(fs_devices);
2063 	}
2064 }
2065 
2066 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2067 {
2068 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2069 
2070 	WARN_ON(!tgtdev);
2071 	mutex_lock(&fs_devices->device_list_mutex);
2072 
2073 	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2074 
2075 	if (tgtdev->bdev)
2076 		fs_devices->open_devices--;
2077 
2078 	fs_devices->num_devices--;
2079 
2080 	btrfs_assign_next_active_device(tgtdev, NULL);
2081 
2082 	list_del_rcu(&tgtdev->dev_list);
2083 
2084 	mutex_unlock(&fs_devices->device_list_mutex);
2085 
2086 	/*
2087 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2088 	 * may lead to a call to btrfs_show_devname() which will try
2089 	 * to hold device_list_mutex. And here this device
2090 	 * is already out of device list, so we don't have to hold
2091 	 * the device_list_mutex lock.
2092 	 */
2093 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2094 
2095 	btrfs_close_bdev(tgtdev);
2096 	call_rcu(&tgtdev->rcu, free_device_rcu);
2097 }
2098 
2099 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2100 				     const char *device_path,
2101 				     struct btrfs_device **device)
2102 {
2103 	int ret = 0;
2104 	struct btrfs_super_block *disk_super;
2105 	u64 devid;
2106 	u8 *dev_uuid;
2107 	struct block_device *bdev;
2108 	struct buffer_head *bh;
2109 
2110 	*device = NULL;
2111 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2112 				    fs_info->bdev_holder, 0, &bdev, &bh);
2113 	if (ret)
2114 		return ret;
2115 	disk_super = (struct btrfs_super_block *)bh->b_data;
2116 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2117 	dev_uuid = disk_super->dev_item.uuid;
2118 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2119 	brelse(bh);
2120 	if (!*device)
2121 		ret = -ENOENT;
2122 	blkdev_put(bdev, FMODE_READ);
2123 	return ret;
2124 }
2125 
2126 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2127 					 const char *device_path,
2128 					 struct btrfs_device **device)
2129 {
2130 	*device = NULL;
2131 	if (strcmp(device_path, "missing") == 0) {
2132 		struct list_head *devices;
2133 		struct btrfs_device *tmp;
2134 
2135 		devices = &fs_info->fs_devices->devices;
2136 		list_for_each_entry(tmp, devices, dev_list) {
2137 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2138 					&tmp->dev_state) && !tmp->bdev) {
2139 				*device = tmp;
2140 				break;
2141 			}
2142 		}
2143 
2144 		if (!*device)
2145 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2146 
2147 		return 0;
2148 	} else {
2149 		return btrfs_find_device_by_path(fs_info, device_path, device);
2150 	}
2151 }
2152 
2153 /*
2154  * Lookup a device given by device id, or the path if the id is 0.
2155  */
2156 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2157 				 const char *devpath,
2158 				 struct btrfs_device **device)
2159 {
2160 	int ret;
2161 
2162 	if (devid) {
2163 		ret = 0;
2164 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2165 		if (!*device)
2166 			ret = -ENOENT;
2167 	} else {
2168 		if (!devpath || !devpath[0])
2169 			return -EINVAL;
2170 
2171 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2172 							   device);
2173 	}
2174 	return ret;
2175 }
2176 
2177 /*
2178  * does all the dirty work required for changing file system's UUID.
2179  */
2180 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2181 {
2182 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2183 	struct btrfs_fs_devices *old_devices;
2184 	struct btrfs_fs_devices *seed_devices;
2185 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2186 	struct btrfs_device *device;
2187 	u64 super_flags;
2188 
2189 	lockdep_assert_held(&uuid_mutex);
2190 	if (!fs_devices->seeding)
2191 		return -EINVAL;
2192 
2193 	seed_devices = alloc_fs_devices(NULL);
2194 	if (IS_ERR(seed_devices))
2195 		return PTR_ERR(seed_devices);
2196 
2197 	old_devices = clone_fs_devices(fs_devices);
2198 	if (IS_ERR(old_devices)) {
2199 		kfree(seed_devices);
2200 		return PTR_ERR(old_devices);
2201 	}
2202 
2203 	list_add(&old_devices->fs_list, &fs_uuids);
2204 
2205 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2206 	seed_devices->opened = 1;
2207 	INIT_LIST_HEAD(&seed_devices->devices);
2208 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2209 	mutex_init(&seed_devices->device_list_mutex);
2210 
2211 	mutex_lock(&fs_devices->device_list_mutex);
2212 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2213 			      synchronize_rcu);
2214 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2215 		device->fs_devices = seed_devices;
2216 
2217 	mutex_lock(&fs_info->chunk_mutex);
2218 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2219 	mutex_unlock(&fs_info->chunk_mutex);
2220 
2221 	fs_devices->seeding = 0;
2222 	fs_devices->num_devices = 0;
2223 	fs_devices->open_devices = 0;
2224 	fs_devices->missing_devices = 0;
2225 	fs_devices->rotating = 0;
2226 	fs_devices->seed = seed_devices;
2227 
2228 	generate_random_uuid(fs_devices->fsid);
2229 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231 	mutex_unlock(&fs_devices->device_list_mutex);
2232 
2233 	super_flags = btrfs_super_flags(disk_super) &
2234 		      ~BTRFS_SUPER_FLAG_SEEDING;
2235 	btrfs_set_super_flags(disk_super, super_flags);
2236 
2237 	return 0;
2238 }
2239 
2240 /*
2241  * Store the expected generation for seed devices in device items.
2242  */
2243 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2244 			       struct btrfs_fs_info *fs_info)
2245 {
2246 	struct btrfs_root *root = fs_info->chunk_root;
2247 	struct btrfs_path *path;
2248 	struct extent_buffer *leaf;
2249 	struct btrfs_dev_item *dev_item;
2250 	struct btrfs_device *device;
2251 	struct btrfs_key key;
2252 	u8 fs_uuid[BTRFS_FSID_SIZE];
2253 	u8 dev_uuid[BTRFS_UUID_SIZE];
2254 	u64 devid;
2255 	int ret;
2256 
2257 	path = btrfs_alloc_path();
2258 	if (!path)
2259 		return -ENOMEM;
2260 
2261 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2262 	key.offset = 0;
2263 	key.type = BTRFS_DEV_ITEM_KEY;
2264 
2265 	while (1) {
2266 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2267 		if (ret < 0)
2268 			goto error;
2269 
2270 		leaf = path->nodes[0];
2271 next_slot:
2272 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2273 			ret = btrfs_next_leaf(root, path);
2274 			if (ret > 0)
2275 				break;
2276 			if (ret < 0)
2277 				goto error;
2278 			leaf = path->nodes[0];
2279 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2280 			btrfs_release_path(path);
2281 			continue;
2282 		}
2283 
2284 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2285 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2286 		    key.type != BTRFS_DEV_ITEM_KEY)
2287 			break;
2288 
2289 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2290 					  struct btrfs_dev_item);
2291 		devid = btrfs_device_id(leaf, dev_item);
2292 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2293 				   BTRFS_UUID_SIZE);
2294 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2295 				   BTRFS_FSID_SIZE);
2296 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2297 		BUG_ON(!device); /* Logic error */
2298 
2299 		if (device->fs_devices->seeding) {
2300 			btrfs_set_device_generation(leaf, dev_item,
2301 						    device->generation);
2302 			btrfs_mark_buffer_dirty(leaf);
2303 		}
2304 
2305 		path->slots[0]++;
2306 		goto next_slot;
2307 	}
2308 	ret = 0;
2309 error:
2310 	btrfs_free_path(path);
2311 	return ret;
2312 }
2313 
2314 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2315 {
2316 	struct btrfs_root *root = fs_info->dev_root;
2317 	struct request_queue *q;
2318 	struct btrfs_trans_handle *trans;
2319 	struct btrfs_device *device;
2320 	struct block_device *bdev;
2321 	struct super_block *sb = fs_info->sb;
2322 	struct rcu_string *name;
2323 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2324 	u64 orig_super_total_bytes;
2325 	u64 orig_super_num_devices;
2326 	int seeding_dev = 0;
2327 	int ret = 0;
2328 	bool unlocked = false;
2329 
2330 	if (sb_rdonly(sb) && !fs_devices->seeding)
2331 		return -EROFS;
2332 
2333 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2334 				  fs_info->bdev_holder);
2335 	if (IS_ERR(bdev))
2336 		return PTR_ERR(bdev);
2337 
2338 	if (fs_devices->seeding) {
2339 		seeding_dev = 1;
2340 		down_write(&sb->s_umount);
2341 		mutex_lock(&uuid_mutex);
2342 	}
2343 
2344 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2345 
2346 	mutex_lock(&fs_devices->device_list_mutex);
2347 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2348 		if (device->bdev == bdev) {
2349 			ret = -EEXIST;
2350 			mutex_unlock(
2351 				&fs_devices->device_list_mutex);
2352 			goto error;
2353 		}
2354 	}
2355 	mutex_unlock(&fs_devices->device_list_mutex);
2356 
2357 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2358 	if (IS_ERR(device)) {
2359 		/* we can safely leave the fs_devices entry around */
2360 		ret = PTR_ERR(device);
2361 		goto error;
2362 	}
2363 
2364 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2365 	if (!name) {
2366 		ret = -ENOMEM;
2367 		goto error_free_device;
2368 	}
2369 	rcu_assign_pointer(device->name, name);
2370 
2371 	trans = btrfs_start_transaction(root, 0);
2372 	if (IS_ERR(trans)) {
2373 		ret = PTR_ERR(trans);
2374 		goto error_free_device;
2375 	}
2376 
2377 	q = bdev_get_queue(bdev);
2378 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2379 	device->generation = trans->transid;
2380 	device->io_width = fs_info->sectorsize;
2381 	device->io_align = fs_info->sectorsize;
2382 	device->sector_size = fs_info->sectorsize;
2383 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2384 					 fs_info->sectorsize);
2385 	device->disk_total_bytes = device->total_bytes;
2386 	device->commit_total_bytes = device->total_bytes;
2387 	device->fs_info = fs_info;
2388 	device->bdev = bdev;
2389 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2390 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2391 	device->mode = FMODE_EXCL;
2392 	device->dev_stats_valid = 1;
2393 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2394 
2395 	if (seeding_dev) {
2396 		sb->s_flags &= ~SB_RDONLY;
2397 		ret = btrfs_prepare_sprout(fs_info);
2398 		if (ret) {
2399 			btrfs_abort_transaction(trans, ret);
2400 			goto error_trans;
2401 		}
2402 	}
2403 
2404 	device->fs_devices = fs_devices;
2405 
2406 	mutex_lock(&fs_devices->device_list_mutex);
2407 	mutex_lock(&fs_info->chunk_mutex);
2408 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2409 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2410 	fs_devices->num_devices++;
2411 	fs_devices->open_devices++;
2412 	fs_devices->rw_devices++;
2413 	fs_devices->total_devices++;
2414 	fs_devices->total_rw_bytes += device->total_bytes;
2415 
2416 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2417 
2418 	if (!blk_queue_nonrot(q))
2419 		fs_devices->rotating = 1;
2420 
2421 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2422 	btrfs_set_super_total_bytes(fs_info->super_copy,
2423 		round_down(orig_super_total_bytes + device->total_bytes,
2424 			   fs_info->sectorsize));
2425 
2426 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2427 	btrfs_set_super_num_devices(fs_info->super_copy,
2428 				    orig_super_num_devices + 1);
2429 
2430 	/* add sysfs device entry */
2431 	btrfs_sysfs_add_device_link(fs_devices, device);
2432 
2433 	/*
2434 	 * we've got more storage, clear any full flags on the space
2435 	 * infos
2436 	 */
2437 	btrfs_clear_space_info_full(fs_info);
2438 
2439 	mutex_unlock(&fs_info->chunk_mutex);
2440 	mutex_unlock(&fs_devices->device_list_mutex);
2441 
2442 	if (seeding_dev) {
2443 		mutex_lock(&fs_info->chunk_mutex);
2444 		ret = init_first_rw_device(trans, fs_info);
2445 		mutex_unlock(&fs_info->chunk_mutex);
2446 		if (ret) {
2447 			btrfs_abort_transaction(trans, ret);
2448 			goto error_sysfs;
2449 		}
2450 	}
2451 
2452 	ret = btrfs_add_dev_item(trans, device);
2453 	if (ret) {
2454 		btrfs_abort_transaction(trans, ret);
2455 		goto error_sysfs;
2456 	}
2457 
2458 	if (seeding_dev) {
2459 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2460 
2461 		ret = btrfs_finish_sprout(trans, fs_info);
2462 		if (ret) {
2463 			btrfs_abort_transaction(trans, ret);
2464 			goto error_sysfs;
2465 		}
2466 
2467 		/* Sprouting would change fsid of the mounted root,
2468 		 * so rename the fsid on the sysfs
2469 		 */
2470 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2471 						fs_info->fsid);
2472 		if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2473 			btrfs_warn(fs_info,
2474 				   "sysfs: failed to create fsid for sprout");
2475 	}
2476 
2477 	ret = btrfs_commit_transaction(trans);
2478 
2479 	if (seeding_dev) {
2480 		mutex_unlock(&uuid_mutex);
2481 		up_write(&sb->s_umount);
2482 		unlocked = true;
2483 
2484 		if (ret) /* transaction commit */
2485 			return ret;
2486 
2487 		ret = btrfs_relocate_sys_chunks(fs_info);
2488 		if (ret < 0)
2489 			btrfs_handle_fs_error(fs_info, ret,
2490 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2491 		trans = btrfs_attach_transaction(root);
2492 		if (IS_ERR(trans)) {
2493 			if (PTR_ERR(trans) == -ENOENT)
2494 				return 0;
2495 			ret = PTR_ERR(trans);
2496 			trans = NULL;
2497 			goto error_sysfs;
2498 		}
2499 		ret = btrfs_commit_transaction(trans);
2500 	}
2501 
2502 	/* Update ctime/mtime for libblkid */
2503 	update_dev_time(device_path);
2504 	return ret;
2505 
2506 error_sysfs:
2507 	btrfs_sysfs_rm_device_link(fs_devices, device);
2508 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2509 	mutex_lock(&fs_info->chunk_mutex);
2510 	list_del_rcu(&device->dev_list);
2511 	list_del(&device->dev_alloc_list);
2512 	fs_info->fs_devices->num_devices--;
2513 	fs_info->fs_devices->open_devices--;
2514 	fs_info->fs_devices->rw_devices--;
2515 	fs_info->fs_devices->total_devices--;
2516 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2517 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2518 	btrfs_set_super_total_bytes(fs_info->super_copy,
2519 				    orig_super_total_bytes);
2520 	btrfs_set_super_num_devices(fs_info->super_copy,
2521 				    orig_super_num_devices);
2522 	mutex_unlock(&fs_info->chunk_mutex);
2523 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2524 error_trans:
2525 	if (seeding_dev)
2526 		sb->s_flags |= SB_RDONLY;
2527 	if (trans)
2528 		btrfs_end_transaction(trans);
2529 error_free_device:
2530 	btrfs_free_device(device);
2531 error:
2532 	blkdev_put(bdev, FMODE_EXCL);
2533 	if (seeding_dev && !unlocked) {
2534 		mutex_unlock(&uuid_mutex);
2535 		up_write(&sb->s_umount);
2536 	}
2537 	return ret;
2538 }
2539 
2540 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2541 					struct btrfs_device *device)
2542 {
2543 	int ret;
2544 	struct btrfs_path *path;
2545 	struct btrfs_root *root = device->fs_info->chunk_root;
2546 	struct btrfs_dev_item *dev_item;
2547 	struct extent_buffer *leaf;
2548 	struct btrfs_key key;
2549 
2550 	path = btrfs_alloc_path();
2551 	if (!path)
2552 		return -ENOMEM;
2553 
2554 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2555 	key.type = BTRFS_DEV_ITEM_KEY;
2556 	key.offset = device->devid;
2557 
2558 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2559 	if (ret < 0)
2560 		goto out;
2561 
2562 	if (ret > 0) {
2563 		ret = -ENOENT;
2564 		goto out;
2565 	}
2566 
2567 	leaf = path->nodes[0];
2568 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2569 
2570 	btrfs_set_device_id(leaf, dev_item, device->devid);
2571 	btrfs_set_device_type(leaf, dev_item, device->type);
2572 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2573 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2574 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2575 	btrfs_set_device_total_bytes(leaf, dev_item,
2576 				     btrfs_device_get_disk_total_bytes(device));
2577 	btrfs_set_device_bytes_used(leaf, dev_item,
2578 				    btrfs_device_get_bytes_used(device));
2579 	btrfs_mark_buffer_dirty(leaf);
2580 
2581 out:
2582 	btrfs_free_path(path);
2583 	return ret;
2584 }
2585 
2586 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2587 		      struct btrfs_device *device, u64 new_size)
2588 {
2589 	struct btrfs_fs_info *fs_info = device->fs_info;
2590 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2591 	struct btrfs_fs_devices *fs_devices;
2592 	u64 old_total;
2593 	u64 diff;
2594 
2595 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2596 		return -EACCES;
2597 
2598 	new_size = round_down(new_size, fs_info->sectorsize);
2599 
2600 	mutex_lock(&fs_info->chunk_mutex);
2601 	old_total = btrfs_super_total_bytes(super_copy);
2602 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2603 
2604 	if (new_size <= device->total_bytes ||
2605 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2606 		mutex_unlock(&fs_info->chunk_mutex);
2607 		return -EINVAL;
2608 	}
2609 
2610 	fs_devices = fs_info->fs_devices;
2611 
2612 	btrfs_set_super_total_bytes(super_copy,
2613 			round_down(old_total + diff, fs_info->sectorsize));
2614 	device->fs_devices->total_rw_bytes += diff;
2615 
2616 	btrfs_device_set_total_bytes(device, new_size);
2617 	btrfs_device_set_disk_total_bytes(device, new_size);
2618 	btrfs_clear_space_info_full(device->fs_info);
2619 	if (list_empty(&device->resized_list))
2620 		list_add_tail(&device->resized_list,
2621 			      &fs_devices->resized_devices);
2622 	mutex_unlock(&fs_info->chunk_mutex);
2623 
2624 	return btrfs_update_device(trans, device);
2625 }
2626 
2627 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2628 {
2629 	struct btrfs_fs_info *fs_info = trans->fs_info;
2630 	struct btrfs_root *root = fs_info->chunk_root;
2631 	int ret;
2632 	struct btrfs_path *path;
2633 	struct btrfs_key key;
2634 
2635 	path = btrfs_alloc_path();
2636 	if (!path)
2637 		return -ENOMEM;
2638 
2639 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2640 	key.offset = chunk_offset;
2641 	key.type = BTRFS_CHUNK_ITEM_KEY;
2642 
2643 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2644 	if (ret < 0)
2645 		goto out;
2646 	else if (ret > 0) { /* Logic error or corruption */
2647 		btrfs_handle_fs_error(fs_info, -ENOENT,
2648 				      "Failed lookup while freeing chunk.");
2649 		ret = -ENOENT;
2650 		goto out;
2651 	}
2652 
2653 	ret = btrfs_del_item(trans, root, path);
2654 	if (ret < 0)
2655 		btrfs_handle_fs_error(fs_info, ret,
2656 				      "Failed to delete chunk item.");
2657 out:
2658 	btrfs_free_path(path);
2659 	return ret;
2660 }
2661 
2662 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2663 {
2664 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2665 	struct btrfs_disk_key *disk_key;
2666 	struct btrfs_chunk *chunk;
2667 	u8 *ptr;
2668 	int ret = 0;
2669 	u32 num_stripes;
2670 	u32 array_size;
2671 	u32 len = 0;
2672 	u32 cur;
2673 	struct btrfs_key key;
2674 
2675 	mutex_lock(&fs_info->chunk_mutex);
2676 	array_size = btrfs_super_sys_array_size(super_copy);
2677 
2678 	ptr = super_copy->sys_chunk_array;
2679 	cur = 0;
2680 
2681 	while (cur < array_size) {
2682 		disk_key = (struct btrfs_disk_key *)ptr;
2683 		btrfs_disk_key_to_cpu(&key, disk_key);
2684 
2685 		len = sizeof(*disk_key);
2686 
2687 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2688 			chunk = (struct btrfs_chunk *)(ptr + len);
2689 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2690 			len += btrfs_chunk_item_size(num_stripes);
2691 		} else {
2692 			ret = -EIO;
2693 			break;
2694 		}
2695 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2696 		    key.offset == chunk_offset) {
2697 			memmove(ptr, ptr + len, array_size - (cur + len));
2698 			array_size -= len;
2699 			btrfs_set_super_sys_array_size(super_copy, array_size);
2700 		} else {
2701 			ptr += len;
2702 			cur += len;
2703 		}
2704 	}
2705 	mutex_unlock(&fs_info->chunk_mutex);
2706 	return ret;
2707 }
2708 
2709 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2710 					u64 logical, u64 length)
2711 {
2712 	struct extent_map_tree *em_tree;
2713 	struct extent_map *em;
2714 
2715 	em_tree = &fs_info->mapping_tree.map_tree;
2716 	read_lock(&em_tree->lock);
2717 	em = lookup_extent_mapping(em_tree, logical, length);
2718 	read_unlock(&em_tree->lock);
2719 
2720 	if (!em) {
2721 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2722 			   logical, length);
2723 		return ERR_PTR(-EINVAL);
2724 	}
2725 
2726 	if (em->start > logical || em->start + em->len < logical) {
2727 		btrfs_crit(fs_info,
2728 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2729 			   logical, length, em->start, em->start + em->len);
2730 		free_extent_map(em);
2731 		return ERR_PTR(-EINVAL);
2732 	}
2733 
2734 	/* callers are responsible for dropping em's ref. */
2735 	return em;
2736 }
2737 
2738 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2739 {
2740 	struct btrfs_fs_info *fs_info = trans->fs_info;
2741 	struct extent_map *em;
2742 	struct map_lookup *map;
2743 	u64 dev_extent_len = 0;
2744 	int i, ret = 0;
2745 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2746 
2747 	em = get_chunk_map(fs_info, chunk_offset, 1);
2748 	if (IS_ERR(em)) {
2749 		/*
2750 		 * This is a logic error, but we don't want to just rely on the
2751 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2752 		 * do anything we still error out.
