xref: /openbmc/linux/fs/btrfs/volumes.c (revision e3b9f1e8)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 			     enum btrfs_map_op op,
144 			     u64 logical, u64 *length,
145 			     struct btrfs_bio **bbio_ret,
146 			     int mirror_num, int need_raid_map);
147 
148 /*
149  * Device locking
150  * ==============
151  *
152  * There are several mutexes that protect manipulation of devices and low-level
153  * structures like chunks but not block groups, extents or files
154  *
155  * uuid_mutex (global lock)
156  * ------------------------
157  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159  * device) or requested by the device= mount option
160  *
161  * the mutex can be very coarse and can cover long-running operations
162  *
163  * protects: updates to fs_devices counters like missing devices, rw devices,
164  * seeding, structure cloning, openning/closing devices at mount/umount time
165  *
166  * global::fs_devs - add, remove, updates to the global list
167  *
168  * does not protect: manipulation of the fs_devices::devices list!
169  *
170  * btrfs_device::name - renames (write side), read is RCU
171  *
172  * fs_devices::device_list_mutex (per-fs, with RCU)
173  * ------------------------------------------------
174  * protects updates to fs_devices::devices, ie. adding and deleting
175  *
176  * simple list traversal with read-only actions can be done with RCU protection
177  *
178  * may be used to exclude some operations from running concurrently without any
179  * modifications to the list (see write_all_supers)
180  *
181  * volume_mutex
182  * ------------
183  * coarse lock owned by a mounted filesystem; used to exclude some operations
184  * that cannot run in parallel and affect the higher-level properties of the
185  * filesystem like: device add/deleting/resize/replace, or balance
186  *
187  * balance_mutex
188  * -------------
189  * protects balance structures (status, state) and context accessed from
190  * several places (internally, ioctl)
191  *
192  * chunk_mutex
193  * -----------
194  * protects chunks, adding or removing during allocation, trim or when a new
195  * device is added/removed
196  *
197  * cleaner_mutex
198  * -------------
199  * a big lock that is held by the cleaner thread and prevents running subvolume
200  * cleaning together with relocation or delayed iputs
201  *
202  *
203  * Lock nesting
204  * ============
205  *
206  * uuid_mutex
207  *   volume_mutex
208  *     device_list_mutex
209  *       chunk_mutex
210  *     balance_mutex
211  */
212 
213 DEFINE_MUTEX(uuid_mutex);
214 static LIST_HEAD(fs_uuids);
215 struct list_head *btrfs_get_fs_uuids(void)
216 {
217 	return &fs_uuids;
218 }
219 
220 /*
221  * alloc_fs_devices - allocate struct btrfs_fs_devices
222  * @fsid:	if not NULL, copy the uuid to fs_devices::fsid
223  *
224  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225  * The returned struct is not linked onto any lists and can be destroyed with
226  * kfree() right away.
227  */
228 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
229 {
230 	struct btrfs_fs_devices *fs_devs;
231 
232 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
233 	if (!fs_devs)
234 		return ERR_PTR(-ENOMEM);
235 
236 	mutex_init(&fs_devs->device_list_mutex);
237 
238 	INIT_LIST_HEAD(&fs_devs->devices);
239 	INIT_LIST_HEAD(&fs_devs->resized_devices);
240 	INIT_LIST_HEAD(&fs_devs->alloc_list);
241 	INIT_LIST_HEAD(&fs_devs->list);
242 	if (fsid)
243 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
244 
245 	return fs_devs;
246 }
247 
248 static void free_device(struct btrfs_device *device)
249 {
250 	rcu_string_free(device->name);
251 	bio_put(device->flush_bio);
252 	kfree(device);
253 }
254 
255 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
256 {
257 	struct btrfs_device *device;
258 	WARN_ON(fs_devices->opened);
259 	while (!list_empty(&fs_devices->devices)) {
260 		device = list_entry(fs_devices->devices.next,
261 				    struct btrfs_device, dev_list);
262 		list_del(&device->dev_list);
263 		free_device(device);
264 	}
265 	kfree(fs_devices);
266 }
267 
268 static void btrfs_kobject_uevent(struct block_device *bdev,
269 				 enum kobject_action action)
270 {
271 	int ret;
272 
273 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
274 	if (ret)
275 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
276 			action,
277 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
278 			&disk_to_dev(bdev->bd_disk)->kobj);
279 }
280 
281 void btrfs_cleanup_fs_uuids(void)
282 {
283 	struct btrfs_fs_devices *fs_devices;
284 
285 	while (!list_empty(&fs_uuids)) {
286 		fs_devices = list_entry(fs_uuids.next,
287 					struct btrfs_fs_devices, list);
288 		list_del(&fs_devices->list);
289 		free_fs_devices(fs_devices);
290 	}
291 }
292 
293 /*
294  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295  * Returned struct is not linked onto any lists and must be destroyed using
296  * free_device.
297  */
298 static struct btrfs_device *__alloc_device(void)
299 {
300 	struct btrfs_device *dev;
301 
302 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
303 	if (!dev)
304 		return ERR_PTR(-ENOMEM);
305 
306 	/*
307 	 * Preallocate a bio that's always going to be used for flushing device
308 	 * barriers and matches the device lifespan
309 	 */
310 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
311 	if (!dev->flush_bio) {
312 		kfree(dev);
313 		return ERR_PTR(-ENOMEM);
314 	}
315 
316 	INIT_LIST_HEAD(&dev->dev_list);
317 	INIT_LIST_HEAD(&dev->dev_alloc_list);
318 	INIT_LIST_HEAD(&dev->resized_list);
319 
320 	spin_lock_init(&dev->io_lock);
321 
322 	atomic_set(&dev->reada_in_flight, 0);
323 	atomic_set(&dev->dev_stats_ccnt, 0);
324 	btrfs_device_data_ordered_init(dev);
325 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
326 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
327 
328 	return dev;
329 }
330 
331 /*
332  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
333  * return NULL.
334  *
335  * If devid and uuid are both specified, the match must be exact, otherwise
336  * only devid is used.
337  */
338 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
339 		u64 devid, const u8 *uuid)
340 {
341 	struct list_head *head = &fs_devices->devices;
342 	struct btrfs_device *dev;
343 
344 	list_for_each_entry(dev, head, dev_list) {
345 		if (dev->devid == devid &&
346 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
347 			return dev;
348 		}
349 	}
350 	return NULL;
351 }
352 
353 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
354 {
355 	struct btrfs_fs_devices *fs_devices;
356 
357 	list_for_each_entry(fs_devices, &fs_uuids, list) {
358 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
359 			return fs_devices;
360 	}
361 	return NULL;
362 }
363 
364 static int
365 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
366 		      int flush, struct block_device **bdev,
367 		      struct buffer_head **bh)
368 {
369 	int ret;
370 
371 	*bdev = blkdev_get_by_path(device_path, flags, holder);
372 
373 	if (IS_ERR(*bdev)) {
374 		ret = PTR_ERR(*bdev);
375 		goto error;
376 	}
377 
378 	if (flush)
379 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
380 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
381 	if (ret) {
382 		blkdev_put(*bdev, flags);
383 		goto error;
384 	}
385 	invalidate_bdev(*bdev);
386 	*bh = btrfs_read_dev_super(*bdev);
387 	if (IS_ERR(*bh)) {
388 		ret = PTR_ERR(*bh);
389 		blkdev_put(*bdev, flags);
390 		goto error;
391 	}
392 
393 	return 0;
394 
395 error:
396 	*bdev = NULL;
397 	*bh = NULL;
398 	return ret;
399 }
400 
401 static void requeue_list(struct btrfs_pending_bios *pending_bios,
402 			struct bio *head, struct bio *tail)
403 {
404 
405 	struct bio *old_head;
406 
407 	old_head = pending_bios->head;
408 	pending_bios->head = head;
409 	if (pending_bios->tail)
410 		tail->bi_next = old_head;
411 	else
412 		pending_bios->tail = tail;
413 }
414 
415 /*
416  * we try to collect pending bios for a device so we don't get a large
417  * number of procs sending bios down to the same device.  This greatly
418  * improves the schedulers ability to collect and merge the bios.
419  *
420  * But, it also turns into a long list of bios to process and that is sure
421  * to eventually make the worker thread block.  The solution here is to
422  * make some progress and then put this work struct back at the end of
423  * the list if the block device is congested.  This way, multiple devices
424  * can make progress from a single worker thread.
425  */
426 static noinline void run_scheduled_bios(struct btrfs_device *device)
427 {
428 	struct btrfs_fs_info *fs_info = device->fs_info;
429 	struct bio *pending;
430 	struct backing_dev_info *bdi;
431 	struct btrfs_pending_bios *pending_bios;
432 	struct bio *tail;
433 	struct bio *cur;
434 	int again = 0;
435 	unsigned long num_run;
436 	unsigned long batch_run = 0;
437 	unsigned long last_waited = 0;
438 	int force_reg = 0;
439 	int sync_pending = 0;
440 	struct blk_plug plug;
441 
442 	/*
443 	 * this function runs all the bios we've collected for
444 	 * a particular device.  We don't want to wander off to
445 	 * another device without first sending all of these down.
446 	 * So, setup a plug here and finish it off before we return
447 	 */
448 	blk_start_plug(&plug);
449 
450 	bdi = device->bdev->bd_bdi;
451 
452 loop:
453 	spin_lock(&device->io_lock);
454 
455 loop_lock:
456 	num_run = 0;
457 
458 	/* take all the bios off the list at once and process them
459 	 * later on (without the lock held).  But, remember the
460 	 * tail and other pointers so the bios can be properly reinserted
461 	 * into the list if we hit congestion
462 	 */
463 	if (!force_reg && device->pending_sync_bios.head) {
464 		pending_bios = &device->pending_sync_bios;
465 		force_reg = 1;
466 	} else {
467 		pending_bios = &device->pending_bios;
468 		force_reg = 0;
469 	}
470 
471 	pending = pending_bios->head;
472 	tail = pending_bios->tail;
473 	WARN_ON(pending && !tail);
474 
475 	/*
476 	 * if pending was null this time around, no bios need processing
477 	 * at all and we can stop.  Otherwise it'll loop back up again
478 	 * and do an additional check so no bios are missed.
479 	 *
480 	 * device->running_pending is used to synchronize with the
481 	 * schedule_bio code.
482 	 */
483 	if (device->pending_sync_bios.head == NULL &&
484 	    device->pending_bios.head == NULL) {
485 		again = 0;
486 		device->running_pending = 0;
487 	} else {
488 		again = 1;
489 		device->running_pending = 1;
490 	}
491 
492 	pending_bios->head = NULL;
493 	pending_bios->tail = NULL;
494 
495 	spin_unlock(&device->io_lock);
496 
497 	while (pending) {
498 
499 		rmb();
500 		/* we want to work on both lists, but do more bios on the
501 		 * sync list than the regular list
502 		 */
503 		if ((num_run > 32 &&
504 		    pending_bios != &device->pending_sync_bios &&
505 		    device->pending_sync_bios.head) ||
506 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
507 		    device->pending_bios.head)) {
508 			spin_lock(&device->io_lock);
509 			requeue_list(pending_bios, pending, tail);
510 			goto loop_lock;
511 		}
512 
513 		cur = pending;
514 		pending = pending->bi_next;
515 		cur->bi_next = NULL;
516 
517 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
518 
519 		/*
520 		 * if we're doing the sync list, record that our
521 		 * plug has some sync requests on it
522 		 *
523 		 * If we're doing the regular list and there are
524 		 * sync requests sitting around, unplug before
525 		 * we add more
526 		 */
527 		if (pending_bios == &device->pending_sync_bios) {
528 			sync_pending = 1;
529 		} else if (sync_pending) {
530 			blk_finish_plug(&plug);
531 			blk_start_plug(&plug);
532 			sync_pending = 0;
533 		}
534 
535 		btrfsic_submit_bio(cur);
536 		num_run++;
537 		batch_run++;
538 
539 		cond_resched();
540 
541 		/*
542 		 * we made progress, there is more work to do and the bdi
543 		 * is now congested.  Back off and let other work structs
544 		 * run instead
545 		 */
546 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
547 		    fs_info->fs_devices->open_devices > 1) {
548 			struct io_context *ioc;
549 
550 			ioc = current->io_context;
551 
552 			/*
553 			 * the main goal here is that we don't want to
554 			 * block if we're going to be able to submit
555 			 * more requests without blocking.
556 			 *
557 			 * This code does two great things, it pokes into
558 			 * the elevator code from a filesystem _and_
559 			 * it makes assumptions about how batching works.
560 			 */
561 			if (ioc && ioc->nr_batch_requests > 0 &&
562 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
563 			    (last_waited == 0 ||
564 			     ioc->last_waited == last_waited)) {
565 				/*
566 				 * we want to go through our batch of
567 				 * requests and stop.  So, we copy out
568 				 * the ioc->last_waited time and test
569 				 * against it before looping
570 				 */
571 				last_waited = ioc->last_waited;
572 				cond_resched();
573 				continue;
574 			}
575 			spin_lock(&device->io_lock);
576 			requeue_list(pending_bios, pending, tail);
577 			device->running_pending = 1;
578 
579 			spin_unlock(&device->io_lock);
580 			btrfs_queue_work(fs_info->submit_workers,
581 					 &device->work);
582 			goto done;
583 		}
584 	}
585 
586 	cond_resched();
587 	if (again)
588 		goto loop;
589 
590 	spin_lock(&device->io_lock);
591 	if (device->pending_bios.head || device->pending_sync_bios.head)
592 		goto loop_lock;
593 	spin_unlock(&device->io_lock);
594 
595 done:
596 	blk_finish_plug(&plug);
597 }
598 
599 static void pending_bios_fn(struct btrfs_work *work)
600 {
601 	struct btrfs_device *device;
602 
603 	device = container_of(work, struct btrfs_device, work);
604 	run_scheduled_bios(device);
605 }
606 
607 /*
608  *  Search and remove all stale (devices which are not mounted) devices.
609  *  When both inputs are NULL, it will search and release all stale devices.
610  *  path:	Optional. When provided will it release all unmounted devices
611  *		matching this path only.
612  *  skip_dev:	Optional. Will skip this device when searching for the stale
613  *		devices.
614  */
615 static void btrfs_free_stale_devices(const char *path,
616 				     struct btrfs_device *skip_dev)
617 {
618 	struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
619 	struct btrfs_device *dev, *tmp_dev;
620 
621 	list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
622 
623 		if (fs_devs->opened)
624 			continue;
625 
626 		list_for_each_entry_safe(dev, tmp_dev,
627 					 &fs_devs->devices, dev_list) {
628 			int not_found = 0;
629 
630 			if (skip_dev && skip_dev == dev)
631 				continue;
632 			if (path && !dev->name)
633 				continue;
634 
635 			rcu_read_lock();
636 			if (path)
637 				not_found = strcmp(rcu_str_deref(dev->name),
638 						   path);
639 			rcu_read_unlock();
640 			if (not_found)
641 				continue;
642 
643 			/* delete the stale device */
644 			if (fs_devs->num_devices == 1) {
645 				btrfs_sysfs_remove_fsid(fs_devs);
646 				list_del(&fs_devs->list);
647 				free_fs_devices(fs_devs);
648 				break;
649 			} else {
650 				fs_devs->num_devices--;
651 				list_del(&dev->dev_list);
652 				free_device(dev);
653 			}
654 		}
655 	}
656 }
657 
658 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
659 			struct btrfs_device *device, fmode_t flags,
660 			void *holder)
661 {
662 	struct request_queue *q;
663 	struct block_device *bdev;
664 	struct buffer_head *bh;
665 	struct btrfs_super_block *disk_super;
666 	u64 devid;
667 	int ret;
668 
669 	if (device->bdev)
670 		return -EINVAL;
671 	if (!device->name)
672 		return -EINVAL;
673 
674 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
675 				    &bdev, &bh);
676 	if (ret)
677 		return ret;
678 
679 	disk_super = (struct btrfs_super_block *)bh->b_data;
680 	devid = btrfs_stack_device_id(&disk_super->dev_item);
681 	if (devid != device->devid)
682 		goto error_brelse;
683 
684 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
685 		goto error_brelse;
686 
687 	device->generation = btrfs_super_generation(disk_super);
688 
689 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
690 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
691 		fs_devices->seeding = 1;
692 	} else {
693 		if (bdev_read_only(bdev))
694 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
695 		else
696 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
697 	}
698 
699 	q = bdev_get_queue(bdev);
700 	if (!blk_queue_nonrot(q))
701 		fs_devices->rotating = 1;
702 
703 	device->bdev = bdev;
704 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
705 	device->mode = flags;
706 
707 	fs_devices->open_devices++;
708 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
709 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
710 		fs_devices->rw_devices++;
711 		list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
712 	}
713 	brelse(bh);
714 
715 	return 0;
716 
717 error_brelse:
718 	brelse(bh);
719 	blkdev_put(bdev, flags);
720 
721 	return -EINVAL;
722 }
723 
724 /*
725  * Add new device to list of registered devices
726  *
727  * Returns:
728  * device pointer which was just added or updated when successful
729  * error pointer when failed
730  */
731 static noinline struct btrfs_device *device_list_add(const char *path,
732 			   struct btrfs_super_block *disk_super)
733 {
734 	struct btrfs_device *device;
735 	struct btrfs_fs_devices *fs_devices;
736 	struct rcu_string *name;
737 	u64 found_transid = btrfs_super_generation(disk_super);
738 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
739 
740 	fs_devices = find_fsid(disk_super->fsid);
741 	if (!fs_devices) {
742 		fs_devices = alloc_fs_devices(disk_super->fsid);
743 		if (IS_ERR(fs_devices))
744 			return ERR_CAST(fs_devices);
745 
746 		list_add(&fs_devices->list, &fs_uuids);
747 
748 		device = NULL;
749 	} else {
750 		device = find_device(fs_devices, devid,
751 				disk_super->dev_item.uuid);
752 	}
753 
754 	if (!device) {
755 		if (fs_devices->opened)
756 			return ERR_PTR(-EBUSY);
757 
758 		device = btrfs_alloc_device(NULL, &devid,
759 					    disk_super->dev_item.uuid);
760 		if (IS_ERR(device)) {
761 			/* we can safely leave the fs_devices entry around */
762 			return device;
763 		}
764 
765 		name = rcu_string_strdup(path, GFP_NOFS);
766 		if (!name) {
767 			free_device(device);
768 			return ERR_PTR(-ENOMEM);
769 		}
770 		rcu_assign_pointer(device->name, name);
771 
772 		mutex_lock(&fs_devices->device_list_mutex);
773 		list_add_rcu(&device->dev_list, &fs_devices->devices);
774 		fs_devices->num_devices++;
775 		mutex_unlock(&fs_devices->device_list_mutex);
776 
777 		device->fs_devices = fs_devices;
778 		btrfs_free_stale_devices(path, device);
779 
780 		if (disk_super->label[0])
781 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
782 				disk_super->label, devid, found_transid, path);
783 		else
784 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
785 				disk_super->fsid, devid, found_transid, path);
786 
787 	} else if (!device->name || strcmp(device->name->str, path)) {
788 		/*
789 		 * When FS is already mounted.
790 		 * 1. If you are here and if the device->name is NULL that
791 		 *    means this device was missing at time of FS mount.
792 		 * 2. If you are here and if the device->name is different
793 		 *    from 'path' that means either
794 		 *      a. The same device disappeared and reappeared with
795 		 *         different name. or
796 		 *      b. The missing-disk-which-was-replaced, has
797 		 *         reappeared now.
798 		 *
799 		 * We must allow 1 and 2a above. But 2b would be a spurious
800 		 * and unintentional.
801 		 *
802 		 * Further in case of 1 and 2a above, the disk at 'path'
803 		 * would have missed some transaction when it was away and
804 		 * in case of 2a the stale bdev has to be updated as well.
805 		 * 2b must not be allowed at all time.
806 		 */
807 
808 		/*
809 		 * For now, we do allow update to btrfs_fs_device through the
810 		 * btrfs dev scan cli after FS has been mounted.  We're still
811 		 * tracking a problem where systems fail mount by subvolume id
812 		 * when we reject replacement on a mounted FS.
813 		 */
814 		if (!fs_devices->opened && found_transid < device->generation) {
815 			/*
816 			 * That is if the FS is _not_ mounted and if you
817 			 * are here, that means there is more than one
818 			 * disk with same uuid and devid.We keep the one
819 			 * with larger generation number or the last-in if
820 			 * generation are equal.
821 			 */
822 			return ERR_PTR(-EEXIST);
823 		}
824 
825 		name = rcu_string_strdup(path, GFP_NOFS);
826 		if (!name)
827 			return ERR_PTR(-ENOMEM);
828 		rcu_string_free(device->name);
829 		rcu_assign_pointer(device->name, name);
830 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
831 			fs_devices->missing_devices--;
832 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
833 		}
834 	}
835 
836 	/*
837 	 * Unmount does not free the btrfs_device struct but would zero
838 	 * generation along with most of the other members. So just update
839 	 * it back. We need it to pick the disk with largest generation
840 	 * (as above).
841 	 */
842 	if (!fs_devices->opened)
843 		device->generation = found_transid;
844 
845 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
846 
847 	return device;
848 }
849 
850 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
851 {
852 	struct btrfs_fs_devices *fs_devices;
853 	struct btrfs_device *device;
854 	struct btrfs_device *orig_dev;
855 
856 	fs_devices = alloc_fs_devices(orig->fsid);
857 	if (IS_ERR(fs_devices))
858 		return fs_devices;
859 
860 	mutex_lock(&orig->device_list_mutex);
861 	fs_devices->total_devices = orig->total_devices;
862 
863 	/* We have held the volume lock, it is safe to get the devices. */
864 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
865 		struct rcu_string *name;
866 
867 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
868 					    orig_dev->uuid);
869 		if (IS_ERR(device))
870 			goto error;
871 
872 		/*
873 		 * This is ok to do without rcu read locked because we hold the
874 		 * uuid mutex so nothing we touch in here is going to disappear.
875 		 */
876 		if (orig_dev->name) {
877 			name = rcu_string_strdup(orig_dev->name->str,
878 					GFP_KERNEL);
879 			if (!name) {
880 				free_device(device);
881 				goto error;
882 			}
883 			rcu_assign_pointer(device->name, name);
884 		}
885 
886 		list_add(&device->dev_list, &fs_devices->devices);
887 		device->fs_devices = fs_devices;
888 		fs_devices->num_devices++;
889 	}
890 	mutex_unlock(&orig->device_list_mutex);
891 	return fs_devices;
892 error:
893 	mutex_unlock(&orig->device_list_mutex);
894 	free_fs_devices(fs_devices);
895 	return ERR_PTR(-ENOMEM);
896 }
897 
898 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
899 {
900 	struct btrfs_device *device, *next;
901 	struct btrfs_device *latest_dev = NULL;
902 
903 	mutex_lock(&uuid_mutex);
904 again:
905 	/* This is the initialized path, it is safe to release the devices. */
906 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
907 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
908 							&device->dev_state)) {
909 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
910 			     &device->dev_state) &&
911 			     (!latest_dev ||
912 			      device->generation > latest_dev->generation)) {
913 				latest_dev = device;
914 			}
915 			continue;
916 		}
917 
918 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
919 			/*
920 			 * In the first step, keep the device which has
921 			 * the correct fsid and the devid that is used
922 			 * for the dev_replace procedure.
923 			 * In the second step, the dev_replace state is
924 			 * read from the device tree and it is known
925 			 * whether the procedure is really active or
926 			 * not, which means whether this device is
927 			 * used or whether it should be removed.
928 			 */
929 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
930 						  &device->dev_state)) {
931 				continue;
932 			}
933 		}
934 		if (device->bdev) {
935 			blkdev_put(device->bdev, device->mode);
936 			device->bdev = NULL;
937 			fs_devices->open_devices--;
938 		}
939 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
940 			list_del_init(&device->dev_alloc_list);
941 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
942 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
943 				      &device->dev_state))
944 				fs_devices->rw_devices--;
945 		}
946 		list_del_init(&device->dev_list);
947 		fs_devices->num_devices--;
948 		free_device(device);
949 	}
950 
951 	if (fs_devices->seed) {
952 		fs_devices = fs_devices->seed;
953 		goto again;
954 	}
955 
956 	fs_devices->latest_bdev = latest_dev->bdev;
957 
958 	mutex_unlock(&uuid_mutex);
959 }
960 
961 static void free_device_rcu(struct rcu_head *head)
962 {
963 	struct btrfs_device *device;
964 
965 	device = container_of(head, struct btrfs_device, rcu);
966 	free_device(device);
967 }
968 
969 static void btrfs_close_bdev(struct btrfs_device *device)
970 {
971 	if (!device->bdev)
972 		return;
973 
974 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975 		sync_blockdev(device->bdev);
976 		invalidate_bdev(device->bdev);
977 	}
978 
979 	blkdev_put(device->bdev, device->mode);
980 }
981 
982 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
983 {
984 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
985 	struct btrfs_device *new_device;
986 	struct rcu_string *name;
987 
988 	if (device->bdev)
989 		fs_devices->open_devices--;
990 
991 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
992 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
993 		list_del_init(&device->dev_alloc_list);
994 		fs_devices->rw_devices--;
995 	}
996 
997 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
998 		fs_devices->missing_devices--;
999 
1000 	new_device = btrfs_alloc_device(NULL, &device->devid,
1001 					device->uuid);
1002 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1003 
1004 	/* Safe because we are under uuid_mutex */
1005 	if (device->name) {
1006 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1007 		BUG_ON(!name); /* -ENOMEM */
1008 		rcu_assign_pointer(new_device->name, name);
1009 	}
1010 
1011 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1012 	new_device->fs_devices = device->fs_devices;
1013 }
1014 
1015 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1016 {
1017 	struct btrfs_device *device, *tmp;
1018 	struct list_head pending_put;
1019 
1020 	INIT_LIST_HEAD(&pending_put);
1021 
1022 	if (--fs_devices->opened > 0)
1023 		return 0;
1024 
1025 	mutex_lock(&fs_devices->device_list_mutex);
1026 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1027 		btrfs_prepare_close_one_device(device);
1028 		list_add(&device->dev_list, &pending_put);
1029 	}
1030 	mutex_unlock(&fs_devices->device_list_mutex);
1031 
1032 	/*
1033 	 * btrfs_show_devname() is using the device_list_mutex,
1034 	 * sometimes call to blkdev_put() leads vfs calling
1035 	 * into this func. So do put outside of device_list_mutex,
1036 	 * as of now.
