xref: /openbmc/linux/fs/btrfs/volumes.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 	[BTRFS_RAID_RAID10] = {
37 		.sub_stripes	= 2,
38 		.dev_stripes	= 1,
39 		.devs_max	= 0,	/* 0 == as many as possible */
40 		.devs_min	= 4,
41 		.tolerated_failures = 1,
42 		.devs_increment	= 2,
43 		.ncopies	= 2,
44 		.nparity        = 0,
45 		.raid_name	= "raid10",
46 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 	},
49 	[BTRFS_RAID_RAID1] = {
50 		.sub_stripes	= 1,
51 		.dev_stripes	= 1,
52 		.devs_max	= 2,
53 		.devs_min	= 2,
54 		.tolerated_failures = 1,
55 		.devs_increment	= 2,
56 		.ncopies	= 2,
57 		.nparity        = 0,
58 		.raid_name	= "raid1",
59 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 	},
62 	[BTRFS_RAID_RAID1C3] = {
63 		.sub_stripes	= 1,
64 		.dev_stripes	= 1,
65 		.devs_max	= 3,
66 		.devs_min	= 3,
67 		.tolerated_failures = 2,
68 		.devs_increment	= 3,
69 		.ncopies	= 3,
70 		.nparity        = 0,
71 		.raid_name	= "raid1c3",
72 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
73 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 	},
75 	[BTRFS_RAID_RAID1C4] = {
76 		.sub_stripes	= 1,
77 		.dev_stripes	= 1,
78 		.devs_max	= 4,
79 		.devs_min	= 4,
80 		.tolerated_failures = 3,
81 		.devs_increment	= 4,
82 		.ncopies	= 4,
83 		.nparity        = 0,
84 		.raid_name	= "raid1c4",
85 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
86 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 	},
88 	[BTRFS_RAID_DUP] = {
89 		.sub_stripes	= 1,
90 		.dev_stripes	= 2,
91 		.devs_max	= 1,
92 		.devs_min	= 1,
93 		.tolerated_failures = 0,
94 		.devs_increment	= 1,
95 		.ncopies	= 2,
96 		.nparity        = 0,
97 		.raid_name	= "dup",
98 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99 		.mindev_error	= 0,
100 	},
101 	[BTRFS_RAID_RAID0] = {
102 		.sub_stripes	= 1,
103 		.dev_stripes	= 1,
104 		.devs_max	= 0,
105 		.devs_min	= 2,
106 		.tolerated_failures = 0,
107 		.devs_increment	= 1,
108 		.ncopies	= 1,
109 		.nparity        = 0,
110 		.raid_name	= "raid0",
111 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112 		.mindev_error	= 0,
113 	},
114 	[BTRFS_RAID_SINGLE] = {
115 		.sub_stripes	= 1,
116 		.dev_stripes	= 1,
117 		.devs_max	= 1,
118 		.devs_min	= 1,
119 		.tolerated_failures = 0,
120 		.devs_increment	= 1,
121 		.ncopies	= 1,
122 		.nparity        = 0,
123 		.raid_name	= "single",
124 		.bg_flag	= 0,
125 		.mindev_error	= 0,
126 	},
127 	[BTRFS_RAID_RAID5] = {
128 		.sub_stripes	= 1,
129 		.dev_stripes	= 1,
130 		.devs_max	= 0,
131 		.devs_min	= 2,
132 		.tolerated_failures = 1,
133 		.devs_increment	= 1,
134 		.ncopies	= 1,
135 		.nparity        = 1,
136 		.raid_name	= "raid5",
137 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 	},
140 	[BTRFS_RAID_RAID6] = {
141 		.sub_stripes	= 1,
142 		.dev_stripes	= 1,
143 		.devs_max	= 0,
144 		.devs_min	= 3,
145 		.tolerated_failures = 2,
146 		.devs_increment	= 1,
147 		.ncopies	= 1,
148 		.nparity        = 2,
149 		.raid_name	= "raid6",
150 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152 	},
153 };
154 
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157 	const int index = btrfs_bg_flags_to_raid_index(flags);
158 
159 	if (index >= BTRFS_NR_RAID_TYPES)
160 		return NULL;
161 
162 	return btrfs_raid_array[index].raid_name;
163 }
164 
165 /*
166  * Fill @buf with textual description of @bg_flags, no more than @size_buf
167  * bytes including terminating null byte.
168  */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171 	int i;
172 	int ret;
173 	char *bp = buf;
174 	u64 flags = bg_flags;
175 	u32 size_bp = size_buf;
176 
177 	if (!flags) {
178 		strcpy(bp, "NONE");
179 		return;
180 	}
181 
182 #define DESCRIBE_FLAG(flag, desc)						\
183 	do {								\
184 		if (flags & (flag)) {					\
185 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
186 			if (ret < 0 || ret >= size_bp)			\
187 				goto out_overflow;			\
188 			size_bp -= ret;					\
189 			bp += ret;					\
190 			flags &= ~(flag);				\
191 		}							\
192 	} while (0)
193 
194 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197 
198 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 			      btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203 
204 	if (flags) {
205 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 		size_bp -= ret;
207 	}
208 
209 	if (size_bp < size_buf)
210 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211 
212 	/*
213 	 * The text is trimmed, it's up to the caller to provide sufficiently
214 	 * large buffer
215 	 */
216 out_overflow:;
217 }
218 
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 			     enum btrfs_map_op op,
225 			     u64 logical, u64 *length,
226 			     struct btrfs_bio **bbio_ret,
227 			     int mirror_num, int need_raid_map);
228 
229 /*
230  * Device locking
231  * ==============
232  *
233  * There are several mutexes that protect manipulation of devices and low-level
234  * structures like chunks but not block groups, extents or files
235  *
236  * uuid_mutex (global lock)
237  * ------------------------
238  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240  * device) or requested by the device= mount option
241  *
242  * the mutex can be very coarse and can cover long-running operations
243  *
244  * protects: updates to fs_devices counters like missing devices, rw devices,
245  * seeding, structure cloning, opening/closing devices at mount/umount time
246  *
247  * global::fs_devs - add, remove, updates to the global list
248  *
249  * does not protect: manipulation of the fs_devices::devices list!
250  *
251  * btrfs_device::name - renames (write side), read is RCU
252  *
253  * fs_devices::device_list_mutex (per-fs, with RCU)
254  * ------------------------------------------------
255  * protects updates to fs_devices::devices, ie. adding and deleting
256  *
257  * simple list traversal with read-only actions can be done with RCU protection
258  *
259  * may be used to exclude some operations from running concurrently without any
260  * modifications to the list (see write_all_supers)
261  *
262  * balance_mutex
263  * -------------
264  * protects balance structures (status, state) and context accessed from
265  * several places (internally, ioctl)
266  *
267  * chunk_mutex
268  * -----------
269  * protects chunks, adding or removing during allocation, trim or when a new
270  * device is added/removed. Additionally it also protects post_commit_list of
271  * individual devices, since they can be added to the transaction's
272  * post_commit_list only with chunk_mutex held.
273  *
274  * cleaner_mutex
275  * -------------
276  * a big lock that is held by the cleaner thread and prevents running subvolume
277  * cleaning together with relocation or delayed iputs
278  *
279  *
280  * Lock nesting
281  * ============
282  *
283  * uuid_mutex
284  *   volume_mutex
285  *     device_list_mutex
286  *       chunk_mutex
287  *     balance_mutex
288  *
289  *
290  * Exclusive operations, BTRFS_FS_EXCL_OP
291  * ======================================
292  *
293  * Maintains the exclusivity of the following operations that apply to the
294  * whole filesystem and cannot run in parallel.
295  *
296  * - Balance (*)
297  * - Device add
298  * - Device remove
299  * - Device replace (*)
300  * - Resize
301  *
302  * The device operations (as above) can be in one of the following states:
303  *
304  * - Running state
305  * - Paused state
306  * - Completed state
307  *
308  * Only device operations marked with (*) can go into the Paused state for the
309  * following reasons:
310  *
311  * - ioctl (only Balance can be Paused through ioctl)
312  * - filesystem remounted as read-only
313  * - filesystem unmounted and mounted as read-only
314  * - system power-cycle and filesystem mounted as read-only
315  * - filesystem or device errors leading to forced read-only
316  *
317  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
318  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
319  * A device operation in Paused or Running state can be canceled or resumed
320  * either by ioctl (Balance only) or when remounted as read-write.
321  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
322  * completed.
323  */
324 
325 DEFINE_MUTEX(uuid_mutex);
326 static LIST_HEAD(fs_uuids);
327 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
328 {
329 	return &fs_uuids;
330 }
331 
332 /*
333  * alloc_fs_devices - allocate struct btrfs_fs_devices
334  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
335  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
336  *
337  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
338  * The returned struct is not linked onto any lists and can be destroyed with
339  * kfree() right away.
340  */
341 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
342 						 const u8 *metadata_fsid)
343 {
344 	struct btrfs_fs_devices *fs_devs;
345 
346 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
347 	if (!fs_devs)
348 		return ERR_PTR(-ENOMEM);
349 
350 	mutex_init(&fs_devs->device_list_mutex);
351 
352 	INIT_LIST_HEAD(&fs_devs->devices);
353 	INIT_LIST_HEAD(&fs_devs->alloc_list);
354 	INIT_LIST_HEAD(&fs_devs->fs_list);
355 	if (fsid)
356 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
357 
358 	if (metadata_fsid)
359 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
360 	else if (fsid)
361 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
362 
363 	return fs_devs;
364 }
365 
366 void btrfs_free_device(struct btrfs_device *device)
367 {
368 	WARN_ON(!list_empty(&device->post_commit_list));
369 	rcu_string_free(device->name);
370 	extent_io_tree_release(&device->alloc_state);
371 	bio_put(device->flush_bio);
372 	kfree(device);
373 }
374 
375 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
376 {
377 	struct btrfs_device *device;
378 	WARN_ON(fs_devices->opened);
379 	while (!list_empty(&fs_devices->devices)) {
380 		device = list_entry(fs_devices->devices.next,
381 				    struct btrfs_device, dev_list);
382 		list_del(&device->dev_list);
383 		btrfs_free_device(device);
384 	}
385 	kfree(fs_devices);
386 }
387 
388 void __exit btrfs_cleanup_fs_uuids(void)
389 {
390 	struct btrfs_fs_devices *fs_devices;
391 
392 	while (!list_empty(&fs_uuids)) {
393 		fs_devices = list_entry(fs_uuids.next,
394 					struct btrfs_fs_devices, fs_list);
395 		list_del(&fs_devices->fs_list);
396 		free_fs_devices(fs_devices);
397 	}
398 }
399 
400 /*
401  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
402  * Returned struct is not linked onto any lists and must be destroyed using
403  * btrfs_free_device.
404  */
405 static struct btrfs_device *__alloc_device(void)
406 {
407 	struct btrfs_device *dev;
408 
409 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
410 	if (!dev)
411 		return ERR_PTR(-ENOMEM);
412 
413 	/*
414 	 * Preallocate a bio that's always going to be used for flushing device
415 	 * barriers and matches the device lifespan
416 	 */
417 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
418 	if (!dev->flush_bio) {
419 		kfree(dev);
420 		return ERR_PTR(-ENOMEM);
421 	}
422 
423 	INIT_LIST_HEAD(&dev->dev_list);
424 	INIT_LIST_HEAD(&dev->dev_alloc_list);
425 	INIT_LIST_HEAD(&dev->post_commit_list);
426 
427 	atomic_set(&dev->reada_in_flight, 0);
428 	atomic_set(&dev->dev_stats_ccnt, 0);
429 	btrfs_device_data_ordered_init(dev);
430 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
431 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
432 	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
433 
434 	return dev;
435 }
436 
437 static noinline struct btrfs_fs_devices *find_fsid(
438 		const u8 *fsid, const u8 *metadata_fsid)
439 {
440 	struct btrfs_fs_devices *fs_devices;
441 
442 	ASSERT(fsid);
443 
444 	/* Handle non-split brain cases */
445 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
446 		if (metadata_fsid) {
447 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
448 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
449 				      BTRFS_FSID_SIZE) == 0)
450 				return fs_devices;
451 		} else {
452 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
453 				return fs_devices;
454 		}
455 	}
456 	return NULL;
457 }
458 
459 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
460 				struct btrfs_super_block *disk_super)
461 {
462 
463 	struct btrfs_fs_devices *fs_devices;
464 
465 	/*
466 	 * Handle scanned device having completed its fsid change but
467 	 * belonging to a fs_devices that was created by first scanning
468 	 * a device which didn't have its fsid/metadata_uuid changed
469 	 * at all and the CHANGING_FSID_V2 flag set.
470 	 */
471 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
472 		if (fs_devices->fsid_change &&
473 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
474 			   BTRFS_FSID_SIZE) == 0 &&
475 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
476 			   BTRFS_FSID_SIZE) == 0) {
477 			return fs_devices;
478 		}
479 	}
480 	/*
481 	 * Handle scanned device having completed its fsid change but
482 	 * belonging to a fs_devices that was created by a device that
483 	 * has an outdated pair of fsid/metadata_uuid and
484 	 * CHANGING_FSID_V2 flag set.
485 	 */
486 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
487 		if (fs_devices->fsid_change &&
488 		    memcmp(fs_devices->metadata_uuid,
489 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
490 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
491 			   BTRFS_FSID_SIZE) == 0) {
492 			return fs_devices;
493 		}
494 	}
495 
496 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
497 }
498 
499 
500 static int
501 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
502 		      int flush, struct block_device **bdev,
503 		      struct buffer_head **bh)
504 {
505 	int ret;
506 
507 	*bdev = blkdev_get_by_path(device_path, flags, holder);
508 
509 	if (IS_ERR(*bdev)) {
510 		ret = PTR_ERR(*bdev);
511 		goto error;
512 	}
513 
514 	if (flush)
515 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
516 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
517 	if (ret) {
518 		blkdev_put(*bdev, flags);
519 		goto error;
520 	}
521 	invalidate_bdev(*bdev);
522 	*bh = btrfs_read_dev_super(*bdev);
523 	if (IS_ERR(*bh)) {
524 		ret = PTR_ERR(*bh);
525 		blkdev_put(*bdev, flags);
526 		goto error;
527 	}
528 
529 	return 0;
530 
531 error:
532 	*bdev = NULL;
533 	*bh = NULL;
534 	return ret;
535 }
536 
537 static bool device_path_matched(const char *path, struct btrfs_device *device)
538 {
539 	int found;
540 
541 	rcu_read_lock();
542 	found = strcmp(rcu_str_deref(device->name), path);
543 	rcu_read_unlock();
544 
545 	return found == 0;
546 }
547 
548 /*
549  *  Search and remove all stale (devices which are not mounted) devices.
