1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "extent_map.h" 18 #include "disk-io.h" 19 #include "transaction.h" 20 #include "print-tree.h" 21 #include "volumes.h" 22 #include "raid56.h" 23 #include "rcu-string.h" 24 #include "dev-replace.h" 25 #include "sysfs.h" 26 #include "tree-checker.h" 27 #include "space-info.h" 28 #include "block-group.h" 29 #include "discard.h" 30 #include "zoned.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 #include "super.h" 38 39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 40 BTRFS_BLOCK_GROUP_RAID10 | \ 41 BTRFS_BLOCK_GROUP_RAID56_MASK) 42 43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 44 [BTRFS_RAID_RAID10] = { 45 .sub_stripes = 2, 46 .dev_stripes = 1, 47 .devs_max = 0, /* 0 == as many as possible */ 48 .devs_min = 2, 49 .tolerated_failures = 1, 50 .devs_increment = 2, 51 .ncopies = 2, 52 .nparity = 0, 53 .raid_name = "raid10", 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 56 }, 57 [BTRFS_RAID_RAID1] = { 58 .sub_stripes = 1, 59 .dev_stripes = 1, 60 .devs_max = 2, 61 .devs_min = 2, 62 .tolerated_failures = 1, 63 .devs_increment = 2, 64 .ncopies = 2, 65 .nparity = 0, 66 .raid_name = "raid1", 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 69 }, 70 [BTRFS_RAID_RAID1C3] = { 71 .sub_stripes = 1, 72 .dev_stripes = 1, 73 .devs_max = 3, 74 .devs_min = 3, 75 .tolerated_failures = 2, 76 .devs_increment = 3, 77 .ncopies = 3, 78 .nparity = 0, 79 .raid_name = "raid1c3", 80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 82 }, 83 [BTRFS_RAID_RAID1C4] = { 84 .sub_stripes = 1, 85 .dev_stripes = 1, 86 .devs_max = 4, 87 .devs_min = 4, 88 .tolerated_failures = 3, 89 .devs_increment = 4, 90 .ncopies = 4, 91 .nparity = 0, 92 .raid_name = "raid1c4", 93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 95 }, 96 [BTRFS_RAID_DUP] = { 97 .sub_stripes = 1, 98 .dev_stripes = 2, 99 .devs_max = 1, 100 .devs_min = 1, 101 .tolerated_failures = 0, 102 .devs_increment = 1, 103 .ncopies = 2, 104 .nparity = 0, 105 .raid_name = "dup", 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 107 .mindev_error = 0, 108 }, 109 [BTRFS_RAID_RAID0] = { 110 .sub_stripes = 1, 111 .dev_stripes = 1, 112 .devs_max = 0, 113 .devs_min = 1, 114 .tolerated_failures = 0, 115 .devs_increment = 1, 116 .ncopies = 1, 117 .nparity = 0, 118 .raid_name = "raid0", 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 120 .mindev_error = 0, 121 }, 122 [BTRFS_RAID_SINGLE] = { 123 .sub_stripes = 1, 124 .dev_stripes = 1, 125 .devs_max = 1, 126 .devs_min = 1, 127 .tolerated_failures = 0, 128 .devs_increment = 1, 129 .ncopies = 1, 130 .nparity = 0, 131 .raid_name = "single", 132 .bg_flag = 0, 133 .mindev_error = 0, 134 }, 135 [BTRFS_RAID_RAID5] = { 136 .sub_stripes = 1, 137 .dev_stripes = 1, 138 .devs_max = 0, 139 .devs_min = 2, 140 .tolerated_failures = 1, 141 .devs_increment = 1, 142 .ncopies = 1, 143 .nparity = 1, 144 .raid_name = "raid5", 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 147 }, 148 [BTRFS_RAID_RAID6] = { 149 .sub_stripes = 1, 150 .dev_stripes = 1, 151 .devs_max = 0, 152 .devs_min = 3, 153 .tolerated_failures = 2, 154 .devs_increment = 1, 155 .ncopies = 1, 156 .nparity = 2, 157 .raid_name = "raid6", 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 160 }, 161 }; 162 163 /* 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 165 * can be used as index to access btrfs_raid_array[]. 166 */ 167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 168 { 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 170 171 if (!profile) 172 return BTRFS_RAID_SINGLE; 173 174 return BTRFS_BG_FLAG_TO_INDEX(profile); 175 } 176 177 const char *btrfs_bg_type_to_raid_name(u64 flags) 178 { 179 const int index = btrfs_bg_flags_to_raid_index(flags); 180 181 if (index >= BTRFS_NR_RAID_TYPES) 182 return NULL; 183 184 return btrfs_raid_array[index].raid_name; 185 } 186 187 int btrfs_nr_parity_stripes(u64 type) 188 { 189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 190 191 return btrfs_raid_array[index].nparity; 192 } 193 194 /* 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf 196 * bytes including terminating null byte. 197 */ 198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 199 { 200 int i; 201 int ret; 202 char *bp = buf; 203 u64 flags = bg_flags; 204 u32 size_bp = size_buf; 205 206 if (!flags) { 207 strcpy(bp, "NONE"); 208 return; 209 } 210 211 #define DESCRIBE_FLAG(flag, desc) \ 212 do { \ 213 if (flags & (flag)) { \ 214 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 215 if (ret < 0 || ret >= size_bp) \ 216 goto out_overflow; \ 217 size_bp -= ret; \ 218 bp += ret; \ 219 flags &= ~(flag); \ 220 } \ 221 } while (0) 222 223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 226 227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 230 btrfs_raid_array[i].raid_name); 231 #undef DESCRIBE_FLAG 232 233 if (flags) { 234 ret = snprintf(bp, size_bp, "0x%llx|", flags); 235 size_bp -= ret; 236 } 237 238 if (size_bp < size_buf) 239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 240 241 /* 242 * The text is trimmed, it's up to the caller to provide sufficiently 243 * large buffer 244 */ 245 out_overflow:; 246 } 247 248 static int init_first_rw_device(struct btrfs_trans_handle *trans); 249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 251 252 /* 253 * Device locking 254 * ============== 255 * 256 * There are several mutexes that protect manipulation of devices and low-level 257 * structures like chunks but not block groups, extents or files 258 * 259 * uuid_mutex (global lock) 260 * ------------------------ 261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 263 * device) or requested by the device= mount option 264 * 265 * the mutex can be very coarse and can cover long-running operations 266 * 267 * protects: updates to fs_devices counters like missing devices, rw devices, 268 * seeding, structure cloning, opening/closing devices at mount/umount time 269 * 270 * global::fs_devs - add, remove, updates to the global list 271 * 272 * does not protect: manipulation of the fs_devices::devices list in general 273 * but in mount context it could be used to exclude list modifications by eg. 274 * scan ioctl 275 * 276 * btrfs_device::name - renames (write side), read is RCU 277 * 278 * fs_devices::device_list_mutex (per-fs, with RCU) 279 * ------------------------------------------------ 280 * protects updates to fs_devices::devices, ie. adding and deleting 281 * 282 * simple list traversal with read-only actions can be done with RCU protection 283 * 284 * may be used to exclude some operations from running concurrently without any 285 * modifications to the list (see write_all_supers) 286 * 287 * Is not required at mount and close times, because our device list is 288 * protected by the uuid_mutex at that point. 289 * 290 * balance_mutex 291 * ------------- 292 * protects balance structures (status, state) and context accessed from 293 * several places (internally, ioctl) 294 * 295 * chunk_mutex 296 * ----------- 297 * protects chunks, adding or removing during allocation, trim or when a new 298 * device is added/removed. Additionally it also protects post_commit_list of 299 * individual devices, since they can be added to the transaction's 300 * post_commit_list only with chunk_mutex held. 301 * 302 * cleaner_mutex 303 * ------------- 304 * a big lock that is held by the cleaner thread and prevents running subvolume 305 * cleaning together with relocation or delayed iputs 306 * 307 * 308 * Lock nesting 309 * ============ 310 * 311 * uuid_mutex 312 * device_list_mutex 313 * chunk_mutex 314 * balance_mutex 315 * 316 * 317 * Exclusive operations 318 * ==================== 319 * 320 * Maintains the exclusivity of the following operations that apply to the 321 * whole filesystem and cannot run in parallel. 322 * 323 * - Balance (*) 324 * - Device add 325 * - Device remove 326 * - Device replace (*) 327 * - Resize 328 * 329 * The device operations (as above) can be in one of the following states: 330 * 331 * - Running state 332 * - Paused state 333 * - Completed state 334 * 335 * Only device operations marked with (*) can go into the Paused state for the 336 * following reasons: 337 * 338 * - ioctl (only Balance can be Paused through ioctl) 339 * - filesystem remounted as read-only 340 * - filesystem unmounted and mounted as read-only 341 * - system power-cycle and filesystem mounted as read-only 342 * - filesystem or device errors leading to forced read-only 343 * 344 * The status of exclusive operation is set and cleared atomically. 345 * During the course of Paused state, fs_info::exclusive_operation remains set. 346 * A device operation in Paused or Running state can be canceled or resumed 347 * either by ioctl (Balance only) or when remounted as read-write. 348 * The exclusive status is cleared when the device operation is canceled or 349 * completed. 350 */ 351 352 DEFINE_MUTEX(uuid_mutex); 353 static LIST_HEAD(fs_uuids); 354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 355 { 356 return &fs_uuids; 357 } 358 359 /* 360 * alloc_fs_devices - allocate struct btrfs_fs_devices 361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 363 * 364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 365 * The returned struct is not linked onto any lists and can be destroyed with 366 * kfree() right away. 367 */ 368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 369 const u8 *metadata_fsid) 370 { 371 struct btrfs_fs_devices *fs_devs; 372 373 ASSERT(fsid || !metadata_fsid); 374 375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 376 if (!fs_devs) 377 return ERR_PTR(-ENOMEM); 378 379 mutex_init(&fs_devs->device_list_mutex); 380 381 INIT_LIST_HEAD(&fs_devs->devices); 382 INIT_LIST_HEAD(&fs_devs->alloc_list); 383 INIT_LIST_HEAD(&fs_devs->fs_list); 384 INIT_LIST_HEAD(&fs_devs->seed_list); 385 386 if (fsid) { 387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 388 memcpy(fs_devs->metadata_uuid, 389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE); 390 } 391 392 return fs_devs; 393 } 394 395 static void btrfs_free_device(struct btrfs_device *device) 396 { 397 WARN_ON(!list_empty(&device->post_commit_list)); 398 rcu_string_free(device->name); 399 extent_io_tree_release(&device->alloc_state); 400 btrfs_destroy_dev_zone_info(device); 401 kfree(device); 402 } 403 404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 405 { 406 struct btrfs_device *device; 407 408 WARN_ON(fs_devices->opened); 409 while (!list_empty(&fs_devices->devices)) { 410 device = list_entry(fs_devices->devices.next, 411 struct btrfs_device, dev_list); 412 list_del(&device->dev_list); 413 btrfs_free_device(device); 414 } 415 kfree(fs_devices); 416 } 417 418 void __exit btrfs_cleanup_fs_uuids(void) 419 { 420 struct btrfs_fs_devices *fs_devices; 421 422 while (!list_empty(&fs_uuids)) { 423 fs_devices = list_entry(fs_uuids.next, 424 struct btrfs_fs_devices, fs_list); 425 list_del(&fs_devices->fs_list); 426 free_fs_devices(fs_devices); 427 } 428 } 429 430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 431 const u8 *fsid, const u8 *metadata_fsid) 432 { 433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 434 return false; 435 436 if (!metadata_fsid) 437 return true; 438 439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 440 return false; 441 442 return true; 443 } 444 445 static noinline struct btrfs_fs_devices *find_fsid( 446 const u8 *fsid, const u8 *metadata_fsid) 447 { 448 struct btrfs_fs_devices *fs_devices; 449 450 ASSERT(fsid); 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 455 return fs_devices; 456 } 457 return NULL; 458 } 459 460 /* 461 * First check if the metadata_uuid is different from the fsid in the given 462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid 463 * in the fs_devices. If it is, return true; otherwise, return false. 464 */ 465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices, 466 const u8 *fsid) 467 { 468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 469 BTRFS_FSID_SIZE) != 0 && 470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0; 471 } 472 473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 474 struct btrfs_super_block *disk_super) 475 { 476 477 struct btrfs_fs_devices *fs_devices; 478 479 /* 480 * Handle scanned device having completed its fsid change but 481 * belonging to a fs_devices that was created by first scanning 482 * a device which didn't have its fsid/metadata_uuid changed 483 * at all and the CHANGING_FSID_V2 flag set. 484 */ 485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 486 if (!fs_devices->fsid_change) 487 continue; 488 489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid, 490 fs_devices->fsid)) 491 return fs_devices; 492 } 493 494 /* 495 * Handle scanned device having completed its fsid change but 496 * belonging to a fs_devices that was created by a device that 497 * has an outdated pair of fsid/metadata_uuid and 498 * CHANGING_FSID_V2 flag set. 499 */ 500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 501 if (!fs_devices->fsid_change) 502 continue; 503 504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid)) 505 return fs_devices; 506 } 507 508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 509 } 510 511 512 static int 513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 514 int flush, struct block_device **bdev, 515 struct btrfs_super_block **disk_super) 516 { 517 int ret; 518 519 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL); 520 521 if (IS_ERR(*bdev)) { 522 ret = PTR_ERR(*bdev); 523 goto error; 524 } 525 526 if (flush) 527 sync_blockdev(*bdev); 528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 529 if (ret) { 530 blkdev_put(*bdev, holder); 531 goto error; 532 } 533 invalidate_bdev(*bdev); 534 *disk_super = btrfs_read_dev_super(*bdev); 535 if (IS_ERR(*disk_super)) { 536 ret = PTR_ERR(*disk_super); 537 blkdev_put(*bdev, holder); 538 goto error; 539 } 540 541 return 0; 542 543 error: 544 *bdev = NULL; 545 return ret; 546 } 547 548 /* 549 * Search and remove all stale devices (which are not mounted). When both 550 * inputs are NULL, it will search and release all stale devices. 551 * 552 * @devt: Optional. When provided will it release all unmounted devices 553 * matching this devt only. 554 * @skip_device: Optional. Will skip this device when searching for the stale 555 * devices. 556 * 557 * Return: 0 for success or if @devt is 0. 558 * -EBUSY if @devt is a mounted device. 559 * -ENOENT if @devt does not match any device in the list. 560 */ 561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 562 { 563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 564 struct btrfs_device *device, *tmp_device; 565 int ret = 0; 566 567 lockdep_assert_held(&uuid_mutex); 568 569 if (devt) 570 ret = -ENOENT; 571 572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 573 574 mutex_lock(&fs_devices->device_list_mutex); 575 list_for_each_entry_safe(device, tmp_device, 576 &fs_devices->devices, dev_list) { 577 if (skip_device && skip_device == device) 578 continue; 579 if (devt && devt != device->devt) 580 continue; 581 if (fs_devices->opened) { 582 /* for an already deleted device return 0 */ 583 if (devt && ret != 0) 584 ret = -EBUSY; 585 break; 586 } 587 588 /* delete the stale device */ 589 fs_devices->num_devices--; 590 list_del(&device->dev_list); 591 btrfs_free_device(device); 592 593 ret = 0; 594 } 595 mutex_unlock(&fs_devices->device_list_mutex); 596 597 if (fs_devices->num_devices == 0) { 598 btrfs_sysfs_remove_fsid(fs_devices); 599 list_del(&fs_devices->fs_list); 600 free_fs_devices(fs_devices); 601 } 602 } 603 604 return ret; 605 } 606 607 /* 608 * This is only used on mount, and we are protected from competing things 609 * messing with our fs_devices by the uuid_mutex, thus we do not need the 610 * fs_devices->device_list_mutex here. 611 */ 612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 613 struct btrfs_device *device, blk_mode_t flags, 614 void *holder) 615 { 616 struct block_device *bdev; 617 struct btrfs_super_block *disk_super; 618 u64 devid; 619 int ret; 620 621 if (device->bdev) 622 return -EINVAL; 623 if (!device->name) 624 return -EINVAL; 625 626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 627 &bdev, &disk_super); 628 if (ret) 629 return ret; 630 631 devid = btrfs_stack_device_id(&disk_super->dev_item); 632 if (devid != device->devid) 633 goto error_free_page; 634 635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 636 goto error_free_page; 637 638 device->generation = btrfs_super_generation(disk_super); 639 640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 641 if (btrfs_super_incompat_flags(disk_super) & 642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 643 pr_err( 644 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 645 goto error_free_page; 646 } 647 648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 649 fs_devices->seeding = true; 650 } else { 651 if (bdev_read_only(bdev)) 652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 653 else 654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 655 } 656 657 if (!bdev_nonrot(bdev)) 658 fs_devices->rotating = true; 659 660 if (bdev_max_discard_sectors(bdev)) 661 fs_devices->discardable = true; 662 663 device->bdev = bdev; 664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 665 device->holder = holder; 666 667 fs_devices->open_devices++; 668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 669 device->devid != BTRFS_DEV_REPLACE_DEVID) { 670 fs_devices->rw_devices++; 671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 672 } 673 btrfs_release_disk_super(disk_super); 674 675 return 0; 676 677 error_free_page: 678 btrfs_release_disk_super(disk_super); 679 blkdev_put(bdev, holder); 680 681 return -EINVAL; 682 } 683 684 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) 685 { 686 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 687 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 688 689 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 690 } 691 692 /* 693 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 694 * being created with a disk that has already completed its fsid change. Such 695 * disk can belong to an fs which has its FSID changed or to one which doesn't. 696 * Handle both cases here. 697 */ 698 static struct btrfs_fs_devices *find_fsid_inprogress( 699 struct btrfs_super_block *disk_super) 700 { 701 struct btrfs_fs_devices *fs_devices; 702 703 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 704 if (fs_devices->fsid_change) 705 continue; 706 707 if (check_fsid_changed(fs_devices, disk_super->fsid)) 708 return fs_devices; 709 } 710 711 return find_fsid(disk_super->fsid, NULL); 712 } 713 714 static struct btrfs_fs_devices *find_fsid_changed( 715 struct btrfs_super_block *disk_super) 716 { 717 struct btrfs_fs_devices *fs_devices; 718 719 /* 720 * Handles the case where scanned device is part of an fs that had 721 * multiple successful changes of FSID but currently device didn't 722 * observe it. Meaning our fsid will be different than theirs. We need 723 * to handle two subcases : 724 * 1 - The fs still continues to have different METADATA/FSID uuids. 725 * 2 - The fs is switched back to its original FSID (METADATA/FSID 726 * are equal). 727 */ 728 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 729 /* Changed UUIDs */ 730 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) && 731 memcmp(fs_devices->fsid, disk_super->fsid, 732 BTRFS_FSID_SIZE) != 0) 733 return fs_devices; 734 735 /* Unchanged UUIDs */ 736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 737 BTRFS_FSID_SIZE) == 0 && 738 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 739 BTRFS_FSID_SIZE) == 0) 740 return fs_devices; 741 } 742 743 return NULL; 744 } 745 746 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 747 struct btrfs_super_block *disk_super) 748 { 749 struct btrfs_fs_devices *fs_devices; 750 751 /* 752 * Handle the case where the scanned device is part of an fs whose last 753 * metadata UUID change reverted it to the original FSID. At the same 754 * time fs_devices was first created by another constituent device 755 * which didn't fully observe the operation. This results in an 756 * btrfs_fs_devices created with metadata/fsid different AND 757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 758 * fs_devices equal to the FSID of the disk. 759 */ 760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 761 if (!fs_devices->fsid_change) 762 continue; 763 764 if (check_fsid_changed(fs_devices, disk_super->fsid)) 765 return fs_devices; 766 } 767 768 return NULL; 769 } 770 /* 771 * Add new device to list of registered devices 772 * 773 * Returns: 774 * device pointer which was just added or updated when successful 775 * error pointer when failed 776 */ 777 static noinline struct btrfs_device *device_list_add(const char *path, 778 struct btrfs_super_block *disk_super, 779 bool *new_device_added) 780 { 781 struct btrfs_device *device; 782 struct btrfs_fs_devices *fs_devices = NULL; 783 struct rcu_string *name; 784 u64 found_transid = btrfs_super_generation(disk_super); 785 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 786 dev_t path_devt; 787 int error; 788 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 789 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 790 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 791 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 792 793 error = lookup_bdev(path, &path_devt); 794 if (error) { 795 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 796 path, error); 797 return ERR_PTR(error); 798 } 799 800 if (fsid_change_in_progress) { 801 if (!has_metadata_uuid) 802 fs_devices = find_fsid_inprogress(disk_super); 803 else 804 fs_devices = find_fsid_changed(disk_super); 805 } else if (has_metadata_uuid) { 806 fs_devices = find_fsid_with_metadata_uuid(disk_super); 807 } else { 808 fs_devices = find_fsid_reverted_metadata(disk_super); 809 if (!fs_devices) 810 fs_devices = find_fsid(disk_super->fsid, NULL); 811 } 812 813 814 if (!fs_devices) { 815 fs_devices = alloc_fs_devices(disk_super->fsid, 816 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 817 if (IS_ERR(fs_devices)) 818 return ERR_CAST(fs_devices); 819 820 fs_devices->fsid_change = fsid_change_in_progress; 821 822 mutex_lock(&fs_devices->device_list_mutex); 823 list_add(&fs_devices->fs_list, &fs_uuids); 824 825 device = NULL; 826 } else { 827 struct btrfs_dev_lookup_args args = { 828 .devid = devid, 829 .uuid = disk_super->dev_item.uuid, 830 }; 831 832 mutex_lock(&fs_devices->device_list_mutex); 833 device = btrfs_find_device(fs_devices, &args); 834 835 /* 836 * If this disk has been pulled into an fs devices created by 837 * a device which had the CHANGING_FSID_V2 flag then replace the 838 * metadata_uuid/fsid values of the fs_devices. 839 */ 840 if (fs_devices->fsid_change && 841 found_transid > fs_devices->latest_generation) { 842 memcpy(fs_devices->fsid, disk_super->fsid, 843 BTRFS_FSID_SIZE); 844 memcpy(fs_devices->metadata_uuid, 845 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 846 fs_devices->fsid_change = false; 847 } 848 } 849 850 if (!device) { 851 unsigned int nofs_flag; 852 853 if (fs_devices->opened) { 854 btrfs_err(NULL, 855 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 856 path, fs_devices->fsid, current->comm, 857 task_pid_nr(current)); 858 mutex_unlock(&fs_devices->device_list_mutex); 859 return ERR_PTR(-EBUSY); 860 } 861 862 nofs_flag = memalloc_nofs_save(); 863 device = btrfs_alloc_device(NULL, &devid, 864 disk_super->dev_item.uuid, path); 865 memalloc_nofs_restore(nofs_flag); 866 if (IS_ERR(device)) { 867 mutex_unlock(&fs_devices->device_list_mutex); 868 /* we can safely leave the fs_devices entry around */ 869 return device; 870 } 871 872 device->devt = path_devt; 873 874 list_add_rcu(&device->dev_list, &fs_devices->devices); 875 fs_devices->num_devices++; 876 877 device->fs_devices = fs_devices; 878 *new_device_added = true; 879 880 if (disk_super->label[0]) 881 pr_info( 882 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 883 disk_super->label, devid, found_transid, path, 884 current->comm, task_pid_nr(current)); 885 else 886 pr_info( 887 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 888 disk_super->fsid, devid, found_transid, path, 889 current->comm, task_pid_nr(current)); 890 891 } else if (!device->name || strcmp(device->name->str, path)) { 892 /* 893 * When FS is already mounted. 894 * 1. If you are here and if the device->name is NULL that 895 * means this device was missing at time of FS mount. 896 * 2. If you are here and if the device->name is different 897 * from 'path' that means either 898 * a. The same device disappeared and reappeared with 899 * different name. or 900 * b. The missing-disk-which-was-replaced, has 901 * reappeared now. 902 * 903 * We must allow 1 and 2a above. But 2b would be a spurious 904 * and unintentional. 905 * 906 * Further in case of 1 and 2a above, the disk at 'path' 907 * would have missed some transaction when it was away and 908 * in case of 2a the stale bdev has to be updated as well. 909 * 2b must not be allowed at all time. 910 */ 911 912 /* 913 * For now, we do allow update to btrfs_fs_device through the 914 * btrfs dev scan cli after FS has been mounted. We're still 915 * tracking a problem where systems fail mount by subvolume id 916 * when we reject replacement on a mounted FS. 917 */ 918 if (!fs_devices->opened && found_transid < device->generation) { 919 /* 920 * That is if the FS is _not_ mounted and if you 921 * are here, that means there is more than one 922 * disk with same uuid and devid.We keep the one 923 * with larger generation number or the last-in if 924 * generation are equal. 925 */ 926 mutex_unlock(&fs_devices->device_list_mutex); 927 btrfs_err(NULL, 928 "device %s already registered with a higher generation, found %llu expect %llu", 929 path, found_transid, device->generation); 930 return ERR_PTR(-EEXIST); 931 } 932 933 /* 934 * We are going to replace the device path for a given devid, 935 * make sure it's the same device if the device is mounted 936 * 937 * NOTE: the device->fs_info may not be reliable here so pass 938 * in a NULL to message helpers instead. This avoids a possible 939 * use-after-free when the fs_info and fs_info->sb are already 940 * torn down. 941 */ 942 if (device->bdev) { 943 if (device->devt != path_devt) { 944 mutex_unlock(&fs_devices->device_list_mutex); 945 btrfs_warn_in_rcu(NULL, 946 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 947 path, devid, found_transid, 948 current->comm, 949 task_pid_nr(current)); 950 return ERR_PTR(-EEXIST); 951 } 952 btrfs_info_in_rcu(NULL, 953 "devid %llu device path %s changed to %s scanned by %s (%d)", 954 devid, btrfs_dev_name(device), 955 path, current->comm, 956 task_pid_nr(current)); 957 } 958 959 name = rcu_string_strdup(path, GFP_NOFS); 960 if (!name) { 961 mutex_unlock(&fs_devices->device_list_mutex); 962 return ERR_PTR(-ENOMEM); 963 } 964 rcu_string_free(device->name); 965 rcu_assign_pointer(device->name, name); 966 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 967 fs_devices->missing_devices--; 968 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 969 } 970 device->devt = path_devt; 971 } 972 973 /* 974 * Unmount does not free the btrfs_device struct but would zero 975 * generation along with most of the other members. So just update 976 * it back. We need it to pick the disk with largest generation 977 * (as above). 978 */ 979 if (!fs_devices->opened) { 980 device->generation = found_transid; 981 fs_devices->latest_generation = max_t(u64, found_transid, 982 fs_devices->latest_generation); 983 } 984 985 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 986 987 mutex_unlock(&fs_devices->device_list_mutex); 988 return device; 989 } 990 991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 992 { 993 struct btrfs_fs_devices *fs_devices; 994 struct btrfs_device *device; 995 struct btrfs_device *orig_dev; 996 int ret = 0; 997 998 lockdep_assert_held(&uuid_mutex); 999 1000 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1001 if (IS_ERR(fs_devices)) 1002 return fs_devices; 1003 1004 fs_devices->total_devices = orig->total_devices; 1005 1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1007 const char *dev_path = NULL; 1008 1009 /* 1010 * This is ok to do without RCU read locked because we hold the 1011 * uuid mutex so nothing we touch in here is going to disappear. 1012 */ 1013 if (orig_dev->name) 1014 dev_path = orig_dev->name->str; 1015 1016 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1017 orig_dev->uuid, dev_path); 1018 if (IS_ERR(device)) { 1019 ret = PTR_ERR(device); 1020 goto error; 1021 } 1022 1023 if (orig_dev->zone_info) { 1024 struct btrfs_zoned_device_info *zone_info; 1025 1026 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1027 if (!zone_info) { 1028 btrfs_free_device(device); 1029 ret = -ENOMEM; 1030 goto error; 1031 } 1032 device->zone_info = zone_info; 1033 } 1034 1035 list_add(&device->dev_list, &fs_devices->devices); 1036 device->fs_devices = fs_devices; 1037 fs_devices->num_devices++; 1038 } 1039 return fs_devices; 1040 error: 1041 free_fs_devices(fs_devices); 1042 return ERR_PTR(ret); 1043 } 1044 1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1046 struct btrfs_device **latest_dev) 1047 { 1048 struct btrfs_device *device, *next; 1049 1050 /* This is the initialized path, it is safe to release the devices. */ 1051 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1052 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1053 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1054 &device->dev_state) && 1055 !test_bit(BTRFS_DEV_STATE_MISSING, 1056 &device->dev_state) && 1057 (!*latest_dev || 1058 device->generation > (*latest_dev)->generation)) { 1059 *latest_dev = device; 1060 } 1061 continue; 1062 } 1063 1064 /* 1065 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1066 * in btrfs_init_dev_replace() so just continue. 