1037 	 */
1038 	while (!list_empty(&pending_put)) {
1039 		device = list_first_entry(&pending_put,
1040 				struct btrfs_device, dev_list);
1041 		list_del(&device->dev_list);
1042 		btrfs_close_bdev(device);
1043 		call_rcu(&device->rcu, free_device_rcu);
1044 	}
1045 
1046 	WARN_ON(fs_devices->open_devices);
1047 	WARN_ON(fs_devices->rw_devices);
1048 	fs_devices->opened = 0;
1049 	fs_devices->seeding = 0;
1050 
1051 	return 0;
1052 }
1053 
1054 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056 	struct btrfs_fs_devices *seed_devices = NULL;
1057 	int ret;
1058 
1059 	mutex_lock(&uuid_mutex);
1060 	ret = __btrfs_close_devices(fs_devices);
1061 	if (!fs_devices->opened) {
1062 		seed_devices = fs_devices->seed;
1063 		fs_devices->seed = NULL;
1064 	}
1065 	mutex_unlock(&uuid_mutex);
1066 
1067 	while (seed_devices) {
1068 		fs_devices = seed_devices;
1069 		seed_devices = fs_devices->seed;
1070 		__btrfs_close_devices(fs_devices);
1071 		free_fs_devices(fs_devices);
1072 	}
1073 	return ret;
1074 }
1075 
1076 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1077 				fmode_t flags, void *holder)
1078 {
1079 	struct list_head *head = &fs_devices->devices;
1080 	struct btrfs_device *device;
1081 	struct btrfs_device *latest_dev = NULL;
1082 	int ret = 0;
1083 
1084 	flags |= FMODE_EXCL;
1085 
1086 	list_for_each_entry(device, head, dev_list) {
1087 		/* Just open everything we can; ignore failures here */
1088 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1089 			continue;
1090 
1091 		if (!latest_dev ||
1092 		    device->generation > latest_dev->generation)
1093 			latest_dev = device;
1094 	}
1095 	if (fs_devices->open_devices == 0) {
1096 		ret = -EINVAL;
1097 		goto out;
1098 	}
1099 	fs_devices->opened = 1;
1100 	fs_devices->latest_bdev = latest_dev->bdev;
1101 	fs_devices->total_rw_bytes = 0;
1102 out:
1103 	return ret;
1104 }
1105 
1106 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1107 		       fmode_t flags, void *holder)
1108 {
1109 	int ret;
1110 
1111 	mutex_lock(&uuid_mutex);
1112 	if (fs_devices->opened) {
1113 		fs_devices->opened++;
1114 		ret = 0;
1115 	} else {
1116 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1117 	}
1118 	mutex_unlock(&uuid_mutex);
1119 	return ret;
1120 }
1121 
1122 static void btrfs_release_disk_super(struct page *page)
1123 {
1124 	kunmap(page);
1125 	put_page(page);
1126 }
1127 
1128 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1129 				 struct page **page,
1130 				 struct btrfs_super_block **disk_super)
1131 {
1132 	void *p;
1133 	pgoff_t index;
1134 
1135 	/* make sure our super fits in the device */
1136 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1137 		return 1;
1138 
1139 	/* make sure our super fits in the page */
1140 	if (sizeof(**disk_super) > PAGE_SIZE)
1141 		return 1;
1142 
1143 	/* make sure our super doesn't straddle pages on disk */
1144 	index = bytenr >> PAGE_SHIFT;
1145 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1146 		return 1;
1147 
1148 	/* pull in the page with our super */
1149 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1150 				   index, GFP_KERNEL);
1151 
1152 	if (IS_ERR_OR_NULL(*page))
1153 		return 1;
1154 
1155 	p = kmap(*page);
1156 
1157 	/* align our pointer to the offset of the super block */
1158 	*disk_super = p + (bytenr & ~PAGE_MASK);
1159 
1160 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1161 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1162 		btrfs_release_disk_super(*page);
1163 		return 1;
1164 	}
1165 
1166 	if ((*disk_super)->label[0] &&
1167 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1168 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1169 
1170 	return 0;
1171 }
1172 
1173 /*
1174  * Look for a btrfs signature on a device. This may be called out of the mount path
1175  * and we are not allowed to call set_blocksize during the scan. The superblock
1176  * is read via pagecache
1177  */
1178 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1179 			  struct btrfs_fs_devices **fs_devices_ret)
1180 {
1181 	struct btrfs_super_block *disk_super;
1182 	struct btrfs_device *device;
1183 	struct block_device *bdev;
1184 	struct page *page;
1185 	int ret = 0;
1186 	u64 bytenr;
1187 
1188 	/*
1189 	 * we would like to check all the supers, but that would make
1190 	 * a btrfs mount succeed after a mkfs from a different FS.
1191 	 * So, we need to add a special mount option to scan for
1192 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1193 	 */
1194 	bytenr = btrfs_sb_offset(0);
1195 	flags |= FMODE_EXCL;
1196 	mutex_lock(&uuid_mutex);
1197 
1198 	bdev = blkdev_get_by_path(path, flags, holder);
1199 	if (IS_ERR(bdev)) {
1200 		ret = PTR_ERR(bdev);
1201 		goto error;
1202 	}
1203 
1204 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1205 		ret = -EINVAL;
1206 		goto error_bdev_put;
1207 	}
1208 
1209 	device = device_list_add(path, disk_super);
1210 	if (IS_ERR(device))
1211 		ret = PTR_ERR(device);
1212 	else
1213 		*fs_devices_ret = device->fs_devices;
1214 
1215 	btrfs_release_disk_super(page);
1216 
1217 error_bdev_put:
1218 	blkdev_put(bdev, flags);
1219 error:
1220 	mutex_unlock(&uuid_mutex);
1221 	return ret;
1222 }
1223 
1224 /* helper to account the used device space in the range */
1225 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1226 				   u64 end, u64 *length)
1227 {
1228 	struct btrfs_key key;
1229 	struct btrfs_root *root = device->fs_info->dev_root;
1230 	struct btrfs_dev_extent *dev_extent;
1231 	struct btrfs_path *path;
1232 	u64 extent_end;
1233 	int ret;
1234 	int slot;
1235 	struct extent_buffer *l;
1236 
1237 	*length = 0;
1238 
1239 	if (start >= device->total_bytes ||
1240 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1241 		return 0;
1242 
1243 	path = btrfs_alloc_path();
1244 	if (!path)
1245 		return -ENOMEM;
1246 	path->reada = READA_FORWARD;
1247 
1248 	key.objectid = device->devid;
1249 	key.offset = start;
1250 	key.type = BTRFS_DEV_EXTENT_KEY;
1251 
1252 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1253 	if (ret < 0)
1254 		goto out;
1255 	if (ret > 0) {
1256 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1257 		if (ret < 0)
1258 			goto out;
1259 	}
1260 
1261 	while (1) {
1262 		l = path->nodes[0];
1263 		slot = path->slots[0];
1264 		if (slot >= btrfs_header_nritems(l)) {
1265 			ret = btrfs_next_leaf(root, path);
1266 			if (ret == 0)
1267 				continue;
1268 			if (ret < 0)
1269 				goto out;
1270 
1271 			break;
1272 		}
1273 		btrfs_item_key_to_cpu(l, &key, slot);
1274 
1275 		if (key.objectid < device->devid)
1276 			goto next;
1277 
1278 		if (key.objectid > device->devid)
1279 			break;
1280 
1281 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1282 			goto next;
1283 
1284 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1285 		extent_end = key.offset + btrfs_dev_extent_length(l,
1286 								  dev_extent);
1287 		if (key.offset <= start && extent_end > end) {
1288 			*length = end - start + 1;
1289 			break;
1290 		} else if (key.offset <= start && extent_end > start)
1291 			*length += extent_end - start;
1292 		else if (key.offset > start && extent_end <= end)
1293 			*length += extent_end - key.offset;
1294 		else if (key.offset > start && key.offset <= end) {
1295 			*length += end - key.offset + 1;
1296 			break;
1297 		} else if (key.offset > end)
1298 			break;
1299 
1300 next:
1301 		path->slots[0]++;
1302 	}
1303 	ret = 0;
1304 out:
1305 	btrfs_free_path(path);
1306 	return ret;
1307 }
1308 
1309 static int contains_pending_extent(struct btrfs_transaction *transaction,
1310 				   struct btrfs_device *device,
1311 				   u64 *start, u64 len)
1312 {
1313 	struct btrfs_fs_info *fs_info = device->fs_info;
1314 	struct extent_map *em;
1315 	struct list_head *search_list = &fs_info->pinned_chunks;
1316 	int ret = 0;
1317 	u64 physical_start = *start;
1318 
1319 	if (transaction)
1320 		search_list = &transaction->pending_chunks;
1321 again:
1322 	list_for_each_entry(em, search_list, list) {
1323 		struct map_lookup *map;
1324 		int i;
1325 
1326 		map = em->map_lookup;
1327 		for (i = 0; i < map->num_stripes; i++) {
1328 			u64 end;
1329 
1330 			if (map->stripes[i].dev != device)
1331 				continue;
1332 			if (map->stripes[i].physical >= physical_start + len ||
1333 			    map->stripes[i].physical + em->orig_block_len <=
1334 			    physical_start)
1335 				continue;
1336 			/*
1337 			 * Make sure that while processing the pinned list we do
1338 			 * not override our *start with a lower value, because
1339 			 * we can have pinned chunks that fall within this
1340 			 * device hole and that have lower physical addresses
1341 			 * than the pending chunks we processed before. If we
1342 			 * do not take this special care we can end up getting
1343 			 * 2 pending chunks that start at the same physical
1344 			 * device offsets because the end offset of a pinned
1345 			 * chunk can be equal to the start offset of some
1346 			 * pending chunk.
1347 			 */
1348 			end = map->stripes[i].physical + em->orig_block_len;
1349 			if (end > *start) {
1350 				*start = end;
1351 				ret = 1;
1352 			}
1353 		}
1354 	}
1355 	if (search_list != &fs_info->pinned_chunks) {
1356 		search_list = &fs_info->pinned_chunks;
1357 		goto again;
1358 	}
1359 
1360 	return ret;
1361 }
1362 
1363 
1364 /*
1365  * find_free_dev_extent_start - find free space in the specified device
1366  * @device:	  the device which we search the free space in
1367  * @num_bytes:	  the size of the free space that we need
1368  * @search_start: the position from which to begin the search
1369  * @start:	  store the start of the free space.
1370  * @len:	  the size of the free space. that we find, or the size
1371  *		  of the max free space if we don't find suitable free space
1372  *
1373  * this uses a pretty simple search, the expectation is that it is
1374  * called very infrequently and that a given device has a small number
1375  * of extents
1376  *
1377  * @start is used to store the start of the free space if we find. But if we
1378  * don't find suitable free space, it will be used to store the start position
1379  * of the max free space.
1380  *
1381  * @len is used to store the size of the free space that we find.
1382  * But if we don't find suitable free space, it is used to store the size of
1383  * the max free space.
1384  */
1385 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1386 			       struct btrfs_device *device, u64 num_bytes,
1387 			       u64 search_start, u64 *start, u64 *len)
1388 {
1389 	struct btrfs_fs_info *fs_info = device->fs_info;
1390 	struct btrfs_root *root = fs_info->dev_root;
1391 	struct btrfs_key key;
1392 	struct btrfs_dev_extent *dev_extent;
1393 	struct btrfs_path *path;
1394 	u64 hole_size;
1395 	u64 max_hole_start;
1396 	u64 max_hole_size;
1397 	u64 extent_end;
1398 	u64 search_end = device->total_bytes;
1399 	int ret;
1400 	int slot;
1401 	struct extent_buffer *l;
1402 
1403 	/*
1404 	 * We don't want to overwrite the superblock on the drive nor any area
1405 	 * used by the boot loader (grub for example), so we make sure to start
1406 	 * at an offset of at least 1MB.
1407 	 */
1408 	search_start = max_t(u64, search_start, SZ_1M);
1409 
1410 	path = btrfs_alloc_path();
1411 	if (!path)
1412 		return -ENOMEM;
1413 
1414 	max_hole_start = search_start;
1415 	max_hole_size = 0;
1416 
1417 again:
1418 	if (search_start >= search_end ||
1419 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1420 		ret = -ENOSPC;
1421 		goto out;
1422 	}
1423 
1424 	path->reada = READA_FORWARD;
1425 	path->search_commit_root = 1;
1426 	path->skip_locking = 1;
1427 
1428 	key.objectid = device->devid;
1429 	key.offset = search_start;
1430 	key.type = BTRFS_DEV_EXTENT_KEY;
1431 
1432 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1433 	if (ret < 0)
1434 		goto out;
1435 	if (ret > 0) {
1436 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1437 		if (ret < 0)
1438 			goto out;
1439 	}
1440 
1441 	while (1) {
1442 		l = path->nodes[0];
1443 		slot = path->slots[0];
1444 		if (slot >= btrfs_header_nritems(l)) {
1445 			ret = btrfs_next_leaf(root, path);
1446 			if (ret == 0)
1447 				continue;
1448 			if (ret < 0)
1449 				goto out;
1450 
1451 			break;
1452 		}
1453 		btrfs_item_key_to_cpu(l, &key, slot);
1454 
1455 		if (key.objectid < device->devid)
1456 			goto next;
1457 
1458 		if (key.objectid > device->devid)
1459 			break;
1460 
1461 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1462 			goto next;
1463 
1464 		if (key.offset > search_start) {
1465 			hole_size = key.offset - search_start;
1466 
1467 			/*
1468 			 * Have to check before we set max_hole_start, otherwise
1469 			 * we could end up sending back this offset anyway.
1470 			 */
1471 			if (contains_pending_extent(transaction, device,
1472 						    &search_start,
1473 						    hole_size)) {
1474 				if (key.offset >= search_start) {
1475 					hole_size = key.offset - search_start;
1476 				} else {
1477 					WARN_ON_ONCE(1);
1478 					hole_size = 0;
1479 				}
1480 			}
1481 
1482 			if (hole_size > max_hole_size) {
1483 				max_hole_start = search_start;
1484 				max_hole_size = hole_size;
1485 			}
1486 
1487 			/*
1488 			 * If this free space is greater than which we need,
1489 			 * it must be the max free space that we have found
1490 			 * until now, so max_hole_start must point to the start
1491 			 * of this free space and the length of this free space
1492 			 * is stored in max_hole_size. Thus, we return
1493 			 * max_hole_start and max_hole_size and go back to the
1494 			 * caller.
1495 			 */
1496 			if (hole_size >= num_bytes) {
1497 				ret = 0;
1498 				goto out;
1499 			}
1500 		}
1501 
1502 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1503 		extent_end = key.offset + btrfs_dev_extent_length(l,
1504 								  dev_extent);
1505 		if (extent_end > search_start)
1506 			search_start = extent_end;
1507 next:
1508 		path->slots[0]++;
1509 		cond_resched();
1510 	}
1511 
1512 	/*
1513 	 * At this point, search_start should be the end of
1514 	 * allocated dev extents, and when shrinking the device,
1515 	 * search_end may be smaller than search_start.
1516 	 */
1517 	if (search_end > search_start) {
1518 		hole_size = search_end - search_start;
1519 
1520 		if (contains_pending_extent(transaction, device, &search_start,
1521 					    hole_size)) {
1522 			btrfs_release_path(path);
1523 			goto again;
1524 		}
1525 
1526 		if (hole_size > max_hole_size) {
1527 			max_hole_start = search_start;
1528 			max_hole_size = hole_size;
1529 		}
1530 	}
1531 
1532 	/* See above. */
1533 	if (max_hole_size < num_bytes)
1534 		ret = -ENOSPC;
1535 	else
1536 		ret = 0;
1537 
1538 out:
1539 	btrfs_free_path(path);
1540 	*start = max_hole_start;
1541 	if (len)
1542 		*len = max_hole_size;
1543 	return ret;
1544 }
1545 
1546 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1547 			 struct btrfs_device *device, u64 num_bytes,
1548 			 u64 *start, u64 *len)
1549 {
1550 	/* FIXME use last free of some kind */
1551 	return find_free_dev_extent_start(trans->transaction, device,
1552 					  num_bytes, 0, start, len);
1553 }
1554 
1555 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1556 			  struct btrfs_device *device,
1557 			  u64 start, u64 *dev_extent_len)
1558 {
1559 	struct btrfs_fs_info *fs_info = device->fs_info;
1560 	struct btrfs_root *root = fs_info->dev_root;
1561 	int ret;
1562 	struct btrfs_path *path;
1563 	struct btrfs_key key;
1564 	struct btrfs_key found_key;
1565 	struct extent_buffer *leaf = NULL;
1566 	struct btrfs_dev_extent *extent = NULL;
1567 
1568 	path = btrfs_alloc_path();
1569 	if (!path)
1570 		return -ENOMEM;
1571 
1572 	key.objectid = device->devid;
1573 	key.offset = start;
1574 	key.type = BTRFS_DEV_EXTENT_KEY;
1575 again:
1576 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1577 	if (ret > 0) {
1578 		ret = btrfs_previous_item(root, path, key.objectid,
1579 					  BTRFS_DEV_EXTENT_KEY);
1580 		if (ret)
1581 			goto out;
1582 		leaf = path->nodes[0];
1583 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1584 		extent = btrfs_item_ptr(leaf, path->slots[0],
1585 					struct btrfs_dev_extent);
1586 		BUG_ON(found_key.offset > start || found_key.offset +
1587 		       btrfs_dev_extent_length(leaf, extent) < start);
1588 		key = found_key;
1589 		btrfs_release_path(path);
1590 		goto again;
1591 	} else if (ret == 0) {
1592 		leaf = path->nodes[0];
1593 		extent = btrfs_item_ptr(leaf, path->slots[0],
1594 					struct btrfs_dev_extent);
1595 	} else {
1596 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1597 		goto out;
1598 	}
1599 
1600 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1601 
1602 	ret = btrfs_del_item(trans, root, path);
1603 	if (ret) {
1604 		btrfs_handle_fs_error(fs_info, ret,
1605 				      "Failed to remove dev extent item");
1606 	} else {
1607 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1608 	}
1609 out:
1610 	btrfs_free_path(path);
1611 	return ret;
1612 }
1613 
1614 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1615 				  struct btrfs_device *device,
1616 				  u64 chunk_offset, u64 start, u64 num_bytes)
1617 {
1618 	int ret;
1619 	struct btrfs_path *path;
1620 	struct btrfs_fs_info *fs_info = device->fs_info;
1621 	struct btrfs_root *root = fs_info->dev_root;
1622 	struct btrfs_dev_extent *extent;
1623 	struct extent_buffer *leaf;
1624 	struct btrfs_key key;
1625 
1626 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1627 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1628 	path = btrfs_alloc_path();
1629 	if (!path)
1630 		return -ENOMEM;
1631 
1632 	key.objectid = device->devid;
1633 	key.offset = start;
1634 	key.type = BTRFS_DEV_EXTENT_KEY;
1635 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1636 				      sizeof(*extent));
1637 	if (ret)
1638 		goto out;
1639 
1640 	leaf = path->nodes[0];
1641 	extent = btrfs_item_ptr(leaf, path->slots[0],
1642 				struct btrfs_dev_extent);
1643 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1644 					BTRFS_CHUNK_TREE_OBJECTID);
1645 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1646 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1647 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1648 
1649 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1650 	btrfs_mark_buffer_dirty(leaf);
1651 out:
1652 	btrfs_free_path(path);
1653 	return ret;
1654 }
1655 
1656 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1657 {
1658 	struct extent_map_tree *em_tree;
1659 	struct extent_map *em;
1660 	struct rb_node *n;
1661 	u64 ret = 0;
1662 
1663 	em_tree = &fs_info->mapping_tree.map_tree;
1664 	read_lock(&em_tree->lock);
1665 	n = rb_last(&em_tree->map);
1666 	if (n) {
1667 		em = rb_entry(n, struct extent_map, rb_node);
1668 		ret = em->start + em->len;
1669 	}
1670 	read_unlock(&em_tree->lock);
1671 
1672 	return ret;
1673 }
1674 
1675 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1676 				    u64 *devid_ret)
1677 {
1678 	int ret;
1679 	struct btrfs_key key;
1680 	struct btrfs_key found_key;
1681 	struct btrfs_path *path;
1682 
1683 	path = btrfs_alloc_path();
1684 	if (!path)
1685 		return -ENOMEM;
1686 
1687 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1688 	key.type = BTRFS_DEV_ITEM_KEY;
1689 	key.offset = (u64)-1;
1690 
1691 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1692 	if (ret < 0)
1693 		goto error;
1694 
1695 	BUG_ON(ret == 0); /* Corruption */
1696 
1697 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1698 				  BTRFS_DEV_ITEMS_OBJECTID,
1699 				  BTRFS_DEV_ITEM_KEY);
1700 	if (ret) {
1701 		*devid_ret = 1;
1702 	} else {
1703 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1704 				      path->slots[0]);
1705 		*devid_ret = found_key.offset + 1;
1706 	}
1707 	ret = 0;
1708 error:
1709 	btrfs_free_path(path);
1710 	return ret;
1711 }
1712 
1713 /*
1714  * the device information is stored in the chunk root
1715  * the btrfs_device struct should be fully filled in
1716  */
1717 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1718 			    struct btrfs_fs_info *fs_info,
1719 			    struct btrfs_device *device)
1720 {
1721 	struct btrfs_root *root = fs_info->chunk_root;
1722 	int ret;
1723 	struct btrfs_path *path;
1724 	struct btrfs_dev_item *dev_item;
1725 	struct extent_buffer *leaf;
1726 	struct btrfs_key key;
1727 	unsigned long ptr;
1728 
1729 	path = btrfs_alloc_path();
1730 	if (!path)
1731 		return -ENOMEM;
1732 
1733 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1734 	key.type = BTRFS_DEV_ITEM_KEY;
1735 	key.offset = device->devid;
1736 
1737 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1738 				      sizeof(*dev_item));
1739 	if (ret)
1740 		goto out;
1741 
1742 	leaf = path->nodes[0];
1743 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1744 
1745 	btrfs_set_device_id(leaf, dev_item, device->devid);
1746 	btrfs_set_device_generation(leaf, dev_item, 0);
1747 	btrfs_set_device_type(leaf, dev_item, device->type);
1748 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1749 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1750 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1751 	btrfs_set_device_total_bytes(leaf, dev_item,
1752 				     btrfs_device_get_disk_total_bytes(device));
1753 	btrfs_set_device_bytes_used(leaf, dev_item,
1754 				    btrfs_device_get_bytes_used(device));
1755 	btrfs_set_device_group(leaf, dev_item, 0);
1756 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1757 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1758 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1759 
1760 	ptr = btrfs_device_uuid(dev_item);
1761 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1762 	ptr = btrfs_device_fsid(dev_item);
1763 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1764 	btrfs_mark_buffer_dirty(leaf);
1765 
1766 	ret = 0;
1767 out:
1768 	btrfs_free_path(path);
1769 	return ret;
1770 }
1771 
1772 /*
1773  * Function to update ctime/mtime for a given device path.
1774  * Mainly used for ctime/mtime based probe like libblkid.
1775  */
1776 static void update_dev_time(const char *path_name)
1777 {
1778 	struct file *filp;
1779 
1780 	filp = filp_open(path_name, O_RDWR, 0);
1781 	if (IS_ERR(filp))
1782 		return;
1783 	file_update_time(filp);
1784 	filp_close(filp, NULL);
1785 }
1786 
1787 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1788 			     struct btrfs_device *device)
1789 {
1790 	struct btrfs_root *root = fs_info->chunk_root;
1791 	int ret;
1792 	struct btrfs_path *path;
1793 	struct btrfs_key key;
1794 	struct btrfs_trans_handle *trans;
1795 
1796 	path = btrfs_alloc_path();
1797 	if (!path)
1798 		return -ENOMEM;
1799 
1800 	trans = btrfs_start_transaction(root, 0);
1801 	if (IS_ERR(trans)) {
1802 		btrfs_free_path(path);
1803 		return PTR_ERR(trans);
1804 	}
1805 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1806 	key.type = BTRFS_DEV_ITEM_KEY;
1807 	key.offset = device->devid;
1808 
1809 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1810 	if (ret) {
1811 		if (ret > 0)
1812 			ret = -ENOENT;
1813 		btrfs_abort_transaction(trans, ret);
1814 		btrfs_end_transaction(trans);
1815 		goto out;
1816 	}
1817 
1818 	ret = btrfs_del_item(trans, root, path);
1819 	if (ret) {
1820 		btrfs_abort_transaction(trans, ret);
1821 		btrfs_end_transaction(trans);
1822 	}
1823 
1824 out:
1825 	btrfs_free_path(path);
1826 	if (!ret)
1827 		ret = btrfs_commit_transaction(trans);
1828 	return ret;
1829 }
1830 
1831 /*
1832  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1833  * filesystem. It's up to the caller to adjust that number regarding eg. device
1834  * replace.
1835  */
1836 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1837 		u64 num_devices)
1838 {
1839 	u64 all_avail;
1840 	unsigned seq;
1841 	int i;
1842 
1843 	do {
1844 		seq = read_seqbegin(&fs_info->profiles_lock);
1845 
1846 		all_avail = fs_info->avail_data_alloc_bits |
1847 			    fs_info->avail_system_alloc_bits |
1848 			    fs_info->avail_metadata_alloc_bits;
1849 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1850 
1851 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1852 		if (!(all_avail & btrfs_raid_group[i]))
1853 			continue;
1854 
1855 		if (num_devices < btrfs_raid_array[i].devs_min) {
1856 			int ret = btrfs_raid_mindev_error[i];
1857 
1858 			if (ret)
1859 				return ret;
1860 		}
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 static struct btrfs_device * btrfs_find_next_active_device(
1867 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1868 {
1869 	struct btrfs_device *next_device;
1870 
1871 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1872 		if (next_device != device &&
1873 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1874 		    && next_device->bdev)
1875 			return next_device;
1876 	}
1877 
1878 	return NULL;
1879 }
1880 
1881 /*
1882  * Helper function to check if the given device is part of s_bdev / latest_bdev
1883  * and replace it with the provided or the next active device, in the context
1884  * where this function called, there should be always be another device (or
1885  * this_dev) which is active.
1886  */
1887 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1888 		struct btrfs_device *device, struct btrfs_device *this_dev)
1889 {
1890 	struct btrfs_device *next_device;
1891 
1892 	if (this_dev)
1893 		next_device = this_dev;
1894 	else
1895 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1896 								device);
1897 	ASSERT(next_device);
1898 
1899 	if (fs_info->sb->s_bdev &&
1900 			(fs_info->sb->s_bdev == device->bdev))
1901 		fs_info->sb->s_bdev = next_device->bdev;
1902 
1903 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1904 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1905 }
1906 
1907 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1908 		u64 devid)
1909 {
1910 	struct btrfs_device *device;
1911 	struct btrfs_fs_devices *cur_devices;
1912 	u64 num_devices;
1913 	int ret = 0;
1914 
1915 	mutex_lock(&fs_info->volume_mutex);
1916 	mutex_lock(&uuid_mutex);
1917 
1918 	num_devices = fs_info->fs_devices->num_devices;
1919 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1920 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1921 		WARN_ON(num_devices < 1);
1922 		num_devices--;
1923 	}
1924 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1925 
1926 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1927 	if (ret)
1928 		goto out;
1929 
1930 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1931 					   &device);
1932 	if (ret)
1933 		goto out;
1934 
1935 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1936 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1937 		goto out;
1938 	}
1939 
1940 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1941 	    fs_info->fs_devices->rw_devices == 1) {
1942 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1943 		goto out;
1944 	}
1945 
1946 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1947 		mutex_lock(&fs_info->chunk_mutex);
1948 		list_del_init(&device->dev_alloc_list);
1949 		device->fs_devices->rw_devices--;
1950 		mutex_unlock(&fs_info->chunk_mutex);
1951 	}
1952 
1953 	mutex_unlock(&uuid_mutex);
1954 	ret = btrfs_shrink_device(device, 0);
1955 	mutex_lock(&uuid_mutex);
1956 	if (ret)
1957 		goto error_undo;
1958 
1959 	/*
1960 	 * TODO: the superblock still includes this device in its num_devices
1961 	 * counter although write_all_supers() is not locked out. This
1962 	 * could give a filesystem state which requires a degraded mount.
1963 	 */
1964 	ret = btrfs_rm_dev_item(fs_info, device);
1965 	if (ret)
1966 		goto error_undo;
1967 
1968 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1969 	btrfs_scrub_cancel_dev(fs_info, device);
1970 
1971 	/*
1972 	 * the device list mutex makes sure that we don't change
1973 	 * the device list while someone else is writing out all
1974 	 * the device supers. Whoever is writing all supers, should
1975 	 * lock the device list mutex before getting the number of
1976 	 * devices in the super block (super_copy). Conversely,
1977 	 * whoever updates the number of devices in the super block
1978 	 * (super_copy) should hold the device list mutex.
