1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 #include "discard.h" 34 #include "zoned.h" 35 36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 37 [BTRFS_RAID_RAID10] = { 38 .sub_stripes = 2, 39 .dev_stripes = 1, 40 .devs_max = 0, /* 0 == as many as possible */ 41 .devs_min = 4, 42 .tolerated_failures = 1, 43 .devs_increment = 2, 44 .ncopies = 2, 45 .nparity = 0, 46 .raid_name = "raid10", 47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 49 }, 50 [BTRFS_RAID_RAID1] = { 51 .sub_stripes = 1, 52 .dev_stripes = 1, 53 .devs_max = 2, 54 .devs_min = 2, 55 .tolerated_failures = 1, 56 .devs_increment = 2, 57 .ncopies = 2, 58 .nparity = 0, 59 .raid_name = "raid1", 60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 62 }, 63 [BTRFS_RAID_RAID1C3] = { 64 .sub_stripes = 1, 65 .dev_stripes = 1, 66 .devs_max = 3, 67 .devs_min = 3, 68 .tolerated_failures = 2, 69 .devs_increment = 3, 70 .ncopies = 3, 71 .nparity = 0, 72 .raid_name = "raid1c3", 73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 75 }, 76 [BTRFS_RAID_RAID1C4] = { 77 .sub_stripes = 1, 78 .dev_stripes = 1, 79 .devs_max = 4, 80 .devs_min = 4, 81 .tolerated_failures = 3, 82 .devs_increment = 4, 83 .ncopies = 4, 84 .nparity = 0, 85 .raid_name = "raid1c4", 86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 88 }, 89 [BTRFS_RAID_DUP] = { 90 .sub_stripes = 1, 91 .dev_stripes = 2, 92 .devs_max = 1, 93 .devs_min = 1, 94 .tolerated_failures = 0, 95 .devs_increment = 1, 96 .ncopies = 2, 97 .nparity = 0, 98 .raid_name = "dup", 99 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 100 .mindev_error = 0, 101 }, 102 [BTRFS_RAID_RAID0] = { 103 .sub_stripes = 1, 104 .dev_stripes = 1, 105 .devs_max = 0, 106 .devs_min = 2, 107 .tolerated_failures = 0, 108 .devs_increment = 1, 109 .ncopies = 1, 110 .nparity = 0, 111 .raid_name = "raid0", 112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 113 .mindev_error = 0, 114 }, 115 [BTRFS_RAID_SINGLE] = { 116 .sub_stripes = 1, 117 .dev_stripes = 1, 118 .devs_max = 1, 119 .devs_min = 1, 120 .tolerated_failures = 0, 121 .devs_increment = 1, 122 .ncopies = 1, 123 .nparity = 0, 124 .raid_name = "single", 125 .bg_flag = 0, 126 .mindev_error = 0, 127 }, 128 [BTRFS_RAID_RAID5] = { 129 .sub_stripes = 1, 130 .dev_stripes = 1, 131 .devs_max = 0, 132 .devs_min = 2, 133 .tolerated_failures = 1, 134 .devs_increment = 1, 135 .ncopies = 1, 136 .nparity = 1, 137 .raid_name = "raid5", 138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 140 }, 141 [BTRFS_RAID_RAID6] = { 142 .sub_stripes = 1, 143 .dev_stripes = 1, 144 .devs_max = 0, 145 .devs_min = 3, 146 .tolerated_failures = 2, 147 .devs_increment = 1, 148 .ncopies = 1, 149 .nparity = 2, 150 .raid_name = "raid6", 151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 153 }, 154 }; 155 156 const char *btrfs_bg_type_to_raid_name(u64 flags) 157 { 158 const int index = btrfs_bg_flags_to_raid_index(flags); 159 160 if (index >= BTRFS_NR_RAID_TYPES) 161 return NULL; 162 163 return btrfs_raid_array[index].raid_name; 164 } 165 166 /* 167 * Fill @buf with textual description of @bg_flags, no more than @size_buf 168 * bytes including terminating null byte. 169 */ 170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 171 { 172 int i; 173 int ret; 174 char *bp = buf; 175 u64 flags = bg_flags; 176 u32 size_bp = size_buf; 177 178 if (!flags) { 179 strcpy(bp, "NONE"); 180 return; 181 } 182 183 #define DESCRIBE_FLAG(flag, desc) \ 184 do { \ 185 if (flags & (flag)) { \ 186 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 187 if (ret < 0 || ret >= size_bp) \ 188 goto out_overflow; \ 189 size_bp -= ret; \ 190 bp += ret; \ 191 flags &= ~(flag); \ 192 } \ 193 } while (0) 194 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 198 199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 202 btrfs_raid_array[i].raid_name); 203 #undef DESCRIBE_FLAG 204 205 if (flags) { 206 ret = snprintf(bp, size_bp, "0x%llx|", flags); 207 size_bp -= ret; 208 } 209 210 if (size_bp < size_buf) 211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 212 213 /* 214 * The text is trimmed, it's up to the caller to provide sufficiently 215 * large buffer 216 */ 217 out_overflow:; 218 } 219 220 static int init_first_rw_device(struct btrfs_trans_handle *trans); 221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 225 enum btrfs_map_op op, 226 u64 logical, u64 *length, 227 struct btrfs_bio **bbio_ret, 228 int mirror_num, int need_raid_map); 229 230 /* 231 * Device locking 232 * ============== 233 * 234 * There are several mutexes that protect manipulation of devices and low-level 235 * structures like chunks but not block groups, extents or files 236 * 237 * uuid_mutex (global lock) 238 * ------------------------ 239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 241 * device) or requested by the device= mount option 242 * 243 * the mutex can be very coarse and can cover long-running operations 244 * 245 * protects: updates to fs_devices counters like missing devices, rw devices, 246 * seeding, structure cloning, opening/closing devices at mount/umount time 247 * 248 * global::fs_devs - add, remove, updates to the global list 249 * 250 * does not protect: manipulation of the fs_devices::devices list in general 251 * but in mount context it could be used to exclude list modifications by eg. 252 * scan ioctl 253 * 254 * btrfs_device::name - renames (write side), read is RCU 255 * 256 * fs_devices::device_list_mutex (per-fs, with RCU) 257 * ------------------------------------------------ 258 * protects updates to fs_devices::devices, ie. adding and deleting 259 * 260 * simple list traversal with read-only actions can be done with RCU protection 261 * 262 * may be used to exclude some operations from running concurrently without any 263 * modifications to the list (see write_all_supers) 264 * 265 * Is not required at mount and close times, because our device list is 266 * protected by the uuid_mutex at that point. 267 * 268 * balance_mutex 269 * ------------- 270 * protects balance structures (status, state) and context accessed from 271 * several places (internally, ioctl) 272 * 273 * chunk_mutex 274 * ----------- 275 * protects chunks, adding or removing during allocation, trim or when a new 276 * device is added/removed. Additionally it also protects post_commit_list of 277 * individual devices, since they can be added to the transaction's 278 * post_commit_list only with chunk_mutex held. 279 * 280 * cleaner_mutex 281 * ------------- 282 * a big lock that is held by the cleaner thread and prevents running subvolume 283 * cleaning together with relocation or delayed iputs 284 * 285 * 286 * Lock nesting 287 * ============ 288 * 289 * uuid_mutex 290 * device_list_mutex 291 * chunk_mutex 292 * balance_mutex 293 * 294 * 295 * Exclusive operations 296 * ==================== 297 * 298 * Maintains the exclusivity of the following operations that apply to the 299 * whole filesystem and cannot run in parallel. 300 * 301 * - Balance (*) 302 * - Device add 303 * - Device remove 304 * - Device replace (*) 305 * - Resize 306 * 307 * The device operations (as above) can be in one of the following states: 308 * 309 * - Running state 310 * - Paused state 311 * - Completed state 312 * 313 * Only device operations marked with (*) can go into the Paused state for the 314 * following reasons: 315 * 316 * - ioctl (only Balance can be Paused through ioctl) 317 * - filesystem remounted as read-only 318 * - filesystem unmounted and mounted as read-only 319 * - system power-cycle and filesystem mounted as read-only 320 * - filesystem or device errors leading to forced read-only 321 * 322 * The status of exclusive operation is set and cleared atomically. 323 * During the course of Paused state, fs_info::exclusive_operation remains set. 324 * A device operation in Paused or Running state can be canceled or resumed 325 * either by ioctl (Balance only) or when remounted as read-write. 326 * The exclusive status is cleared when the device operation is canceled or 327 * completed. 328 */ 329 330 DEFINE_MUTEX(uuid_mutex); 331 static LIST_HEAD(fs_uuids); 332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 333 { 334 return &fs_uuids; 335 } 336 337 /* 338 * alloc_fs_devices - allocate struct btrfs_fs_devices 339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 341 * 342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 343 * The returned struct is not linked onto any lists and can be destroyed with 344 * kfree() right away. 345 */ 346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 347 const u8 *metadata_fsid) 348 { 349 struct btrfs_fs_devices *fs_devs; 350 351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 352 if (!fs_devs) 353 return ERR_PTR(-ENOMEM); 354 355 mutex_init(&fs_devs->device_list_mutex); 356 357 INIT_LIST_HEAD(&fs_devs->devices); 358 INIT_LIST_HEAD(&fs_devs->alloc_list); 359 INIT_LIST_HEAD(&fs_devs->fs_list); 360 INIT_LIST_HEAD(&fs_devs->seed_list); 361 if (fsid) 362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 363 364 if (metadata_fsid) 365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 366 else if (fsid) 367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 368 369 return fs_devs; 370 } 371 372 void btrfs_free_device(struct btrfs_device *device) 373 { 374 WARN_ON(!list_empty(&device->post_commit_list)); 375 rcu_string_free(device->name); 376 extent_io_tree_release(&device->alloc_state); 377 bio_put(device->flush_bio); 378 btrfs_destroy_dev_zone_info(device); 379 kfree(device); 380 } 381 382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 383 { 384 struct btrfs_device *device; 385 WARN_ON(fs_devices->opened); 386 while (!list_empty(&fs_devices->devices)) { 387 device = list_entry(fs_devices->devices.next, 388 struct btrfs_device, dev_list); 389 list_del(&device->dev_list); 390 btrfs_free_device(device); 391 } 392 kfree(fs_devices); 393 } 394 395 void __exit btrfs_cleanup_fs_uuids(void) 396 { 397 struct btrfs_fs_devices *fs_devices; 398 399 while (!list_empty(&fs_uuids)) { 400 fs_devices = list_entry(fs_uuids.next, 401 struct btrfs_fs_devices, fs_list); 402 list_del(&fs_devices->fs_list); 403 free_fs_devices(fs_devices); 404 } 405 } 406 407 /* 408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 409 * Returned struct is not linked onto any lists and must be destroyed using 410 * btrfs_free_device. 411 */ 412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info) 413 { 414 struct btrfs_device *dev; 415 416 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 417 if (!dev) 418 return ERR_PTR(-ENOMEM); 419 420 /* 421 * Preallocate a bio that's always going to be used for flushing device 422 * barriers and matches the device lifespan 423 */ 424 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0); 425 if (!dev->flush_bio) { 426 kfree(dev); 427 return ERR_PTR(-ENOMEM); 428 } 429 430 INIT_LIST_HEAD(&dev->dev_list); 431 INIT_LIST_HEAD(&dev->dev_alloc_list); 432 INIT_LIST_HEAD(&dev->post_commit_list); 433 434 atomic_set(&dev->reada_in_flight, 0); 435 atomic_set(&dev->dev_stats_ccnt, 0); 436 btrfs_device_data_ordered_init(dev); 437 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 438 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 439 extent_io_tree_init(fs_info, &dev->alloc_state, 440 IO_TREE_DEVICE_ALLOC_STATE, NULL); 441 442 return dev; 443 } 444 445 static noinline struct btrfs_fs_devices *find_fsid( 446 const u8 *fsid, const u8 *metadata_fsid) 447 { 448 struct btrfs_fs_devices *fs_devices; 449 450 ASSERT(fsid); 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (metadata_fsid) { 455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 456 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 457 BTRFS_FSID_SIZE) == 0) 458 return fs_devices; 459 } else { 460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 461 return fs_devices; 462 } 463 } 464 return NULL; 465 } 466 467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 468 struct btrfs_super_block *disk_super) 469 { 470 471 struct btrfs_fs_devices *fs_devices; 472 473 /* 474 * Handle scanned device having completed its fsid change but 475 * belonging to a fs_devices that was created by first scanning 476 * a device which didn't have its fsid/metadata_uuid changed 477 * at all and the CHANGING_FSID_V2 flag set. 478 */ 479 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 480 if (fs_devices->fsid_change && 481 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 482 BTRFS_FSID_SIZE) == 0 && 483 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 484 BTRFS_FSID_SIZE) == 0) { 485 return fs_devices; 486 } 487 } 488 /* 489 * Handle scanned device having completed its fsid change but 490 * belonging to a fs_devices that was created by a device that 491 * has an outdated pair of fsid/metadata_uuid and 492 * CHANGING_FSID_V2 flag set. 493 */ 494 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 495 if (fs_devices->fsid_change && 496 memcmp(fs_devices->metadata_uuid, 497 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 498 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 499 BTRFS_FSID_SIZE) == 0) { 500 return fs_devices; 501 } 502 } 503 504 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 505 } 506 507 508 static int 509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 510 int flush, struct block_device **bdev, 511 struct btrfs_super_block **disk_super) 512 { 513 int ret; 514 515 *bdev = blkdev_get_by_path(device_path, flags, holder); 516 517 if (IS_ERR(*bdev)) { 518 ret = PTR_ERR(*bdev); 519 goto error; 520 } 521 522 if (flush) 523 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 524 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 525 if (ret) { 526 blkdev_put(*bdev, flags); 527 goto error; 528 } 529 invalidate_bdev(*bdev); 530 *disk_super = btrfs_read_dev_super(*bdev); 531 if (IS_ERR(*disk_super)) { 532 ret = PTR_ERR(*disk_super); 533 blkdev_put(*bdev, flags); 534 goto error; 535 } 536 537 return 0; 538 539 error: 540 *bdev = NULL; 541 return ret; 542 } 543 544 static bool device_path_matched(const char *path, struct btrfs_device *device) 545 { 546 int found; 547 548 rcu_read_lock(); 549 found = strcmp(rcu_str_deref(device->name), path); 550 rcu_read_unlock(); 551 552 return found == 0; 553 } 554 555 /* 556 * Search and remove all stale (devices which are not mounted) devices. 557 * When both inputs are NULL, it will search and release all stale devices. 558 * path: Optional. When provided will it release all unmounted devices 559 * matching this path only. 560 * skip_dev: Optional. Will skip this device when searching for the stale 561 * devices. 562 * Return: 0 for success or if @path is NULL. 563 * -EBUSY if @path is a mounted device. 564 * -ENOENT if @path does not match any device in the list. 565 */ 566 static int btrfs_free_stale_devices(const char *path, 567 struct btrfs_device *skip_device) 568 { 569 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 570 struct btrfs_device *device, *tmp_device; 571 int ret = 0; 572 573 if (path) 574 ret = -ENOENT; 575 576 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 577 578 mutex_lock(&fs_devices->device_list_mutex); 579 list_for_each_entry_safe(device, tmp_device, 580 &fs_devices->devices, dev_list) { 581 if (skip_device && skip_device == device) 582 continue; 583 if (path && !device->name) 584 continue; 585 if (path && !device_path_matched(path, device)) 586 continue; 587 if (fs_devices->opened) { 588 /* for an already deleted device return 0 */ 589 if (path && ret != 0) 590 ret = -EBUSY; 591 break; 592 } 593 594 /* delete the stale device */ 595 fs_devices->num_devices--; 596 list_del(&device->dev_list); 597 btrfs_free_device(device); 598 599 ret = 0; 600 } 601 mutex_unlock(&fs_devices->device_list_mutex); 602 603 if (fs_devices->num_devices == 0) { 604 btrfs_sysfs_remove_fsid(fs_devices); 605 list_del(&fs_devices->fs_list); 606 free_fs_devices(fs_devices); 607 } 608 } 609 610 return ret; 611 } 612 613 /* 614 * This is only used on mount, and we are protected from competing things 615 * messing with our fs_devices by the uuid_mutex, thus we do not need the 616 * fs_devices->device_list_mutex here. 617 */ 618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 619 struct btrfs_device *device, fmode_t flags, 620 void *holder) 621 { 622 struct request_queue *q; 623 struct block_device *bdev; 624 struct btrfs_super_block *disk_super; 625 u64 devid; 626 int ret; 627 628 if (device->bdev) 629 return -EINVAL; 630 if (!device->name) 631 return -EINVAL; 632 633 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 634 &bdev, &disk_super); 635 if (ret) 636 return ret; 637 638 devid = btrfs_stack_device_id(&disk_super->dev_item); 639 if (devid != device->devid) 640 goto error_free_page; 641 642 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 643 goto error_free_page; 644 645 device->generation = btrfs_super_generation(disk_super); 646 647 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 648 if (btrfs_super_incompat_flags(disk_super) & 649 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 650 pr_err( 651 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 652 goto error_free_page; 653 } 654 655 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 656 fs_devices->seeding = true; 657 } else { 658 if (bdev_read_only(bdev)) 659 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 660 else 661 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 662 } 663 664 q = bdev_get_queue(bdev); 665 if (!blk_queue_nonrot(q)) 666 fs_devices->rotating = true; 667 668 device->bdev = bdev; 669 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 670 device->mode = flags; 671 672 fs_devices->open_devices++; 673 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 674 device->devid != BTRFS_DEV_REPLACE_DEVID) { 675 fs_devices->rw_devices++; 676 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 677 } 678 btrfs_release_disk_super(disk_super); 679 680 return 0; 681 682 error_free_page: 683 btrfs_release_disk_super(disk_super); 684 blkdev_put(bdev, flags); 685 686 return -EINVAL; 687 } 688 689 /* 690 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 691 * being created with a disk that has already completed its fsid change. Such 692 * disk can belong to an fs which has its FSID changed or to one which doesn't. 693 * Handle both cases here. 694 */ 695 static struct btrfs_fs_devices *find_fsid_inprogress( 696 struct btrfs_super_block *disk_super) 697 { 698 struct btrfs_fs_devices *fs_devices; 699 700 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 701 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 702 BTRFS_FSID_SIZE) != 0 && 703 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 704 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 705 return fs_devices; 706 } 707 } 708 709 return find_fsid(disk_super->fsid, NULL); 710 } 711 712 713 static struct btrfs_fs_devices *find_fsid_changed( 714 struct btrfs_super_block *disk_super) 715 { 716 struct btrfs_fs_devices *fs_devices; 717 718 /* 719 * Handles the case where scanned device is part of an fs that had 720 * multiple successful changes of FSID but curently device didn't 721 * observe it. Meaning our fsid will be different than theirs. We need 722 * to handle two subcases : 723 * 1 - The fs still continues to have different METADATA/FSID uuids. 724 * 2 - The fs is switched back to its original FSID (METADATA/FSID 725 * are equal). 726 */ 727 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 728 /* Changed UUIDs */ 729 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 730 BTRFS_FSID_SIZE) != 0 && 731 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 732 BTRFS_FSID_SIZE) == 0 && 733 memcmp(fs_devices->fsid, disk_super->fsid, 734 BTRFS_FSID_SIZE) != 0) 735 return fs_devices; 736 737 /* Unchanged UUIDs */ 738 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 739 BTRFS_FSID_SIZE) == 0 && 740 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 741 BTRFS_FSID_SIZE) == 0) 742 return fs_devices; 743 } 744 745 return NULL; 746 } 747 748 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 749 struct btrfs_super_block *disk_super) 750 { 751 struct btrfs_fs_devices *fs_devices; 752 753 /* 754 * Handle the case where the scanned device is part of an fs whose last 755 * metadata UUID change reverted it to the original FSID. At the same 756 * time * fs_devices was first created by another constitutent device 757 * which didn't fully observe the operation. This results in an 758 * btrfs_fs_devices created with metadata/fsid different AND 759 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 760 * fs_devices equal to the FSID of the disk. 761 */ 762 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 763 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 764 BTRFS_FSID_SIZE) != 0 && 765 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 766 BTRFS_FSID_SIZE) == 0 && 767 fs_devices->fsid_change) 768 return fs_devices; 769 } 770 771 return NULL; 772 } 773 /* 774 * Add new device to list of registered devices 775 * 776 * Returns: 777 * device pointer which was just added or updated when successful 778 * error pointer when failed 779 */ 780 static noinline struct btrfs_device *device_list_add(const char *path, 781 struct btrfs_super_block *disk_super, 782 bool *new_device_added) 783 { 784 struct btrfs_device *device; 785 struct btrfs_fs_devices *fs_devices = NULL; 786 struct rcu_string *name; 787 u64 found_transid = btrfs_super_generation(disk_super); 788 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 789 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 790 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 791 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 792 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 793 794 if (fsid_change_in_progress) { 795 if (!has_metadata_uuid) 796 fs_devices = find_fsid_inprogress(disk_super); 797 else 798 fs_devices = find_fsid_changed(disk_super); 799 } else if (has_metadata_uuid) { 800 fs_devices = find_fsid_with_metadata_uuid(disk_super); 801 } else { 802 fs_devices = find_fsid_reverted_metadata(disk_super); 803 if (!fs_devices) 804 fs_devices = find_fsid(disk_super->fsid, NULL); 805 } 806 807 808 if (!fs_devices) { 809 if (has_metadata_uuid) 810 fs_devices = alloc_fs_devices(disk_super->fsid, 811 disk_super->metadata_uuid); 812 else 813 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 814 815 if (IS_ERR(fs_devices)) 816 return ERR_CAST(fs_devices); 817 818 fs_devices->fsid_change = fsid_change_in_progress; 819 820 mutex_lock(&fs_devices->device_list_mutex); 821 list_add(&fs_devices->fs_list, &fs_uuids); 822 823 device = NULL; 824 } else { 825 mutex_lock(&fs_devices->device_list_mutex); 826 device = btrfs_find_device(fs_devices, devid, 827 disk_super->dev_item.uuid, NULL); 828 829 /* 830 * If this disk has been pulled into an fs devices created by 831 * a device which had the CHANGING_FSID_V2 flag then replace the 832 * metadata_uuid/fsid values of the fs_devices. 833 */ 834 if (fs_devices->fsid_change && 835 found_transid > fs_devices->latest_generation) { 836 memcpy(fs_devices->fsid, disk_super->fsid, 837 BTRFS_FSID_SIZE); 838 839 if (has_metadata_uuid) 840 memcpy(fs_devices->metadata_uuid, 841 disk_super->metadata_uuid, 842 BTRFS_FSID_SIZE); 843 else 844 memcpy(fs_devices->metadata_uuid, 845 disk_super->fsid, BTRFS_FSID_SIZE); 846 847 fs_devices->fsid_change = false; 848 } 849 } 850 851 if (!device) { 852 if (fs_devices->opened) { 853 mutex_unlock(&fs_devices->device_list_mutex); 854 return ERR_PTR(-EBUSY); 855 } 856 857 device = btrfs_alloc_device(NULL, &devid, 858 disk_super->dev_item.uuid); 859 if (IS_ERR(device)) { 860 mutex_unlock(&fs_devices->device_list_mutex); 861 /* we can safely leave the fs_devices entry around */ 862 return device; 863 } 864 865 name = rcu_string_strdup(path, GFP_NOFS); 866 if (!name) { 867 btrfs_free_device(device); 868 mutex_unlock(&fs_devices->device_list_mutex); 869 return ERR_PTR(-ENOMEM); 870 } 871 rcu_assign_pointer(device->name, name); 872 873 list_add_rcu(&device->dev_list, &fs_devices->devices); 874 fs_devices->num_devices++; 875 876 device->fs_devices = fs_devices; 877 *new_device_added = true; 878 879 if (disk_super->label[0]) 880 pr_info( 881 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 882 disk_super->label, devid, found_transid, path, 883 current->comm, task_pid_nr(current)); 884 else 885 pr_info( 886 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 887 disk_super->fsid, devid, found_transid, path, 888 current->comm, task_pid_nr(current)); 889 890 } else if (!device->name || strcmp(device->name->str, path)) { 891 /* 892 * When FS is already mounted. 893 * 1. If you are here and if the device->name is NULL that 894 * means this device was missing at time of FS mount. 895 * 2. If you are here and if the device->name is different 896 * from 'path' that means either 897 * a. The same device disappeared and reappeared with 898 * different name. or 899 * b. The missing-disk-which-was-replaced, has 900 * reappeared now. 901 * 902 * We must allow 1 and 2a above. But 2b would be a spurious 903 * and unintentional. 904 * 905 * Further in case of 1 and 2a above, the disk at 'path' 906 * would have missed some transaction when it was away and 907 * in case of 2a the stale bdev has to be updated as well. 908 * 2b must not be allowed at all time. 909 */ 910 911 /* 912 * For now, we do allow update to btrfs_fs_device through the 913 * btrfs dev scan cli after FS has been mounted. We're still 914 * tracking a problem where systems fail mount by subvolume id 915 * when we reject replacement on a mounted FS. 916 */ 917 if (!fs_devices->opened && found_transid < device->generation) { 918 /* 919 * That is if the FS is _not_ mounted and if you 920 * are here, that means there is more than one 921 * disk with same uuid and devid.We keep the one 922 * with larger generation number or the last-in if 923 * generation are equal. 924 */ 925 mutex_unlock(&fs_devices->device_list_mutex); 926 return ERR_PTR(-EEXIST); 927 } 928 929 /* 930 * We are going to replace the device path for a given devid, 931 * make sure it's the same device if the device is mounted 932 */ 933 if (device->bdev) { 934 int error; 935 dev_t path_dev; 936 937 error = lookup_bdev(path, &path_dev); 938 if (error) { 939 mutex_unlock(&fs_devices->device_list_mutex); 940 return ERR_PTR(error); 941 } 942 943 if (device->bdev->bd_dev != path_dev) { 944 mutex_unlock(&fs_devices->device_list_mutex); 945 /* 946 * device->fs_info may not be reliable here, so 947 * pass in a NULL instead. This avoids a 948 * possible use-after-free when the fs_info and 949 * fs_info->sb are already torn down. 950 */ 951 btrfs_warn_in_rcu(NULL, 952 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 953 path, devid, found_transid, 954 current->comm, 955 task_pid_nr(current)); 956 return ERR_PTR(-EEXIST); 957 } 958 btrfs_info_in_rcu(device->fs_info, 959 "devid %llu device path %s changed to %s scanned by %s (%d)", 960 devid, rcu_str_deref(device->name), 961 path, current->comm, 962 task_pid_nr(current)); 963 } 964 965 name = rcu_string_strdup(path, GFP_NOFS); 966 if (!name) { 967 mutex_unlock(&fs_devices->device_list_mutex); 968 return ERR_PTR(-ENOMEM); 969 } 970 rcu_string_free(device->name); 971 rcu_assign_pointer(device->name, name); 972 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 973 fs_devices->missing_devices--; 974 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 975 } 976 } 977 978 /* 979 * Unmount does not free the btrfs_device struct but would zero 980 * generation along with most of the other members. So just update 981 * it back. We need it to pick the disk with largest generation 982 * (as above). 983 */ 984 if (!fs_devices->opened) { 985 device->generation = found_transid; 986 fs_devices->latest_generation = max_t(u64, found_transid, 987 fs_devices->latest_generation); 988 } 989 990 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 991 992 mutex_unlock(&fs_devices->device_list_mutex); 993 return device; 994 } 995 996 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 997 { 998 struct btrfs_fs_devices *fs_devices; 999 struct btrfs_device *device; 1000 struct btrfs_device *orig_dev; 1001 int ret = 0; 1002 1003 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1004 if (IS_ERR(fs_devices)) 1005 return fs_devices; 1006 1007 mutex_lock(&orig->device_list_mutex); 1008 fs_devices->total_devices = orig->total_devices; 1009 1010 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1011 struct rcu_string *name; 1012 1013 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1014 orig_dev->uuid); 1015 if (IS_ERR(device)) { 1016 ret = PTR_ERR(device); 1017 goto error; 1018 } 1019 1020 /* 1021 * This is ok to do without rcu read locked because we hold the 1022 * uuid mutex so nothing we touch in here is going to disappear. 1023 */ 1024 if (orig_dev->name) { 1025 name = rcu_string_strdup(orig_dev->name->str, 1026 GFP_KERNEL); 1027 if (!name) { 1028 btrfs_free_device(device); 1029 ret = -ENOMEM; 1030 goto error; 1031 } 1032 rcu_assign_pointer(device->name, name); 1033 } 1034 1035 list_add(&device->dev_list, &fs_devices->devices); 1036 device->fs_devices = fs_devices; 1037 fs_devices->num_devices++; 1038 } 1039 mutex_unlock(&orig->device_list_mutex); 1040 return fs_devices; 1041 error: 1042 mutex_unlock(&orig->device_list_mutex); 1043 free_fs_devices(fs_devices); 1044 return ERR_PTR(ret); 1045 } 1046 1047 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1048 struct btrfs_device **latest_dev) 1049 { 1050 struct btrfs_device *device, *next; 1051 1052 /* This is the initialized path, it is safe to release the devices. */ 1053 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1054 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1055 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1056 &device->dev_state) && 1057 !test_bit(BTRFS_DEV_STATE_MISSING, 1058 &device->dev_state) && 1059 (!