550  *  When both inputs are NULL, it will search and release all stale devices.
551  *  path:	Optional. When provided will it release all unmounted devices
552  *		matching this path only.
553  *  skip_dev:	Optional. Will skip this device when searching for the stale
554  *		devices.
555  *  Return:	0 for success or if @path is NULL.
556  * 		-EBUSY if @path is a mounted device.
557  * 		-ENOENT if @path does not match any device in the list.
558  */
559 static int btrfs_free_stale_devices(const char *path,
560 				     struct btrfs_device *skip_device)
561 {
562 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
563 	struct btrfs_device *device, *tmp_device;
564 	int ret = 0;
565 
566 	if (path)
567 		ret = -ENOENT;
568 
569 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
570 
571 		mutex_lock(&fs_devices->device_list_mutex);
572 		list_for_each_entry_safe(device, tmp_device,
573 					 &fs_devices->devices, dev_list) {
574 			if (skip_device && skip_device == device)
575 				continue;
576 			if (path && !device->name)
577 				continue;
578 			if (path && !device_path_matched(path, device))
579 				continue;
580 			if (fs_devices->opened) {
581 				/* for an already deleted device return 0 */
582 				if (path && ret != 0)
583 					ret = -EBUSY;
584 				break;
585 			}
586 
587 			/* delete the stale device */
588 			fs_devices->num_devices--;
589 			list_del(&device->dev_list);
590 			btrfs_free_device(device);
591 
592 			ret = 0;
593 			if (fs_devices->num_devices == 0)
594 				break;
595 		}
596 		mutex_unlock(&fs_devices->device_list_mutex);
597 
598 		if (fs_devices->num_devices == 0) {
599 			btrfs_sysfs_remove_fsid(fs_devices);
600 			list_del(&fs_devices->fs_list);
601 			free_fs_devices(fs_devices);
602 		}
603 	}
604 
605 	return ret;
606 }
607 
608 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
609 			struct btrfs_device *device, fmode_t flags,
610 			void *holder)
611 {
612 	struct request_queue *q;
613 	struct block_device *bdev;
614 	struct buffer_head *bh;
615 	struct btrfs_super_block *disk_super;
616 	u64 devid;
617 	int ret;
618 
619 	if (device->bdev)
620 		return -EINVAL;
621 	if (!device->name)
622 		return -EINVAL;
623 
624 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
625 				    &bdev, &bh);
626 	if (ret)
627 		return ret;
628 
629 	disk_super = (struct btrfs_super_block *)bh->b_data;
630 	devid = btrfs_stack_device_id(&disk_super->dev_item);
631 	if (devid != device->devid)
632 		goto error_brelse;
633 
634 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
635 		goto error_brelse;
636 
637 	device->generation = btrfs_super_generation(disk_super);
638 
639 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
640 		if (btrfs_super_incompat_flags(disk_super) &
641 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
642 			pr_err(
643 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
644 			goto error_brelse;
645 		}
646 
647 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
648 		fs_devices->seeding = true;
649 	} else {
650 		if (bdev_read_only(bdev))
651 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
652 		else
653 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 	}
655 
656 	q = bdev_get_queue(bdev);
657 	if (!blk_queue_nonrot(q))
658 		fs_devices->rotating = true;
659 
660 	device->bdev = bdev;
661 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
662 	device->mode = flags;
663 
664 	fs_devices->open_devices++;
665 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
666 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
667 		fs_devices->rw_devices++;
668 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
669 	}
670 	brelse(bh);
671 
672 	return 0;
673 
674 error_brelse:
675 	brelse(bh);
676 	blkdev_put(bdev, flags);
677 
678 	return -EINVAL;
679 }
680 
681 /*
682  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
683  * being created with a disk that has already completed its fsid change. Such
684  * disk can belong to an fs which has its FSID changed or to one which doesn't.
685  * Handle both cases here.
686  */
687 static struct btrfs_fs_devices *find_fsid_inprogress(
688 					struct btrfs_super_block *disk_super)
689 {
690 	struct btrfs_fs_devices *fs_devices;
691 
692 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
693 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
694 			   BTRFS_FSID_SIZE) != 0 &&
695 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
696 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
697 			return fs_devices;
698 		}
699 	}
700 
701 	return find_fsid(disk_super->fsid, NULL);
702 }
703 
704 
705 static struct btrfs_fs_devices *find_fsid_changed(
706 					struct btrfs_super_block *disk_super)
707 {
708 	struct btrfs_fs_devices *fs_devices;
709 
710 	/*
711 	 * Handles the case where scanned device is part of an fs that had
712 	 * multiple successful changes of FSID but curently device didn't
713 	 * observe it. Meaning our fsid will be different than theirs. We need
714 	 * to handle two subcases :
715 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
716 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
717 	 *  are equal).
718 	 */
719 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
720 		/* Changed UUIDs */
721 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
722 			   BTRFS_FSID_SIZE) != 0 &&
723 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
724 			   BTRFS_FSID_SIZE) == 0 &&
725 		    memcmp(fs_devices->fsid, disk_super->fsid,
726 			   BTRFS_FSID_SIZE) != 0)
727 			return fs_devices;
728 
729 		/* Unchanged UUIDs */
730 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
731 			   BTRFS_FSID_SIZE) == 0 &&
732 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
733 			   BTRFS_FSID_SIZE) == 0)
734 			return fs_devices;
735 	}
736 
737 	return NULL;
738 }
739 
740 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
741 				struct btrfs_super_block *disk_super)
742 {
743 	struct btrfs_fs_devices *fs_devices;
744 
745 	/*
746 	 * Handle the case where the scanned device is part of an fs whose last
747 	 * metadata UUID change reverted it to the original FSID. At the same
748 	 * time * fs_devices was first created by another constitutent device
749 	 * which didn't fully observe the operation. This results in an
750 	 * btrfs_fs_devices created with metadata/fsid different AND
751 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
752 	 * fs_devices equal to the FSID of the disk.
753 	 */
754 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
755 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
756 			   BTRFS_FSID_SIZE) != 0 &&
757 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
758 			   BTRFS_FSID_SIZE) == 0 &&
759 		    fs_devices->fsid_change)
760 			return fs_devices;
761 	}
762 
763 	return NULL;
764 }
765 /*
766  * Add new device to list of registered devices
767  *
768  * Returns:
769  * device pointer which was just added or updated when successful
770  * error pointer when failed
771  */
772 static noinline struct btrfs_device *device_list_add(const char *path,
773 			   struct btrfs_super_block *disk_super,
774 			   bool *new_device_added)
775 {
776 	struct btrfs_device *device;
777 	struct btrfs_fs_devices *fs_devices = NULL;
778 	struct rcu_string *name;
779 	u64 found_transid = btrfs_super_generation(disk_super);
780 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
781 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
782 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
783 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
784 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
785 
786 	if (fsid_change_in_progress) {
787 		if (!has_metadata_uuid)
788 			fs_devices = find_fsid_inprogress(disk_super);
789 		else
790 			fs_devices = find_fsid_changed(disk_super);
791 	} else if (has_metadata_uuid) {
792 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
793 	} else {
794 		fs_devices = find_fsid_reverted_metadata(disk_super);
795 		if (!fs_devices)
796 			fs_devices = find_fsid(disk_super->fsid, NULL);
797 	}
798 
799 
800 	if (!fs_devices) {
801 		if (has_metadata_uuid)
802 			fs_devices = alloc_fs_devices(disk_super->fsid,
803 						      disk_super->metadata_uuid);
804 		else
805 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
806 
807 		if (IS_ERR(fs_devices))
808 			return ERR_CAST(fs_devices);
809 
810 		fs_devices->fsid_change = fsid_change_in_progress;
811 
812 		mutex_lock(&fs_devices->device_list_mutex);
813 		list_add(&fs_devices->fs_list, &fs_uuids);
814 
815 		device = NULL;
816 	} else {
817 		mutex_lock(&fs_devices->device_list_mutex);
818 		device = btrfs_find_device(fs_devices, devid,
819 				disk_super->dev_item.uuid, NULL, false);
820 
821 		/*
822 		 * If this disk has been pulled into an fs devices created by
823 		 * a device which had the CHANGING_FSID_V2 flag then replace the
824 		 * metadata_uuid/fsid values of the fs_devices.
825 		 */
826 		if (fs_devices->fsid_change &&
827 		    found_transid > fs_devices->latest_generation) {
828 			memcpy(fs_devices->fsid, disk_super->fsid,
829 					BTRFS_FSID_SIZE);
830 
831 			if (has_metadata_uuid)
832 				memcpy(fs_devices->metadata_uuid,
833 				       disk_super->metadata_uuid,
834 				       BTRFS_FSID_SIZE);
835 			else
836 				memcpy(fs_devices->metadata_uuid,
837 				       disk_super->fsid, BTRFS_FSID_SIZE);
838 
839 			fs_devices->fsid_change = false;
840 		}
841 	}
842 
843 	if (!device) {
844 		if (fs_devices->opened) {
845 			mutex_unlock(&fs_devices->device_list_mutex);
846 			return ERR_PTR(-EBUSY);
847 		}
848 
849 		device = btrfs_alloc_device(NULL, &devid,
850 					    disk_super->dev_item.uuid);
851 		if (IS_ERR(device)) {
852 			mutex_unlock(&fs_devices->device_list_mutex);
853 			/* we can safely leave the fs_devices entry around */
854 			return device;
855 		}
856 
857 		name = rcu_string_strdup(path, GFP_NOFS);
858 		if (!name) {
859 			btrfs_free_device(device);
860 			mutex_unlock(&fs_devices->device_list_mutex);
861 			return ERR_PTR(-ENOMEM);
862 		}
863 		rcu_assign_pointer(device->name, name);
864 
865 		list_add_rcu(&device->dev_list, &fs_devices->devices);
866 		fs_devices->num_devices++;
867 
868 		device->fs_devices = fs_devices;
869 		*new_device_added = true;
870 
871 		if (disk_super->label[0])
872 			pr_info(
873 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
874 				disk_super->label, devid, found_transid, path,
875 				current->comm, task_pid_nr(current));
876 		else
877 			pr_info(
878 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
879 				disk_super->fsid, devid, found_transid, path,
880 				current->comm, task_pid_nr(current));
881 
882 	} else if (!device->name || strcmp(device->name->str, path)) {
883 		/*
884 		 * When FS is already mounted.
885 		 * 1. If you are here and if the device->name is NULL that
886 		 *    means this device was missing at time of FS mount.
887 		 * 2. If you are here and if the device->name is different
888 		 *    from 'path' that means either
889 		 *      a. The same device disappeared and reappeared with
890 		 *         different name. or
891 		 *      b. The missing-disk-which-was-replaced, has
892 		 *         reappeared now.
893 		 *
894 		 * We must allow 1 and 2a above. But 2b would be a spurious
895 		 * and unintentional.
896 		 *
897 		 * Further in case of 1 and 2a above, the disk at 'path'
898 		 * would have missed some transaction when it was away and
899 		 * in case of 2a the stale bdev has to be updated as well.
900 		 * 2b must not be allowed at all time.
901 		 */
902 
903 		/*
904 		 * For now, we do allow update to btrfs_fs_device through the
905 		 * btrfs dev scan cli after FS has been mounted.  We're still
906 		 * tracking a problem where systems fail mount by subvolume id
907 		 * when we reject replacement on a mounted FS.
908 		 */
909 		if (!fs_devices->opened && found_transid < device->generation) {
910 			/*
911 			 * That is if the FS is _not_ mounted and if you
912 			 * are here, that means there is more than one
913 			 * disk with same uuid and devid.We keep the one
914 			 * with larger generation number or the last-in if
915 			 * generation are equal.
916 			 */
917 			mutex_unlock(&fs_devices->device_list_mutex);
918 			return ERR_PTR(-EEXIST);
919 		}
920 
921 		/*
922 		 * We are going to replace the device path for a given devid,
923 		 * make sure it's the same device if the device is mounted
924 		 */
925 		if (device->bdev) {
926 			struct block_device *path_bdev;
927 
928 			path_bdev = lookup_bdev(path);
929 			if (IS_ERR(path_bdev)) {
930 				mutex_unlock(&fs_devices->device_list_mutex);
931 				return ERR_CAST(path_bdev);
932 			}
933 
934 			if (device->bdev != path_bdev) {
935 				bdput(path_bdev);
936 				mutex_unlock(&fs_devices->device_list_mutex);
937 				btrfs_warn_in_rcu(device->fs_info,
938 			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
939 					disk_super->fsid, devid,
940 					rcu_str_deref(device->name), path);
941 				return ERR_PTR(-EEXIST);
942 			}
943 			bdput(path_bdev);
944 			btrfs_info_in_rcu(device->fs_info,
945 				"device fsid %pU devid %llu moved old:%s new:%s",
946 				disk_super->fsid, devid,
947 				rcu_str_deref(device->name), path);
948 		}
949 
950 		name = rcu_string_strdup(path, GFP_NOFS);
951 		if (!name) {
952 			mutex_unlock(&fs_devices->device_list_mutex);
953 			return ERR_PTR(-ENOMEM);
954 		}
955 		rcu_string_free(device->name);
956 		rcu_assign_pointer(device->name, name);
957 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
958 			fs_devices->missing_devices--;
959 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
960 		}
961 	}
962 
963 	/*
964 	 * Unmount does not free the btrfs_device struct but would zero
965 	 * generation along with most of the other members. So just update
966 	 * it back. We need it to pick the disk with largest generation
967 	 * (as above).
968 	 */
969 	if (!fs_devices->opened) {
970 		device->generation = found_transid;
971 		fs_devices->latest_generation = max_t(u64, found_transid,
972 						fs_devices->latest_generation);
973 	}
974 
975 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
976 
977 	mutex_unlock(&fs_devices->device_list_mutex);
978 	return device;
979 }
980 
981 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
982 {
983 	struct btrfs_fs_devices *fs_devices;
984 	struct btrfs_device *device;
985 	struct btrfs_device *orig_dev;
986 	int ret = 0;
987 
988 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 	if (IS_ERR(fs_devices))
990 		return fs_devices;
991 
992 	mutex_lock(&orig->device_list_mutex);
993 	fs_devices->total_devices = orig->total_devices;
994 
995 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
996 		struct rcu_string *name;
997 
998 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
999 					    orig_dev->uuid);
1000 		if (IS_ERR(device)) {
1001 			ret = PTR_ERR(device);
1002 			goto error;
1003 		}
1004 
1005 		/*
1006 		 * This is ok to do without rcu read locked because we hold the
1007 		 * uuid mutex so nothing we touch in here is going to disappear.