1067 */ 1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1069 continue; 1070 1071 if (device->bdev) { 1072 blkdev_put(device->bdev, device->holder); 1073 device->bdev = NULL; 1074 fs_devices->open_devices--; 1075 } 1076 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1077 list_del_init(&device->dev_alloc_list); 1078 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1079 fs_devices->rw_devices--; 1080 } 1081 list_del_init(&device->dev_list); 1082 fs_devices->num_devices--; 1083 btrfs_free_device(device); 1084 } 1085 1086 } 1087 1088 /* 1089 * After we have read the system tree and know devids belonging to this 1090 * filesystem, remove the device which does not belong there. 1091 */ 1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1093 { 1094 struct btrfs_device *latest_dev = NULL; 1095 struct btrfs_fs_devices *seed_dev; 1096 1097 mutex_lock(&uuid_mutex); 1098 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1099 1100 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1101 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1102 1103 fs_devices->latest_dev = latest_dev; 1104 1105 mutex_unlock(&uuid_mutex); 1106 } 1107 1108 static void btrfs_close_bdev(struct btrfs_device *device) 1109 { 1110 if (!device->bdev) 1111 return; 1112 1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1114 sync_blockdev(device->bdev); 1115 invalidate_bdev(device->bdev); 1116 } 1117 1118 blkdev_put(device->bdev, device->holder); 1119 } 1120 1121 static void btrfs_close_one_device(struct btrfs_device *device) 1122 { 1123 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1124 1125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1126 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1127 list_del_init(&device->dev_alloc_list); 1128 fs_devices->rw_devices--; 1129 } 1130 1131 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1132 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1133 1134 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1135 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1136 fs_devices->missing_devices--; 1137 } 1138 1139 btrfs_close_bdev(device); 1140 if (device->bdev) { 1141 fs_devices->open_devices--; 1142 device->bdev = NULL; 1143 } 1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1145 btrfs_destroy_dev_zone_info(device); 1146 1147 device->fs_info = NULL; 1148 atomic_set(&device->dev_stats_ccnt, 0); 1149 extent_io_tree_release(&device->alloc_state); 1150 1151 /* 1152 * Reset the flush error record. We might have a transient flush error 1153 * in this mount, and if so we aborted the current transaction and set 1154 * the fs to an error state, guaranteeing no super blocks can be further 1155 * committed. However that error might be transient and if we unmount the 1156 * filesystem and mount it again, we should allow the mount to succeed 1157 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1158 * filesystem again we still get flush errors, then we will again abort 1159 * any transaction and set the error state, guaranteeing no commits of 1160 * unsafe super blocks. 1161 */ 1162 device->last_flush_error = 0; 1163 1164 /* Verify the device is back in a pristine state */ 1165 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1166 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1167 WARN_ON(!list_empty(&device->dev_alloc_list)); 1168 WARN_ON(!list_empty(&device->post_commit_list)); 1169 } 1170 1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1172 { 1173 struct btrfs_device *device, *tmp; 1174 1175 lockdep_assert_held(&uuid_mutex); 1176 1177 if (--fs_devices->opened > 0) 1178 return; 1179 1180 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1181 btrfs_close_one_device(device); 1182 1183 WARN_ON(fs_devices->open_devices); 1184 WARN_ON(fs_devices->rw_devices); 1185 fs_devices->opened = 0; 1186 fs_devices->seeding = false; 1187 fs_devices->fs_info = NULL; 1188 } 1189 1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1191 { 1192 LIST_HEAD(list); 1193 struct btrfs_fs_devices *tmp; 1194 1195 mutex_lock(&uuid_mutex); 1196 close_fs_devices(fs_devices); 1197 if (!fs_devices->opened) { 1198 list_splice_init(&fs_devices->seed_list, &list); 1199 1200 /* 1201 * If the struct btrfs_fs_devices is not assembled with any 1202 * other device, it can be re-initialized during the next mount 1203 * without the needing device-scan step. Therefore, it can be 1204 * fully freed. 1205 */ 1206 if (fs_devices->num_devices == 1) { 1207 list_del(&fs_devices->fs_list); 1208 free_fs_devices(fs_devices); 1209 } 1210 } 1211 1212 1213 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1214 close_fs_devices(fs_devices); 1215 list_del(&fs_devices->seed_list); 1216 free_fs_devices(fs_devices); 1217 } 1218 mutex_unlock(&uuid_mutex); 1219 } 1220 1221 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1222 blk_mode_t flags, void *holder) 1223 { 1224 struct btrfs_device *device; 1225 struct btrfs_device *latest_dev = NULL; 1226 struct btrfs_device *tmp_device; 1227 1228 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1229 dev_list) { 1230 int ret; 1231 1232 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1233 if (ret == 0 && 1234 (!latest_dev || device->generation > latest_dev->generation)) { 1235 latest_dev = device; 1236 } else if (ret == -ENODATA) { 1237 fs_devices->num_devices--; 1238 list_del(&device->dev_list); 1239 btrfs_free_device(device); 1240 } 1241 } 1242 if (fs_devices->open_devices == 0) 1243 return -EINVAL; 1244 1245 fs_devices->opened = 1; 1246 fs_devices->latest_dev = latest_dev; 1247 fs_devices->total_rw_bytes = 0; 1248 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1249 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1250 1251 return 0; 1252 } 1253 1254 static int devid_cmp(void *priv, const struct list_head *a, 1255 const struct list_head *b) 1256 { 1257 const struct btrfs_device *dev1, *dev2; 1258 1259 dev1 = list_entry(a, struct btrfs_device, dev_list); 1260 dev2 = list_entry(b, struct btrfs_device, dev_list); 1261 1262 if (dev1->devid < dev2->devid) 1263 return -1; 1264 else if (dev1->devid > dev2->devid) 1265 return 1; 1266 return 0; 1267 } 1268 1269 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1270 blk_mode_t flags, void *holder) 1271 { 1272 int ret; 1273 1274 lockdep_assert_held(&uuid_mutex); 1275 /* 1276 * The device_list_mutex cannot be taken here in case opening the 1277 * underlying device takes further locks like open_mutex. 1278 * 1279 * We also don't need the lock here as this is called during mount and 1280 * exclusion is provided by uuid_mutex 1281 */ 1282 1283 if (fs_devices->opened) { 1284 fs_devices->opened++; 1285 ret = 0; 1286 } else { 1287 list_sort(NULL, &fs_devices->devices, devid_cmp); 1288 ret = open_fs_devices(fs_devices, flags, holder); 1289 } 1290 1291 return ret; 1292 } 1293 1294 void btrfs_release_disk_super(struct btrfs_super_block *super) 1295 { 1296 struct page *page = virt_to_page(super); 1297 1298 put_page(page); 1299 } 1300 1301 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1302 u64 bytenr, u64 bytenr_orig) 1303 { 1304 struct btrfs_super_block *disk_super; 1305 struct page *page; 1306 void *p; 1307 pgoff_t index; 1308 1309 /* make sure our super fits in the device */ 1310 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1311 return ERR_PTR(-EINVAL); 1312 1313 /* make sure our super fits in the page */ 1314 if (sizeof(*disk_super) > PAGE_SIZE) 1315 return ERR_PTR(-EINVAL); 1316 1317 /* make sure our super doesn't straddle pages on disk */ 1318 index = bytenr >> PAGE_SHIFT; 1319 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1320 return ERR_PTR(-EINVAL); 1321 1322 /* pull in the page with our super */ 1323 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1324 1325 if (IS_ERR(page)) 1326 return ERR_CAST(page); 1327 1328 p = page_address(page); 1329 1330 /* align our pointer to the offset of the super block */ 1331 disk_super = p + offset_in_page(bytenr); 1332 1333 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1334 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1335 btrfs_release_disk_super(p); 1336 return ERR_PTR(-EINVAL); 1337 } 1338 1339 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1340 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1341 1342 return disk_super; 1343 } 1344 1345 int btrfs_forget_devices(dev_t devt) 1346 { 1347 int ret; 1348 1349 mutex_lock(&uuid_mutex); 1350 ret = btrfs_free_stale_devices(devt, NULL); 1351 mutex_unlock(&uuid_mutex); 1352 1353 return ret; 1354 } 1355 1356 /* 1357 * Look for a btrfs signature on a device. This may be called out of the mount path 1358 * and we are not allowed to call set_blocksize during the scan. The superblock 1359 * is read via pagecache 1360 */ 1361 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags) 1362 { 1363 struct btrfs_super_block *disk_super; 1364 bool new_device_added = false; 1365 struct btrfs_device *device = NULL; 1366 struct block_device *bdev; 1367 u64 bytenr, bytenr_orig; 1368 int ret; 1369 1370 lockdep_assert_held(&uuid_mutex); 1371 1372 /* 1373 * we would like to check all the supers, but that would make 1374 * a btrfs mount succeed after a mkfs from a different FS. 1375 * So, we need to add a special mount option to scan for 1376 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1377 */ 1378 1379 /* 1380 * Avoid an exclusive open here, as the systemd-udev may initiate the 1381 * device scan which may race with the user's mount or mkfs command, 1382 * resulting in failure. 1383 * Since the device scan is solely for reading purposes, there is no 1384 * need for an exclusive open. Additionally, the devices are read again 1385 * during the mount process. It is ok to get some inconsistent 1386 * values temporarily, as the device paths of the fsid are the only 1387 * required information for assembling the volume. 1388 */ 1389 bdev = blkdev_get_by_path(path, flags, NULL, NULL); 1390 if (IS_ERR(bdev)) 1391 return ERR_CAST(bdev); 1392 1393 bytenr_orig = btrfs_sb_offset(0); 1394 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1395 if (ret) { 1396 device = ERR_PTR(ret); 1397 goto error_bdev_put; 1398 } 1399 1400 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1401 if (IS_ERR(disk_super)) { 1402 device = ERR_CAST(disk_super); 1403 goto error_bdev_put; 1404 } 1405 1406 device = device_list_add(path, disk_super, &new_device_added); 1407 if (!IS_ERR(device) && new_device_added) 1408 btrfs_free_stale_devices(device->devt, device); 1409 1410 btrfs_release_disk_super(disk_super); 1411 1412 error_bdev_put: 1413 blkdev_put(bdev, NULL); 1414 1415 return device; 1416 } 1417 1418 /* 1419 * Try to find a chunk that intersects [start, start + len] range and when one 1420 * such is found, record the end of it in *start 1421 */ 1422 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1423 u64 len) 1424 { 1425 u64 physical_start, physical_end; 1426 1427 lockdep_assert_held(&device->fs_info->chunk_mutex); 1428 1429 if (find_first_extent_bit(&device->alloc_state, *start, 1430 &physical_start, &physical_end, 1431 CHUNK_ALLOCATED, NULL)) { 1432 1433 if (in_range(physical_start, *start, len) || 1434 in_range(*start, physical_start, 1435 physical_end - physical_start)) { 1436 *start = physical_end + 1; 1437 return true; 1438 } 1439 } 1440 return false; 1441 } 1442 1443 static u64 dev_extent_search_start(struct btrfs_device *device) 1444 { 1445 switch (device->fs_devices->chunk_alloc_policy) { 1446 case BTRFS_CHUNK_ALLOC_REGULAR: 1447 return BTRFS_DEVICE_RANGE_RESERVED; 1448 case BTRFS_CHUNK_ALLOC_ZONED: 1449 /* 1450 * We don't care about the starting region like regular 1451 * allocator, because we anyway use/reserve the first two zones 1452 * for superblock logging. 1453 */ 1454 return 0; 1455 default: 1456 BUG(); 1457 } 1458 } 1459 1460 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1461 u64 *hole_start, u64 *hole_size, 1462 u64 num_bytes) 1463 { 1464 u64 zone_size = device->zone_info->zone_size; 1465 u64 pos; 1466 int ret; 1467 bool changed = false; 1468 1469 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1470 1471 while (*hole_size > 0) { 1472 pos = btrfs_find_allocatable_zones(device, *hole_start, 1473 *hole_start + *hole_size, 1474 num_bytes); 1475 if (pos != *hole_start) { 1476 *hole_size = *hole_start + *hole_size - pos; 1477 *hole_start = pos; 1478 changed = true; 1479 if (*hole_size < num_bytes) 1480 break; 1481 } 1482 1483 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1484 1485 /* Range is ensured to be empty */ 1486 if (!ret) 1487 return changed; 1488 1489 /* Given hole range was invalid (outside of device) */ 1490 if (ret == -ERANGE) { 1491 *hole_start += *hole_size; 1492 *hole_size = 0; 1493 return true; 1494 } 1495 1496 *hole_start += zone_size; 1497 *hole_size -= zone_size; 1498 changed = true; 1499 } 1500 1501 return changed; 1502 } 1503 1504 /* 1505 * Check if specified hole is suitable for allocation. 1506 * 1507 * @device: the device which we have the hole 1508 * @hole_start: starting position of the hole 1509 * @hole_size: the size of the hole 1510 * @num_bytes: the size of the free space that we need 1511 * 1512 * This function may modify @hole_start and @hole_size to reflect the suitable 1513 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1514 */ 1515 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1516 u64 *hole_size, u64 num_bytes) 1517 { 1518 bool changed = false; 1519 u64 hole_end = *hole_start + *hole_size; 1520 1521 for (;;) { 1522 /* 1523 * Check before we set max_hole_start, otherwise we could end up 1524 * sending back this offset anyway. 1525 */ 1526 if (contains_pending_extent(device, hole_start, *hole_size)) { 1527 if (hole_end >= *hole_start) 1528 *hole_size = hole_end - *hole_start; 1529 else 1530 *hole_size = 0; 1531 changed = true; 1532 } 1533 1534 switch (device->fs_devices->chunk_alloc_policy) { 1535 case BTRFS_CHUNK_ALLOC_REGULAR: 1536 /* No extra check */ 1537 break; 1538 case BTRFS_CHUNK_ALLOC_ZONED: 1539 if (dev_extent_hole_check_zoned(device, hole_start, 1540 hole_size, num_bytes)) { 1541 changed = true; 1542 /* 1543 * The changed hole can contain pending extent. 1544 * Loop again to check that. 1545 */ 1546 continue; 1547 } 1548 break; 1549 default: 1550 BUG(); 1551 } 1552 1553 break; 1554 } 1555 1556 return changed; 1557 } 1558 1559 /* 1560 * Find free space in the specified device. 1561 * 1562 * @device: the device which we search the free space in 1563 * @num_bytes: the size of the free space that we need 1564 * @search_start: the position from which to begin the search 1565 * @start: store the start of the free space. 1566 * @len: the size of the free space. that we find, or the size 1567 * of the max free space if we don't find suitable free space 1568 * 1569 * This does a pretty simple search, the expectation is that it is called very 1570 * infrequently and that a given device has a small number of extents. 1571 * 1572 * @start is used to store the start of the free space if we find. But if we 1573 * don't find suitable free space, it will be used to store the start position 1574 * of the max free space. 1575 * 1576 * @len is used to store the size of the free space that we find. 1577 * But if we don't find suitable free space, it is used to store the size of 1578 * the max free space. 1579 * 1580 * NOTE: This function will search *commit* root of device tree, and does extra 1581 * check to ensure dev extents are not double allocated. 1582 * This makes the function safe to allocate dev extents but may not report 1583 * correct usable device space, as device extent freed in current transaction 1584 * is not reported as available. 1585 */ 1586 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1587 u64 *start, u64 *len) 1588 { 1589 struct btrfs_fs_info *fs_info = device->fs_info; 1590 struct btrfs_root *root = fs_info->dev_root; 1591 struct btrfs_key key; 1592 struct btrfs_dev_extent *dev_extent; 1593 struct btrfs_path *path; 1594 u64 search_start; 1595 u64 hole_size; 1596 u64 max_hole_start; 1597 u64 max_hole_size = 0; 1598 u64 extent_end; 1599 u64 search_end = device->total_bytes; 1600 int ret; 1601 int slot; 1602 struct extent_buffer *l; 1603 1604 search_start = dev_extent_search_start(device); 1605 max_hole_start = search_start; 1606 1607 WARN_ON(device->zone_info && 1608 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1609 1610 path = btrfs_alloc_path(); 1611 if (!path) { 1612 ret = -ENOMEM; 1613 goto out; 1614 } 1615 again: 1616 if (search_start >= search_end || 1617 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1618 ret = -ENOSPC; 1619 goto out; 1620 } 1621 1622 path->reada = READA_FORWARD; 1623 path->search_commit_root = 1; 1624 path->skip_locking = 1; 1625 1626 key.objectid = device->devid; 1627 key.offset = search_start; 1628 key.type = BTRFS_DEV_EXTENT_KEY; 1629 1630 ret = btrfs_search_backwards(root, &key, path); 1631 if (ret < 0) 1632 goto out; 1633 1634 while (search_start < search_end) { 1635 l = path->nodes[0]; 1636 slot = path->slots[0]; 1637 if (slot >= btrfs_header_nritems(l)) { 1638 ret = btrfs_next_leaf(root, path); 1639 if (ret == 0) 1640 continue; 1641 if (ret < 0) 1642 goto out; 1643 1644 break; 1645 } 1646 btrfs_item_key_to_cpu(l, &key, slot); 1647 1648 if (key.objectid < device->devid) 1649 goto next; 1650 1651 if (key.objectid > device->devid) 1652 break; 1653 1654 if (key.type != BTRFS_DEV_EXTENT_KEY) 1655 goto next; 1656 1657 if (key.offset > search_end) 1658 break; 1659 1660 if (key.offset > search_start) { 1661 hole_size = key.offset - search_start; 1662 dev_extent_hole_check(device, &search_start, &hole_size, 1663 num_bytes); 1664 1665 if (hole_size > max_hole_size) { 1666 max_hole_start = search_start; 1667 max_hole_size = hole_size; 1668 } 1669 1670 /* 1671 * If this free space is greater than which we need, 1672 * it must be the max free space that we have found 1673 * until now, so max_hole_start must point to the start 1674 * of this free space and the length of this free space 1675 * is stored in max_hole_size. Thus, we return 1676 * max_hole_start and max_hole_size and go back to the 1677 * caller. 1678 */ 1679 if (hole_size >= num_bytes) { 1680 ret = 0; 1681 goto out; 1682 } 1683 } 1684 1685 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1686 extent_end = key.offset + btrfs_dev_extent_length(l, 1687 dev_extent); 1688 if (extent_end > search_start) 1689 search_start = extent_end; 1690 next: 1691 path->slots[0]++; 1692 cond_resched(); 1693 } 1694 1695 /* 1696 * At this point, search_start should be the end of 1697 * allocated dev extents, and when shrinking the device, 1698 * search_end may be smaller than search_start. 1699 */ 1700 if (search_end > search_start) { 1701 hole_size = search_end - search_start; 1702 if (dev_extent_hole_check(device, &search_start, &hole_size, 1703 num_bytes)) { 1704 btrfs_release_path(path); 1705 goto again; 1706 } 1707 1708 if (hole_size > max_hole_size) { 1709 max_hole_start = search_start; 1710 max_hole_size = hole_size; 1711 } 1712 } 1713 1714 /* See above. */ 1715 if (max_hole_size < num_bytes) 1716 ret = -ENOSPC; 1717 else 1718 ret = 0; 1719 1720 ASSERT(max_hole_start + max_hole_size <= search_end); 1721 out: 1722 btrfs_free_path(path); 1723 *start = max_hole_start; 1724 if (len) 1725 *len = max_hole_size; 1726 return ret; 1727 } 1728 1729 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1730 struct btrfs_device *device, 1731 u64 start, u64 *dev_extent_len) 1732 { 1733 struct btrfs_fs_info *fs_info = device->fs_info; 1734 struct btrfs_root *root = fs_info->dev_root; 1735 int ret; 1736 struct btrfs_path *path; 1737 struct btrfs_key key; 1738 struct btrfs_key found_key; 1739 struct extent_buffer *leaf = NULL; 1740 struct btrfs_dev_extent *extent = NULL; 1741 1742 path = btrfs_alloc_path(); 1743 if (!path) 1744 return -ENOMEM; 1745 1746 key.objectid = device->devid; 1747 key.offset = start; 1748 key.type = BTRFS_DEV_EXTENT_KEY; 1749 again: 1750 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1751 if (ret > 0) { 1752 ret = btrfs_previous_item(root, path, key.objectid, 1753 BTRFS_DEV_EXTENT_KEY); 1754 if (ret) 1755 goto out; 1756 leaf = path->nodes[0]; 1757 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1758 extent = btrfs_item_ptr(leaf, path->slots[0], 1759 struct btrfs_dev_extent); 1760 BUG_ON(found_key.offset > start || found_key.offset + 1761 btrfs_dev_extent_length(leaf, extent) < start); 1762 key = found_key; 1763 btrfs_release_path(path); 1764 goto again; 1765 } else if (ret == 0) { 1766 leaf = path->nodes[0]; 1767 extent = btrfs_item_ptr(leaf, path->slots[0], 1768 struct btrfs_dev_extent); 1769 } else { 1770 goto out; 1771 } 1772 1773 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1774 1775 ret = btrfs_del_item(trans, root, path); 1776 if (ret == 0) 1777 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1778 out: 1779 btrfs_free_path(path); 1780 return ret; 1781 } 1782 1783 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1784 { 1785 struct extent_map_tree *em_tree; 1786 struct extent_map *em; 1787 struct rb_node *n; 1788 u64 ret = 0; 1789 1790 em_tree = &fs_info->mapping_tree; 1791 read_lock(&em_tree->lock); 1792 n = rb_last(&em_tree->map.rb_root); 1793 if (n) { 1794 em = rb_entry(n, struct extent_map, rb_node); 1795 ret = em->start + em->len; 1796 } 1797 read_unlock(&em_tree->lock); 1798 1799 return ret; 1800 } 1801 1802 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1803 u64 *devid_ret) 1804 { 1805 int ret; 1806 struct btrfs_key key; 1807 struct btrfs_key found_key; 1808 struct btrfs_path *path; 1809 1810 path = btrfs_alloc_path(); 1811 if (!path) 1812 return -ENOMEM; 1813 1814 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1815 key.type = BTRFS_DEV_ITEM_KEY; 1816 key.offset = (u64)-1; 1817 1818 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1819 if (ret < 0) 1820 goto error; 1821 1822 if (ret == 0) { 1823 /* Corruption */ 1824 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1825 ret = -EUCLEAN; 1826 goto error; 1827 } 1828 1829 ret = btrfs_previous_item(fs_info->chunk_root, path, 1830 BTRFS_DEV_ITEMS_OBJECTID, 1831 BTRFS_DEV_ITEM_KEY); 1832 if (ret) { 1833 *devid_ret = 1; 1834 } else { 1835 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1836 path->slots[0]); 1837 *devid_ret = found_key.offset + 1; 1838 } 1839 ret = 0; 1840 error: 1841 btrfs_free_path(path); 1842 return ret; 1843 } 1844 1845 /* 1846 * the device information is stored in the chunk root 1847 * the btrfs_device struct should be fully filled in 1848 */ 1849 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1850 struct btrfs_device *device) 1851 { 1852 int ret; 1853 struct btrfs_path *path; 1854 struct btrfs_dev_item *dev_item; 1855 struct extent_buffer *leaf; 1856 struct btrfs_key key; 1857 unsigned long ptr; 1858 1859 path = btrfs_alloc_path(); 1860 if (!path) 1861 return -ENOMEM; 1862 1863 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1864 key.type = BTRFS_DEV_ITEM_KEY; 1865 key.offset = device->devid; 1866 1867 btrfs_reserve_chunk_metadata(trans, true); 1868 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1869 &key, sizeof(*dev_item)); 1870 btrfs_trans_release_chunk_metadata(trans); 1871 if (ret) 1872 goto out; 1873 1874 leaf = path->nodes[0]; 1875 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1876 1877 btrfs_set_device_id(leaf, dev_item, device->devid); 1878 btrfs_set_device_generation(leaf, dev_item, 0); 1879 btrfs_set_device_type(leaf, dev_item, device->type); 1880 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1881 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1882 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1883 btrfs_set_device_total_bytes(leaf, dev_item, 1884 btrfs_device_get_disk_total_bytes(device)); 1885 btrfs_set_device_bytes_used(leaf, dev_item, 1886 btrfs_device_get_bytes_used(device)); 1887 btrfs_set_device_group(leaf, dev_item, 0); 1888 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1889 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1890 btrfs_set_device_start_offset(leaf, dev_item, 0); 1891 1892 ptr = btrfs_device_uuid(dev_item); 1893 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1894 ptr = btrfs_device_fsid(dev_item); 1895 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1896 ptr, BTRFS_FSID_SIZE); 1897 btrfs_mark_buffer_dirty(trans, leaf); 1898 1899 ret = 0; 1900 out: 1901 btrfs_free_path(path); 1902 return ret; 1903 } 1904 1905 /* 1906 * Function to update ctime/mtime for a given device path. 1907 * Mainly used for ctime/mtime based probe like libblkid. 1908 * 1909 * We don't care about errors here, this is just to be kind to userspace. 1910 */ 1911 static void update_dev_time(const char *device_path) 1912 { 1913 struct path path; 1914 int ret; 1915 1916 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1917 if (ret) 1918 return; 1919 1920 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 1921 path_put(&path); 1922 } 1923 1924 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1925 struct btrfs_device *device) 1926 { 1927 struct btrfs_root *root = device->fs_info->chunk_root; 1928 int ret; 1929 struct btrfs_path *path; 1930 struct btrfs_key key; 1931 1932 path = btrfs_alloc_path(); 1933 if (!path) 1934 return -ENOMEM; 1935 1936 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1937 key.type = BTRFS_DEV_ITEM_KEY; 1938 key.offset = device->devid; 1939 1940 btrfs_reserve_chunk_metadata(trans, false); 1941 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1942 btrfs_trans_release_chunk_metadata(trans); 1943 if (ret) { 1944 if (ret > 0) 1945 ret = -ENOENT; 1946 goto out; 1947 } 1948 1949 ret = btrfs_del_item(trans, root, path); 1950 out: 1951 btrfs_free_path(path); 1952 return ret; 1953 } 1954 1955 /* 1956 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1957 * filesystem. It's up to the caller to adjust that number regarding eg. device 1958 * replace. 1959 */ 1960 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1961 u64 num_devices) 1962 { 1963 u64 all_avail; 1964 unsigned seq; 1965 int i; 1966 1967 do { 1968 seq = read_seqbegin(&fs_info->profiles_lock); 1969 1970 all_avail = fs_info->avail_data_alloc_bits | 1971 fs_info->avail_system_alloc_bits | 1972 fs_info->avail_metadata_alloc_bits; 1973 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1974 1975 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1976 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1977 continue; 1978 1979 if (num_devices < btrfs_raid_array[i].devs_min) 1980 return btrfs_raid_array[i].mindev_error; 1981 } 1982 1983 return 0; 1984 } 1985 1986 static struct btrfs_device * btrfs_find_next_active_device( 1987 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1988 { 1989 struct btrfs_device *next_device; 1990 1991 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1992 if (next_device != device && 1993 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1994 && next_device->bdev) 1995 return next_device; 1996 } 1997 1998 return NULL; 1999 } 2000 2001 /* 2002 * Helper function to check if the given device is part of s_bdev / latest_dev 2003 * and replace it with the provided or the next active device, in the context 2004 * where this function called, there should be always be another device (or 2005 * this_dev) which is active. 2006 */ 2007 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2008 struct btrfs_device *next_device) 2009 { 2010 struct btrfs_fs_info *fs_info = device->fs_info; 2011 2012 if (!next_device) 2013 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2014 device); 2015 ASSERT(next_device); 2016 2017 if (fs_info->sb->s_bdev && 2018 (fs_info->sb->s_bdev == device->bdev)) 2019 fs_info->sb->s_bdev = next_device->bdev; 2020 2021 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2022 fs_info->fs_devices->latest_dev = next_device; 2023 } 2024 2025 /* 2026 * Return btrfs_fs_devices::num_devices excluding the device that's being 2027 * currently replaced. 