*latest_dev || 1060 device->generation > (*latest_dev)->generation)) { 1061 *latest_dev = device; 1062 } 1063 continue; 1064 } 1065 1066 /* 1067 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1068 * in btrfs_init_dev_replace() so just continue. 1069 */ 1070 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1071 continue; 1072 1073 if (device->bdev) { 1074 blkdev_put(device->bdev, device->mode); 1075 device->bdev = NULL; 1076 fs_devices->open_devices--; 1077 } 1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1079 list_del_init(&device->dev_alloc_list); 1080 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1081 } 1082 list_del_init(&device->dev_list); 1083 fs_devices->num_devices--; 1084 btrfs_free_device(device); 1085 } 1086 1087 } 1088 1089 /* 1090 * After we have read the system tree and know devids belonging to this 1091 * filesystem, remove the device which does not belong there. 1092 */ 1093 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1094 { 1095 struct btrfs_device *latest_dev = NULL; 1096 struct btrfs_fs_devices *seed_dev; 1097 1098 mutex_lock(&uuid_mutex); 1099 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1100 1101 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1102 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1103 1104 fs_devices->latest_bdev = latest_dev->bdev; 1105 1106 mutex_unlock(&uuid_mutex); 1107 } 1108 1109 static void btrfs_close_bdev(struct btrfs_device *device) 1110 { 1111 if (!device->bdev) 1112 return; 1113 1114 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1115 sync_blockdev(device->bdev); 1116 invalidate_bdev(device->bdev); 1117 } 1118 1119 blkdev_put(device->bdev, device->mode); 1120 } 1121 1122 static void btrfs_close_one_device(struct btrfs_device *device) 1123 { 1124 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1125 1126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1127 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1128 list_del_init(&device->dev_alloc_list); 1129 fs_devices->rw_devices--; 1130 } 1131 1132 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1133 fs_devices->missing_devices--; 1134 1135 btrfs_close_bdev(device); 1136 if (device->bdev) { 1137 fs_devices->open_devices--; 1138 device->bdev = NULL; 1139 } 1140 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1141 btrfs_destroy_dev_zone_info(device); 1142 1143 device->fs_info = NULL; 1144 atomic_set(&device->dev_stats_ccnt, 0); 1145 extent_io_tree_release(&device->alloc_state); 1146 1147 /* Verify the device is back in a pristine state */ 1148 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1149 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1150 ASSERT(list_empty(&device->dev_alloc_list)); 1151 ASSERT(list_empty(&device->post_commit_list)); 1152 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1153 } 1154 1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1156 { 1157 struct btrfs_device *device, *tmp; 1158 1159 lockdep_assert_held(&uuid_mutex); 1160 1161 if (--fs_devices->opened > 0) 1162 return; 1163 1164 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1165 btrfs_close_one_device(device); 1166 1167 WARN_ON(fs_devices->open_devices); 1168 WARN_ON(fs_devices->rw_devices); 1169 fs_devices->opened = 0; 1170 fs_devices->seeding = false; 1171 fs_devices->fs_info = NULL; 1172 } 1173 1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1175 { 1176 LIST_HEAD(list); 1177 struct btrfs_fs_devices *tmp; 1178 1179 mutex_lock(&uuid_mutex); 1180 close_fs_devices(fs_devices); 1181 if (!fs_devices->opened) 1182 list_splice_init(&fs_devices->seed_list, &list); 1183 1184 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1185 close_fs_devices(fs_devices); 1186 list_del(&fs_devices->seed_list); 1187 free_fs_devices(fs_devices); 1188 } 1189 mutex_unlock(&uuid_mutex); 1190 } 1191 1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1193 fmode_t flags, void *holder) 1194 { 1195 struct btrfs_device *device; 1196 struct btrfs_device *latest_dev = NULL; 1197 struct btrfs_device *tmp_device; 1198 1199 flags |= FMODE_EXCL; 1200 1201 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1202 dev_list) { 1203 int ret; 1204 1205 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1206 if (ret == 0 && 1207 (!latest_dev || device->generation > latest_dev->generation)) { 1208 latest_dev = device; 1209 } else if (ret == -ENODATA) { 1210 fs_devices->num_devices--; 1211 list_del(&device->dev_list); 1212 btrfs_free_device(device); 1213 } 1214 } 1215 if (fs_devices->open_devices == 0) 1216 return -EINVAL; 1217 1218 fs_devices->opened = 1; 1219 fs_devices->latest_bdev = latest_dev->bdev; 1220 fs_devices->total_rw_bytes = 0; 1221 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1222 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1223 1224 return 0; 1225 } 1226 1227 static int devid_cmp(void *priv, const struct list_head *a, 1228 const struct list_head *b) 1229 { 1230 struct btrfs_device *dev1, *dev2; 1231 1232 dev1 = list_entry(a, struct btrfs_device, dev_list); 1233 dev2 = list_entry(b, struct btrfs_device, dev_list); 1234 1235 if (dev1->devid < dev2->devid) 1236 return -1; 1237 else if (dev1->devid > dev2->devid) 1238 return 1; 1239 return 0; 1240 } 1241 1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1243 fmode_t flags, void *holder) 1244 { 1245 int ret; 1246 1247 lockdep_assert_held(&uuid_mutex); 1248 /* 1249 * The device_list_mutex cannot be taken here in case opening the 1250 * underlying device takes further locks like bd_mutex. 1251 * 1252 * We also don't need the lock here as this is called during mount and 1253 * exclusion is provided by uuid_mutex 1254 */ 1255 1256 if (fs_devices->opened) { 1257 fs_devices->opened++; 1258 ret = 0; 1259 } else { 1260 list_sort(NULL, &fs_devices->devices, devid_cmp); 1261 ret = open_fs_devices(fs_devices, flags, holder); 1262 } 1263 1264 return ret; 1265 } 1266 1267 void btrfs_release_disk_super(struct btrfs_super_block *super) 1268 { 1269 struct page *page = virt_to_page(super); 1270 1271 put_page(page); 1272 } 1273 1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1275 u64 bytenr, u64 bytenr_orig) 1276 { 1277 struct btrfs_super_block *disk_super; 1278 struct page *page; 1279 void *p; 1280 pgoff_t index; 1281 1282 /* make sure our super fits in the device */ 1283 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1284 return ERR_PTR(-EINVAL); 1285 1286 /* make sure our super fits in the page */ 1287 if (sizeof(*disk_super) > PAGE_SIZE) 1288 return ERR_PTR(-EINVAL); 1289 1290 /* make sure our super doesn't straddle pages on disk */ 1291 index = bytenr >> PAGE_SHIFT; 1292 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1293 return ERR_PTR(-EINVAL); 1294 1295 /* pull in the page with our super */ 1296 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1297 1298 if (IS_ERR(page)) 1299 return ERR_CAST(page); 1300 1301 p = page_address(page); 1302 1303 /* align our pointer to the offset of the super block */ 1304 disk_super = p + offset_in_page(bytenr); 1305 1306 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1307 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1308 btrfs_release_disk_super(p); 1309 return ERR_PTR(-EINVAL); 1310 } 1311 1312 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1313 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1314 1315 return disk_super; 1316 } 1317 1318 int btrfs_forget_devices(const char *path) 1319 { 1320 int ret; 1321 1322 mutex_lock(&uuid_mutex); 1323 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1324 mutex_unlock(&uuid_mutex); 1325 1326 return ret; 1327 } 1328 1329 /* 1330 * Look for a btrfs signature on a device. This may be called out of the mount path 1331 * and we are not allowed to call set_blocksize during the scan. The superblock 1332 * is read via pagecache 1333 */ 1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1335 void *holder) 1336 { 1337 struct btrfs_super_block *disk_super; 1338 bool new_device_added = false; 1339 struct btrfs_device *device = NULL; 1340 struct block_device *bdev; 1341 u64 bytenr, bytenr_orig; 1342 int ret; 1343 1344 lockdep_assert_held(&uuid_mutex); 1345 1346 /* 1347 * we would like to check all the supers, but that would make 1348 * a btrfs mount succeed after a mkfs from a different FS. 1349 * So, we need to add a special mount option to scan for 1350 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1351 */ 1352 flags |= FMODE_EXCL; 1353 1354 bdev = blkdev_get_by_path(path, flags, holder); 1355 if (IS_ERR(bdev)) 1356 return ERR_CAST(bdev); 1357 1358 bytenr_orig = btrfs_sb_offset(0); 1359 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1360 if (ret) 1361 return ERR_PTR(ret); 1362 1363 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1364 if (IS_ERR(disk_super)) { 1365 device = ERR_CAST(disk_super); 1366 goto error_bdev_put; 1367 } 1368 1369 device = device_list_add(path, disk_super, &new_device_added); 1370 if (!IS_ERR(device)) { 1371 if (new_device_added) 1372 btrfs_free_stale_devices(path, device); 1373 } 1374 1375 btrfs_release_disk_super(disk_super); 1376 1377 error_bdev_put: 1378 blkdev_put(bdev, flags); 1379 1380 return device; 1381 } 1382 1383 /* 1384 * Try to find a chunk that intersects [start, start + len] range and when one 1385 * such is found, record the end of it in *start 1386 */ 1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1388 u64 len) 1389 { 1390 u64 physical_start, physical_end; 1391 1392 lockdep_assert_held(&device->fs_info->chunk_mutex); 1393 1394 if (!find_first_extent_bit(&device->alloc_state, *start, 1395 &physical_start, &physical_end, 1396 CHUNK_ALLOCATED, NULL)) { 1397 1398 if (in_range(physical_start, *start, len) || 1399 in_range(*start, physical_start, 1400 physical_end - physical_start)) { 1401 *start = physical_end + 1; 1402 return true; 1403 } 1404 } 1405 return false; 1406 } 1407 1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1409 { 1410 switch (device->fs_devices->chunk_alloc_policy) { 1411 case BTRFS_CHUNK_ALLOC_REGULAR: 1412 /* 1413 * We don't want to overwrite the superblock on the drive nor 1414 * any area used by the boot loader (grub for example), so we 1415 * make sure to start at an offset of at least 1MB. 1416 */ 1417 return max_t(u64, start, SZ_1M); 1418 case BTRFS_CHUNK_ALLOC_ZONED: 1419 /* 1420 * We don't care about the starting region like regular 1421 * allocator, because we anyway use/reserve the first two zones 1422 * for superblock logging. 1423 */ 1424 return ALIGN(start, device->zone_info->zone_size); 1425 default: 1426 BUG(); 1427 } 1428 } 1429 1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1431 u64 *hole_start, u64 *hole_size, 1432 u64 num_bytes) 1433 { 1434 u64 zone_size = device->zone_info->zone_size; 1435 u64 pos; 1436 int ret; 1437 bool changed = false; 1438 1439 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1440 1441 while (*hole_size > 0) { 1442 pos = btrfs_find_allocatable_zones(device, *hole_start, 1443 *hole_start + *hole_size, 1444 num_bytes); 1445 if (pos != *hole_start) { 1446 *hole_size = *hole_start + *hole_size - pos; 1447 *hole_start = pos; 1448 changed = true; 1449 if (*hole_size < num_bytes) 1450 break; 1451 } 1452 1453 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1454 1455 /* Range is ensured to be empty */ 1456 if (!ret) 1457 return changed; 1458 1459 /* Given hole range was invalid (outside of device) */ 1460 if (ret == -ERANGE) { 1461 *hole_start += *hole_size; 1462 *hole_size = false; 1463 return true; 1464 } 1465 1466 *hole_start += zone_size; 1467 *hole_size -= zone_size; 1468 changed = true; 1469 } 1470 1471 return changed; 1472 } 1473 1474 /** 1475 * dev_extent_hole_check - check if specified hole is suitable for allocation 1476 * @device: the device which we have the hole 1477 * @hole_start: starting position of the hole 1478 * @hole_size: the size of the hole 1479 * @num_bytes: the size of the free space that we need 1480 * 1481 * This function may modify @hole_start and @hole_size to reflect the suitable 1482 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1483 */ 1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1485 u64 *hole_size, u64 num_bytes) 1486 { 1487 bool changed = false; 1488 u64 hole_end = *hole_start + *hole_size; 1489 1490 for (;;) { 1491 /* 1492 * Check before we set max_hole_start, otherwise we could end up 1493 * sending back this offset anyway. 1494 */ 1495 if (contains_pending_extent(device, hole_start, *hole_size)) { 1496 if (hole_end >= *hole_start) 1497 *hole_size = hole_end - *hole_start; 1498 else 1499 *hole_size = 0; 1500 changed = true; 1501 } 1502 1503 switch (device->fs_devices->chunk_alloc_policy) { 1504 case BTRFS_CHUNK_ALLOC_REGULAR: 1505 /* No extra check */ 1506 break; 1507 case BTRFS_CHUNK_ALLOC_ZONED: 1508 if (dev_extent_hole_check_zoned(device, hole_start, 1509 hole_size, num_bytes)) { 1510 changed = true; 1511 /* 1512 * The changed hole can contain pending extent. 1513 * Loop again to check that. 1514 */ 1515 continue; 1516 } 1517 break; 1518 default: 1519 BUG(); 1520 } 1521 1522 break; 1523 } 1524 1525 return changed; 1526 } 1527 1528 /* 1529 * find_free_dev_extent_start - find free space in the specified device 1530 * @device: the device which we search the free space in 1531 * @num_bytes: the size of the free space that we need 1532 * @search_start: the position from which to begin the search 1533 * @start: store the start of the free space. 1534 * @len: the size of the free space. that we find, or the size 1535 * of the max free space if we don't find suitable free space 1536 * 1537 * this uses a pretty simple search, the expectation is that it is 1538 * called very infrequently and that a given device has a small number 1539 * of extents 1540 * 1541 * @start is used to store the start of the free space if we find. But if we 1542 * don't find suitable free space, it will be used to store the start position 1543 * of the max free space. 1544 * 1545 * @len is used to store the size of the free space that we find. 1546 * But if we don't find suitable free space, it is used to store the size of 1547 * the max free space. 1548 * 1549 * NOTE: This function will search *commit* root of device tree, and does extra 1550 * check to ensure dev extents are not double allocated. 1551 * This makes the function safe to allocate dev extents but may not report 1552 * correct usable device space, as device extent freed in current transaction 1553 * is not reported as avaiable. 1554 */ 1555 static int find_free_dev_extent_start(struct btrfs_device *device, 1556 u64 num_bytes, u64 search_start, u64 *start, 1557 u64 *len) 1558 { 1559 struct btrfs_fs_info *fs_info = device->fs_info; 1560 struct btrfs_root *root = fs_info->dev_root; 1561 struct btrfs_key key; 1562 struct btrfs_dev_extent *dev_extent; 1563 struct btrfs_path *path; 1564 u64 hole_size; 1565 u64 max_hole_start; 1566 u64 max_hole_size; 1567 u64 extent_end; 1568 u64 search_end = device->total_bytes; 1569 int ret; 1570 int slot; 1571 struct extent_buffer *l; 1572 1573 search_start = dev_extent_search_start(device, search_start); 1574 1575 WARN_ON(device->zone_info && 1576 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1577 1578 path = btrfs_alloc_path(); 1579 if (!path) 1580 return -ENOMEM; 1581 1582 max_hole_start = search_start; 1583 max_hole_size = 0; 1584 1585 again: 1586 if (search_start >= search_end || 1587 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1588 ret = -ENOSPC; 1589 goto out; 1590 } 1591 1592 path->reada = READA_FORWARD; 1593 path->search_commit_root = 1; 1594 path->skip_locking = 1; 1595 1596 key.objectid = device->devid; 1597 key.offset = search_start; 1598 key.type = BTRFS_DEV_EXTENT_KEY; 1599 1600 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1601 if (ret < 0) 1602 goto out; 1603 if (ret > 0) { 1604 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1605 if (ret < 0) 1606 goto out; 1607 } 1608 1609 while (1) { 1610 l = path->nodes[0]; 1611 slot = path->slots[0]; 1612 if (slot >= btrfs_header_nritems(l)) { 1613 ret = btrfs_next_leaf(root, path); 1614 if (ret == 0) 1615 continue; 1616 if (ret < 0) 1617 goto out; 1618 1619 break; 1620 } 1621 btrfs_item_key_to_cpu(l, &key, slot); 1622 1623 if (key.objectid < device->devid) 1624 goto next; 1625 1626 if (key.objectid > device->devid) 1627 break; 1628 1629 if (key.type != BTRFS_DEV_EXTENT_KEY) 1630 goto next; 1631 1632 if (key.offset > search_start) { 1633 hole_size = key.offset - search_start; 1634 dev_extent_hole_check(device, &search_start, &hole_size, 1635 num_bytes); 1636 1637 if (hole_size > max_hole_size) { 1638 max_hole_start = search_start; 1639 max_hole_size = hole_size; 1640 } 1641 1642 /* 1643 * If this free space is greater than which we need, 1644 * it must be the max free space that we have found 1645 * until now, so max_hole_start must point to the start 1646 * of this free space and the length of this free space 1647 * is stored in max_hole_size. Thus, we return 1648 * max_hole_start and max_hole_size and go back to the 1649 * caller. 1650 */ 1651 if (hole_size >= num_bytes) { 1652 ret = 0; 1653 goto out; 1654 } 1655 } 1656 1657 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1658 extent_end = key.offset + btrfs_dev_extent_length(l, 1659 dev_extent); 1660 if (extent_end > search_start) 1661 search_start = extent_end; 1662 next: 1663 path->slots[0]++; 1664 cond_resched(); 1665 } 1666 1667 /* 1668 * At this point, search_start should be the end of 1669 * allocated dev extents, and when shrinking the device, 1670 * search_end may be smaller than search_start. 1671 */ 1672 if (search_end > search_start) { 1673 hole_size = search_end - search_start; 1674 if (dev_extent_hole_check(device, &search_start, &hole_size, 1675 num_bytes)) { 1676 btrfs_release_path(path); 1677 goto again; 1678 } 1679 1680 if (hole_size > max_hole_size) { 1681 max_hole_start = search_start; 1682 max_hole_size = hole_size; 1683 } 1684 } 1685 1686 /* See above. */ 1687 if (max_hole_size < num_bytes) 1688 ret = -ENOSPC; 1689 else 1690 ret = 0; 1691 1692 out: 1693 btrfs_free_path(path); 1694 *start = max_hole_start; 1695 if (len) 1696 *len = max_hole_size; 1697 return ret; 1698 } 1699 1700 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1701 u64 *start, u64 *len) 1702 { 1703 /* FIXME use last free of some kind */ 1704 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1705 } 1706 1707 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1708 struct btrfs_device *device, 1709 u64 start, u64 *dev_extent_len) 1710 { 1711 struct btrfs_fs_info *fs_info = device->fs_info; 1712 struct btrfs_root *root = fs_info->dev_root; 1713 int ret; 1714 struct btrfs_path *path; 1715 struct btrfs_key key; 1716 struct btrfs_key found_key; 1717 struct extent_buffer *leaf = NULL; 1718 struct btrfs_dev_extent *extent = NULL; 1719 1720 path = btrfs_alloc_path(); 1721 if (!path) 1722 return -ENOMEM; 1723 1724 key.objectid = device->devid; 1725 key.offset = start; 1726 key.type = BTRFS_DEV_EXTENT_KEY; 1727 again: 1728 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1729 if (ret > 0) { 1730 ret = btrfs_previous_item(root, path, key.objectid, 1731 BTRFS_DEV_EXTENT_KEY); 1732 if (ret) 1733 goto out; 1734 leaf = path->nodes[0]; 1735 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1736 extent = btrfs_item_ptr(leaf, path->slots[0], 1737 struct btrfs_dev_extent); 1738 BUG_ON(found_key.offset > start || found_key.offset + 1739 btrfs_dev_extent_length(leaf, extent) < start); 1740 key = found_key; 1741 btrfs_release_path(path); 1742 goto again; 1743 } else if (ret == 0) { 1744 leaf = path->nodes[0]; 1745 extent = btrfs_item_ptr(leaf, path->slots[0], 1746 struct btrfs_dev_extent); 1747 } else { 1748 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1749 goto out; 1750 } 1751 1752 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1753 1754 ret = btrfs_del_item(trans, root, path); 1755 if (ret) { 1756 btrfs_handle_fs_error(fs_info, ret, 1757 "Failed to remove dev extent item"); 1758 } else { 1759 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1760 } 1761 out: 1762 btrfs_free_path(path); 1763 return ret; 1764 } 1765 1766 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1767 struct btrfs_device *device, 1768 u64 chunk_offset, u64 start, u64 num_bytes) 1769 { 1770 int ret; 1771 struct btrfs_path *path; 1772 struct btrfs_fs_info *fs_info = device->fs_info; 1773 struct btrfs_root *root = fs_info->dev_root; 1774 struct btrfs_dev_extent *extent; 1775 struct extent_buffer *leaf; 1776 struct btrfs_key key; 1777 1778 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1779 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1780 path = btrfs_alloc_path(); 1781 if (!path) 1782 return -ENOMEM; 1783 1784 key.objectid = device->devid; 1785 key.offset = start; 1786 key.type = BTRFS_DEV_EXTENT_KEY; 1787 ret = btrfs_insert_empty_item(trans, root, path, &key, 1788 sizeof(*extent)); 1789 if (ret) 1790 goto out; 1791 1792 leaf = path->nodes[0]; 1793 extent = btrfs_item_ptr(leaf, path->slots[0], 1794 struct btrfs_dev_extent); 1795 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1796 BTRFS_CHUNK_TREE_OBJECTID); 1797 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1798 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1799 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1800 1801 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1802 btrfs_mark_buffer_dirty(leaf); 1803 out: 1804 btrfs_free_path(path); 1805 return ret; 1806 } 1807 1808 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1809 { 1810 struct extent_map_tree *em_tree; 1811 struct extent_map *em; 1812 struct rb_node *n; 1813 u64 ret = 0; 1814 1815 em_tree = &fs_info->mapping_tree; 1816 read_lock(&em_tree->lock); 1817 n = rb_last(&em_tree->map.rb_root); 1818 if (n) { 1819 em = rb_entry(n, struct extent_map, rb_node); 1820 ret = em->start + em->len; 1821 } 1822 read_unlock(&em_tree->lock); 1823 1824 return ret; 1825 } 1826 1827 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1828 u64 *devid_ret) 1829 { 1830 int ret; 1831 struct btrfs_key key; 1832 struct btrfs_key found_key; 1833 struct btrfs_path *path; 1834 1835 path = btrfs_alloc_path(); 1836 if (!path) 1837 return -ENOMEM; 1838 1839 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1840 key.type = BTRFS_DEV_ITEM_KEY; 1841 key.offset = (u64)-1; 1842 1843 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1844 if (ret < 0) 1845 goto error; 1846 1847 if (ret == 0) { 1848 /* Corruption */ 1849 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1850 ret = -EUCLEAN; 1851 goto error; 1852 } 1853 1854 ret = btrfs_previous_item(fs_info->chunk_root, path, 1855 BTRFS_DEV_ITEMS_OBJECTID, 1856 BTRFS_DEV_ITEM_KEY); 1857 if (ret) { 1858 *devid_ret = 1; 1859 } else { 1860 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1861 path->slots[0]); 1862 *devid_ret = found_key.offset + 1; 1863 } 1864 ret = 0; 1865 error: 1866 btrfs_free_path(path); 1867 return ret; 1868 } 1869 1870 /* 1871 * the device information is stored in the chunk root 1872 * the btrfs_device struct should be fully filled in 1873 */ 1874 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1875 struct btrfs_device *device) 1876 { 1877 int ret; 1878 struct btrfs_path *path; 1879 struct btrfs_dev_item *dev_item; 1880 struct extent_buffer *leaf; 1881 struct btrfs_key key; 1882 unsigned long ptr; 1883 1884 path = btrfs_alloc_path(); 1885 if (!path) 1886 return -ENOMEM; 1887 1888 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1889 key.type = BTRFS_DEV_ITEM_KEY; 1890 key.offset = device->devid; 1891 1892 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1893 &key, sizeof(*dev_item)); 1894 if (ret) 1895 goto out; 1896 1897 leaf = path->nodes[0]; 1898 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1899 1900 btrfs_set_device_id(leaf, dev_item, device->devid); 1901 btrfs_set_device_generation(leaf, dev_item, 0); 1902 btrfs_set_device_type(leaf, dev_item, device->type); 1903 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1904 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1905 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1906 btrfs_set_device_total_bytes(leaf, dev_item, 1907 btrfs_device_get_disk_total_bytes(device)); 1908 btrfs_set_device_bytes_used(leaf, dev_item, 1909 btrfs_device_get_bytes_used(device)); 1910 btrfs_set_device_group(leaf, dev_item, 0); 1911 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1912 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1913 btrfs_set_device_start_offset(leaf, dev_item, 0); 1914 1915 ptr = btrfs_device_uuid(dev_item); 1916 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1917 ptr = btrfs_device_fsid(dev_item); 1918 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1919 ptr, BTRFS_FSID_SIZE); 1920 btrfs_mark_buffer_dirty(leaf); 1921 1922 ret = 0; 1923 out: 1924 btrfs_free_path(path); 1925 return ret; 1926 } 1927 1928 /* 1929 * Function to update ctime/mtime for a given device path. 1930 * Mainly used for ctime/mtime based probe like libblkid. 1931 */ 1932 static void update_dev_time(const char *path_name) 1933 { 1934 struct file *filp; 1935 1936 filp = filp_open(path_name, O_RDWR, 0); 1937 if (IS_ERR(filp)) 1938 return; 1939 file_update_time(filp); 1940 filp_close(filp, NULL); 1941 } 1942 1943 static int btrfs_rm_dev_item(struct btrfs_device *device) 1944 { 1945 struct btrfs_root *root = device->fs_info->chunk_root; 1946 int ret; 1947 struct btrfs_path *path; 1948 struct btrfs_key key; 1949 struct btrfs_trans_handle *trans; 1950 1951 path = btrfs_alloc_path(); 1952 if (!path) 1953 return -ENOMEM; 1954 1955 trans = btrfs_start_transaction(root, 0); 1956 if (IS_ERR(trans)) { 1957 btrfs_free_path(path); 1958 return PTR_ERR(trans); 1959 } 1960 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1961 key.type = BTRFS_DEV_ITEM_KEY; 1962 key.offset = device->devid; 1963 1964 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1965 if (ret) { 1966 if (ret > 0) 1967 ret = -ENOENT; 1968 btrfs_abort_transaction(trans, ret); 1969 btrfs_end_transaction(trans); 1970 goto out; 1971 } 1972 1973 ret = btrfs_del_item(trans, root, path); 1974 if (ret) { 1975 btrfs_abort_transaction(trans, ret); 1976 btrfs_end_transaction(trans); 1977 } 1978 1979 out: 1980 btrfs_free_path(path); 1981 if (!ret) 1982 ret = btrfs_commit_transaction(trans); 1983 return ret; 1984 } 1985 1986 /* 1987 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1988 * filesystem. It's up to the caller to adjust that number regarding eg. device 1989 * replace. 1990 */ 1991 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1992 u64 num_devices) 1993 { 1994 u64 all_avail; 1995 unsigned seq; 1996 int i; 1997 1998 do { 1999 seq = read_seqbegin(&fs_info->profiles_lock); 2000 2001 all_avail = fs_info->avail_data_alloc_bits | 2002 fs_info->avail_system_alloc_bits | 2003 fs_info->avail_metadata_alloc_bits; 2004 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2005 2006 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2007 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2008 continue; 2009 2010 if (num_devices < btrfs_raid_array[i].devs_min) { 2011 int ret = btrfs_raid_array[i].mindev_error; 2012 2013 if (ret) 2014 return ret; 2015 } 2016 } 2017 2018 return 0; 2019 } 2020 2021 static struct btrfs_device * btrfs_find_next_active_device( 2022 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2023 { 2024 struct btrfs_device *next_device; 2025 2026 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2027 if (next_device != device && 2028 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2029 && next_device->bdev) 2030 return next_device; 2031 } 2032 2033 return NULL; 2034 } 2035 2036 /* 2037 * Helper function to check if the given device is part of s_bdev / latest_bdev 2038 * and replace it with the provided or the next active device, in the context 2039 * where this function called, there should be always be another device (or 2040 * this_dev) which is active. 2041 */ 2042 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2043 struct btrfs_device *next_device) 2044 { 2045 struct btrfs_fs_info *fs_info = device->fs_info; 2046 2047 if (!next_device) 2048 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2049 device); 2050 ASSERT(next_device); 2051 2052 if (fs_info->sb->s_bdev && 2053 (fs_info->sb->s_bdev == device->bdev)) 2054 fs_info->sb->s_bdev = next_device->bdev; 2055 2056 if (fs_info->fs_devices->latest_bdev == device->bdev) 2057 fs_info->fs_devices->latest_bdev = next_device->bdev; 2058 } 2059 2060 /* 2061 * Return btrfs_fs_devices::num_devices excluding the device that's being 2062 * currently replaced. 