1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "extent_map.h" 18 #include "disk-io.h" 19 #include "transaction.h" 20 #include "print-tree.h" 21 #include "volumes.h" 22 #include "raid56.h" 23 #include "rcu-string.h" 24 #include "dev-replace.h" 25 #include "sysfs.h" 26 #include "tree-checker.h" 27 #include "space-info.h" 28 #include "block-group.h" 29 #include "discard.h" 30 #include "zoned.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 #include "super.h" 38 39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 40 BTRFS_BLOCK_GROUP_RAID10 | \ 41 BTRFS_BLOCK_GROUP_RAID56_MASK) 42 43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 44 [BTRFS_RAID_RAID10] = { 45 .sub_stripes = 2, 46 .dev_stripes = 1, 47 .devs_max = 0, /* 0 == as many as possible */ 48 .devs_min = 2, 49 .tolerated_failures = 1, 50 .devs_increment = 2, 51 .ncopies = 2, 52 .nparity = 0, 53 .raid_name = "raid10", 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 56 }, 57 [BTRFS_RAID_RAID1] = { 58 .sub_stripes = 1, 59 .dev_stripes = 1, 60 .devs_max = 2, 61 .devs_min = 2, 62 .tolerated_failures = 1, 63 .devs_increment = 2, 64 .ncopies = 2, 65 .nparity = 0, 66 .raid_name = "raid1", 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 69 }, 70 [BTRFS_RAID_RAID1C3] = { 71 .sub_stripes = 1, 72 .dev_stripes = 1, 73 .devs_max = 3, 74 .devs_min = 3, 75 .tolerated_failures = 2, 76 .devs_increment = 3, 77 .ncopies = 3, 78 .nparity = 0, 79 .raid_name = "raid1c3", 80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 82 }, 83 [BTRFS_RAID_RAID1C4] = { 84 .sub_stripes = 1, 85 .dev_stripes = 1, 86 .devs_max = 4, 87 .devs_min = 4, 88 .tolerated_failures = 3, 89 .devs_increment = 4, 90 .ncopies = 4, 91 .nparity = 0, 92 .raid_name = "raid1c4", 93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 95 }, 96 [BTRFS_RAID_DUP] = { 97 .sub_stripes = 1, 98 .dev_stripes = 2, 99 .devs_max = 1, 100 .devs_min = 1, 101 .tolerated_failures = 0, 102 .devs_increment = 1, 103 .ncopies = 2, 104 .nparity = 0, 105 .raid_name = "dup", 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 107 .mindev_error = 0, 108 }, 109 [BTRFS_RAID_RAID0] = { 110 .sub_stripes = 1, 111 .dev_stripes = 1, 112 .devs_max = 0, 113 .devs_min = 1, 114 .tolerated_failures = 0, 115 .devs_increment = 1, 116 .ncopies = 1, 117 .nparity = 0, 118 .raid_name = "raid0", 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 120 .mindev_error = 0, 121 }, 122 [BTRFS_RAID_SINGLE] = { 123 .sub_stripes = 1, 124 .dev_stripes = 1, 125 .devs_max = 1, 126 .devs_min = 1, 127 .tolerated_failures = 0, 128 .devs_increment = 1, 129 .ncopies = 1, 130 .nparity = 0, 131 .raid_name = "single", 132 .bg_flag = 0, 133 .mindev_error = 0, 134 }, 135 [BTRFS_RAID_RAID5] = { 136 .sub_stripes = 1, 137 .dev_stripes = 1, 138 .devs_max = 0, 139 .devs_min = 2, 140 .tolerated_failures = 1, 141 .devs_increment = 1, 142 .ncopies = 1, 143 .nparity = 1, 144 .raid_name = "raid5", 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 147 }, 148 [BTRFS_RAID_RAID6] = { 149 .sub_stripes = 1, 150 .dev_stripes = 1, 151 .devs_max = 0, 152 .devs_min = 3, 153 .tolerated_failures = 2, 154 .devs_increment = 1, 155 .ncopies = 1, 156 .nparity = 2, 157 .raid_name = "raid6", 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 160 }, 161 }; 162 163 /* 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 165 * can be used as index to access btrfs_raid_array[]. 166 */ 167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 168 { 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 170 171 if (!profile) 172 return BTRFS_RAID_SINGLE; 173 174 return BTRFS_BG_FLAG_TO_INDEX(profile); 175 } 176 177 const char *btrfs_bg_type_to_raid_name(u64 flags) 178 { 179 const int index = btrfs_bg_flags_to_raid_index(flags); 180 181 if (index >= BTRFS_NR_RAID_TYPES) 182 return NULL; 183 184 return btrfs_raid_array[index].raid_name; 185 } 186 187 int btrfs_nr_parity_stripes(u64 type) 188 { 189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 190 191 return btrfs_raid_array[index].nparity; 192 } 193 194 /* 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf 196 * bytes including terminating null byte. 197 */ 198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 199 { 200 int i; 201 int ret; 202 char *bp = buf; 203 u64 flags = bg_flags; 204 u32 size_bp = size_buf; 205 206 if (!flags) { 207 strcpy(bp, "NONE"); 208 return; 209 } 210 211 #define DESCRIBE_FLAG(flag, desc) \ 212 do { \ 213 if (flags & (flag)) { \ 214 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 215 if (ret < 0 || ret >= size_bp) \ 216 goto out_overflow; \ 217 size_bp -= ret; \ 218 bp += ret; \ 219 flags &= ~(flag); \ 220 } \ 221 } while (0) 222 223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 226 227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 230 btrfs_raid_array[i].raid_name); 231 #undef DESCRIBE_FLAG 232 233 if (flags) { 234 ret = snprintf(bp, size_bp, "0x%llx|", flags); 235 size_bp -= ret; 236 } 237 238 if (size_bp < size_buf) 239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 240 241 /* 242 * The text is trimmed, it's up to the caller to provide sufficiently 243 * large buffer 244 */ 245 out_overflow:; 246 } 247 248 static int init_first_rw_device(struct btrfs_trans_handle *trans); 249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 251 252 /* 253 * Device locking 254 * ============== 255 * 256 * There are several mutexes that protect manipulation of devices and low-level 257 * structures like chunks but not block groups, extents or files 258 * 259 * uuid_mutex (global lock) 260 * ------------------------ 261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 263 * device) or requested by the device= mount option 264 * 265 * the mutex can be very coarse and can cover long-running operations 266 * 267 * protects: updates to fs_devices counters like missing devices, rw devices, 268 * seeding, structure cloning, opening/closing devices at mount/umount time 269 * 270 * global::fs_devs - add, remove, updates to the global list 271 * 272 * does not protect: manipulation of the fs_devices::devices list in general 273 * but in mount context it could be used to exclude list modifications by eg. 274 * scan ioctl 275 * 276 * btrfs_device::name - renames (write side), read is RCU 277 * 278 * fs_devices::device_list_mutex (per-fs, with RCU) 279 * ------------------------------------------------ 280 * protects updates to fs_devices::devices, ie. adding and deleting 281 * 282 * simple list traversal with read-only actions can be done with RCU protection 283 * 284 * may be used to exclude some operations from running concurrently without any 285 * modifications to the list (see write_all_supers) 286 * 287 * Is not required at mount and close times, because our device list is 288 * protected by the uuid_mutex at that point. 289 * 290 * balance_mutex 291 * ------------- 292 * protects balance structures (status, state) and context accessed from 293 * several places (internally, ioctl) 294 * 295 * chunk_mutex 296 * ----------- 297 * protects chunks, adding or removing during allocation, trim or when a new 298 * device is added/removed. Additionally it also protects post_commit_list of 299 * individual devices, since they can be added to the transaction's 300 * post_commit_list only with chunk_mutex held. 301 * 302 * cleaner_mutex 303 * ------------- 304 * a big lock that is held by the cleaner thread and prevents running subvolume 305 * cleaning together with relocation or delayed iputs 306 * 307 * 308 * Lock nesting 309 * ============ 310 * 311 * uuid_mutex 312 * device_list_mutex 313 * chunk_mutex 314 * balance_mutex 315 * 316 * 317 * Exclusive operations 318 * ==================== 319 * 320 * Maintains the exclusivity of the following operations that apply to the 321 * whole filesystem and cannot run in parallel. 322 * 323 * - Balance (*) 324 * - Device add 325 * - Device remove 326 * - Device replace (*) 327 * - Resize 328 * 329 * The device operations (as above) can be in one of the following states: 330 * 331 * - Running state 332 * - Paused state 333 * - Completed state 334 * 335 * Only device operations marked with (*) can go into the Paused state for the 336 * following reasons: 337 * 338 * - ioctl (only Balance can be Paused through ioctl) 339 * - filesystem remounted as read-only 340 * - filesystem unmounted and mounted as read-only 341 * - system power-cycle and filesystem mounted as read-only 342 * - filesystem or device errors leading to forced read-only 343 * 344 * The status of exclusive operation is set and cleared atomically. 345 * During the course of Paused state, fs_info::exclusive_operation remains set. 346 * A device operation in Paused or Running state can be canceled or resumed 347 * either by ioctl (Balance only) or when remounted as read-write. 348 * The exclusive status is cleared when the device operation is canceled or 349 * completed. 350 */ 351 352 DEFINE_MUTEX(uuid_mutex); 353 static LIST_HEAD(fs_uuids); 354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 355 { 356 return &fs_uuids; 357 } 358 359 /* 360 * alloc_fs_devices - allocate struct btrfs_fs_devices 361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 363 * 364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 365 * The returned struct is not linked onto any lists and can be destroyed with 366 * kfree() right away. 367 */ 368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 369 const u8 *metadata_fsid) 370 { 371 struct btrfs_fs_devices *fs_devs; 372 373 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 374 if (!fs_devs) 375 return ERR_PTR(-ENOMEM); 376 377 mutex_init(&fs_devs->device_list_mutex); 378 379 INIT_LIST_HEAD(&fs_devs->devices); 380 INIT_LIST_HEAD(&fs_devs->alloc_list); 381 INIT_LIST_HEAD(&fs_devs->fs_list); 382 INIT_LIST_HEAD(&fs_devs->seed_list); 383 if (fsid) 384 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 385 386 if (metadata_fsid) 387 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 388 else if (fsid) 389 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 390 391 return fs_devs; 392 } 393 394 void btrfs_free_device(struct btrfs_device *device) 395 { 396 WARN_ON(!list_empty(&device->post_commit_list)); 397 rcu_string_free(device->name); 398 extent_io_tree_release(&device->alloc_state); 399 btrfs_destroy_dev_zone_info(device); 400 kfree(device); 401 } 402 403 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 404 { 405 struct btrfs_device *device; 406 WARN_ON(fs_devices->opened); 407 while (!list_empty(&fs_devices->devices)) { 408 device = list_entry(fs_devices->devices.next, 409 struct btrfs_device, dev_list); 410 list_del(&device->dev_list); 411 btrfs_free_device(device); 412 } 413 kfree(fs_devices); 414 } 415 416 void __exit btrfs_cleanup_fs_uuids(void) 417 { 418 struct btrfs_fs_devices *fs_devices; 419 420 while (!list_empty(&fs_uuids)) { 421 fs_devices = list_entry(fs_uuids.next, 422 struct btrfs_fs_devices, fs_list); 423 list_del(&fs_devices->fs_list); 424 free_fs_devices(fs_devices); 425 } 426 } 427 428 static noinline struct btrfs_fs_devices *find_fsid( 429 const u8 *fsid, const u8 *metadata_fsid) 430 { 431 struct btrfs_fs_devices *fs_devices; 432 433 ASSERT(fsid); 434 435 /* Handle non-split brain cases */ 436 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 437 if (metadata_fsid) { 438 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 439 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 440 BTRFS_FSID_SIZE) == 0) 441 return fs_devices; 442 } else { 443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 444 return fs_devices; 445 } 446 } 447 return NULL; 448 } 449 450 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 451 struct btrfs_super_block *disk_super) 452 { 453 454 struct btrfs_fs_devices *fs_devices; 455 456 /* 457 * Handle scanned device having completed its fsid change but 458 * belonging to a fs_devices that was created by first scanning 459 * a device which didn't have its fsid/metadata_uuid changed 460 * at all and the CHANGING_FSID_V2 flag set. 461 */ 462 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 463 if (fs_devices->fsid_change && 464 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 465 BTRFS_FSID_SIZE) == 0 && 466 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 467 BTRFS_FSID_SIZE) == 0) { 468 return fs_devices; 469 } 470 } 471 /* 472 * Handle scanned device having completed its fsid change but 473 * belonging to a fs_devices that was created by a device that 474 * has an outdated pair of fsid/metadata_uuid and 475 * CHANGING_FSID_V2 flag set. 476 */ 477 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 478 if (fs_devices->fsid_change && 479 memcmp(fs_devices->metadata_uuid, 480 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 481 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 482 BTRFS_FSID_SIZE) == 0) { 483 return fs_devices; 484 } 485 } 486 487 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 488 } 489 490 491 static int 492 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 493 int flush, struct block_device **bdev, 494 struct btrfs_super_block **disk_super) 495 { 496 int ret; 497 498 *bdev = blkdev_get_by_path(device_path, flags, holder); 499 500 if (IS_ERR(*bdev)) { 501 ret = PTR_ERR(*bdev); 502 goto error; 503 } 504 505 if (flush) 506 sync_blockdev(*bdev); 507 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 508 if (ret) { 509 blkdev_put(*bdev, flags); 510 goto error; 511 } 512 invalidate_bdev(*bdev); 513 *disk_super = btrfs_read_dev_super(*bdev); 514 if (IS_ERR(*disk_super)) { 515 ret = PTR_ERR(*disk_super); 516 blkdev_put(*bdev, flags); 517 goto error; 518 } 519 520 return 0; 521 522 error: 523 *bdev = NULL; 524 return ret; 525 } 526 527 /* 528 * Search and remove all stale devices (which are not mounted). When both 529 * inputs are NULL, it will search and release all stale devices. 530 * 531 * @devt: Optional. When provided will it release all unmounted devices 532 * matching this devt only. 533 * @skip_device: Optional. Will skip this device when searching for the stale 534 * devices. 535 * 536 * Return: 0 for success or if @devt is 0. 537 * -EBUSY if @devt is a mounted device. 538 * -ENOENT if @devt does not match any device in the list. 539 */ 540 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 541 { 542 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 543 struct btrfs_device *device, *tmp_device; 544 int ret = 0; 545 546 lockdep_assert_held(&uuid_mutex); 547 548 if (devt) 549 ret = -ENOENT; 550 551 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 552 553 mutex_lock(&fs_devices->device_list_mutex); 554 list_for_each_entry_safe(device, tmp_device, 555 &fs_devices->devices, dev_list) { 556 if (skip_device && skip_device == device) 557 continue; 558 if (devt && devt != device->devt) 559 continue; 560 if (fs_devices->opened) { 561 /* for an already deleted device return 0 */ 562 if (devt && ret != 0) 563 ret = -EBUSY; 564 break; 565 } 566 567 /* delete the stale device */ 568 fs_devices->num_devices--; 569 list_del(&device->dev_list); 570 btrfs_free_device(device); 571 572 ret = 0; 573 } 574 mutex_unlock(&fs_devices->device_list_mutex); 575 576 if (fs_devices->num_devices == 0) { 577 btrfs_sysfs_remove_fsid(fs_devices); 578 list_del(&fs_devices->fs_list); 579 free_fs_devices(fs_devices); 580 } 581 } 582 583 return ret; 584 } 585 586 /* 587 * This is only used on mount, and we are protected from competing things 588 * messing with our fs_devices by the uuid_mutex, thus we do not need the 589 * fs_devices->device_list_mutex here. 590 */ 591 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 592 struct btrfs_device *device, fmode_t flags, 593 void *holder) 594 { 595 struct block_device *bdev; 596 struct btrfs_super_block *disk_super; 597 u64 devid; 598 int ret; 599 600 if (device->bdev) 601 return -EINVAL; 602 if (!device->name) 603 return -EINVAL; 604 605 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 606 &bdev, &disk_super); 607 if (ret) 608 return ret; 609 610 devid = btrfs_stack_device_id(&disk_super->dev_item); 611 if (devid != device->devid) 612 goto error_free_page; 613 614 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 615 goto error_free_page; 616 617 device->generation = btrfs_super_generation(disk_super); 618 619 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 620 if (btrfs_super_incompat_flags(disk_super) & 621 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 622 pr_err( 623 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 624 goto error_free_page; 625 } 626 627 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 628 fs_devices->seeding = true; 629 } else { 630 if (bdev_read_only(bdev)) 631 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 632 else 633 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 634 } 635 636 if (!bdev_nonrot(bdev)) 637 fs_devices->rotating = true; 638 639 if (bdev_max_discard_sectors(bdev)) 640 fs_devices->discardable = true; 641 642 device->bdev = bdev; 643 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 644 device->mode = flags; 645 646 fs_devices->open_devices++; 647 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 648 device->devid != BTRFS_DEV_REPLACE_DEVID) { 649 fs_devices->rw_devices++; 650 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 651 } 652 btrfs_release_disk_super(disk_super); 653 654 return 0; 655 656 error_free_page: 657 btrfs_release_disk_super(disk_super); 658 blkdev_put(bdev, flags); 659 660 return -EINVAL; 661 } 662 663 /* 664 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 665 * being created with a disk that has already completed its fsid change. Such 666 * disk can belong to an fs which has its FSID changed or to one which doesn't. 667 * Handle both cases here. 668 */ 669 static struct btrfs_fs_devices *find_fsid_inprogress( 670 struct btrfs_super_block *disk_super) 671 { 672 struct btrfs_fs_devices *fs_devices; 673 674 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 675 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 676 BTRFS_FSID_SIZE) != 0 && 677 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 678 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 679 return fs_devices; 680 } 681 } 682 683 return find_fsid(disk_super->fsid, NULL); 684 } 685 686 687 static struct btrfs_fs_devices *find_fsid_changed( 688 struct btrfs_super_block *disk_super) 689 { 690 struct btrfs_fs_devices *fs_devices; 691 692 /* 693 * Handles the case where scanned device is part of an fs that had 694 * multiple successful changes of FSID but currently device didn't 695 * observe it. Meaning our fsid will be different than theirs. We need 696 * to handle two subcases : 697 * 1 - The fs still continues to have different METADATA/FSID uuids. 698 * 2 - The fs is switched back to its original FSID (METADATA/FSID 699 * are equal). 700 */ 701 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 702 /* Changed UUIDs */ 703 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 704 BTRFS_FSID_SIZE) != 0 && 705 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 706 BTRFS_FSID_SIZE) == 0 && 707 memcmp(fs_devices->fsid, disk_super->fsid, 708 BTRFS_FSID_SIZE) != 0) 709 return fs_devices; 710 711 /* Unchanged UUIDs */ 712 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 713 BTRFS_FSID_SIZE) == 0 && 714 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 715 BTRFS_FSID_SIZE) == 0) 716 return fs_devices; 717 } 718 719 return NULL; 720 } 721 722 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 723 struct btrfs_super_block *disk_super) 724 { 725 struct btrfs_fs_devices *fs_devices; 726 727 /* 728 * Handle the case where the scanned device is part of an fs whose last 729 * metadata UUID change reverted it to the original FSID. At the same 730 * time * fs_devices was first created by another constitutent device 731 * which didn't fully observe the operation. This results in an 732 * btrfs_fs_devices created with metadata/fsid different AND 733 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 734 * fs_devices equal to the FSID of the disk. 735 */ 736 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 737 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 738 BTRFS_FSID_SIZE) != 0 && 739 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 740 BTRFS_FSID_SIZE) == 0 && 741 fs_devices->fsid_change) 742 return fs_devices; 743 } 744 745 return NULL; 746 } 747 /* 748 * Add new device to list of registered devices 749 * 750 * Returns: 751 * device pointer which was just added or updated when successful 752 * error pointer when failed 753 */ 754 static noinline struct btrfs_device *device_list_add(const char *path, 755 struct btrfs_super_block *disk_super, 756 bool *new_device_added) 757 { 758 struct btrfs_device *device; 759 struct btrfs_fs_devices *fs_devices = NULL; 760 struct rcu_string *name; 761 u64 found_transid = btrfs_super_generation(disk_super); 762 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 763 dev_t path_devt; 764 int error; 765 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 766 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 767 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 768 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 769 770 error = lookup_bdev(path, &path_devt); 771 if (error) 772 return ERR_PTR(error); 773 774 if (fsid_change_in_progress) { 775 if (!has_metadata_uuid) 776 fs_devices = find_fsid_inprogress(disk_super); 777 else 778 fs_devices = find_fsid_changed(disk_super); 779 } else if (has_metadata_uuid) { 780 fs_devices = find_fsid_with_metadata_uuid(disk_super); 781 } else { 782 fs_devices = find_fsid_reverted_metadata(disk_super); 783 if (!fs_devices) 784 fs_devices = find_fsid(disk_super->fsid, NULL); 785 } 786 787 788 if (!fs_devices) { 789 if (has_metadata_uuid) 790 fs_devices = alloc_fs_devices(disk_super->fsid, 791 disk_super->metadata_uuid); 792 else 793 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 794 795 if (IS_ERR(fs_devices)) 796 return ERR_CAST(fs_devices); 797 798 fs_devices->fsid_change = fsid_change_in_progress; 799 800 mutex_lock(&fs_devices->device_list_mutex); 801 list_add(&fs_devices->fs_list, &fs_uuids); 802 803 device = NULL; 804 } else { 805 struct btrfs_dev_lookup_args args = { 806 .devid = devid, 807 .uuid = disk_super->dev_item.uuid, 808 }; 809 810 mutex_lock(&fs_devices->device_list_mutex); 811 device = btrfs_find_device(fs_devices, &args); 812 813 /* 814 * If this disk has been pulled into an fs devices created by 815 * a device which had the CHANGING_FSID_V2 flag then replace the 816 * metadata_uuid/fsid values of the fs_devices. 817 */ 818 if (fs_devices->fsid_change && 819 found_transid > fs_devices->latest_generation) { 820 memcpy(fs_devices->fsid, disk_super->fsid, 821 BTRFS_FSID_SIZE); 822 823 if (has_metadata_uuid) 824 memcpy(fs_devices->metadata_uuid, 825 disk_super->metadata_uuid, 826 BTRFS_FSID_SIZE); 827 else 828 memcpy(fs_devices->metadata_uuid, 829 disk_super->fsid, BTRFS_FSID_SIZE); 830 831 fs_devices->fsid_change = false; 832 } 833 } 834 835 if (!device) { 836 unsigned int nofs_flag; 837 838 if (fs_devices->opened) { 839 mutex_unlock(&fs_devices->device_list_mutex); 840 return ERR_PTR(-EBUSY); 841 } 842 843 nofs_flag = memalloc_nofs_save(); 844 device = btrfs_alloc_device(NULL, &devid, 845 disk_super->dev_item.uuid, path); 846 memalloc_nofs_restore(nofs_flag); 847 if (IS_ERR(device)) { 848 mutex_unlock(&fs_devices->device_list_mutex); 849 /* we can safely leave the fs_devices entry around */ 850 return device; 851 } 852 853 device->devt = path_devt; 854 855 list_add_rcu(&device->dev_list, &fs_devices->devices); 856 fs_devices->num_devices++; 857 858 device->fs_devices = fs_devices; 859 *new_device_added = true; 860 861 if (disk_super->label[0]) 862 pr_info( 863 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 864 disk_super->label, devid, found_transid, path, 865 current->comm, task_pid_nr(current)); 866 else 867 pr_info( 868 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 869 disk_super->fsid, devid, found_transid, path, 870 current->comm, task_pid_nr(current)); 871 872 } else if (!device->name || strcmp(device->name->str, path)) { 873 /* 874 * When FS is already mounted. 875 * 1. If you are here and if the device->name is NULL that 876 * means this device was missing at time of FS mount. 877 * 2. If you are here and if the device->name is different 878 * from 'path' that means either 879 * a. The same device disappeared and reappeared with 880 * different name. or 881 * b. The missing-disk-which-was-replaced, has 882 * reappeared now. 883 * 884 * We must allow 1 and 2a above. But 2b would be a spurious 885 * and unintentional. 886 * 887 * Further in case of 1 and 2a above, the disk at 'path' 888 * would have missed some transaction when it was away and 889 * in case of 2a the stale bdev has to be updated as well. 890 * 2b must not be allowed at all time. 891 */ 892 893 /* 894 * For now, we do allow update to btrfs_fs_device through the 895 * btrfs dev scan cli after FS has been mounted. We're still 896 * tracking a problem where systems fail mount by subvolume id 897 * when we reject replacement on a mounted FS. 898 */ 899 if (!fs_devices->opened && found_transid < device->generation) { 900 /* 901 * That is if the FS is _not_ mounted and if you 902 * are here, that means there is more than one 903 * disk with same uuid and devid.We keep the one 904 * with larger generation number or the last-in if 905 * generation are equal. 906 */ 907 mutex_unlock(&fs_devices->device_list_mutex); 908 return ERR_PTR(-EEXIST); 909 } 910 911 /* 912 * We are going to replace the device path for a given devid, 913 * make sure it's the same device if the device is mounted 914 * 915 * NOTE: the device->fs_info may not be reliable here so pass 916 * in a NULL to message helpers instead. This avoids a possible 917 * use-after-free when the fs_info and fs_info->sb are already 918 * torn down. 919 */ 920 if (device->bdev) { 921 if (device->devt != path_devt) { 922 mutex_unlock(&fs_devices->device_list_mutex); 923 btrfs_warn_in_rcu(NULL, 924 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 925 path, devid, found_transid, 926 current->comm, 927 task_pid_nr(current)); 928 return ERR_PTR(-EEXIST); 929 } 930 btrfs_info_in_rcu(NULL, 931 "devid %llu device path %s changed to %s scanned by %s (%d)", 932 devid, btrfs_dev_name(device), 933 path, current->comm, 934 task_pid_nr(current)); 935 } 936 937 name = rcu_string_strdup(path, GFP_NOFS); 938 if (!name) { 939 mutex_unlock(&fs_devices->device_list_mutex); 940 return ERR_PTR(-ENOMEM); 941 } 942 rcu_string_free(device->name); 943 rcu_assign_pointer(device->name, name); 944 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 945 fs_devices->missing_devices--; 946 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 947 } 948 device->devt = path_devt; 949 } 950 951 /* 952 * Unmount does not free the btrfs_device struct but would zero 953 * generation along with most of the other members. So just update 954 * it back. We need it to pick the disk with largest generation 955 * (as above). 956 */ 957 if (!fs_devices->opened) { 958 device->generation = found_transid; 959 fs_devices->latest_generation = max_t(u64, found_transid, 960 fs_devices->latest_generation); 961 } 962 963 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 964 965 mutex_unlock(&fs_devices->device_list_mutex); 966 return device; 967 } 968 969 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 970 { 971 struct btrfs_fs_devices *fs_devices; 972 struct btrfs_device *device; 973 struct btrfs_device *orig_dev; 974 int ret = 0; 975 976 lockdep_assert_held(&uuid_mutex); 977 978 fs_devices = alloc_fs_devices(orig->fsid, NULL); 979 if (IS_ERR(fs_devices)) 980 return fs_devices; 981 982 fs_devices->total_devices = orig->total_devices; 983 984 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 985 const char *dev_path = NULL; 986 987 /* 988 * This is ok to do without RCU read locked because we hold the 989 * uuid mutex so nothing we touch in here is going to disappear. 990 */ 991 if (orig_dev->name) 992 dev_path = orig_dev->name->str; 993 994 device = btrfs_alloc_device(NULL, &orig_dev->devid, 995 orig_dev->uuid, dev_path); 996 if (IS_ERR(device)) { 997 ret = PTR_ERR(device); 998 goto error; 999 } 1000 1001 if (orig_dev->zone_info) { 1002 struct btrfs_zoned_device_info *zone_info; 1003 1004 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1005 if (!zone_info) { 1006 btrfs_free_device(device); 1007 ret = -ENOMEM; 1008 goto error; 1009 } 1010 device->zone_info = zone_info; 1011 } 1012 1013 list_add(&device->dev_list, &fs_devices->devices); 1014 device->fs_devices = fs_devices; 1015 fs_devices->num_devices++; 1016 } 1017 return fs_devices; 1018 error: 1019 free_fs_devices(fs_devices); 1020 return ERR_PTR(ret); 1021 } 1022 1023 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1024 struct btrfs_device **latest_dev) 1025 { 1026 struct btrfs_device *device, *next; 1027 1028 /* This is the initialized path, it is safe to release the devices. */ 1029 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1030 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1031 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1032 &device->dev_state) && 1033 !test_bit(BTRFS_DEV_STATE_MISSING, 1034 &device->dev_state) && 1035 (!*latest_dev || 1036 device->generation > (*latest_dev)->generation)) { 1037 *latest_dev = device; 1038 } 1039 continue; 1040 } 1041 1042 /* 1043 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1044 * in btrfs_init_dev_replace() so just continue. 1045 */ 1046 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1047 continue; 1048 1049 if (device->bdev) { 1050 blkdev_put(device->bdev, device->mode); 1051 device->bdev = NULL; 1052 fs_devices->open_devices--; 1053 } 1054 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1055 list_del_init(&device->dev_alloc_list); 1056 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1057 fs_devices->rw_devices--; 1058 } 1059 list_del_init(&device->dev_list); 1060 fs_devices->num_devices--; 1061 btrfs_free_device(device); 1062 } 1063 1064 } 1065 1066 /* 1067 * After we have read the system tree and know devids belonging to this 1068 * filesystem, remove the device which does not belong there. 