xref: /openbmc/linux/fs/btrfs/volumes.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52 
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 struct list_head *btrfs_get_fs_uuids(void)
56 {
57 	return &fs_uuids;
58 }
59 
60 static struct btrfs_fs_devices *__alloc_fs_devices(void)
61 {
62 	struct btrfs_fs_devices *fs_devs;
63 
64 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
65 	if (!fs_devs)
66 		return ERR_PTR(-ENOMEM);
67 
68 	mutex_init(&fs_devs->device_list_mutex);
69 
70 	INIT_LIST_HEAD(&fs_devs->devices);
71 	INIT_LIST_HEAD(&fs_devs->resized_devices);
72 	INIT_LIST_HEAD(&fs_devs->alloc_list);
73 	INIT_LIST_HEAD(&fs_devs->list);
74 
75 	return fs_devs;
76 }
77 
78 /**
79  * alloc_fs_devices - allocate struct btrfs_fs_devices
80  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
81  *		generated.
82  *
83  * Return: a pointer to a new &struct btrfs_fs_devices on success;
84  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
85  * can be destroyed with kfree() right away.
86  */
87 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
88 {
89 	struct btrfs_fs_devices *fs_devs;
90 
91 	fs_devs = __alloc_fs_devices();
92 	if (IS_ERR(fs_devs))
93 		return fs_devs;
94 
95 	if (fsid)
96 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
97 	else
98 		generate_random_uuid(fs_devs->fsid);
99 
100 	return fs_devs;
101 }
102 
103 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
104 {
105 	struct btrfs_device *device;
106 	WARN_ON(fs_devices->opened);
107 	while (!list_empty(&fs_devices->devices)) {
108 		device = list_entry(fs_devices->devices.next,
109 				    struct btrfs_device, dev_list);
110 		list_del(&device->dev_list);
111 		rcu_string_free(device->name);
112 		kfree(device);
113 	}
114 	kfree(fs_devices);
115 }
116 
117 static void btrfs_kobject_uevent(struct block_device *bdev,
118 				 enum kobject_action action)
119 {
120 	int ret;
121 
122 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
123 	if (ret)
124 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
125 			action,
126 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
127 			&disk_to_dev(bdev->bd_disk)->kobj);
128 }
129 
130 void btrfs_cleanup_fs_uuids(void)
131 {
132 	struct btrfs_fs_devices *fs_devices;
133 
134 	while (!list_empty(&fs_uuids)) {
135 		fs_devices = list_entry(fs_uuids.next,
136 					struct btrfs_fs_devices, list);
137 		list_del(&fs_devices->list);
138 		free_fs_devices(fs_devices);
139 	}
140 }
141 
142 static struct btrfs_device *__alloc_device(void)
143 {
144 	struct btrfs_device *dev;
145 
146 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
147 	if (!dev)
148 		return ERR_PTR(-ENOMEM);
149 
150 	INIT_LIST_HEAD(&dev->dev_list);
151 	INIT_LIST_HEAD(&dev->dev_alloc_list);
152 	INIT_LIST_HEAD(&dev->resized_list);
153 
154 	spin_lock_init(&dev->io_lock);
155 
156 	spin_lock_init(&dev->reada_lock);
157 	atomic_set(&dev->reada_in_flight, 0);
158 	atomic_set(&dev->dev_stats_ccnt, 0);
159 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
160 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
161 
162 	return dev;
163 }
164 
165 static noinline struct btrfs_device *__find_device(struct list_head *head,
166 						   u64 devid, u8 *uuid)
167 {
168 	struct btrfs_device *dev;
169 
170 	list_for_each_entry(dev, head, dev_list) {
171 		if (dev->devid == devid &&
172 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
173 			return dev;
174 		}
175 	}
176 	return NULL;
177 }
178 
179 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
180 {
181 	struct btrfs_fs_devices *fs_devices;
182 
183 	list_for_each_entry(fs_devices, &fs_uuids, list) {
184 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
185 			return fs_devices;
186 	}
187 	return NULL;
188 }
189 
190 static int
191 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
192 		      int flush, struct block_device **bdev,
193 		      struct buffer_head **bh)
194 {
195 	int ret;
196 
197 	*bdev = blkdev_get_by_path(device_path, flags, holder);
198 
199 	if (IS_ERR(*bdev)) {
200 		ret = PTR_ERR(*bdev);
201 		printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
202 		goto error;
203 	}
204 
205 	if (flush)
206 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
207 	ret = set_blocksize(*bdev, 4096);
208 	if (ret) {
209 		blkdev_put(*bdev, flags);
210 		goto error;
211 	}
212 	invalidate_bdev(*bdev);
213 	*bh = btrfs_read_dev_super(*bdev);
214 	if (!*bh) {
215 		ret = -EINVAL;
216 		blkdev_put(*bdev, flags);
217 		goto error;
218 	}
219 
220 	return 0;
221 
222 error:
223 	*bdev = NULL;
224 	*bh = NULL;
225 	return ret;
226 }
227 
228 static void requeue_list(struct btrfs_pending_bios *pending_bios,
229 			struct bio *head, struct bio *tail)
230 {
231 
232 	struct bio *old_head;
233 
234 	old_head = pending_bios->head;
235 	pending_bios->head = head;
236 	if (pending_bios->tail)
237 		tail->bi_next = old_head;
238 	else
239 		pending_bios->tail = tail;
240 }
241 
242 /*
243  * we try to collect pending bios for a device so we don't get a large
244  * number of procs sending bios down to the same device.  This greatly
245  * improves the schedulers ability to collect and merge the bios.
246  *
247  * But, it also turns into a long list of bios to process and that is sure
248  * to eventually make the worker thread block.  The solution here is to
249  * make some progress and then put this work struct back at the end of
250  * the list if the block device is congested.  This way, multiple devices
251  * can make progress from a single worker thread.
252  */
253 static noinline void run_scheduled_bios(struct btrfs_device *device)
254 {
255 	struct bio *pending;
256 	struct backing_dev_info *bdi;
257 	struct btrfs_fs_info *fs_info;
258 	struct btrfs_pending_bios *pending_bios;
259 	struct bio *tail;
260 	struct bio *cur;
261 	int again = 0;
262 	unsigned long num_run;
263 	unsigned long batch_run = 0;
264 	unsigned long limit;
265 	unsigned long last_waited = 0;
266 	int force_reg = 0;
267 	int sync_pending = 0;
268 	struct blk_plug plug;
269 
270 	/*
271 	 * this function runs all the bios we've collected for
272 	 * a particular device.  We don't want to wander off to
273 	 * another device without first sending all of these down.
274 	 * So, setup a plug here and finish it off before we return
275 	 */
276 	blk_start_plug(&plug);
277 
278 	bdi = blk_get_backing_dev_info(device->bdev);
279 	fs_info = device->dev_root->fs_info;
280 	limit = btrfs_async_submit_limit(fs_info);
281 	limit = limit * 2 / 3;
282 
283 loop:
284 	spin_lock(&device->io_lock);
285 
286 loop_lock:
287 	num_run = 0;
288 
289 	/* take all the bios off the list at once and process them
290 	 * later on (without the lock held).  But, remember the
291 	 * tail and other pointers so the bios can be properly reinserted
292 	 * into the list if we hit congestion
293 	 */
294 	if (!force_reg && device->pending_sync_bios.head) {
295 		pending_bios = &device->pending_sync_bios;
296 		force_reg = 1;
297 	} else {
298 		pending_bios = &device->pending_bios;
299 		force_reg = 0;
300 	}
301 
302 	pending = pending_bios->head;
303 	tail = pending_bios->tail;
304 	WARN_ON(pending && !tail);
305 
306 	/*
307 	 * if pending was null this time around, no bios need processing
308 	 * at all and we can stop.  Otherwise it'll loop back up again
309 	 * and do an additional check so no bios are missed.
310 	 *
311 	 * device->running_pending is used to synchronize with the
312 	 * schedule_bio code.
313 	 */
314 	if (device->pending_sync_bios.head == NULL &&
315 	    device->pending_bios.head == NULL) {
316 		again = 0;
317 		device->running_pending = 0;
318 	} else {
319 		again = 1;
320 		device->running_pending = 1;
321 	}
322 
323 	pending_bios->head = NULL;
324 	pending_bios->tail = NULL;
325 
326 	spin_unlock(&device->io_lock);
327 
328 	while (pending) {
329 
330 		rmb();
331 		/* we want to work on both lists, but do more bios on the
332 		 * sync list than the regular list
333 		 */
334 		if ((num_run > 32 &&
335 		    pending_bios != &device->pending_sync_bios &&
336 		    device->pending_sync_bios.head) ||
337 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
338 		    device->pending_bios.head)) {
339 			spin_lock(&device->io_lock);
340 			requeue_list(pending_bios, pending, tail);
341 			goto loop_lock;
342 		}
343 
344 		cur = pending;
345 		pending = pending->bi_next;
346 		cur->bi_next = NULL;
347 
348 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
349 		    waitqueue_active(&fs_info->async_submit_wait))
350 			wake_up(&fs_info->async_submit_wait);
351 
352 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
353 
354 		/*
355 		 * if we're doing the sync list, record that our
356 		 * plug has some sync requests on it
357 		 *
358 		 * If we're doing the regular list and there are
359 		 * sync requests sitting around, unplug before
360 		 * we add more
361 		 */
362 		if (pending_bios == &device->pending_sync_bios) {
363 			sync_pending = 1;
364 		} else if (sync_pending) {
365 			blk_finish_plug(&plug);
366 			blk_start_plug(&plug);
367 			sync_pending = 0;
368 		}
369 
370 		btrfsic_submit_bio(cur->bi_rw, cur);
371 		num_run++;
372 		batch_run++;
373 
374 		cond_resched();
375 
376 		/*
377 		 * we made progress, there is more work to do and the bdi
378 		 * is now congested.  Back off and let other work structs
379 		 * run instead
380 		 */
381 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
382 		    fs_info->fs_devices->open_devices > 1) {
383 			struct io_context *ioc;
384 
385 			ioc = current->io_context;
386 
387 			/*
388 			 * the main goal here is that we don't want to
389 			 * block if we're going to be able to submit
390 			 * more requests without blocking.
391 			 *
392 			 * This code does two great things, it pokes into
393 			 * the elevator code from a filesystem _and_
394 			 * it makes assumptions about how batching works.
395 			 */
396 			if (ioc && ioc->nr_batch_requests > 0 &&
397 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
398 			    (last_waited == 0 ||
399 			     ioc->last_waited == last_waited)) {
400 				/*
401 				 * we want to go through our batch of
402 				 * requests and stop.  So, we copy out
403 				 * the ioc->last_waited time and test
404 				 * against it before looping
405 				 */
406 				last_waited = ioc->last_waited;
407 				cond_resched();
408 				continue;
409 			}
410 			spin_lock(&device->io_lock);
411 			requeue_list(pending_bios, pending, tail);
412 			device->running_pending = 1;
413 
414 			spin_unlock(&device->io_lock);
415 			btrfs_queue_work(fs_info->submit_workers,
416 					 &device->work);
417 			goto done;
418 		}
419 		/* unplug every 64 requests just for good measure */
420 		if (batch_run % 64 == 0) {
421 			blk_finish_plug(&plug);
422 			blk_start_plug(&plug);
423 			sync_pending = 0;
424 		}
425 	}
426 
427 	cond_resched();
428 	if (again)
429 		goto loop;
430 
431 	spin_lock(&device->io_lock);
432 	if (device->pending_bios.head || device->pending_sync_bios.head)
433 		goto loop_lock;
434 	spin_unlock(&device->io_lock);
435 
436 done:
437 	blk_finish_plug(&plug);
438 }
439 
440 static void pending_bios_fn(struct btrfs_work *work)
441 {
442 	struct btrfs_device *device;
443 
444 	device = container_of(work, struct btrfs_device, work);
445 	run_scheduled_bios(device);
446 }
447 
448 
449 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
450 {
451 	struct btrfs_fs_devices *fs_devs;
452 	struct btrfs_device *dev;
453 
454 	if (!cur_dev->name)
455 		return;
456 
457 	list_for_each_entry(fs_devs, &fs_uuids, list) {
458 		int del = 1;
459 
460 		if (fs_devs->opened)
461 			continue;
462 		if (fs_devs->seeding)
463 			continue;
464 
465 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
466 
467 			if (dev == cur_dev)
468 				continue;
469 			if (!dev->name)
470 				continue;
471 
472 			/*
473 			 * Todo: This won't be enough. What if the same device
474 			 * comes back (with new uuid and) with its mapper path?
475 			 * But for now, this does help as mostly an admin will
476 			 * either use mapper or non mapper path throughout.
477 			 */
478 			rcu_read_lock();
479 			del = strcmp(rcu_str_deref(dev->name),
480 						rcu_str_deref(cur_dev->name));
481 			rcu_read_unlock();
482 			if (!del)
483 				break;
484 		}
485 
486 		if (!del) {
487 			/* delete the stale device */
488 			if (fs_devs->num_devices == 1) {
489 				btrfs_sysfs_remove_fsid(fs_devs);
490 				list_del(&fs_devs->list);
491 				free_fs_devices(fs_devs);
492 			} else {
493 				fs_devs->num_devices--;
494 				list_del(&dev->dev_list);
495 				rcu_string_free(dev->name);
496 				kfree(dev);
497 			}
498 			break;
499 		}
500 	}
501 }
502 
503 /*
504  * Add new device to list of registered devices
505  *
506  * Returns:
507  * 1   - first time device is seen
508  * 0   - device already known
509  * < 0 - error
510  */
511 static noinline int device_list_add(const char *path,
512 			   struct btrfs_super_block *disk_super,
513 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
514 {
515 	struct btrfs_device *device;
516 	struct btrfs_fs_devices *fs_devices;
517 	struct rcu_string *name;
518 	int ret = 0;
519 	u64 found_transid = btrfs_super_generation(disk_super);
520 
521 	fs_devices = find_fsid(disk_super->fsid);
522 	if (!fs_devices) {
523 		fs_devices = alloc_fs_devices(disk_super->fsid);
524 		if (IS_ERR(fs_devices))
525 			return PTR_ERR(fs_devices);
526 
527 		list_add(&fs_devices->list, &fs_uuids);
528 
529 		device = NULL;
530 	} else {
531 		device = __find_device(&fs_devices->devices, devid,
532 				       disk_super->dev_item.uuid);
533 	}
534 
535 	if (!device) {
536 		if (fs_devices->opened)
537 			return -EBUSY;
538 
539 		device = btrfs_alloc_device(NULL, &devid,
540 					    disk_super->dev_item.uuid);
541 		if (IS_ERR(device)) {
542 			/* we can safely leave the fs_devices entry around */
543 			return PTR_ERR(device);
544 		}
545 
546 		name = rcu_string_strdup(path, GFP_NOFS);
547 		if (!name) {
548 			kfree(device);
549 			return -ENOMEM;
550 		}
551 		rcu_assign_pointer(device->name, name);
552 
553 		mutex_lock(&fs_devices->device_list_mutex);
554 		list_add_rcu(&device->dev_list, &fs_devices->devices);
555 		fs_devices->num_devices++;
556 		mutex_unlock(&fs_devices->device_list_mutex);
557 
558 		ret = 1;
559 		device->fs_devices = fs_devices;
560 	} else if (!device->name || strcmp(device->name->str, path)) {
561 		/*
562 		 * When FS is already mounted.
563 		 * 1. If you are here and if the device->name is NULL that
564 		 *    means this device was missing at time of FS mount.
565 		 * 2. If you are here and if the device->name is different
566 		 *    from 'path' that means either
567 		 *      a. The same device disappeared and reappeared with
568 		 *         different name. or
569 		 *      b. The missing-disk-which-was-replaced, has
570 		 *         reappeared now.
571 		 *
572 		 * We must allow 1 and 2a above. But 2b would be a spurious
573 		 * and unintentional.
574 		 *
575 		 * Further in case of 1 and 2a above, the disk at 'path'
576 		 * would have missed some transaction when it was away and
577 		 * in case of 2a the stale bdev has to be updated as well.
578 		 * 2b must not be allowed at all time.
579 		 */
580 
581 		/*
582 		 * For now, we do allow update to btrfs_fs_device through the
583 		 * btrfs dev scan cli after FS has been mounted.  We're still
584 		 * tracking a problem where systems fail mount by subvolume id
585 		 * when we reject replacement on a mounted FS.
586 		 */
587 		if (!fs_devices->opened && found_transid < device->generation) {
588 			/*
589 			 * That is if the FS is _not_ mounted and if you
590 			 * are here, that means there is more than one
591 			 * disk with same uuid and devid.We keep the one
592 			 * with larger generation number or the last-in if
593 			 * generation are equal.
594 			 */
595 			return -EEXIST;
596 		}
597 
598 		name = rcu_string_strdup(path, GFP_NOFS);
599 		if (!name)
600 			return -ENOMEM;
601 		rcu_string_free(device->name);
602 		rcu_assign_pointer(device->name, name);
603 		if (device->missing) {
604 			fs_devices->missing_devices--;
605 			device->missing = 0;
606 		}
607 	}
608 
609 	/*
610 	 * Unmount does not free the btrfs_device struct but would zero
611 	 * generation along with most of the other members. So just update
612 	 * it back. We need it to pick the disk with largest generation
613 	 * (as above).
614 	 */
615 	if (!fs_devices->opened)
616 		device->generation = found_transid;
617 
618 	/*
619 	 * if there is new btrfs on an already registered device,
620 	 * then remove the stale device entry.
621 	 */
622 	btrfs_free_stale_device(device);
623 
624 	*fs_devices_ret = fs_devices;
625 
626 	return ret;
627 }
628 
629 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
630 {
631 	struct btrfs_fs_devices *fs_devices;
632 	struct btrfs_device *device;
633 	struct btrfs_device *orig_dev;
634 
635 	fs_devices = alloc_fs_devices(orig->fsid);
636 	if (IS_ERR(fs_devices))
637 		return fs_devices;
638 
639 	mutex_lock(&orig->device_list_mutex);
640 	fs_devices->total_devices = orig->total_devices;
641 
642 	/* We have held the volume lock, it is safe to get the devices. */
643 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
644 		struct rcu_string *name;
645 
646 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
647 					    orig_dev->uuid);
648 		if (IS_ERR(device))
649 			goto error;
650 
651 		/*
652 		 * This is ok to do without rcu read locked because we hold the
653 		 * uuid mutex so nothing we touch in here is going to disappear.
654 		 */
655 		if (orig_dev->name) {
656 			name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
657 			if (!name) {
658 				kfree(device);
659 				goto error;
660 			}
661 			rcu_assign_pointer(device->name, name);
662 		}
663 
664 		list_add(&device->dev_list, &fs_devices->devices);
665 		device->fs_devices = fs_devices;
666 		fs_devices->num_devices++;
667 	}
668 	mutex_unlock(&orig->device_list_mutex);
669 	return fs_devices;
670 error:
671 	mutex_unlock(&orig->device_list_mutex);
672 	free_fs_devices(fs_devices);
673 	return ERR_PTR(-ENOMEM);
674 }
675 
676 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
677 {
678 	struct btrfs_device *device, *next;
679 	struct btrfs_device *latest_dev = NULL;
680 
681 	mutex_lock(&uuid_mutex);
682 again:
683 	/* This is the initialized path, it is safe to release the devices. */
684 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
685 		if (device->in_fs_metadata) {
686 			if (!device->is_tgtdev_for_dev_replace &&
687 			    (!latest_dev ||
688 			     device->generation > latest_dev->generation)) {
689 				latest_dev = device;
690 			}
691 			continue;
692 		}
693 
694 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
695 			/*
696 			 * In the first step, keep the device which has
697 			 * the correct fsid and the devid that is used
698 			 * for the dev_replace procedure.
699 			 * In the second step, the dev_replace state is
700 			 * read from the device tree and it is known
701 			 * whether the procedure is really active or
702 			 * not, which means whether this device is
703 			 * used or whether it should be removed.
704 			 */
705 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
706 				continue;
707 			}
708 		}
709 		if (device->bdev) {
710 			blkdev_put(device->bdev, device->mode);
711 			device->bdev = NULL;
712 			fs_devices->open_devices--;
713 		}
714 		if (device->writeable) {
715 			list_del_init(&device->dev_alloc_list);
716 			device->writeable = 0;
717 			if (!device->is_tgtdev_for_dev_replace)
718 				fs_devices->rw_devices--;
719 		}
720 		list_del_init(&device->dev_list);
721 		fs_devices->num_devices--;
722 		rcu_string_free(device->name);
723 		kfree(device);
724 	}
725 
726 	if (fs_devices->seed) {
727 		fs_devices = fs_devices->seed;
728 		goto again;
729 	}
730 
731 	fs_devices->latest_bdev = latest_dev->bdev;
732 
733 	mutex_unlock(&uuid_mutex);
734 }
735 
736 static void __free_device(struct work_struct *work)
737 {
738 	struct btrfs_device *device;
739 
740 	device = container_of(work, struct btrfs_device, rcu_work);
741 
742 	if (device->bdev)
743 		blkdev_put(device->bdev, device->mode);
744 
745 	rcu_string_free(device->name);
746 	kfree(device);
747 }
748 
749 static void free_device(struct rcu_head *head)
750 {
751 	struct btrfs_device *device;
752 
753 	device = container_of(head, struct btrfs_device, rcu);
754 
755 	INIT_WORK(&device->rcu_work, __free_device);
756 	schedule_work(&device->rcu_work);
757 }
758 
759 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
760 {
761 	struct btrfs_device *device, *tmp;
762 
763 	if (--fs_devices->opened > 0)
764 		return 0;
765 
766 	mutex_lock(&fs_devices->device_list_mutex);
767 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
768 		struct btrfs_device *new_device;
769 		struct rcu_string *name;
770 
771 		if (device->bdev)
772 			fs_devices->open_devices--;
773 
774 		if (device->writeable &&
775 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
776 			list_del_init(&device->dev_alloc_list);
777 			fs_devices->rw_devices--;
778 		}
779 
780 		if (device->missing)
781 			fs_devices->missing_devices--;
782 
783 		new_device = btrfs_alloc_device(NULL, &device->devid,
784 						device->uuid);
785 		BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
786 
787 		/* Safe because we are under uuid_mutex */
788 		if (device->name) {
789 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
790 			BUG_ON(!name); /* -ENOMEM */
791 			rcu_assign_pointer(new_device->name, name);
792 		}
793 
794 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
795 		new_device->fs_devices = device->fs_devices;
796 
797 		call_rcu(&device->rcu, free_device);
798 	}
799 	mutex_unlock(&fs_devices->device_list_mutex);
800 
801 	WARN_ON(fs_devices->open_devices);
802 	WARN_ON(fs_devices->rw_devices);
803 	fs_devices->opened = 0;
804 	fs_devices->seeding = 0;
805 
806 	return 0;
807 }
808 
809 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
810 {
811 	struct btrfs_fs_devices *seed_devices = NULL;
812 	int ret;
813 
814 	mutex_lock(&uuid_mutex);
815 	ret = __btrfs_close_devices(fs_devices);
816 	if (!fs_devices->opened) {
817 		seed_devices = fs_devices->seed;
818 		fs_devices->seed = NULL;
819 	}
820 	mutex_unlock(&uuid_mutex);
821 
822 	while (seed_devices) {
823 		fs_devices = seed_devices;
824 		seed_devices = fs_devices->seed;
825 		__btrfs_close_devices(fs_devices);
826 		free_fs_devices(fs_devices);
827 	}
828 	/*
829 	 * Wait for rcu kworkers under __btrfs_close_devices
830 	 * to finish all blkdev_puts so device is really
831 	 * free when umount is done.
832 	 */
833 	rcu_barrier();
834 	return ret;
835 }
836 
837 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
838 				fmode_t flags, void *holder)
839 {
840 	struct request_queue *q;
841 	struct block_device *bdev;
842 	struct list_head *head = &fs_devices->devices;
843 	struct btrfs_device *device;
844 	struct btrfs_device *latest_dev = NULL;
845 	struct buffer_head *bh;
846 	struct btrfs_super_block *disk_super;
847 	u64 devid;
848 	int seeding = 1;
849 	int ret = 0;
850 
851 	flags |= FMODE_EXCL;
852 
853 	list_for_each_entry(device, head, dev_list) {
854 		if (device->bdev)
855 			continue;
856 		if (!device->name)
857 			continue;
858 
859 		/* Just open everything we can; ignore failures here */
860 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
861 					    &bdev, &bh))
862 			continue;
863 
864 		disk_super = (struct btrfs_super_block *)bh->b_data;
865 		devid = btrfs_stack_device_id(&disk_super->dev_item);
866 		if (devid != device->devid)
867 			goto error_brelse;
868 
869 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
870 			   BTRFS_UUID_SIZE))
871 			goto error_brelse;
872 
873 		device->generation = btrfs_super_generation(disk_super);
874 		if (!latest_dev ||
875 		    device->generation > latest_dev->generation)
876 			latest_dev = device;
877 
878 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
879 			device->writeable = 0;
880 		} else {
881 			device->writeable = !bdev_read_only(bdev);
882 			seeding = 0;
883 		}
884 
885 		q = bdev_get_queue(bdev);
886 		if (blk_queue_discard(q))
887 			device->can_discard = 1;
888 
889 		device->bdev = bdev;
890 		device->in_fs_metadata = 0;
891 		device->mode = flags;
892 
893 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
894 			fs_devices->rotating = 1;
895 
896 		fs_devices->open_devices++;
897 		if (device->writeable &&
898 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
899 			fs_devices->rw_devices++;
900 			list_add(&device->dev_alloc_list,
901 				 &fs_devices->alloc_list);
902 		}
903 		brelse(bh);
904 		continue;
905 
906 error_brelse:
907 		brelse(bh);
908 		blkdev_put(bdev, flags);
909 		continue;
910 	}
911 	if (fs_devices->open_devices == 0) {
912 		ret = -EINVAL;
913 		goto out;
914 	}
915 	fs_devices->seeding = seeding;
916 	fs_devices->opened = 1;
917 	fs_devices->latest_bdev = latest_dev->bdev;
918 	fs_devices->total_rw_bytes = 0;
919 out:
920 	return ret;
921 }
922 
923 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
924 		       fmode_t flags, void *holder)
925 {
926 	int ret;
927 
928 	mutex_lock(&uuid_mutex);
929 	if (fs_devices->opened) {
930 		fs_devices->opened++;
931 		ret = 0;
932 	} else {
933 		ret = __btrfs_open_devices(fs_devices, flags, holder);
934 	}
935 	mutex_unlock(&uuid_mutex);
936 	return ret;
937 }
938 
939 /*
940  * Look for a btrfs signature on a device. This may be called out of the mount path
941  * and we are not allowed to call set_blocksize during the scan. The superblock
942  * is read via pagecache
943  */
944 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
945 			  struct btrfs_fs_devices **fs_devices_ret)
946 {
947 	struct btrfs_super_block *disk_super;
948 	struct block_device *bdev;
949 	struct page *page;
950 	void *p;
951 	int ret = -EINVAL;
952 	u64 devid;
953 	u64 transid;
954 	u64 total_devices;
955 	u64 bytenr;
956 	pgoff_t index;
957 
958 	/*
959 	 * we would like to check all the supers, but that would make
960 	 * a btrfs mount succeed after a mkfs from a different FS.