2063 */ 2064 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2065 { 2066 u64 num_devices = fs_info->fs_devices->num_devices; 2067 2068 down_read(&fs_info->dev_replace.rwsem); 2069 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2070 ASSERT(num_devices > 1); 2071 num_devices--; 2072 } 2073 up_read(&fs_info->dev_replace.rwsem); 2074 2075 return num_devices; 2076 } 2077 2078 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2079 struct block_device *bdev, 2080 const char *device_path) 2081 { 2082 struct btrfs_super_block *disk_super; 2083 int copy_num; 2084 2085 if (!bdev) 2086 return; 2087 2088 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2089 struct page *page; 2090 int ret; 2091 2092 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2093 if (IS_ERR(disk_super)) 2094 continue; 2095 2096 if (bdev_is_zoned(bdev)) { 2097 btrfs_reset_sb_log_zones(bdev, copy_num); 2098 continue; 2099 } 2100 2101 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2102 2103 page = virt_to_page(disk_super); 2104 set_page_dirty(page); 2105 lock_page(page); 2106 /* write_on_page() unlocks the page */ 2107 ret = write_one_page(page); 2108 if (ret) 2109 btrfs_warn(fs_info, 2110 "error clearing superblock number %d (%d)", 2111 copy_num, ret); 2112 btrfs_release_disk_super(disk_super); 2113 2114 } 2115 2116 /* Notify udev that device has changed */ 2117 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2118 2119 /* Update ctime/mtime for device path for libblkid */ 2120 update_dev_time(device_path); 2121 } 2122 2123 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2124 u64 devid) 2125 { 2126 struct btrfs_device *device; 2127 struct btrfs_fs_devices *cur_devices; 2128 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2129 u64 num_devices; 2130 int ret = 0; 2131 2132 mutex_lock(&uuid_mutex); 2133 2134 num_devices = btrfs_num_devices(fs_info); 2135 2136 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2137 if (ret) 2138 goto out; 2139 2140 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2141 2142 if (IS_ERR(device)) { 2143 if (PTR_ERR(device) == -ENOENT && 2144 strcmp(device_path, "missing") == 0) 2145 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2146 else 2147 ret = PTR_ERR(device); 2148 goto out; 2149 } 2150 2151 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2152 btrfs_warn_in_rcu(fs_info, 2153 "cannot remove device %s (devid %llu) due to active swapfile", 2154 rcu_str_deref(device->name), device->devid); 2155 ret = -ETXTBSY; 2156 goto out; 2157 } 2158 2159 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2160 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2161 goto out; 2162 } 2163 2164 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2165 fs_info->fs_devices->rw_devices == 1) { 2166 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2167 goto out; 2168 } 2169 2170 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2171 mutex_lock(&fs_info->chunk_mutex); 2172 list_del_init(&device->dev_alloc_list); 2173 device->fs_devices->rw_devices--; 2174 mutex_unlock(&fs_info->chunk_mutex); 2175 } 2176 2177 mutex_unlock(&uuid_mutex); 2178 ret = btrfs_shrink_device(device, 0); 2179 if (!ret) 2180 btrfs_reada_remove_dev(device); 2181 mutex_lock(&uuid_mutex); 2182 if (ret) 2183 goto error_undo; 2184 2185 /* 2186 * TODO: the superblock still includes this device in its num_devices 2187 * counter although write_all_supers() is not locked out. This 2188 * could give a filesystem state which requires a degraded mount. 2189 */ 2190 ret = btrfs_rm_dev_item(device); 2191 if (ret) 2192 goto error_undo; 2193 2194 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2195 btrfs_scrub_cancel_dev(device); 2196 2197 /* 2198 * the device list mutex makes sure that we don't change 2199 * the device list while someone else is writing out all 2200 * the device supers. Whoever is writing all supers, should 2201 * lock the device list mutex before getting the number of 2202 * devices in the super block (super_copy). Conversely, 2203 * whoever updates the number of devices in the super block 2204 * (super_copy) should hold the device list mutex. 2205 */ 2206 2207 /* 2208 * In normal cases the cur_devices == fs_devices. But in case 2209 * of deleting a seed device, the cur_devices should point to 2210 * its own fs_devices listed under the fs_devices->seed. 2211 */ 2212 cur_devices = device->fs_devices; 2213 mutex_lock(&fs_devices->device_list_mutex); 2214 list_del_rcu(&device->dev_list); 2215 2216 cur_devices->num_devices--; 2217 cur_devices->total_devices--; 2218 /* Update total_devices of the parent fs_devices if it's seed */ 2219 if (cur_devices != fs_devices) 2220 fs_devices->total_devices--; 2221 2222 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2223 cur_devices->missing_devices--; 2224 2225 btrfs_assign_next_active_device(device, NULL); 2226 2227 if (device->bdev) { 2228 cur_devices->open_devices--; 2229 /* remove sysfs entry */ 2230 btrfs_sysfs_remove_device(device); 2231 } 2232 2233 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2234 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2235 mutex_unlock(&fs_devices->device_list_mutex); 2236 2237 /* 2238 * at this point, the device is zero sized and detached from 2239 * the devices list. All that's left is to zero out the old 2240 * supers and free the device. 2241 */ 2242 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2243 btrfs_scratch_superblocks(fs_info, device->bdev, 2244 device->name->str); 2245 2246 btrfs_close_bdev(device); 2247 synchronize_rcu(); 2248 btrfs_free_device(device); 2249 2250 if (cur_devices->open_devices == 0) { 2251 list_del_init(&cur_devices->seed_list); 2252 close_fs_devices(cur_devices); 2253 free_fs_devices(cur_devices); 2254 } 2255 2256 out: 2257 mutex_unlock(&uuid_mutex); 2258 return ret; 2259 2260 error_undo: 2261 btrfs_reada_undo_remove_dev(device); 2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2263 mutex_lock(&fs_info->chunk_mutex); 2264 list_add(&device->dev_alloc_list, 2265 &fs_devices->alloc_list); 2266 device->fs_devices->rw_devices++; 2267 mutex_unlock(&fs_info->chunk_mutex); 2268 } 2269 goto out; 2270 } 2271 2272 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2273 { 2274 struct btrfs_fs_devices *fs_devices; 2275 2276 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2277 2278 /* 2279 * in case of fs with no seed, srcdev->fs_devices will point 2280 * to fs_devices of fs_info. However when the dev being replaced is 2281 * a seed dev it will point to the seed's local fs_devices. In short 2282 * srcdev will have its correct fs_devices in both the cases. 2283 */ 2284 fs_devices = srcdev->fs_devices; 2285 2286 list_del_rcu(&srcdev->dev_list); 2287 list_del(&srcdev->dev_alloc_list); 2288 fs_devices->num_devices--; 2289 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2290 fs_devices->missing_devices--; 2291 2292 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2293 fs_devices->rw_devices--; 2294 2295 if (srcdev->bdev) 2296 fs_devices->open_devices--; 2297 } 2298 2299 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2300 { 2301 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2302 2303 mutex_lock(&uuid_mutex); 2304 2305 btrfs_close_bdev(srcdev); 2306 synchronize_rcu(); 2307 btrfs_free_device(srcdev); 2308 2309 /* if this is no devs we rather delete the fs_devices */ 2310 if (!fs_devices->num_devices) { 2311 /* 2312 * On a mounted FS, num_devices can't be zero unless it's a 2313 * seed. In case of a seed device being replaced, the replace 2314 * target added to the sprout FS, so there will be no more 2315 * device left under the seed FS. 2316 */ 2317 ASSERT(fs_devices->seeding); 2318 2319 list_del_init(&fs_devices->seed_list); 2320 close_fs_devices(fs_devices); 2321 free_fs_devices(fs_devices); 2322 } 2323 mutex_unlock(&uuid_mutex); 2324 } 2325 2326 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2327 { 2328 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2329 2330 mutex_lock(&fs_devices->device_list_mutex); 2331 2332 btrfs_sysfs_remove_device(tgtdev); 2333 2334 if (tgtdev->bdev) 2335 fs_devices->open_devices--; 2336 2337 fs_devices->num_devices--; 2338 2339 btrfs_assign_next_active_device(tgtdev, NULL); 2340 2341 list_del_rcu(&tgtdev->dev_list); 2342 2343 mutex_unlock(&fs_devices->device_list_mutex); 2344 2345 /* 2346 * The update_dev_time() with in btrfs_scratch_superblocks() 2347 * may lead to a call to btrfs_show_devname() which will try 2348 * to hold device_list_mutex. And here this device 2349 * is already out of device list, so we don't have to hold 2350 * the device_list_mutex lock. 2351 */ 2352 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2353 tgtdev->name->str); 2354 2355 btrfs_close_bdev(tgtdev); 2356 synchronize_rcu(); 2357 btrfs_free_device(tgtdev); 2358 } 2359 2360 static struct btrfs_device *btrfs_find_device_by_path( 2361 struct btrfs_fs_info *fs_info, const char *device_path) 2362 { 2363 int ret = 0; 2364 struct btrfs_super_block *disk_super; 2365 u64 devid; 2366 u8 *dev_uuid; 2367 struct block_device *bdev; 2368 struct btrfs_device *device; 2369 2370 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2371 fs_info->bdev_holder, 0, &bdev, &disk_super); 2372 if (ret) 2373 return ERR_PTR(ret); 2374 2375 devid = btrfs_stack_device_id(&disk_super->dev_item); 2376 dev_uuid = disk_super->dev_item.uuid; 2377 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2378 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2379 disk_super->metadata_uuid); 2380 else 2381 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2382 disk_super->fsid); 2383 2384 btrfs_release_disk_super(disk_super); 2385 if (!device) 2386 device = ERR_PTR(-ENOENT); 2387 blkdev_put(bdev, FMODE_READ); 2388 return device; 2389 } 2390 2391 /* 2392 * Lookup a device given by device id, or the path if the id is 0. 2393 */ 2394 struct btrfs_device *btrfs_find_device_by_devspec( 2395 struct btrfs_fs_info *fs_info, u64 devid, 2396 const char *device_path) 2397 { 2398 struct btrfs_device *device; 2399 2400 if (devid) { 2401 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2402 NULL); 2403 if (!device) 2404 return ERR_PTR(-ENOENT); 2405 return device; 2406 } 2407 2408 if (!device_path || !device_path[0]) 2409 return ERR_PTR(-EINVAL); 2410 2411 if (strcmp(device_path, "missing") == 0) { 2412 /* Find first missing device */ 2413 list_for_each_entry(device, &fs_info->fs_devices->devices, 2414 dev_list) { 2415 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2416 &device->dev_state) && !device->bdev) 2417 return device; 2418 } 2419 return ERR_PTR(-ENOENT); 2420 } 2421 2422 return btrfs_find_device_by_path(fs_info, device_path); 2423 } 2424 2425 /* 2426 * does all the dirty work required for changing file system's UUID. 2427 */ 2428 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2429 { 2430 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2431 struct btrfs_fs_devices *old_devices; 2432 struct btrfs_fs_devices *seed_devices; 2433 struct btrfs_super_block *disk_super = fs_info->super_copy; 2434 struct btrfs_device *device; 2435 u64 super_flags; 2436 2437 lockdep_assert_held(&uuid_mutex); 2438 if (!fs_devices->seeding) 2439 return -EINVAL; 2440 2441 /* 2442 * Private copy of the seed devices, anchored at 2443 * fs_info->fs_devices->seed_list 2444 */ 2445 seed_devices = alloc_fs_devices(NULL, NULL); 2446 if (IS_ERR(seed_devices)) 2447 return PTR_ERR(seed_devices); 2448 2449 /* 2450 * It's necessary to retain a copy of the original seed fs_devices in 2451 * fs_uuids so that filesystems which have been seeded can successfully 2452 * reference the seed device from open_seed_devices. This also supports 2453 * multiple fs seed. 2454 */ 2455 old_devices = clone_fs_devices(fs_devices); 2456 if (IS_ERR(old_devices)) { 2457 kfree(seed_devices); 2458 return PTR_ERR(old_devices); 2459 } 2460 2461 list_add(&old_devices->fs_list, &fs_uuids); 2462 2463 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2464 seed_devices->opened = 1; 2465 INIT_LIST_HEAD(&seed_devices->devices); 2466 INIT_LIST_HEAD(&seed_devices->alloc_list); 2467 mutex_init(&seed_devices->device_list_mutex); 2468 2469 mutex_lock(&fs_devices->device_list_mutex); 2470 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2471 synchronize_rcu); 2472 list_for_each_entry(device, &seed_devices->devices, dev_list) 2473 device->fs_devices = seed_devices; 2474 2475 fs_devices->seeding = false; 2476 fs_devices->num_devices = 0; 2477 fs_devices->open_devices = 0; 2478 fs_devices->missing_devices = 0; 2479 fs_devices->rotating = false; 2480 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2481 2482 generate_random_uuid(fs_devices->fsid); 2483 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2484 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2485 mutex_unlock(&fs_devices->device_list_mutex); 2486 2487 super_flags = btrfs_super_flags(disk_super) & 2488 ~BTRFS_SUPER_FLAG_SEEDING; 2489 btrfs_set_super_flags(disk_super, super_flags); 2490 2491 return 0; 2492 } 2493 2494 /* 2495 * Store the expected generation for seed devices in device items. 2496 */ 2497 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2498 { 2499 struct btrfs_fs_info *fs_info = trans->fs_info; 2500 struct btrfs_root *root = fs_info->chunk_root; 2501 struct btrfs_path *path; 2502 struct extent_buffer *leaf; 2503 struct btrfs_dev_item *dev_item; 2504 struct btrfs_device *device; 2505 struct btrfs_key key; 2506 u8 fs_uuid[BTRFS_FSID_SIZE]; 2507 u8 dev_uuid[BTRFS_UUID_SIZE]; 2508 u64 devid; 2509 int ret; 2510 2511 path = btrfs_alloc_path(); 2512 if (!path) 2513 return -ENOMEM; 2514 2515 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2516 key.offset = 0; 2517 key.type = BTRFS_DEV_ITEM_KEY; 2518 2519 while (1) { 2520 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2521 if (ret < 0) 2522 goto error; 2523 2524 leaf = path->nodes[0]; 2525 next_slot: 2526 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2527 ret = btrfs_next_leaf(root, path); 2528 if (ret > 0) 2529 break; 2530 if (ret < 0) 2531 goto error; 2532 leaf = path->nodes[0]; 2533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2534 btrfs_release_path(path); 2535 continue; 2536 } 2537 2538 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2539 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2540 key.type != BTRFS_DEV_ITEM_KEY) 2541 break; 2542 2543 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2544 struct btrfs_dev_item); 2545 devid = btrfs_device_id(leaf, dev_item); 2546 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2547 BTRFS_UUID_SIZE); 2548 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2549 BTRFS_FSID_SIZE); 2550 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2551 fs_uuid); 2552 BUG_ON(!device); /* Logic error */ 2553 2554 if (device->fs_devices->seeding) { 2555 btrfs_set_device_generation(leaf, dev_item, 2556 device->generation); 2557 btrfs_mark_buffer_dirty(leaf); 2558 } 2559 2560 path->slots[0]++; 2561 goto next_slot; 2562 } 2563 ret = 0; 2564 error: 2565 btrfs_free_path(path); 2566 return ret; 2567 } 2568 2569 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2570 { 2571 struct btrfs_root *root = fs_info->dev_root; 2572 struct request_queue *q; 2573 struct btrfs_trans_handle *trans; 2574 struct btrfs_device *device; 2575 struct block_device *bdev; 2576 struct super_block *sb = fs_info->sb; 2577 struct rcu_string *name; 2578 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2579 u64 orig_super_total_bytes; 2580 u64 orig_super_num_devices; 2581 int seeding_dev = 0; 2582 int ret = 0; 2583 bool locked = false; 2584 2585 if (sb_rdonly(sb) && !fs_devices->seeding) 2586 return -EROFS; 2587 2588 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2589 fs_info->bdev_holder); 2590 if (IS_ERR(bdev)) 2591 return PTR_ERR(bdev); 2592 2593 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2594 ret = -EINVAL; 2595 goto error; 2596 } 2597 2598 if (fs_devices->seeding) { 2599 seeding_dev = 1; 2600 down_write(&sb->s_umount); 2601 mutex_lock(&uuid_mutex); 2602 locked = true; 2603 } 2604 2605 sync_blockdev(bdev); 2606 2607 rcu_read_lock(); 2608 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2609 if (device->bdev == bdev) { 2610 ret = -EEXIST; 2611 rcu_read_unlock(); 2612 goto error; 2613 } 2614 } 2615 rcu_read_unlock(); 2616 2617 device = btrfs_alloc_device(fs_info, NULL, NULL); 2618 if (IS_ERR(device)) { 2619 /* we can safely leave the fs_devices entry around */ 2620 ret = PTR_ERR(device); 2621 goto error; 2622 } 2623 2624 name = rcu_string_strdup(device_path, GFP_KERNEL); 2625 if (!name) { 2626 ret = -ENOMEM; 2627 goto error_free_device; 2628 } 2629 rcu_assign_pointer(device->name, name); 2630 2631 device->fs_info = fs_info; 2632 device->bdev = bdev; 2633 2634 ret = btrfs_get_dev_zone_info(device); 2635 if (ret) 2636 goto error_free_device; 2637 2638 trans = btrfs_start_transaction(root, 0); 2639 if (IS_ERR(trans)) { 2640 ret = PTR_ERR(trans); 2641 goto error_free_zone; 2642 } 2643 2644 q = bdev_get_queue(bdev); 2645 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2646 device->generation = trans->transid; 2647 device->io_width = fs_info->sectorsize; 2648 device->io_align = fs_info->sectorsize; 2649 device->sector_size = fs_info->sectorsize; 2650 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2651 fs_info->sectorsize); 2652 device->disk_total_bytes = device->total_bytes; 2653 device->commit_total_bytes = device->total_bytes; 2654 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2655 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2656 device->mode = FMODE_EXCL; 2657 device->dev_stats_valid = 1; 2658 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2659 2660 if (seeding_dev) { 2661 btrfs_clear_sb_rdonly(sb); 2662 ret = btrfs_prepare_sprout(fs_info); 2663 if (ret) { 2664 btrfs_abort_transaction(trans, ret); 2665 goto error_trans; 2666 } 2667 } 2668 2669 device->fs_devices = fs_devices; 2670 2671 mutex_lock(&fs_devices->device_list_mutex); 2672 mutex_lock(&fs_info->chunk_mutex); 2673 list_add_rcu(&device->dev_list, &fs_devices->devices); 2674 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2675 fs_devices->num_devices++; 2676 fs_devices->open_devices++; 2677 fs_devices->rw_devices++; 2678 fs_devices->total_devices++; 2679 fs_devices->total_rw_bytes += device->total_bytes; 2680 2681 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2682 2683 if (!blk_queue_nonrot(q)) 2684 fs_devices->rotating = true; 2685 2686 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2687 btrfs_set_super_total_bytes(fs_info->super_copy, 2688 round_down(orig_super_total_bytes + device->total_bytes, 2689 fs_info->sectorsize)); 2690 2691 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2692 btrfs_set_super_num_devices(fs_info->super_copy, 2693 orig_super_num_devices + 1); 2694 2695 /* 2696 * we've got more storage, clear any full flags on the space 2697 * infos 2698 */ 2699 btrfs_clear_space_info_full(fs_info); 2700 2701 mutex_unlock(&fs_info->chunk_mutex); 2702 2703 /* Add sysfs device entry */ 2704 btrfs_sysfs_add_device(device); 2705 2706 mutex_unlock(&fs_devices->device_list_mutex); 2707 2708 if (seeding_dev) { 2709 mutex_lock(&fs_info->chunk_mutex); 2710 ret = init_first_rw_device(trans); 2711 mutex_unlock(&fs_info->chunk_mutex); 2712 if (ret) { 2713 btrfs_abort_transaction(trans, ret); 2714 goto error_sysfs; 2715 } 2716 } 2717 2718 ret = btrfs_add_dev_item(trans, device); 2719 if (ret) { 2720 btrfs_abort_transaction(trans, ret); 2721 goto error_sysfs; 2722 } 2723 2724 if (seeding_dev) { 2725 ret = btrfs_finish_sprout(trans); 2726 if (ret) { 2727 btrfs_abort_transaction(trans, ret); 2728 goto error_sysfs; 2729 } 2730 2731 /* 2732 * fs_devices now represents the newly sprouted filesystem and 2733 * its fsid has been changed by btrfs_prepare_sprout 2734 */ 2735 btrfs_sysfs_update_sprout_fsid(fs_devices); 2736 } 2737 2738 ret = btrfs_commit_transaction(trans); 2739 2740 if (seeding_dev) { 2741 mutex_unlock(&uuid_mutex); 2742 up_write(&sb->s_umount); 2743 locked = false; 2744 2745 if (ret) /* transaction commit */ 2746 return ret; 2747 2748 ret = btrfs_relocate_sys_chunks(fs_info); 2749 if (ret < 0) 2750 btrfs_handle_fs_error(fs_info, ret, 2751 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2752 trans = btrfs_attach_transaction(root); 2753 if (IS_ERR(trans)) { 2754 if (PTR_ERR(trans) == -ENOENT) 2755 return 0; 2756 ret = PTR_ERR(trans); 2757 trans = NULL; 2758 goto error_sysfs; 2759 } 2760 ret = btrfs_commit_transaction(trans); 2761 } 2762 2763 /* 2764 * Now that we have written a new super block to this device, check all 2765 * other fs_devices list if device_path alienates any other scanned 2766 * device. 2767 * We can ignore the return value as it typically returns -EINVAL and 2768 * only succeeds if the device was an alien. 2769 */ 2770 btrfs_forget_devices(device_path); 2771 2772 /* Update ctime/mtime for blkid or udev */ 2773 update_dev_time(device_path); 2774 2775 return ret; 2776 2777 error_sysfs: 2778 btrfs_sysfs_remove_device(device); 2779 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2780 mutex_lock(&fs_info->chunk_mutex); 2781 list_del_rcu(&device->dev_list); 2782 list_del(&device->dev_alloc_list); 2783 fs_info->fs_devices->num_devices--; 2784 fs_info->fs_devices->open_devices--; 2785 fs_info->fs_devices->rw_devices--; 2786 fs_info->fs_devices->total_devices--; 2787 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2788 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2789 btrfs_set_super_total_bytes(fs_info->super_copy, 2790 orig_super_total_bytes); 2791 btrfs_set_super_num_devices(fs_info->super_copy, 2792 orig_super_num_devices); 2793 mutex_unlock(&fs_info->chunk_mutex); 2794 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2795 error_trans: 2796 if (seeding_dev) 2797 btrfs_set_sb_rdonly(sb); 2798 if (trans) 2799 btrfs_end_transaction(trans); 2800 error_free_zone: 2801 btrfs_destroy_dev_zone_info(device); 2802 error_free_device: 2803 btrfs_free_device(device); 2804 error: 2805 blkdev_put(bdev, FMODE_EXCL); 2806 if (locked) { 2807 mutex_unlock(&uuid_mutex); 2808 up_write(&sb->s_umount); 2809 } 2810 return ret; 2811 } 2812 2813 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2814 struct btrfs_device *device) 2815 { 2816 int ret; 2817 struct btrfs_path *path; 2818 struct btrfs_root *root = device->fs_info->chunk_root; 2819 struct btrfs_dev_item *dev_item; 2820 struct extent_buffer *leaf; 2821 struct btrfs_key key; 2822 2823 path = btrfs_alloc_path(); 2824 if (!path) 2825 return -ENOMEM; 2826 2827 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2828 key.type = BTRFS_DEV_ITEM_KEY; 2829 key.offset = device->devid; 2830 2831 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2832 if (ret < 0) 2833 goto out; 2834 2835 if (ret > 0) { 2836 ret = -ENOENT; 2837 goto out; 2838 } 2839 2840 leaf = path->nodes[0]; 2841 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2842 2843 btrfs_set_device_id(leaf, dev_item, device->devid); 2844 btrfs_set_device_type(leaf, dev_item, device->type); 2845 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2846 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2847 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2848 btrfs_set_device_total_bytes(leaf, dev_item, 2849 btrfs_device_get_disk_total_bytes(device)); 2850 btrfs_set_device_bytes_used(leaf, dev_item, 2851 btrfs_device_get_bytes_used(device)); 2852 btrfs_mark_buffer_dirty(leaf); 2853 2854 out: 2855 btrfs_free_path(path); 2856 return ret; 2857 } 2858 2859 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2860 struct btrfs_device *device, u64 new_size) 2861 { 2862 struct btrfs_fs_info *fs_info = device->fs_info; 2863 struct btrfs_super_block *super_copy = fs_info->super_copy; 2864 u64 old_total; 2865 u64 diff; 2866 2867 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2868 return -EACCES; 2869 2870 new_size = round_down(new_size, fs_info->sectorsize); 2871 2872 mutex_lock(&fs_info->chunk_mutex); 2873 old_total = btrfs_super_total_bytes(super_copy); 2874 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2875 2876 if (new_size <= device->total_bytes || 2877 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2878 mutex_unlock(&fs_info->chunk_mutex); 2879 return -EINVAL; 2880 } 2881 2882 btrfs_set_super_total_bytes(super_copy, 2883 round_down(old_total + diff, fs_info->sectorsize)); 2884 device->fs_devices->total_rw_bytes += diff; 2885 2886 btrfs_device_set_total_bytes(device, new_size); 2887 btrfs_device_set_disk_total_bytes(device, new_size); 2888 btrfs_clear_space_info_full(device->fs_info); 2889 if (list_empty(&device->post_commit_list)) 2890 list_add_tail(&device->post_commit_list, 2891 &trans->transaction->dev_update_list); 2892 mutex_unlock(&fs_info->chunk_mutex); 2893 2894 return btrfs_update_device(trans, device); 2895 } 2896 2897 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2898 { 2899 struct btrfs_fs_info *fs_info = trans->fs_info; 2900 struct btrfs_root *root = fs_info->chunk_root; 2901 int ret; 2902 struct btrfs_path *path; 2903 struct btrfs_key key; 2904 2905 path = btrfs_alloc_path(); 2906 if (!path) 2907 return -ENOMEM; 2908 2909 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2910 key.offset = chunk_offset; 2911 key.type = BTRFS_CHUNK_ITEM_KEY; 2912 2913 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2914 if (ret < 0) 2915 goto out; 2916 else if (ret > 0) { /* Logic error or corruption */ 2917 btrfs_handle_fs_error(fs_info, -ENOENT, 2918 "Failed lookup while freeing chunk."); 2919 ret = -ENOENT; 2920 goto out; 2921 } 2922 2923 ret = btrfs_del_item(trans, root, path); 2924 if (ret < 0) 2925 btrfs_handle_fs_error(fs_info, ret, 2926 "Failed to delete chunk item."); 2927 out: 2928 btrfs_free_path(path); 2929 return ret; 2930 } 2931 2932 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2933 { 2934 struct btrfs_super_block *super_copy = fs_info->super_copy; 2935 struct btrfs_disk_key *disk_key; 2936 struct btrfs_chunk *chunk; 2937 u8 *ptr; 2938 int ret = 0; 2939 u32 num_stripes; 2940 u32 array_size; 2941 u32 len = 0; 2942 u32 cur; 2943 struct btrfs_key key; 2944 2945 mutex_lock(&fs_info->chunk_mutex); 2946 array_size = btrfs_super_sys_array_size(super_copy); 2947 2948 ptr = super_copy->sys_chunk_array; 2949 cur = 0; 2950 2951 while (cur < array_size) { 2952 disk_key = (struct btrfs_disk_key *)ptr; 2953 btrfs_disk_key_to_cpu(&key, disk_key); 2954 2955 len = sizeof(*disk_key); 2956 2957 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2958 chunk = (struct btrfs_chunk *)(ptr + len); 2959 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2960 len += btrfs_chunk_item_size(num_stripes); 2961 } else { 2962 ret = -EIO; 2963 break; 2964 } 2965 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2966 key.offset == chunk_offset) { 2967 memmove(ptr, ptr + len, array_size - (cur + len)); 2968 array_size -= len; 2969 btrfs_set_super_sys_array_size(super_copy, array_size); 2970 } else { 2971 ptr += len; 2972 cur += len; 2973 } 2974 } 2975 mutex_unlock(&fs_info->chunk_mutex); 2976 return ret; 2977 } 2978 2979 /* 2980 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2981 * @logical: Logical block offset in bytes. 2982 * @length: Length of extent in bytes. 2983 * 2984 * Return: Chunk mapping or ERR_PTR. 2985 */ 2986 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2987 u64 logical, u64 length) 2988 { 2989 struct extent_map_tree *em_tree; 2990 struct extent_map *em; 2991 2992 em_tree = &fs_info->mapping_tree; 2993 read_lock(&em_tree->lock); 2994 em = lookup_extent_mapping(em_tree, logical, length); 2995 read_unlock(&em_tree->lock); 2996 2997 if (!em) { 2998 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2999 logical, length); 3000 return ERR_PTR(-EINVAL); 3001 } 3002 3003 if (em->start > logical || em->start + em->len < logical) { 3004 btrfs_crit(fs_info, 3005 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3006 logical, length, em->start, em->start + em->len); 3007 free_extent_map(em); 3008 return ERR_PTR(-EINVAL); 3009 } 3010 3011 /* callers are responsible for dropping em's ref. */ 3012 return em; 3013 } 3014 3015 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3016 { 3017 struct btrfs_fs_info *fs_info = trans->fs_info; 3018 struct extent_map *em; 3019 struct map_lookup *map; 3020 u64 dev_extent_len = 0; 3021 int i, ret = 0; 3022 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3023 3024 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3025 if (IS_ERR(em)) { 3026 /* 3027 * This is a logic error, but we don't want to just rely on the 3028 * user having built with ASSERT enabled, so if ASSERT doesn't 3029 * do anything we still error out. 3030 */ 3031 ASSERT(0); 3032 return PTR_ERR(em); 3033 } 3034 map = em->map_lookup; 3035 mutex_lock(&fs_info->chunk_mutex); 3036 check_system_chunk(trans, map->type); 3037 mutex_unlock(&fs_info->chunk_mutex); 3038 3039 /* 3040 * Take the device list mutex to prevent races with the final phase of 3041 * a device replace operation that replaces the device object associated 3042 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 3043 */ 3044 mutex_lock(&fs_devices->device_list_mutex); 3045 for (i = 0; i < map->num_stripes; i++) { 3046 struct btrfs_device *device = map->stripes[i].dev; 3047 ret = btrfs_free_dev_extent(trans, device, 3048 map->stripes[i].physical, 3049 &dev_extent_len); 3050 if (ret) { 3051 mutex_unlock(&fs_devices->device_list_mutex); 3052 btrfs_abort_transaction(trans, ret); 3053 goto out; 3054 } 3055 3056 if (device->bytes_used > 0) { 3057 mutex_lock(&fs_info->chunk_mutex); 3058 btrfs_device_set_bytes_used(device, 3059 device->bytes_used - dev_extent_len); 3060 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3061 btrfs_clear_space_info_full(fs_info); 3062 mutex_unlock(&fs_info->chunk_mutex); 3063 } 3064 3065 ret = btrfs_update_device(trans, device); 3066 if (ret) { 3067 mutex_unlock(&fs_devices->device_list_mutex); 3068 btrfs_abort_transaction(trans, ret); 3069 goto out; 3070 } 3071 } 3072 mutex_unlock(&fs_devices->device_list_mutex); 3073 3074 ret = btrfs_free_chunk(trans, chunk_offset); 3075 if (ret) { 3076 btrfs_abort_transaction(trans, ret); 3077 goto out; 3078 } 3079 3080 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3081 3082 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3083 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3084 if (ret) { 3085 btrfs_abort_transaction(trans, ret); 3086 goto out; 3087 } 3088 } 3089 3090 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3091 if (ret) { 3092 btrfs_abort_transaction(trans, ret); 3093 goto out; 3094 } 3095 3096 out: 3097 /* once for us */ 3098 free_extent_map(em); 3099 return ret; 3100 } 3101 3102 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3103 { 3104 struct btrfs_root *root = fs_info->chunk_root; 3105 struct btrfs_trans_handle *trans; 3106 struct btrfs_block_group *block_group; 3107 u64 length; 3108 int ret; 3109 3110 /* 3111 * Prevent races with automatic removal of unused block groups. 