2753 		 */
2754 		ASSERT(0);
2755 		return PTR_ERR(em);
2756 	}
2757 	map = em->map_lookup;
2758 	mutex_lock(&fs_info->chunk_mutex);
2759 	check_system_chunk(trans, map->type);
2760 	mutex_unlock(&fs_info->chunk_mutex);
2761 
2762 	/*
2763 	 * Take the device list mutex to prevent races with the final phase of
2764 	 * a device replace operation that replaces the device object associated
2765 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2766 	 */
2767 	mutex_lock(&fs_devices->device_list_mutex);
2768 	for (i = 0; i < map->num_stripes; i++) {
2769 		struct btrfs_device *device = map->stripes[i].dev;
2770 		ret = btrfs_free_dev_extent(trans, device,
2771 					    map->stripes[i].physical,
2772 					    &dev_extent_len);
2773 		if (ret) {
2774 			mutex_unlock(&fs_devices->device_list_mutex);
2775 			btrfs_abort_transaction(trans, ret);
2776 			goto out;
2777 		}
2778 
2779 		if (device->bytes_used > 0) {
2780 			mutex_lock(&fs_info->chunk_mutex);
2781 			btrfs_device_set_bytes_used(device,
2782 					device->bytes_used - dev_extent_len);
2783 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2784 			btrfs_clear_space_info_full(fs_info);
2785 			mutex_unlock(&fs_info->chunk_mutex);
2786 		}
2787 
2788 		if (map->stripes[i].dev) {
2789 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2790 			if (ret) {
2791 				mutex_unlock(&fs_devices->device_list_mutex);
2792 				btrfs_abort_transaction(trans, ret);
2793 				goto out;
2794 			}
2795 		}
2796 	}
2797 	mutex_unlock(&fs_devices->device_list_mutex);
2798 
2799 	ret = btrfs_free_chunk(trans, chunk_offset);
2800 	if (ret) {
2801 		btrfs_abort_transaction(trans, ret);
2802 		goto out;
2803 	}
2804 
2805 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2806 
2807 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2808 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2809 		if (ret) {
2810 			btrfs_abort_transaction(trans, ret);
2811 			goto out;
2812 		}
2813 	}
2814 
2815 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2816 	if (ret) {
2817 		btrfs_abort_transaction(trans, ret);
2818 		goto out;
2819 	}
2820 
2821 out:
2822 	/* once for us */
2823 	free_extent_map(em);
2824 	return ret;
2825 }
2826 
2827 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2828 {
2829 	struct btrfs_root *root = fs_info->chunk_root;
2830 	struct btrfs_trans_handle *trans;
2831 	int ret;
2832 
2833 	/*
2834 	 * Prevent races with automatic removal of unused block groups.
2835 	 * After we relocate and before we remove the chunk with offset
2836 	 * chunk_offset, automatic removal of the block group can kick in,
2837 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2838 	 *
2839 	 * Make sure to acquire this mutex before doing a tree search (dev
2840 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2841 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2842 	 * we release the path used to search the chunk/dev tree and before
2843 	 * the current task acquires this mutex and calls us.
2844 	 */
2845 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2846 
2847 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2848 	if (ret)
2849 		return -ENOSPC;
2850 
2851 	/* step one, relocate all the extents inside this chunk */
2852 	btrfs_scrub_pause(fs_info);
2853 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2854 	btrfs_scrub_continue(fs_info);
2855 	if (ret)
2856 		return ret;
2857 
2858 	/*
2859 	 * We add the kobjects here (and after forcing data chunk creation)
2860 	 * since relocation is the only place we'll create chunks of a new
2861 	 * type at runtime.  The only place where we'll remove the last
2862 	 * chunk of a type is the call immediately below this one.  Even
2863 	 * so, we're protected against races with the cleaner thread since
2864 	 * we're covered by the delete_unused_bgs_mutex.
2865 	 */
2866 	btrfs_add_raid_kobjects(fs_info);
2867 
2868 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2869 						     chunk_offset);
2870 	if (IS_ERR(trans)) {
2871 		ret = PTR_ERR(trans);
2872 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2873 		return ret;
2874 	}
2875 
2876 	/*
2877 	 * step two, delete the device extents and the
2878 	 * chunk tree entries
2879 	 */
2880 	ret = btrfs_remove_chunk(trans, chunk_offset);
2881 	btrfs_end_transaction(trans);
2882 	return ret;
2883 }
2884 
2885 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2886 {
2887 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2888 	struct btrfs_path *path;
2889 	struct extent_buffer *leaf;
2890 	struct btrfs_chunk *chunk;
2891 	struct btrfs_key key;
2892 	struct btrfs_key found_key;
2893 	u64 chunk_type;
2894 	bool retried = false;
2895 	int failed = 0;
2896 	int ret;
2897 
2898 	path = btrfs_alloc_path();
2899 	if (!path)
2900 		return -ENOMEM;
2901 
2902 again:
2903 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2904 	key.offset = (u64)-1;
2905 	key.type = BTRFS_CHUNK_ITEM_KEY;
2906 
2907 	while (1) {
2908 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2909 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2910 		if (ret < 0) {
2911 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2912 			goto error;
2913 		}
2914 		BUG_ON(ret == 0); /* Corruption */
2915 
2916 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2917 					  key.type);
2918 		if (ret)
2919 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2920 		if (ret < 0)
2921 			goto error;
2922 		if (ret > 0)
2923 			break;
2924 
2925 		leaf = path->nodes[0];
2926 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2927 
2928 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2929 				       struct btrfs_chunk);
2930 		chunk_type = btrfs_chunk_type(leaf, chunk);
2931 		btrfs_release_path(path);
2932 
2933 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2934 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2935 			if (ret == -ENOSPC)
2936 				failed++;
2937 			else
2938 				BUG_ON(ret);
2939 		}
2940 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2941 
2942 		if (found_key.offset == 0)
2943 			break;
2944 		key.offset = found_key.offset - 1;
2945 	}
2946 	ret = 0;
2947 	if (failed && !retried) {
2948 		failed = 0;
2949 		retried = true;
2950 		goto again;
2951 	} else if (WARN_ON(failed && retried)) {
2952 		ret = -ENOSPC;
2953 	}
2954 error:
2955 	btrfs_free_path(path);
2956 	return ret;
2957 }
2958 
2959 /*
2960  * return 1 : allocate a data chunk successfully,
2961  * return <0: errors during allocating a data chunk,
2962  * return 0 : no need to allocate a data chunk.
2963  */
2964 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2965 				      u64 chunk_offset)
2966 {
2967 	struct btrfs_block_group_cache *cache;
2968 	u64 bytes_used;
2969 	u64 chunk_type;
2970 
2971 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2972 	ASSERT(cache);
2973 	chunk_type = cache->flags;
2974 	btrfs_put_block_group(cache);
2975 
2976 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
2977 		spin_lock(&fs_info->data_sinfo->lock);
2978 		bytes_used = fs_info->data_sinfo->bytes_used;
2979 		spin_unlock(&fs_info->data_sinfo->lock);
2980 
2981 		if (!bytes_used) {
2982 			struct btrfs_trans_handle *trans;
2983 			int ret;
2984 
2985 			trans =	btrfs_join_transaction(fs_info->tree_root);
2986 			if (IS_ERR(trans))
2987 				return PTR_ERR(trans);
2988 
2989 			ret = btrfs_force_chunk_alloc(trans,
2990 						      BTRFS_BLOCK_GROUP_DATA);
2991 			btrfs_end_transaction(trans);
2992 			if (ret < 0)
2993 				return ret;
2994 
2995 			btrfs_add_raid_kobjects(fs_info);
2996 
2997 			return 1;
2998 		}
2999 	}
3000 	return 0;
3001 }
3002 
3003 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3004 			       struct btrfs_balance_control *bctl)
3005 {
3006 	struct btrfs_root *root = fs_info->tree_root;
3007 	struct btrfs_trans_handle *trans;
3008 	struct btrfs_balance_item *item;
3009 	struct btrfs_disk_balance_args disk_bargs;
3010 	struct btrfs_path *path;
3011 	struct extent_buffer *leaf;
3012 	struct btrfs_key key;
3013 	int ret, err;
3014 
3015 	path = btrfs_alloc_path();
3016 	if (!path)
3017 		return -ENOMEM;
3018 
3019 	trans = btrfs_start_transaction(root, 0);
3020 	if (IS_ERR(trans)) {
3021 		btrfs_free_path(path);
3022 		return PTR_ERR(trans);
3023 	}
3024 
3025 	key.objectid = BTRFS_BALANCE_OBJECTID;
3026 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3027 	key.offset = 0;
3028 
3029 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3030 				      sizeof(*item));
3031 	if (ret)
3032 		goto out;
3033 
3034 	leaf = path->nodes[0];
3035 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3036 
3037 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3038 
3039 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3040 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3041 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3042 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3043 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3044 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3045 
3046 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3047 
3048 	btrfs_mark_buffer_dirty(leaf);
3049 out:
3050 	btrfs_free_path(path);
3051 	err = btrfs_commit_transaction(trans);
3052 	if (err && !ret)
3053 		ret = err;
3054 	return ret;
3055 }
3056 
3057 static int del_balance_item(struct btrfs_fs_info *fs_info)
3058 {
3059 	struct btrfs_root *root = fs_info->tree_root;
3060 	struct btrfs_trans_handle *trans;
3061 	struct btrfs_path *path;
3062 	struct btrfs_key key;
3063 	int ret, err;
3064 
3065 	path = btrfs_alloc_path();
3066 	if (!path)
3067 		return -ENOMEM;
3068 
3069 	trans = btrfs_start_transaction(root, 0);
3070 	if (IS_ERR(trans)) {
3071 		btrfs_free_path(path);
3072 		return PTR_ERR(trans);
3073 	}
3074 
3075 	key.objectid = BTRFS_BALANCE_OBJECTID;
3076 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3077 	key.offset = 0;
3078 
3079 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3080 	if (ret < 0)
3081 		goto out;
3082 	if (ret > 0) {
3083 		ret = -ENOENT;
3084 		goto out;
3085 	}
3086 
3087 	ret = btrfs_del_item(trans, root, path);
3088 out:
3089 	btrfs_free_path(path);
3090 	err = btrfs_commit_transaction(trans);
3091 	if (err && !ret)
3092 		ret = err;
3093 	return ret;
3094 }
3095 
3096 /*
3097  * This is a heuristic used to reduce the number of chunks balanced on
3098  * resume after balance was interrupted.
3099  */
3100 static void update_balance_args(struct btrfs_balance_control *bctl)
3101 {
3102 	/*
3103 	 * Turn on soft mode for chunk types that were being converted.
3104 	 */
3105 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3106 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3107 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3108 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3109 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3110 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3111 
3112 	/*
3113 	 * Turn on usage filter if is not already used.  The idea is
3114 	 * that chunks that we have already balanced should be
3115 	 * reasonably full.  Don't do it for chunks that are being
3116 	 * converted - that will keep us from relocating unconverted
3117 	 * (albeit full) chunks.
3118 	 */
3119 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3120 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3121 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3122 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3123 		bctl->data.usage = 90;
3124 	}
3125 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3126 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3127 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3128 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3129 		bctl->sys.usage = 90;
3130 	}
3131 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3132 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3133 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3134 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3135 		bctl->meta.usage = 90;
3136 	}
3137 }
3138 
3139 /*
3140  * Clear the balance status in fs_info and delete the balance item from disk.
3141  */
3142 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3143 {
3144 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3145 	int ret;
3146 
3147 	BUG_ON(!fs_info->balance_ctl);
3148 
3149 	spin_lock(&fs_info->balance_lock);
3150 	fs_info->balance_ctl = NULL;
3151 	spin_unlock(&fs_info->balance_lock);
3152 
3153 	kfree(bctl);
3154 	ret = del_balance_item(fs_info);
3155 	if (ret)
3156 		btrfs_handle_fs_error(fs_info, ret, NULL);
3157 }
3158 
3159 /*
3160  * Balance filters.  Return 1 if chunk should be filtered out
3161  * (should not be balanced).
3162  */
3163 static int chunk_profiles_filter(u64 chunk_type,
3164 				 struct btrfs_balance_args *bargs)
3165 {
3166 	chunk_type = chunk_to_extended(chunk_type) &
3167 				BTRFS_EXTENDED_PROFILE_MASK;
3168 
3169 	if (bargs->profiles & chunk_type)
3170 		return 0;
3171 
3172 	return 1;
3173 }
3174 
3175 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3176 			      struct btrfs_balance_args *bargs)
3177 {
3178 	struct btrfs_block_group_cache *cache;
3179 	u64 chunk_used;
3180 	u64 user_thresh_min;
3181 	u64 user_thresh_max;
3182 	int ret = 1;
3183 
3184 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3185 	chunk_used = btrfs_block_group_used(&cache->item);
3186 
3187 	if (bargs->usage_min == 0)
3188 		user_thresh_min = 0;
3189 	else
3190 		user_thresh_min = div_factor_fine(cache->key.offset,
3191 					bargs->usage_min);
3192 
3193 	if (bargs->usage_max == 0)
3194 		user_thresh_max = 1;
3195 	else if (bargs->usage_max > 100)
3196 		user_thresh_max = cache->key.offset;
3197 	else
3198 		user_thresh_max = div_factor_fine(cache->key.offset,
3199 					bargs->usage_max);
3200 
3201 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3202 		ret = 0;
3203 
3204 	btrfs_put_block_group(cache);
3205 	return ret;
3206 }
3207 
3208 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3209 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3210 {
3211 	struct btrfs_block_group_cache *cache;
3212 	u64 chunk_used, user_thresh;
3213 	int ret = 1;
3214 
3215 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3216 	chunk_used = btrfs_block_group_used(&cache->item);
3217 
3218 	if (bargs->usage_min == 0)
3219 		user_thresh = 1;
3220 	else if (bargs->usage > 100)
3221 		user_thresh = cache->key.offset;
3222 	else
3223 		user_thresh = div_factor_fine(cache->key.offset,
3224 					      bargs->usage);
3225 
3226 	if (chunk_used < user_thresh)
3227 		ret = 0;
3228 
3229 	btrfs_put_block_group(cache);
3230 	return ret;
3231 }
3232 
3233 static int chunk_devid_filter(struct extent_buffer *leaf,
3234 			      struct btrfs_chunk *chunk,
3235 			      struct btrfs_balance_args *bargs)
3236 {
3237 	struct btrfs_stripe *stripe;
3238 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3239 	int i;
3240 
3241 	for (i = 0; i < num_stripes; i++) {
3242 		stripe = btrfs_stripe_nr(chunk, i);
3243 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3244 			return 0;
3245 	}
3246 
3247 	return 1;
3248 }
3249 
3250 /* [pstart, pend) */
3251 static int chunk_drange_filter(struct extent_buffer *leaf,
3252 			       struct btrfs_chunk *chunk,
3253 			       struct btrfs_balance_args *bargs)
3254 {
3255 	struct btrfs_stripe *stripe;
3256 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3257 	u64 stripe_offset;
3258 	u64 stripe_length;
3259 	int factor;
3260 	int i;
3261 
3262 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3263 		return 0;
3264 
3265 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3266 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3267 		factor = num_stripes / 2;
3268 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3269 		factor = num_stripes - 1;
3270 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3271 		factor = num_stripes - 2;
3272 	} else {
3273 		factor = num_stripes;
3274 	}
3275 
3276 	for (i = 0; i < num_stripes; i++) {
3277 		stripe = btrfs_stripe_nr(chunk, i);
3278 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3279 			continue;
3280 
3281 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3282 		stripe_length = btrfs_chunk_length(leaf, chunk);
3283 		stripe_length = div_u64(stripe_length, factor);
3284 
3285 		if (stripe_offset < bargs->pend &&
3286 		    stripe_offset + stripe_length > bargs->pstart)
3287 			return 0;
3288 	}
3289 
3290 	return 1;
3291 }
3292 
3293 /* [vstart, vend) */
3294 static int chunk_vrange_filter(struct extent_buffer *leaf,
3295 			       struct btrfs_chunk *chunk,
3296 			       u64 chunk_offset,
3297 			       struct btrfs_balance_args *bargs)
3298 {
3299 	if (chunk_offset < bargs->vend &&
3300 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3301 		/* at least part of the chunk is inside this vrange */
3302 		return 0;
3303 
3304 	return 1;
3305 }
3306 
3307 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3308 			       struct btrfs_chunk *chunk,
3309 			       struct btrfs_balance_args *bargs)
3310 {
3311 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3312 
3313 	if (bargs->stripes_min <= num_stripes
3314 			&& num_stripes <= bargs->stripes_max)
3315 		return 0;
3316 
3317 	return 1;
3318 }
3319 
3320 static int chunk_soft_convert_filter(u64 chunk_type,
3321 				     struct btrfs_balance_args *bargs)
3322 {
3323 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3324 		return 0;
3325 
3326 	chunk_type = chunk_to_extended(chunk_type) &
3327 				BTRFS_EXTENDED_PROFILE_MASK;
3328 
3329 	if (bargs->target == chunk_type)
3330 		return 1;
3331 
3332 	return 0;
3333 }
3334 
3335 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3336 				struct extent_buffer *leaf,
3337 				struct btrfs_chunk *chunk, u64 chunk_offset)
3338 {
3339 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3340 	struct btrfs_balance_args *bargs = NULL;
3341 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3342 
3343 	/* type filter */
3344 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3345 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3346 		return 0;
3347 	}
3348 
3349 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3350 		bargs = &bctl->data;
3351 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3352 		bargs = &bctl->sys;
3353 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3354 		bargs = &bctl->meta;
3355 
3356 	/* profiles filter */
3357 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3358 	    chunk_profiles_filter(chunk_type, bargs)) {
3359 		return 0;
3360 	}
3361 
3362 	/* usage filter */
3363 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3364 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3365 		return 0;
3366 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3367 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3368 		return 0;
3369 	}
3370 
3371 	/* devid filter */
3372 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3373 	    chunk_devid_filter(leaf, chunk, bargs)) {
3374 		return 0;
3375 	}
3376 
3377 	/* drange filter, makes sense only with devid filter */
3378 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3379 	    chunk_drange_filter(leaf, chunk, bargs)) {
3380 		return 0;
3381 	}
3382 
3383 	/* vrange filter */
3384 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3385 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3386 		return 0;
3387 	}
3388 
3389 	/* stripes filter */
3390 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3391 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3392 		return 0;
3393 	}
3394 
3395 	/* soft profile changing mode */
3396 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3397 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3398 		return 0;
3399 	}
3400 
3401 	/*
3402 	 * limited by count, must be the last filter
3403 	 */
3404 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3405 		if (bargs->limit == 0)
3406 			return 0;
3407 		else
3408 			bargs->limit--;
3409 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3410 		/*
3411 		 * Same logic as the 'limit' filter; the minimum cannot be
3412 		 * determined here because we do not have the global information
3413 		 * about the count of all chunks that satisfy the filters.
