xref: /openbmc/linux/fs/btrfs/volumes.c (revision efc0e69c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36 
37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
38 					 BTRFS_BLOCK_GROUP_RAID10 | \
39 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
40 
41 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
42 	[BTRFS_RAID_RAID10] = {
43 		.sub_stripes	= 2,
44 		.dev_stripes	= 1,
45 		.devs_max	= 0,	/* 0 == as many as possible */
46 		.devs_min	= 2,
47 		.tolerated_failures = 1,
48 		.devs_increment	= 2,
49 		.ncopies	= 2,
50 		.nparity        = 0,
51 		.raid_name	= "raid10",
52 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
53 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 		.nparity        = 0,
64 		.raid_name	= "raid1",
65 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
66 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
67 	},
68 	[BTRFS_RAID_RAID1C3] = {
69 		.sub_stripes	= 1,
70 		.dev_stripes	= 1,
71 		.devs_max	= 3,
72 		.devs_min	= 3,
73 		.tolerated_failures = 2,
74 		.devs_increment	= 3,
75 		.ncopies	= 3,
76 		.nparity        = 0,
77 		.raid_name	= "raid1c3",
78 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
79 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
80 	},
81 	[BTRFS_RAID_RAID1C4] = {
82 		.sub_stripes	= 1,
83 		.dev_stripes	= 1,
84 		.devs_max	= 4,
85 		.devs_min	= 4,
86 		.tolerated_failures = 3,
87 		.devs_increment	= 4,
88 		.ncopies	= 4,
89 		.nparity        = 0,
90 		.raid_name	= "raid1c4",
91 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
92 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
93 	},
94 	[BTRFS_RAID_DUP] = {
95 		.sub_stripes	= 1,
96 		.dev_stripes	= 2,
97 		.devs_max	= 1,
98 		.devs_min	= 1,
99 		.tolerated_failures = 0,
100 		.devs_increment	= 1,
101 		.ncopies	= 2,
102 		.nparity        = 0,
103 		.raid_name	= "dup",
104 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
105 		.mindev_error	= 0,
106 	},
107 	[BTRFS_RAID_RAID0] = {
108 		.sub_stripes	= 1,
109 		.dev_stripes	= 1,
110 		.devs_max	= 0,
111 		.devs_min	= 1,
112 		.tolerated_failures = 0,
113 		.devs_increment	= 1,
114 		.ncopies	= 1,
115 		.nparity        = 0,
116 		.raid_name	= "raid0",
117 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
118 		.mindev_error	= 0,
119 	},
120 	[BTRFS_RAID_SINGLE] = {
121 		.sub_stripes	= 1,
122 		.dev_stripes	= 1,
123 		.devs_max	= 1,
124 		.devs_min	= 1,
125 		.tolerated_failures = 0,
126 		.devs_increment	= 1,
127 		.ncopies	= 1,
128 		.nparity        = 0,
129 		.raid_name	= "single",
130 		.bg_flag	= 0,
131 		.mindev_error	= 0,
132 	},
133 	[BTRFS_RAID_RAID5] = {
134 		.sub_stripes	= 1,
135 		.dev_stripes	= 1,
136 		.devs_max	= 0,
137 		.devs_min	= 2,
138 		.tolerated_failures = 1,
139 		.devs_increment	= 1,
140 		.ncopies	= 1,
141 		.nparity        = 1,
142 		.raid_name	= "raid5",
143 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
144 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
145 	},
146 	[BTRFS_RAID_RAID6] = {
147 		.sub_stripes	= 1,
148 		.dev_stripes	= 1,
149 		.devs_max	= 0,
150 		.devs_min	= 3,
151 		.tolerated_failures = 2,
152 		.devs_increment	= 1,
153 		.ncopies	= 1,
154 		.nparity        = 2,
155 		.raid_name	= "raid6",
156 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
157 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
158 	},
159 };
160 
161 /*
162  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
163  * can be used as index to access btrfs_raid_array[].
164  */
165 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
166 {
167 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
168 		return BTRFS_RAID_RAID10;
169 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
170 		return BTRFS_RAID_RAID1;
171 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
172 		return BTRFS_RAID_RAID1C3;
173 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
174 		return BTRFS_RAID_RAID1C4;
175 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
176 		return BTRFS_RAID_DUP;
177 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
178 		return BTRFS_RAID_RAID0;
179 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
180 		return BTRFS_RAID_RAID5;
181 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
182 		return BTRFS_RAID_RAID6;
183 
184 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
197 /*
198  * Fill @buf with textual description of @bg_flags, no more than @size_buf
199  * bytes including terminating null byte.
200  */
201 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
202 {
203 	int i;
204 	int ret;
205 	char *bp = buf;
206 	u64 flags = bg_flags;
207 	u32 size_bp = size_buf;
208 
209 	if (!flags) {
210 		strcpy(bp, "NONE");
211 		return;
212 	}
213 
214 #define DESCRIBE_FLAG(flag, desc)						\
215 	do {								\
216 		if (flags & (flag)) {					\
217 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
218 			if (ret < 0 || ret >= size_bp)			\
219 				goto out_overflow;			\
220 			size_bp -= ret;					\
221 			bp += ret;					\
222 			flags &= ~(flag);				\
223 		}							\
224 	} while (0)
225 
226 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
227 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
228 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
229 
230 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
231 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
232 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
233 			      btrfs_raid_array[i].raid_name);
234 #undef DESCRIBE_FLAG
235 
236 	if (flags) {
237 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
238 		size_bp -= ret;
239 	}
240 
241 	if (size_bp < size_buf)
242 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
243 
244 	/*
245 	 * The text is trimmed, it's up to the caller to provide sufficiently
246 	 * large buffer
247 	 */
248 out_overflow:;
249 }
250 
251 static int init_first_rw_device(struct btrfs_trans_handle *trans);
252 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
253 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
254 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
255 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
256 			     enum btrfs_map_op op,
257 			     u64 logical, u64 *length,
258 			     struct btrfs_io_context **bioc_ret,
259 			     int mirror_num, int need_raid_map);
260 
261 /*
262  * Device locking
263  * ==============
264  *
265  * There are several mutexes that protect manipulation of devices and low-level
266  * structures like chunks but not block groups, extents or files
267  *
268  * uuid_mutex (global lock)
269  * ------------------------
270  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
271  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
272  * device) or requested by the device= mount option
273  *
274  * the mutex can be very coarse and can cover long-running operations
275  *
276  * protects: updates to fs_devices counters like missing devices, rw devices,
277  * seeding, structure cloning, opening/closing devices at mount/umount time
278  *
279  * global::fs_devs - add, remove, updates to the global list
280  *
281  * does not protect: manipulation of the fs_devices::devices list in general
282  * but in mount context it could be used to exclude list modifications by eg.
283  * scan ioctl
284  *
285  * btrfs_device::name - renames (write side), read is RCU
286  *
287  * fs_devices::device_list_mutex (per-fs, with RCU)
288  * ------------------------------------------------
289  * protects updates to fs_devices::devices, ie. adding and deleting
290  *
291  * simple list traversal with read-only actions can be done with RCU protection
292  *
293  * may be used to exclude some operations from running concurrently without any
294  * modifications to the list (see write_all_supers)
295  *
296  * Is not required at mount and close times, because our device list is
297  * protected by the uuid_mutex at that point.
298  *
299  * balance_mutex
300  * -------------
301  * protects balance structures (status, state) and context accessed from
302  * several places (internally, ioctl)
303  *
304  * chunk_mutex
305  * -----------
306  * protects chunks, adding or removing during allocation, trim or when a new
307  * device is added/removed. Additionally it also protects post_commit_list of
308  * individual devices, since they can be added to the transaction's
309  * post_commit_list only with chunk_mutex held.
310  *
311  * cleaner_mutex
312  * -------------
313  * a big lock that is held by the cleaner thread and prevents running subvolume
314  * cleaning together with relocation or delayed iputs
315  *
316  *
317  * Lock nesting
318  * ============
319  *
320  * uuid_mutex
321  *   device_list_mutex
322  *     chunk_mutex
323  *   balance_mutex
324  *
325  *
326  * Exclusive operations
327  * ====================
328  *
329  * Maintains the exclusivity of the following operations that apply to the
330  * whole filesystem and cannot run in parallel.
331  *
332  * - Balance (*)
333  * - Device add
334  * - Device remove
335  * - Device replace (*)
336  * - Resize
337  *
338  * The device operations (as above) can be in one of the following states:
339  *
340  * - Running state
341  * - Paused state
342  * - Completed state
343  *
344  * Only device operations marked with (*) can go into the Paused state for the
345  * following reasons:
346  *
347  * - ioctl (only Balance can be Paused through ioctl)
348  * - filesystem remounted as read-only
349  * - filesystem unmounted and mounted as read-only
350  * - system power-cycle and filesystem mounted as read-only
351  * - filesystem or device errors leading to forced read-only
352  *
353  * The status of exclusive operation is set and cleared atomically.
354  * During the course of Paused state, fs_info::exclusive_operation remains set.
355  * A device operation in Paused or Running state can be canceled or resumed
356  * either by ioctl (Balance only) or when remounted as read-write.
357  * The exclusive status is cleared when the device operation is canceled or
358  * completed.
359  */
360 
361 DEFINE_MUTEX(uuid_mutex);
362 static LIST_HEAD(fs_uuids);
363 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
364 {
365 	return &fs_uuids;
366 }
367 
368 /*
369  * alloc_fs_devices - allocate struct btrfs_fs_devices
370  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
371  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
372  *
373  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
374  * The returned struct is not linked onto any lists and can be destroyed with
375  * kfree() right away.
376  */
377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
378 						 const u8 *metadata_fsid)
379 {
380 	struct btrfs_fs_devices *fs_devs;
381 
382 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
383 	if (!fs_devs)
384 		return ERR_PTR(-ENOMEM);
385 
386 	mutex_init(&fs_devs->device_list_mutex);
387 
388 	INIT_LIST_HEAD(&fs_devs->devices);
389 	INIT_LIST_HEAD(&fs_devs->alloc_list);
390 	INIT_LIST_HEAD(&fs_devs->fs_list);
391 	INIT_LIST_HEAD(&fs_devs->seed_list);
392 	if (fsid)
393 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
394 
395 	if (metadata_fsid)
396 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
397 	else if (fsid)
398 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 
400 	return fs_devs;
401 }
402 
403 void btrfs_free_device(struct btrfs_device *device)
404 {
405 	WARN_ON(!list_empty(&device->post_commit_list));
406 	rcu_string_free(device->name);
407 	extent_io_tree_release(&device->alloc_state);
408 	bio_put(device->flush_bio);
409 	btrfs_destroy_dev_zone_info(device);
410 	kfree(device);
411 }
412 
413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414 {
415 	struct btrfs_device *device;
416 	WARN_ON(fs_devices->opened);
417 	while (!list_empty(&fs_devices->devices)) {
418 		device = list_entry(fs_devices->devices.next,
419 				    struct btrfs_device, dev_list);
420 		list_del(&device->dev_list);
421 		btrfs_free_device(device);
422 	}
423 	kfree(fs_devices);
424 }
425 
426 void __exit btrfs_cleanup_fs_uuids(void)
427 {
428 	struct btrfs_fs_devices *fs_devices;
429 
430 	while (!list_empty(&fs_uuids)) {
431 		fs_devices = list_entry(fs_uuids.next,
432 					struct btrfs_fs_devices, fs_list);
433 		list_del(&fs_devices->fs_list);
434 		free_fs_devices(fs_devices);
435 	}
436 }
437 
438 static noinline struct btrfs_fs_devices *find_fsid(
439 		const u8 *fsid, const u8 *metadata_fsid)
440 {
441 	struct btrfs_fs_devices *fs_devices;
442 
443 	ASSERT(fsid);
444 
445 	/* Handle non-split brain cases */
446 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
447 		if (metadata_fsid) {
448 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
449 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
450 				      BTRFS_FSID_SIZE) == 0)
451 				return fs_devices;
452 		} else {
453 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
454 				return fs_devices;
455 		}
456 	}
457 	return NULL;
458 }
459 
460 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
461 				struct btrfs_super_block *disk_super)
462 {
463 
464 	struct btrfs_fs_devices *fs_devices;
465 
466 	/*
467 	 * Handle scanned device having completed its fsid change but
468 	 * belonging to a fs_devices that was created by first scanning
469 	 * a device which didn't have its fsid/metadata_uuid changed
470 	 * at all and the CHANGING_FSID_V2 flag set.
471 	 */
472 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
473 		if (fs_devices->fsid_change &&
474 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
475 			   BTRFS_FSID_SIZE) == 0 &&
476 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
477 			   BTRFS_FSID_SIZE) == 0) {
478 			return fs_devices;
479 		}
480 	}
481 	/*
482 	 * Handle scanned device having completed its fsid change but
483 	 * belonging to a fs_devices that was created by a device that
484 	 * has an outdated pair of fsid/metadata_uuid and
485 	 * CHANGING_FSID_V2 flag set.
486 	 */
487 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
488 		if (fs_devices->fsid_change &&
489 		    memcmp(fs_devices->metadata_uuid,
490 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
491 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
492 			   BTRFS_FSID_SIZE) == 0) {
493 			return fs_devices;
494 		}
495 	}
496 
497 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
498 }
499 
500 
501 static int
502 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
503 		      int flush, struct block_device **bdev,
504 		      struct btrfs_super_block **disk_super)
505 {
506 	int ret;
507 
508 	*bdev = blkdev_get_by_path(device_path, flags, holder);
509 
510 	if (IS_ERR(*bdev)) {
511 		ret = PTR_ERR(*bdev);
512 		goto error;
513 	}
514 
515 	if (flush)
516 		sync_blockdev(*bdev);
517 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
518 	if (ret) {
519 		blkdev_put(*bdev, flags);
520 		goto error;
521 	}
522 	invalidate_bdev(*bdev);
523 	*disk_super = btrfs_read_dev_super(*bdev);
524 	if (IS_ERR(*disk_super)) {
525 		ret = PTR_ERR(*disk_super);
526 		blkdev_put(*bdev, flags);
527 		goto error;
528 	}
529 
530 	return 0;
531 
532 error:
533 	*bdev = NULL;
534 	return ret;
535 }
536 
537 static bool device_path_matched(const char *path, struct btrfs_device *device)
538 {
539 	int found;
540 
541 	rcu_read_lock();
542 	found = strcmp(rcu_str_deref(device->name), path);
543 	rcu_read_unlock();
544 
545 	return found == 0;
546 }
547 
548 /*
549  *  Search and remove all stale (devices which are not mounted) devices.
550  *  When both inputs are NULL, it will search and release all stale devices.
551  *  path:	Optional. When provided will it release all unmounted devices
552  *		matching this path only.
553  *  skip_dev:	Optional. Will skip this device when searching for the stale
554  *		devices.
555  *  Return:	0 for success or if @path is NULL.
556  * 		-EBUSY if @path is a mounted device.
557  * 		-ENOENT if @path does not match any device in the list.
558  */
559 static int btrfs_free_stale_devices(const char *path,
560 				     struct btrfs_device *skip_device)
561 {
562 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
563 	struct btrfs_device *device, *tmp_device;
564 	int ret = 0;
565 
566 	lockdep_assert_held(&uuid_mutex);
567 
568 	if (path)
569 		ret = -ENOENT;
570 
571 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
572 
573 		mutex_lock(&fs_devices->device_list_mutex);
574 		list_for_each_entry_safe(device, tmp_device,
575 					 &fs_devices->devices, dev_list) {
576 			if (skip_device && skip_device == device)
577 				continue;
578 			if (path && !device->name)
579 				continue;
580 			if (path && !device_path_matched(path, device))
581 				continue;
582 			if (fs_devices->opened) {
583 				/* for an already deleted device return 0 */
584 				if (path && ret != 0)
585 					ret = -EBUSY;
586 				break;
587 			}
588 
589 			/* delete the stale device */
590 			fs_devices->num_devices--;
591 			list_del(&device->dev_list);
592 			btrfs_free_device(device);
593 
594 			ret = 0;
595 		}
596 		mutex_unlock(&fs_devices->device_list_mutex);
597 
598 		if (fs_devices->num_devices == 0) {
599 			btrfs_sysfs_remove_fsid(fs_devices);
600 			list_del(&fs_devices->fs_list);
601 			free_fs_devices(fs_devices);
602 		}
603 	}
604 
605 	return ret;
606 }
607 
608 /*
609  * This is only used on mount, and we are protected from competing things
610  * messing with our fs_devices by the uuid_mutex, thus we do not need the
611  * fs_devices->device_list_mutex here.
612  */
613 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
614 			struct btrfs_device *device, fmode_t flags,
615 			void *holder)
616 {
617 	struct request_queue *q;
618 	struct block_device *bdev;
619 	struct btrfs_super_block *disk_super;
620 	u64 devid;
621 	int ret;
622 
623 	if (device->bdev)
624 		return -EINVAL;
625 	if (!device->name)
626 		return -EINVAL;
627 
628 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
629 				    &bdev, &disk_super);
630 	if (ret)
631 		return ret;
632 
633 	devid = btrfs_stack_device_id(&disk_super->dev_item);
634 	if (devid != device->devid)
635 		goto error_free_page;
636 
637 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
638 		goto error_free_page;
639 
640 	device->generation = btrfs_super_generation(disk_super);
641 
642 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
643 		if (btrfs_super_incompat_flags(disk_super) &
644 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
645 			pr_err(
646 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
647 			goto error_free_page;
648 		}
649 
650 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651 		fs_devices->seeding = true;
652 	} else {
653 		if (bdev_read_only(bdev))
654 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655 		else
656 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
657 	}
658 
659 	q = bdev_get_queue(bdev);
660 	if (!blk_queue_nonrot(q))
661 		fs_devices->rotating = true;
662 
663 	device->bdev = bdev;
664 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665 	device->mode = flags;
666 
667 	fs_devices->open_devices++;
668 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 		fs_devices->rw_devices++;
671 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
672 	}
673 	btrfs_release_disk_super(disk_super);
674 
675 	return 0;
676 
677 error_free_page:
678 	btrfs_release_disk_super(disk_super);
679 	blkdev_put(bdev, flags);
680 
681 	return -EINVAL;
682 }
683 
684 /*
685  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
686  * being created with a disk that has already completed its fsid change. Such
687  * disk can belong to an fs which has its FSID changed or to one which doesn't.
688  * Handle both cases here.
689  */
690 static struct btrfs_fs_devices *find_fsid_inprogress(
691 					struct btrfs_super_block *disk_super)
692 {
693 	struct btrfs_fs_devices *fs_devices;
694 
695 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
696 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
697 			   BTRFS_FSID_SIZE) != 0 &&
698 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
699 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
700 			return fs_devices;
701 		}
702 	}
703 
704 	return find_fsid(disk_super->fsid, NULL);
705 }
706 
707 
708 static struct btrfs_fs_devices *find_fsid_changed(
709 					struct btrfs_super_block *disk_super)
710 {
711 	struct btrfs_fs_devices *fs_devices;
712 
713 	/*
714 	 * Handles the case where scanned device is part of an fs that had
715 	 * multiple successful changes of FSID but currently device didn't
716 	 * observe it. Meaning our fsid will be different than theirs. We need
717 	 * to handle two subcases :
718 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
719 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
720 	 *  are equal).
721 	 */
722 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
723 		/* Changed UUIDs */
724 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
725 			   BTRFS_FSID_SIZE) != 0 &&
726 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
727 			   BTRFS_FSID_SIZE) == 0 &&
728 		    memcmp(fs_devices->fsid, disk_super->fsid,
729 			   BTRFS_FSID_SIZE) != 0)
730 			return fs_devices;
731 
732 		/* Unchanged UUIDs */
733 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
734 			   BTRFS_FSID_SIZE) == 0 &&
735 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
736 			   BTRFS_FSID_SIZE) == 0)
737 			return fs_devices;
738 	}
739 
740 	return NULL;
741 }
742 
743 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
744 				struct btrfs_super_block *disk_super)
745 {
746 	struct btrfs_fs_devices *fs_devices;
747 
748 	/*
749 	 * Handle the case where the scanned device is part of an fs whose last
750 	 * metadata UUID change reverted it to the original FSID. At the same
751 	 * time * fs_devices was first created by another constitutent device
752 	 * which didn't fully observe the operation. This results in an
753 	 * btrfs_fs_devices created with metadata/fsid different AND
754 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
755 	 * fs_devices equal to the FSID of the disk.
756 	 */
757 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
758 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
759 			   BTRFS_FSID_SIZE) != 0 &&
760 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
761 			   BTRFS_FSID_SIZE) == 0 &&
762 		    fs_devices->fsid_change)
763 			return fs_devices;
764 	}
765 
766 	return NULL;
767 }
768 /*
769  * Add new device to list of registered devices
770  *
771  * Returns:
772  * device pointer which was just added or updated when successful
773  * error pointer when failed
774  */
775 static noinline struct btrfs_device *device_list_add(const char *path,
776 			   struct btrfs_super_block *disk_super,
777 			   bool *new_device_added)
778 {
779 	struct btrfs_device *device;
780 	struct btrfs_fs_devices *fs_devices = NULL;
781 	struct rcu_string *name;
782 	u64 found_transid = btrfs_super_generation(disk_super);
783 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
784 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
785 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
786 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
787 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
788 
789 	if (fsid_change_in_progress) {
790 		if (!has_metadata_uuid)
791 			fs_devices = find_fsid_inprogress(disk_super);
792 		else
793 			fs_devices = find_fsid_changed(disk_super);
794 	} else if (has_metadata_uuid) {
795 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
796 	} else {
797 		fs_devices = find_fsid_reverted_metadata(disk_super);
798 		if (!fs_devices)
799 			fs_devices = find_fsid(disk_super->fsid, NULL);
800 	}
801 
802 
803 	if (!fs_devices) {
804 		if (has_metadata_uuid)
805 			fs_devices = alloc_fs_devices(disk_super->fsid,
806 						      disk_super->metadata_uuid);
807 		else
808 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
809 
810 		if (IS_ERR(fs_devices))
811 			return ERR_CAST(fs_devices);
812 
813 		fs_devices->fsid_change = fsid_change_in_progress;
814 
815 		mutex_lock(&fs_devices->device_list_mutex);
816 		list_add(&fs_devices->fs_list, &fs_uuids);
817 
818 		device = NULL;
819 	} else {
820 		struct btrfs_dev_lookup_args args = {
821 			.devid = devid,
822 			.uuid = disk_super->dev_item.uuid,
823 		};
824 
825 		mutex_lock(&fs_devices->device_list_mutex);
826 		device = btrfs_find_device(fs_devices, &args);
827 
828 		/*
829 		 * If this disk has been pulled into an fs devices created by
830 		 * a device which had the CHANGING_FSID_V2 flag then replace the
831 		 * metadata_uuid/fsid values of the fs_devices.
832 		 */
833 		if (fs_devices->fsid_change &&
834 		    found_transid > fs_devices->latest_generation) {
835 			memcpy(fs_devices->fsid, disk_super->fsid,
836 					BTRFS_FSID_SIZE);
837 
838 			if (has_metadata_uuid)
839 				memcpy(fs_devices->metadata_uuid,
840 				       disk_super->metadata_uuid,
841 				       BTRFS_FSID_SIZE);
842 			else
843 				memcpy(fs_devices->metadata_uuid,
844 				       disk_super->fsid, BTRFS_FSID_SIZE);
845 
846 			fs_devices->fsid_change = false;
847 		}
848 	}
849 
850 	if (!device) {
851 		if (fs_devices->opened) {
852 			mutex_unlock(&fs_devices->device_list_mutex);
853 			return ERR_PTR(-EBUSY);
854 		}
855 
856 		device = btrfs_alloc_device(NULL, &devid,
857 					    disk_super->dev_item.uuid);
858 		if (IS_ERR(device)) {
859 			mutex_unlock(&fs_devices->device_list_mutex);
860 			/* we can safely leave the fs_devices entry around */
861 			return device;
862 		}
863 
864 		name = rcu_string_strdup(path, GFP_NOFS);
865 		if (!name) {
866 			btrfs_free_device(device);
867 			mutex_unlock(&fs_devices->device_list_mutex);
868 			return ERR_PTR(-ENOMEM);
869 		}
870 		rcu_assign_pointer(device->name, name);
871 
872 		list_add_rcu(&device->dev_list, &fs_devices->devices);
873 		fs_devices->num_devices++;
874 
875 		device->fs_devices = fs_devices;
876 		*new_device_added = true;
877 
878 		if (disk_super->label[0])
879 			pr_info(
880 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
881 				disk_super->label, devid, found_transid, path,
882 				current->comm, task_pid_nr(current));
883 		else
884 			pr_info(
885 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
886 				disk_super->fsid, devid, found_transid, path,
887 				current->comm, task_pid_nr(current));
888 
889 	} else if (!device->name || strcmp(device->name->str, path)) {
890 		/*
891 		 * When FS is already mounted.
892 		 * 1. If you are here and if the device->name is NULL that
893 		 *    means this device was missing at time of FS mount.
894 		 * 2. If you are here and if the device->name is different
895 		 *    from 'path' that means either
896 		 *      a. The same device disappeared and reappeared with
897 		 *         different name. or
898 		 *      b. The missing-disk-which-was-replaced, has
899 		 *         reappeared now.
900 		 *
901 		 * We must allow 1 and 2a above. But 2b would be a spurious
902 		 * and unintentional.
903 		 *
904 		 * Further in case of 1 and 2a above, the disk at 'path'
905 		 * would have missed some transaction when it was away and
906 		 * in case of 2a the stale bdev has to be updated as well.
907 		 * 2b must not be allowed at all time.
908 		 */
909 
910 		/*
911 		 * For now, we do allow update to btrfs_fs_device through the
912 		 * btrfs dev scan cli after FS has been mounted.  We're still
913 		 * tracking a problem where systems fail mount by subvolume id
914 		 * when we reject replacement on a mounted FS.
915 		 */
916 		if (!fs_devices->opened && found_transid < device->generation) {
917 			/*
918 			 * That is if the FS is _not_ mounted and if you
919 			 * are here, that means there is more than one
920 			 * disk with same uuid and devid.We keep the one
921 			 * with larger generation number or the last-in if
922 			 * generation are equal.
923 			 */
924 			mutex_unlock(&fs_devices->device_list_mutex);
925 			return ERR_PTR(-EEXIST);
926 		}
927 
928 		/*
929 		 * We are going to replace the device path for a given devid,
930 		 * make sure it's the same device if the device is mounted
931 		 */
932 		if (device->bdev) {
933 			int error;
934 			dev_t path_dev;
935 
936 			error = lookup_bdev(path, &path_dev);
937 			if (error) {
938 				mutex_unlock(&fs_devices->device_list_mutex);
939 				return ERR_PTR(error);
940 			}
941 
942 			if (device->bdev->bd_dev != path_dev) {
943 				mutex_unlock(&fs_devices->device_list_mutex);
944 				/*
945 				 * device->fs_info may not be reliable here, so
946 				 * pass in a NULL instead. This avoids a
947 				 * possible use-after-free when the fs_info and
948 				 * fs_info->sb are already torn down.
949 				 */
950 				btrfs_warn_in_rcu(NULL,
951 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
952 						  path, devid, found_transid,
953 						  current->comm,
954 						  task_pid_nr(current));
955 				return ERR_PTR(-EEXIST);
956 			}
957 			btrfs_info_in_rcu(device->fs_info,
958 	"devid %llu device path %s changed to %s scanned by %s (%d)",
959 					  devid, rcu_str_deref(device->name),
960 					  path, current->comm,
961 					  task_pid_nr(current));
962 		}
963 
964 		name = rcu_string_strdup(path, GFP_NOFS);
965 		if (!name) {
966 			mutex_unlock(&fs_devices->device_list_mutex);
967 			return ERR_PTR(-ENOMEM);
968 		}
969 		rcu_string_free(device->name);
970 		rcu_assign_pointer(device->name, name);
971 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
972 			fs_devices->missing_devices--;
973 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
974 		}
975 	}
976 
977 	/*
978 	 * Unmount does not free the btrfs_device struct but would zero
979 	 * generation along with most of the other members. So just update
980 	 * it back. We need it to pick the disk with largest generation
981 	 * (as above).
982 	 */
983 	if (!fs_devices->opened) {
984 		device->generation = found_transid;
985 		fs_devices->latest_generation = max_t(u64, found_transid,
986 						fs_devices->latest_generation);
987 	}
988 
989 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
990 
991 	mutex_unlock(&fs_devices->device_list_mutex);
992 	return device;
993 }
994 
995 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
996 {
997 	struct btrfs_fs_devices *fs_devices;
998 	struct btrfs_device *device;
999 	struct btrfs_device *orig_dev;
1000 	int ret = 0;
1001 
1002 	lockdep_assert_held(&uuid_mutex);
1003 
1004 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1005 	if (IS_ERR(fs_devices))
1006 		return fs_devices;
1007 
1008 	fs_devices->total_devices = orig->total_devices;
1009 
1010 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1011 		struct rcu_string *name;
1012 
1013 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1014 					    orig_dev->uuid);
1015 		if (IS_ERR(device)) {
1016 			ret = PTR_ERR(device);
1017 			goto error;
1018 		}
1019 
1020 		/*
1021 		 * This is ok to do without rcu read locked because we hold the
1022 		 * uuid mutex so nothing we touch in here is going to disappear.
1023 		 */
1024 		if (orig_dev->name) {
1025 			name = rcu_string_strdup(orig_dev->name->str,
1026 					GFP_KERNEL);
1027 			if (!name) {
1028 				btrfs_free_device(device);
1029 				ret = -ENOMEM;
1030 				goto error;
1031 			}
1032 			rcu_assign_pointer(device->name, name);
1033 		}
1034 
1035 		list_add(&device->dev_list, &fs_devices->devices);
1036 		device->fs_devices = fs_devices;
1037 		fs_devices->num_devices++;
1038 	}
1039 	return fs_devices;
1040 error:
1041 	free_fs_devices(fs_devices);
1042 	return ERR_PTR(ret);
1043 }
1044 
1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1046 				      struct btrfs_device **latest_dev)
1047 {
1048 	struct btrfs_device *device, *next;
1049 
1050 	/* This is the initialized path, it is safe to release the devices. */
1051 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1052 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1053 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1054 				      &device->dev_state) &&
1055 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1056 				      &device->dev_state) &&
1057 			    (!*latest_dev ||
1058 			     device->generation > (*latest_dev)->generation)) {
1059 				*latest_dev = device;
1060 			}
1061 			continue;
1062 		}
1063 
1064 		/*
1065 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1066 		 * in btrfs_init_dev_replace() so just continue.
1067 		 */
1068 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 			continue;
1070 
1071 		if (device->bdev) {
1072 			blkdev_put(device->bdev, device->mode);
1073 			device->bdev = NULL;
1074 			fs_devices->open_devices--;
1075 		}
1076 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1077 			list_del_init(&device->dev_alloc_list);
1078 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1079 			fs_devices->rw_devices--;
1080 		}
1081 		list_del_init(&device->dev_list);
1082 		fs_devices->num_devices--;
1083 		btrfs_free_device(device);
1084 	}
1085 
1086 }
1087 
1088 /*
1089  * After we have read the system tree and know devids belonging to this
1090  * filesystem, remove the device which does not belong there.