961 	 * So, we need to add a special mount option to scan for
962 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
963 	 */
964 	bytenr = btrfs_sb_offset(0);
965 	flags |= FMODE_EXCL;
966 	mutex_lock(&uuid_mutex);
967 
968 	bdev = blkdev_get_by_path(path, flags, holder);
969 
970 	if (IS_ERR(bdev)) {
971 		ret = PTR_ERR(bdev);
972 		goto error;
973 	}
974 
975 	/* make sure our super fits in the device */
976 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
977 		goto error_bdev_put;
978 
979 	/* make sure our super fits in the page */
980 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
981 		goto error_bdev_put;
982 
983 	/* make sure our super doesn't straddle pages on disk */
984 	index = bytenr >> PAGE_CACHE_SHIFT;
985 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
986 		goto error_bdev_put;
987 
988 	/* pull in the page with our super */
989 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
990 				   index, GFP_NOFS);
991 
992 	if (IS_ERR_OR_NULL(page))
993 		goto error_bdev_put;
994 
995 	p = kmap(page);
996 
997 	/* align our pointer to the offset of the super block */
998 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
999 
1000 	if (btrfs_super_bytenr(disk_super) != bytenr ||
1001 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1002 		goto error_unmap;
1003 
1004 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1005 	transid = btrfs_super_generation(disk_super);
1006 	total_devices = btrfs_super_num_devices(disk_super);
1007 
1008 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1009 	if (ret > 0) {
1010 		if (disk_super->label[0]) {
1011 			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1012 				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1013 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1014 		} else {
1015 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1016 		}
1017 
1018 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1019 		ret = 0;
1020 	}
1021 	if (!ret && fs_devices_ret)
1022 		(*fs_devices_ret)->total_devices = total_devices;
1023 
1024 error_unmap:
1025 	kunmap(page);
1026 	page_cache_release(page);
1027 
1028 error_bdev_put:
1029 	blkdev_put(bdev, flags);
1030 error:
1031 	mutex_unlock(&uuid_mutex);
1032 	return ret;
1033 }
1034 
1035 /* helper to account the used device space in the range */
1036 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1037 				   u64 end, u64 *length)
1038 {
1039 	struct btrfs_key key;
1040 	struct btrfs_root *root = device->dev_root;
1041 	struct btrfs_dev_extent *dev_extent;
1042 	struct btrfs_path *path;
1043 	u64 extent_end;
1044 	int ret;
1045 	int slot;
1046 	struct extent_buffer *l;
1047 
1048 	*length = 0;
1049 
1050 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1051 		return 0;
1052 
1053 	path = btrfs_alloc_path();
1054 	if (!path)
1055 		return -ENOMEM;
1056 	path->reada = 2;
1057 
1058 	key.objectid = device->devid;
1059 	key.offset = start;
1060 	key.type = BTRFS_DEV_EXTENT_KEY;
1061 
1062 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1063 	if (ret < 0)
1064 		goto out;
1065 	if (ret > 0) {
1066 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1067 		if (ret < 0)
1068 			goto out;
1069 	}
1070 
1071 	while (1) {
1072 		l = path->nodes[0];
1073 		slot = path->slots[0];
1074 		if (slot >= btrfs_header_nritems(l)) {
1075 			ret = btrfs_next_leaf(root, path);
1076 			if (ret == 0)
1077 				continue;
1078 			if (ret < 0)
1079 				goto out;
1080 
1081 			break;
1082 		}
1083 		btrfs_item_key_to_cpu(l, &key, slot);
1084 
1085 		if (key.objectid < device->devid)
1086 			goto next;
1087 
1088 		if (key.objectid > device->devid)
1089 			break;
1090 
1091 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1092 			goto next;
1093 
1094 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1095 		extent_end = key.offset + btrfs_dev_extent_length(l,
1096 								  dev_extent);
1097 		if (key.offset <= start && extent_end > end) {
1098 			*length = end - start + 1;
1099 			break;
1100 		} else if (key.offset <= start && extent_end > start)
1101 			*length += extent_end - start;
1102 		else if (key.offset > start && extent_end <= end)
1103 			*length += extent_end - key.offset;
1104 		else if (key.offset > start && key.offset <= end) {
1105 			*length += end - key.offset + 1;
1106 			break;
1107 		} else if (key.offset > end)
1108 			break;
1109 
1110 next:
1111 		path->slots[0]++;
1112 	}
1113 	ret = 0;
1114 out:
1115 	btrfs_free_path(path);
1116 	return ret;
1117 }
1118 
1119 static int contains_pending_extent(struct btrfs_transaction *transaction,
1120 				   struct btrfs_device *device,
1121 				   u64 *start, u64 len)
1122 {
1123 	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1124 	struct extent_map *em;
1125 	struct list_head *search_list = &fs_info->pinned_chunks;
1126 	int ret = 0;
1127 	u64 physical_start = *start;
1128 
1129 	if (transaction)
1130 		search_list = &transaction->pending_chunks;
1131 again:
1132 	list_for_each_entry(em, search_list, list) {
1133 		struct map_lookup *map;
1134 		int i;
1135 
1136 		map = (struct map_lookup *)em->bdev;
1137 		for (i = 0; i < map->num_stripes; i++) {
1138 			u64 end;
1139 
1140 			if (map->stripes[i].dev != device)
1141 				continue;
1142 			if (map->stripes[i].physical >= physical_start + len ||
1143 			    map->stripes[i].physical + em->orig_block_len <=
1144 			    physical_start)
1145 				continue;
1146 			/*
1147 			 * Make sure that while processing the pinned list we do
1148 			 * not override our *start with a lower value, because
1149 			 * we can have pinned chunks that fall within this
1150 			 * device hole and that have lower physical addresses
1151 			 * than the pending chunks we processed before. If we
1152 			 * do not take this special care we can end up getting
1153 			 * 2 pending chunks that start at the same physical
1154 			 * device offsets because the end offset of a pinned
1155 			 * chunk can be equal to the start offset of some
1156 			 * pending chunk.
1157 			 */
1158 			end = map->stripes[i].physical + em->orig_block_len;
1159 			if (end > *start) {
1160 				*start = end;
1161 				ret = 1;
1162 			}
1163 		}
1164 	}
1165 	if (search_list != &fs_info->pinned_chunks) {
1166 		search_list = &fs_info->pinned_chunks;
1167 		goto again;
1168 	}
1169 
1170 	return ret;
1171 }
1172 
1173 
1174 /*
1175  * find_free_dev_extent_start - find free space in the specified device
1176  * @device:	  the device which we search the free space in
1177  * @num_bytes:	  the size of the free space that we need
1178  * @search_start: the position from which to begin the search
1179  * @start:	  store the start of the free space.
1180  * @len:	  the size of the free space. that we find, or the size
1181  *		  of the max free space if we don't find suitable free space
1182  *
1183  * this uses a pretty simple search, the expectation is that it is
1184  * called very infrequently and that a given device has a small number
1185  * of extents
1186  *
1187  * @start is used to store the start of the free space if we find. But if we
1188  * don't find suitable free space, it will be used to store the start position
1189  * of the max free space.
1190  *
1191  * @len is used to store the size of the free space that we find.
1192  * But if we don't find suitable free space, it is used to store the size of
1193  * the max free space.
1194  */
1195 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1196 			       struct btrfs_device *device, u64 num_bytes,
1197 			       u64 search_start, u64 *start, u64 *len)
1198 {
1199 	struct btrfs_key key;
1200 	struct btrfs_root *root = device->dev_root;
1201 	struct btrfs_dev_extent *dev_extent;
1202 	struct btrfs_path *path;
1203 	u64 hole_size;
1204 	u64 max_hole_start;
1205 	u64 max_hole_size;
1206 	u64 extent_end;
1207 	u64 search_end = device->total_bytes;
1208 	int ret;
1209 	int slot;
1210 	struct extent_buffer *l;
1211 
1212 	path = btrfs_alloc_path();
1213 	if (!path)
1214 		return -ENOMEM;
1215 
1216 	max_hole_start = search_start;
1217 	max_hole_size = 0;
1218 
1219 again:
1220 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1221 		ret = -ENOSPC;
1222 		goto out;
1223 	}
1224 
1225 	path->reada = 2;
1226 	path->search_commit_root = 1;
1227 	path->skip_locking = 1;
1228 
1229 	key.objectid = device->devid;
1230 	key.offset = search_start;
1231 	key.type = BTRFS_DEV_EXTENT_KEY;
1232 
1233 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1234 	if (ret < 0)
1235 		goto out;
1236 	if (ret > 0) {
1237 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1238 		if (ret < 0)
1239 			goto out;
1240 	}
1241 
1242 	while (1) {
1243 		l = path->nodes[0];
1244 		slot = path->slots[0];
1245 		if (slot >= btrfs_header_nritems(l)) {
1246 			ret = btrfs_next_leaf(root, path);
1247 			if (ret == 0)
1248 				continue;
1249 			if (ret < 0)
1250 				goto out;
1251 
1252 			break;
1253 		}
1254 		btrfs_item_key_to_cpu(l, &key, slot);
1255 
1256 		if (key.objectid < device->devid)
1257 			goto next;
1258 
1259 		if (key.objectid > device->devid)
1260 			break;
1261 
1262 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1263 			goto next;
1264 
1265 		if (key.offset > search_start) {
1266 			hole_size = key.offset - search_start;
1267 
1268 			/*
1269 			 * Have to check before we set max_hole_start, otherwise
1270 			 * we could end up sending back this offset anyway.
1271 			 */
1272 			if (contains_pending_extent(transaction, device,
1273 						    &search_start,
1274 						    hole_size)) {
1275 				if (key.offset >= search_start) {
1276 					hole_size = key.offset - search_start;
1277 				} else {
1278 					WARN_ON_ONCE(1);
1279 					hole_size = 0;
1280 				}
1281 			}
1282 
1283 			if (hole_size > max_hole_size) {
1284 				max_hole_start = search_start;
1285 				max_hole_size = hole_size;
1286 			}
1287 
1288 			/*
1289 			 * If this free space is greater than which we need,
1290 			 * it must be the max free space that we have found
1291 			 * until now, so max_hole_start must point to the start
1292 			 * of this free space and the length of this free space
1293 			 * is stored in max_hole_size. Thus, we return
1294 			 * max_hole_start and max_hole_size and go back to the
1295 			 * caller.
1296 			 */
1297 			if (hole_size >= num_bytes) {
1298 				ret = 0;
1299 				goto out;
1300 			}
1301 		}
1302 
1303 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1304 		extent_end = key.offset + btrfs_dev_extent_length(l,
1305 								  dev_extent);
1306 		if (extent_end > search_start)
1307 			search_start = extent_end;
1308 next:
1309 		path->slots[0]++;
1310 		cond_resched();
1311 	}
1312 
1313 	/*
1314 	 * At this point, search_start should be the end of
1315 	 * allocated dev extents, and when shrinking the device,
1316 	 * search_end may be smaller than search_start.
1317 	 */
1318 	if (search_end > search_start) {
1319 		hole_size = search_end - search_start;
1320 
1321 		if (contains_pending_extent(transaction, device, &search_start,
1322 					    hole_size)) {
1323 			btrfs_release_path(path);
1324 			goto again;
1325 		}
1326 
1327 		if (hole_size > max_hole_size) {
1328 			max_hole_start = search_start;
1329 			max_hole_size = hole_size;
1330 		}
1331 	}
1332 
1333 	/* See above. */
1334 	if (max_hole_size < num_bytes)
1335 		ret = -ENOSPC;
1336 	else
1337 		ret = 0;
1338 
1339 out:
1340 	btrfs_free_path(path);
1341 	*start = max_hole_start;
1342 	if (len)
1343 		*len = max_hole_size;
1344 	return ret;
1345 }
1346 
1347 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1348 			 struct btrfs_device *device, u64 num_bytes,
1349 			 u64 *start, u64 *len)
1350 {
1351 	struct btrfs_root *root = device->dev_root;
1352 	u64 search_start;
1353 
1354 	/* FIXME use last free of some kind */
1355 
1356 	/*
1357 	 * we don't want to overwrite the superblock on the drive,
1358 	 * so we make sure to start at an offset of at least 1MB
1359 	 */
1360 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1361 	return find_free_dev_extent_start(trans->transaction, device,
1362 					  num_bytes, search_start, start, len);
1363 }
1364 
1365 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1366 			  struct btrfs_device *device,
1367 			  u64 start, u64 *dev_extent_len)
1368 {
1369 	int ret;
1370 	struct btrfs_path *path;
1371 	struct btrfs_root *root = device->dev_root;
1372 	struct btrfs_key key;
1373 	struct btrfs_key found_key;
1374 	struct extent_buffer *leaf = NULL;
1375 	struct btrfs_dev_extent *extent = NULL;
1376 
1377 	path = btrfs_alloc_path();
1378 	if (!path)
1379 		return -ENOMEM;
1380 
1381 	key.objectid = device->devid;
1382 	key.offset = start;
1383 	key.type = BTRFS_DEV_EXTENT_KEY;
1384 again:
1385 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1386 	if (ret > 0) {
1387 		ret = btrfs_previous_item(root, path, key.objectid,
1388 					  BTRFS_DEV_EXTENT_KEY);
1389 		if (ret)
1390 			goto out;
1391 		leaf = path->nodes[0];
1392 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1393 		extent = btrfs_item_ptr(leaf, path->slots[0],
1394 					struct btrfs_dev_extent);
1395 		BUG_ON(found_key.offset > start || found_key.offset +
1396 		       btrfs_dev_extent_length(leaf, extent) < start);
1397 		key = found_key;
1398 		btrfs_release_path(path);
1399 		goto again;
1400 	} else if (ret == 0) {
1401 		leaf = path->nodes[0];
1402 		extent = btrfs_item_ptr(leaf, path->slots[0],
1403 					struct btrfs_dev_extent);
1404 	} else {
1405 		btrfs_error(root->fs_info, ret, "Slot search failed");
1406 		goto out;
1407 	}
1408 
1409 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1410 
1411 	ret = btrfs_del_item(trans, root, path);
1412 	if (ret) {
1413 		btrfs_error(root->fs_info, ret,
1414 			    "Failed to remove dev extent item");
1415 	} else {
1416 		trans->transaction->have_free_bgs = 1;
1417 	}
1418 out:
1419 	btrfs_free_path(path);
1420 	return ret;
1421 }
1422 
1423 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1424 				  struct btrfs_device *device,
1425 				  u64 chunk_tree, u64 chunk_objectid,
1426 				  u64 chunk_offset, u64 start, u64 num_bytes)
1427 {
1428 	int ret;
1429 	struct btrfs_path *path;
1430 	struct btrfs_root *root = device->dev_root;
1431 	struct btrfs_dev_extent *extent;
1432 	struct extent_buffer *leaf;
1433 	struct btrfs_key key;
1434 
1435 	WARN_ON(!device->in_fs_metadata);
1436 	WARN_ON(device->is_tgtdev_for_dev_replace);
1437 	path = btrfs_alloc_path();
1438 	if (!path)
1439 		return -ENOMEM;
1440 
1441 	key.objectid = device->devid;
1442 	key.offset = start;
1443 	key.type = BTRFS_DEV_EXTENT_KEY;
1444 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1445 				      sizeof(*extent));
1446 	if (ret)
1447 		goto out;
1448 
1449 	leaf = path->nodes[0];
1450 	extent = btrfs_item_ptr(leaf, path->slots[0],
1451 				struct btrfs_dev_extent);
1452 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1453 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1454 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1455 
1456 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1457 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1458 
1459 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1460 	btrfs_mark_buffer_dirty(leaf);
1461 out:
1462 	btrfs_free_path(path);
1463 	return ret;
1464 }
1465 
1466 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1467 {
1468 	struct extent_map_tree *em_tree;
1469 	struct extent_map *em;
1470 	struct rb_node *n;
1471 	u64 ret = 0;
1472 
1473 	em_tree = &fs_info->mapping_tree.map_tree;
1474 	read_lock(&em_tree->lock);
1475 	n = rb_last(&em_tree->map);
1476 	if (n) {
1477 		em = rb_entry(n, struct extent_map, rb_node);
1478 		ret = em->start + em->len;
1479 	}
1480 	read_unlock(&em_tree->lock);
1481 
1482 	return ret;
1483 }
1484 
1485 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1486 				    u64 *devid_ret)
1487 {
1488 	int ret;
1489 	struct btrfs_key key;
1490 	struct btrfs_key found_key;
1491 	struct btrfs_path *path;
1492 
1493 	path = btrfs_alloc_path();
1494 	if (!path)
1495 		return -ENOMEM;
1496 
1497 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1498 	key.type = BTRFS_DEV_ITEM_KEY;
1499 	key.offset = (u64)-1;
1500 
1501 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1502 	if (ret < 0)
1503 		goto error;
1504 
1505 	BUG_ON(ret == 0); /* Corruption */
1506 
1507 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1508 				  BTRFS_DEV_ITEMS_OBJECTID,
1509 				  BTRFS_DEV_ITEM_KEY);
1510 	if (ret) {
1511 		*devid_ret = 1;
1512 	} else {
1513 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1514 				      path->slots[0]);
1515 		*devid_ret = found_key.offset + 1;
1516 	}
1517 	ret = 0;
1518 error:
1519 	btrfs_free_path(path);
1520 	return ret;
1521 }
1522 
1523 /*
1524  * the device information is stored in the chunk root
1525  * the btrfs_device struct should be fully filled in
1526  */
1527 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1528 			    struct btrfs_root *root,
1529 			    struct btrfs_device *device)
1530 {
1531 	int ret;
1532 	struct btrfs_path *path;
1533 	struct btrfs_dev_item *dev_item;
1534 	struct extent_buffer *leaf;
1535 	struct btrfs_key key;
1536 	unsigned long ptr;
1537 
1538 	root = root->fs_info->chunk_root;
1539 
1540 	path = btrfs_alloc_path();
1541 	if (!path)
1542 		return -ENOMEM;
1543 
1544 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1545 	key.type = BTRFS_DEV_ITEM_KEY;
1546 	key.offset = device->devid;
1547 
1548 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1549 				      sizeof(*dev_item));
1550 	if (ret)
1551 		goto out;
1552 
1553 	leaf = path->nodes[0];
1554 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1555 
1556 	btrfs_set_device_id(leaf, dev_item, device->devid);
1557 	btrfs_set_device_generation(leaf, dev_item, 0);
1558 	btrfs_set_device_type(leaf, dev_item, device->type);
1559 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1560 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1561 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1562 	btrfs_set_device_total_bytes(leaf, dev_item,
1563 				     btrfs_device_get_disk_total_bytes(device));
1564 	btrfs_set_device_bytes_used(leaf, dev_item,
1565 				    btrfs_device_get_bytes_used(device));
1566 	btrfs_set_device_group(leaf, dev_item, 0);
1567 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1568 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1569 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1570 
1571 	ptr = btrfs_device_uuid(dev_item);
1572 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1573 	ptr = btrfs_device_fsid(dev_item);
1574 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1575 	btrfs_mark_buffer_dirty(leaf);
1576 
1577 	ret = 0;
1578 out:
1579 	btrfs_free_path(path);
1580 	return ret;
1581 }
1582 
1583 /*
1584  * Function to update ctime/mtime for a given device path.
1585  * Mainly used for ctime/mtime based probe like libblkid.
1586  */
1587 static void update_dev_time(char *path_name)
1588 {
1589 	struct file *filp;
1590 
1591 	filp = filp_open(path_name, O_RDWR, 0);
1592 	if (IS_ERR(filp))
1593 		return;
1594 	file_update_time(filp);
1595 	filp_close(filp, NULL);
1596 	return;
1597 }
1598 
1599 static int btrfs_rm_dev_item(struct btrfs_root *root,
1600 			     struct btrfs_device *device)
1601 {
1602 	int ret;
1603 	struct btrfs_path *path;
1604 	struct btrfs_key key;
1605 	struct btrfs_trans_handle *trans;
1606 
1607 	root = root->fs_info->chunk_root;
1608 
1609 	path = btrfs_alloc_path();
1610 	if (!path)
1611 		return -ENOMEM;
1612 
1613 	trans = btrfs_start_transaction(root, 0);
1614 	if (IS_ERR(trans)) {
1615 		btrfs_free_path(path);
1616 		return PTR_ERR(trans);
1617 	}
1618 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1619 	key.type = BTRFS_DEV_ITEM_KEY;
1620 	key.offset = device->devid;
1621 
1622 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1623 	if (ret < 0)
1624 		goto out;
1625 
1626 	if (ret > 0) {
1627 		ret = -ENOENT;
1628 		goto out;
1629 	}
1630 
1631 	ret = btrfs_del_item(trans, root, path);
1632 	if (ret)
1633 		goto out;
1634 out:
1635 	btrfs_free_path(path);
1636 	btrfs_commit_transaction(trans, root);
1637 	return ret;
1638 }
1639 
1640 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1641 {
1642 	struct btrfs_device *device;
1643 	struct btrfs_device *next_device;
1644 	struct block_device *bdev;
1645 	struct buffer_head *bh = NULL;
1646 	struct btrfs_super_block *disk_super;
1647 	struct btrfs_fs_devices *cur_devices;
1648 	u64 all_avail;
1649 	u64 devid;
1650 	u64 num_devices;
1651 	u8 *dev_uuid;
1652 	unsigned seq;
1653 	int ret = 0;
1654 	bool clear_super = false;
1655 
1656 	mutex_lock(&uuid_mutex);
1657 
1658 	do {
1659 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1660 
1661 		all_avail = root->fs_info->avail_data_alloc_bits |
1662 			    root->fs_info->avail_system_alloc_bits |
1663 			    root->fs_info->avail_metadata_alloc_bits;
1664 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1665 
1666 	num_devices = root->fs_info->fs_devices->num_devices;
1667 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1668 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1669 		WARN_ON(num_devices < 1);
1670 		num_devices--;
1671 	}
1672 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1673 
1674 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1675 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1676 		goto out;
1677 	}
1678 
1679 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1680 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1681 		goto out;
1682 	}
1683 
1684 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1685 	    root->fs_info->fs_devices->rw_devices <= 2) {
1686 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1687 		goto out;
1688 	}
1689 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1690 	    root->fs_info->fs_devices->rw_devices <= 3) {
1691 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1692 		goto out;
1693 	}
1694 
1695 	if (strcmp(device_path, "missing") == 0) {
1696 		struct list_head *devices;
1697 		struct btrfs_device *tmp;
1698 
1699 		device = NULL;
1700 		devices = &root->fs_info->fs_devices->devices;
1701 		/*
1702 		 * It is safe to read the devices since the volume_mutex
1703 		 * is held.
1704 		 */
1705 		list_for_each_entry(tmp, devices, dev_list) {
1706 			if (tmp->in_fs_metadata &&
1707 			    !tmp->is_tgtdev_for_dev_replace &&
1708 			    !tmp->bdev) {
1709 				device = tmp;
1710 				break;
1711 			}
1712 		}
1713 		bdev = NULL;
1714 		bh = NULL;
1715 		disk_super = NULL;
1716 		if (!device) {
1717 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1718 			goto out;
1719 		}
1720 	} else {
1721 		ret = btrfs_get_bdev_and_sb(device_path,
1722 					    FMODE_WRITE | FMODE_EXCL,
1723 					    root->fs_info->bdev_holder, 0,
1724 					    &bdev, &bh);
1725 		if (ret)
1726 			goto out;
1727 		disk_super = (struct btrfs_super_block *)bh->b_data;
1728 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1729 		dev_uuid = disk_super->dev_item.uuid;
1730 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1731 					   disk_super->fsid);
1732 		if (!device) {
1733 			ret = -ENOENT;
1734 			goto error_brelse;
1735 		}
1736 	}
1737 
1738 	if (device->is_tgtdev_for_dev_replace) {
1739 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1740 		goto error_brelse;
1741 	}
1742 
1743 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1744 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1745 		goto error_brelse;
1746 	}
1747 
1748 	if (device->writeable) {
1749 		lock_chunks(root);
1750 		list_del_init(&device->dev_alloc_list);
1751 		device->fs_devices->rw_devices--;
1752 		unlock_chunks(root);
1753 		clear_super = true;
1754 	}
1755 
1756 	mutex_unlock(&uuid_mutex);
1757 	ret = btrfs_shrink_device(device, 0);
1758 	mutex_lock(&uuid_mutex);
1759 	if (ret)
1760 		goto error_undo;
1761 
1762 	/*
1763 	 * TODO: the superblock still includes this device in its num_devices
1764 	 * counter although write_all_supers() is not locked out. This
1765 	 * could give a filesystem state which requires a degraded mount.
1766 	 */
1767 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1768 	if (ret)
1769 		goto error_undo;
1770 
1771 	device->in_fs_metadata = 0;
1772 	btrfs_scrub_cancel_dev(root->fs_info, device);
1773 
1774 	/*
1775 	 * the device list mutex makes sure that we don't change
1776 	 * the device list while someone else is writing out all
1777 	 * the device supers. Whoever is writing all supers, should
1778 	 * lock the device list mutex before getting the number of
1779 	 * devices in the super block (super_copy). Conversely,
1780 	 * whoever updates the number of devices in the super block
1781 	 * (super_copy) should hold the device list mutex.