3414 		 */
3415 		if (bargs->limit_max == 0)
3416 			return 0;
3417 		else
3418 			bargs->limit_max--;
3419 	}
3420 
3421 	return 1;
3422 }
3423 
3424 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3425 {
3426 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3427 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3428 	struct btrfs_root *dev_root = fs_info->dev_root;
3429 	struct list_head *devices;
3430 	struct btrfs_device *device;
3431 	u64 old_size;
3432 	u64 size_to_free;
3433 	u64 chunk_type;
3434 	struct btrfs_chunk *chunk;
3435 	struct btrfs_path *path = NULL;
3436 	struct btrfs_key key;
3437 	struct btrfs_key found_key;
3438 	struct btrfs_trans_handle *trans;
3439 	struct extent_buffer *leaf;
3440 	int slot;
3441 	int ret;
3442 	int enospc_errors = 0;
3443 	bool counting = true;
3444 	/* The single value limit and min/max limits use the same bytes in the */
3445 	u64 limit_data = bctl->data.limit;
3446 	u64 limit_meta = bctl->meta.limit;
3447 	u64 limit_sys = bctl->sys.limit;
3448 	u32 count_data = 0;
3449 	u32 count_meta = 0;
3450 	u32 count_sys = 0;
3451 	int chunk_reserved = 0;
3452 
3453 	/* step one make some room on all the devices */
3454 	devices = &fs_info->fs_devices->devices;
3455 	list_for_each_entry(device, devices, dev_list) {
3456 		old_size = btrfs_device_get_total_bytes(device);
3457 		size_to_free = div_factor(old_size, 1);
3458 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3459 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3460 		    btrfs_device_get_total_bytes(device) -
3461 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3462 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3463 			continue;
3464 
3465 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3466 		if (ret == -ENOSPC)
3467 			break;
3468 		if (ret) {
3469 			/* btrfs_shrink_device never returns ret > 0 */
3470 			WARN_ON(ret > 0);
3471 			goto error;
3472 		}
3473 
3474 		trans = btrfs_start_transaction(dev_root, 0);
3475 		if (IS_ERR(trans)) {
3476 			ret = PTR_ERR(trans);
3477 			btrfs_info_in_rcu(fs_info,
3478 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3479 					  rcu_str_deref(device->name), ret,
3480 					  old_size, old_size - size_to_free);
3481 			goto error;
3482 		}
3483 
3484 		ret = btrfs_grow_device(trans, device, old_size);
3485 		if (ret) {
3486 			btrfs_end_transaction(trans);
3487 			/* btrfs_grow_device never returns ret > 0 */
3488 			WARN_ON(ret > 0);
3489 			btrfs_info_in_rcu(fs_info,
3490 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3491 					  rcu_str_deref(device->name), ret,
3492 					  old_size, old_size - size_to_free);
3493 			goto error;
3494 		}
3495 
3496 		btrfs_end_transaction(trans);
3497 	}
3498 
3499 	/* step two, relocate all the chunks */
3500 	path = btrfs_alloc_path();
3501 	if (!path) {
3502 		ret = -ENOMEM;
3503 		goto error;
3504 	}
3505 
3506 	/* zero out stat counters */
3507 	spin_lock(&fs_info->balance_lock);
3508 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3509 	spin_unlock(&fs_info->balance_lock);
3510 again:
3511 	if (!counting) {
3512 		/*
3513 		 * The single value limit and min/max limits use the same bytes
3514 		 * in the
3515 		 */
3516 		bctl->data.limit = limit_data;
3517 		bctl->meta.limit = limit_meta;
3518 		bctl->sys.limit = limit_sys;
3519 	}
3520 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3521 	key.offset = (u64)-1;
3522 	key.type = BTRFS_CHUNK_ITEM_KEY;
3523 
3524 	while (1) {
3525 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3526 		    atomic_read(&fs_info->balance_cancel_req)) {
3527 			ret = -ECANCELED;
3528 			goto error;
3529 		}
3530 
3531 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3532 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3533 		if (ret < 0) {
3534 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3535 			goto error;
3536 		}
3537 
3538 		/*
3539 		 * this shouldn't happen, it means the last relocate
3540 		 * failed
3541 		 */
3542 		if (ret == 0)
3543 			BUG(); /* FIXME break ? */
3544 
3545 		ret = btrfs_previous_item(chunk_root, path, 0,
3546 					  BTRFS_CHUNK_ITEM_KEY);
3547 		if (ret) {
3548 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3549 			ret = 0;
3550 			break;
3551 		}
3552 
3553 		leaf = path->nodes[0];
3554 		slot = path->slots[0];
3555 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3556 
3557 		if (found_key.objectid != key.objectid) {
3558 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3559 			break;
3560 		}
3561 
3562 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3563 		chunk_type = btrfs_chunk_type(leaf, chunk);
3564 
3565 		if (!counting) {
3566 			spin_lock(&fs_info->balance_lock);
3567 			bctl->stat.considered++;
3568 			spin_unlock(&fs_info->balance_lock);
3569 		}
3570 
3571 		ret = should_balance_chunk(fs_info, leaf, chunk,
3572 					   found_key.offset);
3573 
3574 		btrfs_release_path(path);
3575 		if (!ret) {
3576 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3577 			goto loop;
3578 		}
3579 
3580 		if (counting) {
3581 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3582 			spin_lock(&fs_info->balance_lock);
3583 			bctl->stat.expected++;
3584 			spin_unlock(&fs_info->balance_lock);
3585 
3586 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3587 				count_data++;
3588 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3589 				count_sys++;
3590 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3591 				count_meta++;
3592 
3593 			goto loop;
3594 		}
3595 
3596 		/*
3597 		 * Apply limit_min filter, no need to check if the LIMITS
3598 		 * filter is used, limit_min is 0 by default
3599 		 */
3600 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3601 					count_data < bctl->data.limit_min)
3602 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3603 					count_meta < bctl->meta.limit_min)
3604 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3605 					count_sys < bctl->sys.limit_min)) {
3606 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3607 			goto loop;
3608 		}
3609 
3610 		if (!chunk_reserved) {
3611 			/*
3612 			 * We may be relocating the only data chunk we have,
3613 			 * which could potentially end up with losing data's
3614 			 * raid profile, so lets allocate an empty one in
3615 			 * advance.
3616 			 */
3617 			ret = btrfs_may_alloc_data_chunk(fs_info,
3618 							 found_key.offset);
3619 			if (ret < 0) {
3620 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621 				goto error;
3622 			} else if (ret == 1) {
3623 				chunk_reserved = 1;
3624 			}
3625 		}
3626 
3627 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3628 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3629 		if (ret && ret != -ENOSPC)
3630 			goto error;
3631 		if (ret == -ENOSPC) {
3632 			enospc_errors++;
3633 		} else {
3634 			spin_lock(&fs_info->balance_lock);
3635 			bctl->stat.completed++;
3636 			spin_unlock(&fs_info->balance_lock);
3637 		}
3638 loop:
3639 		if (found_key.offset == 0)
3640 			break;
3641 		key.offset = found_key.offset - 1;
3642 	}
3643 
3644 	if (counting) {
3645 		btrfs_release_path(path);
3646 		counting = false;
3647 		goto again;
3648 	}
3649 error:
3650 	btrfs_free_path(path);
3651 	if (enospc_errors) {
3652 		btrfs_info(fs_info, "%d enospc errors during balance",
3653 			   enospc_errors);
3654 		if (!ret)
3655 			ret = -ENOSPC;
3656 	}
3657 
3658 	return ret;
3659 }
3660 
3661 /**
3662  * alloc_profile_is_valid - see if a given profile is valid and reduced
3663  * @flags: profile to validate
3664  * @extended: if true @flags is treated as an extended profile
3665  */
3666 static int alloc_profile_is_valid(u64 flags, int extended)
3667 {
3668 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3669 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3670 
3671 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3672 
3673 	/* 1) check that all other bits are zeroed */
3674 	if (flags & ~mask)
3675 		return 0;
3676 
3677 	/* 2) see if profile is reduced */
3678 	if (flags == 0)
3679 		return !extended; /* "0" is valid for usual profiles */
3680 
3681 	/* true if exactly one bit set */
3682 	return (flags & (flags - 1)) == 0;
3683 }
3684 
3685 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3686 {
3687 	/* cancel requested || normal exit path */
3688 	return atomic_read(&fs_info->balance_cancel_req) ||
3689 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3690 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3691 }
3692 
3693 /* Non-zero return value signifies invalidity */
3694 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3695 		u64 allowed)
3696 {
3697 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3698 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3699 		 (bctl_arg->target & ~allowed)));
3700 }
3701 
3702 /*
3703  * Should be called with balance mutexe held
3704  */
3705 int btrfs_balance(struct btrfs_fs_info *fs_info,
3706 		  struct btrfs_balance_control *bctl,
3707 		  struct btrfs_ioctl_balance_args *bargs)
3708 {
3709 	u64 meta_target, data_target;
3710 	u64 allowed;
3711 	int mixed = 0;
3712 	int ret;
3713 	u64 num_devices;
3714 	unsigned seq;
3715 
3716 	if (btrfs_fs_closing(fs_info) ||
3717 	    atomic_read(&fs_info->balance_pause_req) ||
3718 	    atomic_read(&fs_info->balance_cancel_req)) {
3719 		ret = -EINVAL;
3720 		goto out;
3721 	}
3722 
3723 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3724 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3725 		mixed = 1;
3726 
3727 	/*
3728 	 * In case of mixed groups both data and meta should be picked,
3729 	 * and identical options should be given for both of them.
3730 	 */
3731 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3732 	if (mixed && (bctl->flags & allowed)) {
3733 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3734 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3735 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3736 			btrfs_err(fs_info,
3737 	  "balance: mixed groups data and metadata options must be the same");
3738 			ret = -EINVAL;
3739 			goto out;
3740 		}
3741 	}
3742 
3743 	num_devices = fs_info->fs_devices->num_devices;
3744 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3745 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3746 		BUG_ON(num_devices < 1);
3747 		num_devices--;
3748 	}
3749 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3750 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3751 	if (num_devices > 1)
3752 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3753 	if (num_devices > 2)
3754 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3755 	if (num_devices > 3)
3756 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3757 			    BTRFS_BLOCK_GROUP_RAID6);
3758 	if (validate_convert_profile(&bctl->data, allowed)) {
3759 		int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3760 
3761 		btrfs_err(fs_info,
3762 			  "balance: invalid convert data profile %s",
3763 			  get_raid_name(index));
3764 		ret = -EINVAL;
3765 		goto out;
3766 	}
3767 	if (validate_convert_profile(&bctl->meta, allowed)) {
3768 		int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3769 
3770 		btrfs_err(fs_info,
3771 			  "balance: invalid convert metadata profile %s",
3772 			  get_raid_name(index));
3773 		ret = -EINVAL;
3774 		goto out;
3775 	}
3776 	if (validate_convert_profile(&bctl->sys, allowed)) {
3777 		int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3778 
3779 		btrfs_err(fs_info,
3780 			  "balance: invalid convert system profile %s",
3781 			  get_raid_name(index));
3782 		ret = -EINVAL;
3783 		goto out;
3784 	}
3785 
3786 	/* allow to reduce meta or sys integrity only if force set */
3787 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3788 			BTRFS_BLOCK_GROUP_RAID10 |
3789 			BTRFS_BLOCK_GROUP_RAID5 |
3790 			BTRFS_BLOCK_GROUP_RAID6;
3791 	do {
3792 		seq = read_seqbegin(&fs_info->profiles_lock);
3793 
3794 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3795 		     (fs_info->avail_system_alloc_bits & allowed) &&
3796 		     !(bctl->sys.target & allowed)) ||
3797 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3798 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3799 		     !(bctl->meta.target & allowed))) {
3800 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3801 				btrfs_info(fs_info,
3802 				"balance: force reducing metadata integrity");
3803 			} else {
3804 				btrfs_err(fs_info,
3805 	"balance: reduces metadata integrity, use --force if you want this");
3806 				ret = -EINVAL;
3807 				goto out;
3808 			}
3809 		}
3810 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3811 
3812 	/* if we're not converting, the target field is uninitialized */
3813 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3814 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3815 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3816 		bctl->data.target : fs_info->avail_data_alloc_bits;
3817 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3818 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3819 		int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3820 		int data_index = btrfs_bg_flags_to_raid_index(data_target);
3821 
3822 		btrfs_warn(fs_info,
3823 	"balance: metadata profile %s has lower redundancy than data profile %s",
3824 			   get_raid_name(meta_index), get_raid_name(data_index));
3825 	}
3826 
3827 	ret = insert_balance_item(fs_info, bctl);
3828 	if (ret && ret != -EEXIST)
3829 		goto out;
3830 
3831 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3832 		BUG_ON(ret == -EEXIST);
3833 		BUG_ON(fs_info->balance_ctl);
3834 		spin_lock(&fs_info->balance_lock);
3835 		fs_info->balance_ctl = bctl;
3836 		spin_unlock(&fs_info->balance_lock);
3837 	} else {
3838 		BUG_ON(ret != -EEXIST);
3839 		spin_lock(&fs_info->balance_lock);
3840 		update_balance_args(bctl);
3841 		spin_unlock(&fs_info->balance_lock);
3842 	}
3843 
3844 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3845 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3846 	mutex_unlock(&fs_info->balance_mutex);
3847 
3848 	ret = __btrfs_balance(fs_info);
3849 
3850 	mutex_lock(&fs_info->balance_mutex);
3851 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3852 
3853 	if (bargs) {
3854 		memset(bargs, 0, sizeof(*bargs));
3855 		btrfs_update_ioctl_balance_args(fs_info, bargs);
3856 	}
3857 
3858 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3859 	    balance_need_close(fs_info)) {
3860 		reset_balance_state(fs_info);
3861 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3862 	}
3863 
3864 	wake_up(&fs_info->balance_wait_q);
3865 
3866 	return ret;
3867 out:
3868 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3869 		reset_balance_state(fs_info);
3870 	else
3871 		kfree(bctl);
3872 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3873 
3874 	return ret;
3875 }
3876 
3877 static int balance_kthread(void *data)
3878 {
3879 	struct btrfs_fs_info *fs_info = data;
3880 	int ret = 0;
3881 
3882 	mutex_lock(&fs_info->balance_mutex);
3883 	if (fs_info->balance_ctl) {
3884 		btrfs_info(fs_info, "balance: resuming");
3885 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3886 	}
3887 	mutex_unlock(&fs_info->balance_mutex);
3888 
3889 	return ret;
3890 }
3891 
3892 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3893 {
3894 	struct task_struct *tsk;
3895 
3896 	mutex_lock(&fs_info->balance_mutex);
3897 	if (!fs_info->balance_ctl) {
3898 		mutex_unlock(&fs_info->balance_mutex);
3899 		return 0;
3900 	}
3901 	mutex_unlock(&fs_info->balance_mutex);
3902 
3903 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3904 		btrfs_info(fs_info, "balance: resume skipped");
3905 		return 0;
3906 	}
3907 
3908 	/*
3909 	 * A ro->rw remount sequence should continue with the paused balance
3910 	 * regardless of who pauses it, system or the user as of now, so set
3911 	 * the resume flag.
3912 	 */
3913 	spin_lock(&fs_info->balance_lock);
3914 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3915 	spin_unlock(&fs_info->balance_lock);
3916 
3917 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3918 	return PTR_ERR_OR_ZERO(tsk);
3919 }
3920 
3921 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3922 {
3923 	struct btrfs_balance_control *bctl;
3924 	struct btrfs_balance_item *item;
3925 	struct btrfs_disk_balance_args disk_bargs;
3926 	struct btrfs_path *path;
3927 	struct extent_buffer *leaf;
3928 	struct btrfs_key key;
3929 	int ret;
3930 
3931 	path = btrfs_alloc_path();
3932 	if (!path)
3933 		return -ENOMEM;
3934 
3935 	key.objectid = BTRFS_BALANCE_OBJECTID;
3936 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3937 	key.offset = 0;
3938 
3939 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3940 	if (ret < 0)
3941 		goto out;
3942 	if (ret > 0) { /* ret = -ENOENT; */
3943 		ret = 0;
3944 		goto out;
3945 	}
3946 
3947 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3948 	if (!bctl) {
3949 		ret = -ENOMEM;
3950 		goto out;
3951 	}
3952 
3953 	leaf = path->nodes[0];
3954 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3955 
3956 	bctl->flags = btrfs_balance_flags(leaf, item);
3957 	bctl->flags |= BTRFS_BALANCE_RESUME;
3958 
3959 	btrfs_balance_data(leaf, item, &disk_bargs);
3960 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3961 	btrfs_balance_meta(leaf, item, &disk_bargs);
3962 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3963 	btrfs_balance_sys(leaf, item, &disk_bargs);
3964 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3965 
3966 	/*
3967 	 * This should never happen, as the paused balance state is recovered
3968 	 * during mount without any chance of other exclusive ops to collide.
3969 	 *
3970 	 * This gives the exclusive op status to balance and keeps in paused
3971 	 * state until user intervention (cancel or umount). If the ownership
3972 	 * cannot be assigned, show a message but do not fail. The balance
3973 	 * is in a paused state and must have fs_info::balance_ctl properly
3974 	 * set up.
3975 	 */
3976 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3977 		btrfs_warn(fs_info,
3978 	"balance: cannot set exclusive op status, resume manually");
3979 
3980 	mutex_lock(&fs_info->balance_mutex);
3981 	BUG_ON(fs_info->balance_ctl);
3982 	spin_lock(&fs_info->balance_lock);
3983 	fs_info->balance_ctl = bctl;
3984 	spin_unlock(&fs_info->balance_lock);
3985 	mutex_unlock(&fs_info->balance_mutex);
3986 out:
3987 	btrfs_free_path(path);
3988 	return ret;
3989 }
3990 
3991 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3992 {
3993 	int ret = 0;
3994 
3995 	mutex_lock(&fs_info->balance_mutex);
3996 	if (!fs_info->balance_ctl) {
3997 		mutex_unlock(&fs_info->balance_mutex);
3998 		return -ENOTCONN;
3999 	}
4000 
4001 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4002 		atomic_inc(&fs_info->balance_pause_req);
4003 		mutex_unlock(&fs_info->balance_mutex);
4004 
4005 		wait_event(fs_info->balance_wait_q,
4006 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4007 
4008 		mutex_lock(&fs_info->balance_mutex);
4009 		/* we are good with balance_ctl ripped off from under us */
4010 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4011 		atomic_dec(&fs_info->balance_pause_req);
4012 	} else {
4013 		ret = -ENOTCONN;
4014 	}
4015 
4016 	mutex_unlock(&fs_info->balance_mutex);
4017 	return ret;
4018 }
4019 
4020 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4021 {
4022 	mutex_lock(&fs_info->balance_mutex);
4023 	if (!fs_info->balance_ctl) {
4024 		mutex_unlock(&fs_info->balance_mutex);
4025 		return -ENOTCONN;
4026 	}
4027 
4028 	/*
4029 	 * A paused balance with the item stored on disk can be resumed at
4030 	 * mount time if the mount is read-write. Otherwise it's still paused
4031 	 * and we must not allow cancelling as it deletes the item.
4032 	 */
4033 	if (sb_rdonly(fs_info->sb)) {
4034 		mutex_unlock(&fs_info->balance_mutex);
4035 		return -EROFS;
4036 	}
4037 
4038 	atomic_inc(&fs_info->balance_cancel_req);
4039 	/*
4040 	 * if we are running just wait and return, balance item is
4041 	 * deleted in btrfs_balance in this case
4042 	 */
4043 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4044 		mutex_unlock(&fs_info->balance_mutex);
4045 		wait_event(fs_info->balance_wait_q,
4046 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4047 		mutex_lock(&fs_info->balance_mutex);
4048 	} else {
4049 		mutex_unlock(&fs_info->balance_mutex);
4050 		/*
4051 		 * Lock released to allow other waiters to continue, we'll
4052 		 * reexamine the status again.
4053 		 */
4054 		mutex_lock(&fs_info->balance_mutex);
4055 
4056 		if (fs_info->balance_ctl) {
4057 			reset_balance_state(fs_info);
4058 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4059 			btrfs_info(fs_info, "balance: canceled");
4060 		}
4061 	}
4062 
4063 	BUG_ON(fs_info->balance_ctl ||
4064 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4065 	atomic_dec(&fs_info->balance_cancel_req);
4066 	mutex_unlock(&fs_info->balance_mutex);
4067 	return 0;
4068 }
4069 
4070 static int btrfs_uuid_scan_kthread(void *data)
4071 {
4072 	struct btrfs_fs_info *fs_info = data;
4073 	struct btrfs_root *root = fs_info->tree_root;
4074 	struct btrfs_key key;
4075 	struct btrfs_path *path = NULL;
4076 	int ret = 0;
4077 	struct extent_buffer *eb;
4078 	int slot;
4079 	struct btrfs_root_item root_item;
4080 	u32 item_size;
4081 	struct btrfs_trans_handle *trans = NULL;
4082 
4083 	path = btrfs_alloc_path();
4084 	if (!path) {
4085 		ret = -ENOMEM;
4086 		goto out;
4087 	}
4088 
4089 	key.objectid = 0;
4090 	key.type = BTRFS_ROOT_ITEM_KEY;
4091 	key.offset = 0;
4092 
4093 	while (1) {
4094 		ret = btrfs_search_forward(root, &key, path,
4095 				BTRFS_OLDEST_GENERATION);
4096 		if (ret) {
4097 			if (ret > 0)
4098 				ret = 0;
4099 			break;
4100 		}
4101 
4102 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4103 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4104 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4105 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4106 			goto skip;
4107 
4108 		eb = path->nodes[0];
4109 		slot = path->slots[0];
4110 		item_size = btrfs_item_size_nr(eb, slot);
4111 		if (item_size < sizeof(root_item))
4112 			goto skip;
4113 
4114 		read_extent_buffer(eb, &root_item,
4115 				   btrfs_item_ptr_offset(eb, slot),
4116 				   (int)sizeof(root_item));
4117 		if (btrfs_root_refs(&root_item) == 0)
4118 			goto skip;
4119 
4120 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4121 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4122 			if (trans)
4123 				goto update_tree;
4124 
4125 			btrfs_release_path(path);
4126 			/*
4127 			 * 1 - subvol uuid item
4128 			 * 1 - received_subvol uuid item
4129 			 */
4130 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4131 			if (IS_ERR(trans)) {
4132 				ret = PTR_ERR(trans);
4133 				break;
4134 			}
4135 			continue;
4136 		} else {
4137 			goto skip;
4138 		}
4139 update_tree:
4140 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4141 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4142 						  BTRFS_UUID_KEY_SUBVOL,
4143 						  key.objectid);
4144 			if (ret < 0) {
4145 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4146 					ret);
4147 				break;
4148 			}
4149 		}
4150 
4151 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4152 			ret = btrfs_uuid_tree_add(trans,
4153 						  root_item.received_uuid,
4154 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4155 						  key.objectid);
4156 			if (ret < 0) {
4157 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4158 					ret);
4159 				break;
4160 			}
4161 		}
4162 
4163 skip:
4164 		if (trans) {
4165 			ret = btrfs_end_transaction(trans);
4166 			trans = NULL;
4167 			if (ret)
4168 				break;
4169 		}
4170 
4171 		btrfs_release_path(path);
4172 		if (key.offset < (u64)-1) {
4173 			key.offset++;
4174 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4175 			key.offset = 0;
4176 			key.type = BTRFS_ROOT_ITEM_KEY;
4177 		} else if (key.objectid < (u64)-1) {
4178 			key.offset = 0;
4179 			key.type = BTRFS_ROOT_ITEM_KEY;
4180 			key.objectid++;
4181 		} else {
4182 			break;
4183 		}
4184 		cond_resched();
4185 	}
4186 
4187 out:
4188 	btrfs_free_path(path);
4189 	if (trans && !IS_ERR(trans))
4190 		btrfs_end_transaction(trans);
4191 	if (ret)
4192 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4193 	else
4194 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4195 	up(&fs_info->uuid_tree_rescan_sem);
4196 	return 0;
4197 }
4198 
4199 /*
4200  * Callback for btrfs_uuid_tree_iterate().