1979 	 */
1980 
1981 	cur_devices = device->fs_devices;
1982 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1983 	list_del_rcu(&device->dev_list);
1984 
1985 	device->fs_devices->num_devices--;
1986 	device->fs_devices->total_devices--;
1987 
1988 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1989 		device->fs_devices->missing_devices--;
1990 
1991 	btrfs_assign_next_active_device(fs_info, device, NULL);
1992 
1993 	if (device->bdev) {
1994 		device->fs_devices->open_devices--;
1995 		/* remove sysfs entry */
1996 		btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1997 	}
1998 
1999 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2000 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2001 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2002 
2003 	/*
2004 	 * at this point, the device is zero sized and detached from
2005 	 * the devices list.  All that's left is to zero out the old
2006 	 * supers and free the device.
2007 	 */
2008 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2009 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2010 
2011 	btrfs_close_bdev(device);
2012 	call_rcu(&device->rcu, free_device_rcu);
2013 
2014 	if (cur_devices->open_devices == 0) {
2015 		struct btrfs_fs_devices *fs_devices;
2016 		fs_devices = fs_info->fs_devices;
2017 		while (fs_devices) {
2018 			if (fs_devices->seed == cur_devices) {
2019 				fs_devices->seed = cur_devices->seed;
2020 				break;
2021 			}
2022 			fs_devices = fs_devices->seed;
2023 		}
2024 		cur_devices->seed = NULL;
2025 		__btrfs_close_devices(cur_devices);
2026 		free_fs_devices(cur_devices);
2027 	}
2028 
2029 out:
2030 	mutex_unlock(&uuid_mutex);
2031 	mutex_unlock(&fs_info->volume_mutex);
2032 	return ret;
2033 
2034 error_undo:
2035 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2036 		mutex_lock(&fs_info->chunk_mutex);
2037 		list_add(&device->dev_alloc_list,
2038 			 &fs_info->fs_devices->alloc_list);
2039 		device->fs_devices->rw_devices++;
2040 		mutex_unlock(&fs_info->chunk_mutex);
2041 	}
2042 	goto out;
2043 }
2044 
2045 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2046 					struct btrfs_device *srcdev)
2047 {
2048 	struct btrfs_fs_devices *fs_devices;
2049 
2050 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2051 
2052 	/*
2053 	 * in case of fs with no seed, srcdev->fs_devices will point
2054 	 * to fs_devices of fs_info. However when the dev being replaced is
2055 	 * a seed dev it will point to the seed's local fs_devices. In short
2056 	 * srcdev will have its correct fs_devices in both the cases.
2057 	 */
2058 	fs_devices = srcdev->fs_devices;
2059 
2060 	list_del_rcu(&srcdev->dev_list);
2061 	list_del(&srcdev->dev_alloc_list);
2062 	fs_devices->num_devices--;
2063 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2064 		fs_devices->missing_devices--;
2065 
2066 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2067 		fs_devices->rw_devices--;
2068 
2069 	if (srcdev->bdev)
2070 		fs_devices->open_devices--;
2071 }
2072 
2073 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2074 				      struct btrfs_device *srcdev)
2075 {
2076 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2077 
2078 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2079 		/* zero out the old super if it is writable */
2080 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2081 	}
2082 
2083 	btrfs_close_bdev(srcdev);
2084 	call_rcu(&srcdev->rcu, free_device_rcu);
2085 
2086 	/* if this is no devs we rather delete the fs_devices */
2087 	if (!fs_devices->num_devices) {
2088 		struct btrfs_fs_devices *tmp_fs_devices;
2089 
2090 		/*
2091 		 * On a mounted FS, num_devices can't be zero unless it's a
2092 		 * seed. In case of a seed device being replaced, the replace
2093 		 * target added to the sprout FS, so there will be no more
2094 		 * device left under the seed FS.
2095 		 */
2096 		ASSERT(fs_devices->seeding);
2097 
2098 		tmp_fs_devices = fs_info->fs_devices;
2099 		while (tmp_fs_devices) {
2100 			if (tmp_fs_devices->seed == fs_devices) {
2101 				tmp_fs_devices->seed = fs_devices->seed;
2102 				break;
2103 			}
2104 			tmp_fs_devices = tmp_fs_devices->seed;
2105 		}
2106 		fs_devices->seed = NULL;
2107 		__btrfs_close_devices(fs_devices);
2108 		free_fs_devices(fs_devices);
2109 	}
2110 }
2111 
2112 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2113 				      struct btrfs_device *tgtdev)
2114 {
2115 	mutex_lock(&uuid_mutex);
2116 	WARN_ON(!tgtdev);
2117 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2118 
2119 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2120 
2121 	if (tgtdev->bdev)
2122 		fs_info->fs_devices->open_devices--;
2123 
2124 	fs_info->fs_devices->num_devices--;
2125 
2126 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2127 
2128 	list_del_rcu(&tgtdev->dev_list);
2129 
2130 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2131 	mutex_unlock(&uuid_mutex);
2132 
2133 	/*
2134 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2135 	 * may lead to a call to btrfs_show_devname() which will try
2136 	 * to hold device_list_mutex. And here this device
2137 	 * is already out of device list, so we don't have to hold
2138 	 * the device_list_mutex lock.
2139 	 */
2140 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2141 
2142 	btrfs_close_bdev(tgtdev);
2143 	call_rcu(&tgtdev->rcu, free_device_rcu);
2144 }
2145 
2146 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2147 				     const char *device_path,
2148 				     struct btrfs_device **device)
2149 {
2150 	int ret = 0;
2151 	struct btrfs_super_block *disk_super;
2152 	u64 devid;
2153 	u8 *dev_uuid;
2154 	struct block_device *bdev;
2155 	struct buffer_head *bh;
2156 
2157 	*device = NULL;
2158 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2159 				    fs_info->bdev_holder, 0, &bdev, &bh);
2160 	if (ret)
2161 		return ret;
2162 	disk_super = (struct btrfs_super_block *)bh->b_data;
2163 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2164 	dev_uuid = disk_super->dev_item.uuid;
2165 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2166 	brelse(bh);
2167 	if (!*device)
2168 		ret = -ENOENT;
2169 	blkdev_put(bdev, FMODE_READ);
2170 	return ret;
2171 }
2172 
2173 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2174 					 const char *device_path,
2175 					 struct btrfs_device **device)
2176 {
2177 	*device = NULL;
2178 	if (strcmp(device_path, "missing") == 0) {
2179 		struct list_head *devices;
2180 		struct btrfs_device *tmp;
2181 
2182 		devices = &fs_info->fs_devices->devices;
2183 		/*
2184 		 * It is safe to read the devices since the volume_mutex
2185 		 * is held by the caller.
2186 		 */
2187 		list_for_each_entry(tmp, devices, dev_list) {
2188 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2189 					&tmp->dev_state) && !tmp->bdev) {
2190 				*device = tmp;
2191 				break;
2192 			}
2193 		}
2194 
2195 		if (!*device)
2196 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2197 
2198 		return 0;
2199 	} else {
2200 		return btrfs_find_device_by_path(fs_info, device_path, device);
2201 	}
2202 }
2203 
2204 /*
2205  * Lookup a device given by device id, or the path if the id is 0.
2206  */
2207 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2208 				 const char *devpath,
2209 				 struct btrfs_device **device)
2210 {
2211 	int ret;
2212 
2213 	if (devid) {
2214 		ret = 0;
2215 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2216 		if (!*device)
2217 			ret = -ENOENT;
2218 	} else {
2219 		if (!devpath || !devpath[0])
2220 			return -EINVAL;
2221 
2222 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2223 							   device);
2224 	}
2225 	return ret;
2226 }
2227 
2228 /*
2229  * does all the dirty work required for changing file system's UUID.
2230  */
2231 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2232 {
2233 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2234 	struct btrfs_fs_devices *old_devices;
2235 	struct btrfs_fs_devices *seed_devices;
2236 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2237 	struct btrfs_device *device;
2238 	u64 super_flags;
2239 
2240 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2241 	if (!fs_devices->seeding)
2242 		return -EINVAL;
2243 
2244 	seed_devices = alloc_fs_devices(NULL);
2245 	if (IS_ERR(seed_devices))
2246 		return PTR_ERR(seed_devices);
2247 
2248 	old_devices = clone_fs_devices(fs_devices);
2249 	if (IS_ERR(old_devices)) {
2250 		kfree(seed_devices);
2251 		return PTR_ERR(old_devices);
2252 	}
2253 
2254 	list_add(&old_devices->list, &fs_uuids);
2255 
2256 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2257 	seed_devices->opened = 1;
2258 	INIT_LIST_HEAD(&seed_devices->devices);
2259 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2260 	mutex_init(&seed_devices->device_list_mutex);
2261 
2262 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2263 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2264 			      synchronize_rcu);
2265 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2266 		device->fs_devices = seed_devices;
2267 
2268 	mutex_lock(&fs_info->chunk_mutex);
2269 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2270 	mutex_unlock(&fs_info->chunk_mutex);
2271 
2272 	fs_devices->seeding = 0;
2273 	fs_devices->num_devices = 0;
2274 	fs_devices->open_devices = 0;
2275 	fs_devices->missing_devices = 0;
2276 	fs_devices->rotating = 0;
2277 	fs_devices->seed = seed_devices;
2278 
2279 	generate_random_uuid(fs_devices->fsid);
2280 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2281 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2282 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2283 
2284 	super_flags = btrfs_super_flags(disk_super) &
2285 		      ~BTRFS_SUPER_FLAG_SEEDING;
2286 	btrfs_set_super_flags(disk_super, super_flags);
2287 
2288 	return 0;
2289 }
2290 
2291 /*
2292  * Store the expected generation for seed devices in device items.
2293  */
2294 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2295 			       struct btrfs_fs_info *fs_info)
2296 {
2297 	struct btrfs_root *root = fs_info->chunk_root;
2298 	struct btrfs_path *path;
2299 	struct extent_buffer *leaf;
2300 	struct btrfs_dev_item *dev_item;
2301 	struct btrfs_device *device;
2302 	struct btrfs_key key;
2303 	u8 fs_uuid[BTRFS_FSID_SIZE];
2304 	u8 dev_uuid[BTRFS_UUID_SIZE];
2305 	u64 devid;
2306 	int ret;
2307 
2308 	path = btrfs_alloc_path();
2309 	if (!path)
2310 		return -ENOMEM;
2311 
2312 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2313 	key.offset = 0;
2314 	key.type = BTRFS_DEV_ITEM_KEY;
2315 
2316 	while (1) {
2317 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2318 		if (ret < 0)
2319 			goto error;
2320 
2321 		leaf = path->nodes[0];
2322 next_slot:
2323 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2324 			ret = btrfs_next_leaf(root, path);
2325 			if (ret > 0)
2326 				break;
2327 			if (ret < 0)
2328 				goto error;
2329 			leaf = path->nodes[0];
2330 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2331 			btrfs_release_path(path);
2332 			continue;
2333 		}
2334 
2335 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2336 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2337 		    key.type != BTRFS_DEV_ITEM_KEY)
2338 			break;
2339 
2340 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2341 					  struct btrfs_dev_item);
2342 		devid = btrfs_device_id(leaf, dev_item);
2343 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2344 				   BTRFS_UUID_SIZE);
2345 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2346 				   BTRFS_FSID_SIZE);
2347 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2348 		BUG_ON(!device); /* Logic error */
2349 
2350 		if (device->fs_devices->seeding) {
2351 			btrfs_set_device_generation(leaf, dev_item,
2352 						    device->generation);
2353 			btrfs_mark_buffer_dirty(leaf);
2354 		}
2355 
2356 		path->slots[0]++;
2357 		goto next_slot;
2358 	}
2359 	ret = 0;
2360 error:
2361 	btrfs_free_path(path);
2362 	return ret;
2363 }
2364 
2365 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2366 {
2367 	struct btrfs_root *root = fs_info->dev_root;
2368 	struct request_queue *q;
2369 	struct btrfs_trans_handle *trans;
2370 	struct btrfs_device *device;
2371 	struct block_device *bdev;
2372 	struct list_head *devices;
2373 	struct super_block *sb = fs_info->sb;
2374 	struct rcu_string *name;
2375 	u64 tmp;
2376 	int seeding_dev = 0;
2377 	int ret = 0;
2378 	bool unlocked = false;
2379 
2380 	if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2381 		return -EROFS;
2382 
2383 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2384 				  fs_info->bdev_holder);
2385 	if (IS_ERR(bdev))
2386 		return PTR_ERR(bdev);
2387 
2388 	if (fs_info->fs_devices->seeding) {
2389 		seeding_dev = 1;
2390 		down_write(&sb->s_umount);
2391 		mutex_lock(&uuid_mutex);
2392 	}
2393 
2394 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2395 
2396 	devices = &fs_info->fs_devices->devices;
2397 
2398 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2399 	list_for_each_entry(device, devices, dev_list) {
2400 		if (device->bdev == bdev) {
2401 			ret = -EEXIST;
2402 			mutex_unlock(
2403 				&fs_info->fs_devices->device_list_mutex);
2404 			goto error;
2405 		}
2406 	}
2407 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2408 
2409 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2410 	if (IS_ERR(device)) {
2411 		/* we can safely leave the fs_devices entry around */
2412 		ret = PTR_ERR(device);
2413 		goto error;
2414 	}
2415 
2416 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2417 	if (!name) {
2418 		ret = -ENOMEM;
2419 		goto error_free_device;
2420 	}
2421 	rcu_assign_pointer(device->name, name);
2422 
2423 	trans = btrfs_start_transaction(root, 0);
2424 	if (IS_ERR(trans)) {
2425 		ret = PTR_ERR(trans);
2426 		goto error_free_device;
2427 	}
2428 
2429 	q = bdev_get_queue(bdev);
2430 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2431 	device->generation = trans->transid;
2432 	device->io_width = fs_info->sectorsize;
2433 	device->io_align = fs_info->sectorsize;
2434 	device->sector_size = fs_info->sectorsize;
2435 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2436 					 fs_info->sectorsize);
2437 	device->disk_total_bytes = device->total_bytes;
2438 	device->commit_total_bytes = device->total_bytes;
2439 	device->fs_info = fs_info;
2440 	device->bdev = bdev;
2441 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2442 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2443 	device->mode = FMODE_EXCL;
2444 	device->dev_stats_valid = 1;
2445 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2446 
2447 	if (seeding_dev) {
2448 		sb->s_flags &= ~SB_RDONLY;
2449 		ret = btrfs_prepare_sprout(fs_info);
2450 		if (ret) {
2451 			btrfs_abort_transaction(trans, ret);
2452 			goto error_trans;
2453 		}
2454 	}
2455 
2456 	device->fs_devices = fs_info->fs_devices;
2457 
2458 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2459 	mutex_lock(&fs_info->chunk_mutex);
2460 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2461 	list_add(&device->dev_alloc_list,
2462 		 &fs_info->fs_devices->alloc_list);
2463 	fs_info->fs_devices->num_devices++;
2464 	fs_info->fs_devices->open_devices++;
2465 	fs_info->fs_devices->rw_devices++;
2466 	fs_info->fs_devices->total_devices++;
2467 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2468 
2469 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2470 
2471 	if (!blk_queue_nonrot(q))
2472 		fs_info->fs_devices->rotating = 1;
2473 
2474 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2475 	btrfs_set_super_total_bytes(fs_info->super_copy,
2476 		round_down(tmp + device->total_bytes, fs_info->sectorsize));
2477 
2478 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2479 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2480 
2481 	/* add sysfs device entry */
2482 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2483 
2484 	/*
2485 	 * we've got more storage, clear any full flags on the space
2486 	 * infos
2487 	 */
2488 	btrfs_clear_space_info_full(fs_info);
2489 
2490 	mutex_unlock(&fs_info->chunk_mutex);
2491 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2492 
2493 	if (seeding_dev) {
2494 		mutex_lock(&fs_info->chunk_mutex);
2495 		ret = init_first_rw_device(trans, fs_info);
2496 		mutex_unlock(&fs_info->chunk_mutex);
2497 		if (ret) {
2498 			btrfs_abort_transaction(trans, ret);
2499 			goto error_sysfs;
2500 		}
2501 	}
2502 
2503 	ret = btrfs_add_dev_item(trans, fs_info, device);
2504 	if (ret) {
2505 		btrfs_abort_transaction(trans, ret);
2506 		goto error_sysfs;
2507 	}
2508 
2509 	if (seeding_dev) {
2510 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2511 
2512 		ret = btrfs_finish_sprout(trans, fs_info);
2513 		if (ret) {
2514 			btrfs_abort_transaction(trans, ret);
2515 			goto error_sysfs;
2516 		}
2517 
2518 		/* Sprouting would change fsid of the mounted root,
2519 		 * so rename the fsid on the sysfs
2520 		 */
2521 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2522 						fs_info->fsid);
2523 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2524 			btrfs_warn(fs_info,
2525 				   "sysfs: failed to create fsid for sprout");
2526 	}
2527 
2528 	ret = btrfs_commit_transaction(trans);
2529 
2530 	if (seeding_dev) {
2531 		mutex_unlock(&uuid_mutex);
2532 		up_write(&sb->s_umount);
2533 		unlocked = true;
2534 
2535 		if (ret) /* transaction commit */
2536 			return ret;
2537 
2538 		ret = btrfs_relocate_sys_chunks(fs_info);
2539 		if (ret < 0)
2540 			btrfs_handle_fs_error(fs_info, ret,
2541 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2542 		trans = btrfs_attach_transaction(root);
2543 		if (IS_ERR(trans)) {
2544 			if (PTR_ERR(trans) == -ENOENT)
2545 				return 0;
2546 			ret = PTR_ERR(trans);
2547 			trans = NULL;
2548 			goto error_sysfs;
2549 		}
2550 		ret = btrfs_commit_transaction(trans);
2551 	}
2552 
2553 	/* Update ctime/mtime for libblkid */
2554 	update_dev_time(device_path);
2555 	return ret;
2556 
2557 error_sysfs:
2558 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2559 error_trans:
2560 	if (seeding_dev)
2561 		sb->s_flags |= SB_RDONLY;
2562 	if (trans)
2563 		btrfs_end_transaction(trans);
2564 error_free_device:
2565 	free_device(device);
2566 error:
2567 	blkdev_put(bdev, FMODE_EXCL);
2568 	if (seeding_dev && !unlocked) {
2569 		mutex_unlock(&uuid_mutex);
2570 		up_write(&sb->s_umount);
2571 	}
2572 	return ret;
2573 }
2574 
2575 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2576 				  const char *device_path,
2577 				  struct btrfs_device *srcdev,
2578 				  struct btrfs_device **device_out)
2579 {
2580 	struct btrfs_device *device;
2581 	struct block_device *bdev;
2582 	struct list_head *devices;
2583 	struct rcu_string *name;
2584 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2585 	int ret = 0;
2586 
2587 	*device_out = NULL;
2588 	if (fs_info->fs_devices->seeding) {
2589 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2590 		return -EINVAL;
2591 	}
2592 
2593 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2594 				  fs_info->bdev_holder);
2595 	if (IS_ERR(bdev)) {
2596 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2597 		return PTR_ERR(bdev);
2598 	}
2599 
2600 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2601 
2602 	devices = &fs_info->fs_devices->devices;
2603 	list_for_each_entry(device, devices, dev_list) {
2604 		if (device->bdev == bdev) {
2605 			btrfs_err(fs_info,
2606 				  "target device is in the filesystem!");
2607 			ret = -EEXIST;
2608 			goto error;
2609 		}
2610 	}
2611 
2612 
2613 	if (i_size_read(bdev->bd_inode) <
2614 	    btrfs_device_get_total_bytes(srcdev)) {
2615 		btrfs_err(fs_info,
2616 			  "target device is smaller than source device!");
2617 		ret = -EINVAL;
2618 		goto error;
2619 	}
2620 
2621 
2622 	device = btrfs_alloc_device(NULL, &devid, NULL);
2623 	if (IS_ERR(device)) {
2624 		ret = PTR_ERR(device);
2625 		goto error;
2626 	}
2627 
2628 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2629 	if (!name) {
2630 		free_device(device);
2631 		ret = -ENOMEM;
2632 		goto error;
2633 	}
2634 	rcu_assign_pointer(device->name, name);
2635 
2636 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2637 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2638 	device->generation = 0;
2639 	device->io_width = fs_info->sectorsize;
2640 	device->io_align = fs_info->sectorsize;
2641 	device->sector_size = fs_info->sectorsize;
2642 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2643 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2644 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2645 	ASSERT(list_empty(&srcdev->resized_list));
2646 	device->commit_total_bytes = srcdev->commit_total_bytes;
2647 	device->commit_bytes_used = device->bytes_used;
2648 	device->fs_info = fs_info;
2649 	device->bdev = bdev;
2650 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2651 	set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2652 	device->mode = FMODE_EXCL;
2653 	device->dev_stats_valid = 1;
2654 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2655 	device->fs_devices = fs_info->fs_devices;
2656 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2657 	fs_info->fs_devices->num_devices++;
2658 	fs_info->fs_devices->open_devices++;
2659 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2660 
2661 	*device_out = device;
2662 	return ret;
2663 
2664 error:
2665 	blkdev_put(bdev, FMODE_EXCL);
2666 	return ret;
2667 }
2668 
2669 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2670 					      struct btrfs_device *tgtdev)
2671 {
2672 	u32 sectorsize = fs_info->sectorsize;
2673 
2674 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2675 	tgtdev->io_width = sectorsize;
2676 	tgtdev->io_align = sectorsize;
2677 	tgtdev->sector_size = sectorsize;
2678 	tgtdev->fs_info = fs_info;
2679 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &tgtdev->dev_state);
2680 }
2681 
2682 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2683 					struct btrfs_device *device)
2684 {
2685 	int ret;
2686 	struct btrfs_path *path;
2687 	struct btrfs_root *root = device->fs_info->chunk_root;
2688 	struct btrfs_dev_item *dev_item;
2689 	struct extent_buffer *leaf;
2690 	struct btrfs_key key;
2691 
2692 	path = btrfs_alloc_path();
2693 	if (!path)
2694 		return -ENOMEM;
2695 
2696 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2697 	key.type = BTRFS_DEV_ITEM_KEY;
2698 	key.offset = device->devid;
2699 
2700 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2701 	if (ret < 0)
2702 		goto out;
2703 
2704 	if (ret > 0) {
2705 		ret = -ENOENT;
2706 		goto out;
2707 	}
2708 
2709 	leaf = path->nodes[0];
2710 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2711 
2712 	btrfs_set_device_id(leaf, dev_item, device->devid);
2713 	btrfs_set_device_type(leaf, dev_item, device->type);
2714 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2715 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2716 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2717 	btrfs_set_device_total_bytes(leaf, dev_item,
2718 				     btrfs_device_get_disk_total_bytes(device));
2719 	btrfs_set_device_bytes_used(leaf, dev_item,
2720 				    btrfs_device_get_bytes_used(device));
2721 	btrfs_mark_buffer_dirty(leaf);
2722 
2723 out:
2724 	btrfs_free_path(path);
2725 	return ret;
2726 }
2727 
2728 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2729 		      struct btrfs_device *device, u64 new_size)
2730 {
2731 	struct btrfs_fs_info *fs_info = device->fs_info;
2732 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2733 	struct btrfs_fs_devices *fs_devices;
2734 	u64 old_total;
2735 	u64 diff;
2736 
2737 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2738 		return -EACCES;
2739 
2740 	new_size = round_down(new_size, fs_info->sectorsize);
2741 
2742 	mutex_lock(&fs_info->chunk_mutex);
2743 	old_total = btrfs_super_total_bytes(super_copy);
2744 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2745 
2746 	if (new_size <= device->total_bytes ||
2747 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2748 		mutex_unlock(&fs_info->chunk_mutex);
2749 		return -EINVAL;
2750 	}
2751 
2752 	fs_devices = fs_info->fs_devices;
2753 
2754 	btrfs_set_super_total_bytes(super_copy,
2755 			round_down(old_total + diff, fs_info->sectorsize));
2756 	device->fs_devices->total_rw_bytes += diff;
2757 
2758 	btrfs_device_set_total_bytes(device, new_size);
2759 	btrfs_device_set_disk_total_bytes(device, new_size);
2760 	btrfs_clear_space_info_full(device->fs_info);
2761 	if (list_empty(&device->resized_list))
2762 		list_add_tail(&device->resized_list,
2763 			      &fs_devices->resized_devices);
2764 	mutex_unlock(&fs_info->chunk_mutex);
2765 
2766 	return btrfs_update_device(trans, device);
2767 }
2768 
2769 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2770 			    struct btrfs_fs_info *fs_info, u64 chunk_offset)
2771 {
2772 	struct btrfs_root *root = fs_info->chunk_root;
2773 	int ret;
2774 	struct btrfs_path *path;
2775 	struct btrfs_key key;
2776 
2777 	path = btrfs_alloc_path();
2778 	if (!path)
2779 		return -ENOMEM;
2780 
2781 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2782 	key.offset = chunk_offset;
2783 	key.type = BTRFS_CHUNK_ITEM_KEY;
2784 
2785 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2786 	if (ret < 0)
2787 		goto out;
2788 	else if (ret > 0) { /* Logic error or corruption */
2789 		btrfs_handle_fs_error(fs_info, -ENOENT,
2790 				      "Failed lookup while freeing chunk.");
2791 		ret = -ENOENT;
2792 		goto out;
2793 	}
2794 
2795 	ret = btrfs_del_item(trans, root, path);
2796 	if (ret < 0)
2797 		btrfs_handle_fs_error(fs_info, ret,
2798 				      "Failed to delete chunk item.");
2799 out:
2800 	btrfs_free_path(path);
2801 	return ret;
2802 }
2803 
2804 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2805 {
2806 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2807 	struct btrfs_disk_key *disk_key;
2808 	struct btrfs_chunk *chunk;
2809 	u8 *ptr;
2810 	int ret = 0;
2811 	u32 num_stripes;
2812 	u32 array_size;
2813 	u32 len = 0;
2814 	u32 cur;
2815 	struct btrfs_key key;
2816 
2817 	mutex_lock(&fs_info->chunk_mutex);
2818 	array_size = btrfs_super_sys_array_size(super_copy);
2819 
2820 	ptr = super_copy->sys_chunk_array;
2821 	cur = 0;
2822 
2823 	while (cur < array_size) {
2824 		disk_key = (struct btrfs_disk_key *)ptr;
2825 		btrfs_disk_key_to_cpu(&key, disk_key);
2826 
2827 		len = sizeof(*disk_key);
2828 
2829 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2830 			chunk = (struct btrfs_chunk *)(ptr + len);
2831 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2832 			len += btrfs_chunk_item_size(num_stripes);
2833 		} else {
2834 			ret = -EIO;
2835 			break;
2836 		}
2837 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2838 		    key.offset == chunk_offset) {
2839 			memmove(ptr, ptr + len, array_size - (cur + len));
2840 			array_size -= len;
2841 			btrfs_set_super_sys_array_size(super_copy, array_size);
2842 		} else {
2843 			ptr += len;
2844 			cur += len;
2845 		}
2846 	}
2847 	mutex_unlock(&fs_info->chunk_mutex);
2848 	return ret;
2849 }
2850 
2851 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2852 					u64 logical, u64 length)
2853 {
2854 	struct extent_map_tree *em_tree;
2855 	struct extent_map *em;
2856 
2857 	em_tree = &fs_info->mapping_tree.map_tree;
2858 	read_lock(&em_tree->lock);
2859 	em = lookup_extent_mapping(em_tree, logical, length);
2860 	read_unlock(&em_tree->lock);
2861 
2862 	if (!em) {
2863 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2864 			   logical, length);
2865 		return ERR_PTR(-EINVAL);
2866 	}
2867 
2868 	if (em->start > logical || em->start + em->len < logical) {
2869 		btrfs_crit(fs_info,
2870 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2871 			   logical, length, em->start, em->start + em->len);
2872 		free_extent_map(em);
2873 		return ERR_PTR(-EINVAL);
2874 	}
2875 
2876 	/* callers are responsible for dropping em's ref. */
2877 	return em;
2878 }
2879 
2880 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2881 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2882 {
2883 	struct extent_map *em;
2884 	struct map_lookup *map;
2885 	u64 dev_extent_len = 0;
2886 	int i, ret = 0;
2887 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2888 
2889 	em = get_chunk_map(fs_info, chunk_offset, 1);
2890 	if (IS_ERR(em)) {
2891 		/*
2892 		 * This is a logic error, but we don't want to just rely on the
2893 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2894 		 * do anything we still error out.