1782 	 */
1783 
1784 	cur_devices = device->fs_devices;
1785 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1786 	list_del_rcu(&device->dev_list);
1787 
1788 	device->fs_devices->num_devices--;
1789 	device->fs_devices->total_devices--;
1790 
1791 	if (device->missing)
1792 		device->fs_devices->missing_devices--;
1793 
1794 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1795 				 struct btrfs_device, dev_list);
1796 	if (device->bdev == root->fs_info->sb->s_bdev)
1797 		root->fs_info->sb->s_bdev = next_device->bdev;
1798 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1799 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1800 
1801 	if (device->bdev) {
1802 		device->fs_devices->open_devices--;
1803 		/* remove sysfs entry */
1804 		btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
1805 	}
1806 
1807 	call_rcu(&device->rcu, free_device);
1808 
1809 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1810 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1811 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1812 
1813 	if (cur_devices->open_devices == 0) {
1814 		struct btrfs_fs_devices *fs_devices;
1815 		fs_devices = root->fs_info->fs_devices;
1816 		while (fs_devices) {
1817 			if (fs_devices->seed == cur_devices) {
1818 				fs_devices->seed = cur_devices->seed;
1819 				break;
1820 			}
1821 			fs_devices = fs_devices->seed;
1822 		}
1823 		cur_devices->seed = NULL;
1824 		__btrfs_close_devices(cur_devices);
1825 		free_fs_devices(cur_devices);
1826 	}
1827 
1828 	root->fs_info->num_tolerated_disk_barrier_failures =
1829 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1830 
1831 	/*
1832 	 * at this point, the device is zero sized.  We want to
1833 	 * remove it from the devices list and zero out the old super
1834 	 */
1835 	if (clear_super && disk_super) {
1836 		u64 bytenr;
1837 		int i;
1838 
1839 		/* make sure this device isn't detected as part of
1840 		 * the FS anymore
1841 		 */
1842 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1843 		set_buffer_dirty(bh);
1844 		sync_dirty_buffer(bh);
1845 
1846 		/* clear the mirror copies of super block on the disk
1847 		 * being removed, 0th copy is been taken care above and
1848 		 * the below would take of the rest
1849 		 */
1850 		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1851 			bytenr = btrfs_sb_offset(i);
1852 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1853 					i_size_read(bdev->bd_inode))
1854 				break;
1855 
1856 			brelse(bh);
1857 			bh = __bread(bdev, bytenr / 4096,
1858 					BTRFS_SUPER_INFO_SIZE);
1859 			if (!bh)
1860 				continue;
1861 
1862 			disk_super = (struct btrfs_super_block *)bh->b_data;
1863 
1864 			if (btrfs_super_bytenr(disk_super) != bytenr ||
1865 				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1866 				continue;
1867 			}
1868 			memset(&disk_super->magic, 0,
1869 						sizeof(disk_super->magic));
1870 			set_buffer_dirty(bh);
1871 			sync_dirty_buffer(bh);
1872 		}
1873 	}
1874 
1875 	ret = 0;
1876 
1877 	if (bdev) {
1878 		/* Notify udev that device has changed */
1879 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1880 
1881 		/* Update ctime/mtime for device path for libblkid */
1882 		update_dev_time(device_path);
1883 	}
1884 
1885 error_brelse:
1886 	brelse(bh);
1887 	if (bdev)
1888 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1889 out:
1890 	mutex_unlock(&uuid_mutex);
1891 	return ret;
1892 error_undo:
1893 	if (device->writeable) {
1894 		lock_chunks(root);
1895 		list_add(&device->dev_alloc_list,
1896 			 &root->fs_info->fs_devices->alloc_list);
1897 		device->fs_devices->rw_devices++;
1898 		unlock_chunks(root);
1899 	}
1900 	goto error_brelse;
1901 }
1902 
1903 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1904 					struct btrfs_device *srcdev)
1905 {
1906 	struct btrfs_fs_devices *fs_devices;
1907 
1908 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1909 
1910 	/*
1911 	 * in case of fs with no seed, srcdev->fs_devices will point
1912 	 * to fs_devices of fs_info. However when the dev being replaced is
1913 	 * a seed dev it will point to the seed's local fs_devices. In short
1914 	 * srcdev will have its correct fs_devices in both the cases.
1915 	 */
1916 	fs_devices = srcdev->fs_devices;
1917 
1918 	list_del_rcu(&srcdev->dev_list);
1919 	list_del_rcu(&srcdev->dev_alloc_list);
1920 	fs_devices->num_devices--;
1921 	if (srcdev->missing)
1922 		fs_devices->missing_devices--;
1923 
1924 	if (srcdev->writeable) {
1925 		fs_devices->rw_devices--;
1926 		/* zero out the old super if it is writable */
1927 		btrfs_scratch_superblock(srcdev);
1928 	}
1929 
1930 	if (srcdev->bdev)
1931 		fs_devices->open_devices--;
1932 }
1933 
1934 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1935 				      struct btrfs_device *srcdev)
1936 {
1937 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1938 
1939 	call_rcu(&srcdev->rcu, free_device);
1940 
1941 	/*
1942 	 * unless fs_devices is seed fs, num_devices shouldn't go
1943 	 * zero
1944 	 */
1945 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1946 
1947 	/* if this is no devs we rather delete the fs_devices */
1948 	if (!fs_devices->num_devices) {
1949 		struct btrfs_fs_devices *tmp_fs_devices;
1950 
1951 		tmp_fs_devices = fs_info->fs_devices;
1952 		while (tmp_fs_devices) {
1953 			if (tmp_fs_devices->seed == fs_devices) {
1954 				tmp_fs_devices->seed = fs_devices->seed;
1955 				break;
1956 			}
1957 			tmp_fs_devices = tmp_fs_devices->seed;
1958 		}
1959 		fs_devices->seed = NULL;
1960 		__btrfs_close_devices(fs_devices);
1961 		free_fs_devices(fs_devices);
1962 	}
1963 }
1964 
1965 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1966 				      struct btrfs_device *tgtdev)
1967 {
1968 	struct btrfs_device *next_device;
1969 
1970 	mutex_lock(&uuid_mutex);
1971 	WARN_ON(!tgtdev);
1972 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1973 
1974 	btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev);
1975 
1976 	if (tgtdev->bdev) {
1977 		btrfs_scratch_superblock(tgtdev);
1978 		fs_info->fs_devices->open_devices--;
1979 	}
1980 	fs_info->fs_devices->num_devices--;
1981 
1982 	next_device = list_entry(fs_info->fs_devices->devices.next,
1983 				 struct btrfs_device, dev_list);
1984 	if (tgtdev->bdev == fs_info->sb->s_bdev)
1985 		fs_info->sb->s_bdev = next_device->bdev;
1986 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1987 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1988 	list_del_rcu(&tgtdev->dev_list);
1989 
1990 	call_rcu(&tgtdev->rcu, free_device);
1991 
1992 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1993 	mutex_unlock(&uuid_mutex);
1994 }
1995 
1996 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1997 				     struct btrfs_device **device)
1998 {
1999 	int ret = 0;
2000 	struct btrfs_super_block *disk_super;
2001 	u64 devid;
2002 	u8 *dev_uuid;
2003 	struct block_device *bdev;
2004 	struct buffer_head *bh;
2005 
2006 	*device = NULL;
2007 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2008 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
2009 	if (ret)
2010 		return ret;
2011 	disk_super = (struct btrfs_super_block *)bh->b_data;
2012 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2013 	dev_uuid = disk_super->dev_item.uuid;
2014 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2015 				    disk_super->fsid);
2016 	brelse(bh);
2017 	if (!*device)
2018 		ret = -ENOENT;
2019 	blkdev_put(bdev, FMODE_READ);
2020 	return ret;
2021 }
2022 
2023 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2024 					 char *device_path,
2025 					 struct btrfs_device **device)
2026 {
2027 	*device = NULL;
2028 	if (strcmp(device_path, "missing") == 0) {
2029 		struct list_head *devices;
2030 		struct btrfs_device *tmp;
2031 
2032 		devices = &root->fs_info->fs_devices->devices;
2033 		/*
2034 		 * It is safe to read the devices since the volume_mutex
2035 		 * is held by the caller.
2036 		 */
2037 		list_for_each_entry(tmp, devices, dev_list) {
2038 			if (tmp->in_fs_metadata && !tmp->bdev) {
2039 				*device = tmp;
2040 				break;
2041 			}
2042 		}
2043 
2044 		if (!*device) {
2045 			btrfs_err(root->fs_info, "no missing device found");
2046 			return -ENOENT;
2047 		}
2048 
2049 		return 0;
2050 	} else {
2051 		return btrfs_find_device_by_path(root, device_path, device);
2052 	}
2053 }
2054 
2055 /*
2056  * does all the dirty work required for changing file system's UUID.
2057  */
2058 static int btrfs_prepare_sprout(struct btrfs_root *root)
2059 {
2060 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2061 	struct btrfs_fs_devices *old_devices;
2062 	struct btrfs_fs_devices *seed_devices;
2063 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2064 	struct btrfs_device *device;
2065 	u64 super_flags;
2066 
2067 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2068 	if (!fs_devices->seeding)
2069 		return -EINVAL;
2070 
2071 	seed_devices = __alloc_fs_devices();
2072 	if (IS_ERR(seed_devices))
2073 		return PTR_ERR(seed_devices);
2074 
2075 	old_devices = clone_fs_devices(fs_devices);
2076 	if (IS_ERR(old_devices)) {
2077 		kfree(seed_devices);
2078 		return PTR_ERR(old_devices);
2079 	}
2080 
2081 	list_add(&old_devices->list, &fs_uuids);
2082 
2083 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2084 	seed_devices->opened = 1;
2085 	INIT_LIST_HEAD(&seed_devices->devices);
2086 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2087 	mutex_init(&seed_devices->device_list_mutex);
2088 
2089 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2090 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2091 			      synchronize_rcu);
2092 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2093 		device->fs_devices = seed_devices;
2094 
2095 	lock_chunks(root);
2096 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2097 	unlock_chunks(root);
2098 
2099 	fs_devices->seeding = 0;
2100 	fs_devices->num_devices = 0;
2101 	fs_devices->open_devices = 0;
2102 	fs_devices->missing_devices = 0;
2103 	fs_devices->rotating = 0;
2104 	fs_devices->seed = seed_devices;
2105 
2106 	generate_random_uuid(fs_devices->fsid);
2107 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2108 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2109 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2110 
2111 	super_flags = btrfs_super_flags(disk_super) &
2112 		      ~BTRFS_SUPER_FLAG_SEEDING;
2113 	btrfs_set_super_flags(disk_super, super_flags);
2114 
2115 	return 0;
2116 }
2117 
2118 /*
2119  * strore the expected generation for seed devices in device items.
2120  */
2121 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2122 			       struct btrfs_root *root)
2123 {
2124 	struct btrfs_path *path;
2125 	struct extent_buffer *leaf;
2126 	struct btrfs_dev_item *dev_item;
2127 	struct btrfs_device *device;
2128 	struct btrfs_key key;
2129 	u8 fs_uuid[BTRFS_UUID_SIZE];
2130 	u8 dev_uuid[BTRFS_UUID_SIZE];
2131 	u64 devid;
2132 	int ret;
2133 
2134 	path = btrfs_alloc_path();
2135 	if (!path)
2136 		return -ENOMEM;
2137 
2138 	root = root->fs_info->chunk_root;
2139 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2140 	key.offset = 0;
2141 	key.type = BTRFS_DEV_ITEM_KEY;
2142 
2143 	while (1) {
2144 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2145 		if (ret < 0)
2146 			goto error;
2147 
2148 		leaf = path->nodes[0];
2149 next_slot:
2150 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2151 			ret = btrfs_next_leaf(root, path);
2152 			if (ret > 0)
2153 				break;
2154 			if (ret < 0)
2155 				goto error;
2156 			leaf = path->nodes[0];
2157 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2158 			btrfs_release_path(path);
2159 			continue;
2160 		}
2161 
2162 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2163 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2164 		    key.type != BTRFS_DEV_ITEM_KEY)
2165 			break;
2166 
2167 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2168 					  struct btrfs_dev_item);
2169 		devid = btrfs_device_id(leaf, dev_item);
2170 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2171 				   BTRFS_UUID_SIZE);
2172 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2173 				   BTRFS_UUID_SIZE);
2174 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2175 					   fs_uuid);
2176 		BUG_ON(!device); /* Logic error */
2177 
2178 		if (device->fs_devices->seeding) {
2179 			btrfs_set_device_generation(leaf, dev_item,
2180 						    device->generation);
2181 			btrfs_mark_buffer_dirty(leaf);
2182 		}
2183 
2184 		path->slots[0]++;
2185 		goto next_slot;
2186 	}
2187 	ret = 0;
2188 error:
2189 	btrfs_free_path(path);
2190 	return ret;
2191 }
2192 
2193 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2194 {
2195 	struct request_queue *q;
2196 	struct btrfs_trans_handle *trans;
2197 	struct btrfs_device *device;
2198 	struct block_device *bdev;
2199 	struct list_head *devices;
2200 	struct super_block *sb = root->fs_info->sb;
2201 	struct rcu_string *name;
2202 	u64 tmp;
2203 	int seeding_dev = 0;
2204 	int ret = 0;
2205 
2206 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2207 		return -EROFS;
2208 
2209 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2210 				  root->fs_info->bdev_holder);
2211 	if (IS_ERR(bdev))
2212 		return PTR_ERR(bdev);
2213 
2214 	if (root->fs_info->fs_devices->seeding) {
2215 		seeding_dev = 1;
2216 		down_write(&sb->s_umount);
2217 		mutex_lock(&uuid_mutex);
2218 	}
2219 
2220 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2221 
2222 	devices = &root->fs_info->fs_devices->devices;
2223 
2224 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2225 	list_for_each_entry(device, devices, dev_list) {
2226 		if (device->bdev == bdev) {
2227 			ret = -EEXIST;
2228 			mutex_unlock(
2229 				&root->fs_info->fs_devices->device_list_mutex);
2230 			goto error;
2231 		}
2232 	}
2233 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2234 
2235 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2236 	if (IS_ERR(device)) {
2237 		/* we can safely leave the fs_devices entry around */
2238 		ret = PTR_ERR(device);
2239 		goto error;
2240 	}
2241 
2242 	name = rcu_string_strdup(device_path, GFP_NOFS);
2243 	if (!name) {
2244 		kfree(device);
2245 		ret = -ENOMEM;
2246 		goto error;
2247 	}
2248 	rcu_assign_pointer(device->name, name);
2249 
2250 	trans = btrfs_start_transaction(root, 0);
2251 	if (IS_ERR(trans)) {
2252 		rcu_string_free(device->name);
2253 		kfree(device);
2254 		ret = PTR_ERR(trans);
2255 		goto error;
2256 	}
2257 
2258 	q = bdev_get_queue(bdev);
2259 	if (blk_queue_discard(q))
2260 		device->can_discard = 1;
2261 	device->writeable = 1;
2262 	device->generation = trans->transid;
2263 	device->io_width = root->sectorsize;
2264 	device->io_align = root->sectorsize;
2265 	device->sector_size = root->sectorsize;
2266 	device->total_bytes = i_size_read(bdev->bd_inode);
2267 	device->disk_total_bytes = device->total_bytes;
2268 	device->commit_total_bytes = device->total_bytes;
2269 	device->dev_root = root->fs_info->dev_root;
2270 	device->bdev = bdev;
2271 	device->in_fs_metadata = 1;
2272 	device->is_tgtdev_for_dev_replace = 0;
2273 	device->mode = FMODE_EXCL;
2274 	device->dev_stats_valid = 1;
2275 	set_blocksize(device->bdev, 4096);
2276 
2277 	if (seeding_dev) {
2278 		sb->s_flags &= ~MS_RDONLY;
2279 		ret = btrfs_prepare_sprout(root);
2280 		BUG_ON(ret); /* -ENOMEM */
2281 	}
2282 
2283 	device->fs_devices = root->fs_info->fs_devices;
2284 
2285 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2286 	lock_chunks(root);
2287 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2288 	list_add(&device->dev_alloc_list,
2289 		 &root->fs_info->fs_devices->alloc_list);
2290 	root->fs_info->fs_devices->num_devices++;
2291 	root->fs_info->fs_devices->open_devices++;
2292 	root->fs_info->fs_devices->rw_devices++;
2293 	root->fs_info->fs_devices->total_devices++;
2294 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2295 
2296 	spin_lock(&root->fs_info->free_chunk_lock);
2297 	root->fs_info->free_chunk_space += device->total_bytes;
2298 	spin_unlock(&root->fs_info->free_chunk_lock);
2299 
2300 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2301 		root->fs_info->fs_devices->rotating = 1;
2302 
2303 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2304 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2305 				    tmp + device->total_bytes);
2306 
2307 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2308 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2309 				    tmp + 1);
2310 
2311 	/* add sysfs device entry */
2312 	btrfs_kobj_add_device(root->fs_info->fs_devices, device);
2313 
2314 	/*
2315 	 * we've got more storage, clear any full flags on the space
2316 	 * infos
2317 	 */
2318 	btrfs_clear_space_info_full(root->fs_info);
2319 
2320 	unlock_chunks(root);
2321 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2322 
2323 	if (seeding_dev) {
2324 		lock_chunks(root);
2325 		ret = init_first_rw_device(trans, root, device);
2326 		unlock_chunks(root);
2327 		if (ret) {
2328 			btrfs_abort_transaction(trans, root, ret);
2329 			goto error_trans;
2330 		}
2331 	}
2332 
2333 	ret = btrfs_add_device(trans, root, device);
2334 	if (ret) {
2335 		btrfs_abort_transaction(trans, root, ret);
2336 		goto error_trans;
2337 	}
2338 
2339 	if (seeding_dev) {
2340 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2341 
2342 		ret = btrfs_finish_sprout(trans, root);
2343 		if (ret) {
2344 			btrfs_abort_transaction(trans, root, ret);
2345 			goto error_trans;
2346 		}
2347 
2348 		/* Sprouting would change fsid of the mounted root,
2349 		 * so rename the fsid on the sysfs
2350 		 */
2351 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2352 						root->fs_info->fsid);
2353 		if (kobject_rename(&root->fs_info->fs_devices->super_kobj,
2354 								fsid_buf))
2355 			pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n");
2356 	}
2357 
2358 	root->fs_info->num_tolerated_disk_barrier_failures =
2359 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2360 	ret = btrfs_commit_transaction(trans, root);
2361 
2362 	if (seeding_dev) {
2363 		mutex_unlock(&uuid_mutex);
2364 		up_write(&sb->s_umount);
2365 
2366 		if (ret) /* transaction commit */
2367 			return ret;
2368 
2369 		ret = btrfs_relocate_sys_chunks(root);
2370 		if (ret < 0)
2371 			btrfs_error(root->fs_info, ret,
2372 				    "Failed to relocate sys chunks after "
2373 				    "device initialization. This can be fixed "
2374 				    "using the \"btrfs balance\" command.");
2375 		trans = btrfs_attach_transaction(root);
2376 		if (IS_ERR(trans)) {
2377 			if (PTR_ERR(trans) == -ENOENT)
2378 				return 0;
2379 			return PTR_ERR(trans);
2380 		}
2381 		ret = btrfs_commit_transaction(trans, root);
2382 	}
2383 
2384 	/* Update ctime/mtime for libblkid */
2385 	update_dev_time(device_path);
2386 	return ret;
2387 
2388 error_trans:
2389 	btrfs_end_transaction(trans, root);
2390 	rcu_string_free(device->name);
2391 	btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
2392 	kfree(device);
2393 error:
2394 	blkdev_put(bdev, FMODE_EXCL);
2395 	if (seeding_dev) {
2396 		mutex_unlock(&uuid_mutex);
2397 		up_write(&sb->s_umount);
2398 	}
2399 	return ret;
2400 }
2401 
2402 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2403 				  struct btrfs_device *srcdev,
2404 				  struct btrfs_device **device_out)
2405 {
2406 	struct request_queue *q;
2407 	struct btrfs_device *device;
2408 	struct block_device *bdev;
2409 	struct btrfs_fs_info *fs_info = root->fs_info;
2410 	struct list_head *devices;
2411 	struct rcu_string *name;
2412 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2413 	int ret = 0;
2414 
2415 	*device_out = NULL;
2416 	if (fs_info->fs_devices->seeding) {
2417 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2418 		return -EINVAL;
2419 	}
2420 
2421 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2422 				  fs_info->bdev_holder);
2423 	if (IS_ERR(bdev)) {
2424 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2425 		return PTR_ERR(bdev);
2426 	}
2427 
2428 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2429 
2430 	devices = &fs_info->fs_devices->devices;
2431 	list_for_each_entry(device, devices, dev_list) {
2432 		if (device->bdev == bdev) {
2433 			btrfs_err(fs_info, "target device is in the filesystem!");
2434 			ret = -EEXIST;
2435 			goto error;
2436 		}
2437 	}
2438 
2439 
2440 	if (i_size_read(bdev->bd_inode) <
2441 	    btrfs_device_get_total_bytes(srcdev)) {
2442 		btrfs_err(fs_info, "target device is smaller than source device!");
2443 		ret = -EINVAL;
2444 		goto error;
2445 	}
2446 
2447 
2448 	device = btrfs_alloc_device(NULL, &devid, NULL);
2449 	if (IS_ERR(device)) {
2450 		ret = PTR_ERR(device);
2451 		goto error;
2452 	}
2453 
2454 	name = rcu_string_strdup(device_path, GFP_NOFS);
2455 	if (!name) {
2456 		kfree(device);
2457 		ret = -ENOMEM;
2458 		goto error;
2459 	}
2460 	rcu_assign_pointer(device->name, name);
2461 
2462 	q = bdev_get_queue(bdev);
2463 	if (blk_queue_discard(q))
2464 		device->can_discard = 1;
2465 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2466 	device->writeable = 1;
2467 	device->generation = 0;
2468 	device->io_width = root->sectorsize;
2469 	device->io_align = root->sectorsize;
2470 	device->sector_size = root->sectorsize;
2471 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2472 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2473 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2474 	ASSERT(list_empty(&srcdev->resized_list));
2475 	device->commit_total_bytes = srcdev->commit_total_bytes;
2476 	device->commit_bytes_used = device->bytes_used;
2477 	device->dev_root = fs_info->dev_root;
2478 	device->bdev = bdev;
2479 	device->in_fs_metadata = 1;
2480 	device->is_tgtdev_for_dev_replace = 1;
2481 	device->mode = FMODE_EXCL;
2482 	device->dev_stats_valid = 1;
2483 	set_blocksize(device->bdev, 4096);
2484 	device->fs_devices = fs_info->fs_devices;
2485 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2486 	fs_info->fs_devices->num_devices++;
2487 	fs_info->fs_devices->open_devices++;
2488 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2489 
2490 	*device_out = device;
2491 	return ret;
2492 
2493 error:
2494 	blkdev_put(bdev, FMODE_EXCL);
2495 	return ret;
2496 }
2497 
2498 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2499 					      struct btrfs_device *tgtdev)
2500 {
2501 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2502 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2503 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2504 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2505 	tgtdev->dev_root = fs_info->dev_root;
2506 	tgtdev->in_fs_metadata = 1;
2507 }
2508 
2509 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2510 					struct btrfs_device *device)
2511 {
2512 	int ret;
2513 	struct btrfs_path *path;
2514 	struct btrfs_root *root;
2515 	struct btrfs_dev_item *dev_item;
2516 	struct extent_buffer *leaf;
2517 	struct btrfs_key key;
2518 
2519 	root = device->dev_root->fs_info->chunk_root;
2520 
2521 	path = btrfs_alloc_path();
2522 	if (!path)
2523 		return -ENOMEM;
2524 
2525 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2526 	key.type = BTRFS_DEV_ITEM_KEY;
2527 	key.offset = device->devid;
2528 
2529 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2530 	if (ret < 0)
2531 		goto out;
2532 
2533 	if (ret > 0) {
2534 		ret = -ENOENT;
2535 		goto out;
2536 	}
2537 
2538 	leaf = path->nodes[0];
2539 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2540 
2541 	btrfs_set_device_id(leaf, dev_item, device->devid);
2542 	btrfs_set_device_type(leaf, dev_item, device->type);
2543 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2544 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2545 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2546 	btrfs_set_device_total_bytes(leaf, dev_item,
2547 				     btrfs_device_get_disk_total_bytes(device));
2548 	btrfs_set_device_bytes_used(leaf, dev_item,
2549 				    btrfs_device_get_bytes_used(device));
2550 	btrfs_mark_buffer_dirty(leaf);
2551 
2552 out:
2553 	btrfs_free_path(path);
2554 	return ret;
2555 }
2556 
2557 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2558 		      struct btrfs_device *device, u64 new_size)
2559 {
2560 	struct btrfs_super_block *super_copy =
2561 		device->dev_root->fs_info->super_copy;
2562 	struct btrfs_fs_devices *fs_devices;
2563 	u64 old_total;
2564 	u64 diff;
2565 
2566 	if (!device->writeable)
2567 		return -EACCES;
2568 
2569 	lock_chunks(device->dev_root);
2570 	old_total = btrfs_super_total_bytes(super_copy);
2571 	diff = new_size - device->total_bytes;
2572 
2573 	if (new_size <= device->total_bytes ||
2574 	    device->is_tgtdev_for_dev_replace) {
2575 		unlock_chunks(device->dev_root);
2576 		return -EINVAL;
2577 	}
2578 
2579 	fs_devices = device->dev_root->fs_info->fs_devices;
2580 
2581 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2582 	device->fs_devices->total_rw_bytes += diff;
2583 
2584 	btrfs_device_set_total_bytes(device, new_size);
2585 	btrfs_device_set_disk_total_bytes(device, new_size);
2586 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2587 	if (list_empty(&device->resized_list))
2588 		list_add_tail(&device->resized_list,
2589 			      &fs_devices->resized_devices);
2590 	unlock_chunks(device->dev_root);
2591 
2592 	return btrfs_update_device(trans, device);
2593 }
2594 
2595 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2596 			    struct btrfs_root *root, u64 chunk_objectid,
2597 			    u64 chunk_offset)
2598 {
2599 	int ret;
2600 	struct btrfs_path *path;
2601 	struct btrfs_key key;
2602 
2603 	root = root->fs_info->chunk_root;
2604 	path = btrfs_alloc_path();
2605 	if (!path)
2606 		return -ENOMEM;
2607 
2608 	key.objectid = chunk_objectid;
2609 	key.offset = chunk_offset;
2610 	key.type = BTRFS_CHUNK_ITEM_KEY;
2611 
2612 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2613 	if (ret < 0)
2614 		goto out;
2615 	else if (ret > 0) { /* Logic error or corruption */
2616 		btrfs_error(root->fs_info, -ENOENT,
2617 			    "Failed lookup while freeing chunk.");
2618 		ret = -ENOENT;
2619 		goto out;
2620 	}
2621 
2622 	ret = btrfs_del_item(trans, root, path);
2623 	if (ret < 0)
2624 		btrfs_error(root->fs_info, ret,
2625 			    "Failed to delete chunk item.");
2626 out:
2627 	btrfs_free_path(path);
2628 	return ret;
2629 }
2630 
2631 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2632 			chunk_offset)
2633 {
2634 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2635 	struct btrfs_disk_key *disk_key;
2636 	struct btrfs_chunk *chunk;
2637 	u8 *ptr;
2638 	int ret = 0;
2639 	u32 num_stripes;
2640 	u32 array_size;
2641 	u32 len = 0;
2642 	u32 cur;
2643 	struct btrfs_key key;
2644 
2645 	lock_chunks(root);
2646 	array_size = btrfs_super_sys_array_size(super_copy);
2647 
2648 	ptr = super_copy->sys_chunk_array;
2649 	cur = 0;
2650 
2651 	while (cur < array_size) {
2652 		disk_key = (struct btrfs_disk_key *)ptr;
2653 		btrfs_disk_key_to_cpu(&key, disk_key);
2654 
2655 		len = sizeof(*disk_key);
2656 
2657 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2658 			chunk = (struct btrfs_chunk *)(ptr + len);
2659 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2660 			len += btrfs_chunk_item_size(num_stripes);
2661 		} else {
2662 			ret = -EIO;
2663 			break;
2664 		}
2665 		if (key.objectid == chunk_objectid &&
2666 		    key.offset == chunk_offset) {
2667 			memmove(ptr, ptr + len, array_size - (cur + len));
2668 			array_size -= len;
2669 			btrfs_set_super_sys_array_size(super_copy, array_size);
2670 		} else {
2671 			ptr += len;
2672 			cur += len;
2673 		}
2674 	}
2675 	unlock_chunks(root);
2676 	return ret;
2677 }
2678 
2679 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2680 		       struct btrfs_root *root, u64 chunk_offset)
2681 {
2682 	struct extent_map_tree *em_tree;
2683 	struct extent_map *em;
2684 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2685 	struct map_lookup *map;
2686 	u64 dev_extent_len = 0;
2687 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2688 	int i, ret = 0;
2689 
2690 	/* Just in case */
2691 	root = root->fs_info->chunk_root;
2692 	em_tree = &root->fs_info->mapping_tree.map_tree;
2693 
2694 	read_lock(&em_tree->lock);
2695 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2696 	read_unlock(&em_tree->lock);
2697 
2698 	if (!em || em->start > chunk_offset ||
2699 	    em->start + em->len < chunk_offset) {
2700 		/*
2701 		 * This is a logic error, but we don't want to just rely on the
2702 		 * user having built with ASSERT enabled, so if ASSERT doens't
2703 		 * do anything we still error out.