4201  * returns:
4202  * 0	check succeeded, the entry is not outdated.
4203  * < 0	if an error occurred.
4204  * > 0	if the check failed, which means the caller shall remove the entry.
4205  */
4206 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4207 				       u8 *uuid, u8 type, u64 subid)
4208 {
4209 	struct btrfs_key key;
4210 	int ret = 0;
4211 	struct btrfs_root *subvol_root;
4212 
4213 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4214 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4215 		goto out;
4216 
4217 	key.objectid = subid;
4218 	key.type = BTRFS_ROOT_ITEM_KEY;
4219 	key.offset = (u64)-1;
4220 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4221 	if (IS_ERR(subvol_root)) {
4222 		ret = PTR_ERR(subvol_root);
4223 		if (ret == -ENOENT)
4224 			ret = 1;
4225 		goto out;
4226 	}
4227 
4228 	switch (type) {
4229 	case BTRFS_UUID_KEY_SUBVOL:
4230 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4231 			ret = 1;
4232 		break;
4233 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4234 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4235 			   BTRFS_UUID_SIZE))
4236 			ret = 1;
4237 		break;
4238 	}
4239 
4240 out:
4241 	return ret;
4242 }
4243 
4244 static int btrfs_uuid_rescan_kthread(void *data)
4245 {
4246 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4247 	int ret;
4248 
4249 	/*
4250 	 * 1st step is to iterate through the existing UUID tree and
4251 	 * to delete all entries that contain outdated data.
4252 	 * 2nd step is to add all missing entries to the UUID tree.
4253 	 */
4254 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4255 	if (ret < 0) {
4256 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4257 		up(&fs_info->uuid_tree_rescan_sem);
4258 		return ret;
4259 	}
4260 	return btrfs_uuid_scan_kthread(data);
4261 }
4262 
4263 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4264 {
4265 	struct btrfs_trans_handle *trans;
4266 	struct btrfs_root *tree_root = fs_info->tree_root;
4267 	struct btrfs_root *uuid_root;
4268 	struct task_struct *task;
4269 	int ret;
4270 
4271 	/*
4272 	 * 1 - root node
4273 	 * 1 - root item
4274 	 */
4275 	trans = btrfs_start_transaction(tree_root, 2);
4276 	if (IS_ERR(trans))
4277 		return PTR_ERR(trans);
4278 
4279 	uuid_root = btrfs_create_tree(trans, fs_info,
4280 				      BTRFS_UUID_TREE_OBJECTID);
4281 	if (IS_ERR(uuid_root)) {
4282 		ret = PTR_ERR(uuid_root);
4283 		btrfs_abort_transaction(trans, ret);
4284 		btrfs_end_transaction(trans);
4285 		return ret;
4286 	}
4287 
4288 	fs_info->uuid_root = uuid_root;
4289 
4290 	ret = btrfs_commit_transaction(trans);
4291 	if (ret)
4292 		return ret;
4293 
4294 	down(&fs_info->uuid_tree_rescan_sem);
4295 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4296 	if (IS_ERR(task)) {
4297 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4298 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4299 		up(&fs_info->uuid_tree_rescan_sem);
4300 		return PTR_ERR(task);
4301 	}
4302 
4303 	return 0;
4304 }
4305 
4306 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4307 {
4308 	struct task_struct *task;
4309 
4310 	down(&fs_info->uuid_tree_rescan_sem);
4311 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4312 	if (IS_ERR(task)) {
4313 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4314 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4315 		up(&fs_info->uuid_tree_rescan_sem);
4316 		return PTR_ERR(task);
4317 	}
4318 
4319 	return 0;
4320 }
4321 
4322 /*
4323  * shrinking a device means finding all of the device extents past
4324  * the new size, and then following the back refs to the chunks.
4325  * The chunk relocation code actually frees the device extent
4326  */
4327 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4328 {
4329 	struct btrfs_fs_info *fs_info = device->fs_info;
4330 	struct btrfs_root *root = fs_info->dev_root;
4331 	struct btrfs_trans_handle *trans;
4332 	struct btrfs_dev_extent *dev_extent = NULL;
4333 	struct btrfs_path *path;
4334 	u64 length;
4335 	u64 chunk_offset;
4336 	int ret;
4337 	int slot;
4338 	int failed = 0;
4339 	bool retried = false;
4340 	bool checked_pending_chunks = false;
4341 	struct extent_buffer *l;
4342 	struct btrfs_key key;
4343 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4344 	u64 old_total = btrfs_super_total_bytes(super_copy);
4345 	u64 old_size = btrfs_device_get_total_bytes(device);
4346 	u64 diff;
4347 
4348 	new_size = round_down(new_size, fs_info->sectorsize);
4349 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4350 
4351 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4352 		return -EINVAL;
4353 
4354 	path = btrfs_alloc_path();
4355 	if (!path)
4356 		return -ENOMEM;
4357 
4358 	path->reada = READA_BACK;
4359 
4360 	mutex_lock(&fs_info->chunk_mutex);
4361 
4362 	btrfs_device_set_total_bytes(device, new_size);
4363 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4364 		device->fs_devices->total_rw_bytes -= diff;
4365 		atomic64_sub(diff, &fs_info->free_chunk_space);
4366 	}
4367 	mutex_unlock(&fs_info->chunk_mutex);
4368 
4369 again:
4370 	key.objectid = device->devid;
4371 	key.offset = (u64)-1;
4372 	key.type = BTRFS_DEV_EXTENT_KEY;
4373 
4374 	do {
4375 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4376 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4377 		if (ret < 0) {
4378 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4379 			goto done;
4380 		}
4381 
4382 		ret = btrfs_previous_item(root, path, 0, key.type);
4383 		if (ret)
4384 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4385 		if (ret < 0)
4386 			goto done;
4387 		if (ret) {
4388 			ret = 0;
4389 			btrfs_release_path(path);
4390 			break;
4391 		}
4392 
4393 		l = path->nodes[0];
4394 		slot = path->slots[0];
4395 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4396 
4397 		if (key.objectid != device->devid) {
4398 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4399 			btrfs_release_path(path);
4400 			break;
4401 		}
4402 
4403 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4404 		length = btrfs_dev_extent_length(l, dev_extent);
4405 
4406 		if (key.offset + length <= new_size) {
4407 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4408 			btrfs_release_path(path);
4409 			break;
4410 		}
4411 
4412 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4413 		btrfs_release_path(path);
4414 
4415 		/*
4416 		 * We may be relocating the only data chunk we have,
4417 		 * which could potentially end up with losing data's
4418 		 * raid profile, so lets allocate an empty one in
4419 		 * advance.
4420 		 */
4421 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4422 		if (ret < 0) {
4423 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4424 			goto done;
4425 		}
4426 
4427 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4428 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4429 		if (ret && ret != -ENOSPC)
4430 			goto done;
4431 		if (ret == -ENOSPC)
4432 			failed++;
4433 	} while (key.offset-- > 0);
4434 
4435 	if (failed && !retried) {
4436 		failed = 0;
4437 		retried = true;
4438 		goto again;
4439 	} else if (failed && retried) {
4440 		ret = -ENOSPC;
4441 		goto done;
4442 	}
4443 
4444 	/* Shrinking succeeded, else we would be at "done". */
4445 	trans = btrfs_start_transaction(root, 0);
4446 	if (IS_ERR(trans)) {
4447 		ret = PTR_ERR(trans);
4448 		goto done;
4449 	}
4450 
4451 	mutex_lock(&fs_info->chunk_mutex);
4452 
4453 	/*
4454 	 * We checked in the above loop all device extents that were already in
4455 	 * the device tree. However before we have updated the device's
4456 	 * total_bytes to the new size, we might have had chunk allocations that
4457 	 * have not complete yet (new block groups attached to transaction
4458 	 * handles), and therefore their device extents were not yet in the
4459 	 * device tree and we missed them in the loop above. So if we have any
4460 	 * pending chunk using a device extent that overlaps the device range
4461 	 * that we can not use anymore, commit the current transaction and
4462 	 * repeat the search on the device tree - this way we guarantee we will
4463 	 * not have chunks using device extents that end beyond 'new_size'.
4464 	 */
4465 	if (!checked_pending_chunks) {
4466 		u64 start = new_size;
4467 		u64 len = old_size - new_size;
4468 
4469 		if (contains_pending_extent(trans->transaction, device,
4470 					    &start, len)) {
4471 			mutex_unlock(&fs_info->chunk_mutex);
4472 			checked_pending_chunks = true;
4473 			failed = 0;
4474 			retried = false;
4475 			ret = btrfs_commit_transaction(trans);
4476 			if (ret)
4477 				goto done;
4478 			goto again;
4479 		}
4480 	}
4481 
4482 	btrfs_device_set_disk_total_bytes(device, new_size);
4483 	if (list_empty(&device->resized_list))
4484 		list_add_tail(&device->resized_list,
4485 			      &fs_info->fs_devices->resized_devices);
4486 
4487 	WARN_ON(diff > old_total);
4488 	btrfs_set_super_total_bytes(super_copy,
4489 			round_down(old_total - diff, fs_info->sectorsize));
4490 	mutex_unlock(&fs_info->chunk_mutex);
4491 
4492 	/* Now btrfs_update_device() will change the on-disk size. */
4493 	ret = btrfs_update_device(trans, device);
4494 	btrfs_end_transaction(trans);
4495 done:
4496 	btrfs_free_path(path);
4497 	if (ret) {
4498 		mutex_lock(&fs_info->chunk_mutex);
4499 		btrfs_device_set_total_bytes(device, old_size);
4500 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4501 			device->fs_devices->total_rw_bytes += diff;
4502 		atomic64_add(diff, &fs_info->free_chunk_space);
4503 		mutex_unlock(&fs_info->chunk_mutex);
4504 	}
4505 	return ret;
4506 }
4507 
4508 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4509 			   struct btrfs_key *key,
4510 			   struct btrfs_chunk *chunk, int item_size)
4511 {
4512 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4513 	struct btrfs_disk_key disk_key;
4514 	u32 array_size;
4515 	u8 *ptr;
4516 
4517 	mutex_lock(&fs_info->chunk_mutex);
4518 	array_size = btrfs_super_sys_array_size(super_copy);
4519 	if (array_size + item_size + sizeof(disk_key)
4520 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4521 		mutex_unlock(&fs_info->chunk_mutex);
4522 		return -EFBIG;
4523 	}
4524 
4525 	ptr = super_copy->sys_chunk_array + array_size;
4526 	btrfs_cpu_key_to_disk(&disk_key, key);
4527 	memcpy(ptr, &disk_key, sizeof(disk_key));
4528 	ptr += sizeof(disk_key);
4529 	memcpy(ptr, chunk, item_size);
4530 	item_size += sizeof(disk_key);
4531 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4532 	mutex_unlock(&fs_info->chunk_mutex);
4533 
4534 	return 0;
4535 }
4536 
4537 /*
4538  * sort the devices in descending order by max_avail, total_avail
4539  */
4540 static int btrfs_cmp_device_info(const void *a, const void *b)
4541 {
4542 	const struct btrfs_device_info *di_a = a;
4543 	const struct btrfs_device_info *di_b = b;
4544 
4545 	if (di_a->max_avail > di_b->max_avail)
4546 		return -1;
4547 	if (di_a->max_avail < di_b->max_avail)
4548 		return 1;
4549 	if (di_a->total_avail > di_b->total_avail)
4550 		return -1;
4551 	if (di_a->total_avail < di_b->total_avail)
4552 		return 1;
4553 	return 0;
4554 }
4555 
4556 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4557 {
4558 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4559 		return;
4560 
4561 	btrfs_set_fs_incompat(info, RAID56);
4562 }
4563 
4564 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
4565 			- sizeof(struct btrfs_chunk))		\
4566 			/ sizeof(struct btrfs_stripe) + 1)
4567 
4568 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4569 				- 2 * sizeof(struct btrfs_disk_key)	\
4570 				- 2 * sizeof(struct btrfs_chunk))	\
4571 				/ sizeof(struct btrfs_stripe) + 1)
4572 
4573 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4574 			       u64 start, u64 type)
4575 {
4576 	struct btrfs_fs_info *info = trans->fs_info;
4577 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4578 	struct btrfs_device *device;
4579 	struct map_lookup *map = NULL;
4580 	struct extent_map_tree *em_tree;
4581 	struct extent_map *em;
4582 	struct btrfs_device_info *devices_info = NULL;
4583 	u64 total_avail;
4584 	int num_stripes;	/* total number of stripes to allocate */
4585 	int data_stripes;	/* number of stripes that count for
4586 				   block group size */
4587 	int sub_stripes;	/* sub_stripes info for map */
4588 	int dev_stripes;	/* stripes per dev */
4589 	int devs_max;		/* max devs to use */
4590 	int devs_min;		/* min devs needed */
4591 	int devs_increment;	/* ndevs has to be a multiple of this */
4592 	int ncopies;		/* how many copies to data has */
4593 	int ret;
4594 	u64 max_stripe_size;
4595 	u64 max_chunk_size;
4596 	u64 stripe_size;
4597 	u64 num_bytes;
4598 	int ndevs;
4599 	int i;
4600 	int j;
4601 	int index;
4602 
4603 	BUG_ON(!alloc_profile_is_valid(type, 0));
4604 
4605 	if (list_empty(&fs_devices->alloc_list)) {
4606 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4607 			btrfs_debug(info, "%s: no writable device", __func__);
4608 		return -ENOSPC;
4609 	}
4610 
4611 	index = btrfs_bg_flags_to_raid_index(type);
4612 
4613 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4614 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4615 	devs_max = btrfs_raid_array[index].devs_max;
4616 	devs_min = btrfs_raid_array[index].devs_min;
4617 	devs_increment = btrfs_raid_array[index].devs_increment;
4618 	ncopies = btrfs_raid_array[index].ncopies;
4619 
4620 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4621 		max_stripe_size = SZ_1G;
4622 		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4623 		if (!devs_max)
4624 			devs_max = BTRFS_MAX_DEVS(info);
4625 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4626 		/* for larger filesystems, use larger metadata chunks */
4627 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4628 			max_stripe_size = SZ_1G;
4629 		else
4630 			max_stripe_size = SZ_256M;
4631 		max_chunk_size = max_stripe_size;
4632 		if (!devs_max)
4633 			devs_max = BTRFS_MAX_DEVS(info);
4634 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4635 		max_stripe_size = SZ_32M;
4636 		max_chunk_size = 2 * max_stripe_size;
4637 		if (!devs_max)
4638 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4639 	} else {
4640 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4641 		       type);
4642 		BUG_ON(1);
4643 	}
4644 
4645 	/* we don't want a chunk larger than 10% of writeable space */
4646 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4647 			     max_chunk_size);
4648 
4649 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4650 			       GFP_NOFS);
4651 	if (!devices_info)
4652 		return -ENOMEM;
4653 
4654 	/*
4655 	 * in the first pass through the devices list, we gather information
4656 	 * about the available holes on each device.
4657 	 */
4658 	ndevs = 0;
4659 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4660 		u64 max_avail;
4661 		u64 dev_offset;
4662 
4663 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4664 			WARN(1, KERN_ERR
4665 			       "BTRFS: read-only device in alloc_list\n");
4666 			continue;
4667 		}
4668 
4669 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4670 					&device->dev_state) ||
4671 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4672 			continue;
4673 
4674 		if (device->total_bytes > device->bytes_used)
4675 			total_avail = device->total_bytes - device->bytes_used;
4676 		else
4677 			total_avail = 0;
4678 
4679 		/* If there is no space on this device, skip it. */
4680 		if (total_avail == 0)
4681 			continue;
4682 
4683 		ret = find_free_dev_extent(trans, device,
4684 					   max_stripe_size * dev_stripes,
4685 					   &dev_offset, &max_avail);
4686 		if (ret && ret != -ENOSPC)
4687 			goto error;
4688 
4689 		if (ret == 0)
4690 			max_avail = max_stripe_size * dev_stripes;
4691 
4692 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4693 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4694 				btrfs_debug(info,
4695 			"%s: devid %llu has no free space, have=%llu want=%u",
4696 					    __func__, device->devid, max_avail,
4697 					    BTRFS_STRIPE_LEN * dev_stripes);
4698 			continue;
4699 		}
4700 
4701 		if (ndevs == fs_devices->rw_devices) {
4702 			WARN(1, "%s: found more than %llu devices\n",
4703 			     __func__, fs_devices->rw_devices);
4704 			break;
4705 		}
4706 		devices_info[ndevs].dev_offset = dev_offset;
4707 		devices_info[ndevs].max_avail = max_avail;
4708 		devices_info[ndevs].total_avail = total_avail;
4709 		devices_info[ndevs].dev = device;
4710 		++ndevs;
4711 	}
4712 
4713 	/*
4714 	 * now sort the devices by hole size / available space
4715 	 */
4716 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4717 	     btrfs_cmp_device_info, NULL);
4718 
4719 	/* round down to number of usable stripes */
4720 	ndevs = round_down(ndevs, devs_increment);
4721 
4722 	if (ndevs < devs_min) {
4723 		ret = -ENOSPC;
4724 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4725 			btrfs_debug(info,
4726 	"%s: not enough devices with free space: have=%d minimum required=%d",
4727 				    __func__, ndevs, devs_min);
4728 		}
4729 		goto error;
4730 	}
4731 
4732 	ndevs = min(ndevs, devs_max);
4733 
4734 	/*
4735 	 * The primary goal is to maximize the number of stripes, so use as
4736 	 * many devices as possible, even if the stripes are not maximum sized.
4737 	 *
4738 	 * The DUP profile stores more than one stripe per device, the
4739 	 * max_avail is the total size so we have to adjust.