2895 		 */
2896 		ASSERT(0);
2897 		return PTR_ERR(em);
2898 	}
2899 	map = em->map_lookup;
2900 	mutex_lock(&fs_info->chunk_mutex);
2901 	check_system_chunk(trans, fs_info, map->type);
2902 	mutex_unlock(&fs_info->chunk_mutex);
2903 
2904 	/*
2905 	 * Take the device list mutex to prevent races with the final phase of
2906 	 * a device replace operation that replaces the device object associated
2907 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2908 	 */
2909 	mutex_lock(&fs_devices->device_list_mutex);
2910 	for (i = 0; i < map->num_stripes; i++) {
2911 		struct btrfs_device *device = map->stripes[i].dev;
2912 		ret = btrfs_free_dev_extent(trans, device,
2913 					    map->stripes[i].physical,
2914 					    &dev_extent_len);
2915 		if (ret) {
2916 			mutex_unlock(&fs_devices->device_list_mutex);
2917 			btrfs_abort_transaction(trans, ret);
2918 			goto out;
2919 		}
2920 
2921 		if (device->bytes_used > 0) {
2922 			mutex_lock(&fs_info->chunk_mutex);
2923 			btrfs_device_set_bytes_used(device,
2924 					device->bytes_used - dev_extent_len);
2925 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2926 			btrfs_clear_space_info_full(fs_info);
2927 			mutex_unlock(&fs_info->chunk_mutex);
2928 		}
2929 
2930 		if (map->stripes[i].dev) {
2931 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2932 			if (ret) {
2933 				mutex_unlock(&fs_devices->device_list_mutex);
2934 				btrfs_abort_transaction(trans, ret);
2935 				goto out;
2936 			}
2937 		}
2938 	}
2939 	mutex_unlock(&fs_devices->device_list_mutex);
2940 
2941 	ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2942 	if (ret) {
2943 		btrfs_abort_transaction(trans, ret);
2944 		goto out;
2945 	}
2946 
2947 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2948 
2949 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2950 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2951 		if (ret) {
2952 			btrfs_abort_transaction(trans, ret);
2953 			goto out;
2954 		}
2955 	}
2956 
2957 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2958 	if (ret) {
2959 		btrfs_abort_transaction(trans, ret);
2960 		goto out;
2961 	}
2962 
2963 out:
2964 	/* once for us */
2965 	free_extent_map(em);
2966 	return ret;
2967 }
2968 
2969 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2970 {
2971 	struct btrfs_root *root = fs_info->chunk_root;
2972 	struct btrfs_trans_handle *trans;
2973 	int ret;
2974 
2975 	/*
2976 	 * Prevent races with automatic removal of unused block groups.
2977 	 * After we relocate and before we remove the chunk with offset
2978 	 * chunk_offset, automatic removal of the block group can kick in,
2979 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2980 	 *
2981 	 * Make sure to acquire this mutex before doing a tree search (dev
2982 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2983 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2984 	 * we release the path used to search the chunk/dev tree and before
2985 	 * the current task acquires this mutex and calls us.
2986 	 */
2987 	ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2988 
2989 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2990 	if (ret)
2991 		return -ENOSPC;
2992 
2993 	/* step one, relocate all the extents inside this chunk */
2994 	btrfs_scrub_pause(fs_info);
2995 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2996 	btrfs_scrub_continue(fs_info);
2997 	if (ret)
2998 		return ret;
2999 
3000 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3001 						     chunk_offset);
3002 	if (IS_ERR(trans)) {
3003 		ret = PTR_ERR(trans);
3004 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3005 		return ret;
3006 	}
3007 
3008 	/*
3009 	 * step two, delete the device extents and the
3010 	 * chunk tree entries
3011 	 */
3012 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3013 	btrfs_end_transaction(trans);
3014 	return ret;
3015 }
3016 
3017 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3018 {
3019 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3020 	struct btrfs_path *path;
3021 	struct extent_buffer *leaf;
3022 	struct btrfs_chunk *chunk;
3023 	struct btrfs_key key;
3024 	struct btrfs_key found_key;
3025 	u64 chunk_type;
3026 	bool retried = false;
3027 	int failed = 0;
3028 	int ret;
3029 
3030 	path = btrfs_alloc_path();
3031 	if (!path)
3032 		return -ENOMEM;
3033 
3034 again:
3035 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3036 	key.offset = (u64)-1;
3037 	key.type = BTRFS_CHUNK_ITEM_KEY;
3038 
3039 	while (1) {
3040 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3041 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3042 		if (ret < 0) {
3043 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3044 			goto error;
3045 		}
3046 		BUG_ON(ret == 0); /* Corruption */
3047 
3048 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3049 					  key.type);
3050 		if (ret)
3051 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3052 		if (ret < 0)
3053 			goto error;
3054 		if (ret > 0)
3055 			break;
3056 
3057 		leaf = path->nodes[0];
3058 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3059 
3060 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3061 				       struct btrfs_chunk);
3062 		chunk_type = btrfs_chunk_type(leaf, chunk);
3063 		btrfs_release_path(path);
3064 
3065 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3066 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3067 			if (ret == -ENOSPC)
3068 				failed++;
3069 			else
3070 				BUG_ON(ret);
3071 		}
3072 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3073 
3074 		if (found_key.offset == 0)
3075 			break;
3076 		key.offset = found_key.offset - 1;
3077 	}
3078 	ret = 0;
3079 	if (failed && !retried) {
3080 		failed = 0;
3081 		retried = true;
3082 		goto again;
3083 	} else if (WARN_ON(failed && retried)) {
3084 		ret = -ENOSPC;
3085 	}
3086 error:
3087 	btrfs_free_path(path);
3088 	return ret;
3089 }
3090 
3091 /*
3092  * return 1 : allocate a data chunk successfully,
3093  * return <0: errors during allocating a data chunk,
3094  * return 0 : no need to allocate a data chunk.
3095  */
3096 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3097 				      u64 chunk_offset)
3098 {
3099 	struct btrfs_block_group_cache *cache;
3100 	u64 bytes_used;
3101 	u64 chunk_type;
3102 
3103 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3104 	ASSERT(cache);
3105 	chunk_type = cache->flags;
3106 	btrfs_put_block_group(cache);
3107 
3108 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3109 		spin_lock(&fs_info->data_sinfo->lock);
3110 		bytes_used = fs_info->data_sinfo->bytes_used;
3111 		spin_unlock(&fs_info->data_sinfo->lock);
3112 
3113 		if (!bytes_used) {
3114 			struct btrfs_trans_handle *trans;
3115 			int ret;
3116 
3117 			trans =	btrfs_join_transaction(fs_info->tree_root);
3118 			if (IS_ERR(trans))
3119 				return PTR_ERR(trans);
3120 
3121 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3122 						      BTRFS_BLOCK_GROUP_DATA);
3123 			btrfs_end_transaction(trans);
3124 			if (ret < 0)
3125 				return ret;
3126 
3127 			return 1;
3128 		}
3129 	}
3130 	return 0;
3131 }
3132 
3133 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3134 			       struct btrfs_balance_control *bctl)
3135 {
3136 	struct btrfs_root *root = fs_info->tree_root;
3137 	struct btrfs_trans_handle *trans;
3138 	struct btrfs_balance_item *item;
3139 	struct btrfs_disk_balance_args disk_bargs;
3140 	struct btrfs_path *path;
3141 	struct extent_buffer *leaf;
3142 	struct btrfs_key key;
3143 	int ret, err;
3144 
3145 	path = btrfs_alloc_path();
3146 	if (!path)
3147 		return -ENOMEM;
3148 
3149 	trans = btrfs_start_transaction(root, 0);
3150 	if (IS_ERR(trans)) {
3151 		btrfs_free_path(path);
3152 		return PTR_ERR(trans);
3153 	}
3154 
3155 	key.objectid = BTRFS_BALANCE_OBJECTID;
3156 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3157 	key.offset = 0;
3158 
3159 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3160 				      sizeof(*item));
3161 	if (ret)
3162 		goto out;
3163 
3164 	leaf = path->nodes[0];
3165 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3166 
3167 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3168 
3169 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3170 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3171 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3172 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3173 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3174 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3175 
3176 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3177 
3178 	btrfs_mark_buffer_dirty(leaf);
3179 out:
3180 	btrfs_free_path(path);
3181 	err = btrfs_commit_transaction(trans);
3182 	if (err && !ret)
3183 		ret = err;
3184 	return ret;
3185 }
3186 
3187 static int del_balance_item(struct btrfs_fs_info *fs_info)
3188 {
3189 	struct btrfs_root *root = fs_info->tree_root;
3190 	struct btrfs_trans_handle *trans;
3191 	struct btrfs_path *path;
3192 	struct btrfs_key key;
3193 	int ret, err;
3194 
3195 	path = btrfs_alloc_path();
3196 	if (!path)
3197 		return -ENOMEM;
3198 
3199 	trans = btrfs_start_transaction(root, 0);
3200 	if (IS_ERR(trans)) {
3201 		btrfs_free_path(path);
3202 		return PTR_ERR(trans);
3203 	}
3204 
3205 	key.objectid = BTRFS_BALANCE_OBJECTID;
3206 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3207 	key.offset = 0;
3208 
3209 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3210 	if (ret < 0)
3211 		goto out;
3212 	if (ret > 0) {
3213 		ret = -ENOENT;
3214 		goto out;
3215 	}
3216 
3217 	ret = btrfs_del_item(trans, root, path);
3218 out:
3219 	btrfs_free_path(path);
3220 	err = btrfs_commit_transaction(trans);
3221 	if (err && !ret)
3222 		ret = err;
3223 	return ret;
3224 }
3225 
3226 /*
3227  * This is a heuristic used to reduce the number of chunks balanced on
3228  * resume after balance was interrupted.
3229  */
3230 static void update_balance_args(struct btrfs_balance_control *bctl)
3231 {
3232 	/*
3233 	 * Turn on soft mode for chunk types that were being converted.
3234 	 */
3235 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3236 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3237 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3238 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3239 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3240 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3241 
3242 	/*
3243 	 * Turn on usage filter if is not already used.  The idea is
3244 	 * that chunks that we have already balanced should be
3245 	 * reasonably full.  Don't do it for chunks that are being
3246 	 * converted - that will keep us from relocating unconverted
3247 	 * (albeit full) chunks.
3248 	 */
3249 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3250 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3251 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3252 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3253 		bctl->data.usage = 90;
3254 	}
3255 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3256 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3257 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3258 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3259 		bctl->sys.usage = 90;
3260 	}
3261 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3262 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3263 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3264 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3265 		bctl->meta.usage = 90;
3266 	}
3267 }
3268 
3269 /*
3270  * Should be called with both balance and volume mutexes held to
3271  * serialize other volume operations (add_dev/rm_dev/resize) with
3272  * restriper.  Same goes for unset_balance_control.
3273  */
3274 static void set_balance_control(struct btrfs_balance_control *bctl)
3275 {
3276 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3277 
3278 	BUG_ON(fs_info->balance_ctl);
3279 
3280 	spin_lock(&fs_info->balance_lock);
3281 	fs_info->balance_ctl = bctl;
3282 	spin_unlock(&fs_info->balance_lock);
3283 }
3284 
3285 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3286 {
3287 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3288 
3289 	BUG_ON(!fs_info->balance_ctl);
3290 
3291 	spin_lock(&fs_info->balance_lock);
3292 	fs_info->balance_ctl = NULL;
3293 	spin_unlock(&fs_info->balance_lock);
3294 
3295 	kfree(bctl);
3296 }
3297 
3298 /*
3299  * Balance filters.  Return 1 if chunk should be filtered out
3300  * (should not be balanced).
3301  */
3302 static int chunk_profiles_filter(u64 chunk_type,
3303 				 struct btrfs_balance_args *bargs)
3304 {
3305 	chunk_type = chunk_to_extended(chunk_type) &
3306 				BTRFS_EXTENDED_PROFILE_MASK;
3307 
3308 	if (bargs->profiles & chunk_type)
3309 		return 0;
3310 
3311 	return 1;
3312 }
3313 
3314 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3315 			      struct btrfs_balance_args *bargs)
3316 {
3317 	struct btrfs_block_group_cache *cache;
3318 	u64 chunk_used;
3319 	u64 user_thresh_min;
3320 	u64 user_thresh_max;
3321 	int ret = 1;
3322 
3323 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3324 	chunk_used = btrfs_block_group_used(&cache->item);
3325 
3326 	if (bargs->usage_min == 0)
3327 		user_thresh_min = 0;
3328 	else
3329 		user_thresh_min = div_factor_fine(cache->key.offset,
3330 					bargs->usage_min);
3331 
3332 	if (bargs->usage_max == 0)
3333 		user_thresh_max = 1;
3334 	else if (bargs->usage_max > 100)
3335 		user_thresh_max = cache->key.offset;
3336 	else
3337 		user_thresh_max = div_factor_fine(cache->key.offset,
3338 					bargs->usage_max);
3339 
3340 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3341 		ret = 0;
3342 
3343 	btrfs_put_block_group(cache);
3344 	return ret;
3345 }
3346 
3347 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3348 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3349 {
3350 	struct btrfs_block_group_cache *cache;
3351 	u64 chunk_used, user_thresh;
3352 	int ret = 1;
3353 
3354 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3355 	chunk_used = btrfs_block_group_used(&cache->item);
3356 
3357 	if (bargs->usage_min == 0)
3358 		user_thresh = 1;
3359 	else if (bargs->usage > 100)
3360 		user_thresh = cache->key.offset;
3361 	else
3362 		user_thresh = div_factor_fine(cache->key.offset,
3363 					      bargs->usage);
3364 
3365 	if (chunk_used < user_thresh)
3366 		ret = 0;
3367 
3368 	btrfs_put_block_group(cache);
3369 	return ret;
3370 }
3371 
3372 static int chunk_devid_filter(struct extent_buffer *leaf,
3373 			      struct btrfs_chunk *chunk,
3374 			      struct btrfs_balance_args *bargs)
3375 {
3376 	struct btrfs_stripe *stripe;
3377 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3378 	int i;
3379 
3380 	for (i = 0; i < num_stripes; i++) {
3381 		stripe = btrfs_stripe_nr(chunk, i);
3382 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3383 			return 0;
3384 	}
3385 
3386 	return 1;
3387 }
3388 
3389 /* [pstart, pend) */
3390 static int chunk_drange_filter(struct extent_buffer *leaf,
3391 			       struct btrfs_chunk *chunk,
3392 			       struct btrfs_balance_args *bargs)
3393 {
3394 	struct btrfs_stripe *stripe;
3395 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3396 	u64 stripe_offset;
3397 	u64 stripe_length;
3398 	int factor;
3399 	int i;
3400 
3401 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3402 		return 0;
3403 
3404 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3405 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3406 		factor = num_stripes / 2;
3407 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3408 		factor = num_stripes - 1;
3409 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3410 		factor = num_stripes - 2;
3411 	} else {
3412 		factor = num_stripes;
3413 	}
3414 
3415 	for (i = 0; i < num_stripes; i++) {
3416 		stripe = btrfs_stripe_nr(chunk, i);
3417 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3418 			continue;
3419 
3420 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3421 		stripe_length = btrfs_chunk_length(leaf, chunk);
3422 		stripe_length = div_u64(stripe_length, factor);
3423 
3424 		if (stripe_offset < bargs->pend &&
3425 		    stripe_offset + stripe_length > bargs->pstart)
3426 			return 0;
3427 	}
3428 
3429 	return 1;
3430 }
3431 
3432 /* [vstart, vend) */
3433 static int chunk_vrange_filter(struct extent_buffer *leaf,
3434 			       struct btrfs_chunk *chunk,
3435 			       u64 chunk_offset,
3436 			       struct btrfs_balance_args *bargs)
3437 {
3438 	if (chunk_offset < bargs->vend &&
3439 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3440 		/* at least part of the chunk is inside this vrange */
3441 		return 0;
3442 
3443 	return 1;
3444 }
3445 
3446 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3447 			       struct btrfs_chunk *chunk,
3448 			       struct btrfs_balance_args *bargs)
3449 {
3450 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3451 
3452 	if (bargs->stripes_min <= num_stripes
3453 			&& num_stripes <= bargs->stripes_max)
3454 		return 0;
3455 
3456 	return 1;
3457 }
3458 
3459 static int chunk_soft_convert_filter(u64 chunk_type,
3460 				     struct btrfs_balance_args *bargs)
3461 {
3462 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3463 		return 0;
3464 
3465 	chunk_type = chunk_to_extended(chunk_type) &
3466 				BTRFS_EXTENDED_PROFILE_MASK;
3467 
3468 	if (bargs->target == chunk_type)
3469 		return 1;
3470 
3471 	return 0;
3472 }
3473 
3474 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3475 				struct extent_buffer *leaf,
3476 				struct btrfs_chunk *chunk, u64 chunk_offset)
3477 {
3478 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3479 	struct btrfs_balance_args *bargs = NULL;
3480 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3481 
3482 	/* type filter */
3483 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3484 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3485 		return 0;
3486 	}
3487 
3488 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3489 		bargs = &bctl->data;
3490 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3491 		bargs = &bctl->sys;
3492 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3493 		bargs = &bctl->meta;
3494 
3495 	/* profiles filter */
3496 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3497 	    chunk_profiles_filter(chunk_type, bargs)) {
3498 		return 0;
3499 	}
3500 
3501 	/* usage filter */
3502 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3503 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3504 		return 0;
3505 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3506 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3507 		return 0;
3508 	}
3509 
3510 	/* devid filter */
3511 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3512 	    chunk_devid_filter(leaf, chunk, bargs)) {
3513 		return 0;
3514 	}
3515 
3516 	/* drange filter, makes sense only with devid filter */
3517 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3518 	    chunk_drange_filter(leaf, chunk, bargs)) {
3519 		return 0;
3520 	}
3521 
3522 	/* vrange filter */
3523 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3524 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3525 		return 0;
3526 	}
3527 
3528 	/* stripes filter */
3529 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3530 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3531 		return 0;
3532 	}
3533 
3534 	/* soft profile changing mode */
3535 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3536 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3537 		return 0;
3538 	}
3539 
3540 	/*
3541 	 * limited by count, must be the last filter
3542 	 */
3543 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3544 		if (bargs->limit == 0)
3545 			return 0;
3546 		else
3547 			bargs->limit--;
3548 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3549 		/*
3550 		 * Same logic as the 'limit' filter; the minimum cannot be
3551 		 * determined here because we do not have the global information
3552 		 * about the count of all chunks that satisfy the filters.
3553 		 */
3554 		if (bargs->limit_max == 0)
3555 			return 0;
3556 		else
3557 			bargs->limit_max--;
3558 	}
3559 
3560 	return 1;
3561 }
3562 
3563 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3564 {
3565 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3566 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3567 	struct btrfs_root *dev_root = fs_info->dev_root;
3568 	struct list_head *devices;
3569 	struct btrfs_device *device;
3570 	u64 old_size;
3571 	u64 size_to_free;
3572 	u64 chunk_type;
3573 	struct btrfs_chunk *chunk;
3574 	struct btrfs_path *path = NULL;
3575 	struct btrfs_key key;
3576 	struct btrfs_key found_key;
3577 	struct btrfs_trans_handle *trans;
3578 	struct extent_buffer *leaf;
3579 	int slot;
3580 	int ret;
3581 	int enospc_errors = 0;
3582 	bool counting = true;
3583 	/* The single value limit and min/max limits use the same bytes in the */
3584 	u64 limit_data = bctl->data.limit;
3585 	u64 limit_meta = bctl->meta.limit;
3586 	u64 limit_sys = bctl->sys.limit;
3587 	u32 count_data = 0;
3588 	u32 count_meta = 0;
3589 	u32 count_sys = 0;
3590 	int chunk_reserved = 0;
3591 
3592 	/* step one make some room on all the devices */
3593 	devices = &fs_info->fs_devices->devices;
3594 	list_for_each_entry(device, devices, dev_list) {
3595 		old_size = btrfs_device_get_total_bytes(device);
3596 		size_to_free = div_factor(old_size, 1);
3597 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3598 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3599 		    btrfs_device_get_total_bytes(device) -
3600 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3601 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3602 			continue;
3603 
3604 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3605 		if (ret == -ENOSPC)
3606 			break;
3607 		if (ret) {
3608 			/* btrfs_shrink_device never returns ret > 0 */
3609 			WARN_ON(ret > 0);
3610 			goto error;
3611 		}
3612 
3613 		trans = btrfs_start_transaction(dev_root, 0);
3614 		if (IS_ERR(trans)) {
3615 			ret = PTR_ERR(trans);
3616 			btrfs_info_in_rcu(fs_info,
3617 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3618 					  rcu_str_deref(device->name), ret,
3619 					  old_size, old_size - size_to_free);
3620 			goto error;
3621 		}
3622 
3623 		ret = btrfs_grow_device(trans, device, old_size);
3624 		if (ret) {
3625 			btrfs_end_transaction(trans);
3626 			/* btrfs_grow_device never returns ret > 0 */
3627 			WARN_ON(ret > 0);
3628 			btrfs_info_in_rcu(fs_info,
3629 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3630 					  rcu_str_deref(device->name), ret,
3631 					  old_size, old_size - size_to_free);
3632 			goto error;
3633 		}
3634 
3635 		btrfs_end_transaction(trans);
3636 	}
3637 
3638 	/* step two, relocate all the chunks */
3639 	path = btrfs_alloc_path();
3640 	if (!path) {
3641 		ret = -ENOMEM;
3642 		goto error;
3643 	}
3644 
3645 	/* zero out stat counters */
3646 	spin_lock(&fs_info->balance_lock);
3647 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3648 	spin_unlock(&fs_info->balance_lock);
3649 again:
3650 	if (!counting) {
3651 		/*
3652 		 * The single value limit and min/max limits use the same bytes
3653 		 * in the
3654 		 */
3655 		bctl->data.limit = limit_data;
3656 		bctl->meta.limit = limit_meta;
3657 		bctl->sys.limit = limit_sys;
3658 	}
3659 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3660 	key.offset = (u64)-1;
3661 	key.type = BTRFS_CHUNK_ITEM_KEY;
3662 
3663 	while (1) {
3664 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3665 		    atomic_read(&fs_info->balance_cancel_req)) {
3666 			ret = -ECANCELED;
3667 			goto error;
3668 		}
3669 
3670 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3671 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3672 		if (ret < 0) {
3673 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674 			goto error;
3675 		}
3676 
3677 		/*
3678 		 * this shouldn't happen, it means the last relocate
3679 		 * failed
3680 		 */
3681 		if (ret == 0)
3682 			BUG(); /* FIXME break ? */
3683 
3684 		ret = btrfs_previous_item(chunk_root, path, 0,
3685 					  BTRFS_CHUNK_ITEM_KEY);
3686 		if (ret) {
3687 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3688 			ret = 0;
3689 			break;
3690 		}
3691 
3692 		leaf = path->nodes[0];
3693 		slot = path->slots[0];
3694 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3695 
3696 		if (found_key.objectid != key.objectid) {
3697 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3698 			break;
3699 		}
3700 
3701 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3702 		chunk_type = btrfs_chunk_type(leaf, chunk);
3703 
3704 		if (!counting) {
3705 			spin_lock(&fs_info->balance_lock);
3706 			bctl->stat.considered++;
3707 			spin_unlock(&fs_info->balance_lock);
3708 		}
3709 
3710 		ret = should_balance_chunk(fs_info, leaf, chunk,
3711 					   found_key.offset);
3712 
3713 		btrfs_release_path(path);
3714 		if (!ret) {
3715 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3716 			goto loop;
3717 		}
3718 
3719 		if (counting) {
3720 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3721 			spin_lock(&fs_info->balance_lock);
3722 			bctl->stat.expected++;
3723 			spin_unlock(&fs_info->balance_lock);
3724 
3725 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3726 				count_data++;
3727 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3728 				count_sys++;
3729 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3730 				count_meta++;
3731 
3732 			goto loop;
3733 		}
3734 
3735 		/*
3736 		 * Apply limit_min filter, no need to check if the LIMITS
3737 		 * filter is used, limit_min is 0 by default
3738 		 */
3739 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3740 					count_data < bctl->data.limit_min)
3741 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3742 					count_meta < bctl->meta.limit_min)
3743 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3744 					count_sys < bctl->sys.limit_min)) {
3745 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3746 			goto loop;
3747 		}
3748 
3749 		if (!chunk_reserved) {
3750 			/*
3751 			 * We may be relocating the only data chunk we have,
3752 			 * which could potentially end up with losing data's
3753 			 * raid profile, so lets allocate an empty one in
3754 			 * advance.
3755 			 */
3756 			ret = btrfs_may_alloc_data_chunk(fs_info,
3757 							 found_key.offset);
3758 			if (ret < 0) {
3759 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760 				goto error;
3761 			} else if (ret == 1) {
3762 				chunk_reserved = 1;
3763 			}
3764 		}
3765 
3766 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3767 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3768 		if (ret && ret != -ENOSPC)
3769 			goto error;
3770 		if (ret == -ENOSPC) {
3771 			enospc_errors++;
3772 		} else {
3773 			spin_lock(&fs_info->balance_lock);
3774 			bctl->stat.completed++;
3775 			spin_unlock(&fs_info->balance_lock);
3776 		}
3777 loop:
3778 		if (found_key.offset == 0)
3779 			break;
3780 		key.offset = found_key.offset - 1;
3781 	}
3782 
3783 	if (counting) {
3784 		btrfs_release_path(path);
3785 		counting = false;
3786 		goto again;
3787 	}
3788 error:
3789 	btrfs_free_path(path);
3790 	if (enospc_errors) {
3791 		btrfs_info(fs_info, "%d enospc errors during balance",
3792 			   enospc_errors);
3793 		if (!ret)
3794 			ret = -ENOSPC;
3795 	}
3796 
3797 	return ret;
3798 }
3799 
3800 /**
3801  * alloc_profile_is_valid - see if a given profile is valid and reduced
3802  * @flags: profile to validate
3803  * @extended: if true @flags is treated as an extended profile
3804  */
3805 static int alloc_profile_is_valid(u64 flags, int extended)
3806 {
3807 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3808 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3809 
3810 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3811 
3812 	/* 1) check that all other bits are zeroed */
3813 	if (flags & ~mask)
3814 		return 0;
3815 
3816 	/* 2) see if profile is reduced */
3817 	if (flags == 0)
3818 		return !extended; /* "0" is valid for usual profiles */
3819 
3820 	/* true if exactly one bit set */
3821 	return (flags & (flags - 1)) == 0;
3822 }
3823 
3824 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3825 {
3826 	/* cancel requested || normal exit path */
3827 	return atomic_read(&fs_info->balance_cancel_req) ||
3828 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3829 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3830 }
3831 
3832 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3833 {
3834 	int ret;
3835 
3836 	unset_balance_control(fs_info);
3837 	ret = del_balance_item(fs_info);
3838 	if (ret)
3839 		btrfs_handle_fs_error(fs_info, ret, NULL);
3840 
3841 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3842 }
3843 
3844 /* Non-zero return value signifies invalidity */
3845 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3846 		u64 allowed)
3847 {
3848 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3850 		 (bctl_arg->target & ~allowed)));
3851 }
3852 
3853 /*
3854  * Should be called with both balance and volume mutexes held
3855  */
3856 int btrfs_balance(struct btrfs_balance_control *bctl,
3857 		  struct btrfs_ioctl_balance_args *bargs)
3858 {
3859 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3860 	u64 meta_target, data_target;
3861 	u64 allowed;
3862 	int mixed = 0;
3863 	int ret;
3864 	u64 num_devices;
3865 	unsigned seq;
3866 
3867 	if (btrfs_fs_closing(fs_info) ||
3868 	    atomic_read(&fs_info->balance_pause_req) ||
3869 	    atomic_read(&fs_info->balance_cancel_req)) {
3870 		ret = -EINVAL;
3871 		goto out;
3872 	}
3873 
3874 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3875 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3876 		mixed = 1;
3877 
3878 	/*
3879 	 * In case of mixed groups both data and meta should be picked,
3880 	 * and identical options should be given for both of them.