1008 		 */
1009 		if (orig_dev->name) {
1010 			name = rcu_string_strdup(orig_dev->name->str,
1011 					GFP_KERNEL);
1012 			if (!name) {
1013 				btrfs_free_device(device);
1014 				ret = -ENOMEM;
1015 				goto error;
1016 			}
1017 			rcu_assign_pointer(device->name, name);
1018 		}
1019 
1020 		list_add(&device->dev_list, &fs_devices->devices);
1021 		device->fs_devices = fs_devices;
1022 		fs_devices->num_devices++;
1023 	}
1024 	mutex_unlock(&orig->device_list_mutex);
1025 	return fs_devices;
1026 error:
1027 	mutex_unlock(&orig->device_list_mutex);
1028 	free_fs_devices(fs_devices);
1029 	return ERR_PTR(ret);
1030 }
1031 
1032 /*
1033  * After we have read the system tree and know devids belonging to
1034  * this filesystem, remove the device which does not belong there.
1035  */
1036 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1037 {
1038 	struct btrfs_device *device, *next;
1039 	struct btrfs_device *latest_dev = NULL;
1040 
1041 	mutex_lock(&uuid_mutex);
1042 again:
1043 	/* This is the initialized path, it is safe to release the devices. */
1044 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1045 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1046 							&device->dev_state)) {
1047 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1048 			     &device->dev_state) &&
1049 			     (!latest_dev ||
1050 			      device->generation > latest_dev->generation)) {
1051 				latest_dev = device;
1052 			}
1053 			continue;
1054 		}
1055 
1056 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1057 			/*
1058 			 * In the first step, keep the device which has
1059 			 * the correct fsid and the devid that is used
1060 			 * for the dev_replace procedure.
1061 			 * In the second step, the dev_replace state is
1062 			 * read from the device tree and it is known
1063 			 * whether the procedure is really active or
1064 			 * not, which means whether this device is
1065 			 * used or whether it should be removed.
1066 			 */
1067 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1068 						  &device->dev_state)) {
1069 				continue;
1070 			}
1071 		}
1072 		if (device->bdev) {
1073 			blkdev_put(device->bdev, device->mode);
1074 			device->bdev = NULL;
1075 			fs_devices->open_devices--;
1076 		}
1077 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1078 			list_del_init(&device->dev_alloc_list);
1079 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1080 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1081 				      &device->dev_state))
1082 				fs_devices->rw_devices--;
1083 		}
1084 		list_del_init(&device->dev_list);
1085 		fs_devices->num_devices--;
1086 		btrfs_free_device(device);
1087 	}
1088 
1089 	if (fs_devices->seed) {
1090 		fs_devices = fs_devices->seed;
1091 		goto again;
1092 	}
1093 
1094 	fs_devices->latest_bdev = latest_dev->bdev;
1095 
1096 	mutex_unlock(&uuid_mutex);
1097 }
1098 
1099 static void btrfs_close_bdev(struct btrfs_device *device)
1100 {
1101 	if (!device->bdev)
1102 		return;
1103 
1104 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105 		sync_blockdev(device->bdev);
1106 		invalidate_bdev(device->bdev);
1107 	}
1108 
1109 	blkdev_put(device->bdev, device->mode);
1110 }
1111 
1112 static void btrfs_close_one_device(struct btrfs_device *device)
1113 {
1114 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1115 
1116 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118 		list_del_init(&device->dev_alloc_list);
1119 		fs_devices->rw_devices--;
1120 	}
1121 
1122 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1123 		fs_devices->missing_devices--;
1124 
1125 	btrfs_close_bdev(device);
1126 	if (device->bdev) {
1127 		fs_devices->open_devices--;
1128 		device->bdev = NULL;
1129 	}
1130 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1131 
1132 	device->fs_info = NULL;
1133 	atomic_set(&device->dev_stats_ccnt, 0);
1134 	extent_io_tree_release(&device->alloc_state);
1135 
1136 	/* Verify the device is back in a pristine state  */
1137 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1138 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1139 	ASSERT(list_empty(&device->dev_alloc_list));
1140 	ASSERT(list_empty(&device->post_commit_list));
1141 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1142 }
1143 
1144 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1145 {
1146 	struct btrfs_device *device, *tmp;
1147 
1148 	if (--fs_devices->opened > 0)
1149 		return 0;
1150 
1151 	mutex_lock(&fs_devices->device_list_mutex);
1152 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1153 		btrfs_close_one_device(device);
1154 	}
1155 	mutex_unlock(&fs_devices->device_list_mutex);
1156 
1157 	WARN_ON(fs_devices->open_devices);
1158 	WARN_ON(fs_devices->rw_devices);
1159 	fs_devices->opened = 0;
1160 	fs_devices->seeding = false;
1161 
1162 	return 0;
1163 }
1164 
1165 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1166 {
1167 	struct btrfs_fs_devices *seed_devices = NULL;
1168 	int ret;
1169 
1170 	mutex_lock(&uuid_mutex);
1171 	ret = close_fs_devices(fs_devices);
1172 	if (!fs_devices->opened) {
1173 		seed_devices = fs_devices->seed;
1174 		fs_devices->seed = NULL;
1175 	}
1176 	mutex_unlock(&uuid_mutex);
1177 
1178 	while (seed_devices) {
1179 		fs_devices = seed_devices;
1180 		seed_devices = fs_devices->seed;
1181 		close_fs_devices(fs_devices);
1182 		free_fs_devices(fs_devices);
1183 	}
1184 	return ret;
1185 }
1186 
1187 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1188 				fmode_t flags, void *holder)
1189 {
1190 	struct btrfs_device *device;
1191 	struct btrfs_device *latest_dev = NULL;
1192 	int ret = 0;
1193 
1194 	flags |= FMODE_EXCL;
1195 
1196 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1197 		/* Just open everything we can; ignore failures here */
1198 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1199 			continue;
1200 
1201 		if (!latest_dev ||
1202 		    device->generation > latest_dev->generation)
1203 			latest_dev = device;
1204 	}
1205 	if (fs_devices->open_devices == 0) {
1206 		ret = -EINVAL;
1207 		goto out;
1208 	}
1209 	fs_devices->opened = 1;
1210 	fs_devices->latest_bdev = latest_dev->bdev;
1211 	fs_devices->total_rw_bytes = 0;
1212 out:
1213 	return ret;
1214 }
1215 
1216 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1217 {
1218 	struct btrfs_device *dev1, *dev2;
1219 
1220 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1221 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1222 
1223 	if (dev1->devid < dev2->devid)
1224 		return -1;
1225 	else if (dev1->devid > dev2->devid)
1226 		return 1;
1227 	return 0;
1228 }
1229 
1230 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1231 		       fmode_t flags, void *holder)
1232 {
1233 	int ret;
1234 
1235 	lockdep_assert_held(&uuid_mutex);
1236 
1237 	mutex_lock(&fs_devices->device_list_mutex);
1238 	if (fs_devices->opened) {
1239 		fs_devices->opened++;
1240 		ret = 0;
1241 	} else {
1242 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1243 		ret = open_fs_devices(fs_devices, flags, holder);
1244 	}
1245 	mutex_unlock(&fs_devices->device_list_mutex);
1246 
1247 	return ret;
1248 }
1249 
1250 static void btrfs_release_disk_super(struct page *page)
1251 {
1252 	kunmap(page);
1253 	put_page(page);
1254 }
1255 
1256 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1257 				 struct page **page,
1258 				 struct btrfs_super_block **disk_super)
1259 {
1260 	void *p;
1261 	pgoff_t index;
1262 
1263 	/* make sure our super fits in the device */
1264 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1265 		return 1;
1266 
1267 	/* make sure our super fits in the page */
1268 	if (sizeof(**disk_super) > PAGE_SIZE)
1269 		return 1;
1270 
1271 	/* make sure our super doesn't straddle pages on disk */
1272 	index = bytenr >> PAGE_SHIFT;
1273 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1274 		return 1;
1275 
1276 	/* pull in the page with our super */
1277 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1278 				   index, GFP_KERNEL);
1279 
1280 	if (IS_ERR_OR_NULL(*page))
1281 		return 1;
1282 
1283 	p = kmap(*page);
1284 
1285 	/* align our pointer to the offset of the super block */
1286 	*disk_super = p + offset_in_page(bytenr);
1287 
1288 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1289 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1290 		btrfs_release_disk_super(*page);
1291 		return 1;
1292 	}
1293 
1294 	if ((*disk_super)->label[0] &&
1295 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1296 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1297 
1298 	return 0;
1299 }
1300 
1301 int btrfs_forget_devices(const char *path)
1302 {
1303 	int ret;
1304 
1305 	mutex_lock(&uuid_mutex);
1306 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1307 	mutex_unlock(&uuid_mutex);
1308 
1309 	return ret;
1310 }
1311 
1312 /*
1313  * Look for a btrfs signature on a device. This may be called out of the mount path
1314  * and we are not allowed to call set_blocksize during the scan. The superblock
1315  * is read via pagecache
1316  */
1317 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1318 					   void *holder)
1319 {
1320 	struct btrfs_super_block *disk_super;
1321 	bool new_device_added = false;
1322 	struct btrfs_device *device = NULL;
1323 	struct block_device *bdev;
1324 	struct page *page;
1325 	u64 bytenr;
1326 
1327 	lockdep_assert_held(&uuid_mutex);
1328 
1329 	/*
1330 	 * we would like to check all the supers, but that would make
1331 	 * a btrfs mount succeed after a mkfs from a different FS.
1332 	 * So, we need to add a special mount option to scan for
1333 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1334 	 */
1335 	bytenr = btrfs_sb_offset(0);
1336 	flags |= FMODE_EXCL;
1337 
1338 	bdev = blkdev_get_by_path(path, flags, holder);
1339 	if (IS_ERR(bdev))
1340 		return ERR_CAST(bdev);
1341 
1342 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1343 		device = ERR_PTR(-EINVAL);
1344 		goto error_bdev_put;
1345 	}
1346 
1347 	device = device_list_add(path, disk_super, &new_device_added);
1348 	if (!IS_ERR(device)) {
1349 		if (new_device_added)
1350 			btrfs_free_stale_devices(path, device);
1351 	}
1352 
1353 	btrfs_release_disk_super(page);
1354 
1355 error_bdev_put:
1356 	blkdev_put(bdev, flags);
1357 
1358 	return device;
1359 }
1360 
1361 /*
1362  * Try to find a chunk that intersects [start, start + len] range and when one
1363  * such is found, record the end of it in *start
1364  */
1365 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1366 				    u64 len)
1367 {
1368 	u64 physical_start, physical_end;
1369 
1370 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1371 
1372 	if (!find_first_extent_bit(&device->alloc_state, *start,
1373 				   &physical_start, &physical_end,
1374 				   CHUNK_ALLOCATED, NULL)) {
1375 
1376 		if (in_range(physical_start, *start, len) ||
1377 		    in_range(*start, physical_start,
1378 			     physical_end - physical_start)) {
1379 			*start = physical_end + 1;
1380 			return true;
1381 		}
1382 	}
1383 	return false;
1384 }
1385 
1386 
1387 /*
1388  * find_free_dev_extent_start - find free space in the specified device
1389  * @device:	  the device which we search the free space in
1390  * @num_bytes:	  the size of the free space that we need
1391  * @search_start: the position from which to begin the search
1392  * @start:	  store the start of the free space.
1393  * @len:	  the size of the free space. that we find, or the size
1394  *		  of the max free space if we don't find suitable free space
1395  *
1396  * this uses a pretty simple search, the expectation is that it is
1397  * called very infrequently and that a given device has a small number
1398  * of extents
1399  *
1400  * @start is used to store the start of the free space if we find. But if we
1401  * don't find suitable free space, it will be used to store the start position
1402  * of the max free space.
1403  *
1404  * @len is used to store the size of the free space that we find.
1405  * But if we don't find suitable free space, it is used to store the size of
1406  * the max free space.
1407  *
1408  * NOTE: This function will search *commit* root of device tree, and does extra
1409  * check to ensure dev extents are not double allocated.
1410  * This makes the function safe to allocate dev extents but may not report
1411  * correct usable device space, as device extent freed in current transaction
1412  * is not reported as avaiable.
1413  */
1414 static int find_free_dev_extent_start(struct btrfs_device *device,
1415 				u64 num_bytes, u64 search_start, u64 *start,
1416 				u64 *len)
1417 {
1418 	struct btrfs_fs_info *fs_info = device->fs_info;
1419 	struct btrfs_root *root = fs_info->dev_root;
1420 	struct btrfs_key key;
1421 	struct btrfs_dev_extent *dev_extent;
1422 	struct btrfs_path *path;
1423 	u64 hole_size;
1424 	u64 max_hole_start;
1425 	u64 max_hole_size;
1426 	u64 extent_end;
1427 	u64 search_end = device->total_bytes;
1428 	int ret;
1429 	int slot;
1430 	struct extent_buffer *l;
1431 
1432 	/*
1433 	 * We don't want to overwrite the superblock on the drive nor any area
1434 	 * used by the boot loader (grub for example), so we make sure to start
1435 	 * at an offset of at least 1MB.
1436 	 */
1437 	search_start = max_t(u64, search_start, SZ_1M);
1438 
1439 	path = btrfs_alloc_path();
1440 	if (!path)
1441 		return -ENOMEM;
1442 
1443 	max_hole_start = search_start;
1444 	max_hole_size = 0;
1445 
1446 again:
1447 	if (search_start >= search_end ||
1448 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1449 		ret = -ENOSPC;
1450 		goto out;
1451 	}
1452 
1453 	path->reada = READA_FORWARD;
1454 	path->search_commit_root = 1;
1455 	path->skip_locking = 1;
1456 
1457 	key.objectid = device->devid;
1458 	key.offset = search_start;
1459 	key.type = BTRFS_DEV_EXTENT_KEY;
1460 
1461 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1462 	if (ret < 0)
1463 		goto out;
1464 	if (ret > 0) {
1465 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1466 		if (ret < 0)
1467 			goto out;
1468 	}
1469 
1470 	while (1) {
1471 		l = path->nodes[0];
1472 		slot = path->slots[0];
1473 		if (slot >= btrfs_header_nritems(l)) {
1474 			ret = btrfs_next_leaf(root, path);
1475 			if (ret == 0)
1476 				continue;
1477 			if (ret < 0)
1478 				goto out;
1479 
1480 			break;
1481 		}
1482 		btrfs_item_key_to_cpu(l, &key, slot);
1483 
1484 		if (key.objectid < device->devid)
1485 			goto next;
1486 
1487 		if (key.objectid > device->devid)
1488 			break;
1489 
1490 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1491 			goto next;
1492 
1493 		if (key.offset > search_start) {
1494 			hole_size = key.offset - search_start;
1495 
1496 			/*
1497 			 * Have to check before we set max_hole_start, otherwise
1498 			 * we could end up sending back this offset anyway.