1069 */ 1070 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1071 { 1072 struct btrfs_device *latest_dev = NULL; 1073 struct btrfs_fs_devices *seed_dev; 1074 1075 mutex_lock(&uuid_mutex); 1076 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1077 1078 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1079 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1080 1081 fs_devices->latest_dev = latest_dev; 1082 1083 mutex_unlock(&uuid_mutex); 1084 } 1085 1086 static void btrfs_close_bdev(struct btrfs_device *device) 1087 { 1088 if (!device->bdev) 1089 return; 1090 1091 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1092 sync_blockdev(device->bdev); 1093 invalidate_bdev(device->bdev); 1094 } 1095 1096 blkdev_put(device->bdev, device->mode); 1097 } 1098 1099 static void btrfs_close_one_device(struct btrfs_device *device) 1100 { 1101 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1102 1103 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1104 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1105 list_del_init(&device->dev_alloc_list); 1106 fs_devices->rw_devices--; 1107 } 1108 1109 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1110 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1111 1112 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1113 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1114 fs_devices->missing_devices--; 1115 } 1116 1117 btrfs_close_bdev(device); 1118 if (device->bdev) { 1119 fs_devices->open_devices--; 1120 device->bdev = NULL; 1121 } 1122 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1123 btrfs_destroy_dev_zone_info(device); 1124 1125 device->fs_info = NULL; 1126 atomic_set(&device->dev_stats_ccnt, 0); 1127 extent_io_tree_release(&device->alloc_state); 1128 1129 /* 1130 * Reset the flush error record. We might have a transient flush error 1131 * in this mount, and if so we aborted the current transaction and set 1132 * the fs to an error state, guaranteeing no super blocks can be further 1133 * committed. However that error might be transient and if we unmount the 1134 * filesystem and mount it again, we should allow the mount to succeed 1135 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1136 * filesystem again we still get flush errors, then we will again abort 1137 * any transaction and set the error state, guaranteeing no commits of 1138 * unsafe super blocks. 1139 */ 1140 device->last_flush_error = 0; 1141 1142 /* Verify the device is back in a pristine state */ 1143 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1144 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1145 ASSERT(list_empty(&device->dev_alloc_list)); 1146 ASSERT(list_empty(&device->post_commit_list)); 1147 } 1148 1149 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1150 { 1151 struct btrfs_device *device, *tmp; 1152 1153 lockdep_assert_held(&uuid_mutex); 1154 1155 if (--fs_devices->opened > 0) 1156 return; 1157 1158 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1159 btrfs_close_one_device(device); 1160 1161 WARN_ON(fs_devices->open_devices); 1162 WARN_ON(fs_devices->rw_devices); 1163 fs_devices->opened = 0; 1164 fs_devices->seeding = false; 1165 fs_devices->fs_info = NULL; 1166 } 1167 1168 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1169 { 1170 LIST_HEAD(list); 1171 struct btrfs_fs_devices *tmp; 1172 1173 mutex_lock(&uuid_mutex); 1174 close_fs_devices(fs_devices); 1175 if (!fs_devices->opened) 1176 list_splice_init(&fs_devices->seed_list, &list); 1177 1178 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1179 close_fs_devices(fs_devices); 1180 list_del(&fs_devices->seed_list); 1181 free_fs_devices(fs_devices); 1182 } 1183 mutex_unlock(&uuid_mutex); 1184 } 1185 1186 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1187 fmode_t flags, void *holder) 1188 { 1189 struct btrfs_device *device; 1190 struct btrfs_device *latest_dev = NULL; 1191 struct btrfs_device *tmp_device; 1192 1193 flags |= FMODE_EXCL; 1194 1195 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1196 dev_list) { 1197 int ret; 1198 1199 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1200 if (ret == 0 && 1201 (!latest_dev || device->generation > latest_dev->generation)) { 1202 latest_dev = device; 1203 } else if (ret == -ENODATA) { 1204 fs_devices->num_devices--; 1205 list_del(&device->dev_list); 1206 btrfs_free_device(device); 1207 } 1208 } 1209 if (fs_devices->open_devices == 0) 1210 return -EINVAL; 1211 1212 fs_devices->opened = 1; 1213 fs_devices->latest_dev = latest_dev; 1214 fs_devices->total_rw_bytes = 0; 1215 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1216 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1217 1218 return 0; 1219 } 1220 1221 static int devid_cmp(void *priv, const struct list_head *a, 1222 const struct list_head *b) 1223 { 1224 const struct btrfs_device *dev1, *dev2; 1225 1226 dev1 = list_entry(a, struct btrfs_device, dev_list); 1227 dev2 = list_entry(b, struct btrfs_device, dev_list); 1228 1229 if (dev1->devid < dev2->devid) 1230 return -1; 1231 else if (dev1->devid > dev2->devid) 1232 return 1; 1233 return 0; 1234 } 1235 1236 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1237 fmode_t flags, void *holder) 1238 { 1239 int ret; 1240 1241 lockdep_assert_held(&uuid_mutex); 1242 /* 1243 * The device_list_mutex cannot be taken here in case opening the 1244 * underlying device takes further locks like open_mutex. 1245 * 1246 * We also don't need the lock here as this is called during mount and 1247 * exclusion is provided by uuid_mutex 1248 */ 1249 1250 if (fs_devices->opened) { 1251 fs_devices->opened++; 1252 ret = 0; 1253 } else { 1254 list_sort(NULL, &fs_devices->devices, devid_cmp); 1255 ret = open_fs_devices(fs_devices, flags, holder); 1256 } 1257 1258 return ret; 1259 } 1260 1261 void btrfs_release_disk_super(struct btrfs_super_block *super) 1262 { 1263 struct page *page = virt_to_page(super); 1264 1265 put_page(page); 1266 } 1267 1268 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1269 u64 bytenr, u64 bytenr_orig) 1270 { 1271 struct btrfs_super_block *disk_super; 1272 struct page *page; 1273 void *p; 1274 pgoff_t index; 1275 1276 /* make sure our super fits in the device */ 1277 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1278 return ERR_PTR(-EINVAL); 1279 1280 /* make sure our super fits in the page */ 1281 if (sizeof(*disk_super) > PAGE_SIZE) 1282 return ERR_PTR(-EINVAL); 1283 1284 /* make sure our super doesn't straddle pages on disk */ 1285 index = bytenr >> PAGE_SHIFT; 1286 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1287 return ERR_PTR(-EINVAL); 1288 1289 /* pull in the page with our super */ 1290 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1291 1292 if (IS_ERR(page)) 1293 return ERR_CAST(page); 1294 1295 p = page_address(page); 1296 1297 /* align our pointer to the offset of the super block */ 1298 disk_super = p + offset_in_page(bytenr); 1299 1300 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1301 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1302 btrfs_release_disk_super(p); 1303 return ERR_PTR(-EINVAL); 1304 } 1305 1306 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1307 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1308 1309 return disk_super; 1310 } 1311 1312 int btrfs_forget_devices(dev_t devt) 1313 { 1314 int ret; 1315 1316 mutex_lock(&uuid_mutex); 1317 ret = btrfs_free_stale_devices(devt, NULL); 1318 mutex_unlock(&uuid_mutex); 1319 1320 return ret; 1321 } 1322 1323 /* 1324 * Look for a btrfs signature on a device. This may be called out of the mount path 1325 * and we are not allowed to call set_blocksize during the scan. The superblock 1326 * is read via pagecache 1327 */ 1328 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1329 void *holder) 1330 { 1331 struct btrfs_super_block *disk_super; 1332 bool new_device_added = false; 1333 struct btrfs_device *device = NULL; 1334 struct block_device *bdev; 1335 u64 bytenr, bytenr_orig; 1336 int ret; 1337 1338 lockdep_assert_held(&uuid_mutex); 1339 1340 /* 1341 * we would like to check all the supers, but that would make 1342 * a btrfs mount succeed after a mkfs from a different FS. 1343 * So, we need to add a special mount option to scan for 1344 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1345 */ 1346 flags |= FMODE_EXCL; 1347 1348 bdev = blkdev_get_by_path(path, flags, holder); 1349 if (IS_ERR(bdev)) 1350 return ERR_CAST(bdev); 1351 1352 bytenr_orig = btrfs_sb_offset(0); 1353 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1354 if (ret) { 1355 device = ERR_PTR(ret); 1356 goto error_bdev_put; 1357 } 1358 1359 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1360 if (IS_ERR(disk_super)) { 1361 device = ERR_CAST(disk_super); 1362 goto error_bdev_put; 1363 } 1364 1365 device = device_list_add(path, disk_super, &new_device_added); 1366 if (!IS_ERR(device) && new_device_added) 1367 btrfs_free_stale_devices(device->devt, device); 1368 1369 btrfs_release_disk_super(disk_super); 1370 1371 error_bdev_put: 1372 blkdev_put(bdev, flags); 1373 1374 return device; 1375 } 1376 1377 /* 1378 * Try to find a chunk that intersects [start, start + len] range and when one 1379 * such is found, record the end of it in *start 1380 */ 1381 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1382 u64 len) 1383 { 1384 u64 physical_start, physical_end; 1385 1386 lockdep_assert_held(&device->fs_info->chunk_mutex); 1387 1388 if (!find_first_extent_bit(&device->alloc_state, *start, 1389 &physical_start, &physical_end, 1390 CHUNK_ALLOCATED, NULL)) { 1391 1392 if (in_range(physical_start, *start, len) || 1393 in_range(*start, physical_start, 1394 physical_end - physical_start)) { 1395 *start = physical_end + 1; 1396 return true; 1397 } 1398 } 1399 return false; 1400 } 1401 1402 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1403 { 1404 switch (device->fs_devices->chunk_alloc_policy) { 1405 case BTRFS_CHUNK_ALLOC_REGULAR: 1406 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 1407 case BTRFS_CHUNK_ALLOC_ZONED: 1408 /* 1409 * We don't care about the starting region like regular 1410 * allocator, because we anyway use/reserve the first two zones 1411 * for superblock logging. 1412 */ 1413 return ALIGN(start, device->zone_info->zone_size); 1414 default: 1415 BUG(); 1416 } 1417 } 1418 1419 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1420 u64 *hole_start, u64 *hole_size, 1421 u64 num_bytes) 1422 { 1423 u64 zone_size = device->zone_info->zone_size; 1424 u64 pos; 1425 int ret; 1426 bool changed = false; 1427 1428 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1429 1430 while (*hole_size > 0) { 1431 pos = btrfs_find_allocatable_zones(device, *hole_start, 1432 *hole_start + *hole_size, 1433 num_bytes); 1434 if (pos != *hole_start) { 1435 *hole_size = *hole_start + *hole_size - pos; 1436 *hole_start = pos; 1437 changed = true; 1438 if (*hole_size < num_bytes) 1439 break; 1440 } 1441 1442 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1443 1444 /* Range is ensured to be empty */ 1445 if (!ret) 1446 return changed; 1447 1448 /* Given hole range was invalid (outside of device) */ 1449 if (ret == -ERANGE) { 1450 *hole_start += *hole_size; 1451 *hole_size = 0; 1452 return true; 1453 } 1454 1455 *hole_start += zone_size; 1456 *hole_size -= zone_size; 1457 changed = true; 1458 } 1459 1460 return changed; 1461 } 1462 1463 /* 1464 * Check if specified hole is suitable for allocation. 1465 * 1466 * @device: the device which we have the hole 1467 * @hole_start: starting position of the hole 1468 * @hole_size: the size of the hole 1469 * @num_bytes: the size of the free space that we need 1470 * 1471 * This function may modify @hole_start and @hole_size to reflect the suitable 1472 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1473 */ 1474 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1475 u64 *hole_size, u64 num_bytes) 1476 { 1477 bool changed = false; 1478 u64 hole_end = *hole_start + *hole_size; 1479 1480 for (;;) { 1481 /* 1482 * Check before we set max_hole_start, otherwise we could end up 1483 * sending back this offset anyway. 1484 */ 1485 if (contains_pending_extent(device, hole_start, *hole_size)) { 1486 if (hole_end >= *hole_start) 1487 *hole_size = hole_end - *hole_start; 1488 else 1489 *hole_size = 0; 1490 changed = true; 1491 } 1492 1493 switch (device->fs_devices->chunk_alloc_policy) { 1494 case BTRFS_CHUNK_ALLOC_REGULAR: 1495 /* No extra check */ 1496 break; 1497 case BTRFS_CHUNK_ALLOC_ZONED: 1498 if (dev_extent_hole_check_zoned(device, hole_start, 1499 hole_size, num_bytes)) { 1500 changed = true; 1501 /* 1502 * The changed hole can contain pending extent. 1503 * Loop again to check that. 1504 */ 1505 continue; 1506 } 1507 break; 1508 default: 1509 BUG(); 1510 } 1511 1512 break; 1513 } 1514 1515 return changed; 1516 } 1517 1518 /* 1519 * Find free space in the specified device. 1520 * 1521 * @device: the device which we search the free space in 1522 * @num_bytes: the size of the free space that we need 1523 * @search_start: the position from which to begin the search 1524 * @start: store the start of the free space. 1525 * @len: the size of the free space. that we find, or the size 1526 * of the max free space if we don't find suitable free space 1527 * 1528 * This does a pretty simple search, the expectation is that it is called very 1529 * infrequently and that a given device has a small number of extents. 1530 * 1531 * @start is used to store the start of the free space if we find. But if we 1532 * don't find suitable free space, it will be used to store the start position 1533 * of the max free space. 1534 * 1535 * @len is used to store the size of the free space that we find. 1536 * But if we don't find suitable free space, it is used to store the size of 1537 * the max free space. 1538 * 1539 * NOTE: This function will search *commit* root of device tree, and does extra 1540 * check to ensure dev extents are not double allocated. 1541 * This makes the function safe to allocate dev extents but may not report 1542 * correct usable device space, as device extent freed in current transaction 1543 * is not reported as available. 1544 */ 1545 static int find_free_dev_extent_start(struct btrfs_device *device, 1546 u64 num_bytes, u64 search_start, u64 *start, 1547 u64 *len) 1548 { 1549 struct btrfs_fs_info *fs_info = device->fs_info; 1550 struct btrfs_root *root = fs_info->dev_root; 1551 struct btrfs_key key; 1552 struct btrfs_dev_extent *dev_extent; 1553 struct btrfs_path *path; 1554 u64 hole_size; 1555 u64 max_hole_start; 1556 u64 max_hole_size; 1557 u64 extent_end; 1558 u64 search_end = device->total_bytes; 1559 int ret; 1560 int slot; 1561 struct extent_buffer *l; 1562 1563 search_start = dev_extent_search_start(device, search_start); 1564 1565 WARN_ON(device->zone_info && 1566 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1567 1568 path = btrfs_alloc_path(); 1569 if (!path) 1570 return -ENOMEM; 1571 1572 max_hole_start = search_start; 1573 max_hole_size = 0; 1574 1575 again: 1576 if (search_start >= search_end || 1577 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1578 ret = -ENOSPC; 1579 goto out; 1580 } 1581 1582 path->reada = READA_FORWARD; 1583 path->search_commit_root = 1; 1584 path->skip_locking = 1; 1585 1586 key.objectid = device->devid; 1587 key.offset = search_start; 1588 key.type = BTRFS_DEV_EXTENT_KEY; 1589 1590 ret = btrfs_search_backwards(root, &key, path); 1591 if (ret < 0) 1592 goto out; 1593 1594 while (1) { 1595 l = path->nodes[0]; 1596 slot = path->slots[0]; 1597 if (slot >= btrfs_header_nritems(l)) { 1598 ret = btrfs_next_leaf(root, path); 1599 if (ret == 0) 1600 continue; 1601 if (ret < 0) 1602 goto out; 1603 1604 break; 1605 } 1606 btrfs_item_key_to_cpu(l, &key, slot); 1607 1608 if (key.objectid < device->devid) 1609 goto next; 1610 1611 if (key.objectid > device->devid) 1612 break; 1613 1614 if (key.type != BTRFS_DEV_EXTENT_KEY) 1615 goto next; 1616 1617 if (key.offset > search_start) { 1618 hole_size = key.offset - search_start; 1619 dev_extent_hole_check(device, &search_start, &hole_size, 1620 num_bytes); 1621 1622 if (hole_size > max_hole_size) { 1623 max_hole_start = search_start; 1624 max_hole_size = hole_size; 1625 } 1626 1627 /* 1628 * If this free space is greater than which we need, 1629 * it must be the max free space that we have found 1630 * until now, so max_hole_start must point to the start 1631 * of this free space and the length of this free space 1632 * is stored in max_hole_size. Thus, we return 1633 * max_hole_start and max_hole_size and go back to the 1634 * caller. 1635 */ 1636 if (hole_size >= num_bytes) { 1637 ret = 0; 1638 goto out; 1639 } 1640 } 1641 1642 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1643 extent_end = key.offset + btrfs_dev_extent_length(l, 1644 dev_extent); 1645 if (extent_end > search_start) 1646 search_start = extent_end; 1647 next: 1648 path->slots[0]++; 1649 cond_resched(); 1650 } 1651 1652 /* 1653 * At this point, search_start should be the end of 1654 * allocated dev extents, and when shrinking the device, 1655 * search_end may be smaller than search_start. 1656 */ 1657 if (search_end > search_start) { 1658 hole_size = search_end - search_start; 1659 if (dev_extent_hole_check(device, &search_start, &hole_size, 1660 num_bytes)) { 1661 btrfs_release_path(path); 1662 goto again; 1663 } 1664 1665 if (hole_size > max_hole_size) { 1666 max_hole_start = search_start; 1667 max_hole_size = hole_size; 1668 } 1669 } 1670 1671 /* See above. */ 1672 if (max_hole_size < num_bytes) 1673 ret = -ENOSPC; 1674 else 1675 ret = 0; 1676 1677 out: 1678 btrfs_free_path(path); 1679 *start = max_hole_start; 1680 if (len) 1681 *len = max_hole_size; 1682 return ret; 1683 } 1684 1685 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1686 u64 *start, u64 *len) 1687 { 1688 /* FIXME use last free of some kind */ 1689 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1690 } 1691 1692 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1693 struct btrfs_device *device, 1694 u64 start, u64 *dev_extent_len) 1695 { 1696 struct btrfs_fs_info *fs_info = device->fs_info; 1697 struct btrfs_root *root = fs_info->dev_root; 1698 int ret; 1699 struct btrfs_path *path; 1700 struct btrfs_key key; 1701 struct btrfs_key found_key; 1702 struct extent_buffer *leaf = NULL; 1703 struct btrfs_dev_extent *extent = NULL; 1704 1705 path = btrfs_alloc_path(); 1706 if (!path) 1707 return -ENOMEM; 1708 1709 key.objectid = device->devid; 1710 key.offset = start; 1711 key.type = BTRFS_DEV_EXTENT_KEY; 1712 again: 1713 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1714 if (ret > 0) { 1715 ret = btrfs_previous_item(root, path, key.objectid, 1716 BTRFS_DEV_EXTENT_KEY); 1717 if (ret) 1718 goto out; 1719 leaf = path->nodes[0]; 1720 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1721 extent = btrfs_item_ptr(leaf, path->slots[0], 1722 struct btrfs_dev_extent); 1723 BUG_ON(found_key.offset > start || found_key.offset + 1724 btrfs_dev_extent_length(leaf, extent) < start); 1725 key = found_key; 1726 btrfs_release_path(path); 1727 goto again; 1728 } else if (ret == 0) { 1729 leaf = path->nodes[0]; 1730 extent = btrfs_item_ptr(leaf, path->slots[0], 1731 struct btrfs_dev_extent); 1732 } else { 1733 goto out; 1734 } 1735 1736 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1737 1738 ret = btrfs_del_item(trans, root, path); 1739 if (ret == 0) 1740 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1741 out: 1742 btrfs_free_path(path); 1743 return ret; 1744 } 1745 1746 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1747 { 1748 struct extent_map_tree *em_tree; 1749 struct extent_map *em; 1750 struct rb_node *n; 1751 u64 ret = 0; 1752 1753 em_tree = &fs_info->mapping_tree; 1754 read_lock(&em_tree->lock); 1755 n = rb_last(&em_tree->map.rb_root); 1756 if (n) { 1757 em = rb_entry(n, struct extent_map, rb_node); 1758 ret = em->start + em->len; 1759 } 1760 read_unlock(&em_tree->lock); 1761 1762 return ret; 1763 } 1764 1765 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1766 u64 *devid_ret) 1767 { 1768 int ret; 1769 struct btrfs_key key; 1770 struct btrfs_key found_key; 1771 struct btrfs_path *path; 1772 1773 path = btrfs_alloc_path(); 1774 if (!path) 1775 return -ENOMEM; 1776 1777 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1778 key.type = BTRFS_DEV_ITEM_KEY; 1779 key.offset = (u64)-1; 1780 1781 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1782 if (ret < 0) 1783 goto error; 1784 1785 if (ret == 0) { 1786 /* Corruption */ 1787 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1788 ret = -EUCLEAN; 1789 goto error; 1790 } 1791 1792 ret = btrfs_previous_item(fs_info->chunk_root, path, 1793 BTRFS_DEV_ITEMS_OBJECTID, 1794 BTRFS_DEV_ITEM_KEY); 1795 if (ret) { 1796 *devid_ret = 1; 1797 } else { 1798 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1799 path->slots[0]); 1800 *devid_ret = found_key.offset + 1; 1801 } 1802 ret = 0; 1803 error: 1804 btrfs_free_path(path); 1805 return ret; 1806 } 1807 1808 /* 1809 * the device information is stored in the chunk root 1810 * the btrfs_device struct should be fully filled in 1811 */ 1812 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1813 struct btrfs_device *device) 1814 { 1815 int ret; 1816 struct btrfs_path *path; 1817 struct btrfs_dev_item *dev_item; 1818 struct extent_buffer *leaf; 1819 struct btrfs_key key; 1820 unsigned long ptr; 1821 1822 path = btrfs_alloc_path(); 1823 if (!path) 1824 return -ENOMEM; 1825 1826 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1827 key.type = BTRFS_DEV_ITEM_KEY; 1828 key.offset = device->devid; 1829 1830 btrfs_reserve_chunk_metadata(trans, true); 1831 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1832 &key, sizeof(*dev_item)); 1833 btrfs_trans_release_chunk_metadata(trans); 1834 if (ret) 1835 goto out; 1836 1837 leaf = path->nodes[0]; 1838 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1839 1840 btrfs_set_device_id(leaf, dev_item, device->devid); 1841 btrfs_set_device_generation(leaf, dev_item, 0); 1842 btrfs_set_device_type(leaf, dev_item, device->type); 1843 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1844 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1845 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1846 btrfs_set_device_total_bytes(leaf, dev_item, 1847 btrfs_device_get_disk_total_bytes(device)); 1848 btrfs_set_device_bytes_used(leaf, dev_item, 1849 btrfs_device_get_bytes_used(device)); 1850 btrfs_set_device_group(leaf, dev_item, 0); 1851 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1852 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1853 btrfs_set_device_start_offset(leaf, dev_item, 0); 1854 1855 ptr = btrfs_device_uuid(dev_item); 1856 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1857 ptr = btrfs_device_fsid(dev_item); 1858 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1859 ptr, BTRFS_FSID_SIZE); 1860 btrfs_mark_buffer_dirty(leaf); 1861 1862 ret = 0; 1863 out: 1864 btrfs_free_path(path); 1865 return ret; 1866 } 1867 1868 /* 1869 * Function to update ctime/mtime for a given device path. 1870 * Mainly used for ctime/mtime based probe like libblkid. 1871 * 1872 * We don't care about errors here, this is just to be kind to userspace. 1873 */ 1874 static void update_dev_time(const char *device_path) 1875 { 1876 struct path path; 1877 struct timespec64 now; 1878 int ret; 1879 1880 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1881 if (ret) 1882 return; 1883 1884 now = current_time(d_inode(path.dentry)); 1885 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME); 1886 path_put(&path); 1887 } 1888 1889 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1890 struct btrfs_device *device) 1891 { 1892 struct btrfs_root *root = device->fs_info->chunk_root; 1893 int ret; 1894 struct btrfs_path *path; 1895 struct btrfs_key key; 1896 1897 path = btrfs_alloc_path(); 1898 if (!path) 1899 return -ENOMEM; 1900 1901 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1902 key.type = BTRFS_DEV_ITEM_KEY; 1903 key.offset = device->devid; 1904 1905 btrfs_reserve_chunk_metadata(trans, false); 1906 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1907 btrfs_trans_release_chunk_metadata(trans); 1908 if (ret) { 1909 if (ret > 0) 1910 ret = -ENOENT; 1911 goto out; 1912 } 1913 1914 ret = btrfs_del_item(trans, root, path); 1915 out: 1916 btrfs_free_path(path); 1917 return ret; 1918 } 1919 1920 /* 1921 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1922 * filesystem. It's up to the caller to adjust that number regarding eg. device 1923 * replace. 1924 */ 1925 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1926 u64 num_devices) 1927 { 1928 u64 all_avail; 1929 unsigned seq; 1930 int i; 1931 1932 do { 1933 seq = read_seqbegin(&fs_info->profiles_lock); 1934 1935 all_avail = fs_info->avail_data_alloc_bits | 1936 fs_info->avail_system_alloc_bits | 1937 fs_info->avail_metadata_alloc_bits; 1938 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1939 1940 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1941 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1942 continue; 1943 1944 if (num_devices < btrfs_raid_array[i].devs_min) 1945 return btrfs_raid_array[i].mindev_error; 1946 } 1947 1948 return 0; 1949 } 1950 1951 static struct btrfs_device * btrfs_find_next_active_device( 1952 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1953 { 1954 struct btrfs_device *next_device; 1955 1956 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1957 if (next_device != device && 1958 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1959 && next_device->bdev) 1960 return next_device; 1961 } 1962 1963 return NULL; 1964 } 1965 1966 /* 1967 * Helper function to check if the given device is part of s_bdev / latest_dev 1968 * and replace it with the provided or the next active device, in the context 1969 * where this function called, there should be always be another device (or 1970 * this_dev) which is active. 1971 */ 1972 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1973 struct btrfs_device *next_device) 1974 { 1975 struct btrfs_fs_info *fs_info = device->fs_info; 1976 1977 if (!next_device) 1978 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1979 device); 1980 ASSERT(next_device); 1981 1982 if (fs_info->sb->s_bdev && 1983 (fs_info->sb->s_bdev == device->bdev)) 1984 fs_info->sb->s_bdev = next_device->bdev; 1985 1986 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 1987 fs_info->fs_devices->latest_dev = next_device; 1988 } 1989 1990 /* 1991 * Return btrfs_fs_devices::num_devices excluding the device that's being 1992 * currently replaced. 1993 */ 1994 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1995 { 1996 u64 num_devices = fs_info->fs_devices->num_devices; 1997 1998 down_read(&fs_info->dev_replace.rwsem); 1999 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2000 ASSERT(num_devices > 1); 2001 num_devices--; 2002 } 2003 up_read(&fs_info->dev_replace.rwsem); 2004 2005 return num_devices; 2006 } 2007 2008 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2009 struct block_device *bdev, 2010 const char *device_path) 2011 { 2012 struct btrfs_super_block *disk_super; 2013 int copy_num; 2014 2015 if (!bdev) 2016 return; 2017 2018 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2019 struct page *page; 2020 int ret; 2021 2022 disk_super = btrfs_read_dev_one_super(bdev, copy_num, false); 2023 if (IS_ERR(disk_super)) 2024 continue; 2025 2026 if (bdev_is_zoned(bdev)) { 2027 btrfs_reset_sb_log_zones(bdev, copy_num); 2028 continue; 2029 } 2030 2031 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2032 2033 page = virt_to_page(disk_super); 2034 set_page_dirty(page); 2035 lock_page(page); 2036 /* write_on_page() unlocks the page */ 2037 ret = write_one_page(page); 2038 if (ret) 2039 btrfs_warn(fs_info, 2040 "error clearing superblock number %d (%d)", 2041 copy_num, ret); 2042 btrfs_release_disk_super(disk_super); 2043 2044 } 2045 2046 /* Notify udev that device has changed */ 2047 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2048 2049 /* Update ctime/mtime for device path for libblkid */ 2050 update_dev_time(device_path); 2051 } 2052 2053 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2054 struct btrfs_dev_lookup_args *args, 2055 struct block_device **bdev, fmode_t *mode) 2056 { 2057 struct btrfs_trans_handle *trans; 2058 struct btrfs_device *device; 2059 struct btrfs_fs_devices *cur_devices; 2060 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2061 u64 num_devices; 2062 int ret = 0; 2063 2064 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2065 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2066 return -EINVAL; 2067 } 2068 2069 /* 2070 * The device list in fs_devices is accessed without locks (neither 2071 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2072 * filesystem and another device rm cannot run. 2073 */ 2074 num_devices = btrfs_num_devices(fs_info); 2075 2076 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2077 if (ret) 2078 return ret; 2079 2080 device = btrfs_find_device(fs_info->fs_devices, args); 2081 if (!device) { 2082 if (args->missing) 2083 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2084 else 2085 ret = -ENOENT; 2086 return ret; 2087 } 2088 2089 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2090 btrfs_warn_in_rcu(fs_info, 2091 "cannot remove device %s (devid %llu) due to active swapfile", 2092 btrfs_dev_name(device), device->devid); 2093 return -ETXTBSY; 2094 } 2095 2096 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2097 return BTRFS_ERROR_DEV_TGT_REPLACE; 2098 2099 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2100 fs_info->fs_devices->rw_devices == 1) 2101 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2102 2103 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2104 mutex_lock(&fs_info->chunk_mutex); 2105 list_del_init(&device->dev_alloc_list); 2106 device->fs_devices->rw_devices--; 2107 mutex_unlock(&fs_info->chunk_mutex); 2108 } 2109 2110 ret = btrfs_shrink_device(device, 0); 2111 if (ret) 2112 goto error_undo; 2113 2114 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2115 if (IS_ERR(trans)) { 2116 ret = PTR_ERR(trans); 2117 goto error_undo; 2118 } 2119 2120 ret = btrfs_rm_dev_item(trans, device); 2121 if (ret) { 2122 /* Any error in dev item removal is critical */ 2123 btrfs_crit(fs_info, 2124 "failed to remove device item for devid %llu: %d", 2125 device->devid, ret); 2126 btrfs_abort_transaction(trans, ret); 2127 btrfs_end_transaction(trans); 2128 return ret; 2129 } 2130 2131 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2132 btrfs_scrub_cancel_dev(device); 2133 2134 /* 2135 * the device list mutex makes sure that we don't change 2136 * the device list while someone else is writing out all 2137 * the device supers. Whoever is writing all supers, should 2138 * lock the device list mutex before getting the number of 2139 * devices in the super block (super_copy). Conversely, 2140 * whoever updates the number of devices in the super block 2141 * (super_copy) should hold the device list mutex. 