3881 	 */
3882 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3883 	if (mixed && (bctl->flags & allowed)) {
3884 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3885 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3886 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3887 			btrfs_err(fs_info,
3888 				  "with mixed groups data and metadata balance options must be the same");
3889 			ret = -EINVAL;
3890 			goto out;
3891 		}
3892 	}
3893 
3894 	num_devices = fs_info->fs_devices->num_devices;
3895 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3896 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3897 		BUG_ON(num_devices < 1);
3898 		num_devices--;
3899 	}
3900 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3901 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3902 	if (num_devices > 1)
3903 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3904 	if (num_devices > 2)
3905 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3906 	if (num_devices > 3)
3907 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3908 			    BTRFS_BLOCK_GROUP_RAID6);
3909 	if (validate_convert_profile(&bctl->data, allowed)) {
3910 		btrfs_err(fs_info,
3911 			  "unable to start balance with target data profile %llu",
3912 			  bctl->data.target);
3913 		ret = -EINVAL;
3914 		goto out;
3915 	}
3916 	if (validate_convert_profile(&bctl->meta, allowed)) {
3917 		btrfs_err(fs_info,
3918 			  "unable to start balance with target metadata profile %llu",
3919 			  bctl->meta.target);
3920 		ret = -EINVAL;
3921 		goto out;
3922 	}
3923 	if (validate_convert_profile(&bctl->sys, allowed)) {
3924 		btrfs_err(fs_info,
3925 			  "unable to start balance with target system profile %llu",
3926 			  bctl->sys.target);
3927 		ret = -EINVAL;
3928 		goto out;
3929 	}
3930 
3931 	/* allow to reduce meta or sys integrity only if force set */
3932 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3933 			BTRFS_BLOCK_GROUP_RAID10 |
3934 			BTRFS_BLOCK_GROUP_RAID5 |
3935 			BTRFS_BLOCK_GROUP_RAID6;
3936 	do {
3937 		seq = read_seqbegin(&fs_info->profiles_lock);
3938 
3939 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3940 		     (fs_info->avail_system_alloc_bits & allowed) &&
3941 		     !(bctl->sys.target & allowed)) ||
3942 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3943 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3944 		     !(bctl->meta.target & allowed))) {
3945 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3946 				btrfs_info(fs_info,
3947 					   "force reducing metadata integrity");
3948 			} else {
3949 				btrfs_err(fs_info,
3950 					  "balance will reduce metadata integrity, use force if you want this");
3951 				ret = -EINVAL;
3952 				goto out;
3953 			}
3954 		}
3955 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3956 
3957 	/* if we're not converting, the target field is uninitialized */
3958 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3959 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3960 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3961 		bctl->data.target : fs_info->avail_data_alloc_bits;
3962 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3963 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3964 		btrfs_warn(fs_info,
3965 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3966 			   meta_target, data_target);
3967 	}
3968 
3969 	ret = insert_balance_item(fs_info, bctl);
3970 	if (ret && ret != -EEXIST)
3971 		goto out;
3972 
3973 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3974 		BUG_ON(ret == -EEXIST);
3975 		set_balance_control(bctl);
3976 	} else {
3977 		BUG_ON(ret != -EEXIST);
3978 		spin_lock(&fs_info->balance_lock);
3979 		update_balance_args(bctl);
3980 		spin_unlock(&fs_info->balance_lock);
3981 	}
3982 
3983 	atomic_inc(&fs_info->balance_running);
3984 	mutex_unlock(&fs_info->balance_mutex);
3985 
3986 	ret = __btrfs_balance(fs_info);
3987 
3988 	mutex_lock(&fs_info->balance_mutex);
3989 	atomic_dec(&fs_info->balance_running);
3990 
3991 	if (bargs) {
3992 		memset(bargs, 0, sizeof(*bargs));
3993 		update_ioctl_balance_args(fs_info, 0, bargs);
3994 	}
3995 
3996 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3997 	    balance_need_close(fs_info)) {
3998 		__cancel_balance(fs_info);
3999 	}
4000 
4001 	wake_up(&fs_info->balance_wait_q);
4002 
4003 	return ret;
4004 out:
4005 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4006 		__cancel_balance(fs_info);
4007 	else {
4008 		kfree(bctl);
4009 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4010 	}
4011 	return ret;
4012 }
4013 
4014 static int balance_kthread(void *data)
4015 {
4016 	struct btrfs_fs_info *fs_info = data;
4017 	int ret = 0;
4018 
4019 	mutex_lock(&fs_info->volume_mutex);
4020 	mutex_lock(&fs_info->balance_mutex);
4021 
4022 	if (fs_info->balance_ctl) {
4023 		btrfs_info(fs_info, "continuing balance");
4024 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
4025 	}
4026 
4027 	mutex_unlock(&fs_info->balance_mutex);
4028 	mutex_unlock(&fs_info->volume_mutex);
4029 
4030 	return ret;
4031 }
4032 
4033 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4034 {
4035 	struct task_struct *tsk;
4036 
4037 	spin_lock(&fs_info->balance_lock);
4038 	if (!fs_info->balance_ctl) {
4039 		spin_unlock(&fs_info->balance_lock);
4040 		return 0;
4041 	}
4042 	spin_unlock(&fs_info->balance_lock);
4043 
4044 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4045 		btrfs_info(fs_info, "force skipping balance");
4046 		return 0;
4047 	}
4048 
4049 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4050 	return PTR_ERR_OR_ZERO(tsk);
4051 }
4052 
4053 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4054 {
4055 	struct btrfs_balance_control *bctl;
4056 	struct btrfs_balance_item *item;
4057 	struct btrfs_disk_balance_args disk_bargs;
4058 	struct btrfs_path *path;
4059 	struct extent_buffer *leaf;
4060 	struct btrfs_key key;
4061 	int ret;
4062 
4063 	path = btrfs_alloc_path();
4064 	if (!path)
4065 		return -ENOMEM;
4066 
4067 	key.objectid = BTRFS_BALANCE_OBJECTID;
4068 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4069 	key.offset = 0;
4070 
4071 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4072 	if (ret < 0)
4073 		goto out;
4074 	if (ret > 0) { /* ret = -ENOENT; */
4075 		ret = 0;
4076 		goto out;
4077 	}
4078 
4079 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4080 	if (!bctl) {
4081 		ret = -ENOMEM;
4082 		goto out;
4083 	}
4084 
4085 	leaf = path->nodes[0];
4086 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4087 
4088 	bctl->fs_info = fs_info;
4089 	bctl->flags = btrfs_balance_flags(leaf, item);
4090 	bctl->flags |= BTRFS_BALANCE_RESUME;
4091 
4092 	btrfs_balance_data(leaf, item, &disk_bargs);
4093 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4094 	btrfs_balance_meta(leaf, item, &disk_bargs);
4095 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4096 	btrfs_balance_sys(leaf, item, &disk_bargs);
4097 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4098 
4099 	WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4100 
4101 	mutex_lock(&fs_info->volume_mutex);
4102 	mutex_lock(&fs_info->balance_mutex);
4103 
4104 	set_balance_control(bctl);
4105 
4106 	mutex_unlock(&fs_info->balance_mutex);
4107 	mutex_unlock(&fs_info->volume_mutex);
4108 out:
4109 	btrfs_free_path(path);
4110 	return ret;
4111 }
4112 
4113 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4114 {
4115 	int ret = 0;
4116 
4117 	mutex_lock(&fs_info->balance_mutex);
4118 	if (!fs_info->balance_ctl) {
4119 		mutex_unlock(&fs_info->balance_mutex);
4120 		return -ENOTCONN;
4121 	}
4122 
4123 	if (atomic_read(&fs_info->balance_running)) {
4124 		atomic_inc(&fs_info->balance_pause_req);
4125 		mutex_unlock(&fs_info->balance_mutex);
4126 
4127 		wait_event(fs_info->balance_wait_q,
4128 			   atomic_read(&fs_info->balance_running) == 0);
4129 
4130 		mutex_lock(&fs_info->balance_mutex);
4131 		/* we are good with balance_ctl ripped off from under us */
4132 		BUG_ON(atomic_read(&fs_info->balance_running));
4133 		atomic_dec(&fs_info->balance_pause_req);
4134 	} else {
4135 		ret = -ENOTCONN;
4136 	}
4137 
4138 	mutex_unlock(&fs_info->balance_mutex);
4139 	return ret;
4140 }
4141 
4142 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4143 {
4144 	if (sb_rdonly(fs_info->sb))
4145 		return -EROFS;
4146 
4147 	mutex_lock(&fs_info->balance_mutex);
4148 	if (!fs_info->balance_ctl) {
4149 		mutex_unlock(&fs_info->balance_mutex);
4150 		return -ENOTCONN;
4151 	}
4152 
4153 	atomic_inc(&fs_info->balance_cancel_req);
4154 	/*
4155 	 * if we are running just wait and return, balance item is
4156 	 * deleted in btrfs_balance in this case
4157 	 */
4158 	if (atomic_read(&fs_info->balance_running)) {
4159 		mutex_unlock(&fs_info->balance_mutex);
4160 		wait_event(fs_info->balance_wait_q,
4161 			   atomic_read(&fs_info->balance_running) == 0);
4162 		mutex_lock(&fs_info->balance_mutex);
4163 	} else {
4164 		/* __cancel_balance needs volume_mutex */
4165 		mutex_unlock(&fs_info->balance_mutex);
4166 		mutex_lock(&fs_info->volume_mutex);
4167 		mutex_lock(&fs_info->balance_mutex);
4168 
4169 		if (fs_info->balance_ctl)
4170 			__cancel_balance(fs_info);
4171 
4172 		mutex_unlock(&fs_info->volume_mutex);
4173 	}
4174 
4175 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4176 	atomic_dec(&fs_info->balance_cancel_req);
4177 	mutex_unlock(&fs_info->balance_mutex);
4178 	return 0;
4179 }
4180 
4181 static int btrfs_uuid_scan_kthread(void *data)
4182 {
4183 	struct btrfs_fs_info *fs_info = data;
4184 	struct btrfs_root *root = fs_info->tree_root;
4185 	struct btrfs_key key;
4186 	struct btrfs_path *path = NULL;
4187 	int ret = 0;
4188 	struct extent_buffer *eb;
4189 	int slot;
4190 	struct btrfs_root_item root_item;
4191 	u32 item_size;
4192 	struct btrfs_trans_handle *trans = NULL;
4193 
4194 	path = btrfs_alloc_path();
4195 	if (!path) {
4196 		ret = -ENOMEM;
4197 		goto out;
4198 	}
4199 
4200 	key.objectid = 0;
4201 	key.type = BTRFS_ROOT_ITEM_KEY;
4202 	key.offset = 0;
4203 
4204 	while (1) {
4205 		ret = btrfs_search_forward(root, &key, path, 0);
4206 		if (ret) {
4207 			if (ret > 0)
4208 				ret = 0;
4209 			break;
4210 		}
4211 
4212 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4213 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4214 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4215 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4216 			goto skip;
4217 
4218 		eb = path->nodes[0];
4219 		slot = path->slots[0];
4220 		item_size = btrfs_item_size_nr(eb, slot);
4221 		if (item_size < sizeof(root_item))
4222 			goto skip;
4223 
4224 		read_extent_buffer(eb, &root_item,
4225 				   btrfs_item_ptr_offset(eb, slot),
4226 				   (int)sizeof(root_item));
4227 		if (btrfs_root_refs(&root_item) == 0)
4228 			goto skip;
4229 
4230 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4231 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4232 			if (trans)
4233 				goto update_tree;
4234 
4235 			btrfs_release_path(path);
4236 			/*
4237 			 * 1 - subvol uuid item
4238 			 * 1 - received_subvol uuid item
4239 			 */
4240 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4241 			if (IS_ERR(trans)) {
4242 				ret = PTR_ERR(trans);
4243 				break;
4244 			}
4245 			continue;
4246 		} else {
4247 			goto skip;
4248 		}
4249 update_tree:
4250 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4251 			ret = btrfs_uuid_tree_add(trans, fs_info,
4252 						  root_item.uuid,
4253 						  BTRFS_UUID_KEY_SUBVOL,
4254 						  key.objectid);
4255 			if (ret < 0) {
4256 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4257 					ret);
4258 				break;
4259 			}
4260 		}
4261 
4262 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4263 			ret = btrfs_uuid_tree_add(trans, fs_info,
4264 						  root_item.received_uuid,
4265 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4266 						  key.objectid);
4267 			if (ret < 0) {
4268 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4269 					ret);
4270 				break;
4271 			}
4272 		}
4273 
4274 skip:
4275 		if (trans) {
4276 			ret = btrfs_end_transaction(trans);
4277 			trans = NULL;
4278 			if (ret)
4279 				break;
4280 		}
4281 
4282 		btrfs_release_path(path);
4283 		if (key.offset < (u64)-1) {
4284 			key.offset++;
4285 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4286 			key.offset = 0;
4287 			key.type = BTRFS_ROOT_ITEM_KEY;
4288 		} else if (key.objectid < (u64)-1) {
4289 			key.offset = 0;
4290 			key.type = BTRFS_ROOT_ITEM_KEY;
4291 			key.objectid++;
4292 		} else {
4293 			break;
4294 		}
4295 		cond_resched();
4296 	}
4297 
4298 out:
4299 	btrfs_free_path(path);
4300 	if (trans && !IS_ERR(trans))
4301 		btrfs_end_transaction(trans);
4302 	if (ret)
4303 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4304 	else
4305 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4306 	up(&fs_info->uuid_tree_rescan_sem);
4307 	return 0;
4308 }
4309 
4310 /*
4311  * Callback for btrfs_uuid_tree_iterate().
4312  * returns:
4313  * 0	check succeeded, the entry is not outdated.
4314  * < 0	if an error occurred.
4315  * > 0	if the check failed, which means the caller shall remove the entry.
4316  */
4317 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4318 				       u8 *uuid, u8 type, u64 subid)
4319 {
4320 	struct btrfs_key key;
4321 	int ret = 0;
4322 	struct btrfs_root *subvol_root;
4323 
4324 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4325 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4326 		goto out;
4327 
4328 	key.objectid = subid;
4329 	key.type = BTRFS_ROOT_ITEM_KEY;
4330 	key.offset = (u64)-1;
4331 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4332 	if (IS_ERR(subvol_root)) {
4333 		ret = PTR_ERR(subvol_root);
4334 		if (ret == -ENOENT)
4335 			ret = 1;
4336 		goto out;
4337 	}
4338 
4339 	switch (type) {
4340 	case BTRFS_UUID_KEY_SUBVOL:
4341 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4342 			ret = 1;
4343 		break;
4344 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4345 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4346 			   BTRFS_UUID_SIZE))
4347 			ret = 1;
4348 		break;
4349 	}
4350 
4351 out:
4352 	return ret;
4353 }
4354 
4355 static int btrfs_uuid_rescan_kthread(void *data)
4356 {
4357 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4358 	int ret;
4359 
4360 	/*
4361 	 * 1st step is to iterate through the existing UUID tree and
4362 	 * to delete all entries that contain outdated data.
4363 	 * 2nd step is to add all missing entries to the UUID tree.
4364 	 */
4365 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4366 	if (ret < 0) {
4367 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4368 		up(&fs_info->uuid_tree_rescan_sem);
4369 		return ret;
4370 	}
4371 	return btrfs_uuid_scan_kthread(data);
4372 }
4373 
4374 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4375 {
4376 	struct btrfs_trans_handle *trans;
4377 	struct btrfs_root *tree_root = fs_info->tree_root;
4378 	struct btrfs_root *uuid_root;
4379 	struct task_struct *task;
4380 	int ret;
4381 
4382 	/*
4383 	 * 1 - root node
4384 	 * 1 - root item
4385 	 */
4386 	trans = btrfs_start_transaction(tree_root, 2);
4387 	if (IS_ERR(trans))
4388 		return PTR_ERR(trans);
4389 
4390 	uuid_root = btrfs_create_tree(trans, fs_info,
4391 				      BTRFS_UUID_TREE_OBJECTID);
4392 	if (IS_ERR(uuid_root)) {
4393 		ret = PTR_ERR(uuid_root);
4394 		btrfs_abort_transaction(trans, ret);
4395 		btrfs_end_transaction(trans);
4396 		return ret;
4397 	}
4398 
4399 	fs_info->uuid_root = uuid_root;
4400 
4401 	ret = btrfs_commit_transaction(trans);
4402 	if (ret)
4403 		return ret;
4404 
4405 	down(&fs_info->uuid_tree_rescan_sem);
4406 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4407 	if (IS_ERR(task)) {
4408 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4409 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4410 		up(&fs_info->uuid_tree_rescan_sem);
4411 		return PTR_ERR(task);
4412 	}
4413 
4414 	return 0;
4415 }
4416 
4417 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4418 {
4419 	struct task_struct *task;
4420 
4421 	down(&fs_info->uuid_tree_rescan_sem);
4422 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4423 	if (IS_ERR(task)) {
4424 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4425 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4426 		up(&fs_info->uuid_tree_rescan_sem);
4427 		return PTR_ERR(task);
4428 	}
4429 
4430 	return 0;
4431 }
4432 
4433 /*
4434  * shrinking a device means finding all of the device extents past
4435  * the new size, and then following the back refs to the chunks.
4436  * The chunk relocation code actually frees the device extent
4437  */
4438 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4439 {
4440 	struct btrfs_fs_info *fs_info = device->fs_info;
4441 	struct btrfs_root *root = fs_info->dev_root;
4442 	struct btrfs_trans_handle *trans;
4443 	struct btrfs_dev_extent *dev_extent = NULL;
4444 	struct btrfs_path *path;
4445 	u64 length;
4446 	u64 chunk_offset;
4447 	int ret;
4448 	int slot;
4449 	int failed = 0;
4450 	bool retried = false;
4451 	bool checked_pending_chunks = false;
4452 	struct extent_buffer *l;
4453 	struct btrfs_key key;
4454 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4455 	u64 old_total = btrfs_super_total_bytes(super_copy);
4456 	u64 old_size = btrfs_device_get_total_bytes(device);
4457 	u64 diff;
4458 
4459 	new_size = round_down(new_size, fs_info->sectorsize);
4460 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4461 
4462 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4463 		return -EINVAL;
4464 
4465 	path = btrfs_alloc_path();
4466 	if (!path)
4467 		return -ENOMEM;
4468 
4469 	path->reada = READA_FORWARD;
4470 
4471 	mutex_lock(&fs_info->chunk_mutex);
4472 
4473 	btrfs_device_set_total_bytes(device, new_size);
4474 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4475 		device->fs_devices->total_rw_bytes -= diff;
4476 		atomic64_sub(diff, &fs_info->free_chunk_space);
4477 	}
4478 	mutex_unlock(&fs_info->chunk_mutex);
4479 
4480 again:
4481 	key.objectid = device->devid;
4482 	key.offset = (u64)-1;
4483 	key.type = BTRFS_DEV_EXTENT_KEY;
4484 
4485 	do {
4486 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4487 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4488 		if (ret < 0) {
4489 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4490 			goto done;
4491 		}
4492 
4493 		ret = btrfs_previous_item(root, path, 0, key.type);
4494 		if (ret)
4495 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4496 		if (ret < 0)
4497 			goto done;
4498 		if (ret) {
4499 			ret = 0;
4500 			btrfs_release_path(path);
4501 			break;
4502 		}
4503 
4504 		l = path->nodes[0];
4505 		slot = path->slots[0];
4506 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4507 
4508 		if (key.objectid != device->devid) {
4509 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4510 			btrfs_release_path(path);
4511 			break;
4512 		}
4513 
4514 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4515 		length = btrfs_dev_extent_length(l, dev_extent);
4516 
4517 		if (key.offset + length <= new_size) {
4518 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4519 			btrfs_release_path(path);
4520 			break;
4521 		}
4522 
4523 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4524 		btrfs_release_path(path);
4525 
4526 		/*
4527 		 * We may be relocating the only data chunk we have,
4528 		 * which could potentially end up with losing data's
4529 		 * raid profile, so lets allocate an empty one in
4530 		 * advance.
4531 		 */
4532 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4533 		if (ret < 0) {
4534 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4535 			goto done;
4536 		}
4537 
4538 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4539 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4540 		if (ret && ret != -ENOSPC)
4541 			goto done;
4542 		if (ret == -ENOSPC)
4543 			failed++;
4544 	} while (key.offset-- > 0);
4545 
4546 	if (failed && !retried) {
4547 		failed = 0;
4548 		retried = true;
4549 		goto again;
4550 	} else if (failed && retried) {
4551 		ret = -ENOSPC;
4552 		goto done;
4553 	}
4554 
4555 	/* Shrinking succeeded, else we would be at "done". */
4556 	trans = btrfs_start_transaction(root, 0);
4557 	if (IS_ERR(trans)) {
4558 		ret = PTR_ERR(trans);
4559 		goto done;
4560 	}
4561 
4562 	mutex_lock(&fs_info->chunk_mutex);
4563 
4564 	/*
4565 	 * We checked in the above loop all device extents that were already in
4566 	 * the device tree. However before we have updated the device's
4567 	 * total_bytes to the new size, we might have had chunk allocations that
4568 	 * have not complete yet (new block groups attached to transaction
4569 	 * handles), and therefore their device extents were not yet in the
4570 	 * device tree and we missed them in the loop above. So if we have any
4571 	 * pending chunk using a device extent that overlaps the device range
4572 	 * that we can not use anymore, commit the current transaction and
4573 	 * repeat the search on the device tree - this way we guarantee we will
4574 	 * not have chunks using device extents that end beyond 'new_size'.
4575 	 */
4576 	if (!checked_pending_chunks) {
4577 		u64 start = new_size;
4578 		u64 len = old_size - new_size;
4579 
4580 		if (contains_pending_extent(trans->transaction, device,
4581 					    &start, len)) {
4582 			mutex_unlock(&fs_info->chunk_mutex);
4583 			checked_pending_chunks = true;
4584 			failed = 0;
4585 			retried = false;
4586 			ret = btrfs_commit_transaction(trans);
4587 			if (ret)
4588 				goto done;
4589 			goto again;
4590 		}
4591 	}
4592 
4593 	btrfs_device_set_disk_total_bytes(device, new_size);
4594 	if (list_empty(&device->resized_list))
4595 		list_add_tail(&device->resized_list,
4596 			      &fs_info->fs_devices->resized_devices);
4597 
4598 	WARN_ON(diff > old_total);
4599 	btrfs_set_super_total_bytes(super_copy,
4600 			round_down(old_total - diff, fs_info->sectorsize));
4601 	mutex_unlock(&fs_info->chunk_mutex);
4602 
4603 	/* Now btrfs_update_device() will change the on-disk size. */
4604 	ret = btrfs_update_device(trans, device);
4605 	btrfs_end_transaction(trans);
4606 done:
4607 	btrfs_free_path(path);
4608 	if (ret) {
4609 		mutex_lock(&fs_info->chunk_mutex);
4610 		btrfs_device_set_total_bytes(device, old_size);
4611 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4612 			device->fs_devices->total_rw_bytes += diff;
4613 		atomic64_add(diff, &fs_info->free_chunk_space);
4614 		mutex_unlock(&fs_info->chunk_mutex);
4615 	}
4616 	return ret;
4617 }
4618 
4619 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4620 			   struct btrfs_key *key,
4621 			   struct btrfs_chunk *chunk, int item_size)
4622 {
4623 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4624 	struct btrfs_disk_key disk_key;
4625 	u32 array_size;
4626 	u8 *ptr;
4627 
4628 	mutex_lock(&fs_info->chunk_mutex);
4629 	array_size = btrfs_super_sys_array_size(super_copy);
4630 	if (array_size + item_size + sizeof(disk_key)
4631 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4632 		mutex_unlock(&fs_info->chunk_mutex);
4633 		return -EFBIG;
4634 	}
4635 
4636 	ptr = super_copy->sys_chunk_array + array_size;
4637 	btrfs_cpu_key_to_disk(&disk_key, key);
4638 	memcpy(ptr, &disk_key, sizeof(disk_key));
4639 	ptr += sizeof(disk_key);
4640 	memcpy(ptr, chunk, item_size);
4641 	item_size += sizeof(disk_key);
4642 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4643 	mutex_unlock(&fs_info->chunk_mutex);
4644 
4645 	return 0;
4646 }
4647 
4648 /*
4649  * sort the devices in descending order by max_avail, total_avail
4650  */
4651 static int btrfs_cmp_device_info(const void *a, const void *b)
4652 {
4653 	const struct btrfs_device_info *di_a = a;
4654 	const struct btrfs_device_info *di_b = b;
4655 
4656 	if (di_a->max_avail > di_b->max_avail)
4657 		return -1;
4658 	if (di_a->max_avail < di_b->max_avail)
4659 		return 1;
4660 	if (di_a->total_avail > di_b->total_avail)
4661 		return -1;
4662 	if (di_a->total_avail < di_b->total_avail)
4663 		return 1;
4664 	return 0;
4665 }
4666 
4667 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4668 {
4669 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4670 		return;
4671 
4672 	btrfs_set_fs_incompat(info, RAID56);
4673 }
4674 
4675 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)		\
4676 			- sizeof(struct btrfs_chunk))		\
4677 			/ sizeof(struct btrfs_stripe) + 1)
4678 
4679 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4680 				- 2 * sizeof(struct btrfs_disk_key)	\
4681 				- 2 * sizeof(struct btrfs_chunk))	\
4682 				/ sizeof(struct btrfs_stripe) + 1)
4683 
4684 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4685 			       u64 start, u64 type)
4686 {
4687 	struct btrfs_fs_info *info = trans->fs_info;
4688 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4689 	struct btrfs_device *device;
4690 	struct map_lookup *map = NULL;
4691 	struct extent_map_tree *em_tree;
4692 	struct extent_map *em;
4693 	struct btrfs_device_info *devices_info = NULL;
4694 	u64 total_avail;
4695 	int num_stripes;	/* total number of stripes to allocate */
4696 	int data_stripes;	/* number of stripes that count for
4697 				   block group size */
4698 	int sub_stripes;	/* sub_stripes info for map */
4699 	int dev_stripes;	/* stripes per dev */
4700 	int devs_max;		/* max devs to use */
4701 	int devs_min;		/* min devs needed */
4702 	int devs_increment;	/* ndevs has to be a multiple of this */
4703 	int ncopies;		/* how many copies to data has */
4704 	int ret;
4705 	u64 max_stripe_size;
4706 	u64 max_chunk_size;
4707 	u64 stripe_size;
4708 	u64 num_bytes;
4709 	int ndevs;
4710 	int i;
4711 	int j;
4712 	int index;
4713 
4714 	BUG_ON(!alloc_profile_is_valid(type, 0));
4715 
4716 	if (list_empty(&fs_devices->alloc_list))
4717 		return -ENOSPC;
4718 
4719 	index = __get_raid_index(type);
4720 
4721 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4722 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4723 	devs_max = btrfs_raid_array[index].devs_max;
4724 	devs_min = btrfs_raid_array[index].devs_min;
4725 	devs_increment = btrfs_raid_array[index].devs_increment;
4726 	ncopies = btrfs_raid_array[index].ncopies;
4727 
4728 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4729 		max_stripe_size = SZ_1G;
4730 		max_chunk_size = 10 * max_stripe_size;
4731 		if (!devs_max)
4732 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4733 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4734 		/* for larger filesystems, use larger metadata chunks */
4735 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4736 			max_stripe_size = SZ_1G;
4737 		else
4738 			max_stripe_size = SZ_256M;
4739 		max_chunk_size = max_stripe_size;
4740 		if (!devs_max)
4741 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4742 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4743 		max_stripe_size = SZ_32M;
4744 		max_chunk_size = 2 * max_stripe_size;
4745 		if (!devs_max)
4746 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4747 	} else {
4748 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4749 		       type);
4750 		BUG_ON(1);
4751 	}
4752 
4753 	/* we don't want a chunk larger than 10% of writeable space */
4754 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4755 			     max_chunk_size);
4756 
4757 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4758 			       GFP_NOFS);
4759 	if (!devices_info)
4760 		return -ENOMEM;
4761 
4762 	/*
4763 	 * in the first pass through the devices list, we gather information
4764 	 * about the available holes on each device.