4740 	 */
4741 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4742 	num_stripes = ndevs * dev_stripes;
4743 
4744 	/*
4745 	 * this will have to be fixed for RAID1 and RAID10 over
4746 	 * more drives
4747 	 */
4748 	data_stripes = num_stripes / ncopies;
4749 
4750 	if (type & BTRFS_BLOCK_GROUP_RAID5)
4751 		data_stripes = num_stripes - 1;
4752 
4753 	if (type & BTRFS_BLOCK_GROUP_RAID6)
4754 		data_stripes = num_stripes - 2;
4755 
4756 	/*
4757 	 * Use the number of data stripes to figure out how big this chunk
4758 	 * is really going to be in terms of logical address space,
4759 	 * and compare that answer with the max chunk size
4760 	 */
4761 	if (stripe_size * data_stripes > max_chunk_size) {
4762 		stripe_size = div_u64(max_chunk_size, data_stripes);
4763 
4764 		/* bump the answer up to a 16MB boundary */
4765 		stripe_size = round_up(stripe_size, SZ_16M);
4766 
4767 		/*
4768 		 * But don't go higher than the limits we found while searching
4769 		 * for free extents
4770 		 */
4771 		stripe_size = min(devices_info[ndevs - 1].max_avail,
4772 				  stripe_size);
4773 	}
4774 
4775 	/* align to BTRFS_STRIPE_LEN */
4776 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4777 
4778 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4779 	if (!map) {
4780 		ret = -ENOMEM;
4781 		goto error;
4782 	}
4783 	map->num_stripes = num_stripes;
4784 
4785 	for (i = 0; i < ndevs; ++i) {
4786 		for (j = 0; j < dev_stripes; ++j) {
4787 			int s = i * dev_stripes + j;
4788 			map->stripes[s].dev = devices_info[i].dev;
4789 			map->stripes[s].physical = devices_info[i].dev_offset +
4790 						   j * stripe_size;
4791 		}
4792 	}
4793 	map->stripe_len = BTRFS_STRIPE_LEN;
4794 	map->io_align = BTRFS_STRIPE_LEN;
4795 	map->io_width = BTRFS_STRIPE_LEN;
4796 	map->type = type;
4797 	map->sub_stripes = sub_stripes;
4798 
4799 	num_bytes = stripe_size * data_stripes;
4800 
4801 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4802 
4803 	em = alloc_extent_map();
4804 	if (!em) {
4805 		kfree(map);
4806 		ret = -ENOMEM;
4807 		goto error;
4808 	}
4809 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4810 	em->map_lookup = map;
4811 	em->start = start;
4812 	em->len = num_bytes;
4813 	em->block_start = 0;
4814 	em->block_len = em->len;
4815 	em->orig_block_len = stripe_size;
4816 
4817 	em_tree = &info->mapping_tree.map_tree;
4818 	write_lock(&em_tree->lock);
4819 	ret = add_extent_mapping(em_tree, em, 0);
4820 	if (ret) {
4821 		write_unlock(&em_tree->lock);
4822 		free_extent_map(em);
4823 		goto error;
4824 	}
4825 
4826 	list_add_tail(&em->list, &trans->transaction->pending_chunks);
4827 	refcount_inc(&em->refs);
4828 	write_unlock(&em_tree->lock);
4829 
4830 	ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4831 	if (ret)
4832 		goto error_del_extent;
4833 
4834 	for (i = 0; i < map->num_stripes; i++) {
4835 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4836 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4837 	}
4838 
4839 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4840 
4841 	free_extent_map(em);
4842 	check_raid56_incompat_flag(info, type);
4843 
4844 	kfree(devices_info);
4845 	return 0;
4846 
4847 error_del_extent:
4848 	write_lock(&em_tree->lock);
4849 	remove_extent_mapping(em_tree, em);
4850 	write_unlock(&em_tree->lock);
4851 
4852 	/* One for our allocation */
4853 	free_extent_map(em);
4854 	/* One for the tree reference */
4855 	free_extent_map(em);
4856 	/* One for the pending_chunks list reference */
4857 	free_extent_map(em);
4858 error:
4859 	kfree(devices_info);
4860 	return ret;
4861 }
4862 
4863 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4864 			     u64 chunk_offset, u64 chunk_size)
4865 {
4866 	struct btrfs_fs_info *fs_info = trans->fs_info;
4867 	struct btrfs_root *extent_root = fs_info->extent_root;
4868 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4869 	struct btrfs_key key;
4870 	struct btrfs_device *device;
4871 	struct btrfs_chunk *chunk;
4872 	struct btrfs_stripe *stripe;
4873 	struct extent_map *em;
4874 	struct map_lookup *map;
4875 	size_t item_size;
4876 	u64 dev_offset;
4877 	u64 stripe_size;
4878 	int i = 0;
4879 	int ret = 0;
4880 
4881 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4882 	if (IS_ERR(em))
4883 		return PTR_ERR(em);
4884 
4885 	map = em->map_lookup;
4886 	item_size = btrfs_chunk_item_size(map->num_stripes);
4887 	stripe_size = em->orig_block_len;
4888 
4889 	chunk = kzalloc(item_size, GFP_NOFS);
4890 	if (!chunk) {
4891 		ret = -ENOMEM;
4892 		goto out;
4893 	}
4894 
4895 	/*
4896 	 * Take the device list mutex to prevent races with the final phase of
4897 	 * a device replace operation that replaces the device object associated
4898 	 * with the map's stripes, because the device object's id can change
4899 	 * at any time during that final phase of the device replace operation
4900 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4901 	 */
4902 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4903 	for (i = 0; i < map->num_stripes; i++) {
4904 		device = map->stripes[i].dev;
4905 		dev_offset = map->stripes[i].physical;
4906 
4907 		ret = btrfs_update_device(trans, device);
4908 		if (ret)
4909 			break;
4910 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4911 					     dev_offset, stripe_size);
4912 		if (ret)
4913 			break;
4914 	}
4915 	if (ret) {
4916 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4917 		goto out;
4918 	}
4919 
4920 	stripe = &chunk->stripe;
4921 	for (i = 0; i < map->num_stripes; i++) {
4922 		device = map->stripes[i].dev;
4923 		dev_offset = map->stripes[i].physical;
4924 
4925 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4926 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4927 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4928 		stripe++;
4929 	}
4930 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4931 
4932 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4933 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4934 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4935 	btrfs_set_stack_chunk_type(chunk, map->type);
4936 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4937 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4938 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4939 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4940 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4941 
4942 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4943 	key.type = BTRFS_CHUNK_ITEM_KEY;
4944 	key.offset = chunk_offset;
4945 
4946 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4947 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4948 		/*
4949 		 * TODO: Cleanup of inserted chunk root in case of
4950 		 * failure.
4951 		 */
4952 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4953 	}
4954 
4955 out:
4956 	kfree(chunk);
4957 	free_extent_map(em);
4958 	return ret;
4959 }
4960 
4961 /*
4962  * Chunk allocation falls into two parts. The first part does works
4963  * that make the new allocated chunk useable, but not do any operation
4964  * that modifies the chunk tree. The second part does the works that
4965  * require modifying the chunk tree. This division is important for the
4966  * bootstrap process of adding storage to a seed btrfs.
4967  */
4968 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
4969 {
4970 	u64 chunk_offset;
4971 
4972 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
4973 	chunk_offset = find_next_chunk(trans->fs_info);
4974 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
4975 }
4976 
4977 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4978 					 struct btrfs_fs_info *fs_info)
4979 {
4980 	u64 chunk_offset;
4981 	u64 sys_chunk_offset;
4982 	u64 alloc_profile;
4983 	int ret;
4984 
4985 	chunk_offset = find_next_chunk(fs_info);
4986 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4987 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4988 	if (ret)
4989 		return ret;
4990 
4991 	sys_chunk_offset = find_next_chunk(fs_info);
4992 	alloc_profile = btrfs_system_alloc_profile(fs_info);
4993 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4994 	return ret;
4995 }
4996 
4997 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4998 {
4999 	int max_errors;
5000 
5001 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5002 			 BTRFS_BLOCK_GROUP_RAID10 |
5003 			 BTRFS_BLOCK_GROUP_RAID5 |
5004 			 BTRFS_BLOCK_GROUP_DUP)) {
5005 		max_errors = 1;
5006 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5007 		max_errors = 2;
5008 	} else {
5009 		max_errors = 0;
5010 	}
5011 
5012 	return max_errors;
5013 }
5014 
5015 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5016 {
5017 	struct extent_map *em;
5018 	struct map_lookup *map;
5019 	int readonly = 0;
5020 	int miss_ndevs = 0;
5021 	int i;
5022 
5023 	em = get_chunk_map(fs_info, chunk_offset, 1);
5024 	if (IS_ERR(em))
5025 		return 1;
5026 
5027 	map = em->map_lookup;
5028 	for (i = 0; i < map->num_stripes; i++) {
5029 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5030 					&map->stripes[i].dev->dev_state)) {
5031 			miss_ndevs++;
5032 			continue;
5033 		}
5034 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5035 					&map->stripes[i].dev->dev_state)) {
5036 			readonly = 1;
5037 			goto end;
5038 		}
5039 	}
5040 
5041 	/*
5042 	 * If the number of missing devices is larger than max errors,
5043 	 * we can not write the data into that chunk successfully, so
5044 	 * set it readonly.
5045 	 */
5046 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5047 		readonly = 1;
5048 end:
5049 	free_extent_map(em);
5050 	return readonly;
5051 }
5052 
5053 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5054 {
5055 	extent_map_tree_init(&tree->map_tree);
5056 }
5057 
5058 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5059 {
5060 	struct extent_map *em;
5061 
5062 	while (1) {
5063 		write_lock(&tree->map_tree.lock);
5064 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5065 		if (em)
5066 			remove_extent_mapping(&tree->map_tree, em);
5067 		write_unlock(&tree->map_tree.lock);
5068 		if (!em)
5069 			break;
5070 		/* once for us */
5071 		free_extent_map(em);
5072 		/* once for the tree */
5073 		free_extent_map(em);
5074 	}
5075 }
5076 
5077 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5078 {
5079 	struct extent_map *em;
5080 	struct map_lookup *map;
5081 	int ret;
5082 
5083 	em = get_chunk_map(fs_info, logical, len);
5084 	if (IS_ERR(em))
5085 		/*
5086 		 * We could return errors for these cases, but that could get
5087 		 * ugly and we'd probably do the same thing which is just not do
5088 		 * anything else and exit, so return 1 so the callers don't try
5089 		 * to use other copies.
5090 		 */
5091 		return 1;
5092 
5093 	map = em->map_lookup;
5094 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5095 		ret = map->num_stripes;
5096 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5097 		ret = map->sub_stripes;
5098 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5099 		ret = 2;
5100 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5101 		/*
5102 		 * There could be two corrupted data stripes, we need
5103 		 * to loop retry in order to rebuild the correct data.
5104 		 *
5105 		 * Fail a stripe at a time on every retry except the
5106 		 * stripe under reconstruction.
5107 		 */
5108 		ret = map->num_stripes;
5109 	else
5110 		ret = 1;
5111 	free_extent_map(em);
5112 
5113 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5114 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5115 	    fs_info->dev_replace.tgtdev)
5116 		ret++;
5117 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5118 
5119 	return ret;
5120 }
5121 
5122 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5123 				    u64 logical)
5124 {
5125 	struct extent_map *em;
5126 	struct map_lookup *map;
5127 	unsigned long len = fs_info->sectorsize;
5128 
5129 	em = get_chunk_map(fs_info, logical, len);
5130 
5131 	if (!WARN_ON(IS_ERR(em))) {
5132 		map = em->map_lookup;
5133 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5134 			len = map->stripe_len * nr_data_stripes(map);
5135 		free_extent_map(em);
5136 	}
5137 	return len;
5138 }
5139 
5140 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5141 {
5142 	struct extent_map *em;
5143 	struct map_lookup *map;
5144 	int ret = 0;
5145 
5146 	em = get_chunk_map(fs_info, logical, len);
5147 
5148 	if(!WARN_ON(IS_ERR(em))) {
5149 		map = em->map_lookup;
5150 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5151 			ret = 1;
5152 		free_extent_map(em);
5153 	}
5154 	return ret;
5155 }
5156 
5157 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5158 			    struct map_lookup *map, int first,
5159 			    int dev_replace_is_ongoing)
5160 {
5161 	int i;
5162 	int num_stripes;
5163 	int preferred_mirror;
5164 	int tolerance;
5165 	struct btrfs_device *srcdev;
5166 
5167 	ASSERT((map->type &
5168 		 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5169 
5170 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5171 		num_stripes = map->sub_stripes;
5172 	else
5173 		num_stripes = map->num_stripes;
5174 
5175 	preferred_mirror = first + current->pid % num_stripes;
5176 
5177 	if (dev_replace_is_ongoing &&
5178 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5179 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5180 		srcdev = fs_info->dev_replace.srcdev;
5181 	else
5182 		srcdev = NULL;
5183 
5184 	/*
5185 	 * try to avoid the drive that is the source drive for a
5186 	 * dev-replace procedure, only choose it if no other non-missing
5187 	 * mirror is available
5188 	 */
5189 	for (tolerance = 0; tolerance < 2; tolerance++) {
5190 		if (map->stripes[preferred_mirror].dev->bdev &&
5191 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5192 			return preferred_mirror;
5193 		for (i = first; i < first + num_stripes; i++) {
5194 			if (map->stripes[i].dev->bdev &&
5195 			    (tolerance || map->stripes[i].dev != srcdev))
5196 				return i;
5197 		}
5198 	}
5199 
5200 	/* we couldn't find one that doesn't fail.  Just return something
5201 	 * and the io error handling code will clean up eventually
5202 	 */
5203 	return preferred_mirror;
5204 }
5205 
5206 static inline int parity_smaller(u64 a, u64 b)
5207 {
5208 	return a > b;
5209 }
5210 
5211 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5212 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5213 {
5214 	struct btrfs_bio_stripe s;
5215 	int i;
5216 	u64 l;
5217 	int again = 1;
5218 
5219 	while (again) {
5220 		again = 0;
5221 		for (i = 0; i < num_stripes - 1; i++) {
5222 			if (parity_smaller(bbio->raid_map[i],
5223 					   bbio->raid_map[i+1])) {
5224 				s = bbio->stripes[i];
5225 				l = bbio->raid_map[i];
5226 				bbio->stripes[i] = bbio->stripes[i+1];
5227 				bbio->raid_map[i] = bbio->raid_map[i+1];
5228 				bbio->stripes[i+1] = s;
5229 				bbio->raid_map[i+1] = l;
5230 
5231 				again = 1;
5232 			}
5233 		}
5234 	}
5235 }
5236 
5237 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5238 {
5239 	struct btrfs_bio *bbio = kzalloc(
5240 		 /* the size of the btrfs_bio */
5241 		sizeof(struct btrfs_bio) +
5242 		/* plus the variable array for the stripes */
5243 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5244 		/* plus the variable array for the tgt dev */
5245 		sizeof(int) * (real_stripes) +
5246 		/*
5247 		 * plus the raid_map, which includes both the tgt dev
5248 		 * and the stripes
5249 		 */
5250 		sizeof(u64) * (total_stripes),
5251 		GFP_NOFS|__GFP_NOFAIL);
5252 
5253 	atomic_set(&bbio->error, 0);
5254 	refcount_set(&bbio->refs, 1);
5255 
5256 	return bbio;
5257 }
5258 
5259 void btrfs_get_bbio(struct btrfs_bio *bbio)
5260 {
5261 	WARN_ON(!refcount_read(&bbio->refs));
5262 	refcount_inc(&bbio->refs);
5263 }
5264 
5265 void btrfs_put_bbio(struct btrfs_bio *bbio)
5266 {
5267 	if (!bbio)
5268 		return;
5269 	if (refcount_dec_and_test(&bbio->refs))
5270 		kfree(bbio);
5271 }
5272 
5273 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5274 /*
5275  * Please note that, discard won't be sent to target device of device
5276  * replace.
5277  */
5278 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5279 					 u64 logical, u64 length,
5280 					 struct btrfs_bio **bbio_ret)
5281 {
5282 	struct extent_map *em;
5283 	struct map_lookup *map;
5284 	struct btrfs_bio *bbio;
5285 	u64 offset;
5286 	u64 stripe_nr;
5287 	u64 stripe_nr_end;
5288 	u64 stripe_end_offset;
5289 	u64 stripe_cnt;
5290 	u64 stripe_len;
5291 	u64 stripe_offset;
5292 	u64 num_stripes;
5293 	u32 stripe_index;
5294 	u32 factor = 0;
5295 	u32 sub_stripes = 0;
5296 	u64 stripes_per_dev = 0;
5297 	u32 remaining_stripes = 0;
5298 	u32 last_stripe = 0;
5299 	int ret = 0;
5300 	int i;
5301 
5302 	/* discard always return a bbio */
5303 	ASSERT(bbio_ret);
5304 
5305 	em = get_chunk_map(fs_info, logical, length);
5306 	if (IS_ERR(em))
5307 		return PTR_ERR(em);
5308 
5309 	map = em->map_lookup;
5310 	/* we don't discard raid56 yet */
5311 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5312 		ret = -EOPNOTSUPP;
5313 		goto out;
5314 	}
5315 
5316 	offset = logical - em->start;
5317 	length = min_t(u64, em->len - offset, length);
5318 
5319 	stripe_len = map->stripe_len;
5320 	/*
5321 	 * stripe_nr counts the total number of stripes we have to stride
5322 	 * to get to this block
5323 	 */
5324 	stripe_nr = div64_u64(offset, stripe_len);
5325 
5326 	/* stripe_offset is the offset of this block in its stripe */
5327 	stripe_offset = offset - stripe_nr * stripe_len;
5328 
5329 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5330 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5331 	stripe_cnt = stripe_nr_end - stripe_nr;
5332 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5333 			    (offset + length);
5334 	/*
5335 	 * after this, stripe_nr is the number of stripes on this
5336 	 * device we have to walk to find the data, and stripe_index is
5337 	 * the number of our device in the stripe array
5338 	 */
5339 	num_stripes = 1;
5340 	stripe_index = 0;
5341 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5342 			 BTRFS_BLOCK_GROUP_RAID10)) {
5343 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5344 			sub_stripes = 1;
5345 		else
5346 			sub_stripes = map->sub_stripes;
5347 
5348 		factor = map->num_stripes / sub_stripes;
5349 		num_stripes = min_t(u64, map->num_stripes,
5350 				    sub_stripes * stripe_cnt);
5351 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5352 		stripe_index *= sub_stripes;
5353 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5354 					      &remaining_stripes);
5355 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5356 		last_stripe *= sub_stripes;
5357 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5358 				BTRFS_BLOCK_GROUP_DUP)) {
5359 		num_stripes = map->num_stripes;
5360 	} else {
5361 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5362 					&stripe_index);
5363 	}
5364 
5365 	bbio = alloc_btrfs_bio(num_stripes, 0);
5366 	if (!bbio) {
5367 		ret = -ENOMEM;
5368 		goto out;
5369 	}
5370 
5371 	for (i = 0; i < num_stripes; i++) {
5372 		bbio->stripes[i].physical =
5373 			map->stripes[stripe_index].physical +
5374 			stripe_offset + stripe_nr * map->stripe_len;
5375 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5376 
5377 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5378 				 BTRFS_BLOCK_GROUP_RAID10)) {
5379 			bbio->stripes[i].length = stripes_per_dev *
5380 				map->stripe_len;
5381 
5382 			if (i / sub_stripes < remaining_stripes)
5383 				bbio->stripes[i].length +=
5384 					map->stripe_len;
5385 
5386 			/*
5387 			 * Special for the first stripe and
5388 			 * the last stripe:
5389 			 *
5390 			 * |-------|...|-------|
5391 			 *     |----------|
5392 			 *    off     end_off
5393 			 */
5394 			if (i < sub_stripes)
5395 				bbio->stripes[i].length -=
5396 					stripe_offset;
5397 
5398 			if (stripe_index >= last_stripe &&
5399 			    stripe_index <= (last_stripe +
5400 					     sub_stripes - 1))
5401 				bbio->stripes[i].length -=
5402 					stripe_end_offset;
5403 
5404 			if (i == sub_stripes - 1)
5405 				stripe_offset = 0;
5406 		} else {
5407 			bbio->stripes[i].length = length;
5408 		}
5409 
5410 		stripe_index++;
5411 		if (stripe_index == map->num_stripes) {
5412 			stripe_index = 0;
5413 			stripe_nr++;
5414 		}
5415 	}
5416 
5417 	*bbio_ret = bbio;
5418 	bbio->map_type = map->type;
5419 	bbio->num_stripes = num_stripes;
5420 out:
5421 	free_extent_map(em);
5422 	return ret;
5423 }
5424 
5425 /*
5426  * In dev-replace case, for repair case (that's the only case where the mirror
5427  * is selected explicitly when calling btrfs_map_block), blocks left of the
5428  * left cursor can also be read from the target drive.
5429  *
5430  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5431  * array of stripes.
5432  * For READ, it also needs to be supported using the same mirror number.
5433  *
5434  * If the requested block is not left of the left cursor, EIO is returned. This
5435  * can happen because btrfs_num_copies() returns one more in the dev-replace
5436  * case.
5437  */
5438 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5439 					 u64 logical, u64 length,
5440 					 u64 srcdev_devid, int *mirror_num,
5441 					 u64 *physical)
5442 {
5443 	struct btrfs_bio *bbio = NULL;
5444 	int num_stripes;
5445 	int index_srcdev = 0;
5446 	int found = 0;
5447 	u64 physical_of_found = 0;
5448 	int i;
5449 	int ret = 0;
5450 
5451 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5452 				logical, &length, &bbio, 0, 0);
5453 	if (ret) {
5454 		ASSERT(bbio == NULL);
5455 		return ret;
5456 	}
5457 
5458 	num_stripes = bbio->num_stripes;
5459 	if (*mirror_num > num_stripes) {
5460 		/*
5461 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5462 		 * that means that the requested area is not left of the left
5463 		 * cursor
5464 		 */
5465 		btrfs_put_bbio(bbio);
5466 		return -EIO;
5467 	}
5468 
5469 	/*
5470 	 * process the rest of the function using the mirror_num of the source
5471 	 * drive. Therefore look it up first.  At the end, patch the device
5472 	 * pointer to the one of the target drive.