2142 */ 2143 2144 /* 2145 * In normal cases the cur_devices == fs_devices. But in case 2146 * of deleting a seed device, the cur_devices should point to 2147 * its own fs_devices listed under the fs_devices->seed_list. 2148 */ 2149 cur_devices = device->fs_devices; 2150 mutex_lock(&fs_devices->device_list_mutex); 2151 list_del_rcu(&device->dev_list); 2152 2153 cur_devices->num_devices--; 2154 cur_devices->total_devices--; 2155 /* Update total_devices of the parent fs_devices if it's seed */ 2156 if (cur_devices != fs_devices) 2157 fs_devices->total_devices--; 2158 2159 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2160 cur_devices->missing_devices--; 2161 2162 btrfs_assign_next_active_device(device, NULL); 2163 2164 if (device->bdev) { 2165 cur_devices->open_devices--; 2166 /* remove sysfs entry */ 2167 btrfs_sysfs_remove_device(device); 2168 } 2169 2170 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2171 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2172 mutex_unlock(&fs_devices->device_list_mutex); 2173 2174 /* 2175 * At this point, the device is zero sized and detached from the 2176 * devices list. All that's left is to zero out the old supers and 2177 * free the device. 2178 * 2179 * We cannot call btrfs_close_bdev() here because we're holding the sb 2180 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2181 * block device and it's dependencies. Instead just flush the device 2182 * and let the caller do the final blkdev_put. 2183 */ 2184 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2185 btrfs_scratch_superblocks(fs_info, device->bdev, 2186 device->name->str); 2187 if (device->bdev) { 2188 sync_blockdev(device->bdev); 2189 invalidate_bdev(device->bdev); 2190 } 2191 } 2192 2193 *bdev = device->bdev; 2194 *mode = device->mode; 2195 synchronize_rcu(); 2196 btrfs_free_device(device); 2197 2198 /* 2199 * This can happen if cur_devices is the private seed devices list. We 2200 * cannot call close_fs_devices() here because it expects the uuid_mutex 2201 * to be held, but in fact we don't need that for the private 2202 * seed_devices, we can simply decrement cur_devices->opened and then 2203 * remove it from our list and free the fs_devices. 2204 */ 2205 if (cur_devices->num_devices == 0) { 2206 list_del_init(&cur_devices->seed_list); 2207 ASSERT(cur_devices->opened == 1); 2208 cur_devices->opened--; 2209 free_fs_devices(cur_devices); 2210 } 2211 2212 ret = btrfs_commit_transaction(trans); 2213 2214 return ret; 2215 2216 error_undo: 2217 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2218 mutex_lock(&fs_info->chunk_mutex); 2219 list_add(&device->dev_alloc_list, 2220 &fs_devices->alloc_list); 2221 device->fs_devices->rw_devices++; 2222 mutex_unlock(&fs_info->chunk_mutex); 2223 } 2224 return ret; 2225 } 2226 2227 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2228 { 2229 struct btrfs_fs_devices *fs_devices; 2230 2231 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2232 2233 /* 2234 * in case of fs with no seed, srcdev->fs_devices will point 2235 * to fs_devices of fs_info. However when the dev being replaced is 2236 * a seed dev it will point to the seed's local fs_devices. In short 2237 * srcdev will have its correct fs_devices in both the cases. 2238 */ 2239 fs_devices = srcdev->fs_devices; 2240 2241 list_del_rcu(&srcdev->dev_list); 2242 list_del(&srcdev->dev_alloc_list); 2243 fs_devices->num_devices--; 2244 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2245 fs_devices->missing_devices--; 2246 2247 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2248 fs_devices->rw_devices--; 2249 2250 if (srcdev->bdev) 2251 fs_devices->open_devices--; 2252 } 2253 2254 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2255 { 2256 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2257 2258 mutex_lock(&uuid_mutex); 2259 2260 btrfs_close_bdev(srcdev); 2261 synchronize_rcu(); 2262 btrfs_free_device(srcdev); 2263 2264 /* if this is no devs we rather delete the fs_devices */ 2265 if (!fs_devices->num_devices) { 2266 /* 2267 * On a mounted FS, num_devices can't be zero unless it's a 2268 * seed. In case of a seed device being replaced, the replace 2269 * target added to the sprout FS, so there will be no more 2270 * device left under the seed FS. 2271 */ 2272 ASSERT(fs_devices->seeding); 2273 2274 list_del_init(&fs_devices->seed_list); 2275 close_fs_devices(fs_devices); 2276 free_fs_devices(fs_devices); 2277 } 2278 mutex_unlock(&uuid_mutex); 2279 } 2280 2281 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2282 { 2283 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2284 2285 mutex_lock(&fs_devices->device_list_mutex); 2286 2287 btrfs_sysfs_remove_device(tgtdev); 2288 2289 if (tgtdev->bdev) 2290 fs_devices->open_devices--; 2291 2292 fs_devices->num_devices--; 2293 2294 btrfs_assign_next_active_device(tgtdev, NULL); 2295 2296 list_del_rcu(&tgtdev->dev_list); 2297 2298 mutex_unlock(&fs_devices->device_list_mutex); 2299 2300 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2301 tgtdev->name->str); 2302 2303 btrfs_close_bdev(tgtdev); 2304 synchronize_rcu(); 2305 btrfs_free_device(tgtdev); 2306 } 2307 2308 /* 2309 * Populate args from device at path. 2310 * 2311 * @fs_info: the filesystem 2312 * @args: the args to populate 2313 * @path: the path to the device 2314 * 2315 * This will read the super block of the device at @path and populate @args with 2316 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2317 * lookup a device to operate on, but need to do it before we take any locks. 2318 * This properly handles the special case of "missing" that a user may pass in, 2319 * and does some basic sanity checks. The caller must make sure that @path is 2320 * properly NUL terminated before calling in, and must call 2321 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2322 * uuid buffers. 2323 * 2324 * Return: 0 for success, -errno for failure 2325 */ 2326 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2327 struct btrfs_dev_lookup_args *args, 2328 const char *path) 2329 { 2330 struct btrfs_super_block *disk_super; 2331 struct block_device *bdev; 2332 int ret; 2333 2334 if (!path || !path[0]) 2335 return -EINVAL; 2336 if (!strcmp(path, "missing")) { 2337 args->missing = true; 2338 return 0; 2339 } 2340 2341 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2342 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2343 if (!args->uuid || !args->fsid) { 2344 btrfs_put_dev_args_from_path(args); 2345 return -ENOMEM; 2346 } 2347 2348 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0, 2349 &bdev, &disk_super); 2350 if (ret) { 2351 btrfs_put_dev_args_from_path(args); 2352 return ret; 2353 } 2354 2355 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2356 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2357 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2358 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2359 else 2360 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2361 btrfs_release_disk_super(disk_super); 2362 blkdev_put(bdev, FMODE_READ); 2363 return 0; 2364 } 2365 2366 /* 2367 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2368 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2369 * that don't need to be freed. 2370 */ 2371 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2372 { 2373 kfree(args->uuid); 2374 kfree(args->fsid); 2375 args->uuid = NULL; 2376 args->fsid = NULL; 2377 } 2378 2379 struct btrfs_device *btrfs_find_device_by_devspec( 2380 struct btrfs_fs_info *fs_info, u64 devid, 2381 const char *device_path) 2382 { 2383 BTRFS_DEV_LOOKUP_ARGS(args); 2384 struct btrfs_device *device; 2385 int ret; 2386 2387 if (devid) { 2388 args.devid = devid; 2389 device = btrfs_find_device(fs_info->fs_devices, &args); 2390 if (!device) 2391 return ERR_PTR(-ENOENT); 2392 return device; 2393 } 2394 2395 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2396 if (ret) 2397 return ERR_PTR(ret); 2398 device = btrfs_find_device(fs_info->fs_devices, &args); 2399 btrfs_put_dev_args_from_path(&args); 2400 if (!device) 2401 return ERR_PTR(-ENOENT); 2402 return device; 2403 } 2404 2405 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2406 { 2407 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2408 struct btrfs_fs_devices *old_devices; 2409 struct btrfs_fs_devices *seed_devices; 2410 2411 lockdep_assert_held(&uuid_mutex); 2412 if (!fs_devices->seeding) 2413 return ERR_PTR(-EINVAL); 2414 2415 /* 2416 * Private copy of the seed devices, anchored at 2417 * fs_info->fs_devices->seed_list 2418 */ 2419 seed_devices = alloc_fs_devices(NULL, NULL); 2420 if (IS_ERR(seed_devices)) 2421 return seed_devices; 2422 2423 /* 2424 * It's necessary to retain a copy of the original seed fs_devices in 2425 * fs_uuids so that filesystems which have been seeded can successfully 2426 * reference the seed device from open_seed_devices. This also supports 2427 * multiple fs seed. 2428 */ 2429 old_devices = clone_fs_devices(fs_devices); 2430 if (IS_ERR(old_devices)) { 2431 kfree(seed_devices); 2432 return old_devices; 2433 } 2434 2435 list_add(&old_devices->fs_list, &fs_uuids); 2436 2437 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2438 seed_devices->opened = 1; 2439 INIT_LIST_HEAD(&seed_devices->devices); 2440 INIT_LIST_HEAD(&seed_devices->alloc_list); 2441 mutex_init(&seed_devices->device_list_mutex); 2442 2443 return seed_devices; 2444 } 2445 2446 /* 2447 * Splice seed devices into the sprout fs_devices. 2448 * Generate a new fsid for the sprouted read-write filesystem. 2449 */ 2450 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2451 struct btrfs_fs_devices *seed_devices) 2452 { 2453 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2454 struct btrfs_super_block *disk_super = fs_info->super_copy; 2455 struct btrfs_device *device; 2456 u64 super_flags; 2457 2458 /* 2459 * We are updating the fsid, the thread leading to device_list_add() 2460 * could race, so uuid_mutex is needed. 2461 */ 2462 lockdep_assert_held(&uuid_mutex); 2463 2464 /* 2465 * The threads listed below may traverse dev_list but can do that without 2466 * device_list_mutex: 2467 * - All device ops and balance - as we are in btrfs_exclop_start. 2468 * - Various dev_list readers - are using RCU. 2469 * - btrfs_ioctl_fitrim() - is using RCU. 2470 * 2471 * For-read threads as below are using device_list_mutex: 2472 * - Readonly scrub btrfs_scrub_dev() 2473 * - Readonly scrub btrfs_scrub_progress() 2474 * - btrfs_get_dev_stats() 2475 */ 2476 lockdep_assert_held(&fs_devices->device_list_mutex); 2477 2478 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2479 synchronize_rcu); 2480 list_for_each_entry(device, &seed_devices->devices, dev_list) 2481 device->fs_devices = seed_devices; 2482 2483 fs_devices->seeding = false; 2484 fs_devices->num_devices = 0; 2485 fs_devices->open_devices = 0; 2486 fs_devices->missing_devices = 0; 2487 fs_devices->rotating = false; 2488 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2489 2490 generate_random_uuid(fs_devices->fsid); 2491 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2492 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2493 2494 super_flags = btrfs_super_flags(disk_super) & 2495 ~BTRFS_SUPER_FLAG_SEEDING; 2496 btrfs_set_super_flags(disk_super, super_flags); 2497 } 2498 2499 /* 2500 * Store the expected generation for seed devices in device items. 2501 */ 2502 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2503 { 2504 BTRFS_DEV_LOOKUP_ARGS(args); 2505 struct btrfs_fs_info *fs_info = trans->fs_info; 2506 struct btrfs_root *root = fs_info->chunk_root; 2507 struct btrfs_path *path; 2508 struct extent_buffer *leaf; 2509 struct btrfs_dev_item *dev_item; 2510 struct btrfs_device *device; 2511 struct btrfs_key key; 2512 u8 fs_uuid[BTRFS_FSID_SIZE]; 2513 u8 dev_uuid[BTRFS_UUID_SIZE]; 2514 int ret; 2515 2516 path = btrfs_alloc_path(); 2517 if (!path) 2518 return -ENOMEM; 2519 2520 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2521 key.offset = 0; 2522 key.type = BTRFS_DEV_ITEM_KEY; 2523 2524 while (1) { 2525 btrfs_reserve_chunk_metadata(trans, false); 2526 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2527 btrfs_trans_release_chunk_metadata(trans); 2528 if (ret < 0) 2529 goto error; 2530 2531 leaf = path->nodes[0]; 2532 next_slot: 2533 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2534 ret = btrfs_next_leaf(root, path); 2535 if (ret > 0) 2536 break; 2537 if (ret < 0) 2538 goto error; 2539 leaf = path->nodes[0]; 2540 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2541 btrfs_release_path(path); 2542 continue; 2543 } 2544 2545 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2546 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2547 key.type != BTRFS_DEV_ITEM_KEY) 2548 break; 2549 2550 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2551 struct btrfs_dev_item); 2552 args.devid = btrfs_device_id(leaf, dev_item); 2553 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2554 BTRFS_UUID_SIZE); 2555 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2556 BTRFS_FSID_SIZE); 2557 args.uuid = dev_uuid; 2558 args.fsid = fs_uuid; 2559 device = btrfs_find_device(fs_info->fs_devices, &args); 2560 BUG_ON(!device); /* Logic error */ 2561 2562 if (device->fs_devices->seeding) { 2563 btrfs_set_device_generation(leaf, dev_item, 2564 device->generation); 2565 btrfs_mark_buffer_dirty(leaf); 2566 } 2567 2568 path->slots[0]++; 2569 goto next_slot; 2570 } 2571 ret = 0; 2572 error: 2573 btrfs_free_path(path); 2574 return ret; 2575 } 2576 2577 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2578 { 2579 struct btrfs_root *root = fs_info->dev_root; 2580 struct btrfs_trans_handle *trans; 2581 struct btrfs_device *device; 2582 struct block_device *bdev; 2583 struct super_block *sb = fs_info->sb; 2584 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2585 struct btrfs_fs_devices *seed_devices; 2586 u64 orig_super_total_bytes; 2587 u64 orig_super_num_devices; 2588 int ret = 0; 2589 bool seeding_dev = false; 2590 bool locked = false; 2591 2592 if (sb_rdonly(sb) && !fs_devices->seeding) 2593 return -EROFS; 2594 2595 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2596 fs_info->bdev_holder); 2597 if (IS_ERR(bdev)) 2598 return PTR_ERR(bdev); 2599 2600 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2601 ret = -EINVAL; 2602 goto error; 2603 } 2604 2605 if (fs_devices->seeding) { 2606 seeding_dev = true; 2607 down_write(&sb->s_umount); 2608 mutex_lock(&uuid_mutex); 2609 locked = true; 2610 } 2611 2612 sync_blockdev(bdev); 2613 2614 rcu_read_lock(); 2615 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2616 if (device->bdev == bdev) { 2617 ret = -EEXIST; 2618 rcu_read_unlock(); 2619 goto error; 2620 } 2621 } 2622 rcu_read_unlock(); 2623 2624 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2625 if (IS_ERR(device)) { 2626 /* we can safely leave the fs_devices entry around */ 2627 ret = PTR_ERR(device); 2628 goto error; 2629 } 2630 2631 device->fs_info = fs_info; 2632 device->bdev = bdev; 2633 ret = lookup_bdev(device_path, &device->devt); 2634 if (ret) 2635 goto error_free_device; 2636 2637 ret = btrfs_get_dev_zone_info(device, false); 2638 if (ret) 2639 goto error_free_device; 2640 2641 trans = btrfs_start_transaction(root, 0); 2642 if (IS_ERR(trans)) { 2643 ret = PTR_ERR(trans); 2644 goto error_free_zone; 2645 } 2646 2647 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2648 device->generation = trans->transid; 2649 device->io_width = fs_info->sectorsize; 2650 device->io_align = fs_info->sectorsize; 2651 device->sector_size = fs_info->sectorsize; 2652 device->total_bytes = 2653 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2654 device->disk_total_bytes = device->total_bytes; 2655 device->commit_total_bytes = device->total_bytes; 2656 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2657 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2658 device->mode = FMODE_EXCL; 2659 device->dev_stats_valid = 1; 2660 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2661 2662 if (seeding_dev) { 2663 btrfs_clear_sb_rdonly(sb); 2664 2665 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2666 seed_devices = btrfs_init_sprout(fs_info); 2667 if (IS_ERR(seed_devices)) { 2668 ret = PTR_ERR(seed_devices); 2669 btrfs_abort_transaction(trans, ret); 2670 goto error_trans; 2671 } 2672 } 2673 2674 mutex_lock(&fs_devices->device_list_mutex); 2675 if (seeding_dev) { 2676 btrfs_setup_sprout(fs_info, seed_devices); 2677 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2678 device); 2679 } 2680 2681 device->fs_devices = fs_devices; 2682 2683 mutex_lock(&fs_info->chunk_mutex); 2684 list_add_rcu(&device->dev_list, &fs_devices->devices); 2685 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2686 fs_devices->num_devices++; 2687 fs_devices->open_devices++; 2688 fs_devices->rw_devices++; 2689 fs_devices->total_devices++; 2690 fs_devices->total_rw_bytes += device->total_bytes; 2691 2692 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2693 2694 if (!bdev_nonrot(bdev)) 2695 fs_devices->rotating = true; 2696 2697 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2698 btrfs_set_super_total_bytes(fs_info->super_copy, 2699 round_down(orig_super_total_bytes + device->total_bytes, 2700 fs_info->sectorsize)); 2701 2702 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2703 btrfs_set_super_num_devices(fs_info->super_copy, 2704 orig_super_num_devices + 1); 2705 2706 /* 2707 * we've got more storage, clear any full flags on the space 2708 * infos 2709 */ 2710 btrfs_clear_space_info_full(fs_info); 2711 2712 mutex_unlock(&fs_info->chunk_mutex); 2713 2714 /* Add sysfs device entry */ 2715 btrfs_sysfs_add_device(device); 2716 2717 mutex_unlock(&fs_devices->device_list_mutex); 2718 2719 if (seeding_dev) { 2720 mutex_lock(&fs_info->chunk_mutex); 2721 ret = init_first_rw_device(trans); 2722 mutex_unlock(&fs_info->chunk_mutex); 2723 if (ret) { 2724 btrfs_abort_transaction(trans, ret); 2725 goto error_sysfs; 2726 } 2727 } 2728 2729 ret = btrfs_add_dev_item(trans, device); 2730 if (ret) { 2731 btrfs_abort_transaction(trans, ret); 2732 goto error_sysfs; 2733 } 2734 2735 if (seeding_dev) { 2736 ret = btrfs_finish_sprout(trans); 2737 if (ret) { 2738 btrfs_abort_transaction(trans, ret); 2739 goto error_sysfs; 2740 } 2741 2742 /* 2743 * fs_devices now represents the newly sprouted filesystem and 2744 * its fsid has been changed by btrfs_sprout_splice(). 2745 */ 2746 btrfs_sysfs_update_sprout_fsid(fs_devices); 2747 } 2748 2749 ret = btrfs_commit_transaction(trans); 2750 2751 if (seeding_dev) { 2752 mutex_unlock(&uuid_mutex); 2753 up_write(&sb->s_umount); 2754 locked = false; 2755 2756 if (ret) /* transaction commit */ 2757 return ret; 2758 2759 ret = btrfs_relocate_sys_chunks(fs_info); 2760 if (ret < 0) 2761 btrfs_handle_fs_error(fs_info, ret, 2762 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2763 trans = btrfs_attach_transaction(root); 2764 if (IS_ERR(trans)) { 2765 if (PTR_ERR(trans) == -ENOENT) 2766 return 0; 2767 ret = PTR_ERR(trans); 2768 trans = NULL; 2769 goto error_sysfs; 2770 } 2771 ret = btrfs_commit_transaction(trans); 2772 } 2773 2774 /* 2775 * Now that we have written a new super block to this device, check all 2776 * other fs_devices list if device_path alienates any other scanned 2777 * device. 2778 * We can ignore the return value as it typically returns -EINVAL and 2779 * only succeeds if the device was an alien. 2780 */ 2781 btrfs_forget_devices(device->devt); 2782 2783 /* Update ctime/mtime for blkid or udev */ 2784 update_dev_time(device_path); 2785 2786 return ret; 2787 2788 error_sysfs: 2789 btrfs_sysfs_remove_device(device); 2790 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2791 mutex_lock(&fs_info->chunk_mutex); 2792 list_del_rcu(&device->dev_list); 2793 list_del(&device->dev_alloc_list); 2794 fs_info->fs_devices->num_devices--; 2795 fs_info->fs_devices->open_devices--; 2796 fs_info->fs_devices->rw_devices--; 2797 fs_info->fs_devices->total_devices--; 2798 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2799 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2800 btrfs_set_super_total_bytes(fs_info->super_copy, 2801 orig_super_total_bytes); 2802 btrfs_set_super_num_devices(fs_info->super_copy, 2803 orig_super_num_devices); 2804 mutex_unlock(&fs_info->chunk_mutex); 2805 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2806 error_trans: 2807 if (seeding_dev) 2808 btrfs_set_sb_rdonly(sb); 2809 if (trans) 2810 btrfs_end_transaction(trans); 2811 error_free_zone: 2812 btrfs_destroy_dev_zone_info(device); 2813 error_free_device: 2814 btrfs_free_device(device); 2815 error: 2816 blkdev_put(bdev, FMODE_EXCL); 2817 if (locked) { 2818 mutex_unlock(&uuid_mutex); 2819 up_write(&sb->s_umount); 2820 } 2821 return ret; 2822 } 2823 2824 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2825 struct btrfs_device *device) 2826 { 2827 int ret; 2828 struct btrfs_path *path; 2829 struct btrfs_root *root = device->fs_info->chunk_root; 2830 struct btrfs_dev_item *dev_item; 2831 struct extent_buffer *leaf; 2832 struct btrfs_key key; 2833 2834 path = btrfs_alloc_path(); 2835 if (!path) 2836 return -ENOMEM; 2837 2838 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2839 key.type = BTRFS_DEV_ITEM_KEY; 2840 key.offset = device->devid; 2841 2842 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2843 if (ret < 0) 2844 goto out; 2845 2846 if (ret > 0) { 2847 ret = -ENOENT; 2848 goto out; 2849 } 2850 2851 leaf = path->nodes[0]; 2852 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2853 2854 btrfs_set_device_id(leaf, dev_item, device->devid); 2855 btrfs_set_device_type(leaf, dev_item, device->type); 2856 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2857 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2858 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2859 btrfs_set_device_total_bytes(leaf, dev_item, 2860 btrfs_device_get_disk_total_bytes(device)); 2861 btrfs_set_device_bytes_used(leaf, dev_item, 2862 btrfs_device_get_bytes_used(device)); 2863 btrfs_mark_buffer_dirty(leaf); 2864 2865 out: 2866 btrfs_free_path(path); 2867 return ret; 2868 } 2869 2870 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2871 struct btrfs_device *device, u64 new_size) 2872 { 2873 struct btrfs_fs_info *fs_info = device->fs_info; 2874 struct btrfs_super_block *super_copy = fs_info->super_copy; 2875 u64 old_total; 2876 u64 diff; 2877 int ret; 2878 2879 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2880 return -EACCES; 2881 2882 new_size = round_down(new_size, fs_info->sectorsize); 2883 2884 mutex_lock(&fs_info->chunk_mutex); 2885 old_total = btrfs_super_total_bytes(super_copy); 2886 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2887 2888 if (new_size <= device->total_bytes || 2889 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2890 mutex_unlock(&fs_info->chunk_mutex); 2891 return -EINVAL; 2892 } 2893 2894 btrfs_set_super_total_bytes(super_copy, 2895 round_down(old_total + diff, fs_info->sectorsize)); 2896 device->fs_devices->total_rw_bytes += diff; 2897 2898 btrfs_device_set_total_bytes(device, new_size); 2899 btrfs_device_set_disk_total_bytes(device, new_size); 2900 btrfs_clear_space_info_full(device->fs_info); 2901 if (list_empty(&device->post_commit_list)) 2902 list_add_tail(&device->post_commit_list, 2903 &trans->transaction->dev_update_list); 2904 mutex_unlock(&fs_info->chunk_mutex); 2905 2906 btrfs_reserve_chunk_metadata(trans, false); 2907 ret = btrfs_update_device(trans, device); 2908 btrfs_trans_release_chunk_metadata(trans); 2909 2910 return ret; 2911 } 2912 2913 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2914 { 2915 struct btrfs_fs_info *fs_info = trans->fs_info; 2916 struct btrfs_root *root = fs_info->chunk_root; 2917 int ret; 2918 struct btrfs_path *path; 2919 struct btrfs_key key; 2920 2921 path = btrfs_alloc_path(); 2922 if (!path) 2923 return -ENOMEM; 2924 2925 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2926 key.offset = chunk_offset; 2927 key.type = BTRFS_CHUNK_ITEM_KEY; 2928 2929 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2930 if (ret < 0) 2931 goto out; 2932 else if (ret > 0) { /* Logic error or corruption */ 2933 btrfs_handle_fs_error(fs_info, -ENOENT, 2934 "Failed lookup while freeing chunk."); 2935 ret = -ENOENT; 2936 goto out; 2937 } 2938 2939 ret = btrfs_del_item(trans, root, path); 2940 if (ret < 0) 2941 btrfs_handle_fs_error(fs_info, ret, 2942 "Failed to delete chunk item."); 2943 out: 2944 btrfs_free_path(path); 2945 return ret; 2946 } 2947 2948 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2949 { 2950 struct btrfs_super_block *super_copy = fs_info->super_copy; 2951 struct btrfs_disk_key *disk_key; 2952 struct btrfs_chunk *chunk; 2953 u8 *ptr; 2954 int ret = 0; 2955 u32 num_stripes; 2956 u32 array_size; 2957 u32 len = 0; 2958 u32 cur; 2959 struct btrfs_key key; 2960 2961 lockdep_assert_held(&fs_info->chunk_mutex); 2962 array_size = btrfs_super_sys_array_size(super_copy); 2963 2964 ptr = super_copy->sys_chunk_array; 2965 cur = 0; 2966 2967 while (cur < array_size) { 2968 disk_key = (struct btrfs_disk_key *)ptr; 2969 btrfs_disk_key_to_cpu(&key, disk_key); 2970 2971 len = sizeof(*disk_key); 2972 2973 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2974 chunk = (struct btrfs_chunk *)(ptr + len); 2975 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2976 len += btrfs_chunk_item_size(num_stripes); 2977 } else { 2978 ret = -EIO; 2979 break; 2980 } 2981 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2982 key.offset == chunk_offset) { 2983 memmove(ptr, ptr + len, array_size - (cur + len)); 2984 array_size -= len; 2985 btrfs_set_super_sys_array_size(super_copy, array_size); 2986 } else { 2987 ptr += len; 2988 cur += len; 2989 } 2990 } 2991 return ret; 2992 } 2993 2994 /* 2995 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2996 * @logical: Logical block offset in bytes. 2997 * @length: Length of extent in bytes. 2998 * 2999 * Return: Chunk mapping or ERR_PTR. 3000 */ 3001 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3002 u64 logical, u64 length) 3003 { 3004 struct extent_map_tree *em_tree; 3005 struct extent_map *em; 3006 3007 em_tree = &fs_info->mapping_tree; 3008 read_lock(&em_tree->lock); 3009 em = lookup_extent_mapping(em_tree, logical, length); 3010 read_unlock(&em_tree->lock); 3011 3012 if (!em) { 3013 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 3014 logical, length); 3015 return ERR_PTR(-EINVAL); 3016 } 3017 3018 if (em->start > logical || em->start + em->len < logical) { 3019 btrfs_crit(fs_info, 3020 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3021 logical, length, em->start, em->start + em->len); 3022 free_extent_map(em); 3023 return ERR_PTR(-EINVAL); 3024 } 3025 3026 /* callers are responsible for dropping em's ref. */ 3027 return em; 3028 } 3029 3030 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3031 struct map_lookup *map, u64 chunk_offset) 3032 { 3033 int i; 3034 3035 /* 3036 * Removing chunk items and updating the device items in the chunks btree 3037 * requires holding the chunk_mutex. 3038 * See the comment at btrfs_chunk_alloc() for the details. 3039 */ 3040 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3041 3042 for (i = 0; i < map->num_stripes; i++) { 3043 int ret; 3044 3045 ret = btrfs_update_device(trans, map->stripes[i].dev); 3046 if (ret) 3047 return ret; 3048 } 3049 3050 return btrfs_free_chunk(trans, chunk_offset); 3051 } 3052 3053 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3054 { 3055 struct btrfs_fs_info *fs_info = trans->fs_info; 3056 struct extent_map *em; 3057 struct map_lookup *map; 3058 u64 dev_extent_len = 0; 3059 int i, ret = 0; 3060 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3061 3062 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3063 if (IS_ERR(em)) { 3064 /* 3065 * This is a logic error, but we don't want to just rely on the 3066 * user having built with ASSERT enabled, so if ASSERT doesn't 3067 * do anything we still error out. 3068 */ 3069 ASSERT(0); 3070 return PTR_ERR(em); 3071 } 3072 map = em->map_lookup; 3073 3074 /* 3075 * First delete the device extent items from the devices btree. 3076 * We take the device_list_mutex to avoid racing with the finishing phase 3077 * of a device replace operation. See the comment below before acquiring 3078 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3079 * because that can result in a deadlock when deleting the device extent 3080 * items from the devices btree - COWing an extent buffer from the btree 3081 * may result in allocating a new metadata chunk, which would attempt to 3082 * lock again fs_info->chunk_mutex. 3083 */ 3084 mutex_lock(&fs_devices->device_list_mutex); 3085 for (i = 0; i < map->num_stripes; i++) { 3086 struct btrfs_device *device = map->stripes[i].dev; 3087 ret = btrfs_free_dev_extent(trans, device, 3088 map->stripes[i].physical, 3089 &dev_extent_len); 3090 if (ret) { 3091 mutex_unlock(&fs_devices->device_list_mutex); 3092 btrfs_abort_transaction(trans, ret); 3093 goto out; 3094 } 3095 3096 if (device->bytes_used > 0) { 3097 mutex_lock(&fs_info->chunk_mutex); 3098 btrfs_device_set_bytes_used(device, 3099 device->bytes_used - dev_extent_len); 3100 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3101 btrfs_clear_space_info_full(fs_info); 3102 mutex_unlock(&fs_info->chunk_mutex); 3103 } 3104 } 3105 mutex_unlock(&fs_devices->device_list_mutex); 3106 3107 /* 3108 * We acquire fs_info->chunk_mutex for 2 reasons: 3109 * 3110 * 1) Just like with the first phase of the chunk allocation, we must 3111 * reserve system space, do all chunk btree updates and deletions, and 3112 * update the system chunk array in the superblock while holding this 3113 * mutex. This is for similar reasons as explained on the comment at 3114 * the top of btrfs_chunk_alloc(); 3115 * 3116 * 2) Prevent races with the final phase of a device replace operation 3117 * that replaces the device object associated with the map's stripes, 3118 * because the device object's id can change at any time during that 3119 * final phase of the device replace operation 3120 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3121 * replaced device and then see it with an ID of 3122 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3123 * the device item, which does not exists on the chunk btree. 