4765 	 */
4766 	ndevs = 0;
4767 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4768 		u64 max_avail;
4769 		u64 dev_offset;
4770 
4771 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4772 			WARN(1, KERN_ERR
4773 			       "BTRFS: read-only device in alloc_list\n");
4774 			continue;
4775 		}
4776 
4777 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4778 					&device->dev_state) ||
4779 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4780 			continue;
4781 
4782 		if (device->total_bytes > device->bytes_used)
4783 			total_avail = device->total_bytes - device->bytes_used;
4784 		else
4785 			total_avail = 0;
4786 
4787 		/* If there is no space on this device, skip it. */
4788 		if (total_avail == 0)
4789 			continue;
4790 
4791 		ret = find_free_dev_extent(trans, device,
4792 					   max_stripe_size * dev_stripes,
4793 					   &dev_offset, &max_avail);
4794 		if (ret && ret != -ENOSPC)
4795 			goto error;
4796 
4797 		if (ret == 0)
4798 			max_avail = max_stripe_size * dev_stripes;
4799 
4800 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4801 			continue;
4802 
4803 		if (ndevs == fs_devices->rw_devices) {
4804 			WARN(1, "%s: found more than %llu devices\n",
4805 			     __func__, fs_devices->rw_devices);
4806 			break;
4807 		}
4808 		devices_info[ndevs].dev_offset = dev_offset;
4809 		devices_info[ndevs].max_avail = max_avail;
4810 		devices_info[ndevs].total_avail = total_avail;
4811 		devices_info[ndevs].dev = device;
4812 		++ndevs;
4813 	}
4814 
4815 	/*
4816 	 * now sort the devices by hole size / available space
4817 	 */
4818 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4819 	     btrfs_cmp_device_info, NULL);
4820 
4821 	/* round down to number of usable stripes */
4822 	ndevs = round_down(ndevs, devs_increment);
4823 
4824 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4825 		ret = -ENOSPC;
4826 		goto error;
4827 	}
4828 
4829 	ndevs = min(ndevs, devs_max);
4830 
4831 	/*
4832 	 * The primary goal is to maximize the number of stripes, so use as
4833 	 * many devices as possible, even if the stripes are not maximum sized.
4834 	 *
4835 	 * The DUP profile stores more than one stripe per device, the
4836 	 * max_avail is the total size so we have to adjust.
4837 	 */
4838 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4839 	num_stripes = ndevs * dev_stripes;
4840 
4841 	/*
4842 	 * this will have to be fixed for RAID1 and RAID10 over
4843 	 * more drives
4844 	 */
4845 	data_stripes = num_stripes / ncopies;
4846 
4847 	if (type & BTRFS_BLOCK_GROUP_RAID5)
4848 		data_stripes = num_stripes - 1;
4849 
4850 	if (type & BTRFS_BLOCK_GROUP_RAID6)
4851 		data_stripes = num_stripes - 2;
4852 
4853 	/*
4854 	 * Use the number of data stripes to figure out how big this chunk
4855 	 * is really going to be in terms of logical address space,
4856 	 * and compare that answer with the max chunk size
4857 	 */
4858 	if (stripe_size * data_stripes > max_chunk_size) {
4859 		u64 mask = (1ULL << 24) - 1;
4860 
4861 		stripe_size = div_u64(max_chunk_size, data_stripes);
4862 
4863 		/* bump the answer up to a 16MB boundary */
4864 		stripe_size = (stripe_size + mask) & ~mask;
4865 
4866 		/* but don't go higher than the limits we found
4867 		 * while searching for free extents
4868 		 */
4869 		if (stripe_size > devices_info[ndevs-1].max_avail)
4870 			stripe_size = devices_info[ndevs-1].max_avail;
4871 	}
4872 
4873 	/* align to BTRFS_STRIPE_LEN */
4874 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4875 
4876 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4877 	if (!map) {
4878 		ret = -ENOMEM;
4879 		goto error;
4880 	}
4881 	map->num_stripes = num_stripes;
4882 
4883 	for (i = 0; i < ndevs; ++i) {
4884 		for (j = 0; j < dev_stripes; ++j) {
4885 			int s = i * dev_stripes + j;
4886 			map->stripes[s].dev = devices_info[i].dev;
4887 			map->stripes[s].physical = devices_info[i].dev_offset +
4888 						   j * stripe_size;
4889 		}
4890 	}
4891 	map->stripe_len = BTRFS_STRIPE_LEN;
4892 	map->io_align = BTRFS_STRIPE_LEN;
4893 	map->io_width = BTRFS_STRIPE_LEN;
4894 	map->type = type;
4895 	map->sub_stripes = sub_stripes;
4896 
4897 	num_bytes = stripe_size * data_stripes;
4898 
4899 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4900 
4901 	em = alloc_extent_map();
4902 	if (!em) {
4903 		kfree(map);
4904 		ret = -ENOMEM;
4905 		goto error;
4906 	}
4907 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4908 	em->map_lookup = map;
4909 	em->start = start;
4910 	em->len = num_bytes;
4911 	em->block_start = 0;
4912 	em->block_len = em->len;
4913 	em->orig_block_len = stripe_size;
4914 
4915 	em_tree = &info->mapping_tree.map_tree;
4916 	write_lock(&em_tree->lock);
4917 	ret = add_extent_mapping(em_tree, em, 0);
4918 	if (ret) {
4919 		write_unlock(&em_tree->lock);
4920 		free_extent_map(em);
4921 		goto error;
4922 	}
4923 
4924 	list_add_tail(&em->list, &trans->transaction->pending_chunks);
4925 	refcount_inc(&em->refs);
4926 	write_unlock(&em_tree->lock);
4927 
4928 	ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4929 	if (ret)
4930 		goto error_del_extent;
4931 
4932 	for (i = 0; i < map->num_stripes; i++) {
4933 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4934 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4935 	}
4936 
4937 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4938 
4939 	free_extent_map(em);
4940 	check_raid56_incompat_flag(info, type);
4941 
4942 	kfree(devices_info);
4943 	return 0;
4944 
4945 error_del_extent:
4946 	write_lock(&em_tree->lock);
4947 	remove_extent_mapping(em_tree, em);
4948 	write_unlock(&em_tree->lock);
4949 
4950 	/* One for our allocation */
4951 	free_extent_map(em);
4952 	/* One for the tree reference */
4953 	free_extent_map(em);
4954 	/* One for the pending_chunks list reference */
4955 	free_extent_map(em);
4956 error:
4957 	kfree(devices_info);
4958 	return ret;
4959 }
4960 
4961 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4962 				struct btrfs_fs_info *fs_info,
4963 				u64 chunk_offset, u64 chunk_size)
4964 {
4965 	struct btrfs_root *extent_root = fs_info->extent_root;
4966 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4967 	struct btrfs_key key;
4968 	struct btrfs_device *device;
4969 	struct btrfs_chunk *chunk;
4970 	struct btrfs_stripe *stripe;
4971 	struct extent_map *em;
4972 	struct map_lookup *map;
4973 	size_t item_size;
4974 	u64 dev_offset;
4975 	u64 stripe_size;
4976 	int i = 0;
4977 	int ret = 0;
4978 
4979 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4980 	if (IS_ERR(em))
4981 		return PTR_ERR(em);
4982 
4983 	map = em->map_lookup;
4984 	item_size = btrfs_chunk_item_size(map->num_stripes);
4985 	stripe_size = em->orig_block_len;
4986 
4987 	chunk = kzalloc(item_size, GFP_NOFS);
4988 	if (!chunk) {
4989 		ret = -ENOMEM;
4990 		goto out;
4991 	}
4992 
4993 	/*
4994 	 * Take the device list mutex to prevent races with the final phase of
4995 	 * a device replace operation that replaces the device object associated
4996 	 * with the map's stripes, because the device object's id can change
4997 	 * at any time during that final phase of the device replace operation
4998 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4999 	 */
5000 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5001 	for (i = 0; i < map->num_stripes; i++) {
5002 		device = map->stripes[i].dev;
5003 		dev_offset = map->stripes[i].physical;
5004 
5005 		ret = btrfs_update_device(trans, device);
5006 		if (ret)
5007 			break;
5008 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5009 					     dev_offset, stripe_size);
5010 		if (ret)
5011 			break;
5012 	}
5013 	if (ret) {
5014 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5015 		goto out;
5016 	}
5017 
5018 	stripe = &chunk->stripe;
5019 	for (i = 0; i < map->num_stripes; i++) {
5020 		device = map->stripes[i].dev;
5021 		dev_offset = map->stripes[i].physical;
5022 
5023 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5024 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5025 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5026 		stripe++;
5027 	}
5028 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5029 
5030 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5031 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5032 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5033 	btrfs_set_stack_chunk_type(chunk, map->type);
5034 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5035 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5036 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5037 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5038 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5039 
5040 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5041 	key.type = BTRFS_CHUNK_ITEM_KEY;
5042 	key.offset = chunk_offset;
5043 
5044 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5045 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5046 		/*
5047 		 * TODO: Cleanup of inserted chunk root in case of
5048 		 * failure.
5049 		 */
5050 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5051 	}
5052 
5053 out:
5054 	kfree(chunk);
5055 	free_extent_map(em);
5056 	return ret;
5057 }
5058 
5059 /*
5060  * Chunk allocation falls into two parts. The first part does works
5061  * that make the new allocated chunk useable, but not do any operation
5062  * that modifies the chunk tree. The second part does the works that
5063  * require modifying the chunk tree. This division is important for the
5064  * bootstrap process of adding storage to a seed btrfs.
5065  */
5066 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5067 		      struct btrfs_fs_info *fs_info, u64 type)
5068 {
5069 	u64 chunk_offset;
5070 
5071 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5072 	chunk_offset = find_next_chunk(fs_info);
5073 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5074 }
5075 
5076 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5077 					 struct btrfs_fs_info *fs_info)
5078 {
5079 	u64 chunk_offset;
5080 	u64 sys_chunk_offset;
5081 	u64 alloc_profile;
5082 	int ret;
5083 
5084 	chunk_offset = find_next_chunk(fs_info);
5085 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5086 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5087 	if (ret)
5088 		return ret;
5089 
5090 	sys_chunk_offset = find_next_chunk(fs_info);
5091 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5092 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5093 	return ret;
5094 }
5095 
5096 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5097 {
5098 	int max_errors;
5099 
5100 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5101 			 BTRFS_BLOCK_GROUP_RAID10 |
5102 			 BTRFS_BLOCK_GROUP_RAID5 |
5103 			 BTRFS_BLOCK_GROUP_DUP)) {
5104 		max_errors = 1;
5105 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5106 		max_errors = 2;
5107 	} else {
5108 		max_errors = 0;
5109 	}
5110 
5111 	return max_errors;
5112 }
5113 
5114 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5115 {
5116 	struct extent_map *em;
5117 	struct map_lookup *map;
5118 	int readonly = 0;
5119 	int miss_ndevs = 0;
5120 	int i;
5121 
5122 	em = get_chunk_map(fs_info, chunk_offset, 1);
5123 	if (IS_ERR(em))
5124 		return 1;
5125 
5126 	map = em->map_lookup;
5127 	for (i = 0; i < map->num_stripes; i++) {
5128 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5129 					&map->stripes[i].dev->dev_state)) {
5130 			miss_ndevs++;
5131 			continue;
5132 		}
5133 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5134 					&map->stripes[i].dev->dev_state)) {
5135 			readonly = 1;
5136 			goto end;
5137 		}
5138 	}
5139 
5140 	/*
5141 	 * If the number of missing devices is larger than max errors,
5142 	 * we can not write the data into that chunk successfully, so
5143 	 * set it readonly.
5144 	 */
5145 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5146 		readonly = 1;
5147 end:
5148 	free_extent_map(em);
5149 	return readonly;
5150 }
5151 
5152 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5153 {
5154 	extent_map_tree_init(&tree->map_tree);
5155 }
5156 
5157 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5158 {
5159 	struct extent_map *em;
5160 
5161 	while (1) {
5162 		write_lock(&tree->map_tree.lock);
5163 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5164 		if (em)
5165 			remove_extent_mapping(&tree->map_tree, em);
5166 		write_unlock(&tree->map_tree.lock);
5167 		if (!em)
5168 			break;
5169 		/* once for us */
5170 		free_extent_map(em);
5171 		/* once for the tree */
5172 		free_extent_map(em);
5173 	}
5174 }
5175 
5176 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5177 {
5178 	struct extent_map *em;
5179 	struct map_lookup *map;
5180 	int ret;
5181 
5182 	em = get_chunk_map(fs_info, logical, len);
5183 	if (IS_ERR(em))
5184 		/*
5185 		 * We could return errors for these cases, but that could get
5186 		 * ugly and we'd probably do the same thing which is just not do
5187 		 * anything else and exit, so return 1 so the callers don't try
5188 		 * to use other copies.
5189 		 */
5190 		return 1;
5191 
5192 	map = em->map_lookup;
5193 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5194 		ret = map->num_stripes;
5195 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5196 		ret = map->sub_stripes;
5197 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5198 		ret = 2;
5199 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5200 		/*
5201 		 * There could be two corrupted data stripes, we need
5202 		 * to loop retry in order to rebuild the correct data.
5203 		 *
5204 		 * Fail a stripe at a time on every retry except the
5205 		 * stripe under reconstruction.
5206 		 */
5207 		ret = map->num_stripes;
5208 	else
5209 		ret = 1;
5210 	free_extent_map(em);
5211 
5212 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5213 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5214 	    fs_info->dev_replace.tgtdev)
5215 		ret++;
5216 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5217 
5218 	return ret;
5219 }
5220 
5221 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5222 				    u64 logical)
5223 {
5224 	struct extent_map *em;
5225 	struct map_lookup *map;
5226 	unsigned long len = fs_info->sectorsize;
5227 
5228 	em = get_chunk_map(fs_info, logical, len);
5229 
5230 	if (!WARN_ON(IS_ERR(em))) {
5231 		map = em->map_lookup;
5232 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5233 			len = map->stripe_len * nr_data_stripes(map);
5234 		free_extent_map(em);
5235 	}
5236 	return len;
5237 }
5238 
5239 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5240 {
5241 	struct extent_map *em;
5242 	struct map_lookup *map;
5243 	int ret = 0;
5244 
5245 	em = get_chunk_map(fs_info, logical, len);
5246 
5247 	if(!WARN_ON(IS_ERR(em))) {
5248 		map = em->map_lookup;
5249 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5250 			ret = 1;
5251 		free_extent_map(em);
5252 	}
5253 	return ret;
5254 }
5255 
5256 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5257 			    struct map_lookup *map, int first, int num,
5258 			    int optimal, int dev_replace_is_ongoing)
5259 {
5260 	int i;
5261 	int tolerance;
5262 	struct btrfs_device *srcdev;
5263 
5264 	if (dev_replace_is_ongoing &&
5265 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5266 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5267 		srcdev = fs_info->dev_replace.srcdev;
5268 	else
5269 		srcdev = NULL;
5270 
5271 	/*
5272 	 * try to avoid the drive that is the source drive for a
5273 	 * dev-replace procedure, only choose it if no other non-missing
5274 	 * mirror is available
5275 	 */
5276 	for (tolerance = 0; tolerance < 2; tolerance++) {
5277 		if (map->stripes[optimal].dev->bdev &&
5278 		    (tolerance || map->stripes[optimal].dev != srcdev))
5279 			return optimal;
5280 		for (i = first; i < first + num; i++) {
5281 			if (map->stripes[i].dev->bdev &&
5282 			    (tolerance || map->stripes[i].dev != srcdev))
5283 				return i;
5284 		}
5285 	}
5286 
5287 	/* we couldn't find one that doesn't fail.  Just return something
5288 	 * and the io error handling code will clean up eventually
5289 	 */
5290 	return optimal;
5291 }
5292 
5293 static inline int parity_smaller(u64 a, u64 b)
5294 {
5295 	return a > b;
5296 }
5297 
5298 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5299 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5300 {
5301 	struct btrfs_bio_stripe s;
5302 	int i;
5303 	u64 l;
5304 	int again = 1;
5305 
5306 	while (again) {
5307 		again = 0;
5308 		for (i = 0; i < num_stripes - 1; i++) {
5309 			if (parity_smaller(bbio->raid_map[i],
5310 					   bbio->raid_map[i+1])) {
5311 				s = bbio->stripes[i];
5312 				l = bbio->raid_map[i];
5313 				bbio->stripes[i] = bbio->stripes[i+1];
5314 				bbio->raid_map[i] = bbio->raid_map[i+1];
5315 				bbio->stripes[i+1] = s;
5316 				bbio->raid_map[i+1] = l;
5317 
5318 				again = 1;
5319 			}
5320 		}
5321 	}
5322 }
5323 
5324 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5325 {
5326 	struct btrfs_bio *bbio = kzalloc(
5327 		 /* the size of the btrfs_bio */
5328 		sizeof(struct btrfs_bio) +
5329 		/* plus the variable array for the stripes */
5330 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5331 		/* plus the variable array for the tgt dev */
5332 		sizeof(int) * (real_stripes) +
5333 		/*
5334 		 * plus the raid_map, which includes both the tgt dev
5335 		 * and the stripes
5336 		 */
5337 		sizeof(u64) * (total_stripes),
5338 		GFP_NOFS|__GFP_NOFAIL);
5339 
5340 	atomic_set(&bbio->error, 0);
5341 	refcount_set(&bbio->refs, 1);
5342 
5343 	return bbio;
5344 }
5345 
5346 void btrfs_get_bbio(struct btrfs_bio *bbio)
5347 {
5348 	WARN_ON(!refcount_read(&bbio->refs));
5349 	refcount_inc(&bbio->refs);
5350 }
5351 
5352 void btrfs_put_bbio(struct btrfs_bio *bbio)
5353 {
5354 	if (!bbio)
5355 		return;
5356 	if (refcount_dec_and_test(&bbio->refs))
5357 		kfree(bbio);
5358 }
5359 
5360 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5361 /*
5362  * Please note that, discard won't be sent to target device of device
5363  * replace.
5364  */
5365 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5366 					 u64 logical, u64 length,
5367 					 struct btrfs_bio **bbio_ret)
5368 {
5369 	struct extent_map *em;
5370 	struct map_lookup *map;
5371 	struct btrfs_bio *bbio;
5372 	u64 offset;
5373 	u64 stripe_nr;
5374 	u64 stripe_nr_end;
5375 	u64 stripe_end_offset;
5376 	u64 stripe_cnt;
5377 	u64 stripe_len;
5378 	u64 stripe_offset;
5379 	u64 num_stripes;
5380 	u32 stripe_index;
5381 	u32 factor = 0;
5382 	u32 sub_stripes = 0;
5383 	u64 stripes_per_dev = 0;
5384 	u32 remaining_stripes = 0;
5385 	u32 last_stripe = 0;
5386 	int ret = 0;
5387 	int i;
5388 
5389 	/* discard always return a bbio */
5390 	ASSERT(bbio_ret);
5391 
5392 	em = get_chunk_map(fs_info, logical, length);
5393 	if (IS_ERR(em))
5394 		return PTR_ERR(em);
5395 
5396 	map = em->map_lookup;
5397 	/* we don't discard raid56 yet */
5398 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5399 		ret = -EOPNOTSUPP;
5400 		goto out;
5401 	}
5402 
5403 	offset = logical - em->start;
5404 	length = min_t(u64, em->len - offset, length);
5405 
5406 	stripe_len = map->stripe_len;
5407 	/*
5408 	 * stripe_nr counts the total number of stripes we have to stride
5409 	 * to get to this block
5410 	 */
5411 	stripe_nr = div64_u64(offset, stripe_len);
5412 
5413 	/* stripe_offset is the offset of this block in its stripe */
5414 	stripe_offset = offset - stripe_nr * stripe_len;
5415 
5416 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5417 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5418 	stripe_cnt = stripe_nr_end - stripe_nr;
5419 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5420 			    (offset + length);
5421 	/*
5422 	 * after this, stripe_nr is the number of stripes on this
5423 	 * device we have to walk to find the data, and stripe_index is
5424 	 * the number of our device in the stripe array
5425 	 */
5426 	num_stripes = 1;
5427 	stripe_index = 0;
5428 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5429 			 BTRFS_BLOCK_GROUP_RAID10)) {
5430 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5431 			sub_stripes = 1;
5432 		else
5433 			sub_stripes = map->sub_stripes;
5434 
5435 		factor = map->num_stripes / sub_stripes;
5436 		num_stripes = min_t(u64, map->num_stripes,
5437 				    sub_stripes * stripe_cnt);
5438 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5439 		stripe_index *= sub_stripes;
5440 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5441 					      &remaining_stripes);
5442 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5443 		last_stripe *= sub_stripes;
5444 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5445 				BTRFS_BLOCK_GROUP_DUP)) {
5446 		num_stripes = map->num_stripes;
5447 	} else {
5448 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5449 					&stripe_index);
5450 	}
5451 
5452 	bbio = alloc_btrfs_bio(num_stripes, 0);
5453 	if (!bbio) {
5454 		ret = -ENOMEM;
5455 		goto out;
5456 	}
5457 
5458 	for (i = 0; i < num_stripes; i++) {
5459 		bbio->stripes[i].physical =
5460 			map->stripes[stripe_index].physical +
5461 			stripe_offset + stripe_nr * map->stripe_len;
5462 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5463 
5464 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5465 				 BTRFS_BLOCK_GROUP_RAID10)) {
5466 			bbio->stripes[i].length = stripes_per_dev *
5467 				map->stripe_len;
5468 
5469 			if (i / sub_stripes < remaining_stripes)
5470 				bbio->stripes[i].length +=
5471 					map->stripe_len;
5472 
5473 			/*
5474 			 * Special for the first stripe and
5475 			 * the last stripe:
5476 			 *
5477 			 * |-------|...|-------|
5478 			 *     |----------|
5479 			 *    off     end_off
5480 			 */
5481 			if (i < sub_stripes)
5482 				bbio->stripes[i].length -=
5483 					stripe_offset;
5484 
5485 			if (stripe_index >= last_stripe &&
5486 			    stripe_index <= (last_stripe +
5487 					     sub_stripes - 1))
5488 				bbio->stripes[i].length -=
5489 					stripe_end_offset;
5490 
5491 			if (i == sub_stripes - 1)
5492 				stripe_offset = 0;
5493 		} else {
5494 			bbio->stripes[i].length = length;
5495 		}
5496 
5497 		stripe_index++;
5498 		if (stripe_index == map->num_stripes) {
5499 			stripe_index = 0;
5500 			stripe_nr++;
5501 		}
5502 	}
5503 
5504 	*bbio_ret = bbio;
5505 	bbio->map_type = map->type;
5506 	bbio->num_stripes = num_stripes;
5507 out:
5508 	free_extent_map(em);
5509 	return ret;
5510 }
5511 
5512 /*
5513  * In dev-replace case, for repair case (that's the only case where the mirror
5514  * is selected explicitly when calling btrfs_map_block), blocks left of the
5515  * left cursor can also be read from the target drive.
5516  *
5517  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5518  * array of stripes.
5519  * For READ, it also needs to be supported using the same mirror number.
5520  *
5521  * If the requested block is not left of the left cursor, EIO is returned. This
5522  * can happen because btrfs_num_copies() returns one more in the dev-replace
5523  * case.
5524  */
5525 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5526 					 u64 logical, u64 length,
5527 					 u64 srcdev_devid, int *mirror_num,
5528 					 u64 *physical)
5529 {
5530 	struct btrfs_bio *bbio = NULL;
5531 	int num_stripes;
5532 	int index_srcdev = 0;
5533 	int found = 0;
5534 	u64 physical_of_found = 0;
5535 	int i;
5536 	int ret = 0;
5537 
5538 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5539 				logical, &length, &bbio, 0, 0);
5540 	if (ret) {
5541 		ASSERT(bbio == NULL);
5542 		return ret;
5543 	}
5544 
5545 	num_stripes = bbio->num_stripes;
5546 	if (*mirror_num > num_stripes) {
5547 		/*
5548 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5549 		 * that means that the requested area is not left of the left
5550 		 * cursor
5551 		 */
5552 		btrfs_put_bbio(bbio);
5553 		return -EIO;
5554 	}
5555 
5556 	/*
5557 	 * process the rest of the function using the mirror_num of the source
5558 	 * drive. Therefore look it up first.  At the end, patch the device
5559 	 * pointer to the one of the target drive.
5560 	 */
5561 	for (i = 0; i < num_stripes; i++) {
5562 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5563 			continue;
5564 
5565 		/*
5566 		 * In case of DUP, in order to keep it simple, only add the
5567 		 * mirror with the lowest physical address
5568 		 */
5569 		if (found &&
5570 		    physical_of_found <= bbio->stripes[i].physical)
5571 			continue;
5572 
5573 		index_srcdev = i;
5574 		found = 1;
5575 		physical_of_found = bbio->stripes[i].physical;
5576 	}
5577 
5578 	btrfs_put_bbio(bbio);
5579 
5580 	ASSERT(found);
5581 	if (!found)
5582 		return -EIO;
5583 
5584 	*mirror_num = index_srcdev + 1;
5585 	*physical = physical_of_found;
5586 	return ret;
5587 }
5588 
5589 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5590 				      struct btrfs_bio **bbio_ret,
5591 				      struct btrfs_dev_replace *dev_replace,
5592 				      int *num_stripes_ret, int *max_errors_ret)
5593 {
5594 	struct btrfs_bio *bbio = *bbio_ret;
5595 	u64 srcdev_devid = dev_replace->srcdev->devid;
5596 	int tgtdev_indexes = 0;
5597 	int num_stripes = *num_stripes_ret;
5598 	int max_errors = *max_errors_ret;
5599 	int i;
5600 
5601 	if (op == BTRFS_MAP_WRITE) {
5602 		int index_where_to_add;
5603 
5604 		/*
5605 		 * duplicate the write operations while the dev replace
5606 		 * procedure is running. Since the copying of the old disk to
5607 		 * the new disk takes place at run time while the filesystem is
5608 		 * mounted writable, the regular write operations to the old
5609 		 * disk have to be duplicated to go to the new disk as well.