3112 * After we relocate and before we remove the chunk with offset 3113 * chunk_offset, automatic removal of the block group can kick in, 3114 * resulting in a failure when calling btrfs_remove_chunk() below. 3115 * 3116 * Make sure to acquire this mutex before doing a tree search (dev 3117 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3118 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3119 * we release the path used to search the chunk/dev tree and before 3120 * the current task acquires this mutex and calls us. 3121 */ 3122 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3123 3124 /* step one, relocate all the extents inside this chunk */ 3125 btrfs_scrub_pause(fs_info); 3126 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3127 btrfs_scrub_continue(fs_info); 3128 if (ret) 3129 return ret; 3130 3131 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3132 if (!block_group) 3133 return -ENOENT; 3134 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3135 length = block_group->length; 3136 btrfs_put_block_group(block_group); 3137 3138 /* 3139 * On a zoned file system, discard the whole block group, this will 3140 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3141 * resetting the zone fails, don't treat it as a fatal problem from the 3142 * filesystem's point of view. 3143 */ 3144 if (btrfs_is_zoned(fs_info)) { 3145 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3146 if (ret) 3147 btrfs_info(fs_info, 3148 "failed to reset zone %llu after relocation", 3149 chunk_offset); 3150 } 3151 3152 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3153 chunk_offset); 3154 if (IS_ERR(trans)) { 3155 ret = PTR_ERR(trans); 3156 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3157 return ret; 3158 } 3159 3160 /* 3161 * step two, delete the device extents and the 3162 * chunk tree entries 3163 */ 3164 ret = btrfs_remove_chunk(trans, chunk_offset); 3165 btrfs_end_transaction(trans); 3166 return ret; 3167 } 3168 3169 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3170 { 3171 struct btrfs_root *chunk_root = fs_info->chunk_root; 3172 struct btrfs_path *path; 3173 struct extent_buffer *leaf; 3174 struct btrfs_chunk *chunk; 3175 struct btrfs_key key; 3176 struct btrfs_key found_key; 3177 u64 chunk_type; 3178 bool retried = false; 3179 int failed = 0; 3180 int ret; 3181 3182 path = btrfs_alloc_path(); 3183 if (!path) 3184 return -ENOMEM; 3185 3186 again: 3187 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3188 key.offset = (u64)-1; 3189 key.type = BTRFS_CHUNK_ITEM_KEY; 3190 3191 while (1) { 3192 mutex_lock(&fs_info->reclaim_bgs_lock); 3193 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3194 if (ret < 0) { 3195 mutex_unlock(&fs_info->reclaim_bgs_lock); 3196 goto error; 3197 } 3198 BUG_ON(ret == 0); /* Corruption */ 3199 3200 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3201 key.type); 3202 if (ret) 3203 mutex_unlock(&fs_info->reclaim_bgs_lock); 3204 if (ret < 0) 3205 goto error; 3206 if (ret > 0) 3207 break; 3208 3209 leaf = path->nodes[0]; 3210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3211 3212 chunk = btrfs_item_ptr(leaf, path->slots[0], 3213 struct btrfs_chunk); 3214 chunk_type = btrfs_chunk_type(leaf, chunk); 3215 btrfs_release_path(path); 3216 3217 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3218 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3219 if (ret == -ENOSPC) 3220 failed++; 3221 else 3222 BUG_ON(ret); 3223 } 3224 mutex_unlock(&fs_info->reclaim_bgs_lock); 3225 3226 if (found_key.offset == 0) 3227 break; 3228 key.offset = found_key.offset - 1; 3229 } 3230 ret = 0; 3231 if (failed && !retried) { 3232 failed = 0; 3233 retried = true; 3234 goto again; 3235 } else if (WARN_ON(failed && retried)) { 3236 ret = -ENOSPC; 3237 } 3238 error: 3239 btrfs_free_path(path); 3240 return ret; 3241 } 3242 3243 /* 3244 * return 1 : allocate a data chunk successfully, 3245 * return <0: errors during allocating a data chunk, 3246 * return 0 : no need to allocate a data chunk. 3247 */ 3248 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3249 u64 chunk_offset) 3250 { 3251 struct btrfs_block_group *cache; 3252 u64 bytes_used; 3253 u64 chunk_type; 3254 3255 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3256 ASSERT(cache); 3257 chunk_type = cache->flags; 3258 btrfs_put_block_group(cache); 3259 3260 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3261 return 0; 3262 3263 spin_lock(&fs_info->data_sinfo->lock); 3264 bytes_used = fs_info->data_sinfo->bytes_used; 3265 spin_unlock(&fs_info->data_sinfo->lock); 3266 3267 if (!bytes_used) { 3268 struct btrfs_trans_handle *trans; 3269 int ret; 3270 3271 trans = btrfs_join_transaction(fs_info->tree_root); 3272 if (IS_ERR(trans)) 3273 return PTR_ERR(trans); 3274 3275 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3276 btrfs_end_transaction(trans); 3277 if (ret < 0) 3278 return ret; 3279 return 1; 3280 } 3281 3282 return 0; 3283 } 3284 3285 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3286 struct btrfs_balance_control *bctl) 3287 { 3288 struct btrfs_root *root = fs_info->tree_root; 3289 struct btrfs_trans_handle *trans; 3290 struct btrfs_balance_item *item; 3291 struct btrfs_disk_balance_args disk_bargs; 3292 struct btrfs_path *path; 3293 struct extent_buffer *leaf; 3294 struct btrfs_key key; 3295 int ret, err; 3296 3297 path = btrfs_alloc_path(); 3298 if (!path) 3299 return -ENOMEM; 3300 3301 trans = btrfs_start_transaction(root, 0); 3302 if (IS_ERR(trans)) { 3303 btrfs_free_path(path); 3304 return PTR_ERR(trans); 3305 } 3306 3307 key.objectid = BTRFS_BALANCE_OBJECTID; 3308 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3309 key.offset = 0; 3310 3311 ret = btrfs_insert_empty_item(trans, root, path, &key, 3312 sizeof(*item)); 3313 if (ret) 3314 goto out; 3315 3316 leaf = path->nodes[0]; 3317 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3318 3319 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3320 3321 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3322 btrfs_set_balance_data(leaf, item, &disk_bargs); 3323 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3324 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3325 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3326 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3327 3328 btrfs_set_balance_flags(leaf, item, bctl->flags); 3329 3330 btrfs_mark_buffer_dirty(leaf); 3331 out: 3332 btrfs_free_path(path); 3333 err = btrfs_commit_transaction(trans); 3334 if (err && !ret) 3335 ret = err; 3336 return ret; 3337 } 3338 3339 static int del_balance_item(struct btrfs_fs_info *fs_info) 3340 { 3341 struct btrfs_root *root = fs_info->tree_root; 3342 struct btrfs_trans_handle *trans; 3343 struct btrfs_path *path; 3344 struct btrfs_key key; 3345 int ret, err; 3346 3347 path = btrfs_alloc_path(); 3348 if (!path) 3349 return -ENOMEM; 3350 3351 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3352 if (IS_ERR(trans)) { 3353 btrfs_free_path(path); 3354 return PTR_ERR(trans); 3355 } 3356 3357 key.objectid = BTRFS_BALANCE_OBJECTID; 3358 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3359 key.offset = 0; 3360 3361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3362 if (ret < 0) 3363 goto out; 3364 if (ret > 0) { 3365 ret = -ENOENT; 3366 goto out; 3367 } 3368 3369 ret = btrfs_del_item(trans, root, path); 3370 out: 3371 btrfs_free_path(path); 3372 err = btrfs_commit_transaction(trans); 3373 if (err && !ret) 3374 ret = err; 3375 return ret; 3376 } 3377 3378 /* 3379 * This is a heuristic used to reduce the number of chunks balanced on 3380 * resume after balance was interrupted. 3381 */ 3382 static void update_balance_args(struct btrfs_balance_control *bctl) 3383 { 3384 /* 3385 * Turn on soft mode for chunk types that were being converted. 3386 */ 3387 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3388 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3389 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3390 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3391 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3392 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3393 3394 /* 3395 * Turn on usage filter if is not already used. The idea is 3396 * that chunks that we have already balanced should be 3397 * reasonably full. Don't do it for chunks that are being 3398 * converted - that will keep us from relocating unconverted 3399 * (albeit full) chunks. 3400 */ 3401 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3402 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3403 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3404 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3405 bctl->data.usage = 90; 3406 } 3407 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3408 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3409 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3410 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3411 bctl->sys.usage = 90; 3412 } 3413 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3414 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3415 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3416 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3417 bctl->meta.usage = 90; 3418 } 3419 } 3420 3421 /* 3422 * Clear the balance status in fs_info and delete the balance item from disk. 3423 */ 3424 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3425 { 3426 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3427 int ret; 3428 3429 BUG_ON(!fs_info->balance_ctl); 3430 3431 spin_lock(&fs_info->balance_lock); 3432 fs_info->balance_ctl = NULL; 3433 spin_unlock(&fs_info->balance_lock); 3434 3435 kfree(bctl); 3436 ret = del_balance_item(fs_info); 3437 if (ret) 3438 btrfs_handle_fs_error(fs_info, ret, NULL); 3439 } 3440 3441 /* 3442 * Balance filters. Return 1 if chunk should be filtered out 3443 * (should not be balanced). 3444 */ 3445 static int chunk_profiles_filter(u64 chunk_type, 3446 struct btrfs_balance_args *bargs) 3447 { 3448 chunk_type = chunk_to_extended(chunk_type) & 3449 BTRFS_EXTENDED_PROFILE_MASK; 3450 3451 if (bargs->profiles & chunk_type) 3452 return 0; 3453 3454 return 1; 3455 } 3456 3457 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3458 struct btrfs_balance_args *bargs) 3459 { 3460 struct btrfs_block_group *cache; 3461 u64 chunk_used; 3462 u64 user_thresh_min; 3463 u64 user_thresh_max; 3464 int ret = 1; 3465 3466 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3467 chunk_used = cache->used; 3468 3469 if (bargs->usage_min == 0) 3470 user_thresh_min = 0; 3471 else 3472 user_thresh_min = div_factor_fine(cache->length, 3473 bargs->usage_min); 3474 3475 if (bargs->usage_max == 0) 3476 user_thresh_max = 1; 3477 else if (bargs->usage_max > 100) 3478 user_thresh_max = cache->length; 3479 else 3480 user_thresh_max = div_factor_fine(cache->length, 3481 bargs->usage_max); 3482 3483 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3484 ret = 0; 3485 3486 btrfs_put_block_group(cache); 3487 return ret; 3488 } 3489 3490 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3491 u64 chunk_offset, struct btrfs_balance_args *bargs) 3492 { 3493 struct btrfs_block_group *cache; 3494 u64 chunk_used, user_thresh; 3495 int ret = 1; 3496 3497 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3498 chunk_used = cache->used; 3499 3500 if (bargs->usage_min == 0) 3501 user_thresh = 1; 3502 else if (bargs->usage > 100) 3503 user_thresh = cache->length; 3504 else 3505 user_thresh = div_factor_fine(cache->length, bargs->usage); 3506 3507 if (chunk_used < user_thresh) 3508 ret = 0; 3509 3510 btrfs_put_block_group(cache); 3511 return ret; 3512 } 3513 3514 static int chunk_devid_filter(struct extent_buffer *leaf, 3515 struct btrfs_chunk *chunk, 3516 struct btrfs_balance_args *bargs) 3517 { 3518 struct btrfs_stripe *stripe; 3519 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3520 int i; 3521 3522 for (i = 0; i < num_stripes; i++) { 3523 stripe = btrfs_stripe_nr(chunk, i); 3524 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3525 return 0; 3526 } 3527 3528 return 1; 3529 } 3530 3531 static u64 calc_data_stripes(u64 type, int num_stripes) 3532 { 3533 const int index = btrfs_bg_flags_to_raid_index(type); 3534 const int ncopies = btrfs_raid_array[index].ncopies; 3535 const int nparity = btrfs_raid_array[index].nparity; 3536 3537 if (nparity) 3538 return num_stripes - nparity; 3539 else 3540 return num_stripes / ncopies; 3541 } 3542 3543 /* [pstart, pend) */ 3544 static int chunk_drange_filter(struct extent_buffer *leaf, 3545 struct btrfs_chunk *chunk, 3546 struct btrfs_balance_args *bargs) 3547 { 3548 struct btrfs_stripe *stripe; 3549 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3550 u64 stripe_offset; 3551 u64 stripe_length; 3552 u64 type; 3553 int factor; 3554 int i; 3555 3556 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3557 return 0; 3558 3559 type = btrfs_chunk_type(leaf, chunk); 3560 factor = calc_data_stripes(type, num_stripes); 3561 3562 for (i = 0; i < num_stripes; i++) { 3563 stripe = btrfs_stripe_nr(chunk, i); 3564 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3565 continue; 3566 3567 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3568 stripe_length = btrfs_chunk_length(leaf, chunk); 3569 stripe_length = div_u64(stripe_length, factor); 3570 3571 if (stripe_offset < bargs->pend && 3572 stripe_offset + stripe_length > bargs->pstart) 3573 return 0; 3574 } 3575 3576 return 1; 3577 } 3578 3579 /* [vstart, vend) */ 3580 static int chunk_vrange_filter(struct extent_buffer *leaf, 3581 struct btrfs_chunk *chunk, 3582 u64 chunk_offset, 3583 struct btrfs_balance_args *bargs) 3584 { 3585 if (chunk_offset < bargs->vend && 3586 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3587 /* at least part of the chunk is inside this vrange */ 3588 return 0; 3589 3590 return 1; 3591 } 3592 3593 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3594 struct btrfs_chunk *chunk, 3595 struct btrfs_balance_args *bargs) 3596 { 3597 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3598 3599 if (bargs->stripes_min <= num_stripes 3600 && num_stripes <= bargs->stripes_max) 3601 return 0; 3602 3603 return 1; 3604 } 3605 3606 static int chunk_soft_convert_filter(u64 chunk_type, 3607 struct btrfs_balance_args *bargs) 3608 { 3609 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3610 return 0; 3611 3612 chunk_type = chunk_to_extended(chunk_type) & 3613 BTRFS_EXTENDED_PROFILE_MASK; 3614 3615 if (bargs->target == chunk_type) 3616 return 1; 3617 3618 return 0; 3619 } 3620 3621 static int should_balance_chunk(struct extent_buffer *leaf, 3622 struct btrfs_chunk *chunk, u64 chunk_offset) 3623 { 3624 struct btrfs_fs_info *fs_info = leaf->fs_info; 3625 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3626 struct btrfs_balance_args *bargs = NULL; 3627 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3628 3629 /* type filter */ 3630 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3631 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3632 return 0; 3633 } 3634 3635 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3636 bargs = &bctl->data; 3637 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3638 bargs = &bctl->sys; 3639 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3640 bargs = &bctl->meta; 3641 3642 /* profiles filter */ 3643 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3644 chunk_profiles_filter(chunk_type, bargs)) { 3645 return 0; 3646 } 3647 3648 /* usage filter */ 3649 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3650 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3651 return 0; 3652 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3653 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3654 return 0; 3655 } 3656 3657 /* devid filter */ 3658 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3659 chunk_devid_filter(leaf, chunk, bargs)) { 3660 return 0; 3661 } 3662 3663 /* drange filter, makes sense only with devid filter */ 3664 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3665 chunk_drange_filter(leaf, chunk, bargs)) { 3666 return 0; 3667 } 3668 3669 /* vrange filter */ 3670 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3671 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3672 return 0; 3673 } 3674 3675 /* stripes filter */ 3676 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3677 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3678 return 0; 3679 } 3680 3681 /* soft profile changing mode */ 3682 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3683 chunk_soft_convert_filter(chunk_type, bargs)) { 3684 return 0; 3685 } 3686 3687 /* 3688 * limited by count, must be the last filter 3689 */ 3690 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3691 if (bargs->limit == 0) 3692 return 0; 3693 else 3694 bargs->limit--; 3695 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3696 /* 3697 * Same logic as the 'limit' filter; the minimum cannot be 3698 * determined here because we do not have the global information 3699 * about the count of all chunks that satisfy the filters. 3700 */ 3701 if (bargs->limit_max == 0) 3702 return 0; 3703 else 3704 bargs->limit_max--; 3705 } 3706 3707 return 1; 3708 } 3709 3710 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3711 { 3712 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3713 struct btrfs_root *chunk_root = fs_info->chunk_root; 3714 u64 chunk_type; 3715 struct btrfs_chunk *chunk; 3716 struct btrfs_path *path = NULL; 3717 struct btrfs_key key; 3718 struct btrfs_key found_key; 3719 struct extent_buffer *leaf; 3720 int slot; 3721 int ret; 3722 int enospc_errors = 0; 3723 bool counting = true; 3724 /* The single value limit and min/max limits use the same bytes in the */ 3725 u64 limit_data = bctl->data.limit; 3726 u64 limit_meta = bctl->meta.limit; 3727 u64 limit_sys = bctl->sys.limit; 3728 u32 count_data = 0; 3729 u32 count_meta = 0; 3730 u32 count_sys = 0; 3731 int chunk_reserved = 0; 3732 3733 path = btrfs_alloc_path(); 3734 if (!path) { 3735 ret = -ENOMEM; 3736 goto error; 3737 } 3738 3739 /* zero out stat counters */ 3740 spin_lock(&fs_info->balance_lock); 3741 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3742 spin_unlock(&fs_info->balance_lock); 3743 again: 3744 if (!counting) { 3745 /* 3746 * The single value limit and min/max limits use the same bytes 3747 * in the 3748 */ 3749 bctl->data.limit = limit_data; 3750 bctl->meta.limit = limit_meta; 3751 bctl->sys.limit = limit_sys; 3752 } 3753 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3754 key.offset = (u64)-1; 3755 key.type = BTRFS_CHUNK_ITEM_KEY; 3756 3757 while (1) { 3758 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3759 atomic_read(&fs_info->balance_cancel_req)) { 3760 ret = -ECANCELED; 3761 goto error; 3762 } 3763 3764 mutex_lock(&fs_info->reclaim_bgs_lock); 3765 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3766 if (ret < 0) { 3767 mutex_unlock(&fs_info->reclaim_bgs_lock); 3768 goto error; 3769 } 3770 3771 /* 3772 * this shouldn't happen, it means the last relocate 3773 * failed 3774 */ 3775 if (ret == 0) 3776 BUG(); /* FIXME break ? */ 3777 3778 ret = btrfs_previous_item(chunk_root, path, 0, 3779 BTRFS_CHUNK_ITEM_KEY); 3780 if (ret) { 3781 mutex_unlock(&fs_info->reclaim_bgs_lock); 3782 ret = 0; 3783 break; 3784 } 3785 3786 leaf = path->nodes[0]; 3787 slot = path->slots[0]; 3788 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3789 3790 if (found_key.objectid != key.objectid) { 3791 mutex_unlock(&fs_info->reclaim_bgs_lock); 3792 break; 3793 } 3794 3795 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3796 chunk_type = btrfs_chunk_type(leaf, chunk); 3797 3798 if (!counting) { 3799 spin_lock(&fs_info->balance_lock); 3800 bctl->stat.considered++; 3801 spin_unlock(&fs_info->balance_lock); 3802 } 3803 3804 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3805 3806 btrfs_release_path(path); 3807 if (!ret) { 3808 mutex_unlock(&fs_info->reclaim_bgs_lock); 3809 goto loop; 3810 } 3811 3812 if (counting) { 3813 mutex_unlock(&fs_info->reclaim_bgs_lock); 3814 spin_lock(&fs_info->balance_lock); 3815 bctl->stat.expected++; 3816 spin_unlock(&fs_info->balance_lock); 3817 3818 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3819 count_data++; 3820 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3821 count_sys++; 3822 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3823 count_meta++; 3824 3825 goto loop; 3826 } 3827 3828 /* 3829 * Apply limit_min filter, no need to check if the LIMITS 3830 * filter is used, limit_min is 0 by default 3831 */ 3832 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3833 count_data < bctl->data.limit_min) 3834 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3835 count_meta < bctl->meta.limit_min) 3836 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3837 count_sys < bctl->sys.limit_min)) { 3838 mutex_unlock(&fs_info->reclaim_bgs_lock); 3839 goto loop; 3840 } 3841 3842 if (!chunk_reserved) { 3843 /* 3844 * We may be relocating the only data chunk we have, 3845 * which could potentially end up with losing data's 3846 * raid profile, so lets allocate an empty one in 3847 * advance. 3848 */ 3849 ret = btrfs_may_alloc_data_chunk(fs_info, 3850 found_key.offset); 3851 if (ret < 0) { 3852 mutex_unlock(&fs_info->reclaim_bgs_lock); 3853 goto error; 3854 } else if (ret == 1) { 3855 chunk_reserved = 1; 3856 } 3857 } 3858 3859 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3860 mutex_unlock(&fs_info->reclaim_bgs_lock); 3861 if (ret == -ENOSPC) { 3862 enospc_errors++; 3863 } else if (ret == -ETXTBSY) { 3864 btrfs_info(fs_info, 3865 "skipping relocation of block group %llu due to active swapfile", 3866 found_key.offset); 3867 ret = 0; 3868 } else if (ret) { 3869 goto error; 3870 } else { 3871 spin_lock(&fs_info->balance_lock); 3872 bctl->stat.completed++; 3873 spin_unlock(&fs_info->balance_lock); 3874 } 3875 loop: 3876 if (found_key.offset == 0) 3877 break; 3878 key.offset = found_key.offset - 1; 3879 } 3880 3881 if (counting) { 3882 btrfs_release_path(path); 3883 counting = false; 3884 goto again; 3885 } 3886 error: 3887 btrfs_free_path(path); 3888 if (enospc_errors) { 3889 btrfs_info(fs_info, "%d enospc errors during balance", 3890 enospc_errors); 3891 if (!ret) 3892 ret = -ENOSPC; 3893 } 3894 3895 return ret; 3896 } 3897 3898 /** 3899 * alloc_profile_is_valid - see if a given profile is valid and reduced 3900 * @flags: profile to validate 3901 * @extended: if true @flags is treated as an extended profile 3902 */ 3903 static int alloc_profile_is_valid(u64 flags, int extended) 3904 { 3905 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3906 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3907 3908 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3909 3910 /* 1) check that all other bits are zeroed */ 3911 if (flags & ~mask) 3912 return 0; 3913 3914 /* 2) see if profile is reduced */ 3915 if (flags == 0) 3916 return !extended; /* "0" is valid for usual profiles */ 3917 3918 return has_single_bit_set(flags); 3919 } 3920 3921 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3922 { 3923 /* cancel requested || normal exit path */ 3924 return atomic_read(&fs_info->balance_cancel_req) || 3925 (atomic_read(&fs_info->balance_pause_req) == 0 && 3926 atomic_read(&fs_info->balance_cancel_req) == 0); 3927 } 3928 3929 /* 3930 * Validate target profile against allowed profiles and return true if it's OK. 3931 * Otherwise print the error message and return false. 3932 */ 3933 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 3934 const struct btrfs_balance_args *bargs, 3935 u64 allowed, const char *type) 3936 { 3937 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3938 return true; 3939 3940 /* Profile is valid and does not have bits outside of the allowed set */ 3941 if (alloc_profile_is_valid(bargs->target, 1) && 3942 (bargs->target & ~allowed) == 0) 3943 return true; 3944 3945 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 3946 type, btrfs_bg_type_to_raid_name(bargs->target)); 3947 return false; 3948 } 3949 3950 /* 3951 * Fill @buf with textual description of balance filter flags @bargs, up to 3952 * @size_buf including the terminating null. The output may be trimmed if it 3953 * does not fit into the provided buffer. 3954 */ 3955 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3956 u32 size_buf) 3957 { 3958 int ret; 3959 u32 size_bp = size_buf; 3960 char *bp = buf; 3961 u64 flags = bargs->flags; 3962 char tmp_buf[128] = {'\0'}; 3963 3964 if (!flags) 3965 return; 3966 3967 #define CHECK_APPEND_NOARG(a) \ 3968 do { \ 3969 ret = snprintf(bp, size_bp, (a)); \ 3970 if (ret < 0 || ret >= size_bp) \ 3971 goto out_overflow; \ 3972 size_bp -= ret; \ 3973 bp += ret; \ 3974 } while (0) 3975 3976 #define CHECK_APPEND_1ARG(a, v1) \ 3977 do { \ 3978 ret = snprintf(bp, size_bp, (a), (v1)); \ 3979 if (ret < 0 || ret >= size_bp) \ 3980 goto out_overflow; \ 3981 size_bp -= ret; \ 3982 bp += ret; \ 3983 } while (0) 3984 3985 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3986 do { \ 3987 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3988 if (ret < 0 || ret >= size_bp) \ 3989 goto out_overflow; \ 3990 size_bp -= ret; \ 3991 bp += ret; \ 3992 } while (0) 3993 3994 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3995 CHECK_APPEND_1ARG("convert=%s,", 3996 btrfs_bg_type_to_raid_name(bargs->target)); 3997 3998 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3999 CHECK_APPEND_NOARG("soft,"); 4000 4001 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4002 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4003 sizeof(tmp_buf)); 4004 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4005 } 4006 4007 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4008 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4009 4010 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4011 CHECK_APPEND_2ARG("usage=%u..%u,", 4012 bargs->usage_min, bargs->usage_max); 4013 4014 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4015 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4016 4017 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4018 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4019 bargs->pstart, bargs->pend); 4020 4021 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4022 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4023 bargs->vstart, bargs->vend); 4024 4025 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4026 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4027 4028 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4029 CHECK_APPEND_2ARG("limit=%u..%u,", 4030 bargs->limit_min, bargs->limit_max); 4031 4032 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4033 CHECK_APPEND_2ARG("stripes=%u..%u,", 4034 bargs->stripes_min, bargs->stripes_max); 4035 4036 #undef CHECK_APPEND_2ARG 4037 #undef CHECK_APPEND_1ARG 4038 #undef CHECK_APPEND_NOARG 4039 4040 out_overflow: 4041 4042 if (size_bp < size_buf) 4043 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4044 else 4045 buf[0] = '\0'; 4046 } 4047 4048 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4049 { 4050 u32 size_buf = 1024; 4051 char tmp_buf[192] = {'\0'}; 4052 char *buf; 4053 char *bp; 4054 u32 size_bp = size_buf; 4055 int ret; 4056 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4057 4058 buf = kzalloc(size_buf, GFP_KERNEL); 4059 if (!buf) 4060 return; 4061 4062 bp = buf; 4063 4064 #define CHECK_APPEND_1ARG(a, v1) \ 4065 do { \ 4066 ret = snprintf(bp, size_bp, (a), (v1)); \ 4067 if (ret < 0 || ret >= size_bp) \ 4068 goto out_overflow; \ 4069 size_bp -= ret; \ 4070 bp += ret; \ 4071 } while (0) 4072 4073 if (bctl->flags & BTRFS_BALANCE_FORCE) 4074 CHECK_APPEND_1ARG("%s", "-f "); 4075 4076 if (bctl->flags & BTRFS_BALANCE_DATA) { 4077 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4078 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4079 } 4080 4081 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4082 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4083 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4084 } 4085 4086 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4087 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4088 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4089 } 4090 4091 #undef CHECK_APPEND_1ARG 4092 4093 out_overflow: 4094 4095 if (size_bp < size_buf) 4096 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4097 btrfs_info(fs_info, "balance: %s %s", 4098 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4099 "resume" : "start", buf); 4100 4101 kfree(buf); 4102 } 4103 4104 /* 4105 * Should be called with balance mutexe held 4106 */ 4107 int btrfs_balance(struct btrfs_fs_info *fs_info, 4108 struct btrfs_balance_control *bctl, 4109 struct btrfs_ioctl_balance_args *bargs) 4110 { 4111 u64 meta_target, data_target; 4112 u64 allowed; 4113 int mixed = 0; 4114 int ret; 4115 u64 num_devices; 4116 unsigned seq; 4117 bool reducing_redundancy; 4118 int i; 4119 4120 if (btrfs_fs_closing(fs_info) || 4121 atomic_read(&fs_info->balance_pause_req) || 4122 btrfs_should_cancel_balance(fs_info)) { 4123 ret = -EINVAL; 4124 goto out; 4125 } 4126 4127 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4128 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4129 mixed = 1; 4130 4131 /* 4132 * In case of mixed groups both data and meta should be picked, 4133 * and identical options should be given for both of them. 4134 */ 4135 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4136 if (mixed && (bctl->flags & allowed)) { 4137 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4138 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4139 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4140 btrfs_err(fs_info, 4141 "balance: mixed groups data and metadata options must be the same"); 4142 ret = -EINVAL; 4143 goto out; 4144 } 4145 } 4146 4147 /* 4148 * rw_devices will not change at the moment, device add/delete/replace 4149 * are exclusive 4150 */ 4151 num_devices = fs_info->fs_devices->rw_devices; 4152 4153 /* 4154 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4155 * special bit for it, to make it easier to distinguish. Thus we need 4156 * to set it manually, or balance would refuse the profile. 