1091  */
1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1093 {
1094 	struct btrfs_device *latest_dev = NULL;
1095 	struct btrfs_fs_devices *seed_dev;
1096 
1097 	mutex_lock(&uuid_mutex);
1098 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1099 
1100 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1101 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1102 
1103 	fs_devices->latest_dev = latest_dev;
1104 
1105 	mutex_unlock(&uuid_mutex);
1106 }
1107 
1108 static void btrfs_close_bdev(struct btrfs_device *device)
1109 {
1110 	if (!device->bdev)
1111 		return;
1112 
1113 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1114 		sync_blockdev(device->bdev);
1115 		invalidate_bdev(device->bdev);
1116 	}
1117 
1118 	blkdev_put(device->bdev, device->mode);
1119 }
1120 
1121 static void btrfs_close_one_device(struct btrfs_device *device)
1122 {
1123 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1126 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1127 		list_del_init(&device->dev_alloc_list);
1128 		fs_devices->rw_devices--;
1129 	}
1130 
1131 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1132 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1133 
1134 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1135 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1136 		fs_devices->missing_devices--;
1137 	}
1138 
1139 	btrfs_close_bdev(device);
1140 	if (device->bdev) {
1141 		fs_devices->open_devices--;
1142 		device->bdev = NULL;
1143 	}
1144 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1145 	btrfs_destroy_dev_zone_info(device);
1146 
1147 	device->fs_info = NULL;
1148 	atomic_set(&device->dev_stats_ccnt, 0);
1149 	extent_io_tree_release(&device->alloc_state);
1150 
1151 	/*
1152 	 * Reset the flush error record. We might have a transient flush error
1153 	 * in this mount, and if so we aborted the current transaction and set
1154 	 * the fs to an error state, guaranteeing no super blocks can be further
1155 	 * committed. However that error might be transient and if we unmount the
1156 	 * filesystem and mount it again, we should allow the mount to succeed
1157 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1158 	 * filesystem again we still get flush errors, then we will again abort
1159 	 * any transaction and set the error state, guaranteeing no commits of
1160 	 * unsafe super blocks.
1161 	 */
1162 	device->last_flush_error = 0;
1163 
1164 	/* Verify the device is back in a pristine state  */
1165 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1166 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1167 	ASSERT(list_empty(&device->dev_alloc_list));
1168 	ASSERT(list_empty(&device->post_commit_list));
1169 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1170 }
1171 
1172 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1173 {
1174 	struct btrfs_device *device, *tmp;
1175 
1176 	lockdep_assert_held(&uuid_mutex);
1177 
1178 	if (--fs_devices->opened > 0)
1179 		return;
1180 
1181 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1182 		btrfs_close_one_device(device);
1183 
1184 	WARN_ON(fs_devices->open_devices);
1185 	WARN_ON(fs_devices->rw_devices);
1186 	fs_devices->opened = 0;
1187 	fs_devices->seeding = false;
1188 	fs_devices->fs_info = NULL;
1189 }
1190 
1191 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1192 {
1193 	LIST_HEAD(list);
1194 	struct btrfs_fs_devices *tmp;
1195 
1196 	mutex_lock(&uuid_mutex);
1197 	close_fs_devices(fs_devices);
1198 	if (!fs_devices->opened)
1199 		list_splice_init(&fs_devices->seed_list, &list);
1200 
1201 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1202 		close_fs_devices(fs_devices);
1203 		list_del(&fs_devices->seed_list);
1204 		free_fs_devices(fs_devices);
1205 	}
1206 	mutex_unlock(&uuid_mutex);
1207 }
1208 
1209 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210 				fmode_t flags, void *holder)
1211 {
1212 	struct btrfs_device *device;
1213 	struct btrfs_device *latest_dev = NULL;
1214 	struct btrfs_device *tmp_device;
1215 
1216 	flags |= FMODE_EXCL;
1217 
1218 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219 				 dev_list) {
1220 		int ret;
1221 
1222 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223 		if (ret == 0 &&
1224 		    (!latest_dev || device->generation > latest_dev->generation)) {
1225 			latest_dev = device;
1226 		} else if (ret == -ENODATA) {
1227 			fs_devices->num_devices--;
1228 			list_del(&device->dev_list);
1229 			btrfs_free_device(device);
1230 		}
1231 	}
1232 	if (fs_devices->open_devices == 0)
1233 		return -EINVAL;
1234 
1235 	fs_devices->opened = 1;
1236 	fs_devices->latest_dev = latest_dev;
1237 	fs_devices->total_rw_bytes = 0;
1238 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240 
1241 	return 0;
1242 }
1243 
1244 static int devid_cmp(void *priv, const struct list_head *a,
1245 		     const struct list_head *b)
1246 {
1247 	const struct btrfs_device *dev1, *dev2;
1248 
1249 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1250 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1251 
1252 	if (dev1->devid < dev2->devid)
1253 		return -1;
1254 	else if (dev1->devid > dev2->devid)
1255 		return 1;
1256 	return 0;
1257 }
1258 
1259 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260 		       fmode_t flags, void *holder)
1261 {
1262 	int ret;
1263 
1264 	lockdep_assert_held(&uuid_mutex);
1265 	/*
1266 	 * The device_list_mutex cannot be taken here in case opening the
1267 	 * underlying device takes further locks like open_mutex.
1268 	 *
1269 	 * We also don't need the lock here as this is called during mount and
1270 	 * exclusion is provided by uuid_mutex
1271 	 */
1272 
1273 	if (fs_devices->opened) {
1274 		fs_devices->opened++;
1275 		ret = 0;
1276 	} else {
1277 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1278 		ret = open_fs_devices(fs_devices, flags, holder);
1279 	}
1280 
1281 	return ret;
1282 }
1283 
1284 void btrfs_release_disk_super(struct btrfs_super_block *super)
1285 {
1286 	struct page *page = virt_to_page(super);
1287 
1288 	put_page(page);
1289 }
1290 
1291 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292 						       u64 bytenr, u64 bytenr_orig)
1293 {
1294 	struct btrfs_super_block *disk_super;
1295 	struct page *page;
1296 	void *p;
1297 	pgoff_t index;
1298 
1299 	/* make sure our super fits in the device */
1300 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301 		return ERR_PTR(-EINVAL);
1302 
1303 	/* make sure our super fits in the page */
1304 	if (sizeof(*disk_super) > PAGE_SIZE)
1305 		return ERR_PTR(-EINVAL);
1306 
1307 	/* make sure our super doesn't straddle pages on disk */
1308 	index = bytenr >> PAGE_SHIFT;
1309 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310 		return ERR_PTR(-EINVAL);
1311 
1312 	/* pull in the page with our super */
1313 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1314 
1315 	if (IS_ERR(page))
1316 		return ERR_CAST(page);
1317 
1318 	p = page_address(page);
1319 
1320 	/* align our pointer to the offset of the super block */
1321 	disk_super = p + offset_in_page(bytenr);
1322 
1323 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325 		btrfs_release_disk_super(p);
1326 		return ERR_PTR(-EINVAL);
1327 	}
1328 
1329 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331 
1332 	return disk_super;
1333 }
1334 
1335 int btrfs_forget_devices(const char *path)
1336 {
1337 	int ret;
1338 
1339 	mutex_lock(&uuid_mutex);
1340 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1341 	mutex_unlock(&uuid_mutex);
1342 
1343 	return ret;
1344 }
1345 
1346 /*
1347  * Look for a btrfs signature on a device. This may be called out of the mount path
1348  * and we are not allowed to call set_blocksize during the scan. The superblock
1349  * is read via pagecache
1350  */
1351 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352 					   void *holder)
1353 {
1354 	struct btrfs_super_block *disk_super;
1355 	bool new_device_added = false;
1356 	struct btrfs_device *device = NULL;
1357 	struct block_device *bdev;
1358 	u64 bytenr, bytenr_orig;
1359 	int ret;
1360 
1361 	lockdep_assert_held(&uuid_mutex);
1362 
1363 	/*
1364 	 * we would like to check all the supers, but that would make
1365 	 * a btrfs mount succeed after a mkfs from a different FS.
1366 	 * So, we need to add a special mount option to scan for
1367 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368 	 */
1369 	flags |= FMODE_EXCL;
1370 
1371 	bdev = blkdev_get_by_path(path, flags, holder);
1372 	if (IS_ERR(bdev))
1373 		return ERR_CAST(bdev);
1374 
1375 	bytenr_orig = btrfs_sb_offset(0);
1376 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377 	if (ret) {
1378 		device = ERR_PTR(ret);
1379 		goto error_bdev_put;
1380 	}
1381 
1382 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1383 	if (IS_ERR(disk_super)) {
1384 		device = ERR_CAST(disk_super);
1385 		goto error_bdev_put;
1386 	}
1387 
1388 	device = device_list_add(path, disk_super, &new_device_added);
1389 	if (!IS_ERR(device)) {
1390 		if (new_device_added)
1391 			btrfs_free_stale_devices(path, device);
1392 	}
1393 
1394 	btrfs_release_disk_super(disk_super);
1395 
1396 error_bdev_put:
1397 	blkdev_put(bdev, flags);
1398 
1399 	return device;
1400 }
1401 
1402 /*
1403  * Try to find a chunk that intersects [start, start + len] range and when one
1404  * such is found, record the end of it in *start
1405  */
1406 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1407 				    u64 len)
1408 {
1409 	u64 physical_start, physical_end;
1410 
1411 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1412 
1413 	if (!find_first_extent_bit(&device->alloc_state, *start,
1414 				   &physical_start, &physical_end,
1415 				   CHUNK_ALLOCATED, NULL)) {
1416 
1417 		if (in_range(physical_start, *start, len) ||
1418 		    in_range(*start, physical_start,
1419 			     physical_end - physical_start)) {
1420 			*start = physical_end + 1;
1421 			return true;
1422 		}
1423 	}
1424 	return false;
1425 }
1426 
1427 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1428 {
1429 	switch (device->fs_devices->chunk_alloc_policy) {
1430 	case BTRFS_CHUNK_ALLOC_REGULAR:
1431 		/*
1432 		 * We don't want to overwrite the superblock on the drive nor
1433 		 * any area used by the boot loader (grub for example), so we
1434 		 * make sure to start at an offset of at least 1MB.
1435 		 */
1436 		return max_t(u64, start, SZ_1M);
1437 	case BTRFS_CHUNK_ALLOC_ZONED:
1438 		/*
1439 		 * We don't care about the starting region like regular
1440 		 * allocator, because we anyway use/reserve the first two zones
1441 		 * for superblock logging.
1442 		 */
1443 		return ALIGN(start, device->zone_info->zone_size);
1444 	default:
1445 		BUG();
1446 	}
1447 }
1448 
1449 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1450 					u64 *hole_start, u64 *hole_size,
1451 					u64 num_bytes)
1452 {
1453 	u64 zone_size = device->zone_info->zone_size;
1454 	u64 pos;
1455 	int ret;
1456 	bool changed = false;
1457 
1458 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1459 
1460 	while (*hole_size > 0) {
1461 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1462 						   *hole_start + *hole_size,
1463 						   num_bytes);
1464 		if (pos != *hole_start) {
1465 			*hole_size = *hole_start + *hole_size - pos;
1466 			*hole_start = pos;
1467 			changed = true;
1468 			if (*hole_size < num_bytes)
1469 				break;
1470 		}
1471 
1472 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1473 
1474 		/* Range is ensured to be empty */
1475 		if (!ret)
1476 			return changed;
1477 
1478 		/* Given hole range was invalid (outside of device) */
1479 		if (ret == -ERANGE) {
1480 			*hole_start += *hole_size;
1481 			*hole_size = 0;
1482 			return true;
1483 		}
1484 
1485 		*hole_start += zone_size;
1486 		*hole_size -= zone_size;
1487 		changed = true;
1488 	}
1489 
1490 	return changed;
1491 }
1492 
1493 /**
1494  * dev_extent_hole_check - check if specified hole is suitable for allocation
1495  * @device:	the device which we have the hole
1496  * @hole_start: starting position of the hole
1497  * @hole_size:	the size of the hole
1498  * @num_bytes:	the size of the free space that we need
1499  *
1500  * This function may modify @hole_start and @hole_size to reflect the suitable
1501  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1502  */
1503 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1504 				  u64 *hole_size, u64 num_bytes)
1505 {
1506 	bool changed = false;
1507 	u64 hole_end = *hole_start + *hole_size;
1508 
1509 	for (;;) {
1510 		/*
1511 		 * Check before we set max_hole_start, otherwise we could end up
1512 		 * sending back this offset anyway.
1513 		 */
1514 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1515 			if (hole_end >= *hole_start)
1516 				*hole_size = hole_end - *hole_start;
1517 			else
1518 				*hole_size = 0;
1519 			changed = true;
1520 		}
1521 
1522 		switch (device->fs_devices->chunk_alloc_policy) {
1523 		case BTRFS_CHUNK_ALLOC_REGULAR:
1524 			/* No extra check */
1525 			break;
1526 		case BTRFS_CHUNK_ALLOC_ZONED:
1527 			if (dev_extent_hole_check_zoned(device, hole_start,
1528 							hole_size, num_bytes)) {
1529 				changed = true;
1530 				/*
1531 				 * The changed hole can contain pending extent.
1532 				 * Loop again to check that.
1533 				 */
1534 				continue;
1535 			}
1536 			break;
1537 		default:
1538 			BUG();
1539 		}
1540 
1541 		break;
1542 	}
1543 
1544 	return changed;
1545 }
1546 
1547 /*
1548  * find_free_dev_extent_start - find free space in the specified device
1549  * @device:	  the device which we search the free space in
1550  * @num_bytes:	  the size of the free space that we need
1551  * @search_start: the position from which to begin the search
1552  * @start:	  store the start of the free space.
1553  * @len:	  the size of the free space. that we find, or the size
1554  *		  of the max free space if we don't find suitable free space
1555  *
1556  * this uses a pretty simple search, the expectation is that it is
1557  * called very infrequently and that a given device has a small number
1558  * of extents
1559  *
1560  * @start is used to store the start of the free space if we find. But if we
1561  * don't find suitable free space, it will be used to store the start position
1562  * of the max free space.
1563  *
1564  * @len is used to store the size of the free space that we find.
1565  * But if we don't find suitable free space, it is used to store the size of
1566  * the max free space.
1567  *
1568  * NOTE: This function will search *commit* root of device tree, and does extra
1569  * check to ensure dev extents are not double allocated.
1570  * This makes the function safe to allocate dev extents but may not report
1571  * correct usable device space, as device extent freed in current transaction
1572  * is not reported as available.
1573  */
1574 static int find_free_dev_extent_start(struct btrfs_device *device,
1575 				u64 num_bytes, u64 search_start, u64 *start,
1576 				u64 *len)
1577 {
1578 	struct btrfs_fs_info *fs_info = device->fs_info;
1579 	struct btrfs_root *root = fs_info->dev_root;
1580 	struct btrfs_key key;
1581 	struct btrfs_dev_extent *dev_extent;
1582 	struct btrfs_path *path;
1583 	u64 hole_size;
1584 	u64 max_hole_start;
1585 	u64 max_hole_size;
1586 	u64 extent_end;
1587 	u64 search_end = device->total_bytes;
1588 	int ret;
1589 	int slot;
1590 	struct extent_buffer *l;
1591 
1592 	search_start = dev_extent_search_start(device, search_start);
1593 
1594 	WARN_ON(device->zone_info &&
1595 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1596 
1597 	path = btrfs_alloc_path();
1598 	if (!path)
1599 		return -ENOMEM;
1600 
1601 	max_hole_start = search_start;
1602 	max_hole_size = 0;
1603 
1604 again:
1605 	if (search_start >= search_end ||
1606 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1607 		ret = -ENOSPC;
1608 		goto out;
1609 	}
1610 
1611 	path->reada = READA_FORWARD;
1612 	path->search_commit_root = 1;
1613 	path->skip_locking = 1;
1614 
1615 	key.objectid = device->devid;
1616 	key.offset = search_start;
1617 	key.type = BTRFS_DEV_EXTENT_KEY;
1618 
1619 	ret = btrfs_search_backwards(root, &key, path);
1620 	if (ret < 0)
1621 		goto out;
1622 
1623 	while (1) {
1624 		l = path->nodes[0];
1625 		slot = path->slots[0];
1626 		if (slot >= btrfs_header_nritems(l)) {
1627 			ret = btrfs_next_leaf(root, path);
1628 			if (ret == 0)
1629 				continue;
1630 			if (ret < 0)
1631 				goto out;
1632 
1633 			break;
1634 		}
1635 		btrfs_item_key_to_cpu(l, &key, slot);
1636 
1637 		if (key.objectid < device->devid)
1638 			goto next;
1639 
1640 		if (key.objectid > device->devid)
1641 			break;
1642 
1643 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1644 			goto next;
1645 
1646 		if (key.offset > search_start) {
1647 			hole_size = key.offset - search_start;
1648 			dev_extent_hole_check(device, &search_start, &hole_size,
1649 					      num_bytes);
1650 
1651 			if (hole_size > max_hole_size) {
1652 				max_hole_start = search_start;
1653 				max_hole_size = hole_size;
1654 			}
1655 
1656 			/*
1657 			 * If this free space is greater than which we need,
1658 			 * it must be the max free space that we have found
1659 			 * until now, so max_hole_start must point to the start
1660 			 * of this free space and the length of this free space
1661 			 * is stored in max_hole_size. Thus, we return
1662 			 * max_hole_start and max_hole_size and go back to the
1663 			 * caller.
1664 			 */
1665 			if (hole_size >= num_bytes) {
1666 				ret = 0;
1667 				goto out;
1668 			}
1669 		}
1670 
1671 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1672 		extent_end = key.offset + btrfs_dev_extent_length(l,
1673 								  dev_extent);
1674 		if (extent_end > search_start)
1675 			search_start = extent_end;
1676 next:
1677 		path->slots[0]++;
1678 		cond_resched();
1679 	}
1680 
1681 	/*
1682 	 * At this point, search_start should be the end of
1683 	 * allocated dev extents, and when shrinking the device,
1684 	 * search_end may be smaller than search_start.
1685 	 */
1686 	if (search_end > search_start) {
1687 		hole_size = search_end - search_start;
1688 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1689 					  num_bytes)) {
1690 			btrfs_release_path(path);
1691 			goto again;
1692 		}
1693 
1694 		if (hole_size > max_hole_size) {
1695 			max_hole_start = search_start;
1696 			max_hole_size = hole_size;
1697 		}
1698 	}
1699 
1700 	/* See above. */
1701 	if (max_hole_size < num_bytes)
1702 		ret = -ENOSPC;
1703 	else
1704 		ret = 0;
1705 
1706 out:
1707 	btrfs_free_path(path);
1708 	*start = max_hole_start;
1709 	if (len)
1710 		*len = max_hole_size;
1711 	return ret;
1712 }
1713 
1714 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1715 			 u64 *start, u64 *len)
1716 {
1717 	/* FIXME use last free of some kind */
1718 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1719 }
1720 
1721 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1722 			  struct btrfs_device *device,
1723 			  u64 start, u64 *dev_extent_len)
1724 {
1725 	struct btrfs_fs_info *fs_info = device->fs_info;
1726 	struct btrfs_root *root = fs_info->dev_root;
1727 	int ret;
1728 	struct btrfs_path *path;
1729 	struct btrfs_key key;
1730 	struct btrfs_key found_key;
1731 	struct extent_buffer *leaf = NULL;
1732 	struct btrfs_dev_extent *extent = NULL;
1733 
1734 	path = btrfs_alloc_path();
1735 	if (!path)
1736 		return -ENOMEM;
1737 
1738 	key.objectid = device->devid;
1739 	key.offset = start;
1740 	key.type = BTRFS_DEV_EXTENT_KEY;
1741 again:
1742 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1743 	if (ret > 0) {
1744 		ret = btrfs_previous_item(root, path, key.objectid,
1745 					  BTRFS_DEV_EXTENT_KEY);
1746 		if (ret)
1747 			goto out;
1748 		leaf = path->nodes[0];
1749 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1750 		extent = btrfs_item_ptr(leaf, path->slots[0],
1751 					struct btrfs_dev_extent);
1752 		BUG_ON(found_key.offset > start || found_key.offset +
1753 		       btrfs_dev_extent_length(leaf, extent) < start);
1754 		key = found_key;
1755 		btrfs_release_path(path);
1756 		goto again;
1757 	} else if (ret == 0) {
1758 		leaf = path->nodes[0];
1759 		extent = btrfs_item_ptr(leaf, path->slots[0],
1760 					struct btrfs_dev_extent);
1761 	} else {
1762 		goto out;
1763 	}
1764 
1765 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1766 
1767 	ret = btrfs_del_item(trans, root, path);
1768 	if (ret == 0)
1769 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1770 out:
1771 	btrfs_free_path(path);
1772 	return ret;
1773 }
1774 
1775 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1776 {
1777 	struct extent_map_tree *em_tree;
1778 	struct extent_map *em;
1779 	struct rb_node *n;
1780 	u64 ret = 0;
1781 
1782 	em_tree = &fs_info->mapping_tree;
1783 	read_lock(&em_tree->lock);
1784 	n = rb_last(&em_tree->map.rb_root);
1785 	if (n) {
1786 		em = rb_entry(n, struct extent_map, rb_node);
1787 		ret = em->start + em->len;
1788 	}
1789 	read_unlock(&em_tree->lock);
1790 
1791 	return ret;
1792 }
1793 
1794 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1795 				    u64 *devid_ret)
1796 {
1797 	int ret;
1798 	struct btrfs_key key;
1799 	struct btrfs_key found_key;
1800 	struct btrfs_path *path;
1801 
1802 	path = btrfs_alloc_path();
1803 	if (!path)
1804 		return -ENOMEM;
1805 
1806 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1807 	key.type = BTRFS_DEV_ITEM_KEY;
1808 	key.offset = (u64)-1;
1809 
1810 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1811 	if (ret < 0)
1812 		goto error;
1813 
1814 	if (ret == 0) {
1815 		/* Corruption */
1816 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1817 		ret = -EUCLEAN;
1818 		goto error;
1819 	}
1820 
1821 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1822 				  BTRFS_DEV_ITEMS_OBJECTID,
1823 				  BTRFS_DEV_ITEM_KEY);
1824 	if (ret) {
1825 		*devid_ret = 1;
1826 	} else {
1827 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1828 				      path->slots[0]);
1829 		*devid_ret = found_key.offset + 1;
1830 	}
1831 	ret = 0;
1832 error:
1833 	btrfs_free_path(path);
1834 	return ret;
1835 }
1836 
1837 /*
1838  * the device information is stored in the chunk root
1839  * the btrfs_device struct should be fully filled in
1840  */
1841 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1842 			    struct btrfs_device *device)
1843 {
1844 	int ret;
1845 	struct btrfs_path *path;
1846 	struct btrfs_dev_item *dev_item;
1847 	struct extent_buffer *leaf;
1848 	struct btrfs_key key;
1849 	unsigned long ptr;
1850 
1851 	path = btrfs_alloc_path();
1852 	if (!path)
1853 		return -ENOMEM;
1854 
1855 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1856 	key.type = BTRFS_DEV_ITEM_KEY;
1857 	key.offset = device->devid;
1858 
1859 	btrfs_reserve_chunk_metadata(trans, true);
1860 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1861 				      &key, sizeof(*dev_item));
1862 	btrfs_trans_release_chunk_metadata(trans);
1863 	if (ret)
1864 		goto out;
1865 
1866 	leaf = path->nodes[0];
1867 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1868 
1869 	btrfs_set_device_id(leaf, dev_item, device->devid);
1870 	btrfs_set_device_generation(leaf, dev_item, 0);
1871 	btrfs_set_device_type(leaf, dev_item, device->type);
1872 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1873 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1874 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1875 	btrfs_set_device_total_bytes(leaf, dev_item,
1876 				     btrfs_device_get_disk_total_bytes(device));
1877 	btrfs_set_device_bytes_used(leaf, dev_item,
1878 				    btrfs_device_get_bytes_used(device));
1879 	btrfs_set_device_group(leaf, dev_item, 0);
1880 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1881 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1882 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1883 
1884 	ptr = btrfs_device_uuid(dev_item);
1885 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1886 	ptr = btrfs_device_fsid(dev_item);
1887 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1888 			    ptr, BTRFS_FSID_SIZE);
1889 	btrfs_mark_buffer_dirty(leaf);
1890 
1891 	ret = 0;
1892 out:
1893 	btrfs_free_path(path);
1894 	return ret;
1895 }
1896 
1897 /*
1898  * Function to update ctime/mtime for a given device path.
1899  * Mainly used for ctime/mtime based probe like libblkid.
1900  *
1901  * We don't care about errors here, this is just to be kind to userspace.
1902  */
1903 static void update_dev_time(const char *device_path)
1904 {
1905 	struct path path;
1906 	struct timespec64 now;
1907 	int ret;
1908 
1909 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1910 	if (ret)
1911 		return;
1912 
1913 	now = current_time(d_inode(path.dentry));
1914 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1915 	path_put(&path);
1916 }
1917 
1918 static int btrfs_rm_dev_item(struct btrfs_device *device)
1919 {
1920 	struct btrfs_root *root = device->fs_info->chunk_root;
1921 	int ret;
1922 	struct btrfs_path *path;
1923 	struct btrfs_key key;
1924 	struct btrfs_trans_handle *trans;
1925 
1926 	path = btrfs_alloc_path();
1927 	if (!path)
1928 		return -ENOMEM;
1929 
1930 	trans = btrfs_start_transaction(root, 0);
1931 	if (IS_ERR(trans)) {
1932 		btrfs_free_path(path);
1933 		return PTR_ERR(trans);
1934 	}
1935 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1936 	key.type = BTRFS_DEV_ITEM_KEY;
1937 	key.offset = device->devid;
1938 
1939 	btrfs_reserve_chunk_metadata(trans, false);
1940 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1941 	btrfs_trans_release_chunk_metadata(trans);
1942 	if (ret) {
1943 		if (ret > 0)
1944 			ret = -ENOENT;
1945 		btrfs_abort_transaction(trans, ret);
1946 		btrfs_end_transaction(trans);
1947 		goto out;
1948 	}
1949 
1950 	ret = btrfs_del_item(trans, root, path);
1951 	if (ret) {
1952 		btrfs_abort_transaction(trans, ret);
1953 		btrfs_end_transaction(trans);
1954 	}
1955 
1956 out:
1957 	btrfs_free_path(path);
1958 	if (!ret)
1959 		ret = btrfs_commit_transaction(trans);
1960 	return ret;
1961 }
1962 
1963 /*
1964  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1965  * filesystem. It's up to the caller to adjust that number regarding eg. device
1966  * replace.
1967  */
1968 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1969 		u64 num_devices)
1970 {
1971 	u64 all_avail;
1972 	unsigned seq;
1973 	int i;
1974 
1975 	do {
1976 		seq = read_seqbegin(&fs_info->profiles_lock);
1977 
1978 		all_avail = fs_info->avail_data_alloc_bits |
1979 			    fs_info->avail_system_alloc_bits |
1980 			    fs_info->avail_metadata_alloc_bits;
1981 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1982 
1983 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1984 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1985 			continue;
1986 
1987 		if (num_devices < btrfs_raid_array[i].devs_min)
1988 			return btrfs_raid_array[i].mindev_error;
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 static struct btrfs_device * btrfs_find_next_active_device(
1995 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1996 {
1997 	struct btrfs_device *next_device;
1998 
1999 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2000 		if (next_device != device &&
2001 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2002 		    && next_device->bdev)
2003 			return next_device;
2004 	}
2005 
2006 	return NULL;
2007 }
2008 
2009 /*
2010  * Helper function to check if the given device is part of s_bdev / latest_dev
2011  * and replace it with the provided or the next active device, in the context
2012  * where this function called, there should be always be another device (or
2013  * this_dev) which is active.
2014  */
2015 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2016 					    struct btrfs_device *next_device)
2017 {
2018 	struct btrfs_fs_info *fs_info = device->fs_info;
2019 
2020 	if (!next_device)
2021 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2022 							    device);
2023 	ASSERT(next_device);
2024 
2025 	if (fs_info->sb->s_bdev &&
2026 			(fs_info->sb->s_bdev == device->bdev))
2027 		fs_info->sb->s_bdev = next_device->bdev;
2028 
2029 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2030 		fs_info->fs_devices->latest_dev = next_device;
2031 }
2032 
2033 /*
2034  * Return btrfs_fs_devices::num_devices excluding the device that's being
2035  * currently replaced.
2036  */
2037 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2038 {
2039 	u64 num_devices = fs_info->fs_devices->num_devices;
2040 
2041 	down_read(&fs_info->dev_replace.rwsem);
2042 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2043 		ASSERT(num_devices > 1);
2044 		num_devices--;
2045 	}
2046 	up_read(&fs_info->dev_replace.rwsem);
2047 
2048 	return num_devices;
2049 }
2050 
2051 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2052 			       struct block_device *bdev,
2053 			       const char *device_path)
2054 {
2055 	struct btrfs_super_block *disk_super;
2056 	int copy_num;
2057 
2058 	if (!bdev)
2059 		return;
2060 
2061 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2062 		struct page *page;
2063 		int ret;
2064 
2065 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2066 		if (IS_ERR(disk_super))
2067 			continue;
2068 
2069 		if (bdev_is_zoned(bdev)) {
2070 			btrfs_reset_sb_log_zones(bdev, copy_num);
2071 			continue;
2072 		}
2073 
2074 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2075 
2076 		page = virt_to_page(disk_super);
2077 		set_page_dirty(page);
2078 		lock_page(page);
2079 		/* write_on_page() unlocks the page */
2080 		ret = write_one_page(page);
2081 		if (ret)
2082 			btrfs_warn(fs_info,
2083 				"error clearing superblock number %d (%d)",
2084 				copy_num, ret);
2085 		btrfs_release_disk_super(disk_super);
2086 
2087 	}
2088 
2089 	/* Notify udev that device has changed */
2090 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2091 
2092 	/* Update ctime/mtime for device path for libblkid */
2093 	update_dev_time(device_path);
2094 }
2095 
2096 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2097 		    struct btrfs_dev_lookup_args *args,
2098 		    struct block_device **bdev, fmode_t *mode)
2099 {
2100 	struct btrfs_device *device;
2101 	struct btrfs_fs_devices *cur_devices;
2102 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2103 	u64 num_devices;
2104 	int ret = 0;
2105 
2106 	/*
2107 	 * The device list in fs_devices is accessed without locks (neither
2108 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2109 	 * filesystem and another device rm cannot run.
2110 	 */
2111 	num_devices = btrfs_num_devices(fs_info);
2112 
2113 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2114 	if (ret)
2115 		goto out;
2116 
2117 	device = btrfs_find_device(fs_info->fs_devices, args);
2118 	if (!device) {
2119 		if (args->missing)
2120 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2121 		else
2122 			ret = -ENOENT;
2123 		goto out;
2124 	}
2125 
2126 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2127 		btrfs_warn_in_rcu(fs_info,
2128 		  "cannot remove device %s (devid %llu) due to active swapfile",
2129 				  rcu_str_deref(device->name), device->devid);
2130 		ret = -ETXTBSY;
2131 		goto out;
2132 	}
2133 
2134 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2135 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2136 		goto out;
2137 	}
2138 
2139 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2140 	    fs_info->fs_devices->rw_devices == 1) {
2141 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2142 		goto out;
2143 	}
2144 
2145 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2146 		mutex_lock(&fs_info->chunk_mutex);
2147 		list_del_init(&device->dev_alloc_list);
2148 		device->fs_devices->rw_devices--;
2149 		mutex_unlock(&fs_info->chunk_mutex);
2150 	}
2151 
2152 	ret = btrfs_shrink_device(device, 0);
2153 	if (!ret)
2154 		btrfs_reada_remove_dev(device);
2155 	if (ret)
2156 		goto error_undo;
2157 
2158 	/*
2159 	 * TODO: the superblock still includes this device in its num_devices
2160 	 * counter although write_all_supers() is not locked out. This
2161 	 * could give a filesystem state which requires a degraded mount.
2162 	 */
2163 	ret = btrfs_rm_dev_item(device);
2164 	if (ret)
2165 		goto error_undo;
2166 
2167 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2168 	btrfs_scrub_cancel_dev(device);
2169 
2170 	/*
2171 	 * the device list mutex makes sure that we don't change
2172 	 * the device list while someone else is writing out all
2173 	 * the device supers. Whoever is writing all supers, should
2174 	 * lock the device list mutex before getting the number of
2175 	 * devices in the super block (super_copy). Conversely,
2176 	 * whoever updates the number of devices in the super block
2177 	 * (super_copy) should hold the device list mutex.