2028 */ 2029 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2030 { 2031 u64 num_devices = fs_info->fs_devices->num_devices; 2032 2033 down_read(&fs_info->dev_replace.rwsem); 2034 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2035 ASSERT(num_devices > 1); 2036 num_devices--; 2037 } 2038 up_read(&fs_info->dev_replace.rwsem); 2039 2040 return num_devices; 2041 } 2042 2043 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2044 struct block_device *bdev, int copy_num) 2045 { 2046 struct btrfs_super_block *disk_super; 2047 const size_t len = sizeof(disk_super->magic); 2048 const u64 bytenr = btrfs_sb_offset(copy_num); 2049 int ret; 2050 2051 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2052 if (IS_ERR(disk_super)) 2053 return; 2054 2055 memset(&disk_super->magic, 0, len); 2056 folio_mark_dirty(virt_to_folio(disk_super)); 2057 btrfs_release_disk_super(disk_super); 2058 2059 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2060 if (ret) 2061 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2062 copy_num, ret); 2063 } 2064 2065 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2066 struct block_device *bdev, 2067 const char *device_path) 2068 { 2069 int copy_num; 2070 2071 if (!bdev) 2072 return; 2073 2074 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2075 if (bdev_is_zoned(bdev)) 2076 btrfs_reset_sb_log_zones(bdev, copy_num); 2077 else 2078 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2079 } 2080 2081 /* Notify udev that device has changed */ 2082 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2083 2084 /* Update ctime/mtime for device path for libblkid */ 2085 update_dev_time(device_path); 2086 } 2087 2088 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2089 struct btrfs_dev_lookup_args *args, 2090 struct block_device **bdev, void **holder) 2091 { 2092 struct btrfs_trans_handle *trans; 2093 struct btrfs_device *device; 2094 struct btrfs_fs_devices *cur_devices; 2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2096 u64 num_devices; 2097 int ret = 0; 2098 2099 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2100 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2101 return -EINVAL; 2102 } 2103 2104 /* 2105 * The device list in fs_devices is accessed without locks (neither 2106 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2107 * filesystem and another device rm cannot run. 2108 */ 2109 num_devices = btrfs_num_devices(fs_info); 2110 2111 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2112 if (ret) 2113 return ret; 2114 2115 device = btrfs_find_device(fs_info->fs_devices, args); 2116 if (!device) { 2117 if (args->missing) 2118 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2119 else 2120 ret = -ENOENT; 2121 return ret; 2122 } 2123 2124 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2125 btrfs_warn_in_rcu(fs_info, 2126 "cannot remove device %s (devid %llu) due to active swapfile", 2127 btrfs_dev_name(device), device->devid); 2128 return -ETXTBSY; 2129 } 2130 2131 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2132 return BTRFS_ERROR_DEV_TGT_REPLACE; 2133 2134 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2135 fs_info->fs_devices->rw_devices == 1) 2136 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2137 2138 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2139 mutex_lock(&fs_info->chunk_mutex); 2140 list_del_init(&device->dev_alloc_list); 2141 device->fs_devices->rw_devices--; 2142 mutex_unlock(&fs_info->chunk_mutex); 2143 } 2144 2145 ret = btrfs_shrink_device(device, 0); 2146 if (ret) 2147 goto error_undo; 2148 2149 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2150 if (IS_ERR(trans)) { 2151 ret = PTR_ERR(trans); 2152 goto error_undo; 2153 } 2154 2155 ret = btrfs_rm_dev_item(trans, device); 2156 if (ret) { 2157 /* Any error in dev item removal is critical */ 2158 btrfs_crit(fs_info, 2159 "failed to remove device item for devid %llu: %d", 2160 device->devid, ret); 2161 btrfs_abort_transaction(trans, ret); 2162 btrfs_end_transaction(trans); 2163 return ret; 2164 } 2165 2166 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2167 btrfs_scrub_cancel_dev(device); 2168 2169 /* 2170 * the device list mutex makes sure that we don't change 2171 * the device list while someone else is writing out all 2172 * the device supers. Whoever is writing all supers, should 2173 * lock the device list mutex before getting the number of 2174 * devices in the super block (super_copy). Conversely, 2175 * whoever updates the number of devices in the super block 2176 * (super_copy) should hold the device list mutex. 2177 */ 2178 2179 /* 2180 * In normal cases the cur_devices == fs_devices. But in case 2181 * of deleting a seed device, the cur_devices should point to 2182 * its own fs_devices listed under the fs_devices->seed_list. 2183 */ 2184 cur_devices = device->fs_devices; 2185 mutex_lock(&fs_devices->device_list_mutex); 2186 list_del_rcu(&device->dev_list); 2187 2188 cur_devices->num_devices--; 2189 cur_devices->total_devices--; 2190 /* Update total_devices of the parent fs_devices if it's seed */ 2191 if (cur_devices != fs_devices) 2192 fs_devices->total_devices--; 2193 2194 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2195 cur_devices->missing_devices--; 2196 2197 btrfs_assign_next_active_device(device, NULL); 2198 2199 if (device->bdev) { 2200 cur_devices->open_devices--; 2201 /* remove sysfs entry */ 2202 btrfs_sysfs_remove_device(device); 2203 } 2204 2205 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2206 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2207 mutex_unlock(&fs_devices->device_list_mutex); 2208 2209 /* 2210 * At this point, the device is zero sized and detached from the 2211 * devices list. All that's left is to zero out the old supers and 2212 * free the device. 2213 * 2214 * We cannot call btrfs_close_bdev() here because we're holding the sb 2215 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2216 * block device and it's dependencies. Instead just flush the device 2217 * and let the caller do the final blkdev_put. 2218 */ 2219 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2220 btrfs_scratch_superblocks(fs_info, device->bdev, 2221 device->name->str); 2222 if (device->bdev) { 2223 sync_blockdev(device->bdev); 2224 invalidate_bdev(device->bdev); 2225 } 2226 } 2227 2228 *bdev = device->bdev; 2229 *holder = device->holder; 2230 synchronize_rcu(); 2231 btrfs_free_device(device); 2232 2233 /* 2234 * This can happen if cur_devices is the private seed devices list. We 2235 * cannot call close_fs_devices() here because it expects the uuid_mutex 2236 * to be held, but in fact we don't need that for the private 2237 * seed_devices, we can simply decrement cur_devices->opened and then 2238 * remove it from our list and free the fs_devices. 2239 */ 2240 if (cur_devices->num_devices == 0) { 2241 list_del_init(&cur_devices->seed_list); 2242 ASSERT(cur_devices->opened == 1); 2243 cur_devices->opened--; 2244 free_fs_devices(cur_devices); 2245 } 2246 2247 ret = btrfs_commit_transaction(trans); 2248 2249 return ret; 2250 2251 error_undo: 2252 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2253 mutex_lock(&fs_info->chunk_mutex); 2254 list_add(&device->dev_alloc_list, 2255 &fs_devices->alloc_list); 2256 device->fs_devices->rw_devices++; 2257 mutex_unlock(&fs_info->chunk_mutex); 2258 } 2259 return ret; 2260 } 2261 2262 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2263 { 2264 struct btrfs_fs_devices *fs_devices; 2265 2266 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2267 2268 /* 2269 * in case of fs with no seed, srcdev->fs_devices will point 2270 * to fs_devices of fs_info. However when the dev being replaced is 2271 * a seed dev it will point to the seed's local fs_devices. In short 2272 * srcdev will have its correct fs_devices in both the cases. 2273 */ 2274 fs_devices = srcdev->fs_devices; 2275 2276 list_del_rcu(&srcdev->dev_list); 2277 list_del(&srcdev->dev_alloc_list); 2278 fs_devices->num_devices--; 2279 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2280 fs_devices->missing_devices--; 2281 2282 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2283 fs_devices->rw_devices--; 2284 2285 if (srcdev->bdev) 2286 fs_devices->open_devices--; 2287 } 2288 2289 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2290 { 2291 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2292 2293 mutex_lock(&uuid_mutex); 2294 2295 btrfs_close_bdev(srcdev); 2296 synchronize_rcu(); 2297 btrfs_free_device(srcdev); 2298 2299 /* if this is no devs we rather delete the fs_devices */ 2300 if (!fs_devices->num_devices) { 2301 /* 2302 * On a mounted FS, num_devices can't be zero unless it's a 2303 * seed. In case of a seed device being replaced, the replace 2304 * target added to the sprout FS, so there will be no more 2305 * device left under the seed FS. 2306 */ 2307 ASSERT(fs_devices->seeding); 2308 2309 list_del_init(&fs_devices->seed_list); 2310 close_fs_devices(fs_devices); 2311 free_fs_devices(fs_devices); 2312 } 2313 mutex_unlock(&uuid_mutex); 2314 } 2315 2316 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2317 { 2318 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2319 2320 mutex_lock(&fs_devices->device_list_mutex); 2321 2322 btrfs_sysfs_remove_device(tgtdev); 2323 2324 if (tgtdev->bdev) 2325 fs_devices->open_devices--; 2326 2327 fs_devices->num_devices--; 2328 2329 btrfs_assign_next_active_device(tgtdev, NULL); 2330 2331 list_del_rcu(&tgtdev->dev_list); 2332 2333 mutex_unlock(&fs_devices->device_list_mutex); 2334 2335 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2336 tgtdev->name->str); 2337 2338 btrfs_close_bdev(tgtdev); 2339 synchronize_rcu(); 2340 btrfs_free_device(tgtdev); 2341 } 2342 2343 /* 2344 * Populate args from device at path. 2345 * 2346 * @fs_info: the filesystem 2347 * @args: the args to populate 2348 * @path: the path to the device 2349 * 2350 * This will read the super block of the device at @path and populate @args with 2351 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2352 * lookup a device to operate on, but need to do it before we take any locks. 2353 * This properly handles the special case of "missing" that a user may pass in, 2354 * and does some basic sanity checks. The caller must make sure that @path is 2355 * properly NUL terminated before calling in, and must call 2356 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2357 * uuid buffers. 2358 * 2359 * Return: 0 for success, -errno for failure 2360 */ 2361 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2362 struct btrfs_dev_lookup_args *args, 2363 const char *path) 2364 { 2365 struct btrfs_super_block *disk_super; 2366 struct block_device *bdev; 2367 int ret; 2368 2369 if (!path || !path[0]) 2370 return -EINVAL; 2371 if (!strcmp(path, "missing")) { 2372 args->missing = true; 2373 return 0; 2374 } 2375 2376 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2377 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2378 if (!args->uuid || !args->fsid) { 2379 btrfs_put_dev_args_from_path(args); 2380 return -ENOMEM; 2381 } 2382 2383 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2384 &bdev, &disk_super); 2385 if (ret) { 2386 btrfs_put_dev_args_from_path(args); 2387 return ret; 2388 } 2389 2390 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2391 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2392 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2393 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2394 else 2395 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2396 btrfs_release_disk_super(disk_super); 2397 blkdev_put(bdev, NULL); 2398 return 0; 2399 } 2400 2401 /* 2402 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2403 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2404 * that don't need to be freed. 2405 */ 2406 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2407 { 2408 kfree(args->uuid); 2409 kfree(args->fsid); 2410 args->uuid = NULL; 2411 args->fsid = NULL; 2412 } 2413 2414 struct btrfs_device *btrfs_find_device_by_devspec( 2415 struct btrfs_fs_info *fs_info, u64 devid, 2416 const char *device_path) 2417 { 2418 BTRFS_DEV_LOOKUP_ARGS(args); 2419 struct btrfs_device *device; 2420 int ret; 2421 2422 if (devid) { 2423 args.devid = devid; 2424 device = btrfs_find_device(fs_info->fs_devices, &args); 2425 if (!device) 2426 return ERR_PTR(-ENOENT); 2427 return device; 2428 } 2429 2430 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2431 if (ret) 2432 return ERR_PTR(ret); 2433 device = btrfs_find_device(fs_info->fs_devices, &args); 2434 btrfs_put_dev_args_from_path(&args); 2435 if (!device) 2436 return ERR_PTR(-ENOENT); 2437 return device; 2438 } 2439 2440 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2441 { 2442 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2443 struct btrfs_fs_devices *old_devices; 2444 struct btrfs_fs_devices *seed_devices; 2445 2446 lockdep_assert_held(&uuid_mutex); 2447 if (!fs_devices->seeding) 2448 return ERR_PTR(-EINVAL); 2449 2450 /* 2451 * Private copy of the seed devices, anchored at 2452 * fs_info->fs_devices->seed_list 2453 */ 2454 seed_devices = alloc_fs_devices(NULL, NULL); 2455 if (IS_ERR(seed_devices)) 2456 return seed_devices; 2457 2458 /* 2459 * It's necessary to retain a copy of the original seed fs_devices in 2460 * fs_uuids so that filesystems which have been seeded can successfully 2461 * reference the seed device from open_seed_devices. This also supports 2462 * multiple fs seed. 2463 */ 2464 old_devices = clone_fs_devices(fs_devices); 2465 if (IS_ERR(old_devices)) { 2466 kfree(seed_devices); 2467 return old_devices; 2468 } 2469 2470 list_add(&old_devices->fs_list, &fs_uuids); 2471 2472 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2473 seed_devices->opened = 1; 2474 INIT_LIST_HEAD(&seed_devices->devices); 2475 INIT_LIST_HEAD(&seed_devices->alloc_list); 2476 mutex_init(&seed_devices->device_list_mutex); 2477 2478 return seed_devices; 2479 } 2480 2481 /* 2482 * Splice seed devices into the sprout fs_devices. 2483 * Generate a new fsid for the sprouted read-write filesystem. 2484 */ 2485 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2486 struct btrfs_fs_devices *seed_devices) 2487 { 2488 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2489 struct btrfs_super_block *disk_super = fs_info->super_copy; 2490 struct btrfs_device *device; 2491 u64 super_flags; 2492 2493 /* 2494 * We are updating the fsid, the thread leading to device_list_add() 2495 * could race, so uuid_mutex is needed. 2496 */ 2497 lockdep_assert_held(&uuid_mutex); 2498 2499 /* 2500 * The threads listed below may traverse dev_list but can do that without 2501 * device_list_mutex: 2502 * - All device ops and balance - as we are in btrfs_exclop_start. 2503 * - Various dev_list readers - are using RCU. 2504 * - btrfs_ioctl_fitrim() - is using RCU. 2505 * 2506 * For-read threads as below are using device_list_mutex: 2507 * - Readonly scrub btrfs_scrub_dev() 2508 * - Readonly scrub btrfs_scrub_progress() 2509 * - btrfs_get_dev_stats() 2510 */ 2511 lockdep_assert_held(&fs_devices->device_list_mutex); 2512 2513 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2514 synchronize_rcu); 2515 list_for_each_entry(device, &seed_devices->devices, dev_list) 2516 device->fs_devices = seed_devices; 2517 2518 fs_devices->seeding = false; 2519 fs_devices->num_devices = 0; 2520 fs_devices->open_devices = 0; 2521 fs_devices->missing_devices = 0; 2522 fs_devices->rotating = false; 2523 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2524 2525 generate_random_uuid(fs_devices->fsid); 2526 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2527 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2528 2529 super_flags = btrfs_super_flags(disk_super) & 2530 ~BTRFS_SUPER_FLAG_SEEDING; 2531 btrfs_set_super_flags(disk_super, super_flags); 2532 } 2533 2534 /* 2535 * Store the expected generation for seed devices in device items. 2536 */ 2537 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2538 { 2539 BTRFS_DEV_LOOKUP_ARGS(args); 2540 struct btrfs_fs_info *fs_info = trans->fs_info; 2541 struct btrfs_root *root = fs_info->chunk_root; 2542 struct btrfs_path *path; 2543 struct extent_buffer *leaf; 2544 struct btrfs_dev_item *dev_item; 2545 struct btrfs_device *device; 2546 struct btrfs_key key; 2547 u8 fs_uuid[BTRFS_FSID_SIZE]; 2548 u8 dev_uuid[BTRFS_UUID_SIZE]; 2549 int ret; 2550 2551 path = btrfs_alloc_path(); 2552 if (!path) 2553 return -ENOMEM; 2554 2555 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2556 key.offset = 0; 2557 key.type = BTRFS_DEV_ITEM_KEY; 2558 2559 while (1) { 2560 btrfs_reserve_chunk_metadata(trans, false); 2561 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2562 btrfs_trans_release_chunk_metadata(trans); 2563 if (ret < 0) 2564 goto error; 2565 2566 leaf = path->nodes[0]; 2567 next_slot: 2568 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2569 ret = btrfs_next_leaf(root, path); 2570 if (ret > 0) 2571 break; 2572 if (ret < 0) 2573 goto error; 2574 leaf = path->nodes[0]; 2575 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2576 btrfs_release_path(path); 2577 continue; 2578 } 2579 2580 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2581 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2582 key.type != BTRFS_DEV_ITEM_KEY) 2583 break; 2584 2585 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2586 struct btrfs_dev_item); 2587 args.devid = btrfs_device_id(leaf, dev_item); 2588 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2589 BTRFS_UUID_SIZE); 2590 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2591 BTRFS_FSID_SIZE); 2592 args.uuid = dev_uuid; 2593 args.fsid = fs_uuid; 2594 device = btrfs_find_device(fs_info->fs_devices, &args); 2595 BUG_ON(!device); /* Logic error */ 2596 2597 if (device->fs_devices->seeding) { 2598 btrfs_set_device_generation(leaf, dev_item, 2599 device->generation); 2600 btrfs_mark_buffer_dirty(trans, leaf); 2601 } 2602 2603 path->slots[0]++; 2604 goto next_slot; 2605 } 2606 ret = 0; 2607 error: 2608 btrfs_free_path(path); 2609 return ret; 2610 } 2611 2612 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2613 { 2614 struct btrfs_root *root = fs_info->dev_root; 2615 struct btrfs_trans_handle *trans; 2616 struct btrfs_device *device; 2617 struct block_device *bdev; 2618 struct super_block *sb = fs_info->sb; 2619 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2620 struct btrfs_fs_devices *seed_devices = NULL; 2621 u64 orig_super_total_bytes; 2622 u64 orig_super_num_devices; 2623 int ret = 0; 2624 bool seeding_dev = false; 2625 bool locked = false; 2626 2627 if (sb_rdonly(sb) && !fs_devices->seeding) 2628 return -EROFS; 2629 2630 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE, 2631 fs_info->bdev_holder, NULL); 2632 if (IS_ERR(bdev)) 2633 return PTR_ERR(bdev); 2634 2635 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2636 ret = -EINVAL; 2637 goto error; 2638 } 2639 2640 if (fs_devices->seeding) { 2641 seeding_dev = true; 2642 down_write(&sb->s_umount); 2643 mutex_lock(&uuid_mutex); 2644 locked = true; 2645 } 2646 2647 sync_blockdev(bdev); 2648 2649 rcu_read_lock(); 2650 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2651 if (device->bdev == bdev) { 2652 ret = -EEXIST; 2653 rcu_read_unlock(); 2654 goto error; 2655 } 2656 } 2657 rcu_read_unlock(); 2658 2659 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2660 if (IS_ERR(device)) { 2661 /* we can safely leave the fs_devices entry around */ 2662 ret = PTR_ERR(device); 2663 goto error; 2664 } 2665 2666 device->fs_info = fs_info; 2667 device->bdev = bdev; 2668 ret = lookup_bdev(device_path, &device->devt); 2669 if (ret) 2670 goto error_free_device; 2671 2672 ret = btrfs_get_dev_zone_info(device, false); 2673 if (ret) 2674 goto error_free_device; 2675 2676 trans = btrfs_start_transaction(root, 0); 2677 if (IS_ERR(trans)) { 2678 ret = PTR_ERR(trans); 2679 goto error_free_zone; 2680 } 2681 2682 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2683 device->generation = trans->transid; 2684 device->io_width = fs_info->sectorsize; 2685 device->io_align = fs_info->sectorsize; 2686 device->sector_size = fs_info->sectorsize; 2687 device->total_bytes = 2688 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2689 device->disk_total_bytes = device->total_bytes; 2690 device->commit_total_bytes = device->total_bytes; 2691 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2692 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2693 device->holder = fs_info->bdev_holder; 2694 device->dev_stats_valid = 1; 2695 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2696 2697 if (seeding_dev) { 2698 btrfs_clear_sb_rdonly(sb); 2699 2700 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2701 seed_devices = btrfs_init_sprout(fs_info); 2702 if (IS_ERR(seed_devices)) { 2703 ret = PTR_ERR(seed_devices); 2704 btrfs_abort_transaction(trans, ret); 2705 goto error_trans; 2706 } 2707 } 2708 2709 mutex_lock(&fs_devices->device_list_mutex); 2710 if (seeding_dev) { 2711 btrfs_setup_sprout(fs_info, seed_devices); 2712 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2713 device); 2714 } 2715 2716 device->fs_devices = fs_devices; 2717 2718 mutex_lock(&fs_info->chunk_mutex); 2719 list_add_rcu(&device->dev_list, &fs_devices->devices); 2720 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2721 fs_devices->num_devices++; 2722 fs_devices->open_devices++; 2723 fs_devices->rw_devices++; 2724 fs_devices->total_devices++; 2725 fs_devices->total_rw_bytes += device->total_bytes; 2726 2727 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2728 2729 if (!bdev_nonrot(bdev)) 2730 fs_devices->rotating = true; 2731 2732 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2733 btrfs_set_super_total_bytes(fs_info->super_copy, 2734 round_down(orig_super_total_bytes + device->total_bytes, 2735 fs_info->sectorsize)); 2736 2737 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2738 btrfs_set_super_num_devices(fs_info->super_copy, 2739 orig_super_num_devices + 1); 2740 2741 /* 2742 * we've got more storage, clear any full flags on the space 2743 * infos 2744 */ 2745 btrfs_clear_space_info_full(fs_info); 2746 2747 mutex_unlock(&fs_info->chunk_mutex); 2748 2749 /* Add sysfs device entry */ 2750 btrfs_sysfs_add_device(device); 2751 2752 mutex_unlock(&fs_devices->device_list_mutex); 2753 2754 if (seeding_dev) { 2755 mutex_lock(&fs_info->chunk_mutex); 2756 ret = init_first_rw_device(trans); 2757 mutex_unlock(&fs_info->chunk_mutex); 2758 if (ret) { 2759 btrfs_abort_transaction(trans, ret); 2760 goto error_sysfs; 2761 } 2762 } 2763 2764 ret = btrfs_add_dev_item(trans, device); 2765 if (ret) { 2766 btrfs_abort_transaction(trans, ret); 2767 goto error_sysfs; 2768 } 2769 2770 if (seeding_dev) { 2771 ret = btrfs_finish_sprout(trans); 2772 if (ret) { 2773 btrfs_abort_transaction(trans, ret); 2774 goto error_sysfs; 2775 } 2776 2777 /* 2778 * fs_devices now represents the newly sprouted filesystem and 2779 * its fsid has been changed by btrfs_sprout_splice(). 2780 */ 2781 btrfs_sysfs_update_sprout_fsid(fs_devices); 2782 } 2783 2784 ret = btrfs_commit_transaction(trans); 2785 2786 if (seeding_dev) { 2787 mutex_unlock(&uuid_mutex); 2788 up_write(&sb->s_umount); 2789 locked = false; 2790 2791 if (ret) /* transaction commit */ 2792 return ret; 2793 2794 ret = btrfs_relocate_sys_chunks(fs_info); 2795 if (ret < 0) 2796 btrfs_handle_fs_error(fs_info, ret, 2797 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2798 trans = btrfs_attach_transaction(root); 2799 if (IS_ERR(trans)) { 2800 if (PTR_ERR(trans) == -ENOENT) 2801 return 0; 2802 ret = PTR_ERR(trans); 2803 trans = NULL; 2804 goto error_sysfs; 2805 } 2806 ret = btrfs_commit_transaction(trans); 2807 } 2808 2809 /* 2810 * Now that we have written a new super block to this device, check all 2811 * other fs_devices list if device_path alienates any other scanned 2812 * device. 2813 * We can ignore the return value as it typically returns -EINVAL and 2814 * only succeeds if the device was an alien. 2815 */ 2816 btrfs_forget_devices(device->devt); 2817 2818 /* Update ctime/mtime for blkid or udev */ 2819 update_dev_time(device_path); 2820 2821 return ret; 2822 2823 error_sysfs: 2824 btrfs_sysfs_remove_device(device); 2825 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2826 mutex_lock(&fs_info->chunk_mutex); 2827 list_del_rcu(&device->dev_list); 2828 list_del(&device->dev_alloc_list); 2829 fs_info->fs_devices->num_devices--; 2830 fs_info->fs_devices->open_devices--; 2831 fs_info->fs_devices->rw_devices--; 2832 fs_info->fs_devices->total_devices--; 2833 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2834 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2835 btrfs_set_super_total_bytes(fs_info->super_copy, 2836 orig_super_total_bytes); 2837 btrfs_set_super_num_devices(fs_info->super_copy, 2838 orig_super_num_devices); 2839 mutex_unlock(&fs_info->chunk_mutex); 2840 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2841 error_trans: 2842 if (seeding_dev) 2843 btrfs_set_sb_rdonly(sb); 2844 if (trans) 2845 btrfs_end_transaction(trans); 2846 error_free_zone: 2847 btrfs_destroy_dev_zone_info(device); 2848 error_free_device: 2849 btrfs_free_device(device); 2850 error: 2851 blkdev_put(bdev, fs_info->bdev_holder); 2852 if (locked) { 2853 mutex_unlock(&uuid_mutex); 2854 up_write(&sb->s_umount); 2855 } 2856 return ret; 2857 } 2858 2859 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2860 struct btrfs_device *device) 2861 { 2862 int ret; 2863 struct btrfs_path *path; 2864 struct btrfs_root *root = device->fs_info->chunk_root; 2865 struct btrfs_dev_item *dev_item; 2866 struct extent_buffer *leaf; 2867 struct btrfs_key key; 2868 2869 path = btrfs_alloc_path(); 2870 if (!path) 2871 return -ENOMEM; 2872 2873 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2874 key.type = BTRFS_DEV_ITEM_KEY; 2875 key.offset = device->devid; 2876 2877 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2878 if (ret < 0) 2879 goto out; 2880 2881 if (ret > 0) { 2882 ret = -ENOENT; 2883 goto out; 2884 } 2885 2886 leaf = path->nodes[0]; 2887 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2888 2889 btrfs_set_device_id(leaf, dev_item, device->devid); 2890 btrfs_set_device_type(leaf, dev_item, device->type); 2891 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2892 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2893 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2894 btrfs_set_device_total_bytes(leaf, dev_item, 2895 btrfs_device_get_disk_total_bytes(device)); 2896 btrfs_set_device_bytes_used(leaf, dev_item, 2897 btrfs_device_get_bytes_used(device)); 2898 btrfs_mark_buffer_dirty(trans, leaf); 2899 2900 out: 2901 btrfs_free_path(path); 2902 return ret; 2903 } 2904 2905 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2906 struct btrfs_device *device, u64 new_size) 2907 { 2908 struct btrfs_fs_info *fs_info = device->fs_info; 2909 struct btrfs_super_block *super_copy = fs_info->super_copy; 2910 u64 old_total; 2911 u64 diff; 2912 int ret; 2913 2914 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2915 return -EACCES; 2916 2917 new_size = round_down(new_size, fs_info->sectorsize); 2918 2919 mutex_lock(&fs_info->chunk_mutex); 2920 old_total = btrfs_super_total_bytes(super_copy); 2921 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2922 2923 if (new_size <= device->total_bytes || 2924 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2925 mutex_unlock(&fs_info->chunk_mutex); 2926 return -EINVAL; 2927 } 2928 2929 btrfs_set_super_total_bytes(super_copy, 2930 round_down(old_total + diff, fs_info->sectorsize)); 2931 device->fs_devices->total_rw_bytes += diff; 2932 2933 btrfs_device_set_total_bytes(device, new_size); 2934 btrfs_device_set_disk_total_bytes(device, new_size); 2935 btrfs_clear_space_info_full(device->fs_info); 2936 if (list_empty(&device->post_commit_list)) 2937 list_add_tail(&device->post_commit_list, 2938 &trans->transaction->dev_update_list); 2939 mutex_unlock(&fs_info->chunk_mutex); 2940 2941 btrfs_reserve_chunk_metadata(trans, false); 2942 ret = btrfs_update_device(trans, device); 2943 btrfs_trans_release_chunk_metadata(trans); 2944 2945 return ret; 2946 } 2947 2948 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2949 { 2950 struct btrfs_fs_info *fs_info = trans->fs_info; 2951 struct btrfs_root *root = fs_info->chunk_root; 2952 int ret; 2953 struct btrfs_path *path; 2954 struct btrfs_key key; 2955 2956 path = btrfs_alloc_path(); 2957 if (!path) 2958 return -ENOMEM; 2959 2960 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2961 key.offset = chunk_offset; 2962 key.type = BTRFS_CHUNK_ITEM_KEY; 2963 2964 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2965 if (ret < 0) 2966 goto out; 2967 else if (ret > 0) { /* Logic error or corruption */ 2968 btrfs_handle_fs_error(fs_info, -ENOENT, 2969 "Failed lookup while freeing chunk."); 2970 ret = -ENOENT; 2971 goto out; 2972 } 2973 2974 ret = btrfs_del_item(trans, root, path); 2975 if (ret < 0) 2976 btrfs_handle_fs_error(fs_info, ret, 2977 "Failed to delete chunk item."); 2978 out: 2979 btrfs_free_path(path); 2980 return ret; 2981 } 2982 2983 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2984 { 2985 struct btrfs_super_block *super_copy = fs_info->super_copy; 2986 struct btrfs_disk_key *disk_key; 2987 struct btrfs_chunk *chunk; 2988 u8 *ptr; 2989 int ret = 0; 2990 u32 num_stripes; 2991 u32 array_size; 2992 u32 len = 0; 2993 u32 cur; 2994 struct btrfs_key key; 2995 2996 lockdep_assert_held(&fs_info->chunk_mutex); 2997 array_size = btrfs_super_sys_array_size(super_copy); 2998 2999 ptr = super_copy->sys_chunk_array; 3000 cur = 0; 3001 3002 while (cur < array_size) { 3003 disk_key = (struct btrfs_disk_key *)ptr; 3004 btrfs_disk_key_to_cpu(&key, disk_key); 3005 3006 len = sizeof(*disk_key); 3007 3008 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3009 chunk = (struct btrfs_chunk *)(ptr + len); 3010 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3011 len += btrfs_chunk_item_size(num_stripes); 3012 } else { 3013 ret = -EIO; 3014 break; 3015 } 3016 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3017 key.offset == chunk_offset) { 3018 memmove(ptr, ptr + len, array_size - (cur + len)); 3019 array_size -= len; 3020 btrfs_set_super_sys_array_size(super_copy, array_size); 3021 } else { 3022 ptr += len; 3023 cur += len; 3024 } 3025 } 3026 return ret; 3027 } 3028 3029 /* 3030 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 3031 * @logical: Logical block offset in bytes. 3032 * @length: Length of extent in bytes. 3033 * 3034 * Return: Chunk mapping or ERR_PTR. 3035 */ 3036 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3037 u64 logical, u64 length) 3038 { 3039 struct extent_map_tree *em_tree; 3040 struct extent_map *em; 3041 3042 em_tree = &fs_info->mapping_tree; 3043 read_lock(&em_tree->lock); 3044 em = lookup_extent_mapping(em_tree, logical, length); 3045 read_unlock(&em_tree->lock); 3046 3047 if (!em) { 3048 btrfs_crit(fs_info, 3049 "unable to find chunk map for logical %llu length %llu", 3050 logical, length); 3051 return ERR_PTR(-EINVAL); 3052 } 3053 3054 if (em->start > logical || em->start + em->len <= logical) { 3055 btrfs_crit(fs_info, 3056 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3057 logical, logical + length, em->start, em->start + em->len); 3058 free_extent_map(em); 3059 return ERR_PTR(-EINVAL); 3060 } 3061 3062 /* callers are responsible for dropping em's ref. */ 3063 return em; 3064 } 3065 3066 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3067 struct map_lookup *map, u64 chunk_offset) 3068 { 3069 int i; 3070 3071 /* 3072 * Removing chunk items and updating the device items in the chunks btree 3073 * requires holding the chunk_mutex. 3074 * See the comment at btrfs_chunk_alloc() for the details. 3075 */ 3076 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3077 3078 for (i = 0; i < map->num_stripes; i++) { 3079 int ret; 3080 3081 ret = btrfs_update_device(trans, map->stripes[i].dev); 3082 if (ret) 3083 return ret; 3084 } 3085 3086 return btrfs_free_chunk(trans, chunk_offset); 3087 } 3088 3089 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3090 { 3091 struct btrfs_fs_info *fs_info = trans->fs_info; 3092 struct extent_map *em; 3093 struct map_lookup *map; 3094 u64 dev_extent_len = 0; 3095 int i, ret = 0; 3096 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3097 3098 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3099 if (IS_ERR(em)) { 3100 /* 3101 * This is a logic error, but we don't want to just rely on the 3102 * user having built with ASSERT enabled, so if ASSERT doesn't 3103 * do anything we still error out. 3104 */ 3105 ASSERT(0); 3106 return PTR_ERR(em); 3107 } 3108 map = em->map_lookup; 3109 3110 /* 3111 * First delete the device extent items from the devices btree. 