5473 	 */
5474 	for (i = 0; i < num_stripes; i++) {
5475 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5476 			continue;
5477 
5478 		/*
5479 		 * In case of DUP, in order to keep it simple, only add the
5480 		 * mirror with the lowest physical address
5481 		 */
5482 		if (found &&
5483 		    physical_of_found <= bbio->stripes[i].physical)
5484 			continue;
5485 
5486 		index_srcdev = i;
5487 		found = 1;
5488 		physical_of_found = bbio->stripes[i].physical;
5489 	}
5490 
5491 	btrfs_put_bbio(bbio);
5492 
5493 	ASSERT(found);
5494 	if (!found)
5495 		return -EIO;
5496 
5497 	*mirror_num = index_srcdev + 1;
5498 	*physical = physical_of_found;
5499 	return ret;
5500 }
5501 
5502 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5503 				      struct btrfs_bio **bbio_ret,
5504 				      struct btrfs_dev_replace *dev_replace,
5505 				      int *num_stripes_ret, int *max_errors_ret)
5506 {
5507 	struct btrfs_bio *bbio = *bbio_ret;
5508 	u64 srcdev_devid = dev_replace->srcdev->devid;
5509 	int tgtdev_indexes = 0;
5510 	int num_stripes = *num_stripes_ret;
5511 	int max_errors = *max_errors_ret;
5512 	int i;
5513 
5514 	if (op == BTRFS_MAP_WRITE) {
5515 		int index_where_to_add;
5516 
5517 		/*
5518 		 * duplicate the write operations while the dev replace
5519 		 * procedure is running. Since the copying of the old disk to
5520 		 * the new disk takes place at run time while the filesystem is
5521 		 * mounted writable, the regular write operations to the old
5522 		 * disk have to be duplicated to go to the new disk as well.
5523 		 *
5524 		 * Note that device->missing is handled by the caller, and that
5525 		 * the write to the old disk is already set up in the stripes
5526 		 * array.
5527 		 */
5528 		index_where_to_add = num_stripes;
5529 		for (i = 0; i < num_stripes; i++) {
5530 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5531 				/* write to new disk, too */
5532 				struct btrfs_bio_stripe *new =
5533 					bbio->stripes + index_where_to_add;
5534 				struct btrfs_bio_stripe *old =
5535 					bbio->stripes + i;
5536 
5537 				new->physical = old->physical;
5538 				new->length = old->length;
5539 				new->dev = dev_replace->tgtdev;
5540 				bbio->tgtdev_map[i] = index_where_to_add;
5541 				index_where_to_add++;
5542 				max_errors++;
5543 				tgtdev_indexes++;
5544 			}
5545 		}
5546 		num_stripes = index_where_to_add;
5547 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5548 		int index_srcdev = 0;
5549 		int found = 0;
5550 		u64 physical_of_found = 0;
5551 
5552 		/*
5553 		 * During the dev-replace procedure, the target drive can also
5554 		 * be used to read data in case it is needed to repair a corrupt
5555 		 * block elsewhere. This is possible if the requested area is
5556 		 * left of the left cursor. In this area, the target drive is a
5557 		 * full copy of the source drive.
5558 		 */
5559 		for (i = 0; i < num_stripes; i++) {
5560 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5561 				/*
5562 				 * In case of DUP, in order to keep it simple,
5563 				 * only add the mirror with the lowest physical
5564 				 * address
5565 				 */
5566 				if (found &&
5567 				    physical_of_found <=
5568 				     bbio->stripes[i].physical)
5569 					continue;
5570 				index_srcdev = i;
5571 				found = 1;
5572 				physical_of_found = bbio->stripes[i].physical;
5573 			}
5574 		}
5575 		if (found) {
5576 			struct btrfs_bio_stripe *tgtdev_stripe =
5577 				bbio->stripes + num_stripes;
5578 
5579 			tgtdev_stripe->physical = physical_of_found;
5580 			tgtdev_stripe->length =
5581 				bbio->stripes[index_srcdev].length;
5582 			tgtdev_stripe->dev = dev_replace->tgtdev;
5583 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5584 
5585 			tgtdev_indexes++;
5586 			num_stripes++;
5587 		}
5588 	}
5589 
5590 	*num_stripes_ret = num_stripes;
5591 	*max_errors_ret = max_errors;
5592 	bbio->num_tgtdevs = tgtdev_indexes;
5593 	*bbio_ret = bbio;
5594 }
5595 
5596 static bool need_full_stripe(enum btrfs_map_op op)
5597 {
5598 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5599 }
5600 
5601 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5602 			     enum btrfs_map_op op,
5603 			     u64 logical, u64 *length,
5604 			     struct btrfs_bio **bbio_ret,
5605 			     int mirror_num, int need_raid_map)
5606 {
5607 	struct extent_map *em;
5608 	struct map_lookup *map;
5609 	u64 offset;
5610 	u64 stripe_offset;
5611 	u64 stripe_nr;
5612 	u64 stripe_len;
5613 	u32 stripe_index;
5614 	int i;
5615 	int ret = 0;
5616 	int num_stripes;
5617 	int max_errors = 0;
5618 	int tgtdev_indexes = 0;
5619 	struct btrfs_bio *bbio = NULL;
5620 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5621 	int dev_replace_is_ongoing = 0;
5622 	int num_alloc_stripes;
5623 	int patch_the_first_stripe_for_dev_replace = 0;
5624 	u64 physical_to_patch_in_first_stripe = 0;
5625 	u64 raid56_full_stripe_start = (u64)-1;
5626 
5627 	if (op == BTRFS_MAP_DISCARD)
5628 		return __btrfs_map_block_for_discard(fs_info, logical,
5629 						     *length, bbio_ret);
5630 
5631 	em = get_chunk_map(fs_info, logical, *length);
5632 	if (IS_ERR(em))
5633 		return PTR_ERR(em);
5634 
5635 	map = em->map_lookup;
5636 	offset = logical - em->start;
5637 
5638 	stripe_len = map->stripe_len;
5639 	stripe_nr = offset;
5640 	/*
5641 	 * stripe_nr counts the total number of stripes we have to stride
5642 	 * to get to this block
5643 	 */
5644 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5645 
5646 	stripe_offset = stripe_nr * stripe_len;
5647 	if (offset < stripe_offset) {
5648 		btrfs_crit(fs_info,
5649 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5650 			   stripe_offset, offset, em->start, logical,
5651 			   stripe_len);
5652 		free_extent_map(em);
5653 		return -EINVAL;
5654 	}
5655 
5656 	/* stripe_offset is the offset of this block in its stripe*/
5657 	stripe_offset = offset - stripe_offset;
5658 
5659 	/* if we're here for raid56, we need to know the stripe aligned start */
5660 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5661 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5662 		raid56_full_stripe_start = offset;
5663 
5664 		/* allow a write of a full stripe, but make sure we don't
5665 		 * allow straddling of stripes
5666 		 */
5667 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5668 				full_stripe_len);
5669 		raid56_full_stripe_start *= full_stripe_len;
5670 	}
5671 
5672 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5673 		u64 max_len;
5674 		/* For writes to RAID[56], allow a full stripeset across all disks.
5675 		   For other RAID types and for RAID[56] reads, just allow a single
5676 		   stripe (on a single disk). */
5677 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5678 		    (op == BTRFS_MAP_WRITE)) {
5679 			max_len = stripe_len * nr_data_stripes(map) -
5680 				(offset - raid56_full_stripe_start);
5681 		} else {
5682 			/* we limit the length of each bio to what fits in a stripe */
5683 			max_len = stripe_len - stripe_offset;
5684 		}
5685 		*length = min_t(u64, em->len - offset, max_len);
5686 	} else {
5687 		*length = em->len - offset;
5688 	}
5689 
5690 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5691 	   it cares about is the length */
5692 	if (!bbio_ret)
5693 		goto out;
5694 
5695 	btrfs_dev_replace_read_lock(dev_replace);
5696 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5697 	if (!dev_replace_is_ongoing)
5698 		btrfs_dev_replace_read_unlock(dev_replace);
5699 	else
5700 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5701 
5702 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5703 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5704 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5705 						    dev_replace->srcdev->devid,
5706 						    &mirror_num,
5707 					    &physical_to_patch_in_first_stripe);
5708 		if (ret)
5709 			goto out;
5710 		else
5711 			patch_the_first_stripe_for_dev_replace = 1;
5712 	} else if (mirror_num > map->num_stripes) {
5713 		mirror_num = 0;
5714 	}
5715 
5716 	num_stripes = 1;
5717 	stripe_index = 0;
5718 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5719 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5720 				&stripe_index);
5721 		if (!need_full_stripe(op))
5722 			mirror_num = 1;
5723 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5724 		if (need_full_stripe(op))
5725 			num_stripes = map->num_stripes;
5726 		else if (mirror_num)
5727 			stripe_index = mirror_num - 1;
5728 		else {
5729 			stripe_index = find_live_mirror(fs_info, map, 0,
5730 					    dev_replace_is_ongoing);
5731 			mirror_num = stripe_index + 1;
5732 		}
5733 
5734 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5735 		if (need_full_stripe(op)) {
5736 			num_stripes = map->num_stripes;
5737 		} else if (mirror_num) {
5738 			stripe_index = mirror_num - 1;
5739 		} else {
5740 			mirror_num = 1;
5741 		}
5742 
5743 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5744 		u32 factor = map->num_stripes / map->sub_stripes;
5745 
5746 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5747 		stripe_index *= map->sub_stripes;
5748 
5749 		if (need_full_stripe(op))
5750 			num_stripes = map->sub_stripes;
5751 		else if (mirror_num)
5752 			stripe_index += mirror_num - 1;
5753 		else {
5754 			int old_stripe_index = stripe_index;
5755 			stripe_index = find_live_mirror(fs_info, map,
5756 					      stripe_index,
5757 					      dev_replace_is_ongoing);
5758 			mirror_num = stripe_index - old_stripe_index + 1;
5759 		}
5760 
5761 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5762 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5763 			/* push stripe_nr back to the start of the full stripe */
5764 			stripe_nr = div64_u64(raid56_full_stripe_start,
5765 					stripe_len * nr_data_stripes(map));
5766 
5767 			/* RAID[56] write or recovery. Return all stripes */
5768 			num_stripes = map->num_stripes;
5769 			max_errors = nr_parity_stripes(map);
5770 
5771 			*length = map->stripe_len;
5772 			stripe_index = 0;
5773 			stripe_offset = 0;
5774 		} else {
5775 			/*
5776 			 * Mirror #0 or #1 means the original data block.
5777 			 * Mirror #2 is RAID5 parity block.
5778 			 * Mirror #3 is RAID6 Q block.
5779 			 */
5780 			stripe_nr = div_u64_rem(stripe_nr,
5781 					nr_data_stripes(map), &stripe_index);
5782 			if (mirror_num > 1)
5783 				stripe_index = nr_data_stripes(map) +
5784 						mirror_num - 2;
5785 
5786 			/* We distribute the parity blocks across stripes */
5787 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5788 					&stripe_index);
5789 			if (!need_full_stripe(op) && mirror_num <= 1)
5790 				mirror_num = 1;
5791 		}
5792 	} else {
5793 		/*
5794 		 * after this, stripe_nr is the number of stripes on this
5795 		 * device we have to walk to find the data, and stripe_index is
5796 		 * the number of our device in the stripe array
5797 		 */
5798 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5799 				&stripe_index);
5800 		mirror_num = stripe_index + 1;
5801 	}
5802 	if (stripe_index >= map->num_stripes) {
5803 		btrfs_crit(fs_info,
5804 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5805 			   stripe_index, map->num_stripes);
5806 		ret = -EINVAL;
5807 		goto out;
5808 	}
5809 
5810 	num_alloc_stripes = num_stripes;
5811 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5812 		if (op == BTRFS_MAP_WRITE)
5813 			num_alloc_stripes <<= 1;
5814 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5815 			num_alloc_stripes++;
5816 		tgtdev_indexes = num_stripes;
5817 	}
5818 
5819 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5820 	if (!bbio) {
5821 		ret = -ENOMEM;
5822 		goto out;
5823 	}
5824 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5825 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5826 
5827 	/* build raid_map */
5828 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5829 	    (need_full_stripe(op) || mirror_num > 1)) {
5830 		u64 tmp;
5831 		unsigned rot;
5832 
5833 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5834 				 sizeof(struct btrfs_bio_stripe) *
5835 				 num_alloc_stripes +
5836 				 sizeof(int) * tgtdev_indexes);
5837 
5838 		/* Work out the disk rotation on this stripe-set */
5839 		div_u64_rem(stripe_nr, num_stripes, &rot);
5840 
5841 		/* Fill in the logical address of each stripe */
5842 		tmp = stripe_nr * nr_data_stripes(map);
5843 		for (i = 0; i < nr_data_stripes(map); i++)
5844 			bbio->raid_map[(i+rot) % num_stripes] =
5845 				em->start + (tmp + i) * map->stripe_len;
5846 
5847 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5848 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5849 			bbio->raid_map[(i+rot+1) % num_stripes] =
5850 				RAID6_Q_STRIPE;
5851 	}
5852 
5853 
5854 	for (i = 0; i < num_stripes; i++) {
5855 		bbio->stripes[i].physical =
5856 			map->stripes[stripe_index].physical +
5857 			stripe_offset +
5858 			stripe_nr * map->stripe_len;
5859 		bbio->stripes[i].dev =
5860 			map->stripes[stripe_index].dev;
5861 		stripe_index++;
5862 	}
5863 
5864 	if (need_full_stripe(op))
5865 		max_errors = btrfs_chunk_max_errors(map);
5866 
5867 	if (bbio->raid_map)
5868 		sort_parity_stripes(bbio, num_stripes);
5869 
5870 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5871 	    need_full_stripe(op)) {
5872 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5873 					  &max_errors);
5874 	}
5875 
5876 	*bbio_ret = bbio;
5877 	bbio->map_type = map->type;
5878 	bbio->num_stripes = num_stripes;
5879 	bbio->max_errors = max_errors;
5880 	bbio->mirror_num = mirror_num;
5881 
5882 	/*
5883 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5884 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5885 	 * available as a mirror
5886 	 */
5887 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5888 		WARN_ON(num_stripes > 1);
5889 		bbio->stripes[0].dev = dev_replace->tgtdev;
5890 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5891 		bbio->mirror_num = map->num_stripes + 1;
5892 	}
5893 out:
5894 	if (dev_replace_is_ongoing) {
5895 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5896 		btrfs_dev_replace_read_unlock(dev_replace);
5897 	}
5898 	free_extent_map(em);
5899 	return ret;
5900 }
5901 
5902 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5903 		      u64 logical, u64 *length,
5904 		      struct btrfs_bio **bbio_ret, int mirror_num)
5905 {
5906 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5907 				 mirror_num, 0);
5908 }
5909 
5910 /* For Scrub/replace */
5911 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5912 		     u64 logical, u64 *length,
5913 		     struct btrfs_bio **bbio_ret)
5914 {
5915 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5916 }
5917 
5918 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5919 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5920 {
5921 	struct extent_map *em;
5922 	struct map_lookup *map;
5923 	u64 *buf;
5924 	u64 bytenr;
5925 	u64 length;
5926 	u64 stripe_nr;
5927 	u64 rmap_len;
5928 	int i, j, nr = 0;
5929 
5930 	em = get_chunk_map(fs_info, chunk_start, 1);
5931 	if (IS_ERR(em))
5932 		return -EIO;
5933 
5934 	map = em->map_lookup;
5935 	length = em->len;
5936 	rmap_len = map->stripe_len;
5937 
5938 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5939 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5940 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5941 		length = div_u64(length, map->num_stripes);
5942 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5943 		length = div_u64(length, nr_data_stripes(map));
5944 		rmap_len = map->stripe_len * nr_data_stripes(map);
5945 	}
5946 
5947 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5948 	BUG_ON(!buf); /* -ENOMEM */
5949 
5950 	for (i = 0; i < map->num_stripes; i++) {
5951 		if (map->stripes[i].physical > physical ||
5952 		    map->stripes[i].physical + length <= physical)
5953 			continue;
5954 
5955 		stripe_nr = physical - map->stripes[i].physical;
5956 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5957 
5958 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5959 			stripe_nr = stripe_nr * map->num_stripes + i;
5960 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5961 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5962 			stripe_nr = stripe_nr * map->num_stripes + i;
5963 		} /* else if RAID[56], multiply by nr_data_stripes().
5964 		   * Alternatively, just use rmap_len below instead of
5965 		   * map->stripe_len */
5966 
5967 		bytenr = chunk_start + stripe_nr * rmap_len;
5968 		WARN_ON(nr >= map->num_stripes);
5969 		for (j = 0; j < nr; j++) {
5970 			if (buf[j] == bytenr)
5971 				break;
5972 		}
5973 		if (j == nr) {
5974 			WARN_ON(nr >= map->num_stripes);
5975 			buf[nr++] = bytenr;
5976 		}
5977 	}
5978 
5979 	*logical = buf;
5980 	*naddrs = nr;
5981 	*stripe_len = rmap_len;
5982 
5983 	free_extent_map(em);
5984 	return 0;
5985 }
5986 
5987 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5988 {
5989 	bio->bi_private = bbio->private;
5990 	bio->bi_end_io = bbio->end_io;
5991 	bio_endio(bio);
5992 
5993 	btrfs_put_bbio(bbio);
5994 }
5995 
5996 static void btrfs_end_bio(struct bio *bio)
5997 {
5998 	struct btrfs_bio *bbio = bio->bi_private;
5999 	int is_orig_bio = 0;
6000 
6001 	if (bio->bi_status) {
6002 		atomic_inc(&bbio->error);
6003 		if (bio->bi_status == BLK_STS_IOERR ||
6004 		    bio->bi_status == BLK_STS_TARGET) {
6005 			unsigned int stripe_index =
6006 				btrfs_io_bio(bio)->stripe_index;
6007 			struct btrfs_device *dev;
6008 
6009 			BUG_ON(stripe_index >= bbio->num_stripes);
6010 			dev = bbio->stripes[stripe_index].dev;
6011 			if (dev->bdev) {
6012 				if (bio_op(bio) == REQ_OP_WRITE)
6013 					btrfs_dev_stat_inc_and_print(dev,
6014 						BTRFS_DEV_STAT_WRITE_ERRS);
6015 				else
6016 					btrfs_dev_stat_inc_and_print(dev,
6017 						BTRFS_DEV_STAT_READ_ERRS);
6018 				if (bio->bi_opf & REQ_PREFLUSH)
6019 					btrfs_dev_stat_inc_and_print(dev,
6020 						BTRFS_DEV_STAT_FLUSH_ERRS);
6021 			}
6022 		}
6023 	}
6024 
6025 	if (bio == bbio->orig_bio)
6026 		is_orig_bio = 1;
6027 
6028 	btrfs_bio_counter_dec(bbio->fs_info);
6029 
6030 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6031 		if (!is_orig_bio) {
6032 			bio_put(bio);
6033 			bio = bbio->orig_bio;
6034 		}
6035 
6036 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6037 		/* only send an error to the higher layers if it is
6038 		 * beyond the tolerance of the btrfs bio
6039 		 */
6040 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6041 			bio->bi_status = BLK_STS_IOERR;
6042 		} else {
6043 			/*
6044 			 * this bio is actually up to date, we didn't
6045 			 * go over the max number of errors
6046 			 */
6047 			bio->bi_status = BLK_STS_OK;
6048 		}
6049 
6050 		btrfs_end_bbio(bbio, bio);
6051 	} else if (!is_orig_bio) {
6052 		bio_put(bio);
6053 	}
6054 }
6055 
6056 /*
6057  * see run_scheduled_bios for a description of why bios are collected for
6058  * async submit.
6059  *
6060  * This will add one bio to the pending list for a device and make sure
6061  * the work struct is scheduled.