2178 	 */
2179 
2180 	/*
2181 	 * In normal cases the cur_devices == fs_devices. But in case
2182 	 * of deleting a seed device, the cur_devices should point to
2183 	 * its own fs_devices listed under the fs_devices->seed_list.
2184 	 */
2185 	cur_devices = device->fs_devices;
2186 	mutex_lock(&fs_devices->device_list_mutex);
2187 	list_del_rcu(&device->dev_list);
2188 
2189 	cur_devices->num_devices--;
2190 	cur_devices->total_devices--;
2191 	/* Update total_devices of the parent fs_devices if it's seed */
2192 	if (cur_devices != fs_devices)
2193 		fs_devices->total_devices--;
2194 
2195 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2196 		cur_devices->missing_devices--;
2197 
2198 	btrfs_assign_next_active_device(device, NULL);
2199 
2200 	if (device->bdev) {
2201 		cur_devices->open_devices--;
2202 		/* remove sysfs entry */
2203 		btrfs_sysfs_remove_device(device);
2204 	}
2205 
2206 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2207 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2208 	mutex_unlock(&fs_devices->device_list_mutex);
2209 
2210 	/*
2211 	 * At this point, the device is zero sized and detached from the
2212 	 * devices list.  All that's left is to zero out the old supers and
2213 	 * free the device.
2214 	 *
2215 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2216 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2217 	 * block device and it's dependencies.  Instead just flush the device
2218 	 * and let the caller do the final blkdev_put.
2219 	 */
2220 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2221 		btrfs_scratch_superblocks(fs_info, device->bdev,
2222 					  device->name->str);
2223 		if (device->bdev) {
2224 			sync_blockdev(device->bdev);
2225 			invalidate_bdev(device->bdev);
2226 		}
2227 	}
2228 
2229 	*bdev = device->bdev;
2230 	*mode = device->mode;
2231 	synchronize_rcu();
2232 	btrfs_free_device(device);
2233 
2234 	/*
2235 	 * This can happen if cur_devices is the private seed devices list.  We
2236 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2237 	 * to be held, but in fact we don't need that for the private
2238 	 * seed_devices, we can simply decrement cur_devices->opened and then
2239 	 * remove it from our list and free the fs_devices.
2240 	 */
2241 	if (cur_devices->num_devices == 0) {
2242 		list_del_init(&cur_devices->seed_list);
2243 		ASSERT(cur_devices->opened == 1);
2244 		cur_devices->opened--;
2245 		free_fs_devices(cur_devices);
2246 	}
2247 
2248 out:
2249 	return ret;
2250 
2251 error_undo:
2252 	btrfs_reada_undo_remove_dev(device);
2253 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2254 		mutex_lock(&fs_info->chunk_mutex);
2255 		list_add(&device->dev_alloc_list,
2256 			 &fs_devices->alloc_list);
2257 		device->fs_devices->rw_devices++;
2258 		mutex_unlock(&fs_info->chunk_mutex);
2259 	}
2260 	goto out;
2261 }
2262 
2263 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2264 {
2265 	struct btrfs_fs_devices *fs_devices;
2266 
2267 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2268 
2269 	/*
2270 	 * in case of fs with no seed, srcdev->fs_devices will point
2271 	 * to fs_devices of fs_info. However when the dev being replaced is
2272 	 * a seed dev it will point to the seed's local fs_devices. In short
2273 	 * srcdev will have its correct fs_devices in both the cases.
2274 	 */
2275 	fs_devices = srcdev->fs_devices;
2276 
2277 	list_del_rcu(&srcdev->dev_list);
2278 	list_del(&srcdev->dev_alloc_list);
2279 	fs_devices->num_devices--;
2280 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2281 		fs_devices->missing_devices--;
2282 
2283 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2284 		fs_devices->rw_devices--;
2285 
2286 	if (srcdev->bdev)
2287 		fs_devices->open_devices--;
2288 }
2289 
2290 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2291 {
2292 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2293 
2294 	mutex_lock(&uuid_mutex);
2295 
2296 	btrfs_close_bdev(srcdev);
2297 	synchronize_rcu();
2298 	btrfs_free_device(srcdev);
2299 
2300 	/* if this is no devs we rather delete the fs_devices */
2301 	if (!fs_devices->num_devices) {
2302 		/*
2303 		 * On a mounted FS, num_devices can't be zero unless it's a
2304 		 * seed. In case of a seed device being replaced, the replace
2305 		 * target added to the sprout FS, so there will be no more
2306 		 * device left under the seed FS.
2307 		 */
2308 		ASSERT(fs_devices->seeding);
2309 
2310 		list_del_init(&fs_devices->seed_list);
2311 		close_fs_devices(fs_devices);
2312 		free_fs_devices(fs_devices);
2313 	}
2314 	mutex_unlock(&uuid_mutex);
2315 }
2316 
2317 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2318 {
2319 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2320 
2321 	mutex_lock(&fs_devices->device_list_mutex);
2322 
2323 	btrfs_sysfs_remove_device(tgtdev);
2324 
2325 	if (tgtdev->bdev)
2326 		fs_devices->open_devices--;
2327 
2328 	fs_devices->num_devices--;
2329 
2330 	btrfs_assign_next_active_device(tgtdev, NULL);
2331 
2332 	list_del_rcu(&tgtdev->dev_list);
2333 
2334 	mutex_unlock(&fs_devices->device_list_mutex);
2335 
2336 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2337 				  tgtdev->name->str);
2338 
2339 	btrfs_close_bdev(tgtdev);
2340 	synchronize_rcu();
2341 	btrfs_free_device(tgtdev);
2342 }
2343 
2344 /**
2345  * Populate args from device at path
2346  *
2347  * @fs_info:	the filesystem
2348  * @args:	the args to populate
2349  * @path:	the path to the device
2350  *
2351  * This will read the super block of the device at @path and populate @args with
2352  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2353  * lookup a device to operate on, but need to do it before we take any locks.
2354  * This properly handles the special case of "missing" that a user may pass in,
2355  * and does some basic sanity checks.  The caller must make sure that @path is
2356  * properly NUL terminated before calling in, and must call
2357  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2358  * uuid buffers.
2359  *
2360  * Return: 0 for success, -errno for failure
2361  */
2362 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2363 				 struct btrfs_dev_lookup_args *args,
2364 				 const char *path)
2365 {
2366 	struct btrfs_super_block *disk_super;
2367 	struct block_device *bdev;
2368 	int ret;
2369 
2370 	if (!path || !path[0])
2371 		return -EINVAL;
2372 	if (!strcmp(path, "missing")) {
2373 		args->missing = true;
2374 		return 0;
2375 	}
2376 
2377 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2378 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2379 	if (!args->uuid || !args->fsid) {
2380 		btrfs_put_dev_args_from_path(args);
2381 		return -ENOMEM;
2382 	}
2383 
2384 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2385 				    &bdev, &disk_super);
2386 	if (ret)
2387 		return ret;
2388 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2389 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2390 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2391 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2392 	else
2393 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2394 	btrfs_release_disk_super(disk_super);
2395 	blkdev_put(bdev, FMODE_READ);
2396 	return 0;
2397 }
2398 
2399 /*
2400  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2401  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2402  * that don't need to be freed.
2403  */
2404 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2405 {
2406 	kfree(args->uuid);
2407 	kfree(args->fsid);
2408 	args->uuid = NULL;
2409 	args->fsid = NULL;
2410 }
2411 
2412 struct btrfs_device *btrfs_find_device_by_devspec(
2413 		struct btrfs_fs_info *fs_info, u64 devid,
2414 		const char *device_path)
2415 {
2416 	BTRFS_DEV_LOOKUP_ARGS(args);
2417 	struct btrfs_device *device;
2418 	int ret;
2419 
2420 	if (devid) {
2421 		args.devid = devid;
2422 		device = btrfs_find_device(fs_info->fs_devices, &args);
2423 		if (!device)
2424 			return ERR_PTR(-ENOENT);
2425 		return device;
2426 	}
2427 
2428 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2429 	if (ret)
2430 		return ERR_PTR(ret);
2431 	device = btrfs_find_device(fs_info->fs_devices, &args);
2432 	btrfs_put_dev_args_from_path(&args);
2433 	if (!device)
2434 		return ERR_PTR(-ENOENT);
2435 	return device;
2436 }
2437 
2438 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2439 {
2440 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2441 	struct btrfs_fs_devices *old_devices;
2442 	struct btrfs_fs_devices *seed_devices;
2443 
2444 	lockdep_assert_held(&uuid_mutex);
2445 	if (!fs_devices->seeding)
2446 		return ERR_PTR(-EINVAL);
2447 
2448 	/*
2449 	 * Private copy of the seed devices, anchored at
2450 	 * fs_info->fs_devices->seed_list
2451 	 */
2452 	seed_devices = alloc_fs_devices(NULL, NULL);
2453 	if (IS_ERR(seed_devices))
2454 		return seed_devices;
2455 
2456 	/*
2457 	 * It's necessary to retain a copy of the original seed fs_devices in
2458 	 * fs_uuids so that filesystems which have been seeded can successfully
2459 	 * reference the seed device from open_seed_devices. This also supports
2460 	 * multiple fs seed.
2461 	 */
2462 	old_devices = clone_fs_devices(fs_devices);
2463 	if (IS_ERR(old_devices)) {
2464 		kfree(seed_devices);
2465 		return old_devices;
2466 	}
2467 
2468 	list_add(&old_devices->fs_list, &fs_uuids);
2469 
2470 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2471 	seed_devices->opened = 1;
2472 	INIT_LIST_HEAD(&seed_devices->devices);
2473 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2474 	mutex_init(&seed_devices->device_list_mutex);
2475 
2476 	return seed_devices;
2477 }
2478 
2479 /*
2480  * Splice seed devices into the sprout fs_devices.
2481  * Generate a new fsid for the sprouted read-write filesystem.
2482  */
2483 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2484 			       struct btrfs_fs_devices *seed_devices)
2485 {
2486 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2487 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2488 	struct btrfs_device *device;
2489 	u64 super_flags;
2490 
2491 	/*
2492 	 * We are updating the fsid, the thread leading to device_list_add()
2493 	 * could race, so uuid_mutex is needed.
2494 	 */
2495 	lockdep_assert_held(&uuid_mutex);
2496 
2497 	/*
2498 	 * The threads listed below may traverse dev_list but can do that without
2499 	 * device_list_mutex:
2500 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2501 	 * - Various dev_list readers - are using RCU.
2502 	 * - btrfs_ioctl_fitrim() - is using RCU.
2503 	 *
2504 	 * For-read threads as below are using device_list_mutex:
2505 	 * - Readonly scrub btrfs_scrub_dev()
2506 	 * - Readonly scrub btrfs_scrub_progress()
2507 	 * - btrfs_get_dev_stats()
2508 	 */
2509 	lockdep_assert_held(&fs_devices->device_list_mutex);
2510 
2511 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2512 			      synchronize_rcu);
2513 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2514 		device->fs_devices = seed_devices;
2515 
2516 	fs_devices->seeding = false;
2517 	fs_devices->num_devices = 0;
2518 	fs_devices->open_devices = 0;
2519 	fs_devices->missing_devices = 0;
2520 	fs_devices->rotating = false;
2521 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2522 
2523 	generate_random_uuid(fs_devices->fsid);
2524 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2525 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2526 
2527 	super_flags = btrfs_super_flags(disk_super) &
2528 		      ~BTRFS_SUPER_FLAG_SEEDING;
2529 	btrfs_set_super_flags(disk_super, super_flags);
2530 }
2531 
2532 /*
2533  * Store the expected generation for seed devices in device items.
2534  */
2535 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2536 {
2537 	BTRFS_DEV_LOOKUP_ARGS(args);
2538 	struct btrfs_fs_info *fs_info = trans->fs_info;
2539 	struct btrfs_root *root = fs_info->chunk_root;
2540 	struct btrfs_path *path;
2541 	struct extent_buffer *leaf;
2542 	struct btrfs_dev_item *dev_item;
2543 	struct btrfs_device *device;
2544 	struct btrfs_key key;
2545 	u8 fs_uuid[BTRFS_FSID_SIZE];
2546 	u8 dev_uuid[BTRFS_UUID_SIZE];
2547 	int ret;
2548 
2549 	path = btrfs_alloc_path();
2550 	if (!path)
2551 		return -ENOMEM;
2552 
2553 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2554 	key.offset = 0;
2555 	key.type = BTRFS_DEV_ITEM_KEY;
2556 
2557 	while (1) {
2558 		btrfs_reserve_chunk_metadata(trans, false);
2559 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2560 		btrfs_trans_release_chunk_metadata(trans);
2561 		if (ret < 0)
2562 			goto error;
2563 
2564 		leaf = path->nodes[0];
2565 next_slot:
2566 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2567 			ret = btrfs_next_leaf(root, path);
2568 			if (ret > 0)
2569 				break;
2570 			if (ret < 0)
2571 				goto error;
2572 			leaf = path->nodes[0];
2573 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2574 			btrfs_release_path(path);
2575 			continue;
2576 		}
2577 
2578 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2579 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2580 		    key.type != BTRFS_DEV_ITEM_KEY)
2581 			break;
2582 
2583 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2584 					  struct btrfs_dev_item);
2585 		args.devid = btrfs_device_id(leaf, dev_item);
2586 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2587 				   BTRFS_UUID_SIZE);
2588 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2589 				   BTRFS_FSID_SIZE);
2590 		args.uuid = dev_uuid;
2591 		args.fsid = fs_uuid;
2592 		device = btrfs_find_device(fs_info->fs_devices, &args);
2593 		BUG_ON(!device); /* Logic error */
2594 
2595 		if (device->fs_devices->seeding) {
2596 			btrfs_set_device_generation(leaf, dev_item,
2597 						    device->generation);
2598 			btrfs_mark_buffer_dirty(leaf);
2599 		}
2600 
2601 		path->slots[0]++;
2602 		goto next_slot;
2603 	}
2604 	ret = 0;
2605 error:
2606 	btrfs_free_path(path);
2607 	return ret;
2608 }
2609 
2610 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2611 {
2612 	struct btrfs_root *root = fs_info->dev_root;
2613 	struct request_queue *q;
2614 	struct btrfs_trans_handle *trans;
2615 	struct btrfs_device *device;
2616 	struct block_device *bdev;
2617 	struct super_block *sb = fs_info->sb;
2618 	struct rcu_string *name;
2619 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2620 	struct btrfs_fs_devices *seed_devices;
2621 	u64 orig_super_total_bytes;
2622 	u64 orig_super_num_devices;
2623 	int ret = 0;
2624 	bool seeding_dev = false;
2625 	bool locked = false;
2626 
2627 	if (sb_rdonly(sb) && !fs_devices->seeding)
2628 		return -EROFS;
2629 
2630 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2631 				  fs_info->bdev_holder);
2632 	if (IS_ERR(bdev))
2633 		return PTR_ERR(bdev);
2634 
2635 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2636 		ret = -EINVAL;
2637 		goto error;
2638 	}
2639 
2640 	if (fs_devices->seeding) {
2641 		seeding_dev = true;
2642 		down_write(&sb->s_umount);
2643 		mutex_lock(&uuid_mutex);
2644 		locked = true;
2645 	}
2646 
2647 	sync_blockdev(bdev);
2648 
2649 	rcu_read_lock();
2650 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2651 		if (device->bdev == bdev) {
2652 			ret = -EEXIST;
2653 			rcu_read_unlock();
2654 			goto error;
2655 		}
2656 	}
2657 	rcu_read_unlock();
2658 
2659 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2660 	if (IS_ERR(device)) {
2661 		/* we can safely leave the fs_devices entry around */
2662 		ret = PTR_ERR(device);
2663 		goto error;
2664 	}
2665 
2666 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2667 	if (!name) {
2668 		ret = -ENOMEM;
2669 		goto error_free_device;
2670 	}
2671 	rcu_assign_pointer(device->name, name);
2672 
2673 	device->fs_info = fs_info;
2674 	device->bdev = bdev;
2675 
2676 	ret = btrfs_get_dev_zone_info(device, false);
2677 	if (ret)
2678 		goto error_free_device;
2679 
2680 	trans = btrfs_start_transaction(root, 0);
2681 	if (IS_ERR(trans)) {
2682 		ret = PTR_ERR(trans);
2683 		goto error_free_zone;
2684 	}
2685 
2686 	q = bdev_get_queue(bdev);
2687 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2688 	device->generation = trans->transid;
2689 	device->io_width = fs_info->sectorsize;
2690 	device->io_align = fs_info->sectorsize;
2691 	device->sector_size = fs_info->sectorsize;
2692 	device->total_bytes =
2693 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2694 	device->disk_total_bytes = device->total_bytes;
2695 	device->commit_total_bytes = device->total_bytes;
2696 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2697 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2698 	device->mode = FMODE_EXCL;
2699 	device->dev_stats_valid = 1;
2700 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2701 
2702 	if (seeding_dev) {
2703 		btrfs_clear_sb_rdonly(sb);
2704 
2705 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2706 		seed_devices = btrfs_init_sprout(fs_info);
2707 		if (IS_ERR(seed_devices)) {
2708 			ret = PTR_ERR(seed_devices);
2709 			btrfs_abort_transaction(trans, ret);
2710 			goto error_trans;
2711 		}
2712 	}
2713 
2714 	mutex_lock(&fs_devices->device_list_mutex);
2715 	if (seeding_dev) {
2716 		btrfs_setup_sprout(fs_info, seed_devices);
2717 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2718 						device);
2719 	}
2720 
2721 	device->fs_devices = fs_devices;
2722 
2723 	mutex_lock(&fs_info->chunk_mutex);
2724 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2725 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2726 	fs_devices->num_devices++;
2727 	fs_devices->open_devices++;
2728 	fs_devices->rw_devices++;
2729 	fs_devices->total_devices++;
2730 	fs_devices->total_rw_bytes += device->total_bytes;
2731 
2732 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2733 
2734 	if (!blk_queue_nonrot(q))
2735 		fs_devices->rotating = true;
2736 
2737 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2738 	btrfs_set_super_total_bytes(fs_info->super_copy,
2739 		round_down(orig_super_total_bytes + device->total_bytes,
2740 			   fs_info->sectorsize));
2741 
2742 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2743 	btrfs_set_super_num_devices(fs_info->super_copy,
2744 				    orig_super_num_devices + 1);
2745 
2746 	/*
2747 	 * we've got more storage, clear any full flags on the space
2748 	 * infos
2749 	 */
2750 	btrfs_clear_space_info_full(fs_info);
2751 
2752 	mutex_unlock(&fs_info->chunk_mutex);
2753 
2754 	/* Add sysfs device entry */
2755 	btrfs_sysfs_add_device(device);
2756 
2757 	mutex_unlock(&fs_devices->device_list_mutex);
2758 
2759 	if (seeding_dev) {
2760 		mutex_lock(&fs_info->chunk_mutex);
2761 		ret = init_first_rw_device(trans);
2762 		mutex_unlock(&fs_info->chunk_mutex);
2763 		if (ret) {
2764 			btrfs_abort_transaction(trans, ret);
2765 			goto error_sysfs;
2766 		}
2767 	}
2768 
2769 	ret = btrfs_add_dev_item(trans, device);
2770 	if (ret) {
2771 		btrfs_abort_transaction(trans, ret);
2772 		goto error_sysfs;
2773 	}
2774 
2775 	if (seeding_dev) {
2776 		ret = btrfs_finish_sprout(trans);
2777 		if (ret) {
2778 			btrfs_abort_transaction(trans, ret);
2779 			goto error_sysfs;
2780 		}
2781 
2782 		/*
2783 		 * fs_devices now represents the newly sprouted filesystem and
2784 		 * its fsid has been changed by btrfs_sprout_splice().
2785 		 */
2786 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2787 	}
2788 
2789 	ret = btrfs_commit_transaction(trans);
2790 
2791 	if (seeding_dev) {
2792 		mutex_unlock(&uuid_mutex);
2793 		up_write(&sb->s_umount);
2794 		locked = false;
2795 
2796 		if (ret) /* transaction commit */
2797 			return ret;
2798 
2799 		ret = btrfs_relocate_sys_chunks(fs_info);
2800 		if (ret < 0)
2801 			btrfs_handle_fs_error(fs_info, ret,
2802 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2803 		trans = btrfs_attach_transaction(root);
2804 		if (IS_ERR(trans)) {
2805 			if (PTR_ERR(trans) == -ENOENT)
2806 				return 0;
2807 			ret = PTR_ERR(trans);
2808 			trans = NULL;
2809 			goto error_sysfs;
2810 		}
2811 		ret = btrfs_commit_transaction(trans);
2812 	}
2813 
2814 	/*
2815 	 * Now that we have written a new super block to this device, check all
2816 	 * other fs_devices list if device_path alienates any other scanned
2817 	 * device.
2818 	 * We can ignore the return value as it typically returns -EINVAL and
2819 	 * only succeeds if the device was an alien.
2820 	 */
2821 	btrfs_forget_devices(device_path);
2822 
2823 	/* Update ctime/mtime for blkid or udev */
2824 	update_dev_time(device_path);
2825 
2826 	return ret;
2827 
2828 error_sysfs:
2829 	btrfs_sysfs_remove_device(device);
2830 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2831 	mutex_lock(&fs_info->chunk_mutex);
2832 	list_del_rcu(&device->dev_list);
2833 	list_del(&device->dev_alloc_list);
2834 	fs_info->fs_devices->num_devices--;
2835 	fs_info->fs_devices->open_devices--;
2836 	fs_info->fs_devices->rw_devices--;
2837 	fs_info->fs_devices->total_devices--;
2838 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2839 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2840 	btrfs_set_super_total_bytes(fs_info->super_copy,
2841 				    orig_super_total_bytes);
2842 	btrfs_set_super_num_devices(fs_info->super_copy,
2843 				    orig_super_num_devices);
2844 	mutex_unlock(&fs_info->chunk_mutex);
2845 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2846 error_trans:
2847 	if (seeding_dev)
2848 		btrfs_set_sb_rdonly(sb);
2849 	if (trans)
2850 		btrfs_end_transaction(trans);
2851 error_free_zone:
2852 	btrfs_destroy_dev_zone_info(device);
2853 error_free_device:
2854 	btrfs_free_device(device);
2855 error:
2856 	blkdev_put(bdev, FMODE_EXCL);
2857 	if (locked) {
2858 		mutex_unlock(&uuid_mutex);
2859 		up_write(&sb->s_umount);
2860 	}
2861 	return ret;
2862 }
2863 
2864 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2865 					struct btrfs_device *device)
2866 {
2867 	int ret;
2868 	struct btrfs_path *path;
2869 	struct btrfs_root *root = device->fs_info->chunk_root;
2870 	struct btrfs_dev_item *dev_item;
2871 	struct extent_buffer *leaf;
2872 	struct btrfs_key key;
2873 
2874 	path = btrfs_alloc_path();
2875 	if (!path)
2876 		return -ENOMEM;
2877 
2878 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2879 	key.type = BTRFS_DEV_ITEM_KEY;
2880 	key.offset = device->devid;
2881 
2882 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2883 	if (ret < 0)
2884 		goto out;
2885 
2886 	if (ret > 0) {
2887 		ret = -ENOENT;
2888 		goto out;
2889 	}
2890 
2891 	leaf = path->nodes[0];
2892 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2893 
2894 	btrfs_set_device_id(leaf, dev_item, device->devid);
2895 	btrfs_set_device_type(leaf, dev_item, device->type);
2896 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2897 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2898 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2899 	btrfs_set_device_total_bytes(leaf, dev_item,
2900 				     btrfs_device_get_disk_total_bytes(device));
2901 	btrfs_set_device_bytes_used(leaf, dev_item,
2902 				    btrfs_device_get_bytes_used(device));
2903 	btrfs_mark_buffer_dirty(leaf);
2904 
2905 out:
2906 	btrfs_free_path(path);
2907 	return ret;
2908 }
2909 
2910 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2911 		      struct btrfs_device *device, u64 new_size)
2912 {
2913 	struct btrfs_fs_info *fs_info = device->fs_info;
2914 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2915 	u64 old_total;
2916 	u64 diff;
2917 	int ret;
2918 
2919 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2920 		return -EACCES;
2921 
2922 	new_size = round_down(new_size, fs_info->sectorsize);
2923 
2924 	mutex_lock(&fs_info->chunk_mutex);
2925 	old_total = btrfs_super_total_bytes(super_copy);
2926 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2927 
2928 	if (new_size <= device->total_bytes ||
2929 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2930 		mutex_unlock(&fs_info->chunk_mutex);
2931 		return -EINVAL;
2932 	}
2933 
2934 	btrfs_set_super_total_bytes(super_copy,
2935 			round_down(old_total + diff, fs_info->sectorsize));
2936 	device->fs_devices->total_rw_bytes += diff;
2937 
2938 	btrfs_device_set_total_bytes(device, new_size);
2939 	btrfs_device_set_disk_total_bytes(device, new_size);
2940 	btrfs_clear_space_info_full(device->fs_info);
2941 	if (list_empty(&device->post_commit_list))
2942 		list_add_tail(&device->post_commit_list,
2943 			      &trans->transaction->dev_update_list);
2944 	mutex_unlock(&fs_info->chunk_mutex);
2945 
2946 	btrfs_reserve_chunk_metadata(trans, false);
2947 	ret = btrfs_update_device(trans, device);
2948 	btrfs_trans_release_chunk_metadata(trans);
2949 
2950 	return ret;
2951 }
2952 
2953 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2954 {
2955 	struct btrfs_fs_info *fs_info = trans->fs_info;
2956 	struct btrfs_root *root = fs_info->chunk_root;
2957 	int ret;
2958 	struct btrfs_path *path;
2959 	struct btrfs_key key;
2960 
2961 	path = btrfs_alloc_path();
2962 	if (!path)
2963 		return -ENOMEM;
2964 
2965 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2966 	key.offset = chunk_offset;
2967 	key.type = BTRFS_CHUNK_ITEM_KEY;
2968 
2969 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2970 	if (ret < 0)
2971 		goto out;
2972 	else if (ret > 0) { /* Logic error or corruption */
2973 		btrfs_handle_fs_error(fs_info, -ENOENT,
2974 				      "Failed lookup while freeing chunk.");
2975 		ret = -ENOENT;
2976 		goto out;
2977 	}
2978 
2979 	ret = btrfs_del_item(trans, root, path);
2980 	if (ret < 0)
2981 		btrfs_handle_fs_error(fs_info, ret,
2982 				      "Failed to delete chunk item.");
2983 out:
2984 	btrfs_free_path(path);
2985 	return ret;
2986 }
2987 
2988 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2989 {
2990 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2991 	struct btrfs_disk_key *disk_key;
2992 	struct btrfs_chunk *chunk;
2993 	u8 *ptr;
2994 	int ret = 0;
2995 	u32 num_stripes;
2996 	u32 array_size;
2997 	u32 len = 0;
2998 	u32 cur;
2999 	struct btrfs_key key;
3000 
3001 	lockdep_assert_held(&fs_info->chunk_mutex);
3002 	array_size = btrfs_super_sys_array_size(super_copy);
3003 
3004 	ptr = super_copy->sys_chunk_array;
3005 	cur = 0;
3006 
3007 	while (cur < array_size) {
3008 		disk_key = (struct btrfs_disk_key *)ptr;
3009 		btrfs_disk_key_to_cpu(&key, disk_key);
3010 
3011 		len = sizeof(*disk_key);
3012 
3013 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3014 			chunk = (struct btrfs_chunk *)(ptr + len);
3015 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3016 			len += btrfs_chunk_item_size(num_stripes);
3017 		} else {
3018 			ret = -EIO;
3019 			break;
3020 		}
3021 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3022 		    key.offset == chunk_offset) {
3023 			memmove(ptr, ptr + len, array_size - (cur + len));
3024 			array_size -= len;
3025 			btrfs_set_super_sys_array_size(super_copy, array_size);
3026 		} else {
3027 			ptr += len;
3028 			cur += len;
3029 		}
3030 	}
3031 	return ret;
3032 }
3033 
3034 /*
3035  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3036  * @logical: Logical block offset in bytes.
3037  * @length: Length of extent in bytes.
3038  *
3039  * Return: Chunk mapping or ERR_PTR.
3040  */
3041 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3042 				       u64 logical, u64 length)
3043 {
3044 	struct extent_map_tree *em_tree;
3045 	struct extent_map *em;
3046 
3047 	em_tree = &fs_info->mapping_tree;
3048 	read_lock(&em_tree->lock);
3049 	em = lookup_extent_mapping(em_tree, logical, length);
3050 	read_unlock(&em_tree->lock);
3051 
3052 	if (!em) {
3053 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3054 			   logical, length);
3055 		return ERR_PTR(-EINVAL);
3056 	}
3057 
3058 	if (em->start > logical || em->start + em->len < logical) {
3059 		btrfs_crit(fs_info,
3060 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3061 			   logical, length, em->start, em->start + em->len);
3062 		free_extent_map(em);
3063 		return ERR_PTR(-EINVAL);
3064 	}
3065 
3066 	/* callers are responsible for dropping em's ref. */
3067 	return em;
3068 }
3069 
3070 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3071 			     struct map_lookup *map, u64 chunk_offset)
3072 {
3073 	int i;
3074 
3075 	/*
3076 	 * Removing chunk items and updating the device items in the chunks btree
3077 	 * requires holding the chunk_mutex.
3078 	 * See the comment at btrfs_chunk_alloc() for the details.
3079 	 */
3080 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3081 
3082 	for (i = 0; i < map->num_stripes; i++) {
3083 		int ret;
3084 
3085 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3086 		if (ret)
3087 			return ret;
3088 	}
3089 
3090 	return btrfs_free_chunk(trans, chunk_offset);
3091 }
3092 
3093 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3094 {
3095 	struct btrfs_fs_info *fs_info = trans->fs_info;
3096 	struct extent_map *em;
3097 	struct map_lookup *map;
3098 	u64 dev_extent_len = 0;
3099 	int i, ret = 0;
3100 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3101 
3102 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3103 	if (IS_ERR(em)) {
3104 		/*
3105 		 * This is a logic error, but we don't want to just rely on the
3106 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3107 		 * do anything we still error out.
3108 		 */
3109 		ASSERT(0);
3110 		return PTR_ERR(em);
3111 	}
3112 	map = em->map_lookup;
3113 
3114 	/*
3115 	 * First delete the device extent items from the devices btree.
3116 	 * We take the device_list_mutex to avoid racing with the finishing phase
3117 	 * of a device replace operation. See the comment below before acquiring
3118 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3119 	 * because that can result in a deadlock when deleting the device extent
3120 	 * items from the devices btree - COWing an extent buffer from the btree
3121 	 * may result in allocating a new metadata chunk, which would attempt to
3122 	 * lock again fs_info->chunk_mutex.
3123 	 */
3124 	mutex_lock(&fs_devices->device_list_mutex);
3125 	for (i = 0; i < map->num_stripes; i++) {
3126 		struct btrfs_device *device = map->stripes[i].dev;
3127 		ret = btrfs_free_dev_extent(trans, device,
3128 					    map->stripes[i].physical,
3129 					    &dev_extent_len);
3130 		if (ret) {
3131 			mutex_unlock(&fs_devices->device_list_mutex);
3132 			btrfs_abort_transaction(trans, ret);
3133 			goto out;
3134 		}
3135 
3136 		if (device->bytes_used > 0) {
3137 			mutex_lock(&fs_info->chunk_mutex);
3138 			btrfs_device_set_bytes_used(device,
3139 					device->bytes_used - dev_extent_len);
3140 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3141 			btrfs_clear_space_info_full(fs_info);
3142 			mutex_unlock(&fs_info->chunk_mutex);
3143 		}
3144 	}
3145 	mutex_unlock(&fs_devices->device_list_mutex);
3146 
3147 	/*
3148 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3149 	 *
3150 	 * 1) Just like with the first phase of the chunk allocation, we must
3151 	 *    reserve system space, do all chunk btree updates and deletions, and
3152 	 *    update the system chunk array in the superblock while holding this
3153 	 *    mutex. This is for similar reasons as explained on the comment at
3154 	 *    the top of btrfs_chunk_alloc();
3155 	 *
3156 	 * 2) Prevent races with the final phase of a device replace operation
3157 	 *    that replaces the device object associated with the map's stripes,
3158 	 *    because the device object's id can change at any time during that
3159 	 *    final phase of the device replace operation
3160 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3161 	 *    replaced device and then see it with an ID of
3162 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3163 	 *    the device item, which does not exists on the chunk btree.