2704 		 */
2705 		ASSERT(0);
2706 		if (em)
2707 			free_extent_map(em);
2708 		return -EINVAL;
2709 	}
2710 	map = (struct map_lookup *)em->bdev;
2711 	lock_chunks(root->fs_info->chunk_root);
2712 	check_system_chunk(trans, extent_root, map->type);
2713 	unlock_chunks(root->fs_info->chunk_root);
2714 
2715 	for (i = 0; i < map->num_stripes; i++) {
2716 		struct btrfs_device *device = map->stripes[i].dev;
2717 		ret = btrfs_free_dev_extent(trans, device,
2718 					    map->stripes[i].physical,
2719 					    &dev_extent_len);
2720 		if (ret) {
2721 			btrfs_abort_transaction(trans, root, ret);
2722 			goto out;
2723 		}
2724 
2725 		if (device->bytes_used > 0) {
2726 			lock_chunks(root);
2727 			btrfs_device_set_bytes_used(device,
2728 					device->bytes_used - dev_extent_len);
2729 			spin_lock(&root->fs_info->free_chunk_lock);
2730 			root->fs_info->free_chunk_space += dev_extent_len;
2731 			spin_unlock(&root->fs_info->free_chunk_lock);
2732 			btrfs_clear_space_info_full(root->fs_info);
2733 			unlock_chunks(root);
2734 		}
2735 
2736 		if (map->stripes[i].dev) {
2737 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2738 			if (ret) {
2739 				btrfs_abort_transaction(trans, root, ret);
2740 				goto out;
2741 			}
2742 		}
2743 	}
2744 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2745 	if (ret) {
2746 		btrfs_abort_transaction(trans, root, ret);
2747 		goto out;
2748 	}
2749 
2750 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2751 
2752 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2753 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2754 		if (ret) {
2755 			btrfs_abort_transaction(trans, root, ret);
2756 			goto out;
2757 		}
2758 	}
2759 
2760 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2761 	if (ret) {
2762 		btrfs_abort_transaction(trans, extent_root, ret);
2763 		goto out;
2764 	}
2765 
2766 out:
2767 	/* once for us */
2768 	free_extent_map(em);
2769 	return ret;
2770 }
2771 
2772 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2773 {
2774 	struct btrfs_root *extent_root;
2775 	struct btrfs_trans_handle *trans;
2776 	int ret;
2777 
2778 	root = root->fs_info->chunk_root;
2779 	extent_root = root->fs_info->extent_root;
2780 
2781 	/*
2782 	 * Prevent races with automatic removal of unused block groups.
2783 	 * After we relocate and before we remove the chunk with offset
2784 	 * chunk_offset, automatic removal of the block group can kick in,
2785 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2786 	 *
2787 	 * Make sure to acquire this mutex before doing a tree search (dev
2788 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2789 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2790 	 * we release the path used to search the chunk/dev tree and before
2791 	 * the current task acquires this mutex and calls us.
2792 	 */
2793 	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2794 
2795 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2796 	if (ret)
2797 		return -ENOSPC;
2798 
2799 	/* step one, relocate all the extents inside this chunk */
2800 	btrfs_scrub_pause(root);
2801 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2802 	btrfs_scrub_continue(root);
2803 	if (ret)
2804 		return ret;
2805 
2806 	trans = btrfs_start_transaction(root, 0);
2807 	if (IS_ERR(trans)) {
2808 		ret = PTR_ERR(trans);
2809 		btrfs_std_error(root->fs_info, ret);
2810 		return ret;
2811 	}
2812 
2813 	/*
2814 	 * step two, delete the device extents and the
2815 	 * chunk tree entries
2816 	 */
2817 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2818 	btrfs_end_transaction(trans, root);
2819 	return ret;
2820 }
2821 
2822 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2823 {
2824 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2825 	struct btrfs_path *path;
2826 	struct extent_buffer *leaf;
2827 	struct btrfs_chunk *chunk;
2828 	struct btrfs_key key;
2829 	struct btrfs_key found_key;
2830 	u64 chunk_type;
2831 	bool retried = false;
2832 	int failed = 0;
2833 	int ret;
2834 
2835 	path = btrfs_alloc_path();
2836 	if (!path)
2837 		return -ENOMEM;
2838 
2839 again:
2840 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2841 	key.offset = (u64)-1;
2842 	key.type = BTRFS_CHUNK_ITEM_KEY;
2843 
2844 	while (1) {
2845 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2846 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2847 		if (ret < 0) {
2848 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2849 			goto error;
2850 		}
2851 		BUG_ON(ret == 0); /* Corruption */
2852 
2853 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2854 					  key.type);
2855 		if (ret)
2856 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2857 		if (ret < 0)
2858 			goto error;
2859 		if (ret > 0)
2860 			break;
2861 
2862 		leaf = path->nodes[0];
2863 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2864 
2865 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2866 				       struct btrfs_chunk);
2867 		chunk_type = btrfs_chunk_type(leaf, chunk);
2868 		btrfs_release_path(path);
2869 
2870 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2871 			ret = btrfs_relocate_chunk(chunk_root,
2872 						   found_key.offset);
2873 			if (ret == -ENOSPC)
2874 				failed++;
2875 			else
2876 				BUG_ON(ret);
2877 		}
2878 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2879 
2880 		if (found_key.offset == 0)
2881 			break;
2882 		key.offset = found_key.offset - 1;
2883 	}
2884 	ret = 0;
2885 	if (failed && !retried) {
2886 		failed = 0;
2887 		retried = true;
2888 		goto again;
2889 	} else if (WARN_ON(failed && retried)) {
2890 		ret = -ENOSPC;
2891 	}
2892 error:
2893 	btrfs_free_path(path);
2894 	return ret;
2895 }
2896 
2897 static int insert_balance_item(struct btrfs_root *root,
2898 			       struct btrfs_balance_control *bctl)
2899 {
2900 	struct btrfs_trans_handle *trans;
2901 	struct btrfs_balance_item *item;
2902 	struct btrfs_disk_balance_args disk_bargs;
2903 	struct btrfs_path *path;
2904 	struct extent_buffer *leaf;
2905 	struct btrfs_key key;
2906 	int ret, err;
2907 
2908 	path = btrfs_alloc_path();
2909 	if (!path)
2910 		return -ENOMEM;
2911 
2912 	trans = btrfs_start_transaction(root, 0);
2913 	if (IS_ERR(trans)) {
2914 		btrfs_free_path(path);
2915 		return PTR_ERR(trans);
2916 	}
2917 
2918 	key.objectid = BTRFS_BALANCE_OBJECTID;
2919 	key.type = BTRFS_BALANCE_ITEM_KEY;
2920 	key.offset = 0;
2921 
2922 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2923 				      sizeof(*item));
2924 	if (ret)
2925 		goto out;
2926 
2927 	leaf = path->nodes[0];
2928 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2929 
2930 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2931 
2932 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2933 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2934 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2935 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2936 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2937 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2938 
2939 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2940 
2941 	btrfs_mark_buffer_dirty(leaf);
2942 out:
2943 	btrfs_free_path(path);
2944 	err = btrfs_commit_transaction(trans, root);
2945 	if (err && !ret)
2946 		ret = err;
2947 	return ret;
2948 }
2949 
2950 static int del_balance_item(struct btrfs_root *root)
2951 {
2952 	struct btrfs_trans_handle *trans;
2953 	struct btrfs_path *path;
2954 	struct btrfs_key key;
2955 	int ret, err;
2956 
2957 	path = btrfs_alloc_path();
2958 	if (!path)
2959 		return -ENOMEM;
2960 
2961 	trans = btrfs_start_transaction(root, 0);
2962 	if (IS_ERR(trans)) {
2963 		btrfs_free_path(path);
2964 		return PTR_ERR(trans);
2965 	}
2966 
2967 	key.objectid = BTRFS_BALANCE_OBJECTID;
2968 	key.type = BTRFS_BALANCE_ITEM_KEY;
2969 	key.offset = 0;
2970 
2971 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2972 	if (ret < 0)
2973 		goto out;
2974 	if (ret > 0) {
2975 		ret = -ENOENT;
2976 		goto out;
2977 	}
2978 
2979 	ret = btrfs_del_item(trans, root, path);
2980 out:
2981 	btrfs_free_path(path);
2982 	err = btrfs_commit_transaction(trans, root);
2983 	if (err && !ret)
2984 		ret = err;
2985 	return ret;
2986 }
2987 
2988 /*
2989  * This is a heuristic used to reduce the number of chunks balanced on
2990  * resume after balance was interrupted.
2991  */
2992 static void update_balance_args(struct btrfs_balance_control *bctl)
2993 {
2994 	/*
2995 	 * Turn on soft mode for chunk types that were being converted.
2996 	 */
2997 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2998 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2999 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3000 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3001 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3002 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3003 
3004 	/*
3005 	 * Turn on usage filter if is not already used.  The idea is
3006 	 * that chunks that we have already balanced should be
3007 	 * reasonably full.  Don't do it for chunks that are being
3008 	 * converted - that will keep us from relocating unconverted
3009 	 * (albeit full) chunks.
3010 	 */
3011 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3012 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3013 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3014 		bctl->data.usage = 90;
3015 	}
3016 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3017 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3018 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3019 		bctl->sys.usage = 90;
3020 	}
3021 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3022 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3023 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3024 		bctl->meta.usage = 90;
3025 	}
3026 }
3027 
3028 /*
3029  * Should be called with both balance and volume mutexes held to
3030  * serialize other volume operations (add_dev/rm_dev/resize) with
3031  * restriper.  Same goes for unset_balance_control.
3032  */
3033 static void set_balance_control(struct btrfs_balance_control *bctl)
3034 {
3035 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3036 
3037 	BUG_ON(fs_info->balance_ctl);
3038 
3039 	spin_lock(&fs_info->balance_lock);
3040 	fs_info->balance_ctl = bctl;
3041 	spin_unlock(&fs_info->balance_lock);
3042 }
3043 
3044 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3045 {
3046 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3047 
3048 	BUG_ON(!fs_info->balance_ctl);
3049 
3050 	spin_lock(&fs_info->balance_lock);
3051 	fs_info->balance_ctl = NULL;
3052 	spin_unlock(&fs_info->balance_lock);
3053 
3054 	kfree(bctl);
3055 }
3056 
3057 /*
3058  * Balance filters.  Return 1 if chunk should be filtered out
3059  * (should not be balanced).
3060  */
3061 static int chunk_profiles_filter(u64 chunk_type,
3062 				 struct btrfs_balance_args *bargs)
3063 {
3064 	chunk_type = chunk_to_extended(chunk_type) &
3065 				BTRFS_EXTENDED_PROFILE_MASK;
3066 
3067 	if (bargs->profiles & chunk_type)
3068 		return 0;
3069 
3070 	return 1;
3071 }
3072 
3073 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3074 			      struct btrfs_balance_args *bargs)
3075 {
3076 	struct btrfs_block_group_cache *cache;
3077 	u64 chunk_used, user_thresh;
3078 	int ret = 1;
3079 
3080 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3081 	chunk_used = btrfs_block_group_used(&cache->item);
3082 
3083 	if (bargs->usage == 0)
3084 		user_thresh = 1;
3085 	else if (bargs->usage > 100)
3086 		user_thresh = cache->key.offset;
3087 	else
3088 		user_thresh = div_factor_fine(cache->key.offset,
3089 					      bargs->usage);
3090 
3091 	if (chunk_used < user_thresh)
3092 		ret = 0;
3093 
3094 	btrfs_put_block_group(cache);
3095 	return ret;
3096 }
3097 
3098 static int chunk_devid_filter(struct extent_buffer *leaf,
3099 			      struct btrfs_chunk *chunk,
3100 			      struct btrfs_balance_args *bargs)
3101 {
3102 	struct btrfs_stripe *stripe;
3103 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3104 	int i;
3105 
3106 	for (i = 0; i < num_stripes; i++) {
3107 		stripe = btrfs_stripe_nr(chunk, i);
3108 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3109 			return 0;
3110 	}
3111 
3112 	return 1;
3113 }
3114 
3115 /* [pstart, pend) */
3116 static int chunk_drange_filter(struct extent_buffer *leaf,
3117 			       struct btrfs_chunk *chunk,
3118 			       u64 chunk_offset,
3119 			       struct btrfs_balance_args *bargs)
3120 {
3121 	struct btrfs_stripe *stripe;
3122 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3123 	u64 stripe_offset;
3124 	u64 stripe_length;
3125 	int factor;
3126 	int i;
3127 
3128 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3129 		return 0;
3130 
3131 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3132 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3133 		factor = num_stripes / 2;
3134 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3135 		factor = num_stripes - 1;
3136 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3137 		factor = num_stripes - 2;
3138 	} else {
3139 		factor = num_stripes;
3140 	}
3141 
3142 	for (i = 0; i < num_stripes; i++) {
3143 		stripe = btrfs_stripe_nr(chunk, i);
3144 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3145 			continue;
3146 
3147 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3148 		stripe_length = btrfs_chunk_length(leaf, chunk);
3149 		stripe_length = div_u64(stripe_length, factor);
3150 
3151 		if (stripe_offset < bargs->pend &&
3152 		    stripe_offset + stripe_length > bargs->pstart)
3153 			return 0;
3154 	}
3155 
3156 	return 1;
3157 }
3158 
3159 /* [vstart, vend) */
3160 static int chunk_vrange_filter(struct extent_buffer *leaf,
3161 			       struct btrfs_chunk *chunk,
3162 			       u64 chunk_offset,
3163 			       struct btrfs_balance_args *bargs)
3164 {
3165 	if (chunk_offset < bargs->vend &&
3166 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3167 		/* at least part of the chunk is inside this vrange */
3168 		return 0;
3169 
3170 	return 1;
3171 }
3172 
3173 static int chunk_soft_convert_filter(u64 chunk_type,
3174 				     struct btrfs_balance_args *bargs)
3175 {
3176 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3177 		return 0;
3178 
3179 	chunk_type = chunk_to_extended(chunk_type) &
3180 				BTRFS_EXTENDED_PROFILE_MASK;
3181 
3182 	if (bargs->target == chunk_type)
3183 		return 1;
3184 
3185 	return 0;
3186 }
3187 
3188 static int should_balance_chunk(struct btrfs_root *root,
3189 				struct extent_buffer *leaf,
3190 				struct btrfs_chunk *chunk, u64 chunk_offset)
3191 {
3192 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3193 	struct btrfs_balance_args *bargs = NULL;
3194 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3195 
3196 	/* type filter */
3197 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3198 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3199 		return 0;
3200 	}
3201 
3202 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3203 		bargs = &bctl->data;
3204 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3205 		bargs = &bctl->sys;
3206 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3207 		bargs = &bctl->meta;
3208 
3209 	/* profiles filter */
3210 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3211 	    chunk_profiles_filter(chunk_type, bargs)) {
3212 		return 0;
3213 	}
3214 
3215 	/* usage filter */
3216 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3217 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3218 		return 0;
3219 	}
3220 
3221 	/* devid filter */
3222 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3223 	    chunk_devid_filter(leaf, chunk, bargs)) {
3224 		return 0;
3225 	}
3226 
3227 	/* drange filter, makes sense only with devid filter */
3228 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3229 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3230 		return 0;
3231 	}
3232 
3233 	/* vrange filter */
3234 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3235 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3236 		return 0;
3237 	}
3238 
3239 	/* soft profile changing mode */
3240 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3241 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3242 		return 0;
3243 	}
3244 
3245 	/*
3246 	 * limited by count, must be the last filter
3247 	 */
3248 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3249 		if (bargs->limit == 0)
3250 			return 0;
3251 		else
3252 			bargs->limit--;
3253 	}
3254 
3255 	return 1;
3256 }
3257 
3258 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3259 {
3260 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3261 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3262 	struct btrfs_root *dev_root = fs_info->dev_root;
3263 	struct list_head *devices;
3264 	struct btrfs_device *device;
3265 	u64 old_size;
3266 	u64 size_to_free;
3267 	struct btrfs_chunk *chunk;
3268 	struct btrfs_path *path;
3269 	struct btrfs_key key;
3270 	struct btrfs_key found_key;
3271 	struct btrfs_trans_handle *trans;
3272 	struct extent_buffer *leaf;
3273 	int slot;
3274 	int ret;
3275 	int enospc_errors = 0;
3276 	bool counting = true;
3277 	u64 limit_data = bctl->data.limit;
3278 	u64 limit_meta = bctl->meta.limit;
3279 	u64 limit_sys = bctl->sys.limit;
3280 
3281 	/* step one make some room on all the devices */
3282 	devices = &fs_info->fs_devices->devices;
3283 	list_for_each_entry(device, devices, dev_list) {
3284 		old_size = btrfs_device_get_total_bytes(device);
3285 		size_to_free = div_factor(old_size, 1);
3286 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3287 		if (!device->writeable ||
3288 		    btrfs_device_get_total_bytes(device) -
3289 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3290 		    device->is_tgtdev_for_dev_replace)
3291 			continue;
3292 
3293 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3294 		if (ret == -ENOSPC)
3295 			break;
3296 		BUG_ON(ret);
3297 
3298 		trans = btrfs_start_transaction(dev_root, 0);
3299 		BUG_ON(IS_ERR(trans));
3300 
3301 		ret = btrfs_grow_device(trans, device, old_size);
3302 		BUG_ON(ret);
3303 
3304 		btrfs_end_transaction(trans, dev_root);
3305 	}
3306 
3307 	/* step two, relocate all the chunks */
3308 	path = btrfs_alloc_path();
3309 	if (!path) {
3310 		ret = -ENOMEM;
3311 		goto error;
3312 	}
3313 
3314 	/* zero out stat counters */
3315 	spin_lock(&fs_info->balance_lock);
3316 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3317 	spin_unlock(&fs_info->balance_lock);
3318 again:
3319 	if (!counting) {
3320 		bctl->data.limit = limit_data;
3321 		bctl->meta.limit = limit_meta;
3322 		bctl->sys.limit = limit_sys;
3323 	}
3324 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3325 	key.offset = (u64)-1;
3326 	key.type = BTRFS_CHUNK_ITEM_KEY;
3327 
3328 	while (1) {
3329 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3330 		    atomic_read(&fs_info->balance_cancel_req)) {
3331 			ret = -ECANCELED;
3332 			goto error;
3333 		}
3334 
3335 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3336 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3337 		if (ret < 0) {
3338 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3339 			goto error;
3340 		}
3341 
3342 		/*
3343 		 * this shouldn't happen, it means the last relocate
3344 		 * failed
3345 		 */
3346 		if (ret == 0)
3347 			BUG(); /* FIXME break ? */
3348 
3349 		ret = btrfs_previous_item(chunk_root, path, 0,
3350 					  BTRFS_CHUNK_ITEM_KEY);
3351 		if (ret) {
3352 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3353 			ret = 0;
3354 			break;
3355 		}
3356 
3357 		leaf = path->nodes[0];
3358 		slot = path->slots[0];
3359 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3360 
3361 		if (found_key.objectid != key.objectid) {
3362 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3363 			break;
3364 		}
3365 
3366 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3367 
3368 		if (!counting) {
3369 			spin_lock(&fs_info->balance_lock);
3370 			bctl->stat.considered++;
3371 			spin_unlock(&fs_info->balance_lock);
3372 		}
3373 
3374 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3375 					   found_key.offset);
3376 		btrfs_release_path(path);
3377 		if (!ret) {
3378 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3379 			goto loop;
3380 		}
3381 
3382 		if (counting) {
3383 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3384 			spin_lock(&fs_info->balance_lock);
3385 			bctl->stat.expected++;
3386 			spin_unlock(&fs_info->balance_lock);
3387 			goto loop;
3388 		}
3389 
3390 		ret = btrfs_relocate_chunk(chunk_root,
3391 					   found_key.offset);
3392 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3393 		if (ret && ret != -ENOSPC)
3394 			goto error;
3395 		if (ret == -ENOSPC) {
3396 			enospc_errors++;
3397 		} else {
3398 			spin_lock(&fs_info->balance_lock);
3399 			bctl->stat.completed++;
3400 			spin_unlock(&fs_info->balance_lock);
3401 		}
3402 loop:
3403 		if (found_key.offset == 0)
3404 			break;
3405 		key.offset = found_key.offset - 1;
3406 	}
3407 
3408 	if (counting) {
3409 		btrfs_release_path(path);
3410 		counting = false;
3411 		goto again;
3412 	}
3413 error:
3414 	btrfs_free_path(path);
3415 	if (enospc_errors) {
3416 		btrfs_info(fs_info, "%d enospc errors during balance",
3417 		       enospc_errors);
3418 		if (!ret)
3419 			ret = -ENOSPC;
3420 	}
3421 
3422 	return ret;
3423 }
3424 
3425 /**
3426  * alloc_profile_is_valid - see if a given profile is valid and reduced
3427  * @flags: profile to validate
3428  * @extended: if true @flags is treated as an extended profile
3429  */
3430 static int alloc_profile_is_valid(u64 flags, int extended)
3431 {
3432 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3433 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3434 
3435 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3436 
3437 	/* 1) check that all other bits are zeroed */
3438 	if (flags & ~mask)
3439 		return 0;
3440 
3441 	/* 2) see if profile is reduced */
3442 	if (flags == 0)
3443 		return !extended; /* "0" is valid for usual profiles */
3444 
3445 	/* true if exactly one bit set */
3446 	return (flags & (flags - 1)) == 0;
3447 }
3448 
3449 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3450 {
3451 	/* cancel requested || normal exit path */
3452 	return atomic_read(&fs_info->balance_cancel_req) ||
3453 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3454 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3455 }
3456 
3457 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3458 {
3459 	int ret;
3460 
3461 	unset_balance_control(fs_info);
3462 	ret = del_balance_item(fs_info->tree_root);
3463 	if (ret)
3464 		btrfs_std_error(fs_info, ret);
3465 
3466 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3467 }
3468 
3469 /*
3470  * Should be called with both balance and volume mutexes held
3471  */
3472 int btrfs_balance(struct btrfs_balance_control *bctl,
3473 		  struct btrfs_ioctl_balance_args *bargs)
3474 {
3475 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3476 	u64 allowed;
3477 	int mixed = 0;
3478 	int ret;
3479 	u64 num_devices;
3480 	unsigned seq;
3481 
3482 	if (btrfs_fs_closing(fs_info) ||
3483 	    atomic_read(&fs_info->balance_pause_req) ||
3484 	    atomic_read(&fs_info->balance_cancel_req)) {
3485 		ret = -EINVAL;
3486 		goto out;
3487 	}
3488 
3489 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3490 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3491 		mixed = 1;
3492 
3493 	/*
3494 	 * In case of mixed groups both data and meta should be picked,
3495 	 * and identical options should be given for both of them.