3112 * We take the device_list_mutex to avoid racing with the finishing phase 3113 * of a device replace operation. See the comment below before acquiring 3114 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3115 * because that can result in a deadlock when deleting the device extent 3116 * items from the devices btree - COWing an extent buffer from the btree 3117 * may result in allocating a new metadata chunk, which would attempt to 3118 * lock again fs_info->chunk_mutex. 3119 */ 3120 mutex_lock(&fs_devices->device_list_mutex); 3121 for (i = 0; i < map->num_stripes; i++) { 3122 struct btrfs_device *device = map->stripes[i].dev; 3123 ret = btrfs_free_dev_extent(trans, device, 3124 map->stripes[i].physical, 3125 &dev_extent_len); 3126 if (ret) { 3127 mutex_unlock(&fs_devices->device_list_mutex); 3128 btrfs_abort_transaction(trans, ret); 3129 goto out; 3130 } 3131 3132 if (device->bytes_used > 0) { 3133 mutex_lock(&fs_info->chunk_mutex); 3134 btrfs_device_set_bytes_used(device, 3135 device->bytes_used - dev_extent_len); 3136 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3137 btrfs_clear_space_info_full(fs_info); 3138 mutex_unlock(&fs_info->chunk_mutex); 3139 } 3140 } 3141 mutex_unlock(&fs_devices->device_list_mutex); 3142 3143 /* 3144 * We acquire fs_info->chunk_mutex for 2 reasons: 3145 * 3146 * 1) Just like with the first phase of the chunk allocation, we must 3147 * reserve system space, do all chunk btree updates and deletions, and 3148 * update the system chunk array in the superblock while holding this 3149 * mutex. This is for similar reasons as explained on the comment at 3150 * the top of btrfs_chunk_alloc(); 3151 * 3152 * 2) Prevent races with the final phase of a device replace operation 3153 * that replaces the device object associated with the map's stripes, 3154 * because the device object's id can change at any time during that 3155 * final phase of the device replace operation 3156 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3157 * replaced device and then see it with an ID of 3158 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3159 * the device item, which does not exists on the chunk btree. 3160 * The finishing phase of device replace acquires both the 3161 * device_list_mutex and the chunk_mutex, in that order, so we are 3162 * safe by just acquiring the chunk_mutex. 3163 */ 3164 trans->removing_chunk = true; 3165 mutex_lock(&fs_info->chunk_mutex); 3166 3167 check_system_chunk(trans, map->type); 3168 3169 ret = remove_chunk_item(trans, map, chunk_offset); 3170 /* 3171 * Normally we should not get -ENOSPC since we reserved space before 3172 * through the call to check_system_chunk(). 3173 * 3174 * Despite our system space_info having enough free space, we may not 3175 * be able to allocate extents from its block groups, because all have 3176 * an incompatible profile, which will force us to allocate a new system 3177 * block group with the right profile, or right after we called 3178 * check_system_space() above, a scrub turned the only system block group 3179 * with enough free space into RO mode. 3180 * This is explained with more detail at do_chunk_alloc(). 3181 * 3182 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3183 */ 3184 if (ret == -ENOSPC) { 3185 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3186 struct btrfs_block_group *sys_bg; 3187 3188 sys_bg = btrfs_create_chunk(trans, sys_flags); 3189 if (IS_ERR(sys_bg)) { 3190 ret = PTR_ERR(sys_bg); 3191 btrfs_abort_transaction(trans, ret); 3192 goto out; 3193 } 3194 3195 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3196 if (ret) { 3197 btrfs_abort_transaction(trans, ret); 3198 goto out; 3199 } 3200 3201 ret = remove_chunk_item(trans, map, chunk_offset); 3202 if (ret) { 3203 btrfs_abort_transaction(trans, ret); 3204 goto out; 3205 } 3206 } else if (ret) { 3207 btrfs_abort_transaction(trans, ret); 3208 goto out; 3209 } 3210 3211 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3212 3213 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3214 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3215 if (ret) { 3216 btrfs_abort_transaction(trans, ret); 3217 goto out; 3218 } 3219 } 3220 3221 mutex_unlock(&fs_info->chunk_mutex); 3222 trans->removing_chunk = false; 3223 3224 /* 3225 * We are done with chunk btree updates and deletions, so release the 3226 * system space we previously reserved (with check_system_chunk()). 3227 */ 3228 btrfs_trans_release_chunk_metadata(trans); 3229 3230 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3231 if (ret) { 3232 btrfs_abort_transaction(trans, ret); 3233 goto out; 3234 } 3235 3236 out: 3237 if (trans->removing_chunk) { 3238 mutex_unlock(&fs_info->chunk_mutex); 3239 trans->removing_chunk = false; 3240 } 3241 /* once for us */ 3242 free_extent_map(em); 3243 return ret; 3244 } 3245 3246 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3247 { 3248 struct btrfs_root *root = fs_info->chunk_root; 3249 struct btrfs_trans_handle *trans; 3250 struct btrfs_block_group *block_group; 3251 u64 length; 3252 int ret; 3253 3254 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3255 btrfs_err(fs_info, 3256 "relocate: not supported on extent tree v2 yet"); 3257 return -EINVAL; 3258 } 3259 3260 /* 3261 * Prevent races with automatic removal of unused block groups. 3262 * After we relocate and before we remove the chunk with offset 3263 * chunk_offset, automatic removal of the block group can kick in, 3264 * resulting in a failure when calling btrfs_remove_chunk() below. 3265 * 3266 * Make sure to acquire this mutex before doing a tree search (dev 3267 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3268 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3269 * we release the path used to search the chunk/dev tree and before 3270 * the current task acquires this mutex and calls us. 3271 */ 3272 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3273 3274 /* step one, relocate all the extents inside this chunk */ 3275 btrfs_scrub_pause(fs_info); 3276 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3277 btrfs_scrub_continue(fs_info); 3278 if (ret) { 3279 /* 3280 * If we had a transaction abort, stop all running scrubs. 3281 * See transaction.c:cleanup_transaction() why we do it here. 3282 */ 3283 if (BTRFS_FS_ERROR(fs_info)) 3284 btrfs_scrub_cancel(fs_info); 3285 return ret; 3286 } 3287 3288 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3289 if (!block_group) 3290 return -ENOENT; 3291 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3292 length = block_group->length; 3293 btrfs_put_block_group(block_group); 3294 3295 /* 3296 * On a zoned file system, discard the whole block group, this will 3297 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3298 * resetting the zone fails, don't treat it as a fatal problem from the 3299 * filesystem's point of view. 3300 */ 3301 if (btrfs_is_zoned(fs_info)) { 3302 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3303 if (ret) 3304 btrfs_info(fs_info, 3305 "failed to reset zone %llu after relocation", 3306 chunk_offset); 3307 } 3308 3309 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3310 chunk_offset); 3311 if (IS_ERR(trans)) { 3312 ret = PTR_ERR(trans); 3313 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3314 return ret; 3315 } 3316 3317 /* 3318 * step two, delete the device extents and the 3319 * chunk tree entries 3320 */ 3321 ret = btrfs_remove_chunk(trans, chunk_offset); 3322 btrfs_end_transaction(trans); 3323 return ret; 3324 } 3325 3326 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3327 { 3328 struct btrfs_root *chunk_root = fs_info->chunk_root; 3329 struct btrfs_path *path; 3330 struct extent_buffer *leaf; 3331 struct btrfs_chunk *chunk; 3332 struct btrfs_key key; 3333 struct btrfs_key found_key; 3334 u64 chunk_type; 3335 bool retried = false; 3336 int failed = 0; 3337 int ret; 3338 3339 path = btrfs_alloc_path(); 3340 if (!path) 3341 return -ENOMEM; 3342 3343 again: 3344 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3345 key.offset = (u64)-1; 3346 key.type = BTRFS_CHUNK_ITEM_KEY; 3347 3348 while (1) { 3349 mutex_lock(&fs_info->reclaim_bgs_lock); 3350 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3351 if (ret < 0) { 3352 mutex_unlock(&fs_info->reclaim_bgs_lock); 3353 goto error; 3354 } 3355 BUG_ON(ret == 0); /* Corruption */ 3356 3357 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3358 key.type); 3359 if (ret) 3360 mutex_unlock(&fs_info->reclaim_bgs_lock); 3361 if (ret < 0) 3362 goto error; 3363 if (ret > 0) 3364 break; 3365 3366 leaf = path->nodes[0]; 3367 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3368 3369 chunk = btrfs_item_ptr(leaf, path->slots[0], 3370 struct btrfs_chunk); 3371 chunk_type = btrfs_chunk_type(leaf, chunk); 3372 btrfs_release_path(path); 3373 3374 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3375 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3376 if (ret == -ENOSPC) 3377 failed++; 3378 else 3379 BUG_ON(ret); 3380 } 3381 mutex_unlock(&fs_info->reclaim_bgs_lock); 3382 3383 if (found_key.offset == 0) 3384 break; 3385 key.offset = found_key.offset - 1; 3386 } 3387 ret = 0; 3388 if (failed && !retried) { 3389 failed = 0; 3390 retried = true; 3391 goto again; 3392 } else if (WARN_ON(failed && retried)) { 3393 ret = -ENOSPC; 3394 } 3395 error: 3396 btrfs_free_path(path); 3397 return ret; 3398 } 3399 3400 /* 3401 * return 1 : allocate a data chunk successfully, 3402 * return <0: errors during allocating a data chunk, 3403 * return 0 : no need to allocate a data chunk. 3404 */ 3405 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3406 u64 chunk_offset) 3407 { 3408 struct btrfs_block_group *cache; 3409 u64 bytes_used; 3410 u64 chunk_type; 3411 3412 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3413 ASSERT(cache); 3414 chunk_type = cache->flags; 3415 btrfs_put_block_group(cache); 3416 3417 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3418 return 0; 3419 3420 spin_lock(&fs_info->data_sinfo->lock); 3421 bytes_used = fs_info->data_sinfo->bytes_used; 3422 spin_unlock(&fs_info->data_sinfo->lock); 3423 3424 if (!bytes_used) { 3425 struct btrfs_trans_handle *trans; 3426 int ret; 3427 3428 trans = btrfs_join_transaction(fs_info->tree_root); 3429 if (IS_ERR(trans)) 3430 return PTR_ERR(trans); 3431 3432 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3433 btrfs_end_transaction(trans); 3434 if (ret < 0) 3435 return ret; 3436 return 1; 3437 } 3438 3439 return 0; 3440 } 3441 3442 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3443 struct btrfs_balance_control *bctl) 3444 { 3445 struct btrfs_root *root = fs_info->tree_root; 3446 struct btrfs_trans_handle *trans; 3447 struct btrfs_balance_item *item; 3448 struct btrfs_disk_balance_args disk_bargs; 3449 struct btrfs_path *path; 3450 struct extent_buffer *leaf; 3451 struct btrfs_key key; 3452 int ret, err; 3453 3454 path = btrfs_alloc_path(); 3455 if (!path) 3456 return -ENOMEM; 3457 3458 trans = btrfs_start_transaction(root, 0); 3459 if (IS_ERR(trans)) { 3460 btrfs_free_path(path); 3461 return PTR_ERR(trans); 3462 } 3463 3464 key.objectid = BTRFS_BALANCE_OBJECTID; 3465 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3466 key.offset = 0; 3467 3468 ret = btrfs_insert_empty_item(trans, root, path, &key, 3469 sizeof(*item)); 3470 if (ret) 3471 goto out; 3472 3473 leaf = path->nodes[0]; 3474 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3475 3476 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3477 3478 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3479 btrfs_set_balance_data(leaf, item, &disk_bargs); 3480 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3481 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3482 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3483 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3484 3485 btrfs_set_balance_flags(leaf, item, bctl->flags); 3486 3487 btrfs_mark_buffer_dirty(trans, leaf); 3488 out: 3489 btrfs_free_path(path); 3490 err = btrfs_commit_transaction(trans); 3491 if (err && !ret) 3492 ret = err; 3493 return ret; 3494 } 3495 3496 static int del_balance_item(struct btrfs_fs_info *fs_info) 3497 { 3498 struct btrfs_root *root = fs_info->tree_root; 3499 struct btrfs_trans_handle *trans; 3500 struct btrfs_path *path; 3501 struct btrfs_key key; 3502 int ret, err; 3503 3504 path = btrfs_alloc_path(); 3505 if (!path) 3506 return -ENOMEM; 3507 3508 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3509 if (IS_ERR(trans)) { 3510 btrfs_free_path(path); 3511 return PTR_ERR(trans); 3512 } 3513 3514 key.objectid = BTRFS_BALANCE_OBJECTID; 3515 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3516 key.offset = 0; 3517 3518 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3519 if (ret < 0) 3520 goto out; 3521 if (ret > 0) { 3522 ret = -ENOENT; 3523 goto out; 3524 } 3525 3526 ret = btrfs_del_item(trans, root, path); 3527 out: 3528 btrfs_free_path(path); 3529 err = btrfs_commit_transaction(trans); 3530 if (err && !ret) 3531 ret = err; 3532 return ret; 3533 } 3534 3535 /* 3536 * This is a heuristic used to reduce the number of chunks balanced on 3537 * resume after balance was interrupted. 3538 */ 3539 static void update_balance_args(struct btrfs_balance_control *bctl) 3540 { 3541 /* 3542 * Turn on soft mode for chunk types that were being converted. 3543 */ 3544 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3545 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3546 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3547 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3548 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3549 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3550 3551 /* 3552 * Turn on usage filter if is not already used. The idea is 3553 * that chunks that we have already balanced should be 3554 * reasonably full. Don't do it for chunks that are being 3555 * converted - that will keep us from relocating unconverted 3556 * (albeit full) chunks. 3557 */ 3558 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3559 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3560 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3561 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3562 bctl->data.usage = 90; 3563 } 3564 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3565 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3566 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3567 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3568 bctl->sys.usage = 90; 3569 } 3570 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3571 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3572 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3573 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3574 bctl->meta.usage = 90; 3575 } 3576 } 3577 3578 /* 3579 * Clear the balance status in fs_info and delete the balance item from disk. 3580 */ 3581 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3582 { 3583 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3584 int ret; 3585 3586 BUG_ON(!fs_info->balance_ctl); 3587 3588 spin_lock(&fs_info->balance_lock); 3589 fs_info->balance_ctl = NULL; 3590 spin_unlock(&fs_info->balance_lock); 3591 3592 kfree(bctl); 3593 ret = del_balance_item(fs_info); 3594 if (ret) 3595 btrfs_handle_fs_error(fs_info, ret, NULL); 3596 } 3597 3598 /* 3599 * Balance filters. Return 1 if chunk should be filtered out 3600 * (should not be balanced). 3601 */ 3602 static int chunk_profiles_filter(u64 chunk_type, 3603 struct btrfs_balance_args *bargs) 3604 { 3605 chunk_type = chunk_to_extended(chunk_type) & 3606 BTRFS_EXTENDED_PROFILE_MASK; 3607 3608 if (bargs->profiles & chunk_type) 3609 return 0; 3610 3611 return 1; 3612 } 3613 3614 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3615 struct btrfs_balance_args *bargs) 3616 { 3617 struct btrfs_block_group *cache; 3618 u64 chunk_used; 3619 u64 user_thresh_min; 3620 u64 user_thresh_max; 3621 int ret = 1; 3622 3623 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3624 chunk_used = cache->used; 3625 3626 if (bargs->usage_min == 0) 3627 user_thresh_min = 0; 3628 else 3629 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3630 3631 if (bargs->usage_max == 0) 3632 user_thresh_max = 1; 3633 else if (bargs->usage_max > 100) 3634 user_thresh_max = cache->length; 3635 else 3636 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3637 3638 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3639 ret = 0; 3640 3641 btrfs_put_block_group(cache); 3642 return ret; 3643 } 3644 3645 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3646 u64 chunk_offset, struct btrfs_balance_args *bargs) 3647 { 3648 struct btrfs_block_group *cache; 3649 u64 chunk_used, user_thresh; 3650 int ret = 1; 3651 3652 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3653 chunk_used = cache->used; 3654 3655 if (bargs->usage_min == 0) 3656 user_thresh = 1; 3657 else if (bargs->usage > 100) 3658 user_thresh = cache->length; 3659 else 3660 user_thresh = mult_perc(cache->length, bargs->usage); 3661 3662 if (chunk_used < user_thresh) 3663 ret = 0; 3664 3665 btrfs_put_block_group(cache); 3666 return ret; 3667 } 3668 3669 static int chunk_devid_filter(struct extent_buffer *leaf, 3670 struct btrfs_chunk *chunk, 3671 struct btrfs_balance_args *bargs) 3672 { 3673 struct btrfs_stripe *stripe; 3674 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3675 int i; 3676 3677 for (i = 0; i < num_stripes; i++) { 3678 stripe = btrfs_stripe_nr(chunk, i); 3679 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3680 return 0; 3681 } 3682 3683 return 1; 3684 } 3685 3686 static u64 calc_data_stripes(u64 type, int num_stripes) 3687 { 3688 const int index = btrfs_bg_flags_to_raid_index(type); 3689 const int ncopies = btrfs_raid_array[index].ncopies; 3690 const int nparity = btrfs_raid_array[index].nparity; 3691 3692 return (num_stripes - nparity) / ncopies; 3693 } 3694 3695 /* [pstart, pend) */ 3696 static int chunk_drange_filter(struct extent_buffer *leaf, 3697 struct btrfs_chunk *chunk, 3698 struct btrfs_balance_args *bargs) 3699 { 3700 struct btrfs_stripe *stripe; 3701 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3702 u64 stripe_offset; 3703 u64 stripe_length; 3704 u64 type; 3705 int factor; 3706 int i; 3707 3708 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3709 return 0; 3710 3711 type = btrfs_chunk_type(leaf, chunk); 3712 factor = calc_data_stripes(type, num_stripes); 3713 3714 for (i = 0; i < num_stripes; i++) { 3715 stripe = btrfs_stripe_nr(chunk, i); 3716 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3717 continue; 3718 3719 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3720 stripe_length = btrfs_chunk_length(leaf, chunk); 3721 stripe_length = div_u64(stripe_length, factor); 3722 3723 if (stripe_offset < bargs->pend && 3724 stripe_offset + stripe_length > bargs->pstart) 3725 return 0; 3726 } 3727 3728 return 1; 3729 } 3730 3731 /* [vstart, vend) */ 3732 static int chunk_vrange_filter(struct extent_buffer *leaf, 3733 struct btrfs_chunk *chunk, 3734 u64 chunk_offset, 3735 struct btrfs_balance_args *bargs) 3736 { 3737 if (chunk_offset < bargs->vend && 3738 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3739 /* at least part of the chunk is inside this vrange */ 3740 return 0; 3741 3742 return 1; 3743 } 3744 3745 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3746 struct btrfs_chunk *chunk, 3747 struct btrfs_balance_args *bargs) 3748 { 3749 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3750 3751 if (bargs->stripes_min <= num_stripes 3752 && num_stripes <= bargs->stripes_max) 3753 return 0; 3754 3755 return 1; 3756 } 3757 3758 static int chunk_soft_convert_filter(u64 chunk_type, 3759 struct btrfs_balance_args *bargs) 3760 { 3761 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3762 return 0; 3763 3764 chunk_type = chunk_to_extended(chunk_type) & 3765 BTRFS_EXTENDED_PROFILE_MASK; 3766 3767 if (bargs->target == chunk_type) 3768 return 1; 3769 3770 return 0; 3771 } 3772 3773 static int should_balance_chunk(struct extent_buffer *leaf, 3774 struct btrfs_chunk *chunk, u64 chunk_offset) 3775 { 3776 struct btrfs_fs_info *fs_info = leaf->fs_info; 3777 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3778 struct btrfs_balance_args *bargs = NULL; 3779 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3780 3781 /* type filter */ 3782 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3783 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3784 return 0; 3785 } 3786 3787 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3788 bargs = &bctl->data; 3789 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3790 bargs = &bctl->sys; 3791 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3792 bargs = &bctl->meta; 3793 3794 /* profiles filter */ 3795 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3796 chunk_profiles_filter(chunk_type, bargs)) { 3797 return 0; 3798 } 3799 3800 /* usage filter */ 3801 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3802 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3803 return 0; 3804 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3805 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3806 return 0; 3807 } 3808 3809 /* devid filter */ 3810 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3811 chunk_devid_filter(leaf, chunk, bargs)) { 3812 return 0; 3813 } 3814 3815 /* drange filter, makes sense only with devid filter */ 3816 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3817 chunk_drange_filter(leaf, chunk, bargs)) { 3818 return 0; 3819 } 3820 3821 /* vrange filter */ 3822 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3823 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3824 return 0; 3825 } 3826 3827 /* stripes filter */ 3828 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3829 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3830 return 0; 3831 } 3832 3833 /* soft profile changing mode */ 3834 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3835 chunk_soft_convert_filter(chunk_type, bargs)) { 3836 return 0; 3837 } 3838 3839 /* 3840 * limited by count, must be the last filter 3841 */ 3842 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3843 if (bargs->limit == 0) 3844 return 0; 3845 else 3846 bargs->limit--; 3847 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3848 /* 3849 * Same logic as the 'limit' filter; the minimum cannot be 3850 * determined here because we do not have the global information 3851 * about the count of all chunks that satisfy the filters. 3852 */ 3853 if (bargs->limit_max == 0) 3854 return 0; 3855 else 3856 bargs->limit_max--; 3857 } 3858 3859 return 1; 3860 } 3861 3862 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3863 { 3864 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3865 struct btrfs_root *chunk_root = fs_info->chunk_root; 3866 u64 chunk_type; 3867 struct btrfs_chunk *chunk; 3868 struct btrfs_path *path = NULL; 3869 struct btrfs_key key; 3870 struct btrfs_key found_key; 3871 struct extent_buffer *leaf; 3872 int slot; 3873 int ret; 3874 int enospc_errors = 0; 3875 bool counting = true; 3876 /* The single value limit and min/max limits use the same bytes in the */ 3877 u64 limit_data = bctl->data.limit; 3878 u64 limit_meta = bctl->meta.limit; 3879 u64 limit_sys = bctl->sys.limit; 3880 u32 count_data = 0; 3881 u32 count_meta = 0; 3882 u32 count_sys = 0; 3883 int chunk_reserved = 0; 3884 3885 path = btrfs_alloc_path(); 3886 if (!path) { 3887 ret = -ENOMEM; 3888 goto error; 3889 } 3890 3891 /* zero out stat counters */ 3892 spin_lock(&fs_info->balance_lock); 3893 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3894 spin_unlock(&fs_info->balance_lock); 3895 again: 3896 if (!counting) { 3897 /* 3898 * The single value limit and min/max limits use the same bytes 3899 * in the 3900 */ 3901 bctl->data.limit = limit_data; 3902 bctl->meta.limit = limit_meta; 3903 bctl->sys.limit = limit_sys; 3904 } 3905 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3906 key.offset = (u64)-1; 3907 key.type = BTRFS_CHUNK_ITEM_KEY; 3908 3909 while (1) { 3910 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3911 atomic_read(&fs_info->balance_cancel_req)) { 3912 ret = -ECANCELED; 3913 goto error; 3914 } 3915 3916 mutex_lock(&fs_info->reclaim_bgs_lock); 3917 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3918 if (ret < 0) { 3919 mutex_unlock(&fs_info->reclaim_bgs_lock); 3920 goto error; 3921 } 3922 3923 /* 3924 * this shouldn't happen, it means the last relocate 3925 * failed 3926 */ 3927 if (ret == 0) 3928 BUG(); /* FIXME break ? */ 3929 3930 ret = btrfs_previous_item(chunk_root, path, 0, 3931 BTRFS_CHUNK_ITEM_KEY); 3932 if (ret) { 3933 mutex_unlock(&fs_info->reclaim_bgs_lock); 3934 ret = 0; 3935 break; 3936 } 3937 3938 leaf = path->nodes[0]; 3939 slot = path->slots[0]; 3940 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3941 3942 if (found_key.objectid != key.objectid) { 3943 mutex_unlock(&fs_info->reclaim_bgs_lock); 3944 break; 3945 } 3946 3947 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3948 chunk_type = btrfs_chunk_type(leaf, chunk); 3949 3950 if (!counting) { 3951 spin_lock(&fs_info->balance_lock); 3952 bctl->stat.considered++; 3953 spin_unlock(&fs_info->balance_lock); 3954 } 3955 3956 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3957 3958 btrfs_release_path(path); 3959 if (!ret) { 3960 mutex_unlock(&fs_info->reclaim_bgs_lock); 3961 goto loop; 3962 } 3963 3964 if (counting) { 3965 mutex_unlock(&fs_info->reclaim_bgs_lock); 3966 spin_lock(&fs_info->balance_lock); 3967 bctl->stat.expected++; 3968 spin_unlock(&fs_info->balance_lock); 3969 3970 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3971 count_data++; 3972 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3973 count_sys++; 3974 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3975 count_meta++; 3976 3977 goto loop; 3978 } 3979 3980 /* 3981 * Apply limit_min filter, no need to check if the LIMITS 3982 * filter is used, limit_min is 0 by default 3983 */ 3984 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3985 count_data < bctl->data.limit_min) 3986 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3987 count_meta < bctl->meta.limit_min) 3988 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3989 count_sys < bctl->sys.limit_min)) { 3990 mutex_unlock(&fs_info->reclaim_bgs_lock); 3991 goto loop; 3992 } 3993 3994 if (!chunk_reserved) { 3995 /* 3996 * We may be relocating the only data chunk we have, 3997 * which could potentially end up with losing data's 3998 * raid profile, so lets allocate an empty one in 3999 * advance. 4000 */ 4001 ret = btrfs_may_alloc_data_chunk(fs_info, 4002 found_key.offset); 4003 if (ret < 0) { 4004 mutex_unlock(&fs_info->reclaim_bgs_lock); 4005 goto error; 4006 } else if (ret == 1) { 4007 chunk_reserved = 1; 4008 } 4009 } 4010 4011 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4012 mutex_unlock(&fs_info->reclaim_bgs_lock); 4013 if (ret == -ENOSPC) { 4014 enospc_errors++; 4015 } else if (ret == -ETXTBSY) { 4016 btrfs_info(fs_info, 4017 "skipping relocation of block group %llu due to active swapfile", 4018 found_key.offset); 4019 ret = 0; 4020 } else if (ret) { 4021 goto error; 4022 } else { 4023 spin_lock(&fs_info->balance_lock); 4024 bctl->stat.completed++; 4025 spin_unlock(&fs_info->balance_lock); 4026 } 4027 loop: 4028 if (found_key.offset == 0) 4029 break; 4030 key.offset = found_key.offset - 1; 4031 } 4032 4033 if (counting) { 4034 btrfs_release_path(path); 4035 counting = false; 4036 goto again; 4037 } 4038 error: 4039 btrfs_free_path(path); 4040 if (enospc_errors) { 4041 btrfs_info(fs_info, "%d enospc errors during balance", 4042 enospc_errors); 4043 if (!ret) 4044 ret = -ENOSPC; 4045 } 4046 4047 return ret; 4048 } 4049 4050 /* 4051 * See if a given profile is valid and reduced. 4052 * 4053 * @flags: profile to validate 4054 * @extended: if true @flags is treated as an extended profile 4055 */ 4056 static int alloc_profile_is_valid(u64 flags, int extended) 4057 { 4058 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4059 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4060 4061 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4062 4063 /* 1) check that all other bits are zeroed */ 4064 if (flags & ~mask) 4065 return 0; 4066 4067 /* 2) see if profile is reduced */ 4068 if (flags == 0) 4069 return !extended; /* "0" is valid for usual profiles */ 4070 4071 return has_single_bit_set(flags); 4072 } 4073 4074 /* 4075 * Validate target profile against allowed profiles and return true if it's OK. 4076 * Otherwise print the error message and return false. 4077 */ 4078 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4079 const struct btrfs_balance_args *bargs, 4080 u64 allowed, const char *type) 4081 { 4082 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4083 return true; 4084 4085 /* Profile is valid and does not have bits outside of the allowed set */ 4086 if (alloc_profile_is_valid(bargs->target, 1) && 4087 (bargs->target & ~allowed) == 0) 4088 return true; 4089 4090 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4091 type, btrfs_bg_type_to_raid_name(bargs->target)); 4092 return false; 4093 } 4094 4095 /* 4096 * Fill @buf with textual description of balance filter flags @bargs, up to 4097 * @size_buf including the terminating null. The output may be trimmed if it 4098 * does not fit into the provided buffer. 