3164 	 *    The finishing phase of device replace acquires both the
3165 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3166 	 *    safe by just acquiring the chunk_mutex.
3167 	 */
3168 	trans->removing_chunk = true;
3169 	mutex_lock(&fs_info->chunk_mutex);
3170 
3171 	check_system_chunk(trans, map->type);
3172 
3173 	ret = remove_chunk_item(trans, map, chunk_offset);
3174 	/*
3175 	 * Normally we should not get -ENOSPC since we reserved space before
3176 	 * through the call to check_system_chunk().
3177 	 *
3178 	 * Despite our system space_info having enough free space, we may not
3179 	 * be able to allocate extents from its block groups, because all have
3180 	 * an incompatible profile, which will force us to allocate a new system
3181 	 * block group with the right profile, or right after we called
3182 	 * check_system_space() above, a scrub turned the only system block group
3183 	 * with enough free space into RO mode.
3184 	 * This is explained with more detail at do_chunk_alloc().
3185 	 *
3186 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3187 	 */
3188 	if (ret == -ENOSPC) {
3189 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3190 		struct btrfs_block_group *sys_bg;
3191 
3192 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3193 		if (IS_ERR(sys_bg)) {
3194 			ret = PTR_ERR(sys_bg);
3195 			btrfs_abort_transaction(trans, ret);
3196 			goto out;
3197 		}
3198 
3199 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3200 		if (ret) {
3201 			btrfs_abort_transaction(trans, ret);
3202 			goto out;
3203 		}
3204 
3205 		ret = remove_chunk_item(trans, map, chunk_offset);
3206 		if (ret) {
3207 			btrfs_abort_transaction(trans, ret);
3208 			goto out;
3209 		}
3210 	} else if (ret) {
3211 		btrfs_abort_transaction(trans, ret);
3212 		goto out;
3213 	}
3214 
3215 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3216 
3217 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3218 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3219 		if (ret) {
3220 			btrfs_abort_transaction(trans, ret);
3221 			goto out;
3222 		}
3223 	}
3224 
3225 	mutex_unlock(&fs_info->chunk_mutex);
3226 	trans->removing_chunk = false;
3227 
3228 	/*
3229 	 * We are done with chunk btree updates and deletions, so release the
3230 	 * system space we previously reserved (with check_system_chunk()).
3231 	 */
3232 	btrfs_trans_release_chunk_metadata(trans);
3233 
3234 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3235 	if (ret) {
3236 		btrfs_abort_transaction(trans, ret);
3237 		goto out;
3238 	}
3239 
3240 out:
3241 	if (trans->removing_chunk) {
3242 		mutex_unlock(&fs_info->chunk_mutex);
3243 		trans->removing_chunk = false;
3244 	}
3245 	/* once for us */
3246 	free_extent_map(em);
3247 	return ret;
3248 }
3249 
3250 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3251 {
3252 	struct btrfs_root *root = fs_info->chunk_root;
3253 	struct btrfs_trans_handle *trans;
3254 	struct btrfs_block_group *block_group;
3255 	u64 length;
3256 	int ret;
3257 
3258 	/*
3259 	 * Prevent races with automatic removal of unused block groups.
3260 	 * After we relocate and before we remove the chunk with offset
3261 	 * chunk_offset, automatic removal of the block group can kick in,
3262 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3263 	 *
3264 	 * Make sure to acquire this mutex before doing a tree search (dev
3265 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3266 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3267 	 * we release the path used to search the chunk/dev tree and before
3268 	 * the current task acquires this mutex and calls us.
3269 	 */
3270 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3271 
3272 	/* step one, relocate all the extents inside this chunk */
3273 	btrfs_scrub_pause(fs_info);
3274 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3275 	btrfs_scrub_continue(fs_info);
3276 	if (ret)
3277 		return ret;
3278 
3279 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3280 	if (!block_group)
3281 		return -ENOENT;
3282 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3283 	length = block_group->length;
3284 	btrfs_put_block_group(block_group);
3285 
3286 	/*
3287 	 * On a zoned file system, discard the whole block group, this will
3288 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3289 	 * resetting the zone fails, don't treat it as a fatal problem from the
3290 	 * filesystem's point of view.
3291 	 */
3292 	if (btrfs_is_zoned(fs_info)) {
3293 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3294 		if (ret)
3295 			btrfs_info(fs_info,
3296 				"failed to reset zone %llu after relocation",
3297 				chunk_offset);
3298 	}
3299 
3300 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3301 						     chunk_offset);
3302 	if (IS_ERR(trans)) {
3303 		ret = PTR_ERR(trans);
3304 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3305 		return ret;
3306 	}
3307 
3308 	/*
3309 	 * step two, delete the device extents and the
3310 	 * chunk tree entries
3311 	 */
3312 	ret = btrfs_remove_chunk(trans, chunk_offset);
3313 	btrfs_end_transaction(trans);
3314 	return ret;
3315 }
3316 
3317 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3318 {
3319 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3320 	struct btrfs_path *path;
3321 	struct extent_buffer *leaf;
3322 	struct btrfs_chunk *chunk;
3323 	struct btrfs_key key;
3324 	struct btrfs_key found_key;
3325 	u64 chunk_type;
3326 	bool retried = false;
3327 	int failed = 0;
3328 	int ret;
3329 
3330 	path = btrfs_alloc_path();
3331 	if (!path)
3332 		return -ENOMEM;
3333 
3334 again:
3335 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3336 	key.offset = (u64)-1;
3337 	key.type = BTRFS_CHUNK_ITEM_KEY;
3338 
3339 	while (1) {
3340 		mutex_lock(&fs_info->reclaim_bgs_lock);
3341 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3342 		if (ret < 0) {
3343 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3344 			goto error;
3345 		}
3346 		BUG_ON(ret == 0); /* Corruption */
3347 
3348 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3349 					  key.type);
3350 		if (ret)
3351 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3352 		if (ret < 0)
3353 			goto error;
3354 		if (ret > 0)
3355 			break;
3356 
3357 		leaf = path->nodes[0];
3358 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3359 
3360 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3361 				       struct btrfs_chunk);
3362 		chunk_type = btrfs_chunk_type(leaf, chunk);
3363 		btrfs_release_path(path);
3364 
3365 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3366 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3367 			if (ret == -ENOSPC)
3368 				failed++;
3369 			else
3370 				BUG_ON(ret);
3371 		}
3372 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3373 
3374 		if (found_key.offset == 0)
3375 			break;
3376 		key.offset = found_key.offset - 1;
3377 	}
3378 	ret = 0;
3379 	if (failed && !retried) {
3380 		failed = 0;
3381 		retried = true;
3382 		goto again;
3383 	} else if (WARN_ON(failed && retried)) {
3384 		ret = -ENOSPC;
3385 	}
3386 error:
3387 	btrfs_free_path(path);
3388 	return ret;
3389 }
3390 
3391 /*
3392  * return 1 : allocate a data chunk successfully,
3393  * return <0: errors during allocating a data chunk,
3394  * return 0 : no need to allocate a data chunk.
3395  */
3396 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3397 				      u64 chunk_offset)
3398 {
3399 	struct btrfs_block_group *cache;
3400 	u64 bytes_used;
3401 	u64 chunk_type;
3402 
3403 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3404 	ASSERT(cache);
3405 	chunk_type = cache->flags;
3406 	btrfs_put_block_group(cache);
3407 
3408 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3409 		return 0;
3410 
3411 	spin_lock(&fs_info->data_sinfo->lock);
3412 	bytes_used = fs_info->data_sinfo->bytes_used;
3413 	spin_unlock(&fs_info->data_sinfo->lock);
3414 
3415 	if (!bytes_used) {
3416 		struct btrfs_trans_handle *trans;
3417 		int ret;
3418 
3419 		trans =	btrfs_join_transaction(fs_info->tree_root);
3420 		if (IS_ERR(trans))
3421 			return PTR_ERR(trans);
3422 
3423 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3424 		btrfs_end_transaction(trans);
3425 		if (ret < 0)
3426 			return ret;
3427 		return 1;
3428 	}
3429 
3430 	return 0;
3431 }
3432 
3433 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3434 			       struct btrfs_balance_control *bctl)
3435 {
3436 	struct btrfs_root *root = fs_info->tree_root;
3437 	struct btrfs_trans_handle *trans;
3438 	struct btrfs_balance_item *item;
3439 	struct btrfs_disk_balance_args disk_bargs;
3440 	struct btrfs_path *path;
3441 	struct extent_buffer *leaf;
3442 	struct btrfs_key key;
3443 	int ret, err;
3444 
3445 	path = btrfs_alloc_path();
3446 	if (!path)
3447 		return -ENOMEM;
3448 
3449 	trans = btrfs_start_transaction(root, 0);
3450 	if (IS_ERR(trans)) {
3451 		btrfs_free_path(path);
3452 		return PTR_ERR(trans);
3453 	}
3454 
3455 	key.objectid = BTRFS_BALANCE_OBJECTID;
3456 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3457 	key.offset = 0;
3458 
3459 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3460 				      sizeof(*item));
3461 	if (ret)
3462 		goto out;
3463 
3464 	leaf = path->nodes[0];
3465 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3466 
3467 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3468 
3469 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3470 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3471 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3472 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3473 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3474 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3475 
3476 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3477 
3478 	btrfs_mark_buffer_dirty(leaf);
3479 out:
3480 	btrfs_free_path(path);
3481 	err = btrfs_commit_transaction(trans);
3482 	if (err && !ret)
3483 		ret = err;
3484 	return ret;
3485 }
3486 
3487 static int del_balance_item(struct btrfs_fs_info *fs_info)
3488 {
3489 	struct btrfs_root *root = fs_info->tree_root;
3490 	struct btrfs_trans_handle *trans;
3491 	struct btrfs_path *path;
3492 	struct btrfs_key key;
3493 	int ret, err;
3494 
3495 	path = btrfs_alloc_path();
3496 	if (!path)
3497 		return -ENOMEM;
3498 
3499 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3500 	if (IS_ERR(trans)) {
3501 		btrfs_free_path(path);
3502 		return PTR_ERR(trans);
3503 	}
3504 
3505 	key.objectid = BTRFS_BALANCE_OBJECTID;
3506 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3507 	key.offset = 0;
3508 
3509 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3510 	if (ret < 0)
3511 		goto out;
3512 	if (ret > 0) {
3513 		ret = -ENOENT;
3514 		goto out;
3515 	}
3516 
3517 	ret = btrfs_del_item(trans, root, path);
3518 out:
3519 	btrfs_free_path(path);
3520 	err = btrfs_commit_transaction(trans);
3521 	if (err && !ret)
3522 		ret = err;
3523 	return ret;
3524 }
3525 
3526 /*
3527  * This is a heuristic used to reduce the number of chunks balanced on
3528  * resume after balance was interrupted.
3529  */
3530 static void update_balance_args(struct btrfs_balance_control *bctl)
3531 {
3532 	/*
3533 	 * Turn on soft mode for chunk types that were being converted.
3534 	 */
3535 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3536 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3537 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3538 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3539 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3540 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3541 
3542 	/*
3543 	 * Turn on usage filter if is not already used.  The idea is
3544 	 * that chunks that we have already balanced should be
3545 	 * reasonably full.  Don't do it for chunks that are being
3546 	 * converted - that will keep us from relocating unconverted
3547 	 * (albeit full) chunks.
3548 	 */
3549 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3550 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3551 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3552 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3553 		bctl->data.usage = 90;
3554 	}
3555 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3556 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3557 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3558 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3559 		bctl->sys.usage = 90;
3560 	}
3561 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3562 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3563 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3564 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3565 		bctl->meta.usage = 90;
3566 	}
3567 }
3568 
3569 /*
3570  * Clear the balance status in fs_info and delete the balance item from disk.
3571  */
3572 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3573 {
3574 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3575 	int ret;
3576 
3577 	BUG_ON(!fs_info->balance_ctl);
3578 
3579 	spin_lock(&fs_info->balance_lock);
3580 	fs_info->balance_ctl = NULL;
3581 	spin_unlock(&fs_info->balance_lock);
3582 
3583 	kfree(bctl);
3584 	ret = del_balance_item(fs_info);
3585 	if (ret)
3586 		btrfs_handle_fs_error(fs_info, ret, NULL);
3587 }
3588 
3589 /*
3590  * Balance filters.  Return 1 if chunk should be filtered out
3591  * (should not be balanced).
3592  */
3593 static int chunk_profiles_filter(u64 chunk_type,
3594 				 struct btrfs_balance_args *bargs)
3595 {
3596 	chunk_type = chunk_to_extended(chunk_type) &
3597 				BTRFS_EXTENDED_PROFILE_MASK;
3598 
3599 	if (bargs->profiles & chunk_type)
3600 		return 0;
3601 
3602 	return 1;
3603 }
3604 
3605 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3606 			      struct btrfs_balance_args *bargs)
3607 {
3608 	struct btrfs_block_group *cache;
3609 	u64 chunk_used;
3610 	u64 user_thresh_min;
3611 	u64 user_thresh_max;
3612 	int ret = 1;
3613 
3614 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3615 	chunk_used = cache->used;
3616 
3617 	if (bargs->usage_min == 0)
3618 		user_thresh_min = 0;
3619 	else
3620 		user_thresh_min = div_factor_fine(cache->length,
3621 						  bargs->usage_min);
3622 
3623 	if (bargs->usage_max == 0)
3624 		user_thresh_max = 1;
3625 	else if (bargs->usage_max > 100)
3626 		user_thresh_max = cache->length;
3627 	else
3628 		user_thresh_max = div_factor_fine(cache->length,
3629 						  bargs->usage_max);
3630 
3631 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3632 		ret = 0;
3633 
3634 	btrfs_put_block_group(cache);
3635 	return ret;
3636 }
3637 
3638 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3639 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3640 {
3641 	struct btrfs_block_group *cache;
3642 	u64 chunk_used, user_thresh;
3643 	int ret = 1;
3644 
3645 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3646 	chunk_used = cache->used;
3647 
3648 	if (bargs->usage_min == 0)
3649 		user_thresh = 1;
3650 	else if (bargs->usage > 100)
3651 		user_thresh = cache->length;
3652 	else
3653 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3654 
3655 	if (chunk_used < user_thresh)
3656 		ret = 0;
3657 
3658 	btrfs_put_block_group(cache);
3659 	return ret;
3660 }
3661 
3662 static int chunk_devid_filter(struct extent_buffer *leaf,
3663 			      struct btrfs_chunk *chunk,
3664 			      struct btrfs_balance_args *bargs)
3665 {
3666 	struct btrfs_stripe *stripe;
3667 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3668 	int i;
3669 
3670 	for (i = 0; i < num_stripes; i++) {
3671 		stripe = btrfs_stripe_nr(chunk, i);
3672 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3673 			return 0;
3674 	}
3675 
3676 	return 1;
3677 }
3678 
3679 static u64 calc_data_stripes(u64 type, int num_stripes)
3680 {
3681 	const int index = btrfs_bg_flags_to_raid_index(type);
3682 	const int ncopies = btrfs_raid_array[index].ncopies;
3683 	const int nparity = btrfs_raid_array[index].nparity;
3684 
3685 	return (num_stripes - nparity) / ncopies;
3686 }
3687 
3688 /* [pstart, pend) */
3689 static int chunk_drange_filter(struct extent_buffer *leaf,
3690 			       struct btrfs_chunk *chunk,
3691 			       struct btrfs_balance_args *bargs)
3692 {
3693 	struct btrfs_stripe *stripe;
3694 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3695 	u64 stripe_offset;
3696 	u64 stripe_length;
3697 	u64 type;
3698 	int factor;
3699 	int i;
3700 
3701 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3702 		return 0;
3703 
3704 	type = btrfs_chunk_type(leaf, chunk);
3705 	factor = calc_data_stripes(type, num_stripes);
3706 
3707 	for (i = 0; i < num_stripes; i++) {
3708 		stripe = btrfs_stripe_nr(chunk, i);
3709 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3710 			continue;
3711 
3712 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3713 		stripe_length = btrfs_chunk_length(leaf, chunk);
3714 		stripe_length = div_u64(stripe_length, factor);
3715 
3716 		if (stripe_offset < bargs->pend &&
3717 		    stripe_offset + stripe_length > bargs->pstart)
3718 			return 0;
3719 	}
3720 
3721 	return 1;
3722 }
3723 
3724 /* [vstart, vend) */
3725 static int chunk_vrange_filter(struct extent_buffer *leaf,
3726 			       struct btrfs_chunk *chunk,
3727 			       u64 chunk_offset,
3728 			       struct btrfs_balance_args *bargs)
3729 {
3730 	if (chunk_offset < bargs->vend &&
3731 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3732 		/* at least part of the chunk is inside this vrange */
3733 		return 0;
3734 
3735 	return 1;
3736 }
3737 
3738 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3739 			       struct btrfs_chunk *chunk,
3740 			       struct btrfs_balance_args *bargs)
3741 {
3742 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3743 
3744 	if (bargs->stripes_min <= num_stripes
3745 			&& num_stripes <= bargs->stripes_max)
3746 		return 0;
3747 
3748 	return 1;
3749 }
3750 
3751 static int chunk_soft_convert_filter(u64 chunk_type,
3752 				     struct btrfs_balance_args *bargs)
3753 {
3754 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3755 		return 0;
3756 
3757 	chunk_type = chunk_to_extended(chunk_type) &
3758 				BTRFS_EXTENDED_PROFILE_MASK;
3759 
3760 	if (bargs->target == chunk_type)
3761 		return 1;
3762 
3763 	return 0;
3764 }
3765 
3766 static int should_balance_chunk(struct extent_buffer *leaf,
3767 				struct btrfs_chunk *chunk, u64 chunk_offset)
3768 {
3769 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3770 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3771 	struct btrfs_balance_args *bargs = NULL;
3772 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3773 
3774 	/* type filter */
3775 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3776 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3777 		return 0;
3778 	}
3779 
3780 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3781 		bargs = &bctl->data;
3782 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3783 		bargs = &bctl->sys;
3784 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3785 		bargs = &bctl->meta;
3786 
3787 	/* profiles filter */
3788 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3789 	    chunk_profiles_filter(chunk_type, bargs)) {
3790 		return 0;
3791 	}
3792 
3793 	/* usage filter */
3794 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3795 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3796 		return 0;
3797 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3798 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3799 		return 0;
3800 	}
3801 
3802 	/* devid filter */
3803 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3804 	    chunk_devid_filter(leaf, chunk, bargs)) {
3805 		return 0;
3806 	}
3807 
3808 	/* drange filter, makes sense only with devid filter */
3809 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3810 	    chunk_drange_filter(leaf, chunk, bargs)) {
3811 		return 0;
3812 	}
3813 
3814 	/* vrange filter */
3815 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3816 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3817 		return 0;
3818 	}
3819 
3820 	/* stripes filter */
3821 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3822 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3823 		return 0;
3824 	}
3825 
3826 	/* soft profile changing mode */
3827 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3828 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3829 		return 0;
3830 	}
3831 
3832 	/*
3833 	 * limited by count, must be the last filter
3834 	 */
3835 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3836 		if (bargs->limit == 0)
3837 			return 0;
3838 		else
3839 			bargs->limit--;
3840 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3841 		/*
3842 		 * Same logic as the 'limit' filter; the minimum cannot be
3843 		 * determined here because we do not have the global information
3844 		 * about the count of all chunks that satisfy the filters.
3845 		 */
3846 		if (bargs->limit_max == 0)
3847 			return 0;
3848 		else
3849 			bargs->limit_max--;
3850 	}
3851 
3852 	return 1;
3853 }
3854 
3855 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3856 {
3857 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3858 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3859 	u64 chunk_type;
3860 	struct btrfs_chunk *chunk;
3861 	struct btrfs_path *path = NULL;
3862 	struct btrfs_key key;
3863 	struct btrfs_key found_key;
3864 	struct extent_buffer *leaf;
3865 	int slot;
3866 	int ret;
3867 	int enospc_errors = 0;
3868 	bool counting = true;
3869 	/* The single value limit and min/max limits use the same bytes in the */
3870 	u64 limit_data = bctl->data.limit;
3871 	u64 limit_meta = bctl->meta.limit;
3872 	u64 limit_sys = bctl->sys.limit;
3873 	u32 count_data = 0;
3874 	u32 count_meta = 0;
3875 	u32 count_sys = 0;
3876 	int chunk_reserved = 0;
3877 
3878 	path = btrfs_alloc_path();
3879 	if (!path) {
3880 		ret = -ENOMEM;
3881 		goto error;
3882 	}
3883 
3884 	/* zero out stat counters */
3885 	spin_lock(&fs_info->balance_lock);
3886 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3887 	spin_unlock(&fs_info->balance_lock);
3888 again:
3889 	if (!counting) {
3890 		/*
3891 		 * The single value limit and min/max limits use the same bytes
3892 		 * in the
3893 		 */
3894 		bctl->data.limit = limit_data;
3895 		bctl->meta.limit = limit_meta;
3896 		bctl->sys.limit = limit_sys;
3897 	}
3898 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3899 	key.offset = (u64)-1;
3900 	key.type = BTRFS_CHUNK_ITEM_KEY;
3901 
3902 	while (1) {
3903 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3904 		    atomic_read(&fs_info->balance_cancel_req)) {
3905 			ret = -ECANCELED;
3906 			goto error;
3907 		}
3908 
3909 		mutex_lock(&fs_info->reclaim_bgs_lock);
3910 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3911 		if (ret < 0) {
3912 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3913 			goto error;
3914 		}
3915 
3916 		/*
3917 		 * this shouldn't happen, it means the last relocate
3918 		 * failed
3919 		 */
3920 		if (ret == 0)
3921 			BUG(); /* FIXME break ? */
3922 
3923 		ret = btrfs_previous_item(chunk_root, path, 0,
3924 					  BTRFS_CHUNK_ITEM_KEY);
3925 		if (ret) {
3926 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3927 			ret = 0;
3928 			break;
3929 		}
3930 
3931 		leaf = path->nodes[0];
3932 		slot = path->slots[0];
3933 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3934 
3935 		if (found_key.objectid != key.objectid) {
3936 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3937 			break;
3938 		}
3939 
3940 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3941 		chunk_type = btrfs_chunk_type(leaf, chunk);
3942 
3943 		if (!counting) {
3944 			spin_lock(&fs_info->balance_lock);
3945 			bctl->stat.considered++;
3946 			spin_unlock(&fs_info->balance_lock);
3947 		}
3948 
3949 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3950 
3951 		btrfs_release_path(path);
3952 		if (!ret) {
3953 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3954 			goto loop;
3955 		}
3956 
3957 		if (counting) {
3958 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3959 			spin_lock(&fs_info->balance_lock);
3960 			bctl->stat.expected++;
3961 			spin_unlock(&fs_info->balance_lock);
3962 
3963 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3964 				count_data++;
3965 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3966 				count_sys++;
3967 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3968 				count_meta++;
3969 
3970 			goto loop;
3971 		}
3972 
3973 		/*
3974 		 * Apply limit_min filter, no need to check if the LIMITS
3975 		 * filter is used, limit_min is 0 by default
3976 		 */
3977 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3978 					count_data < bctl->data.limit_min)
3979 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3980 					count_meta < bctl->meta.limit_min)
3981 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3982 					count_sys < bctl->sys.limit_min)) {
3983 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3984 			goto loop;
3985 		}
3986 
3987 		if (!chunk_reserved) {
3988 			/*
3989 			 * We may be relocating the only data chunk we have,
3990 			 * which could potentially end up with losing data's
3991 			 * raid profile, so lets allocate an empty one in
3992 			 * advance.
3993 			 */
3994 			ret = btrfs_may_alloc_data_chunk(fs_info,
3995 							 found_key.offset);
3996 			if (ret < 0) {
3997 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3998 				goto error;
3999 			} else if (ret == 1) {
4000 				chunk_reserved = 1;
4001 			}
4002 		}
4003 
4004 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4005 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4006 		if (ret == -ENOSPC) {
4007 			enospc_errors++;
4008 		} else if (ret == -ETXTBSY) {
4009 			btrfs_info(fs_info,
4010 	   "skipping relocation of block group %llu due to active swapfile",
4011 				   found_key.offset);
4012 			ret = 0;
4013 		} else if (ret) {
4014 			goto error;
4015 		} else {
4016 			spin_lock(&fs_info->balance_lock);
4017 			bctl->stat.completed++;
4018 			spin_unlock(&fs_info->balance_lock);
4019 		}
4020 loop:
4021 		if (found_key.offset == 0)
4022 			break;
4023 		key.offset = found_key.offset - 1;
4024 	}
4025 
4026 	if (counting) {
4027 		btrfs_release_path(path);
4028 		counting = false;
4029 		goto again;
4030 	}
4031 error:
4032 	btrfs_free_path(path);
4033 	if (enospc_errors) {
4034 		btrfs_info(fs_info, "%d enospc errors during balance",
4035 			   enospc_errors);
4036 		if (!ret)
4037 			ret = -ENOSPC;
4038 	}
4039 
4040 	return ret;
4041 }
4042 
4043 /**
4044  * alloc_profile_is_valid - see if a given profile is valid and reduced
4045  * @flags: profile to validate
4046  * @extended: if true @flags is treated as an extended profile
4047  */
4048 static int alloc_profile_is_valid(u64 flags, int extended)
4049 {
4050 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4051 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4052 
4053 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4054 
4055 	/* 1) check that all other bits are zeroed */
4056 	if (flags & ~mask)
4057 		return 0;
4058 
4059 	/* 2) see if profile is reduced */
4060 	if (flags == 0)
4061 		return !extended; /* "0" is valid for usual profiles */
4062 
4063 	return has_single_bit_set(flags);
4064 }
4065 
4066 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4067 {
4068 	/* cancel requested || normal exit path */
4069 	return atomic_read(&fs_info->balance_cancel_req) ||
4070 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4071 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4072 }
4073 
4074 /*
4075  * Validate target profile against allowed profiles and return true if it's OK.
4076  * Otherwise print the error message and return false.
4077  */
4078 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4079 		const struct btrfs_balance_args *bargs,
4080 		u64 allowed, const char *type)
4081 {
4082 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4083 		return true;
4084 
4085 	if (fs_info->sectorsize < PAGE_SIZE &&
4086 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4087 		btrfs_err(fs_info,
4088 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
4089 			  fs_info->sectorsize, PAGE_SIZE);
4090 		return false;
4091 	}
4092 	/* Profile is valid and does not have bits outside of the allowed set */
4093 	if (alloc_profile_is_valid(bargs->target, 1) &&
4094 	    (bargs->target & ~allowed) == 0)
4095 		return true;
4096 
4097 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4098 			type, btrfs_bg_type_to_raid_name(bargs->target));
4099 	return false;
4100 }
4101 
4102 /*
4103  * Fill @buf with textual description of balance filter flags @bargs, up to
4104  * @size_buf including the terminating null. The output may be trimmed if it
4105  * does not fit into the provided buffer.
4106  */
4107 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4108 				 u32 size_buf)
4109 {
4110 	int ret;
4111 	u32 size_bp = size_buf;
4112 	char *bp = buf;
4113 	u64 flags = bargs->flags;
4114 	char tmp_buf[128] = {'\0'};
4115 
4116 	if (!flags)
4117 		return;
4118 
4119 #define CHECK_APPEND_NOARG(a)						\
4120 	do {								\
4121 		ret = snprintf(bp, size_bp, (a));			\
4122 		if (ret < 0 || ret >= size_bp)				\
4123 			goto out_overflow;				\
4124 		size_bp -= ret;						\
4125 		bp += ret;						\
4126 	} while (0)
4127 
4128 #define CHECK_APPEND_1ARG(a, v1)					\
4129 	do {								\
4130 		ret = snprintf(bp, size_bp, (a), (v1));			\
4131 		if (ret < 0 || ret >= size_bp)				\
4132 			goto out_overflow;				\
4133 		size_bp -= ret;						\
4134 		bp += ret;						\
4135 	} while (0)
4136 
4137 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4138 	do {								\
4139 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4140 		if (ret < 0 || ret >= size_bp)				\
4141 			goto out_overflow;				\
4142 		size_bp -= ret;						\
4143 		bp += ret;						\
4144 	} while (0)
4145 
4146 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4147 		CHECK_APPEND_1ARG("convert=%s,",
4148 				  btrfs_bg_type_to_raid_name(bargs->target));
4149 
4150 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4151 		CHECK_APPEND_NOARG("soft,");
4152 
4153 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4154 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4155 					    sizeof(tmp_buf));
4156 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4157 	}
4158 
4159 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4160 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4161 
4162 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4163 		CHECK_APPEND_2ARG("usage=%u..%u,",
4164 				  bargs->usage_min, bargs->usage_max);
4165 
4166 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4167 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4168 
4169 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4170 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4171 				  bargs->pstart, bargs->pend);
4172 
4173 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4174 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4175 				  bargs->vstart, bargs->vend);
4176 
4177 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4178 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4179 
4180 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4181 		CHECK_APPEND_2ARG("limit=%u..%u,",
4182 				bargs->limit_min, bargs->limit_max);
4183 
4184 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4185 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4186 				  bargs->stripes_min, bargs->stripes_max);
4187 
4188 #undef CHECK_APPEND_2ARG
4189 #undef CHECK_APPEND_1ARG
4190 #undef CHECK_APPEND_NOARG
4191 
4192 out_overflow:
4193 
4194 	if (size_bp < size_buf)
4195 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4196 	else
4197 		buf[0] = '\0';
4198 }
4199 
4200 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4201 {
4202 	u32 size_buf = 1024;
4203 	char tmp_buf[192] = {'\0'};
4204 	char *buf;
4205 	char *bp;
4206 	u32 size_bp = size_buf;
4207 	int ret;
4208 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4209 
4210 	buf = kzalloc(size_buf, GFP_KERNEL);
4211 	if (!buf)
4212 		return;
4213 
4214 	bp = buf;
4215 
4216 #define CHECK_APPEND_1ARG(a, v1)					\
4217 	do {								\
4218 		ret = snprintf(bp, size_bp, (a), (v1));			\
4219 		if (ret < 0 || ret >= size_bp)				\
4220 			goto out_overflow;				\
4221 		size_bp -= ret;						\
4222 		bp += ret;						\
4223 	} while (0)
4224 
4225 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4226 		CHECK_APPEND_1ARG("%s", "-f ");
4227 
4228 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4229 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4230 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4231 	}
4232 
4233 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4234 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4235 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4236 	}
4237 
4238 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4239 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4240 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4241 	}
4242 
4243 #undef CHECK_APPEND_1ARG
4244 
4245 out_overflow:
4246 
4247 	if (size_bp < size_buf)
4248 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4249 	btrfs_info(fs_info, "balance: %s %s",
4250 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4251 		   "resume" : "start", buf);
4252 
4253 	kfree(buf);
4254 }
4255 
4256 /*
4257  * Should be called with balance mutexe held
4258  */
4259 int btrfs_balance(struct btrfs_fs_info *fs_info,
4260 		  struct btrfs_balance_control *bctl,
4261 		  struct btrfs_ioctl_balance_args *bargs)
4262 {
4263 	u64 meta_target, data_target;
4264 	u64 allowed;
4265 	int mixed = 0;
4266 	int ret;
4267 	u64 num_devices;
4268 	unsigned seq;
4269 	bool reducing_redundancy;
4270 	int i;
4271 
4272 	if (btrfs_fs_closing(fs_info) ||
4273 	    atomic_read(&fs_info->balance_pause_req) ||
4274 	    btrfs_should_cancel_balance(fs_info)) {
4275 		ret = -EINVAL;
4276 		goto out;
4277 	}
4278 
4279 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4280 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4281 		mixed = 1;
4282 
4283 	/*
4284 	 * In case of mixed groups both data and meta should be picked,
4285 	 * and identical options should be given for both of them.