3496 	 */
3497 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3498 	if (mixed && (bctl->flags & allowed)) {
3499 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3500 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3501 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3502 			btrfs_err(fs_info, "with mixed groups data and "
3503 				   "metadata balance options must be the same");
3504 			ret = -EINVAL;
3505 			goto out;
3506 		}
3507 	}
3508 
3509 	num_devices = fs_info->fs_devices->num_devices;
3510 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3511 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3512 		BUG_ON(num_devices < 1);
3513 		num_devices--;
3514 	}
3515 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3516 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3517 	if (num_devices == 1)
3518 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3519 	else if (num_devices > 1)
3520 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3521 	if (num_devices > 2)
3522 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3523 	if (num_devices > 3)
3524 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3525 			    BTRFS_BLOCK_GROUP_RAID6);
3526 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3527 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
3528 	     (bctl->data.target & ~allowed))) {
3529 		btrfs_err(fs_info, "unable to start balance with target "
3530 			   "data profile %llu",
3531 		       bctl->data.target);
3532 		ret = -EINVAL;
3533 		goto out;
3534 	}
3535 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3536 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3537 	     (bctl->meta.target & ~allowed))) {
3538 		btrfs_err(fs_info,
3539 			   "unable to start balance with target metadata profile %llu",
3540 		       bctl->meta.target);
3541 		ret = -EINVAL;
3542 		goto out;
3543 	}
3544 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3545 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3546 	     (bctl->sys.target & ~allowed))) {
3547 		btrfs_err(fs_info,
3548 			   "unable to start balance with target system profile %llu",
3549 		       bctl->sys.target);
3550 		ret = -EINVAL;
3551 		goto out;
3552 	}
3553 
3554 	/* allow dup'ed data chunks only in mixed mode */
3555 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3556 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3557 		btrfs_err(fs_info, "dup for data is not allowed");
3558 		ret = -EINVAL;
3559 		goto out;
3560 	}
3561 
3562 	/* allow to reduce meta or sys integrity only if force set */
3563 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3564 			BTRFS_BLOCK_GROUP_RAID10 |
3565 			BTRFS_BLOCK_GROUP_RAID5 |
3566 			BTRFS_BLOCK_GROUP_RAID6;
3567 	do {
3568 		seq = read_seqbegin(&fs_info->profiles_lock);
3569 
3570 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3571 		     (fs_info->avail_system_alloc_bits & allowed) &&
3572 		     !(bctl->sys.target & allowed)) ||
3573 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3574 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3575 		     !(bctl->meta.target & allowed))) {
3576 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3577 				btrfs_info(fs_info, "force reducing metadata integrity");
3578 			} else {
3579 				btrfs_err(fs_info, "balance will reduce metadata "
3580 					   "integrity, use force if you want this");
3581 				ret = -EINVAL;
3582 				goto out;
3583 			}
3584 		}
3585 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3586 
3587 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3588 		fs_info->num_tolerated_disk_barrier_failures = min(
3589 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3590 			btrfs_get_num_tolerated_disk_barrier_failures(
3591 				bctl->sys.target));
3592 	}
3593 
3594 	ret = insert_balance_item(fs_info->tree_root, bctl);
3595 	if (ret && ret != -EEXIST)
3596 		goto out;
3597 
3598 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3599 		BUG_ON(ret == -EEXIST);
3600 		set_balance_control(bctl);
3601 	} else {
3602 		BUG_ON(ret != -EEXIST);
3603 		spin_lock(&fs_info->balance_lock);
3604 		update_balance_args(bctl);
3605 		spin_unlock(&fs_info->balance_lock);
3606 	}
3607 
3608 	atomic_inc(&fs_info->balance_running);
3609 	mutex_unlock(&fs_info->balance_mutex);
3610 
3611 	ret = __btrfs_balance(fs_info);
3612 
3613 	mutex_lock(&fs_info->balance_mutex);
3614 	atomic_dec(&fs_info->balance_running);
3615 
3616 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3617 		fs_info->num_tolerated_disk_barrier_failures =
3618 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3619 	}
3620 
3621 	if (bargs) {
3622 		memset(bargs, 0, sizeof(*bargs));
3623 		update_ioctl_balance_args(fs_info, 0, bargs);
3624 	}
3625 
3626 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3627 	    balance_need_close(fs_info)) {
3628 		__cancel_balance(fs_info);
3629 	}
3630 
3631 	wake_up(&fs_info->balance_wait_q);
3632 
3633 	return ret;
3634 out:
3635 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3636 		__cancel_balance(fs_info);
3637 	else {
3638 		kfree(bctl);
3639 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3640 	}
3641 	return ret;
3642 }
3643 
3644 static int balance_kthread(void *data)
3645 {
3646 	struct btrfs_fs_info *fs_info = data;
3647 	int ret = 0;
3648 
3649 	mutex_lock(&fs_info->volume_mutex);
3650 	mutex_lock(&fs_info->balance_mutex);
3651 
3652 	if (fs_info->balance_ctl) {
3653 		btrfs_info(fs_info, "continuing balance");
3654 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3655 	}
3656 
3657 	mutex_unlock(&fs_info->balance_mutex);
3658 	mutex_unlock(&fs_info->volume_mutex);
3659 
3660 	return ret;
3661 }
3662 
3663 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3664 {
3665 	struct task_struct *tsk;
3666 
3667 	spin_lock(&fs_info->balance_lock);
3668 	if (!fs_info->balance_ctl) {
3669 		spin_unlock(&fs_info->balance_lock);
3670 		return 0;
3671 	}
3672 	spin_unlock(&fs_info->balance_lock);
3673 
3674 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3675 		btrfs_info(fs_info, "force skipping balance");
3676 		return 0;
3677 	}
3678 
3679 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3680 	return PTR_ERR_OR_ZERO(tsk);
3681 }
3682 
3683 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3684 {
3685 	struct btrfs_balance_control *bctl;
3686 	struct btrfs_balance_item *item;
3687 	struct btrfs_disk_balance_args disk_bargs;
3688 	struct btrfs_path *path;
3689 	struct extent_buffer *leaf;
3690 	struct btrfs_key key;
3691 	int ret;
3692 
3693 	path = btrfs_alloc_path();
3694 	if (!path)
3695 		return -ENOMEM;
3696 
3697 	key.objectid = BTRFS_BALANCE_OBJECTID;
3698 	key.type = BTRFS_BALANCE_ITEM_KEY;
3699 	key.offset = 0;
3700 
3701 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3702 	if (ret < 0)
3703 		goto out;
3704 	if (ret > 0) { /* ret = -ENOENT; */
3705 		ret = 0;
3706 		goto out;
3707 	}
3708 
3709 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3710 	if (!bctl) {
3711 		ret = -ENOMEM;
3712 		goto out;
3713 	}
3714 
3715 	leaf = path->nodes[0];
3716 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3717 
3718 	bctl->fs_info = fs_info;
3719 	bctl->flags = btrfs_balance_flags(leaf, item);
3720 	bctl->flags |= BTRFS_BALANCE_RESUME;
3721 
3722 	btrfs_balance_data(leaf, item, &disk_bargs);
3723 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3724 	btrfs_balance_meta(leaf, item, &disk_bargs);
3725 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3726 	btrfs_balance_sys(leaf, item, &disk_bargs);
3727 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3728 
3729 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3730 
3731 	mutex_lock(&fs_info->volume_mutex);
3732 	mutex_lock(&fs_info->balance_mutex);
3733 
3734 	set_balance_control(bctl);
3735 
3736 	mutex_unlock(&fs_info->balance_mutex);
3737 	mutex_unlock(&fs_info->volume_mutex);
3738 out:
3739 	btrfs_free_path(path);
3740 	return ret;
3741 }
3742 
3743 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3744 {
3745 	int ret = 0;
3746 
3747 	mutex_lock(&fs_info->balance_mutex);
3748 	if (!fs_info->balance_ctl) {
3749 		mutex_unlock(&fs_info->balance_mutex);
3750 		return -ENOTCONN;
3751 	}
3752 
3753 	if (atomic_read(&fs_info->balance_running)) {
3754 		atomic_inc(&fs_info->balance_pause_req);
3755 		mutex_unlock(&fs_info->balance_mutex);
3756 
3757 		wait_event(fs_info->balance_wait_q,
3758 			   atomic_read(&fs_info->balance_running) == 0);
3759 
3760 		mutex_lock(&fs_info->balance_mutex);
3761 		/* we are good with balance_ctl ripped off from under us */
3762 		BUG_ON(atomic_read(&fs_info->balance_running));
3763 		atomic_dec(&fs_info->balance_pause_req);
3764 	} else {
3765 		ret = -ENOTCONN;
3766 	}
3767 
3768 	mutex_unlock(&fs_info->balance_mutex);
3769 	return ret;
3770 }
3771 
3772 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3773 {
3774 	if (fs_info->sb->s_flags & MS_RDONLY)
3775 		return -EROFS;
3776 
3777 	mutex_lock(&fs_info->balance_mutex);
3778 	if (!fs_info->balance_ctl) {
3779 		mutex_unlock(&fs_info->balance_mutex);
3780 		return -ENOTCONN;
3781 	}
3782 
3783 	atomic_inc(&fs_info->balance_cancel_req);
3784 	/*
3785 	 * if we are running just wait and return, balance item is
3786 	 * deleted in btrfs_balance in this case
3787 	 */
3788 	if (atomic_read(&fs_info->balance_running)) {
3789 		mutex_unlock(&fs_info->balance_mutex);
3790 		wait_event(fs_info->balance_wait_q,
3791 			   atomic_read(&fs_info->balance_running) == 0);
3792 		mutex_lock(&fs_info->balance_mutex);
3793 	} else {
3794 		/* __cancel_balance needs volume_mutex */
3795 		mutex_unlock(&fs_info->balance_mutex);
3796 		mutex_lock(&fs_info->volume_mutex);
3797 		mutex_lock(&fs_info->balance_mutex);
3798 
3799 		if (fs_info->balance_ctl)
3800 			__cancel_balance(fs_info);
3801 
3802 		mutex_unlock(&fs_info->volume_mutex);
3803 	}
3804 
3805 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3806 	atomic_dec(&fs_info->balance_cancel_req);
3807 	mutex_unlock(&fs_info->balance_mutex);
3808 	return 0;
3809 }
3810 
3811 static int btrfs_uuid_scan_kthread(void *data)
3812 {
3813 	struct btrfs_fs_info *fs_info = data;
3814 	struct btrfs_root *root = fs_info->tree_root;
3815 	struct btrfs_key key;
3816 	struct btrfs_key max_key;
3817 	struct btrfs_path *path = NULL;
3818 	int ret = 0;
3819 	struct extent_buffer *eb;
3820 	int slot;
3821 	struct btrfs_root_item root_item;
3822 	u32 item_size;
3823 	struct btrfs_trans_handle *trans = NULL;
3824 
3825 	path = btrfs_alloc_path();
3826 	if (!path) {
3827 		ret = -ENOMEM;
3828 		goto out;
3829 	}
3830 
3831 	key.objectid = 0;
3832 	key.type = BTRFS_ROOT_ITEM_KEY;
3833 	key.offset = 0;
3834 
3835 	max_key.objectid = (u64)-1;
3836 	max_key.type = BTRFS_ROOT_ITEM_KEY;
3837 	max_key.offset = (u64)-1;
3838 
3839 	while (1) {
3840 		ret = btrfs_search_forward(root, &key, path, 0);
3841 		if (ret) {
3842 			if (ret > 0)
3843 				ret = 0;
3844 			break;
3845 		}
3846 
3847 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
3848 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3849 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3850 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3851 			goto skip;
3852 
3853 		eb = path->nodes[0];
3854 		slot = path->slots[0];
3855 		item_size = btrfs_item_size_nr(eb, slot);
3856 		if (item_size < sizeof(root_item))
3857 			goto skip;
3858 
3859 		read_extent_buffer(eb, &root_item,
3860 				   btrfs_item_ptr_offset(eb, slot),
3861 				   (int)sizeof(root_item));
3862 		if (btrfs_root_refs(&root_item) == 0)
3863 			goto skip;
3864 
3865 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
3866 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3867 			if (trans)
3868 				goto update_tree;
3869 
3870 			btrfs_release_path(path);
3871 			/*
3872 			 * 1 - subvol uuid item
3873 			 * 1 - received_subvol uuid item
3874 			 */
3875 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3876 			if (IS_ERR(trans)) {
3877 				ret = PTR_ERR(trans);
3878 				break;
3879 			}
3880 			continue;
3881 		} else {
3882 			goto skip;
3883 		}
3884 update_tree:
3885 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3886 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3887 						  root_item.uuid,
3888 						  BTRFS_UUID_KEY_SUBVOL,
3889 						  key.objectid);
3890 			if (ret < 0) {
3891 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3892 					ret);
3893 				break;
3894 			}
3895 		}
3896 
3897 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3898 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3899 						  root_item.received_uuid,
3900 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3901 						  key.objectid);
3902 			if (ret < 0) {
3903 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3904 					ret);
3905 				break;
3906 			}
3907 		}
3908 
3909 skip:
3910 		if (trans) {
3911 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3912 			trans = NULL;
3913 			if (ret)
3914 				break;
3915 		}
3916 
3917 		btrfs_release_path(path);
3918 		if (key.offset < (u64)-1) {
3919 			key.offset++;
3920 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3921 			key.offset = 0;
3922 			key.type = BTRFS_ROOT_ITEM_KEY;
3923 		} else if (key.objectid < (u64)-1) {
3924 			key.offset = 0;
3925 			key.type = BTRFS_ROOT_ITEM_KEY;
3926 			key.objectid++;
3927 		} else {
3928 			break;
3929 		}
3930 		cond_resched();
3931 	}
3932 
3933 out:
3934 	btrfs_free_path(path);
3935 	if (trans && !IS_ERR(trans))
3936 		btrfs_end_transaction(trans, fs_info->uuid_root);
3937 	if (ret)
3938 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3939 	else
3940 		fs_info->update_uuid_tree_gen = 1;
3941 	up(&fs_info->uuid_tree_rescan_sem);
3942 	return 0;
3943 }
3944 
3945 /*
3946  * Callback for btrfs_uuid_tree_iterate().
3947  * returns:
3948  * 0	check succeeded, the entry is not outdated.
3949  * < 0	if an error occured.
3950  * > 0	if the check failed, which means the caller shall remove the entry.
3951  */
3952 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3953 				       u8 *uuid, u8 type, u64 subid)
3954 {
3955 	struct btrfs_key key;
3956 	int ret = 0;
3957 	struct btrfs_root *subvol_root;
3958 
3959 	if (type != BTRFS_UUID_KEY_SUBVOL &&
3960 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3961 		goto out;
3962 
3963 	key.objectid = subid;
3964 	key.type = BTRFS_ROOT_ITEM_KEY;
3965 	key.offset = (u64)-1;
3966 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3967 	if (IS_ERR(subvol_root)) {
3968 		ret = PTR_ERR(subvol_root);
3969 		if (ret == -ENOENT)
3970 			ret = 1;
3971 		goto out;
3972 	}
3973 
3974 	switch (type) {
3975 	case BTRFS_UUID_KEY_SUBVOL:
3976 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3977 			ret = 1;
3978 		break;
3979 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3980 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
3981 			   BTRFS_UUID_SIZE))
3982 			ret = 1;
3983 		break;
3984 	}
3985 
3986 out:
3987 	return ret;
3988 }
3989 
3990 static int btrfs_uuid_rescan_kthread(void *data)
3991 {
3992 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3993 	int ret;
3994 
3995 	/*
3996 	 * 1st step is to iterate through the existing UUID tree and
3997 	 * to delete all entries that contain outdated data.
3998 	 * 2nd step is to add all missing entries to the UUID tree.
3999 	 */
4000 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4001 	if (ret < 0) {
4002 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4003 		up(&fs_info->uuid_tree_rescan_sem);
4004 		return ret;
4005 	}
4006 	return btrfs_uuid_scan_kthread(data);
4007 }
4008 
4009 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4010 {
4011 	struct btrfs_trans_handle *trans;
4012 	struct btrfs_root *tree_root = fs_info->tree_root;
4013 	struct btrfs_root *uuid_root;
4014 	struct task_struct *task;
4015 	int ret;
4016 
4017 	/*
4018 	 * 1 - root node
4019 	 * 1 - root item
4020 	 */
4021 	trans = btrfs_start_transaction(tree_root, 2);
4022 	if (IS_ERR(trans))
4023 		return PTR_ERR(trans);
4024 
4025 	uuid_root = btrfs_create_tree(trans, fs_info,
4026 				      BTRFS_UUID_TREE_OBJECTID);
4027 	if (IS_ERR(uuid_root)) {
4028 		ret = PTR_ERR(uuid_root);
4029 		btrfs_abort_transaction(trans, tree_root, ret);
4030 		return ret;
4031 	}
4032 
4033 	fs_info->uuid_root = uuid_root;
4034 
4035 	ret = btrfs_commit_transaction(trans, tree_root);
4036 	if (ret)
4037 		return ret;
4038 
4039 	down(&fs_info->uuid_tree_rescan_sem);
4040 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4041 	if (IS_ERR(task)) {
4042 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4043 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4044 		up(&fs_info->uuid_tree_rescan_sem);
4045 		return PTR_ERR(task);
4046 	}
4047 
4048 	return 0;
4049 }
4050 
4051 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4052 {
4053 	struct task_struct *task;
4054 
4055 	down(&fs_info->uuid_tree_rescan_sem);
4056 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4057 	if (IS_ERR(task)) {
4058 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4059 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4060 		up(&fs_info->uuid_tree_rescan_sem);
4061 		return PTR_ERR(task);
4062 	}
4063 
4064 	return 0;
4065 }
4066 
4067 /*
4068  * shrinking a device means finding all of the device extents past
4069  * the new size, and then following the back refs to the chunks.
4070  * The chunk relocation code actually frees the device extent
4071  */
4072 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4073 {
4074 	struct btrfs_trans_handle *trans;
4075 	struct btrfs_root *root = device->dev_root;
4076 	struct btrfs_dev_extent *dev_extent = NULL;
4077 	struct btrfs_path *path;
4078 	u64 length;
4079 	u64 chunk_offset;
4080 	int ret;
4081 	int slot;
4082 	int failed = 0;
4083 	bool retried = false;
4084 	bool checked_pending_chunks = false;
4085 	struct extent_buffer *l;
4086 	struct btrfs_key key;
4087 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4088 	u64 old_total = btrfs_super_total_bytes(super_copy);
4089 	u64 old_size = btrfs_device_get_total_bytes(device);
4090 	u64 diff = old_size - new_size;
4091 
4092 	if (device->is_tgtdev_for_dev_replace)
4093 		return -EINVAL;
4094 
4095 	path = btrfs_alloc_path();
4096 	if (!path)
4097 		return -ENOMEM;
4098 
4099 	path->reada = 2;
4100 
4101 	lock_chunks(root);
4102 
4103 	btrfs_device_set_total_bytes(device, new_size);
4104 	if (device->writeable) {
4105 		device->fs_devices->total_rw_bytes -= diff;
4106 		spin_lock(&root->fs_info->free_chunk_lock);
4107 		root->fs_info->free_chunk_space -= diff;
4108 		spin_unlock(&root->fs_info->free_chunk_lock);
4109 	}
4110 	unlock_chunks(root);
4111 
4112 again:
4113 	key.objectid = device->devid;
4114 	key.offset = (u64)-1;
4115 	key.type = BTRFS_DEV_EXTENT_KEY;
4116 
4117 	do {
4118 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4119 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4120 		if (ret < 0) {
4121 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4122 			goto done;
4123 		}
4124 
4125 		ret = btrfs_previous_item(root, path, 0, key.type);
4126 		if (ret)
4127 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4128 		if (ret < 0)
4129 			goto done;
4130 		if (ret) {
4131 			ret = 0;
4132 			btrfs_release_path(path);
4133 			break;
4134 		}
4135 
4136 		l = path->nodes[0];
4137 		slot = path->slots[0];
4138 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4139 
4140 		if (key.objectid != device->devid) {
4141 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4142 			btrfs_release_path(path);
4143 			break;
4144 		}
4145 
4146 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4147 		length = btrfs_dev_extent_length(l, dev_extent);
4148 
4149 		if (key.offset + length <= new_size) {
4150 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4151 			btrfs_release_path(path);
4152 			break;
4153 		}
4154 
4155 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4156 		btrfs_release_path(path);
4157 
4158 		ret = btrfs_relocate_chunk(root, chunk_offset);
4159 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4160 		if (ret && ret != -ENOSPC)
4161 			goto done;
4162 		if (ret == -ENOSPC)
4163 			failed++;
4164 	} while (key.offset-- > 0);
4165 
4166 	if (failed && !retried) {
4167 		failed = 0;
4168 		retried = true;
4169 		goto again;
4170 	} else if (failed && retried) {
4171 		ret = -ENOSPC;
4172 		goto done;
4173 	}
4174 
4175 	/* Shrinking succeeded, else we would be at "done". */
4176 	trans = btrfs_start_transaction(root, 0);
4177 	if (IS_ERR(trans)) {
4178 		ret = PTR_ERR(trans);
4179 		goto done;
4180 	}
4181 
4182 	lock_chunks(root);
4183 
4184 	/*
4185 	 * We checked in the above loop all device extents that were already in
4186 	 * the device tree. However before we have updated the device's
4187 	 * total_bytes to the new size, we might have had chunk allocations that
4188 	 * have not complete yet (new block groups attached to transaction
4189 	 * handles), and therefore their device extents were not yet in the
4190 	 * device tree and we missed them in the loop above. So if we have any
4191 	 * pending chunk using a device extent that overlaps the device range
4192 	 * that we can not use anymore, commit the current transaction and
4193 	 * repeat the search on the device tree - this way we guarantee we will
4194 	 * not have chunks using device extents that end beyond 'new_size'.
4195 	 */
4196 	if (!checked_pending_chunks) {
4197 		u64 start = new_size;
4198 		u64 len = old_size - new_size;
4199 
4200 		if (contains_pending_extent(trans->transaction, device,
4201 					    &start, len)) {
4202 			unlock_chunks(root);
4203 			checked_pending_chunks = true;
4204 			failed = 0;
4205 			retried = false;
4206 			ret = btrfs_commit_transaction(trans, root);
4207 			if (ret)
4208 				goto done;
4209 			goto again;
4210 		}
4211 	}
4212 
4213 	btrfs_device_set_disk_total_bytes(device, new_size);
4214 	if (list_empty(&device->resized_list))
4215 		list_add_tail(&device->resized_list,
4216 			      &root->fs_info->fs_devices->resized_devices);
4217 
4218 	WARN_ON(diff > old_total);
4219 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4220 	unlock_chunks(root);
4221 
4222 	/* Now btrfs_update_device() will change the on-disk size. */
4223 	ret = btrfs_update_device(trans, device);
4224 	btrfs_end_transaction(trans, root);
4225 done:
4226 	btrfs_free_path(path);
4227 	if (ret) {
4228 		lock_chunks(root);
4229 		btrfs_device_set_total_bytes(device, old_size);
4230 		if (device->writeable)
4231 			device->fs_devices->total_rw_bytes += diff;
4232 		spin_lock(&root->fs_info->free_chunk_lock);
4233 		root->fs_info->free_chunk_space += diff;
4234 		spin_unlock(&root->fs_info->free_chunk_lock);
4235 		unlock_chunks(root);
4236 	}
4237 	return ret;
4238 }
4239 
4240 static int btrfs_add_system_chunk(struct btrfs_root *root,
4241 			   struct btrfs_key *key,
4242 			   struct btrfs_chunk *chunk, int item_size)
4243 {
4244 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4245 	struct btrfs_disk_key disk_key;
4246 	u32 array_size;
4247 	u8 *ptr;
4248 
4249 	lock_chunks(root);
4250 	array_size = btrfs_super_sys_array_size(super_copy);
4251 	if (array_size + item_size + sizeof(disk_key)
4252 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4253 		unlock_chunks(root);
4254 		return -EFBIG;
4255 	}
4256 
4257 	ptr = super_copy->sys_chunk_array + array_size;
4258 	btrfs_cpu_key_to_disk(&disk_key, key);
4259 	memcpy(ptr, &disk_key, sizeof(disk_key));
4260 	ptr += sizeof(disk_key);
4261 	memcpy(ptr, chunk, item_size);
4262 	item_size += sizeof(disk_key);
4263 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4264 	unlock_chunks(root);
4265 
4266 	return 0;
4267 }
4268 
4269 /*
4270  * sort the devices in descending order by max_avail, total_avail
4271  */
4272 static int btrfs_cmp_device_info(const void *a, const void *b)
4273 {
4274 	const struct btrfs_device_info *di_a = a;
4275 	const struct btrfs_device_info *di_b = b;
4276 
4277 	if (di_a->max_avail > di_b->max_avail)
4278 		return -1;
4279 	if (di_a->max_avail < di_b->max_avail)
4280 		return 1;
4281 	if (di_a->total_avail > di_b->total_avail)
4282 		return -1;
4283 	if (di_a->total_avail < di_b->total_avail)
4284 		return 1;
4285 	return 0;
4286 }
4287 
4288 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4289 	[BTRFS_RAID_RAID10] = {
4290 		.sub_stripes	= 2,
4291 		.dev_stripes	= 1,
4292 		.devs_max	= 0,	/* 0 == as many as possible */
4293 		.devs_min	= 4,
4294 		.devs_increment	= 2,
4295 		.ncopies	= 2,
4296 	},
4297 	[BTRFS_RAID_RAID1] = {
4298 		.sub_stripes	= 1,
4299 		.dev_stripes	= 1,
4300 		.devs_max	= 2,
4301 		.devs_min	= 2,
4302 		.devs_increment	= 2,
4303 		.ncopies	= 2,
4304 	},
4305 	[BTRFS_RAID_DUP] = {
4306 		.sub_stripes	= 1,
4307 		.dev_stripes	= 2,
4308 		.devs_max	= 1,
4309 		.devs_min	= 1,
4310 		.devs_increment	= 1,
4311 		.ncopies	= 2,
4312 	},
4313 	[BTRFS_RAID_RAID0] = {
4314 		.sub_stripes	= 1,
4315 		.dev_stripes	= 1,
4316 		.devs_max	= 0,
4317 		.devs_min	= 2,
4318 		.devs_increment	= 1,
4319 		.ncopies	= 1,
4320 	},
4321 	[BTRFS_RAID_SINGLE] = {
4322 		.sub_stripes	= 1,
4323 		.dev_stripes	= 1,
4324 		.devs_max	= 1,
4325 		.devs_min	= 1,
4326 		.devs_increment	= 1,
4327 		.ncopies	= 1,
4328 	},
4329 	[BTRFS_RAID_RAID5] = {
4330 		.sub_stripes	= 1,
4331 		.dev_stripes	= 1,
4332 		.devs_max	= 0,
4333 		.devs_min	= 2,
4334 		.devs_increment	= 1,
4335 		.ncopies	= 2,
4336 	},
4337 	[BTRFS_RAID_RAID6] = {
4338 		.sub_stripes	= 1,
4339 		.dev_stripes	= 1,
4340 		.devs_max	= 0,
4341 		.devs_min	= 3,
4342 		.devs_increment	= 1,
4343 		.ncopies	= 3,
4344 	},
4345 };
4346 
4347 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4348 {
4349 	/* TODO allow them to set a preferred stripe size */
4350 	return 64 * 1024;
4351 }
4352 
4353 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4354 {
4355 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4356 		return;
4357 
4358 	btrfs_set_fs_incompat(info, RAID56);
4359 }
4360 
4361 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4362 			- sizeof(struct btrfs_item)		\
4363 			- sizeof(struct btrfs_chunk))		\
4364 			/ sizeof(struct btrfs_stripe) + 1)
4365 
4366 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4367 				- 2 * sizeof(struct btrfs_disk_key)	\
4368 				- 2 * sizeof(struct btrfs_chunk))	\
4369 				/ sizeof(struct btrfs_stripe) + 1)
4370 
4371 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4372 			       struct btrfs_root *extent_root, u64 start,
4373 			       u64 type)
4374 {
4375 	struct btrfs_fs_info *info = extent_root->fs_info;
4376 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4377 	struct list_head *cur;
4378 	struct map_lookup *map = NULL;
4379 	struct extent_map_tree *em_tree;
4380 	struct extent_map *em;
4381 	struct btrfs_device_info *devices_info = NULL;
4382 	u64 total_avail;
4383 	int num_stripes;	/* total number of stripes to allocate */
4384 	int data_stripes;	/* number of stripes that count for
4385 				   block group size */
4386 	int sub_stripes;	/* sub_stripes info for map */
4387 	int dev_stripes;	/* stripes per dev */
4388 	int devs_max;		/* max devs to use */
4389 	int devs_min;		/* min devs needed */
4390 	int devs_increment;	/* ndevs has to be a multiple of this */
4391 	int ncopies;		/* how many copies to data has */
4392 	int ret;
4393 	u64 max_stripe_size;
4394 	u64 max_chunk_size;
4395 	u64 stripe_size;
4396 	u64 num_bytes;
4397 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4398 	int ndevs;
4399 	int i;
4400 	int j;
4401 	int index;
4402 
4403 	BUG_ON(!alloc_profile_is_valid(type, 0));
4404 
4405 	if (list_empty(&fs_devices->alloc_list))
4406 		return -ENOSPC;
4407 
4408 	index = __get_raid_index(type);
4409 
4410 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4411 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4412 	devs_max = btrfs_raid_array[index].devs_max;
4413 	devs_min = btrfs_raid_array[index].devs_min;
4414 	devs_increment = btrfs_raid_array[index].devs_increment;
4415 	ncopies = btrfs_raid_array[index].ncopies;
4416 
4417 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4418 		max_stripe_size = 1024 * 1024 * 1024;
4419 		max_chunk_size = 10 * max_stripe_size;
4420 		if (!devs_max)
4421 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4422 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4423 		/* for larger filesystems, use larger metadata chunks */
4424 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4425 			max_stripe_size = 1024 * 1024 * 1024;
4426 		else
4427 			max_stripe_size = 256 * 1024 * 1024;
4428 		max_chunk_size = max_stripe_size;
4429 		if (!devs_max)
4430 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4431 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4432 		max_stripe_size = 32 * 1024 * 1024;
4433 		max_chunk_size = 2 * max_stripe_size;
4434 		if (!devs_max)
4435 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4436 	} else {
4437 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4438 		       type);
4439 		BUG_ON(1);
4440 	}
4441 
4442 	/* we don't want a chunk larger than 10% of writeable space */
4443 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4444 			     max_chunk_size);
4445 
4446 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4447 			       GFP_NOFS);
4448 	if (!devices_info)
4449 		return -ENOMEM;
4450 
4451 	cur = fs_devices->alloc_list.next;
4452 
4453 	/*
4454 	 * in the first pass through the devices list, we gather information
4455 	 * about the available holes on each device.