4099 */ 4100 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4101 u32 size_buf) 4102 { 4103 int ret; 4104 u32 size_bp = size_buf; 4105 char *bp = buf; 4106 u64 flags = bargs->flags; 4107 char tmp_buf[128] = {'\0'}; 4108 4109 if (!flags) 4110 return; 4111 4112 #define CHECK_APPEND_NOARG(a) \ 4113 do { \ 4114 ret = snprintf(bp, size_bp, (a)); \ 4115 if (ret < 0 || ret >= size_bp) \ 4116 goto out_overflow; \ 4117 size_bp -= ret; \ 4118 bp += ret; \ 4119 } while (0) 4120 4121 #define CHECK_APPEND_1ARG(a, v1) \ 4122 do { \ 4123 ret = snprintf(bp, size_bp, (a), (v1)); \ 4124 if (ret < 0 || ret >= size_bp) \ 4125 goto out_overflow; \ 4126 size_bp -= ret; \ 4127 bp += ret; \ 4128 } while (0) 4129 4130 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4131 do { \ 4132 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4133 if (ret < 0 || ret >= size_bp) \ 4134 goto out_overflow; \ 4135 size_bp -= ret; \ 4136 bp += ret; \ 4137 } while (0) 4138 4139 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4140 CHECK_APPEND_1ARG("convert=%s,", 4141 btrfs_bg_type_to_raid_name(bargs->target)); 4142 4143 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4144 CHECK_APPEND_NOARG("soft,"); 4145 4146 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4147 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4148 sizeof(tmp_buf)); 4149 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4150 } 4151 4152 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4153 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4154 4155 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4156 CHECK_APPEND_2ARG("usage=%u..%u,", 4157 bargs->usage_min, bargs->usage_max); 4158 4159 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4160 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4161 4162 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4163 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4164 bargs->pstart, bargs->pend); 4165 4166 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4167 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4168 bargs->vstart, bargs->vend); 4169 4170 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4171 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4172 4173 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4174 CHECK_APPEND_2ARG("limit=%u..%u,", 4175 bargs->limit_min, bargs->limit_max); 4176 4177 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4178 CHECK_APPEND_2ARG("stripes=%u..%u,", 4179 bargs->stripes_min, bargs->stripes_max); 4180 4181 #undef CHECK_APPEND_2ARG 4182 #undef CHECK_APPEND_1ARG 4183 #undef CHECK_APPEND_NOARG 4184 4185 out_overflow: 4186 4187 if (size_bp < size_buf) 4188 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4189 else 4190 buf[0] = '\0'; 4191 } 4192 4193 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4194 { 4195 u32 size_buf = 1024; 4196 char tmp_buf[192] = {'\0'}; 4197 char *buf; 4198 char *bp; 4199 u32 size_bp = size_buf; 4200 int ret; 4201 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4202 4203 buf = kzalloc(size_buf, GFP_KERNEL); 4204 if (!buf) 4205 return; 4206 4207 bp = buf; 4208 4209 #define CHECK_APPEND_1ARG(a, v1) \ 4210 do { \ 4211 ret = snprintf(bp, size_bp, (a), (v1)); \ 4212 if (ret < 0 || ret >= size_bp) \ 4213 goto out_overflow; \ 4214 size_bp -= ret; \ 4215 bp += ret; \ 4216 } while (0) 4217 4218 if (bctl->flags & BTRFS_BALANCE_FORCE) 4219 CHECK_APPEND_1ARG("%s", "-f "); 4220 4221 if (bctl->flags & BTRFS_BALANCE_DATA) { 4222 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4223 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4224 } 4225 4226 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4227 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4228 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4229 } 4230 4231 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4232 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4233 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4234 } 4235 4236 #undef CHECK_APPEND_1ARG 4237 4238 out_overflow: 4239 4240 if (size_bp < size_buf) 4241 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4242 btrfs_info(fs_info, "balance: %s %s", 4243 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4244 "resume" : "start", buf); 4245 4246 kfree(buf); 4247 } 4248 4249 /* 4250 * Should be called with balance mutexe held 4251 */ 4252 int btrfs_balance(struct btrfs_fs_info *fs_info, 4253 struct btrfs_balance_control *bctl, 4254 struct btrfs_ioctl_balance_args *bargs) 4255 { 4256 u64 meta_target, data_target; 4257 u64 allowed; 4258 int mixed = 0; 4259 int ret; 4260 u64 num_devices; 4261 unsigned seq; 4262 bool reducing_redundancy; 4263 bool paused = false; 4264 int i; 4265 4266 if (btrfs_fs_closing(fs_info) || 4267 atomic_read(&fs_info->balance_pause_req) || 4268 btrfs_should_cancel_balance(fs_info)) { 4269 ret = -EINVAL; 4270 goto out; 4271 } 4272 4273 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4274 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4275 mixed = 1; 4276 4277 /* 4278 * In case of mixed groups both data and meta should be picked, 4279 * and identical options should be given for both of them. 4280 */ 4281 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4282 if (mixed && (bctl->flags & allowed)) { 4283 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4284 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4285 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4286 btrfs_err(fs_info, 4287 "balance: mixed groups data and metadata options must be the same"); 4288 ret = -EINVAL; 4289 goto out; 4290 } 4291 } 4292 4293 /* 4294 * rw_devices will not change at the moment, device add/delete/replace 4295 * are exclusive 4296 */ 4297 num_devices = fs_info->fs_devices->rw_devices; 4298 4299 /* 4300 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4301 * special bit for it, to make it easier to distinguish. Thus we need 4302 * to set it manually, or balance would refuse the profile. 4303 */ 4304 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4305 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4306 if (num_devices >= btrfs_raid_array[i].devs_min) 4307 allowed |= btrfs_raid_array[i].bg_flag; 4308 4309 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4310 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4311 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4312 ret = -EINVAL; 4313 goto out; 4314 } 4315 4316 /* 4317 * Allow to reduce metadata or system integrity only if force set for 4318 * profiles with redundancy (copies, parity) 4319 */ 4320 allowed = 0; 4321 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4322 if (btrfs_raid_array[i].ncopies >= 2 || 4323 btrfs_raid_array[i].tolerated_failures >= 1) 4324 allowed |= btrfs_raid_array[i].bg_flag; 4325 } 4326 do { 4327 seq = read_seqbegin(&fs_info->profiles_lock); 4328 4329 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4330 (fs_info->avail_system_alloc_bits & allowed) && 4331 !(bctl->sys.target & allowed)) || 4332 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4333 (fs_info->avail_metadata_alloc_bits & allowed) && 4334 !(bctl->meta.target & allowed))) 4335 reducing_redundancy = true; 4336 else 4337 reducing_redundancy = false; 4338 4339 /* if we're not converting, the target field is uninitialized */ 4340 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4341 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4342 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4343 bctl->data.target : fs_info->avail_data_alloc_bits; 4344 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4345 4346 if (reducing_redundancy) { 4347 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4348 btrfs_info(fs_info, 4349 "balance: force reducing metadata redundancy"); 4350 } else { 4351 btrfs_err(fs_info, 4352 "balance: reduces metadata redundancy, use --force if you want this"); 4353 ret = -EINVAL; 4354 goto out; 4355 } 4356 } 4357 4358 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4359 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4360 btrfs_warn(fs_info, 4361 "balance: metadata profile %s has lower redundancy than data profile %s", 4362 btrfs_bg_type_to_raid_name(meta_target), 4363 btrfs_bg_type_to_raid_name(data_target)); 4364 } 4365 4366 ret = insert_balance_item(fs_info, bctl); 4367 if (ret && ret != -EEXIST) 4368 goto out; 4369 4370 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4371 BUG_ON(ret == -EEXIST); 4372 BUG_ON(fs_info->balance_ctl); 4373 spin_lock(&fs_info->balance_lock); 4374 fs_info->balance_ctl = bctl; 4375 spin_unlock(&fs_info->balance_lock); 4376 } else { 4377 BUG_ON(ret != -EEXIST); 4378 spin_lock(&fs_info->balance_lock); 4379 update_balance_args(bctl); 4380 spin_unlock(&fs_info->balance_lock); 4381 } 4382 4383 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4384 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4385 describe_balance_start_or_resume(fs_info); 4386 mutex_unlock(&fs_info->balance_mutex); 4387 4388 ret = __btrfs_balance(fs_info); 4389 4390 mutex_lock(&fs_info->balance_mutex); 4391 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4392 btrfs_info(fs_info, "balance: paused"); 4393 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4394 paused = true; 4395 } 4396 /* 4397 * Balance can be canceled by: 4398 * 4399 * - Regular cancel request 4400 * Then ret == -ECANCELED and balance_cancel_req > 0 4401 * 4402 * - Fatal signal to "btrfs" process 4403 * Either the signal caught by wait_reserve_ticket() and callers 4404 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4405 * got -ECANCELED. 4406 * Either way, in this case balance_cancel_req = 0, and 4407 * ret == -EINTR or ret == -ECANCELED. 4408 * 4409 * So here we only check the return value to catch canceled balance. 4410 */ 4411 else if (ret == -ECANCELED || ret == -EINTR) 4412 btrfs_info(fs_info, "balance: canceled"); 4413 else 4414 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4415 4416 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4417 4418 if (bargs) { 4419 memset(bargs, 0, sizeof(*bargs)); 4420 btrfs_update_ioctl_balance_args(fs_info, bargs); 4421 } 4422 4423 /* We didn't pause, we can clean everything up. */ 4424 if (!paused) { 4425 reset_balance_state(fs_info); 4426 btrfs_exclop_finish(fs_info); 4427 } 4428 4429 wake_up(&fs_info->balance_wait_q); 4430 4431 return ret; 4432 out: 4433 if (bctl->flags & BTRFS_BALANCE_RESUME) 4434 reset_balance_state(fs_info); 4435 else 4436 kfree(bctl); 4437 btrfs_exclop_finish(fs_info); 4438 4439 return ret; 4440 } 4441 4442 static int balance_kthread(void *data) 4443 { 4444 struct btrfs_fs_info *fs_info = data; 4445 int ret = 0; 4446 4447 sb_start_write(fs_info->sb); 4448 mutex_lock(&fs_info->balance_mutex); 4449 if (fs_info->balance_ctl) 4450 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4451 mutex_unlock(&fs_info->balance_mutex); 4452 sb_end_write(fs_info->sb); 4453 4454 return ret; 4455 } 4456 4457 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4458 { 4459 struct task_struct *tsk; 4460 4461 mutex_lock(&fs_info->balance_mutex); 4462 if (!fs_info->balance_ctl) { 4463 mutex_unlock(&fs_info->balance_mutex); 4464 return 0; 4465 } 4466 mutex_unlock(&fs_info->balance_mutex); 4467 4468 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4469 btrfs_info(fs_info, "balance: resume skipped"); 4470 return 0; 4471 } 4472 4473 spin_lock(&fs_info->super_lock); 4474 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4475 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4476 spin_unlock(&fs_info->super_lock); 4477 /* 4478 * A ro->rw remount sequence should continue with the paused balance 4479 * regardless of who pauses it, system or the user as of now, so set 4480 * the resume flag. 4481 */ 4482 spin_lock(&fs_info->balance_lock); 4483 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4484 spin_unlock(&fs_info->balance_lock); 4485 4486 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4487 return PTR_ERR_OR_ZERO(tsk); 4488 } 4489 4490 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4491 { 4492 struct btrfs_balance_control *bctl; 4493 struct btrfs_balance_item *item; 4494 struct btrfs_disk_balance_args disk_bargs; 4495 struct btrfs_path *path; 4496 struct extent_buffer *leaf; 4497 struct btrfs_key key; 4498 int ret; 4499 4500 path = btrfs_alloc_path(); 4501 if (!path) 4502 return -ENOMEM; 4503 4504 key.objectid = BTRFS_BALANCE_OBJECTID; 4505 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4506 key.offset = 0; 4507 4508 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4509 if (ret < 0) 4510 goto out; 4511 if (ret > 0) { /* ret = -ENOENT; */ 4512 ret = 0; 4513 goto out; 4514 } 4515 4516 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4517 if (!bctl) { 4518 ret = -ENOMEM; 4519 goto out; 4520 } 4521 4522 leaf = path->nodes[0]; 4523 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4524 4525 bctl->flags = btrfs_balance_flags(leaf, item); 4526 bctl->flags |= BTRFS_BALANCE_RESUME; 4527 4528 btrfs_balance_data(leaf, item, &disk_bargs); 4529 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4530 btrfs_balance_meta(leaf, item, &disk_bargs); 4531 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4532 btrfs_balance_sys(leaf, item, &disk_bargs); 4533 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4534 4535 /* 4536 * This should never happen, as the paused balance state is recovered 4537 * during mount without any chance of other exclusive ops to collide. 4538 * 4539 * This gives the exclusive op status to balance and keeps in paused 4540 * state until user intervention (cancel or umount). If the ownership 4541 * cannot be assigned, show a message but do not fail. The balance 4542 * is in a paused state and must have fs_info::balance_ctl properly 4543 * set up. 4544 */ 4545 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4546 btrfs_warn(fs_info, 4547 "balance: cannot set exclusive op status, resume manually"); 4548 4549 btrfs_release_path(path); 4550 4551 mutex_lock(&fs_info->balance_mutex); 4552 BUG_ON(fs_info->balance_ctl); 4553 spin_lock(&fs_info->balance_lock); 4554 fs_info->balance_ctl = bctl; 4555 spin_unlock(&fs_info->balance_lock); 4556 mutex_unlock(&fs_info->balance_mutex); 4557 out: 4558 btrfs_free_path(path); 4559 return ret; 4560 } 4561 4562 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4563 { 4564 int ret = 0; 4565 4566 mutex_lock(&fs_info->balance_mutex); 4567 if (!fs_info->balance_ctl) { 4568 mutex_unlock(&fs_info->balance_mutex); 4569 return -ENOTCONN; 4570 } 4571 4572 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4573 atomic_inc(&fs_info->balance_pause_req); 4574 mutex_unlock(&fs_info->balance_mutex); 4575 4576 wait_event(fs_info->balance_wait_q, 4577 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4578 4579 mutex_lock(&fs_info->balance_mutex); 4580 /* we are good with balance_ctl ripped off from under us */ 4581 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4582 atomic_dec(&fs_info->balance_pause_req); 4583 } else { 4584 ret = -ENOTCONN; 4585 } 4586 4587 mutex_unlock(&fs_info->balance_mutex); 4588 return ret; 4589 } 4590 4591 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4592 { 4593 mutex_lock(&fs_info->balance_mutex); 4594 if (!fs_info->balance_ctl) { 4595 mutex_unlock(&fs_info->balance_mutex); 4596 return -ENOTCONN; 4597 } 4598 4599 /* 4600 * A paused balance with the item stored on disk can be resumed at 4601 * mount time if the mount is read-write. Otherwise it's still paused 4602 * and we must not allow cancelling as it deletes the item. 4603 */ 4604 if (sb_rdonly(fs_info->sb)) { 4605 mutex_unlock(&fs_info->balance_mutex); 4606 return -EROFS; 4607 } 4608 4609 atomic_inc(&fs_info->balance_cancel_req); 4610 /* 4611 * if we are running just wait and return, balance item is 4612 * deleted in btrfs_balance in this case 4613 */ 4614 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4615 mutex_unlock(&fs_info->balance_mutex); 4616 wait_event(fs_info->balance_wait_q, 4617 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4618 mutex_lock(&fs_info->balance_mutex); 4619 } else { 4620 mutex_unlock(&fs_info->balance_mutex); 4621 /* 4622 * Lock released to allow other waiters to continue, we'll 4623 * reexamine the status again. 4624 */ 4625 mutex_lock(&fs_info->balance_mutex); 4626 4627 if (fs_info->balance_ctl) { 4628 reset_balance_state(fs_info); 4629 btrfs_exclop_finish(fs_info); 4630 btrfs_info(fs_info, "balance: canceled"); 4631 } 4632 } 4633 4634 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4635 atomic_dec(&fs_info->balance_cancel_req); 4636 mutex_unlock(&fs_info->balance_mutex); 4637 return 0; 4638 } 4639 4640 int btrfs_uuid_scan_kthread(void *data) 4641 { 4642 struct btrfs_fs_info *fs_info = data; 4643 struct btrfs_root *root = fs_info->tree_root; 4644 struct btrfs_key key; 4645 struct btrfs_path *path = NULL; 4646 int ret = 0; 4647 struct extent_buffer *eb; 4648 int slot; 4649 struct btrfs_root_item root_item; 4650 u32 item_size; 4651 struct btrfs_trans_handle *trans = NULL; 4652 bool closing = false; 4653 4654 path = btrfs_alloc_path(); 4655 if (!path) { 4656 ret = -ENOMEM; 4657 goto out; 4658 } 4659 4660 key.objectid = 0; 4661 key.type = BTRFS_ROOT_ITEM_KEY; 4662 key.offset = 0; 4663 4664 while (1) { 4665 if (btrfs_fs_closing(fs_info)) { 4666 closing = true; 4667 break; 4668 } 4669 ret = btrfs_search_forward(root, &key, path, 4670 BTRFS_OLDEST_GENERATION); 4671 if (ret) { 4672 if (ret > 0) 4673 ret = 0; 4674 break; 4675 } 4676 4677 if (key.type != BTRFS_ROOT_ITEM_KEY || 4678 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4679 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4680 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4681 goto skip; 4682 4683 eb = path->nodes[0]; 4684 slot = path->slots[0]; 4685 item_size = btrfs_item_size(eb, slot); 4686 if (item_size < sizeof(root_item)) 4687 goto skip; 4688 4689 read_extent_buffer(eb, &root_item, 4690 btrfs_item_ptr_offset(eb, slot), 4691 (int)sizeof(root_item)); 4692 if (btrfs_root_refs(&root_item) == 0) 4693 goto skip; 4694 4695 if (!btrfs_is_empty_uuid(root_item.uuid) || 4696 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4697 if (trans) 4698 goto update_tree; 4699 4700 btrfs_release_path(path); 4701 /* 4702 * 1 - subvol uuid item 4703 * 1 - received_subvol uuid item 4704 */ 4705 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4706 if (IS_ERR(trans)) { 4707 ret = PTR_ERR(trans); 4708 break; 4709 } 4710 continue; 4711 } else { 4712 goto skip; 4713 } 4714 update_tree: 4715 btrfs_release_path(path); 4716 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4717 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4718 BTRFS_UUID_KEY_SUBVOL, 4719 key.objectid); 4720 if (ret < 0) { 4721 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4722 ret); 4723 break; 4724 } 4725 } 4726 4727 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4728 ret = btrfs_uuid_tree_add(trans, 4729 root_item.received_uuid, 4730 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4731 key.objectid); 4732 if (ret < 0) { 4733 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4734 ret); 4735 break; 4736 } 4737 } 4738 4739 skip: 4740 btrfs_release_path(path); 4741 if (trans) { 4742 ret = btrfs_end_transaction(trans); 4743 trans = NULL; 4744 if (ret) 4745 break; 4746 } 4747 4748 if (key.offset < (u64)-1) { 4749 key.offset++; 4750 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4751 key.offset = 0; 4752 key.type = BTRFS_ROOT_ITEM_KEY; 4753 } else if (key.objectid < (u64)-1) { 4754 key.offset = 0; 4755 key.type = BTRFS_ROOT_ITEM_KEY; 4756 key.objectid++; 4757 } else { 4758 break; 4759 } 4760 cond_resched(); 4761 } 4762 4763 out: 4764 btrfs_free_path(path); 4765 if (trans && !IS_ERR(trans)) 4766 btrfs_end_transaction(trans); 4767 if (ret) 4768 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4769 else if (!closing) 4770 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4771 up(&fs_info->uuid_tree_rescan_sem); 4772 return 0; 4773 } 4774 4775 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4776 { 4777 struct btrfs_trans_handle *trans; 4778 struct btrfs_root *tree_root = fs_info->tree_root; 4779 struct btrfs_root *uuid_root; 4780 struct task_struct *task; 4781 int ret; 4782 4783 /* 4784 * 1 - root node 4785 * 1 - root item 4786 */ 4787 trans = btrfs_start_transaction(tree_root, 2); 4788 if (IS_ERR(trans)) 4789 return PTR_ERR(trans); 4790 4791 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4792 if (IS_ERR(uuid_root)) { 4793 ret = PTR_ERR(uuid_root); 4794 btrfs_abort_transaction(trans, ret); 4795 btrfs_end_transaction(trans); 4796 return ret; 4797 } 4798 4799 fs_info->uuid_root = uuid_root; 4800 4801 ret = btrfs_commit_transaction(trans); 4802 if (ret) 4803 return ret; 4804 4805 down(&fs_info->uuid_tree_rescan_sem); 4806 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4807 if (IS_ERR(task)) { 4808 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4809 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4810 up(&fs_info->uuid_tree_rescan_sem); 4811 return PTR_ERR(task); 4812 } 4813 4814 return 0; 4815 } 4816 4817 /* 4818 * shrinking a device means finding all of the device extents past 4819 * the new size, and then following the back refs to the chunks. 4820 * The chunk relocation code actually frees the device extent 4821 */ 4822 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4823 { 4824 struct btrfs_fs_info *fs_info = device->fs_info; 4825 struct btrfs_root *root = fs_info->dev_root; 4826 struct btrfs_trans_handle *trans; 4827 struct btrfs_dev_extent *dev_extent = NULL; 4828 struct btrfs_path *path; 4829 u64 length; 4830 u64 chunk_offset; 4831 int ret; 4832 int slot; 4833 int failed = 0; 4834 bool retried = false; 4835 struct extent_buffer *l; 4836 struct btrfs_key key; 4837 struct btrfs_super_block *super_copy = fs_info->super_copy; 4838 u64 old_total = btrfs_super_total_bytes(super_copy); 4839 u64 old_size = btrfs_device_get_total_bytes(device); 4840 u64 diff; 4841 u64 start; 4842 4843 new_size = round_down(new_size, fs_info->sectorsize); 4844 start = new_size; 4845 diff = round_down(old_size - new_size, fs_info->sectorsize); 4846 4847 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4848 return -EINVAL; 4849 4850 path = btrfs_alloc_path(); 4851 if (!path) 4852 return -ENOMEM; 4853 4854 path->reada = READA_BACK; 4855 4856 trans = btrfs_start_transaction(root, 0); 4857 if (IS_ERR(trans)) { 4858 btrfs_free_path(path); 4859 return PTR_ERR(trans); 4860 } 4861 4862 mutex_lock(&fs_info->chunk_mutex); 4863 4864 btrfs_device_set_total_bytes(device, new_size); 4865 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4866 device->fs_devices->total_rw_bytes -= diff; 4867 atomic64_sub(diff, &fs_info->free_chunk_space); 4868 } 4869 4870 /* 4871 * Once the device's size has been set to the new size, ensure all 4872 * in-memory chunks are synced to disk so that the loop below sees them 4873 * and relocates them accordingly. 4874 */ 4875 if (contains_pending_extent(device, &start, diff)) { 4876 mutex_unlock(&fs_info->chunk_mutex); 4877 ret = btrfs_commit_transaction(trans); 4878 if (ret) 4879 goto done; 4880 } else { 4881 mutex_unlock(&fs_info->chunk_mutex); 4882 btrfs_end_transaction(trans); 4883 } 4884 4885 again: 4886 key.objectid = device->devid; 4887 key.offset = (u64)-1; 4888 key.type = BTRFS_DEV_EXTENT_KEY; 4889 4890 do { 4891 mutex_lock(&fs_info->reclaim_bgs_lock); 4892 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4893 if (ret < 0) { 4894 mutex_unlock(&fs_info->reclaim_bgs_lock); 4895 goto done; 4896 } 4897 4898 ret = btrfs_previous_item(root, path, 0, key.type); 4899 if (ret) { 4900 mutex_unlock(&fs_info->reclaim_bgs_lock); 4901 if (ret < 0) 4902 goto done; 4903 ret = 0; 4904 btrfs_release_path(path); 4905 break; 4906 } 4907 4908 l = path->nodes[0]; 4909 slot = path->slots[0]; 4910 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4911 4912 if (key.objectid != device->devid) { 4913 mutex_unlock(&fs_info->reclaim_bgs_lock); 4914 btrfs_release_path(path); 4915 break; 4916 } 4917 4918 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4919 length = btrfs_dev_extent_length(l, dev_extent); 4920 4921 if (key.offset + length <= new_size) { 4922 mutex_unlock(&fs_info->reclaim_bgs_lock); 4923 btrfs_release_path(path); 4924 break; 4925 } 4926 4927 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4928 btrfs_release_path(path); 4929 4930 /* 4931 * We may be relocating the only data chunk we have, 4932 * which could potentially end up with losing data's 4933 * raid profile, so lets allocate an empty one in 4934 * advance. 4935 */ 4936 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4937 if (ret < 0) { 4938 mutex_unlock(&fs_info->reclaim_bgs_lock); 4939 goto done; 4940 } 4941 4942 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4943 mutex_unlock(&fs_info->reclaim_bgs_lock); 4944 if (ret == -ENOSPC) { 4945 failed++; 4946 } else if (ret) { 4947 if (ret == -ETXTBSY) { 4948 btrfs_warn(fs_info, 4949 "could not shrink block group %llu due to active swapfile", 4950 chunk_offset); 4951 } 4952 goto done; 4953 } 4954 } while (key.offset-- > 0); 4955 4956 if (failed && !retried) { 4957 failed = 0; 4958 retried = true; 4959 goto again; 4960 } else if (failed && retried) { 4961 ret = -ENOSPC; 4962 goto done; 4963 } 4964 4965 /* Shrinking succeeded, else we would be at "done". */ 4966 trans = btrfs_start_transaction(root, 0); 4967 if (IS_ERR(trans)) { 4968 ret = PTR_ERR(trans); 4969 goto done; 4970 } 4971 4972 mutex_lock(&fs_info->chunk_mutex); 4973 /* Clear all state bits beyond the shrunk device size */ 4974 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4975 CHUNK_STATE_MASK); 4976 4977 btrfs_device_set_disk_total_bytes(device, new_size); 4978 if (list_empty(&device->post_commit_list)) 4979 list_add_tail(&device->post_commit_list, 4980 &trans->transaction->dev_update_list); 4981 4982 WARN_ON(diff > old_total); 4983 btrfs_set_super_total_bytes(super_copy, 4984 round_down(old_total - diff, fs_info->sectorsize)); 4985 mutex_unlock(&fs_info->chunk_mutex); 4986 4987 btrfs_reserve_chunk_metadata(trans, false); 4988 /* Now btrfs_update_device() will change the on-disk size. */ 4989 ret = btrfs_update_device(trans, device); 4990 btrfs_trans_release_chunk_metadata(trans); 4991 if (ret < 0) { 4992 btrfs_abort_transaction(trans, ret); 4993 btrfs_end_transaction(trans); 4994 } else { 4995 ret = btrfs_commit_transaction(trans); 4996 } 4997 done: 4998 btrfs_free_path(path); 4999 if (ret) { 5000 mutex_lock(&fs_info->chunk_mutex); 5001 btrfs_device_set_total_bytes(device, old_size); 5002 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5003 device->fs_devices->total_rw_bytes += diff; 5004 atomic64_add(diff, &fs_info->free_chunk_space); 5005 mutex_unlock(&fs_info->chunk_mutex); 5006 } 5007 return ret; 5008 } 5009 5010 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5011 struct btrfs_key *key, 5012 struct btrfs_chunk *chunk, int item_size) 5013 { 5014 struct btrfs_super_block *super_copy = fs_info->super_copy; 5015 struct btrfs_disk_key disk_key; 5016 u32 array_size; 5017 u8 *ptr; 5018 5019 lockdep_assert_held(&fs_info->chunk_mutex); 5020 5021 array_size = btrfs_super_sys_array_size(super_copy); 5022 if (array_size + item_size + sizeof(disk_key) 5023 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5024 return -EFBIG; 5025 5026 ptr = super_copy->sys_chunk_array + array_size; 5027 btrfs_cpu_key_to_disk(&disk_key, key); 5028 memcpy(ptr, &disk_key, sizeof(disk_key)); 5029 ptr += sizeof(disk_key); 5030 memcpy(ptr, chunk, item_size); 5031 item_size += sizeof(disk_key); 5032 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5033 5034 return 0; 5035 } 5036 5037 /* 5038 * sort the devices in descending order by max_avail, total_avail 5039 */ 5040 static int btrfs_cmp_device_info(const void *a, const void *b) 5041 { 5042 const struct btrfs_device_info *di_a = a; 5043 const struct btrfs_device_info *di_b = b; 5044 5045 if (di_a->max_avail > di_b->max_avail) 5046 return -1; 5047 if (di_a->max_avail < di_b->max_avail) 5048 return 1; 5049 if (di_a->total_avail > di_b->total_avail) 5050 return -1; 5051 if (di_a->total_avail < di_b->total_avail) 5052 return 1; 5053 return 0; 5054 } 5055 5056 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5057 { 5058 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5059 return; 5060 5061 btrfs_set_fs_incompat(info, RAID56); 5062 } 5063 5064 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5065 { 5066 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5067 return; 5068 5069 btrfs_set_fs_incompat(info, RAID1C34); 5070 } 5071 5072 /* 5073 * Structure used internally for btrfs_create_chunk() function. 5074 * Wraps needed parameters. 