4286 	 */
4287 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4288 	if (mixed && (bctl->flags & allowed)) {
4289 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4290 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4291 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4292 			btrfs_err(fs_info,
4293 	  "balance: mixed groups data and metadata options must be the same");
4294 			ret = -EINVAL;
4295 			goto out;
4296 		}
4297 	}
4298 
4299 	/*
4300 	 * rw_devices will not change at the moment, device add/delete/replace
4301 	 * are exclusive
4302 	 */
4303 	num_devices = fs_info->fs_devices->rw_devices;
4304 
4305 	/*
4306 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4307 	 * special bit for it, to make it easier to distinguish.  Thus we need
4308 	 * to set it manually, or balance would refuse the profile.
4309 	 */
4310 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4311 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4312 		if (num_devices >= btrfs_raid_array[i].devs_min)
4313 			allowed |= btrfs_raid_array[i].bg_flag;
4314 
4315 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4316 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4317 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4318 		ret = -EINVAL;
4319 		goto out;
4320 	}
4321 
4322 	/*
4323 	 * Allow to reduce metadata or system integrity only if force set for
4324 	 * profiles with redundancy (copies, parity)
4325 	 */
4326 	allowed = 0;
4327 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4328 		if (btrfs_raid_array[i].ncopies >= 2 ||
4329 		    btrfs_raid_array[i].tolerated_failures >= 1)
4330 			allowed |= btrfs_raid_array[i].bg_flag;
4331 	}
4332 	do {
4333 		seq = read_seqbegin(&fs_info->profiles_lock);
4334 
4335 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4336 		     (fs_info->avail_system_alloc_bits & allowed) &&
4337 		     !(bctl->sys.target & allowed)) ||
4338 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4339 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4340 		     !(bctl->meta.target & allowed)))
4341 			reducing_redundancy = true;
4342 		else
4343 			reducing_redundancy = false;
4344 
4345 		/* if we're not converting, the target field is uninitialized */
4346 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4347 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4348 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4349 			bctl->data.target : fs_info->avail_data_alloc_bits;
4350 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4351 
4352 	if (reducing_redundancy) {
4353 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4354 			btrfs_info(fs_info,
4355 			   "balance: force reducing metadata redundancy");
4356 		} else {
4357 			btrfs_err(fs_info,
4358 	"balance: reduces metadata redundancy, use --force if you want this");
4359 			ret = -EINVAL;
4360 			goto out;
4361 		}
4362 	}
4363 
4364 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4365 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4366 		btrfs_warn(fs_info,
4367 	"balance: metadata profile %s has lower redundancy than data profile %s",
4368 				btrfs_bg_type_to_raid_name(meta_target),
4369 				btrfs_bg_type_to_raid_name(data_target));
4370 	}
4371 
4372 	ret = insert_balance_item(fs_info, bctl);
4373 	if (ret && ret != -EEXIST)
4374 		goto out;
4375 
4376 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4377 		BUG_ON(ret == -EEXIST);
4378 		BUG_ON(fs_info->balance_ctl);
4379 		spin_lock(&fs_info->balance_lock);
4380 		fs_info->balance_ctl = bctl;
4381 		spin_unlock(&fs_info->balance_lock);
4382 	} else {
4383 		BUG_ON(ret != -EEXIST);
4384 		spin_lock(&fs_info->balance_lock);
4385 		update_balance_args(bctl);
4386 		spin_unlock(&fs_info->balance_lock);
4387 	}
4388 
4389 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4390 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4391 	describe_balance_start_or_resume(fs_info);
4392 	mutex_unlock(&fs_info->balance_mutex);
4393 
4394 	ret = __btrfs_balance(fs_info);
4395 
4396 	mutex_lock(&fs_info->balance_mutex);
4397 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4398 		btrfs_info(fs_info, "balance: paused");
4399 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4400 	}
4401 	/*
4402 	 * Balance can be canceled by:
4403 	 *
4404 	 * - Regular cancel request
4405 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4406 	 *
4407 	 * - Fatal signal to "btrfs" process
4408 	 *   Either the signal caught by wait_reserve_ticket() and callers
4409 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4410 	 *   got -ECANCELED.
4411 	 *   Either way, in this case balance_cancel_req = 0, and
4412 	 *   ret == -EINTR or ret == -ECANCELED.
4413 	 *
4414 	 * So here we only check the return value to catch canceled balance.
4415 	 */
4416 	else if (ret == -ECANCELED || ret == -EINTR)
4417 		btrfs_info(fs_info, "balance: canceled");
4418 	else
4419 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4420 
4421 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4422 
4423 	if (bargs) {
4424 		memset(bargs, 0, sizeof(*bargs));
4425 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4426 	}
4427 
4428 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4429 	    balance_need_close(fs_info)) {
4430 		reset_balance_state(fs_info);
4431 		btrfs_exclop_finish(fs_info);
4432 	}
4433 
4434 	wake_up(&fs_info->balance_wait_q);
4435 
4436 	return ret;
4437 out:
4438 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4439 		reset_balance_state(fs_info);
4440 	else
4441 		kfree(bctl);
4442 	btrfs_exclop_finish(fs_info);
4443 
4444 	return ret;
4445 }
4446 
4447 static int balance_kthread(void *data)
4448 {
4449 	struct btrfs_fs_info *fs_info = data;
4450 	int ret = 0;
4451 
4452 	mutex_lock(&fs_info->balance_mutex);
4453 	if (fs_info->balance_ctl)
4454 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4455 	mutex_unlock(&fs_info->balance_mutex);
4456 
4457 	return ret;
4458 }
4459 
4460 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4461 {
4462 	struct task_struct *tsk;
4463 
4464 	mutex_lock(&fs_info->balance_mutex);
4465 	if (!fs_info->balance_ctl) {
4466 		mutex_unlock(&fs_info->balance_mutex);
4467 		return 0;
4468 	}
4469 	mutex_unlock(&fs_info->balance_mutex);
4470 
4471 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4472 		btrfs_info(fs_info, "balance: resume skipped");
4473 		return 0;
4474 	}
4475 
4476 	spin_lock(&fs_info->super_lock);
4477 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4478 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4479 	spin_unlock(&fs_info->super_lock);
4480 	/*
4481 	 * A ro->rw remount sequence should continue with the paused balance
4482 	 * regardless of who pauses it, system or the user as of now, so set
4483 	 * the resume flag.
4484 	 */
4485 	spin_lock(&fs_info->balance_lock);
4486 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4487 	spin_unlock(&fs_info->balance_lock);
4488 
4489 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4490 	return PTR_ERR_OR_ZERO(tsk);
4491 }
4492 
4493 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4494 {
4495 	struct btrfs_balance_control *bctl;
4496 	struct btrfs_balance_item *item;
4497 	struct btrfs_disk_balance_args disk_bargs;
4498 	struct btrfs_path *path;
4499 	struct extent_buffer *leaf;
4500 	struct btrfs_key key;
4501 	int ret;
4502 
4503 	path = btrfs_alloc_path();
4504 	if (!path)
4505 		return -ENOMEM;
4506 
4507 	key.objectid = BTRFS_BALANCE_OBJECTID;
4508 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4509 	key.offset = 0;
4510 
4511 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4512 	if (ret < 0)
4513 		goto out;
4514 	if (ret > 0) { /* ret = -ENOENT; */
4515 		ret = 0;
4516 		goto out;
4517 	}
4518 
4519 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4520 	if (!bctl) {
4521 		ret = -ENOMEM;
4522 		goto out;
4523 	}
4524 
4525 	leaf = path->nodes[0];
4526 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4527 
4528 	bctl->flags = btrfs_balance_flags(leaf, item);
4529 	bctl->flags |= BTRFS_BALANCE_RESUME;
4530 
4531 	btrfs_balance_data(leaf, item, &disk_bargs);
4532 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4533 	btrfs_balance_meta(leaf, item, &disk_bargs);
4534 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4535 	btrfs_balance_sys(leaf, item, &disk_bargs);
4536 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4537 
4538 	/*
4539 	 * This should never happen, as the paused balance state is recovered
4540 	 * during mount without any chance of other exclusive ops to collide.
4541 	 *
4542 	 * This gives the exclusive op status to balance and keeps in paused
4543 	 * state until user intervention (cancel or umount). If the ownership
4544 	 * cannot be assigned, show a message but do not fail. The balance
4545 	 * is in a paused state and must have fs_info::balance_ctl properly
4546 	 * set up.
4547 	 */
4548 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4549 		btrfs_warn(fs_info,
4550 	"balance: cannot set exclusive op status, resume manually");
4551 
4552 	btrfs_release_path(path);
4553 
4554 	mutex_lock(&fs_info->balance_mutex);
4555 	BUG_ON(fs_info->balance_ctl);
4556 	spin_lock(&fs_info->balance_lock);
4557 	fs_info->balance_ctl = bctl;
4558 	spin_unlock(&fs_info->balance_lock);
4559 	mutex_unlock(&fs_info->balance_mutex);
4560 out:
4561 	btrfs_free_path(path);
4562 	return ret;
4563 }
4564 
4565 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4566 {
4567 	int ret = 0;
4568 
4569 	mutex_lock(&fs_info->balance_mutex);
4570 	if (!fs_info->balance_ctl) {
4571 		mutex_unlock(&fs_info->balance_mutex);
4572 		return -ENOTCONN;
4573 	}
4574 
4575 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4576 		atomic_inc(&fs_info->balance_pause_req);
4577 		mutex_unlock(&fs_info->balance_mutex);
4578 
4579 		wait_event(fs_info->balance_wait_q,
4580 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4581 
4582 		mutex_lock(&fs_info->balance_mutex);
4583 		/* we are good with balance_ctl ripped off from under us */
4584 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4585 		atomic_dec(&fs_info->balance_pause_req);
4586 	} else {
4587 		ret = -ENOTCONN;
4588 	}
4589 
4590 	mutex_unlock(&fs_info->balance_mutex);
4591 	return ret;
4592 }
4593 
4594 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4595 {
4596 	mutex_lock(&fs_info->balance_mutex);
4597 	if (!fs_info->balance_ctl) {
4598 		mutex_unlock(&fs_info->balance_mutex);
4599 		return -ENOTCONN;
4600 	}
4601 
4602 	/*
4603 	 * A paused balance with the item stored on disk can be resumed at
4604 	 * mount time if the mount is read-write. Otherwise it's still paused
4605 	 * and we must not allow cancelling as it deletes the item.
4606 	 */
4607 	if (sb_rdonly(fs_info->sb)) {
4608 		mutex_unlock(&fs_info->balance_mutex);
4609 		return -EROFS;
4610 	}
4611 
4612 	atomic_inc(&fs_info->balance_cancel_req);
4613 	/*
4614 	 * if we are running just wait and return, balance item is
4615 	 * deleted in btrfs_balance in this case
4616 	 */
4617 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4618 		mutex_unlock(&fs_info->balance_mutex);
4619 		wait_event(fs_info->balance_wait_q,
4620 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4621 		mutex_lock(&fs_info->balance_mutex);
4622 	} else {
4623 		mutex_unlock(&fs_info->balance_mutex);
4624 		/*
4625 		 * Lock released to allow other waiters to continue, we'll
4626 		 * reexamine the status again.
4627 		 */
4628 		mutex_lock(&fs_info->balance_mutex);
4629 
4630 		if (fs_info->balance_ctl) {
4631 			reset_balance_state(fs_info);
4632 			btrfs_exclop_finish(fs_info);
4633 			btrfs_info(fs_info, "balance: canceled");
4634 		}
4635 	}
4636 
4637 	BUG_ON(fs_info->balance_ctl ||
4638 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4639 	atomic_dec(&fs_info->balance_cancel_req);
4640 	mutex_unlock(&fs_info->balance_mutex);
4641 	return 0;
4642 }
4643 
4644 int btrfs_uuid_scan_kthread(void *data)
4645 {
4646 	struct btrfs_fs_info *fs_info = data;
4647 	struct btrfs_root *root = fs_info->tree_root;
4648 	struct btrfs_key key;
4649 	struct btrfs_path *path = NULL;
4650 	int ret = 0;
4651 	struct extent_buffer *eb;
4652 	int slot;
4653 	struct btrfs_root_item root_item;
4654 	u32 item_size;
4655 	struct btrfs_trans_handle *trans = NULL;
4656 	bool closing = false;
4657 
4658 	path = btrfs_alloc_path();
4659 	if (!path) {
4660 		ret = -ENOMEM;
4661 		goto out;
4662 	}
4663 
4664 	key.objectid = 0;
4665 	key.type = BTRFS_ROOT_ITEM_KEY;
4666 	key.offset = 0;
4667 
4668 	while (1) {
4669 		if (btrfs_fs_closing(fs_info)) {
4670 			closing = true;
4671 			break;
4672 		}
4673 		ret = btrfs_search_forward(root, &key, path,
4674 				BTRFS_OLDEST_GENERATION);
4675 		if (ret) {
4676 			if (ret > 0)
4677 				ret = 0;
4678 			break;
4679 		}
4680 
4681 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4682 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4683 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4684 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4685 			goto skip;
4686 
4687 		eb = path->nodes[0];
4688 		slot = path->slots[0];
4689 		item_size = btrfs_item_size(eb, slot);
4690 		if (item_size < sizeof(root_item))
4691 			goto skip;
4692 
4693 		read_extent_buffer(eb, &root_item,
4694 				   btrfs_item_ptr_offset(eb, slot),
4695 				   (int)sizeof(root_item));
4696 		if (btrfs_root_refs(&root_item) == 0)
4697 			goto skip;
4698 
4699 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4700 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4701 			if (trans)
4702 				goto update_tree;
4703 
4704 			btrfs_release_path(path);
4705 			/*
4706 			 * 1 - subvol uuid item
4707 			 * 1 - received_subvol uuid item
4708 			 */
4709 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4710 			if (IS_ERR(trans)) {
4711 				ret = PTR_ERR(trans);
4712 				break;
4713 			}
4714 			continue;
4715 		} else {
4716 			goto skip;
4717 		}
4718 update_tree:
4719 		btrfs_release_path(path);
4720 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4721 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4722 						  BTRFS_UUID_KEY_SUBVOL,
4723 						  key.objectid);
4724 			if (ret < 0) {
4725 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4726 					ret);
4727 				break;
4728 			}
4729 		}
4730 
4731 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4732 			ret = btrfs_uuid_tree_add(trans,
4733 						  root_item.received_uuid,
4734 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4735 						  key.objectid);
4736 			if (ret < 0) {
4737 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4738 					ret);
4739 				break;
4740 			}
4741 		}
4742 
4743 skip:
4744 		btrfs_release_path(path);
4745 		if (trans) {
4746 			ret = btrfs_end_transaction(trans);
4747 			trans = NULL;
4748 			if (ret)
4749 				break;
4750 		}
4751 
4752 		if (key.offset < (u64)-1) {
4753 			key.offset++;
4754 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4755 			key.offset = 0;
4756 			key.type = BTRFS_ROOT_ITEM_KEY;
4757 		} else if (key.objectid < (u64)-1) {
4758 			key.offset = 0;
4759 			key.type = BTRFS_ROOT_ITEM_KEY;
4760 			key.objectid++;
4761 		} else {
4762 			break;
4763 		}
4764 		cond_resched();
4765 	}
4766 
4767 out:
4768 	btrfs_free_path(path);
4769 	if (trans && !IS_ERR(trans))
4770 		btrfs_end_transaction(trans);
4771 	if (ret)
4772 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4773 	else if (!closing)
4774 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4775 	up(&fs_info->uuid_tree_rescan_sem);
4776 	return 0;
4777 }
4778 
4779 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4780 {
4781 	struct btrfs_trans_handle *trans;
4782 	struct btrfs_root *tree_root = fs_info->tree_root;
4783 	struct btrfs_root *uuid_root;
4784 	struct task_struct *task;
4785 	int ret;
4786 
4787 	/*
4788 	 * 1 - root node
4789 	 * 1 - root item
4790 	 */
4791 	trans = btrfs_start_transaction(tree_root, 2);
4792 	if (IS_ERR(trans))
4793 		return PTR_ERR(trans);
4794 
4795 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4796 	if (IS_ERR(uuid_root)) {
4797 		ret = PTR_ERR(uuid_root);
4798 		btrfs_abort_transaction(trans, ret);
4799 		btrfs_end_transaction(trans);
4800 		return ret;
4801 	}
4802 
4803 	fs_info->uuid_root = uuid_root;
4804 
4805 	ret = btrfs_commit_transaction(trans);
4806 	if (ret)
4807 		return ret;
4808 
4809 	down(&fs_info->uuid_tree_rescan_sem);
4810 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4811 	if (IS_ERR(task)) {
4812 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4813 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4814 		up(&fs_info->uuid_tree_rescan_sem);
4815 		return PTR_ERR(task);
4816 	}
4817 
4818 	return 0;
4819 }
4820 
4821 /*
4822  * shrinking a device means finding all of the device extents past
4823  * the new size, and then following the back refs to the chunks.
4824  * The chunk relocation code actually frees the device extent
4825  */
4826 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4827 {
4828 	struct btrfs_fs_info *fs_info = device->fs_info;
4829 	struct btrfs_root *root = fs_info->dev_root;
4830 	struct btrfs_trans_handle *trans;
4831 	struct btrfs_dev_extent *dev_extent = NULL;
4832 	struct btrfs_path *path;
4833 	u64 length;
4834 	u64 chunk_offset;
4835 	int ret;
4836 	int slot;
4837 	int failed = 0;
4838 	bool retried = false;
4839 	struct extent_buffer *l;
4840 	struct btrfs_key key;
4841 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4842 	u64 old_total = btrfs_super_total_bytes(super_copy);
4843 	u64 old_size = btrfs_device_get_total_bytes(device);
4844 	u64 diff;
4845 	u64 start;
4846 
4847 	new_size = round_down(new_size, fs_info->sectorsize);
4848 	start = new_size;
4849 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4850 
4851 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4852 		return -EINVAL;
4853 
4854 	path = btrfs_alloc_path();
4855 	if (!path)
4856 		return -ENOMEM;
4857 
4858 	path->reada = READA_BACK;
4859 
4860 	trans = btrfs_start_transaction(root, 0);
4861 	if (IS_ERR(trans)) {
4862 		btrfs_free_path(path);
4863 		return PTR_ERR(trans);
4864 	}
4865 
4866 	mutex_lock(&fs_info->chunk_mutex);
4867 
4868 	btrfs_device_set_total_bytes(device, new_size);
4869 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4870 		device->fs_devices->total_rw_bytes -= diff;
4871 		atomic64_sub(diff, &fs_info->free_chunk_space);
4872 	}
4873 
4874 	/*
4875 	 * Once the device's size has been set to the new size, ensure all
4876 	 * in-memory chunks are synced to disk so that the loop below sees them
4877 	 * and relocates them accordingly.
4878 	 */
4879 	if (contains_pending_extent(device, &start, diff)) {
4880 		mutex_unlock(&fs_info->chunk_mutex);
4881 		ret = btrfs_commit_transaction(trans);
4882 		if (ret)
4883 			goto done;
4884 	} else {
4885 		mutex_unlock(&fs_info->chunk_mutex);
4886 		btrfs_end_transaction(trans);
4887 	}
4888 
4889 again:
4890 	key.objectid = device->devid;
4891 	key.offset = (u64)-1;
4892 	key.type = BTRFS_DEV_EXTENT_KEY;
4893 
4894 	do {
4895 		mutex_lock(&fs_info->reclaim_bgs_lock);
4896 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4897 		if (ret < 0) {
4898 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4899 			goto done;
4900 		}
4901 
4902 		ret = btrfs_previous_item(root, path, 0, key.type);
4903 		if (ret) {
4904 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 			if (ret < 0)
4906 				goto done;
4907 			ret = 0;
4908 			btrfs_release_path(path);
4909 			break;
4910 		}
4911 
4912 		l = path->nodes[0];
4913 		slot = path->slots[0];
4914 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4915 
4916 		if (key.objectid != device->devid) {
4917 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4918 			btrfs_release_path(path);
4919 			break;
4920 		}
4921 
4922 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4923 		length = btrfs_dev_extent_length(l, dev_extent);
4924 
4925 		if (key.offset + length <= new_size) {
4926 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4927 			btrfs_release_path(path);
4928 			break;
4929 		}
4930 
4931 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4932 		btrfs_release_path(path);
4933 
4934 		/*
4935 		 * We may be relocating the only data chunk we have,
4936 		 * which could potentially end up with losing data's
4937 		 * raid profile, so lets allocate an empty one in
4938 		 * advance.
4939 		 */
4940 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4941 		if (ret < 0) {
4942 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4943 			goto done;
4944 		}
4945 
4946 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4947 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4948 		if (ret == -ENOSPC) {
4949 			failed++;
4950 		} else if (ret) {
4951 			if (ret == -ETXTBSY) {
4952 				btrfs_warn(fs_info,
4953 		   "could not shrink block group %llu due to active swapfile",
4954 					   chunk_offset);
4955 			}
4956 			goto done;
4957 		}
4958 	} while (key.offset-- > 0);
4959 
4960 	if (failed && !retried) {
4961 		failed = 0;
4962 		retried = true;
4963 		goto again;
4964 	} else if (failed && retried) {
4965 		ret = -ENOSPC;
4966 		goto done;
4967 	}
4968 
4969 	/* Shrinking succeeded, else we would be at "done". */
4970 	trans = btrfs_start_transaction(root, 0);
4971 	if (IS_ERR(trans)) {
4972 		ret = PTR_ERR(trans);
4973 		goto done;
4974 	}
4975 
4976 	mutex_lock(&fs_info->chunk_mutex);
4977 	/* Clear all state bits beyond the shrunk device size */
4978 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4979 			  CHUNK_STATE_MASK);
4980 
4981 	btrfs_device_set_disk_total_bytes(device, new_size);
4982 	if (list_empty(&device->post_commit_list))
4983 		list_add_tail(&device->post_commit_list,
4984 			      &trans->transaction->dev_update_list);
4985 
4986 	WARN_ON(diff > old_total);
4987 	btrfs_set_super_total_bytes(super_copy,
4988 			round_down(old_total - diff, fs_info->sectorsize));
4989 	mutex_unlock(&fs_info->chunk_mutex);
4990 
4991 	btrfs_reserve_chunk_metadata(trans, false);
4992 	/* Now btrfs_update_device() will change the on-disk size. */
4993 	ret = btrfs_update_device(trans, device);
4994 	btrfs_trans_release_chunk_metadata(trans);
4995 	if (ret < 0) {
4996 		btrfs_abort_transaction(trans, ret);
4997 		btrfs_end_transaction(trans);
4998 	} else {
4999 		ret = btrfs_commit_transaction(trans);
5000 	}
5001 done:
5002 	btrfs_free_path(path);
5003 	if (ret) {
5004 		mutex_lock(&fs_info->chunk_mutex);
5005 		btrfs_device_set_total_bytes(device, old_size);
5006 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5007 			device->fs_devices->total_rw_bytes += diff;
5008 		atomic64_add(diff, &fs_info->free_chunk_space);
5009 		mutex_unlock(&fs_info->chunk_mutex);
5010 	}
5011 	return ret;
5012 }
5013 
5014 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5015 			   struct btrfs_key *key,
5016 			   struct btrfs_chunk *chunk, int item_size)
5017 {
5018 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5019 	struct btrfs_disk_key disk_key;
5020 	u32 array_size;
5021 	u8 *ptr;
5022 
5023 	lockdep_assert_held(&fs_info->chunk_mutex);
5024 
5025 	array_size = btrfs_super_sys_array_size(super_copy);
5026 	if (array_size + item_size + sizeof(disk_key)
5027 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5028 		return -EFBIG;
5029 
5030 	ptr = super_copy->sys_chunk_array + array_size;
5031 	btrfs_cpu_key_to_disk(&disk_key, key);
5032 	memcpy(ptr, &disk_key, sizeof(disk_key));
5033 	ptr += sizeof(disk_key);
5034 	memcpy(ptr, chunk, item_size);
5035 	item_size += sizeof(disk_key);
5036 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5037 
5038 	return 0;
5039 }
5040 
5041 /*
5042  * sort the devices in descending order by max_avail, total_avail
5043  */
5044 static int btrfs_cmp_device_info(const void *a, const void *b)
5045 {
5046 	const struct btrfs_device_info *di_a = a;
5047 	const struct btrfs_device_info *di_b = b;
5048 
5049 	if (di_a->max_avail > di_b->max_avail)
5050 		return -1;
5051 	if (di_a->max_avail < di_b->max_avail)
5052 		return 1;
5053 	if (di_a->total_avail > di_b->total_avail)
5054 		return -1;
5055 	if (di_a->total_avail < di_b->total_avail)
5056 		return 1;
5057 	return 0;
5058 }
5059 
5060 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5061 {
5062 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5063 		return;
5064 
5065 	btrfs_set_fs_incompat(info, RAID56);
5066 }
5067 
5068 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5069 {
5070 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5071 		return;
5072 
5073 	btrfs_set_fs_incompat(info, RAID1C34);
5074 }
5075 
5076 /*
5077  * Structure used internally for btrfs_create_chunk() function.
5078  * Wraps needed parameters.
5079  */
5080 struct alloc_chunk_ctl {
5081 	u64 start;
5082 	u64 type;
5083 	/* Total number of stripes to allocate */
5084 	int num_stripes;
5085 	/* sub_stripes info for map */
5086 	int sub_stripes;
5087 	/* Stripes per device */
5088 	int dev_stripes;
5089 	/* Maximum number of devices to use */
5090 	int devs_max;
5091 	/* Minimum number of devices to use */
5092 	int devs_min;
5093 	/* ndevs has to be a multiple of this */
5094 	int devs_increment;
5095 	/* Number of copies */
5096 	int ncopies;
5097 	/* Number of stripes worth of bytes to store parity information */
5098 	int nparity;
5099 	u64 max_stripe_size;
5100 	u64 max_chunk_size;
5101 	u64 dev_extent_min;
5102 	u64 stripe_size;
5103 	u64 chunk_size;
5104 	int ndevs;
5105 };
5106 
5107 static void init_alloc_chunk_ctl_policy_regular(
5108 				struct btrfs_fs_devices *fs_devices,
5109 				struct alloc_chunk_ctl *ctl)
5110 {
5111 	u64 type = ctl->type;
5112 
5113 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5114 		ctl->max_stripe_size = SZ_1G;
5115 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5116 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5117 		/* For larger filesystems, use larger metadata chunks */
5118 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5119 			ctl->max_stripe_size = SZ_1G;
5120 		else
5121 			ctl->max_stripe_size = SZ_256M;
5122 		ctl->max_chunk_size = ctl->max_stripe_size;
5123 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5124 		ctl->max_stripe_size = SZ_32M;
5125 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5126 		ctl->devs_max = min_t(int, ctl->devs_max,
5127 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5128 	} else {
5129 		BUG();
5130 	}
5131 
5132 	/* We don't want a chunk larger than 10% of writable space */
5133 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5134 				  ctl->max_chunk_size);
5135 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5136 }
5137 
5138 static void init_alloc_chunk_ctl_policy_zoned(
5139 				      struct btrfs_fs_devices *fs_devices,
5140 				      struct alloc_chunk_ctl *ctl)
5141 {
5142 	u64 zone_size = fs_devices->fs_info->zone_size;
5143 	u64 limit;
5144 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5145 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5146 	u64 min_chunk_size = min_data_stripes * zone_size;
5147 	u64 type = ctl->type;
5148 
5149 	ctl->max_stripe_size = zone_size;
5150 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5151 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5152 						 zone_size);
5153 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5154 		ctl->max_chunk_size = ctl->max_stripe_size;
5155 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5156 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5157 		ctl->devs_max = min_t(int, ctl->devs_max,
5158 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5159 	} else {
5160 		BUG();
5161 	}
5162 
5163 	/* We don't want a chunk larger than 10% of writable space */
5164 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5165 			       zone_size),
5166 		    min_chunk_size);
5167 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5168 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5169 }
5170 
5171 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5172 				 struct alloc_chunk_ctl *ctl)
5173 {
5174 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5175 
5176 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5177 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5178 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5179 	if (!ctl->devs_max)
5180 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5181 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5182 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5183 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5184 	ctl->nparity = btrfs_raid_array[index].nparity;
5185 	ctl->ndevs = 0;
5186 
5187 	switch (fs_devices->chunk_alloc_policy) {
5188 	case BTRFS_CHUNK_ALLOC_REGULAR:
5189 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5190 		break;
5191 	case BTRFS_CHUNK_ALLOC_ZONED:
5192 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5193 		break;
5194 	default:
5195 		BUG();
5196 	}
5197 }
5198 
5199 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5200 			      struct alloc_chunk_ctl *ctl,
5201 			      struct btrfs_device_info *devices_info)
5202 {
5203 	struct btrfs_fs_info *info = fs_devices->fs_info;
5204 	struct btrfs_device *device;
5205 	u64 total_avail;
5206 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5207 	int ret;
5208 	int ndevs = 0;
5209 	u64 max_avail;
5210 	u64 dev_offset;
5211 
5212 	/*
5213 	 * in the first pass through the devices list, we gather information
5214 	 * about the available holes on each device.
5215 	 */
5216 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5217 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5218 			WARN(1, KERN_ERR
5219 			       "BTRFS: read-only device in alloc_list\n");
5220 			continue;
5221 		}
5222 
5223 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5224 					&device->dev_state) ||
5225 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5226 			continue;
5227 
5228 		if (device->total_bytes > device->bytes_used)
5229 			total_avail = device->total_bytes - device->bytes_used;
5230 		else
5231 			total_avail = 0;
5232 
5233 		/* If there is no space on this device, skip it. */
5234 		if (total_avail < ctl->dev_extent_min)
5235 			continue;
5236 
5237 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5238 					   &max_avail);
5239 		if (ret && ret != -ENOSPC)
5240 			return ret;
5241 
5242 		if (ret == 0)
5243 			max_avail = dev_extent_want;
5244 
5245 		if (max_avail < ctl->dev_extent_min) {
5246 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5247 				btrfs_debug(info,
5248 			"%s: devid %llu has no free space, have=%llu want=%llu",
5249 					    __func__, device->devid, max_avail,
5250 					    ctl->dev_extent_min);
5251 			continue;
5252 		}
5253 
5254 		if (ndevs == fs_devices->rw_devices) {
5255 			WARN(1, "%s: found more than %llu devices\n",
5256 			     __func__, fs_devices->rw_devices);
5257 			break;
5258 		}
5259 		devices_info[ndevs].dev_offset = dev_offset;
5260 		devices_info[ndevs].max_avail = max_avail;
5261 		devices_info[ndevs].total_avail = total_avail;
5262 		devices_info[ndevs].dev = device;
5263 		++ndevs;
5264 	}
5265 	ctl->ndevs = ndevs;
5266 
5267 	/*
5268 	 * now sort the devices by hole size / available space
5269 	 */
5270 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5271 	     btrfs_cmp_device_info, NULL);
5272 
5273 	return 0;
5274 }
5275 
5276 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5277 				      struct btrfs_device_info *devices_info)
5278 {
5279 	/* Number of stripes that count for block group size */
5280 	int data_stripes;
5281 
5282 	/*
5283 	 * The primary goal is to maximize the number of stripes, so use as
5284 	 * many devices as possible, even if the stripes are not maximum sized.
5285 	 *
5286 	 * The DUP profile stores more than one stripe per device, the
5287 	 * max_avail is the total size so we have to adjust.