4456 	 */
4457 	ndevs = 0;
4458 	while (cur != &fs_devices->alloc_list) {
4459 		struct btrfs_device *device;
4460 		u64 max_avail;
4461 		u64 dev_offset;
4462 
4463 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4464 
4465 		cur = cur->next;
4466 
4467 		if (!device->writeable) {
4468 			WARN(1, KERN_ERR
4469 			       "BTRFS: read-only device in alloc_list\n");
4470 			continue;
4471 		}
4472 
4473 		if (!device->in_fs_metadata ||
4474 		    device->is_tgtdev_for_dev_replace)
4475 			continue;
4476 
4477 		if (device->total_bytes > device->bytes_used)
4478 			total_avail = device->total_bytes - device->bytes_used;
4479 		else
4480 			total_avail = 0;
4481 
4482 		/* If there is no space on this device, skip it. */
4483 		if (total_avail == 0)
4484 			continue;
4485 
4486 		ret = find_free_dev_extent(trans, device,
4487 					   max_stripe_size * dev_stripes,
4488 					   &dev_offset, &max_avail);
4489 		if (ret && ret != -ENOSPC)
4490 			goto error;
4491 
4492 		if (ret == 0)
4493 			max_avail = max_stripe_size * dev_stripes;
4494 
4495 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4496 			continue;
4497 
4498 		if (ndevs == fs_devices->rw_devices) {
4499 			WARN(1, "%s: found more than %llu devices\n",
4500 			     __func__, fs_devices->rw_devices);
4501 			break;
4502 		}
4503 		devices_info[ndevs].dev_offset = dev_offset;
4504 		devices_info[ndevs].max_avail = max_avail;
4505 		devices_info[ndevs].total_avail = total_avail;
4506 		devices_info[ndevs].dev = device;
4507 		++ndevs;
4508 	}
4509 
4510 	/*
4511 	 * now sort the devices by hole size / available space
4512 	 */
4513 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4514 	     btrfs_cmp_device_info, NULL);
4515 
4516 	/* round down to number of usable stripes */
4517 	ndevs -= ndevs % devs_increment;
4518 
4519 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4520 		ret = -ENOSPC;
4521 		goto error;
4522 	}
4523 
4524 	if (devs_max && ndevs > devs_max)
4525 		ndevs = devs_max;
4526 	/*
4527 	 * the primary goal is to maximize the number of stripes, so use as many
4528 	 * devices as possible, even if the stripes are not maximum sized.
4529 	 */
4530 	stripe_size = devices_info[ndevs-1].max_avail;
4531 	num_stripes = ndevs * dev_stripes;
4532 
4533 	/*
4534 	 * this will have to be fixed for RAID1 and RAID10 over
4535 	 * more drives
4536 	 */
4537 	data_stripes = num_stripes / ncopies;
4538 
4539 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4540 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4541 				 btrfs_super_stripesize(info->super_copy));
4542 		data_stripes = num_stripes - 1;
4543 	}
4544 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4545 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4546 				 btrfs_super_stripesize(info->super_copy));
4547 		data_stripes = num_stripes - 2;
4548 	}
4549 
4550 	/*
4551 	 * Use the number of data stripes to figure out how big this chunk
4552 	 * is really going to be in terms of logical address space,
4553 	 * and compare that answer with the max chunk size
4554 	 */
4555 	if (stripe_size * data_stripes > max_chunk_size) {
4556 		u64 mask = (1ULL << 24) - 1;
4557 
4558 		stripe_size = div_u64(max_chunk_size, data_stripes);
4559 
4560 		/* bump the answer up to a 16MB boundary */
4561 		stripe_size = (stripe_size + mask) & ~mask;
4562 
4563 		/* but don't go higher than the limits we found
4564 		 * while searching for free extents
4565 		 */
4566 		if (stripe_size > devices_info[ndevs-1].max_avail)
4567 			stripe_size = devices_info[ndevs-1].max_avail;
4568 	}
4569 
4570 	stripe_size = div_u64(stripe_size, dev_stripes);
4571 
4572 	/* align to BTRFS_STRIPE_LEN */
4573 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4574 	stripe_size *= raid_stripe_len;
4575 
4576 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4577 	if (!map) {
4578 		ret = -ENOMEM;
4579 		goto error;
4580 	}
4581 	map->num_stripes = num_stripes;
4582 
4583 	for (i = 0; i < ndevs; ++i) {
4584 		for (j = 0; j < dev_stripes; ++j) {
4585 			int s = i * dev_stripes + j;
4586 			map->stripes[s].dev = devices_info[i].dev;
4587 			map->stripes[s].physical = devices_info[i].dev_offset +
4588 						   j * stripe_size;
4589 		}
4590 	}
4591 	map->sector_size = extent_root->sectorsize;
4592 	map->stripe_len = raid_stripe_len;
4593 	map->io_align = raid_stripe_len;
4594 	map->io_width = raid_stripe_len;
4595 	map->type = type;
4596 	map->sub_stripes = sub_stripes;
4597 
4598 	num_bytes = stripe_size * data_stripes;
4599 
4600 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4601 
4602 	em = alloc_extent_map();
4603 	if (!em) {
4604 		kfree(map);
4605 		ret = -ENOMEM;
4606 		goto error;
4607 	}
4608 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4609 	em->bdev = (struct block_device *)map;
4610 	em->start = start;
4611 	em->len = num_bytes;
4612 	em->block_start = 0;
4613 	em->block_len = em->len;
4614 	em->orig_block_len = stripe_size;
4615 
4616 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4617 	write_lock(&em_tree->lock);
4618 	ret = add_extent_mapping(em_tree, em, 0);
4619 	if (!ret) {
4620 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4621 		atomic_inc(&em->refs);
4622 	}
4623 	write_unlock(&em_tree->lock);
4624 	if (ret) {
4625 		free_extent_map(em);
4626 		goto error;
4627 	}
4628 
4629 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4630 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4631 				     start, num_bytes);
4632 	if (ret)
4633 		goto error_del_extent;
4634 
4635 	for (i = 0; i < map->num_stripes; i++) {
4636 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4637 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4638 	}
4639 
4640 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4641 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4642 						   map->num_stripes);
4643 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4644 
4645 	free_extent_map(em);
4646 	check_raid56_incompat_flag(extent_root->fs_info, type);
4647 
4648 	kfree(devices_info);
4649 	return 0;
4650 
4651 error_del_extent:
4652 	write_lock(&em_tree->lock);
4653 	remove_extent_mapping(em_tree, em);
4654 	write_unlock(&em_tree->lock);
4655 
4656 	/* One for our allocation */
4657 	free_extent_map(em);
4658 	/* One for the tree reference */
4659 	free_extent_map(em);
4660 	/* One for the pending_chunks list reference */
4661 	free_extent_map(em);
4662 error:
4663 	kfree(devices_info);
4664 	return ret;
4665 }
4666 
4667 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4668 				struct btrfs_root *extent_root,
4669 				u64 chunk_offset, u64 chunk_size)
4670 {
4671 	struct btrfs_key key;
4672 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4673 	struct btrfs_device *device;
4674 	struct btrfs_chunk *chunk;
4675 	struct btrfs_stripe *stripe;
4676 	struct extent_map_tree *em_tree;
4677 	struct extent_map *em;
4678 	struct map_lookup *map;
4679 	size_t item_size;
4680 	u64 dev_offset;
4681 	u64 stripe_size;
4682 	int i = 0;
4683 	int ret;
4684 
4685 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4686 	read_lock(&em_tree->lock);
4687 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4688 	read_unlock(&em_tree->lock);
4689 
4690 	if (!em) {
4691 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4692 			   "%Lu len %Lu", chunk_offset, chunk_size);
4693 		return -EINVAL;
4694 	}
4695 
4696 	if (em->start != chunk_offset || em->len != chunk_size) {
4697 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4698 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4699 			  chunk_size, em->start, em->len);
4700 		free_extent_map(em);
4701 		return -EINVAL;
4702 	}
4703 
4704 	map = (struct map_lookup *)em->bdev;
4705 	item_size = btrfs_chunk_item_size(map->num_stripes);
4706 	stripe_size = em->orig_block_len;
4707 
4708 	chunk = kzalloc(item_size, GFP_NOFS);
4709 	if (!chunk) {
4710 		ret = -ENOMEM;
4711 		goto out;
4712 	}
4713 
4714 	for (i = 0; i < map->num_stripes; i++) {
4715 		device = map->stripes[i].dev;
4716 		dev_offset = map->stripes[i].physical;
4717 
4718 		ret = btrfs_update_device(trans, device);
4719 		if (ret)
4720 			goto out;
4721 		ret = btrfs_alloc_dev_extent(trans, device,
4722 					     chunk_root->root_key.objectid,
4723 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4724 					     chunk_offset, dev_offset,
4725 					     stripe_size);
4726 		if (ret)
4727 			goto out;
4728 	}
4729 
4730 	stripe = &chunk->stripe;
4731 	for (i = 0; i < map->num_stripes; i++) {
4732 		device = map->stripes[i].dev;
4733 		dev_offset = map->stripes[i].physical;
4734 
4735 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4736 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4737 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4738 		stripe++;
4739 	}
4740 
4741 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4742 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4743 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4744 	btrfs_set_stack_chunk_type(chunk, map->type);
4745 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4746 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4747 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4748 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4749 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4750 
4751 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4752 	key.type = BTRFS_CHUNK_ITEM_KEY;
4753 	key.offset = chunk_offset;
4754 
4755 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4756 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4757 		/*
4758 		 * TODO: Cleanup of inserted chunk root in case of
4759 		 * failure.
4760 		 */
4761 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4762 					     item_size);
4763 	}
4764 
4765 out:
4766 	kfree(chunk);
4767 	free_extent_map(em);
4768 	return ret;
4769 }
4770 
4771 /*
4772  * Chunk allocation falls into two parts. The first part does works
4773  * that make the new allocated chunk useable, but not do any operation
4774  * that modifies the chunk tree. The second part does the works that
4775  * require modifying the chunk tree. This division is important for the
4776  * bootstrap process of adding storage to a seed btrfs.
4777  */
4778 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4779 		      struct btrfs_root *extent_root, u64 type)
4780 {
4781 	u64 chunk_offset;
4782 
4783 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4784 	chunk_offset = find_next_chunk(extent_root->fs_info);
4785 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4786 }
4787 
4788 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4789 					 struct btrfs_root *root,
4790 					 struct btrfs_device *device)
4791 {
4792 	u64 chunk_offset;
4793 	u64 sys_chunk_offset;
4794 	u64 alloc_profile;
4795 	struct btrfs_fs_info *fs_info = root->fs_info;
4796 	struct btrfs_root *extent_root = fs_info->extent_root;
4797 	int ret;
4798 
4799 	chunk_offset = find_next_chunk(fs_info);
4800 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4801 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4802 				  alloc_profile);
4803 	if (ret)
4804 		return ret;
4805 
4806 	sys_chunk_offset = find_next_chunk(root->fs_info);
4807 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4808 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4809 				  alloc_profile);
4810 	return ret;
4811 }
4812 
4813 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4814 {
4815 	int max_errors;
4816 
4817 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4818 			 BTRFS_BLOCK_GROUP_RAID10 |
4819 			 BTRFS_BLOCK_GROUP_RAID5 |
4820 			 BTRFS_BLOCK_GROUP_DUP)) {
4821 		max_errors = 1;
4822 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4823 		max_errors = 2;
4824 	} else {
4825 		max_errors = 0;
4826 	}
4827 
4828 	return max_errors;
4829 }
4830 
4831 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4832 {
4833 	struct extent_map *em;
4834 	struct map_lookup *map;
4835 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4836 	int readonly = 0;
4837 	int miss_ndevs = 0;
4838 	int i;
4839 
4840 	read_lock(&map_tree->map_tree.lock);
4841 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4842 	read_unlock(&map_tree->map_tree.lock);
4843 	if (!em)
4844 		return 1;
4845 
4846 	map = (struct map_lookup *)em->bdev;
4847 	for (i = 0; i < map->num_stripes; i++) {
4848 		if (map->stripes[i].dev->missing) {
4849 			miss_ndevs++;
4850 			continue;
4851 		}
4852 
4853 		if (!map->stripes[i].dev->writeable) {
4854 			readonly = 1;
4855 			goto end;
4856 		}
4857 	}
4858 
4859 	/*
4860 	 * If the number of missing devices is larger than max errors,
4861 	 * we can not write the data into that chunk successfully, so
4862 	 * set it readonly.
4863 	 */
4864 	if (miss_ndevs > btrfs_chunk_max_errors(map))
4865 		readonly = 1;
4866 end:
4867 	free_extent_map(em);
4868 	return readonly;
4869 }
4870 
4871 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4872 {
4873 	extent_map_tree_init(&tree->map_tree);
4874 }
4875 
4876 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4877 {
4878 	struct extent_map *em;
4879 
4880 	while (1) {
4881 		write_lock(&tree->map_tree.lock);
4882 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4883 		if (em)
4884 			remove_extent_mapping(&tree->map_tree, em);
4885 		write_unlock(&tree->map_tree.lock);
4886 		if (!em)
4887 			break;
4888 		/* once for us */
4889 		free_extent_map(em);
4890 		/* once for the tree */
4891 		free_extent_map(em);
4892 	}
4893 }
4894 
4895 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4896 {
4897 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4898 	struct extent_map *em;
4899 	struct map_lookup *map;
4900 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4901 	int ret;
4902 
4903 	read_lock(&em_tree->lock);
4904 	em = lookup_extent_mapping(em_tree, logical, len);
4905 	read_unlock(&em_tree->lock);
4906 
4907 	/*
4908 	 * We could return errors for these cases, but that could get ugly and
4909 	 * we'd probably do the same thing which is just not do anything else
4910 	 * and exit, so return 1 so the callers don't try to use other copies.
4911 	 */
4912 	if (!em) {
4913 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4914 			    logical+len);
4915 		return 1;
4916 	}
4917 
4918 	if (em->start > logical || em->start + em->len < logical) {
4919 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4920 			    "%Lu-%Lu", logical, logical+len, em->start,
4921 			    em->start + em->len);
4922 		free_extent_map(em);
4923 		return 1;
4924 	}
4925 
4926 	map = (struct map_lookup *)em->bdev;
4927 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4928 		ret = map->num_stripes;
4929 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4930 		ret = map->sub_stripes;
4931 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4932 		ret = 2;
4933 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4934 		ret = 3;
4935 	else
4936 		ret = 1;
4937 	free_extent_map(em);
4938 
4939 	btrfs_dev_replace_lock(&fs_info->dev_replace);
4940 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4941 		ret++;
4942 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
4943 
4944 	return ret;
4945 }
4946 
4947 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4948 				    struct btrfs_mapping_tree *map_tree,
4949 				    u64 logical)
4950 {
4951 	struct extent_map *em;
4952 	struct map_lookup *map;
4953 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4954 	unsigned long len = root->sectorsize;
4955 
4956 	read_lock(&em_tree->lock);
4957 	em = lookup_extent_mapping(em_tree, logical, len);
4958 	read_unlock(&em_tree->lock);
4959 	BUG_ON(!em);
4960 
4961 	BUG_ON(em->start > logical || em->start + em->len < logical);
4962 	map = (struct map_lookup *)em->bdev;
4963 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4964 		len = map->stripe_len * nr_data_stripes(map);
4965 	free_extent_map(em);
4966 	return len;
4967 }
4968 
4969 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4970 			   u64 logical, u64 len, int mirror_num)
4971 {
4972 	struct extent_map *em;
4973 	struct map_lookup *map;
4974 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4975 	int ret = 0;
4976 
4977 	read_lock(&em_tree->lock);
4978 	em = lookup_extent_mapping(em_tree, logical, len);
4979 	read_unlock(&em_tree->lock);
4980 	BUG_ON(!em);
4981 
4982 	BUG_ON(em->start > logical || em->start + em->len < logical);
4983 	map = (struct map_lookup *)em->bdev;
4984 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4985 		ret = 1;
4986 	free_extent_map(em);
4987 	return ret;
4988 }
4989 
4990 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4991 			    struct map_lookup *map, int first, int num,
4992 			    int optimal, int dev_replace_is_ongoing)
4993 {
4994 	int i;
4995 	int tolerance;
4996 	struct btrfs_device *srcdev;
4997 
4998 	if (dev_replace_is_ongoing &&
4999 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5000 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5001 		srcdev = fs_info->dev_replace.srcdev;
5002 	else
5003 		srcdev = NULL;
5004 
5005 	/*
5006 	 * try to avoid the drive that is the source drive for a
5007 	 * dev-replace procedure, only choose it if no other non-missing
5008 	 * mirror is available
5009 	 */
5010 	for (tolerance = 0; tolerance < 2; tolerance++) {
5011 		if (map->stripes[optimal].dev->bdev &&
5012 		    (tolerance || map->stripes[optimal].dev != srcdev))
5013 			return optimal;
5014 		for (i = first; i < first + num; i++) {
5015 			if (map->stripes[i].dev->bdev &&
5016 			    (tolerance || map->stripes[i].dev != srcdev))
5017 				return i;
5018 		}
5019 	}
5020 
5021 	/* we couldn't find one that doesn't fail.  Just return something
5022 	 * and the io error handling code will clean up eventually
5023 	 */
5024 	return optimal;
5025 }
5026 
5027 static inline int parity_smaller(u64 a, u64 b)
5028 {
5029 	return a > b;
5030 }
5031 
5032 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5033 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5034 {
5035 	struct btrfs_bio_stripe s;
5036 	int i;
5037 	u64 l;
5038 	int again = 1;
5039 
5040 	while (again) {
5041 		again = 0;
5042 		for (i = 0; i < num_stripes - 1; i++) {
5043 			if (parity_smaller(bbio->raid_map[i],
5044 					   bbio->raid_map[i+1])) {
5045 				s = bbio->stripes[i];
5046 				l = bbio->raid_map[i];
5047 				bbio->stripes[i] = bbio->stripes[i+1];
5048 				bbio->raid_map[i] = bbio->raid_map[i+1];
5049 				bbio->stripes[i+1] = s;
5050 				bbio->raid_map[i+1] = l;
5051 
5052 				again = 1;
5053 			}
5054 		}
5055 	}
5056 }
5057 
5058 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5059 {
5060 	struct btrfs_bio *bbio = kzalloc(
5061 		 /* the size of the btrfs_bio */
5062 		sizeof(struct btrfs_bio) +
5063 		/* plus the variable array for the stripes */
5064 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5065 		/* plus the variable array for the tgt dev */
5066 		sizeof(int) * (real_stripes) +
5067 		/*
5068 		 * plus the raid_map, which includes both the tgt dev
5069 		 * and the stripes
5070 		 */
5071 		sizeof(u64) * (total_stripes),
5072 		GFP_NOFS|__GFP_NOFAIL);
5073 
5074 	atomic_set(&bbio->error, 0);
5075 	atomic_set(&bbio->refs, 1);
5076 
5077 	return bbio;
5078 }
5079 
5080 void btrfs_get_bbio(struct btrfs_bio *bbio)
5081 {
5082 	WARN_ON(!atomic_read(&bbio->refs));
5083 	atomic_inc(&bbio->refs);
5084 }
5085 
5086 void btrfs_put_bbio(struct btrfs_bio *bbio)
5087 {
5088 	if (!bbio)
5089 		return;
5090 	if (atomic_dec_and_test(&bbio->refs))
5091 		kfree(bbio);
5092 }
5093 
5094 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5095 			     u64 logical, u64 *length,
5096 			     struct btrfs_bio **bbio_ret,
5097 			     int mirror_num, int need_raid_map)
5098 {
5099 	struct extent_map *em;
5100 	struct map_lookup *map;
5101 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5102 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5103 	u64 offset;
5104 	u64 stripe_offset;
5105 	u64 stripe_end_offset;
5106 	u64 stripe_nr;
5107 	u64 stripe_nr_orig;
5108 	u64 stripe_nr_end;
5109 	u64 stripe_len;
5110 	u32 stripe_index;
5111 	int i;
5112 	int ret = 0;
5113 	int num_stripes;
5114 	int max_errors = 0;
5115 	int tgtdev_indexes = 0;
5116 	struct btrfs_bio *bbio = NULL;
5117 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5118 	int dev_replace_is_ongoing = 0;
5119 	int num_alloc_stripes;
5120 	int patch_the_first_stripe_for_dev_replace = 0;
5121 	u64 physical_to_patch_in_first_stripe = 0;
5122 	u64 raid56_full_stripe_start = (u64)-1;
5123 
5124 	read_lock(&em_tree->lock);
5125 	em = lookup_extent_mapping(em_tree, logical, *length);
5126 	read_unlock(&em_tree->lock);
5127 
5128 	if (!em) {
5129 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5130 			logical, *length);
5131 		return -EINVAL;
5132 	}
5133 
5134 	if (em->start > logical || em->start + em->len < logical) {
5135 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5136 			   "found %Lu-%Lu", logical, em->start,
5137 			   em->start + em->len);
5138 		free_extent_map(em);
5139 		return -EINVAL;
5140 	}
5141 
5142 	map = (struct map_lookup *)em->bdev;
5143 	offset = logical - em->start;
5144 
5145 	stripe_len = map->stripe_len;
5146 	stripe_nr = offset;
5147 	/*
5148 	 * stripe_nr counts the total number of stripes we have to stride
5149 	 * to get to this block
5150 	 */
5151 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5152 
5153 	stripe_offset = stripe_nr * stripe_len;
5154 	BUG_ON(offset < stripe_offset);
5155 
5156 	/* stripe_offset is the offset of this block in its stripe*/
5157 	stripe_offset = offset - stripe_offset;
5158 
5159 	/* if we're here for raid56, we need to know the stripe aligned start */
5160 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5161 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5162 		raid56_full_stripe_start = offset;
5163 
5164 		/* allow a write of a full stripe, but make sure we don't
5165 		 * allow straddling of stripes
5166 		 */
5167 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5168 				full_stripe_len);
5169 		raid56_full_stripe_start *= full_stripe_len;
5170 	}
5171 
5172 	if (rw & REQ_DISCARD) {
5173 		/* we don't discard raid56 yet */
5174 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5175 			ret = -EOPNOTSUPP;
5176 			goto out;
5177 		}
5178 		*length = min_t(u64, em->len - offset, *length);
5179 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5180 		u64 max_len;
5181 		/* For writes to RAID[56], allow a full stripeset across all disks.