5075 */ 5076 struct alloc_chunk_ctl { 5077 u64 start; 5078 u64 type; 5079 /* Total number of stripes to allocate */ 5080 int num_stripes; 5081 /* sub_stripes info for map */ 5082 int sub_stripes; 5083 /* Stripes per device */ 5084 int dev_stripes; 5085 /* Maximum number of devices to use */ 5086 int devs_max; 5087 /* Minimum number of devices to use */ 5088 int devs_min; 5089 /* ndevs has to be a multiple of this */ 5090 int devs_increment; 5091 /* Number of copies */ 5092 int ncopies; 5093 /* Number of stripes worth of bytes to store parity information */ 5094 int nparity; 5095 u64 max_stripe_size; 5096 u64 max_chunk_size; 5097 u64 dev_extent_min; 5098 u64 stripe_size; 5099 u64 chunk_size; 5100 int ndevs; 5101 }; 5102 5103 static void init_alloc_chunk_ctl_policy_regular( 5104 struct btrfs_fs_devices *fs_devices, 5105 struct alloc_chunk_ctl *ctl) 5106 { 5107 struct btrfs_space_info *space_info; 5108 5109 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5110 ASSERT(space_info); 5111 5112 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5113 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5114 5115 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5116 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5117 5118 /* We don't want a chunk larger than 10% of writable space */ 5119 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5120 ctl->max_chunk_size); 5121 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5122 } 5123 5124 static void init_alloc_chunk_ctl_policy_zoned( 5125 struct btrfs_fs_devices *fs_devices, 5126 struct alloc_chunk_ctl *ctl) 5127 { 5128 u64 zone_size = fs_devices->fs_info->zone_size; 5129 u64 limit; 5130 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5131 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5132 u64 min_chunk_size = min_data_stripes * zone_size; 5133 u64 type = ctl->type; 5134 5135 ctl->max_stripe_size = zone_size; 5136 if (type & BTRFS_BLOCK_GROUP_DATA) { 5137 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5138 zone_size); 5139 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5140 ctl->max_chunk_size = ctl->max_stripe_size; 5141 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5142 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5143 ctl->devs_max = min_t(int, ctl->devs_max, 5144 BTRFS_MAX_DEVS_SYS_CHUNK); 5145 } else { 5146 BUG(); 5147 } 5148 5149 /* We don't want a chunk larger than 10% of writable space */ 5150 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5151 zone_size), 5152 min_chunk_size); 5153 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5154 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5155 } 5156 5157 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5158 struct alloc_chunk_ctl *ctl) 5159 { 5160 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5161 5162 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5163 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5164 ctl->devs_max = btrfs_raid_array[index].devs_max; 5165 if (!ctl->devs_max) 5166 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5167 ctl->devs_min = btrfs_raid_array[index].devs_min; 5168 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5169 ctl->ncopies = btrfs_raid_array[index].ncopies; 5170 ctl->nparity = btrfs_raid_array[index].nparity; 5171 ctl->ndevs = 0; 5172 5173 switch (fs_devices->chunk_alloc_policy) { 5174 case BTRFS_CHUNK_ALLOC_REGULAR: 5175 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5176 break; 5177 case BTRFS_CHUNK_ALLOC_ZONED: 5178 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5179 break; 5180 default: 5181 BUG(); 5182 } 5183 } 5184 5185 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5186 struct alloc_chunk_ctl *ctl, 5187 struct btrfs_device_info *devices_info) 5188 { 5189 struct btrfs_fs_info *info = fs_devices->fs_info; 5190 struct btrfs_device *device; 5191 u64 total_avail; 5192 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5193 int ret; 5194 int ndevs = 0; 5195 u64 max_avail; 5196 u64 dev_offset; 5197 5198 /* 5199 * in the first pass through the devices list, we gather information 5200 * about the available holes on each device. 5201 */ 5202 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5203 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5204 WARN(1, KERN_ERR 5205 "BTRFS: read-only device in alloc_list\n"); 5206 continue; 5207 } 5208 5209 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5210 &device->dev_state) || 5211 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5212 continue; 5213 5214 if (device->total_bytes > device->bytes_used) 5215 total_avail = device->total_bytes - device->bytes_used; 5216 else 5217 total_avail = 0; 5218 5219 /* If there is no space on this device, skip it. */ 5220 if (total_avail < ctl->dev_extent_min) 5221 continue; 5222 5223 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5224 &max_avail); 5225 if (ret && ret != -ENOSPC) 5226 return ret; 5227 5228 if (ret == 0) 5229 max_avail = dev_extent_want; 5230 5231 if (max_avail < ctl->dev_extent_min) { 5232 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5233 btrfs_debug(info, 5234 "%s: devid %llu has no free space, have=%llu want=%llu", 5235 __func__, device->devid, max_avail, 5236 ctl->dev_extent_min); 5237 continue; 5238 } 5239 5240 if (ndevs == fs_devices->rw_devices) { 5241 WARN(1, "%s: found more than %llu devices\n", 5242 __func__, fs_devices->rw_devices); 5243 break; 5244 } 5245 devices_info[ndevs].dev_offset = dev_offset; 5246 devices_info[ndevs].max_avail = max_avail; 5247 devices_info[ndevs].total_avail = total_avail; 5248 devices_info[ndevs].dev = device; 5249 ++ndevs; 5250 } 5251 ctl->ndevs = ndevs; 5252 5253 /* 5254 * now sort the devices by hole size / available space 5255 */ 5256 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5257 btrfs_cmp_device_info, NULL); 5258 5259 return 0; 5260 } 5261 5262 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5263 struct btrfs_device_info *devices_info) 5264 { 5265 /* Number of stripes that count for block group size */ 5266 int data_stripes; 5267 5268 /* 5269 * The primary goal is to maximize the number of stripes, so use as 5270 * many devices as possible, even if the stripes are not maximum sized. 5271 * 5272 * The DUP profile stores more than one stripe per device, the 5273 * max_avail is the total size so we have to adjust. 5274 */ 5275 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5276 ctl->dev_stripes); 5277 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5278 5279 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5280 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5281 5282 /* 5283 * Use the number of data stripes to figure out how big this chunk is 5284 * really going to be in terms of logical address space, and compare 5285 * that answer with the max chunk size. If it's higher, we try to 5286 * reduce stripe_size. 5287 */ 5288 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5289 /* 5290 * Reduce stripe_size, round it up to a 16MB boundary again and 5291 * then use it, unless it ends up being even bigger than the 5292 * previous value we had already. 5293 */ 5294 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5295 data_stripes), SZ_16M), 5296 ctl->stripe_size); 5297 } 5298 5299 /* Stripe size should not go beyond 1G. */ 5300 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5301 5302 /* Align to BTRFS_STRIPE_LEN */ 5303 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5304 ctl->chunk_size = ctl->stripe_size * data_stripes; 5305 5306 return 0; 5307 } 5308 5309 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5310 struct btrfs_device_info *devices_info) 5311 { 5312 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5313 /* Number of stripes that count for block group size */ 5314 int data_stripes; 5315 5316 /* 5317 * It should hold because: 5318 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5319 */ 5320 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5321 5322 ctl->stripe_size = zone_size; 5323 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5324 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5325 5326 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5327 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5328 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5329 ctl->stripe_size) + ctl->nparity, 5330 ctl->dev_stripes); 5331 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5332 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5333 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5334 } 5335 5336 ctl->chunk_size = ctl->stripe_size * data_stripes; 5337 5338 return 0; 5339 } 5340 5341 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5342 struct alloc_chunk_ctl *ctl, 5343 struct btrfs_device_info *devices_info) 5344 { 5345 struct btrfs_fs_info *info = fs_devices->fs_info; 5346 5347 /* 5348 * Round down to number of usable stripes, devs_increment can be any 5349 * number so we can't use round_down() that requires power of 2, while 5350 * rounddown is safe. 5351 */ 5352 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5353 5354 if (ctl->ndevs < ctl->devs_min) { 5355 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5356 btrfs_debug(info, 5357 "%s: not enough devices with free space: have=%d minimum required=%d", 5358 __func__, ctl->ndevs, ctl->devs_min); 5359 } 5360 return -ENOSPC; 5361 } 5362 5363 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5364 5365 switch (fs_devices->chunk_alloc_policy) { 5366 case BTRFS_CHUNK_ALLOC_REGULAR: 5367 return decide_stripe_size_regular(ctl, devices_info); 5368 case BTRFS_CHUNK_ALLOC_ZONED: 5369 return decide_stripe_size_zoned(ctl, devices_info); 5370 default: 5371 BUG(); 5372 } 5373 } 5374 5375 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5376 struct alloc_chunk_ctl *ctl, 5377 struct btrfs_device_info *devices_info) 5378 { 5379 struct btrfs_fs_info *info = trans->fs_info; 5380 struct map_lookup *map = NULL; 5381 struct extent_map_tree *em_tree; 5382 struct btrfs_block_group *block_group; 5383 struct extent_map *em; 5384 u64 start = ctl->start; 5385 u64 type = ctl->type; 5386 int ret; 5387 int i; 5388 int j; 5389 5390 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5391 if (!map) 5392 return ERR_PTR(-ENOMEM); 5393 map->num_stripes = ctl->num_stripes; 5394 5395 for (i = 0; i < ctl->ndevs; ++i) { 5396 for (j = 0; j < ctl->dev_stripes; ++j) { 5397 int s = i * ctl->dev_stripes + j; 5398 map->stripes[s].dev = devices_info[i].dev; 5399 map->stripes[s].physical = devices_info[i].dev_offset + 5400 j * ctl->stripe_size; 5401 } 5402 } 5403 map->io_align = BTRFS_STRIPE_LEN; 5404 map->io_width = BTRFS_STRIPE_LEN; 5405 map->type = type; 5406 map->sub_stripes = ctl->sub_stripes; 5407 5408 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5409 5410 em = alloc_extent_map(); 5411 if (!em) { 5412 kfree(map); 5413 return ERR_PTR(-ENOMEM); 5414 } 5415 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5416 em->map_lookup = map; 5417 em->start = start; 5418 em->len = ctl->chunk_size; 5419 em->block_start = 0; 5420 em->block_len = em->len; 5421 em->orig_block_len = ctl->stripe_size; 5422 5423 em_tree = &info->mapping_tree; 5424 write_lock(&em_tree->lock); 5425 ret = add_extent_mapping(em_tree, em, 0); 5426 if (ret) { 5427 write_unlock(&em_tree->lock); 5428 free_extent_map(em); 5429 return ERR_PTR(ret); 5430 } 5431 write_unlock(&em_tree->lock); 5432 5433 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5434 if (IS_ERR(block_group)) 5435 goto error_del_extent; 5436 5437 for (i = 0; i < map->num_stripes; i++) { 5438 struct btrfs_device *dev = map->stripes[i].dev; 5439 5440 btrfs_device_set_bytes_used(dev, 5441 dev->bytes_used + ctl->stripe_size); 5442 if (list_empty(&dev->post_commit_list)) 5443 list_add_tail(&dev->post_commit_list, 5444 &trans->transaction->dev_update_list); 5445 } 5446 5447 atomic64_sub(ctl->stripe_size * map->num_stripes, 5448 &info->free_chunk_space); 5449 5450 free_extent_map(em); 5451 check_raid56_incompat_flag(info, type); 5452 check_raid1c34_incompat_flag(info, type); 5453 5454 return block_group; 5455 5456 error_del_extent: 5457 write_lock(&em_tree->lock); 5458 remove_extent_mapping(em_tree, em); 5459 write_unlock(&em_tree->lock); 5460 5461 /* One for our allocation */ 5462 free_extent_map(em); 5463 /* One for the tree reference */ 5464 free_extent_map(em); 5465 5466 return block_group; 5467 } 5468 5469 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5470 u64 type) 5471 { 5472 struct btrfs_fs_info *info = trans->fs_info; 5473 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5474 struct btrfs_device_info *devices_info = NULL; 5475 struct alloc_chunk_ctl ctl; 5476 struct btrfs_block_group *block_group; 5477 int ret; 5478 5479 lockdep_assert_held(&info->chunk_mutex); 5480 5481 if (!alloc_profile_is_valid(type, 0)) { 5482 ASSERT(0); 5483 return ERR_PTR(-EINVAL); 5484 } 5485 5486 if (list_empty(&fs_devices->alloc_list)) { 5487 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5488 btrfs_debug(info, "%s: no writable device", __func__); 5489 return ERR_PTR(-ENOSPC); 5490 } 5491 5492 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5493 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5494 ASSERT(0); 5495 return ERR_PTR(-EINVAL); 5496 } 5497 5498 ctl.start = find_next_chunk(info); 5499 ctl.type = type; 5500 init_alloc_chunk_ctl(fs_devices, &ctl); 5501 5502 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5503 GFP_NOFS); 5504 if (!devices_info) 5505 return ERR_PTR(-ENOMEM); 5506 5507 ret = gather_device_info(fs_devices, &ctl, devices_info); 5508 if (ret < 0) { 5509 block_group = ERR_PTR(ret); 5510 goto out; 5511 } 5512 5513 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5514 if (ret < 0) { 5515 block_group = ERR_PTR(ret); 5516 goto out; 5517 } 5518 5519 block_group = create_chunk(trans, &ctl, devices_info); 5520 5521 out: 5522 kfree(devices_info); 5523 return block_group; 5524 } 5525 5526 /* 5527 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5528 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5529 * chunks. 5530 * 5531 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5532 * phases. 5533 */ 5534 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5535 struct btrfs_block_group *bg) 5536 { 5537 struct btrfs_fs_info *fs_info = trans->fs_info; 5538 struct btrfs_root *chunk_root = fs_info->chunk_root; 5539 struct btrfs_key key; 5540 struct btrfs_chunk *chunk; 5541 struct btrfs_stripe *stripe; 5542 struct extent_map *em; 5543 struct map_lookup *map; 5544 size_t item_size; 5545 int i; 5546 int ret; 5547 5548 /* 5549 * We take the chunk_mutex for 2 reasons: 5550 * 5551 * 1) Updates and insertions in the chunk btree must be done while holding 5552 * the chunk_mutex, as well as updating the system chunk array in the 5553 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5554 * details; 5555 * 5556 * 2) To prevent races with the final phase of a device replace operation 5557 * that replaces the device object associated with the map's stripes, 5558 * because the device object's id can change at any time during that 5559 * final phase of the device replace operation 5560 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5561 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5562 * which would cause a failure when updating the device item, which does 5563 * not exists, or persisting a stripe of the chunk item with such ID. 5564 * Here we can't use the device_list_mutex because our caller already 5565 * has locked the chunk_mutex, and the final phase of device replace 5566 * acquires both mutexes - first the device_list_mutex and then the 5567 * chunk_mutex. Using any of those two mutexes protects us from a 5568 * concurrent device replace. 5569 */ 5570 lockdep_assert_held(&fs_info->chunk_mutex); 5571 5572 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5573 if (IS_ERR(em)) { 5574 ret = PTR_ERR(em); 5575 btrfs_abort_transaction(trans, ret); 5576 return ret; 5577 } 5578 5579 map = em->map_lookup; 5580 item_size = btrfs_chunk_item_size(map->num_stripes); 5581 5582 chunk = kzalloc(item_size, GFP_NOFS); 5583 if (!chunk) { 5584 ret = -ENOMEM; 5585 btrfs_abort_transaction(trans, ret); 5586 goto out; 5587 } 5588 5589 for (i = 0; i < map->num_stripes; i++) { 5590 struct btrfs_device *device = map->stripes[i].dev; 5591 5592 ret = btrfs_update_device(trans, device); 5593 if (ret) 5594 goto out; 5595 } 5596 5597 stripe = &chunk->stripe; 5598 for (i = 0; i < map->num_stripes; i++) { 5599 struct btrfs_device *device = map->stripes[i].dev; 5600 const u64 dev_offset = map->stripes[i].physical; 5601 5602 btrfs_set_stack_stripe_devid(stripe, device->devid); 5603 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5604 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5605 stripe++; 5606 } 5607 5608 btrfs_set_stack_chunk_length(chunk, bg->length); 5609 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5610 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5611 btrfs_set_stack_chunk_type(chunk, map->type); 5612 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5613 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5614 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5615 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5616 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5617 5618 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5619 key.type = BTRFS_CHUNK_ITEM_KEY; 5620 key.offset = bg->start; 5621 5622 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5623 if (ret) 5624 goto out; 5625 5626 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5627 5628 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5629 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5630 if (ret) 5631 goto out; 5632 } 5633 5634 out: 5635 kfree(chunk); 5636 free_extent_map(em); 5637 return ret; 5638 } 5639 5640 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5641 { 5642 struct btrfs_fs_info *fs_info = trans->fs_info; 5643 u64 alloc_profile; 5644 struct btrfs_block_group *meta_bg; 5645 struct btrfs_block_group *sys_bg; 5646 5647 /* 5648 * When adding a new device for sprouting, the seed device is read-only 5649 * so we must first allocate a metadata and a system chunk. But before 5650 * adding the block group items to the extent, device and chunk btrees, 5651 * we must first: 5652 * 5653 * 1) Create both chunks without doing any changes to the btrees, as 5654 * otherwise we would get -ENOSPC since the block groups from the 5655 * seed device are read-only; 5656 * 5657 * 2) Add the device item for the new sprout device - finishing the setup 5658 * of a new block group requires updating the device item in the chunk 5659 * btree, so it must exist when we attempt to do it. The previous step 5660 * ensures this does not fail with -ENOSPC. 5661 * 5662 * After that we can add the block group items to their btrees: 5663 * update existing device item in the chunk btree, add a new block group 5664 * item to the extent btree, add a new chunk item to the chunk btree and 5665 * finally add the new device extent items to the devices btree. 5666 */ 5667 5668 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5669 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5670 if (IS_ERR(meta_bg)) 5671 return PTR_ERR(meta_bg); 5672 5673 alloc_profile = btrfs_system_alloc_profile(fs_info); 5674 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5675 if (IS_ERR(sys_bg)) 5676 return PTR_ERR(sys_bg); 5677 5678 return 0; 5679 } 5680 5681 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5682 { 5683 const int index = btrfs_bg_flags_to_raid_index(map->type); 5684 5685 return btrfs_raid_array[index].tolerated_failures; 5686 } 5687 5688 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5689 { 5690 struct extent_map *em; 5691 struct map_lookup *map; 5692 int miss_ndevs = 0; 5693 int i; 5694 bool ret = true; 5695 5696 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5697 if (IS_ERR(em)) 5698 return false; 5699 5700 map = em->map_lookup; 5701 for (i = 0; i < map->num_stripes; i++) { 5702 if (test_bit(BTRFS_DEV_STATE_MISSING, 5703 &map->stripes[i].dev->dev_state)) { 5704 miss_ndevs++; 5705 continue; 5706 } 5707 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5708 &map->stripes[i].dev->dev_state)) { 5709 ret = false; 5710 goto end; 5711 } 5712 } 5713 5714 /* 5715 * If the number of missing devices is larger than max errors, we can 5716 * not write the data into that chunk successfully. 5717 */ 5718 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5719 ret = false; 5720 end: 5721 free_extent_map(em); 5722 return ret; 5723 } 5724 5725 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5726 { 5727 struct extent_map *em; 5728 5729 while (1) { 5730 write_lock(&tree->lock); 5731 em = lookup_extent_mapping(tree, 0, (u64)-1); 5732 if (em) 5733 remove_extent_mapping(tree, em); 5734 write_unlock(&tree->lock); 5735 if (!em) 5736 break; 5737 /* once for us */ 5738 free_extent_map(em); 5739 /* once for the tree */ 5740 free_extent_map(em); 5741 } 5742 } 5743 5744 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5745 { 5746 struct extent_map *em; 5747 struct map_lookup *map; 5748 enum btrfs_raid_types index; 5749 int ret = 1; 5750 5751 em = btrfs_get_chunk_map(fs_info, logical, len); 5752 if (IS_ERR(em)) 5753 /* 5754 * We could return errors for these cases, but that could get 5755 * ugly and we'd probably do the same thing which is just not do 5756 * anything else and exit, so return 1 so the callers don't try 5757 * to use other copies. 5758 */ 5759 return 1; 5760 5761 map = em->map_lookup; 5762 index = btrfs_bg_flags_to_raid_index(map->type); 5763 5764 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5765 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5766 ret = btrfs_raid_array[index].ncopies; 5767 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5768 ret = 2; 5769 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5770 /* 5771 * There could be two corrupted data stripes, we need 5772 * to loop retry in order to rebuild the correct data. 5773 * 5774 * Fail a stripe at a time on every retry except the 5775 * stripe under reconstruction. 5776 */ 5777 ret = map->num_stripes; 5778 free_extent_map(em); 5779 return ret; 5780 } 5781 5782 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5783 u64 logical) 5784 { 5785 struct extent_map *em; 5786 struct map_lookup *map; 5787 unsigned long len = fs_info->sectorsize; 5788 5789 if (!btrfs_fs_incompat(fs_info, RAID56)) 5790 return len; 5791 5792 em = btrfs_get_chunk_map(fs_info, logical, len); 5793 5794 if (!WARN_ON(IS_ERR(em))) { 5795 map = em->map_lookup; 5796 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5797 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5798 free_extent_map(em); 5799 } 5800 return len; 5801 } 5802 5803 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5804 { 5805 struct extent_map *em; 5806 struct map_lookup *map; 5807 int ret = 0; 5808 5809 if (!btrfs_fs_incompat(fs_info, RAID56)) 5810 return 0; 5811 5812 em = btrfs_get_chunk_map(fs_info, logical, len); 5813 5814 if(!WARN_ON(IS_ERR(em))) { 5815 map = em->map_lookup; 5816 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5817 ret = 1; 5818 free_extent_map(em); 5819 } 5820 return ret; 5821 } 5822 5823 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5824 struct map_lookup *map, int first, 5825 int dev_replace_is_ongoing) 5826 { 5827 int i; 5828 int num_stripes; 5829 int preferred_mirror; 5830 int tolerance; 5831 struct btrfs_device *srcdev; 5832 5833 ASSERT((map->type & 5834 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5835 5836 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5837 num_stripes = map->sub_stripes; 5838 else 5839 num_stripes = map->num_stripes; 5840 5841 switch (fs_info->fs_devices->read_policy) { 5842 default: 5843 /* Shouldn't happen, just warn and use pid instead of failing */ 5844 btrfs_warn_rl(fs_info, 5845 "unknown read_policy type %u, reset to pid", 5846 fs_info->fs_devices->read_policy); 5847 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5848 fallthrough; 5849 case BTRFS_READ_POLICY_PID: 5850 preferred_mirror = first + (current->pid % num_stripes); 5851 break; 5852 } 5853 5854 if (dev_replace_is_ongoing && 5855 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5856 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5857 srcdev = fs_info->dev_replace.srcdev; 5858 else 5859 srcdev = NULL; 5860 5861 /* 5862 * try to avoid the drive that is the source drive for a 5863 * dev-replace procedure, only choose it if no other non-missing 5864 * mirror is available 5865 */ 5866 for (tolerance = 0; tolerance < 2; tolerance++) { 5867 if (map->stripes[preferred_mirror].dev->bdev && 5868 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5869 return preferred_mirror; 5870 for (i = first; i < first + num_stripes; i++) { 5871 if (map->stripes[i].dev->bdev && 5872 (tolerance || map->stripes[i].dev != srcdev)) 5873 return i; 5874 } 5875 } 5876 5877 /* we couldn't find one that doesn't fail. Just return something 5878 * and the io error handling code will clean up eventually 5879 */ 5880 return preferred_mirror; 5881 } 5882 5883 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5884 u16 total_stripes) 5885 { 5886 struct btrfs_io_context *bioc; 5887 5888 bioc = kzalloc( 5889 /* The size of btrfs_io_context */ 5890 sizeof(struct btrfs_io_context) + 5891 /* Plus the variable array for the stripes */ 5892 sizeof(struct btrfs_io_stripe) * (total_stripes), 5893 GFP_NOFS); 5894 5895 if (!bioc) 5896 return NULL; 5897 5898 refcount_set(&bioc->refs, 1); 5899 5900 bioc->fs_info = fs_info; 5901 bioc->replace_stripe_src = -1; 5902 bioc->full_stripe_logical = (u64)-1; 5903 5904 return bioc; 5905 } 5906 5907 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5908 { 5909 WARN_ON(!refcount_read(&bioc->refs)); 5910 refcount_inc(&bioc->refs); 5911 } 5912 5913 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5914 { 5915 if (!bioc) 5916 return; 5917 if (refcount_dec_and_test(&bioc->refs)) 5918 kfree(bioc); 5919 } 5920 5921 /* 5922 * Please note that, discard won't be sent to target device of device 5923 * replace. 5924 */ 5925 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 5926 u64 logical, u64 *length_ret, 5927 u32 *num_stripes) 5928 { 5929 struct extent_map *em; 5930 struct map_lookup *map; 5931 struct btrfs_discard_stripe *stripes; 5932 u64 length = *length_ret; 5933 u64 offset; 5934 u32 stripe_nr; 5935 u32 stripe_nr_end; 5936 u32 stripe_cnt; 5937 u64 stripe_end_offset; 5938 u64 stripe_offset; 5939 u32 stripe_index; 5940 u32 factor = 0; 5941 u32 sub_stripes = 0; 5942 u32 stripes_per_dev = 0; 5943 u32 remaining_stripes = 0; 5944 u32 last_stripe = 0; 5945 int ret; 5946 int i; 5947 5948 em = btrfs_get_chunk_map(fs_info, logical, length); 5949 if (IS_ERR(em)) 5950 return ERR_CAST(em); 5951 5952 map = em->map_lookup; 5953 5954 /* we don't discard raid56 yet */ 5955 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5956 ret = -EOPNOTSUPP; 5957 goto out_free_map; 5958 } 5959 5960 offset = logical - em->start; 5961 length = min_t(u64, em->start + em->len - logical, length); 5962 *length_ret = length; 5963 5964 /* 5965 * stripe_nr counts the total number of stripes we have to stride 5966 * to get to this block 5967 */ 5968 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 5969 5970 /* stripe_offset is the offset of this block in its stripe */ 5971 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 5972 5973 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 5974 BTRFS_STRIPE_LEN_SHIFT; 5975 stripe_cnt = stripe_nr_end - stripe_nr; 5976 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 5977 (offset + length); 5978 /* 5979 * after this, stripe_nr is the number of stripes on this 5980 * device we have to walk to find the data, and stripe_index is 5981 * the number of our device in the stripe array 5982 */ 5983 *num_stripes = 1; 5984 stripe_index = 0; 5985 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5986 BTRFS_BLOCK_GROUP_RAID10)) { 5987 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5988 sub_stripes = 1; 5989 else 5990 sub_stripes = map->sub_stripes; 5991 5992 factor = map->num_stripes / sub_stripes; 5993 *num_stripes = min_t(u64, map->num_stripes, 5994 sub_stripes * stripe_cnt); 5995 stripe_index = stripe_nr % factor; 5996 stripe_nr /= factor; 5997 stripe_index *= sub_stripes; 5998 5999 remaining_stripes = stripe_cnt % factor; 6000 stripes_per_dev = stripe_cnt / factor; 6001 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6002 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6003 BTRFS_BLOCK_GROUP_DUP)) { 6004 *num_stripes = map->num_stripes; 6005 } else { 6006 stripe_index = stripe_nr % map->num_stripes; 6007 stripe_nr /= map->num_stripes; 6008 } 6009 6010 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6011 if (!stripes) { 6012 ret = -ENOMEM; 6013 goto out_free_map; 6014 } 6015 6016 for (i = 0; i < *num_stripes; i++) { 6017 stripes[i].physical = 6018 map->stripes[stripe_index].physical + 6019 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6020 stripes[i].dev = map->stripes[stripe_index].dev; 6021 6022 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6023 BTRFS_BLOCK_GROUP_RAID10)) { 6024 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6025 6026 if (i / sub_stripes < remaining_stripes) 6027 stripes[i].length += BTRFS_STRIPE_LEN; 6028 6029 /* 6030 * Special for the first stripe and 6031 * the last stripe: 6032 * 6033 * |-------|...|-------| 6034 * |----------| 6035 * off end_off 6036 */ 6037 if (i < sub_stripes) 6038 stripes[i].length -= stripe_offset; 6039 6040 if (stripe_index >= last_stripe && 6041 stripe_index <= (last_stripe + 6042 sub_stripes - 1)) 6043 stripes[i].length -= stripe_end_offset; 6044 6045 if (i == sub_stripes - 1) 6046 stripe_offset = 0; 6047 } else { 6048 stripes[i].length = length; 6049 } 6050 6051 stripe_index++; 6052 if (stripe_index == map->num_stripes) { 6053 stripe_index = 0; 6054 stripe_nr++; 6055 } 6056 } 6057 6058 free_extent_map(em); 6059 return stripes; 6060 out_free_map: 6061 free_extent_map(em); 6062 return ERR_PTR(ret); 6063 } 6064 6065 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6066 { 6067 struct btrfs_block_group *cache; 6068 bool ret; 6069 6070 /* Non zoned filesystem does not use "to_copy" flag */ 6071 if (!btrfs_is_zoned(fs_info)) 6072 return false; 6073 6074 cache = btrfs_lookup_block_group(fs_info, logical); 6075 6076 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6077 6078 btrfs_put_block_group(cache); 6079 return ret; 6080 } 6081 6082 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6083 struct btrfs_io_context *bioc, 6084 struct btrfs_dev_replace *dev_replace, 6085 u64 logical, 6086 int *num_stripes_ret, int *max_errors_ret) 6087 { 6088 u64 srcdev_devid = dev_replace->srcdev->devid; 6089 /* 6090 * At this stage, num_stripes is still the real number of stripes, 6091 * excluding the duplicated stripes. 6092 */ 6093 int num_stripes = *num_stripes_ret; 6094 int nr_extra_stripes = 0; 6095 int max_errors = *max_errors_ret; 6096 int i; 6097 6098 /* 6099 * A block group which has "to_copy" set will eventually be copied by 6100 * the dev-replace process. We can avoid cloning IO here. 6101 */ 6102 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6103 return; 6104 6105 /* 6106 * Duplicate the write operations while the dev-replace procedure is 6107 * running. Since the copying of the old disk to the new disk takes 6108 * place at run time while the filesystem is mounted writable, the 6109 * regular write operations to the old disk have to be duplicated to go 6110 * to the new disk as well. 6111 * 6112 * Note that device->missing is handled by the caller, and that the 6113 * write to the old disk is already set up in the stripes array. 