5288 	 */
5289 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5290 				   ctl->dev_stripes);
5291 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5292 
5293 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5294 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5295 
5296 	/*
5297 	 * Use the number of data stripes to figure out how big this chunk is
5298 	 * really going to be in terms of logical address space, and compare
5299 	 * that answer with the max chunk size. If it's higher, we try to
5300 	 * reduce stripe_size.
5301 	 */
5302 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5303 		/*
5304 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5305 		 * then use it, unless it ends up being even bigger than the
5306 		 * previous value we had already.
5307 		 */
5308 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5309 							data_stripes), SZ_16M),
5310 				       ctl->stripe_size);
5311 	}
5312 
5313 	/* Align to BTRFS_STRIPE_LEN */
5314 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5315 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5316 
5317 	return 0;
5318 }
5319 
5320 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5321 				    struct btrfs_device_info *devices_info)
5322 {
5323 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5324 	/* Number of stripes that count for block group size */
5325 	int data_stripes;
5326 
5327 	/*
5328 	 * It should hold because:
5329 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5330 	 */
5331 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5332 
5333 	ctl->stripe_size = zone_size;
5334 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5335 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5336 
5337 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5338 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5339 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5340 					     ctl->stripe_size) + ctl->nparity,
5341 				     ctl->dev_stripes);
5342 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5343 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5344 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5345 	}
5346 
5347 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5348 
5349 	return 0;
5350 }
5351 
5352 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5353 			      struct alloc_chunk_ctl *ctl,
5354 			      struct btrfs_device_info *devices_info)
5355 {
5356 	struct btrfs_fs_info *info = fs_devices->fs_info;
5357 
5358 	/*
5359 	 * Round down to number of usable stripes, devs_increment can be any
5360 	 * number so we can't use round_down() that requires power of 2, while
5361 	 * rounddown is safe.
5362 	 */
5363 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5364 
5365 	if (ctl->ndevs < ctl->devs_min) {
5366 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5367 			btrfs_debug(info,
5368 	"%s: not enough devices with free space: have=%d minimum required=%d",
5369 				    __func__, ctl->ndevs, ctl->devs_min);
5370 		}
5371 		return -ENOSPC;
5372 	}
5373 
5374 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5375 
5376 	switch (fs_devices->chunk_alloc_policy) {
5377 	case BTRFS_CHUNK_ALLOC_REGULAR:
5378 		return decide_stripe_size_regular(ctl, devices_info);
5379 	case BTRFS_CHUNK_ALLOC_ZONED:
5380 		return decide_stripe_size_zoned(ctl, devices_info);
5381 	default:
5382 		BUG();
5383 	}
5384 }
5385 
5386 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5387 			struct alloc_chunk_ctl *ctl,
5388 			struct btrfs_device_info *devices_info)
5389 {
5390 	struct btrfs_fs_info *info = trans->fs_info;
5391 	struct map_lookup *map = NULL;
5392 	struct extent_map_tree *em_tree;
5393 	struct btrfs_block_group *block_group;
5394 	struct extent_map *em;
5395 	u64 start = ctl->start;
5396 	u64 type = ctl->type;
5397 	int ret;
5398 	int i;
5399 	int j;
5400 
5401 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5402 	if (!map)
5403 		return ERR_PTR(-ENOMEM);
5404 	map->num_stripes = ctl->num_stripes;
5405 
5406 	for (i = 0; i < ctl->ndevs; ++i) {
5407 		for (j = 0; j < ctl->dev_stripes; ++j) {
5408 			int s = i * ctl->dev_stripes + j;
5409 			map->stripes[s].dev = devices_info[i].dev;
5410 			map->stripes[s].physical = devices_info[i].dev_offset +
5411 						   j * ctl->stripe_size;
5412 		}
5413 	}
5414 	map->stripe_len = BTRFS_STRIPE_LEN;
5415 	map->io_align = BTRFS_STRIPE_LEN;
5416 	map->io_width = BTRFS_STRIPE_LEN;
5417 	map->type = type;
5418 	map->sub_stripes = ctl->sub_stripes;
5419 
5420 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5421 
5422 	em = alloc_extent_map();
5423 	if (!em) {
5424 		kfree(map);
5425 		return ERR_PTR(-ENOMEM);
5426 	}
5427 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5428 	em->map_lookup = map;
5429 	em->start = start;
5430 	em->len = ctl->chunk_size;
5431 	em->block_start = 0;
5432 	em->block_len = em->len;
5433 	em->orig_block_len = ctl->stripe_size;
5434 
5435 	em_tree = &info->mapping_tree;
5436 	write_lock(&em_tree->lock);
5437 	ret = add_extent_mapping(em_tree, em, 0);
5438 	if (ret) {
5439 		write_unlock(&em_tree->lock);
5440 		free_extent_map(em);
5441 		return ERR_PTR(ret);
5442 	}
5443 	write_unlock(&em_tree->lock);
5444 
5445 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5446 	if (IS_ERR(block_group))
5447 		goto error_del_extent;
5448 
5449 	for (i = 0; i < map->num_stripes; i++) {
5450 		struct btrfs_device *dev = map->stripes[i].dev;
5451 
5452 		btrfs_device_set_bytes_used(dev,
5453 					    dev->bytes_used + ctl->stripe_size);
5454 		if (list_empty(&dev->post_commit_list))
5455 			list_add_tail(&dev->post_commit_list,
5456 				      &trans->transaction->dev_update_list);
5457 	}
5458 
5459 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5460 		     &info->free_chunk_space);
5461 
5462 	free_extent_map(em);
5463 	check_raid56_incompat_flag(info, type);
5464 	check_raid1c34_incompat_flag(info, type);
5465 
5466 	return block_group;
5467 
5468 error_del_extent:
5469 	write_lock(&em_tree->lock);
5470 	remove_extent_mapping(em_tree, em);
5471 	write_unlock(&em_tree->lock);
5472 
5473 	/* One for our allocation */
5474 	free_extent_map(em);
5475 	/* One for the tree reference */
5476 	free_extent_map(em);
5477 
5478 	return block_group;
5479 }
5480 
5481 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5482 					    u64 type)
5483 {
5484 	struct btrfs_fs_info *info = trans->fs_info;
5485 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5486 	struct btrfs_device_info *devices_info = NULL;
5487 	struct alloc_chunk_ctl ctl;
5488 	struct btrfs_block_group *block_group;
5489 	int ret;
5490 
5491 	lockdep_assert_held(&info->chunk_mutex);
5492 
5493 	if (!alloc_profile_is_valid(type, 0)) {
5494 		ASSERT(0);
5495 		return ERR_PTR(-EINVAL);
5496 	}
5497 
5498 	if (list_empty(&fs_devices->alloc_list)) {
5499 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5500 			btrfs_debug(info, "%s: no writable device", __func__);
5501 		return ERR_PTR(-ENOSPC);
5502 	}
5503 
5504 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5505 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5506 		ASSERT(0);
5507 		return ERR_PTR(-EINVAL);
5508 	}
5509 
5510 	ctl.start = find_next_chunk(info);
5511 	ctl.type = type;
5512 	init_alloc_chunk_ctl(fs_devices, &ctl);
5513 
5514 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5515 			       GFP_NOFS);
5516 	if (!devices_info)
5517 		return ERR_PTR(-ENOMEM);
5518 
5519 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5520 	if (ret < 0) {
5521 		block_group = ERR_PTR(ret);
5522 		goto out;
5523 	}
5524 
5525 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5526 	if (ret < 0) {
5527 		block_group = ERR_PTR(ret);
5528 		goto out;
5529 	}
5530 
5531 	block_group = create_chunk(trans, &ctl, devices_info);
5532 
5533 out:
5534 	kfree(devices_info);
5535 	return block_group;
5536 }
5537 
5538 /*
5539  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5540  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5541  * chunks.
5542  *
5543  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5544  * phases.
5545  */
5546 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5547 				     struct btrfs_block_group *bg)
5548 {
5549 	struct btrfs_fs_info *fs_info = trans->fs_info;
5550 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5551 	struct btrfs_key key;
5552 	struct btrfs_chunk *chunk;
5553 	struct btrfs_stripe *stripe;
5554 	struct extent_map *em;
5555 	struct map_lookup *map;
5556 	size_t item_size;
5557 	int i;
5558 	int ret;
5559 
5560 	/*
5561 	 * We take the chunk_mutex for 2 reasons:
5562 	 *
5563 	 * 1) Updates and insertions in the chunk btree must be done while holding
5564 	 *    the chunk_mutex, as well as updating the system chunk array in the
5565 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5566 	 *    details;
5567 	 *
5568 	 * 2) To prevent races with the final phase of a device replace operation
5569 	 *    that replaces the device object associated with the map's stripes,
5570 	 *    because the device object's id can change at any time during that
5571 	 *    final phase of the device replace operation
5572 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5573 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5574 	 *    which would cause a failure when updating the device item, which does
5575 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5576 	 *    Here we can't use the device_list_mutex because our caller already
5577 	 *    has locked the chunk_mutex, and the final phase of device replace
5578 	 *    acquires both mutexes - first the device_list_mutex and then the
5579 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5580 	 *    concurrent device replace.
5581 	 */
5582 	lockdep_assert_held(&fs_info->chunk_mutex);
5583 
5584 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5585 	if (IS_ERR(em)) {
5586 		ret = PTR_ERR(em);
5587 		btrfs_abort_transaction(trans, ret);
5588 		return ret;
5589 	}
5590 
5591 	map = em->map_lookup;
5592 	item_size = btrfs_chunk_item_size(map->num_stripes);
5593 
5594 	chunk = kzalloc(item_size, GFP_NOFS);
5595 	if (!chunk) {
5596 		ret = -ENOMEM;
5597 		btrfs_abort_transaction(trans, ret);
5598 		goto out;
5599 	}
5600 
5601 	for (i = 0; i < map->num_stripes; i++) {
5602 		struct btrfs_device *device = map->stripes[i].dev;
5603 
5604 		ret = btrfs_update_device(trans, device);
5605 		if (ret)
5606 			goto out;
5607 	}
5608 
5609 	stripe = &chunk->stripe;
5610 	for (i = 0; i < map->num_stripes; i++) {
5611 		struct btrfs_device *device = map->stripes[i].dev;
5612 		const u64 dev_offset = map->stripes[i].physical;
5613 
5614 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5615 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5616 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5617 		stripe++;
5618 	}
5619 
5620 	btrfs_set_stack_chunk_length(chunk, bg->length);
5621 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5622 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5623 	btrfs_set_stack_chunk_type(chunk, map->type);
5624 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5625 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5626 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5627 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5628 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5629 
5630 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5631 	key.type = BTRFS_CHUNK_ITEM_KEY;
5632 	key.offset = bg->start;
5633 
5634 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5635 	if (ret)
5636 		goto out;
5637 
5638 	bg->chunk_item_inserted = 1;
5639 
5640 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5641 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5642 		if (ret)
5643 			goto out;
5644 	}
5645 
5646 out:
5647 	kfree(chunk);
5648 	free_extent_map(em);
5649 	return ret;
5650 }
5651 
5652 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5653 {
5654 	struct btrfs_fs_info *fs_info = trans->fs_info;
5655 	u64 alloc_profile;
5656 	struct btrfs_block_group *meta_bg;
5657 	struct btrfs_block_group *sys_bg;
5658 
5659 	/*
5660 	 * When adding a new device for sprouting, the seed device is read-only
5661 	 * so we must first allocate a metadata and a system chunk. But before
5662 	 * adding the block group items to the extent, device and chunk btrees,
5663 	 * we must first:
5664 	 *
5665 	 * 1) Create both chunks without doing any changes to the btrees, as
5666 	 *    otherwise we would get -ENOSPC since the block groups from the
5667 	 *    seed device are read-only;
5668 	 *
5669 	 * 2) Add the device item for the new sprout device - finishing the setup
5670 	 *    of a new block group requires updating the device item in the chunk
5671 	 *    btree, so it must exist when we attempt to do it. The previous step
5672 	 *    ensures this does not fail with -ENOSPC.
5673 	 *
5674 	 * After that we can add the block group items to their btrees:
5675 	 * update existing device item in the chunk btree, add a new block group
5676 	 * item to the extent btree, add a new chunk item to the chunk btree and
5677 	 * finally add the new device extent items to the devices btree.
5678 	 */
5679 
5680 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5681 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5682 	if (IS_ERR(meta_bg))
5683 		return PTR_ERR(meta_bg);
5684 
5685 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5686 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5687 	if (IS_ERR(sys_bg))
5688 		return PTR_ERR(sys_bg);
5689 
5690 	return 0;
5691 }
5692 
5693 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5694 {
5695 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5696 
5697 	return btrfs_raid_array[index].tolerated_failures;
5698 }
5699 
5700 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5701 {
5702 	struct extent_map *em;
5703 	struct map_lookup *map;
5704 	int miss_ndevs = 0;
5705 	int i;
5706 	bool ret = true;
5707 
5708 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5709 	if (IS_ERR(em))
5710 		return false;
5711 
5712 	map = em->map_lookup;
5713 	for (i = 0; i < map->num_stripes; i++) {
5714 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5715 					&map->stripes[i].dev->dev_state)) {
5716 			miss_ndevs++;
5717 			continue;
5718 		}
5719 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5720 					&map->stripes[i].dev->dev_state)) {
5721 			ret = false;
5722 			goto end;
5723 		}
5724 	}
5725 
5726 	/*
5727 	 * If the number of missing devices is larger than max errors, we can
5728 	 * not write the data into that chunk successfully.
5729 	 */
5730 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5731 		ret = false;
5732 end:
5733 	free_extent_map(em);
5734 	return ret;
5735 }
5736 
5737 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5738 {
5739 	struct extent_map *em;
5740 
5741 	while (1) {
5742 		write_lock(&tree->lock);
5743 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5744 		if (em)
5745 			remove_extent_mapping(tree, em);
5746 		write_unlock(&tree->lock);
5747 		if (!em)
5748 			break;
5749 		/* once for us */
5750 		free_extent_map(em);
5751 		/* once for the tree */
5752 		free_extent_map(em);
5753 	}
5754 }
5755 
5756 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5757 {
5758 	struct extent_map *em;
5759 	struct map_lookup *map;
5760 	int ret;
5761 
5762 	em = btrfs_get_chunk_map(fs_info, logical, len);
5763 	if (IS_ERR(em))
5764 		/*
5765 		 * We could return errors for these cases, but that could get
5766 		 * ugly and we'd probably do the same thing which is just not do
5767 		 * anything else and exit, so return 1 so the callers don't try
5768 		 * to use other copies.
5769 		 */
5770 		return 1;
5771 
5772 	map = em->map_lookup;
5773 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5774 		ret = map->num_stripes;
5775 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5776 		ret = map->sub_stripes;
5777 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5778 		ret = 2;
5779 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5780 		/*
5781 		 * There could be two corrupted data stripes, we need
5782 		 * to loop retry in order to rebuild the correct data.
5783 		 *
5784 		 * Fail a stripe at a time on every retry except the
5785 		 * stripe under reconstruction.
5786 		 */
5787 		ret = map->num_stripes;
5788 	else
5789 		ret = 1;
5790 	free_extent_map(em);
5791 
5792 	down_read(&fs_info->dev_replace.rwsem);
5793 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5794 	    fs_info->dev_replace.tgtdev)
5795 		ret++;
5796 	up_read(&fs_info->dev_replace.rwsem);
5797 
5798 	return ret;
5799 }
5800 
5801 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5802 				    u64 logical)
5803 {
5804 	struct extent_map *em;
5805 	struct map_lookup *map;
5806 	unsigned long len = fs_info->sectorsize;
5807 
5808 	em = btrfs_get_chunk_map(fs_info, logical, len);
5809 
5810 	if (!WARN_ON(IS_ERR(em))) {
5811 		map = em->map_lookup;
5812 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5813 			len = map->stripe_len * nr_data_stripes(map);
5814 		free_extent_map(em);
5815 	}
5816 	return len;
5817 }
5818 
5819 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5820 {
5821 	struct extent_map *em;
5822 	struct map_lookup *map;
5823 	int ret = 0;
5824 
5825 	em = btrfs_get_chunk_map(fs_info, logical, len);
5826 
5827 	if(!WARN_ON(IS_ERR(em))) {
5828 		map = em->map_lookup;
5829 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5830 			ret = 1;
5831 		free_extent_map(em);
5832 	}
5833 	return ret;
5834 }
5835 
5836 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5837 			    struct map_lookup *map, int first,
5838 			    int dev_replace_is_ongoing)
5839 {
5840 	int i;
5841 	int num_stripes;
5842 	int preferred_mirror;
5843 	int tolerance;
5844 	struct btrfs_device *srcdev;
5845 
5846 	ASSERT((map->type &
5847 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5848 
5849 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5850 		num_stripes = map->sub_stripes;
5851 	else
5852 		num_stripes = map->num_stripes;
5853 
5854 	switch (fs_info->fs_devices->read_policy) {
5855 	default:
5856 		/* Shouldn't happen, just warn and use pid instead of failing */
5857 		btrfs_warn_rl(fs_info,
5858 			      "unknown read_policy type %u, reset to pid",
5859 			      fs_info->fs_devices->read_policy);
5860 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5861 		fallthrough;
5862 	case BTRFS_READ_POLICY_PID:
5863 		preferred_mirror = first + (current->pid % num_stripes);
5864 		break;
5865 	}
5866 
5867 	if (dev_replace_is_ongoing &&
5868 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5869 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5870 		srcdev = fs_info->dev_replace.srcdev;
5871 	else
5872 		srcdev = NULL;
5873 
5874 	/*
5875 	 * try to avoid the drive that is the source drive for a
5876 	 * dev-replace procedure, only choose it if no other non-missing
5877 	 * mirror is available
5878 	 */
5879 	for (tolerance = 0; tolerance < 2; tolerance++) {
5880 		if (map->stripes[preferred_mirror].dev->bdev &&
5881 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5882 			return preferred_mirror;
5883 		for (i = first; i < first + num_stripes; i++) {
5884 			if (map->stripes[i].dev->bdev &&
5885 			    (tolerance || map->stripes[i].dev != srcdev))
5886 				return i;
5887 		}
5888 	}
5889 
5890 	/* we couldn't find one that doesn't fail.  Just return something
5891 	 * and the io error handling code will clean up eventually
5892 	 */
5893 	return preferred_mirror;
5894 }
5895 
5896 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5897 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5898 {
5899 	int i;
5900 	int again = 1;
5901 
5902 	while (again) {
5903 		again = 0;
5904 		for (i = 0; i < num_stripes - 1; i++) {
5905 			/* Swap if parity is on a smaller index */
5906 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5907 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5908 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5909 				again = 1;
5910 			}
5911 		}
5912 	}
5913 }
5914 
5915 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5916 						       int total_stripes,
5917 						       int real_stripes)
5918 {
5919 	struct btrfs_io_context *bioc = kzalloc(
5920 		 /* The size of btrfs_io_context */
5921 		sizeof(struct btrfs_io_context) +
5922 		/* Plus the variable array for the stripes */
5923 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5924 		/* Plus the variable array for the tgt dev */
5925 		sizeof(int) * (real_stripes) +
5926 		/*
5927 		 * Plus the raid_map, which includes both the tgt dev
5928 		 * and the stripes.
5929 		 */
5930 		sizeof(u64) * (total_stripes),
5931 		GFP_NOFS|__GFP_NOFAIL);
5932 
5933 	atomic_set(&bioc->error, 0);
5934 	refcount_set(&bioc->refs, 1);
5935 
5936 	bioc->fs_info = fs_info;
5937 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5938 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5939 
5940 	return bioc;
5941 }
5942 
5943 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5944 {
5945 	WARN_ON(!refcount_read(&bioc->refs));
5946 	refcount_inc(&bioc->refs);
5947 }
5948 
5949 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5950 {
5951 	if (!bioc)
5952 		return;
5953 	if (refcount_dec_and_test(&bioc->refs))
5954 		kfree(bioc);
5955 }
5956 
5957 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5958 /*
5959  * Please note that, discard won't be sent to target device of device
5960  * replace.
5961  */
5962 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5963 					 u64 logical, u64 *length_ret,
5964 					 struct btrfs_io_context **bioc_ret)
5965 {
5966 	struct extent_map *em;
5967 	struct map_lookup *map;
5968 	struct btrfs_io_context *bioc;
5969 	u64 length = *length_ret;
5970 	u64 offset;
5971 	u64 stripe_nr;
5972 	u64 stripe_nr_end;
5973 	u64 stripe_end_offset;
5974 	u64 stripe_cnt;
5975 	u64 stripe_len;
5976 	u64 stripe_offset;
5977 	u64 num_stripes;
5978 	u32 stripe_index;
5979 	u32 factor = 0;
5980 	u32 sub_stripes = 0;
5981 	u64 stripes_per_dev = 0;
5982 	u32 remaining_stripes = 0;
5983 	u32 last_stripe = 0;
5984 	int ret = 0;
5985 	int i;
5986 
5987 	/* Discard always returns a bioc. */
5988 	ASSERT(bioc_ret);
5989 
5990 	em = btrfs_get_chunk_map(fs_info, logical, length);
5991 	if (IS_ERR(em))
5992 		return PTR_ERR(em);
5993 
5994 	map = em->map_lookup;
5995 	/* we don't discard raid56 yet */
5996 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5997 		ret = -EOPNOTSUPP;
5998 		goto out;
5999 	}
6000 
6001 	offset = logical - em->start;
6002 	length = min_t(u64, em->start + em->len - logical, length);
6003 	*length_ret = length;
6004 
6005 	stripe_len = map->stripe_len;
6006 	/*
6007 	 * stripe_nr counts the total number of stripes we have to stride
6008 	 * to get to this block
6009 	 */
6010 	stripe_nr = div64_u64(offset, stripe_len);
6011 
6012 	/* stripe_offset is the offset of this block in its stripe */
6013 	stripe_offset = offset - stripe_nr * stripe_len;
6014 
6015 	stripe_nr_end = round_up(offset + length, map->stripe_len);
6016 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6017 	stripe_cnt = stripe_nr_end - stripe_nr;
6018 	stripe_end_offset = stripe_nr_end * map->stripe_len -
6019 			    (offset + length);
6020 	/*
6021 	 * after this, stripe_nr is the number of stripes on this
6022 	 * device we have to walk to find the data, and stripe_index is
6023 	 * the number of our device in the stripe array
6024 	 */
6025 	num_stripes = 1;
6026 	stripe_index = 0;
6027 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6028 			 BTRFS_BLOCK_GROUP_RAID10)) {
6029 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6030 			sub_stripes = 1;
6031 		else
6032 			sub_stripes = map->sub_stripes;
6033 
6034 		factor = map->num_stripes / sub_stripes;
6035 		num_stripes = min_t(u64, map->num_stripes,
6036 				    sub_stripes * stripe_cnt);
6037 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6038 		stripe_index *= sub_stripes;
6039 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6040 					      &remaining_stripes);
6041 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6042 		last_stripe *= sub_stripes;
6043 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6044 				BTRFS_BLOCK_GROUP_DUP)) {
6045 		num_stripes = map->num_stripes;
6046 	} else {
6047 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6048 					&stripe_index);
6049 	}
6050 
6051 	bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6052 	if (!bioc) {
6053 		ret = -ENOMEM;
6054 		goto out;
6055 	}
6056 
6057 	for (i = 0; i < num_stripes; i++) {
6058 		bioc->stripes[i].physical =
6059 			map->stripes[stripe_index].physical +
6060 			stripe_offset + stripe_nr * map->stripe_len;
6061 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6062 
6063 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6064 				 BTRFS_BLOCK_GROUP_RAID10)) {
6065 			bioc->stripes[i].length = stripes_per_dev *
6066 				map->stripe_len;
6067 
6068 			if (i / sub_stripes < remaining_stripes)
6069 				bioc->stripes[i].length += map->stripe_len;
6070 
6071 			/*
6072 			 * Special for the first stripe and
6073 			 * the last stripe:
6074 			 *
6075 			 * |-------|...|-------|
6076 			 *     |----------|
6077 			 *    off     end_off
6078 			 */
6079 			if (i < sub_stripes)
6080 				bioc->stripes[i].length -= stripe_offset;
6081 
6082 			if (stripe_index >= last_stripe &&
6083 			    stripe_index <= (last_stripe +
6084 					     sub_stripes - 1))
6085 				bioc->stripes[i].length -= stripe_end_offset;
6086 
6087 			if (i == sub_stripes - 1)
6088 				stripe_offset = 0;
6089 		} else {
6090 			bioc->stripes[i].length = length;
6091 		}
6092 
6093 		stripe_index++;
6094 		if (stripe_index == map->num_stripes) {
6095 			stripe_index = 0;
6096 			stripe_nr++;
6097 		}
6098 	}
6099 
6100 	*bioc_ret = bioc;
6101 	bioc->map_type = map->type;
6102 	bioc->num_stripes = num_stripes;
6103 out:
6104 	free_extent_map(em);
6105 	return ret;
6106 }
6107 
6108 /*
6109  * In dev-replace case, for repair case (that's the only case where the mirror
6110  * is selected explicitly when calling btrfs_map_block), blocks left of the
6111  * left cursor can also be read from the target drive.
6112  *
6113  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6114  * array of stripes.
6115  * For READ, it also needs to be supported using the same mirror number.
6116  *
6117  * If the requested block is not left of the left cursor, EIO is returned. This
6118  * can happen because btrfs_num_copies() returns one more in the dev-replace
6119  * case.
6120  */
6121 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6122 					 u64 logical, u64 length,
6123 					 u64 srcdev_devid, int *mirror_num,
6124 					 u64 *physical)
6125 {
6126 	struct btrfs_io_context *bioc = NULL;
6127 	int num_stripes;
6128 	int index_srcdev = 0;
6129 	int found = 0;
6130 	u64 physical_of_found = 0;
6131 	int i;
6132 	int ret = 0;
6133 
6134 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6135 				logical, &length, &bioc, 0, 0);
6136 	if (ret) {
6137 		ASSERT(bioc == NULL);
6138 		return ret;
6139 	}
6140 
6141 	num_stripes = bioc->num_stripes;
6142 	if (*mirror_num > num_stripes) {
6143 		/*
6144 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6145 		 * that means that the requested area is not left of the left
6146 		 * cursor
6147 		 */
6148 		btrfs_put_bioc(bioc);
6149 		return -EIO;
6150 	}
6151 
6152 	/*
6153 	 * process the rest of the function using the mirror_num of the source
6154 	 * drive. Therefore look it up first.  At the end, patch the device
6155 	 * pointer to the one of the target drive.
6156 	 */
6157 	for (i = 0; i < num_stripes; i++) {
6158 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6159 			continue;
6160 
6161 		/*
6162 		 * In case of DUP, in order to keep it simple, only add the
6163 		 * mirror with the lowest physical address
6164 		 */
6165 		if (found &&
6166 		    physical_of_found <= bioc->stripes[i].physical)
6167 			continue;
6168 
6169 		index_srcdev = i;
6170 		found = 1;
6171 		physical_of_found = bioc->stripes[i].physical;
6172 	}
6173 
6174 	btrfs_put_bioc(bioc);
6175 
6176 	ASSERT(found);
6177 	if (!found)
6178 		return -EIO;
6179 
6180 	*mirror_num = index_srcdev + 1;
6181 	*physical = physical_of_found;
6182 	return ret;
6183 }
6184 
6185 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6186 {
6187 	struct btrfs_block_group *cache;
6188 	bool ret;
6189 
6190 	/* Non zoned filesystem does not use "to_copy" flag */
6191 	if (!btrfs_is_zoned(fs_info))
6192 		return false;
6193 
6194 	cache = btrfs_lookup_block_group(fs_info, logical);
6195 
6196 	spin_lock(&cache->lock);
6197 	ret = cache->to_copy;
6198 	spin_unlock(&cache->lock);
6199 
6200 	btrfs_put_block_group(cache);
6201 	return ret;
6202 }
6203 
6204 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6205 				      struct btrfs_io_context **bioc_ret,
6206 				      struct btrfs_dev_replace *dev_replace,
6207 				      u64 logical,
6208 				      int *num_stripes_ret, int *max_errors_ret)
6209 {
6210 	struct btrfs_io_context *bioc = *bioc_ret;
6211 	u64 srcdev_devid = dev_replace->srcdev->devid;
6212 	int tgtdev_indexes = 0;
6213 	int num_stripes = *num_stripes_ret;
6214 	int max_errors = *max_errors_ret;
6215 	int i;
6216 
6217 	if (op == BTRFS_MAP_WRITE) {
6218 		int index_where_to_add;
6219 
6220 		/*
6221 		 * A block group which have "to_copy" set will eventually
6222 		 * copied by dev-replace process. We can avoid cloning IO here.
6223 		 */
6224 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6225 			return;
6226 
6227 		/*
6228 		 * duplicate the write operations while the dev replace
6229 		 * procedure is running. Since the copying of the old disk to
6230 		 * the new disk takes place at run time while the filesystem is
6231 		 * mounted writable, the regular write operations to the old
6232 		 * disk have to be duplicated to go to the new disk as well.
6233 		 *
6234 		 * Note that device->missing is handled by the caller, and that
6235 		 * the write to the old disk is already set up in the stripes
6236 		 * array.
6237 		 */
6238 		index_where_to_add = num_stripes;
6239 		for (i = 0; i < num_stripes; i++) {
6240 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6241 				/* write to new disk, too */
6242 				struct btrfs_io_stripe *new =
6243 					bioc->stripes + index_where_to_add;
6244 				struct btrfs_io_stripe *old =
6245 					bioc->stripes + i;
6246 
6247 				new->physical = old->physical;
6248 				new->length = old->length;
6249 				new->dev = dev_replace->tgtdev;
6250 				bioc->tgtdev_map[i] = index_where_to_add;
6251 				index_where_to_add++;
6252 				max_errors++;
6253 				tgtdev_indexes++;
6254 			}
6255 		}
6256 		num_stripes = index_where_to_add;
6257 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6258 		int index_srcdev = 0;
6259 		int found = 0;
6260 		u64 physical_of_found = 0;
6261 
6262 		/*
6263 		 * During the dev-replace procedure, the target drive can also
6264 		 * be used to read data in case it is needed to repair a corrupt
6265 		 * block elsewhere. This is possible if the requested area is
6266 		 * left of the left cursor. In this area, the target drive is a
6267 		 * full copy of the source drive.
6268 		 */
6269 		for (i = 0; i < num_stripes; i++) {
6270 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6271 				/*
6272 				 * In case of DUP, in order to keep it simple,
6273 				 * only add the mirror with the lowest physical
6274 				 * address
6275 				 */
6276 				if (found &&
6277 				    physical_of_found <= bioc->stripes[i].physical)
6278 					continue;
6279 				index_srcdev = i;
6280 				found = 1;
6281 				physical_of_found = bioc->stripes[i].physical;
6282 			}
6283 		}
6284 		if (found) {
6285 			struct btrfs_io_stripe *tgtdev_stripe =
6286 				bioc->stripes + num_stripes;
6287 
6288 			tgtdev_stripe->physical = physical_of_found;
6289 			tgtdev_stripe->length =
6290 				bioc->stripes[index_srcdev].length;
6291 			tgtdev_stripe->dev = dev_replace->tgtdev;
6292 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6293 
6294 			tgtdev_indexes++;
6295 			num_stripes++;
6296 		}
6297 	}
6298 
6299 	*num_stripes_ret = num_stripes;
6300 	*max_errors_ret = max_errors;
6301 	bioc->num_tgtdevs = tgtdev_indexes;
6302 	*bioc_ret = bioc;
6303 }
6304 
6305 static bool need_full_stripe(enum btrfs_map_op op)
6306 {
6307 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6308 }
6309 
6310 /*
6311  * Calculate the geometry of a particular (address, len) tuple. This
6312  * information is used to calculate how big a particular bio can get before it
6313  * straddles a stripe.