6062  */
6063 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6064 					struct bio *bio)
6065 {
6066 	struct btrfs_fs_info *fs_info = device->fs_info;
6067 	int should_queue = 1;
6068 	struct btrfs_pending_bios *pending_bios;
6069 
6070 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6071 	    !device->bdev) {
6072 		bio_io_error(bio);
6073 		return;
6074 	}
6075 
6076 	/* don't bother with additional async steps for reads, right now */
6077 	if (bio_op(bio) == REQ_OP_READ) {
6078 		btrfsic_submit_bio(bio);
6079 		return;
6080 	}
6081 
6082 	WARN_ON(bio->bi_next);
6083 	bio->bi_next = NULL;
6084 
6085 	spin_lock(&device->io_lock);
6086 	if (op_is_sync(bio->bi_opf))
6087 		pending_bios = &device->pending_sync_bios;
6088 	else
6089 		pending_bios = &device->pending_bios;
6090 
6091 	if (pending_bios->tail)
6092 		pending_bios->tail->bi_next = bio;
6093 
6094 	pending_bios->tail = bio;
6095 	if (!pending_bios->head)
6096 		pending_bios->head = bio;
6097 	if (device->running_pending)
6098 		should_queue = 0;
6099 
6100 	spin_unlock(&device->io_lock);
6101 
6102 	if (should_queue)
6103 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6104 }
6105 
6106 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6107 			      u64 physical, int dev_nr, int async)
6108 {
6109 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6110 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6111 
6112 	bio->bi_private = bbio;
6113 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6114 	bio->bi_end_io = btrfs_end_bio;
6115 	bio->bi_iter.bi_sector = physical >> 9;
6116 	btrfs_debug_in_rcu(fs_info,
6117 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6118 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6119 		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6120 		bio->bi_iter.bi_size);
6121 	bio_set_dev(bio, dev->bdev);
6122 
6123 	btrfs_bio_counter_inc_noblocked(fs_info);
6124 
6125 	if (async)
6126 		btrfs_schedule_bio(dev, bio);
6127 	else
6128 		btrfsic_submit_bio(bio);
6129 }
6130 
6131 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6132 {
6133 	atomic_inc(&bbio->error);
6134 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6135 		/* Should be the original bio. */
6136 		WARN_ON(bio != bbio->orig_bio);
6137 
6138 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6139 		bio->bi_iter.bi_sector = logical >> 9;
6140 		if (atomic_read(&bbio->error) > bbio->max_errors)
6141 			bio->bi_status = BLK_STS_IOERR;
6142 		else
6143 			bio->bi_status = BLK_STS_OK;
6144 		btrfs_end_bbio(bbio, bio);
6145 	}
6146 }
6147 
6148 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6149 			   int mirror_num, int async_submit)
6150 {
6151 	struct btrfs_device *dev;
6152 	struct bio *first_bio = bio;
6153 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6154 	u64 length = 0;
6155 	u64 map_length;
6156 	int ret;
6157 	int dev_nr;
6158 	int total_devs;
6159 	struct btrfs_bio *bbio = NULL;
6160 
6161 	length = bio->bi_iter.bi_size;
6162 	map_length = length;
6163 
6164 	btrfs_bio_counter_inc_blocked(fs_info);
6165 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6166 				&map_length, &bbio, mirror_num, 1);
6167 	if (ret) {
6168 		btrfs_bio_counter_dec(fs_info);
6169 		return errno_to_blk_status(ret);
6170 	}
6171 
6172 	total_devs = bbio->num_stripes;
6173 	bbio->orig_bio = first_bio;
6174 	bbio->private = first_bio->bi_private;
6175 	bbio->end_io = first_bio->bi_end_io;
6176 	bbio->fs_info = fs_info;
6177 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6178 
6179 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6180 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6181 		/* In this case, map_length has been set to the length of
6182 		   a single stripe; not the whole write */
6183 		if (bio_op(bio) == REQ_OP_WRITE) {
6184 			ret = raid56_parity_write(fs_info, bio, bbio,
6185 						  map_length);
6186 		} else {
6187 			ret = raid56_parity_recover(fs_info, bio, bbio,
6188 						    map_length, mirror_num, 1);
6189 		}
6190 
6191 		btrfs_bio_counter_dec(fs_info);
6192 		return errno_to_blk_status(ret);
6193 	}
6194 
6195 	if (map_length < length) {
6196 		btrfs_crit(fs_info,
6197 			   "mapping failed logical %llu bio len %llu len %llu",
6198 			   logical, length, map_length);
6199 		BUG();
6200 	}
6201 
6202 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6203 		dev = bbio->stripes[dev_nr].dev;
6204 		if (!dev || !dev->bdev ||
6205 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6206 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6207 			bbio_error(bbio, first_bio, logical);
6208 			continue;
6209 		}
6210 
6211 		if (dev_nr < total_devs - 1)
6212 			bio = btrfs_bio_clone(first_bio);
6213 		else
6214 			bio = first_bio;
6215 
6216 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6217 				  dev_nr, async_submit);
6218 	}
6219 	btrfs_bio_counter_dec(fs_info);
6220 	return BLK_STS_OK;
6221 }
6222 
6223 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6224 				       u8 *uuid, u8 *fsid)
6225 {
6226 	struct btrfs_device *device;
6227 	struct btrfs_fs_devices *cur_devices;
6228 
6229 	cur_devices = fs_info->fs_devices;
6230 	while (cur_devices) {
6231 		if (!fsid ||
6232 		    !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6233 			device = find_device(cur_devices, devid, uuid);
6234 			if (device)
6235 				return device;
6236 		}
6237 		cur_devices = cur_devices->seed;
6238 	}
6239 	return NULL;
6240 }
6241 
6242 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6243 					    u64 devid, u8 *dev_uuid)
6244 {
6245 	struct btrfs_device *device;
6246 
6247 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6248 	if (IS_ERR(device))
6249 		return device;
6250 
6251 	list_add(&device->dev_list, &fs_devices->devices);
6252 	device->fs_devices = fs_devices;
6253 	fs_devices->num_devices++;
6254 
6255 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6256 	fs_devices->missing_devices++;
6257 
6258 	return device;
6259 }
6260 
6261 /**
6262  * btrfs_alloc_device - allocate struct btrfs_device
6263  * @fs_info:	used only for generating a new devid, can be NULL if
6264  *		devid is provided (i.e. @devid != NULL).
6265  * @devid:	a pointer to devid for this device.  If NULL a new devid
6266  *		is generated.
6267  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6268  *		is generated.
6269  *
6270  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6271  * on error.  Returned struct is not linked onto any lists and must be
6272  * destroyed with btrfs_free_device.
6273  */
6274 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6275 					const u64 *devid,
6276 					const u8 *uuid)
6277 {
6278 	struct btrfs_device *dev;
6279 	u64 tmp;
6280 
6281 	if (WARN_ON(!devid && !fs_info))
6282 		return ERR_PTR(-EINVAL);
6283 
6284 	dev = __alloc_device();
6285 	if (IS_ERR(dev))
6286 		return dev;
6287 
6288 	if (devid)
6289 		tmp = *devid;
6290 	else {
6291 		int ret;
6292 
6293 		ret = find_next_devid(fs_info, &tmp);
6294 		if (ret) {
6295 			btrfs_free_device(dev);
6296 			return ERR_PTR(ret);
6297 		}
6298 	}
6299 	dev->devid = tmp;
6300 
6301 	if (uuid)
6302 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6303 	else
6304 		generate_random_uuid(dev->uuid);
6305 
6306 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6307 			pending_bios_fn, NULL, NULL);
6308 
6309 	return dev;
6310 }
6311 
6312 /* Return -EIO if any error, otherwise return 0. */
6313 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6314 				   struct extent_buffer *leaf,
6315 				   struct btrfs_chunk *chunk, u64 logical)
6316 {
6317 	u64 length;
6318 	u64 stripe_len;
6319 	u16 num_stripes;
6320 	u16 sub_stripes;
6321 	u64 type;
6322 	u64 features;
6323 	bool mixed = false;
6324 
6325 	length = btrfs_chunk_length(leaf, chunk);
6326 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6327 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6328 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6329 	type = btrfs_chunk_type(leaf, chunk);
6330 
6331 	if (!num_stripes) {
6332 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6333 			  num_stripes);
6334 		return -EIO;
6335 	}
6336 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6337 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6338 		return -EIO;
6339 	}
6340 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6341 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6342 			  btrfs_chunk_sector_size(leaf, chunk));
6343 		return -EIO;
6344 	}
6345 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6346 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6347 		return -EIO;
6348 	}
6349 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6350 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6351 			  stripe_len);
6352 		return -EIO;
6353 	}
6354 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6355 	    type) {
6356 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6357 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6358 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6359 			  btrfs_chunk_type(leaf, chunk));
6360 		return -EIO;
6361 	}
6362 
6363 	if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6364 		btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6365 		return -EIO;
6366 	}
6367 
6368 	if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6369 	    (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6370 		btrfs_err(fs_info,
6371 			"system chunk with data or metadata type: 0x%llx", type);
6372 		return -EIO;
6373 	}
6374 
6375 	features = btrfs_super_incompat_flags(fs_info->super_copy);
6376 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6377 		mixed = true;
6378 
6379 	if (!mixed) {
6380 		if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6381 		    (type & BTRFS_BLOCK_GROUP_DATA)) {
6382 			btrfs_err(fs_info,
6383 			"mixed chunk type in non-mixed mode: 0x%llx", type);
6384 			return -EIO;
6385 		}
6386 	}
6387 
6388 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6389 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6390 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6391 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6392 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6393 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6394 	     num_stripes != 1)) {
6395 		btrfs_err(fs_info,
6396 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6397 			num_stripes, sub_stripes,
6398 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6399 		return -EIO;
6400 	}
6401 
6402 	return 0;
6403 }
6404 
6405 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6406 					u64 devid, u8 *uuid, bool error)
6407 {
6408 	if (error)
6409 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6410 			      devid, uuid);
6411 	else
6412 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6413 			      devid, uuid);
6414 }
6415 
6416 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6417 			  struct extent_buffer *leaf,
6418 			  struct btrfs_chunk *chunk)
6419 {
6420 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6421 	struct map_lookup *map;
6422 	struct extent_map *em;
6423 	u64 logical;
6424 	u64 length;
6425 	u64 devid;
6426 	u8 uuid[BTRFS_UUID_SIZE];
6427 	int num_stripes;
6428 	int ret;
6429 	int i;
6430 
6431 	logical = key->offset;
6432 	length = btrfs_chunk_length(leaf, chunk);
6433 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6434 
6435 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6436 	if (ret)
6437 		return ret;
6438 
6439 	read_lock(&map_tree->map_tree.lock);
6440 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6441 	read_unlock(&map_tree->map_tree.lock);
6442 
6443 	/* already mapped? */
6444 	if (em && em->start <= logical && em->start + em->len > logical) {
6445 		free_extent_map(em);
6446 		return 0;
6447 	} else if (em) {
6448 		free_extent_map(em);
6449 	}
6450 
6451 	em = alloc_extent_map();
6452 	if (!em)
6453 		return -ENOMEM;
6454 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6455 	if (!map) {
6456 		free_extent_map(em);
6457 		return -ENOMEM;
6458 	}
6459 
6460 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6461 	em->map_lookup = map;
6462 	em->start = logical;
6463 	em->len = length;
6464 	em->orig_start = 0;
6465 	em->block_start = 0;
6466 	em->block_len = em->len;
6467 
6468 	map->num_stripes = num_stripes;
6469 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6470 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6471 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6472 	map->type = btrfs_chunk_type(leaf, chunk);
6473 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6474 	map->verified_stripes = 0;
6475 	for (i = 0; i < num_stripes; i++) {
6476 		map->stripes[i].physical =
6477 			btrfs_stripe_offset_nr(leaf, chunk, i);
6478 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6479 		read_extent_buffer(leaf, uuid, (unsigned long)
6480 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6481 				   BTRFS_UUID_SIZE);
6482 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6483 							uuid, NULL);
6484 		if (!map->stripes[i].dev &&
6485 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6486 			free_extent_map(em);
6487 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6488 			return -ENOENT;
6489 		}
6490 		if (!map->stripes[i].dev) {
6491 			map->stripes[i].dev =
6492 				add_missing_dev(fs_info->fs_devices, devid,
6493 						uuid);
6494 			if (IS_ERR(map->stripes[i].dev)) {
6495 				free_extent_map(em);
6496 				btrfs_err(fs_info,
6497 					"failed to init missing dev %llu: %ld",
6498 					devid, PTR_ERR(map->stripes[i].dev));
6499 				return PTR_ERR(map->stripes[i].dev);
6500 			}
6501 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6502 		}
6503 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6504 				&(map->stripes[i].dev->dev_state));
6505 
6506 	}
6507 
6508 	write_lock(&map_tree->map_tree.lock);
6509 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6510 	write_unlock(&map_tree->map_tree.lock);
6511 	if (ret < 0) {
6512 		btrfs_err(fs_info,
6513 			  "failed to add chunk map, start=%llu len=%llu: %d",
6514 			  em->start, em->len, ret);
6515 	}
6516 	free_extent_map(em);
6517 
6518 	return ret;
6519 }
6520 
6521 static void fill_device_from_item(struct extent_buffer *leaf,
6522 				 struct btrfs_dev_item *dev_item,
6523 				 struct btrfs_device *device)
6524 {
6525 	unsigned long ptr;
6526 
6527 	device->devid = btrfs_device_id(leaf, dev_item);
6528 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6529 	device->total_bytes = device->disk_total_bytes;
6530 	device->commit_total_bytes = device->disk_total_bytes;
6531 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6532 	device->commit_bytes_used = device->bytes_used;
6533 	device->type = btrfs_device_type(leaf, dev_item);
6534 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6535 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6536 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6537 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6538 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6539 
6540 	ptr = btrfs_device_uuid(dev_item);
6541 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6542 }
6543 
6544 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6545 						  u8 *fsid)
6546 {
6547 	struct btrfs_fs_devices *fs_devices;
6548 	int ret;
6549 
6550 	lockdep_assert_held(&uuid_mutex);
6551 	ASSERT(fsid);
6552 
6553 	fs_devices = fs_info->fs_devices->seed;
6554 	while (fs_devices) {
6555 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6556 			return fs_devices;
6557 
6558 		fs_devices = fs_devices->seed;
6559 	}
6560 
6561 	fs_devices = find_fsid(fsid);
6562 	if (!fs_devices) {
6563 		if (!btrfs_test_opt(fs_info, DEGRADED))
6564 			return ERR_PTR(-ENOENT);
6565 
6566 		fs_devices = alloc_fs_devices(fsid);
6567 		if (IS_ERR(fs_devices))
6568 			return fs_devices;
6569 
6570 		fs_devices->seeding = 1;
6571 		fs_devices->opened = 1;
6572 		return fs_devices;
6573 	}
6574 
6575 	fs_devices = clone_fs_devices(fs_devices);
6576 	if (IS_ERR(fs_devices))
6577 		return fs_devices;
6578 
6579 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6580 	if (ret) {
6581 		free_fs_devices(fs_devices);
6582 		fs_devices = ERR_PTR(ret);
6583 		goto out;
6584 	}
6585 
6586 	if (!fs_devices->seeding) {
6587 		close_fs_devices(fs_devices);
6588 		free_fs_devices(fs_devices);
6589 		fs_devices = ERR_PTR(-EINVAL);
6590 		goto out;
6591 	}
6592 
6593 	fs_devices->seed = fs_info->fs_devices->seed;
6594 	fs_info->fs_devices->seed = fs_devices;
6595 out:
6596 	return fs_devices;
6597 }
6598 
6599 static int read_one_dev(struct btrfs_fs_info *fs_info,
6600 			struct extent_buffer *leaf,
6601 			struct btrfs_dev_item *dev_item)
6602 {
6603 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6604 	struct btrfs_device *device;
6605 	u64 devid;
6606 	int ret;
6607 	u8 fs_uuid[BTRFS_FSID_SIZE];
6608 	u8 dev_uuid[BTRFS_UUID_SIZE];
6609 
6610 	devid = btrfs_device_id(leaf, dev_item);
6611 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6612 			   BTRFS_UUID_SIZE);
6613 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6614 			   BTRFS_FSID_SIZE);
6615 
6616 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6617 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6618 		if (IS_ERR(fs_devices))
6619 			return PTR_ERR(fs_devices);
6620 	}
6621 
6622 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6623 	if (!device) {
6624 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6625 			btrfs_report_missing_device(fs_info, devid,
6626 							dev_uuid, true);
6627 			return -ENOENT;
6628 		}
6629 
6630 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6631 		if (IS_ERR(device)) {
6632 			btrfs_err(fs_info,
6633 				"failed to add missing dev %llu: %ld",
6634 				devid, PTR_ERR(device));
6635 			return PTR_ERR(device);
6636 		}
6637 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6638 	} else {
6639 		if (!device->bdev) {
6640 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6641 				btrfs_report_missing_device(fs_info,
6642 						devid, dev_uuid, true);
6643 				return -ENOENT;
6644 			}
6645 			btrfs_report_missing_device(fs_info, devid,
6646 							dev_uuid, false);
6647 		}
6648 
6649 		if (!device->bdev &&
6650 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6651 			/*
6652 			 * this happens when a device that was properly setup
6653 			 * in the device info lists suddenly goes bad.
6654 			 * device->bdev is NULL, and so we have to set
6655 			 * device->missing to one here
6656 			 */
6657 			device->fs_devices->missing_devices++;
6658 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6659 		}
6660 
6661 		/* Move the device to its own fs_devices */
6662 		if (device->fs_devices != fs_devices) {
6663 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6664 							&device->dev_state));
6665 
6666 			list_move(&device->dev_list, &fs_devices->devices);
6667 			device->fs_devices->num_devices--;
6668 			fs_devices->num_devices++;
6669 
6670 			device->fs_devices->missing_devices--;
6671 			fs_devices->missing_devices++;
6672 
6673 			device->fs_devices = fs_devices;
6674 		}
6675 	}
6676 
6677 	if (device->fs_devices != fs_info->fs_devices) {
6678 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6679 		if (device->generation !=
6680 		    btrfs_device_generation(leaf, dev_item))
6681 			return -EINVAL;
6682 	}
6683 
6684 	fill_device_from_item(leaf, dev_item, device);
6685 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6686 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6687 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6688 		device->fs_devices->total_rw_bytes += device->total_bytes;
6689 		atomic64_add(device->total_bytes - device->bytes_used,
6690 				&fs_info->free_chunk_space);
6691 	}
6692 	ret = 0;
6693 	return ret;
6694 }
6695 
6696 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6697 {
6698 	struct btrfs_root *root = fs_info->tree_root;
6699 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6700 	struct extent_buffer *sb;
6701 	struct btrfs_disk_key *disk_key;
6702 	struct btrfs_chunk *chunk;
6703 	u8 *array_ptr;
6704 	unsigned long sb_array_offset;
6705 	int ret = 0;
6706 	u32 num_stripes;
6707 	u32 array_size;
6708 	u32 len = 0;
6709 	u32 cur_offset;
6710 	u64 type;
6711 	struct btrfs_key key;
6712 
6713 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6714 	/*
6715 	 * This will create extent buffer of nodesize, superblock size is
6716 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6717 	 * overallocate but we can keep it as-is, only the first page is used.
6718 	 */
6719 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6720 	if (IS_ERR(sb))
6721 		return PTR_ERR(sb);
6722 	set_extent_buffer_uptodate(sb);
6723 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6724 	/*
6725 	 * The sb extent buffer is artificial and just used to read the system array.
6726 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6727 	 * pages up-to-date when the page is larger: extent does not cover the
6728 	 * whole page and consequently check_page_uptodate does not find all
6729 	 * the page's extents up-to-date (the hole beyond sb),
6730 	 * write_extent_buffer then triggers a WARN_ON.
6731 	 *
6732 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6733 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6734 	 * to silence the warning eg. on PowerPC 64.
6735 	 */
6736 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6737 		SetPageUptodate(sb->pages[0]);
6738 
6739 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6740 	array_size = btrfs_super_sys_array_size(super_copy);
6741 
6742 	array_ptr = super_copy->sys_chunk_array;
6743 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6744 	cur_offset = 0;
6745 
6746 	while (cur_offset < array_size) {
6747 		disk_key = (struct btrfs_disk_key *)array_ptr;
6748 		len = sizeof(*disk_key);
6749 		if (cur_offset + len > array_size)
6750 			goto out_short_read;
6751 
6752 		btrfs_disk_key_to_cpu(&key, disk_key);
6753 
6754 		array_ptr += len;
6755 		sb_array_offset += len;
6756 		cur_offset += len;
6757 
6758 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6759 			chunk = (struct btrfs_chunk *)sb_array_offset;
6760 			/*
6761 			 * At least one btrfs_chunk with one stripe must be
6762 			 * present, exact stripe count check comes afterwards
6763 			 */
6764 			len = btrfs_chunk_item_size(1);
6765 			if (cur_offset + len > array_size)
6766 				goto out_short_read;
6767 
6768 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6769 			if (!num_stripes) {
6770 				btrfs_err(fs_info,
6771 					"invalid number of stripes %u in sys_array at offset %u",
6772 					num_stripes, cur_offset);
6773 				ret = -EIO;
6774 				break;
6775 			}
6776 
6777 			type = btrfs_chunk_type(sb, chunk);
6778 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6779 				btrfs_err(fs_info,
6780 			    "invalid chunk type %llu in sys_array at offset %u",
6781 					type, cur_offset);
6782 				ret = -EIO;
6783 				break;
6784 			}
6785 
6786 			len = btrfs_chunk_item_size(num_stripes);
6787 			if (cur_offset + len > array_size)
6788 				goto out_short_read;
6789 
6790 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6791 			if (ret)
6792 				break;
6793 		} else {
6794 			btrfs_err(fs_info,
6795 			    "unexpected item type %u in sys_array at offset %u",
6796 				  (u32)key.type, cur_offset);
6797 			ret = -EIO;
6798 			break;
6799 		}
6800 		array_ptr += len;
6801 		sb_array_offset += len;
6802 		cur_offset += len;
6803 	}
6804 	clear_extent_buffer_uptodate(sb);
6805 	free_extent_buffer_stale(sb);
6806 	return ret;
6807 
6808 out_short_read:
6809 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6810 			len, cur_offset);
6811 	clear_extent_buffer_uptodate(sb);
6812 	free_extent_buffer_stale(sb);
6813 	return -EIO;
6814 }
6815 
6816 /*
6817  * Check if all chunks in the fs are OK for read-write degraded mount
6818  *
6819  * If the @failing_dev is specified, it's accounted as missing.