5610 		 *
5611 		 * Note that device->missing is handled by the caller, and that
5612 		 * the write to the old disk is already set up in the stripes
5613 		 * array.
5614 		 */
5615 		index_where_to_add = num_stripes;
5616 		for (i = 0; i < num_stripes; i++) {
5617 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5618 				/* write to new disk, too */
5619 				struct btrfs_bio_stripe *new =
5620 					bbio->stripes + index_where_to_add;
5621 				struct btrfs_bio_stripe *old =
5622 					bbio->stripes + i;
5623 
5624 				new->physical = old->physical;
5625 				new->length = old->length;
5626 				new->dev = dev_replace->tgtdev;
5627 				bbio->tgtdev_map[i] = index_where_to_add;
5628 				index_where_to_add++;
5629 				max_errors++;
5630 				tgtdev_indexes++;
5631 			}
5632 		}
5633 		num_stripes = index_where_to_add;
5634 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5635 		int index_srcdev = 0;
5636 		int found = 0;
5637 		u64 physical_of_found = 0;
5638 
5639 		/*
5640 		 * During the dev-replace procedure, the target drive can also
5641 		 * be used to read data in case it is needed to repair a corrupt
5642 		 * block elsewhere. This is possible if the requested area is
5643 		 * left of the left cursor. In this area, the target drive is a
5644 		 * full copy of the source drive.
5645 		 */
5646 		for (i = 0; i < num_stripes; i++) {
5647 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5648 				/*
5649 				 * In case of DUP, in order to keep it simple,
5650 				 * only add the mirror with the lowest physical
5651 				 * address
5652 				 */
5653 				if (found &&
5654 				    physical_of_found <=
5655 				     bbio->stripes[i].physical)
5656 					continue;
5657 				index_srcdev = i;
5658 				found = 1;
5659 				physical_of_found = bbio->stripes[i].physical;
5660 			}
5661 		}
5662 		if (found) {
5663 			struct btrfs_bio_stripe *tgtdev_stripe =
5664 				bbio->stripes + num_stripes;
5665 
5666 			tgtdev_stripe->physical = physical_of_found;
5667 			tgtdev_stripe->length =
5668 				bbio->stripes[index_srcdev].length;
5669 			tgtdev_stripe->dev = dev_replace->tgtdev;
5670 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5671 
5672 			tgtdev_indexes++;
5673 			num_stripes++;
5674 		}
5675 	}
5676 
5677 	*num_stripes_ret = num_stripes;
5678 	*max_errors_ret = max_errors;
5679 	bbio->num_tgtdevs = tgtdev_indexes;
5680 	*bbio_ret = bbio;
5681 }
5682 
5683 static bool need_full_stripe(enum btrfs_map_op op)
5684 {
5685 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5686 }
5687 
5688 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5689 			     enum btrfs_map_op op,
5690 			     u64 logical, u64 *length,
5691 			     struct btrfs_bio **bbio_ret,
5692 			     int mirror_num, int need_raid_map)
5693 {
5694 	struct extent_map *em;
5695 	struct map_lookup *map;
5696 	u64 offset;
5697 	u64 stripe_offset;
5698 	u64 stripe_nr;
5699 	u64 stripe_len;
5700 	u32 stripe_index;
5701 	int i;
5702 	int ret = 0;
5703 	int num_stripes;
5704 	int max_errors = 0;
5705 	int tgtdev_indexes = 0;
5706 	struct btrfs_bio *bbio = NULL;
5707 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5708 	int dev_replace_is_ongoing = 0;
5709 	int num_alloc_stripes;
5710 	int patch_the_first_stripe_for_dev_replace = 0;
5711 	u64 physical_to_patch_in_first_stripe = 0;
5712 	u64 raid56_full_stripe_start = (u64)-1;
5713 
5714 	if (op == BTRFS_MAP_DISCARD)
5715 		return __btrfs_map_block_for_discard(fs_info, logical,
5716 						     *length, bbio_ret);
5717 
5718 	em = get_chunk_map(fs_info, logical, *length);
5719 	if (IS_ERR(em))
5720 		return PTR_ERR(em);
5721 
5722 	map = em->map_lookup;
5723 	offset = logical - em->start;
5724 
5725 	stripe_len = map->stripe_len;
5726 	stripe_nr = offset;
5727 	/*
5728 	 * stripe_nr counts the total number of stripes we have to stride
5729 	 * to get to this block
5730 	 */
5731 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5732 
5733 	stripe_offset = stripe_nr * stripe_len;
5734 	if (offset < stripe_offset) {
5735 		btrfs_crit(fs_info,
5736 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5737 			   stripe_offset, offset, em->start, logical,
5738 			   stripe_len);
5739 		free_extent_map(em);
5740 		return -EINVAL;
5741 	}
5742 
5743 	/* stripe_offset is the offset of this block in its stripe*/
5744 	stripe_offset = offset - stripe_offset;
5745 
5746 	/* if we're here for raid56, we need to know the stripe aligned start */
5747 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5748 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5749 		raid56_full_stripe_start = offset;
5750 
5751 		/* allow a write of a full stripe, but make sure we don't
5752 		 * allow straddling of stripes
5753 		 */
5754 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5755 				full_stripe_len);
5756 		raid56_full_stripe_start *= full_stripe_len;
5757 	}
5758 
5759 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5760 		u64 max_len;
5761 		/* For writes to RAID[56], allow a full stripeset across all disks.
5762 		   For other RAID types and for RAID[56] reads, just allow a single
5763 		   stripe (on a single disk). */
5764 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5765 		    (op == BTRFS_MAP_WRITE)) {
5766 			max_len = stripe_len * nr_data_stripes(map) -
5767 				(offset - raid56_full_stripe_start);
5768 		} else {
5769 			/* we limit the length of each bio to what fits in a stripe */
5770 			max_len = stripe_len - stripe_offset;
5771 		}
5772 		*length = min_t(u64, em->len - offset, max_len);
5773 	} else {
5774 		*length = em->len - offset;
5775 	}
5776 
5777 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5778 	   it cares about is the length */
5779 	if (!bbio_ret)
5780 		goto out;
5781 
5782 	btrfs_dev_replace_lock(dev_replace, 0);
5783 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5784 	if (!dev_replace_is_ongoing)
5785 		btrfs_dev_replace_unlock(dev_replace, 0);
5786 	else
5787 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5788 
5789 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5790 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5791 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5792 						    dev_replace->srcdev->devid,
5793 						    &mirror_num,
5794 					    &physical_to_patch_in_first_stripe);
5795 		if (ret)
5796 			goto out;
5797 		else
5798 			patch_the_first_stripe_for_dev_replace = 1;
5799 	} else if (mirror_num > map->num_stripes) {
5800 		mirror_num = 0;
5801 	}
5802 
5803 	num_stripes = 1;
5804 	stripe_index = 0;
5805 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5806 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5807 				&stripe_index);
5808 		if (!need_full_stripe(op))
5809 			mirror_num = 1;
5810 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5811 		if (need_full_stripe(op))
5812 			num_stripes = map->num_stripes;
5813 		else if (mirror_num)
5814 			stripe_index = mirror_num - 1;
5815 		else {
5816 			stripe_index = find_live_mirror(fs_info, map, 0,
5817 					    map->num_stripes,
5818 					    current->pid % map->num_stripes,
5819 					    dev_replace_is_ongoing);
5820 			mirror_num = stripe_index + 1;
5821 		}
5822 
5823 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5824 		if (need_full_stripe(op)) {
5825 			num_stripes = map->num_stripes;
5826 		} else if (mirror_num) {
5827 			stripe_index = mirror_num - 1;
5828 		} else {
5829 			mirror_num = 1;
5830 		}
5831 
5832 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5833 		u32 factor = map->num_stripes / map->sub_stripes;
5834 
5835 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5836 		stripe_index *= map->sub_stripes;
5837 
5838 		if (need_full_stripe(op))
5839 			num_stripes = map->sub_stripes;
5840 		else if (mirror_num)
5841 			stripe_index += mirror_num - 1;
5842 		else {
5843 			int old_stripe_index = stripe_index;
5844 			stripe_index = find_live_mirror(fs_info, map,
5845 					      stripe_index,
5846 					      map->sub_stripes, stripe_index +
5847 					      current->pid % map->sub_stripes,
5848 					      dev_replace_is_ongoing);
5849 			mirror_num = stripe_index - old_stripe_index + 1;
5850 		}
5851 
5852 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5853 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5854 			/* push stripe_nr back to the start of the full stripe */
5855 			stripe_nr = div64_u64(raid56_full_stripe_start,
5856 					stripe_len * nr_data_stripes(map));
5857 
5858 			/* RAID[56] write or recovery. Return all stripes */
5859 			num_stripes = map->num_stripes;
5860 			max_errors = nr_parity_stripes(map);
5861 
5862 			*length = map->stripe_len;
5863 			stripe_index = 0;
5864 			stripe_offset = 0;
5865 		} else {
5866 			/*
5867 			 * Mirror #0 or #1 means the original data block.
5868 			 * Mirror #2 is RAID5 parity block.
5869 			 * Mirror #3 is RAID6 Q block.
5870 			 */
5871 			stripe_nr = div_u64_rem(stripe_nr,
5872 					nr_data_stripes(map), &stripe_index);
5873 			if (mirror_num > 1)
5874 				stripe_index = nr_data_stripes(map) +
5875 						mirror_num - 2;
5876 
5877 			/* We distribute the parity blocks across stripes */
5878 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5879 					&stripe_index);
5880 			if (!need_full_stripe(op) && mirror_num <= 1)
5881 				mirror_num = 1;
5882 		}
5883 	} else {
5884 		/*
5885 		 * after this, stripe_nr is the number of stripes on this
5886 		 * device we have to walk to find the data, and stripe_index is
5887 		 * the number of our device in the stripe array
5888 		 */
5889 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5890 				&stripe_index);
5891 		mirror_num = stripe_index + 1;
5892 	}
5893 	if (stripe_index >= map->num_stripes) {
5894 		btrfs_crit(fs_info,
5895 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5896 			   stripe_index, map->num_stripes);
5897 		ret = -EINVAL;
5898 		goto out;
5899 	}
5900 
5901 	num_alloc_stripes = num_stripes;
5902 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5903 		if (op == BTRFS_MAP_WRITE)
5904 			num_alloc_stripes <<= 1;
5905 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5906 			num_alloc_stripes++;
5907 		tgtdev_indexes = num_stripes;
5908 	}
5909 
5910 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5911 	if (!bbio) {
5912 		ret = -ENOMEM;
5913 		goto out;
5914 	}
5915 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5916 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5917 
5918 	/* build raid_map */
5919 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5920 	    (need_full_stripe(op) || mirror_num > 1)) {
5921 		u64 tmp;
5922 		unsigned rot;
5923 
5924 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5925 				 sizeof(struct btrfs_bio_stripe) *
5926 				 num_alloc_stripes +
5927 				 sizeof(int) * tgtdev_indexes);
5928 
5929 		/* Work out the disk rotation on this stripe-set */
5930 		div_u64_rem(stripe_nr, num_stripes, &rot);
5931 
5932 		/* Fill in the logical address of each stripe */
5933 		tmp = stripe_nr * nr_data_stripes(map);
5934 		for (i = 0; i < nr_data_stripes(map); i++)
5935 			bbio->raid_map[(i+rot) % num_stripes] =
5936 				em->start + (tmp + i) * map->stripe_len;
5937 
5938 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5939 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5940 			bbio->raid_map[(i+rot+1) % num_stripes] =
5941 				RAID6_Q_STRIPE;
5942 	}
5943 
5944 
5945 	for (i = 0; i < num_stripes; i++) {
5946 		bbio->stripes[i].physical =
5947 			map->stripes[stripe_index].physical +
5948 			stripe_offset +
5949 			stripe_nr * map->stripe_len;
5950 		bbio->stripes[i].dev =
5951 			map->stripes[stripe_index].dev;
5952 		stripe_index++;
5953 	}
5954 
5955 	if (need_full_stripe(op))
5956 		max_errors = btrfs_chunk_max_errors(map);
5957 
5958 	if (bbio->raid_map)
5959 		sort_parity_stripes(bbio, num_stripes);
5960 
5961 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5962 	    need_full_stripe(op)) {
5963 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5964 					  &max_errors);
5965 	}
5966 
5967 	*bbio_ret = bbio;
5968 	bbio->map_type = map->type;
5969 	bbio->num_stripes = num_stripes;
5970 	bbio->max_errors = max_errors;
5971 	bbio->mirror_num = mirror_num;
5972 
5973 	/*
5974 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5975 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5976 	 * available as a mirror
5977 	 */
5978 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5979 		WARN_ON(num_stripes > 1);
5980 		bbio->stripes[0].dev = dev_replace->tgtdev;
5981 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5982 		bbio->mirror_num = map->num_stripes + 1;
5983 	}
5984 out:
5985 	if (dev_replace_is_ongoing) {
5986 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5987 		btrfs_dev_replace_unlock(dev_replace, 0);
5988 	}
5989 	free_extent_map(em);
5990 	return ret;
5991 }
5992 
5993 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5994 		      u64 logical, u64 *length,
5995 		      struct btrfs_bio **bbio_ret, int mirror_num)
5996 {
5997 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5998 				 mirror_num, 0);
5999 }
6000 
6001 /* For Scrub/replace */
6002 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6003 		     u64 logical, u64 *length,
6004 		     struct btrfs_bio **bbio_ret)
6005 {
6006 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6007 }
6008 
6009 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
6010 		     u64 chunk_start, u64 physical, u64 devid,
6011 		     u64 **logical, int *naddrs, int *stripe_len)
6012 {
6013 	struct extent_map *em;
6014 	struct map_lookup *map;
6015 	u64 *buf;
6016 	u64 bytenr;
6017 	u64 length;
6018 	u64 stripe_nr;
6019 	u64 rmap_len;
6020 	int i, j, nr = 0;
6021 
6022 	em = get_chunk_map(fs_info, chunk_start, 1);
6023 	if (IS_ERR(em))
6024 		return -EIO;
6025 
6026 	map = em->map_lookup;
6027 	length = em->len;
6028 	rmap_len = map->stripe_len;
6029 
6030 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6031 		length = div_u64(length, map->num_stripes / map->sub_stripes);
6032 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6033 		length = div_u64(length, map->num_stripes);
6034 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6035 		length = div_u64(length, nr_data_stripes(map));
6036 		rmap_len = map->stripe_len * nr_data_stripes(map);
6037 	}
6038 
6039 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6040 	BUG_ON(!buf); /* -ENOMEM */
6041 
6042 	for (i = 0; i < map->num_stripes; i++) {
6043 		if (devid && map->stripes[i].dev->devid != devid)
6044 			continue;
6045 		if (map->stripes[i].physical > physical ||
6046 		    map->stripes[i].physical + length <= physical)
6047 			continue;
6048 
6049 		stripe_nr = physical - map->stripes[i].physical;
6050 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6051 
6052 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6053 			stripe_nr = stripe_nr * map->num_stripes + i;
6054 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6055 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6056 			stripe_nr = stripe_nr * map->num_stripes + i;
6057 		} /* else if RAID[56], multiply by nr_data_stripes().
6058 		   * Alternatively, just use rmap_len below instead of
6059 		   * map->stripe_len */
6060 
6061 		bytenr = chunk_start + stripe_nr * rmap_len;
6062 		WARN_ON(nr >= map->num_stripes);
6063 		for (j = 0; j < nr; j++) {
6064 			if (buf[j] == bytenr)
6065 				break;
6066 		}
6067 		if (j == nr) {
6068 			WARN_ON(nr >= map->num_stripes);
6069 			buf[nr++] = bytenr;
6070 		}
6071 	}
6072 
6073 	*logical = buf;
6074 	*naddrs = nr;
6075 	*stripe_len = rmap_len;
6076 
6077 	free_extent_map(em);
6078 	return 0;
6079 }
6080 
6081 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6082 {
6083 	bio->bi_private = bbio->private;
6084 	bio->bi_end_io = bbio->end_io;
6085 	bio_endio(bio);
6086 
6087 	btrfs_put_bbio(bbio);
6088 }
6089 
6090 static void btrfs_end_bio(struct bio *bio)
6091 {
6092 	struct btrfs_bio *bbio = bio->bi_private;
6093 	int is_orig_bio = 0;
6094 
6095 	if (bio->bi_status) {
6096 		atomic_inc(&bbio->error);
6097 		if (bio->bi_status == BLK_STS_IOERR ||
6098 		    bio->bi_status == BLK_STS_TARGET) {
6099 			unsigned int stripe_index =
6100 				btrfs_io_bio(bio)->stripe_index;
6101 			struct btrfs_device *dev;
6102 
6103 			BUG_ON(stripe_index >= bbio->num_stripes);
6104 			dev = bbio->stripes[stripe_index].dev;
6105 			if (dev->bdev) {
6106 				if (bio_op(bio) == REQ_OP_WRITE)
6107 					btrfs_dev_stat_inc_and_print(dev,
6108 						BTRFS_DEV_STAT_WRITE_ERRS);
6109 				else
6110 					btrfs_dev_stat_inc_and_print(dev,
6111 						BTRFS_DEV_STAT_READ_ERRS);
6112 				if (bio->bi_opf & REQ_PREFLUSH)
6113 					btrfs_dev_stat_inc_and_print(dev,
6114 						BTRFS_DEV_STAT_FLUSH_ERRS);
6115 			}
6116 		}
6117 	}
6118 
6119 	if (bio == bbio->orig_bio)
6120 		is_orig_bio = 1;
6121 
6122 	btrfs_bio_counter_dec(bbio->fs_info);
6123 
6124 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6125 		if (!is_orig_bio) {
6126 			bio_put(bio);
6127 			bio = bbio->orig_bio;
6128 		}
6129 
6130 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6131 		/* only send an error to the higher layers if it is
6132 		 * beyond the tolerance of the btrfs bio
6133 		 */
6134 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6135 			bio->bi_status = BLK_STS_IOERR;
6136 		} else {
6137 			/*
6138 			 * this bio is actually up to date, we didn't
6139 			 * go over the max number of errors
6140 			 */
6141 			bio->bi_status = BLK_STS_OK;
6142 		}
6143 
6144 		btrfs_end_bbio(bbio, bio);
6145 	} else if (!is_orig_bio) {
6146 		bio_put(bio);
6147 	}
6148 }
6149 
6150 /*
6151  * see run_scheduled_bios for a description of why bios are collected for
6152  * async submit.
6153  *
6154  * This will add one bio to the pending list for a device and make sure
6155  * the work struct is scheduled.
6156  */
6157 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6158 					struct bio *bio)
6159 {
6160 	struct btrfs_fs_info *fs_info = device->fs_info;
6161 	int should_queue = 1;
6162 	struct btrfs_pending_bios *pending_bios;
6163 
6164 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6165 	    !device->bdev) {
6166 		bio_io_error(bio);
6167 		return;
6168 	}
6169 
6170 	/* don't bother with additional async steps for reads, right now */
6171 	if (bio_op(bio) == REQ_OP_READ) {
6172 		btrfsic_submit_bio(bio);
6173 		return;
6174 	}
6175 
6176 	WARN_ON(bio->bi_next);
6177 	bio->bi_next = NULL;
6178 
6179 	spin_lock(&device->io_lock);
6180 	if (op_is_sync(bio->bi_opf))
6181 		pending_bios = &device->pending_sync_bios;
6182 	else
6183 		pending_bios = &device->pending_bios;
6184 
6185 	if (pending_bios->tail)
6186 		pending_bios->tail->bi_next = bio;
6187 
6188 	pending_bios->tail = bio;
6189 	if (!pending_bios->head)
6190 		pending_bios->head = bio;
6191 	if (device->running_pending)
6192 		should_queue = 0;
6193 
6194 	spin_unlock(&device->io_lock);
6195 
6196 	if (should_queue)
6197 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6198 }
6199 
6200 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6201 			      u64 physical, int dev_nr, int async)
6202 {
6203 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6204 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6205 
6206 	bio->bi_private = bbio;
6207 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6208 	bio->bi_end_io = btrfs_end_bio;
6209 	bio->bi_iter.bi_sector = physical >> 9;
6210 #ifdef DEBUG
6211 	{
6212 		struct rcu_string *name;
6213 
6214 		rcu_read_lock();
6215 		name = rcu_dereference(dev->name);
6216 		btrfs_debug(fs_info,
6217 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6218 			bio_op(bio), bio->bi_opf,
6219 			(u64)bio->bi_iter.bi_sector,
6220 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6221 			bio->bi_iter.bi_size);
6222 		rcu_read_unlock();
6223 	}
6224 #endif
6225 	bio_set_dev(bio, dev->bdev);
6226 
6227 	btrfs_bio_counter_inc_noblocked(fs_info);
6228 
6229 	if (async)
6230 		btrfs_schedule_bio(dev, bio);
6231 	else
6232 		btrfsic_submit_bio(bio);
6233 }
6234 
6235 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6236 {
6237 	atomic_inc(&bbio->error);
6238 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6239 		/* Should be the original bio. */
6240 		WARN_ON(bio != bbio->orig_bio);
6241 
6242 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6243 		bio->bi_iter.bi_sector = logical >> 9;
6244 		if (atomic_read(&bbio->error) > bbio->max_errors)
6245 			bio->bi_status = BLK_STS_IOERR;
6246 		else
6247 			bio->bi_status = BLK_STS_OK;
6248 		btrfs_end_bbio(bbio, bio);
6249 	}
6250 }
6251 
6252 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6253 			   int mirror_num, int async_submit)
6254 {
6255 	struct btrfs_device *dev;
6256 	struct bio *first_bio = bio;
6257 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6258 	u64 length = 0;
6259 	u64 map_length;
6260 	int ret;
6261 	int dev_nr;
6262 	int total_devs;
6263 	struct btrfs_bio *bbio = NULL;
6264 
6265 	length = bio->bi_iter.bi_size;
6266 	map_length = length;
6267 
6268 	btrfs_bio_counter_inc_blocked(fs_info);
6269 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6270 				&map_length, &bbio, mirror_num, 1);
6271 	if (ret) {
6272 		btrfs_bio_counter_dec(fs_info);
6273 		return errno_to_blk_status(ret);
6274 	}
6275 
6276 	total_devs = bbio->num_stripes;
6277 	bbio->orig_bio = first_bio;
6278 	bbio->private = first_bio->bi_private;
6279 	bbio->end_io = first_bio->bi_end_io;
6280 	bbio->fs_info = fs_info;
6281 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6282 
6283 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6284 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6285 		/* In this case, map_length has been set to the length of
6286 		   a single stripe; not the whole write */
6287 		if (bio_op(bio) == REQ_OP_WRITE) {
6288 			ret = raid56_parity_write(fs_info, bio, bbio,
6289 						  map_length);
6290 		} else {
6291 			ret = raid56_parity_recover(fs_info, bio, bbio,
6292 						    map_length, mirror_num, 1);
6293 		}
6294 
6295 		btrfs_bio_counter_dec(fs_info);
6296 		return errno_to_blk_status(ret);
6297 	}
6298 
6299 	if (map_length < length) {
6300 		btrfs_crit(fs_info,
6301 			   "mapping failed logical %llu bio len %llu len %llu",
6302 			   logical, length, map_length);
6303 		BUG();
6304 	}
6305 
6306 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6307 		dev = bbio->stripes[dev_nr].dev;
6308 		if (!dev || !dev->bdev ||
6309 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6310 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6311 			bbio_error(bbio, first_bio, logical);
6312 			continue;
6313 		}
6314 
6315 		if (dev_nr < total_devs - 1)
6316 			bio = btrfs_bio_clone(first_bio);
6317 		else
6318 			bio = first_bio;
6319 
6320 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6321 				  dev_nr, async_submit);
6322 	}
6323 	btrfs_bio_counter_dec(fs_info);
6324 	return BLK_STS_OK;
6325 }
6326 
6327 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6328 				       u8 *uuid, u8 *fsid)
6329 {
6330 	struct btrfs_device *device;
6331 	struct btrfs_fs_devices *cur_devices;
6332 
6333 	cur_devices = fs_info->fs_devices;
6334 	while (cur_devices) {
6335 		if (!fsid ||
6336 		    !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6337 			device = find_device(cur_devices, devid, uuid);
6338 			if (device)
6339 				return device;
6340 		}
6341 		cur_devices = cur_devices->seed;
6342 	}
6343 	return NULL;
6344 }
6345 
6346 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6347 					    u64 devid, u8 *dev_uuid)
6348 {
6349 	struct btrfs_device *device;
6350 
6351 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6352 	if (IS_ERR(device))
6353 		return device;
6354 
6355 	list_add(&device->dev_list, &fs_devices->devices);
6356 	device->fs_devices = fs_devices;
6357 	fs_devices->num_devices++;
6358 
6359 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6360 	fs_devices->missing_devices++;
6361 
6362 	return device;
6363 }
6364 
6365 /**
6366  * btrfs_alloc_device - allocate struct btrfs_device
6367  * @fs_info:	used only for generating a new devid, can be NULL if
6368  *		devid is provided (i.e. @devid != NULL).
6369  * @devid:	a pointer to devid for this device.  If NULL a new devid
6370  *		is generated.
6371  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6372  *		is generated.
6373  *
6374  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6375  * on error.  Returned struct is not linked onto any lists and must be
6376  * destroyed with free_device.