6314  *
6315  * @fs_info: the filesystem
6316  * @em:      mapping containing the logical extent
6317  * @op:      type of operation - write or read
6318  * @logical: address that we want to figure out the geometry of
6319  * @io_geom: pointer used to return values
6320  *
6321  * Returns < 0 in case a chunk for the given logical address cannot be found,
6322  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6323  */
6324 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6325 			  enum btrfs_map_op op, u64 logical,
6326 			  struct btrfs_io_geometry *io_geom)
6327 {
6328 	struct map_lookup *map;
6329 	u64 len;
6330 	u64 offset;
6331 	u64 stripe_offset;
6332 	u64 stripe_nr;
6333 	u64 stripe_len;
6334 	u64 raid56_full_stripe_start = (u64)-1;
6335 	int data_stripes;
6336 
6337 	ASSERT(op != BTRFS_MAP_DISCARD);
6338 
6339 	map = em->map_lookup;
6340 	/* Offset of this logical address in the chunk */
6341 	offset = logical - em->start;
6342 	/* Len of a stripe in a chunk */
6343 	stripe_len = map->stripe_len;
6344 	/* Stripe where this block falls in */
6345 	stripe_nr = div64_u64(offset, stripe_len);
6346 	/* Offset of stripe in the chunk */
6347 	stripe_offset = stripe_nr * stripe_len;
6348 	if (offset < stripe_offset) {
6349 		btrfs_crit(fs_info,
6350 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6351 			stripe_offset, offset, em->start, logical, stripe_len);
6352 		return -EINVAL;
6353 	}
6354 
6355 	/* stripe_offset is the offset of this block in its stripe */
6356 	stripe_offset = offset - stripe_offset;
6357 	data_stripes = nr_data_stripes(map);
6358 
6359 	/* Only stripe based profiles needs to check against stripe length. */
6360 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6361 		u64 max_len = stripe_len - stripe_offset;
6362 
6363 		/*
6364 		 * In case of raid56, we need to know the stripe aligned start
6365 		 */
6366 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6367 			unsigned long full_stripe_len = stripe_len * data_stripes;
6368 			raid56_full_stripe_start = offset;
6369 
6370 			/*
6371 			 * Allow a write of a full stripe, but make sure we
6372 			 * don't allow straddling of stripes
6373 			 */
6374 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6375 					full_stripe_len);
6376 			raid56_full_stripe_start *= full_stripe_len;
6377 
6378 			/*
6379 			 * For writes to RAID[56], allow a full stripeset across
6380 			 * all disks. For other RAID types and for RAID[56]
6381 			 * reads, just allow a single stripe (on a single disk).
6382 			 */
6383 			if (op == BTRFS_MAP_WRITE) {
6384 				max_len = stripe_len * data_stripes -
6385 					  (offset - raid56_full_stripe_start);
6386 			}
6387 		}
6388 		len = min_t(u64, em->len - offset, max_len);
6389 	} else {
6390 		len = em->len - offset;
6391 	}
6392 
6393 	io_geom->len = len;
6394 	io_geom->offset = offset;
6395 	io_geom->stripe_len = stripe_len;
6396 	io_geom->stripe_nr = stripe_nr;
6397 	io_geom->stripe_offset = stripe_offset;
6398 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6399 
6400 	return 0;
6401 }
6402 
6403 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6404 			     enum btrfs_map_op op,
6405 			     u64 logical, u64 *length,
6406 			     struct btrfs_io_context **bioc_ret,
6407 			     int mirror_num, int need_raid_map)
6408 {
6409 	struct extent_map *em;
6410 	struct map_lookup *map;
6411 	u64 stripe_offset;
6412 	u64 stripe_nr;
6413 	u64 stripe_len;
6414 	u32 stripe_index;
6415 	int data_stripes;
6416 	int i;
6417 	int ret = 0;
6418 	int num_stripes;
6419 	int max_errors = 0;
6420 	int tgtdev_indexes = 0;
6421 	struct btrfs_io_context *bioc = NULL;
6422 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6423 	int dev_replace_is_ongoing = 0;
6424 	int num_alloc_stripes;
6425 	int patch_the_first_stripe_for_dev_replace = 0;
6426 	u64 physical_to_patch_in_first_stripe = 0;
6427 	u64 raid56_full_stripe_start = (u64)-1;
6428 	struct btrfs_io_geometry geom;
6429 
6430 	ASSERT(bioc_ret);
6431 	ASSERT(op != BTRFS_MAP_DISCARD);
6432 
6433 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6434 	ASSERT(!IS_ERR(em));
6435 
6436 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6437 	if (ret < 0)
6438 		return ret;
6439 
6440 	map = em->map_lookup;
6441 
6442 	*length = geom.len;
6443 	stripe_len = geom.stripe_len;
6444 	stripe_nr = geom.stripe_nr;
6445 	stripe_offset = geom.stripe_offset;
6446 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6447 	data_stripes = nr_data_stripes(map);
6448 
6449 	down_read(&dev_replace->rwsem);
6450 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6451 	/*
6452 	 * Hold the semaphore for read during the whole operation, write is
6453 	 * requested at commit time but must wait.
6454 	 */
6455 	if (!dev_replace_is_ongoing)
6456 		up_read(&dev_replace->rwsem);
6457 
6458 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6459 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6460 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6461 						    dev_replace->srcdev->devid,
6462 						    &mirror_num,
6463 					    &physical_to_patch_in_first_stripe);
6464 		if (ret)
6465 			goto out;
6466 		else
6467 			patch_the_first_stripe_for_dev_replace = 1;
6468 	} else if (mirror_num > map->num_stripes) {
6469 		mirror_num = 0;
6470 	}
6471 
6472 	num_stripes = 1;
6473 	stripe_index = 0;
6474 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6475 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6476 				&stripe_index);
6477 		if (!need_full_stripe(op))
6478 			mirror_num = 1;
6479 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6480 		if (need_full_stripe(op))
6481 			num_stripes = map->num_stripes;
6482 		else if (mirror_num)
6483 			stripe_index = mirror_num - 1;
6484 		else {
6485 			stripe_index = find_live_mirror(fs_info, map, 0,
6486 					    dev_replace_is_ongoing);
6487 			mirror_num = stripe_index + 1;
6488 		}
6489 
6490 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6491 		if (need_full_stripe(op)) {
6492 			num_stripes = map->num_stripes;
6493 		} else if (mirror_num) {
6494 			stripe_index = mirror_num - 1;
6495 		} else {
6496 			mirror_num = 1;
6497 		}
6498 
6499 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6500 		u32 factor = map->num_stripes / map->sub_stripes;
6501 
6502 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6503 		stripe_index *= map->sub_stripes;
6504 
6505 		if (need_full_stripe(op))
6506 			num_stripes = map->sub_stripes;
6507 		else if (mirror_num)
6508 			stripe_index += mirror_num - 1;
6509 		else {
6510 			int old_stripe_index = stripe_index;
6511 			stripe_index = find_live_mirror(fs_info, map,
6512 					      stripe_index,
6513 					      dev_replace_is_ongoing);
6514 			mirror_num = stripe_index - old_stripe_index + 1;
6515 		}
6516 
6517 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6518 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6519 			/* push stripe_nr back to the start of the full stripe */
6520 			stripe_nr = div64_u64(raid56_full_stripe_start,
6521 					stripe_len * data_stripes);
6522 
6523 			/* RAID[56] write or recovery. Return all stripes */
6524 			num_stripes = map->num_stripes;
6525 			max_errors = nr_parity_stripes(map);
6526 
6527 			*length = map->stripe_len;
6528 			stripe_index = 0;
6529 			stripe_offset = 0;
6530 		} else {
6531 			/*
6532 			 * Mirror #0 or #1 means the original data block.
6533 			 * Mirror #2 is RAID5 parity block.
6534 			 * Mirror #3 is RAID6 Q block.
6535 			 */
6536 			stripe_nr = div_u64_rem(stripe_nr,
6537 					data_stripes, &stripe_index);
6538 			if (mirror_num > 1)
6539 				stripe_index = data_stripes + mirror_num - 2;
6540 
6541 			/* We distribute the parity blocks across stripes */
6542 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6543 					&stripe_index);
6544 			if (!need_full_stripe(op) && mirror_num <= 1)
6545 				mirror_num = 1;
6546 		}
6547 	} else {
6548 		/*
6549 		 * after this, stripe_nr is the number of stripes on this
6550 		 * device we have to walk to find the data, and stripe_index is
6551 		 * the number of our device in the stripe array
6552 		 */
6553 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6554 				&stripe_index);
6555 		mirror_num = stripe_index + 1;
6556 	}
6557 	if (stripe_index >= map->num_stripes) {
6558 		btrfs_crit(fs_info,
6559 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6560 			   stripe_index, map->num_stripes);
6561 		ret = -EINVAL;
6562 		goto out;
6563 	}
6564 
6565 	num_alloc_stripes = num_stripes;
6566 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6567 		if (op == BTRFS_MAP_WRITE)
6568 			num_alloc_stripes <<= 1;
6569 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6570 			num_alloc_stripes++;
6571 		tgtdev_indexes = num_stripes;
6572 	}
6573 
6574 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6575 	if (!bioc) {
6576 		ret = -ENOMEM;
6577 		goto out;
6578 	}
6579 
6580 	for (i = 0; i < num_stripes; i++) {
6581 		bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6582 			stripe_offset + stripe_nr * map->stripe_len;
6583 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6584 		stripe_index++;
6585 	}
6586 
6587 	/* Build raid_map */
6588 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6589 	    (need_full_stripe(op) || mirror_num > 1)) {
6590 		u64 tmp;
6591 		unsigned rot;
6592 
6593 		/* Work out the disk rotation on this stripe-set */
6594 		div_u64_rem(stripe_nr, num_stripes, &rot);
6595 
6596 		/* Fill in the logical address of each stripe */
6597 		tmp = stripe_nr * data_stripes;
6598 		for (i = 0; i < data_stripes; i++)
6599 			bioc->raid_map[(i + rot) % num_stripes] =
6600 				em->start + (tmp + i) * map->stripe_len;
6601 
6602 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6603 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6604 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6605 				RAID6_Q_STRIPE;
6606 
6607 		sort_parity_stripes(bioc, num_stripes);
6608 	}
6609 
6610 	if (need_full_stripe(op))
6611 		max_errors = btrfs_chunk_max_errors(map);
6612 
6613 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6614 	    need_full_stripe(op)) {
6615 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6616 					  &num_stripes, &max_errors);
6617 	}
6618 
6619 	*bioc_ret = bioc;
6620 	bioc->map_type = map->type;
6621 	bioc->num_stripes = num_stripes;
6622 	bioc->max_errors = max_errors;
6623 	bioc->mirror_num = mirror_num;
6624 
6625 	/*
6626 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6627 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6628 	 * available as a mirror
6629 	 */
6630 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6631 		WARN_ON(num_stripes > 1);
6632 		bioc->stripes[0].dev = dev_replace->tgtdev;
6633 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6634 		bioc->mirror_num = map->num_stripes + 1;
6635 	}
6636 out:
6637 	if (dev_replace_is_ongoing) {
6638 		lockdep_assert_held(&dev_replace->rwsem);
6639 		/* Unlock and let waiting writers proceed */
6640 		up_read(&dev_replace->rwsem);
6641 	}
6642 	free_extent_map(em);
6643 	return ret;
6644 }
6645 
6646 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6647 		      u64 logical, u64 *length,
6648 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6649 {
6650 	if (op == BTRFS_MAP_DISCARD)
6651 		return __btrfs_map_block_for_discard(fs_info, logical,
6652 						     length, bioc_ret);
6653 
6654 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6655 				 mirror_num, 0);
6656 }
6657 
6658 /* For Scrub/replace */
6659 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6660 		     u64 logical, u64 *length,
6661 		     struct btrfs_io_context **bioc_ret)
6662 {
6663 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6664 }
6665 
6666 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6667 {
6668 	bio->bi_private = bioc->private;
6669 	bio->bi_end_io = bioc->end_io;
6670 	bio_endio(bio);
6671 
6672 	btrfs_put_bioc(bioc);
6673 }
6674 
6675 static void btrfs_end_bio(struct bio *bio)
6676 {
6677 	struct btrfs_io_context *bioc = bio->bi_private;
6678 	int is_orig_bio = 0;
6679 
6680 	if (bio->bi_status) {
6681 		atomic_inc(&bioc->error);
6682 		if (bio->bi_status == BLK_STS_IOERR ||
6683 		    bio->bi_status == BLK_STS_TARGET) {
6684 			struct btrfs_device *dev = btrfs_bio(bio)->device;
6685 
6686 			ASSERT(dev->bdev);
6687 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6688 				btrfs_dev_stat_inc_and_print(dev,
6689 						BTRFS_DEV_STAT_WRITE_ERRS);
6690 			else if (!(bio->bi_opf & REQ_RAHEAD))
6691 				btrfs_dev_stat_inc_and_print(dev,
6692 						BTRFS_DEV_STAT_READ_ERRS);
6693 			if (bio->bi_opf & REQ_PREFLUSH)
6694 				btrfs_dev_stat_inc_and_print(dev,
6695 						BTRFS_DEV_STAT_FLUSH_ERRS);
6696 		}
6697 	}
6698 
6699 	if (bio == bioc->orig_bio)
6700 		is_orig_bio = 1;
6701 
6702 	btrfs_bio_counter_dec(bioc->fs_info);
6703 
6704 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6705 		if (!is_orig_bio) {
6706 			bio_put(bio);
6707 			bio = bioc->orig_bio;
6708 		}
6709 
6710 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6711 		/* only send an error to the higher layers if it is
6712 		 * beyond the tolerance of the btrfs bio
6713 		 */
6714 		if (atomic_read(&bioc->error) > bioc->max_errors) {
6715 			bio->bi_status = BLK_STS_IOERR;
6716 		} else {
6717 			/*
6718 			 * this bio is actually up to date, we didn't
6719 			 * go over the max number of errors
6720 			 */
6721 			bio->bi_status = BLK_STS_OK;
6722 		}
6723 
6724 		btrfs_end_bioc(bioc, bio);
6725 	} else if (!is_orig_bio) {
6726 		bio_put(bio);
6727 	}
6728 }
6729 
6730 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6731 			      u64 physical, struct btrfs_device *dev)
6732 {
6733 	struct btrfs_fs_info *fs_info = bioc->fs_info;
6734 
6735 	bio->bi_private = bioc;
6736 	btrfs_bio(bio)->device = dev;
6737 	bio->bi_end_io = btrfs_end_bio;
6738 	bio->bi_iter.bi_sector = physical >> 9;
6739 	/*
6740 	 * For zone append writing, bi_sector must point the beginning of the
6741 	 * zone
6742 	 */
6743 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6744 		if (btrfs_dev_is_sequential(dev, physical)) {
6745 			u64 zone_start = round_down(physical, fs_info->zone_size);
6746 
6747 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6748 		} else {
6749 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6750 			bio->bi_opf |= REQ_OP_WRITE;
6751 		}
6752 	}
6753 	btrfs_debug_in_rcu(fs_info,
6754 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6755 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6756 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6757 		dev->devid, bio->bi_iter.bi_size);
6758 	bio_set_dev(bio, dev->bdev);
6759 
6760 	btrfs_bio_counter_inc_noblocked(fs_info);
6761 
6762 	btrfsic_submit_bio(bio);
6763 }
6764 
6765 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6766 {
6767 	atomic_inc(&bioc->error);
6768 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6769 		/* Should be the original bio. */
6770 		WARN_ON(bio != bioc->orig_bio);
6771 
6772 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6773 		bio->bi_iter.bi_sector = logical >> 9;
6774 		if (atomic_read(&bioc->error) > bioc->max_errors)
6775 			bio->bi_status = BLK_STS_IOERR;
6776 		else
6777 			bio->bi_status = BLK_STS_OK;
6778 		btrfs_end_bioc(bioc, bio);
6779 	}
6780 }
6781 
6782 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6783 			   int mirror_num)
6784 {
6785 	struct btrfs_device *dev;
6786 	struct bio *first_bio = bio;
6787 	u64 logical = bio->bi_iter.bi_sector << 9;
6788 	u64 length = 0;
6789 	u64 map_length;
6790 	int ret;
6791 	int dev_nr;
6792 	int total_devs;
6793 	struct btrfs_io_context *bioc = NULL;
6794 
6795 	length = bio->bi_iter.bi_size;
6796 	map_length = length;
6797 
6798 	btrfs_bio_counter_inc_blocked(fs_info);
6799 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6800 				&map_length, &bioc, mirror_num, 1);
6801 	if (ret) {
6802 		btrfs_bio_counter_dec(fs_info);
6803 		return errno_to_blk_status(ret);
6804 	}
6805 
6806 	total_devs = bioc->num_stripes;
6807 	bioc->orig_bio = first_bio;
6808 	bioc->private = first_bio->bi_private;
6809 	bioc->end_io = first_bio->bi_end_io;
6810 	atomic_set(&bioc->stripes_pending, bioc->num_stripes);
6811 
6812 	if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6813 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6814 		/* In this case, map_length has been set to the length of
6815 		   a single stripe; not the whole write */
6816 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6817 			ret = raid56_parity_write(bio, bioc, map_length);
6818 		} else {
6819 			ret = raid56_parity_recover(bio, bioc, map_length,
6820 						    mirror_num, 1);
6821 		}
6822 
6823 		btrfs_bio_counter_dec(fs_info);
6824 		return errno_to_blk_status(ret);
6825 	}
6826 
6827 	if (map_length < length) {
6828 		btrfs_crit(fs_info,
6829 			   "mapping failed logical %llu bio len %llu len %llu",
6830 			   logical, length, map_length);
6831 		BUG();
6832 	}
6833 
6834 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6835 		dev = bioc->stripes[dev_nr].dev;
6836 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6837 						   &dev->dev_state) ||
6838 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6839 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6840 			bioc_error(bioc, first_bio, logical);
6841 			continue;
6842 		}
6843 
6844 		if (dev_nr < total_devs - 1)
6845 			bio = btrfs_bio_clone(first_bio);
6846 		else
6847 			bio = first_bio;
6848 
6849 		submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6850 	}
6851 	btrfs_bio_counter_dec(fs_info);
6852 	return BLK_STS_OK;
6853 }
6854 
6855 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6856 				      const struct btrfs_fs_devices *fs_devices)
6857 {
6858 	if (args->fsid == NULL)
6859 		return true;
6860 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6861 		return true;
6862 	return false;
6863 }
6864 
6865 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6866 				  const struct btrfs_device *device)
6867 {
6868 	ASSERT((args->devid != (u64)-1) || args->missing);
6869 
6870 	if ((args->devid != (u64)-1) && device->devid != args->devid)
6871 		return false;
6872 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6873 		return false;
6874 	if (!args->missing)
6875 		return true;
6876 	if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6877 	    !device->bdev)
6878 		return true;
6879 	return false;
6880 }
6881 
6882 /*
6883  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6884  * return NULL.
6885  *
6886  * If devid and uuid are both specified, the match must be exact, otherwise
6887  * only devid is used.
6888  */
6889 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6890 				       const struct btrfs_dev_lookup_args *args)
6891 {
6892 	struct btrfs_device *device;
6893 	struct btrfs_fs_devices *seed_devs;
6894 
6895 	if (dev_args_match_fs_devices(args, fs_devices)) {
6896 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6897 			if (dev_args_match_device(args, device))
6898 				return device;
6899 		}
6900 	}
6901 
6902 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6903 		if (!dev_args_match_fs_devices(args, seed_devs))
6904 			continue;
6905 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6906 			if (dev_args_match_device(args, device))
6907 				return device;
6908 		}
6909 	}
6910 
6911 	return NULL;
6912 }
6913 
6914 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6915 					    u64 devid, u8 *dev_uuid)
6916 {
6917 	struct btrfs_device *device;
6918 	unsigned int nofs_flag;
6919 
6920 	/*
6921 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6922 	 * allocation, however we don't want to change btrfs_alloc_device() to
6923 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6924 	 * places.
6925 	 */
6926 	nofs_flag = memalloc_nofs_save();
6927 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6928 	memalloc_nofs_restore(nofs_flag);
6929 	if (IS_ERR(device))
6930 		return device;
6931 
6932 	list_add(&device->dev_list, &fs_devices->devices);
6933 	device->fs_devices = fs_devices;
6934 	fs_devices->num_devices++;
6935 
6936 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6937 	fs_devices->missing_devices++;
6938 
6939 	return device;
6940 }
6941 
6942 /**
6943  * btrfs_alloc_device - allocate struct btrfs_device
6944  * @fs_info:	used only for generating a new devid, can be NULL if
6945  *		devid is provided (i.e. @devid != NULL).
6946  * @devid:	a pointer to devid for this device.  If NULL a new devid
6947  *		is generated.
6948  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6949  *		is generated.
6950  *
6951  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6952  * on error.  Returned struct is not linked onto any lists and must be
6953  * destroyed with btrfs_free_device.
6954  */
6955 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6956 					const u64 *devid,
6957 					const u8 *uuid)
6958 {
6959 	struct btrfs_device *dev;
6960 	u64 tmp;
6961 
6962 	if (WARN_ON(!devid && !fs_info))
6963 		return ERR_PTR(-EINVAL);
6964 
6965 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6966 	if (!dev)
6967 		return ERR_PTR(-ENOMEM);
6968 
6969 	/*
6970 	 * Preallocate a bio that's always going to be used for flushing device
6971 	 * barriers and matches the device lifespan
6972 	 */
6973 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6974 	if (!dev->flush_bio) {
6975 		kfree(dev);
6976 		return ERR_PTR(-ENOMEM);
6977 	}
6978 
6979 	INIT_LIST_HEAD(&dev->dev_list);
6980 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6981 	INIT_LIST_HEAD(&dev->post_commit_list);
6982 
6983 	atomic_set(&dev->reada_in_flight, 0);
6984 	atomic_set(&dev->dev_stats_ccnt, 0);
6985 	btrfs_device_data_ordered_init(dev);
6986 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6987 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6988 	extent_io_tree_init(fs_info, &dev->alloc_state,
6989 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6990 
6991 	if (devid)
6992 		tmp = *devid;
6993 	else {
6994 		int ret;
6995 
6996 		ret = find_next_devid(fs_info, &tmp);
6997 		if (ret) {
6998 			btrfs_free_device(dev);
6999 			return ERR_PTR(ret);
7000 		}
7001 	}
7002 	dev->devid = tmp;
7003 
7004 	if (uuid)
7005 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
7006 	else
7007 		generate_random_uuid(dev->uuid);
7008 
7009 	return dev;
7010 }
7011 
7012 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
7013 					u64 devid, u8 *uuid, bool error)
7014 {
7015 	if (error)
7016 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
7017 			      devid, uuid);
7018 	else
7019 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
7020 			      devid, uuid);
7021 }
7022 
7023 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7024 {
7025 	const int data_stripes = calc_data_stripes(type, num_stripes);
7026 
7027 	return div_u64(chunk_len, data_stripes);
7028 }
7029 
7030 #if BITS_PER_LONG == 32
7031 /*
7032  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7033  * can't be accessed on 32bit systems.
7034  *
7035  * This function do mount time check to reject the fs if it already has
7036  * metadata chunk beyond that limit.
7037  */
7038 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7039 				  u64 logical, u64 length, u64 type)
7040 {
7041 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7042 		return 0;
7043 
7044 	if (logical + length < MAX_LFS_FILESIZE)
7045 		return 0;
7046 
7047 	btrfs_err_32bit_limit(fs_info);
7048 	return -EOVERFLOW;
7049 }
7050 
7051 /*
7052  * This is to give early warning for any metadata chunk reaching
7053  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7054  * Although we can still access the metadata, it's not going to be possible
7055  * once the limit is reached.
7056  */
7057 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7058 				  u64 logical, u64 length, u64 type)
7059 {
7060 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7061 		return;
7062 
7063 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7064 		return;
7065 
7066 	btrfs_warn_32bit_limit(fs_info);
7067 }
7068 #endif
7069 
7070 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7071 			  struct btrfs_chunk *chunk)
7072 {
7073 	BTRFS_DEV_LOOKUP_ARGS(args);
7074 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7075 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7076 	struct map_lookup *map;
7077 	struct extent_map *em;
7078 	u64 logical;
7079 	u64 length;
7080 	u64 devid;
7081 	u64 type;
7082 	u8 uuid[BTRFS_UUID_SIZE];
7083 	int num_stripes;
7084 	int ret;
7085 	int i;
7086 
7087 	logical = key->offset;
7088 	length = btrfs_chunk_length(leaf, chunk);
7089 	type = btrfs_chunk_type(leaf, chunk);
7090 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7091 
7092 #if BITS_PER_LONG == 32
7093 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7094 	if (ret < 0)
7095 		return ret;
7096 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7097 #endif
7098 
7099 	/*
7100 	 * Only need to verify chunk item if we're reading from sys chunk array,
7101 	 * as chunk item in tree block is already verified by tree-checker.
7102 	 */
7103 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7104 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7105 		if (ret)
7106 			return ret;
7107 	}
7108 
7109 	read_lock(&map_tree->lock);
7110 	em = lookup_extent_mapping(map_tree, logical, 1);
7111 	read_unlock(&map_tree->lock);
7112 
7113 	/* already mapped? */
7114 	if (em && em->start <= logical && em->start + em->len > logical) {
7115 		free_extent_map(em);
7116 		return 0;
7117 	} else if (em) {
7118 		free_extent_map(em);
7119 	}
7120 
7121 	em = alloc_extent_map();
7122 	if (!em)
7123 		return -ENOMEM;
7124 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7125 	if (!map) {
7126 		free_extent_map(em);
7127 		return -ENOMEM;
7128 	}
7129 
7130 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7131 	em->map_lookup = map;
7132 	em->start = logical;
7133 	em->len = length;
7134 	em->orig_start = 0;
7135 	em->block_start = 0;
7136 	em->block_len = em->len;
7137 
7138 	map->num_stripes = num_stripes;
7139 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7140 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7141 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7142 	map->type = type;
7143 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7144 	map->verified_stripes = 0;
7145 	em->orig_block_len = calc_stripe_length(type, em->len,
7146 						map->num_stripes);
7147 	for (i = 0; i < num_stripes; i++) {
7148 		map->stripes[i].physical =
7149 			btrfs_stripe_offset_nr(leaf, chunk, i);
7150 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7151 		args.devid = devid;
7152 		read_extent_buffer(leaf, uuid, (unsigned long)
7153 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7154 				   BTRFS_UUID_SIZE);
7155 		args.uuid = uuid;
7156 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7157 		if (!map->stripes[i].dev &&
7158 		    !btrfs_test_opt(fs_info, DEGRADED)) {
7159 			free_extent_map(em);
7160 			btrfs_report_missing_device(fs_info, devid, uuid, true);
7161 			return -ENOENT;
7162 		}
7163 		if (!map->stripes[i].dev) {
7164 			map->stripes[i].dev =
7165 				add_missing_dev(fs_info->fs_devices, devid,
7166 						uuid);
7167 			if (IS_ERR(map->stripes[i].dev)) {
7168 				free_extent_map(em);
7169 				btrfs_err(fs_info,
7170 					"failed to init missing dev %llu: %ld",
7171 					devid, PTR_ERR(map->stripes[i].dev));
7172 				return PTR_ERR(map->stripes[i].dev);
7173 			}
7174 			btrfs_report_missing_device(fs_info, devid, uuid, false);
7175 		}
7176 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7177 				&(map->stripes[i].dev->dev_state));
7178 
7179 	}
7180 
7181 	write_lock(&map_tree->lock);
7182 	ret = add_extent_mapping(map_tree, em, 0);
7183 	write_unlock(&map_tree->lock);
7184 	if (ret < 0) {
7185 		btrfs_err(fs_info,
7186 			  "failed to add chunk map, start=%llu len=%llu: %d",
7187 			  em->start, em->len, ret);
7188 	}
7189 	free_extent_map(em);
7190 
7191 	return ret;
7192 }
7193 
7194 static void fill_device_from_item(struct extent_buffer *leaf,
7195 				 struct btrfs_dev_item *dev_item,
7196 				 struct btrfs_device *device)
7197 {
7198 	unsigned long ptr;
7199 
7200 	device->devid = btrfs_device_id(leaf, dev_item);
7201 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7202 	device->total_bytes = device->disk_total_bytes;
7203 	device->commit_total_bytes = device->disk_total_bytes;
7204 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7205 	device->commit_bytes_used = device->bytes_used;
7206 	device->type = btrfs_device_type(leaf, dev_item);
7207 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7208 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7209 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7210 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7211 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7212 
7213 	ptr = btrfs_device_uuid(dev_item);
7214 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7215 }
7216 
7217 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7218 						  u8 *fsid)
7219 {
7220 	struct btrfs_fs_devices *fs_devices;
7221 	int ret;
7222 
7223 	lockdep_assert_held(&uuid_mutex);
7224 	ASSERT(fsid);
7225 
7226 	/* This will match only for multi-device seed fs */
7227 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7228 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7229 			return fs_devices;
7230 
7231 
7232 	fs_devices = find_fsid(fsid, NULL);
7233 	if (!fs_devices) {
7234 		if (!btrfs_test_opt(fs_info, DEGRADED))
7235 			return ERR_PTR(-ENOENT);
7236 
7237 		fs_devices = alloc_fs_devices(fsid, NULL);
7238 		if (IS_ERR(fs_devices))
7239 			return fs_devices;
7240 
7241 		fs_devices->seeding = true;
7242 		fs_devices->opened = 1;
7243 		return fs_devices;
7244 	}
7245 
7246 	/*
7247 	 * Upon first call for a seed fs fsid, just create a private copy of the
7248 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7249 	 */
7250 	fs_devices = clone_fs_devices(fs_devices);
7251 	if (IS_ERR(fs_devices))
7252 		return fs_devices;
7253 
7254 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7255 	if (ret) {
7256 		free_fs_devices(fs_devices);
7257 		return ERR_PTR(ret);
7258 	}
7259 
7260 	if (!fs_devices->seeding) {
7261 		close_fs_devices(fs_devices);
7262 		free_fs_devices(fs_devices);
7263 		return ERR_PTR(-EINVAL);
7264 	}
7265 
7266 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7267 
7268 	return fs_devices;
7269 }
7270 
7271 static int read_one_dev(struct extent_buffer *leaf,
7272 			struct btrfs_dev_item *dev_item)
7273 {
7274 	BTRFS_DEV_LOOKUP_ARGS(args);
7275 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7276 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7277 	struct btrfs_device *device;
7278 	u64 devid;
7279 	int ret;
7280 	u8 fs_uuid[BTRFS_FSID_SIZE];
7281 	u8 dev_uuid[BTRFS_UUID_SIZE];
7282 
7283 	devid = args.devid = btrfs_device_id(leaf, dev_item);
7284 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7285 			   BTRFS_UUID_SIZE);
7286 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7287 			   BTRFS_FSID_SIZE);
7288 	args.uuid = dev_uuid;
7289 	args.fsid = fs_uuid;
7290 
7291 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7292 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7293 		if (IS_ERR(fs_devices))
7294 			return PTR_ERR(fs_devices);
7295 	}
7296 
7297 	device = btrfs_find_device(fs_info->fs_devices, &args);
7298 	if (!device) {
7299 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7300 			btrfs_report_missing_device(fs_info, devid,
7301 							dev_uuid, true);
7302 			return -ENOENT;
7303 		}
7304 
7305 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7306 		if (IS_ERR(device)) {
7307 			btrfs_err(fs_info,
7308 				"failed to add missing dev %llu: %ld",
7309 				devid, PTR_ERR(device));
7310 			return PTR_ERR(device);
7311 		}
7312 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7313 	} else {
7314 		if (!device->bdev) {
7315 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7316 				btrfs_report_missing_device(fs_info,
7317 						devid, dev_uuid, true);
7318 				return -ENOENT;
7319 			}
7320 			btrfs_report_missing_device(fs_info, devid,
7321 							dev_uuid, false);
7322 		}
7323 
7324 		if (!device->bdev &&
7325 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7326 			/*
7327 			 * this happens when a device that was properly setup
7328 			 * in the device info lists suddenly goes bad.