4157 */ 4158 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4159 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4160 if (num_devices >= btrfs_raid_array[i].devs_min) 4161 allowed |= btrfs_raid_array[i].bg_flag; 4162 4163 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4164 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4165 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4166 ret = -EINVAL; 4167 goto out; 4168 } 4169 4170 /* 4171 * Allow to reduce metadata or system integrity only if force set for 4172 * profiles with redundancy (copies, parity) 4173 */ 4174 allowed = 0; 4175 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4176 if (btrfs_raid_array[i].ncopies >= 2 || 4177 btrfs_raid_array[i].tolerated_failures >= 1) 4178 allowed |= btrfs_raid_array[i].bg_flag; 4179 } 4180 do { 4181 seq = read_seqbegin(&fs_info->profiles_lock); 4182 4183 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4184 (fs_info->avail_system_alloc_bits & allowed) && 4185 !(bctl->sys.target & allowed)) || 4186 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4187 (fs_info->avail_metadata_alloc_bits & allowed) && 4188 !(bctl->meta.target & allowed))) 4189 reducing_redundancy = true; 4190 else 4191 reducing_redundancy = false; 4192 4193 /* if we're not converting, the target field is uninitialized */ 4194 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4195 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4196 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4197 bctl->data.target : fs_info->avail_data_alloc_bits; 4198 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4199 4200 if (reducing_redundancy) { 4201 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4202 btrfs_info(fs_info, 4203 "balance: force reducing metadata redundancy"); 4204 } else { 4205 btrfs_err(fs_info, 4206 "balance: reduces metadata redundancy, use --force if you want this"); 4207 ret = -EINVAL; 4208 goto out; 4209 } 4210 } 4211 4212 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4213 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4214 btrfs_warn(fs_info, 4215 "balance: metadata profile %s has lower redundancy than data profile %s", 4216 btrfs_bg_type_to_raid_name(meta_target), 4217 btrfs_bg_type_to_raid_name(data_target)); 4218 } 4219 4220 if (fs_info->send_in_progress) { 4221 btrfs_warn_rl(fs_info, 4222 "cannot run balance while send operations are in progress (%d in progress)", 4223 fs_info->send_in_progress); 4224 ret = -EAGAIN; 4225 goto out; 4226 } 4227 4228 ret = insert_balance_item(fs_info, bctl); 4229 if (ret && ret != -EEXIST) 4230 goto out; 4231 4232 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4233 BUG_ON(ret == -EEXIST); 4234 BUG_ON(fs_info->balance_ctl); 4235 spin_lock(&fs_info->balance_lock); 4236 fs_info->balance_ctl = bctl; 4237 spin_unlock(&fs_info->balance_lock); 4238 } else { 4239 BUG_ON(ret != -EEXIST); 4240 spin_lock(&fs_info->balance_lock); 4241 update_balance_args(bctl); 4242 spin_unlock(&fs_info->balance_lock); 4243 } 4244 4245 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4246 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4247 describe_balance_start_or_resume(fs_info); 4248 mutex_unlock(&fs_info->balance_mutex); 4249 4250 ret = __btrfs_balance(fs_info); 4251 4252 mutex_lock(&fs_info->balance_mutex); 4253 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4254 btrfs_info(fs_info, "balance: paused"); 4255 /* 4256 * Balance can be canceled by: 4257 * 4258 * - Regular cancel request 4259 * Then ret == -ECANCELED and balance_cancel_req > 0 4260 * 4261 * - Fatal signal to "btrfs" process 4262 * Either the signal caught by wait_reserve_ticket() and callers 4263 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4264 * got -ECANCELED. 4265 * Either way, in this case balance_cancel_req = 0, and 4266 * ret == -EINTR or ret == -ECANCELED. 4267 * 4268 * So here we only check the return value to catch canceled balance. 4269 */ 4270 else if (ret == -ECANCELED || ret == -EINTR) 4271 btrfs_info(fs_info, "balance: canceled"); 4272 else 4273 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4274 4275 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4276 4277 if (bargs) { 4278 memset(bargs, 0, sizeof(*bargs)); 4279 btrfs_update_ioctl_balance_args(fs_info, bargs); 4280 } 4281 4282 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4283 balance_need_close(fs_info)) { 4284 reset_balance_state(fs_info); 4285 btrfs_exclop_finish(fs_info); 4286 } 4287 4288 wake_up(&fs_info->balance_wait_q); 4289 4290 return ret; 4291 out: 4292 if (bctl->flags & BTRFS_BALANCE_RESUME) 4293 reset_balance_state(fs_info); 4294 else 4295 kfree(bctl); 4296 btrfs_exclop_finish(fs_info); 4297 4298 return ret; 4299 } 4300 4301 static int balance_kthread(void *data) 4302 { 4303 struct btrfs_fs_info *fs_info = data; 4304 int ret = 0; 4305 4306 mutex_lock(&fs_info->balance_mutex); 4307 if (fs_info->balance_ctl) 4308 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4309 mutex_unlock(&fs_info->balance_mutex); 4310 4311 return ret; 4312 } 4313 4314 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4315 { 4316 struct task_struct *tsk; 4317 4318 mutex_lock(&fs_info->balance_mutex); 4319 if (!fs_info->balance_ctl) { 4320 mutex_unlock(&fs_info->balance_mutex); 4321 return 0; 4322 } 4323 mutex_unlock(&fs_info->balance_mutex); 4324 4325 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4326 btrfs_info(fs_info, "balance: resume skipped"); 4327 return 0; 4328 } 4329 4330 /* 4331 * A ro->rw remount sequence should continue with the paused balance 4332 * regardless of who pauses it, system or the user as of now, so set 4333 * the resume flag. 4334 */ 4335 spin_lock(&fs_info->balance_lock); 4336 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4337 spin_unlock(&fs_info->balance_lock); 4338 4339 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4340 return PTR_ERR_OR_ZERO(tsk); 4341 } 4342 4343 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4344 { 4345 struct btrfs_balance_control *bctl; 4346 struct btrfs_balance_item *item; 4347 struct btrfs_disk_balance_args disk_bargs; 4348 struct btrfs_path *path; 4349 struct extent_buffer *leaf; 4350 struct btrfs_key key; 4351 int ret; 4352 4353 path = btrfs_alloc_path(); 4354 if (!path) 4355 return -ENOMEM; 4356 4357 key.objectid = BTRFS_BALANCE_OBJECTID; 4358 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4359 key.offset = 0; 4360 4361 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4362 if (ret < 0) 4363 goto out; 4364 if (ret > 0) { /* ret = -ENOENT; */ 4365 ret = 0; 4366 goto out; 4367 } 4368 4369 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4370 if (!bctl) { 4371 ret = -ENOMEM; 4372 goto out; 4373 } 4374 4375 leaf = path->nodes[0]; 4376 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4377 4378 bctl->flags = btrfs_balance_flags(leaf, item); 4379 bctl->flags |= BTRFS_BALANCE_RESUME; 4380 4381 btrfs_balance_data(leaf, item, &disk_bargs); 4382 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4383 btrfs_balance_meta(leaf, item, &disk_bargs); 4384 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4385 btrfs_balance_sys(leaf, item, &disk_bargs); 4386 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4387 4388 /* 4389 * This should never happen, as the paused balance state is recovered 4390 * during mount without any chance of other exclusive ops to collide. 4391 * 4392 * This gives the exclusive op status to balance and keeps in paused 4393 * state until user intervention (cancel or umount). If the ownership 4394 * cannot be assigned, show a message but do not fail. The balance 4395 * is in a paused state and must have fs_info::balance_ctl properly 4396 * set up. 4397 */ 4398 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 4399 btrfs_warn(fs_info, 4400 "balance: cannot set exclusive op status, resume manually"); 4401 4402 btrfs_release_path(path); 4403 4404 mutex_lock(&fs_info->balance_mutex); 4405 BUG_ON(fs_info->balance_ctl); 4406 spin_lock(&fs_info->balance_lock); 4407 fs_info->balance_ctl = bctl; 4408 spin_unlock(&fs_info->balance_lock); 4409 mutex_unlock(&fs_info->balance_mutex); 4410 out: 4411 btrfs_free_path(path); 4412 return ret; 4413 } 4414 4415 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4416 { 4417 int ret = 0; 4418 4419 mutex_lock(&fs_info->balance_mutex); 4420 if (!fs_info->balance_ctl) { 4421 mutex_unlock(&fs_info->balance_mutex); 4422 return -ENOTCONN; 4423 } 4424 4425 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4426 atomic_inc(&fs_info->balance_pause_req); 4427 mutex_unlock(&fs_info->balance_mutex); 4428 4429 wait_event(fs_info->balance_wait_q, 4430 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4431 4432 mutex_lock(&fs_info->balance_mutex); 4433 /* we are good with balance_ctl ripped off from under us */ 4434 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4435 atomic_dec(&fs_info->balance_pause_req); 4436 } else { 4437 ret = -ENOTCONN; 4438 } 4439 4440 mutex_unlock(&fs_info->balance_mutex); 4441 return ret; 4442 } 4443 4444 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4445 { 4446 mutex_lock(&fs_info->balance_mutex); 4447 if (!fs_info->balance_ctl) { 4448 mutex_unlock(&fs_info->balance_mutex); 4449 return -ENOTCONN; 4450 } 4451 4452 /* 4453 * A paused balance with the item stored on disk can be resumed at 4454 * mount time if the mount is read-write. Otherwise it's still paused 4455 * and we must not allow cancelling as it deletes the item. 4456 */ 4457 if (sb_rdonly(fs_info->sb)) { 4458 mutex_unlock(&fs_info->balance_mutex); 4459 return -EROFS; 4460 } 4461 4462 atomic_inc(&fs_info->balance_cancel_req); 4463 /* 4464 * if we are running just wait and return, balance item is 4465 * deleted in btrfs_balance in this case 4466 */ 4467 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4468 mutex_unlock(&fs_info->balance_mutex); 4469 wait_event(fs_info->balance_wait_q, 4470 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4471 mutex_lock(&fs_info->balance_mutex); 4472 } else { 4473 mutex_unlock(&fs_info->balance_mutex); 4474 /* 4475 * Lock released to allow other waiters to continue, we'll 4476 * reexamine the status again. 4477 */ 4478 mutex_lock(&fs_info->balance_mutex); 4479 4480 if (fs_info->balance_ctl) { 4481 reset_balance_state(fs_info); 4482 btrfs_exclop_finish(fs_info); 4483 btrfs_info(fs_info, "balance: canceled"); 4484 } 4485 } 4486 4487 BUG_ON(fs_info->balance_ctl || 4488 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4489 atomic_dec(&fs_info->balance_cancel_req); 4490 mutex_unlock(&fs_info->balance_mutex); 4491 return 0; 4492 } 4493 4494 int btrfs_uuid_scan_kthread(void *data) 4495 { 4496 struct btrfs_fs_info *fs_info = data; 4497 struct btrfs_root *root = fs_info->tree_root; 4498 struct btrfs_key key; 4499 struct btrfs_path *path = NULL; 4500 int ret = 0; 4501 struct extent_buffer *eb; 4502 int slot; 4503 struct btrfs_root_item root_item; 4504 u32 item_size; 4505 struct btrfs_trans_handle *trans = NULL; 4506 bool closing = false; 4507 4508 path = btrfs_alloc_path(); 4509 if (!path) { 4510 ret = -ENOMEM; 4511 goto out; 4512 } 4513 4514 key.objectid = 0; 4515 key.type = BTRFS_ROOT_ITEM_KEY; 4516 key.offset = 0; 4517 4518 while (1) { 4519 if (btrfs_fs_closing(fs_info)) { 4520 closing = true; 4521 break; 4522 } 4523 ret = btrfs_search_forward(root, &key, path, 4524 BTRFS_OLDEST_GENERATION); 4525 if (ret) { 4526 if (ret > 0) 4527 ret = 0; 4528 break; 4529 } 4530 4531 if (key.type != BTRFS_ROOT_ITEM_KEY || 4532 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4533 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4534 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4535 goto skip; 4536 4537 eb = path->nodes[0]; 4538 slot = path->slots[0]; 4539 item_size = btrfs_item_size_nr(eb, slot); 4540 if (item_size < sizeof(root_item)) 4541 goto skip; 4542 4543 read_extent_buffer(eb, &root_item, 4544 btrfs_item_ptr_offset(eb, slot), 4545 (int)sizeof(root_item)); 4546 if (btrfs_root_refs(&root_item) == 0) 4547 goto skip; 4548 4549 if (!btrfs_is_empty_uuid(root_item.uuid) || 4550 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4551 if (trans) 4552 goto update_tree; 4553 4554 btrfs_release_path(path); 4555 /* 4556 * 1 - subvol uuid item 4557 * 1 - received_subvol uuid item 4558 */ 4559 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4560 if (IS_ERR(trans)) { 4561 ret = PTR_ERR(trans); 4562 break; 4563 } 4564 continue; 4565 } else { 4566 goto skip; 4567 } 4568 update_tree: 4569 btrfs_release_path(path); 4570 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4571 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4572 BTRFS_UUID_KEY_SUBVOL, 4573 key.objectid); 4574 if (ret < 0) { 4575 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4576 ret); 4577 break; 4578 } 4579 } 4580 4581 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4582 ret = btrfs_uuid_tree_add(trans, 4583 root_item.received_uuid, 4584 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4585 key.objectid); 4586 if (ret < 0) { 4587 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4588 ret); 4589 break; 4590 } 4591 } 4592 4593 skip: 4594 btrfs_release_path(path); 4595 if (trans) { 4596 ret = btrfs_end_transaction(trans); 4597 trans = NULL; 4598 if (ret) 4599 break; 4600 } 4601 4602 if (key.offset < (u64)-1) { 4603 key.offset++; 4604 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4605 key.offset = 0; 4606 key.type = BTRFS_ROOT_ITEM_KEY; 4607 } else if (key.objectid < (u64)-1) { 4608 key.offset = 0; 4609 key.type = BTRFS_ROOT_ITEM_KEY; 4610 key.objectid++; 4611 } else { 4612 break; 4613 } 4614 cond_resched(); 4615 } 4616 4617 out: 4618 btrfs_free_path(path); 4619 if (trans && !IS_ERR(trans)) 4620 btrfs_end_transaction(trans); 4621 if (ret) 4622 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4623 else if (!closing) 4624 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4625 up(&fs_info->uuid_tree_rescan_sem); 4626 return 0; 4627 } 4628 4629 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4630 { 4631 struct btrfs_trans_handle *trans; 4632 struct btrfs_root *tree_root = fs_info->tree_root; 4633 struct btrfs_root *uuid_root; 4634 struct task_struct *task; 4635 int ret; 4636 4637 /* 4638 * 1 - root node 4639 * 1 - root item 4640 */ 4641 trans = btrfs_start_transaction(tree_root, 2); 4642 if (IS_ERR(trans)) 4643 return PTR_ERR(trans); 4644 4645 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4646 if (IS_ERR(uuid_root)) { 4647 ret = PTR_ERR(uuid_root); 4648 btrfs_abort_transaction(trans, ret); 4649 btrfs_end_transaction(trans); 4650 return ret; 4651 } 4652 4653 fs_info->uuid_root = uuid_root; 4654 4655 ret = btrfs_commit_transaction(trans); 4656 if (ret) 4657 return ret; 4658 4659 down(&fs_info->uuid_tree_rescan_sem); 4660 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4661 if (IS_ERR(task)) { 4662 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4663 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4664 up(&fs_info->uuid_tree_rescan_sem); 4665 return PTR_ERR(task); 4666 } 4667 4668 return 0; 4669 } 4670 4671 /* 4672 * shrinking a device means finding all of the device extents past 4673 * the new size, and then following the back refs to the chunks. 4674 * The chunk relocation code actually frees the device extent 4675 */ 4676 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4677 { 4678 struct btrfs_fs_info *fs_info = device->fs_info; 4679 struct btrfs_root *root = fs_info->dev_root; 4680 struct btrfs_trans_handle *trans; 4681 struct btrfs_dev_extent *dev_extent = NULL; 4682 struct btrfs_path *path; 4683 u64 length; 4684 u64 chunk_offset; 4685 int ret; 4686 int slot; 4687 int failed = 0; 4688 bool retried = false; 4689 struct extent_buffer *l; 4690 struct btrfs_key key; 4691 struct btrfs_super_block *super_copy = fs_info->super_copy; 4692 u64 old_total = btrfs_super_total_bytes(super_copy); 4693 u64 old_size = btrfs_device_get_total_bytes(device); 4694 u64 diff; 4695 u64 start; 4696 4697 new_size = round_down(new_size, fs_info->sectorsize); 4698 start = new_size; 4699 diff = round_down(old_size - new_size, fs_info->sectorsize); 4700 4701 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4702 return -EINVAL; 4703 4704 path = btrfs_alloc_path(); 4705 if (!path) 4706 return -ENOMEM; 4707 4708 path->reada = READA_BACK; 4709 4710 trans = btrfs_start_transaction(root, 0); 4711 if (IS_ERR(trans)) { 4712 btrfs_free_path(path); 4713 return PTR_ERR(trans); 4714 } 4715 4716 mutex_lock(&fs_info->chunk_mutex); 4717 4718 btrfs_device_set_total_bytes(device, new_size); 4719 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4720 device->fs_devices->total_rw_bytes -= diff; 4721 atomic64_sub(diff, &fs_info->free_chunk_space); 4722 } 4723 4724 /* 4725 * Once the device's size has been set to the new size, ensure all 4726 * in-memory chunks are synced to disk so that the loop below sees them 4727 * and relocates them accordingly. 4728 */ 4729 if (contains_pending_extent(device, &start, diff)) { 4730 mutex_unlock(&fs_info->chunk_mutex); 4731 ret = btrfs_commit_transaction(trans); 4732 if (ret) 4733 goto done; 4734 } else { 4735 mutex_unlock(&fs_info->chunk_mutex); 4736 btrfs_end_transaction(trans); 4737 } 4738 4739 again: 4740 key.objectid = device->devid; 4741 key.offset = (u64)-1; 4742 key.type = BTRFS_DEV_EXTENT_KEY; 4743 4744 do { 4745 mutex_lock(&fs_info->reclaim_bgs_lock); 4746 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4747 if (ret < 0) { 4748 mutex_unlock(&fs_info->reclaim_bgs_lock); 4749 goto done; 4750 } 4751 4752 ret = btrfs_previous_item(root, path, 0, key.type); 4753 if (ret) { 4754 mutex_unlock(&fs_info->reclaim_bgs_lock); 4755 if (ret < 0) 4756 goto done; 4757 ret = 0; 4758 btrfs_release_path(path); 4759 break; 4760 } 4761 4762 l = path->nodes[0]; 4763 slot = path->slots[0]; 4764 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4765 4766 if (key.objectid != device->devid) { 4767 mutex_unlock(&fs_info->reclaim_bgs_lock); 4768 btrfs_release_path(path); 4769 break; 4770 } 4771 4772 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4773 length = btrfs_dev_extent_length(l, dev_extent); 4774 4775 if (key.offset + length <= new_size) { 4776 mutex_unlock(&fs_info->reclaim_bgs_lock); 4777 btrfs_release_path(path); 4778 break; 4779 } 4780 4781 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4782 btrfs_release_path(path); 4783 4784 /* 4785 * We may be relocating the only data chunk we have, 4786 * which could potentially end up with losing data's 4787 * raid profile, so lets allocate an empty one in 4788 * advance. 4789 */ 4790 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4791 if (ret < 0) { 4792 mutex_unlock(&fs_info->reclaim_bgs_lock); 4793 goto done; 4794 } 4795 4796 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4797 mutex_unlock(&fs_info->reclaim_bgs_lock); 4798 if (ret == -ENOSPC) { 4799 failed++; 4800 } else if (ret) { 4801 if (ret == -ETXTBSY) { 4802 btrfs_warn(fs_info, 4803 "could not shrink block group %llu due to active swapfile", 4804 chunk_offset); 4805 } 4806 goto done; 4807 } 4808 } while (key.offset-- > 0); 4809 4810 if (failed && !retried) { 4811 failed = 0; 4812 retried = true; 4813 goto again; 4814 } else if (failed && retried) { 4815 ret = -ENOSPC; 4816 goto done; 4817 } 4818 4819 /* Shrinking succeeded, else we would be at "done". */ 4820 trans = btrfs_start_transaction(root, 0); 4821 if (IS_ERR(trans)) { 4822 ret = PTR_ERR(trans); 4823 goto done; 4824 } 4825 4826 mutex_lock(&fs_info->chunk_mutex); 4827 /* Clear all state bits beyond the shrunk device size */ 4828 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4829 CHUNK_STATE_MASK); 4830 4831 btrfs_device_set_disk_total_bytes(device, new_size); 4832 if (list_empty(&device->post_commit_list)) 4833 list_add_tail(&device->post_commit_list, 4834 &trans->transaction->dev_update_list); 4835 4836 WARN_ON(diff > old_total); 4837 btrfs_set_super_total_bytes(super_copy, 4838 round_down(old_total - diff, fs_info->sectorsize)); 4839 mutex_unlock(&fs_info->chunk_mutex); 4840 4841 /* Now btrfs_update_device() will change the on-disk size. */ 4842 ret = btrfs_update_device(trans, device); 4843 if (ret < 0) { 4844 btrfs_abort_transaction(trans, ret); 4845 btrfs_end_transaction(trans); 4846 } else { 4847 ret = btrfs_commit_transaction(trans); 4848 } 4849 done: 4850 btrfs_free_path(path); 4851 if (ret) { 4852 mutex_lock(&fs_info->chunk_mutex); 4853 btrfs_device_set_total_bytes(device, old_size); 4854 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4855 device->fs_devices->total_rw_bytes += diff; 4856 atomic64_add(diff, &fs_info->free_chunk_space); 4857 mutex_unlock(&fs_info->chunk_mutex); 4858 } 4859 return ret; 4860 } 4861 4862 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4863 struct btrfs_key *key, 4864 struct btrfs_chunk *chunk, int item_size) 4865 { 4866 struct btrfs_super_block *super_copy = fs_info->super_copy; 4867 struct btrfs_disk_key disk_key; 4868 u32 array_size; 4869 u8 *ptr; 4870 4871 mutex_lock(&fs_info->chunk_mutex); 4872 array_size = btrfs_super_sys_array_size(super_copy); 4873 if (array_size + item_size + sizeof(disk_key) 4874 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4875 mutex_unlock(&fs_info->chunk_mutex); 4876 return -EFBIG; 4877 } 4878 4879 ptr = super_copy->sys_chunk_array + array_size; 4880 btrfs_cpu_key_to_disk(&disk_key, key); 4881 memcpy(ptr, &disk_key, sizeof(disk_key)); 4882 ptr += sizeof(disk_key); 4883 memcpy(ptr, chunk, item_size); 4884 item_size += sizeof(disk_key); 4885 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4886 mutex_unlock(&fs_info->chunk_mutex); 4887 4888 return 0; 4889 } 4890 4891 /* 4892 * sort the devices in descending order by max_avail, total_avail 4893 */ 4894 static int btrfs_cmp_device_info(const void *a, const void *b) 4895 { 4896 const struct btrfs_device_info *di_a = a; 4897 const struct btrfs_device_info *di_b = b; 4898 4899 if (di_a->max_avail > di_b->max_avail) 4900 return -1; 4901 if (di_a->max_avail < di_b->max_avail) 4902 return 1; 4903 if (di_a->total_avail > di_b->total_avail) 4904 return -1; 4905 if (di_a->total_avail < di_b->total_avail) 4906 return 1; 4907 return 0; 4908 } 4909 4910 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4911 { 4912 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4913 return; 4914 4915 btrfs_set_fs_incompat(info, RAID56); 4916 } 4917 4918 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4919 { 4920 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4921 return; 4922 4923 btrfs_set_fs_incompat(info, RAID1C34); 4924 } 4925 4926 /* 4927 * Structure used internally for __btrfs_alloc_chunk() function. 4928 * Wraps needed parameters. 4929 */ 4930 struct alloc_chunk_ctl { 4931 u64 start; 4932 u64 type; 4933 /* Total number of stripes to allocate */ 4934 int num_stripes; 4935 /* sub_stripes info for map */ 4936 int sub_stripes; 4937 /* Stripes per device */ 4938 int dev_stripes; 4939 /* Maximum number of devices to use */ 4940 int devs_max; 4941 /* Minimum number of devices to use */ 4942 int devs_min; 4943 /* ndevs has to be a multiple of this */ 4944 int devs_increment; 4945 /* Number of copies */ 4946 int ncopies; 4947 /* Number of stripes worth of bytes to store parity information */ 4948 int nparity; 4949 u64 max_stripe_size; 4950 u64 max_chunk_size; 4951 u64 dev_extent_min; 4952 u64 stripe_size; 4953 u64 chunk_size; 4954 int ndevs; 4955 }; 4956 4957 static void init_alloc_chunk_ctl_policy_regular( 4958 struct btrfs_fs_devices *fs_devices, 4959 struct alloc_chunk_ctl *ctl) 4960 { 4961 u64 type = ctl->type; 4962 4963 if (type & BTRFS_BLOCK_GROUP_DATA) { 4964 ctl->max_stripe_size = SZ_1G; 4965 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4966 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4967 /* For larger filesystems, use larger metadata chunks */ 4968 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4969 ctl->max_stripe_size = SZ_1G; 4970 else 4971 ctl->max_stripe_size = SZ_256M; 4972 ctl->max_chunk_size = ctl->max_stripe_size; 4973 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4974 ctl->max_stripe_size = SZ_32M; 4975 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 4976 ctl->devs_max = min_t(int, ctl->devs_max, 4977 BTRFS_MAX_DEVS_SYS_CHUNK); 4978 } else { 4979 BUG(); 4980 } 4981 4982 /* We don't want a chunk larger than 10% of writable space */ 4983 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4984 ctl->max_chunk_size); 4985 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 4986 } 4987 4988 static void init_alloc_chunk_ctl_policy_zoned( 4989 struct btrfs_fs_devices *fs_devices, 4990 struct alloc_chunk_ctl *ctl) 4991 { 4992 u64 zone_size = fs_devices->fs_info->zone_size; 4993 u64 limit; 4994 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 4995 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 4996 u64 min_chunk_size = min_data_stripes * zone_size; 4997 u64 type = ctl->type; 4998 4999 ctl->max_stripe_size = zone_size; 5000 if (type & BTRFS_BLOCK_GROUP_DATA) { 5001 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5002 zone_size); 5003 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5004 ctl->max_chunk_size = ctl->max_stripe_size; 5005 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5006 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5007 ctl->devs_max = min_t(int, ctl->devs_max, 5008 BTRFS_MAX_DEVS_SYS_CHUNK); 5009 } else { 5010 BUG(); 5011 } 5012 5013 /* We don't want a chunk larger than 10% of writable space */ 5014 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1), 5015 zone_size), 5016 min_chunk_size); 5017 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5018 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5019 } 5020 5021 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5022 struct alloc_chunk_ctl *ctl) 5023 { 5024 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5025 5026 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5027 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5028 ctl->devs_max = btrfs_raid_array[index].devs_max; 5029 if (!ctl->devs_max) 5030 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5031 ctl->devs_min = btrfs_raid_array[index].devs_min; 5032 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5033 ctl->ncopies = btrfs_raid_array[index].ncopies; 5034 ctl->nparity = btrfs_raid_array[index].nparity; 5035 ctl->ndevs = 0; 5036 5037 switch (fs_devices->chunk_alloc_policy) { 5038 case BTRFS_CHUNK_ALLOC_REGULAR: 5039 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5040 break; 5041 case BTRFS_CHUNK_ALLOC_ZONED: 5042 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5043 break; 5044 default: 5045 BUG(); 5046 } 5047 } 5048 5049 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5050 struct alloc_chunk_ctl *ctl, 5051 struct btrfs_device_info *devices_info) 5052 { 5053 struct btrfs_fs_info *info = fs_devices->fs_info; 5054 struct btrfs_device *device; 5055 u64 total_avail; 5056 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5057 int ret; 5058 int ndevs = 0; 5059 u64 max_avail; 5060 u64 dev_offset; 5061 5062 /* 5063 * in the first pass through the devices list, we gather information 5064 * about the available holes on each device. 5065 */ 5066 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5067 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5068 WARN(1, KERN_ERR 5069 "BTRFS: read-only device in alloc_list\n"); 5070 continue; 5071 } 5072 5073 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5074 &device->dev_state) || 5075 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5076 continue; 5077 5078 if (device->total_bytes > device->bytes_used) 5079 total_avail = device->total_bytes - device->bytes_used; 5080 else 5081 total_avail = 0; 5082 5083 /* If there is no space on this device, skip it. */ 5084 if (total_avail < ctl->dev_extent_min) 5085 continue; 5086 5087 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5088 &max_avail); 5089 if (ret && ret != -ENOSPC) 5090 return ret; 5091 5092 if (ret == 0) 5093 max_avail = dev_extent_want; 5094 5095 if (max_avail < ctl->dev_extent_min) { 5096 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5097 btrfs_debug(info, 5098 "%s: devid %llu has no free space, have=%llu want=%llu", 5099 __func__, device->devid, max_avail, 5100 ctl->dev_extent_min); 5101 continue; 5102 } 5103 5104 if (ndevs == fs_devices->rw_devices) { 5105 WARN(1, "%s: found more than %llu devices\n", 5106 __func__, fs_devices->rw_devices); 5107 break; 5108 } 5109 devices_info[ndevs].dev_offset = dev_offset; 5110 devices_info[ndevs].max_avail = max_avail; 5111 devices_info[ndevs].total_avail = total_avail; 5112 devices_info[ndevs].dev = device; 5113 ++ndevs; 5114 } 5115 ctl->ndevs = ndevs; 5116 5117 /* 5118 * now sort the devices by hole size / available space 5119 */ 5120 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5121 btrfs_cmp_device_info, NULL); 5122 5123 return 0; 5124 } 5125 5126 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5127 struct btrfs_device_info *devices_info) 5128 { 5129 /* Number of stripes that count for block group size */ 5130 int data_stripes; 5131 5132 /* 5133 * The primary goal is to maximize the number of stripes, so use as 5134 * many devices as possible, even if the stripes are not maximum sized. 