1499 			 */
1500 			if (contains_pending_extent(device, &search_start,
1501 						    hole_size)) {
1502 				if (key.offset >= search_start)
1503 					hole_size = key.offset - search_start;
1504 				else
1505 					hole_size = 0;
1506 			}
1507 
1508 			if (hole_size > max_hole_size) {
1509 				max_hole_start = search_start;
1510 				max_hole_size = hole_size;
1511 			}
1512 
1513 			/*
1514 			 * If this free space is greater than which we need,
1515 			 * it must be the max free space that we have found
1516 			 * until now, so max_hole_start must point to the start
1517 			 * of this free space and the length of this free space
1518 			 * is stored in max_hole_size. Thus, we return
1519 			 * max_hole_start and max_hole_size and go back to the
1520 			 * caller.
1521 			 */
1522 			if (hole_size >= num_bytes) {
1523 				ret = 0;
1524 				goto out;
1525 			}
1526 		}
1527 
1528 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1529 		extent_end = key.offset + btrfs_dev_extent_length(l,
1530 								  dev_extent);
1531 		if (extent_end > search_start)
1532 			search_start = extent_end;
1533 next:
1534 		path->slots[0]++;
1535 		cond_resched();
1536 	}
1537 
1538 	/*
1539 	 * At this point, search_start should be the end of
1540 	 * allocated dev extents, and when shrinking the device,
1541 	 * search_end may be smaller than search_start.
1542 	 */
1543 	if (search_end > search_start) {
1544 		hole_size = search_end - search_start;
1545 
1546 		if (contains_pending_extent(device, &search_start, hole_size)) {
1547 			btrfs_release_path(path);
1548 			goto again;
1549 		}
1550 
1551 		if (hole_size > max_hole_size) {
1552 			max_hole_start = search_start;
1553 			max_hole_size = hole_size;
1554 		}
1555 	}
1556 
1557 	/* See above. */
1558 	if (max_hole_size < num_bytes)
1559 		ret = -ENOSPC;
1560 	else
1561 		ret = 0;
1562 
1563 out:
1564 	btrfs_free_path(path);
1565 	*start = max_hole_start;
1566 	if (len)
1567 		*len = max_hole_size;
1568 	return ret;
1569 }
1570 
1571 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1572 			 u64 *start, u64 *len)
1573 {
1574 	/* FIXME use last free of some kind */
1575 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1576 }
1577 
1578 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1579 			  struct btrfs_device *device,
1580 			  u64 start, u64 *dev_extent_len)
1581 {
1582 	struct btrfs_fs_info *fs_info = device->fs_info;
1583 	struct btrfs_root *root = fs_info->dev_root;
1584 	int ret;
1585 	struct btrfs_path *path;
1586 	struct btrfs_key key;
1587 	struct btrfs_key found_key;
1588 	struct extent_buffer *leaf = NULL;
1589 	struct btrfs_dev_extent *extent = NULL;
1590 
1591 	path = btrfs_alloc_path();
1592 	if (!path)
1593 		return -ENOMEM;
1594 
1595 	key.objectid = device->devid;
1596 	key.offset = start;
1597 	key.type = BTRFS_DEV_EXTENT_KEY;
1598 again:
1599 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1600 	if (ret > 0) {
1601 		ret = btrfs_previous_item(root, path, key.objectid,
1602 					  BTRFS_DEV_EXTENT_KEY);
1603 		if (ret)
1604 			goto out;
1605 		leaf = path->nodes[0];
1606 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1607 		extent = btrfs_item_ptr(leaf, path->slots[0],
1608 					struct btrfs_dev_extent);
1609 		BUG_ON(found_key.offset > start || found_key.offset +
1610 		       btrfs_dev_extent_length(leaf, extent) < start);
1611 		key = found_key;
1612 		btrfs_release_path(path);
1613 		goto again;
1614 	} else if (ret == 0) {
1615 		leaf = path->nodes[0];
1616 		extent = btrfs_item_ptr(leaf, path->slots[0],
1617 					struct btrfs_dev_extent);
1618 	} else {
1619 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1620 		goto out;
1621 	}
1622 
1623 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1624 
1625 	ret = btrfs_del_item(trans, root, path);
1626 	if (ret) {
1627 		btrfs_handle_fs_error(fs_info, ret,
1628 				      "Failed to remove dev extent item");
1629 	} else {
1630 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1631 	}
1632 out:
1633 	btrfs_free_path(path);
1634 	return ret;
1635 }
1636 
1637 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1638 				  struct btrfs_device *device,
1639 				  u64 chunk_offset, u64 start, u64 num_bytes)
1640 {
1641 	int ret;
1642 	struct btrfs_path *path;
1643 	struct btrfs_fs_info *fs_info = device->fs_info;
1644 	struct btrfs_root *root = fs_info->dev_root;
1645 	struct btrfs_dev_extent *extent;
1646 	struct extent_buffer *leaf;
1647 	struct btrfs_key key;
1648 
1649 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1650 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1651 	path = btrfs_alloc_path();
1652 	if (!path)
1653 		return -ENOMEM;
1654 
1655 	key.objectid = device->devid;
1656 	key.offset = start;
1657 	key.type = BTRFS_DEV_EXTENT_KEY;
1658 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1659 				      sizeof(*extent));
1660 	if (ret)
1661 		goto out;
1662 
1663 	leaf = path->nodes[0];
1664 	extent = btrfs_item_ptr(leaf, path->slots[0],
1665 				struct btrfs_dev_extent);
1666 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1667 					BTRFS_CHUNK_TREE_OBJECTID);
1668 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1669 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1670 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1671 
1672 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1673 	btrfs_mark_buffer_dirty(leaf);
1674 out:
1675 	btrfs_free_path(path);
1676 	return ret;
1677 }
1678 
1679 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1680 {
1681 	struct extent_map_tree *em_tree;
1682 	struct extent_map *em;
1683 	struct rb_node *n;
1684 	u64 ret = 0;
1685 
1686 	em_tree = &fs_info->mapping_tree;
1687 	read_lock(&em_tree->lock);
1688 	n = rb_last(&em_tree->map.rb_root);
1689 	if (n) {
1690 		em = rb_entry(n, struct extent_map, rb_node);
1691 		ret = em->start + em->len;
1692 	}
1693 	read_unlock(&em_tree->lock);
1694 
1695 	return ret;
1696 }
1697 
1698 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1699 				    u64 *devid_ret)
1700 {
1701 	int ret;
1702 	struct btrfs_key key;
1703 	struct btrfs_key found_key;
1704 	struct btrfs_path *path;
1705 
1706 	path = btrfs_alloc_path();
1707 	if (!path)
1708 		return -ENOMEM;
1709 
1710 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1711 	key.type = BTRFS_DEV_ITEM_KEY;
1712 	key.offset = (u64)-1;
1713 
1714 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1715 	if (ret < 0)
1716 		goto error;
1717 
1718 	if (ret == 0) {
1719 		/* Corruption */
1720 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1721 		ret = -EUCLEAN;
1722 		goto error;
1723 	}
1724 
1725 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1726 				  BTRFS_DEV_ITEMS_OBJECTID,
1727 				  BTRFS_DEV_ITEM_KEY);
1728 	if (ret) {
1729 		*devid_ret = 1;
1730 	} else {
1731 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1732 				      path->slots[0]);
1733 		*devid_ret = found_key.offset + 1;
1734 	}
1735 	ret = 0;
1736 error:
1737 	btrfs_free_path(path);
1738 	return ret;
1739 }
1740 
1741 /*
1742  * the device information is stored in the chunk root
1743  * the btrfs_device struct should be fully filled in
1744  */
1745 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1746 			    struct btrfs_device *device)
1747 {
1748 	int ret;
1749 	struct btrfs_path *path;
1750 	struct btrfs_dev_item *dev_item;
1751 	struct extent_buffer *leaf;
1752 	struct btrfs_key key;
1753 	unsigned long ptr;
1754 
1755 	path = btrfs_alloc_path();
1756 	if (!path)
1757 		return -ENOMEM;
1758 
1759 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1760 	key.type = BTRFS_DEV_ITEM_KEY;
1761 	key.offset = device->devid;
1762 
1763 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1764 				      &key, sizeof(*dev_item));
1765 	if (ret)
1766 		goto out;
1767 
1768 	leaf = path->nodes[0];
1769 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1770 
1771 	btrfs_set_device_id(leaf, dev_item, device->devid);
1772 	btrfs_set_device_generation(leaf, dev_item, 0);
1773 	btrfs_set_device_type(leaf, dev_item, device->type);
1774 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1775 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1776 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1777 	btrfs_set_device_total_bytes(leaf, dev_item,
1778 				     btrfs_device_get_disk_total_bytes(device));
1779 	btrfs_set_device_bytes_used(leaf, dev_item,
1780 				    btrfs_device_get_bytes_used(device));
1781 	btrfs_set_device_group(leaf, dev_item, 0);
1782 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1783 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1784 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1785 
1786 	ptr = btrfs_device_uuid(dev_item);
1787 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1788 	ptr = btrfs_device_fsid(dev_item);
1789 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1790 			    ptr, BTRFS_FSID_SIZE);
1791 	btrfs_mark_buffer_dirty(leaf);
1792 
1793 	ret = 0;
1794 out:
1795 	btrfs_free_path(path);
1796 	return ret;
1797 }
1798 
1799 /*
1800  * Function to update ctime/mtime for a given device path.
1801  * Mainly used for ctime/mtime based probe like libblkid.
1802  */
1803 static void update_dev_time(const char *path_name)
1804 {
1805 	struct file *filp;
1806 
1807 	filp = filp_open(path_name, O_RDWR, 0);
1808 	if (IS_ERR(filp))
1809 		return;
1810 	file_update_time(filp);
1811 	filp_close(filp, NULL);
1812 }
1813 
1814 static int btrfs_rm_dev_item(struct btrfs_device *device)
1815 {
1816 	struct btrfs_root *root = device->fs_info->chunk_root;
1817 	int ret;
1818 	struct btrfs_path *path;
1819 	struct btrfs_key key;
1820 	struct btrfs_trans_handle *trans;
1821 
1822 	path = btrfs_alloc_path();
1823 	if (!path)
1824 		return -ENOMEM;
1825 
1826 	trans = btrfs_start_transaction(root, 0);
1827 	if (IS_ERR(trans)) {
1828 		btrfs_free_path(path);
1829 		return PTR_ERR(trans);
1830 	}
1831 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1832 	key.type = BTRFS_DEV_ITEM_KEY;
1833 	key.offset = device->devid;
1834 
1835 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1836 	if (ret) {
1837 		if (ret > 0)
1838 			ret = -ENOENT;
1839 		btrfs_abort_transaction(trans, ret);
1840 		btrfs_end_transaction(trans);
1841 		goto out;
1842 	}
1843 
1844 	ret = btrfs_del_item(trans, root, path);
1845 	if (ret) {
1846 		btrfs_abort_transaction(trans, ret);
1847 		btrfs_end_transaction(trans);
1848 	}
1849 
1850 out:
1851 	btrfs_free_path(path);
1852 	if (!ret)
1853 		ret = btrfs_commit_transaction(trans);
1854 	return ret;
1855 }
1856 
1857 /*
1858  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1859  * filesystem. It's up to the caller to adjust that number regarding eg. device
1860  * replace.
1861  */
1862 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1863 		u64 num_devices)
1864 {
1865 	u64 all_avail;
1866 	unsigned seq;
1867 	int i;
1868 
1869 	do {
1870 		seq = read_seqbegin(&fs_info->profiles_lock);
1871 
1872 		all_avail = fs_info->avail_data_alloc_bits |
1873 			    fs_info->avail_system_alloc_bits |
1874 			    fs_info->avail_metadata_alloc_bits;
1875 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1876 
1877 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1878 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1879 			continue;
1880 
1881 		if (num_devices < btrfs_raid_array[i].devs_min) {
1882 			int ret = btrfs_raid_array[i].mindev_error;
1883 
1884 			if (ret)
1885 				return ret;
1886 		}
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 static struct btrfs_device * btrfs_find_next_active_device(
1893 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1894 {
1895 	struct btrfs_device *next_device;
1896 
1897 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1898 		if (next_device != device &&
1899 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1900 		    && next_device->bdev)
1901 			return next_device;
1902 	}
1903 
1904 	return NULL;
1905 }
1906 
1907 /*
1908  * Helper function to check if the given device is part of s_bdev / latest_bdev
1909  * and replace it with the provided or the next active device, in the context
1910  * where this function called, there should be always be another device (or
1911  * this_dev) which is active.
1912  */
1913 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1914 				     struct btrfs_device *this_dev)
1915 {
1916 	struct btrfs_fs_info *fs_info = device->fs_info;
1917 	struct btrfs_device *next_device;
1918 
1919 	if (this_dev)
1920 		next_device = this_dev;
1921 	else
1922 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1923 								device);
1924 	ASSERT(next_device);
1925 
1926 	if (fs_info->sb->s_bdev &&
1927 			(fs_info->sb->s_bdev == device->bdev))
1928 		fs_info->sb->s_bdev = next_device->bdev;
1929 
1930 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1931 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1932 }
1933 
1934 /*
1935  * Return btrfs_fs_devices::num_devices excluding the device that's being
1936  * currently replaced.
1937  */
1938 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1939 {
1940 	u64 num_devices = fs_info->fs_devices->num_devices;
1941 
1942 	down_read(&fs_info->dev_replace.rwsem);
1943 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1944 		ASSERT(num_devices > 1);
1945 		num_devices--;
1946 	}
1947 	up_read(&fs_info->dev_replace.rwsem);
1948 
1949 	return num_devices;
1950 }
1951 
1952 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1953 		u64 devid)
1954 {
1955 	struct btrfs_device *device;
1956 	struct btrfs_fs_devices *cur_devices;
1957 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1958 	u64 num_devices;
1959 	int ret = 0;
1960 
1961 	mutex_lock(&uuid_mutex);
1962 
1963 	num_devices = btrfs_num_devices(fs_info);
1964 
1965 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1966 	if (ret)
1967 		goto out;
1968 
1969 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
1970 
1971 	if (IS_ERR(device)) {
1972 		if (PTR_ERR(device) == -ENOENT &&
1973 		    strcmp(device_path, "missing") == 0)
1974 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1975 		else
1976 			ret = PTR_ERR(device);
1977 		goto out;
1978 	}
1979 
1980 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
1981 		btrfs_warn_in_rcu(fs_info,
1982 		  "cannot remove device %s (devid %llu) due to active swapfile",
1983 				  rcu_str_deref(device->name), device->devid);
1984 		ret = -ETXTBSY;
1985 		goto out;
1986 	}
1987 
1988 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1989 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1990 		goto out;
1991 	}
1992 
1993 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1994 	    fs_info->fs_devices->rw_devices == 1) {
1995 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1996 		goto out;
1997 	}
1998 
1999 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2000 		mutex_lock(&fs_info->chunk_mutex);
2001 		list_del_init(&device->dev_alloc_list);
2002 		device->fs_devices->rw_devices--;
2003 		mutex_unlock(&fs_info->chunk_mutex);
2004 	}
2005 
2006 	mutex_unlock(&uuid_mutex);
2007 	ret = btrfs_shrink_device(device, 0);
2008 	mutex_lock(&uuid_mutex);
2009 	if (ret)
2010 		goto error_undo;
2011 
2012 	/*
2013 	 * TODO: the superblock still includes this device in its num_devices
2014 	 * counter although write_all_supers() is not locked out. This
2015 	 * could give a filesystem state which requires a degraded mount.