3124 * The finishing phase of device replace acquires both the 3125 * device_list_mutex and the chunk_mutex, in that order, so we are 3126 * safe by just acquiring the chunk_mutex. 3127 */ 3128 trans->removing_chunk = true; 3129 mutex_lock(&fs_info->chunk_mutex); 3130 3131 check_system_chunk(trans, map->type); 3132 3133 ret = remove_chunk_item(trans, map, chunk_offset); 3134 /* 3135 * Normally we should not get -ENOSPC since we reserved space before 3136 * through the call to check_system_chunk(). 3137 * 3138 * Despite our system space_info having enough free space, we may not 3139 * be able to allocate extents from its block groups, because all have 3140 * an incompatible profile, which will force us to allocate a new system 3141 * block group with the right profile, or right after we called 3142 * check_system_space() above, a scrub turned the only system block group 3143 * with enough free space into RO mode. 3144 * This is explained with more detail at do_chunk_alloc(). 3145 * 3146 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3147 */ 3148 if (ret == -ENOSPC) { 3149 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3150 struct btrfs_block_group *sys_bg; 3151 3152 sys_bg = btrfs_create_chunk(trans, sys_flags); 3153 if (IS_ERR(sys_bg)) { 3154 ret = PTR_ERR(sys_bg); 3155 btrfs_abort_transaction(trans, ret); 3156 goto out; 3157 } 3158 3159 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3160 if (ret) { 3161 btrfs_abort_transaction(trans, ret); 3162 goto out; 3163 } 3164 3165 ret = remove_chunk_item(trans, map, chunk_offset); 3166 if (ret) { 3167 btrfs_abort_transaction(trans, ret); 3168 goto out; 3169 } 3170 } else if (ret) { 3171 btrfs_abort_transaction(trans, ret); 3172 goto out; 3173 } 3174 3175 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3176 3177 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3178 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3179 if (ret) { 3180 btrfs_abort_transaction(trans, ret); 3181 goto out; 3182 } 3183 } 3184 3185 mutex_unlock(&fs_info->chunk_mutex); 3186 trans->removing_chunk = false; 3187 3188 /* 3189 * We are done with chunk btree updates and deletions, so release the 3190 * system space we previously reserved (with check_system_chunk()). 3191 */ 3192 btrfs_trans_release_chunk_metadata(trans); 3193 3194 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3195 if (ret) { 3196 btrfs_abort_transaction(trans, ret); 3197 goto out; 3198 } 3199 3200 out: 3201 if (trans->removing_chunk) { 3202 mutex_unlock(&fs_info->chunk_mutex); 3203 trans->removing_chunk = false; 3204 } 3205 /* once for us */ 3206 free_extent_map(em); 3207 return ret; 3208 } 3209 3210 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3211 { 3212 struct btrfs_root *root = fs_info->chunk_root; 3213 struct btrfs_trans_handle *trans; 3214 struct btrfs_block_group *block_group; 3215 u64 length; 3216 int ret; 3217 3218 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3219 btrfs_err(fs_info, 3220 "relocate: not supported on extent tree v2 yet"); 3221 return -EINVAL; 3222 } 3223 3224 /* 3225 * Prevent races with automatic removal of unused block groups. 3226 * After we relocate and before we remove the chunk with offset 3227 * chunk_offset, automatic removal of the block group can kick in, 3228 * resulting in a failure when calling btrfs_remove_chunk() below. 3229 * 3230 * Make sure to acquire this mutex before doing a tree search (dev 3231 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3232 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3233 * we release the path used to search the chunk/dev tree and before 3234 * the current task acquires this mutex and calls us. 3235 */ 3236 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3237 3238 /* step one, relocate all the extents inside this chunk */ 3239 btrfs_scrub_pause(fs_info); 3240 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3241 btrfs_scrub_continue(fs_info); 3242 if (ret) 3243 return ret; 3244 3245 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3246 if (!block_group) 3247 return -ENOENT; 3248 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3249 length = block_group->length; 3250 btrfs_put_block_group(block_group); 3251 3252 /* 3253 * On a zoned file system, discard the whole block group, this will 3254 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3255 * resetting the zone fails, don't treat it as a fatal problem from the 3256 * filesystem's point of view. 3257 */ 3258 if (btrfs_is_zoned(fs_info)) { 3259 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3260 if (ret) 3261 btrfs_info(fs_info, 3262 "failed to reset zone %llu after relocation", 3263 chunk_offset); 3264 } 3265 3266 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3267 chunk_offset); 3268 if (IS_ERR(trans)) { 3269 ret = PTR_ERR(trans); 3270 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3271 return ret; 3272 } 3273 3274 /* 3275 * step two, delete the device extents and the 3276 * chunk tree entries 3277 */ 3278 ret = btrfs_remove_chunk(trans, chunk_offset); 3279 btrfs_end_transaction(trans); 3280 return ret; 3281 } 3282 3283 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3284 { 3285 struct btrfs_root *chunk_root = fs_info->chunk_root; 3286 struct btrfs_path *path; 3287 struct extent_buffer *leaf; 3288 struct btrfs_chunk *chunk; 3289 struct btrfs_key key; 3290 struct btrfs_key found_key; 3291 u64 chunk_type; 3292 bool retried = false; 3293 int failed = 0; 3294 int ret; 3295 3296 path = btrfs_alloc_path(); 3297 if (!path) 3298 return -ENOMEM; 3299 3300 again: 3301 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3302 key.offset = (u64)-1; 3303 key.type = BTRFS_CHUNK_ITEM_KEY; 3304 3305 while (1) { 3306 mutex_lock(&fs_info->reclaim_bgs_lock); 3307 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3308 if (ret < 0) { 3309 mutex_unlock(&fs_info->reclaim_bgs_lock); 3310 goto error; 3311 } 3312 BUG_ON(ret == 0); /* Corruption */ 3313 3314 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3315 key.type); 3316 if (ret) 3317 mutex_unlock(&fs_info->reclaim_bgs_lock); 3318 if (ret < 0) 3319 goto error; 3320 if (ret > 0) 3321 break; 3322 3323 leaf = path->nodes[0]; 3324 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3325 3326 chunk = btrfs_item_ptr(leaf, path->slots[0], 3327 struct btrfs_chunk); 3328 chunk_type = btrfs_chunk_type(leaf, chunk); 3329 btrfs_release_path(path); 3330 3331 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3332 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3333 if (ret == -ENOSPC) 3334 failed++; 3335 else 3336 BUG_ON(ret); 3337 } 3338 mutex_unlock(&fs_info->reclaim_bgs_lock); 3339 3340 if (found_key.offset == 0) 3341 break; 3342 key.offset = found_key.offset - 1; 3343 } 3344 ret = 0; 3345 if (failed && !retried) { 3346 failed = 0; 3347 retried = true; 3348 goto again; 3349 } else if (WARN_ON(failed && retried)) { 3350 ret = -ENOSPC; 3351 } 3352 error: 3353 btrfs_free_path(path); 3354 return ret; 3355 } 3356 3357 /* 3358 * return 1 : allocate a data chunk successfully, 3359 * return <0: errors during allocating a data chunk, 3360 * return 0 : no need to allocate a data chunk. 3361 */ 3362 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3363 u64 chunk_offset) 3364 { 3365 struct btrfs_block_group *cache; 3366 u64 bytes_used; 3367 u64 chunk_type; 3368 3369 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3370 ASSERT(cache); 3371 chunk_type = cache->flags; 3372 btrfs_put_block_group(cache); 3373 3374 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3375 return 0; 3376 3377 spin_lock(&fs_info->data_sinfo->lock); 3378 bytes_used = fs_info->data_sinfo->bytes_used; 3379 spin_unlock(&fs_info->data_sinfo->lock); 3380 3381 if (!bytes_used) { 3382 struct btrfs_trans_handle *trans; 3383 int ret; 3384 3385 trans = btrfs_join_transaction(fs_info->tree_root); 3386 if (IS_ERR(trans)) 3387 return PTR_ERR(trans); 3388 3389 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3390 btrfs_end_transaction(trans); 3391 if (ret < 0) 3392 return ret; 3393 return 1; 3394 } 3395 3396 return 0; 3397 } 3398 3399 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3400 struct btrfs_balance_control *bctl) 3401 { 3402 struct btrfs_root *root = fs_info->tree_root; 3403 struct btrfs_trans_handle *trans; 3404 struct btrfs_balance_item *item; 3405 struct btrfs_disk_balance_args disk_bargs; 3406 struct btrfs_path *path; 3407 struct extent_buffer *leaf; 3408 struct btrfs_key key; 3409 int ret, err; 3410 3411 path = btrfs_alloc_path(); 3412 if (!path) 3413 return -ENOMEM; 3414 3415 trans = btrfs_start_transaction(root, 0); 3416 if (IS_ERR(trans)) { 3417 btrfs_free_path(path); 3418 return PTR_ERR(trans); 3419 } 3420 3421 key.objectid = BTRFS_BALANCE_OBJECTID; 3422 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3423 key.offset = 0; 3424 3425 ret = btrfs_insert_empty_item(trans, root, path, &key, 3426 sizeof(*item)); 3427 if (ret) 3428 goto out; 3429 3430 leaf = path->nodes[0]; 3431 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3432 3433 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3434 3435 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3436 btrfs_set_balance_data(leaf, item, &disk_bargs); 3437 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3438 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3439 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3440 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3441 3442 btrfs_set_balance_flags(leaf, item, bctl->flags); 3443 3444 btrfs_mark_buffer_dirty(leaf); 3445 out: 3446 btrfs_free_path(path); 3447 err = btrfs_commit_transaction(trans); 3448 if (err && !ret) 3449 ret = err; 3450 return ret; 3451 } 3452 3453 static int del_balance_item(struct btrfs_fs_info *fs_info) 3454 { 3455 struct btrfs_root *root = fs_info->tree_root; 3456 struct btrfs_trans_handle *trans; 3457 struct btrfs_path *path; 3458 struct btrfs_key key; 3459 int ret, err; 3460 3461 path = btrfs_alloc_path(); 3462 if (!path) 3463 return -ENOMEM; 3464 3465 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3466 if (IS_ERR(trans)) { 3467 btrfs_free_path(path); 3468 return PTR_ERR(trans); 3469 } 3470 3471 key.objectid = BTRFS_BALANCE_OBJECTID; 3472 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3473 key.offset = 0; 3474 3475 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3476 if (ret < 0) 3477 goto out; 3478 if (ret > 0) { 3479 ret = -ENOENT; 3480 goto out; 3481 } 3482 3483 ret = btrfs_del_item(trans, root, path); 3484 out: 3485 btrfs_free_path(path); 3486 err = btrfs_commit_transaction(trans); 3487 if (err && !ret) 3488 ret = err; 3489 return ret; 3490 } 3491 3492 /* 3493 * This is a heuristic used to reduce the number of chunks balanced on 3494 * resume after balance was interrupted. 3495 */ 3496 static void update_balance_args(struct btrfs_balance_control *bctl) 3497 { 3498 /* 3499 * Turn on soft mode for chunk types that were being converted. 3500 */ 3501 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3502 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3503 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3504 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3505 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3506 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3507 3508 /* 3509 * Turn on usage filter if is not already used. The idea is 3510 * that chunks that we have already balanced should be 3511 * reasonably full. Don't do it for chunks that are being 3512 * converted - that will keep us from relocating unconverted 3513 * (albeit full) chunks. 3514 */ 3515 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3516 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3517 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3518 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3519 bctl->data.usage = 90; 3520 } 3521 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3522 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3523 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3524 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3525 bctl->sys.usage = 90; 3526 } 3527 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3528 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3529 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3530 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3531 bctl->meta.usage = 90; 3532 } 3533 } 3534 3535 /* 3536 * Clear the balance status in fs_info and delete the balance item from disk. 3537 */ 3538 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3539 { 3540 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3541 int ret; 3542 3543 BUG_ON(!fs_info->balance_ctl); 3544 3545 spin_lock(&fs_info->balance_lock); 3546 fs_info->balance_ctl = NULL; 3547 spin_unlock(&fs_info->balance_lock); 3548 3549 kfree(bctl); 3550 ret = del_balance_item(fs_info); 3551 if (ret) 3552 btrfs_handle_fs_error(fs_info, ret, NULL); 3553 } 3554 3555 /* 3556 * Balance filters. Return 1 if chunk should be filtered out 3557 * (should not be balanced). 3558 */ 3559 static int chunk_profiles_filter(u64 chunk_type, 3560 struct btrfs_balance_args *bargs) 3561 { 3562 chunk_type = chunk_to_extended(chunk_type) & 3563 BTRFS_EXTENDED_PROFILE_MASK; 3564 3565 if (bargs->profiles & chunk_type) 3566 return 0; 3567 3568 return 1; 3569 } 3570 3571 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3572 struct btrfs_balance_args *bargs) 3573 { 3574 struct btrfs_block_group *cache; 3575 u64 chunk_used; 3576 u64 user_thresh_min; 3577 u64 user_thresh_max; 3578 int ret = 1; 3579 3580 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3581 chunk_used = cache->used; 3582 3583 if (bargs->usage_min == 0) 3584 user_thresh_min = 0; 3585 else 3586 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3587 3588 if (bargs->usage_max == 0) 3589 user_thresh_max = 1; 3590 else if (bargs->usage_max > 100) 3591 user_thresh_max = cache->length; 3592 else 3593 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3594 3595 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3596 ret = 0; 3597 3598 btrfs_put_block_group(cache); 3599 return ret; 3600 } 3601 3602 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3603 u64 chunk_offset, struct btrfs_balance_args *bargs) 3604 { 3605 struct btrfs_block_group *cache; 3606 u64 chunk_used, user_thresh; 3607 int ret = 1; 3608 3609 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3610 chunk_used = cache->used; 3611 3612 if (bargs->usage_min == 0) 3613 user_thresh = 1; 3614 else if (bargs->usage > 100) 3615 user_thresh = cache->length; 3616 else 3617 user_thresh = mult_perc(cache->length, bargs->usage); 3618 3619 if (chunk_used < user_thresh) 3620 ret = 0; 3621 3622 btrfs_put_block_group(cache); 3623 return ret; 3624 } 3625 3626 static int chunk_devid_filter(struct extent_buffer *leaf, 3627 struct btrfs_chunk *chunk, 3628 struct btrfs_balance_args *bargs) 3629 { 3630 struct btrfs_stripe *stripe; 3631 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3632 int i; 3633 3634 for (i = 0; i < num_stripes; i++) { 3635 stripe = btrfs_stripe_nr(chunk, i); 3636 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3637 return 0; 3638 } 3639 3640 return 1; 3641 } 3642 3643 static u64 calc_data_stripes(u64 type, int num_stripes) 3644 { 3645 const int index = btrfs_bg_flags_to_raid_index(type); 3646 const int ncopies = btrfs_raid_array[index].ncopies; 3647 const int nparity = btrfs_raid_array[index].nparity; 3648 3649 return (num_stripes - nparity) / ncopies; 3650 } 3651 3652 /* [pstart, pend) */ 3653 static int chunk_drange_filter(struct extent_buffer *leaf, 3654 struct btrfs_chunk *chunk, 3655 struct btrfs_balance_args *bargs) 3656 { 3657 struct btrfs_stripe *stripe; 3658 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3659 u64 stripe_offset; 3660 u64 stripe_length; 3661 u64 type; 3662 int factor; 3663 int i; 3664 3665 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3666 return 0; 3667 3668 type = btrfs_chunk_type(leaf, chunk); 3669 factor = calc_data_stripes(type, num_stripes); 3670 3671 for (i = 0; i < num_stripes; i++) { 3672 stripe = btrfs_stripe_nr(chunk, i); 3673 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3674 continue; 3675 3676 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3677 stripe_length = btrfs_chunk_length(leaf, chunk); 3678 stripe_length = div_u64(stripe_length, factor); 3679 3680 if (stripe_offset < bargs->pend && 3681 stripe_offset + stripe_length > bargs->pstart) 3682 return 0; 3683 } 3684 3685 return 1; 3686 } 3687 3688 /* [vstart, vend) */ 3689 static int chunk_vrange_filter(struct extent_buffer *leaf, 3690 struct btrfs_chunk *chunk, 3691 u64 chunk_offset, 3692 struct btrfs_balance_args *bargs) 3693 { 3694 if (chunk_offset < bargs->vend && 3695 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3696 /* at least part of the chunk is inside this vrange */ 3697 return 0; 3698 3699 return 1; 3700 } 3701 3702 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3703 struct btrfs_chunk *chunk, 3704 struct btrfs_balance_args *bargs) 3705 { 3706 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3707 3708 if (bargs->stripes_min <= num_stripes 3709 && num_stripes <= bargs->stripes_max) 3710 return 0; 3711 3712 return 1; 3713 } 3714 3715 static int chunk_soft_convert_filter(u64 chunk_type, 3716 struct btrfs_balance_args *bargs) 3717 { 3718 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3719 return 0; 3720 3721 chunk_type = chunk_to_extended(chunk_type) & 3722 BTRFS_EXTENDED_PROFILE_MASK; 3723 3724 if (bargs->target == chunk_type) 3725 return 1; 3726 3727 return 0; 3728 } 3729 3730 static int should_balance_chunk(struct extent_buffer *leaf, 3731 struct btrfs_chunk *chunk, u64 chunk_offset) 3732 { 3733 struct btrfs_fs_info *fs_info = leaf->fs_info; 3734 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3735 struct btrfs_balance_args *bargs = NULL; 3736 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3737 3738 /* type filter */ 3739 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3740 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3741 return 0; 3742 } 3743 3744 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3745 bargs = &bctl->data; 3746 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3747 bargs = &bctl->sys; 3748 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3749 bargs = &bctl->meta; 3750 3751 /* profiles filter */ 3752 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3753 chunk_profiles_filter(chunk_type, bargs)) { 3754 return 0; 3755 } 3756 3757 /* usage filter */ 3758 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3759 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3760 return 0; 3761 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3762 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3763 return 0; 3764 } 3765 3766 /* devid filter */ 3767 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3768 chunk_devid_filter(leaf, chunk, bargs)) { 3769 return 0; 3770 } 3771 3772 /* drange filter, makes sense only with devid filter */ 3773 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3774 chunk_drange_filter(leaf, chunk, bargs)) { 3775 return 0; 3776 } 3777 3778 /* vrange filter */ 3779 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3780 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3781 return 0; 3782 } 3783 3784 /* stripes filter */ 3785 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3786 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3787 return 0; 3788 } 3789 3790 /* soft profile changing mode */ 3791 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3792 chunk_soft_convert_filter(chunk_type, bargs)) { 3793 return 0; 3794 } 3795 3796 /* 3797 * limited by count, must be the last filter 3798 */ 3799 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3800 if (bargs->limit == 0) 3801 return 0; 3802 else 3803 bargs->limit--; 3804 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3805 /* 3806 * Same logic as the 'limit' filter; the minimum cannot be 3807 * determined here because we do not have the global information 3808 * about the count of all chunks that satisfy the filters. 3809 */ 3810 if (bargs->limit_max == 0) 3811 return 0; 3812 else 3813 bargs->limit_max--; 3814 } 3815 3816 return 1; 3817 } 3818 3819 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3820 { 3821 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3822 struct btrfs_root *chunk_root = fs_info->chunk_root; 3823 u64 chunk_type; 3824 struct btrfs_chunk *chunk; 3825 struct btrfs_path *path = NULL; 3826 struct btrfs_key key; 3827 struct btrfs_key found_key; 3828 struct extent_buffer *leaf; 3829 int slot; 3830 int ret; 3831 int enospc_errors = 0; 3832 bool counting = true; 3833 /* The single value limit and min/max limits use the same bytes in the */ 3834 u64 limit_data = bctl->data.limit; 3835 u64 limit_meta = bctl->meta.limit; 3836 u64 limit_sys = bctl->sys.limit; 3837 u32 count_data = 0; 3838 u32 count_meta = 0; 3839 u32 count_sys = 0; 3840 int chunk_reserved = 0; 3841 3842 path = btrfs_alloc_path(); 3843 if (!path) { 3844 ret = -ENOMEM; 3845 goto error; 3846 } 3847 3848 /* zero out stat counters */ 3849 spin_lock(&fs_info->balance_lock); 3850 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3851 spin_unlock(&fs_info->balance_lock); 3852 again: 3853 if (!counting) { 3854 /* 3855 * The single value limit and min/max limits use the same bytes 3856 * in the 3857 */ 3858 bctl->data.limit = limit_data; 3859 bctl->meta.limit = limit_meta; 3860 bctl->sys.limit = limit_sys; 3861 } 3862 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3863 key.offset = (u64)-1; 3864 key.type = BTRFS_CHUNK_ITEM_KEY; 3865 3866 while (1) { 3867 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3868 atomic_read(&fs_info->balance_cancel_req)) { 3869 ret = -ECANCELED; 3870 goto error; 3871 } 3872 3873 mutex_lock(&fs_info->reclaim_bgs_lock); 3874 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3875 if (ret < 0) { 3876 mutex_unlock(&fs_info->reclaim_bgs_lock); 3877 goto error; 3878 } 3879 3880 /* 3881 * this shouldn't happen, it means the last relocate 3882 * failed 3883 */ 3884 if (ret == 0) 3885 BUG(); /* FIXME break ? */ 3886 3887 ret = btrfs_previous_item(chunk_root, path, 0, 3888 BTRFS_CHUNK_ITEM_KEY); 3889 if (ret) { 3890 mutex_unlock(&fs_info->reclaim_bgs_lock); 3891 ret = 0; 3892 break; 3893 } 3894 3895 leaf = path->nodes[0]; 3896 slot = path->slots[0]; 3897 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3898 3899 if (found_key.objectid != key.objectid) { 3900 mutex_unlock(&fs_info->reclaim_bgs_lock); 3901 break; 3902 } 3903 3904 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3905 chunk_type = btrfs_chunk_type(leaf, chunk); 3906 3907 if (!counting) { 3908 spin_lock(&fs_info->balance_lock); 3909 bctl->stat.considered++; 3910 spin_unlock(&fs_info->balance_lock); 3911 } 3912 3913 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3914 3915 btrfs_release_path(path); 3916 if (!ret) { 3917 mutex_unlock(&fs_info->reclaim_bgs_lock); 3918 goto loop; 3919 } 3920 3921 if (counting) { 3922 mutex_unlock(&fs_info->reclaim_bgs_lock); 3923 spin_lock(&fs_info->balance_lock); 3924 bctl->stat.expected++; 3925 spin_unlock(&fs_info->balance_lock); 3926 3927 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3928 count_data++; 3929 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3930 count_sys++; 3931 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3932 count_meta++; 3933 3934 goto loop; 3935 } 3936 3937 /* 3938 * Apply limit_min filter, no need to check if the LIMITS 3939 * filter is used, limit_min is 0 by default 3940 */ 3941 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3942 count_data < bctl->data.limit_min) 3943 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3944 count_meta < bctl->meta.limit_min) 3945 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3946 count_sys < bctl->sys.limit_min)) { 3947 mutex_unlock(&fs_info->reclaim_bgs_lock); 3948 goto loop; 3949 } 3950 3951 if (!chunk_reserved) { 3952 /* 3953 * We may be relocating the only data chunk we have, 3954 * which could potentially end up with losing data's 3955 * raid profile, so lets allocate an empty one in 3956 * advance. 3957 */ 3958 ret = btrfs_may_alloc_data_chunk(fs_info, 3959 found_key.offset); 3960 if (ret < 0) { 3961 mutex_unlock(&fs_info->reclaim_bgs_lock); 3962 goto error; 3963 } else if (ret == 1) { 3964 chunk_reserved = 1; 3965 } 3966 } 3967 3968 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3969 mutex_unlock(&fs_info->reclaim_bgs_lock); 3970 if (ret == -ENOSPC) { 3971 enospc_errors++; 3972 } else if (ret == -ETXTBSY) { 3973 btrfs_info(fs_info, 3974 "skipping relocation of block group %llu due to active swapfile", 3975 found_key.offset); 3976 ret = 0; 3977 } else if (ret) { 3978 goto error; 3979 } else { 3980 spin_lock(&fs_info->balance_lock); 3981 bctl->stat.completed++; 3982 spin_unlock(&fs_info->balance_lock); 3983 } 3984 loop: 3985 if (found_key.offset == 0) 3986 break; 3987 key.offset = found_key.offset - 1; 3988 } 3989 3990 if (counting) { 3991 btrfs_release_path(path); 3992 counting = false; 3993 goto again; 3994 } 3995 error: 3996 btrfs_free_path(path); 3997 if (enospc_errors) { 3998 btrfs_info(fs_info, "%d enospc errors during balance", 3999 enospc_errors); 4000 if (!ret) 4001 ret = -ENOSPC; 4002 } 4003 4004 return ret; 4005 } 4006 4007 /* 4008 * See if a given profile is valid and reduced. 4009 * 4010 * @flags: profile to validate 4011 * @extended: if true @flags is treated as an extended profile 4012 */ 4013 static int alloc_profile_is_valid(u64 flags, int extended) 4014 { 4015 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4016 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4017 4018 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4019 4020 /* 1) check that all other bits are zeroed */ 4021 if (flags & ~mask) 4022 return 0; 4023 4024 /* 2) see if profile is reduced */ 4025 if (flags == 0) 4026 return !extended; /* "0" is valid for usual profiles */ 4027 4028 return has_single_bit_set(flags); 4029 } 4030 4031 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 4032 { 4033 /* cancel requested || normal exit path */ 4034 return atomic_read(&fs_info->balance_cancel_req) || 4035 (atomic_read(&fs_info->balance_pause_req) == 0 && 4036 atomic_read(&fs_info->balance_cancel_req) == 0); 4037 } 4038 4039 /* 4040 * Validate target profile against allowed profiles and return true if it's OK. 4041 * Otherwise print the error message and return false. 4042 */ 4043 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4044 const struct btrfs_balance_args *bargs, 4045 u64 allowed, const char *type) 4046 { 4047 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4048 return true; 4049 4050 /* Profile is valid and does not have bits outside of the allowed set */ 4051 if (alloc_profile_is_valid(bargs->target, 1) && 4052 (bargs->target & ~allowed) == 0) 4053 return true; 4054 4055 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4056 type, btrfs_bg_type_to_raid_name(bargs->target)); 4057 return false; 4058 } 4059 4060 /* 4061 * Fill @buf with textual description of balance filter flags @bargs, up to 4062 * @size_buf including the terminating null. The output may be trimmed if it 4063 * does not fit into the provided buffer. 4064 */ 4065 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4066 u32 size_buf) 4067 { 4068 int ret; 4069 u32 size_bp = size_buf; 4070 char *bp = buf; 4071 u64 flags = bargs->flags; 4072 char tmp_buf[128] = {'\0'}; 4073 4074 if (!flags) 4075 return; 4076 4077 #define CHECK_APPEND_NOARG(a) \ 4078 do { \ 4079 ret = snprintf(bp, size_bp, (a)); \ 4080 if (ret < 0 || ret >= size_bp) \ 4081 goto out_overflow; \ 4082 size_bp -= ret; \ 4083 bp += ret; \ 4084 } while (0) 4085 4086 #define CHECK_APPEND_1ARG(a, v1) \ 4087 do { \ 4088 ret = snprintf(bp, size_bp, (a), (v1)); \ 4089 if (ret < 0 || ret >= size_bp) \ 4090 goto out_overflow; \ 4091 size_bp -= ret; \ 4092 bp += ret; \ 4093 } while (0) 4094 4095 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4096 do { \ 4097 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4098 if (ret < 0 || ret >= size_bp) \ 4099 goto out_overflow; \ 4100 size_bp -= ret; \ 4101 bp += ret; \ 4102 } while (0) 4103 4104 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4105 CHECK_APPEND_1ARG("convert=%s,", 4106 btrfs_bg_type_to_raid_name(bargs->target)); 4107 4108 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4109 CHECK_APPEND_NOARG("soft,"); 4110 4111 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4112 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4113 sizeof(tmp_buf)); 4114 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4115 } 4116 4117 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4118 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4119 4120 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4121 CHECK_APPEND_2ARG("usage=%u..%u,", 4122 bargs->usage_min, bargs->usage_max); 4123 4124 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4125 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4126 4127 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4128 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4129 bargs->pstart, bargs->pend); 4130 4131 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4132 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4133 bargs->vstart, bargs->vend); 4134 4135 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4136 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4137 4138 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4139 CHECK_APPEND_2ARG("limit=%u..