5135 * 5136 * The DUP profile stores more than one stripe per device, the 5137 * max_avail is the total size so we have to adjust. 5138 */ 5139 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5140 ctl->dev_stripes); 5141 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5142 5143 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5144 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5145 5146 /* 5147 * Use the number of data stripes to figure out how big this chunk is 5148 * really going to be in terms of logical address space, and compare 5149 * that answer with the max chunk size. If it's higher, we try to 5150 * reduce stripe_size. 5151 */ 5152 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5153 /* 5154 * Reduce stripe_size, round it up to a 16MB boundary again and 5155 * then use it, unless it ends up being even bigger than the 5156 * previous value we had already. 5157 */ 5158 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5159 data_stripes), SZ_16M), 5160 ctl->stripe_size); 5161 } 5162 5163 /* Align to BTRFS_STRIPE_LEN */ 5164 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5165 ctl->chunk_size = ctl->stripe_size * data_stripes; 5166 5167 return 0; 5168 } 5169 5170 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5171 struct btrfs_device_info *devices_info) 5172 { 5173 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5174 /* Number of stripes that count for block group size */ 5175 int data_stripes; 5176 5177 /* 5178 * It should hold because: 5179 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5180 */ 5181 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5182 5183 ctl->stripe_size = zone_size; 5184 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5185 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5186 5187 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5188 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5189 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5190 ctl->stripe_size) + ctl->nparity, 5191 ctl->dev_stripes); 5192 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5193 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5194 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5195 } 5196 5197 ctl->chunk_size = ctl->stripe_size * data_stripes; 5198 5199 return 0; 5200 } 5201 5202 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5203 struct alloc_chunk_ctl *ctl, 5204 struct btrfs_device_info *devices_info) 5205 { 5206 struct btrfs_fs_info *info = fs_devices->fs_info; 5207 5208 /* 5209 * Round down to number of usable stripes, devs_increment can be any 5210 * number so we can't use round_down() that requires power of 2, while 5211 * rounddown is safe. 5212 */ 5213 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5214 5215 if (ctl->ndevs < ctl->devs_min) { 5216 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5217 btrfs_debug(info, 5218 "%s: not enough devices with free space: have=%d minimum required=%d", 5219 __func__, ctl->ndevs, ctl->devs_min); 5220 } 5221 return -ENOSPC; 5222 } 5223 5224 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5225 5226 switch (fs_devices->chunk_alloc_policy) { 5227 case BTRFS_CHUNK_ALLOC_REGULAR: 5228 return decide_stripe_size_regular(ctl, devices_info); 5229 case BTRFS_CHUNK_ALLOC_ZONED: 5230 return decide_stripe_size_zoned(ctl, devices_info); 5231 default: 5232 BUG(); 5233 } 5234 } 5235 5236 static int create_chunk(struct btrfs_trans_handle *trans, 5237 struct alloc_chunk_ctl *ctl, 5238 struct btrfs_device_info *devices_info) 5239 { 5240 struct btrfs_fs_info *info = trans->fs_info; 5241 struct map_lookup *map = NULL; 5242 struct extent_map_tree *em_tree; 5243 struct extent_map *em; 5244 u64 start = ctl->start; 5245 u64 type = ctl->type; 5246 int ret; 5247 int i; 5248 int j; 5249 5250 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5251 if (!map) 5252 return -ENOMEM; 5253 map->num_stripes = ctl->num_stripes; 5254 5255 for (i = 0; i < ctl->ndevs; ++i) { 5256 for (j = 0; j < ctl->dev_stripes; ++j) { 5257 int s = i * ctl->dev_stripes + j; 5258 map->stripes[s].dev = devices_info[i].dev; 5259 map->stripes[s].physical = devices_info[i].dev_offset + 5260 j * ctl->stripe_size; 5261 } 5262 } 5263 map->stripe_len = BTRFS_STRIPE_LEN; 5264 map->io_align = BTRFS_STRIPE_LEN; 5265 map->io_width = BTRFS_STRIPE_LEN; 5266 map->type = type; 5267 map->sub_stripes = ctl->sub_stripes; 5268 5269 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5270 5271 em = alloc_extent_map(); 5272 if (!em) { 5273 kfree(map); 5274 return -ENOMEM; 5275 } 5276 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5277 em->map_lookup = map; 5278 em->start = start; 5279 em->len = ctl->chunk_size; 5280 em->block_start = 0; 5281 em->block_len = em->len; 5282 em->orig_block_len = ctl->stripe_size; 5283 5284 em_tree = &info->mapping_tree; 5285 write_lock(&em_tree->lock); 5286 ret = add_extent_mapping(em_tree, em, 0); 5287 if (ret) { 5288 write_unlock(&em_tree->lock); 5289 free_extent_map(em); 5290 return ret; 5291 } 5292 write_unlock(&em_tree->lock); 5293 5294 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5295 if (ret) 5296 goto error_del_extent; 5297 5298 for (i = 0; i < map->num_stripes; i++) { 5299 struct btrfs_device *dev = map->stripes[i].dev; 5300 5301 btrfs_device_set_bytes_used(dev, 5302 dev->bytes_used + ctl->stripe_size); 5303 if (list_empty(&dev->post_commit_list)) 5304 list_add_tail(&dev->post_commit_list, 5305 &trans->transaction->dev_update_list); 5306 } 5307 5308 atomic64_sub(ctl->stripe_size * map->num_stripes, 5309 &info->free_chunk_space); 5310 5311 free_extent_map(em); 5312 check_raid56_incompat_flag(info, type); 5313 check_raid1c34_incompat_flag(info, type); 5314 5315 return 0; 5316 5317 error_del_extent: 5318 write_lock(&em_tree->lock); 5319 remove_extent_mapping(em_tree, em); 5320 write_unlock(&em_tree->lock); 5321 5322 /* One for our allocation */ 5323 free_extent_map(em); 5324 /* One for the tree reference */ 5325 free_extent_map(em); 5326 5327 return ret; 5328 } 5329 5330 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5331 { 5332 struct btrfs_fs_info *info = trans->fs_info; 5333 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5334 struct btrfs_device_info *devices_info = NULL; 5335 struct alloc_chunk_ctl ctl; 5336 int ret; 5337 5338 lockdep_assert_held(&info->chunk_mutex); 5339 5340 if (!alloc_profile_is_valid(type, 0)) { 5341 ASSERT(0); 5342 return -EINVAL; 5343 } 5344 5345 if (list_empty(&fs_devices->alloc_list)) { 5346 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5347 btrfs_debug(info, "%s: no writable device", __func__); 5348 return -ENOSPC; 5349 } 5350 5351 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5352 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5353 ASSERT(0); 5354 return -EINVAL; 5355 } 5356 5357 ctl.start = find_next_chunk(info); 5358 ctl.type = type; 5359 init_alloc_chunk_ctl(fs_devices, &ctl); 5360 5361 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5362 GFP_NOFS); 5363 if (!devices_info) 5364 return -ENOMEM; 5365 5366 ret = gather_device_info(fs_devices, &ctl, devices_info); 5367 if (ret < 0) 5368 goto out; 5369 5370 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5371 if (ret < 0) 5372 goto out; 5373 5374 ret = create_chunk(trans, &ctl, devices_info); 5375 5376 out: 5377 kfree(devices_info); 5378 return ret; 5379 } 5380 5381 /* 5382 * Chunk allocation falls into two parts. The first part does work 5383 * that makes the new allocated chunk usable, but does not do any operation 5384 * that modifies the chunk tree. The second part does the work that 5385 * requires modifying the chunk tree. This division is important for the 5386 * bootstrap process of adding storage to a seed btrfs. 5387 */ 5388 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5389 u64 chunk_offset, u64 chunk_size) 5390 { 5391 struct btrfs_fs_info *fs_info = trans->fs_info; 5392 struct btrfs_root *extent_root = fs_info->extent_root; 5393 struct btrfs_root *chunk_root = fs_info->chunk_root; 5394 struct btrfs_key key; 5395 struct btrfs_device *device; 5396 struct btrfs_chunk *chunk; 5397 struct btrfs_stripe *stripe; 5398 struct extent_map *em; 5399 struct map_lookup *map; 5400 size_t item_size; 5401 u64 dev_offset; 5402 u64 stripe_size; 5403 int i = 0; 5404 int ret = 0; 5405 5406 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5407 if (IS_ERR(em)) 5408 return PTR_ERR(em); 5409 5410 map = em->map_lookup; 5411 item_size = btrfs_chunk_item_size(map->num_stripes); 5412 stripe_size = em->orig_block_len; 5413 5414 chunk = kzalloc(item_size, GFP_NOFS); 5415 if (!chunk) { 5416 ret = -ENOMEM; 5417 goto out; 5418 } 5419 5420 /* 5421 * Take the device list mutex to prevent races with the final phase of 5422 * a device replace operation that replaces the device object associated 5423 * with the map's stripes, because the device object's id can change 5424 * at any time during that final phase of the device replace operation 5425 * (dev-replace.c:btrfs_dev_replace_finishing()). 5426 */ 5427 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5428 for (i = 0; i < map->num_stripes; i++) { 5429 device = map->stripes[i].dev; 5430 dev_offset = map->stripes[i].physical; 5431 5432 ret = btrfs_update_device(trans, device); 5433 if (ret) 5434 break; 5435 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5436 dev_offset, stripe_size); 5437 if (ret) 5438 break; 5439 } 5440 if (ret) { 5441 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5442 goto out; 5443 } 5444 5445 stripe = &chunk->stripe; 5446 for (i = 0; i < map->num_stripes; i++) { 5447 device = map->stripes[i].dev; 5448 dev_offset = map->stripes[i].physical; 5449 5450 btrfs_set_stack_stripe_devid(stripe, device->devid); 5451 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5452 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5453 stripe++; 5454 } 5455 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5456 5457 btrfs_set_stack_chunk_length(chunk, chunk_size); 5458 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5459 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5460 btrfs_set_stack_chunk_type(chunk, map->type); 5461 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5462 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5463 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5464 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5465 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5466 5467 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5468 key.type = BTRFS_CHUNK_ITEM_KEY; 5469 key.offset = chunk_offset; 5470 5471 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5472 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5473 /* 5474 * TODO: Cleanup of inserted chunk root in case of 5475 * failure. 5476 */ 5477 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5478 } 5479 5480 out: 5481 kfree(chunk); 5482 free_extent_map(em); 5483 return ret; 5484 } 5485 5486 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5487 { 5488 struct btrfs_fs_info *fs_info = trans->fs_info; 5489 u64 alloc_profile; 5490 int ret; 5491 5492 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5493 ret = btrfs_alloc_chunk(trans, alloc_profile); 5494 if (ret) 5495 return ret; 5496 5497 alloc_profile = btrfs_system_alloc_profile(fs_info); 5498 ret = btrfs_alloc_chunk(trans, alloc_profile); 5499 return ret; 5500 } 5501 5502 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5503 { 5504 const int index = btrfs_bg_flags_to_raid_index(map->type); 5505 5506 return btrfs_raid_array[index].tolerated_failures; 5507 } 5508 5509 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5510 { 5511 struct extent_map *em; 5512 struct map_lookup *map; 5513 int readonly = 0; 5514 int miss_ndevs = 0; 5515 int i; 5516 5517 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5518 if (IS_ERR(em)) 5519 return 1; 5520 5521 map = em->map_lookup; 5522 for (i = 0; i < map->num_stripes; i++) { 5523 if (test_bit(BTRFS_DEV_STATE_MISSING, 5524 &map->stripes[i].dev->dev_state)) { 5525 miss_ndevs++; 5526 continue; 5527 } 5528 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5529 &map->stripes[i].dev->dev_state)) { 5530 readonly = 1; 5531 goto end; 5532 } 5533 } 5534 5535 /* 5536 * If the number of missing devices is larger than max errors, 5537 * we can not write the data into that chunk successfully, so 5538 * set it readonly. 5539 */ 5540 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5541 readonly = 1; 5542 end: 5543 free_extent_map(em); 5544 return readonly; 5545 } 5546 5547 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5548 { 5549 struct extent_map *em; 5550 5551 while (1) { 5552 write_lock(&tree->lock); 5553 em = lookup_extent_mapping(tree, 0, (u64)-1); 5554 if (em) 5555 remove_extent_mapping(tree, em); 5556 write_unlock(&tree->lock); 5557 if (!em) 5558 break; 5559 /* once for us */ 5560 free_extent_map(em); 5561 /* once for the tree */ 5562 free_extent_map(em); 5563 } 5564 } 5565 5566 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5567 { 5568 struct extent_map *em; 5569 struct map_lookup *map; 5570 int ret; 5571 5572 em = btrfs_get_chunk_map(fs_info, logical, len); 5573 if (IS_ERR(em)) 5574 /* 5575 * We could return errors for these cases, but that could get 5576 * ugly and we'd probably do the same thing which is just not do 5577 * anything else and exit, so return 1 so the callers don't try 5578 * to use other copies. 5579 */ 5580 return 1; 5581 5582 map = em->map_lookup; 5583 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5584 ret = map->num_stripes; 5585 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5586 ret = map->sub_stripes; 5587 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5588 ret = 2; 5589 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5590 /* 5591 * There could be two corrupted data stripes, we need 5592 * to loop retry in order to rebuild the correct data. 5593 * 5594 * Fail a stripe at a time on every retry except the 5595 * stripe under reconstruction. 5596 */ 5597 ret = map->num_stripes; 5598 else 5599 ret = 1; 5600 free_extent_map(em); 5601 5602 down_read(&fs_info->dev_replace.rwsem); 5603 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5604 fs_info->dev_replace.tgtdev) 5605 ret++; 5606 up_read(&fs_info->dev_replace.rwsem); 5607 5608 return ret; 5609 } 5610 5611 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5612 u64 logical) 5613 { 5614 struct extent_map *em; 5615 struct map_lookup *map; 5616 unsigned long len = fs_info->sectorsize; 5617 5618 em = btrfs_get_chunk_map(fs_info, logical, len); 5619 5620 if (!WARN_ON(IS_ERR(em))) { 5621 map = em->map_lookup; 5622 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5623 len = map->stripe_len * nr_data_stripes(map); 5624 free_extent_map(em); 5625 } 5626 return len; 5627 } 5628 5629 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5630 { 5631 struct extent_map *em; 5632 struct map_lookup *map; 5633 int ret = 0; 5634 5635 em = btrfs_get_chunk_map(fs_info, logical, len); 5636 5637 if(!WARN_ON(IS_ERR(em))) { 5638 map = em->map_lookup; 5639 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5640 ret = 1; 5641 free_extent_map(em); 5642 } 5643 return ret; 5644 } 5645 5646 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5647 struct map_lookup *map, int first, 5648 int dev_replace_is_ongoing) 5649 { 5650 int i; 5651 int num_stripes; 5652 int preferred_mirror; 5653 int tolerance; 5654 struct btrfs_device *srcdev; 5655 5656 ASSERT((map->type & 5657 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5658 5659 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5660 num_stripes = map->sub_stripes; 5661 else 5662 num_stripes = map->num_stripes; 5663 5664 switch (fs_info->fs_devices->read_policy) { 5665 default: 5666 /* Shouldn't happen, just warn and use pid instead of failing */ 5667 btrfs_warn_rl(fs_info, 5668 "unknown read_policy type %u, reset to pid", 5669 fs_info->fs_devices->read_policy); 5670 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5671 fallthrough; 5672 case BTRFS_READ_POLICY_PID: 5673 preferred_mirror = first + (current->pid % num_stripes); 5674 break; 5675 } 5676 5677 if (dev_replace_is_ongoing && 5678 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5679 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5680 srcdev = fs_info->dev_replace.srcdev; 5681 else 5682 srcdev = NULL; 5683 5684 /* 5685 * try to avoid the drive that is the source drive for a 5686 * dev-replace procedure, only choose it if no other non-missing 5687 * mirror is available 5688 */ 5689 for (tolerance = 0; tolerance < 2; tolerance++) { 5690 if (map->stripes[preferred_mirror].dev->bdev && 5691 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5692 return preferred_mirror; 5693 for (i = first; i < first + num_stripes; i++) { 5694 if (map->stripes[i].dev->bdev && 5695 (tolerance || map->stripes[i].dev != srcdev)) 5696 return i; 5697 } 5698 } 5699 5700 /* we couldn't find one that doesn't fail. Just return something 5701 * and the io error handling code will clean up eventually 5702 */ 5703 return preferred_mirror; 5704 } 5705 5706 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5707 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5708 { 5709 int i; 5710 int again = 1; 5711 5712 while (again) { 5713 again = 0; 5714 for (i = 0; i < num_stripes - 1; i++) { 5715 /* Swap if parity is on a smaller index */ 5716 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { 5717 swap(bbio->stripes[i], bbio->stripes[i + 1]); 5718 swap(bbio->raid_map[i], bbio->raid_map[i + 1]); 5719 again = 1; 5720 } 5721 } 5722 } 5723 } 5724 5725 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5726 { 5727 struct btrfs_bio *bbio = kzalloc( 5728 /* the size of the btrfs_bio */ 5729 sizeof(struct btrfs_bio) + 5730 /* plus the variable array for the stripes */ 5731 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5732 /* plus the variable array for the tgt dev */ 5733 sizeof(int) * (real_stripes) + 5734 /* 5735 * plus the raid_map, which includes both the tgt dev 5736 * and the stripes 5737 */ 5738 sizeof(u64) * (total_stripes), 5739 GFP_NOFS|__GFP_NOFAIL); 5740 5741 atomic_set(&bbio->error, 0); 5742 refcount_set(&bbio->refs, 1); 5743 5744 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes); 5745 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes); 5746 5747 return bbio; 5748 } 5749 5750 void btrfs_get_bbio(struct btrfs_bio *bbio) 5751 { 5752 WARN_ON(!refcount_read(&bbio->refs)); 5753 refcount_inc(&bbio->refs); 5754 } 5755 5756 void btrfs_put_bbio(struct btrfs_bio *bbio) 5757 { 5758 if (!bbio) 5759 return; 5760 if (refcount_dec_and_test(&bbio->refs)) 5761 kfree(bbio); 5762 } 5763 5764 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5765 /* 5766 * Please note that, discard won't be sent to target device of device 5767 * replace. 5768 */ 5769 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5770 u64 logical, u64 *length_ret, 5771 struct btrfs_bio **bbio_ret) 5772 { 5773 struct extent_map *em; 5774 struct map_lookup *map; 5775 struct btrfs_bio *bbio; 5776 u64 length = *length_ret; 5777 u64 offset; 5778 u64 stripe_nr; 5779 u64 stripe_nr_end; 5780 u64 stripe_end_offset; 5781 u64 stripe_cnt; 5782 u64 stripe_len; 5783 u64 stripe_offset; 5784 u64 num_stripes; 5785 u32 stripe_index; 5786 u32 factor = 0; 5787 u32 sub_stripes = 0; 5788 u64 stripes_per_dev = 0; 5789 u32 remaining_stripes = 0; 5790 u32 last_stripe = 0; 5791 int ret = 0; 5792 int i; 5793 5794 /* discard always return a bbio */ 5795 ASSERT(bbio_ret); 5796 5797 em = btrfs_get_chunk_map(fs_info, logical, length); 5798 if (IS_ERR(em)) 5799 return PTR_ERR(em); 5800 5801 map = em->map_lookup; 5802 /* we don't discard raid56 yet */ 5803 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5804 ret = -EOPNOTSUPP; 5805 goto out; 5806 } 5807 5808 offset = logical - em->start; 5809 length = min_t(u64, em->start + em->len - logical, length); 5810 *length_ret = length; 5811 5812 stripe_len = map->stripe_len; 5813 /* 5814 * stripe_nr counts the total number of stripes we have to stride 5815 * to get to this block 5816 */ 5817 stripe_nr = div64_u64(offset, stripe_len); 5818 5819 /* stripe_offset is the offset of this block in its stripe */ 5820 stripe_offset = offset - stripe_nr * stripe_len; 5821 5822 stripe_nr_end = round_up(offset + length, map->stripe_len); 5823 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5824 stripe_cnt = stripe_nr_end - stripe_nr; 5825 stripe_end_offset = stripe_nr_end * map->stripe_len - 5826 (offset + length); 5827 /* 5828 * after this, stripe_nr is the number of stripes on this 5829 * device we have to walk to find the data, and stripe_index is 5830 * the number of our device in the stripe array 5831 */ 5832 num_stripes = 1; 5833 stripe_index = 0; 5834 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5835 BTRFS_BLOCK_GROUP_RAID10)) { 5836 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5837 sub_stripes = 1; 5838 else 5839 sub_stripes = map->sub_stripes; 5840 5841 factor = map->num_stripes / sub_stripes; 5842 num_stripes = min_t(u64, map->num_stripes, 5843 sub_stripes * stripe_cnt); 5844 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5845 stripe_index *= sub_stripes; 5846 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5847 &remaining_stripes); 5848 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5849 last_stripe *= sub_stripes; 5850 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5851 BTRFS_BLOCK_GROUP_DUP)) { 5852 num_stripes = map->num_stripes; 5853 } else { 5854 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5855 &stripe_index); 5856 } 5857 5858 bbio = alloc_btrfs_bio(num_stripes, 0); 5859 if (!bbio) { 5860 ret = -ENOMEM; 5861 goto out; 5862 } 5863 5864 for (i = 0; i < num_stripes; i++) { 5865 bbio->stripes[i].physical = 5866 map->stripes[stripe_index].physical + 5867 stripe_offset + stripe_nr * map->stripe_len; 5868 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5869 5870 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5871 BTRFS_BLOCK_GROUP_RAID10)) { 5872 bbio->stripes[i].length = stripes_per_dev * 5873 map->stripe_len; 5874 5875 if (i / sub_stripes < remaining_stripes) 5876 bbio->stripes[i].length += 5877 map->stripe_len; 5878 5879 /* 5880 * Special for the first stripe and 5881 * the last stripe: 5882 * 5883 * |-------|...|-------| 5884 * |----------| 5885 * off end_off 5886 */ 5887 if (i < sub_stripes) 5888 bbio->stripes[i].length -= 5889 stripe_offset; 5890 5891 if (stripe_index >= last_stripe && 5892 stripe_index <= (last_stripe + 5893 sub_stripes - 1)) 5894 bbio->stripes[i].length -= 5895 stripe_end_offset; 5896 5897 if (i == sub_stripes - 1) 5898 stripe_offset = 0; 5899 } else { 5900 bbio->stripes[i].length = length; 5901 } 5902 5903 stripe_index++; 5904 if (stripe_index == map->num_stripes) { 5905 stripe_index = 0; 5906 stripe_nr++; 5907 } 5908 } 5909 5910 *bbio_ret = bbio; 5911 bbio->map_type = map->type; 5912 bbio->num_stripes = num_stripes; 5913 out: 5914 free_extent_map(em); 5915 return ret; 5916 } 5917 5918 /* 5919 * In dev-replace case, for repair case (that's the only case where the mirror 5920 * is selected explicitly when calling btrfs_map_block), blocks left of the 5921 * left cursor can also be read from the target drive. 5922 * 5923 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5924 * array of stripes. 5925 * For READ, it also needs to be supported using the same mirror number. 5926 * 5927 * If the requested block is not left of the left cursor, EIO is returned. This 5928 * can happen because btrfs_num_copies() returns one more in the dev-replace 5929 * case. 5930 */ 5931 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5932 u64 logical, u64 length, 5933 u64 srcdev_devid, int *mirror_num, 5934 u64 *physical) 5935 { 5936 struct btrfs_bio *bbio = NULL; 5937 int num_stripes; 5938 int index_srcdev = 0; 5939 int found = 0; 5940 u64 physical_of_found = 0; 5941 int i; 5942 int ret = 0; 5943 5944 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5945 logical, &length, &bbio, 0, 0); 5946 if (ret) { 5947 ASSERT(bbio == NULL); 5948 return ret; 5949 } 5950 5951 num_stripes = bbio->num_stripes; 5952 if (*mirror_num > num_stripes) { 5953 /* 5954 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5955 * that means that the requested area is not left of the left 5956 * cursor 5957 */ 5958 btrfs_put_bbio(bbio); 5959 return -EIO; 5960 } 5961 5962 /* 5963 * process the rest of the function using the mirror_num of the source 5964 * drive. Therefore look it up first. At the end, patch the device 5965 * pointer to the one of the target drive. 5966 */ 5967 for (i = 0; i < num_stripes; i++) { 5968 if (bbio->stripes[i].dev->devid != srcdev_devid) 5969 continue; 5970 5971 /* 5972 * In case of DUP, in order to keep it simple, only add the 5973 * mirror with the lowest physical address 5974 */ 5975 if (found && 5976 physical_of_found <= bbio->stripes[i].physical) 5977 continue; 5978 5979 index_srcdev = i; 5980 found = 1; 5981 physical_of_found = bbio->stripes[i].physical; 5982 } 5983 5984 btrfs_put_bbio(bbio); 5985 5986 ASSERT(found); 5987 if (!found) 5988 return -EIO; 5989 5990 *mirror_num = index_srcdev + 1; 5991 *physical = physical_of_found; 5992 return ret; 5993 } 5994 5995 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 5996 { 5997 struct btrfs_block_group *cache; 5998 bool ret; 5999 6000 /* Non zoned filesystem does not use "to_copy" flag */ 6001 if (!btrfs_is_zoned(fs_info)) 6002 return false; 6003 6004 cache = btrfs_lookup_block_group(fs_info, logical); 6005 6006 spin_lock(&cache->lock); 6007 ret = cache->to_copy; 6008 spin_unlock(&cache->lock); 6009 6010 btrfs_put_block_group(cache); 6011 return ret; 6012 } 6013 6014 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6015 struct btrfs_bio **bbio_ret, 6016 struct btrfs_dev_replace *dev_replace, 6017 u64 logical, 6018 int *num_stripes_ret, int *max_errors_ret) 6019 { 6020 struct btrfs_bio *bbio = *bbio_ret; 6021 u64 srcdev_devid = dev_replace->srcdev->devid; 6022 int tgtdev_indexes = 0; 6023 int num_stripes = *num_stripes_ret; 6024 int max_errors = *max_errors_ret; 6025 int i; 6026 6027 if (op == BTRFS_MAP_WRITE) { 6028 int index_where_to_add; 6029 6030 /* 6031 * A block group which have "to_copy" set will eventually 6032 * copied by dev-replace process. We can avoid cloning IO here. 6033 */ 6034 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6035 return; 6036 6037 /* 6038 * duplicate the write operations while the dev replace 6039 * procedure is running. Since the copying of the old disk to 6040 * the new disk takes place at run time while the filesystem is 6041 * mounted writable, the regular write operations to the old 6042 * disk have to be duplicated to go to the new disk as well. 6043 * 6044 * Note that device->missing is handled by the caller, and that 6045 * the write to the old disk is already set up in the stripes 6046 * array. 6047 */ 6048 index_where_to_add = num_stripes; 6049 for (i = 0; i < num_stripes; i++) { 6050 if (bbio->stripes[i].dev->devid == srcdev_devid) { 6051 /* write to new disk, too */ 6052 struct btrfs_bio_stripe *new = 6053 bbio->stripes + index_where_to_add; 6054 struct btrfs_bio_stripe *old = 6055 bbio->stripes + i; 6056 6057 new->physical = old->physical; 6058 new->length = old->length; 6059 new->dev = dev_replace->tgtdev; 6060 bbio->tgtdev_map[i] = index_where_to_add; 6061 index_where_to_add++; 6062 max_errors++; 6063 tgtdev_indexes++; 6064 } 6065 } 6066 num_stripes = index_where_to_add; 6067 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 6068 int index_srcdev = 0; 6069 int found = 0; 6070 u64 physical_of_found = 0; 6071 6072 /* 6073 * During the dev-replace procedure, the target drive can also 6074 * be used to read data in case it is needed to repair a corrupt 6075 * block elsewhere. This is possible if the requested area is 6076 * left of the left cursor. In this area, the target drive is a 6077 * full copy of the source drive. 6078 */ 6079 for (i = 0; i < num_stripes; i++) { 6080 if (bbio->stripes[i].dev->devid == srcdev_devid) { 6081 /* 6082 * In case of DUP, in order to keep it simple, 6083 * only add the mirror with the lowest physical 6084 * address 6085 */ 6086 if (found && 6087 physical_of_found <= 6088 bbio->stripes[i].physical) 6089 continue; 6090 index_srcdev = i; 6091 found = 1; 6092 physical_of_found = bbio->stripes[i].physical; 6093 } 6094 } 6095 if (found) { 6096 struct btrfs_bio_stripe *tgtdev_stripe = 6097 bbio->stripes + num_stripes; 6098 6099 tgtdev_stripe->physical = physical_of_found; 6100 tgtdev_stripe->length = 6101 bbio->stripes[index_srcdev].length; 6102 tgtdev_stripe->dev = dev_replace->tgtdev; 6103 bbio->tgtdev_map[index_srcdev] = num_stripes; 6104 6105 tgtdev_indexes++; 6106 num_stripes++; 6107 } 6108 } 6109 6110 *num_stripes_ret = num_stripes; 6111 *max_errors_ret = max_errors; 6112 bbio->num_tgtdevs = tgtdev_indexes; 6113 *bbio_ret = bbio; 6114 } 6115 6116 static bool need_full_stripe(enum btrfs_map_op op) 6117 { 6118 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 6119 } 6120 6121 /* 6122 * Calculate the geometry of a particular (address, len) tuple. This 6123 * information is used to calculate how big a particular bio can get before it 6124 * straddles a stripe. 