2016 	 */
2017 	ret = btrfs_rm_dev_item(device);
2018 	if (ret)
2019 		goto error_undo;
2020 
2021 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2022 	btrfs_scrub_cancel_dev(device);
2023 
2024 	/*
2025 	 * the device list mutex makes sure that we don't change
2026 	 * the device list while someone else is writing out all
2027 	 * the device supers. Whoever is writing all supers, should
2028 	 * lock the device list mutex before getting the number of
2029 	 * devices in the super block (super_copy). Conversely,
2030 	 * whoever updates the number of devices in the super block
2031 	 * (super_copy) should hold the device list mutex.
2032 	 */
2033 
2034 	/*
2035 	 * In normal cases the cur_devices == fs_devices. But in case
2036 	 * of deleting a seed device, the cur_devices should point to
2037 	 * its own fs_devices listed under the fs_devices->seed.
2038 	 */
2039 	cur_devices = device->fs_devices;
2040 	mutex_lock(&fs_devices->device_list_mutex);
2041 	list_del_rcu(&device->dev_list);
2042 
2043 	cur_devices->num_devices--;
2044 	cur_devices->total_devices--;
2045 	/* Update total_devices of the parent fs_devices if it's seed */
2046 	if (cur_devices != fs_devices)
2047 		fs_devices->total_devices--;
2048 
2049 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2050 		cur_devices->missing_devices--;
2051 
2052 	btrfs_assign_next_active_device(device, NULL);
2053 
2054 	if (device->bdev) {
2055 		cur_devices->open_devices--;
2056 		/* remove sysfs entry */
2057 		btrfs_sysfs_rm_device_link(fs_devices, device);
2058 	}
2059 
2060 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2061 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2062 	mutex_unlock(&fs_devices->device_list_mutex);
2063 
2064 	/*
2065 	 * at this point, the device is zero sized and detached from
2066 	 * the devices list.  All that's left is to zero out the old
2067 	 * supers and free the device.
2068 	 */
2069 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2070 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2071 
2072 	btrfs_close_bdev(device);
2073 	synchronize_rcu();
2074 	btrfs_free_device(device);
2075 
2076 	if (cur_devices->open_devices == 0) {
2077 		while (fs_devices) {
2078 			if (fs_devices->seed == cur_devices) {
2079 				fs_devices->seed = cur_devices->seed;
2080 				break;
2081 			}
2082 			fs_devices = fs_devices->seed;
2083 		}
2084 		cur_devices->seed = NULL;
2085 		close_fs_devices(cur_devices);
2086 		free_fs_devices(cur_devices);
2087 	}
2088 
2089 out:
2090 	mutex_unlock(&uuid_mutex);
2091 	return ret;
2092 
2093 error_undo:
2094 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2095 		mutex_lock(&fs_info->chunk_mutex);
2096 		list_add(&device->dev_alloc_list,
2097 			 &fs_devices->alloc_list);
2098 		device->fs_devices->rw_devices++;
2099 		mutex_unlock(&fs_info->chunk_mutex);
2100 	}
2101 	goto out;
2102 }
2103 
2104 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2105 {
2106 	struct btrfs_fs_devices *fs_devices;
2107 
2108 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2109 
2110 	/*
2111 	 * in case of fs with no seed, srcdev->fs_devices will point
2112 	 * to fs_devices of fs_info. However when the dev being replaced is
2113 	 * a seed dev it will point to the seed's local fs_devices. In short
2114 	 * srcdev will have its correct fs_devices in both the cases.
2115 	 */
2116 	fs_devices = srcdev->fs_devices;
2117 
2118 	list_del_rcu(&srcdev->dev_list);
2119 	list_del(&srcdev->dev_alloc_list);
2120 	fs_devices->num_devices--;
2121 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2122 		fs_devices->missing_devices--;
2123 
2124 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2125 		fs_devices->rw_devices--;
2126 
2127 	if (srcdev->bdev)
2128 		fs_devices->open_devices--;
2129 }
2130 
2131 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2132 {
2133 	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2134 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2135 
2136 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2137 		/* zero out the old super if it is writable */
2138 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2139 	}
2140 
2141 	btrfs_close_bdev(srcdev);
2142 	synchronize_rcu();
2143 	btrfs_free_device(srcdev);
2144 
2145 	/* if this is no devs we rather delete the fs_devices */
2146 	if (!fs_devices->num_devices) {
2147 		struct btrfs_fs_devices *tmp_fs_devices;
2148 
2149 		/*
2150 		 * On a mounted FS, num_devices can't be zero unless it's a
2151 		 * seed. In case of a seed device being replaced, the replace
2152 		 * target added to the sprout FS, so there will be no more
2153 		 * device left under the seed FS.
2154 		 */
2155 		ASSERT(fs_devices->seeding);
2156 
2157 		tmp_fs_devices = fs_info->fs_devices;
2158 		while (tmp_fs_devices) {
2159 			if (tmp_fs_devices->seed == fs_devices) {
2160 				tmp_fs_devices->seed = fs_devices->seed;
2161 				break;
2162 			}
2163 			tmp_fs_devices = tmp_fs_devices->seed;
2164 		}
2165 		fs_devices->seed = NULL;
2166 		close_fs_devices(fs_devices);
2167 		free_fs_devices(fs_devices);
2168 	}
2169 }
2170 
2171 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2172 {
2173 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2174 
2175 	mutex_lock(&fs_devices->device_list_mutex);
2176 
2177 	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2178 
2179 	if (tgtdev->bdev)
2180 		fs_devices->open_devices--;
2181 
2182 	fs_devices->num_devices--;
2183 
2184 	btrfs_assign_next_active_device(tgtdev, NULL);
2185 
2186 	list_del_rcu(&tgtdev->dev_list);
2187 
2188 	mutex_unlock(&fs_devices->device_list_mutex);
2189 
2190 	/*
2191 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2192 	 * may lead to a call to btrfs_show_devname() which will try
2193 	 * to hold device_list_mutex. And here this device
2194 	 * is already out of device list, so we don't have to hold
2195 	 * the device_list_mutex lock.
2196 	 */
2197 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2198 
2199 	btrfs_close_bdev(tgtdev);
2200 	synchronize_rcu();
2201 	btrfs_free_device(tgtdev);
2202 }
2203 
2204 static struct btrfs_device *btrfs_find_device_by_path(
2205 		struct btrfs_fs_info *fs_info, const char *device_path)
2206 {
2207 	int ret = 0;
2208 	struct btrfs_super_block *disk_super;
2209 	u64 devid;
2210 	u8 *dev_uuid;
2211 	struct block_device *bdev;
2212 	struct buffer_head *bh;
2213 	struct btrfs_device *device;
2214 
2215 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2216 				    fs_info->bdev_holder, 0, &bdev, &bh);
2217 	if (ret)
2218 		return ERR_PTR(ret);
2219 	disk_super = (struct btrfs_super_block *)bh->b_data;
2220 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2221 	dev_uuid = disk_super->dev_item.uuid;
2222 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2223 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2224 					   disk_super->metadata_uuid, true);
2225 	else
2226 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2227 					   disk_super->fsid, true);
2228 
2229 	brelse(bh);
2230 	if (!device)
2231 		device = ERR_PTR(-ENOENT);
2232 	blkdev_put(bdev, FMODE_READ);
2233 	return device;
2234 }
2235 
2236 /*
2237  * Lookup a device given by device id, or the path if the id is 0.
2238  */
2239 struct btrfs_device *btrfs_find_device_by_devspec(
2240 		struct btrfs_fs_info *fs_info, u64 devid,
2241 		const char *device_path)
2242 {
2243 	struct btrfs_device *device;
2244 
2245 	if (devid) {
2246 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2247 					   NULL, true);
2248 		if (!device)
2249 			return ERR_PTR(-ENOENT);
2250 		return device;
2251 	}
2252 
2253 	if (!device_path || !device_path[0])
2254 		return ERR_PTR(-EINVAL);
2255 
2256 	if (strcmp(device_path, "missing") == 0) {
2257 		/* Find first missing device */
2258 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2259 				    dev_list) {
2260 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2261 				     &device->dev_state) && !device->bdev)
2262 				return device;
2263 		}
2264 		return ERR_PTR(-ENOENT);
2265 	}
2266 
2267 	return btrfs_find_device_by_path(fs_info, device_path);
2268 }
2269 
2270 /*
2271  * does all the dirty work required for changing file system's UUID.
2272  */
2273 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2274 {
2275 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2276 	struct btrfs_fs_devices *old_devices;
2277 	struct btrfs_fs_devices *seed_devices;
2278 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2279 	struct btrfs_device *device;
2280 	u64 super_flags;
2281 
2282 	lockdep_assert_held(&uuid_mutex);
2283 	if (!fs_devices->seeding)
2284 		return -EINVAL;
2285 
2286 	seed_devices = alloc_fs_devices(NULL, NULL);
2287 	if (IS_ERR(seed_devices))
2288 		return PTR_ERR(seed_devices);
2289 
2290 	old_devices = clone_fs_devices(fs_devices);
2291 	if (IS_ERR(old_devices)) {
2292 		kfree(seed_devices);
2293 		return PTR_ERR(old_devices);
2294 	}
2295 
2296 	list_add(&old_devices->fs_list, &fs_uuids);
2297 
2298 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2299 	seed_devices->opened = 1;
2300 	INIT_LIST_HEAD(&seed_devices->devices);
2301 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2302 	mutex_init(&seed_devices->device_list_mutex);
2303 
2304 	mutex_lock(&fs_devices->device_list_mutex);
2305 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2306 			      synchronize_rcu);
2307 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2308 		device->fs_devices = seed_devices;
2309 
2310 	mutex_lock(&fs_info->chunk_mutex);
2311 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2312 	mutex_unlock(&fs_info->chunk_mutex);
2313 
2314 	fs_devices->seeding = false;
2315 	fs_devices->num_devices = 0;
2316 	fs_devices->open_devices = 0;
2317 	fs_devices->missing_devices = 0;
2318 	fs_devices->rotating = false;
2319 	fs_devices->seed = seed_devices;
2320 
2321 	generate_random_uuid(fs_devices->fsid);
2322 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2323 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2324 	mutex_unlock(&fs_devices->device_list_mutex);
2325 
2326 	super_flags = btrfs_super_flags(disk_super) &
2327 		      ~BTRFS_SUPER_FLAG_SEEDING;
2328 	btrfs_set_super_flags(disk_super, super_flags);
2329 
2330 	return 0;
2331 }
2332 
2333 /*
2334  * Store the expected generation for seed devices in device items.