5182 		   For other RAID types and for RAID[56] reads, just allow a single
5183 		   stripe (on a single disk). */
5184 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5185 		    (rw & REQ_WRITE)) {
5186 			max_len = stripe_len * nr_data_stripes(map) -
5187 				(offset - raid56_full_stripe_start);
5188 		} else {
5189 			/* we limit the length of each bio to what fits in a stripe */
5190 			max_len = stripe_len - stripe_offset;
5191 		}
5192 		*length = min_t(u64, em->len - offset, max_len);
5193 	} else {
5194 		*length = em->len - offset;
5195 	}
5196 
5197 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5198 	   it cares about is the length */
5199 	if (!bbio_ret)
5200 		goto out;
5201 
5202 	btrfs_dev_replace_lock(dev_replace);
5203 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5204 	if (!dev_replace_is_ongoing)
5205 		btrfs_dev_replace_unlock(dev_replace);
5206 
5207 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5208 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5209 	    dev_replace->tgtdev != NULL) {
5210 		/*
5211 		 * in dev-replace case, for repair case (that's the only
5212 		 * case where the mirror is selected explicitly when
5213 		 * calling btrfs_map_block), blocks left of the left cursor
5214 		 * can also be read from the target drive.
5215 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5216 		 * the last one to the array of stripes. For READ, it also
5217 		 * needs to be supported using the same mirror number.
5218 		 * If the requested block is not left of the left cursor,
5219 		 * EIO is returned. This can happen because btrfs_num_copies()
5220 		 * returns one more in the dev-replace case.
5221 		 */
5222 		u64 tmp_length = *length;
5223 		struct btrfs_bio *tmp_bbio = NULL;
5224 		int tmp_num_stripes;
5225 		u64 srcdev_devid = dev_replace->srcdev->devid;
5226 		int index_srcdev = 0;
5227 		int found = 0;
5228 		u64 physical_of_found = 0;
5229 
5230 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5231 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5232 		if (ret) {
5233 			WARN_ON(tmp_bbio != NULL);
5234 			goto out;
5235 		}
5236 
5237 		tmp_num_stripes = tmp_bbio->num_stripes;
5238 		if (mirror_num > tmp_num_stripes) {
5239 			/*
5240 			 * REQ_GET_READ_MIRRORS does not contain this
5241 			 * mirror, that means that the requested area
5242 			 * is not left of the left cursor
5243 			 */
5244 			ret = -EIO;
5245 			btrfs_put_bbio(tmp_bbio);
5246 			goto out;
5247 		}
5248 
5249 		/*
5250 		 * process the rest of the function using the mirror_num
5251 		 * of the source drive. Therefore look it up first.
5252 		 * At the end, patch the device pointer to the one of the
5253 		 * target drive.
5254 		 */
5255 		for (i = 0; i < tmp_num_stripes; i++) {
5256 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5257 				/*
5258 				 * In case of DUP, in order to keep it
5259 				 * simple, only add the mirror with the
5260 				 * lowest physical address
5261 				 */
5262 				if (found &&
5263 				    physical_of_found <=
5264 				     tmp_bbio->stripes[i].physical)
5265 					continue;
5266 				index_srcdev = i;
5267 				found = 1;
5268 				physical_of_found =
5269 					tmp_bbio->stripes[i].physical;
5270 			}
5271 		}
5272 
5273 		if (found) {
5274 			mirror_num = index_srcdev + 1;
5275 			patch_the_first_stripe_for_dev_replace = 1;
5276 			physical_to_patch_in_first_stripe = physical_of_found;
5277 		} else {
5278 			WARN_ON(1);
5279 			ret = -EIO;
5280 			btrfs_put_bbio(tmp_bbio);
5281 			goto out;
5282 		}
5283 
5284 		btrfs_put_bbio(tmp_bbio);
5285 	} else if (mirror_num > map->num_stripes) {
5286 		mirror_num = 0;
5287 	}
5288 
5289 	num_stripes = 1;
5290 	stripe_index = 0;
5291 	stripe_nr_orig = stripe_nr;
5292 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5293 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5294 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5295 			    (offset + *length);
5296 
5297 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5298 		if (rw & REQ_DISCARD)
5299 			num_stripes = min_t(u64, map->num_stripes,
5300 					    stripe_nr_end - stripe_nr_orig);
5301 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5302 				&stripe_index);
5303 		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5304 			mirror_num = 1;
5305 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5306 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5307 			num_stripes = map->num_stripes;
5308 		else if (mirror_num)
5309 			stripe_index = mirror_num - 1;
5310 		else {
5311 			stripe_index = find_live_mirror(fs_info, map, 0,
5312 					    map->num_stripes,
5313 					    current->pid % map->num_stripes,
5314 					    dev_replace_is_ongoing);
5315 			mirror_num = stripe_index + 1;
5316 		}
5317 
5318 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5319 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5320 			num_stripes = map->num_stripes;
5321 		} else if (mirror_num) {
5322 			stripe_index = mirror_num - 1;
5323 		} else {
5324 			mirror_num = 1;
5325 		}
5326 
5327 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5328 		u32 factor = map->num_stripes / map->sub_stripes;
5329 
5330 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5331 		stripe_index *= map->sub_stripes;
5332 
5333 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5334 			num_stripes = map->sub_stripes;
5335 		else if (rw & REQ_DISCARD)
5336 			num_stripes = min_t(u64, map->sub_stripes *
5337 					    (stripe_nr_end - stripe_nr_orig),
5338 					    map->num_stripes);
5339 		else if (mirror_num)
5340 			stripe_index += mirror_num - 1;
5341 		else {
5342 			int old_stripe_index = stripe_index;
5343 			stripe_index = find_live_mirror(fs_info, map,
5344 					      stripe_index,
5345 					      map->sub_stripes, stripe_index +
5346 					      current->pid % map->sub_stripes,
5347 					      dev_replace_is_ongoing);
5348 			mirror_num = stripe_index - old_stripe_index + 1;
5349 		}
5350 
5351 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5352 		if (need_raid_map &&
5353 		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5354 		     mirror_num > 1)) {
5355 			/* push stripe_nr back to the start of the full stripe */
5356 			stripe_nr = div_u64(raid56_full_stripe_start,
5357 					stripe_len * nr_data_stripes(map));
5358 
5359 			/* RAID[56] write or recovery. Return all stripes */
5360 			num_stripes = map->num_stripes;
5361 			max_errors = nr_parity_stripes(map);
5362 
5363 			*length = map->stripe_len;
5364 			stripe_index = 0;
5365 			stripe_offset = 0;
5366 		} else {
5367 			/*
5368 			 * Mirror #0 or #1 means the original data block.
5369 			 * Mirror #2 is RAID5 parity block.
5370 			 * Mirror #3 is RAID6 Q block.
5371 			 */
5372 			stripe_nr = div_u64_rem(stripe_nr,
5373 					nr_data_stripes(map), &stripe_index);
5374 			if (mirror_num > 1)
5375 				stripe_index = nr_data_stripes(map) +
5376 						mirror_num - 2;
5377 
5378 			/* We distribute the parity blocks across stripes */
5379 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5380 					&stripe_index);
5381 			if (!(rw & (REQ_WRITE | REQ_DISCARD |
5382 				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5383 				mirror_num = 1;
5384 		}
5385 	} else {
5386 		/*
5387 		 * after this, stripe_nr is the number of stripes on this
5388 		 * device we have to walk to find the data, and stripe_index is
5389 		 * the number of our device in the stripe array
5390 		 */
5391 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5392 				&stripe_index);
5393 		mirror_num = stripe_index + 1;
5394 	}
5395 	BUG_ON(stripe_index >= map->num_stripes);
5396 
5397 	num_alloc_stripes = num_stripes;
5398 	if (dev_replace_is_ongoing) {
5399 		if (rw & (REQ_WRITE | REQ_DISCARD))
5400 			num_alloc_stripes <<= 1;
5401 		if (rw & REQ_GET_READ_MIRRORS)
5402 			num_alloc_stripes++;
5403 		tgtdev_indexes = num_stripes;
5404 	}
5405 
5406 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5407 	if (!bbio) {
5408 		ret = -ENOMEM;
5409 		goto out;
5410 	}
5411 	if (dev_replace_is_ongoing)
5412 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5413 
5414 	/* build raid_map */
5415 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5416 	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5417 	    mirror_num > 1)) {
5418 		u64 tmp;
5419 		unsigned rot;
5420 
5421 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5422 				 sizeof(struct btrfs_bio_stripe) *
5423 				 num_alloc_stripes +
5424 				 sizeof(int) * tgtdev_indexes);
5425 
5426 		/* Work out the disk rotation on this stripe-set */
5427 		div_u64_rem(stripe_nr, num_stripes, &rot);
5428 
5429 		/* Fill in the logical address of each stripe */
5430 		tmp = stripe_nr * nr_data_stripes(map);
5431 		for (i = 0; i < nr_data_stripes(map); i++)
5432 			bbio->raid_map[(i+rot) % num_stripes] =
5433 				em->start + (tmp + i) * map->stripe_len;
5434 
5435 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5436 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5437 			bbio->raid_map[(i+rot+1) % num_stripes] =
5438 				RAID6_Q_STRIPE;
5439 	}
5440 
5441 	if (rw & REQ_DISCARD) {
5442 		u32 factor = 0;
5443 		u32 sub_stripes = 0;
5444 		u64 stripes_per_dev = 0;
5445 		u32 remaining_stripes = 0;
5446 		u32 last_stripe = 0;
5447 
5448 		if (map->type &
5449 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5450 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5451 				sub_stripes = 1;
5452 			else
5453 				sub_stripes = map->sub_stripes;
5454 
5455 			factor = map->num_stripes / sub_stripes;
5456 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5457 						      stripe_nr_orig,
5458 						      factor,
5459 						      &remaining_stripes);
5460 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5461 			last_stripe *= sub_stripes;
5462 		}
5463 
5464 		for (i = 0; i < num_stripes; i++) {
5465 			bbio->stripes[i].physical =
5466 				map->stripes[stripe_index].physical +
5467 				stripe_offset + stripe_nr * map->stripe_len;
5468 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5469 
5470 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5471 					 BTRFS_BLOCK_GROUP_RAID10)) {
5472 				bbio->stripes[i].length = stripes_per_dev *
5473 							  map->stripe_len;
5474 
5475 				if (i / sub_stripes < remaining_stripes)
5476 					bbio->stripes[i].length +=
5477 						map->stripe_len;
5478 
5479 				/*
5480 				 * Special for the first stripe and
5481 				 * the last stripe:
5482 				 *
5483 				 * |-------|...|-------|
5484 				 *     |----------|
5485 				 *    off     end_off
5486 				 */
5487 				if (i < sub_stripes)
5488 					bbio->stripes[i].length -=
5489 						stripe_offset;
5490 
5491 				if (stripe_index >= last_stripe &&
5492 				    stripe_index <= (last_stripe +
5493 						     sub_stripes - 1))
5494 					bbio->stripes[i].length -=
5495 						stripe_end_offset;
5496 
5497 				if (i == sub_stripes - 1)
5498 					stripe_offset = 0;
5499 			} else
5500 				bbio->stripes[i].length = *length;
5501 
5502 			stripe_index++;
5503 			if (stripe_index == map->num_stripes) {
5504 				/* This could only happen for RAID0/10 */
5505 				stripe_index = 0;
5506 				stripe_nr++;
5507 			}
5508 		}
5509 	} else {
5510 		for (i = 0; i < num_stripes; i++) {
5511 			bbio->stripes[i].physical =
5512 				map->stripes[stripe_index].physical +
5513 				stripe_offset +
5514 				stripe_nr * map->stripe_len;
5515 			bbio->stripes[i].dev =
5516 				map->stripes[stripe_index].dev;
5517 			stripe_index++;
5518 		}
5519 	}
5520 
5521 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5522 		max_errors = btrfs_chunk_max_errors(map);
5523 
5524 	if (bbio->raid_map)
5525 		sort_parity_stripes(bbio, num_stripes);
5526 
5527 	tgtdev_indexes = 0;
5528 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5529 	    dev_replace->tgtdev != NULL) {
5530 		int index_where_to_add;
5531 		u64 srcdev_devid = dev_replace->srcdev->devid;
5532 
5533 		/*
5534 		 * duplicate the write operations while the dev replace
5535 		 * procedure is running. Since the copying of the old disk
5536 		 * to the new disk takes place at run time while the
5537 		 * filesystem is mounted writable, the regular write
5538 		 * operations to the old disk have to be duplicated to go
5539 		 * to the new disk as well.
5540 		 * Note that device->missing is handled by the caller, and
5541 		 * that the write to the old disk is already set up in the
5542 		 * stripes array.
5543 		 */
5544 		index_where_to_add = num_stripes;
5545 		for (i = 0; i < num_stripes; i++) {
5546 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5547 				/* write to new disk, too */
5548 				struct btrfs_bio_stripe *new =
5549 					bbio->stripes + index_where_to_add;
5550 				struct btrfs_bio_stripe *old =
5551 					bbio->stripes + i;
5552 
5553 				new->physical = old->physical;
5554 				new->length = old->length;
5555 				new->dev = dev_replace->tgtdev;
5556 				bbio->tgtdev_map[i] = index_where_to_add;
5557 				index_where_to_add++;
5558 				max_errors++;
5559 				tgtdev_indexes++;
5560 			}
5561 		}
5562 		num_stripes = index_where_to_add;
5563 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5564 		   dev_replace->tgtdev != NULL) {
5565 		u64 srcdev_devid = dev_replace->srcdev->devid;
5566 		int index_srcdev = 0;
5567 		int found = 0;
5568 		u64 physical_of_found = 0;
5569 
5570 		/*
5571 		 * During the dev-replace procedure, the target drive can
5572 		 * also be used to read data in case it is needed to repair
5573 		 * a corrupt block elsewhere. This is possible if the
5574 		 * requested area is left of the left cursor. In this area,
5575 		 * the target drive is a full copy of the source drive.
5576 		 */
5577 		for (i = 0; i < num_stripes; i++) {
5578 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5579 				/*
5580 				 * In case of DUP, in order to keep it
5581 				 * simple, only add the mirror with the
5582 				 * lowest physical address
5583 				 */
5584 				if (found &&
5585 				    physical_of_found <=
5586 				     bbio->stripes[i].physical)
5587 					continue;
5588 				index_srcdev = i;
5589 				found = 1;
5590 				physical_of_found = bbio->stripes[i].physical;
5591 			}
5592 		}
5593 		if (found) {
5594 			if (physical_of_found + map->stripe_len <=
5595 			    dev_replace->cursor_left) {
5596 				struct btrfs_bio_stripe *tgtdev_stripe =
5597 					bbio->stripes + num_stripes;
5598 
5599 				tgtdev_stripe->physical = physical_of_found;
5600 				tgtdev_stripe->length =
5601 					bbio->stripes[index_srcdev].length;
5602 				tgtdev_stripe->dev = dev_replace->tgtdev;
5603 				bbio->tgtdev_map[index_srcdev] = num_stripes;
5604 
5605 				tgtdev_indexes++;
5606 				num_stripes++;
5607 			}
5608 		}
5609 	}
5610 
5611 	*bbio_ret = bbio;
5612 	bbio->map_type = map->type;
5613 	bbio->num_stripes = num_stripes;
5614 	bbio->max_errors = max_errors;
5615 	bbio->mirror_num = mirror_num;
5616 	bbio->num_tgtdevs = tgtdev_indexes;
5617 
5618 	/*
5619 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5620 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5621 	 * available as a mirror
5622 	 */
5623 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5624 		WARN_ON(num_stripes > 1);
5625 		bbio->stripes[0].dev = dev_replace->tgtdev;
5626 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5627 		bbio->mirror_num = map->num_stripes + 1;
5628 	}
5629 out:
5630 	if (dev_replace_is_ongoing)
5631 		btrfs_dev_replace_unlock(dev_replace);
5632 	free_extent_map(em);
5633 	return ret;
5634 }
5635 
5636 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5637 		      u64 logical, u64 *length,
5638 		      struct btrfs_bio **bbio_ret, int mirror_num)
5639 {
5640 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5641 				 mirror_num, 0);
5642 }
5643 
5644 /* For Scrub/replace */
5645 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5646 		     u64 logical, u64 *length,
5647 		     struct btrfs_bio **bbio_ret, int mirror_num,
5648 		     int need_raid_map)
5649 {
5650 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5651 				 mirror_num, need_raid_map);
5652 }
5653 
5654 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5655 		     u64 chunk_start, u64 physical, u64 devid,
5656 		     u64 **logical, int *naddrs, int *stripe_len)
5657 {
5658 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5659 	struct extent_map *em;
5660 	struct map_lookup *map;
5661 	u64 *buf;
5662 	u64 bytenr;
5663 	u64 length;
5664 	u64 stripe_nr;
5665 	u64 rmap_len;
5666 	int i, j, nr = 0;
5667 
5668 	read_lock(&em_tree->lock);
5669 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5670 	read_unlock(&em_tree->lock);
5671 
5672 	if (!em) {
5673 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5674 		       chunk_start);
5675 		return -EIO;
5676 	}
5677 
5678 	if (em->start != chunk_start) {
5679 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5680 		       em->start, chunk_start);
5681 		free_extent_map(em);
5682 		return -EIO;
5683 	}
5684 	map = (struct map_lookup *)em->bdev;
5685 
5686 	length = em->len;
5687 	rmap_len = map->stripe_len;
5688 
5689 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5690 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5691 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5692 		length = div_u64(length, map->num_stripes);
5693 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5694 		length = div_u64(length, nr_data_stripes(map));
5695 		rmap_len = map->stripe_len * nr_data_stripes(map);
5696 	}
5697 
5698 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5699 	BUG_ON(!buf); /* -ENOMEM */
5700 
5701 	for (i = 0; i < map->num_stripes; i++) {
5702 		if (devid && map->stripes[i].dev->devid != devid)
5703 			continue;
5704 		if (map->stripes[i].physical > physical ||
5705 		    map->stripes[i].physical + length <= physical)
5706 			continue;
5707 
5708 		stripe_nr = physical - map->stripes[i].physical;
5709 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5710 
5711 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5712 			stripe_nr = stripe_nr * map->num_stripes + i;
5713 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5714 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5715 			stripe_nr = stripe_nr * map->num_stripes + i;
5716 		} /* else if RAID[56], multiply by nr_data_stripes().
5717 		   * Alternatively, just use rmap_len below instead of
5718 		   * map->stripe_len */
5719 
5720 		bytenr = chunk_start + stripe_nr * rmap_len;
5721 		WARN_ON(nr >= map->num_stripes);
5722 		for (j = 0; j < nr; j++) {
5723 			if (buf[j] == bytenr)
5724 				break;
5725 		}
5726 		if (j == nr) {
5727 			WARN_ON(nr >= map->num_stripes);
5728 			buf[nr++] = bytenr;
5729 		}
5730 	}
5731 
5732 	*logical = buf;
5733 	*naddrs = nr;
5734 	*stripe_len = rmap_len;
5735 
5736 	free_extent_map(em);
5737 	return 0;
5738 }
5739 
5740 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5741 {
5742 	bio->bi_private = bbio->private;
5743 	bio->bi_end_io = bbio->end_io;
5744 	bio_endio(bio);
5745 
5746 	btrfs_put_bbio(bbio);
5747 }
5748 
5749 static void btrfs_end_bio(struct bio *bio)
5750 {
5751 	struct btrfs_bio *bbio = bio->bi_private;
5752 	int is_orig_bio = 0;
5753 
5754 	if (bio->bi_error) {
5755 		atomic_inc(&bbio->error);
5756 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5757 			unsigned int stripe_index =
5758 				btrfs_io_bio(bio)->stripe_index;
5759 			struct btrfs_device *dev;
5760 
5761 			BUG_ON(stripe_index >= bbio->num_stripes);
5762 			dev = bbio->stripes[stripe_index].dev;
5763 			if (dev->bdev) {
5764 				if (bio->bi_rw & WRITE)
5765 					btrfs_dev_stat_inc(dev,
5766 						BTRFS_DEV_STAT_WRITE_ERRS);
5767 				else
5768 					btrfs_dev_stat_inc(dev,
5769 						BTRFS_DEV_STAT_READ_ERRS);
5770 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5771 					btrfs_dev_stat_inc(dev,
5772 						BTRFS_DEV_STAT_FLUSH_ERRS);
5773 				btrfs_dev_stat_print_on_error(dev);
5774 			}
5775 		}
5776 	}
5777 
5778 	if (bio == bbio->orig_bio)
5779 		is_orig_bio = 1;
5780 
5781 	btrfs_bio_counter_dec(bbio->fs_info);
5782 
5783 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5784 		if (!is_orig_bio) {
5785 			bio_put(bio);
5786 			bio = bbio->orig_bio;
5787 		}
5788 
5789 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5790 		/* only send an error to the higher layers if it is
5791 		 * beyond the tolerance of the btrfs bio
5792 		 */
5793 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5794 			bio->bi_error = -EIO;
5795 		} else {
5796 			/*
5797 			 * this bio is actually up to date, we didn't
5798 			 * go over the max number of errors
5799 			 */
5800 			bio->bi_error = 0;
5801 		}
5802 
5803 		btrfs_end_bbio(bbio, bio);
5804 	} else if (!is_orig_bio) {
5805 		bio_put(bio);
5806 	}
5807 }
5808 
5809 /*
5810  * see run_scheduled_bios for a description of why bios are collected for
5811  * async submit.
5812  *
5813  * This will add one bio to the pending list for a device and make sure
5814  * the work struct is scheduled.
5815  */
5816 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5817 					struct btrfs_device *device,
5818 					int rw, struct bio *bio)
5819 {
5820 	int should_queue = 1;
5821 	struct btrfs_pending_bios *pending_bios;
5822 
5823 	if (device->missing || !device->bdev) {
5824 		bio_io_error(bio);
5825 		return;
5826 	}
5827 
5828 	/* don't bother with additional async steps for reads, right now */
5829 	if (!(rw & REQ_WRITE)) {
5830 		bio_get(bio);
5831 		btrfsic_submit_bio(rw, bio);
5832 		bio_put(bio);
5833 		return;
5834 	}
5835 
5836 	/*
5837 	 * nr_async_bios allows us to reliably return congestion to the
5838 	 * higher layers.  Otherwise, the async bio makes it appear we have
5839 	 * made progress against dirty pages when we've really just put it
5840 	 * on a queue for later
5841 	 */
5842 	atomic_inc(&root->fs_info->nr_async_bios);
5843 	WARN_ON(bio->bi_next);
5844 	bio->bi_next = NULL;
5845 	bio->bi_rw |= rw;
5846 
5847 	spin_lock(&device->io_lock);
5848 	if (bio->bi_rw & REQ_SYNC)
5849 		pending_bios = &device->pending_sync_bios;
5850 	else
5851 		pending_bios = &device->pending_bios;
5852 
5853 	if (pending_bios->tail)
5854 		pending_bios->tail->bi_next = bio;
5855 
5856 	pending_bios->tail = bio;
5857 	if (!pending_bios->head)
5858 		pending_bios->head = bio;
5859 	if (device->running_pending)
5860 		should_queue = 0;
5861 
5862 	spin_unlock(&device->io_lock);
5863 
5864 	if (should_queue)
5865 		btrfs_queue_work(root->fs_info->submit_workers,
5866 				 &device->work);
5867 }
5868 
5869 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5870 			      struct bio *bio, u64 physical, int dev_nr,
5871 			      int rw, int async)
5872 {
5873 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5874 
5875 	bio->bi_private = bbio;
5876 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5877 	bio->bi_end_io = btrfs_end_bio;
5878 	bio->bi_iter.bi_sector = physical >> 9;
5879 #ifdef DEBUG
5880 	{
5881 		struct rcu_string *name;
5882 
5883 		rcu_read_lock();
5884 		name = rcu_dereference(dev->name);
5885 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5886 			 "(%s id %llu), size=%u\n", rw,
5887 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5888 			 name->str, dev->devid, bio->bi_iter.bi_size);
5889 		rcu_read_unlock();
5890 	}
5891 #endif
5892 	bio->bi_bdev = dev->bdev;
5893 
5894 	btrfs_bio_counter_inc_noblocked(root->fs_info);
5895 
5896 	if (async)
5897 		btrfs_schedule_bio(root, dev, rw, bio);
5898 	else
5899 		btrfsic_submit_bio(rw, bio);
5900 }
5901 
5902 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5903 {
5904 	atomic_inc(&bbio->error);
5905 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5906 		/* Shoud be the original bio. */
5907 		WARN_ON(bio != bbio->orig_bio);
5908 
5909 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5910 		bio->bi_iter.bi_sector = logical >> 9;
5911 		bio->bi_error = -EIO;
5912 		btrfs_end_bbio(bbio, bio);
5913 	}
5914 }
5915 
5916 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5917 		  int mirror_num, int async_submit)
5918 {
5919 	struct btrfs_device *dev;
5920 	struct bio *first_bio = bio;
5921 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5922 	u64 length = 0;
5923 	u64 map_length;
5924 	int ret;
5925 	int dev_nr;
5926 	int total_devs;
5927 	struct btrfs_bio *bbio = NULL;
5928 
5929 	length = bio->bi_iter.bi_size;
5930 	map_length = length;
5931 
5932 	btrfs_bio_counter_inc_blocked(root->fs_info);
5933 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5934 			      mirror_num, 1);
5935 	if (ret) {
5936 		btrfs_bio_counter_dec(root->fs_info);
5937 		return ret;
5938 	}
5939 
5940 	total_devs = bbio->num_stripes;
5941 	bbio->orig_bio = first_bio;
5942 	bbio->private = first_bio->bi_private;
5943 	bbio->end_io = first_bio->bi_end_io;
5944 	bbio->fs_info = root->fs_info;
5945 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5946 
5947 	if (bbio->raid_map) {
5948 		/* In this case, map_length has been set to the length of
5949 		   a single stripe; not the whole write */
5950 		if (rw & WRITE) {
5951 			ret = raid56_parity_write(root, bio, bbio, map_length);
5952 		} else {
5953 			ret = raid56_parity_recover(root, bio, bbio, map_length,
5954 						    mirror_num, 1);
5955 		}
5956 
5957 		btrfs_bio_counter_dec(root->fs_info);
5958 		return ret;
5959 	}
5960 
5961 	if (map_length < length) {
5962 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5963 			logical, length, map_length);
5964 		BUG();
5965 	}
5966 
5967 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5968 		dev = bbio->stripes[dev_nr].dev;
5969 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5970 			bbio_error(bbio, first_bio, logical);
5971 			continue;
5972 		}
5973 
5974 		if (dev_nr < total_devs - 1) {
5975 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5976 			BUG_ON(!bio); /* -ENOMEM */
5977 		} else
5978 			bio = first_bio;
5979 
5980 		submit_stripe_bio(root, bbio, bio,
5981 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
5982 				  async_submit);
5983 	}
5984 	btrfs_bio_counter_dec(root->fs_info);
5985 	return 0;
5986 }
5987 
5988 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5989 				       u8 *uuid, u8 *fsid)
5990 {
5991 	struct btrfs_device *device;
5992 	struct btrfs_fs_devices *cur_devices;
5993 
5994 	cur_devices = fs_info->fs_devices;
5995 	while (cur_devices) {
5996 		if (!fsid ||
5997 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5998 			device = __find_device(&cur_devices->devices,
5999 					       devid, uuid);
6000 			if (device)
6001 				return device;
6002 		}
6003 		cur_devices = cur_devices->seed;
6004 	}
6005 	return NULL;
6006 }
6007 
6008 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6009 					    struct btrfs_fs_devices *fs_devices,
6010 					    u64 devid, u8 *dev_uuid)
6011 {
6012 	struct btrfs_device *device;
6013 
6014 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6015 	if (IS_ERR(device))
6016 		return NULL;
6017 
6018 	list_add(&device->dev_list, &fs_devices->devices);
6019 	device->fs_devices = fs_devices;
6020 	fs_devices->num_devices++;
6021 
6022 	device->missing = 1;
6023 	fs_devices->missing_devices++;
6024 
6025 	return device;
6026 }
6027 
6028 /**
6029  * btrfs_alloc_device - allocate struct btrfs_device
6030  * @fs_info:	used only for generating a new devid, can be NULL if
6031  *		devid is provided (i.e. @devid != NULL).