6125 * 6126 * @fs_info: the filesystem 6127 * @em: mapping containing the logical extent 6128 * @op: type of operation - write or read 6129 * @logical: address that we want to figure out the geometry of 6130 * @len: the length of IO we are going to perform, starting at @logical 6131 * @io_geom: pointer used to return values 6132 * 6133 * Returns < 0 in case a chunk for the given logical address cannot be found, 6134 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 6135 */ 6136 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em, 6137 enum btrfs_map_op op, u64 logical, u64 len, 6138 struct btrfs_io_geometry *io_geom) 6139 { 6140 struct map_lookup *map; 6141 u64 offset; 6142 u64 stripe_offset; 6143 u64 stripe_nr; 6144 u64 stripe_len; 6145 u64 raid56_full_stripe_start = (u64)-1; 6146 int data_stripes; 6147 6148 ASSERT(op != BTRFS_MAP_DISCARD); 6149 6150 map = em->map_lookup; 6151 /* Offset of this logical address in the chunk */ 6152 offset = logical - em->start; 6153 /* Len of a stripe in a chunk */ 6154 stripe_len = map->stripe_len; 6155 /* Stripe wher this block falls in */ 6156 stripe_nr = div64_u64(offset, stripe_len); 6157 /* Offset of stripe in the chunk */ 6158 stripe_offset = stripe_nr * stripe_len; 6159 if (offset < stripe_offset) { 6160 btrfs_crit(fs_info, 6161 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 6162 stripe_offset, offset, em->start, logical, stripe_len); 6163 return -EINVAL; 6164 } 6165 6166 /* stripe_offset is the offset of this block in its stripe */ 6167 stripe_offset = offset - stripe_offset; 6168 data_stripes = nr_data_stripes(map); 6169 6170 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6171 u64 max_len = stripe_len - stripe_offset; 6172 6173 /* 6174 * In case of raid56, we need to know the stripe aligned start 6175 */ 6176 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6177 unsigned long full_stripe_len = stripe_len * data_stripes; 6178 raid56_full_stripe_start = offset; 6179 6180 /* 6181 * Allow a write of a full stripe, but make sure we 6182 * don't allow straddling of stripes 6183 */ 6184 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6185 full_stripe_len); 6186 raid56_full_stripe_start *= full_stripe_len; 6187 6188 /* 6189 * For writes to RAID[56], allow a full stripeset across 6190 * all disks. For other RAID types and for RAID[56] 6191 * reads, just allow a single stripe (on a single disk). 6192 */ 6193 if (op == BTRFS_MAP_WRITE) { 6194 max_len = stripe_len * data_stripes - 6195 (offset - raid56_full_stripe_start); 6196 } 6197 } 6198 len = min_t(u64, em->len - offset, max_len); 6199 } else { 6200 len = em->len - offset; 6201 } 6202 6203 io_geom->len = len; 6204 io_geom->offset = offset; 6205 io_geom->stripe_len = stripe_len; 6206 io_geom->stripe_nr = stripe_nr; 6207 io_geom->stripe_offset = stripe_offset; 6208 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6209 6210 return 0; 6211 } 6212 6213 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6214 enum btrfs_map_op op, 6215 u64 logical, u64 *length, 6216 struct btrfs_bio **bbio_ret, 6217 int mirror_num, int need_raid_map) 6218 { 6219 struct extent_map *em; 6220 struct map_lookup *map; 6221 u64 stripe_offset; 6222 u64 stripe_nr; 6223 u64 stripe_len; 6224 u32 stripe_index; 6225 int data_stripes; 6226 int i; 6227 int ret = 0; 6228 int num_stripes; 6229 int max_errors = 0; 6230 int tgtdev_indexes = 0; 6231 struct btrfs_bio *bbio = NULL; 6232 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6233 int dev_replace_is_ongoing = 0; 6234 int num_alloc_stripes; 6235 int patch_the_first_stripe_for_dev_replace = 0; 6236 u64 physical_to_patch_in_first_stripe = 0; 6237 u64 raid56_full_stripe_start = (u64)-1; 6238 struct btrfs_io_geometry geom; 6239 6240 ASSERT(bbio_ret); 6241 ASSERT(op != BTRFS_MAP_DISCARD); 6242 6243 em = btrfs_get_chunk_map(fs_info, logical, *length); 6244 ASSERT(!IS_ERR(em)); 6245 6246 ret = btrfs_get_io_geometry(fs_info, em, op, logical, *length, &geom); 6247 if (ret < 0) 6248 return ret; 6249 6250 map = em->map_lookup; 6251 6252 *length = geom.len; 6253 stripe_len = geom.stripe_len; 6254 stripe_nr = geom.stripe_nr; 6255 stripe_offset = geom.stripe_offset; 6256 raid56_full_stripe_start = geom.raid56_stripe_offset; 6257 data_stripes = nr_data_stripes(map); 6258 6259 down_read(&dev_replace->rwsem); 6260 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6261 /* 6262 * Hold the semaphore for read during the whole operation, write is 6263 * requested at commit time but must wait. 6264 */ 6265 if (!dev_replace_is_ongoing) 6266 up_read(&dev_replace->rwsem); 6267 6268 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6269 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6270 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6271 dev_replace->srcdev->devid, 6272 &mirror_num, 6273 &physical_to_patch_in_first_stripe); 6274 if (ret) 6275 goto out; 6276 else 6277 patch_the_first_stripe_for_dev_replace = 1; 6278 } else if (mirror_num > map->num_stripes) { 6279 mirror_num = 0; 6280 } 6281 6282 num_stripes = 1; 6283 stripe_index = 0; 6284 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6285 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6286 &stripe_index); 6287 if (!need_full_stripe(op)) 6288 mirror_num = 1; 6289 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6290 if (need_full_stripe(op)) 6291 num_stripes = map->num_stripes; 6292 else if (mirror_num) 6293 stripe_index = mirror_num - 1; 6294 else { 6295 stripe_index = find_live_mirror(fs_info, map, 0, 6296 dev_replace_is_ongoing); 6297 mirror_num = stripe_index + 1; 6298 } 6299 6300 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6301 if (need_full_stripe(op)) { 6302 num_stripes = map->num_stripes; 6303 } else if (mirror_num) { 6304 stripe_index = mirror_num - 1; 6305 } else { 6306 mirror_num = 1; 6307 } 6308 6309 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6310 u32 factor = map->num_stripes / map->sub_stripes; 6311 6312 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6313 stripe_index *= map->sub_stripes; 6314 6315 if (need_full_stripe(op)) 6316 num_stripes = map->sub_stripes; 6317 else if (mirror_num) 6318 stripe_index += mirror_num - 1; 6319 else { 6320 int old_stripe_index = stripe_index; 6321 stripe_index = find_live_mirror(fs_info, map, 6322 stripe_index, 6323 dev_replace_is_ongoing); 6324 mirror_num = stripe_index - old_stripe_index + 1; 6325 } 6326 6327 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6328 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6329 /* push stripe_nr back to the start of the full stripe */ 6330 stripe_nr = div64_u64(raid56_full_stripe_start, 6331 stripe_len * data_stripes); 6332 6333 /* RAID[56] write or recovery. Return all stripes */ 6334 num_stripes = map->num_stripes; 6335 max_errors = nr_parity_stripes(map); 6336 6337 *length = map->stripe_len; 6338 stripe_index = 0; 6339 stripe_offset = 0; 6340 } else { 6341 /* 6342 * Mirror #0 or #1 means the original data block. 6343 * Mirror #2 is RAID5 parity block. 6344 * Mirror #3 is RAID6 Q block. 6345 */ 6346 stripe_nr = div_u64_rem(stripe_nr, 6347 data_stripes, &stripe_index); 6348 if (mirror_num > 1) 6349 stripe_index = data_stripes + mirror_num - 2; 6350 6351 /* We distribute the parity blocks across stripes */ 6352 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6353 &stripe_index); 6354 if (!need_full_stripe(op) && mirror_num <= 1) 6355 mirror_num = 1; 6356 } 6357 } else { 6358 /* 6359 * after this, stripe_nr is the number of stripes on this 6360 * device we have to walk to find the data, and stripe_index is 6361 * the number of our device in the stripe array 6362 */ 6363 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6364 &stripe_index); 6365 mirror_num = stripe_index + 1; 6366 } 6367 if (stripe_index >= map->num_stripes) { 6368 btrfs_crit(fs_info, 6369 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6370 stripe_index, map->num_stripes); 6371 ret = -EINVAL; 6372 goto out; 6373 } 6374 6375 num_alloc_stripes = num_stripes; 6376 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6377 if (op == BTRFS_MAP_WRITE) 6378 num_alloc_stripes <<= 1; 6379 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6380 num_alloc_stripes++; 6381 tgtdev_indexes = num_stripes; 6382 } 6383 6384 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6385 if (!bbio) { 6386 ret = -ENOMEM; 6387 goto out; 6388 } 6389 6390 for (i = 0; i < num_stripes; i++) { 6391 bbio->stripes[i].physical = map->stripes[stripe_index].physical + 6392 stripe_offset + stripe_nr * map->stripe_len; 6393 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 6394 stripe_index++; 6395 } 6396 6397 /* build raid_map */ 6398 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6399 (need_full_stripe(op) || mirror_num > 1)) { 6400 u64 tmp; 6401 unsigned rot; 6402 6403 /* Work out the disk rotation on this stripe-set */ 6404 div_u64_rem(stripe_nr, num_stripes, &rot); 6405 6406 /* Fill in the logical address of each stripe */ 6407 tmp = stripe_nr * data_stripes; 6408 for (i = 0; i < data_stripes; i++) 6409 bbio->raid_map[(i+rot) % num_stripes] = 6410 em->start + (tmp + i) * map->stripe_len; 6411 6412 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6413 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6414 bbio->raid_map[(i+rot+1) % num_stripes] = 6415 RAID6_Q_STRIPE; 6416 6417 sort_parity_stripes(bbio, num_stripes); 6418 } 6419 6420 if (need_full_stripe(op)) 6421 max_errors = btrfs_chunk_max_errors(map); 6422 6423 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6424 need_full_stripe(op)) { 6425 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical, 6426 &num_stripes, &max_errors); 6427 } 6428 6429 *bbio_ret = bbio; 6430 bbio->map_type = map->type; 6431 bbio->num_stripes = num_stripes; 6432 bbio->max_errors = max_errors; 6433 bbio->mirror_num = mirror_num; 6434 6435 /* 6436 * this is the case that REQ_READ && dev_replace_is_ongoing && 6437 * mirror_num == num_stripes + 1 && dev_replace target drive is 6438 * available as a mirror 6439 */ 6440 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6441 WARN_ON(num_stripes > 1); 6442 bbio->stripes[0].dev = dev_replace->tgtdev; 6443 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6444 bbio->mirror_num = map->num_stripes + 1; 6445 } 6446 out: 6447 if (dev_replace_is_ongoing) { 6448 lockdep_assert_held(&dev_replace->rwsem); 6449 /* Unlock and let waiting writers proceed */ 6450 up_read(&dev_replace->rwsem); 6451 } 6452 free_extent_map(em); 6453 return ret; 6454 } 6455 6456 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6457 u64 logical, u64 *length, 6458 struct btrfs_bio **bbio_ret, int mirror_num) 6459 { 6460 if (op == BTRFS_MAP_DISCARD) 6461 return __btrfs_map_block_for_discard(fs_info, logical, 6462 length, bbio_ret); 6463 6464 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6465 mirror_num, 0); 6466 } 6467 6468 /* For Scrub/replace */ 6469 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6470 u64 logical, u64 *length, 6471 struct btrfs_bio **bbio_ret) 6472 { 6473 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6474 } 6475 6476 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6477 { 6478 bio->bi_private = bbio->private; 6479 bio->bi_end_io = bbio->end_io; 6480 bio_endio(bio); 6481 6482 btrfs_put_bbio(bbio); 6483 } 6484 6485 static void btrfs_end_bio(struct bio *bio) 6486 { 6487 struct btrfs_bio *bbio = bio->bi_private; 6488 int is_orig_bio = 0; 6489 6490 if (bio->bi_status) { 6491 atomic_inc(&bbio->error); 6492 if (bio->bi_status == BLK_STS_IOERR || 6493 bio->bi_status == BLK_STS_TARGET) { 6494 struct btrfs_device *dev = btrfs_io_bio(bio)->device; 6495 6496 ASSERT(dev->bdev); 6497 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 6498 btrfs_dev_stat_inc_and_print(dev, 6499 BTRFS_DEV_STAT_WRITE_ERRS); 6500 else if (!(bio->bi_opf & REQ_RAHEAD)) 6501 btrfs_dev_stat_inc_and_print(dev, 6502 BTRFS_DEV_STAT_READ_ERRS); 6503 if (bio->bi_opf & REQ_PREFLUSH) 6504 btrfs_dev_stat_inc_and_print(dev, 6505 BTRFS_DEV_STAT_FLUSH_ERRS); 6506 } 6507 } 6508 6509 if (bio == bbio->orig_bio) 6510 is_orig_bio = 1; 6511 6512 btrfs_bio_counter_dec(bbio->fs_info); 6513 6514 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6515 if (!is_orig_bio) { 6516 bio_put(bio); 6517 bio = bbio->orig_bio; 6518 } 6519 6520 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6521 /* only send an error to the higher layers if it is 6522 * beyond the tolerance of the btrfs bio 6523 */ 6524 if (atomic_read(&bbio->error) > bbio->max_errors) { 6525 bio->bi_status = BLK_STS_IOERR; 6526 } else { 6527 /* 6528 * this bio is actually up to date, we didn't 6529 * go over the max number of errors 6530 */ 6531 bio->bi_status = BLK_STS_OK; 6532 } 6533 6534 btrfs_end_bbio(bbio, bio); 6535 } else if (!is_orig_bio) { 6536 bio_put(bio); 6537 } 6538 } 6539 6540 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6541 u64 physical, struct btrfs_device *dev) 6542 { 6543 struct btrfs_fs_info *fs_info = bbio->fs_info; 6544 6545 bio->bi_private = bbio; 6546 btrfs_io_bio(bio)->device = dev; 6547 bio->bi_end_io = btrfs_end_bio; 6548 bio->bi_iter.bi_sector = physical >> 9; 6549 /* 6550 * For zone append writing, bi_sector must point the beginning of the 6551 * zone 6552 */ 6553 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 6554 if (btrfs_dev_is_sequential(dev, physical)) { 6555 u64 zone_start = round_down(physical, fs_info->zone_size); 6556 6557 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 6558 } else { 6559 bio->bi_opf &= ~REQ_OP_ZONE_APPEND; 6560 bio->bi_opf |= REQ_OP_WRITE; 6561 } 6562 } 6563 btrfs_debug_in_rcu(fs_info, 6564 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6565 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 6566 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6567 dev->devid, bio->bi_iter.bi_size); 6568 bio_set_dev(bio, dev->bdev); 6569 6570 btrfs_bio_counter_inc_noblocked(fs_info); 6571 6572 btrfsic_submit_bio(bio); 6573 } 6574 6575 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6576 { 6577 atomic_inc(&bbio->error); 6578 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6579 /* Should be the original bio. */ 6580 WARN_ON(bio != bbio->orig_bio); 6581 6582 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6583 bio->bi_iter.bi_sector = logical >> 9; 6584 if (atomic_read(&bbio->error) > bbio->max_errors) 6585 bio->bi_status = BLK_STS_IOERR; 6586 else 6587 bio->bi_status = BLK_STS_OK; 6588 btrfs_end_bbio(bbio, bio); 6589 } 6590 } 6591 6592 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6593 int mirror_num) 6594 { 6595 struct btrfs_device *dev; 6596 struct bio *first_bio = bio; 6597 u64 logical = bio->bi_iter.bi_sector << 9; 6598 u64 length = 0; 6599 u64 map_length; 6600 int ret; 6601 int dev_nr; 6602 int total_devs; 6603 struct btrfs_bio *bbio = NULL; 6604 6605 length = bio->bi_iter.bi_size; 6606 map_length = length; 6607 6608 btrfs_bio_counter_inc_blocked(fs_info); 6609 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6610 &map_length, &bbio, mirror_num, 1); 6611 if (ret) { 6612 btrfs_bio_counter_dec(fs_info); 6613 return errno_to_blk_status(ret); 6614 } 6615 6616 total_devs = bbio->num_stripes; 6617 bbio->orig_bio = first_bio; 6618 bbio->private = first_bio->bi_private; 6619 bbio->end_io = first_bio->bi_end_io; 6620 bbio->fs_info = fs_info; 6621 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6622 6623 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6624 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) { 6625 /* In this case, map_length has been set to the length of 6626 a single stripe; not the whole write */ 6627 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 6628 ret = raid56_parity_write(fs_info, bio, bbio, 6629 map_length); 6630 } else { 6631 ret = raid56_parity_recover(fs_info, bio, bbio, 6632 map_length, mirror_num, 1); 6633 } 6634 6635 btrfs_bio_counter_dec(fs_info); 6636 return errno_to_blk_status(ret); 6637 } 6638 6639 if (map_length < length) { 6640 btrfs_crit(fs_info, 6641 "mapping failed logical %llu bio len %llu len %llu", 6642 logical, length, map_length); 6643 BUG(); 6644 } 6645 6646 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6647 dev = bbio->stripes[dev_nr].dev; 6648 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6649 &dev->dev_state) || 6650 (btrfs_op(first_bio) == BTRFS_MAP_WRITE && 6651 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6652 bbio_error(bbio, first_bio, logical); 6653 continue; 6654 } 6655 6656 if (dev_nr < total_devs - 1) 6657 bio = btrfs_bio_clone(first_bio); 6658 else 6659 bio = first_bio; 6660 6661 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev); 6662 } 6663 btrfs_bio_counter_dec(fs_info); 6664 return BLK_STS_OK; 6665 } 6666 6667 /* 6668 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6669 * return NULL. 6670 * 6671 * If devid and uuid are both specified, the match must be exact, otherwise 6672 * only devid is used. 6673 * 6674 * If @seed is true, traverse through the seed devices. 6675 */ 6676 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6677 u64 devid, u8 *uuid, u8 *fsid) 6678 { 6679 struct btrfs_device *device; 6680 struct btrfs_fs_devices *seed_devs; 6681 6682 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6683 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6684 if (device->devid == devid && 6685 (!uuid || memcmp(device->uuid, uuid, 6686 BTRFS_UUID_SIZE) == 0)) 6687 return device; 6688 } 6689 } 6690 6691 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6692 if (!fsid || 6693 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6694 list_for_each_entry(device, &seed_devs->devices, 6695 dev_list) { 6696 if (device->devid == devid && 6697 (!uuid || memcmp(device->uuid, uuid, 6698 BTRFS_UUID_SIZE) == 0)) 6699 return device; 6700 } 6701 } 6702 } 6703 6704 return NULL; 6705 } 6706 6707 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6708 u64 devid, u8 *dev_uuid) 6709 { 6710 struct btrfs_device *device; 6711 unsigned int nofs_flag; 6712 6713 /* 6714 * We call this under the chunk_mutex, so we want to use NOFS for this 6715 * allocation, however we don't want to change btrfs_alloc_device() to 6716 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6717 * places. 6718 */ 6719 nofs_flag = memalloc_nofs_save(); 6720 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6721 memalloc_nofs_restore(nofs_flag); 6722 if (IS_ERR(device)) 6723 return device; 6724 6725 list_add(&device->dev_list, &fs_devices->devices); 6726 device->fs_devices = fs_devices; 6727 fs_devices->num_devices++; 6728 6729 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6730 fs_devices->missing_devices++; 6731 6732 return device; 6733 } 6734 6735 /** 6736 * btrfs_alloc_device - allocate struct btrfs_device 6737 * @fs_info: used only for generating a new devid, can be NULL if 6738 * devid is provided (i.e. @devid != NULL). 6739 * @devid: a pointer to devid for this device. If NULL a new devid 6740 * is generated. 6741 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6742 * is generated. 6743 * 6744 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6745 * on error. Returned struct is not linked onto any lists and must be 6746 * destroyed with btrfs_free_device. 6747 */ 6748 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6749 const u64 *devid, 6750 const u8 *uuid) 6751 { 6752 struct btrfs_device *dev; 6753 u64 tmp; 6754 6755 if (WARN_ON(!devid && !fs_info)) 6756 return ERR_PTR(-EINVAL); 6757 6758 dev = __alloc_device(fs_info); 6759 if (IS_ERR(dev)) 6760 return dev; 6761 6762 if (devid) 6763 tmp = *devid; 6764 else { 6765 int ret; 6766 6767 ret = find_next_devid(fs_info, &tmp); 6768 if (ret) { 6769 btrfs_free_device(dev); 6770 return ERR_PTR(ret); 6771 } 6772 } 6773 dev->devid = tmp; 6774 6775 if (uuid) 6776 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6777 else 6778 generate_random_uuid(dev->uuid); 6779 6780 return dev; 6781 } 6782 6783 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6784 u64 devid, u8 *uuid, bool error) 6785 { 6786 if (error) 6787 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6788 devid, uuid); 6789 else 6790 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6791 devid, uuid); 6792 } 6793 6794 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6795 { 6796 int index = btrfs_bg_flags_to_raid_index(type); 6797 int ncopies = btrfs_raid_array[index].ncopies; 6798 const int nparity = btrfs_raid_array[index].nparity; 6799 int data_stripes; 6800 6801 if (nparity) 6802 data_stripes = num_stripes - nparity; 6803 else 6804 data_stripes = num_stripes / ncopies; 6805 6806 return div_u64(chunk_len, data_stripes); 6807 } 6808 6809 #if BITS_PER_LONG == 32 6810 /* 6811 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6812 * can't be accessed on 32bit systems. 6813 * 6814 * This function do mount time check to reject the fs if it already has 6815 * metadata chunk beyond that limit. 6816 */ 6817 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6818 u64 logical, u64 length, u64 type) 6819 { 6820 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6821 return 0; 6822 6823 if (logical + length < MAX_LFS_FILESIZE) 6824 return 0; 6825 6826 btrfs_err_32bit_limit(fs_info); 6827 return -EOVERFLOW; 6828 } 6829 6830 /* 6831 * This is to give early warning for any metadata chunk reaching 6832 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6833 * Although we can still access the metadata, it's not going to be possible 6834 * once the limit is reached. 6835 */ 6836 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6837 u64 logical, u64 length, u64 type) 6838 { 6839 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6840 return; 6841 6842 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6843 return; 6844 6845 btrfs_warn_32bit_limit(fs_info); 6846 } 6847 #endif 6848 6849 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6850 struct btrfs_chunk *chunk) 6851 { 6852 struct btrfs_fs_info *fs_info = leaf->fs_info; 6853 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6854 struct map_lookup *map; 6855 struct extent_map *em; 6856 u64 logical; 6857 u64 length; 6858 u64 devid; 6859 u64 type; 6860 u8 uuid[BTRFS_UUID_SIZE]; 6861 int num_stripes; 6862 int ret; 6863 int i; 6864 6865 logical = key->offset; 6866 length = btrfs_chunk_length(leaf, chunk); 6867 type = btrfs_chunk_type(leaf, chunk); 6868 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6869 6870 #if BITS_PER_LONG == 32 6871 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6872 if (ret < 0) 6873 return ret; 6874 warn_32bit_meta_chunk(fs_info, logical, length, type); 6875 #endif 6876 6877 /* 6878 * Only need to verify chunk item if we're reading from sys chunk array, 6879 * as chunk item in tree block is already verified by tree-checker. 6880 */ 6881 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6882 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6883 if (ret) 6884 return ret; 6885 } 6886 6887 read_lock(&map_tree->lock); 6888 em = lookup_extent_mapping(map_tree, logical, 1); 6889 read_unlock(&map_tree->lock); 6890 6891 /* already mapped? */ 6892 if (em && em->start <= logical && em->start + em->len > logical) { 6893 free_extent_map(em); 6894 return 0; 6895 } else if (em) { 6896 free_extent_map(em); 6897 } 6898 6899 em = alloc_extent_map(); 6900 if (!em) 6901 return -ENOMEM; 6902 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6903 if (!map) { 6904 free_extent_map(em); 6905 return -ENOMEM; 6906 } 6907 6908 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6909 em->map_lookup = map; 6910 em->start = logical; 6911 em->len = length; 6912 em->orig_start = 0; 6913 em->block_start = 0; 6914 em->block_len = em->len; 6915 6916 map->num_stripes = num_stripes; 6917 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6918 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6919 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6920 map->type = type; 6921 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6922 map->verified_stripes = 0; 6923 em->orig_block_len = calc_stripe_length(type, em->len, 6924 map->num_stripes); 6925 for (i = 0; i < num_stripes; i++) { 6926 map->stripes[i].physical = 6927 btrfs_stripe_offset_nr(leaf, chunk, i); 6928 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6929 read_extent_buffer(leaf, uuid, (unsigned long) 6930 btrfs_stripe_dev_uuid_nr(chunk, i), 6931 BTRFS_UUID_SIZE); 6932 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6933 devid, uuid, NULL); 6934 if (!map->stripes[i].dev && 6935 !btrfs_test_opt(fs_info, DEGRADED)) { 6936 free_extent_map(em); 6937 btrfs_report_missing_device(fs_info, devid, uuid, true); 6938 return -ENOENT; 6939 } 6940 if (!map->stripes[i].dev) { 6941 map->stripes[i].dev = 6942 add_missing_dev(fs_info->fs_devices, devid, 6943 uuid); 6944 if (IS_ERR(map->stripes[i].dev)) { 6945 free_extent_map(em); 6946 btrfs_err(fs_info, 6947 "failed to init missing dev %llu: %ld", 6948 devid, PTR_ERR(map->stripes[i].dev)); 6949 return PTR_ERR(map->stripes[i].dev); 6950 } 6951 btrfs_report_missing_device(fs_info, devid, uuid, false); 6952 } 6953 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6954 &(map->stripes[i].dev->dev_state)); 6955 6956 } 6957 6958 write_lock(&map_tree->lock); 6959 ret = add_extent_mapping(map_tree, em, 0); 6960 write_unlock(&map_tree->lock); 6961 if (ret < 0) { 6962 btrfs_err(fs_info, 6963 "failed to add chunk map, start=%llu len=%llu: %d", 6964 em->start, em->len, ret); 6965 } 6966 free_extent_map(em); 6967 6968 return ret; 6969 } 6970 6971 static void fill_device_from_item(struct extent_buffer *leaf, 6972 struct btrfs_dev_item *dev_item, 6973 struct btrfs_device *device) 6974 { 6975 unsigned long ptr; 6976 6977 device->devid = btrfs_device_id(leaf, dev_item); 6978 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6979 device->total_bytes = device->disk_total_bytes; 6980 device->commit_total_bytes = device->disk_total_bytes; 6981 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6982 device->commit_bytes_used = device->bytes_used; 6983 device->type = btrfs_device_type(leaf, dev_item); 6984 device->io_align = btrfs_device_io_align(leaf, dev_item); 6985 device->io_width = btrfs_device_io_width(leaf, dev_item); 6986 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6987 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6988 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6989 6990 ptr = btrfs_device_uuid(dev_item); 6991 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6992 } 6993 6994 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6995 u8 *fsid) 6996 { 6997 struct btrfs_fs_devices *fs_devices; 6998 int ret; 6999 7000 lockdep_assert_held(&uuid_mutex); 7001 ASSERT(fsid); 7002 7003 /* This will match only for multi-device seed fs */ 7004 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7005 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7006 return fs_devices; 7007 7008 7009 fs_devices = find_fsid(fsid, NULL); 7010 if (!fs_devices) { 7011 if (!btrfs_test_opt(fs_info, DEGRADED)) 7012 return ERR_PTR(-ENOENT); 7013 7014 fs_devices = alloc_fs_devices(fsid, NULL); 7015 if (IS_ERR(fs_devices)) 7016 return fs_devices; 7017 7018 fs_devices->seeding = true; 7019 fs_devices->opened = 1; 7020 return fs_devices; 7021 } 7022 7023 /* 7024 * Upon first call for a seed fs fsid, just create a private copy of the 7025 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7026 */ 7027 fs_devices = clone_fs_devices(fs_devices); 7028 if (IS_ERR(fs_devices)) 7029 return fs_devices; 7030 7031 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 7032 if (ret) { 7033 free_fs_devices(fs_devices); 7034 return ERR_PTR(ret); 7035 } 7036 7037 if (!fs_devices->seeding) { 7038 close_fs_devices(fs_devices); 7039 free_fs_devices(fs_devices); 7040 return ERR_PTR(-EINVAL); 7041 } 7042 7043 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7044 7045 return fs_devices; 7046 } 7047 7048 static int read_one_dev(struct extent_buffer *leaf, 7049 struct btrfs_dev_item *dev_item) 7050 { 7051 struct btrfs_fs_info *fs_info = leaf->fs_info; 7052 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7053 struct btrfs_device *device; 7054 u64 devid; 7055 int ret; 7056 u8 fs_uuid[BTRFS_FSID_SIZE]; 7057 u8 dev_uuid[BTRFS_UUID_SIZE]; 7058 7059 devid = btrfs_device_id(leaf, dev_item); 7060 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7061 BTRFS_UUID_SIZE); 7062 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7063 BTRFS_FSID_SIZE); 7064 7065 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7066 fs_devices = open_seed_devices(fs_info, fs_uuid); 7067 if (IS_ERR(fs_devices)) 7068 return PTR_ERR(fs_devices); 7069 } 7070 7071 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 7072 fs_uuid); 7073 if (!device) { 7074 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7075 btrfs_report_missing_device(fs_info, devid, 7076 dev_uuid, true); 7077 return -ENOENT; 7078 } 7079 7080 device = add_missing_dev(fs_devices, devid, dev_uuid); 7081 if (IS_ERR(device)) { 7082 btrfs_err(fs_info, 7083 "failed to add missing dev %llu: %ld", 7084 devid, PTR_ERR(device)); 7085 return PTR_ERR(device); 7086 } 7087 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7088 } else { 7089 if (!device->bdev) { 7090 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7091 btrfs_report_missing_device(fs_info, 7092 devid, dev_uuid, true); 7093 return -ENOENT; 7094 } 7095 btrfs_report_missing_device(fs_info, devid, 7096 dev_uuid, false); 7097 } 7098 7099 if (!device->bdev && 7100 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7101 /* 7102 * this happens when a device that was properly setup 7103 * in the device info lists suddenly goes bad. 7104 * device->bdev is NULL, and so we have to set 7105 * device->missing to one here 7106 */ 7107 device->fs_devices->missing_devices++; 7108 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7109 } 7110 7111 /* Move the device to its own fs_devices */ 7112 if (device->fs_devices != fs_devices) { 7113 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7114 &device->dev_state)); 7115 7116 list_move(&device->dev_list, &fs_devices->devices); 7117 device->fs_devices->num_devices--; 7118 fs_devices->num_devices++; 7119 7120 device->fs_devices->missing_devices--; 7121 fs_devices->missing_devices++; 7122 7123 device->fs_devices = fs_devices; 7124 } 7125 } 7126 7127 if (device->fs_devices != fs_info->fs_devices) { 7128 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7129 if (device->generation != 7130 btrfs_device_generation(leaf, dev_item)) 7131 return -EINVAL; 7132 } 7133 7134 fill_device_from_item(leaf, dev_item, device); 7135 if (device->bdev) { 7136 u64 max_total_bytes = i_size_read(device->bdev->bd_inode); 7137 7138 if (device->total_bytes > max_total_bytes) { 7139 btrfs_err(fs_info, 7140 "device total_bytes should be at most %llu but found %llu", 7141 max_total_bytes, device->total_bytes); 7142 return -EINVAL; 7143 } 7144 } 7145 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7146 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7147 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7148 device->fs_devices->total_rw_bytes += device->total_bytes; 7149 atomic64_add(device->total_bytes - device->bytes_used, 7150 &fs_info->free_chunk_space); 7151 } 7152 ret = 0; 7153 return ret; 7154 } 7155 7156 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7157 { 7158 struct btrfs_root *root = fs_info->tree_root; 7159 struct btrfs_super_block *super_copy = fs_info->super_copy; 7160 struct extent_buffer *sb; 7161 struct btrfs_disk_key *disk_key; 7162 struct btrfs_chunk *chunk; 7163 u8 *array_ptr; 7164 unsigned long sb_array_offset; 7165 int ret = 0; 7166 u32 num_stripes; 7167 u32 array_size; 7168 u32 len = 0; 7169 u32 cur_offset; 7170 u64 type; 7171 struct btrfs_key key; 7172 7173 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7174 /* 7175 * This will create extent buffer of nodesize, superblock size is 7176 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 7177 * overallocate but we can keep it as-is, only the first page is used. 7178 */ 7179 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET, 7180 root->root_key.objectid, 0); 7181 if (IS_ERR(sb)) 7182 return PTR_ERR(sb); 7183 set_extent_buffer_uptodate(sb); 7184 /* 7185 * The sb extent buffer is artificial and just used to read the system array. 