%u,", 4140 bargs->limit_min, bargs->limit_max); 4141 4142 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4143 CHECK_APPEND_2ARG("stripes=%u..%u,", 4144 bargs->stripes_min, bargs->stripes_max); 4145 4146 #undef CHECK_APPEND_2ARG 4147 #undef CHECK_APPEND_1ARG 4148 #undef CHECK_APPEND_NOARG 4149 4150 out_overflow: 4151 4152 if (size_bp < size_buf) 4153 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4154 else 4155 buf[0] = '\0'; 4156 } 4157 4158 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4159 { 4160 u32 size_buf = 1024; 4161 char tmp_buf[192] = {'\0'}; 4162 char *buf; 4163 char *bp; 4164 u32 size_bp = size_buf; 4165 int ret; 4166 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4167 4168 buf = kzalloc(size_buf, GFP_KERNEL); 4169 if (!buf) 4170 return; 4171 4172 bp = buf; 4173 4174 #define CHECK_APPEND_1ARG(a, v1) \ 4175 do { \ 4176 ret = snprintf(bp, size_bp, (a), (v1)); \ 4177 if (ret < 0 || ret >= size_bp) \ 4178 goto out_overflow; \ 4179 size_bp -= ret; \ 4180 bp += ret; \ 4181 } while (0) 4182 4183 if (bctl->flags & BTRFS_BALANCE_FORCE) 4184 CHECK_APPEND_1ARG("%s", "-f "); 4185 4186 if (bctl->flags & BTRFS_BALANCE_DATA) { 4187 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4188 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4189 } 4190 4191 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4192 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4193 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4194 } 4195 4196 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4197 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4198 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4199 } 4200 4201 #undef CHECK_APPEND_1ARG 4202 4203 out_overflow: 4204 4205 if (size_bp < size_buf) 4206 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4207 btrfs_info(fs_info, "balance: %s %s", 4208 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4209 "resume" : "start", buf); 4210 4211 kfree(buf); 4212 } 4213 4214 /* 4215 * Should be called with balance mutexe held 4216 */ 4217 int btrfs_balance(struct btrfs_fs_info *fs_info, 4218 struct btrfs_balance_control *bctl, 4219 struct btrfs_ioctl_balance_args *bargs) 4220 { 4221 u64 meta_target, data_target; 4222 u64 allowed; 4223 int mixed = 0; 4224 int ret; 4225 u64 num_devices; 4226 unsigned seq; 4227 bool reducing_redundancy; 4228 int i; 4229 4230 if (btrfs_fs_closing(fs_info) || 4231 atomic_read(&fs_info->balance_pause_req) || 4232 btrfs_should_cancel_balance(fs_info)) { 4233 ret = -EINVAL; 4234 goto out; 4235 } 4236 4237 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4238 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4239 mixed = 1; 4240 4241 /* 4242 * In case of mixed groups both data and meta should be picked, 4243 * and identical options should be given for both of them. 4244 */ 4245 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4246 if (mixed && (bctl->flags & allowed)) { 4247 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4248 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4249 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4250 btrfs_err(fs_info, 4251 "balance: mixed groups data and metadata options must be the same"); 4252 ret = -EINVAL; 4253 goto out; 4254 } 4255 } 4256 4257 /* 4258 * rw_devices will not change at the moment, device add/delete/replace 4259 * are exclusive 4260 */ 4261 num_devices = fs_info->fs_devices->rw_devices; 4262 4263 /* 4264 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4265 * special bit for it, to make it easier to distinguish. Thus we need 4266 * to set it manually, or balance would refuse the profile. 4267 */ 4268 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4269 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4270 if (num_devices >= btrfs_raid_array[i].devs_min) 4271 allowed |= btrfs_raid_array[i].bg_flag; 4272 4273 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4274 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4275 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4276 ret = -EINVAL; 4277 goto out; 4278 } 4279 4280 /* 4281 * Allow to reduce metadata or system integrity only if force set for 4282 * profiles with redundancy (copies, parity) 4283 */ 4284 allowed = 0; 4285 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4286 if (btrfs_raid_array[i].ncopies >= 2 || 4287 btrfs_raid_array[i].tolerated_failures >= 1) 4288 allowed |= btrfs_raid_array[i].bg_flag; 4289 } 4290 do { 4291 seq = read_seqbegin(&fs_info->profiles_lock); 4292 4293 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4294 (fs_info->avail_system_alloc_bits & allowed) && 4295 !(bctl->sys.target & allowed)) || 4296 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4297 (fs_info->avail_metadata_alloc_bits & allowed) && 4298 !(bctl->meta.target & allowed))) 4299 reducing_redundancy = true; 4300 else 4301 reducing_redundancy = false; 4302 4303 /* if we're not converting, the target field is uninitialized */ 4304 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4305 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4306 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4307 bctl->data.target : fs_info->avail_data_alloc_bits; 4308 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4309 4310 if (reducing_redundancy) { 4311 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4312 btrfs_info(fs_info, 4313 "balance: force reducing metadata redundancy"); 4314 } else { 4315 btrfs_err(fs_info, 4316 "balance: reduces metadata redundancy, use --force if you want this"); 4317 ret = -EINVAL; 4318 goto out; 4319 } 4320 } 4321 4322 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4323 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4324 btrfs_warn(fs_info, 4325 "balance: metadata profile %s has lower redundancy than data profile %s", 4326 btrfs_bg_type_to_raid_name(meta_target), 4327 btrfs_bg_type_to_raid_name(data_target)); 4328 } 4329 4330 ret = insert_balance_item(fs_info, bctl); 4331 if (ret && ret != -EEXIST) 4332 goto out; 4333 4334 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4335 BUG_ON(ret == -EEXIST); 4336 BUG_ON(fs_info->balance_ctl); 4337 spin_lock(&fs_info->balance_lock); 4338 fs_info->balance_ctl = bctl; 4339 spin_unlock(&fs_info->balance_lock); 4340 } else { 4341 BUG_ON(ret != -EEXIST); 4342 spin_lock(&fs_info->balance_lock); 4343 update_balance_args(bctl); 4344 spin_unlock(&fs_info->balance_lock); 4345 } 4346 4347 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4348 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4349 describe_balance_start_or_resume(fs_info); 4350 mutex_unlock(&fs_info->balance_mutex); 4351 4352 ret = __btrfs_balance(fs_info); 4353 4354 mutex_lock(&fs_info->balance_mutex); 4355 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4356 btrfs_info(fs_info, "balance: paused"); 4357 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4358 } 4359 /* 4360 * Balance can be canceled by: 4361 * 4362 * - Regular cancel request 4363 * Then ret == -ECANCELED and balance_cancel_req > 0 4364 * 4365 * - Fatal signal to "btrfs" process 4366 * Either the signal caught by wait_reserve_ticket() and callers 4367 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4368 * got -ECANCELED. 4369 * Either way, in this case balance_cancel_req = 0, and 4370 * ret == -EINTR or ret == -ECANCELED. 4371 * 4372 * So here we only check the return value to catch canceled balance. 4373 */ 4374 else if (ret == -ECANCELED || ret == -EINTR) 4375 btrfs_info(fs_info, "balance: canceled"); 4376 else 4377 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4378 4379 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4380 4381 if (bargs) { 4382 memset(bargs, 0, sizeof(*bargs)); 4383 btrfs_update_ioctl_balance_args(fs_info, bargs); 4384 } 4385 4386 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4387 balance_need_close(fs_info)) { 4388 reset_balance_state(fs_info); 4389 btrfs_exclop_finish(fs_info); 4390 } 4391 4392 wake_up(&fs_info->balance_wait_q); 4393 4394 return ret; 4395 out: 4396 if (bctl->flags & BTRFS_BALANCE_RESUME) 4397 reset_balance_state(fs_info); 4398 else 4399 kfree(bctl); 4400 btrfs_exclop_finish(fs_info); 4401 4402 return ret; 4403 } 4404 4405 static int balance_kthread(void *data) 4406 { 4407 struct btrfs_fs_info *fs_info = data; 4408 int ret = 0; 4409 4410 sb_start_write(fs_info->sb); 4411 mutex_lock(&fs_info->balance_mutex); 4412 if (fs_info->balance_ctl) 4413 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4414 mutex_unlock(&fs_info->balance_mutex); 4415 sb_end_write(fs_info->sb); 4416 4417 return ret; 4418 } 4419 4420 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4421 { 4422 struct task_struct *tsk; 4423 4424 mutex_lock(&fs_info->balance_mutex); 4425 if (!fs_info->balance_ctl) { 4426 mutex_unlock(&fs_info->balance_mutex); 4427 return 0; 4428 } 4429 mutex_unlock(&fs_info->balance_mutex); 4430 4431 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4432 btrfs_info(fs_info, "balance: resume skipped"); 4433 return 0; 4434 } 4435 4436 spin_lock(&fs_info->super_lock); 4437 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4438 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4439 spin_unlock(&fs_info->super_lock); 4440 /* 4441 * A ro->rw remount sequence should continue with the paused balance 4442 * regardless of who pauses it, system or the user as of now, so set 4443 * the resume flag. 4444 */ 4445 spin_lock(&fs_info->balance_lock); 4446 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4447 spin_unlock(&fs_info->balance_lock); 4448 4449 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4450 return PTR_ERR_OR_ZERO(tsk); 4451 } 4452 4453 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4454 { 4455 struct btrfs_balance_control *bctl; 4456 struct btrfs_balance_item *item; 4457 struct btrfs_disk_balance_args disk_bargs; 4458 struct btrfs_path *path; 4459 struct extent_buffer *leaf; 4460 struct btrfs_key key; 4461 int ret; 4462 4463 path = btrfs_alloc_path(); 4464 if (!path) 4465 return -ENOMEM; 4466 4467 key.objectid = BTRFS_BALANCE_OBJECTID; 4468 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4469 key.offset = 0; 4470 4471 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4472 if (ret < 0) 4473 goto out; 4474 if (ret > 0) { /* ret = -ENOENT; */ 4475 ret = 0; 4476 goto out; 4477 } 4478 4479 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4480 if (!bctl) { 4481 ret = -ENOMEM; 4482 goto out; 4483 } 4484 4485 leaf = path->nodes[0]; 4486 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4487 4488 bctl->flags = btrfs_balance_flags(leaf, item); 4489 bctl->flags |= BTRFS_BALANCE_RESUME; 4490 4491 btrfs_balance_data(leaf, item, &disk_bargs); 4492 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4493 btrfs_balance_meta(leaf, item, &disk_bargs); 4494 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4495 btrfs_balance_sys(leaf, item, &disk_bargs); 4496 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4497 4498 /* 4499 * This should never happen, as the paused balance state is recovered 4500 * during mount without any chance of other exclusive ops to collide. 4501 * 4502 * This gives the exclusive op status to balance and keeps in paused 4503 * state until user intervention (cancel or umount). If the ownership 4504 * cannot be assigned, show a message but do not fail. The balance 4505 * is in a paused state and must have fs_info::balance_ctl properly 4506 * set up. 4507 */ 4508 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4509 btrfs_warn(fs_info, 4510 "balance: cannot set exclusive op status, resume manually"); 4511 4512 btrfs_release_path(path); 4513 4514 mutex_lock(&fs_info->balance_mutex); 4515 BUG_ON(fs_info->balance_ctl); 4516 spin_lock(&fs_info->balance_lock); 4517 fs_info->balance_ctl = bctl; 4518 spin_unlock(&fs_info->balance_lock); 4519 mutex_unlock(&fs_info->balance_mutex); 4520 out: 4521 btrfs_free_path(path); 4522 return ret; 4523 } 4524 4525 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4526 { 4527 int ret = 0; 4528 4529 mutex_lock(&fs_info->balance_mutex); 4530 if (!fs_info->balance_ctl) { 4531 mutex_unlock(&fs_info->balance_mutex); 4532 return -ENOTCONN; 4533 } 4534 4535 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4536 atomic_inc(&fs_info->balance_pause_req); 4537 mutex_unlock(&fs_info->balance_mutex); 4538 4539 wait_event(fs_info->balance_wait_q, 4540 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4541 4542 mutex_lock(&fs_info->balance_mutex); 4543 /* we are good with balance_ctl ripped off from under us */ 4544 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4545 atomic_dec(&fs_info->balance_pause_req); 4546 } else { 4547 ret = -ENOTCONN; 4548 } 4549 4550 mutex_unlock(&fs_info->balance_mutex); 4551 return ret; 4552 } 4553 4554 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4555 { 4556 mutex_lock(&fs_info->balance_mutex); 4557 if (!fs_info->balance_ctl) { 4558 mutex_unlock(&fs_info->balance_mutex); 4559 return -ENOTCONN; 4560 } 4561 4562 /* 4563 * A paused balance with the item stored on disk can be resumed at 4564 * mount time if the mount is read-write. Otherwise it's still paused 4565 * and we must not allow cancelling as it deletes the item. 4566 */ 4567 if (sb_rdonly(fs_info->sb)) { 4568 mutex_unlock(&fs_info->balance_mutex); 4569 return -EROFS; 4570 } 4571 4572 atomic_inc(&fs_info->balance_cancel_req); 4573 /* 4574 * if we are running just wait and return, balance item is 4575 * deleted in btrfs_balance in this case 4576 */ 4577 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4578 mutex_unlock(&fs_info->balance_mutex); 4579 wait_event(fs_info->balance_wait_q, 4580 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4581 mutex_lock(&fs_info->balance_mutex); 4582 } else { 4583 mutex_unlock(&fs_info->balance_mutex); 4584 /* 4585 * Lock released to allow other waiters to continue, we'll 4586 * reexamine the status again. 4587 */ 4588 mutex_lock(&fs_info->balance_mutex); 4589 4590 if (fs_info->balance_ctl) { 4591 reset_balance_state(fs_info); 4592 btrfs_exclop_finish(fs_info); 4593 btrfs_info(fs_info, "balance: canceled"); 4594 } 4595 } 4596 4597 BUG_ON(fs_info->balance_ctl || 4598 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4599 atomic_dec(&fs_info->balance_cancel_req); 4600 mutex_unlock(&fs_info->balance_mutex); 4601 return 0; 4602 } 4603 4604 int btrfs_uuid_scan_kthread(void *data) 4605 { 4606 struct btrfs_fs_info *fs_info = data; 4607 struct btrfs_root *root = fs_info->tree_root; 4608 struct btrfs_key key; 4609 struct btrfs_path *path = NULL; 4610 int ret = 0; 4611 struct extent_buffer *eb; 4612 int slot; 4613 struct btrfs_root_item root_item; 4614 u32 item_size; 4615 struct btrfs_trans_handle *trans = NULL; 4616 bool closing = false; 4617 4618 path = btrfs_alloc_path(); 4619 if (!path) { 4620 ret = -ENOMEM; 4621 goto out; 4622 } 4623 4624 key.objectid = 0; 4625 key.type = BTRFS_ROOT_ITEM_KEY; 4626 key.offset = 0; 4627 4628 while (1) { 4629 if (btrfs_fs_closing(fs_info)) { 4630 closing = true; 4631 break; 4632 } 4633 ret = btrfs_search_forward(root, &key, path, 4634 BTRFS_OLDEST_GENERATION); 4635 if (ret) { 4636 if (ret > 0) 4637 ret = 0; 4638 break; 4639 } 4640 4641 if (key.type != BTRFS_ROOT_ITEM_KEY || 4642 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4643 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4644 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4645 goto skip; 4646 4647 eb = path->nodes[0]; 4648 slot = path->slots[0]; 4649 item_size = btrfs_item_size(eb, slot); 4650 if (item_size < sizeof(root_item)) 4651 goto skip; 4652 4653 read_extent_buffer(eb, &root_item, 4654 btrfs_item_ptr_offset(eb, slot), 4655 (int)sizeof(root_item)); 4656 if (btrfs_root_refs(&root_item) == 0) 4657 goto skip; 4658 4659 if (!btrfs_is_empty_uuid(root_item.uuid) || 4660 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4661 if (trans) 4662 goto update_tree; 4663 4664 btrfs_release_path(path); 4665 /* 4666 * 1 - subvol uuid item 4667 * 1 - received_subvol uuid item 4668 */ 4669 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4670 if (IS_ERR(trans)) { 4671 ret = PTR_ERR(trans); 4672 break; 4673 } 4674 continue; 4675 } else { 4676 goto skip; 4677 } 4678 update_tree: 4679 btrfs_release_path(path); 4680 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4681 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4682 BTRFS_UUID_KEY_SUBVOL, 4683 key.objectid); 4684 if (ret < 0) { 4685 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4686 ret); 4687 break; 4688 } 4689 } 4690 4691 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4692 ret = btrfs_uuid_tree_add(trans, 4693 root_item.received_uuid, 4694 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4695 key.objectid); 4696 if (ret < 0) { 4697 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4698 ret); 4699 break; 4700 } 4701 } 4702 4703 skip: 4704 btrfs_release_path(path); 4705 if (trans) { 4706 ret = btrfs_end_transaction(trans); 4707 trans = NULL; 4708 if (ret) 4709 break; 4710 } 4711 4712 if (key.offset < (u64)-1) { 4713 key.offset++; 4714 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4715 key.offset = 0; 4716 key.type = BTRFS_ROOT_ITEM_KEY; 4717 } else if (key.objectid < (u64)-1) { 4718 key.offset = 0; 4719 key.type = BTRFS_ROOT_ITEM_KEY; 4720 key.objectid++; 4721 } else { 4722 break; 4723 } 4724 cond_resched(); 4725 } 4726 4727 out: 4728 btrfs_free_path(path); 4729 if (trans && !IS_ERR(trans)) 4730 btrfs_end_transaction(trans); 4731 if (ret) 4732 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4733 else if (!closing) 4734 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4735 up(&fs_info->uuid_tree_rescan_sem); 4736 return 0; 4737 } 4738 4739 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4740 { 4741 struct btrfs_trans_handle *trans; 4742 struct btrfs_root *tree_root = fs_info->tree_root; 4743 struct btrfs_root *uuid_root; 4744 struct task_struct *task; 4745 int ret; 4746 4747 /* 4748 * 1 - root node 4749 * 1 - root item 4750 */ 4751 trans = btrfs_start_transaction(tree_root, 2); 4752 if (IS_ERR(trans)) 4753 return PTR_ERR(trans); 4754 4755 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4756 if (IS_ERR(uuid_root)) { 4757 ret = PTR_ERR(uuid_root); 4758 btrfs_abort_transaction(trans, ret); 4759 btrfs_end_transaction(trans); 4760 return ret; 4761 } 4762 4763 fs_info->uuid_root = uuid_root; 4764 4765 ret = btrfs_commit_transaction(trans); 4766 if (ret) 4767 return ret; 4768 4769 down(&fs_info->uuid_tree_rescan_sem); 4770 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4771 if (IS_ERR(task)) { 4772 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4773 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4774 up(&fs_info->uuid_tree_rescan_sem); 4775 return PTR_ERR(task); 4776 } 4777 4778 return 0; 4779 } 4780 4781 /* 4782 * shrinking a device means finding all of the device extents past 4783 * the new size, and then following the back refs to the chunks. 4784 * The chunk relocation code actually frees the device extent 4785 */ 4786 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4787 { 4788 struct btrfs_fs_info *fs_info = device->fs_info; 4789 struct btrfs_root *root = fs_info->dev_root; 4790 struct btrfs_trans_handle *trans; 4791 struct btrfs_dev_extent *dev_extent = NULL; 4792 struct btrfs_path *path; 4793 u64 length; 4794 u64 chunk_offset; 4795 int ret; 4796 int slot; 4797 int failed = 0; 4798 bool retried = false; 4799 struct extent_buffer *l; 4800 struct btrfs_key key; 4801 struct btrfs_super_block *super_copy = fs_info->super_copy; 4802 u64 old_total = btrfs_super_total_bytes(super_copy); 4803 u64 old_size = btrfs_device_get_total_bytes(device); 4804 u64 diff; 4805 u64 start; 4806 4807 new_size = round_down(new_size, fs_info->sectorsize); 4808 start = new_size; 4809 diff = round_down(old_size - new_size, fs_info->sectorsize); 4810 4811 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4812 return -EINVAL; 4813 4814 path = btrfs_alloc_path(); 4815 if (!path) 4816 return -ENOMEM; 4817 4818 path->reada = READA_BACK; 4819 4820 trans = btrfs_start_transaction(root, 0); 4821 if (IS_ERR(trans)) { 4822 btrfs_free_path(path); 4823 return PTR_ERR(trans); 4824 } 4825 4826 mutex_lock(&fs_info->chunk_mutex); 4827 4828 btrfs_device_set_total_bytes(device, new_size); 4829 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4830 device->fs_devices->total_rw_bytes -= diff; 4831 atomic64_sub(diff, &fs_info->free_chunk_space); 4832 } 4833 4834 /* 4835 * Once the device's size has been set to the new size, ensure all 4836 * in-memory chunks are synced to disk so that the loop below sees them 4837 * and relocates them accordingly. 4838 */ 4839 if (contains_pending_extent(device, &start, diff)) { 4840 mutex_unlock(&fs_info->chunk_mutex); 4841 ret = btrfs_commit_transaction(trans); 4842 if (ret) 4843 goto done; 4844 } else { 4845 mutex_unlock(&fs_info->chunk_mutex); 4846 btrfs_end_transaction(trans); 4847 } 4848 4849 again: 4850 key.objectid = device->devid; 4851 key.offset = (u64)-1; 4852 key.type = BTRFS_DEV_EXTENT_KEY; 4853 4854 do { 4855 mutex_lock(&fs_info->reclaim_bgs_lock); 4856 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4857 if (ret < 0) { 4858 mutex_unlock(&fs_info->reclaim_bgs_lock); 4859 goto done; 4860 } 4861 4862 ret = btrfs_previous_item(root, path, 0, key.type); 4863 if (ret) { 4864 mutex_unlock(&fs_info->reclaim_bgs_lock); 4865 if (ret < 0) 4866 goto done; 4867 ret = 0; 4868 btrfs_release_path(path); 4869 break; 4870 } 4871 4872 l = path->nodes[0]; 4873 slot = path->slots[0]; 4874 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4875 4876 if (key.objectid != device->devid) { 4877 mutex_unlock(&fs_info->reclaim_bgs_lock); 4878 btrfs_release_path(path); 4879 break; 4880 } 4881 4882 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4883 length = btrfs_dev_extent_length(l, dev_extent); 4884 4885 if (key.offset + length <= new_size) { 4886 mutex_unlock(&fs_info->reclaim_bgs_lock); 4887 btrfs_release_path(path); 4888 break; 4889 } 4890 4891 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4892 btrfs_release_path(path); 4893 4894 /* 4895 * We may be relocating the only data chunk we have, 4896 * which could potentially end up with losing data's 4897 * raid profile, so lets allocate an empty one in 4898 * advance. 4899 */ 4900 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4901 if (ret < 0) { 4902 mutex_unlock(&fs_info->reclaim_bgs_lock); 4903 goto done; 4904 } 4905 4906 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4907 mutex_unlock(&fs_info->reclaim_bgs_lock); 4908 if (ret == -ENOSPC) { 4909 failed++; 4910 } else if (ret) { 4911 if (ret == -ETXTBSY) { 4912 btrfs_warn(fs_info, 4913 "could not shrink block group %llu due to active swapfile", 4914 chunk_offset); 4915 } 4916 goto done; 4917 } 4918 } while (key.offset-- > 0); 4919 4920 if (failed && !retried) { 4921 failed = 0; 4922 retried = true; 4923 goto again; 4924 } else if (failed && retried) { 4925 ret = -ENOSPC; 4926 goto done; 4927 } 4928 4929 /* Shrinking succeeded, else we would be at "done". */ 4930 trans = btrfs_start_transaction(root, 0); 4931 if (IS_ERR(trans)) { 4932 ret = PTR_ERR(trans); 4933 goto done; 4934 } 4935 4936 mutex_lock(&fs_info->chunk_mutex); 4937 /* Clear all state bits beyond the shrunk device size */ 4938 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4939 CHUNK_STATE_MASK); 4940 4941 btrfs_device_set_disk_total_bytes(device, new_size); 4942 if (list_empty(&device->post_commit_list)) 4943 list_add_tail(&device->post_commit_list, 4944 &trans->transaction->dev_update_list); 4945 4946 WARN_ON(diff > old_total); 4947 btrfs_set_super_total_bytes(super_copy, 4948 round_down(old_total - diff, fs_info->sectorsize)); 4949 mutex_unlock(&fs_info->chunk_mutex); 4950 4951 btrfs_reserve_chunk_metadata(trans, false); 4952 /* Now btrfs_update_device() will change the on-disk size. */ 4953 ret = btrfs_update_device(trans, device); 4954 btrfs_trans_release_chunk_metadata(trans); 4955 if (ret < 0) { 4956 btrfs_abort_transaction(trans, ret); 4957 btrfs_end_transaction(trans); 4958 } else { 4959 ret = btrfs_commit_transaction(trans); 4960 } 4961 done: 4962 btrfs_free_path(path); 4963 if (ret) { 4964 mutex_lock(&fs_info->chunk_mutex); 4965 btrfs_device_set_total_bytes(device, old_size); 4966 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4967 device->fs_devices->total_rw_bytes += diff; 4968 atomic64_add(diff, &fs_info->free_chunk_space); 4969 mutex_unlock(&fs_info->chunk_mutex); 4970 } 4971 return ret; 4972 } 4973 4974 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4975 struct btrfs_key *key, 4976 struct btrfs_chunk *chunk, int item_size) 4977 { 4978 struct btrfs_super_block *super_copy = fs_info->super_copy; 4979 struct btrfs_disk_key disk_key; 4980 u32 array_size; 4981 u8 *ptr; 4982 4983 lockdep_assert_held(&fs_info->chunk_mutex); 4984 4985 array_size = btrfs_super_sys_array_size(super_copy); 4986 if (array_size + item_size + sizeof(disk_key) 4987 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 4988 return -EFBIG; 4989 4990 ptr = super_copy->sys_chunk_array + array_size; 4991 btrfs_cpu_key_to_disk(&disk_key, key); 4992 memcpy(ptr, &disk_key, sizeof(disk_key)); 4993 ptr += sizeof(disk_key); 4994 memcpy(ptr, chunk, item_size); 4995 item_size += sizeof(disk_key); 4996 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4997 4998 return 0; 4999 } 5000 5001 /* 5002 * sort the devices in descending order by max_avail, total_avail 5003 */ 5004 static int btrfs_cmp_device_info(const void *a, const void *b) 5005 { 5006 const struct btrfs_device_info *di_a = a; 5007 const struct btrfs_device_info *di_b = b; 5008 5009 if (di_a->max_avail > di_b->max_avail) 5010 return -1; 5011 if (di_a->max_avail < di_b->max_avail) 5012 return 1; 5013 if (di_a->total_avail > di_b->total_avail) 5014 return -1; 5015 if (di_a->total_avail < di_b->total_avail) 5016 return 1; 5017 return 0; 5018 } 5019 5020 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5021 { 5022 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5023 return; 5024 5025 btrfs_set_fs_incompat(info, RAID56); 5026 } 5027 5028 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5029 { 5030 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5031 return; 5032 5033 btrfs_set_fs_incompat(info, RAID1C34); 5034 } 5035 5036 /* 5037 * Structure used internally for btrfs_create_chunk() function. 5038 * Wraps needed parameters. 5039 */ 5040 struct alloc_chunk_ctl { 5041 u64 start; 5042 u64 type; 5043 /* Total number of stripes to allocate */ 5044 int num_stripes; 5045 /* sub_stripes info for map */ 5046 int sub_stripes; 5047 /* Stripes per device */ 5048 int dev_stripes; 5049 /* Maximum number of devices to use */ 5050 int devs_max; 5051 /* Minimum number of devices to use */ 5052 int devs_min; 5053 /* ndevs has to be a multiple of this */ 5054 int devs_increment; 5055 /* Number of copies */ 5056 int ncopies; 5057 /* Number of stripes worth of bytes to store parity information */ 5058 int nparity; 5059 u64 max_stripe_size; 5060 u64 max_chunk_size; 5061 u64 dev_extent_min; 5062 u64 stripe_size; 5063 u64 chunk_size; 5064 int ndevs; 5065 }; 5066 5067 static void init_alloc_chunk_ctl_policy_regular( 5068 struct btrfs_fs_devices *fs_devices, 5069 struct alloc_chunk_ctl *ctl) 5070 { 5071 struct btrfs_space_info *space_info; 5072 5073 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5074 ASSERT(space_info); 5075 5076 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5077 ctl->max_stripe_size = ctl->max_chunk_size; 5078 5079 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5080 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5081 5082 /* We don't want a chunk larger than 10% of writable space */ 5083 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5084 ctl->max_chunk_size); 5085 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 5086 } 5087 5088 static void init_alloc_chunk_ctl_policy_zoned( 5089 struct btrfs_fs_devices *fs_devices, 5090 struct alloc_chunk_ctl *ctl) 5091 { 5092 u64 zone_size = fs_devices->fs_info->zone_size; 5093 u64 limit; 5094 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5095 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5096 u64 min_chunk_size = min_data_stripes * zone_size; 5097 u64 type = ctl->type; 5098 5099 ctl->max_stripe_size = zone_size; 5100 if (type & BTRFS_BLOCK_GROUP_DATA) { 5101 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5102 zone_size); 5103 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5104 ctl->max_chunk_size = ctl->max_stripe_size; 5105 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5106 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5107 ctl->devs_max = min_t(int, ctl->devs_max, 5108 BTRFS_MAX_DEVS_SYS_CHUNK); 5109 } else { 5110 BUG(); 5111 } 5112 5113 /* We don't want a chunk larger than 10% of writable space */ 5114 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5115 zone_size), 5116 min_chunk_size); 5117 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5118 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5119 } 5120 5121 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5122 struct alloc_chunk_ctl *ctl) 5123 { 5124 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5125 5126 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5127 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5128 ctl->devs_max = btrfs_raid_array[index].devs_max; 5129 if (!ctl->devs_max) 5130 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5131 ctl->devs_min = btrfs_raid_array[index].devs_min; 5132 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5133 ctl->ncopies = btrfs_raid_array[index].ncopies; 5134 ctl->nparity = btrfs_raid_array[index].nparity; 5135 ctl->ndevs = 0; 5136 5137 switch (fs_devices->chunk_alloc_policy) { 5138 case BTRFS_CHUNK_ALLOC_REGULAR: 5139 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5140 break; 5141 case BTRFS_CHUNK_ALLOC_ZONED: 5142 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5143 break; 5144 default: 5145 BUG(); 5146 } 5147 } 5148 5149 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5150 struct alloc_chunk_ctl *ctl, 5151 struct btrfs_device_info *devices_info) 5152 { 5153 struct btrfs_fs_info *info = fs_devices->fs_info; 5154 struct btrfs_device *device; 5155 u64 total_avail; 5156 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5157 int ret; 5158 int ndevs = 0; 5159 u64 max_avail; 5160 u64 dev_offset; 5161 5162 /* 5163 * in the first pass through the devices list, we gather information 5164 * about the available holes on each device. 