7329 			 * device->bdev is NULL, and so we have to set
7330 			 * device->missing to one here
7331 			 */
7332 			device->fs_devices->missing_devices++;
7333 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7334 		}
7335 
7336 		/* Move the device to its own fs_devices */
7337 		if (device->fs_devices != fs_devices) {
7338 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7339 							&device->dev_state));
7340 
7341 			list_move(&device->dev_list, &fs_devices->devices);
7342 			device->fs_devices->num_devices--;
7343 			fs_devices->num_devices++;
7344 
7345 			device->fs_devices->missing_devices--;
7346 			fs_devices->missing_devices++;
7347 
7348 			device->fs_devices = fs_devices;
7349 		}
7350 	}
7351 
7352 	if (device->fs_devices != fs_info->fs_devices) {
7353 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7354 		if (device->generation !=
7355 		    btrfs_device_generation(leaf, dev_item))
7356 			return -EINVAL;
7357 	}
7358 
7359 	fill_device_from_item(leaf, dev_item, device);
7360 	if (device->bdev) {
7361 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7362 
7363 		if (device->total_bytes > max_total_bytes) {
7364 			btrfs_err(fs_info,
7365 			"device total_bytes should be at most %llu but found %llu",
7366 				  max_total_bytes, device->total_bytes);
7367 			return -EINVAL;
7368 		}
7369 	}
7370 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7371 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7372 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7373 		device->fs_devices->total_rw_bytes += device->total_bytes;
7374 		atomic64_add(device->total_bytes - device->bytes_used,
7375 				&fs_info->free_chunk_space);
7376 	}
7377 	ret = 0;
7378 	return ret;
7379 }
7380 
7381 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7382 {
7383 	struct btrfs_root *root = fs_info->tree_root;
7384 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7385 	struct extent_buffer *sb;
7386 	struct btrfs_disk_key *disk_key;
7387 	struct btrfs_chunk *chunk;
7388 	u8 *array_ptr;
7389 	unsigned long sb_array_offset;
7390 	int ret = 0;
7391 	u32 num_stripes;
7392 	u32 array_size;
7393 	u32 len = 0;
7394 	u32 cur_offset;
7395 	u64 type;
7396 	struct btrfs_key key;
7397 
7398 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7399 	/*
7400 	 * This will create extent buffer of nodesize, superblock size is
7401 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7402 	 * overallocate but we can keep it as-is, only the first page is used.
7403 	 */
7404 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7405 					  root->root_key.objectid, 0);
7406 	if (IS_ERR(sb))
7407 		return PTR_ERR(sb);
7408 	set_extent_buffer_uptodate(sb);
7409 	/*
7410 	 * The sb extent buffer is artificial and just used to read the system array.
7411 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7412 	 * pages up-to-date when the page is larger: extent does not cover the
7413 	 * whole page and consequently check_page_uptodate does not find all
7414 	 * the page's extents up-to-date (the hole beyond sb),
7415 	 * write_extent_buffer then triggers a WARN_ON.
7416 	 *
7417 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7418 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7419 	 * to silence the warning eg. on PowerPC 64.
7420 	 */
7421 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7422 		SetPageUptodate(sb->pages[0]);
7423 
7424 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7425 	array_size = btrfs_super_sys_array_size(super_copy);
7426 
7427 	array_ptr = super_copy->sys_chunk_array;
7428 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7429 	cur_offset = 0;
7430 
7431 	while (cur_offset < array_size) {
7432 		disk_key = (struct btrfs_disk_key *)array_ptr;
7433 		len = sizeof(*disk_key);
7434 		if (cur_offset + len > array_size)
7435 			goto out_short_read;
7436 
7437 		btrfs_disk_key_to_cpu(&key, disk_key);
7438 
7439 		array_ptr += len;
7440 		sb_array_offset += len;
7441 		cur_offset += len;
7442 
7443 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7444 			btrfs_err(fs_info,
7445 			    "unexpected item type %u in sys_array at offset %u",
7446 				  (u32)key.type, cur_offset);
7447 			ret = -EIO;
7448 			break;
7449 		}
7450 
7451 		chunk = (struct btrfs_chunk *)sb_array_offset;
7452 		/*
7453 		 * At least one btrfs_chunk with one stripe must be present,
7454 		 * exact stripe count check comes afterwards
7455 		 */
7456 		len = btrfs_chunk_item_size(1);
7457 		if (cur_offset + len > array_size)
7458 			goto out_short_read;
7459 
7460 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7461 		if (!num_stripes) {
7462 			btrfs_err(fs_info,
7463 			"invalid number of stripes %u in sys_array at offset %u",
7464 				  num_stripes, cur_offset);
7465 			ret = -EIO;
7466 			break;
7467 		}
7468 
7469 		type = btrfs_chunk_type(sb, chunk);
7470 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7471 			btrfs_err(fs_info,
7472 			"invalid chunk type %llu in sys_array at offset %u",
7473 				  type, cur_offset);
7474 			ret = -EIO;
7475 			break;
7476 		}
7477 
7478 		len = btrfs_chunk_item_size(num_stripes);
7479 		if (cur_offset + len > array_size)
7480 			goto out_short_read;
7481 
7482 		ret = read_one_chunk(&key, sb, chunk);
7483 		if (ret)
7484 			break;
7485 
7486 		array_ptr += len;
7487 		sb_array_offset += len;
7488 		cur_offset += len;
7489 	}
7490 	clear_extent_buffer_uptodate(sb);
7491 	free_extent_buffer_stale(sb);
7492 	return ret;
7493 
7494 out_short_read:
7495 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7496 			len, cur_offset);
7497 	clear_extent_buffer_uptodate(sb);
7498 	free_extent_buffer_stale(sb);
7499 	return -EIO;
7500 }
7501 
7502 /*
7503  * Check if all chunks in the fs are OK for read-write degraded mount
7504  *
7505  * If the @failing_dev is specified, it's accounted as missing.
7506  *
7507  * Return true if all chunks meet the minimal RW mount requirements.
7508  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7509  */
7510 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7511 					struct btrfs_device *failing_dev)
7512 {
7513 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7514 	struct extent_map *em;
7515 	u64 next_start = 0;
7516 	bool ret = true;
7517 
7518 	read_lock(&map_tree->lock);
7519 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7520 	read_unlock(&map_tree->lock);
7521 	/* No chunk at all? Return false anyway */
7522 	if (!em) {
7523 		ret = false;
7524 		goto out;
7525 	}
7526 	while (em) {
7527 		struct map_lookup *map;
7528 		int missing = 0;
7529 		int max_tolerated;
7530 		int i;
7531 
7532 		map = em->map_lookup;
7533 		max_tolerated =
7534 			btrfs_get_num_tolerated_disk_barrier_failures(
7535 					map->type);
7536 		for (i = 0; i < map->num_stripes; i++) {
7537 			struct btrfs_device *dev = map->stripes[i].dev;
7538 
7539 			if (!dev || !dev->bdev ||
7540 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7541 			    dev->last_flush_error)
7542 				missing++;
7543 			else if (failing_dev && failing_dev == dev)
7544 				missing++;
7545 		}
7546 		if (missing > max_tolerated) {
7547 			if (!failing_dev)
7548 				btrfs_warn(fs_info,
7549 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7550 				   em->start, missing, max_tolerated);
7551 			free_extent_map(em);
7552 			ret = false;
7553 			goto out;
7554 		}
7555 		next_start = extent_map_end(em);
7556 		free_extent_map(em);
7557 
7558 		read_lock(&map_tree->lock);
7559 		em = lookup_extent_mapping(map_tree, next_start,
7560 					   (u64)(-1) - next_start);
7561 		read_unlock(&map_tree->lock);
7562 	}
7563 out:
7564 	return ret;
7565 }
7566 
7567 static void readahead_tree_node_children(struct extent_buffer *node)
7568 {
7569 	int i;
7570 	const int nr_items = btrfs_header_nritems(node);
7571 
7572 	for (i = 0; i < nr_items; i++)
7573 		btrfs_readahead_node_child(node, i);
7574 }
7575 
7576 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7577 {
7578 	struct btrfs_root *root = fs_info->chunk_root;
7579 	struct btrfs_path *path;
7580 	struct extent_buffer *leaf;
7581 	struct btrfs_key key;
7582 	struct btrfs_key found_key;
7583 	int ret;
7584 	int slot;
7585 	u64 total_dev = 0;
7586 	u64 last_ra_node = 0;
7587 
7588 	path = btrfs_alloc_path();
7589 	if (!path)
7590 		return -ENOMEM;
7591 
7592 	/*
7593 	 * uuid_mutex is needed only if we are mounting a sprout FS
7594 	 * otherwise we don't need it.
7595 	 */
7596 	mutex_lock(&uuid_mutex);
7597 
7598 	/*
7599 	 * It is possible for mount and umount to race in such a way that
7600 	 * we execute this code path, but open_fs_devices failed to clear
7601 	 * total_rw_bytes. We certainly want it cleared before reading the
7602 	 * device items, so clear it here.
7603 	 */
7604 	fs_info->fs_devices->total_rw_bytes = 0;
7605 
7606 	/*
7607 	 * Lockdep complains about possible circular locking dependency between
7608 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7609 	 * used for freeze procection of a fs (struct super_block.s_writers),
7610 	 * which we take when starting a transaction, and extent buffers of the
7611 	 * chunk tree if we call read_one_dev() while holding a lock on an
7612 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7613 	 * and at this point there can't be any concurrent task modifying the
7614 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7615 	 */
7616 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7617 	path->skip_locking = 1;
7618 
7619 	/*
7620 	 * Read all device items, and then all the chunk items. All
7621 	 * device items are found before any chunk item (their object id
7622 	 * is smaller than the lowest possible object id for a chunk
7623 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7624 	 */
7625 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7626 	key.offset = 0;
7627 	key.type = 0;
7628 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7629 	if (ret < 0)
7630 		goto error;
7631 	while (1) {
7632 		struct extent_buffer *node;
7633 
7634 		leaf = path->nodes[0];
7635 		slot = path->slots[0];
7636 		if (slot >= btrfs_header_nritems(leaf)) {
7637 			ret = btrfs_next_leaf(root, path);
7638 			if (ret == 0)
7639 				continue;
7640 			if (ret < 0)
7641 				goto error;
7642 			break;
7643 		}
7644 		node = path->nodes[1];
7645 		if (node) {
7646 			if (last_ra_node != node->start) {
7647 				readahead_tree_node_children(node);
7648 				last_ra_node = node->start;
7649 			}
7650 		}
7651 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7652 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7653 			struct btrfs_dev_item *dev_item;
7654 			dev_item = btrfs_item_ptr(leaf, slot,
7655 						  struct btrfs_dev_item);
7656 			ret = read_one_dev(leaf, dev_item);
7657 			if (ret)
7658 				goto error;
7659 			total_dev++;
7660 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7661 			struct btrfs_chunk *chunk;
7662 
7663 			/*
7664 			 * We are only called at mount time, so no need to take
7665 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7666 			 * we always lock first fs_info->chunk_mutex before
7667 			 * acquiring any locks on the chunk tree. This is a
7668 			 * requirement for chunk allocation, see the comment on
7669 			 * top of btrfs_chunk_alloc() for details.
7670 			 */
7671 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7672 			ret = read_one_chunk(&found_key, leaf, chunk);
7673 			if (ret)
7674 				goto error;
7675 		}
7676 		path->slots[0]++;
7677 	}
7678 
7679 	/*
7680 	 * After loading chunk tree, we've got all device information,
7681 	 * do another round of validation checks.
7682 	 */
7683 	if (total_dev != fs_info->fs_devices->total_devices) {
7684 		btrfs_err(fs_info,
7685 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7686 			  btrfs_super_num_devices(fs_info->super_copy),
7687 			  total_dev);
7688 		ret = -EINVAL;
7689 		goto error;
7690 	}
7691 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7692 	    fs_info->fs_devices->total_rw_bytes) {
7693 		btrfs_err(fs_info,
7694 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7695 			  btrfs_super_total_bytes(fs_info->super_copy),
7696 			  fs_info->fs_devices->total_rw_bytes);
7697 		ret = -EINVAL;
7698 		goto error;
7699 	}
7700 	ret = 0;
7701 error:
7702 	mutex_unlock(&uuid_mutex);
7703 
7704 	btrfs_free_path(path);
7705 	return ret;
7706 }
7707 
7708 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7709 {
7710 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7711 	struct btrfs_device *device;
7712 
7713 	fs_devices->fs_info = fs_info;
7714 
7715 	mutex_lock(&fs_devices->device_list_mutex);
7716 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7717 		device->fs_info = fs_info;
7718 
7719 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7720 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7721 			device->fs_info = fs_info;
7722 
7723 		seed_devs->fs_info = fs_info;
7724 	}
7725 	mutex_unlock(&fs_devices->device_list_mutex);
7726 }
7727 
7728 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7729 				 const struct btrfs_dev_stats_item *ptr,
7730 				 int index)
7731 {
7732 	u64 val;
7733 
7734 	read_extent_buffer(eb, &val,
7735 			   offsetof(struct btrfs_dev_stats_item, values) +
7736 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7737 			   sizeof(val));
7738 	return val;
7739 }
7740 
7741 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7742 				      struct btrfs_dev_stats_item *ptr,
7743 				      int index, u64 val)
7744 {
7745 	write_extent_buffer(eb, &val,
7746 			    offsetof(struct btrfs_dev_stats_item, values) +
7747 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7748 			    sizeof(val));
7749 }
7750 
7751 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7752 				       struct btrfs_path *path)
7753 {
7754 	struct btrfs_dev_stats_item *ptr;
7755 	struct extent_buffer *eb;
7756 	struct btrfs_key key;
7757 	int item_size;
7758 	int i, ret, slot;
7759 
7760 	if (!device->fs_info->dev_root)
7761 		return 0;
7762 
7763 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7764 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7765 	key.offset = device->devid;
7766 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7767 	if (ret) {
7768 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7769 			btrfs_dev_stat_set(device, i, 0);
7770 		device->dev_stats_valid = 1;
7771 		btrfs_release_path(path);
7772 		return ret < 0 ? ret : 0;
7773 	}
7774 	slot = path->slots[0];
7775 	eb = path->nodes[0];
7776 	item_size = btrfs_item_size(eb, slot);
7777 
7778 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7779 
7780 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7781 		if (item_size >= (1 + i) * sizeof(__le64))
7782 			btrfs_dev_stat_set(device, i,
7783 					   btrfs_dev_stats_value(eb, ptr, i));
7784 		else
7785 			btrfs_dev_stat_set(device, i, 0);
7786 	}
7787 
7788 	device->dev_stats_valid = 1;
7789 	btrfs_dev_stat_print_on_load(device);
7790 	btrfs_release_path(path);
7791 
7792 	return 0;
7793 }
7794 
7795 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7796 {
7797 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7798 	struct btrfs_device *device;
7799 	struct btrfs_path *path = NULL;
7800 	int ret = 0;
7801 
7802 	path = btrfs_alloc_path();
7803 	if (!path)
7804 		return -ENOMEM;
7805 
7806 	mutex_lock(&fs_devices->device_list_mutex);
7807 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7808 		ret = btrfs_device_init_dev_stats(device, path);
7809 		if (ret)
7810 			goto out;
7811 	}
7812 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7813 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7814 			ret = btrfs_device_init_dev_stats(device, path);
7815 			if (ret)
7816 				goto out;
7817 		}
7818 	}
7819 out:
7820 	mutex_unlock(&fs_devices->device_list_mutex);
7821 
7822 	btrfs_free_path(path);
7823 	return ret;
7824 }
7825 
7826 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7827 				struct btrfs_device *device)
7828 {
7829 	struct btrfs_fs_info *fs_info = trans->fs_info;
7830 	struct btrfs_root *dev_root = fs_info->dev_root;
7831 	struct btrfs_path *path;
7832 	struct btrfs_key key;
7833 	struct extent_buffer *eb;
7834 	struct btrfs_dev_stats_item *ptr;
7835 	int ret;
7836 	int i;
7837 
7838 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7839 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7840 	key.offset = device->devid;
7841 
7842 	path = btrfs_alloc_path();
7843 	if (!path)
7844 		return -ENOMEM;
7845 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7846 	if (ret < 0) {
7847 		btrfs_warn_in_rcu(fs_info,
7848 			"error %d while searching for dev_stats item for device %s",
7849 			      ret, rcu_str_deref(device->name));
7850 		goto out;
7851 	}
7852 
7853 	if (ret == 0 &&
7854 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7855 		/* need to delete old one and insert a new one */
7856 		ret = btrfs_del_item(trans, dev_root, path);
7857 		if (ret != 0) {
7858 			btrfs_warn_in_rcu(fs_info,
7859 				"delete too small dev_stats item for device %s failed %d",
7860 				      rcu_str_deref(device->name), ret);
7861 			goto out;
7862 		}
7863 		ret = 1;
7864 	}
7865 
7866 	if (ret == 1) {
7867 		/* need to insert a new item */
7868 		btrfs_release_path(path);
7869 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7870 					      &key, sizeof(*ptr));
7871 		if (ret < 0) {
7872 			btrfs_warn_in_rcu(fs_info,
7873 				"insert dev_stats item for device %s failed %d",
7874 				rcu_str_deref(device->name), ret);
7875 			goto out;
7876 		}
7877 	}
7878 
7879 	eb = path->nodes[0];
7880 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7881 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7882 		btrfs_set_dev_stats_value(eb, ptr, i,
7883 					  btrfs_dev_stat_read(device, i));
7884 	btrfs_mark_buffer_dirty(eb);
7885 
7886 out:
7887 	btrfs_free_path(path);
7888 	return ret;
7889 }
7890 
7891 /*
7892  * called from commit_transaction. Writes all changed device stats to disk.
7893  */
7894 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7895 {
7896 	struct btrfs_fs_info *fs_info = trans->fs_info;
7897 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7898 	struct btrfs_device *device;
7899 	int stats_cnt;
7900 	int ret = 0;
7901 
7902 	mutex_lock(&fs_devices->device_list_mutex);
7903 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7904 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7905 		if (!device->dev_stats_valid || stats_cnt == 0)
7906 			continue;
7907 
7908 
7909 		/*
7910 		 * There is a LOAD-LOAD control dependency between the value of
7911 		 * dev_stats_ccnt and updating the on-disk values which requires
7912 		 * reading the in-memory counters. Such control dependencies
7913 		 * require explicit read memory barriers.
7914 		 *
7915 		 * This memory barriers pairs with smp_mb__before_atomic in
7916 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7917 		 * barrier implied by atomic_xchg in
7918 		 * btrfs_dev_stats_read_and_reset
7919 		 */
7920 		smp_rmb();
7921 
7922 		ret = update_dev_stat_item(trans, device);
7923 		if (!ret)
7924 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7925 	}
7926 	mutex_unlock(&fs_devices->device_list_mutex);
7927 
7928 	return ret;
7929 }
7930 
7931 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7932 {
7933 	btrfs_dev_stat_inc(dev, index);
7934 	btrfs_dev_stat_print_on_error(dev);
7935 }
7936 
7937 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7938 {
7939 	if (!dev->dev_stats_valid)
7940 		return;
7941 	btrfs_err_rl_in_rcu(dev->fs_info,
7942 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7943 			   rcu_str_deref(dev->name),
7944 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7945 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7946 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7947 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7948 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7949 }
7950 
7951 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7952 {
7953 	int i;
7954 
7955 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7956 		if (btrfs_dev_stat_read(dev, i) != 0)
7957 			break;
7958 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7959 		return; /* all values == 0, suppress message */
7960 
7961 	btrfs_info_in_rcu(dev->fs_info,
7962 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7963 	       rcu_str_deref(dev->name),
7964 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7965 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7966 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7967 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7968 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7969 }
7970 
7971 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7972 			struct btrfs_ioctl_get_dev_stats *stats)
7973 {
7974 	BTRFS_DEV_LOOKUP_ARGS(args);
7975 	struct btrfs_device *dev;
7976 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7977 	int i;
7978 
7979 	mutex_lock(&fs_devices->device_list_mutex);
7980 	args.devid = stats->devid;
7981 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7982 	mutex_unlock(&fs_devices->device_list_mutex);
7983 
7984 	if (!dev) {
7985 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7986 		return -ENODEV;
7987 	} else if (!dev->dev_stats_valid) {
7988 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7989 		return -ENODEV;
7990 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7991 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7992 			if (stats->nr_items > i)
7993 				stats->values[i] =
7994 					btrfs_dev_stat_read_and_reset(dev, i);
7995 			else
7996 				btrfs_dev_stat_set(dev, i, 0);
7997 		}
7998 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7999 			   current->comm, task_pid_nr(current));
8000 	} else {
8001 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
8002 			if (stats->nr_items > i)
8003 				stats->values[i] = btrfs_dev_stat_read(dev, i);
8004 	}
8005 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
8006 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
8007 	return 0;
8008 }
8009 
8010 /*
8011  * Update the size and bytes used for each device where it changed.  This is
8012  * delayed since we would otherwise get errors while writing out the
8013  * superblocks.
8014  *
8015  * Must be invoked during transaction commit.
8016  */
8017 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
8018 {
8019 	struct btrfs_device *curr, *next;
8020 
8021 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
8022 
8023 	if (list_empty(&trans->dev_update_list))
8024 		return;
8025 
8026 	/*
8027 	 * We don't need the device_list_mutex here.  This list is owned by the
8028 	 * transaction and the transaction must complete before the device is
8029 	 * released.
8030 	 */
8031 	mutex_lock(&trans->fs_info->chunk_mutex);
8032 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
8033 				 post_commit_list) {
8034 		list_del_init(&curr->post_commit_list);
8035 		curr->commit_total_bytes = curr->disk_total_bytes;
8036 		curr->commit_bytes_used = curr->bytes_used;
8037 	}
8038 	mutex_unlock(&trans->fs_info->chunk_mutex);
8039 }
8040 
8041 /*
8042  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8043  */
8044 int btrfs_bg_type_to_factor(u64 flags)
8045 {
8046 	const int index = btrfs_bg_flags_to_raid_index(flags);
8047 
8048 	return btrfs_raid_array[index].ncopies;
8049 }
8050 
8051 
8052 
8053 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8054 				 u64 chunk_offset, u64 devid,
8055 				 u64 physical_offset, u64 physical_len)
8056 {
8057 	struct btrfs_dev_lookup_args args = { .devid = devid };
8058 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8059 	struct extent_map *em;
8060 	struct map_lookup *map;
8061 	struct btrfs_device *dev;
8062 	u64 stripe_len;
8063 	bool found = false;
8064 	int ret = 0;
8065 	int i;
8066 
8067 	read_lock(&em_tree->lock);
8068 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8069 	read_unlock(&em_tree->lock);
8070 
8071 	if (!em) {
8072 		btrfs_err(fs_info,
8073 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8074 			  physical_offset, devid);
8075 		ret = -EUCLEAN;
8076 		goto out;
8077 	}
8078 
8079 	map = em->map_lookup;
8080 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8081 	if (physical_len != stripe_len) {
8082 		btrfs_err(fs_info,
8083 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8084 			  physical_offset, devid, em->start, physical_len,
8085 			  stripe_len);
8086 		ret = -EUCLEAN;
8087 		goto out;
8088 	}
8089 
8090 	for (i = 0; i < map->num_stripes; i++) {
8091 		if (map->stripes[i].dev->devid == devid &&
8092 		    map->stripes[i].physical == physical_offset) {
8093 			found = true;
8094 			if (map->verified_stripes >= map->num_stripes) {
8095 				btrfs_err(fs_info,
8096 				"too many dev extents for chunk %llu found",
8097 					  em->start);
8098 				ret = -EUCLEAN;
8099 				goto out;
8100 			}
8101 			map->verified_stripes++;
8102 			break;
8103 		}
8104 	}
8105 	if (!found) {
8106 		btrfs_err(fs_info,
8107 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8108 			physical_offset, devid);
8109 		ret = -EUCLEAN;
8110 	}
8111 
8112 	/* Make sure no dev extent is beyond device boundary */
8113 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8114 	if (!dev) {
8115 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8116 		ret = -EUCLEAN;
8117 		goto out;
8118 	}
8119 
8120 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8121 		btrfs_err(fs_info,
8122 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8123 			  devid, physical_offset, physical_len,
8124 			  dev->disk_total_bytes);
8125 		ret = -EUCLEAN;
8126 		goto out;
8127 	}
8128 
8129 	if (dev->zone_info) {
8130 		u64 zone_size = dev->zone_info->zone_size;
8131 
8132 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8133 		    !IS_ALIGNED(physical_len, zone_size)) {
8134 			btrfs_err(fs_info,
8135 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8136 				  devid, physical_offset, physical_len);
8137 			ret = -EUCLEAN;
8138 			goto out;
8139 		}
8140 	}
8141 
8142 out:
8143 	free_extent_map(em);
8144 	return ret;
8145 }
8146 
8147 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8148 {
8149 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8150 	struct extent_map *em;
8151 	struct rb_node *node;
8152 	int ret = 0;
8153 
8154 	read_lock(&em_tree->lock);
8155 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8156 		em = rb_entry(node, struct extent_map, rb_node);
8157 		if (em->map_lookup->num_stripes !=
8158 		    em->map_lookup->verified_stripes) {
8159 			btrfs_err(fs_info,
8160 			"chunk %llu has missing dev extent, have %d expect %d",
8161 				  em->start, em->map_lookup->verified_stripes,
8162 				  em->map_lookup->num_stripes);
8163 			ret = -EUCLEAN;
8164 			goto out;
8165 		}
8166 	}
8167 out:
8168 	read_unlock(&em_tree->lock);
8169 	return ret;
8170 }
8171 
8172 /*
8173  * Ensure that all dev extents are mapped to correct chunk, otherwise
8174  * later chunk allocation/free would cause unexpected behavior.
8175  *
8176  * NOTE: This will iterate through the whole device tree, which should be of
8177  * the same size level as the chunk tree.  This slightly increases mount time.
8178  */
8179 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8180 {
8181 	struct btrfs_path *path;
8182 	struct btrfs_root *root = fs_info->dev_root;
8183 	struct btrfs_key key;
8184 	u64 prev_devid = 0;
8185 	u64 prev_dev_ext_end = 0;
8186 	int ret = 0;
8187 
8188 	/*
8189 	 * We don't have a dev_root because we mounted with ignorebadroots and
8190 	 * failed to load the root, so we want to skip the verification in this
8191 	 * case for sure.
8192 	 *
8193 	 * However if the dev root is fine, but the tree itself is corrupted
8194 	 * we'd still fail to mount.  This verification is only to make sure
8195 	 * writes can happen safely, so instead just bypass this check
8196 	 * completely in the case of IGNOREBADROOTS.
8197 	 */
8198 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8199 		return 0;
8200 
8201 	key.objectid = 1;
8202 	key.type = BTRFS_DEV_EXTENT_KEY;
8203 	key.offset = 0;
8204 
8205 	path = btrfs_alloc_path();
8206 	if (!path)
8207 		return -ENOMEM;
8208 
8209 	path->reada = READA_FORWARD;
8210 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8211 	if (ret < 0)
8212 		goto out;
8213 
8214 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8215 		ret = btrfs_next_leaf(root, path);
8216 		if (ret < 0)
8217 			goto out;
8218 		/* No dev extents at all? Not good */
8219 		if (ret > 0) {
8220 			ret = -EUCLEAN;
8221 			goto out;
8222 		}
8223 	}
8224 	while (1) {
8225 		struct extent_buffer *leaf = path->nodes[0];
8226 		struct btrfs_dev_extent *dext;
8227 		int slot = path->slots[0];
8228 		u64 chunk_offset;
8229 		u64 physical_offset;
8230 		u64 physical_len;
8231 		u64 devid;
8232 
8233 		btrfs_item_key_to_cpu(leaf, &key, slot);
8234 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8235 			break;
8236 		devid = key.objectid;
8237 		physical_offset = key.offset;
8238 
8239 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8240 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8241 		physical_len = btrfs_dev_extent_length(leaf, dext);
8242 
8243 		/* Check if this dev extent overlaps with the previous one */
8244 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8245 			btrfs_err(fs_info,
8246 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8247 				  devid, physical_offset, prev_dev_ext_end);
8248 			ret = -EUCLEAN;
8249 			goto out;
8250 		}
8251 
8252 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8253 					    physical_offset, physical_len);
8254 		if (ret < 0)
8255 			goto out;
8256 		prev_devid = devid;
8257 		prev_dev_ext_end = physical_offset + physical_len;
8258 
8259 		ret = btrfs_next_item(root, path);
8260 		if (ret < 0)
8261 			goto out;
8262 		if (ret > 0) {
8263 			ret = 0;
8264 			break;
8265 		}
8266 	}
8267 
8268 	/* Ensure all chunks have corresponding dev extents */
8269 	ret = verify_chunk_dev_extent_mapping(fs_info);
8270 out:
8271 	btrfs_free_path(path);
8272 	return ret;
8273 }
8274 
8275 /*
8276  * Check whether the given block group or device is pinned by any inode being
8277  * used as a swapfile.
8278  */
8279 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8280 {
8281 	struct btrfs_swapfile_pin *sp;
8282 	struct rb_node *node;
8283 
8284 	spin_lock(&fs_info->swapfile_pins_lock);
8285 	node = fs_info->swapfile_pins.rb_node;
8286 	while (node) {
8287 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8288 		if (ptr < sp->ptr)
8289 			node = node->rb_left;
8290 		else if (ptr > sp->ptr)
8291 			node = node->rb_right;
8292 		else
8293 			break;
8294 	}
8295 	spin_unlock(&fs_info->swapfile_pins_lock);
8296 	return node != NULL;
8297 }
8298 
8299 static int relocating_repair_kthread(void *data)
8300 {
8301 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8302 	struct btrfs_fs_info *fs_info = cache->fs_info;
8303 	u64 target;
8304 	int ret = 0;
8305 
8306 	target = cache->start;
8307 	btrfs_put_block_group(cache);
8308 
8309 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8310 		btrfs_info(fs_info,
8311 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8312 			   target);
8313 		return -EBUSY;
8314 	}
8315 
8316 	mutex_lock(&fs_info->reclaim_bgs_lock);
8317 
8318 	/* Ensure block group still exists */
8319 	cache = btrfs_lookup_block_group(fs_info, target);
8320 	if (!cache)
8321 		goto out;
8322 
8323 	if (!cache->relocating_repair)
8324 		goto out;
8325 
8326 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8327 	if (ret < 0)
8328 		goto out;
8329 
8330 	btrfs_info(fs_info,
8331 		   "zoned: relocating block group %llu to repair IO failure",
8332 		   target);
8333 	ret = btrfs_relocate_chunk(fs_info, target);
8334 
8335 out:
8336 	if (cache)
8337 		btrfs_put_block_group(cache);
8338 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8339 	btrfs_exclop_finish(fs_info);
8340 
8341 	return ret;
8342 }
8343 
8344 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8345 {
8346 	struct btrfs_block_group *cache;
8347 
8348 	/* Do not attempt to repair in degraded state */
8349 	if (btrfs_test_opt(fs_info, DEGRADED))
8350 		return 0;
8351 
8352 	cache = btrfs_lookup_block_group(fs_info, logical);
8353 	if (!cache)
8354 		return 0;
8355 
8356 	spin_lock(&cache->lock);
8357 	if (cache->relocating_repair) {
8358 		spin_unlock(&cache->lock);
8359 		btrfs_put_block_group(cache);
8360 		return 0;
8361 	}
8362 	cache->relocating_repair = 1;
8363 	spin_unlock(&cache->lock);
8364 
8365 	kthread_run(relocating_repair_kthread, cache,
8366 		    "btrfs-relocating-repair");
8367 
8368 	return 0;
8369 }
8370