7186 * set_extent_buffer_uptodate() call does not properly mark all it's 7187 * pages up-to-date when the page is larger: extent does not cover the 7188 * whole page and consequently check_page_uptodate does not find all 7189 * the page's extents up-to-date (the hole beyond sb), 7190 * write_extent_buffer then triggers a WARN_ON. 7191 * 7192 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7193 * but sb spans only this function. Add an explicit SetPageUptodate call 7194 * to silence the warning eg. on PowerPC 64. 7195 */ 7196 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7197 SetPageUptodate(sb->pages[0]); 7198 7199 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7200 array_size = btrfs_super_sys_array_size(super_copy); 7201 7202 array_ptr = super_copy->sys_chunk_array; 7203 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7204 cur_offset = 0; 7205 7206 while (cur_offset < array_size) { 7207 disk_key = (struct btrfs_disk_key *)array_ptr; 7208 len = sizeof(*disk_key); 7209 if (cur_offset + len > array_size) 7210 goto out_short_read; 7211 7212 btrfs_disk_key_to_cpu(&key, disk_key); 7213 7214 array_ptr += len; 7215 sb_array_offset += len; 7216 cur_offset += len; 7217 7218 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7219 btrfs_err(fs_info, 7220 "unexpected item type %u in sys_array at offset %u", 7221 (u32)key.type, cur_offset); 7222 ret = -EIO; 7223 break; 7224 } 7225 7226 chunk = (struct btrfs_chunk *)sb_array_offset; 7227 /* 7228 * At least one btrfs_chunk with one stripe must be present, 7229 * exact stripe count check comes afterwards 7230 */ 7231 len = btrfs_chunk_item_size(1); 7232 if (cur_offset + len > array_size) 7233 goto out_short_read; 7234 7235 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7236 if (!num_stripes) { 7237 btrfs_err(fs_info, 7238 "invalid number of stripes %u in sys_array at offset %u", 7239 num_stripes, cur_offset); 7240 ret = -EIO; 7241 break; 7242 } 7243 7244 type = btrfs_chunk_type(sb, chunk); 7245 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7246 btrfs_err(fs_info, 7247 "invalid chunk type %llu in sys_array at offset %u", 7248 type, cur_offset); 7249 ret = -EIO; 7250 break; 7251 } 7252 7253 len = btrfs_chunk_item_size(num_stripes); 7254 if (cur_offset + len > array_size) 7255 goto out_short_read; 7256 7257 ret = read_one_chunk(&key, sb, chunk); 7258 if (ret) 7259 break; 7260 7261 array_ptr += len; 7262 sb_array_offset += len; 7263 cur_offset += len; 7264 } 7265 clear_extent_buffer_uptodate(sb); 7266 free_extent_buffer_stale(sb); 7267 return ret; 7268 7269 out_short_read: 7270 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7271 len, cur_offset); 7272 clear_extent_buffer_uptodate(sb); 7273 free_extent_buffer_stale(sb); 7274 return -EIO; 7275 } 7276 7277 /* 7278 * Check if all chunks in the fs are OK for read-write degraded mount 7279 * 7280 * If the @failing_dev is specified, it's accounted as missing. 7281 * 7282 * Return true if all chunks meet the minimal RW mount requirements. 7283 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7284 */ 7285 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7286 struct btrfs_device *failing_dev) 7287 { 7288 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7289 struct extent_map *em; 7290 u64 next_start = 0; 7291 bool ret = true; 7292 7293 read_lock(&map_tree->lock); 7294 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7295 read_unlock(&map_tree->lock); 7296 /* No chunk at all? Return false anyway */ 7297 if (!em) { 7298 ret = false; 7299 goto out; 7300 } 7301 while (em) { 7302 struct map_lookup *map; 7303 int missing = 0; 7304 int max_tolerated; 7305 int i; 7306 7307 map = em->map_lookup; 7308 max_tolerated = 7309 btrfs_get_num_tolerated_disk_barrier_failures( 7310 map->type); 7311 for (i = 0; i < map->num_stripes; i++) { 7312 struct btrfs_device *dev = map->stripes[i].dev; 7313 7314 if (!dev || !dev->bdev || 7315 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7316 dev->last_flush_error) 7317 missing++; 7318 else if (failing_dev && failing_dev == dev) 7319 missing++; 7320 } 7321 if (missing > max_tolerated) { 7322 if (!failing_dev) 7323 btrfs_warn(fs_info, 7324 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7325 em->start, missing, max_tolerated); 7326 free_extent_map(em); 7327 ret = false; 7328 goto out; 7329 } 7330 next_start = extent_map_end(em); 7331 free_extent_map(em); 7332 7333 read_lock(&map_tree->lock); 7334 em = lookup_extent_mapping(map_tree, next_start, 7335 (u64)(-1) - next_start); 7336 read_unlock(&map_tree->lock); 7337 } 7338 out: 7339 return ret; 7340 } 7341 7342 static void readahead_tree_node_children(struct extent_buffer *node) 7343 { 7344 int i; 7345 const int nr_items = btrfs_header_nritems(node); 7346 7347 for (i = 0; i < nr_items; i++) 7348 btrfs_readahead_node_child(node, i); 7349 } 7350 7351 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7352 { 7353 struct btrfs_root *root = fs_info->chunk_root; 7354 struct btrfs_path *path; 7355 struct extent_buffer *leaf; 7356 struct btrfs_key key; 7357 struct btrfs_key found_key; 7358 int ret; 7359 int slot; 7360 u64 total_dev = 0; 7361 u64 last_ra_node = 0; 7362 7363 path = btrfs_alloc_path(); 7364 if (!path) 7365 return -ENOMEM; 7366 7367 /* 7368 * uuid_mutex is needed only if we are mounting a sprout FS 7369 * otherwise we don't need it. 7370 */ 7371 mutex_lock(&uuid_mutex); 7372 7373 /* 7374 * It is possible for mount and umount to race in such a way that 7375 * we execute this code path, but open_fs_devices failed to clear 7376 * total_rw_bytes. We certainly want it cleared before reading the 7377 * device items, so clear it here. 7378 */ 7379 fs_info->fs_devices->total_rw_bytes = 0; 7380 7381 /* 7382 * Read all device items, and then all the chunk items. All 7383 * device items are found before any chunk item (their object id 7384 * is smaller than the lowest possible object id for a chunk 7385 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7386 */ 7387 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7388 key.offset = 0; 7389 key.type = 0; 7390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7391 if (ret < 0) 7392 goto error; 7393 while (1) { 7394 struct extent_buffer *node; 7395 7396 leaf = path->nodes[0]; 7397 slot = path->slots[0]; 7398 if (slot >= btrfs_header_nritems(leaf)) { 7399 ret = btrfs_next_leaf(root, path); 7400 if (ret == 0) 7401 continue; 7402 if (ret < 0) 7403 goto error; 7404 break; 7405 } 7406 /* 7407 * The nodes on level 1 are not locked but we don't need to do 7408 * that during mount time as nothing else can access the tree 7409 */ 7410 node = path->nodes[1]; 7411 if (node) { 7412 if (last_ra_node != node->start) { 7413 readahead_tree_node_children(node); 7414 last_ra_node = node->start; 7415 } 7416 } 7417 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7418 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7419 struct btrfs_dev_item *dev_item; 7420 dev_item = btrfs_item_ptr(leaf, slot, 7421 struct btrfs_dev_item); 7422 ret = read_one_dev(leaf, dev_item); 7423 if (ret) 7424 goto error; 7425 total_dev++; 7426 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7427 struct btrfs_chunk *chunk; 7428 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7429 mutex_lock(&fs_info->chunk_mutex); 7430 ret = read_one_chunk(&found_key, leaf, chunk); 7431 mutex_unlock(&fs_info->chunk_mutex); 7432 if (ret) 7433 goto error; 7434 } 7435 path->slots[0]++; 7436 } 7437 7438 /* 7439 * After loading chunk tree, we've got all device information, 7440 * do another round of validation checks. 7441 */ 7442 if (total_dev != fs_info->fs_devices->total_devices) { 7443 btrfs_err(fs_info, 7444 "super_num_devices %llu mismatch with num_devices %llu found here", 7445 btrfs_super_num_devices(fs_info->super_copy), 7446 total_dev); 7447 ret = -EINVAL; 7448 goto error; 7449 } 7450 if (btrfs_super_total_bytes(fs_info->super_copy) < 7451 fs_info->fs_devices->total_rw_bytes) { 7452 btrfs_err(fs_info, 7453 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7454 btrfs_super_total_bytes(fs_info->super_copy), 7455 fs_info->fs_devices->total_rw_bytes); 7456 ret = -EINVAL; 7457 goto error; 7458 } 7459 ret = 0; 7460 error: 7461 mutex_unlock(&uuid_mutex); 7462 7463 btrfs_free_path(path); 7464 return ret; 7465 } 7466 7467 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7468 { 7469 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7470 struct btrfs_device *device; 7471 7472 fs_devices->fs_info = fs_info; 7473 7474 mutex_lock(&fs_devices->device_list_mutex); 7475 list_for_each_entry(device, &fs_devices->devices, dev_list) 7476 device->fs_info = fs_info; 7477 7478 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7479 list_for_each_entry(device, &seed_devs->devices, dev_list) 7480 device->fs_info = fs_info; 7481 7482 seed_devs->fs_info = fs_info; 7483 } 7484 mutex_unlock(&fs_devices->device_list_mutex); 7485 } 7486 7487 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7488 const struct btrfs_dev_stats_item *ptr, 7489 int index) 7490 { 7491 u64 val; 7492 7493 read_extent_buffer(eb, &val, 7494 offsetof(struct btrfs_dev_stats_item, values) + 7495 ((unsigned long)ptr) + (index * sizeof(u64)), 7496 sizeof(val)); 7497 return val; 7498 } 7499 7500 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7501 struct btrfs_dev_stats_item *ptr, 7502 int index, u64 val) 7503 { 7504 write_extent_buffer(eb, &val, 7505 offsetof(struct btrfs_dev_stats_item, values) + 7506 ((unsigned long)ptr) + (index * sizeof(u64)), 7507 sizeof(val)); 7508 } 7509 7510 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7511 struct btrfs_path *path) 7512 { 7513 struct btrfs_dev_stats_item *ptr; 7514 struct extent_buffer *eb; 7515 struct btrfs_key key; 7516 int item_size; 7517 int i, ret, slot; 7518 7519 if (!device->fs_info->dev_root) 7520 return 0; 7521 7522 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7523 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7524 key.offset = device->devid; 7525 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7526 if (ret) { 7527 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7528 btrfs_dev_stat_set(device, i, 0); 7529 device->dev_stats_valid = 1; 7530 btrfs_release_path(path); 7531 return ret < 0 ? ret : 0; 7532 } 7533 slot = path->slots[0]; 7534 eb = path->nodes[0]; 7535 item_size = btrfs_item_size_nr(eb, slot); 7536 7537 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7538 7539 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7540 if (item_size >= (1 + i) * sizeof(__le64)) 7541 btrfs_dev_stat_set(device, i, 7542 btrfs_dev_stats_value(eb, ptr, i)); 7543 else 7544 btrfs_dev_stat_set(device, i, 0); 7545 } 7546 7547 device->dev_stats_valid = 1; 7548 btrfs_dev_stat_print_on_load(device); 7549 btrfs_release_path(path); 7550 7551 return 0; 7552 } 7553 7554 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7555 { 7556 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7557 struct btrfs_device *device; 7558 struct btrfs_path *path = NULL; 7559 int ret = 0; 7560 7561 path = btrfs_alloc_path(); 7562 if (!path) 7563 return -ENOMEM; 7564 7565 mutex_lock(&fs_devices->device_list_mutex); 7566 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7567 ret = btrfs_device_init_dev_stats(device, path); 7568 if (ret) 7569 goto out; 7570 } 7571 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7572 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7573 ret = btrfs_device_init_dev_stats(device, path); 7574 if (ret) 7575 goto out; 7576 } 7577 } 7578 out: 7579 mutex_unlock(&fs_devices->device_list_mutex); 7580 7581 btrfs_free_path(path); 7582 return ret; 7583 } 7584 7585 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7586 struct btrfs_device *device) 7587 { 7588 struct btrfs_fs_info *fs_info = trans->fs_info; 7589 struct btrfs_root *dev_root = fs_info->dev_root; 7590 struct btrfs_path *path; 7591 struct btrfs_key key; 7592 struct extent_buffer *eb; 7593 struct btrfs_dev_stats_item *ptr; 7594 int ret; 7595 int i; 7596 7597 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7598 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7599 key.offset = device->devid; 7600 7601 path = btrfs_alloc_path(); 7602 if (!path) 7603 return -ENOMEM; 7604 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7605 if (ret < 0) { 7606 btrfs_warn_in_rcu(fs_info, 7607 "error %d while searching for dev_stats item for device %s", 7608 ret, rcu_str_deref(device->name)); 7609 goto out; 7610 } 7611 7612 if (ret == 0 && 7613 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7614 /* need to delete old one and insert a new one */ 7615 ret = btrfs_del_item(trans, dev_root, path); 7616 if (ret != 0) { 7617 btrfs_warn_in_rcu(fs_info, 7618 "delete too small dev_stats item for device %s failed %d", 7619 rcu_str_deref(device->name), ret); 7620 goto out; 7621 } 7622 ret = 1; 7623 } 7624 7625 if (ret == 1) { 7626 /* need to insert a new item */ 7627 btrfs_release_path(path); 7628 ret = btrfs_insert_empty_item(trans, dev_root, path, 7629 &key, sizeof(*ptr)); 7630 if (ret < 0) { 7631 btrfs_warn_in_rcu(fs_info, 7632 "insert dev_stats item for device %s failed %d", 7633 rcu_str_deref(device->name), ret); 7634 goto out; 7635 } 7636 } 7637 7638 eb = path->nodes[0]; 7639 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7640 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7641 btrfs_set_dev_stats_value(eb, ptr, i, 7642 btrfs_dev_stat_read(device, i)); 7643 btrfs_mark_buffer_dirty(eb); 7644 7645 out: 7646 btrfs_free_path(path); 7647 return ret; 7648 } 7649 7650 /* 7651 * called from commit_transaction. Writes all changed device stats to disk. 7652 */ 7653 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7654 { 7655 struct btrfs_fs_info *fs_info = trans->fs_info; 7656 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7657 struct btrfs_device *device; 7658 int stats_cnt; 7659 int ret = 0; 7660 7661 mutex_lock(&fs_devices->device_list_mutex); 7662 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7663 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7664 if (!device->dev_stats_valid || stats_cnt == 0) 7665 continue; 7666 7667 7668 /* 7669 * There is a LOAD-LOAD control dependency between the value of 7670 * dev_stats_ccnt and updating the on-disk values which requires 7671 * reading the in-memory counters. Such control dependencies 7672 * require explicit read memory barriers. 7673 * 7674 * This memory barriers pairs with smp_mb__before_atomic in 7675 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7676 * barrier implied by atomic_xchg in 7677 * btrfs_dev_stats_read_and_reset 7678 */ 7679 smp_rmb(); 7680 7681 ret = update_dev_stat_item(trans, device); 7682 if (!ret) 7683 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7684 } 7685 mutex_unlock(&fs_devices->device_list_mutex); 7686 7687 return ret; 7688 } 7689 7690 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7691 { 7692 btrfs_dev_stat_inc(dev, index); 7693 btrfs_dev_stat_print_on_error(dev); 7694 } 7695 7696 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7697 { 7698 if (!dev->dev_stats_valid) 7699 return; 7700 btrfs_err_rl_in_rcu(dev->fs_info, 7701 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7702 rcu_str_deref(dev->name), 7703 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7704 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7705 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7706 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7707 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7708 } 7709 7710 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7711 { 7712 int i; 7713 7714 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7715 if (btrfs_dev_stat_read(dev, i) != 0) 7716 break; 7717 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7718 return; /* all values == 0, suppress message */ 7719 7720 btrfs_info_in_rcu(dev->fs_info, 7721 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7722 rcu_str_deref(dev->name), 7723 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7724 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7725 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7726 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7727 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7728 } 7729 7730 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7731 struct btrfs_ioctl_get_dev_stats *stats) 7732 { 7733 struct btrfs_device *dev; 7734 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7735 int i; 7736 7737 mutex_lock(&fs_devices->device_list_mutex); 7738 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL); 7739 mutex_unlock(&fs_devices->device_list_mutex); 7740 7741 if (!dev) { 7742 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7743 return -ENODEV; 7744 } else if (!dev->dev_stats_valid) { 7745 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7746 return -ENODEV; 7747 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7748 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7749 if (stats->nr_items > i) 7750 stats->values[i] = 7751 btrfs_dev_stat_read_and_reset(dev, i); 7752 else 7753 btrfs_dev_stat_set(dev, i, 0); 7754 } 7755 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7756 current->comm, task_pid_nr(current)); 7757 } else { 7758 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7759 if (stats->nr_items > i) 7760 stats->values[i] = btrfs_dev_stat_read(dev, i); 7761 } 7762 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7763 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7764 return 0; 7765 } 7766 7767 /* 7768 * Update the size and bytes used for each device where it changed. This is 7769 * delayed since we would otherwise get errors while writing out the 7770 * superblocks. 7771 * 7772 * Must be invoked during transaction commit. 7773 */ 7774 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7775 { 7776 struct btrfs_device *curr, *next; 7777 7778 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7779 7780 if (list_empty(&trans->dev_update_list)) 7781 return; 7782 7783 /* 7784 * We don't need the device_list_mutex here. This list is owned by the 7785 * transaction and the transaction must complete before the device is 7786 * released. 7787 */ 7788 mutex_lock(&trans->fs_info->chunk_mutex); 7789 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7790 post_commit_list) { 7791 list_del_init(&curr->post_commit_list); 7792 curr->commit_total_bytes = curr->disk_total_bytes; 7793 curr->commit_bytes_used = curr->bytes_used; 7794 } 7795 mutex_unlock(&trans->fs_info->chunk_mutex); 7796 } 7797 7798 /* 7799 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7800 */ 7801 int btrfs_bg_type_to_factor(u64 flags) 7802 { 7803 const int index = btrfs_bg_flags_to_raid_index(flags); 7804 7805 return btrfs_raid_array[index].ncopies; 7806 } 7807 7808 7809 7810 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7811 u64 chunk_offset, u64 devid, 7812 u64 physical_offset, u64 physical_len) 7813 { 7814 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7815 struct extent_map *em; 7816 struct map_lookup *map; 7817 struct btrfs_device *dev; 7818 u64 stripe_len; 7819 bool found = false; 7820 int ret = 0; 7821 int i; 7822 7823 read_lock(&em_tree->lock); 7824 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7825 read_unlock(&em_tree->lock); 7826 7827 if (!em) { 7828 btrfs_err(fs_info, 7829 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7830 physical_offset, devid); 7831 ret = -EUCLEAN; 7832 goto out; 7833 } 7834 7835 map = em->map_lookup; 7836 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7837 if (physical_len != stripe_len) { 7838 btrfs_err(fs_info, 7839 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7840 physical_offset, devid, em->start, physical_len, 7841 stripe_len); 7842 ret = -EUCLEAN; 7843 goto out; 7844 } 7845 7846 for (i = 0; i < map->num_stripes; i++) { 7847 if (map->stripes[i].dev->devid == devid && 7848 map->stripes[i].physical == physical_offset) { 7849 found = true; 7850 if (map->verified_stripes >= map->num_stripes) { 7851 btrfs_err(fs_info, 7852 "too many dev extents for chunk %llu found", 7853 em->start); 7854 ret = -EUCLEAN; 7855 goto out; 7856 } 7857 map->verified_stripes++; 7858 break; 7859 } 7860 } 7861 if (!found) { 7862 btrfs_err(fs_info, 7863 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7864 physical_offset, devid); 7865 ret = -EUCLEAN; 7866 } 7867 7868 /* Make sure no dev extent is beyond device bondary */ 7869 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 7870 if (!dev) { 7871 btrfs_err(fs_info, "failed to find devid %llu", devid); 7872 ret = -EUCLEAN; 7873 goto out; 7874 } 7875 7876 if (physical_offset + physical_len > dev->disk_total_bytes) { 7877 btrfs_err(fs_info, 7878 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7879 devid, physical_offset, physical_len, 7880 dev->disk_total_bytes); 7881 ret = -EUCLEAN; 7882 goto out; 7883 } 7884 7885 if (dev->zone_info) { 7886 u64 zone_size = dev->zone_info->zone_size; 7887 7888 if (!IS_ALIGNED(physical_offset, zone_size) || 7889 !IS_ALIGNED(physical_len, zone_size)) { 7890 btrfs_err(fs_info, 7891 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7892 devid, physical_offset, physical_len); 7893 ret = -EUCLEAN; 7894 goto out; 7895 } 7896 } 7897 7898 out: 7899 free_extent_map(em); 7900 return ret; 7901 } 7902 7903 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7904 { 7905 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7906 struct extent_map *em; 7907 struct rb_node *node; 7908 int ret = 0; 7909 7910 read_lock(&em_tree->lock); 7911 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7912 em = rb_entry(node, struct extent_map, rb_node); 7913 if (em->map_lookup->num_stripes != 7914 em->map_lookup->verified_stripes) { 7915 btrfs_err(fs_info, 7916 "chunk %llu has missing dev extent, have %d expect %d", 7917 em->start, em->map_lookup->verified_stripes, 7918 em->map_lookup->num_stripes); 7919 ret = -EUCLEAN; 7920 goto out; 7921 } 7922 } 7923 out: 7924 read_unlock(&em_tree->lock); 7925 return ret; 7926 } 7927 7928 /* 7929 * Ensure that all dev extents are mapped to correct chunk, otherwise 7930 * later chunk allocation/free would cause unexpected behavior. 7931 * 7932 * NOTE: This will iterate through the whole device tree, which should be of 7933 * the same size level as the chunk tree. This slightly increases mount time. 7934 */ 7935 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7936 { 7937 struct btrfs_path *path; 7938 struct btrfs_root *root = fs_info->dev_root; 7939 struct btrfs_key key; 7940 u64 prev_devid = 0; 7941 u64 prev_dev_ext_end = 0; 7942 int ret = 0; 7943 7944 /* 7945 * We don't have a dev_root because we mounted with ignorebadroots and 7946 * failed to load the root, so we want to skip the verification in this 7947 * case for sure. 7948 * 7949 * However if the dev root is fine, but the tree itself is corrupted 7950 * we'd still fail to mount. This verification is only to make sure 7951 * writes can happen safely, so instead just bypass this check 7952 * completely in the case of IGNOREBADROOTS. 7953 */ 7954 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7955 return 0; 7956 7957 key.objectid = 1; 7958 key.type = BTRFS_DEV_EXTENT_KEY; 7959 key.offset = 0; 7960 7961 path = btrfs_alloc_path(); 7962 if (!path) 7963 return -ENOMEM; 7964 7965 path->reada = READA_FORWARD; 7966 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7967 if (ret < 0) 7968 goto out; 7969 7970 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7971 ret = btrfs_next_item(root, path); 7972 if (ret < 0) 7973 goto out; 7974 /* No dev extents at all? Not good */ 7975 if (ret > 0) { 7976 ret = -EUCLEAN; 7977 goto out; 7978 } 7979 } 7980 while (1) { 7981 struct extent_buffer *leaf = path->nodes[0]; 7982 struct btrfs_dev_extent *dext; 7983 int slot = path->slots[0]; 7984 u64 chunk_offset; 7985 u64 physical_offset; 7986 u64 physical_len; 7987 u64 devid; 7988 7989 btrfs_item_key_to_cpu(leaf, &key, slot); 7990 if (key.type != BTRFS_DEV_EXTENT_KEY) 7991 break; 7992 devid = key.objectid; 7993 physical_offset = key.offset; 7994 7995 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7996 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7997 physical_len = btrfs_dev_extent_length(leaf, dext); 7998 7999 /* Check if this dev extent overlaps with the previous one */ 8000 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8001 btrfs_err(fs_info, 8002 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8003 devid, physical_offset, prev_dev_ext_end); 8004 ret = -EUCLEAN; 8005 goto out; 8006 } 8007 8008 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8009 physical_offset, physical_len); 8010 if (ret < 0) 8011 goto out; 8012 prev_devid = devid; 8013 prev_dev_ext_end = physical_offset + physical_len; 8014 8015 ret = btrfs_next_item(root, path); 8016 if (ret < 0) 8017 goto out; 8018 if (ret > 0) { 8019 ret = 0; 8020 break; 8021 } 8022 } 8023 8024 /* Ensure all chunks have corresponding dev extents */ 8025 ret = verify_chunk_dev_extent_mapping(fs_info); 8026 out: 8027 btrfs_free_path(path); 8028 return ret; 8029 } 8030 8031 /* 8032 * Check whether the given block group or device is pinned by any inode being 8033 * used as a swapfile. 8034 */ 8035 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8036 { 8037 struct btrfs_swapfile_pin *sp; 8038 struct rb_node *node; 8039 8040 spin_lock(&fs_info->swapfile_pins_lock); 8041 node = fs_info->swapfile_pins.rb_node; 8042 while (node) { 8043 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8044 if (ptr < sp->ptr) 8045 node = node->rb_left; 8046 else if (ptr > sp->ptr) 8047 node = node->rb_right; 8048 else 8049 break; 8050 } 8051 spin_unlock(&fs_info->swapfile_pins_lock); 8052 return node != NULL; 8053 } 8054 8055 static int relocating_repair_kthread(void *data) 8056 { 8057 struct btrfs_block_group *cache = (struct btrfs_block_group *)data; 8058 struct btrfs_fs_info *fs_info = cache->fs_info; 8059 u64 target; 8060 int ret = 0; 8061 8062 target = cache->start; 8063 btrfs_put_block_group(cache); 8064 8065 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8066 btrfs_info(fs_info, 8067 "zoned: skip relocating block group %llu to repair: EBUSY", 8068 target); 8069 return -EBUSY; 8070 } 8071 8072 mutex_lock(&fs_info->reclaim_bgs_lock); 8073 8074 /* Ensure block group still exists */ 8075 cache = btrfs_lookup_block_group(fs_info, target); 8076 if (!cache) 8077 goto out; 8078 8079 if (!cache->relocating_repair) 8080 goto out; 8081 8082 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8083 if (ret < 0) 8084 goto out; 8085 8086 btrfs_info(fs_info, 8087 "zoned: relocating block group %llu to repair IO failure", 8088 target); 8089 ret = btrfs_relocate_chunk(fs_info, target); 8090 8091 out: 8092 if (cache) 8093 btrfs_put_block_group(cache); 8094 mutex_unlock(&fs_info->reclaim_bgs_lock); 8095 btrfs_exclop_finish(fs_info); 8096 8097 return ret; 8098 } 8099 8100 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8101 { 8102 struct btrfs_block_group *cache; 8103 8104 /* Do not attempt to repair in degraded state */ 8105 if (btrfs_test_opt(fs_info, DEGRADED)) 8106 return 0; 8107 8108 cache = btrfs_lookup_block_group(fs_info, logical); 8109 if (!cache) 8110 return 0; 8111 8112 spin_lock(&cache->lock); 8113 if (cache->relocating_repair) { 8114 spin_unlock(&cache->lock); 8115 btrfs_put_block_group(cache); 8116 return 0; 8117 } 8118 cache->relocating_repair = 1; 8119 spin_unlock(&cache->lock); 8120 8121 kthread_run(relocating_repair_kthread, cache, 8122 "btrfs-relocating-repair"); 8123 8124 return 0; 8125 } 8126