5165 */ 5166 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5167 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5168 WARN(1, KERN_ERR 5169 "BTRFS: read-only device in alloc_list\n"); 5170 continue; 5171 } 5172 5173 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5174 &device->dev_state) || 5175 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5176 continue; 5177 5178 if (device->total_bytes > device->bytes_used) 5179 total_avail = device->total_bytes - device->bytes_used; 5180 else 5181 total_avail = 0; 5182 5183 /* If there is no space on this device, skip it. */ 5184 if (total_avail < ctl->dev_extent_min) 5185 continue; 5186 5187 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5188 &max_avail); 5189 if (ret && ret != -ENOSPC) 5190 return ret; 5191 5192 if (ret == 0) 5193 max_avail = dev_extent_want; 5194 5195 if (max_avail < ctl->dev_extent_min) { 5196 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5197 btrfs_debug(info, 5198 "%s: devid %llu has no free space, have=%llu want=%llu", 5199 __func__, device->devid, max_avail, 5200 ctl->dev_extent_min); 5201 continue; 5202 } 5203 5204 if (ndevs == fs_devices->rw_devices) { 5205 WARN(1, "%s: found more than %llu devices\n", 5206 __func__, fs_devices->rw_devices); 5207 break; 5208 } 5209 devices_info[ndevs].dev_offset = dev_offset; 5210 devices_info[ndevs].max_avail = max_avail; 5211 devices_info[ndevs].total_avail = total_avail; 5212 devices_info[ndevs].dev = device; 5213 ++ndevs; 5214 } 5215 ctl->ndevs = ndevs; 5216 5217 /* 5218 * now sort the devices by hole size / available space 5219 */ 5220 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5221 btrfs_cmp_device_info, NULL); 5222 5223 return 0; 5224 } 5225 5226 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5227 struct btrfs_device_info *devices_info) 5228 { 5229 /* Number of stripes that count for block group size */ 5230 int data_stripes; 5231 5232 /* 5233 * The primary goal is to maximize the number of stripes, so use as 5234 * many devices as possible, even if the stripes are not maximum sized. 5235 * 5236 * The DUP profile stores more than one stripe per device, the 5237 * max_avail is the total size so we have to adjust. 5238 */ 5239 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5240 ctl->dev_stripes); 5241 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5242 5243 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5244 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5245 5246 /* 5247 * Use the number of data stripes to figure out how big this chunk is 5248 * really going to be in terms of logical address space, and compare 5249 * that answer with the max chunk size. If it's higher, we try to 5250 * reduce stripe_size. 5251 */ 5252 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5253 /* 5254 * Reduce stripe_size, round it up to a 16MB boundary again and 5255 * then use it, unless it ends up being even bigger than the 5256 * previous value we had already. 5257 */ 5258 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5259 data_stripes), SZ_16M), 5260 ctl->stripe_size); 5261 } 5262 5263 /* Stripe size should not go beyond 1G. */ 5264 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5265 5266 /* Align to BTRFS_STRIPE_LEN */ 5267 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5268 ctl->chunk_size = ctl->stripe_size * data_stripes; 5269 5270 return 0; 5271 } 5272 5273 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5274 struct btrfs_device_info *devices_info) 5275 { 5276 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5277 /* Number of stripes that count for block group size */ 5278 int data_stripes; 5279 5280 /* 5281 * It should hold because: 5282 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5283 */ 5284 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5285 5286 ctl->stripe_size = zone_size; 5287 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5288 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5289 5290 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5291 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5292 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5293 ctl->stripe_size) + ctl->nparity, 5294 ctl->dev_stripes); 5295 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5296 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5297 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5298 } 5299 5300 ctl->chunk_size = ctl->stripe_size * data_stripes; 5301 5302 return 0; 5303 } 5304 5305 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5306 struct alloc_chunk_ctl *ctl, 5307 struct btrfs_device_info *devices_info) 5308 { 5309 struct btrfs_fs_info *info = fs_devices->fs_info; 5310 5311 /* 5312 * Round down to number of usable stripes, devs_increment can be any 5313 * number so we can't use round_down() that requires power of 2, while 5314 * rounddown is safe. 5315 */ 5316 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5317 5318 if (ctl->ndevs < ctl->devs_min) { 5319 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5320 btrfs_debug(info, 5321 "%s: not enough devices with free space: have=%d minimum required=%d", 5322 __func__, ctl->ndevs, ctl->devs_min); 5323 } 5324 return -ENOSPC; 5325 } 5326 5327 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5328 5329 switch (fs_devices->chunk_alloc_policy) { 5330 case BTRFS_CHUNK_ALLOC_REGULAR: 5331 return decide_stripe_size_regular(ctl, devices_info); 5332 case BTRFS_CHUNK_ALLOC_ZONED: 5333 return decide_stripe_size_zoned(ctl, devices_info); 5334 default: 5335 BUG(); 5336 } 5337 } 5338 5339 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5340 struct alloc_chunk_ctl *ctl, 5341 struct btrfs_device_info *devices_info) 5342 { 5343 struct btrfs_fs_info *info = trans->fs_info; 5344 struct map_lookup *map = NULL; 5345 struct extent_map_tree *em_tree; 5346 struct btrfs_block_group *block_group; 5347 struct extent_map *em; 5348 u64 start = ctl->start; 5349 u64 type = ctl->type; 5350 int ret; 5351 int i; 5352 int j; 5353 5354 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5355 if (!map) 5356 return ERR_PTR(-ENOMEM); 5357 map->num_stripes = ctl->num_stripes; 5358 5359 for (i = 0; i < ctl->ndevs; ++i) { 5360 for (j = 0; j < ctl->dev_stripes; ++j) { 5361 int s = i * ctl->dev_stripes + j; 5362 map->stripes[s].dev = devices_info[i].dev; 5363 map->stripes[s].physical = devices_info[i].dev_offset + 5364 j * ctl->stripe_size; 5365 } 5366 } 5367 map->stripe_len = BTRFS_STRIPE_LEN; 5368 map->io_align = BTRFS_STRIPE_LEN; 5369 map->io_width = BTRFS_STRIPE_LEN; 5370 map->type = type; 5371 map->sub_stripes = ctl->sub_stripes; 5372 5373 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5374 5375 em = alloc_extent_map(); 5376 if (!em) { 5377 kfree(map); 5378 return ERR_PTR(-ENOMEM); 5379 } 5380 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5381 em->map_lookup = map; 5382 em->start = start; 5383 em->len = ctl->chunk_size; 5384 em->block_start = 0; 5385 em->block_len = em->len; 5386 em->orig_block_len = ctl->stripe_size; 5387 5388 em_tree = &info->mapping_tree; 5389 write_lock(&em_tree->lock); 5390 ret = add_extent_mapping(em_tree, em, 0); 5391 if (ret) { 5392 write_unlock(&em_tree->lock); 5393 free_extent_map(em); 5394 return ERR_PTR(ret); 5395 } 5396 write_unlock(&em_tree->lock); 5397 5398 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5399 if (IS_ERR(block_group)) 5400 goto error_del_extent; 5401 5402 for (i = 0; i < map->num_stripes; i++) { 5403 struct btrfs_device *dev = map->stripes[i].dev; 5404 5405 btrfs_device_set_bytes_used(dev, 5406 dev->bytes_used + ctl->stripe_size); 5407 if (list_empty(&dev->post_commit_list)) 5408 list_add_tail(&dev->post_commit_list, 5409 &trans->transaction->dev_update_list); 5410 } 5411 5412 atomic64_sub(ctl->stripe_size * map->num_stripes, 5413 &info->free_chunk_space); 5414 5415 free_extent_map(em); 5416 check_raid56_incompat_flag(info, type); 5417 check_raid1c34_incompat_flag(info, type); 5418 5419 return block_group; 5420 5421 error_del_extent: 5422 write_lock(&em_tree->lock); 5423 remove_extent_mapping(em_tree, em); 5424 write_unlock(&em_tree->lock); 5425 5426 /* One for our allocation */ 5427 free_extent_map(em); 5428 /* One for the tree reference */ 5429 free_extent_map(em); 5430 5431 return block_group; 5432 } 5433 5434 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5435 u64 type) 5436 { 5437 struct btrfs_fs_info *info = trans->fs_info; 5438 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5439 struct btrfs_device_info *devices_info = NULL; 5440 struct alloc_chunk_ctl ctl; 5441 struct btrfs_block_group *block_group; 5442 int ret; 5443 5444 lockdep_assert_held(&info->chunk_mutex); 5445 5446 if (!alloc_profile_is_valid(type, 0)) { 5447 ASSERT(0); 5448 return ERR_PTR(-EINVAL); 5449 } 5450 5451 if (list_empty(&fs_devices->alloc_list)) { 5452 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5453 btrfs_debug(info, "%s: no writable device", __func__); 5454 return ERR_PTR(-ENOSPC); 5455 } 5456 5457 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5458 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5459 ASSERT(0); 5460 return ERR_PTR(-EINVAL); 5461 } 5462 5463 ctl.start = find_next_chunk(info); 5464 ctl.type = type; 5465 init_alloc_chunk_ctl(fs_devices, &ctl); 5466 5467 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5468 GFP_NOFS); 5469 if (!devices_info) 5470 return ERR_PTR(-ENOMEM); 5471 5472 ret = gather_device_info(fs_devices, &ctl, devices_info); 5473 if (ret < 0) { 5474 block_group = ERR_PTR(ret); 5475 goto out; 5476 } 5477 5478 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5479 if (ret < 0) { 5480 block_group = ERR_PTR(ret); 5481 goto out; 5482 } 5483 5484 block_group = create_chunk(trans, &ctl, devices_info); 5485 5486 out: 5487 kfree(devices_info); 5488 return block_group; 5489 } 5490 5491 /* 5492 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5493 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5494 * chunks. 5495 * 5496 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5497 * phases. 5498 */ 5499 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5500 struct btrfs_block_group *bg) 5501 { 5502 struct btrfs_fs_info *fs_info = trans->fs_info; 5503 struct btrfs_root *chunk_root = fs_info->chunk_root; 5504 struct btrfs_key key; 5505 struct btrfs_chunk *chunk; 5506 struct btrfs_stripe *stripe; 5507 struct extent_map *em; 5508 struct map_lookup *map; 5509 size_t item_size; 5510 int i; 5511 int ret; 5512 5513 /* 5514 * We take the chunk_mutex for 2 reasons: 5515 * 5516 * 1) Updates and insertions in the chunk btree must be done while holding 5517 * the chunk_mutex, as well as updating the system chunk array in the 5518 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5519 * details; 5520 * 5521 * 2) To prevent races with the final phase of a device replace operation 5522 * that replaces the device object associated with the map's stripes, 5523 * because the device object's id can change at any time during that 5524 * final phase of the device replace operation 5525 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5526 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5527 * which would cause a failure when updating the device item, which does 5528 * not exists, or persisting a stripe of the chunk item with such ID. 5529 * Here we can't use the device_list_mutex because our caller already 5530 * has locked the chunk_mutex, and the final phase of device replace 5531 * acquires both mutexes - first the device_list_mutex and then the 5532 * chunk_mutex. Using any of those two mutexes protects us from a 5533 * concurrent device replace. 5534 */ 5535 lockdep_assert_held(&fs_info->chunk_mutex); 5536 5537 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5538 if (IS_ERR(em)) { 5539 ret = PTR_ERR(em); 5540 btrfs_abort_transaction(trans, ret); 5541 return ret; 5542 } 5543 5544 map = em->map_lookup; 5545 item_size = btrfs_chunk_item_size(map->num_stripes); 5546 5547 chunk = kzalloc(item_size, GFP_NOFS); 5548 if (!chunk) { 5549 ret = -ENOMEM; 5550 btrfs_abort_transaction(trans, ret); 5551 goto out; 5552 } 5553 5554 for (i = 0; i < map->num_stripes; i++) { 5555 struct btrfs_device *device = map->stripes[i].dev; 5556 5557 ret = btrfs_update_device(trans, device); 5558 if (ret) 5559 goto out; 5560 } 5561 5562 stripe = &chunk->stripe; 5563 for (i = 0; i < map->num_stripes; i++) { 5564 struct btrfs_device *device = map->stripes[i].dev; 5565 const u64 dev_offset = map->stripes[i].physical; 5566 5567 btrfs_set_stack_stripe_devid(stripe, device->devid); 5568 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5569 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5570 stripe++; 5571 } 5572 5573 btrfs_set_stack_chunk_length(chunk, bg->length); 5574 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5575 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5576 btrfs_set_stack_chunk_type(chunk, map->type); 5577 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5578 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5579 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5580 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5581 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5582 5583 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5584 key.type = BTRFS_CHUNK_ITEM_KEY; 5585 key.offset = bg->start; 5586 5587 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5588 if (ret) 5589 goto out; 5590 5591 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5592 5593 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5594 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5595 if (ret) 5596 goto out; 5597 } 5598 5599 out: 5600 kfree(chunk); 5601 free_extent_map(em); 5602 return ret; 5603 } 5604 5605 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5606 { 5607 struct btrfs_fs_info *fs_info = trans->fs_info; 5608 u64 alloc_profile; 5609 struct btrfs_block_group *meta_bg; 5610 struct btrfs_block_group *sys_bg; 5611 5612 /* 5613 * When adding a new device for sprouting, the seed device is read-only 5614 * so we must first allocate a metadata and a system chunk. But before 5615 * adding the block group items to the extent, device and chunk btrees, 5616 * we must first: 5617 * 5618 * 1) Create both chunks without doing any changes to the btrees, as 5619 * otherwise we would get -ENOSPC since the block groups from the 5620 * seed device are read-only; 5621 * 5622 * 2) Add the device item for the new sprout device - finishing the setup 5623 * of a new block group requires updating the device item in the chunk 5624 * btree, so it must exist when we attempt to do it. The previous step 5625 * ensures this does not fail with -ENOSPC. 5626 * 5627 * After that we can add the block group items to their btrees: 5628 * update existing device item in the chunk btree, add a new block group 5629 * item to the extent btree, add a new chunk item to the chunk btree and 5630 * finally add the new device extent items to the devices btree. 5631 */ 5632 5633 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5634 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5635 if (IS_ERR(meta_bg)) 5636 return PTR_ERR(meta_bg); 5637 5638 alloc_profile = btrfs_system_alloc_profile(fs_info); 5639 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5640 if (IS_ERR(sys_bg)) 5641 return PTR_ERR(sys_bg); 5642 5643 return 0; 5644 } 5645 5646 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5647 { 5648 const int index = btrfs_bg_flags_to_raid_index(map->type); 5649 5650 return btrfs_raid_array[index].tolerated_failures; 5651 } 5652 5653 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5654 { 5655 struct extent_map *em; 5656 struct map_lookup *map; 5657 int miss_ndevs = 0; 5658 int i; 5659 bool ret = true; 5660 5661 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5662 if (IS_ERR(em)) 5663 return false; 5664 5665 map = em->map_lookup; 5666 for (i = 0; i < map->num_stripes; i++) { 5667 if (test_bit(BTRFS_DEV_STATE_MISSING, 5668 &map->stripes[i].dev->dev_state)) { 5669 miss_ndevs++; 5670 continue; 5671 } 5672 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5673 &map->stripes[i].dev->dev_state)) { 5674 ret = false; 5675 goto end; 5676 } 5677 } 5678 5679 /* 5680 * If the number of missing devices is larger than max errors, we can 5681 * not write the data into that chunk successfully. 5682 */ 5683 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5684 ret = false; 5685 end: 5686 free_extent_map(em); 5687 return ret; 5688 } 5689 5690 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5691 { 5692 struct extent_map *em; 5693 5694 while (1) { 5695 write_lock(&tree->lock); 5696 em = lookup_extent_mapping(tree, 0, (u64)-1); 5697 if (em) 5698 remove_extent_mapping(tree, em); 5699 write_unlock(&tree->lock); 5700 if (!em) 5701 break; 5702 /* once for us */ 5703 free_extent_map(em); 5704 /* once for the tree */ 5705 free_extent_map(em); 5706 } 5707 } 5708 5709 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5710 { 5711 struct extent_map *em; 5712 struct map_lookup *map; 5713 enum btrfs_raid_types index; 5714 int ret = 1; 5715 5716 em = btrfs_get_chunk_map(fs_info, logical, len); 5717 if (IS_ERR(em)) 5718 /* 5719 * We could return errors for these cases, but that could get 5720 * ugly and we'd probably do the same thing which is just not do 5721 * anything else and exit, so return 1 so the callers don't try 5722 * to use other copies. 5723 */ 5724 return 1; 5725 5726 map = em->map_lookup; 5727 index = btrfs_bg_flags_to_raid_index(map->type); 5728 5729 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5730 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5731 ret = btrfs_raid_array[index].ncopies; 5732 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5733 ret = 2; 5734 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5735 /* 5736 * There could be two corrupted data stripes, we need 5737 * to loop retry in order to rebuild the correct data. 5738 * 5739 * Fail a stripe at a time on every retry except the 5740 * stripe under reconstruction. 5741 */ 5742 ret = map->num_stripes; 5743 free_extent_map(em); 5744 5745 down_read(&fs_info->dev_replace.rwsem); 5746 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5747 fs_info->dev_replace.tgtdev) 5748 ret++; 5749 up_read(&fs_info->dev_replace.rwsem); 5750 5751 return ret; 5752 } 5753 5754 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5755 u64 logical) 5756 { 5757 struct extent_map *em; 5758 struct map_lookup *map; 5759 unsigned long len = fs_info->sectorsize; 5760 5761 if (!btrfs_fs_incompat(fs_info, RAID56)) 5762 return len; 5763 5764 em = btrfs_get_chunk_map(fs_info, logical, len); 5765 5766 if (!WARN_ON(IS_ERR(em))) { 5767 map = em->map_lookup; 5768 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5769 len = map->stripe_len * nr_data_stripes(map); 5770 free_extent_map(em); 5771 } 5772 return len; 5773 } 5774 5775 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5776 { 5777 struct extent_map *em; 5778 struct map_lookup *map; 5779 int ret = 0; 5780 5781 if (!btrfs_fs_incompat(fs_info, RAID56)) 5782 return 0; 5783 5784 em = btrfs_get_chunk_map(fs_info, logical, len); 5785 5786 if(!WARN_ON(IS_ERR(em))) { 5787 map = em->map_lookup; 5788 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5789 ret = 1; 5790 free_extent_map(em); 5791 } 5792 return ret; 5793 } 5794 5795 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5796 struct map_lookup *map, int first, 5797 int dev_replace_is_ongoing) 5798 { 5799 int i; 5800 int num_stripes; 5801 int preferred_mirror; 5802 int tolerance; 5803 struct btrfs_device *srcdev; 5804 5805 ASSERT((map->type & 5806 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5807 5808 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5809 num_stripes = map->sub_stripes; 5810 else 5811 num_stripes = map->num_stripes; 5812 5813 switch (fs_info->fs_devices->read_policy) { 5814 default: 5815 /* Shouldn't happen, just warn and use pid instead of failing */ 5816 btrfs_warn_rl(fs_info, 5817 "unknown read_policy type %u, reset to pid", 5818 fs_info->fs_devices->read_policy); 5819 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5820 fallthrough; 5821 case BTRFS_READ_POLICY_PID: 5822 preferred_mirror = first + (current->pid % num_stripes); 5823 break; 5824 } 5825 5826 if (dev_replace_is_ongoing && 5827 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5828 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5829 srcdev = fs_info->dev_replace.srcdev; 5830 else 5831 srcdev = NULL; 5832 5833 /* 5834 * try to avoid the drive that is the source drive for a 5835 * dev-replace procedure, only choose it if no other non-missing 5836 * mirror is available 5837 */ 5838 for (tolerance = 0; tolerance < 2; tolerance++) { 5839 if (map->stripes[preferred_mirror].dev->bdev && 5840 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5841 return preferred_mirror; 5842 for (i = first; i < first + num_stripes; i++) { 5843 if (map->stripes[i].dev->bdev && 5844 (tolerance || map->stripes[i].dev != srcdev)) 5845 return i; 5846 } 5847 } 5848 5849 /* we couldn't find one that doesn't fail. Just return something 5850 * and the io error handling code will clean up eventually 5851 */ 5852 return preferred_mirror; 5853 } 5854 5855 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5856 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes) 5857 { 5858 int i; 5859 int again = 1; 5860 5861 while (again) { 5862 again = 0; 5863 for (i = 0; i < num_stripes - 1; i++) { 5864 /* Swap if parity is on a smaller index */ 5865 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) { 5866 swap(bioc->stripes[i], bioc->stripes[i + 1]); 5867 swap(bioc->raid_map[i], bioc->raid_map[i + 1]); 5868 again = 1; 5869 } 5870 } 5871 } 5872 } 5873 5874 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5875 int total_stripes, 5876 int real_stripes) 5877 { 5878 struct btrfs_io_context *bioc = kzalloc( 5879 /* The size of btrfs_io_context */ 5880 sizeof(struct btrfs_io_context) + 5881 /* Plus the variable array for the stripes */ 5882 sizeof(struct btrfs_io_stripe) * (total_stripes) + 5883 /* Plus the variable array for the tgt dev */ 5884 sizeof(int) * (real_stripes) + 5885 /* 5886 * Plus the raid_map, which includes both the tgt dev 5887 * and the stripes. 5888 */ 5889 sizeof(u64) * (total_stripes), 5890 GFP_NOFS); 5891 5892 if (!bioc) 5893 return NULL; 5894 5895 refcount_set(&bioc->refs, 1); 5896 5897 bioc->fs_info = fs_info; 5898 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes); 5899 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes); 5900 5901 return bioc; 5902 } 5903 5904 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5905 { 5906 WARN_ON(!refcount_read(&bioc->refs)); 5907 refcount_inc(&bioc->refs); 5908 } 5909 5910 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5911 { 5912 if (!bioc) 5913 return; 5914 if (refcount_dec_and_test(&bioc->refs)) 5915 kfree(bioc); 5916 } 5917 5918 /* 5919 * Please note that, discard won't be sent to target device of device 5920 * replace. 5921 */ 5922 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 5923 u64 logical, u64 *length_ret, 5924 u32 *num_stripes) 5925 { 5926 struct extent_map *em; 5927 struct map_lookup *map; 5928 struct btrfs_discard_stripe *stripes; 5929 u64 length = *length_ret; 5930 u64 offset; 5931 u64 stripe_nr; 5932 u64 stripe_nr_end; 5933 u64 stripe_end_offset; 5934 u64 stripe_cnt; 5935 u64 stripe_len; 5936 u64 stripe_offset; 5937 u32 stripe_index; 5938 u32 factor = 0; 5939 u32 sub_stripes = 0; 5940 u64 stripes_per_dev = 0; 5941 u32 remaining_stripes = 0; 5942 u32 last_stripe = 0; 5943 int ret; 5944 int i; 5945 5946 em = btrfs_get_chunk_map(fs_info, logical, length); 5947 if (IS_ERR(em)) 5948 return ERR_CAST(em); 5949 5950 map = em->map_lookup; 5951 5952 /* we don't discard raid56 yet */ 5953 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5954 ret = -EOPNOTSUPP; 5955 goto out_free_map; 5956 } 5957 5958 offset = logical - em->start; 5959 length = min_t(u64, em->start + em->len - logical, length); 5960 *length_ret = length; 5961 5962 stripe_len = map->stripe_len; 5963 /* 5964 * stripe_nr counts the total number of stripes we have to stride 5965 * to get to this block 5966 */ 5967 stripe_nr = div64_u64(offset, stripe_len); 5968 5969 /* stripe_offset is the offset of this block in its stripe */ 5970 stripe_offset = offset - stripe_nr * stripe_len; 5971 5972 stripe_nr_end = round_up(offset + length, map->stripe_len); 5973 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5974 stripe_cnt = stripe_nr_end - stripe_nr; 5975 stripe_end_offset = stripe_nr_end * map->stripe_len - 5976 (offset + length); 5977 /* 5978 * after this, stripe_nr is the number of stripes on this 5979 * device we have to walk to find the data, and stripe_index is 5980 * the number of our device in the stripe array 5981 */ 5982 *num_stripes = 1; 5983 stripe_index = 0; 5984 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5985 BTRFS_BLOCK_GROUP_RAID10)) { 5986 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5987 sub_stripes = 1; 5988 else 5989 sub_stripes = map->sub_stripes; 5990 5991 factor = map->num_stripes / sub_stripes; 5992 *num_stripes = min_t(u64, map->num_stripes, 5993 sub_stripes * stripe_cnt); 5994 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5995 stripe_index *= sub_stripes; 5996 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5997 &remaining_stripes); 5998 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5999 last_stripe *= sub_stripes; 6000 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6001 BTRFS_BLOCK_GROUP_DUP)) { 6002 *num_stripes = map->num_stripes; 6003 } else { 6004 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6005 &stripe_index); 6006 } 6007 6008 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6009 if (!stripes) { 6010 ret = -ENOMEM; 6011 goto out_free_map; 6012 } 6013 6014 for (i = 0; i < *num_stripes; i++) { 6015 stripes[i].physical = 6016 map->stripes[stripe_index].physical + 6017 stripe_offset + stripe_nr * map->stripe_len; 6018 stripes[i].dev = map->stripes[stripe_index].dev; 6019 6020 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6021 BTRFS_BLOCK_GROUP_RAID10)) { 6022 stripes[i].length = stripes_per_dev * map->stripe_len; 6023 6024 if (i / sub_stripes < remaining_stripes) 6025 stripes[i].length += map->stripe_len; 6026 6027 /* 6028 * Special for the first stripe and 6029 * the last stripe: 6030 * 6031 * |-------|...|-------| 6032 * |----------| 6033 * off end_off 6034 */ 6035 if (i < sub_stripes) 6036 stripes[i].length -= stripe_offset; 6037 6038 if (stripe_index >= last_stripe && 6039 stripe_index <= (last_stripe + 6040 sub_stripes - 1)) 6041 stripes[i].length -= stripe_end_offset; 6042 6043 if (i == sub_stripes - 1) 6044 stripe_offset = 0; 6045 } else { 6046 stripes[i].length = length; 6047 } 6048 6049 stripe_index++; 6050 if (stripe_index == map->num_stripes) { 6051 stripe_index = 0; 6052 stripe_nr++; 6053 } 6054 } 6055 6056 free_extent_map(em); 6057 return stripes; 6058 out_free_map: 6059 free_extent_map(em); 6060 return ERR_PTR(ret); 6061 } 6062 6063 /* 6064 * In dev-replace case, for repair case (that's the only case where the mirror 6065 * is selected explicitly when calling btrfs_map_block), blocks left of the 6066 * left cursor can also be read from the target drive. 6067 * 6068 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 6069 * array of stripes. 6070 * For READ, it also needs to be supported using the same mirror number. 6071 * 6072 * If the requested block is not left of the left cursor, EIO is returned. This 6073 * can happen because btrfs_num_copies() returns one more in the dev-replace 6074 * case. 6075 */ 6076 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 6077 u64 logical, u64 length, 6078 u64 srcdev_devid, int *mirror_num, 6079 u64 *physical) 6080 { 6081 struct btrfs_io_context *bioc = NULL; 6082 int num_stripes; 6083 int index_srcdev = 0; 6084 int found = 0; 6085 u64 physical_of_found = 0; 6086 int i; 6087 int ret = 0; 6088 6089 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 6090 logical, &length, &bioc, NULL, NULL, 0); 6091 if (ret) { 6092 ASSERT(bioc == NULL); 6093 return ret; 6094 } 6095 6096 num_stripes = bioc->num_stripes; 6097 if (*mirror_num > num_stripes) { 6098 /* 6099 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 6100 * that means that the requested area is not left of the left 6101 * cursor 6102 */ 6103 btrfs_put_bioc(bioc); 6104 return -EIO; 6105 } 6106 6107 /* 6108 * process the rest of the function using the mirror_num of the source 6109 * drive. Therefore look it up first. At the end, patch the device 6110 * pointer to the one of the target drive. 6111 */ 6112 for (i = 0; i < num_stripes; i++) { 6113 if (bioc->stripes[i].dev->devid != srcdev_devid) 6114 continue; 6115 6116 /* 6117 * In case of DUP, in order to keep it simple, only add the 6118 * mirror with the lowest physical address 6119 */ 6120 if (found && 6121 physical_of_found <= bioc->stripes[i].physical) 6122 continue; 6123 6124 index_srcdev = i; 6125 found = 1; 6126 physical_of_found = bioc->stripes[i].physical; 6127 } 6128 6129 btrfs_put_bioc(bioc); 6130 6131 ASSERT(found); 6132 if (!found) 6133 return -EIO; 6134 6135 *mirror_num = index_srcdev + 1; 6136 *physical = physical_of_found; 6137 return ret; 6138 } 6139 6140 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6141 { 6142 struct btrfs_block_group *cache; 6143 bool ret; 6144 6145 /* Non zoned filesystem does not use "to_copy" flag */ 6146 if (!btrfs_is_zoned(fs_info)) 6147 return false; 6148 6149 cache = btrfs_lookup_block_group(fs_info, logical); 6150 6151 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6152 6153 btrfs_put_block_group(cache); 6154 return ret; 6155 } 6156 6157 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6158 struct btrfs_io_context **bioc_ret, 6159 struct btrfs_dev_replace *dev_replace, 6160 u64 logical, 6161 int *num_stripes_ret, int *max_errors_ret) 6162 { 6163 struct btrfs_io_context *bioc = *bioc_ret; 6164 u64 srcdev_devid = dev_replace->srcdev->devid; 6165 int tgtdev_indexes = 0; 6166 int num_stripes = *num_stripes_ret; 6167 int max_errors = *max_errors_ret; 6168 int i; 6169 6170 if (op == BTRFS_MAP_WRITE) { 6171 int index_where_to_add; 6172 6173 /* 6174 * A block group which have "to_copy" set will eventually 6175 * copied by dev-replace process. We can avoid cloning IO here. 6176 */ 6177 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6178 return; 6179 6180 /* 6181 * duplicate the write operations while the dev replace 6182 * procedure is running. Since the copying of the old disk to 6183 * the new disk takes place at run time while the filesystem is 6184 * mounted writable, the regular write operations to the old 6185 * disk have to be duplicated to go to the new disk as well. 6186 * 6187 * Note that device->missing is handled by the caller, and that 6188 * the write to the old disk is already set up in the stripes 6189 * array. 