6114 */ 6115 for (i = 0; i < num_stripes; i++) { 6116 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6117 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6118 6119 if (old->dev->devid != srcdev_devid) 6120 continue; 6121 6122 new->physical = old->physical; 6123 new->dev = dev_replace->tgtdev; 6124 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6125 bioc->replace_stripe_src = i; 6126 nr_extra_stripes++; 6127 } 6128 6129 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6130 ASSERT(nr_extra_stripes <= 2); 6131 /* 6132 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6133 * replace. 6134 * If we have 2 extra stripes, only choose the one with smaller physical. 6135 */ 6136 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6137 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6138 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6139 6140 /* Only DUP can have two extra stripes. */ 6141 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6142 6143 /* 6144 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6145 * The extra stripe would still be there, but won't be accessed. 6146 */ 6147 if (first->physical > second->physical) { 6148 swap(second->physical, first->physical); 6149 swap(second->dev, first->dev); 6150 nr_extra_stripes--; 6151 } 6152 } 6153 6154 *num_stripes_ret = num_stripes + nr_extra_stripes; 6155 *max_errors_ret = max_errors + nr_extra_stripes; 6156 bioc->replace_nr_stripes = nr_extra_stripes; 6157 } 6158 6159 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op, 6160 u64 offset, u32 *stripe_nr, u64 *stripe_offset, 6161 u64 *full_stripe_start) 6162 { 6163 /* 6164 * Stripe_nr is the stripe where this block falls. stripe_offset is 6165 * the offset of this block in its stripe. 6166 */ 6167 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6168 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6169 ASSERT(*stripe_offset < U32_MAX); 6170 6171 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6172 unsigned long full_stripe_len = 6173 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6174 6175 /* 6176 * For full stripe start, we use previously calculated 6177 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6178 * STRIPE_LEN. 6179 * 6180 * By this we can avoid u64 division completely. And we have 6181 * to go rounddown(), not round_down(), as nr_data_stripes is 6182 * not ensured to be power of 2. 6183 */ 6184 *full_stripe_start = 6185 btrfs_stripe_nr_to_offset( 6186 rounddown(*stripe_nr, nr_data_stripes(map))); 6187 6188 ASSERT(*full_stripe_start + full_stripe_len > offset); 6189 ASSERT(*full_stripe_start <= offset); 6190 /* 6191 * For writes to RAID56, allow to write a full stripe set, but 6192 * no straddling of stripe sets. 6193 */ 6194 if (op == BTRFS_MAP_WRITE) 6195 return full_stripe_len - (offset - *full_stripe_start); 6196 } 6197 6198 /* 6199 * For other RAID types and for RAID56 reads, allow a single stripe (on 6200 * a single disk). 6201 */ 6202 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6203 return BTRFS_STRIPE_LEN - *stripe_offset; 6204 return U64_MAX; 6205 } 6206 6207 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map, 6208 u32 stripe_index, u64 stripe_offset, u32 stripe_nr) 6209 { 6210 dst->dev = map->stripes[stripe_index].dev; 6211 dst->physical = map->stripes[stripe_index].physical + 6212 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6213 } 6214 6215 /* 6216 * Map one logical range to one or more physical ranges. 6217 * 6218 * @length: (Mandatory) mapped length of this run. 6219 * One logical range can be split into different segments 6220 * due to factors like zones and RAID0/5/6/10 stripe 6221 * boundaries. 6222 * 6223 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6224 * which has one or more physical ranges (btrfs_io_stripe) 6225 * recorded inside. 6226 * Caller should call btrfs_put_bioc() to free it after use. 6227 * 6228 * @smap: (Optional) single physical range optimization. 6229 * If the map request can be fulfilled by one single 6230 * physical range, and this is parameter is not NULL, 6231 * then @bioc_ret would be NULL, and @smap would be 6232 * updated. 6233 * 6234 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6235 * value is 0. 6236 * 6237 * Mirror number 0 means to choose any live mirrors. 6238 * 6239 * For non-RAID56 profiles, non-zero mirror_num means 6240 * the Nth mirror. (e.g. mirror_num 1 means the first 6241 * copy). 6242 * 6243 * For RAID56 profile, mirror 1 means rebuild from P and 6244 * the remaining data stripes. 6245 * 6246 * For RAID6 profile, mirror > 2 means mark another 6247 * data/P stripe error and rebuild from the remaining 6248 * stripes.. 6249 * 6250 * @need_raid_map: (Used only for integrity checker) whether the map wants 6251 * a full stripe map (including all data and P/Q stripes) 6252 * for RAID56. Should always be 1 except integrity checker. 6253 */ 6254 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6255 u64 logical, u64 *length, 6256 struct btrfs_io_context **bioc_ret, 6257 struct btrfs_io_stripe *smap, int *mirror_num_ret, 6258 int need_raid_map) 6259 { 6260 struct extent_map *em; 6261 struct map_lookup *map; 6262 u64 map_offset; 6263 u64 stripe_offset; 6264 u32 stripe_nr; 6265 u32 stripe_index; 6266 int data_stripes; 6267 int i; 6268 int ret = 0; 6269 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6270 int num_stripes; 6271 int num_copies; 6272 int max_errors = 0; 6273 struct btrfs_io_context *bioc = NULL; 6274 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6275 int dev_replace_is_ongoing = 0; 6276 u16 num_alloc_stripes; 6277 u64 raid56_full_stripe_start = (u64)-1; 6278 u64 max_len; 6279 6280 ASSERT(bioc_ret); 6281 6282 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6283 if (mirror_num > num_copies) 6284 return -EINVAL; 6285 6286 em = btrfs_get_chunk_map(fs_info, logical, *length); 6287 if (IS_ERR(em)) 6288 return PTR_ERR(em); 6289 6290 map = em->map_lookup; 6291 data_stripes = nr_data_stripes(map); 6292 6293 map_offset = logical - em->start; 6294 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr, 6295 &stripe_offset, &raid56_full_stripe_start); 6296 *length = min_t(u64, em->len - map_offset, max_len); 6297 6298 down_read(&dev_replace->rwsem); 6299 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6300 /* 6301 * Hold the semaphore for read during the whole operation, write is 6302 * requested at commit time but must wait. 6303 */ 6304 if (!dev_replace_is_ongoing) 6305 up_read(&dev_replace->rwsem); 6306 6307 num_stripes = 1; 6308 stripe_index = 0; 6309 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6310 stripe_index = stripe_nr % map->num_stripes; 6311 stripe_nr /= map->num_stripes; 6312 if (op == BTRFS_MAP_READ) 6313 mirror_num = 1; 6314 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6315 if (op != BTRFS_MAP_READ) { 6316 num_stripes = map->num_stripes; 6317 } else if (mirror_num) { 6318 stripe_index = mirror_num - 1; 6319 } else { 6320 stripe_index = find_live_mirror(fs_info, map, 0, 6321 dev_replace_is_ongoing); 6322 mirror_num = stripe_index + 1; 6323 } 6324 6325 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6326 if (op != BTRFS_MAP_READ) { 6327 num_stripes = map->num_stripes; 6328 } else if (mirror_num) { 6329 stripe_index = mirror_num - 1; 6330 } else { 6331 mirror_num = 1; 6332 } 6333 6334 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6335 u32 factor = map->num_stripes / map->sub_stripes; 6336 6337 stripe_index = (stripe_nr % factor) * map->sub_stripes; 6338 stripe_nr /= factor; 6339 6340 if (op != BTRFS_MAP_READ) 6341 num_stripes = map->sub_stripes; 6342 else if (mirror_num) 6343 stripe_index += mirror_num - 1; 6344 else { 6345 int old_stripe_index = stripe_index; 6346 stripe_index = find_live_mirror(fs_info, map, 6347 stripe_index, 6348 dev_replace_is_ongoing); 6349 mirror_num = stripe_index - old_stripe_index + 1; 6350 } 6351 6352 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6353 if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) { 6354 /* 6355 * Push stripe_nr back to the start of the full stripe 6356 * For those cases needing a full stripe, @stripe_nr 6357 * is the full stripe number. 6358 * 6359 * Originally we go raid56_full_stripe_start / full_stripe_len, 6360 * but that can be expensive. Here we just divide 6361 * @stripe_nr with @data_stripes. 6362 */ 6363 stripe_nr /= data_stripes; 6364 6365 /* RAID[56] write or recovery. Return all stripes */ 6366 num_stripes = map->num_stripes; 6367 max_errors = btrfs_chunk_max_errors(map); 6368 6369 /* Return the length to the full stripe end */ 6370 *length = min(logical + *length, 6371 raid56_full_stripe_start + em->start + 6372 btrfs_stripe_nr_to_offset(data_stripes)) - 6373 logical; 6374 stripe_index = 0; 6375 stripe_offset = 0; 6376 } else { 6377 /* 6378 * Mirror #0 or #1 means the original data block. 6379 * Mirror #2 is RAID5 parity block. 6380 * Mirror #3 is RAID6 Q block. 6381 */ 6382 stripe_index = stripe_nr % data_stripes; 6383 stripe_nr /= data_stripes; 6384 if (mirror_num > 1) 6385 stripe_index = data_stripes + mirror_num - 2; 6386 6387 /* We distribute the parity blocks across stripes */ 6388 stripe_index = (stripe_nr + stripe_index) % map->num_stripes; 6389 if (op == BTRFS_MAP_READ && mirror_num <= 1) 6390 mirror_num = 1; 6391 } 6392 } else { 6393 /* 6394 * After this, stripe_nr is the number of stripes on this 6395 * device we have to walk to find the data, and stripe_index is 6396 * the number of our device in the stripe array 6397 */ 6398 stripe_index = stripe_nr % map->num_stripes; 6399 stripe_nr /= map->num_stripes; 6400 mirror_num = stripe_index + 1; 6401 } 6402 if (stripe_index >= map->num_stripes) { 6403 btrfs_crit(fs_info, 6404 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6405 stripe_index, map->num_stripes); 6406 ret = -EINVAL; 6407 goto out; 6408 } 6409 6410 num_alloc_stripes = num_stripes; 6411 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6412 op != BTRFS_MAP_READ) 6413 /* 6414 * For replace case, we need to add extra stripes for extra 6415 * duplicated stripes. 6416 * 6417 * For both WRITE and GET_READ_MIRRORS, we may have at most 6418 * 2 more stripes (DUP types, otherwise 1). 6419 */ 6420 num_alloc_stripes += 2; 6421 6422 /* 6423 * If this I/O maps to a single device, try to return the device and 6424 * physical block information on the stack instead of allocating an 6425 * I/O context structure. 6426 */ 6427 if (smap && num_alloc_stripes == 1 && 6428 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) { 6429 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr); 6430 if (mirror_num_ret) 6431 *mirror_num_ret = mirror_num; 6432 *bioc_ret = NULL; 6433 ret = 0; 6434 goto out; 6435 } 6436 6437 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes); 6438 if (!bioc) { 6439 ret = -ENOMEM; 6440 goto out; 6441 } 6442 bioc->map_type = map->type; 6443 6444 /* 6445 * For RAID56 full map, we need to make sure the stripes[] follows the 6446 * rule that data stripes are all ordered, then followed with P and Q 6447 * (if we have). 6448 * 6449 * It's still mostly the same as other profiles, just with extra rotation. 6450 */ 6451 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6452 (op != BTRFS_MAP_READ || mirror_num > 1)) { 6453 /* 6454 * For RAID56 @stripe_nr is already the number of full stripes 6455 * before us, which is also the rotation value (needs to modulo 6456 * with num_stripes). 6457 * 6458 * In this case, we just add @stripe_nr with @i, then do the 6459 * modulo, to reduce one modulo call. 6460 */ 6461 bioc->full_stripe_logical = em->start + 6462 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes); 6463 for (i = 0; i < num_stripes; i++) 6464 set_io_stripe(&bioc->stripes[i], map, 6465 (i + stripe_nr) % num_stripes, 6466 stripe_offset, stripe_nr); 6467 } else { 6468 /* 6469 * For all other non-RAID56 profiles, just copy the target 6470 * stripe into the bioc. 6471 */ 6472 for (i = 0; i < num_stripes; i++) { 6473 set_io_stripe(&bioc->stripes[i], map, stripe_index, 6474 stripe_offset, stripe_nr); 6475 stripe_index++; 6476 } 6477 } 6478 6479 if (op != BTRFS_MAP_READ) 6480 max_errors = btrfs_chunk_max_errors(map); 6481 6482 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6483 op != BTRFS_MAP_READ) { 6484 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6485 &num_stripes, &max_errors); 6486 } 6487 6488 *bioc_ret = bioc; 6489 bioc->num_stripes = num_stripes; 6490 bioc->max_errors = max_errors; 6491 bioc->mirror_num = mirror_num; 6492 6493 out: 6494 if (dev_replace_is_ongoing) { 6495 lockdep_assert_held(&dev_replace->rwsem); 6496 /* Unlock and let waiting writers proceed */ 6497 up_read(&dev_replace->rwsem); 6498 } 6499 free_extent_map(em); 6500 return ret; 6501 } 6502 6503 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6504 const struct btrfs_fs_devices *fs_devices) 6505 { 6506 if (args->fsid == NULL) 6507 return true; 6508 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6509 return true; 6510 return false; 6511 } 6512 6513 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6514 const struct btrfs_device *device) 6515 { 6516 if (args->missing) { 6517 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6518 !device->bdev) 6519 return true; 6520 return false; 6521 } 6522 6523 if (device->devid != args->devid) 6524 return false; 6525 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6526 return false; 6527 return true; 6528 } 6529 6530 /* 6531 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6532 * return NULL. 6533 * 6534 * If devid and uuid are both specified, the match must be exact, otherwise 6535 * only devid is used. 6536 */ 6537 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6538 const struct btrfs_dev_lookup_args *args) 6539 { 6540 struct btrfs_device *device; 6541 struct btrfs_fs_devices *seed_devs; 6542 6543 if (dev_args_match_fs_devices(args, fs_devices)) { 6544 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6545 if (dev_args_match_device(args, device)) 6546 return device; 6547 } 6548 } 6549 6550 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6551 if (!dev_args_match_fs_devices(args, seed_devs)) 6552 continue; 6553 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6554 if (dev_args_match_device(args, device)) 6555 return device; 6556 } 6557 } 6558 6559 return NULL; 6560 } 6561 6562 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6563 u64 devid, u8 *dev_uuid) 6564 { 6565 struct btrfs_device *device; 6566 unsigned int nofs_flag; 6567 6568 /* 6569 * We call this under the chunk_mutex, so we want to use NOFS for this 6570 * allocation, however we don't want to change btrfs_alloc_device() to 6571 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6572 * places. 6573 */ 6574 6575 nofs_flag = memalloc_nofs_save(); 6576 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6577 memalloc_nofs_restore(nofs_flag); 6578 if (IS_ERR(device)) 6579 return device; 6580 6581 list_add(&device->dev_list, &fs_devices->devices); 6582 device->fs_devices = fs_devices; 6583 fs_devices->num_devices++; 6584 6585 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6586 fs_devices->missing_devices++; 6587 6588 return device; 6589 } 6590 6591 /* 6592 * Allocate new device struct, set up devid and UUID. 6593 * 6594 * @fs_info: used only for generating a new devid, can be NULL if 6595 * devid is provided (i.e. @devid != NULL). 6596 * @devid: a pointer to devid for this device. If NULL a new devid 6597 * is generated. 6598 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6599 * is generated. 6600 * @path: a pointer to device path if available, NULL otherwise. 6601 * 6602 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6603 * on error. Returned struct is not linked onto any lists and must be 6604 * destroyed with btrfs_free_device. 6605 */ 6606 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6607 const u64 *devid, const u8 *uuid, 6608 const char *path) 6609 { 6610 struct btrfs_device *dev; 6611 u64 tmp; 6612 6613 if (WARN_ON(!devid && !fs_info)) 6614 return ERR_PTR(-EINVAL); 6615 6616 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6617 if (!dev) 6618 return ERR_PTR(-ENOMEM); 6619 6620 INIT_LIST_HEAD(&dev->dev_list); 6621 INIT_LIST_HEAD(&dev->dev_alloc_list); 6622 INIT_LIST_HEAD(&dev->post_commit_list); 6623 6624 atomic_set(&dev->dev_stats_ccnt, 0); 6625 btrfs_device_data_ordered_init(dev); 6626 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6627 6628 if (devid) 6629 tmp = *devid; 6630 else { 6631 int ret; 6632 6633 ret = find_next_devid(fs_info, &tmp); 6634 if (ret) { 6635 btrfs_free_device(dev); 6636 return ERR_PTR(ret); 6637 } 6638 } 6639 dev->devid = tmp; 6640 6641 if (uuid) 6642 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6643 else 6644 generate_random_uuid(dev->uuid); 6645 6646 if (path) { 6647 struct rcu_string *name; 6648 6649 name = rcu_string_strdup(path, GFP_KERNEL); 6650 if (!name) { 6651 btrfs_free_device(dev); 6652 return ERR_PTR(-ENOMEM); 6653 } 6654 rcu_assign_pointer(dev->name, name); 6655 } 6656 6657 return dev; 6658 } 6659 6660 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6661 u64 devid, u8 *uuid, bool error) 6662 { 6663 if (error) 6664 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6665 devid, uuid); 6666 else 6667 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6668 devid, uuid); 6669 } 6670 6671 u64 btrfs_calc_stripe_length(const struct extent_map *em) 6672 { 6673 const struct map_lookup *map = em->map_lookup; 6674 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6675 6676 return div_u64(em->len, data_stripes); 6677 } 6678 6679 #if BITS_PER_LONG == 32 6680 /* 6681 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6682 * can't be accessed on 32bit systems. 6683 * 6684 * This function do mount time check to reject the fs if it already has 6685 * metadata chunk beyond that limit. 6686 */ 6687 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6688 u64 logical, u64 length, u64 type) 6689 { 6690 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6691 return 0; 6692 6693 if (logical + length < MAX_LFS_FILESIZE) 6694 return 0; 6695 6696 btrfs_err_32bit_limit(fs_info); 6697 return -EOVERFLOW; 6698 } 6699 6700 /* 6701 * This is to give early warning for any metadata chunk reaching 6702 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6703 * Although we can still access the metadata, it's not going to be possible 6704 * once the limit is reached. 6705 */ 6706 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6707 u64 logical, u64 length, u64 type) 6708 { 6709 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6710 return; 6711 6712 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6713 return; 6714 6715 btrfs_warn_32bit_limit(fs_info); 6716 } 6717 #endif 6718 6719 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6720 u64 devid, u8 *uuid) 6721 { 6722 struct btrfs_device *dev; 6723 6724 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6725 btrfs_report_missing_device(fs_info, devid, uuid, true); 6726 return ERR_PTR(-ENOENT); 6727 } 6728 6729 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6730 if (IS_ERR(dev)) { 6731 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6732 devid, PTR_ERR(dev)); 6733 return dev; 6734 } 6735 btrfs_report_missing_device(fs_info, devid, uuid, false); 6736 6737 return dev; 6738 } 6739 6740 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6741 struct btrfs_chunk *chunk) 6742 { 6743 BTRFS_DEV_LOOKUP_ARGS(args); 6744 struct btrfs_fs_info *fs_info = leaf->fs_info; 6745 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6746 struct map_lookup *map; 6747 struct extent_map *em; 6748 u64 logical; 6749 u64 length; 6750 u64 devid; 6751 u64 type; 6752 u8 uuid[BTRFS_UUID_SIZE]; 6753 int index; 6754 int num_stripes; 6755 int ret; 6756 int i; 6757 6758 logical = key->offset; 6759 length = btrfs_chunk_length(leaf, chunk); 6760 type = btrfs_chunk_type(leaf, chunk); 6761 index = btrfs_bg_flags_to_raid_index(type); 6762 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6763 6764 #if BITS_PER_LONG == 32 6765 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6766 if (ret < 0) 6767 return ret; 6768 warn_32bit_meta_chunk(fs_info, logical, length, type); 6769 #endif 6770 6771 /* 6772 * Only need to verify chunk item if we're reading from sys chunk array, 6773 * as chunk item in tree block is already verified by tree-checker. 6774 */ 6775 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6776 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6777 if (ret) 6778 return ret; 6779 } 6780 6781 read_lock(&map_tree->lock); 6782 em = lookup_extent_mapping(map_tree, logical, 1); 6783 read_unlock(&map_tree->lock); 6784 6785 /* already mapped? */ 6786 if (em && em->start <= logical && em->start + em->len > logical) { 6787 free_extent_map(em); 6788 return 0; 6789 } else if (em) { 6790 free_extent_map(em); 6791 } 6792 6793 em = alloc_extent_map(); 6794 if (!em) 6795 return -ENOMEM; 6796 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6797 if (!map) { 6798 free_extent_map(em); 6799 return -ENOMEM; 6800 } 6801 6802 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6803 em->map_lookup = map; 6804 em->start = logical; 6805 em->len = length; 6806 em->orig_start = 0; 6807 em->block_start = 0; 6808 em->block_len = em->len; 6809 6810 map->num_stripes = num_stripes; 6811 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6812 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6813 map->type = type; 6814 /* 6815 * We can't use the sub_stripes value, as for profiles other than 6816 * RAID10, they may have 0 as sub_stripes for filesystems created by 6817 * older mkfs (<v5.4). 6818 * In that case, it can cause divide-by-zero errors later. 6819 * Since currently sub_stripes is fixed for each profile, let's 6820 * use the trusted value instead. 6821 */ 6822 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 6823 map->verified_stripes = 0; 6824 em->orig_block_len = btrfs_calc_stripe_length(em); 6825 for (i = 0; i < num_stripes; i++) { 6826 map->stripes[i].physical = 6827 btrfs_stripe_offset_nr(leaf, chunk, i); 6828 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6829 args.devid = devid; 6830 read_extent_buffer(leaf, uuid, (unsigned long) 6831 btrfs_stripe_dev_uuid_nr(chunk, i), 6832 BTRFS_UUID_SIZE); 6833 args.uuid = uuid; 6834 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 6835 if (!map->stripes[i].dev) { 6836 map->stripes[i].dev = handle_missing_device(fs_info, 6837 devid, uuid); 6838 if (IS_ERR(map->stripes[i].dev)) { 6839 ret = PTR_ERR(map->stripes[i].dev); 6840 free_extent_map(em); 6841 return ret; 6842 } 6843 } 6844 6845 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6846 &(map->stripes[i].dev->dev_state)); 6847 } 6848 6849 write_lock(&map_tree->lock); 6850 ret = add_extent_mapping(map_tree, em, 0); 6851 write_unlock(&map_tree->lock); 6852 if (ret < 0) { 6853 btrfs_err(fs_info, 6854 "failed to add chunk map, start=%llu len=%llu: %d", 6855 em->start, em->len, ret); 6856 } 6857 free_extent_map(em); 6858 6859 return ret; 6860 } 6861 6862 static void fill_device_from_item(struct extent_buffer *leaf, 6863 struct btrfs_dev_item *dev_item, 6864 struct btrfs_device *device) 6865 { 6866 unsigned long ptr; 6867 6868 device->devid = btrfs_device_id(leaf, dev_item); 6869 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6870 device->total_bytes = device->disk_total_bytes; 6871 device->commit_total_bytes = device->disk_total_bytes; 6872 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6873 device->commit_bytes_used = device->bytes_used; 6874 device->type = btrfs_device_type(leaf, dev_item); 6875 device->io_align = btrfs_device_io_align(leaf, dev_item); 6876 device->io_width = btrfs_device_io_width(leaf, dev_item); 6877 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6878 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6879 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6880 6881 ptr = btrfs_device_uuid(dev_item); 6882 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6883 } 6884 6885 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6886 u8 *fsid) 6887 { 6888 struct btrfs_fs_devices *fs_devices; 6889 int ret; 6890 6891 lockdep_assert_held(&uuid_mutex); 6892 ASSERT(fsid); 6893 6894 /* This will match only for multi-device seed fs */ 6895 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6896 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6897 return fs_devices; 6898 6899 6900 fs_devices = find_fsid(fsid, NULL); 6901 if (!fs_devices) { 6902 if (!btrfs_test_opt(fs_info, DEGRADED)) 6903 return ERR_PTR(-ENOENT); 6904 6905 fs_devices = alloc_fs_devices(fsid, NULL); 6906 if (IS_ERR(fs_devices)) 6907 return fs_devices; 6908 6909 fs_devices->seeding = true; 6910 fs_devices->opened = 1; 6911 return fs_devices; 6912 } 6913 6914 /* 6915 * Upon first call for a seed fs fsid, just create a private copy of the 6916 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6917 */ 6918 fs_devices = clone_fs_devices(fs_devices); 6919 if (IS_ERR(fs_devices)) 6920 return fs_devices; 6921 6922 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 6923 if (ret) { 6924 free_fs_devices(fs_devices); 6925 return ERR_PTR(ret); 6926 } 6927 6928 if (!fs_devices->seeding) { 6929 close_fs_devices(fs_devices); 6930 free_fs_devices(fs_devices); 6931 return ERR_PTR(-EINVAL); 6932 } 6933 6934 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6935 6936 return fs_devices; 6937 } 6938 6939 static int read_one_dev(struct extent_buffer *leaf, 6940 struct btrfs_dev_item *dev_item) 6941 { 6942 BTRFS_DEV_LOOKUP_ARGS(args); 6943 struct btrfs_fs_info *fs_info = leaf->fs_info; 6944 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6945 struct btrfs_device *device; 6946 u64 devid; 6947 int ret; 6948 u8 fs_uuid[BTRFS_FSID_SIZE]; 6949 u8 dev_uuid[BTRFS_UUID_SIZE]; 6950 6951 devid = btrfs_device_id(leaf, dev_item); 6952 args.devid = devid; 6953 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6954 BTRFS_UUID_SIZE); 6955 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6956 BTRFS_FSID_SIZE); 6957 args.uuid = dev_uuid; 6958 args.fsid = fs_uuid; 6959 6960 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6961 fs_devices = open_seed_devices(fs_info, fs_uuid); 6962 if (IS_ERR(fs_devices)) 6963 return PTR_ERR(fs_devices); 6964 } 6965 6966 device = btrfs_find_device(fs_info->fs_devices, &args); 6967 if (!device) { 6968 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6969 btrfs_report_missing_device(fs_info, devid, 6970 dev_uuid, true); 6971 return -ENOENT; 6972 } 6973 6974 device = add_missing_dev(fs_devices, devid, dev_uuid); 6975 if (IS_ERR(device)) { 6976 btrfs_err(fs_info, 6977 "failed to add missing dev %llu: %ld", 6978 devid, PTR_ERR(device)); 6979 return PTR_ERR(device); 6980 } 6981 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6982 } else { 6983 if (!device->bdev) { 6984 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6985 btrfs_report_missing_device(fs_info, 6986 devid, dev_uuid, true); 6987 return -ENOENT; 6988 } 6989 btrfs_report_missing_device(fs_info, devid, 6990 dev_uuid, false); 6991 } 6992 6993 if (!device->bdev && 6994 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6995 /* 6996 * this happens when a device that was properly setup 6997 * in the device info lists suddenly goes bad. 6998 * device->bdev is NULL, and so we have to set 6999 * device->missing to one here 7000 */ 7001 device->fs_devices->missing_devices++; 7002 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7003 } 7004 7005 /* Move the device to its own fs_devices */ 7006 if (device->fs_devices != fs_devices) { 7007 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7008 &device->dev_state)); 7009 7010 list_move(&device->dev_list, &fs_devices->devices); 7011 device->fs_devices->num_devices--; 7012 fs_devices->num_devices++; 7013 7014 device->fs_devices->missing_devices--; 7015 fs_devices->missing_devices++; 7016 7017 device->fs_devices = fs_devices; 7018 } 7019 } 7020 7021 if (device->fs_devices != fs_info->fs_devices) { 7022 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7023 if (device->generation != 7024 btrfs_device_generation(leaf, dev_item)) 7025 return -EINVAL; 7026 } 7027 7028 fill_device_from_item(leaf, dev_item, device); 7029 if (device->bdev) { 7030 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7031 7032 if (device->total_bytes > max_total_bytes) { 7033 btrfs_err(fs_info, 7034 "device total_bytes should be at most %llu but found %llu", 7035 max_total_bytes, device->total_bytes); 7036 return -EINVAL; 7037 } 7038 } 7039 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7040 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7041 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7042 device->fs_devices->total_rw_bytes += device->total_bytes; 7043 atomic64_add(device->total_bytes - device->bytes_used, 7044 &fs_info->free_chunk_space); 7045 } 7046 ret = 0; 7047 return ret; 7048 } 7049 7050 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7051 { 7052 struct btrfs_super_block *super_copy = fs_info->super_copy; 7053 struct extent_buffer *sb; 7054 struct btrfs_disk_key *disk_key; 7055 struct btrfs_chunk *chunk; 7056 u8 *array_ptr; 7057 unsigned long sb_array_offset; 7058 int ret = 0; 7059 u32 num_stripes; 7060 u32 array_size; 7061 u32 len = 0; 7062 u32 cur_offset; 7063 u64 type; 7064 struct btrfs_key key; 7065 7066 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7067 7068 /* 7069 * We allocated a dummy extent, just to use extent buffer accessors. 7070 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7071 * that's fine, we will not go beyond system chunk array anyway. 