2335  */
2336 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2337 {
2338 	struct btrfs_fs_info *fs_info = trans->fs_info;
2339 	struct btrfs_root *root = fs_info->chunk_root;
2340 	struct btrfs_path *path;
2341 	struct extent_buffer *leaf;
2342 	struct btrfs_dev_item *dev_item;
2343 	struct btrfs_device *device;
2344 	struct btrfs_key key;
2345 	u8 fs_uuid[BTRFS_FSID_SIZE];
2346 	u8 dev_uuid[BTRFS_UUID_SIZE];
2347 	u64 devid;
2348 	int ret;
2349 
2350 	path = btrfs_alloc_path();
2351 	if (!path)
2352 		return -ENOMEM;
2353 
2354 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2355 	key.offset = 0;
2356 	key.type = BTRFS_DEV_ITEM_KEY;
2357 
2358 	while (1) {
2359 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2360 		if (ret < 0)
2361 			goto error;
2362 
2363 		leaf = path->nodes[0];
2364 next_slot:
2365 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2366 			ret = btrfs_next_leaf(root, path);
2367 			if (ret > 0)
2368 				break;
2369 			if (ret < 0)
2370 				goto error;
2371 			leaf = path->nodes[0];
2372 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 			btrfs_release_path(path);
2374 			continue;
2375 		}
2376 
2377 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2378 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2379 		    key.type != BTRFS_DEV_ITEM_KEY)
2380 			break;
2381 
2382 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2383 					  struct btrfs_dev_item);
2384 		devid = btrfs_device_id(leaf, dev_item);
2385 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2386 				   BTRFS_UUID_SIZE);
2387 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2388 				   BTRFS_FSID_SIZE);
2389 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2390 					   fs_uuid, true);
2391 		BUG_ON(!device); /* Logic error */
2392 
2393 		if (device->fs_devices->seeding) {
2394 			btrfs_set_device_generation(leaf, dev_item,
2395 						    device->generation);
2396 			btrfs_mark_buffer_dirty(leaf);
2397 		}
2398 
2399 		path->slots[0]++;
2400 		goto next_slot;
2401 	}
2402 	ret = 0;
2403 error:
2404 	btrfs_free_path(path);
2405 	return ret;
2406 }
2407 
2408 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2409 {
2410 	struct btrfs_root *root = fs_info->dev_root;
2411 	struct request_queue *q;
2412 	struct btrfs_trans_handle *trans;
2413 	struct btrfs_device *device;
2414 	struct block_device *bdev;
2415 	struct super_block *sb = fs_info->sb;
2416 	struct rcu_string *name;
2417 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2418 	u64 orig_super_total_bytes;
2419 	u64 orig_super_num_devices;
2420 	int seeding_dev = 0;
2421 	int ret = 0;
2422 	bool unlocked = false;
2423 
2424 	if (sb_rdonly(sb) && !fs_devices->seeding)
2425 		return -EROFS;
2426 
2427 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2428 				  fs_info->bdev_holder);
2429 	if (IS_ERR(bdev))
2430 		return PTR_ERR(bdev);
2431 
2432 	if (fs_devices->seeding) {
2433 		seeding_dev = 1;
2434 		down_write(&sb->s_umount);
2435 		mutex_lock(&uuid_mutex);
2436 	}
2437 
2438 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2439 
2440 	mutex_lock(&fs_devices->device_list_mutex);
2441 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2442 		if (device->bdev == bdev) {
2443 			ret = -EEXIST;
2444 			mutex_unlock(
2445 				&fs_devices->device_list_mutex);
2446 			goto error;
2447 		}
2448 	}
2449 	mutex_unlock(&fs_devices->device_list_mutex);
2450 
2451 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2452 	if (IS_ERR(device)) {
2453 		/* we can safely leave the fs_devices entry around */
2454 		ret = PTR_ERR(device);
2455 		goto error;
2456 	}
2457 
2458 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2459 	if (!name) {
2460 		ret = -ENOMEM;
2461 		goto error_free_device;
2462 	}
2463 	rcu_assign_pointer(device->name, name);
2464 
2465 	trans = btrfs_start_transaction(root, 0);
2466 	if (IS_ERR(trans)) {
2467 		ret = PTR_ERR(trans);
2468 		goto error_free_device;
2469 	}
2470 
2471 	q = bdev_get_queue(bdev);
2472 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2473 	device->generation = trans->transid;
2474 	device->io_width = fs_info->sectorsize;
2475 	device->io_align = fs_info->sectorsize;
2476 	device->sector_size = fs_info->sectorsize;
2477 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2478 					 fs_info->sectorsize);
2479 	device->disk_total_bytes = device->total_bytes;
2480 	device->commit_total_bytes = device->total_bytes;
2481 	device->fs_info = fs_info;
2482 	device->bdev = bdev;
2483 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2484 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2485 	device->mode = FMODE_EXCL;
2486 	device->dev_stats_valid = 1;
2487 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2488 
2489 	if (seeding_dev) {
2490 		sb->s_flags &= ~SB_RDONLY;
2491 		ret = btrfs_prepare_sprout(fs_info);
2492 		if (ret) {
2493 			btrfs_abort_transaction(trans, ret);
2494 			goto error_trans;
2495 		}
2496 	}
2497 
2498 	device->fs_devices = fs_devices;
2499 
2500 	mutex_lock(&fs_devices->device_list_mutex);
2501 	mutex_lock(&fs_info->chunk_mutex);
2502 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2503 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2504 	fs_devices->num_devices++;
2505 	fs_devices->open_devices++;
2506 	fs_devices->rw_devices++;
2507 	fs_devices->total_devices++;
2508 	fs_devices->total_rw_bytes += device->total_bytes;
2509 
2510 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2511 
2512 	if (!blk_queue_nonrot(q))
2513 		fs_devices->rotating = true;
2514 
2515 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2516 	btrfs_set_super_total_bytes(fs_info->super_copy,
2517 		round_down(orig_super_total_bytes + device->total_bytes,
2518 			   fs_info->sectorsize));
2519 
2520 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2521 	btrfs_set_super_num_devices(fs_info->super_copy,
2522 				    orig_super_num_devices + 1);
2523 
2524 	/* add sysfs device entry */
2525 	btrfs_sysfs_add_device_link(fs_devices, device);
2526 
2527 	/*
2528 	 * we've got more storage, clear any full flags on the space
2529 	 * infos
2530 	 */
2531 	btrfs_clear_space_info_full(fs_info);
2532 
2533 	mutex_unlock(&fs_info->chunk_mutex);
2534 	mutex_unlock(&fs_devices->device_list_mutex);
2535 
2536 	if (seeding_dev) {
2537 		mutex_lock(&fs_info->chunk_mutex);
2538 		ret = init_first_rw_device(trans);
2539 		mutex_unlock(&fs_info->chunk_mutex);
2540 		if (ret) {
2541 			btrfs_abort_transaction(trans, ret);
2542 			goto error_sysfs;
2543 		}
2544 	}
2545 
2546 	ret = btrfs_add_dev_item(trans, device);
2547 	if (ret) {
2548 		btrfs_abort_transaction(trans, ret);
2549 		goto error_sysfs;
2550 	}
2551 
2552 	if (seeding_dev) {
2553 		ret = btrfs_finish_sprout(trans);
2554 		if (ret) {
2555 			btrfs_abort_transaction(trans, ret);
2556 			goto error_sysfs;
2557 		}
2558 
2559 		btrfs_sysfs_update_sprout_fsid(fs_devices,
2560 				fs_info->fs_devices->fsid);
2561 	}
2562 
2563 	ret = btrfs_commit_transaction(trans);
2564 
2565 	if (seeding_dev) {
2566 		mutex_unlock(&uuid_mutex);
2567 		up_write(&sb->s_umount);
2568 		unlocked = true;
2569 
2570 		if (ret) /* transaction commit */
2571 			return ret;
2572 
2573 		ret = btrfs_relocate_sys_chunks(fs_info);
2574 		if (ret < 0)
2575 			btrfs_handle_fs_error(fs_info, ret,
2576 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2577 		trans = btrfs_attach_transaction(root);
2578 		if (IS_ERR(trans)) {
2579 			if (PTR_ERR(trans) == -ENOENT)
2580 				return 0;
2581 			ret = PTR_ERR(trans);
2582 			trans = NULL;
2583 			goto error_sysfs;
2584 		}
2585 		ret = btrfs_commit_transaction(trans);
2586 	}
2587 
2588 	/* Update ctime/mtime for libblkid */
2589 	update_dev_time(device_path);
2590 	return ret;
2591 
2592 error_sysfs:
2593 	btrfs_sysfs_rm_device_link(fs_devices, device);
2594 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2595 	mutex_lock(&fs_info->chunk_mutex);
2596 	list_del_rcu(&device->dev_list);
2597 	list_del(&device->dev_alloc_list);
2598 	fs_info->fs_devices->num_devices--;
2599 	fs_info->fs_devices->open_devices--;
2600 	fs_info->fs_devices->rw_devices--;
2601 	fs_info->fs_devices->total_devices--;
2602 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2603 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2604 	btrfs_set_super_total_bytes(fs_info->super_copy,
2605 				    orig_super_total_bytes);
2606 	btrfs_set_super_num_devices(fs_info->super_copy,
2607 				    orig_super_num_devices);
2608 	mutex_unlock(&fs_info->chunk_mutex);
2609 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2610 error_trans:
2611 	if (seeding_dev)
2612 		sb->s_flags |= SB_RDONLY;
2613 	if (trans)
2614 		btrfs_end_transaction(trans);
2615 error_free_device:
2616 	btrfs_free_device(device);
2617 error:
2618 	blkdev_put(bdev, FMODE_EXCL);
2619 	if (seeding_dev && !unlocked) {
2620 		mutex_unlock(&uuid_mutex);
2621 		up_write(&sb->s_umount);
2622 	}
2623 	return ret;
2624 }
2625 
2626 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2627 					struct btrfs_device *device)
2628 {
2629 	int ret;
2630 	struct btrfs_path *path;
2631 	struct btrfs_root *root = device->fs_info->chunk_root;
2632 	struct btrfs_dev_item *dev_item;
2633 	struct extent_buffer *leaf;
2634 	struct btrfs_key key;
2635 
2636 	path = btrfs_alloc_path();
2637 	if (!path)
2638 		return -ENOMEM;
2639 
2640 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2641 	key.type = BTRFS_DEV_ITEM_KEY;
2642 	key.offset = device->devid;
2643 
2644 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2645 	if (ret < 0)
2646 		goto out;
2647 
2648 	if (ret > 0) {
2649 		ret = -ENOENT;
2650 		goto out;
2651 	}
2652 
2653 	leaf = path->nodes[0];
2654 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2655 
2656 	btrfs_set_device_id(leaf, dev_item, device->devid);
2657 	btrfs_set_device_type(leaf, dev_item, device->type);
2658 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2659 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2660 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2661 	btrfs_set_device_total_bytes(leaf, dev_item,
2662 				     btrfs_device_get_disk_total_bytes(device));
2663 	btrfs_set_device_bytes_used(leaf, dev_item,
2664 				    btrfs_device_get_bytes_used(device));
2665 	btrfs_mark_buffer_dirty(leaf);
2666 
2667 out:
2668 	btrfs_free_path(path);
2669 	return ret;
2670 }
2671 
2672 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2673 		      struct btrfs_device *device, u64 new_size)
2674 {
2675 	struct btrfs_fs_info *fs_info = device->fs_info;
2676 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2677 	u64 old_total;
2678 	u64 diff;
2679 
2680 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2681 		return -EACCES;
2682 
2683 	new_size = round_down(new_size, fs_info->sectorsize);
2684 
2685 	mutex_lock(&fs_info->chunk_mutex);
2686 	old_total = btrfs_super_total_bytes(super_copy);
2687 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2688 
2689 	if (new_size <= device->total_bytes ||
2690 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2691 		mutex_unlock(&fs_info->chunk_mutex);
2692 		return -EINVAL;
2693 	}
2694 
2695 	btrfs_set_super_total_bytes(super_copy,
2696 			round_down(old_total + diff, fs_info->sectorsize));
2697 	device->fs_devices->total_rw_bytes += diff;
2698 
2699 	btrfs_device_set_total_bytes(device, new_size);
2700 	btrfs_device_set_disk_total_bytes(device, new_size);
2701 	btrfs_clear_space_info_full(device->fs_info);
2702 	if (list_empty(&device->post_commit_list))
2703 		list_add_tail(&device->post_commit_list,
2704 			      &trans->transaction->dev_update_list);
2705 	mutex_unlock(&fs_info->chunk_mutex);
2706 
2707 	return btrfs_update_device(trans, device);
2708 }
2709 
2710 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2711 {
2712 	struct btrfs_fs_info *fs_info = trans->fs_info;
2713 	struct btrfs_root *root = fs_info->chunk_root;
2714 	int ret;
2715 	struct btrfs_path *path;
2716 	struct btrfs_key key;
2717 
2718 	path = btrfs_alloc_path();
2719 	if (!path)
2720 		return -ENOMEM;
2721 
2722 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2723 	key.offset = chunk_offset;
2724 	key.type = BTRFS_CHUNK_ITEM_KEY;
2725 
2726 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2727 	if (ret < 0)
2728 		goto out;
2729 	else if (ret > 0) { /* Logic error or corruption */
2730 		btrfs_handle_fs_error(fs_info, -ENOENT,
2731 				      "Failed lookup while freeing chunk.");
2732 		ret = -ENOENT;
2733 		goto out;
2734 	}
2735 
2736 	ret = btrfs_del_item(trans, root, path);
2737 	if (ret < 0)
2738 		btrfs_handle_fs_error(fs_info, ret,
2739 				      "Failed to delete chunk item.");
2740 out:
2741 	btrfs_free_path(path);
2742 	return ret;
2743 }
2744 
2745 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2746 {
2747 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2748 	struct btrfs_disk_key *disk_key;
2749 	struct btrfs_chunk *chunk;
2750 	u8 *ptr;
2751 	int ret = 0;
2752 	u32 num_stripes;
2753 	u32 array_size;
2754 	u32 len = 0;
2755 	u32 cur;
2756 	struct btrfs_key key;
2757 
2758 	mutex_lock(&fs_info->chunk_mutex);
2759 	array_size = btrfs_super_sys_array_size(super_copy);
2760 
2761 	ptr = super_copy->sys_chunk_array;
2762 	cur = 0;
2763 
2764 	while (cur < array_size) {
2765 		disk_key = (struct btrfs_disk_key *)ptr;
2766 		btrfs_disk_key_to_cpu(&key, disk_key);
2767 
2768 		len = sizeof(*disk_key);
2769 
2770 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2771 			chunk = (struct btrfs_chunk *)(ptr + len);
2772 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2773 			len += btrfs_chunk_item_size(num_stripes);
2774 		} else {
2775 			ret = -EIO;
2776 			break;
2777 		}
2778 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2779 		    key.offset == chunk_offset) {
2780 			memmove(ptr, ptr + len, array_size - (cur + len));
2781 			array_size -= len;
2782 			btrfs_set_super_sys_array_size(super_copy, array_size);
2783 		} else {
2784 			ptr += len;
2785 			cur += len;
2786 		}
2787 	}
2788 	mutex_unlock(&fs_info->chunk_mutex);
2789 	return ret;
2790 }
2791 
2792 /*
2793  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2794  * @logical: Logical block offset in bytes.
2795  * @length: Length of extent in bytes.
2796  *
2797  * Return: Chunk mapping or ERR_PTR.
2798  */
2799 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2800 				       u64 logical, u64 length)
2801 {
2802 	struct extent_map_tree *em_tree;
2803 	struct extent_map *em;
2804 
2805 	em_tree = &fs_info->mapping_tree;
2806 	read_lock(&em_tree->lock);
2807 	em = lookup_extent_mapping(em_tree, logical, length);
2808 	read_unlock(&em_tree->lock);
2809 
2810 	if (!em) {
2811 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2812 			   logical, length);
2813 		return ERR_PTR(-EINVAL);
2814 	}
2815 
2816 	if (em->start > logical || em->start + em->len < logical) {
2817 		btrfs_crit(fs_info,
2818 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2819 			   logical, length, em->start, em->start + em->len);
2820 		free_extent_map(em);
2821 		return ERR_PTR(-EINVAL);
2822 	}
2823 
2824 	/* callers are responsible for dropping em's ref. */
2825 	return em;
2826 }
2827 
2828 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2829 {
2830 	struct btrfs_fs_info *fs_info = trans->fs_info;
2831 	struct extent_map *em;
2832 	struct map_lookup *map;
2833 	u64 dev_extent_len = 0;
2834 	int i, ret = 0;
2835 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2836 
2837 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2838 	if (IS_ERR(em)) {
2839 		/*
2840 		 * This is a logic error, but we don't want to just rely on the
2841 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2842 		 * do anything we still error out.