6190 */ 6191 index_where_to_add = num_stripes; 6192 for (i = 0; i < num_stripes; i++) { 6193 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6194 /* write to new disk, too */ 6195 struct btrfs_io_stripe *new = 6196 bioc->stripes + index_where_to_add; 6197 struct btrfs_io_stripe *old = 6198 bioc->stripes + i; 6199 6200 new->physical = old->physical; 6201 new->dev = dev_replace->tgtdev; 6202 bioc->tgtdev_map[i] = index_where_to_add; 6203 index_where_to_add++; 6204 max_errors++; 6205 tgtdev_indexes++; 6206 } 6207 } 6208 num_stripes = index_where_to_add; 6209 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 6210 int index_srcdev = 0; 6211 int found = 0; 6212 u64 physical_of_found = 0; 6213 6214 /* 6215 * During the dev-replace procedure, the target drive can also 6216 * be used to read data in case it is needed to repair a corrupt 6217 * block elsewhere. This is possible if the requested area is 6218 * left of the left cursor. In this area, the target drive is a 6219 * full copy of the source drive. 6220 */ 6221 for (i = 0; i < num_stripes; i++) { 6222 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6223 /* 6224 * In case of DUP, in order to keep it simple, 6225 * only add the mirror with the lowest physical 6226 * address 6227 */ 6228 if (found && 6229 physical_of_found <= bioc->stripes[i].physical) 6230 continue; 6231 index_srcdev = i; 6232 found = 1; 6233 physical_of_found = bioc->stripes[i].physical; 6234 } 6235 } 6236 if (found) { 6237 struct btrfs_io_stripe *tgtdev_stripe = 6238 bioc->stripes + num_stripes; 6239 6240 tgtdev_stripe->physical = physical_of_found; 6241 tgtdev_stripe->dev = dev_replace->tgtdev; 6242 bioc->tgtdev_map[index_srcdev] = num_stripes; 6243 6244 tgtdev_indexes++; 6245 num_stripes++; 6246 } 6247 } 6248 6249 *num_stripes_ret = num_stripes; 6250 *max_errors_ret = max_errors; 6251 bioc->num_tgtdevs = tgtdev_indexes; 6252 *bioc_ret = bioc; 6253 } 6254 6255 static bool need_full_stripe(enum btrfs_map_op op) 6256 { 6257 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 6258 } 6259 6260 /* 6261 * Calculate the geometry of a particular (address, len) tuple. This 6262 * information is used to calculate how big a particular bio can get before it 6263 * straddles a stripe. 6264 * 6265 * @fs_info: the filesystem 6266 * @em: mapping containing the logical extent 6267 * @op: type of operation - write or read 6268 * @logical: address that we want to figure out the geometry of 6269 * @io_geom: pointer used to return values 6270 * 6271 * Returns < 0 in case a chunk for the given logical address cannot be found, 6272 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 6273 */ 6274 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em, 6275 enum btrfs_map_op op, u64 logical, 6276 struct btrfs_io_geometry *io_geom) 6277 { 6278 struct map_lookup *map; 6279 u64 len; 6280 u64 offset; 6281 u64 stripe_offset; 6282 u64 stripe_nr; 6283 u32 stripe_len; 6284 u64 raid56_full_stripe_start = (u64)-1; 6285 int data_stripes; 6286 6287 ASSERT(op != BTRFS_MAP_DISCARD); 6288 6289 map = em->map_lookup; 6290 /* Offset of this logical address in the chunk */ 6291 offset = logical - em->start; 6292 /* Len of a stripe in a chunk */ 6293 stripe_len = map->stripe_len; 6294 /* 6295 * Stripe_nr is where this block falls in 6296 * stripe_offset is the offset of this block in its stripe. 6297 */ 6298 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset); 6299 ASSERT(stripe_offset < U32_MAX); 6300 6301 data_stripes = nr_data_stripes(map); 6302 6303 /* Only stripe based profiles needs to check against stripe length. */ 6304 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) { 6305 u64 max_len = stripe_len - stripe_offset; 6306 6307 /* 6308 * In case of raid56, we need to know the stripe aligned start 6309 */ 6310 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6311 unsigned long full_stripe_len = stripe_len * data_stripes; 6312 raid56_full_stripe_start = offset; 6313 6314 /* 6315 * Allow a write of a full stripe, but make sure we 6316 * don't allow straddling of stripes 6317 */ 6318 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6319 full_stripe_len); 6320 raid56_full_stripe_start *= full_stripe_len; 6321 6322 /* 6323 * For writes to RAID[56], allow a full stripeset across 6324 * all disks. For other RAID types and for RAID[56] 6325 * reads, just allow a single stripe (on a single disk). 6326 */ 6327 if (op == BTRFS_MAP_WRITE) { 6328 max_len = stripe_len * data_stripes - 6329 (offset - raid56_full_stripe_start); 6330 } 6331 } 6332 len = min_t(u64, em->len - offset, max_len); 6333 } else { 6334 len = em->len - offset; 6335 } 6336 6337 io_geom->len = len; 6338 io_geom->offset = offset; 6339 io_geom->stripe_len = stripe_len; 6340 io_geom->stripe_nr = stripe_nr; 6341 io_geom->stripe_offset = stripe_offset; 6342 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6343 6344 return 0; 6345 } 6346 6347 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map, 6348 u32 stripe_index, u64 stripe_offset, u64 stripe_nr) 6349 { 6350 dst->dev = map->stripes[stripe_index].dev; 6351 dst->physical = map->stripes[stripe_index].physical + 6352 stripe_offset + stripe_nr * map->stripe_len; 6353 } 6354 6355 int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6356 u64 logical, u64 *length, 6357 struct btrfs_io_context **bioc_ret, 6358 struct btrfs_io_stripe *smap, int *mirror_num_ret, 6359 int need_raid_map) 6360 { 6361 struct extent_map *em; 6362 struct map_lookup *map; 6363 u64 stripe_offset; 6364 u64 stripe_nr; 6365 u64 stripe_len; 6366 u32 stripe_index; 6367 int data_stripes; 6368 int i; 6369 int ret = 0; 6370 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6371 int num_stripes; 6372 int max_errors = 0; 6373 int tgtdev_indexes = 0; 6374 struct btrfs_io_context *bioc = NULL; 6375 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6376 int dev_replace_is_ongoing = 0; 6377 int num_alloc_stripes; 6378 int patch_the_first_stripe_for_dev_replace = 0; 6379 u64 physical_to_patch_in_first_stripe = 0; 6380 u64 raid56_full_stripe_start = (u64)-1; 6381 struct btrfs_io_geometry geom; 6382 6383 ASSERT(bioc_ret); 6384 ASSERT(op != BTRFS_MAP_DISCARD); 6385 6386 em = btrfs_get_chunk_map(fs_info, logical, *length); 6387 ASSERT(!IS_ERR(em)); 6388 6389 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom); 6390 if (ret < 0) 6391 return ret; 6392 6393 map = em->map_lookup; 6394 6395 *length = geom.len; 6396 stripe_len = geom.stripe_len; 6397 stripe_nr = geom.stripe_nr; 6398 stripe_offset = geom.stripe_offset; 6399 raid56_full_stripe_start = geom.raid56_stripe_offset; 6400 data_stripes = nr_data_stripes(map); 6401 6402 down_read(&dev_replace->rwsem); 6403 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6404 /* 6405 * Hold the semaphore for read during the whole operation, write is 6406 * requested at commit time but must wait. 6407 */ 6408 if (!dev_replace_is_ongoing) 6409 up_read(&dev_replace->rwsem); 6410 6411 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6412 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6413 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6414 dev_replace->srcdev->devid, 6415 &mirror_num, 6416 &physical_to_patch_in_first_stripe); 6417 if (ret) 6418 goto out; 6419 else 6420 patch_the_first_stripe_for_dev_replace = 1; 6421 } else if (mirror_num > map->num_stripes) { 6422 mirror_num = 0; 6423 } 6424 6425 num_stripes = 1; 6426 stripe_index = 0; 6427 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6428 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6429 &stripe_index); 6430 if (!need_full_stripe(op)) 6431 mirror_num = 1; 6432 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6433 if (need_full_stripe(op)) 6434 num_stripes = map->num_stripes; 6435 else if (mirror_num) 6436 stripe_index = mirror_num - 1; 6437 else { 6438 stripe_index = find_live_mirror(fs_info, map, 0, 6439 dev_replace_is_ongoing); 6440 mirror_num = stripe_index + 1; 6441 } 6442 6443 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6444 if (need_full_stripe(op)) { 6445 num_stripes = map->num_stripes; 6446 } else if (mirror_num) { 6447 stripe_index = mirror_num - 1; 6448 } else { 6449 mirror_num = 1; 6450 } 6451 6452 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6453 u32 factor = map->num_stripes / map->sub_stripes; 6454 6455 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6456 stripe_index *= map->sub_stripes; 6457 6458 if (need_full_stripe(op)) 6459 num_stripes = map->sub_stripes; 6460 else if (mirror_num) 6461 stripe_index += mirror_num - 1; 6462 else { 6463 int old_stripe_index = stripe_index; 6464 stripe_index = find_live_mirror(fs_info, map, 6465 stripe_index, 6466 dev_replace_is_ongoing); 6467 mirror_num = stripe_index - old_stripe_index + 1; 6468 } 6469 6470 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6471 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN); 6472 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6473 /* push stripe_nr back to the start of the full stripe */ 6474 stripe_nr = div64_u64(raid56_full_stripe_start, 6475 stripe_len * data_stripes); 6476 6477 /* RAID[56] write or recovery. Return all stripes */ 6478 num_stripes = map->num_stripes; 6479 max_errors = btrfs_chunk_max_errors(map); 6480 6481 /* Return the length to the full stripe end */ 6482 *length = min(logical + *length, 6483 raid56_full_stripe_start + em->start + 6484 data_stripes * stripe_len) - logical; 6485 stripe_index = 0; 6486 stripe_offset = 0; 6487 } else { 6488 /* 6489 * Mirror #0 or #1 means the original data block. 6490 * Mirror #2 is RAID5 parity block. 6491 * Mirror #3 is RAID6 Q block. 6492 */ 6493 stripe_nr = div_u64_rem(stripe_nr, 6494 data_stripes, &stripe_index); 6495 if (mirror_num > 1) 6496 stripe_index = data_stripes + mirror_num - 2; 6497 6498 /* We distribute the parity blocks across stripes */ 6499 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6500 &stripe_index); 6501 if (!need_full_stripe(op) && mirror_num <= 1) 6502 mirror_num = 1; 6503 } 6504 } else { 6505 /* 6506 * after this, stripe_nr is the number of stripes on this 6507 * device we have to walk to find the data, and stripe_index is 6508 * the number of our device in the stripe array 6509 */ 6510 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6511 &stripe_index); 6512 mirror_num = stripe_index + 1; 6513 } 6514 if (stripe_index >= map->num_stripes) { 6515 btrfs_crit(fs_info, 6516 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6517 stripe_index, map->num_stripes); 6518 ret = -EINVAL; 6519 goto out; 6520 } 6521 6522 num_alloc_stripes = num_stripes; 6523 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6524 if (op == BTRFS_MAP_WRITE) 6525 num_alloc_stripes <<= 1; 6526 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6527 num_alloc_stripes++; 6528 tgtdev_indexes = num_stripes; 6529 } 6530 6531 /* 6532 * If this I/O maps to a single device, try to return the device and 6533 * physical block information on the stack instead of allocating an 6534 * I/O context structure. 6535 */ 6536 if (smap && num_alloc_stripes == 1 && 6537 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) && 6538 (!need_full_stripe(op) || !dev_replace_is_ongoing || 6539 !dev_replace->tgtdev)) { 6540 if (patch_the_first_stripe_for_dev_replace) { 6541 smap->dev = dev_replace->tgtdev; 6542 smap->physical = physical_to_patch_in_first_stripe; 6543 *mirror_num_ret = map->num_stripes + 1; 6544 } else { 6545 set_io_stripe(smap, map, stripe_index, stripe_offset, 6546 stripe_nr); 6547 *mirror_num_ret = mirror_num; 6548 } 6549 *bioc_ret = NULL; 6550 ret = 0; 6551 goto out; 6552 } 6553 6554 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes); 6555 if (!bioc) { 6556 ret = -ENOMEM; 6557 goto out; 6558 } 6559 6560 for (i = 0; i < num_stripes; i++) { 6561 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset, 6562 stripe_nr); 6563 stripe_index++; 6564 } 6565 6566 /* Build raid_map */ 6567 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6568 (need_full_stripe(op) || mirror_num > 1)) { 6569 u64 tmp; 6570 unsigned rot; 6571 6572 /* Work out the disk rotation on this stripe-set */ 6573 div_u64_rem(stripe_nr, num_stripes, &rot); 6574 6575 /* Fill in the logical address of each stripe */ 6576 tmp = stripe_nr * data_stripes; 6577 for (i = 0; i < data_stripes; i++) 6578 bioc->raid_map[(i + rot) % num_stripes] = 6579 em->start + (tmp + i) * map->stripe_len; 6580 6581 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE; 6582 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6583 bioc->raid_map[(i + rot + 1) % num_stripes] = 6584 RAID6_Q_STRIPE; 6585 6586 sort_parity_stripes(bioc, num_stripes); 6587 } 6588 6589 if (need_full_stripe(op)) 6590 max_errors = btrfs_chunk_max_errors(map); 6591 6592 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6593 need_full_stripe(op)) { 6594 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical, 6595 &num_stripes, &max_errors); 6596 } 6597 6598 *bioc_ret = bioc; 6599 bioc->map_type = map->type; 6600 bioc->num_stripes = num_stripes; 6601 bioc->max_errors = max_errors; 6602 bioc->mirror_num = mirror_num; 6603 6604 /* 6605 * this is the case that REQ_READ && dev_replace_is_ongoing && 6606 * mirror_num == num_stripes + 1 && dev_replace target drive is 6607 * available as a mirror 6608 */ 6609 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6610 WARN_ON(num_stripes > 1); 6611 bioc->stripes[0].dev = dev_replace->tgtdev; 6612 bioc->stripes[0].physical = physical_to_patch_in_first_stripe; 6613 bioc->mirror_num = map->num_stripes + 1; 6614 } 6615 out: 6616 if (dev_replace_is_ongoing) { 6617 lockdep_assert_held(&dev_replace->rwsem); 6618 /* Unlock and let waiting writers proceed */ 6619 up_read(&dev_replace->rwsem); 6620 } 6621 free_extent_map(em); 6622 return ret; 6623 } 6624 6625 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6626 u64 logical, u64 *length, 6627 struct btrfs_io_context **bioc_ret, int mirror_num) 6628 { 6629 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 6630 NULL, &mirror_num, 0); 6631 } 6632 6633 /* For Scrub/replace */ 6634 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6635 u64 logical, u64 *length, 6636 struct btrfs_io_context **bioc_ret) 6637 { 6638 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 6639 NULL, NULL, 1); 6640 } 6641 6642 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6643 const struct btrfs_fs_devices *fs_devices) 6644 { 6645 if (args->fsid == NULL) 6646 return true; 6647 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6648 return true; 6649 return false; 6650 } 6651 6652 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6653 const struct btrfs_device *device) 6654 { 6655 if (args->missing) { 6656 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6657 !device->bdev) 6658 return true; 6659 return false; 6660 } 6661 6662 if (device->devid != args->devid) 6663 return false; 6664 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6665 return false; 6666 return true; 6667 } 6668 6669 /* 6670 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6671 * return NULL. 6672 * 6673 * If devid and uuid are both specified, the match must be exact, otherwise 6674 * only devid is used. 6675 */ 6676 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6677 const struct btrfs_dev_lookup_args *args) 6678 { 6679 struct btrfs_device *device; 6680 struct btrfs_fs_devices *seed_devs; 6681 6682 if (dev_args_match_fs_devices(args, fs_devices)) { 6683 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6684 if (dev_args_match_device(args, device)) 6685 return device; 6686 } 6687 } 6688 6689 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6690 if (!dev_args_match_fs_devices(args, seed_devs)) 6691 continue; 6692 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6693 if (dev_args_match_device(args, device)) 6694 return device; 6695 } 6696 } 6697 6698 return NULL; 6699 } 6700 6701 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6702 u64 devid, u8 *dev_uuid) 6703 { 6704 struct btrfs_device *device; 6705 unsigned int nofs_flag; 6706 6707 /* 6708 * We call this under the chunk_mutex, so we want to use NOFS for this 6709 * allocation, however we don't want to change btrfs_alloc_device() to 6710 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6711 * places. 6712 */ 6713 6714 nofs_flag = memalloc_nofs_save(); 6715 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6716 memalloc_nofs_restore(nofs_flag); 6717 if (IS_ERR(device)) 6718 return device; 6719 6720 list_add(&device->dev_list, &fs_devices->devices); 6721 device->fs_devices = fs_devices; 6722 fs_devices->num_devices++; 6723 6724 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6725 fs_devices->missing_devices++; 6726 6727 return device; 6728 } 6729 6730 /* 6731 * Allocate new device struct, set up devid and UUID. 6732 * 6733 * @fs_info: used only for generating a new devid, can be NULL if 6734 * devid is provided (i.e. @devid != NULL). 6735 * @devid: a pointer to devid for this device. If NULL a new devid 6736 * is generated. 6737 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6738 * is generated. 6739 * @path: a pointer to device path if available, NULL otherwise. 6740 * 6741 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6742 * on error. Returned struct is not linked onto any lists and must be 6743 * destroyed with btrfs_free_device. 6744 */ 6745 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6746 const u64 *devid, const u8 *uuid, 6747 const char *path) 6748 { 6749 struct btrfs_device *dev; 6750 u64 tmp; 6751 6752 if (WARN_ON(!devid && !fs_info)) 6753 return ERR_PTR(-EINVAL); 6754 6755 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6756 if (!dev) 6757 return ERR_PTR(-ENOMEM); 6758 6759 INIT_LIST_HEAD(&dev->dev_list); 6760 INIT_LIST_HEAD(&dev->dev_alloc_list); 6761 INIT_LIST_HEAD(&dev->post_commit_list); 6762 6763 atomic_set(&dev->dev_stats_ccnt, 0); 6764 btrfs_device_data_ordered_init(dev); 6765 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6766 6767 if (devid) 6768 tmp = *devid; 6769 else { 6770 int ret; 6771 6772 ret = find_next_devid(fs_info, &tmp); 6773 if (ret) { 6774 btrfs_free_device(dev); 6775 return ERR_PTR(ret); 6776 } 6777 } 6778 dev->devid = tmp; 6779 6780 if (uuid) 6781 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6782 else 6783 generate_random_uuid(dev->uuid); 6784 6785 if (path) { 6786 struct rcu_string *name; 6787 6788 name = rcu_string_strdup(path, GFP_KERNEL); 6789 if (!name) { 6790 btrfs_free_device(dev); 6791 return ERR_PTR(-ENOMEM); 6792 } 6793 rcu_assign_pointer(dev->name, name); 6794 } 6795 6796 return dev; 6797 } 6798 6799 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6800 u64 devid, u8 *uuid, bool error) 6801 { 6802 if (error) 6803 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6804 devid, uuid); 6805 else 6806 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6807 devid, uuid); 6808 } 6809 6810 u64 btrfs_calc_stripe_length(const struct extent_map *em) 6811 { 6812 const struct map_lookup *map = em->map_lookup; 6813 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6814 6815 return div_u64(em->len, data_stripes); 6816 } 6817 6818 #if BITS_PER_LONG == 32 6819 /* 6820 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6821 * can't be accessed on 32bit systems. 6822 * 6823 * This function do mount time check to reject the fs if it already has 6824 * metadata chunk beyond that limit. 6825 */ 6826 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6827 u64 logical, u64 length, u64 type) 6828 { 6829 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6830 return 0; 6831 6832 if (logical + length < MAX_LFS_FILESIZE) 6833 return 0; 6834 6835 btrfs_err_32bit_limit(fs_info); 6836 return -EOVERFLOW; 6837 } 6838 6839 /* 6840 * This is to give early warning for any metadata chunk reaching 6841 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6842 * Although we can still access the metadata, it's not going to be possible 6843 * once the limit is reached. 6844 */ 6845 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6846 u64 logical, u64 length, u64 type) 6847 { 6848 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6849 return; 6850 6851 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6852 return; 6853 6854 btrfs_warn_32bit_limit(fs_info); 6855 } 6856 #endif 6857 6858 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6859 u64 devid, u8 *uuid) 6860 { 6861 struct btrfs_device *dev; 6862 6863 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6864 btrfs_report_missing_device(fs_info, devid, uuid, true); 6865 return ERR_PTR(-ENOENT); 6866 } 6867 6868 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6869 if (IS_ERR(dev)) { 6870 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6871 devid, PTR_ERR(dev)); 6872 return dev; 6873 } 6874 btrfs_report_missing_device(fs_info, devid, uuid, false); 6875 6876 return dev; 6877 } 6878 6879 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6880 struct btrfs_chunk *chunk) 6881 { 6882 BTRFS_DEV_LOOKUP_ARGS(args); 6883 struct btrfs_fs_info *fs_info = leaf->fs_info; 6884 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6885 struct map_lookup *map; 6886 struct extent_map *em; 6887 u64 logical; 6888 u64 length; 6889 u64 devid; 6890 u64 type; 6891 u8 uuid[BTRFS_UUID_SIZE]; 6892 int index; 6893 int num_stripes; 6894 int ret; 6895 int i; 6896 6897 logical = key->offset; 6898 length = btrfs_chunk_length(leaf, chunk); 6899 type = btrfs_chunk_type(leaf, chunk); 6900 index = btrfs_bg_flags_to_raid_index(type); 6901 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6902 6903 #if BITS_PER_LONG == 32 6904 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6905 if (ret < 0) 6906 return ret; 6907 warn_32bit_meta_chunk(fs_info, logical, length, type); 6908 #endif 6909 6910 /* 6911 * Only need to verify chunk item if we're reading from sys chunk array, 6912 * as chunk item in tree block is already verified by tree-checker. 6913 */ 6914 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6915 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6916 if (ret) 6917 return ret; 6918 } 6919 6920 read_lock(&map_tree->lock); 6921 em = lookup_extent_mapping(map_tree, logical, 1); 6922 read_unlock(&map_tree->lock); 6923 6924 /* already mapped? */ 6925 if (em && em->start <= logical && em->start + em->len > logical) { 6926 free_extent_map(em); 6927 return 0; 6928 } else if (em) { 6929 free_extent_map(em); 6930 } 6931 6932 em = alloc_extent_map(); 6933 if (!em) 6934 return -ENOMEM; 6935 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6936 if (!map) { 6937 free_extent_map(em); 6938 return -ENOMEM; 6939 } 6940 6941 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6942 em->map_lookup = map; 6943 em->start = logical; 6944 em->len = length; 6945 em->orig_start = 0; 6946 em->block_start = 0; 6947 em->block_len = em->len; 6948 6949 map->num_stripes = num_stripes; 6950 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6951 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6952 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6953 map->type = type; 6954 /* 6955 * We can't use the sub_stripes value, as for profiles other than 6956 * RAID10, they may have 0 as sub_stripes for filesystems created by 6957 * older mkfs (<v5.4). 6958 * In that case, it can cause divide-by-zero errors later. 6959 * Since currently sub_stripes is fixed for each profile, let's 6960 * use the trusted value instead. 6961 */ 6962 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 6963 map->verified_stripes = 0; 6964 em->orig_block_len = btrfs_calc_stripe_length(em); 6965 for (i = 0; i < num_stripes; i++) { 6966 map->stripes[i].physical = 6967 btrfs_stripe_offset_nr(leaf, chunk, i); 6968 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6969 args.devid = devid; 6970 read_extent_buffer(leaf, uuid, (unsigned long) 6971 btrfs_stripe_dev_uuid_nr(chunk, i), 6972 BTRFS_UUID_SIZE); 6973 args.uuid = uuid; 6974 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 6975 if (!map->stripes[i].dev) { 6976 map->stripes[i].dev = handle_missing_device(fs_info, 6977 devid, uuid); 6978 if (IS_ERR(map->stripes[i].dev)) { 6979 ret = PTR_ERR(map->stripes[i].dev); 6980 free_extent_map(em); 6981 return ret; 6982 } 6983 } 6984 6985 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6986 &(map->stripes[i].dev->dev_state)); 6987 } 6988 6989 write_lock(&map_tree->lock); 6990 ret = add_extent_mapping(map_tree, em, 0); 6991 write_unlock(&map_tree->lock); 6992 if (ret < 0) { 6993 btrfs_err(fs_info, 6994 "failed to add chunk map, start=%llu len=%llu: %d", 6995 em->start, em->len, ret); 6996 } 6997 free_extent_map(em); 6998 6999 return ret; 7000 } 7001 7002 static void fill_device_from_item(struct extent_buffer *leaf, 7003 struct btrfs_dev_item *dev_item, 7004 struct btrfs_device *device) 7005 { 7006 unsigned long ptr; 7007 7008 device->devid = btrfs_device_id(leaf, dev_item); 7009 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7010 device->total_bytes = device->disk_total_bytes; 7011 device->commit_total_bytes = device->disk_total_bytes; 7012 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7013 device->commit_bytes_used = device->bytes_used; 7014 device->type = btrfs_device_type(leaf, dev_item); 7015 device->io_align = btrfs_device_io_align(leaf, dev_item); 7016 device->io_width = btrfs_device_io_width(leaf, dev_item); 7017 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7018 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7019 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7020 7021 ptr = btrfs_device_uuid(dev_item); 7022 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7023 } 7024 7025 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7026 u8 *fsid) 7027 { 7028 struct btrfs_fs_devices *fs_devices; 7029 int ret; 7030 7031 lockdep_assert_held(&uuid_mutex); 7032 ASSERT(fsid); 7033 7034 /* This will match only for multi-device seed fs */ 7035 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7036 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7037 return fs_devices; 7038 7039 7040 fs_devices = find_fsid(fsid, NULL); 7041 if (!fs_devices) { 7042 if (!btrfs_test_opt(fs_info, DEGRADED)) 7043 return ERR_PTR(-ENOENT); 7044 7045 fs_devices = alloc_fs_devices(fsid, NULL); 7046 if (IS_ERR(fs_devices)) 7047 return fs_devices; 7048 7049 fs_devices->seeding = true; 7050 fs_devices->opened = 1; 7051 return fs_devices; 7052 } 7053 7054 /* 7055 * Upon first call for a seed fs fsid, just create a private copy of the 7056 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7057 */ 7058 fs_devices = clone_fs_devices(fs_devices); 7059 if (IS_ERR(fs_devices)) 7060 return fs_devices; 7061 7062 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 7063 if (ret) { 7064 free_fs_devices(fs_devices); 7065 return ERR_PTR(ret); 7066 } 7067 7068 if (!fs_devices->seeding) { 7069 close_fs_devices(fs_devices); 7070 free_fs_devices(fs_devices); 7071 return ERR_PTR(-EINVAL); 7072 } 7073 7074 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7075 7076 return fs_devices; 7077 } 7078 7079 static int read_one_dev(struct extent_buffer *leaf, 7080 struct btrfs_dev_item *dev_item) 7081 { 7082 BTRFS_DEV_LOOKUP_ARGS(args); 7083 struct btrfs_fs_info *fs_info = leaf->fs_info; 7084 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7085 struct btrfs_device *device; 7086 u64 devid; 7087 int ret; 7088 u8 fs_uuid[BTRFS_FSID_SIZE]; 7089 u8 dev_uuid[BTRFS_UUID_SIZE]; 7090 7091 devid = btrfs_device_id(leaf, dev_item); 7092 args.devid = devid; 7093 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7094 BTRFS_UUID_SIZE); 7095 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7096 BTRFS_FSID_SIZE); 7097 args.uuid = dev_uuid; 7098 args.fsid = fs_uuid; 7099 7100 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7101 fs_devices = open_seed_devices(fs_info, fs_uuid); 7102 if (IS_ERR(fs_devices)) 7103 return PTR_ERR(fs_devices); 7104 } 7105 7106 device = btrfs_find_device(fs_info->fs_devices, &args); 7107 if (!device) { 7108 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7109 btrfs_report_missing_device(fs_info, devid, 7110 dev_uuid, true); 7111 return -ENOENT; 7112 } 7113 7114 device = add_missing_dev(fs_devices, devid, dev_uuid); 7115 if (IS_ERR(device)) { 7116 btrfs_err(fs_info, 7117 "failed to add missing dev %llu: %ld", 7118 devid, PTR_ERR(device)); 7119 return PTR_ERR(device); 7120 } 7121 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7122 } else { 7123 if (!device->bdev) { 7124 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7125 btrfs_report_missing_device(fs_info, 7126 devid, dev_uuid, true); 7127 return -ENOENT; 7128 } 7129 btrfs_report_missing_device(fs_info, devid, 7130 dev_uuid, false); 7131 } 7132 7133 if (!device->bdev && 7134 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7135 /* 7136 * this happens when a device that was properly setup 7137 * in the device info lists suddenly goes bad. 7138 * device->bdev is NULL, and so we have to set 7139 * device->missing to one here 7140 */ 7141 device->fs_devices->missing_devices++; 7142 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7143 } 7144 7145 /* Move the device to its own fs_devices */ 7146 if (device->fs_devices != fs_devices) { 7147 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7148 &device->dev_state)); 7149 7150 list_move(&device->dev_list, &fs_devices->devices); 7151 device->fs_devices->num_devices--; 7152 fs_devices->num_devices++; 7153 7154 device->fs_devices->missing_devices--; 7155 fs_devices->missing_devices++; 7156 7157 device->fs_devices = fs_devices; 7158 } 7159 } 7160 7161 if (device->fs_devices != fs_info->fs_devices) { 7162 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7163 if (device->generation != 7164 btrfs_device_generation(leaf, dev_item)) 7165 return -EINVAL; 7166 } 7167 7168 fill_device_from_item(leaf, dev_item, device); 7169 if (device->bdev) { 7170 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7171 7172 if (device->total_bytes > max_total_bytes) { 7173 btrfs_err(fs_info, 7174 "device total_bytes should be at most %llu but found %llu", 7175 max_total_bytes, device->total_bytes); 7176 return -EINVAL; 7177 } 7178 } 7179 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7180 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7181 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7182 device->fs_devices->total_rw_bytes += device->total_bytes; 7183 atomic64_add(device->total_bytes - device->bytes_used, 7184 &fs_info->free_chunk_space); 7185 } 7186 ret = 0; 7187 return ret; 7188 } 7189 7190 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7191 { 7192 struct btrfs_super_block *super_copy = fs_info->super_copy; 7193 struct extent_buffer *sb; 7194 struct btrfs_disk_key *disk_key; 7195 struct btrfs_chunk *chunk; 7196 u8 *array_ptr; 7197 unsigned long sb_array_offset; 7198 int ret = 0; 7199 u32 num_stripes; 7200 u32 array_size; 7201 u32 len = 0; 7202 u32 cur_offset; 7203 u64 type; 7204 struct btrfs_key key; 7205 7206 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7207 7208 /* 7209 * We allocated a dummy extent, just to use extent buffer accessors. 