6377  */
6378 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6379 					const u64 *devid,
6380 					const u8 *uuid)
6381 {
6382 	struct btrfs_device *dev;
6383 	u64 tmp;
6384 
6385 	if (WARN_ON(!devid && !fs_info))
6386 		return ERR_PTR(-EINVAL);
6387 
6388 	dev = __alloc_device();
6389 	if (IS_ERR(dev))
6390 		return dev;
6391 
6392 	if (devid)
6393 		tmp = *devid;
6394 	else {
6395 		int ret;
6396 
6397 		ret = find_next_devid(fs_info, &tmp);
6398 		if (ret) {
6399 			free_device(dev);
6400 			return ERR_PTR(ret);
6401 		}
6402 	}
6403 	dev->devid = tmp;
6404 
6405 	if (uuid)
6406 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6407 	else
6408 		generate_random_uuid(dev->uuid);
6409 
6410 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6411 			pending_bios_fn, NULL, NULL);
6412 
6413 	return dev;
6414 }
6415 
6416 /* Return -EIO if any error, otherwise return 0. */
6417 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6418 				   struct extent_buffer *leaf,
6419 				   struct btrfs_chunk *chunk, u64 logical)
6420 {
6421 	u64 length;
6422 	u64 stripe_len;
6423 	u16 num_stripes;
6424 	u16 sub_stripes;
6425 	u64 type;
6426 
6427 	length = btrfs_chunk_length(leaf, chunk);
6428 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6429 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6430 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6431 	type = btrfs_chunk_type(leaf, chunk);
6432 
6433 	if (!num_stripes) {
6434 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6435 			  num_stripes);
6436 		return -EIO;
6437 	}
6438 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6439 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6440 		return -EIO;
6441 	}
6442 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6443 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6444 			  btrfs_chunk_sector_size(leaf, chunk));
6445 		return -EIO;
6446 	}
6447 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6448 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6449 		return -EIO;
6450 	}
6451 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6452 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6453 			  stripe_len);
6454 		return -EIO;
6455 	}
6456 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6457 	    type) {
6458 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6459 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6460 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6461 			  btrfs_chunk_type(leaf, chunk));
6462 		return -EIO;
6463 	}
6464 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6465 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6466 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6467 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6468 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6469 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6470 	     num_stripes != 1)) {
6471 		btrfs_err(fs_info,
6472 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6473 			num_stripes, sub_stripes,
6474 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6475 		return -EIO;
6476 	}
6477 
6478 	return 0;
6479 }
6480 
6481 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6482 					u64 devid, u8 *uuid, bool error)
6483 {
6484 	if (error)
6485 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6486 			      devid, uuid);
6487 	else
6488 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6489 			      devid, uuid);
6490 }
6491 
6492 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6493 			  struct extent_buffer *leaf,
6494 			  struct btrfs_chunk *chunk)
6495 {
6496 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6497 	struct map_lookup *map;
6498 	struct extent_map *em;
6499 	u64 logical;
6500 	u64 length;
6501 	u64 devid;
6502 	u8 uuid[BTRFS_UUID_SIZE];
6503 	int num_stripes;
6504 	int ret;
6505 	int i;
6506 
6507 	logical = key->offset;
6508 	length = btrfs_chunk_length(leaf, chunk);
6509 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6510 
6511 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6512 	if (ret)
6513 		return ret;
6514 
6515 	read_lock(&map_tree->map_tree.lock);
6516 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6517 	read_unlock(&map_tree->map_tree.lock);
6518 
6519 	/* already mapped? */
6520 	if (em && em->start <= logical && em->start + em->len > logical) {
6521 		free_extent_map(em);
6522 		return 0;
6523 	} else if (em) {
6524 		free_extent_map(em);
6525 	}
6526 
6527 	em = alloc_extent_map();
6528 	if (!em)
6529 		return -ENOMEM;
6530 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6531 	if (!map) {
6532 		free_extent_map(em);
6533 		return -ENOMEM;
6534 	}
6535 
6536 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6537 	em->map_lookup = map;
6538 	em->start = logical;
6539 	em->len = length;
6540 	em->orig_start = 0;
6541 	em->block_start = 0;
6542 	em->block_len = em->len;
6543 
6544 	map->num_stripes = num_stripes;
6545 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6546 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6547 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6548 	map->type = btrfs_chunk_type(leaf, chunk);
6549 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6550 	for (i = 0; i < num_stripes; i++) {
6551 		map->stripes[i].physical =
6552 			btrfs_stripe_offset_nr(leaf, chunk, i);
6553 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6554 		read_extent_buffer(leaf, uuid, (unsigned long)
6555 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6556 				   BTRFS_UUID_SIZE);
6557 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6558 							uuid, NULL);
6559 		if (!map->stripes[i].dev &&
6560 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6561 			free_extent_map(em);
6562 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6563 			return -ENOENT;
6564 		}
6565 		if (!map->stripes[i].dev) {
6566 			map->stripes[i].dev =
6567 				add_missing_dev(fs_info->fs_devices, devid,
6568 						uuid);
6569 			if (IS_ERR(map->stripes[i].dev)) {
6570 				free_extent_map(em);
6571 				btrfs_err(fs_info,
6572 					"failed to init missing dev %llu: %ld",
6573 					devid, PTR_ERR(map->stripes[i].dev));
6574 				return PTR_ERR(map->stripes[i].dev);
6575 			}
6576 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6577 		}
6578 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6579 				&(map->stripes[i].dev->dev_state));
6580 
6581 	}
6582 
6583 	write_lock(&map_tree->map_tree.lock);
6584 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6585 	write_unlock(&map_tree->map_tree.lock);
6586 	BUG_ON(ret); /* Tree corruption */
6587 	free_extent_map(em);
6588 
6589 	return 0;
6590 }
6591 
6592 static void fill_device_from_item(struct extent_buffer *leaf,
6593 				 struct btrfs_dev_item *dev_item,
6594 				 struct btrfs_device *device)
6595 {
6596 	unsigned long ptr;
6597 
6598 	device->devid = btrfs_device_id(leaf, dev_item);
6599 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6600 	device->total_bytes = device->disk_total_bytes;
6601 	device->commit_total_bytes = device->disk_total_bytes;
6602 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6603 	device->commit_bytes_used = device->bytes_used;
6604 	device->type = btrfs_device_type(leaf, dev_item);
6605 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6606 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6607 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6608 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6609 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6610 
6611 	ptr = btrfs_device_uuid(dev_item);
6612 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6613 }
6614 
6615 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6616 						  u8 *fsid)
6617 {
6618 	struct btrfs_fs_devices *fs_devices;
6619 	int ret;
6620 
6621 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6622 	ASSERT(fsid);
6623 
6624 	fs_devices = fs_info->fs_devices->seed;
6625 	while (fs_devices) {
6626 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6627 			return fs_devices;
6628 
6629 		fs_devices = fs_devices->seed;
6630 	}
6631 
6632 	fs_devices = find_fsid(fsid);
6633 	if (!fs_devices) {
6634 		if (!btrfs_test_opt(fs_info, DEGRADED))
6635 			return ERR_PTR(-ENOENT);
6636 
6637 		fs_devices = alloc_fs_devices(fsid);
6638 		if (IS_ERR(fs_devices))
6639 			return fs_devices;
6640 
6641 		fs_devices->seeding = 1;
6642 		fs_devices->opened = 1;
6643 		return fs_devices;
6644 	}
6645 
6646 	fs_devices = clone_fs_devices(fs_devices);
6647 	if (IS_ERR(fs_devices))
6648 		return fs_devices;
6649 
6650 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6651 				   fs_info->bdev_holder);
6652 	if (ret) {
6653 		free_fs_devices(fs_devices);
6654 		fs_devices = ERR_PTR(ret);
6655 		goto out;
6656 	}
6657 
6658 	if (!fs_devices->seeding) {
6659 		__btrfs_close_devices(fs_devices);
6660 		free_fs_devices(fs_devices);
6661 		fs_devices = ERR_PTR(-EINVAL);
6662 		goto out;
6663 	}
6664 
6665 	fs_devices->seed = fs_info->fs_devices->seed;
6666 	fs_info->fs_devices->seed = fs_devices;
6667 out:
6668 	return fs_devices;
6669 }
6670 
6671 static int read_one_dev(struct btrfs_fs_info *fs_info,
6672 			struct extent_buffer *leaf,
6673 			struct btrfs_dev_item *dev_item)
6674 {
6675 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6676 	struct btrfs_device *device;
6677 	u64 devid;
6678 	int ret;
6679 	u8 fs_uuid[BTRFS_FSID_SIZE];
6680 	u8 dev_uuid[BTRFS_UUID_SIZE];
6681 
6682 	devid = btrfs_device_id(leaf, dev_item);
6683 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6684 			   BTRFS_UUID_SIZE);
6685 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6686 			   BTRFS_FSID_SIZE);
6687 
6688 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6689 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6690 		if (IS_ERR(fs_devices))
6691 			return PTR_ERR(fs_devices);
6692 	}
6693 
6694 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6695 	if (!device) {
6696 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6697 			btrfs_report_missing_device(fs_info, devid,
6698 							dev_uuid, true);
6699 			return -ENOENT;
6700 		}
6701 
6702 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6703 		if (IS_ERR(device)) {
6704 			btrfs_err(fs_info,
6705 				"failed to add missing dev %llu: %ld",
6706 				devid, PTR_ERR(device));
6707 			return PTR_ERR(device);
6708 		}
6709 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6710 	} else {
6711 		if (!device->bdev) {
6712 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6713 				btrfs_report_missing_device(fs_info,
6714 						devid, dev_uuid, true);
6715 				return -ENOENT;
6716 			}
6717 			btrfs_report_missing_device(fs_info, devid,
6718 							dev_uuid, false);
6719 		}
6720 
6721 		if (!device->bdev &&
6722 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6723 			/*
6724 			 * this happens when a device that was properly setup
6725 			 * in the device info lists suddenly goes bad.
6726 			 * device->bdev is NULL, and so we have to set
6727 			 * device->missing to one here
6728 			 */
6729 			device->fs_devices->missing_devices++;
6730 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6731 		}
6732 
6733 		/* Move the device to its own fs_devices */
6734 		if (device->fs_devices != fs_devices) {
6735 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6736 							&device->dev_state));
6737 
6738 			list_move(&device->dev_list, &fs_devices->devices);
6739 			device->fs_devices->num_devices--;
6740 			fs_devices->num_devices++;
6741 
6742 			device->fs_devices->missing_devices--;
6743 			fs_devices->missing_devices++;
6744 
6745 			device->fs_devices = fs_devices;
6746 		}
6747 	}
6748 
6749 	if (device->fs_devices != fs_info->fs_devices) {
6750 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6751 		if (device->generation !=
6752 		    btrfs_device_generation(leaf, dev_item))
6753 			return -EINVAL;
6754 	}
6755 
6756 	fill_device_from_item(leaf, dev_item, device);
6757 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6758 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6759 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6760 		device->fs_devices->total_rw_bytes += device->total_bytes;
6761 		atomic64_add(device->total_bytes - device->bytes_used,
6762 				&fs_info->free_chunk_space);
6763 	}
6764 	ret = 0;
6765 	return ret;
6766 }
6767 
6768 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6769 {
6770 	struct btrfs_root *root = fs_info->tree_root;
6771 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6772 	struct extent_buffer *sb;
6773 	struct btrfs_disk_key *disk_key;
6774 	struct btrfs_chunk *chunk;
6775 	u8 *array_ptr;
6776 	unsigned long sb_array_offset;
6777 	int ret = 0;
6778 	u32 num_stripes;
6779 	u32 array_size;
6780 	u32 len = 0;
6781 	u32 cur_offset;
6782 	u64 type;
6783 	struct btrfs_key key;
6784 
6785 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6786 	/*
6787 	 * This will create extent buffer of nodesize, superblock size is
6788 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6789 	 * overallocate but we can keep it as-is, only the first page is used.
6790 	 */
6791 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6792 	if (IS_ERR(sb))
6793 		return PTR_ERR(sb);
6794 	set_extent_buffer_uptodate(sb);
6795 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6796 	/*
6797 	 * The sb extent buffer is artificial and just used to read the system array.
6798 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6799 	 * pages up-to-date when the page is larger: extent does not cover the
6800 	 * whole page and consequently check_page_uptodate does not find all
6801 	 * the page's extents up-to-date (the hole beyond sb),
6802 	 * write_extent_buffer then triggers a WARN_ON.
6803 	 *
6804 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6805 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6806 	 * to silence the warning eg. on PowerPC 64.
6807 	 */
6808 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6809 		SetPageUptodate(sb->pages[0]);
6810 
6811 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6812 	array_size = btrfs_super_sys_array_size(super_copy);
6813 
6814 	array_ptr = super_copy->sys_chunk_array;
6815 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6816 	cur_offset = 0;
6817 
6818 	while (cur_offset < array_size) {
6819 		disk_key = (struct btrfs_disk_key *)array_ptr;
6820 		len = sizeof(*disk_key);
6821 		if (cur_offset + len > array_size)
6822 			goto out_short_read;
6823 
6824 		btrfs_disk_key_to_cpu(&key, disk_key);
6825 
6826 		array_ptr += len;
6827 		sb_array_offset += len;
6828 		cur_offset += len;
6829 
6830 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6831 			chunk = (struct btrfs_chunk *)sb_array_offset;
6832 			/*
6833 			 * At least one btrfs_chunk with one stripe must be
6834 			 * present, exact stripe count check comes afterwards
6835 			 */
6836 			len = btrfs_chunk_item_size(1);
6837 			if (cur_offset + len > array_size)
6838 				goto out_short_read;
6839 
6840 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6841 			if (!num_stripes) {
6842 				btrfs_err(fs_info,
6843 					"invalid number of stripes %u in sys_array at offset %u",
6844 					num_stripes, cur_offset);
6845 				ret = -EIO;
6846 				break;
6847 			}
6848 
6849 			type = btrfs_chunk_type(sb, chunk);
6850 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6851 				btrfs_err(fs_info,
6852 			    "invalid chunk type %llu in sys_array at offset %u",
6853 					type, cur_offset);
6854 				ret = -EIO;
6855 				break;
6856 			}
6857 
6858 			len = btrfs_chunk_item_size(num_stripes);
6859 			if (cur_offset + len > array_size)
6860 				goto out_short_read;
6861 
6862 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6863 			if (ret)
6864 				break;
6865 		} else {
6866 			btrfs_err(fs_info,
6867 			    "unexpected item type %u in sys_array at offset %u",
6868 				  (u32)key.type, cur_offset);
6869 			ret = -EIO;
6870 			break;
6871 		}
6872 		array_ptr += len;
6873 		sb_array_offset += len;
6874 		cur_offset += len;
6875 	}
6876 	clear_extent_buffer_uptodate(sb);
6877 	free_extent_buffer_stale(sb);
6878 	return ret;
6879 
6880 out_short_read:
6881 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6882 			len, cur_offset);
6883 	clear_extent_buffer_uptodate(sb);
6884 	free_extent_buffer_stale(sb);
6885 	return -EIO;
6886 }
6887 
6888 /*
6889  * Check if all chunks in the fs are OK for read-write degraded mount
6890  *
6891  * If the @failing_dev is specified, it's accounted as missing.
6892  *
6893  * Return true if all chunks meet the minimal RW mount requirements.
6894  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6895  */
6896 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6897 					struct btrfs_device *failing_dev)
6898 {
6899 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6900 	struct extent_map *em;
6901 	u64 next_start = 0;
6902 	bool ret = true;
6903 
6904 	read_lock(&map_tree->map_tree.lock);
6905 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6906 	read_unlock(&map_tree->map_tree.lock);
6907 	/* No chunk at all? Return false anyway */
6908 	if (!em) {
6909 		ret = false;
6910 		goto out;
6911 	}
6912 	while (em) {
6913 		struct map_lookup *map;
6914 		int missing = 0;
6915 		int max_tolerated;
6916 		int i;
6917 
6918 		map = em->map_lookup;
6919 		max_tolerated =
6920 			btrfs_get_num_tolerated_disk_barrier_failures(
6921 					map->type);
6922 		for (i = 0; i < map->num_stripes; i++) {
6923 			struct btrfs_device *dev = map->stripes[i].dev;
6924 
6925 			if (!dev || !dev->bdev ||
6926 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6927 			    dev->last_flush_error)
6928 				missing++;
6929 			else if (failing_dev && failing_dev == dev)
6930 				missing++;
6931 		}
6932 		if (missing > max_tolerated) {
6933 			if (!failing_dev)
6934 				btrfs_warn(fs_info,
6935 	"chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6936 				   em->start, missing, max_tolerated);
6937 			free_extent_map(em);
6938 			ret = false;
6939 			goto out;
6940 		}
6941 		next_start = extent_map_end(em);
6942 		free_extent_map(em);
6943 
6944 		read_lock(&map_tree->map_tree.lock);
6945 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6946 					   (u64)(-1) - next_start);
6947 		read_unlock(&map_tree->map_tree.lock);
6948 	}
6949 out:
6950 	return ret;
6951 }
6952 
6953 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6954 {
6955 	struct btrfs_root *root = fs_info->chunk_root;
6956 	struct btrfs_path *path;
6957 	struct extent_buffer *leaf;
6958 	struct btrfs_key key;
6959 	struct btrfs_key found_key;
6960 	int ret;
6961 	int slot;
6962 	u64 total_dev = 0;
6963 
6964 	path = btrfs_alloc_path();
6965 	if (!path)
6966 		return -ENOMEM;
6967 
6968 	mutex_lock(&uuid_mutex);
6969 	mutex_lock(&fs_info->chunk_mutex);
6970 
6971 	/*
6972 	 * Read all device items, and then all the chunk items. All
6973 	 * device items are found before any chunk item (their object id
6974 	 * is smaller than the lowest possible object id for a chunk
6975 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6976 	 */
6977 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6978 	key.offset = 0;
6979 	key.type = 0;
6980 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6981 	if (ret < 0)
6982 		goto error;
6983 	while (1) {
6984 		leaf = path->nodes[0];
6985 		slot = path->slots[0];
6986 		if (slot >= btrfs_header_nritems(leaf)) {
6987 			ret = btrfs_next_leaf(root, path);
6988 			if (ret == 0)
6989 				continue;
6990 			if (ret < 0)
6991 				goto error;
6992 			break;
6993 		}
6994 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6995 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6996 			struct btrfs_dev_item *dev_item;
6997 			dev_item = btrfs_item_ptr(leaf, slot,
6998 						  struct btrfs_dev_item);
6999 			ret = read_one_dev(fs_info, leaf, dev_item);
7000 			if (ret)
7001 				goto error;
7002 			total_dev++;
7003 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7004 			struct btrfs_chunk *chunk;
7005 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7006 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7007 			if (ret)
7008 				goto error;
7009 		}
7010 		path->slots[0]++;
7011 	}
7012 
7013 	/*
7014 	 * After loading chunk tree, we've got all device information,
7015 	 * do another round of validation checks.
7016 	 */
7017 	if (total_dev != fs_info->fs_devices->total_devices) {
7018 		btrfs_err(fs_info,
7019 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7020 			  btrfs_super_num_devices(fs_info->super_copy),
7021 			  total_dev);
7022 		ret = -EINVAL;
7023 		goto error;
7024 	}
7025 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7026 	    fs_info->fs_devices->total_rw_bytes) {
7027 		btrfs_err(fs_info,
7028 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7029 			  btrfs_super_total_bytes(fs_info->super_copy),
7030 			  fs_info->fs_devices->total_rw_bytes);
7031 		ret = -EINVAL;
7032 		goto error;
7033 	}
7034 	ret = 0;
7035 error:
7036 	mutex_unlock(&fs_info->chunk_mutex);
7037 	mutex_unlock(&uuid_mutex);
7038 
7039 	btrfs_free_path(path);
7040 	return ret;
7041 }
7042 
7043 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7044 {
7045 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7046 	struct btrfs_device *device;
7047 
7048 	while (fs_devices) {
7049 		mutex_lock(&fs_devices->device_list_mutex);
7050 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7051 			device->fs_info = fs_info;
7052 		mutex_unlock(&fs_devices->device_list_mutex);
7053 
7054 		fs_devices = fs_devices->seed;
7055 	}
7056 }
7057 
7058 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7059 {
7060 	int i;
7061 
7062 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7063 		btrfs_dev_stat_reset(dev, i);
7064 }
7065 
7066 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7067 {
7068 	struct btrfs_key key;
7069 	struct btrfs_key found_key;
7070 	struct btrfs_root *dev_root = fs_info->dev_root;
7071 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7072 	struct extent_buffer *eb;
7073 	int slot;
7074 	int ret = 0;
7075 	struct btrfs_device *device;
7076 	struct btrfs_path *path = NULL;
7077 	int i;
7078 
7079 	path = btrfs_alloc_path();
7080 	if (!path) {
7081 		ret = -ENOMEM;
7082 		goto out;
7083 	}
7084 
7085 	mutex_lock(&fs_devices->device_list_mutex);
7086 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7087 		int item_size;
7088 		struct btrfs_dev_stats_item *ptr;
7089 
7090 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7091 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7092 		key.offset = device->devid;
7093 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7094 		if (ret) {
7095 			__btrfs_reset_dev_stats(device);
7096 			device->dev_stats_valid = 1;
7097 			btrfs_release_path(path);
7098 			continue;
7099 		}
7100 		slot = path->slots[0];
7101 		eb = path->nodes[0];
7102 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7103 		item_size = btrfs_item_size_nr(eb, slot);
7104 
7105 		ptr = btrfs_item_ptr(eb, slot,
7106 				     struct btrfs_dev_stats_item);
7107 
7108 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7109 			if (item_size >= (1 + i) * sizeof(__le64))
7110 				btrfs_dev_stat_set(device, i,
7111 					btrfs_dev_stats_value(eb, ptr, i));
7112 			else
7113 				btrfs_dev_stat_reset(device, i);
7114 		}
7115 
7116 		device->dev_stats_valid = 1;
7117 		btrfs_dev_stat_print_on_load(device);
7118 		btrfs_release_path(path);
7119 	}
7120 	mutex_unlock(&fs_devices->device_list_mutex);
7121 
7122 out:
7123 	btrfs_free_path(path);
7124 	return ret < 0 ? ret : 0;
7125 }
7126 
7127 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7128 				struct btrfs_fs_info *fs_info,
7129 				struct btrfs_device *device)
7130 {
7131 	struct btrfs_root *dev_root = fs_info->dev_root;
7132 	struct btrfs_path *path;
7133 	struct btrfs_key key;
7134 	struct extent_buffer *eb;
7135 	struct btrfs_dev_stats_item *ptr;
7136 	int ret;
7137 	int i;
7138 
7139 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7140 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7141 	key.offset = device->devid;
7142 
7143 	path = btrfs_alloc_path();
7144 	if (!path)
7145 		return -ENOMEM;
7146 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7147 	if (ret < 0) {
7148 		btrfs_warn_in_rcu(fs_info,
7149 			"error %d while searching for dev_stats item for device %s",
7150 			      ret, rcu_str_deref(device->name));
7151 		goto out;
7152 	}
7153 
7154 	if (ret == 0 &&
7155 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7156 		/* need to delete old one and insert a new one */
7157 		ret = btrfs_del_item(trans, dev_root, path);
7158 		if (ret != 0) {
7159 			btrfs_warn_in_rcu(fs_info,
7160 				"delete too small dev_stats item for device %s failed %d",
7161 				      rcu_str_deref(device->name), ret);
7162 			goto out;
7163 		}
7164 		ret = 1;
7165 	}
7166 
7167 	if (ret == 1) {
7168 		/* need to insert a new item */
7169 		btrfs_release_path(path);
7170 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7171 					      &key, sizeof(*ptr));
7172 		if (ret < 0) {
7173 			btrfs_warn_in_rcu(fs_info,
7174 				"insert dev_stats item for device %s failed %d",
7175 				rcu_str_deref(device->name), ret);
7176 			goto out;
7177 		}
7178 	}
7179 
7180 	eb = path->nodes[0];
7181 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7182 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7183 		btrfs_set_dev_stats_value(eb, ptr, i,
7184 					  btrfs_dev_stat_read(device, i));
7185 	btrfs_mark_buffer_dirty(eb);
7186 
7187 out:
7188 	btrfs_free_path(path);
7189 	return ret;
7190 }
7191 
7192 /*
7193  * called from commit_transaction. Writes all changed device stats to disk.
7194  */
7195 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7196 			struct btrfs_fs_info *fs_info)
7197 {
7198 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7199 	struct btrfs_device *device;
7200 	int stats_cnt;
7201 	int ret = 0;
7202 
7203 	mutex_lock(&fs_devices->device_list_mutex);
7204 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7205 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7206 		if (!device->dev_stats_valid || stats_cnt == 0)
7207 			continue;
7208 
7209 
7210 		/*
7211 		 * There is a LOAD-LOAD control dependency between the value of
7212 		 * dev_stats_ccnt and updating the on-disk values which requires
7213 		 * reading the in-memory counters. Such control dependencies
7214 		 * require explicit read memory barriers.
7215 		 *
7216 		 * This memory barriers pairs with smp_mb__before_atomic in
7217 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7218 		 * barrier implied by atomic_xchg in
7219 		 * btrfs_dev_stats_read_and_reset
7220 		 */
7221 		smp_rmb();
7222 
7223 		ret = update_dev_stat_item(trans, fs_info, device);
7224 		if (!ret)
7225 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7226 	}
7227 	mutex_unlock(&fs_devices->device_list_mutex);
7228 
7229 	return ret;
7230 }
7231 
7232 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7233 {
7234 	btrfs_dev_stat_inc(dev, index);
7235 	btrfs_dev_stat_print_on_error(dev);
7236 }
7237 
7238 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7239 {
7240 	if (!dev->dev_stats_valid)
7241 		return;
7242 	btrfs_err_rl_in_rcu(dev->fs_info,
7243 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7244 			   rcu_str_deref(dev->name),
7245 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7246 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7247 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7248 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7249 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7250 }
7251 
7252 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7253 {
7254 	int i;
7255 
7256 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7257 		if (btrfs_dev_stat_read(dev, i) != 0)
7258 			break;
7259 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7260 		return; /* all values == 0, suppress message */
7261 
7262 	btrfs_info_in_rcu(dev->fs_info,
7263 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7264 	       rcu_str_deref(dev->name),
7265 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7266 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7267 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7268 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7269 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7270 }
7271 
7272 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7273 			struct btrfs_ioctl_get_dev_stats *stats)
7274 {
7275 	struct btrfs_device *dev;
7276 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7277 	int i;
7278 
7279 	mutex_lock(&fs_devices->device_list_mutex);
7280 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7281 	mutex_unlock(&fs_devices->device_list_mutex);
7282 
7283 	if (!dev) {
7284 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7285 		return -ENODEV;
7286 	} else if (!dev->dev_stats_valid) {
7287 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7288 		return -ENODEV;
7289 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7290 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7291 			if (stats->nr_items > i)
7292 				stats->values[i] =
7293 					btrfs_dev_stat_read_and_reset(dev, i);
7294 			else
7295 				btrfs_dev_stat_reset(dev, i);
7296 		}
7297 	} else {
7298 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7299 			if (stats->nr_items > i)
7300 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7301 	}
7302 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7303 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7304 	return 0;
7305 }
7306 
7307 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7308 {
7309 	struct buffer_head *bh;
7310 	struct btrfs_super_block *disk_super;
7311 	int copy_num;
7312 
7313 	if (!bdev)
7314 		return;
7315 
7316 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7317 		copy_num++) {
7318 
7319 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7320 			continue;
7321 
7322 		disk_super = (struct btrfs_super_block *)bh->b_data;
7323 
7324 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7325 		set_buffer_dirty(bh);
7326 		sync_dirty_buffer(bh);
7327 		brelse(bh);
7328 	}
7329 
7330 	/* Notify udev that device has changed */
7331 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7332 
7333 	/* Update ctime/mtime for device path for libblkid */
7334 	update_dev_time(device_path);
7335 }
7336 
7337 /*
7338  * Update the size of all devices, which is used for writing out the
7339  * super blocks.
7340  */
7341 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7342 {
7343 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7344 	struct btrfs_device *curr, *next;
7345 
7346 	if (list_empty(&fs_devices->resized_devices))
7347 		return;
7348 
7349 	mutex_lock(&fs_devices->device_list_mutex);
7350 	mutex_lock(&fs_info->chunk_mutex);
7351 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7352 				 resized_list) {
7353 		list_del_init(&curr->resized_list);
7354 		curr->commit_total_bytes = curr->disk_total_bytes;
7355 	}
7356 	mutex_unlock(&fs_info->chunk_mutex);
7357 	mutex_unlock(&fs_devices->device_list_mutex);
7358 }
7359 
7360 /* Must be invoked during the transaction commit */
7361 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7362 					struct btrfs_transaction *transaction)
7363 {
7364 	struct extent_map *em;
7365 	struct map_lookup *map;
7366 	struct btrfs_device *dev;
7367 	int i;
7368 
7369 	if (list_empty(&transaction->pending_chunks))
7370 		return;
7371 
7372 	/* In order to kick the device replace finish process */
7373 	mutex_lock(&fs_info->chunk_mutex);
7374 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7375 		map = em->map_lookup;
7376 
7377 		for (i = 0; i < map->num_stripes; i++) {
7378 			dev = map->stripes[i].dev;
7379 			dev->commit_bytes_used = dev->bytes_used;
7380 		}
7381 	}
7382 	mutex_unlock(&fs_info->chunk_mutex);
7383 }
7384 
7385 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7386 {
7387 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7388 	while (fs_devices) {
7389 		fs_devices->fs_info = fs_info;
7390 		fs_devices = fs_devices->seed;
7391 	}
7392 }
7393 
7394 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7395 {
7396 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7397 	while (fs_devices) {
7398 		fs_devices->fs_info = NULL;
7399 		fs_devices = fs_devices->seed;
7400 	}
7401 }
7402