2843 		 */
2844 		ASSERT(0);
2845 		return PTR_ERR(em);
2846 	}
2847 	map = em->map_lookup;
2848 	mutex_lock(&fs_info->chunk_mutex);
2849 	check_system_chunk(trans, map->type);
2850 	mutex_unlock(&fs_info->chunk_mutex);
2851 
2852 	/*
2853 	 * Take the device list mutex to prevent races with the final phase of
2854 	 * a device replace operation that replaces the device object associated
2855 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2856 	 */
2857 	mutex_lock(&fs_devices->device_list_mutex);
2858 	for (i = 0; i < map->num_stripes; i++) {
2859 		struct btrfs_device *device = map->stripes[i].dev;
2860 		ret = btrfs_free_dev_extent(trans, device,
2861 					    map->stripes[i].physical,
2862 					    &dev_extent_len);
2863 		if (ret) {
2864 			mutex_unlock(&fs_devices->device_list_mutex);
2865 			btrfs_abort_transaction(trans, ret);
2866 			goto out;
2867 		}
2868 
2869 		if (device->bytes_used > 0) {
2870 			mutex_lock(&fs_info->chunk_mutex);
2871 			btrfs_device_set_bytes_used(device,
2872 					device->bytes_used - dev_extent_len);
2873 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2874 			btrfs_clear_space_info_full(fs_info);
2875 			mutex_unlock(&fs_info->chunk_mutex);
2876 		}
2877 
2878 		ret = btrfs_update_device(trans, device);
2879 		if (ret) {
2880 			mutex_unlock(&fs_devices->device_list_mutex);
2881 			btrfs_abort_transaction(trans, ret);
2882 			goto out;
2883 		}
2884 	}
2885 	mutex_unlock(&fs_devices->device_list_mutex);
2886 
2887 	ret = btrfs_free_chunk(trans, chunk_offset);
2888 	if (ret) {
2889 		btrfs_abort_transaction(trans, ret);
2890 		goto out;
2891 	}
2892 
2893 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2894 
2895 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2896 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2897 		if (ret) {
2898 			btrfs_abort_transaction(trans, ret);
2899 			goto out;
2900 		}
2901 	}
2902 
2903 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2904 	if (ret) {
2905 		btrfs_abort_transaction(trans, ret);
2906 		goto out;
2907 	}
2908 
2909 out:
2910 	/* once for us */
2911 	free_extent_map(em);
2912 	return ret;
2913 }
2914 
2915 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2916 {
2917 	struct btrfs_root *root = fs_info->chunk_root;
2918 	struct btrfs_trans_handle *trans;
2919 	struct btrfs_block_group *block_group;
2920 	int ret;
2921 
2922 	/*
2923 	 * Prevent races with automatic removal of unused block groups.
2924 	 * After we relocate and before we remove the chunk with offset
2925 	 * chunk_offset, automatic removal of the block group can kick in,
2926 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2927 	 *
2928 	 * Make sure to acquire this mutex before doing a tree search (dev
2929 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2930 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2931 	 * we release the path used to search the chunk/dev tree and before
2932 	 * the current task acquires this mutex and calls us.
2933 	 */
2934 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2935 
2936 	/* step one, relocate all the extents inside this chunk */
2937 	btrfs_scrub_pause(fs_info);
2938 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2939 	btrfs_scrub_continue(fs_info);
2940 	if (ret)
2941 		return ret;
2942 
2943 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
2944 	if (!block_group)
2945 		return -ENOENT;
2946 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
2947 	btrfs_put_block_group(block_group);
2948 
2949 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2950 						     chunk_offset);
2951 	if (IS_ERR(trans)) {
2952 		ret = PTR_ERR(trans);
2953 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2954 		return ret;
2955 	}
2956 
2957 	/*
2958 	 * step two, delete the device extents and the
2959 	 * chunk tree entries
2960 	 */
2961 	ret = btrfs_remove_chunk(trans, chunk_offset);
2962 	btrfs_end_transaction(trans);
2963 	return ret;
2964 }
2965 
2966 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2967 {
2968 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2969 	struct btrfs_path *path;
2970 	struct extent_buffer *leaf;
2971 	struct btrfs_chunk *chunk;
2972 	struct btrfs_key key;
2973 	struct btrfs_key found_key;
2974 	u64 chunk_type;
2975 	bool retried = false;
2976 	int failed = 0;
2977 	int ret;
2978 
2979 	path = btrfs_alloc_path();
2980 	if (!path)
2981 		return -ENOMEM;
2982 
2983 again:
2984 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2985 	key.offset = (u64)-1;
2986 	key.type = BTRFS_CHUNK_ITEM_KEY;
2987 
2988 	while (1) {
2989 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2990 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2991 		if (ret < 0) {
2992 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2993 			goto error;
2994 		}
2995 		BUG_ON(ret == 0); /* Corruption */
2996 
2997 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2998 					  key.type);
2999 		if (ret)
3000 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3001 		if (ret < 0)
3002 			goto error;
3003 		if (ret > 0)
3004 			break;
3005 
3006 		leaf = path->nodes[0];
3007 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3008 
3009 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3010 				       struct btrfs_chunk);
3011 		chunk_type = btrfs_chunk_type(leaf, chunk);
3012 		btrfs_release_path(path);
3013 
3014 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3015 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3016 			if (ret == -ENOSPC)
3017 				failed++;
3018 			else
3019 				BUG_ON(ret);
3020 		}
3021 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3022 
3023 		if (found_key.offset == 0)
3024 			break;
3025 		key.offset = found_key.offset - 1;
3026 	}
3027 	ret = 0;
3028 	if (failed && !retried) {
3029 		failed = 0;
3030 		retried = true;
3031 		goto again;
3032 	} else if (WARN_ON(failed && retried)) {
3033 		ret = -ENOSPC;
3034 	}
3035 error:
3036 	btrfs_free_path(path);
3037 	return ret;
3038 }
3039 
3040 /*
3041  * return 1 : allocate a data chunk successfully,
3042  * return <0: errors during allocating a data chunk,
3043  * return 0 : no need to allocate a data chunk.
3044  */
3045 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3046 				      u64 chunk_offset)
3047 {
3048 	struct btrfs_block_group *cache;
3049 	u64 bytes_used;
3050 	u64 chunk_type;
3051 
3052 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3053 	ASSERT(cache);
3054 	chunk_type = cache->flags;
3055 	btrfs_put_block_group(cache);
3056 
3057 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3058 		return 0;
3059 
3060 	spin_lock(&fs_info->data_sinfo->lock);
3061 	bytes_used = fs_info->data_sinfo->bytes_used;
3062 	spin_unlock(&fs_info->data_sinfo->lock);
3063 
3064 	if (!bytes_used) {
3065 		struct btrfs_trans_handle *trans;
3066 		int ret;
3067 
3068 		trans =	btrfs_join_transaction(fs_info->tree_root);
3069 		if (IS_ERR(trans))
3070 			return PTR_ERR(trans);
3071 
3072 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3073 		btrfs_end_transaction(trans);
3074 		if (ret < 0)
3075 			return ret;
3076 		return 1;
3077 	}
3078 
3079 	return 0;
3080 }
3081 
3082 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3083 			       struct btrfs_balance_control *bctl)
3084 {
3085 	struct btrfs_root *root = fs_info->tree_root;
3086 	struct btrfs_trans_handle *trans;
3087 	struct btrfs_balance_item *item;
3088 	struct btrfs_disk_balance_args disk_bargs;
3089 	struct btrfs_path *path;
3090 	struct extent_buffer *leaf;
3091 	struct btrfs_key key;
3092 	int ret, err;
3093 
3094 	path = btrfs_alloc_path();
3095 	if (!path)
3096 		return -ENOMEM;
3097 
3098 	trans = btrfs_start_transaction(root, 0);
3099 	if (IS_ERR(trans)) {
3100 		btrfs_free_path(path);
3101 		return PTR_ERR(trans);
3102 	}
3103 
3104 	key.objectid = BTRFS_BALANCE_OBJECTID;
3105 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3106 	key.offset = 0;
3107 
3108 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3109 				      sizeof(*item));
3110 	if (ret)
3111 		goto out;
3112 
3113 	leaf = path->nodes[0];
3114 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3115 
3116 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3117 
3118 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3119 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3120 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3121 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3122 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3123 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3124 
3125 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3126 
3127 	btrfs_mark_buffer_dirty(leaf);
3128 out:
3129 	btrfs_free_path(path);
3130 	err = btrfs_commit_transaction(trans);
3131 	if (err && !ret)
3132 		ret = err;
3133 	return ret;
3134 }
3135 
3136 static int del_balance_item(struct btrfs_fs_info *fs_info)
3137 {
3138 	struct btrfs_root *root = fs_info->tree_root;
3139 	struct btrfs_trans_handle *trans;
3140 	struct btrfs_path *path;
3141 	struct btrfs_key key;
3142 	int ret, err;
3143 
3144 	path = btrfs_alloc_path();
3145 	if (!path)
3146 		return -ENOMEM;
3147 
3148 	trans = btrfs_start_transaction(root, 0);
3149 	if (IS_ERR(trans)) {
3150 		btrfs_free_path(path);
3151 		return PTR_ERR(trans);
3152 	}
3153 
3154 	key.objectid = BTRFS_BALANCE_OBJECTID;
3155 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3156 	key.offset = 0;
3157 
3158 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3159 	if (ret < 0)
3160 		goto out;
3161 	if (ret > 0) {
3162 		ret = -ENOENT;
3163 		goto out;
3164 	}
3165 
3166 	ret = btrfs_del_item(trans, root, path);
3167 out:
3168 	btrfs_free_path(path);
3169 	err = btrfs_commit_transaction(trans);
3170 	if (err && !ret)
3171 		ret = err;
3172 	return ret;
3173 }
3174 
3175 /*
3176  * This is a heuristic used to reduce the number of chunks balanced on
3177  * resume after balance was interrupted.
3178  */
3179 static void update_balance_args(struct btrfs_balance_control *bctl)
3180 {
3181 	/*
3182 	 * Turn on soft mode for chunk types that were being converted.
3183 	 */
3184 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3185 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3186 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3187 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3188 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3189 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3190 
3191 	/*
3192 	 * Turn on usage filter if is not already used.  The idea is
3193 	 * that chunks that we have already balanced should be
3194 	 * reasonably full.  Don't do it for chunks that are being
3195 	 * converted - that will keep us from relocating unconverted
3196 	 * (albeit full) chunks.
3197 	 */
3198 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3199 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3200 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3201 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3202 		bctl->data.usage = 90;
3203 	}
3204 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3205 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3206 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3207 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3208 		bctl->sys.usage = 90;
3209 	}
3210 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3211 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3212 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3213 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3214 		bctl->meta.usage = 90;
3215 	}
3216 }
3217 
3218 /*
3219  * Clear the balance status in fs_info and delete the balance item from disk.
3220  */
3221 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3222 {
3223 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3224 	int ret;
3225 
3226 	BUG_ON(!fs_info->balance_ctl);
3227 
3228 	spin_lock(&fs_info->balance_lock);
3229 	fs_info->balance_ctl = NULL;
3230 	spin_unlock(&fs_info->balance_lock);
3231 
3232 	kfree(bctl);
3233 	ret = del_balance_item(fs_info);
3234 	if (ret)
3235 		btrfs_handle_fs_error(fs_info, ret, NULL);
3236 }
3237 
3238 /*
3239  * Balance filters.  Return 1 if chunk should be filtered out
3240  * (should not be balanced).
3241  */
3242 static int chunk_profiles_filter(u64 chunk_type,
3243 				 struct btrfs_balance_args *bargs)
3244 {
3245 	chunk_type = chunk_to_extended(chunk_type) &
3246 				BTRFS_EXTENDED_PROFILE_MASK;
3247 
3248 	if (bargs->profiles & chunk_type)
3249 		return 0;
3250 
3251 	return 1;
3252 }
3253 
3254 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3255 			      struct btrfs_balance_args *bargs)
3256 {
3257 	struct btrfs_block_group *cache;
3258 	u64 chunk_used;
3259 	u64 user_thresh_min;
3260 	u64 user_thresh_max;
3261 	int ret = 1;
3262 
3263 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3264 	chunk_used = cache->used;
3265 
3266 	if (bargs->usage_min == 0)
3267 		user_thresh_min = 0;
3268 	else
3269 		user_thresh_min = div_factor_fine(cache->length,
3270 						  bargs->usage_min);
3271 
3272 	if (bargs->usage_max == 0)
3273 		user_thresh_max = 1;
3274 	else if (bargs->usage_max > 100)
3275 		user_thresh_max = cache->length;
3276 	else
3277 		user_thresh_max = div_factor_fine(cache->length,
3278 						  bargs->usage_max);
3279 
3280 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3281 		ret = 0;
3282 
3283 	btrfs_put_block_group(cache);
3284 	return ret;
3285 }
3286 
3287 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3288 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3289 {
3290 	struct btrfs_block_group *cache;
3291 	u64 chunk_used, user_thresh;
3292 	int ret = 1;
3293 
3294 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3295 	chunk_used = cache->used;
3296 
3297 	if (bargs->usage_min == 0)
3298 		user_thresh = 1;
3299 	else if (bargs->usage > 100)
3300 		user_thresh = cache->length;
3301 	else
3302 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3303 
3304 	if (chunk_used < user_thresh)
3305 		ret = 0;
3306 
3307 	btrfs_put_block_group(cache);
3308 	return ret;
3309 }
3310 
3311 static int chunk_devid_filter(struct extent_buffer *leaf,
3312 			      struct btrfs_chunk *chunk,
3313 			      struct btrfs_balance_args *bargs)
3314 {
3315 	struct btrfs_stripe *stripe;
3316 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3317 	int i;
3318 
3319 	for (i = 0; i < num_stripes; i++) {
3320 		stripe = btrfs_stripe_nr(chunk, i);
3321 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3322 			return 0;
3323 	}
3324 
3325 	return 1;
3326 }
3327 
3328 static u64 calc_data_stripes(u64 type, int num_stripes)
3329 {
3330 	const int index = btrfs_bg_flags_to_raid_index(type);
3331 	const int ncopies = btrfs_raid_array[index].ncopies;
3332 	const int nparity = btrfs_raid_array[index].nparity;
3333 
3334 	if (nparity)
3335 		return num_stripes - nparity;
3336 	else
3337 		return num_stripes / ncopies;
3338 }
3339 
3340 /* [pstart, pend) */
3341 static int chunk_drange_filter(struct extent_buffer *leaf,
3342 			       struct btrfs_chunk *chunk,
3343 			       struct btrfs_balance_args *bargs)
3344 {
3345 	struct btrfs_stripe *stripe;
3346 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3347 	u64 stripe_offset;
3348 	u64 stripe_length;
3349 	u64 type;
3350 	int factor;
3351 	int i;
3352 
3353 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3354 		return 0;
3355 
3356 	type = btrfs_chunk_type(leaf, chunk);
3357 	factor = calc_data_stripes(type, num_stripes);
3358 
3359 	for (i = 0; i < num_stripes; i++) {
3360 		stripe = btrfs_stripe_nr(chunk, i);
3361 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3362 			continue;
3363 
3364 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3365 		stripe_length = btrfs_chunk_length(leaf, chunk);
3366 		stripe_length = div_u64(stripe_length, factor);
3367 
3368 		if (stripe_offset < bargs->pend &&
3369 		    stripe_offset + stripe_length > bargs->pstart)
3370 			return 0;
3371 	}
3372 
3373 	return 1;
3374 }
3375 
3376 /* [vstart, vend) */
3377 static int chunk_vrange_filter(struct extent_buffer *leaf,
3378 			       struct btrfs_chunk *chunk,
3379 			       u64 chunk_offset,
3380 			       struct btrfs_balance_args *bargs)
3381 {
3382 	if (chunk_offset < bargs->vend &&
3383 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3384 		/* at least part of the chunk is inside this vrange */
3385 		return 0;
3386 
3387 	return 1;
3388 }
3389 
3390 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3391 			       struct btrfs_chunk *chunk,
3392 			       struct btrfs_balance_args *bargs)
3393 {
3394 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3395 
3396 	if (bargs->stripes_min <= num_stripes
3397 			&& num_stripes <= bargs->stripes_max)
3398 		return 0;
3399 
3400 	return 1;
3401 }
3402 
3403 static int chunk_soft_convert_filter(u64 chunk_type,
3404 				     struct btrfs_balance_args *bargs)
3405 {
3406 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3407 		return 0;
3408 
3409 	chunk_type = chunk_to_extended(chunk_type) &
3410 				BTRFS_EXTENDED_PROFILE_MASK;
3411 
3412 	if (bargs->target == chunk_type)
3413 		return 1;
3414 
3415 	return 0;
3416 }
3417 
3418 static int should_balance_chunk(struct extent_buffer *leaf,
3419 				struct btrfs_chunk *chunk, u64 chunk_offset)
3420 {
3421 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3422 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3423 	struct btrfs_balance_args *bargs = NULL;
3424 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3425 
3426 	/* type filter */
3427 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3428 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3429 		return 0;
3430 	}
3431 
3432 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3433 		bargs = &bctl->data;
3434 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3435 		bargs = &bctl->sys;
3436 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3437 		bargs = &bctl->meta;
3438 
3439 	/* profiles filter */
3440 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3441 	    chunk_profiles_filter(chunk_type, bargs)) {
3442 		return 0;
3443 	}
3444 
3445 	/* usage filter */
3446 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3447 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3448 		return 0;
3449 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3450 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3451 		return 0;
3452 	}
3453 
3454 	/* devid filter */
3455 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3456 	    chunk_devid_filter(leaf, chunk, bargs)) {
3457 		return 0;
3458 	}
3459 
3460 	/* drange filter, makes sense only with devid filter */
3461 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3462 	    chunk_drange_filter(leaf, chunk, bargs)) {
3463 		return 0;
3464 	}
3465 
3466 	/* vrange filter */
3467 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3468 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3469 		return 0;
3470 	}
3471 
3472 	/* stripes filter */
3473 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3474 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3475 		return 0;
3476 	}
3477 
3478 	/* soft profile changing mode */
3479 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3480 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3481 		return 0;
3482 	}
3483 
3484 	/*
3485 	 * limited by count, must be the last filter
3486 	 */
3487 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3488 		if (bargs->limit == 0)
3489 			return 0;
3490 		else
3491 			bargs->limit--;
3492 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3493 		/*
3494 		 * Same logic as the 'limit' filter; the minimum cannot be
3495 		 * determined here because we do not have the global information
3496 		 * about the count of all chunks that satisfy the filters.