7072 */ 7073 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7074 if (!sb) 7075 return -ENOMEM; 7076 set_extent_buffer_uptodate(sb); 7077 7078 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7079 array_size = btrfs_super_sys_array_size(super_copy); 7080 7081 array_ptr = super_copy->sys_chunk_array; 7082 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7083 cur_offset = 0; 7084 7085 while (cur_offset < array_size) { 7086 disk_key = (struct btrfs_disk_key *)array_ptr; 7087 len = sizeof(*disk_key); 7088 if (cur_offset + len > array_size) 7089 goto out_short_read; 7090 7091 btrfs_disk_key_to_cpu(&key, disk_key); 7092 7093 array_ptr += len; 7094 sb_array_offset += len; 7095 cur_offset += len; 7096 7097 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7098 btrfs_err(fs_info, 7099 "unexpected item type %u in sys_array at offset %u", 7100 (u32)key.type, cur_offset); 7101 ret = -EIO; 7102 break; 7103 } 7104 7105 chunk = (struct btrfs_chunk *)sb_array_offset; 7106 /* 7107 * At least one btrfs_chunk with one stripe must be present, 7108 * exact stripe count check comes afterwards 7109 */ 7110 len = btrfs_chunk_item_size(1); 7111 if (cur_offset + len > array_size) 7112 goto out_short_read; 7113 7114 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7115 if (!num_stripes) { 7116 btrfs_err(fs_info, 7117 "invalid number of stripes %u in sys_array at offset %u", 7118 num_stripes, cur_offset); 7119 ret = -EIO; 7120 break; 7121 } 7122 7123 type = btrfs_chunk_type(sb, chunk); 7124 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7125 btrfs_err(fs_info, 7126 "invalid chunk type %llu in sys_array at offset %u", 7127 type, cur_offset); 7128 ret = -EIO; 7129 break; 7130 } 7131 7132 len = btrfs_chunk_item_size(num_stripes); 7133 if (cur_offset + len > array_size) 7134 goto out_short_read; 7135 7136 ret = read_one_chunk(&key, sb, chunk); 7137 if (ret) 7138 break; 7139 7140 array_ptr += len; 7141 sb_array_offset += len; 7142 cur_offset += len; 7143 } 7144 clear_extent_buffer_uptodate(sb); 7145 free_extent_buffer_stale(sb); 7146 return ret; 7147 7148 out_short_read: 7149 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7150 len, cur_offset); 7151 clear_extent_buffer_uptodate(sb); 7152 free_extent_buffer_stale(sb); 7153 return -EIO; 7154 } 7155 7156 /* 7157 * Check if all chunks in the fs are OK for read-write degraded mount 7158 * 7159 * If the @failing_dev is specified, it's accounted as missing. 7160 * 7161 * Return true if all chunks meet the minimal RW mount requirements. 7162 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7163 */ 7164 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7165 struct btrfs_device *failing_dev) 7166 { 7167 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7168 struct extent_map *em; 7169 u64 next_start = 0; 7170 bool ret = true; 7171 7172 read_lock(&map_tree->lock); 7173 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7174 read_unlock(&map_tree->lock); 7175 /* No chunk at all? Return false anyway */ 7176 if (!em) { 7177 ret = false; 7178 goto out; 7179 } 7180 while (em) { 7181 struct map_lookup *map; 7182 int missing = 0; 7183 int max_tolerated; 7184 int i; 7185 7186 map = em->map_lookup; 7187 max_tolerated = 7188 btrfs_get_num_tolerated_disk_barrier_failures( 7189 map->type); 7190 for (i = 0; i < map->num_stripes; i++) { 7191 struct btrfs_device *dev = map->stripes[i].dev; 7192 7193 if (!dev || !dev->bdev || 7194 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7195 dev->last_flush_error) 7196 missing++; 7197 else if (failing_dev && failing_dev == dev) 7198 missing++; 7199 } 7200 if (missing > max_tolerated) { 7201 if (!failing_dev) 7202 btrfs_warn(fs_info, 7203 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7204 em->start, missing, max_tolerated); 7205 free_extent_map(em); 7206 ret = false; 7207 goto out; 7208 } 7209 next_start = extent_map_end(em); 7210 free_extent_map(em); 7211 7212 read_lock(&map_tree->lock); 7213 em = lookup_extent_mapping(map_tree, next_start, 7214 (u64)(-1) - next_start); 7215 read_unlock(&map_tree->lock); 7216 } 7217 out: 7218 return ret; 7219 } 7220 7221 static void readahead_tree_node_children(struct extent_buffer *node) 7222 { 7223 int i; 7224 const int nr_items = btrfs_header_nritems(node); 7225 7226 for (i = 0; i < nr_items; i++) 7227 btrfs_readahead_node_child(node, i); 7228 } 7229 7230 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7231 { 7232 struct btrfs_root *root = fs_info->chunk_root; 7233 struct btrfs_path *path; 7234 struct extent_buffer *leaf; 7235 struct btrfs_key key; 7236 struct btrfs_key found_key; 7237 int ret; 7238 int slot; 7239 int iter_ret = 0; 7240 u64 total_dev = 0; 7241 u64 last_ra_node = 0; 7242 7243 path = btrfs_alloc_path(); 7244 if (!path) 7245 return -ENOMEM; 7246 7247 /* 7248 * uuid_mutex is needed only if we are mounting a sprout FS 7249 * otherwise we don't need it. 7250 */ 7251 mutex_lock(&uuid_mutex); 7252 7253 /* 7254 * It is possible for mount and umount to race in such a way that 7255 * we execute this code path, but open_fs_devices failed to clear 7256 * total_rw_bytes. We certainly want it cleared before reading the 7257 * device items, so clear it here. 7258 */ 7259 fs_info->fs_devices->total_rw_bytes = 0; 7260 7261 /* 7262 * Lockdep complains about possible circular locking dependency between 7263 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7264 * used for freeze procection of a fs (struct super_block.s_writers), 7265 * which we take when starting a transaction, and extent buffers of the 7266 * chunk tree if we call read_one_dev() while holding a lock on an 7267 * extent buffer of the chunk tree. Since we are mounting the filesystem 7268 * and at this point there can't be any concurrent task modifying the 7269 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7270 */ 7271 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7272 path->skip_locking = 1; 7273 7274 /* 7275 * Read all device items, and then all the chunk items. All 7276 * device items are found before any chunk item (their object id 7277 * is smaller than the lowest possible object id for a chunk 7278 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7279 */ 7280 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7281 key.offset = 0; 7282 key.type = 0; 7283 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7284 struct extent_buffer *node = path->nodes[1]; 7285 7286 leaf = path->nodes[0]; 7287 slot = path->slots[0]; 7288 7289 if (node) { 7290 if (last_ra_node != node->start) { 7291 readahead_tree_node_children(node); 7292 last_ra_node = node->start; 7293 } 7294 } 7295 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7296 struct btrfs_dev_item *dev_item; 7297 dev_item = btrfs_item_ptr(leaf, slot, 7298 struct btrfs_dev_item); 7299 ret = read_one_dev(leaf, dev_item); 7300 if (ret) 7301 goto error; 7302 total_dev++; 7303 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7304 struct btrfs_chunk *chunk; 7305 7306 /* 7307 * We are only called at mount time, so no need to take 7308 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7309 * we always lock first fs_info->chunk_mutex before 7310 * acquiring any locks on the chunk tree. This is a 7311 * requirement for chunk allocation, see the comment on 7312 * top of btrfs_chunk_alloc() for details. 7313 */ 7314 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7315 ret = read_one_chunk(&found_key, leaf, chunk); 7316 if (ret) 7317 goto error; 7318 } 7319 } 7320 /* Catch error found during iteration */ 7321 if (iter_ret < 0) { 7322 ret = iter_ret; 7323 goto error; 7324 } 7325 7326 /* 7327 * After loading chunk tree, we've got all device information, 7328 * do another round of validation checks. 7329 */ 7330 if (total_dev != fs_info->fs_devices->total_devices) { 7331 btrfs_warn(fs_info, 7332 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7333 btrfs_super_num_devices(fs_info->super_copy), 7334 total_dev); 7335 fs_info->fs_devices->total_devices = total_dev; 7336 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7337 } 7338 if (btrfs_super_total_bytes(fs_info->super_copy) < 7339 fs_info->fs_devices->total_rw_bytes) { 7340 btrfs_err(fs_info, 7341 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7342 btrfs_super_total_bytes(fs_info->super_copy), 7343 fs_info->fs_devices->total_rw_bytes); 7344 ret = -EINVAL; 7345 goto error; 7346 } 7347 ret = 0; 7348 error: 7349 mutex_unlock(&uuid_mutex); 7350 7351 btrfs_free_path(path); 7352 return ret; 7353 } 7354 7355 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7356 { 7357 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7358 struct btrfs_device *device; 7359 int ret = 0; 7360 7361 fs_devices->fs_info = fs_info; 7362 7363 mutex_lock(&fs_devices->device_list_mutex); 7364 list_for_each_entry(device, &fs_devices->devices, dev_list) 7365 device->fs_info = fs_info; 7366 7367 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7368 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7369 device->fs_info = fs_info; 7370 ret = btrfs_get_dev_zone_info(device, false); 7371 if (ret) 7372 break; 7373 } 7374 7375 seed_devs->fs_info = fs_info; 7376 } 7377 mutex_unlock(&fs_devices->device_list_mutex); 7378 7379 return ret; 7380 } 7381 7382 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7383 const struct btrfs_dev_stats_item *ptr, 7384 int index) 7385 { 7386 u64 val; 7387 7388 read_extent_buffer(eb, &val, 7389 offsetof(struct btrfs_dev_stats_item, values) + 7390 ((unsigned long)ptr) + (index * sizeof(u64)), 7391 sizeof(val)); 7392 return val; 7393 } 7394 7395 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7396 struct btrfs_dev_stats_item *ptr, 7397 int index, u64 val) 7398 { 7399 write_extent_buffer(eb, &val, 7400 offsetof(struct btrfs_dev_stats_item, values) + 7401 ((unsigned long)ptr) + (index * sizeof(u64)), 7402 sizeof(val)); 7403 } 7404 7405 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7406 struct btrfs_path *path) 7407 { 7408 struct btrfs_dev_stats_item *ptr; 7409 struct extent_buffer *eb; 7410 struct btrfs_key key; 7411 int item_size; 7412 int i, ret, slot; 7413 7414 if (!device->fs_info->dev_root) 7415 return 0; 7416 7417 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7418 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7419 key.offset = device->devid; 7420 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7421 if (ret) { 7422 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7423 btrfs_dev_stat_set(device, i, 0); 7424 device->dev_stats_valid = 1; 7425 btrfs_release_path(path); 7426 return ret < 0 ? ret : 0; 7427 } 7428 slot = path->slots[0]; 7429 eb = path->nodes[0]; 7430 item_size = btrfs_item_size(eb, slot); 7431 7432 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7433 7434 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7435 if (item_size >= (1 + i) * sizeof(__le64)) 7436 btrfs_dev_stat_set(device, i, 7437 btrfs_dev_stats_value(eb, ptr, i)); 7438 else 7439 btrfs_dev_stat_set(device, i, 0); 7440 } 7441 7442 device->dev_stats_valid = 1; 7443 btrfs_dev_stat_print_on_load(device); 7444 btrfs_release_path(path); 7445 7446 return 0; 7447 } 7448 7449 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7450 { 7451 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7452 struct btrfs_device *device; 7453 struct btrfs_path *path = NULL; 7454 int ret = 0; 7455 7456 path = btrfs_alloc_path(); 7457 if (!path) 7458 return -ENOMEM; 7459 7460 mutex_lock(&fs_devices->device_list_mutex); 7461 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7462 ret = btrfs_device_init_dev_stats(device, path); 7463 if (ret) 7464 goto out; 7465 } 7466 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7467 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7468 ret = btrfs_device_init_dev_stats(device, path); 7469 if (ret) 7470 goto out; 7471 } 7472 } 7473 out: 7474 mutex_unlock(&fs_devices->device_list_mutex); 7475 7476 btrfs_free_path(path); 7477 return ret; 7478 } 7479 7480 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7481 struct btrfs_device *device) 7482 { 7483 struct btrfs_fs_info *fs_info = trans->fs_info; 7484 struct btrfs_root *dev_root = fs_info->dev_root; 7485 struct btrfs_path *path; 7486 struct btrfs_key key; 7487 struct extent_buffer *eb; 7488 struct btrfs_dev_stats_item *ptr; 7489 int ret; 7490 int i; 7491 7492 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7493 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7494 key.offset = device->devid; 7495 7496 path = btrfs_alloc_path(); 7497 if (!path) 7498 return -ENOMEM; 7499 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7500 if (ret < 0) { 7501 btrfs_warn_in_rcu(fs_info, 7502 "error %d while searching for dev_stats item for device %s", 7503 ret, btrfs_dev_name(device)); 7504 goto out; 7505 } 7506 7507 if (ret == 0 && 7508 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7509 /* need to delete old one and insert a new one */ 7510 ret = btrfs_del_item(trans, dev_root, path); 7511 if (ret != 0) { 7512 btrfs_warn_in_rcu(fs_info, 7513 "delete too small dev_stats item for device %s failed %d", 7514 btrfs_dev_name(device), ret); 7515 goto out; 7516 } 7517 ret = 1; 7518 } 7519 7520 if (ret == 1) { 7521 /* need to insert a new item */ 7522 btrfs_release_path(path); 7523 ret = btrfs_insert_empty_item(trans, dev_root, path, 7524 &key, sizeof(*ptr)); 7525 if (ret < 0) { 7526 btrfs_warn_in_rcu(fs_info, 7527 "insert dev_stats item for device %s failed %d", 7528 btrfs_dev_name(device), ret); 7529 goto out; 7530 } 7531 } 7532 7533 eb = path->nodes[0]; 7534 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7535 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7536 btrfs_set_dev_stats_value(eb, ptr, i, 7537 btrfs_dev_stat_read(device, i)); 7538 btrfs_mark_buffer_dirty(trans, eb); 7539 7540 out: 7541 btrfs_free_path(path); 7542 return ret; 7543 } 7544 7545 /* 7546 * called from commit_transaction. Writes all changed device stats to disk. 7547 */ 7548 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7549 { 7550 struct btrfs_fs_info *fs_info = trans->fs_info; 7551 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7552 struct btrfs_device *device; 7553 int stats_cnt; 7554 int ret = 0; 7555 7556 mutex_lock(&fs_devices->device_list_mutex); 7557 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7558 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7559 if (!device->dev_stats_valid || stats_cnt == 0) 7560 continue; 7561 7562 7563 /* 7564 * There is a LOAD-LOAD control dependency between the value of 7565 * dev_stats_ccnt and updating the on-disk values which requires 7566 * reading the in-memory counters. Such control dependencies 7567 * require explicit read memory barriers. 7568 * 7569 * This memory barriers pairs with smp_mb__before_atomic in 7570 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7571 * barrier implied by atomic_xchg in 7572 * btrfs_dev_stats_read_and_reset 7573 */ 7574 smp_rmb(); 7575 7576 ret = update_dev_stat_item(trans, device); 7577 if (!ret) 7578 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7579 } 7580 mutex_unlock(&fs_devices->device_list_mutex); 7581 7582 return ret; 7583 } 7584 7585 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7586 { 7587 btrfs_dev_stat_inc(dev, index); 7588 7589 if (!dev->dev_stats_valid) 7590 return; 7591 btrfs_err_rl_in_rcu(dev->fs_info, 7592 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7593 btrfs_dev_name(dev), 7594 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7595 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7596 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7597 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7598 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7599 } 7600 7601 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7602 { 7603 int i; 7604 7605 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7606 if (btrfs_dev_stat_read(dev, i) != 0) 7607 break; 7608 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7609 return; /* all values == 0, suppress message */ 7610 7611 btrfs_info_in_rcu(dev->fs_info, 7612 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7613 btrfs_dev_name(dev), 7614 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7615 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7616 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7617 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7618 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7619 } 7620 7621 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7622 struct btrfs_ioctl_get_dev_stats *stats) 7623 { 7624 BTRFS_DEV_LOOKUP_ARGS(args); 7625 struct btrfs_device *dev; 7626 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7627 int i; 7628 7629 mutex_lock(&fs_devices->device_list_mutex); 7630 args.devid = stats->devid; 7631 dev = btrfs_find_device(fs_info->fs_devices, &args); 7632 mutex_unlock(&fs_devices->device_list_mutex); 7633 7634 if (!dev) { 7635 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7636 return -ENODEV; 7637 } else if (!dev->dev_stats_valid) { 7638 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7639 return -ENODEV; 7640 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7641 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7642 if (stats->nr_items > i) 7643 stats->values[i] = 7644 btrfs_dev_stat_read_and_reset(dev, i); 7645 else 7646 btrfs_dev_stat_set(dev, i, 0); 7647 } 7648 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7649 current->comm, task_pid_nr(current)); 7650 } else { 7651 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7652 if (stats->nr_items > i) 7653 stats->values[i] = btrfs_dev_stat_read(dev, i); 7654 } 7655 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7656 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7657 return 0; 7658 } 7659 7660 /* 7661 * Update the size and bytes used for each device where it changed. This is 7662 * delayed since we would otherwise get errors while writing out the 7663 * superblocks. 7664 * 7665 * Must be invoked during transaction commit. 7666 */ 7667 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7668 { 7669 struct btrfs_device *curr, *next; 7670 7671 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7672 7673 if (list_empty(&trans->dev_update_list)) 7674 return; 7675 7676 /* 7677 * We don't need the device_list_mutex here. This list is owned by the 7678 * transaction and the transaction must complete before the device is 7679 * released. 7680 */ 7681 mutex_lock(&trans->fs_info->chunk_mutex); 7682 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7683 post_commit_list) { 7684 list_del_init(&curr->post_commit_list); 7685 curr->commit_total_bytes = curr->disk_total_bytes; 7686 curr->commit_bytes_used = curr->bytes_used; 7687 } 7688 mutex_unlock(&trans->fs_info->chunk_mutex); 7689 } 7690 7691 /* 7692 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7693 */ 7694 int btrfs_bg_type_to_factor(u64 flags) 7695 { 7696 const int index = btrfs_bg_flags_to_raid_index(flags); 7697 7698 return btrfs_raid_array[index].ncopies; 7699 } 7700 7701 7702 7703 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7704 u64 chunk_offset, u64 devid, 7705 u64 physical_offset, u64 physical_len) 7706 { 7707 struct btrfs_dev_lookup_args args = { .devid = devid }; 7708 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7709 struct extent_map *em; 7710 struct map_lookup *map; 7711 struct btrfs_device *dev; 7712 u64 stripe_len; 7713 bool found = false; 7714 int ret = 0; 7715 int i; 7716 7717 read_lock(&em_tree->lock); 7718 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7719 read_unlock(&em_tree->lock); 7720 7721 if (!em) { 7722 btrfs_err(fs_info, 7723 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7724 physical_offset, devid); 7725 ret = -EUCLEAN; 7726 goto out; 7727 } 7728 7729 map = em->map_lookup; 7730 stripe_len = btrfs_calc_stripe_length(em); 7731 if (physical_len != stripe_len) { 7732 btrfs_err(fs_info, 7733 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7734 physical_offset, devid, em->start, physical_len, 7735 stripe_len); 7736 ret = -EUCLEAN; 7737 goto out; 7738 } 7739 7740 /* 7741 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7742 * space. Although kernel can handle it without problem, better to warn 7743 * the users. 7744 */ 7745 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7746 btrfs_warn(fs_info, 7747 "devid %llu physical %llu len %llu inside the reserved space", 7748 devid, physical_offset, physical_len); 7749 7750 for (i = 0; i < map->num_stripes; i++) { 7751 if (map->stripes[i].dev->devid == devid && 7752 map->stripes[i].physical == physical_offset) { 7753 found = true; 7754 if (map->verified_stripes >= map->num_stripes) { 7755 btrfs_err(fs_info, 7756 "too many dev extents for chunk %llu found", 7757 em->start); 7758 ret = -EUCLEAN; 7759 goto out; 7760 } 7761 map->verified_stripes++; 7762 break; 7763 } 7764 } 7765 if (!found) { 7766 btrfs_err(fs_info, 7767 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7768 physical_offset, devid); 7769 ret = -EUCLEAN; 7770 } 7771 7772 /* Make sure no dev extent is beyond device boundary */ 7773 dev = btrfs_find_device(fs_info->fs_devices, &args); 7774 if (!dev) { 7775 btrfs_err(fs_info, "failed to find devid %llu", devid); 7776 ret = -EUCLEAN; 7777 goto out; 7778 } 7779 7780 if (physical_offset + physical_len > dev->disk_total_bytes) { 7781 btrfs_err(fs_info, 7782 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7783 devid, physical_offset, physical_len, 7784 dev->disk_total_bytes); 7785 ret = -EUCLEAN; 7786 goto out; 7787 } 7788 7789 if (dev->zone_info) { 7790 u64 zone_size = dev->zone_info->zone_size; 7791 7792 if (!IS_ALIGNED(physical_offset, zone_size) || 7793 !IS_ALIGNED(physical_len, zone_size)) { 7794 btrfs_err(fs_info, 7795 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7796 devid, physical_offset, physical_len); 7797 ret = -EUCLEAN; 7798 goto out; 7799 } 7800 } 7801 7802 out: 7803 free_extent_map(em); 7804 return ret; 7805 } 7806 7807 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7808 { 7809 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7810 struct extent_map *em; 7811 struct rb_node *node; 7812 int ret = 0; 7813 7814 read_lock(&em_tree->lock); 7815 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7816 em = rb_entry(node, struct extent_map, rb_node); 7817 if (em->map_lookup->num_stripes != 7818 em->map_lookup->verified_stripes) { 7819 btrfs_err(fs_info, 7820 "chunk %llu has missing dev extent, have %d expect %d", 7821 em->start, em->map_lookup->verified_stripes, 7822 em->map_lookup->num_stripes); 7823 ret = -EUCLEAN; 7824 goto out; 7825 } 7826 } 7827 out: 7828 read_unlock(&em_tree->lock); 7829 return ret; 7830 } 7831 7832 /* 7833 * Ensure that all dev extents are mapped to correct chunk, otherwise 7834 * later chunk allocation/free would cause unexpected behavior. 7835 * 7836 * NOTE: This will iterate through the whole device tree, which should be of 7837 * the same size level as the chunk tree. This slightly increases mount time. 7838 */ 7839 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7840 { 7841 struct btrfs_path *path; 7842 struct btrfs_root *root = fs_info->dev_root; 7843 struct btrfs_key key; 7844 u64 prev_devid = 0; 7845 u64 prev_dev_ext_end = 0; 7846 int ret = 0; 7847 7848 /* 7849 * We don't have a dev_root because we mounted with ignorebadroots and 7850 * failed to load the root, so we want to skip the verification in this 7851 * case for sure. 7852 * 7853 * However if the dev root is fine, but the tree itself is corrupted 7854 * we'd still fail to mount. This verification is only to make sure 7855 * writes can happen safely, so instead just bypass this check 7856 * completely in the case of IGNOREBADROOTS. 7857 */ 7858 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7859 return 0; 7860 7861 key.objectid = 1; 7862 key.type = BTRFS_DEV_EXTENT_KEY; 7863 key.offset = 0; 7864 7865 path = btrfs_alloc_path(); 7866 if (!path) 7867 return -ENOMEM; 7868 7869 path->reada = READA_FORWARD; 7870 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7871 if (ret < 0) 7872 goto out; 7873 7874 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7875 ret = btrfs_next_leaf(root, path); 7876 if (ret < 0) 7877 goto out; 7878 /* No dev extents at all? Not good */ 7879 if (ret > 0) { 7880 ret = -EUCLEAN; 7881 goto out; 7882 } 7883 } 7884 while (1) { 7885 struct extent_buffer *leaf = path->nodes[0]; 7886 struct btrfs_dev_extent *dext; 7887 int slot = path->slots[0]; 7888 u64 chunk_offset; 7889 u64 physical_offset; 7890 u64 physical_len; 7891 u64 devid; 7892 7893 btrfs_item_key_to_cpu(leaf, &key, slot); 7894 if (key.type != BTRFS_DEV_EXTENT_KEY) 7895 break; 7896 devid = key.objectid; 7897 physical_offset = key.offset; 7898 7899 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7900 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7901 physical_len = btrfs_dev_extent_length(leaf, dext); 7902 7903 /* Check if this dev extent overlaps with the previous one */ 7904 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7905 btrfs_err(fs_info, 7906 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7907 devid, physical_offset, prev_dev_ext_end); 7908 ret = -EUCLEAN; 7909 goto out; 7910 } 7911 7912 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7913 physical_offset, physical_len); 7914 if (ret < 0) 7915 goto out; 7916 prev_devid = devid; 7917 prev_dev_ext_end = physical_offset + physical_len; 7918 7919 ret = btrfs_next_item(root, path); 7920 if (ret < 0) 7921 goto out; 7922 if (ret > 0) { 7923 ret = 0; 7924 break; 7925 } 7926 } 7927 7928 /* Ensure all chunks have corresponding dev extents */ 7929 ret = verify_chunk_dev_extent_mapping(fs_info); 7930 out: 7931 btrfs_free_path(path); 7932 return ret; 7933 } 7934 7935 /* 7936 * Check whether the given block group or device is pinned by any inode being 7937 * used as a swapfile. 7938 */ 7939 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7940 { 7941 struct btrfs_swapfile_pin *sp; 7942 struct rb_node *node; 7943 7944 spin_lock(&fs_info->swapfile_pins_lock); 7945 node = fs_info->swapfile_pins.rb_node; 7946 while (node) { 7947 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7948 if (ptr < sp->ptr) 7949 node = node->rb_left; 7950 else if (ptr > sp->ptr) 7951 node = node->rb_right; 7952 else 7953 break; 7954 } 7955 spin_unlock(&fs_info->swapfile_pins_lock); 7956 return node != NULL; 7957 } 7958 7959 static int relocating_repair_kthread(void *data) 7960 { 7961 struct btrfs_block_group *cache = data; 7962 struct btrfs_fs_info *fs_info = cache->fs_info; 7963 u64 target; 7964 int ret = 0; 7965 7966 target = cache->start; 7967 btrfs_put_block_group(cache); 7968 7969 sb_start_write(fs_info->sb); 7970 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 7971 btrfs_info(fs_info, 7972 "zoned: skip relocating block group %llu to repair: EBUSY", 7973 target); 7974 sb_end_write(fs_info->sb); 7975 return -EBUSY; 7976 } 7977 7978 mutex_lock(&fs_info->reclaim_bgs_lock); 7979 7980 /* Ensure block group still exists */ 7981 cache = btrfs_lookup_block_group(fs_info, target); 7982 if (!cache) 7983 goto out; 7984 7985 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 7986 goto out; 7987 7988 ret = btrfs_may_alloc_data_chunk(fs_info, target); 7989 if (ret < 0) 7990 goto out; 7991 7992 btrfs_info(fs_info, 7993 "zoned: relocating block group %llu to repair IO failure", 7994 target); 7995 ret = btrfs_relocate_chunk(fs_info, target); 7996 7997 out: 7998 if (cache) 7999 btrfs_put_block_group(cache); 8000 mutex_unlock(&fs_info->reclaim_bgs_lock); 8001 btrfs_exclop_finish(fs_info); 8002 sb_end_write(fs_info->sb); 8003 8004 return ret; 8005 } 8006 8007 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8008 { 8009 struct btrfs_block_group *cache; 8010 8011 if (!btrfs_is_zoned(fs_info)) 8012 return false; 8013 8014 /* Do not attempt to repair in degraded state */ 8015 if (btrfs_test_opt(fs_info, DEGRADED)) 8016 return true; 8017 8018 cache = btrfs_lookup_block_group(fs_info, logical); 8019 if (!cache) 8020 return true; 8021 8022 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8023 btrfs_put_block_group(cache); 8024 return true; 8025 } 8026 8027 kthread_run(relocating_repair_kthread, cache, 8028 "btrfs-relocating-repair"); 8029 8030 return true; 8031 } 8032 8033 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8034 struct btrfs_io_stripe *smap, 8035 u64 logical) 8036 { 8037 int data_stripes = nr_bioc_data_stripes(bioc); 8038 int i; 8039 8040 for (i = 0; i < data_stripes; i++) { 8041 u64 stripe_start = bioc->full_stripe_logical + 8042 btrfs_stripe_nr_to_offset(i); 8043 8044 if (logical >= stripe_start && 8045 logical < stripe_start + BTRFS_STRIPE_LEN) 8046 break; 8047 } 8048 ASSERT(i < data_stripes); 8049 smap->dev = bioc->stripes[i].dev; 8050 smap->physical = bioc->stripes[i].physical + 8051 ((logical - bioc->full_stripe_logical) & 8052 BTRFS_STRIPE_LEN_MASK); 8053 } 8054 8055 /* 8056 * Map a repair write into a single device. 8057 * 8058 * A repair write is triggered by read time repair or scrub, which would only 8059 * update the contents of a single device. 8060 * Not update any other mirrors nor go through RMW path. 8061 * 8062 * Callers should ensure: 8063 * 8064 * - Call btrfs_bio_counter_inc_blocked() first 8065 * - The range does not cross stripe boundary 8066 * - Has a valid @mirror_num passed in. 8067 */ 8068 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8069 struct btrfs_io_stripe *smap, u64 logical, 8070 u32 length, int mirror_num) 8071 { 8072 struct btrfs_io_context *bioc = NULL; 8073 u64 map_length = length; 8074 int mirror_ret = mirror_num; 8075 int ret; 8076 8077 ASSERT(mirror_num > 0); 8078 8079 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8080 &bioc, smap, &mirror_ret, true); 8081 if (ret < 0) 8082 return ret; 8083 8084 /* The map range should not cross stripe boundary. */ 8085 ASSERT(map_length >= length); 8086 8087 /* Already mapped to single stripe. */ 8088 if (!bioc) 8089 goto out; 8090 8091 /* Map the RAID56 multi-stripe writes to a single one. */ 8092 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8093 map_raid56_repair_block(bioc, smap, logical); 8094 goto out; 8095 } 8096 8097 ASSERT(mirror_num <= bioc->num_stripes); 8098 smap->dev = bioc->stripes[mirror_num - 1].dev; 8099 smap->physical = bioc->stripes[mirror_num - 1].physical; 8100 out: 8101 btrfs_put_bioc(bioc); 8102 ASSERT(smap->dev); 8103 return 0; 8104 } 8105