7210 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7211 * that's fine, we will not go beyond system chunk array anyway. 7212 */ 7213 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7214 if (!sb) 7215 return -ENOMEM; 7216 set_extent_buffer_uptodate(sb); 7217 7218 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7219 array_size = btrfs_super_sys_array_size(super_copy); 7220 7221 array_ptr = super_copy->sys_chunk_array; 7222 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7223 cur_offset = 0; 7224 7225 while (cur_offset < array_size) { 7226 disk_key = (struct btrfs_disk_key *)array_ptr; 7227 len = sizeof(*disk_key); 7228 if (cur_offset + len > array_size) 7229 goto out_short_read; 7230 7231 btrfs_disk_key_to_cpu(&key, disk_key); 7232 7233 array_ptr += len; 7234 sb_array_offset += len; 7235 cur_offset += len; 7236 7237 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7238 btrfs_err(fs_info, 7239 "unexpected item type %u in sys_array at offset %u", 7240 (u32)key.type, cur_offset); 7241 ret = -EIO; 7242 break; 7243 } 7244 7245 chunk = (struct btrfs_chunk *)sb_array_offset; 7246 /* 7247 * At least one btrfs_chunk with one stripe must be present, 7248 * exact stripe count check comes afterwards 7249 */ 7250 len = btrfs_chunk_item_size(1); 7251 if (cur_offset + len > array_size) 7252 goto out_short_read; 7253 7254 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7255 if (!num_stripes) { 7256 btrfs_err(fs_info, 7257 "invalid number of stripes %u in sys_array at offset %u", 7258 num_stripes, cur_offset); 7259 ret = -EIO; 7260 break; 7261 } 7262 7263 type = btrfs_chunk_type(sb, chunk); 7264 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7265 btrfs_err(fs_info, 7266 "invalid chunk type %llu in sys_array at offset %u", 7267 type, cur_offset); 7268 ret = -EIO; 7269 break; 7270 } 7271 7272 len = btrfs_chunk_item_size(num_stripes); 7273 if (cur_offset + len > array_size) 7274 goto out_short_read; 7275 7276 ret = read_one_chunk(&key, sb, chunk); 7277 if (ret) 7278 break; 7279 7280 array_ptr += len; 7281 sb_array_offset += len; 7282 cur_offset += len; 7283 } 7284 clear_extent_buffer_uptodate(sb); 7285 free_extent_buffer_stale(sb); 7286 return ret; 7287 7288 out_short_read: 7289 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7290 len, cur_offset); 7291 clear_extent_buffer_uptodate(sb); 7292 free_extent_buffer_stale(sb); 7293 return -EIO; 7294 } 7295 7296 /* 7297 * Check if all chunks in the fs are OK for read-write degraded mount 7298 * 7299 * If the @failing_dev is specified, it's accounted as missing. 7300 * 7301 * Return true if all chunks meet the minimal RW mount requirements. 7302 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7303 */ 7304 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7305 struct btrfs_device *failing_dev) 7306 { 7307 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7308 struct extent_map *em; 7309 u64 next_start = 0; 7310 bool ret = true; 7311 7312 read_lock(&map_tree->lock); 7313 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7314 read_unlock(&map_tree->lock); 7315 /* No chunk at all? Return false anyway */ 7316 if (!em) { 7317 ret = false; 7318 goto out; 7319 } 7320 while (em) { 7321 struct map_lookup *map; 7322 int missing = 0; 7323 int max_tolerated; 7324 int i; 7325 7326 map = em->map_lookup; 7327 max_tolerated = 7328 btrfs_get_num_tolerated_disk_barrier_failures( 7329 map->type); 7330 for (i = 0; i < map->num_stripes; i++) { 7331 struct btrfs_device *dev = map->stripes[i].dev; 7332 7333 if (!dev || !dev->bdev || 7334 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7335 dev->last_flush_error) 7336 missing++; 7337 else if (failing_dev && failing_dev == dev) 7338 missing++; 7339 } 7340 if (missing > max_tolerated) { 7341 if (!failing_dev) 7342 btrfs_warn(fs_info, 7343 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7344 em->start, missing, max_tolerated); 7345 free_extent_map(em); 7346 ret = false; 7347 goto out; 7348 } 7349 next_start = extent_map_end(em); 7350 free_extent_map(em); 7351 7352 read_lock(&map_tree->lock); 7353 em = lookup_extent_mapping(map_tree, next_start, 7354 (u64)(-1) - next_start); 7355 read_unlock(&map_tree->lock); 7356 } 7357 out: 7358 return ret; 7359 } 7360 7361 static void readahead_tree_node_children(struct extent_buffer *node) 7362 { 7363 int i; 7364 const int nr_items = btrfs_header_nritems(node); 7365 7366 for (i = 0; i < nr_items; i++) 7367 btrfs_readahead_node_child(node, i); 7368 } 7369 7370 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7371 { 7372 struct btrfs_root *root = fs_info->chunk_root; 7373 struct btrfs_path *path; 7374 struct extent_buffer *leaf; 7375 struct btrfs_key key; 7376 struct btrfs_key found_key; 7377 int ret; 7378 int slot; 7379 int iter_ret = 0; 7380 u64 total_dev = 0; 7381 u64 last_ra_node = 0; 7382 7383 path = btrfs_alloc_path(); 7384 if (!path) 7385 return -ENOMEM; 7386 7387 /* 7388 * uuid_mutex is needed only if we are mounting a sprout FS 7389 * otherwise we don't need it. 7390 */ 7391 mutex_lock(&uuid_mutex); 7392 7393 /* 7394 * It is possible for mount and umount to race in such a way that 7395 * we execute this code path, but open_fs_devices failed to clear 7396 * total_rw_bytes. We certainly want it cleared before reading the 7397 * device items, so clear it here. 7398 */ 7399 fs_info->fs_devices->total_rw_bytes = 0; 7400 7401 /* 7402 * Lockdep complains about possible circular locking dependency between 7403 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7404 * used for freeze procection of a fs (struct super_block.s_writers), 7405 * which we take when starting a transaction, and extent buffers of the 7406 * chunk tree if we call read_one_dev() while holding a lock on an 7407 * extent buffer of the chunk tree. Since we are mounting the filesystem 7408 * and at this point there can't be any concurrent task modifying the 7409 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7410 */ 7411 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7412 path->skip_locking = 1; 7413 7414 /* 7415 * Read all device items, and then all the chunk items. All 7416 * device items are found before any chunk item (their object id 7417 * is smaller than the lowest possible object id for a chunk 7418 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7419 */ 7420 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7421 key.offset = 0; 7422 key.type = 0; 7423 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7424 struct extent_buffer *node = path->nodes[1]; 7425 7426 leaf = path->nodes[0]; 7427 slot = path->slots[0]; 7428 7429 if (node) { 7430 if (last_ra_node != node->start) { 7431 readahead_tree_node_children(node); 7432 last_ra_node = node->start; 7433 } 7434 } 7435 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7436 struct btrfs_dev_item *dev_item; 7437 dev_item = btrfs_item_ptr(leaf, slot, 7438 struct btrfs_dev_item); 7439 ret = read_one_dev(leaf, dev_item); 7440 if (ret) 7441 goto error; 7442 total_dev++; 7443 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7444 struct btrfs_chunk *chunk; 7445 7446 /* 7447 * We are only called at mount time, so no need to take 7448 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7449 * we always lock first fs_info->chunk_mutex before 7450 * acquiring any locks on the chunk tree. This is a 7451 * requirement for chunk allocation, see the comment on 7452 * top of btrfs_chunk_alloc() for details. 7453 */ 7454 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7455 ret = read_one_chunk(&found_key, leaf, chunk); 7456 if (ret) 7457 goto error; 7458 } 7459 } 7460 /* Catch error found during iteration */ 7461 if (iter_ret < 0) { 7462 ret = iter_ret; 7463 goto error; 7464 } 7465 7466 /* 7467 * After loading chunk tree, we've got all device information, 7468 * do another round of validation checks. 7469 */ 7470 if (total_dev != fs_info->fs_devices->total_devices) { 7471 btrfs_warn(fs_info, 7472 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7473 btrfs_super_num_devices(fs_info->super_copy), 7474 total_dev); 7475 fs_info->fs_devices->total_devices = total_dev; 7476 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7477 } 7478 if (btrfs_super_total_bytes(fs_info->super_copy) < 7479 fs_info->fs_devices->total_rw_bytes) { 7480 btrfs_err(fs_info, 7481 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7482 btrfs_super_total_bytes(fs_info->super_copy), 7483 fs_info->fs_devices->total_rw_bytes); 7484 ret = -EINVAL; 7485 goto error; 7486 } 7487 ret = 0; 7488 error: 7489 mutex_unlock(&uuid_mutex); 7490 7491 btrfs_free_path(path); 7492 return ret; 7493 } 7494 7495 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7496 { 7497 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7498 struct btrfs_device *device; 7499 int ret = 0; 7500 7501 fs_devices->fs_info = fs_info; 7502 7503 mutex_lock(&fs_devices->device_list_mutex); 7504 list_for_each_entry(device, &fs_devices->devices, dev_list) 7505 device->fs_info = fs_info; 7506 7507 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7508 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7509 device->fs_info = fs_info; 7510 ret = btrfs_get_dev_zone_info(device, false); 7511 if (ret) 7512 break; 7513 } 7514 7515 seed_devs->fs_info = fs_info; 7516 } 7517 mutex_unlock(&fs_devices->device_list_mutex); 7518 7519 return ret; 7520 } 7521 7522 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7523 const struct btrfs_dev_stats_item *ptr, 7524 int index) 7525 { 7526 u64 val; 7527 7528 read_extent_buffer(eb, &val, 7529 offsetof(struct btrfs_dev_stats_item, values) + 7530 ((unsigned long)ptr) + (index * sizeof(u64)), 7531 sizeof(val)); 7532 return val; 7533 } 7534 7535 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7536 struct btrfs_dev_stats_item *ptr, 7537 int index, u64 val) 7538 { 7539 write_extent_buffer(eb, &val, 7540 offsetof(struct btrfs_dev_stats_item, values) + 7541 ((unsigned long)ptr) + (index * sizeof(u64)), 7542 sizeof(val)); 7543 } 7544 7545 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7546 struct btrfs_path *path) 7547 { 7548 struct btrfs_dev_stats_item *ptr; 7549 struct extent_buffer *eb; 7550 struct btrfs_key key; 7551 int item_size; 7552 int i, ret, slot; 7553 7554 if (!device->fs_info->dev_root) 7555 return 0; 7556 7557 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7558 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7559 key.offset = device->devid; 7560 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7561 if (ret) { 7562 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7563 btrfs_dev_stat_set(device, i, 0); 7564 device->dev_stats_valid = 1; 7565 btrfs_release_path(path); 7566 return ret < 0 ? ret : 0; 7567 } 7568 slot = path->slots[0]; 7569 eb = path->nodes[0]; 7570 item_size = btrfs_item_size(eb, slot); 7571 7572 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7573 7574 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7575 if (item_size >= (1 + i) * sizeof(__le64)) 7576 btrfs_dev_stat_set(device, i, 7577 btrfs_dev_stats_value(eb, ptr, i)); 7578 else 7579 btrfs_dev_stat_set(device, i, 0); 7580 } 7581 7582 device->dev_stats_valid = 1; 7583 btrfs_dev_stat_print_on_load(device); 7584 btrfs_release_path(path); 7585 7586 return 0; 7587 } 7588 7589 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7590 { 7591 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7592 struct btrfs_device *device; 7593 struct btrfs_path *path = NULL; 7594 int ret = 0; 7595 7596 path = btrfs_alloc_path(); 7597 if (!path) 7598 return -ENOMEM; 7599 7600 mutex_lock(&fs_devices->device_list_mutex); 7601 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7602 ret = btrfs_device_init_dev_stats(device, path); 7603 if (ret) 7604 goto out; 7605 } 7606 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7607 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7608 ret = btrfs_device_init_dev_stats(device, path); 7609 if (ret) 7610 goto out; 7611 } 7612 } 7613 out: 7614 mutex_unlock(&fs_devices->device_list_mutex); 7615 7616 btrfs_free_path(path); 7617 return ret; 7618 } 7619 7620 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7621 struct btrfs_device *device) 7622 { 7623 struct btrfs_fs_info *fs_info = trans->fs_info; 7624 struct btrfs_root *dev_root = fs_info->dev_root; 7625 struct btrfs_path *path; 7626 struct btrfs_key key; 7627 struct extent_buffer *eb; 7628 struct btrfs_dev_stats_item *ptr; 7629 int ret; 7630 int i; 7631 7632 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7633 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7634 key.offset = device->devid; 7635 7636 path = btrfs_alloc_path(); 7637 if (!path) 7638 return -ENOMEM; 7639 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7640 if (ret < 0) { 7641 btrfs_warn_in_rcu(fs_info, 7642 "error %d while searching for dev_stats item for device %s", 7643 ret, btrfs_dev_name(device)); 7644 goto out; 7645 } 7646 7647 if (ret == 0 && 7648 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7649 /* need to delete old one and insert a new one */ 7650 ret = btrfs_del_item(trans, dev_root, path); 7651 if (ret != 0) { 7652 btrfs_warn_in_rcu(fs_info, 7653 "delete too small dev_stats item for device %s failed %d", 7654 btrfs_dev_name(device), ret); 7655 goto out; 7656 } 7657 ret = 1; 7658 } 7659 7660 if (ret == 1) { 7661 /* need to insert a new item */ 7662 btrfs_release_path(path); 7663 ret = btrfs_insert_empty_item(trans, dev_root, path, 7664 &key, sizeof(*ptr)); 7665 if (ret < 0) { 7666 btrfs_warn_in_rcu(fs_info, 7667 "insert dev_stats item for device %s failed %d", 7668 btrfs_dev_name(device), ret); 7669 goto out; 7670 } 7671 } 7672 7673 eb = path->nodes[0]; 7674 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7675 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7676 btrfs_set_dev_stats_value(eb, ptr, i, 7677 btrfs_dev_stat_read(device, i)); 7678 btrfs_mark_buffer_dirty(eb); 7679 7680 out: 7681 btrfs_free_path(path); 7682 return ret; 7683 } 7684 7685 /* 7686 * called from commit_transaction. Writes all changed device stats to disk. 7687 */ 7688 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7689 { 7690 struct btrfs_fs_info *fs_info = trans->fs_info; 7691 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7692 struct btrfs_device *device; 7693 int stats_cnt; 7694 int ret = 0; 7695 7696 mutex_lock(&fs_devices->device_list_mutex); 7697 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7698 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7699 if (!device->dev_stats_valid || stats_cnt == 0) 7700 continue; 7701 7702 7703 /* 7704 * There is a LOAD-LOAD control dependency between the value of 7705 * dev_stats_ccnt and updating the on-disk values which requires 7706 * reading the in-memory counters. Such control dependencies 7707 * require explicit read memory barriers. 7708 * 7709 * This memory barriers pairs with smp_mb__before_atomic in 7710 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7711 * barrier implied by atomic_xchg in 7712 * btrfs_dev_stats_read_and_reset 7713 */ 7714 smp_rmb(); 7715 7716 ret = update_dev_stat_item(trans, device); 7717 if (!ret) 7718 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7719 } 7720 mutex_unlock(&fs_devices->device_list_mutex); 7721 7722 return ret; 7723 } 7724 7725 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7726 { 7727 btrfs_dev_stat_inc(dev, index); 7728 7729 if (!dev->dev_stats_valid) 7730 return; 7731 btrfs_err_rl_in_rcu(dev->fs_info, 7732 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7733 btrfs_dev_name(dev), 7734 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7735 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7736 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7737 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7738 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7739 } 7740 7741 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7742 { 7743 int i; 7744 7745 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7746 if (btrfs_dev_stat_read(dev, i) != 0) 7747 break; 7748 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7749 return; /* all values == 0, suppress message */ 7750 7751 btrfs_info_in_rcu(dev->fs_info, 7752 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7753 btrfs_dev_name(dev), 7754 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7755 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7756 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7757 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7758 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7759 } 7760 7761 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7762 struct btrfs_ioctl_get_dev_stats *stats) 7763 { 7764 BTRFS_DEV_LOOKUP_ARGS(args); 7765 struct btrfs_device *dev; 7766 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7767 int i; 7768 7769 mutex_lock(&fs_devices->device_list_mutex); 7770 args.devid = stats->devid; 7771 dev = btrfs_find_device(fs_info->fs_devices, &args); 7772 mutex_unlock(&fs_devices->device_list_mutex); 7773 7774 if (!dev) { 7775 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7776 return -ENODEV; 7777 } else if (!dev->dev_stats_valid) { 7778 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7779 return -ENODEV; 7780 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7781 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7782 if (stats->nr_items > i) 7783 stats->values[i] = 7784 btrfs_dev_stat_read_and_reset(dev, i); 7785 else 7786 btrfs_dev_stat_set(dev, i, 0); 7787 } 7788 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7789 current->comm, task_pid_nr(current)); 7790 } else { 7791 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7792 if (stats->nr_items > i) 7793 stats->values[i] = btrfs_dev_stat_read(dev, i); 7794 } 7795 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7796 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7797 return 0; 7798 } 7799 7800 /* 7801 * Update the size and bytes used for each device where it changed. This is 7802 * delayed since we would otherwise get errors while writing out the 7803 * superblocks. 7804 * 7805 * Must be invoked during transaction commit. 7806 */ 7807 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7808 { 7809 struct btrfs_device *curr, *next; 7810 7811 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7812 7813 if (list_empty(&trans->dev_update_list)) 7814 return; 7815 7816 /* 7817 * We don't need the device_list_mutex here. This list is owned by the 7818 * transaction and the transaction must complete before the device is 7819 * released. 7820 */ 7821 mutex_lock(&trans->fs_info->chunk_mutex); 7822 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7823 post_commit_list) { 7824 list_del_init(&curr->post_commit_list); 7825 curr->commit_total_bytes = curr->disk_total_bytes; 7826 curr->commit_bytes_used = curr->bytes_used; 7827 } 7828 mutex_unlock(&trans->fs_info->chunk_mutex); 7829 } 7830 7831 /* 7832 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7833 */ 7834 int btrfs_bg_type_to_factor(u64 flags) 7835 { 7836 const int index = btrfs_bg_flags_to_raid_index(flags); 7837 7838 return btrfs_raid_array[index].ncopies; 7839 } 7840 7841 7842 7843 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7844 u64 chunk_offset, u64 devid, 7845 u64 physical_offset, u64 physical_len) 7846 { 7847 struct btrfs_dev_lookup_args args = { .devid = devid }; 7848 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7849 struct extent_map *em; 7850 struct map_lookup *map; 7851 struct btrfs_device *dev; 7852 u64 stripe_len; 7853 bool found = false; 7854 int ret = 0; 7855 int i; 7856 7857 read_lock(&em_tree->lock); 7858 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7859 read_unlock(&em_tree->lock); 7860 7861 if (!em) { 7862 btrfs_err(fs_info, 7863 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7864 physical_offset, devid); 7865 ret = -EUCLEAN; 7866 goto out; 7867 } 7868 7869 map = em->map_lookup; 7870 stripe_len = btrfs_calc_stripe_length(em); 7871 if (physical_len != stripe_len) { 7872 btrfs_err(fs_info, 7873 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7874 physical_offset, devid, em->start, physical_len, 7875 stripe_len); 7876 ret = -EUCLEAN; 7877 goto out; 7878 } 7879 7880 /* 7881 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7882 * space. Although kernel can handle it without problem, better to warn 7883 * the users. 7884 */ 7885 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7886 btrfs_warn(fs_info, 7887 "devid %llu physical %llu len %llu inside the reserved space", 7888 devid, physical_offset, physical_len); 7889 7890 for (i = 0; i < map->num_stripes; i++) { 7891 if (map->stripes[i].dev->devid == devid && 7892 map->stripes[i].physical == physical_offset) { 7893 found = true; 7894 if (map->verified_stripes >= map->num_stripes) { 7895 btrfs_err(fs_info, 7896 "too many dev extents for chunk %llu found", 7897 em->start); 7898 ret = -EUCLEAN; 7899 goto out; 7900 } 7901 map->verified_stripes++; 7902 break; 7903 } 7904 } 7905 if (!found) { 7906 btrfs_err(fs_info, 7907 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7908 physical_offset, devid); 7909 ret = -EUCLEAN; 7910 } 7911 7912 /* Make sure no dev extent is beyond device boundary */ 7913 dev = btrfs_find_device(fs_info->fs_devices, &args); 7914 if (!dev) { 7915 btrfs_err(fs_info, "failed to find devid %llu", devid); 7916 ret = -EUCLEAN; 7917 goto out; 7918 } 7919 7920 if (physical_offset + physical_len > dev->disk_total_bytes) { 7921 btrfs_err(fs_info, 7922 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7923 devid, physical_offset, physical_len, 7924 dev->disk_total_bytes); 7925 ret = -EUCLEAN; 7926 goto out; 7927 } 7928 7929 if (dev->zone_info) { 7930 u64 zone_size = dev->zone_info->zone_size; 7931 7932 if (!IS_ALIGNED(physical_offset, zone_size) || 7933 !IS_ALIGNED(physical_len, zone_size)) { 7934 btrfs_err(fs_info, 7935 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7936 devid, physical_offset, physical_len); 7937 ret = -EUCLEAN; 7938 goto out; 7939 } 7940 } 7941 7942 out: 7943 free_extent_map(em); 7944 return ret; 7945 } 7946 7947 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7948 { 7949 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7950 struct extent_map *em; 7951 struct rb_node *node; 7952 int ret = 0; 7953 7954 read_lock(&em_tree->lock); 7955 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7956 em = rb_entry(node, struct extent_map, rb_node); 7957 if (em->map_lookup->num_stripes != 7958 em->map_lookup->verified_stripes) { 7959 btrfs_err(fs_info, 7960 "chunk %llu has missing dev extent, have %d expect %d", 7961 em->start, em->map_lookup->verified_stripes, 7962 em->map_lookup->num_stripes); 7963 ret = -EUCLEAN; 7964 goto out; 7965 } 7966 } 7967 out: 7968 read_unlock(&em_tree->lock); 7969 return ret; 7970 } 7971 7972 /* 7973 * Ensure that all dev extents are mapped to correct chunk, otherwise 7974 * later chunk allocation/free would cause unexpected behavior. 7975 * 7976 * NOTE: This will iterate through the whole device tree, which should be of 7977 * the same size level as the chunk tree. This slightly increases mount time. 7978 */ 7979 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7980 { 7981 struct btrfs_path *path; 7982 struct btrfs_root *root = fs_info->dev_root; 7983 struct btrfs_key key; 7984 u64 prev_devid = 0; 7985 u64 prev_dev_ext_end = 0; 7986 int ret = 0; 7987 7988 /* 7989 * We don't have a dev_root because we mounted with ignorebadroots and 7990 * failed to load the root, so we want to skip the verification in this 7991 * case for sure. 7992 * 7993 * However if the dev root is fine, but the tree itself is corrupted 7994 * we'd still fail to mount. This verification is only to make sure 7995 * writes can happen safely, so instead just bypass this check 7996 * completely in the case of IGNOREBADROOTS. 7997 */ 7998 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7999 return 0; 8000 8001 key.objectid = 1; 8002 key.type = BTRFS_DEV_EXTENT_KEY; 8003 key.offset = 0; 8004 8005 path = btrfs_alloc_path(); 8006 if (!path) 8007 return -ENOMEM; 8008 8009 path->reada = READA_FORWARD; 8010 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8011 if (ret < 0) 8012 goto out; 8013 8014 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8015 ret = btrfs_next_leaf(root, path); 8016 if (ret < 0) 8017 goto out; 8018 /* No dev extents at all? Not good */ 8019 if (ret > 0) { 8020 ret = -EUCLEAN; 8021 goto out; 8022 } 8023 } 8024 while (1) { 8025 struct extent_buffer *leaf = path->nodes[0]; 8026 struct btrfs_dev_extent *dext; 8027 int slot = path->slots[0]; 8028 u64 chunk_offset; 8029 u64 physical_offset; 8030 u64 physical_len; 8031 u64 devid; 8032 8033 btrfs_item_key_to_cpu(leaf, &key, slot); 8034 if (key.type != BTRFS_DEV_EXTENT_KEY) 8035 break; 8036 devid = key.objectid; 8037 physical_offset = key.offset; 8038 8039 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8040 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8041 physical_len = btrfs_dev_extent_length(leaf, dext); 8042 8043 /* Check if this dev extent overlaps with the previous one */ 8044 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8045 btrfs_err(fs_info, 8046 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8047 devid, physical_offset, prev_dev_ext_end); 8048 ret = -EUCLEAN; 8049 goto out; 8050 } 8051 8052 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8053 physical_offset, physical_len); 8054 if (ret < 0) 8055 goto out; 8056 prev_devid = devid; 8057 prev_dev_ext_end = physical_offset + physical_len; 8058 8059 ret = btrfs_next_item(root, path); 8060 if (ret < 0) 8061 goto out; 8062 if (ret > 0) { 8063 ret = 0; 8064 break; 8065 } 8066 } 8067 8068 /* Ensure all chunks have corresponding dev extents */ 8069 ret = verify_chunk_dev_extent_mapping(fs_info); 8070 out: 8071 btrfs_free_path(path); 8072 return ret; 8073 } 8074 8075 /* 8076 * Check whether the given block group or device is pinned by any inode being 8077 * used as a swapfile. 8078 */ 8079 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8080 { 8081 struct btrfs_swapfile_pin *sp; 8082 struct rb_node *node; 8083 8084 spin_lock(&fs_info->swapfile_pins_lock); 8085 node = fs_info->swapfile_pins.rb_node; 8086 while (node) { 8087 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8088 if (ptr < sp->ptr) 8089 node = node->rb_left; 8090 else if (ptr > sp->ptr) 8091 node = node->rb_right; 8092 else 8093 break; 8094 } 8095 spin_unlock(&fs_info->swapfile_pins_lock); 8096 return node != NULL; 8097 } 8098 8099 static int relocating_repair_kthread(void *data) 8100 { 8101 struct btrfs_block_group *cache = data; 8102 struct btrfs_fs_info *fs_info = cache->fs_info; 8103 u64 target; 8104 int ret = 0; 8105 8106 target = cache->start; 8107 btrfs_put_block_group(cache); 8108 8109 sb_start_write(fs_info->sb); 8110 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8111 btrfs_info(fs_info, 8112 "zoned: skip relocating block group %llu to repair: EBUSY", 8113 target); 8114 sb_end_write(fs_info->sb); 8115 return -EBUSY; 8116 } 8117 8118 mutex_lock(&fs_info->reclaim_bgs_lock); 8119 8120 /* Ensure block group still exists */ 8121 cache = btrfs_lookup_block_group(fs_info, target); 8122 if (!cache) 8123 goto out; 8124 8125 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8126 goto out; 8127 8128 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8129 if (ret < 0) 8130 goto out; 8131 8132 btrfs_info(fs_info, 8133 "zoned: relocating block group %llu to repair IO failure", 8134 target); 8135 ret = btrfs_relocate_chunk(fs_info, target); 8136 8137 out: 8138 if (cache) 8139 btrfs_put_block_group(cache); 8140 mutex_unlock(&fs_info->reclaim_bgs_lock); 8141 btrfs_exclop_finish(fs_info); 8142 sb_end_write(fs_info->sb); 8143 8144 return ret; 8145 } 8146 8147 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8148 { 8149 struct btrfs_block_group *cache; 8150 8151 if (!btrfs_is_zoned(fs_info)) 8152 return false; 8153 8154 /* Do not attempt to repair in degraded state */ 8155 if (btrfs_test_opt(fs_info, DEGRADED)) 8156 return true; 8157 8158 cache = btrfs_lookup_block_group(fs_info, logical); 8159 if (!cache) 8160 return true; 8161 8162 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8163 btrfs_put_block_group(cache); 8164 return true; 8165 } 8166 8167 kthread_run(relocating_repair_kthread, cache, 8168 "btrfs-relocating-repair"); 8169 8170 return true; 8171 } 8172