6032  * @devid:	a pointer to devid for this device.  If NULL a new devid
6033  *		is generated.
6034  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6035  *		is generated.
6036  *
6037  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6038  * on error.  Returned struct is not linked onto any lists and can be
6039  * destroyed with kfree() right away.
6040  */
6041 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6042 					const u64 *devid,
6043 					const u8 *uuid)
6044 {
6045 	struct btrfs_device *dev;
6046 	u64 tmp;
6047 
6048 	if (WARN_ON(!devid && !fs_info))
6049 		return ERR_PTR(-EINVAL);
6050 
6051 	dev = __alloc_device();
6052 	if (IS_ERR(dev))
6053 		return dev;
6054 
6055 	if (devid)
6056 		tmp = *devid;
6057 	else {
6058 		int ret;
6059 
6060 		ret = find_next_devid(fs_info, &tmp);
6061 		if (ret) {
6062 			kfree(dev);
6063 			return ERR_PTR(ret);
6064 		}
6065 	}
6066 	dev->devid = tmp;
6067 
6068 	if (uuid)
6069 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6070 	else
6071 		generate_random_uuid(dev->uuid);
6072 
6073 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6074 			pending_bios_fn, NULL, NULL);
6075 
6076 	return dev;
6077 }
6078 
6079 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6080 			  struct extent_buffer *leaf,
6081 			  struct btrfs_chunk *chunk)
6082 {
6083 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6084 	struct map_lookup *map;
6085 	struct extent_map *em;
6086 	u64 logical;
6087 	u64 length;
6088 	u64 devid;
6089 	u8 uuid[BTRFS_UUID_SIZE];
6090 	int num_stripes;
6091 	int ret;
6092 	int i;
6093 
6094 	logical = key->offset;
6095 	length = btrfs_chunk_length(leaf, chunk);
6096 
6097 	read_lock(&map_tree->map_tree.lock);
6098 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6099 	read_unlock(&map_tree->map_tree.lock);
6100 
6101 	/* already mapped? */
6102 	if (em && em->start <= logical && em->start + em->len > logical) {
6103 		free_extent_map(em);
6104 		return 0;
6105 	} else if (em) {
6106 		free_extent_map(em);
6107 	}
6108 
6109 	em = alloc_extent_map();
6110 	if (!em)
6111 		return -ENOMEM;
6112 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6113 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6114 	if (!map) {
6115 		free_extent_map(em);
6116 		return -ENOMEM;
6117 	}
6118 
6119 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6120 	em->bdev = (struct block_device *)map;
6121 	em->start = logical;
6122 	em->len = length;
6123 	em->orig_start = 0;
6124 	em->block_start = 0;
6125 	em->block_len = em->len;
6126 
6127 	map->num_stripes = num_stripes;
6128 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6129 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6130 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6131 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6132 	map->type = btrfs_chunk_type(leaf, chunk);
6133 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6134 	for (i = 0; i < num_stripes; i++) {
6135 		map->stripes[i].physical =
6136 			btrfs_stripe_offset_nr(leaf, chunk, i);
6137 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6138 		read_extent_buffer(leaf, uuid, (unsigned long)
6139 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6140 				   BTRFS_UUID_SIZE);
6141 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6142 							uuid, NULL);
6143 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6144 			free_extent_map(em);
6145 			return -EIO;
6146 		}
6147 		if (!map->stripes[i].dev) {
6148 			map->stripes[i].dev =
6149 				add_missing_dev(root, root->fs_info->fs_devices,
6150 						devid, uuid);
6151 			if (!map->stripes[i].dev) {
6152 				free_extent_map(em);
6153 				return -EIO;
6154 			}
6155 			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6156 						devid, uuid);
6157 		}
6158 		map->stripes[i].dev->in_fs_metadata = 1;
6159 	}
6160 
6161 	write_lock(&map_tree->map_tree.lock);
6162 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6163 	write_unlock(&map_tree->map_tree.lock);
6164 	BUG_ON(ret); /* Tree corruption */
6165 	free_extent_map(em);
6166 
6167 	return 0;
6168 }
6169 
6170 static void fill_device_from_item(struct extent_buffer *leaf,
6171 				 struct btrfs_dev_item *dev_item,
6172 				 struct btrfs_device *device)
6173 {
6174 	unsigned long ptr;
6175 
6176 	device->devid = btrfs_device_id(leaf, dev_item);
6177 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6178 	device->total_bytes = device->disk_total_bytes;
6179 	device->commit_total_bytes = device->disk_total_bytes;
6180 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6181 	device->commit_bytes_used = device->bytes_used;
6182 	device->type = btrfs_device_type(leaf, dev_item);
6183 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6184 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6185 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6186 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6187 	device->is_tgtdev_for_dev_replace = 0;
6188 
6189 	ptr = btrfs_device_uuid(dev_item);
6190 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6191 }
6192 
6193 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6194 						  u8 *fsid)
6195 {
6196 	struct btrfs_fs_devices *fs_devices;
6197 	int ret;
6198 
6199 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6200 
6201 	fs_devices = root->fs_info->fs_devices->seed;
6202 	while (fs_devices) {
6203 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6204 			return fs_devices;
6205 
6206 		fs_devices = fs_devices->seed;
6207 	}
6208 
6209 	fs_devices = find_fsid(fsid);
6210 	if (!fs_devices) {
6211 		if (!btrfs_test_opt(root, DEGRADED))
6212 			return ERR_PTR(-ENOENT);
6213 
6214 		fs_devices = alloc_fs_devices(fsid);
6215 		if (IS_ERR(fs_devices))
6216 			return fs_devices;
6217 
6218 		fs_devices->seeding = 1;
6219 		fs_devices->opened = 1;
6220 		return fs_devices;
6221 	}
6222 
6223 	fs_devices = clone_fs_devices(fs_devices);
6224 	if (IS_ERR(fs_devices))
6225 		return fs_devices;
6226 
6227 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6228 				   root->fs_info->bdev_holder);
6229 	if (ret) {
6230 		free_fs_devices(fs_devices);
6231 		fs_devices = ERR_PTR(ret);
6232 		goto out;
6233 	}
6234 
6235 	if (!fs_devices->seeding) {
6236 		__btrfs_close_devices(fs_devices);
6237 		free_fs_devices(fs_devices);
6238 		fs_devices = ERR_PTR(-EINVAL);
6239 		goto out;
6240 	}
6241 
6242 	fs_devices->seed = root->fs_info->fs_devices->seed;
6243 	root->fs_info->fs_devices->seed = fs_devices;
6244 out:
6245 	return fs_devices;
6246 }
6247 
6248 static int read_one_dev(struct btrfs_root *root,
6249 			struct extent_buffer *leaf,
6250 			struct btrfs_dev_item *dev_item)
6251 {
6252 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6253 	struct btrfs_device *device;
6254 	u64 devid;
6255 	int ret;
6256 	u8 fs_uuid[BTRFS_UUID_SIZE];
6257 	u8 dev_uuid[BTRFS_UUID_SIZE];
6258 
6259 	devid = btrfs_device_id(leaf, dev_item);
6260 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6261 			   BTRFS_UUID_SIZE);
6262 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6263 			   BTRFS_UUID_SIZE);
6264 
6265 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6266 		fs_devices = open_seed_devices(root, fs_uuid);
6267 		if (IS_ERR(fs_devices))
6268 			return PTR_ERR(fs_devices);
6269 	}
6270 
6271 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6272 	if (!device) {
6273 		if (!btrfs_test_opt(root, DEGRADED))
6274 			return -EIO;
6275 
6276 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6277 		if (!device)
6278 			return -ENOMEM;
6279 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6280 				devid, dev_uuid);
6281 	} else {
6282 		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6283 			return -EIO;
6284 
6285 		if(!device->bdev && !device->missing) {
6286 			/*
6287 			 * this happens when a device that was properly setup
6288 			 * in the device info lists suddenly goes bad.
6289 			 * device->bdev is NULL, and so we have to set
6290 			 * device->missing to one here
6291 			 */
6292 			device->fs_devices->missing_devices++;
6293 			device->missing = 1;
6294 		}
6295 
6296 		/* Move the device to its own fs_devices */
6297 		if (device->fs_devices != fs_devices) {
6298 			ASSERT(device->missing);
6299 
6300 			list_move(&device->dev_list, &fs_devices->devices);
6301 			device->fs_devices->num_devices--;
6302 			fs_devices->num_devices++;
6303 
6304 			device->fs_devices->missing_devices--;
6305 			fs_devices->missing_devices++;
6306 
6307 			device->fs_devices = fs_devices;
6308 		}
6309 	}
6310 
6311 	if (device->fs_devices != root->fs_info->fs_devices) {
6312 		BUG_ON(device->writeable);
6313 		if (device->generation !=
6314 		    btrfs_device_generation(leaf, dev_item))
6315 			return -EINVAL;
6316 	}
6317 
6318 	fill_device_from_item(leaf, dev_item, device);
6319 	device->in_fs_metadata = 1;
6320 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6321 		device->fs_devices->total_rw_bytes += device->total_bytes;
6322 		spin_lock(&root->fs_info->free_chunk_lock);
6323 		root->fs_info->free_chunk_space += device->total_bytes -
6324 			device->bytes_used;
6325 		spin_unlock(&root->fs_info->free_chunk_lock);
6326 	}
6327 	ret = 0;
6328 	return ret;
6329 }
6330 
6331 int btrfs_read_sys_array(struct btrfs_root *root)
6332 {
6333 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6334 	struct extent_buffer *sb;
6335 	struct btrfs_disk_key *disk_key;
6336 	struct btrfs_chunk *chunk;
6337 	u8 *array_ptr;
6338 	unsigned long sb_array_offset;
6339 	int ret = 0;
6340 	u32 num_stripes;
6341 	u32 array_size;
6342 	u32 len = 0;
6343 	u32 cur_offset;
6344 	struct btrfs_key key;
6345 
6346 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6347 	/*
6348 	 * This will create extent buffer of nodesize, superblock size is
6349 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6350 	 * overallocate but we can keep it as-is, only the first page is used.
6351 	 */
6352 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6353 	if (!sb)
6354 		return -ENOMEM;
6355 	btrfs_set_buffer_uptodate(sb);
6356 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6357 	/*
6358 	 * The sb extent buffer is artifical and just used to read the system array.
6359 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6360 	 * pages up-to-date when the page is larger: extent does not cover the
6361 	 * whole page and consequently check_page_uptodate does not find all
6362 	 * the page's extents up-to-date (the hole beyond sb),
6363 	 * write_extent_buffer then triggers a WARN_ON.
6364 	 *
6365 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6366 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6367 	 * to silence the warning eg. on PowerPC 64.
6368 	 */
6369 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6370 		SetPageUptodate(sb->pages[0]);
6371 
6372 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6373 	array_size = btrfs_super_sys_array_size(super_copy);
6374 
6375 	array_ptr = super_copy->sys_chunk_array;
6376 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6377 	cur_offset = 0;
6378 
6379 	while (cur_offset < array_size) {
6380 		disk_key = (struct btrfs_disk_key *)array_ptr;
6381 		len = sizeof(*disk_key);
6382 		if (cur_offset + len > array_size)
6383 			goto out_short_read;
6384 
6385 		btrfs_disk_key_to_cpu(&key, disk_key);
6386 
6387 		array_ptr += len;
6388 		sb_array_offset += len;
6389 		cur_offset += len;
6390 
6391 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6392 			chunk = (struct btrfs_chunk *)sb_array_offset;
6393 			/*
6394 			 * At least one btrfs_chunk with one stripe must be
6395 			 * present, exact stripe count check comes afterwards
6396 			 */
6397 			len = btrfs_chunk_item_size(1);
6398 			if (cur_offset + len > array_size)
6399 				goto out_short_read;
6400 
6401 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6402 			len = btrfs_chunk_item_size(num_stripes);
6403 			if (cur_offset + len > array_size)
6404 				goto out_short_read;
6405 
6406 			ret = read_one_chunk(root, &key, sb, chunk);
6407 			if (ret)
6408 				break;
6409 		} else {
6410 			ret = -EIO;
6411 			break;
6412 		}
6413 		array_ptr += len;
6414 		sb_array_offset += len;
6415 		cur_offset += len;
6416 	}
6417 	free_extent_buffer(sb);
6418 	return ret;
6419 
6420 out_short_read:
6421 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6422 			len, cur_offset);
6423 	free_extent_buffer(sb);
6424 	return -EIO;
6425 }
6426 
6427 int btrfs_read_chunk_tree(struct btrfs_root *root)
6428 {
6429 	struct btrfs_path *path;
6430 	struct extent_buffer *leaf;
6431 	struct btrfs_key key;
6432 	struct btrfs_key found_key;
6433 	int ret;
6434 	int slot;
6435 
6436 	root = root->fs_info->chunk_root;
6437 
6438 	path = btrfs_alloc_path();
6439 	if (!path)
6440 		return -ENOMEM;
6441 
6442 	mutex_lock(&uuid_mutex);
6443 	lock_chunks(root);
6444 
6445 	/*
6446 	 * Read all device items, and then all the chunk items. All
6447 	 * device items are found before any chunk item (their object id
6448 	 * is smaller than the lowest possible object id for a chunk
6449 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6450 	 */
6451 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6452 	key.offset = 0;
6453 	key.type = 0;
6454 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6455 	if (ret < 0)
6456 		goto error;
6457 	while (1) {
6458 		leaf = path->nodes[0];
6459 		slot = path->slots[0];
6460 		if (slot >= btrfs_header_nritems(leaf)) {
6461 			ret = btrfs_next_leaf(root, path);
6462 			if (ret == 0)
6463 				continue;
6464 			if (ret < 0)
6465 				goto error;
6466 			break;
6467 		}
6468 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6469 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6470 			struct btrfs_dev_item *dev_item;
6471 			dev_item = btrfs_item_ptr(leaf, slot,
6472 						  struct btrfs_dev_item);
6473 			ret = read_one_dev(root, leaf, dev_item);
6474 			if (ret)
6475 				goto error;
6476 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6477 			struct btrfs_chunk *chunk;
6478 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6479 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6480 			if (ret)
6481 				goto error;
6482 		}
6483 		path->slots[0]++;
6484 	}
6485 	ret = 0;
6486 error:
6487 	unlock_chunks(root);
6488 	mutex_unlock(&uuid_mutex);
6489 
6490 	btrfs_free_path(path);
6491 	return ret;
6492 }
6493 
6494 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6495 {
6496 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6497 	struct btrfs_device *device;
6498 
6499 	while (fs_devices) {
6500 		mutex_lock(&fs_devices->device_list_mutex);
6501 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6502 			device->dev_root = fs_info->dev_root;
6503 		mutex_unlock(&fs_devices->device_list_mutex);
6504 
6505 		fs_devices = fs_devices->seed;
6506 	}
6507 }
6508 
6509 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6510 {
6511 	int i;
6512 
6513 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6514 		btrfs_dev_stat_reset(dev, i);
6515 }
6516 
6517 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6518 {
6519 	struct btrfs_key key;
6520 	struct btrfs_key found_key;
6521 	struct btrfs_root *dev_root = fs_info->dev_root;
6522 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6523 	struct extent_buffer *eb;
6524 	int slot;
6525 	int ret = 0;
6526 	struct btrfs_device *device;
6527 	struct btrfs_path *path = NULL;
6528 	int i;
6529 
6530 	path = btrfs_alloc_path();
6531 	if (!path) {
6532 		ret = -ENOMEM;
6533 		goto out;
6534 	}
6535 
6536 	mutex_lock(&fs_devices->device_list_mutex);
6537 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6538 		int item_size;
6539 		struct btrfs_dev_stats_item *ptr;
6540 
6541 		key.objectid = 0;
6542 		key.type = BTRFS_DEV_STATS_KEY;
6543 		key.offset = device->devid;
6544 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6545 		if (ret) {
6546 			__btrfs_reset_dev_stats(device);
6547 			device->dev_stats_valid = 1;
6548 			btrfs_release_path(path);
6549 			continue;
6550 		}
6551 		slot = path->slots[0];
6552 		eb = path->nodes[0];
6553 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6554 		item_size = btrfs_item_size_nr(eb, slot);
6555 
6556 		ptr = btrfs_item_ptr(eb, slot,
6557 				     struct btrfs_dev_stats_item);
6558 
6559 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6560 			if (item_size >= (1 + i) * sizeof(__le64))
6561 				btrfs_dev_stat_set(device, i,
6562 					btrfs_dev_stats_value(eb, ptr, i));
6563 			else
6564 				btrfs_dev_stat_reset(device, i);
6565 		}
6566 
6567 		device->dev_stats_valid = 1;
6568 		btrfs_dev_stat_print_on_load(device);
6569 		btrfs_release_path(path);
6570 	}
6571 	mutex_unlock(&fs_devices->device_list_mutex);
6572 
6573 out:
6574 	btrfs_free_path(path);
6575 	return ret < 0 ? ret : 0;
6576 }
6577 
6578 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6579 				struct btrfs_root *dev_root,
6580 				struct btrfs_device *device)
6581 {
6582 	struct btrfs_path *path;
6583 	struct btrfs_key key;
6584 	struct extent_buffer *eb;
6585 	struct btrfs_dev_stats_item *ptr;
6586 	int ret;
6587 	int i;
6588 
6589 	key.objectid = 0;
6590 	key.type = BTRFS_DEV_STATS_KEY;
6591 	key.offset = device->devid;
6592 
6593 	path = btrfs_alloc_path();
6594 	BUG_ON(!path);
6595 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6596 	if (ret < 0) {
6597 		printk_in_rcu(KERN_WARNING "BTRFS: "
6598 			"error %d while searching for dev_stats item for device %s!\n",
6599 			      ret, rcu_str_deref(device->name));
6600 		goto out;
6601 	}
6602 
6603 	if (ret == 0 &&
6604 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6605 		/* need to delete old one and insert a new one */
6606 		ret = btrfs_del_item(trans, dev_root, path);
6607 		if (ret != 0) {
6608 			printk_in_rcu(KERN_WARNING "BTRFS: "
6609 				"delete too small dev_stats item for device %s failed %d!\n",
6610 				      rcu_str_deref(device->name), ret);
6611 			goto out;
6612 		}
6613 		ret = 1;
6614 	}
6615 
6616 	if (ret == 1) {
6617 		/* need to insert a new item */
6618 		btrfs_release_path(path);
6619 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6620 					      &key, sizeof(*ptr));
6621 		if (ret < 0) {
6622 			printk_in_rcu(KERN_WARNING "BTRFS: "
6623 					  "insert dev_stats item for device %s failed %d!\n",
6624 				      rcu_str_deref(device->name), ret);
6625 			goto out;
6626 		}
6627 	}
6628 
6629 	eb = path->nodes[0];
6630 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6631 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6632 		btrfs_set_dev_stats_value(eb, ptr, i,
6633 					  btrfs_dev_stat_read(device, i));
6634 	btrfs_mark_buffer_dirty(eb);
6635 
6636 out:
6637 	btrfs_free_path(path);
6638 	return ret;
6639 }
6640 
6641 /*
6642  * called from commit_transaction. Writes all changed device stats to disk.
6643  */
6644 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6645 			struct btrfs_fs_info *fs_info)
6646 {
6647 	struct btrfs_root *dev_root = fs_info->dev_root;
6648 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6649 	struct btrfs_device *device;
6650 	int stats_cnt;
6651 	int ret = 0;
6652 
6653 	mutex_lock(&fs_devices->device_list_mutex);
6654 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6655 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6656 			continue;
6657 
6658 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6659 		ret = update_dev_stat_item(trans, dev_root, device);
6660 		if (!ret)
6661 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6662 	}
6663 	mutex_unlock(&fs_devices->device_list_mutex);
6664 
6665 	return ret;
6666 }
6667 
6668 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6669 {
6670 	btrfs_dev_stat_inc(dev, index);
6671 	btrfs_dev_stat_print_on_error(dev);
6672 }
6673 
6674 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6675 {
6676 	if (!dev->dev_stats_valid)
6677 		return;
6678 	printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6679 			   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6680 			   rcu_str_deref(dev->name),
6681 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6682 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6683 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6684 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6685 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6686 }
6687 
6688 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6689 {
6690 	int i;
6691 
6692 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6693 		if (btrfs_dev_stat_read(dev, i) != 0)
6694 			break;
6695 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6696 		return; /* all values == 0, suppress message */
6697 
6698 	printk_in_rcu(KERN_INFO "BTRFS: "
6699 		   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6700 	       rcu_str_deref(dev->name),
6701 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6702 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6703 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6704 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6705 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6706 }
6707 
6708 int btrfs_get_dev_stats(struct btrfs_root *root,
6709 			struct btrfs_ioctl_get_dev_stats *stats)
6710 {
6711 	struct btrfs_device *dev;
6712 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6713 	int i;
6714 
6715 	mutex_lock(&fs_devices->device_list_mutex);
6716 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6717 	mutex_unlock(&fs_devices->device_list_mutex);
6718 
6719 	if (!dev) {
6720 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6721 		return -ENODEV;
6722 	} else if (!dev->dev_stats_valid) {
6723 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6724 		return -ENODEV;
6725 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6726 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6727 			if (stats->nr_items > i)
6728 				stats->values[i] =
6729 					btrfs_dev_stat_read_and_reset(dev, i);
6730 			else
6731 				btrfs_dev_stat_reset(dev, i);
6732 		}
6733 	} else {
6734 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6735 			if (stats->nr_items > i)
6736 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6737 	}
6738 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6739 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6740 	return 0;
6741 }
6742 
6743 int btrfs_scratch_superblock(struct btrfs_device *device)
6744 {
6745 	struct buffer_head *bh;
6746 	struct btrfs_super_block *disk_super;
6747 
6748 	bh = btrfs_read_dev_super(device->bdev);
6749 	if (!bh)
6750 		return -EINVAL;
6751 	disk_super = (struct btrfs_super_block *)bh->b_data;
6752 
6753 	memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6754 	set_buffer_dirty(bh);
6755 	sync_dirty_buffer(bh);
6756 	brelse(bh);
6757 
6758 	return 0;
6759 }
6760 
6761 /*
6762  * Update the size of all devices, which is used for writing out the
6763  * super blocks.
6764  */
6765 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6766 {
6767 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6768 	struct btrfs_device *curr, *next;
6769 
6770 	if (list_empty(&fs_devices->resized_devices))
6771 		return;
6772 
6773 	mutex_lock(&fs_devices->device_list_mutex);
6774 	lock_chunks(fs_info->dev_root);
6775 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6776 				 resized_list) {
6777 		list_del_init(&curr->resized_list);
6778 		curr->commit_total_bytes = curr->disk_total_bytes;
6779 	}
6780 	unlock_chunks(fs_info->dev_root);
6781 	mutex_unlock(&fs_devices->device_list_mutex);
6782 }
6783 
6784 /* Must be invoked during the transaction commit */
6785 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6786 					struct btrfs_transaction *transaction)
6787 {
6788 	struct extent_map *em;
6789 	struct map_lookup *map;
6790 	struct btrfs_device *dev;
6791 	int i;
6792 
6793 	if (list_empty(&transaction->pending_chunks))
6794 		return;
6795 
6796 	/* In order to kick the device replace finish process */
6797 	lock_chunks(root);
6798 	list_for_each_entry(em, &transaction->pending_chunks, list) {
6799 		map = (struct map_lookup *)em->bdev;
6800 
6801 		for (i = 0; i < map->num_stripes; i++) {
6802 			dev = map->stripes[i].dev;
6803 			dev->commit_bytes_used = dev->bytes_used;
6804 		}
6805 	}
6806 	unlock_chunks(root);
6807 }
6808 
6809 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6810 {
6811 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6812 	while (fs_devices) {
6813 		fs_devices->fs_info = fs_info;
6814 		fs_devices = fs_devices->seed;
6815 	}
6816 }
6817 
6818 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6819 {
6820 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6821 	while (fs_devices) {
6822 		fs_devices->fs_info = NULL;
6823 		fs_devices = fs_devices->seed;
6824 	}
6825 }
6826