6820  *
6821  * Return true if all chunks meet the minimal RW mount requirements.
6822  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6823  */
6824 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6825 					struct btrfs_device *failing_dev)
6826 {
6827 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6828 	struct extent_map *em;
6829 	u64 next_start = 0;
6830 	bool ret = true;
6831 
6832 	read_lock(&map_tree->map_tree.lock);
6833 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6834 	read_unlock(&map_tree->map_tree.lock);
6835 	/* No chunk at all? Return false anyway */
6836 	if (!em) {
6837 		ret = false;
6838 		goto out;
6839 	}
6840 	while (em) {
6841 		struct map_lookup *map;
6842 		int missing = 0;
6843 		int max_tolerated;
6844 		int i;
6845 
6846 		map = em->map_lookup;
6847 		max_tolerated =
6848 			btrfs_get_num_tolerated_disk_barrier_failures(
6849 					map->type);
6850 		for (i = 0; i < map->num_stripes; i++) {
6851 			struct btrfs_device *dev = map->stripes[i].dev;
6852 
6853 			if (!dev || !dev->bdev ||
6854 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6855 			    dev->last_flush_error)
6856 				missing++;
6857 			else if (failing_dev && failing_dev == dev)
6858 				missing++;
6859 		}
6860 		if (missing > max_tolerated) {
6861 			if (!failing_dev)
6862 				btrfs_warn(fs_info,
6863 	"chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6864 				   em->start, missing, max_tolerated);
6865 			free_extent_map(em);
6866 			ret = false;
6867 			goto out;
6868 		}
6869 		next_start = extent_map_end(em);
6870 		free_extent_map(em);
6871 
6872 		read_lock(&map_tree->map_tree.lock);
6873 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6874 					   (u64)(-1) - next_start);
6875 		read_unlock(&map_tree->map_tree.lock);
6876 	}
6877 out:
6878 	return ret;
6879 }
6880 
6881 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6882 {
6883 	struct btrfs_root *root = fs_info->chunk_root;
6884 	struct btrfs_path *path;
6885 	struct extent_buffer *leaf;
6886 	struct btrfs_key key;
6887 	struct btrfs_key found_key;
6888 	int ret;
6889 	int slot;
6890 	u64 total_dev = 0;
6891 
6892 	path = btrfs_alloc_path();
6893 	if (!path)
6894 		return -ENOMEM;
6895 
6896 	/*
6897 	 * uuid_mutex is needed only if we are mounting a sprout FS
6898 	 * otherwise we don't need it.
6899 	 */
6900 	mutex_lock(&uuid_mutex);
6901 	mutex_lock(&fs_info->chunk_mutex);
6902 
6903 	/*
6904 	 * Read all device items, and then all the chunk items. All
6905 	 * device items are found before any chunk item (their object id
6906 	 * is smaller than the lowest possible object id for a chunk
6907 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6908 	 */
6909 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6910 	key.offset = 0;
6911 	key.type = 0;
6912 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6913 	if (ret < 0)
6914 		goto error;
6915 	while (1) {
6916 		leaf = path->nodes[0];
6917 		slot = path->slots[0];
6918 		if (slot >= btrfs_header_nritems(leaf)) {
6919 			ret = btrfs_next_leaf(root, path);
6920 			if (ret == 0)
6921 				continue;
6922 			if (ret < 0)
6923 				goto error;
6924 			break;
6925 		}
6926 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6927 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6928 			struct btrfs_dev_item *dev_item;
6929 			dev_item = btrfs_item_ptr(leaf, slot,
6930 						  struct btrfs_dev_item);
6931 			ret = read_one_dev(fs_info, leaf, dev_item);
6932 			if (ret)
6933 				goto error;
6934 			total_dev++;
6935 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6936 			struct btrfs_chunk *chunk;
6937 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6938 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6939 			if (ret)
6940 				goto error;
6941 		}
6942 		path->slots[0]++;
6943 	}
6944 
6945 	/*
6946 	 * After loading chunk tree, we've got all device information,
6947 	 * do another round of validation checks.
6948 	 */
6949 	if (total_dev != fs_info->fs_devices->total_devices) {
6950 		btrfs_err(fs_info,
6951 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6952 			  btrfs_super_num_devices(fs_info->super_copy),
6953 			  total_dev);
6954 		ret = -EINVAL;
6955 		goto error;
6956 	}
6957 	if (btrfs_super_total_bytes(fs_info->super_copy) <
6958 	    fs_info->fs_devices->total_rw_bytes) {
6959 		btrfs_err(fs_info,
6960 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6961 			  btrfs_super_total_bytes(fs_info->super_copy),
6962 			  fs_info->fs_devices->total_rw_bytes);
6963 		ret = -EINVAL;
6964 		goto error;
6965 	}
6966 	ret = 0;
6967 error:
6968 	mutex_unlock(&fs_info->chunk_mutex);
6969 	mutex_unlock(&uuid_mutex);
6970 
6971 	btrfs_free_path(path);
6972 	return ret;
6973 }
6974 
6975 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6976 {
6977 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6978 	struct btrfs_device *device;
6979 
6980 	while (fs_devices) {
6981 		mutex_lock(&fs_devices->device_list_mutex);
6982 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6983 			device->fs_info = fs_info;
6984 		mutex_unlock(&fs_devices->device_list_mutex);
6985 
6986 		fs_devices = fs_devices->seed;
6987 	}
6988 }
6989 
6990 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6991 {
6992 	int i;
6993 
6994 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6995 		btrfs_dev_stat_reset(dev, i);
6996 }
6997 
6998 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6999 {
7000 	struct btrfs_key key;
7001 	struct btrfs_key found_key;
7002 	struct btrfs_root *dev_root = fs_info->dev_root;
7003 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7004 	struct extent_buffer *eb;
7005 	int slot;
7006 	int ret = 0;
7007 	struct btrfs_device *device;
7008 	struct btrfs_path *path = NULL;
7009 	int i;
7010 
7011 	path = btrfs_alloc_path();
7012 	if (!path) {
7013 		ret = -ENOMEM;
7014 		goto out;
7015 	}
7016 
7017 	mutex_lock(&fs_devices->device_list_mutex);
7018 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7019 		int item_size;
7020 		struct btrfs_dev_stats_item *ptr;
7021 
7022 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7023 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7024 		key.offset = device->devid;
7025 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7026 		if (ret) {
7027 			__btrfs_reset_dev_stats(device);
7028 			device->dev_stats_valid = 1;
7029 			btrfs_release_path(path);
7030 			continue;
7031 		}
7032 		slot = path->slots[0];
7033 		eb = path->nodes[0];
7034 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7035 		item_size = btrfs_item_size_nr(eb, slot);
7036 
7037 		ptr = btrfs_item_ptr(eb, slot,
7038 				     struct btrfs_dev_stats_item);
7039 
7040 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7041 			if (item_size >= (1 + i) * sizeof(__le64))
7042 				btrfs_dev_stat_set(device, i,
7043 					btrfs_dev_stats_value(eb, ptr, i));
7044 			else
7045 				btrfs_dev_stat_reset(device, i);
7046 		}
7047 
7048 		device->dev_stats_valid = 1;
7049 		btrfs_dev_stat_print_on_load(device);
7050 		btrfs_release_path(path);
7051 	}
7052 	mutex_unlock(&fs_devices->device_list_mutex);
7053 
7054 out:
7055 	btrfs_free_path(path);
7056 	return ret < 0 ? ret : 0;
7057 }
7058 
7059 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7060 				struct btrfs_device *device)
7061 {
7062 	struct btrfs_fs_info *fs_info = trans->fs_info;
7063 	struct btrfs_root *dev_root = fs_info->dev_root;
7064 	struct btrfs_path *path;
7065 	struct btrfs_key key;
7066 	struct extent_buffer *eb;
7067 	struct btrfs_dev_stats_item *ptr;
7068 	int ret;
7069 	int i;
7070 
7071 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7072 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7073 	key.offset = device->devid;
7074 
7075 	path = btrfs_alloc_path();
7076 	if (!path)
7077 		return -ENOMEM;
7078 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7079 	if (ret < 0) {
7080 		btrfs_warn_in_rcu(fs_info,
7081 			"error %d while searching for dev_stats item for device %s",
7082 			      ret, rcu_str_deref(device->name));
7083 		goto out;
7084 	}
7085 
7086 	if (ret == 0 &&
7087 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7088 		/* need to delete old one and insert a new one */
7089 		ret = btrfs_del_item(trans, dev_root, path);
7090 		if (ret != 0) {
7091 			btrfs_warn_in_rcu(fs_info,
7092 				"delete too small dev_stats item for device %s failed %d",
7093 				      rcu_str_deref(device->name), ret);
7094 			goto out;
7095 		}
7096 		ret = 1;
7097 	}
7098 
7099 	if (ret == 1) {
7100 		/* need to insert a new item */
7101 		btrfs_release_path(path);
7102 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7103 					      &key, sizeof(*ptr));
7104 		if (ret < 0) {
7105 			btrfs_warn_in_rcu(fs_info,
7106 				"insert dev_stats item for device %s failed %d",
7107 				rcu_str_deref(device->name), ret);
7108 			goto out;
7109 		}
7110 	}
7111 
7112 	eb = path->nodes[0];
7113 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7114 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7115 		btrfs_set_dev_stats_value(eb, ptr, i,
7116 					  btrfs_dev_stat_read(device, i));
7117 	btrfs_mark_buffer_dirty(eb);
7118 
7119 out:
7120 	btrfs_free_path(path);
7121 	return ret;
7122 }
7123 
7124 /*
7125  * called from commit_transaction. Writes all changed device stats to disk.
7126  */
7127 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7128 			struct btrfs_fs_info *fs_info)
7129 {
7130 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7131 	struct btrfs_device *device;
7132 	int stats_cnt;
7133 	int ret = 0;
7134 
7135 	mutex_lock(&fs_devices->device_list_mutex);
7136 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7137 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7138 		if (!device->dev_stats_valid || stats_cnt == 0)
7139 			continue;
7140 
7141 
7142 		/*
7143 		 * There is a LOAD-LOAD control dependency between the value of
7144 		 * dev_stats_ccnt and updating the on-disk values which requires
7145 		 * reading the in-memory counters. Such control dependencies
7146 		 * require explicit read memory barriers.
7147 		 *
7148 		 * This memory barriers pairs with smp_mb__before_atomic in
7149 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7150 		 * barrier implied by atomic_xchg in
7151 		 * btrfs_dev_stats_read_and_reset
7152 		 */
7153 		smp_rmb();
7154 
7155 		ret = update_dev_stat_item(trans, device);
7156 		if (!ret)
7157 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7158 	}
7159 	mutex_unlock(&fs_devices->device_list_mutex);
7160 
7161 	return ret;
7162 }
7163 
7164 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7165 {
7166 	btrfs_dev_stat_inc(dev, index);
7167 	btrfs_dev_stat_print_on_error(dev);
7168 }
7169 
7170 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7171 {
7172 	if (!dev->dev_stats_valid)
7173 		return;
7174 	btrfs_err_rl_in_rcu(dev->fs_info,
7175 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7176 			   rcu_str_deref(dev->name),
7177 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7178 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7179 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7180 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7181 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7182 }
7183 
7184 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7185 {
7186 	int i;
7187 
7188 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7189 		if (btrfs_dev_stat_read(dev, i) != 0)
7190 			break;
7191 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7192 		return; /* all values == 0, suppress message */
7193 
7194 	btrfs_info_in_rcu(dev->fs_info,
7195 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7196 	       rcu_str_deref(dev->name),
7197 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7198 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7199 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7200 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7201 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7202 }
7203 
7204 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7205 			struct btrfs_ioctl_get_dev_stats *stats)
7206 {
7207 	struct btrfs_device *dev;
7208 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7209 	int i;
7210 
7211 	mutex_lock(&fs_devices->device_list_mutex);
7212 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7213 	mutex_unlock(&fs_devices->device_list_mutex);
7214 
7215 	if (!dev) {
7216 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7217 		return -ENODEV;
7218 	} else if (!dev->dev_stats_valid) {
7219 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7220 		return -ENODEV;
7221 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7222 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7223 			if (stats->nr_items > i)
7224 				stats->values[i] =
7225 					btrfs_dev_stat_read_and_reset(dev, i);
7226 			else
7227 				btrfs_dev_stat_reset(dev, i);
7228 		}
7229 	} else {
7230 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7231 			if (stats->nr_items > i)
7232 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7233 	}
7234 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7235 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7236 	return 0;
7237 }
7238 
7239 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7240 {
7241 	struct buffer_head *bh;
7242 	struct btrfs_super_block *disk_super;
7243 	int copy_num;
7244 
7245 	if (!bdev)
7246 		return;
7247 
7248 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7249 		copy_num++) {
7250 
7251 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7252 			continue;
7253 
7254 		disk_super = (struct btrfs_super_block *)bh->b_data;
7255 
7256 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7257 		set_buffer_dirty(bh);
7258 		sync_dirty_buffer(bh);
7259 		brelse(bh);
7260 	}
7261 
7262 	/* Notify udev that device has changed */
7263 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7264 
7265 	/* Update ctime/mtime for device path for libblkid */
7266 	update_dev_time(device_path);
7267 }
7268 
7269 /*
7270  * Update the size of all devices, which is used for writing out the
7271  * super blocks.
7272  */
7273 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7274 {
7275 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7276 	struct btrfs_device *curr, *next;
7277 
7278 	if (list_empty(&fs_devices->resized_devices))
7279 		return;
7280 
7281 	mutex_lock(&fs_devices->device_list_mutex);
7282 	mutex_lock(&fs_info->chunk_mutex);
7283 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7284 				 resized_list) {
7285 		list_del_init(&curr->resized_list);
7286 		curr->commit_total_bytes = curr->disk_total_bytes;
7287 	}
7288 	mutex_unlock(&fs_info->chunk_mutex);
7289 	mutex_unlock(&fs_devices->device_list_mutex);
7290 }
7291 
7292 /* Must be invoked during the transaction commit */
7293 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7294 {
7295 	struct btrfs_fs_info *fs_info = trans->fs_info;
7296 	struct extent_map *em;
7297 	struct map_lookup *map;
7298 	struct btrfs_device *dev;
7299 	int i;
7300 
7301 	if (list_empty(&trans->pending_chunks))
7302 		return;
7303 
7304 	/* In order to kick the device replace finish process */
7305 	mutex_lock(&fs_info->chunk_mutex);
7306 	list_for_each_entry(em, &trans->pending_chunks, list) {
7307 		map = em->map_lookup;
7308 
7309 		for (i = 0; i < map->num_stripes; i++) {
7310 			dev = map->stripes[i].dev;
7311 			dev->commit_bytes_used = dev->bytes_used;
7312 		}
7313 	}
7314 	mutex_unlock(&fs_info->chunk_mutex);
7315 }
7316 
7317 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7318 {
7319 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7320 	while (fs_devices) {
7321 		fs_devices->fs_info = fs_info;
7322 		fs_devices = fs_devices->seed;
7323 	}
7324 }
7325 
7326 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7327 {
7328 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7329 	while (fs_devices) {
7330 		fs_devices->fs_info = NULL;
7331 		fs_devices = fs_devices->seed;
7332 	}
7333 }
7334 
7335 /*
7336  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7337  */
7338 int btrfs_bg_type_to_factor(u64 flags)
7339 {
7340 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7341 		     BTRFS_BLOCK_GROUP_RAID10))
7342 		return 2;
7343 	return 1;
7344 }
7345 
7346 
7347 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7348 {
7349 	int index = btrfs_bg_flags_to_raid_index(type);
7350 	int ncopies = btrfs_raid_array[index].ncopies;
7351 	int data_stripes;
7352 
7353 	switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7354 	case BTRFS_BLOCK_GROUP_RAID5:
7355 		data_stripes = num_stripes - 1;
7356 		break;
7357 	case BTRFS_BLOCK_GROUP_RAID6:
7358 		data_stripes = num_stripes - 2;
7359 		break;
7360 	default:
7361 		data_stripes = num_stripes / ncopies;
7362 		break;
7363 	}
7364 	return div_u64(chunk_len, data_stripes);
7365 }
7366 
7367 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7368 				 u64 chunk_offset, u64 devid,
7369 				 u64 physical_offset, u64 physical_len)
7370 {
7371 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7372 	struct extent_map *em;
7373 	struct map_lookup *map;
7374 	u64 stripe_len;
7375 	bool found = false;
7376 	int ret = 0;
7377 	int i;
7378 
7379 	read_lock(&em_tree->lock);
7380 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7381 	read_unlock(&em_tree->lock);
7382 
7383 	if (!em) {
7384 		btrfs_err(fs_info,
7385 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7386 			  physical_offset, devid);
7387 		ret = -EUCLEAN;
7388 		goto out;
7389 	}
7390 
7391 	map = em->map_lookup;
7392 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7393 	if (physical_len != stripe_len) {
7394 		btrfs_err(fs_info,
7395 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7396 			  physical_offset, devid, em->start, physical_len,
7397 			  stripe_len);
7398 		ret = -EUCLEAN;
7399 		goto out;
7400 	}
7401 
7402 	for (i = 0; i < map->num_stripes; i++) {
7403 		if (map->stripes[i].dev->devid == devid &&
7404 		    map->stripes[i].physical == physical_offset) {
7405 			found = true;
7406 			if (map->verified_stripes >= map->num_stripes) {
7407 				btrfs_err(fs_info,
7408 				"too many dev extents for chunk %llu found",
7409 					  em->start);
7410 				ret = -EUCLEAN;
7411 				goto out;
7412 			}
7413 			map->verified_stripes++;
7414 			break;
7415 		}
7416 	}
7417 	if (!found) {
7418 		btrfs_err(fs_info,
7419 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7420 			physical_offset, devid);
7421 		ret = -EUCLEAN;
7422 	}
7423 out:
7424 	free_extent_map(em);
7425 	return ret;
7426 }
7427 
7428 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7429 {
7430 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7431 	struct extent_map *em;
7432 	struct rb_node *node;
7433 	int ret = 0;
7434 
7435 	read_lock(&em_tree->lock);
7436 	for (node = rb_first(&em_tree->map); node; node = rb_next(node)) {
7437 		em = rb_entry(node, struct extent_map, rb_node);
7438 		if (em->map_lookup->num_stripes !=
7439 		    em->map_lookup->verified_stripes) {
7440 			btrfs_err(fs_info,
7441 			"chunk %llu has missing dev extent, have %d expect %d",
7442 				  em->start, em->map_lookup->verified_stripes,
7443 				  em->map_lookup->num_stripes);
7444 			ret = -EUCLEAN;
7445 			goto out;
7446 		}
7447 	}
7448 out:
7449 	read_unlock(&em_tree->lock);
7450 	return ret;
7451 }
7452 
7453 /*
7454  * Ensure that all dev extents are mapped to correct chunk, otherwise
7455  * later chunk allocation/free would cause unexpected behavior.
7456  *
7457  * NOTE: This will iterate through the whole device tree, which should be of
7458  * the same size level as the chunk tree.  This slightly increases mount time.
7459  */
7460 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7461 {
7462 	struct btrfs_path *path;
7463 	struct btrfs_root *root = fs_info->dev_root;
7464 	struct btrfs_key key;
7465 	int ret = 0;
7466 
7467 	key.objectid = 1;
7468 	key.type = BTRFS_DEV_EXTENT_KEY;
7469 	key.offset = 0;
7470 
7471 	path = btrfs_alloc_path();
7472 	if (!path)
7473 		return -ENOMEM;
7474 
7475 	path->reada = READA_FORWARD;
7476 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7477 	if (ret < 0)
7478 		goto out;
7479 
7480 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7481 		ret = btrfs_next_item(root, path);
7482 		if (ret < 0)
7483 			goto out;
7484 		/* No dev extents at all? Not good */
7485 		if (ret > 0) {
7486 			ret = -EUCLEAN;
7487 			goto out;
7488 		}
7489 	}
7490 	while (1) {
7491 		struct extent_buffer *leaf = path->nodes[0];
7492 		struct btrfs_dev_extent *dext;
7493 		int slot = path->slots[0];
7494 		u64 chunk_offset;
7495 		u64 physical_offset;
7496 		u64 physical_len;
7497 		u64 devid;
7498 
7499 		btrfs_item_key_to_cpu(leaf, &key, slot);
7500 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7501 			break;
7502 		devid = key.objectid;
7503 		physical_offset = key.offset;
7504 
7505 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7506 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7507 		physical_len = btrfs_dev_extent_length(leaf, dext);
7508 
7509 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7510 					    physical_offset, physical_len);
7511 		if (ret < 0)
7512 			goto out;
7513 		ret = btrfs_next_item(root, path);
7514 		if (ret < 0)
7515 			goto out;
7516 		if (ret > 0) {
7517 			ret = 0;
7518 			break;
7519 		}
7520 	}
7521 
7522 	/* Ensure all chunks have corresponding dev extents */
7523 	ret = verify_chunk_dev_extent_mapping(fs_info);
7524 out:
7525 	btrfs_free_path(path);
7526 	return ret;
7527 }
7528