3497 		 */
3498 		if (bargs->limit_max == 0)
3499 			return 0;
3500 		else
3501 			bargs->limit_max--;
3502 	}
3503 
3504 	return 1;
3505 }
3506 
3507 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3508 {
3509 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3510 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3511 	u64 chunk_type;
3512 	struct btrfs_chunk *chunk;
3513 	struct btrfs_path *path = NULL;
3514 	struct btrfs_key key;
3515 	struct btrfs_key found_key;
3516 	struct extent_buffer *leaf;
3517 	int slot;
3518 	int ret;
3519 	int enospc_errors = 0;
3520 	bool counting = true;
3521 	/* The single value limit and min/max limits use the same bytes in the */
3522 	u64 limit_data = bctl->data.limit;
3523 	u64 limit_meta = bctl->meta.limit;
3524 	u64 limit_sys = bctl->sys.limit;
3525 	u32 count_data = 0;
3526 	u32 count_meta = 0;
3527 	u32 count_sys = 0;
3528 	int chunk_reserved = 0;
3529 
3530 	path = btrfs_alloc_path();
3531 	if (!path) {
3532 		ret = -ENOMEM;
3533 		goto error;
3534 	}
3535 
3536 	/* zero out stat counters */
3537 	spin_lock(&fs_info->balance_lock);
3538 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3539 	spin_unlock(&fs_info->balance_lock);
3540 again:
3541 	if (!counting) {
3542 		/*
3543 		 * The single value limit and min/max limits use the same bytes
3544 		 * in the
3545 		 */
3546 		bctl->data.limit = limit_data;
3547 		bctl->meta.limit = limit_meta;
3548 		bctl->sys.limit = limit_sys;
3549 	}
3550 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3551 	key.offset = (u64)-1;
3552 	key.type = BTRFS_CHUNK_ITEM_KEY;
3553 
3554 	while (1) {
3555 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3556 		    atomic_read(&fs_info->balance_cancel_req)) {
3557 			ret = -ECANCELED;
3558 			goto error;
3559 		}
3560 
3561 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3562 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3563 		if (ret < 0) {
3564 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3565 			goto error;
3566 		}
3567 
3568 		/*
3569 		 * this shouldn't happen, it means the last relocate
3570 		 * failed
3571 		 */
3572 		if (ret == 0)
3573 			BUG(); /* FIXME break ? */
3574 
3575 		ret = btrfs_previous_item(chunk_root, path, 0,
3576 					  BTRFS_CHUNK_ITEM_KEY);
3577 		if (ret) {
3578 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579 			ret = 0;
3580 			break;
3581 		}
3582 
3583 		leaf = path->nodes[0];
3584 		slot = path->slots[0];
3585 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3586 
3587 		if (found_key.objectid != key.objectid) {
3588 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589 			break;
3590 		}
3591 
3592 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3593 		chunk_type = btrfs_chunk_type(leaf, chunk);
3594 
3595 		if (!counting) {
3596 			spin_lock(&fs_info->balance_lock);
3597 			bctl->stat.considered++;
3598 			spin_unlock(&fs_info->balance_lock);
3599 		}
3600 
3601 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3602 
3603 		btrfs_release_path(path);
3604 		if (!ret) {
3605 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3606 			goto loop;
3607 		}
3608 
3609 		if (counting) {
3610 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3611 			spin_lock(&fs_info->balance_lock);
3612 			bctl->stat.expected++;
3613 			spin_unlock(&fs_info->balance_lock);
3614 
3615 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3616 				count_data++;
3617 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3618 				count_sys++;
3619 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3620 				count_meta++;
3621 
3622 			goto loop;
3623 		}
3624 
3625 		/*
3626 		 * Apply limit_min filter, no need to check if the LIMITS
3627 		 * filter is used, limit_min is 0 by default
3628 		 */
3629 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3630 					count_data < bctl->data.limit_min)
3631 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3632 					count_meta < bctl->meta.limit_min)
3633 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3634 					count_sys < bctl->sys.limit_min)) {
3635 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3636 			goto loop;
3637 		}
3638 
3639 		if (!chunk_reserved) {
3640 			/*
3641 			 * We may be relocating the only data chunk we have,
3642 			 * which could potentially end up with losing data's
3643 			 * raid profile, so lets allocate an empty one in
3644 			 * advance.
3645 			 */
3646 			ret = btrfs_may_alloc_data_chunk(fs_info,
3647 							 found_key.offset);
3648 			if (ret < 0) {
3649 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3650 				goto error;
3651 			} else if (ret == 1) {
3652 				chunk_reserved = 1;
3653 			}
3654 		}
3655 
3656 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3657 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658 		if (ret == -ENOSPC) {
3659 			enospc_errors++;
3660 		} else if (ret == -ETXTBSY) {
3661 			btrfs_info(fs_info,
3662 	   "skipping relocation of block group %llu due to active swapfile",
3663 				   found_key.offset);
3664 			ret = 0;
3665 		} else if (ret) {
3666 			goto error;
3667 		} else {
3668 			spin_lock(&fs_info->balance_lock);
3669 			bctl->stat.completed++;
3670 			spin_unlock(&fs_info->balance_lock);
3671 		}
3672 loop:
3673 		if (found_key.offset == 0)
3674 			break;
3675 		key.offset = found_key.offset - 1;
3676 	}
3677 
3678 	if (counting) {
3679 		btrfs_release_path(path);
3680 		counting = false;
3681 		goto again;
3682 	}
3683 error:
3684 	btrfs_free_path(path);
3685 	if (enospc_errors) {
3686 		btrfs_info(fs_info, "%d enospc errors during balance",
3687 			   enospc_errors);
3688 		if (!ret)
3689 			ret = -ENOSPC;
3690 	}
3691 
3692 	return ret;
3693 }
3694 
3695 /**
3696  * alloc_profile_is_valid - see if a given profile is valid and reduced
3697  * @flags: profile to validate
3698  * @extended: if true @flags is treated as an extended profile
3699  */
3700 static int alloc_profile_is_valid(u64 flags, int extended)
3701 {
3702 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3703 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3704 
3705 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3706 
3707 	/* 1) check that all other bits are zeroed */
3708 	if (flags & ~mask)
3709 		return 0;
3710 
3711 	/* 2) see if profile is reduced */
3712 	if (flags == 0)
3713 		return !extended; /* "0" is valid for usual profiles */
3714 
3715 	return has_single_bit_set(flags);
3716 }
3717 
3718 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3719 {
3720 	/* cancel requested || normal exit path */
3721 	return atomic_read(&fs_info->balance_cancel_req) ||
3722 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3723 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3724 }
3725 
3726 /* Non-zero return value signifies invalidity */
3727 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3728 		u64 allowed)
3729 {
3730 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3731 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3732 		 (bctl_arg->target & ~allowed)));
3733 }
3734 
3735 /*
3736  * Fill @buf with textual description of balance filter flags @bargs, up to
3737  * @size_buf including the terminating null. The output may be trimmed if it
3738  * does not fit into the provided buffer.
3739  */
3740 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3741 				 u32 size_buf)
3742 {
3743 	int ret;
3744 	u32 size_bp = size_buf;
3745 	char *bp = buf;
3746 	u64 flags = bargs->flags;
3747 	char tmp_buf[128] = {'\0'};
3748 
3749 	if (!flags)
3750 		return;
3751 
3752 #define CHECK_APPEND_NOARG(a)						\
3753 	do {								\
3754 		ret = snprintf(bp, size_bp, (a));			\
3755 		if (ret < 0 || ret >= size_bp)				\
3756 			goto out_overflow;				\
3757 		size_bp -= ret;						\
3758 		bp += ret;						\
3759 	} while (0)
3760 
3761 #define CHECK_APPEND_1ARG(a, v1)					\
3762 	do {								\
3763 		ret = snprintf(bp, size_bp, (a), (v1));			\
3764 		if (ret < 0 || ret >= size_bp)				\
3765 			goto out_overflow;				\
3766 		size_bp -= ret;						\
3767 		bp += ret;						\
3768 	} while (0)
3769 
3770 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3771 	do {								\
3772 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3773 		if (ret < 0 || ret >= size_bp)				\
3774 			goto out_overflow;				\
3775 		size_bp -= ret;						\
3776 		bp += ret;						\
3777 	} while (0)
3778 
3779 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3780 		CHECK_APPEND_1ARG("convert=%s,",
3781 				  btrfs_bg_type_to_raid_name(bargs->target));
3782 
3783 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3784 		CHECK_APPEND_NOARG("soft,");
3785 
3786 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3787 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3788 					    sizeof(tmp_buf));
3789 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3790 	}
3791 
3792 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3793 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3794 
3795 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3796 		CHECK_APPEND_2ARG("usage=%u..%u,",
3797 				  bargs->usage_min, bargs->usage_max);
3798 
3799 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3800 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3801 
3802 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3803 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3804 				  bargs->pstart, bargs->pend);
3805 
3806 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3807 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3808 				  bargs->vstart, bargs->vend);
3809 
3810 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3811 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3812 
3813 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3814 		CHECK_APPEND_2ARG("limit=%u..%u,",
3815 				bargs->limit_min, bargs->limit_max);
3816 
3817 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3818 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3819 				  bargs->stripes_min, bargs->stripes_max);
3820 
3821 #undef CHECK_APPEND_2ARG
3822 #undef CHECK_APPEND_1ARG
3823 #undef CHECK_APPEND_NOARG
3824 
3825 out_overflow:
3826 
3827 	if (size_bp < size_buf)
3828 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3829 	else
3830 		buf[0] = '\0';
3831 }
3832 
3833 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3834 {
3835 	u32 size_buf = 1024;
3836 	char tmp_buf[192] = {'\0'};
3837 	char *buf;
3838 	char *bp;
3839 	u32 size_bp = size_buf;
3840 	int ret;
3841 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3842 
3843 	buf = kzalloc(size_buf, GFP_KERNEL);
3844 	if (!buf)
3845 		return;
3846 
3847 	bp = buf;
3848 
3849 #define CHECK_APPEND_1ARG(a, v1)					\
3850 	do {								\
3851 		ret = snprintf(bp, size_bp, (a), (v1));			\
3852 		if (ret < 0 || ret >= size_bp)				\
3853 			goto out_overflow;				\
3854 		size_bp -= ret;						\
3855 		bp += ret;						\
3856 	} while (0)
3857 
3858 	if (bctl->flags & BTRFS_BALANCE_FORCE)
3859 		CHECK_APPEND_1ARG("%s", "-f ");
3860 
3861 	if (bctl->flags & BTRFS_BALANCE_DATA) {
3862 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3863 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3864 	}
3865 
3866 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
3867 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3868 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3869 	}
3870 
3871 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3872 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3873 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3874 	}
3875 
3876 #undef CHECK_APPEND_1ARG
3877 
3878 out_overflow:
3879 
3880 	if (size_bp < size_buf)
3881 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3882 	btrfs_info(fs_info, "balance: %s %s",
3883 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
3884 		   "resume" : "start", buf);
3885 
3886 	kfree(buf);
3887 }
3888 
3889 /*
3890  * Should be called with balance mutexe held
3891  */
3892 int btrfs_balance(struct btrfs_fs_info *fs_info,
3893 		  struct btrfs_balance_control *bctl,
3894 		  struct btrfs_ioctl_balance_args *bargs)
3895 {
3896 	u64 meta_target, data_target;
3897 	u64 allowed;
3898 	int mixed = 0;
3899 	int ret;
3900 	u64 num_devices;
3901 	unsigned seq;
3902 	bool reducing_redundancy;
3903 	int i;
3904 
3905 	if (btrfs_fs_closing(fs_info) ||
3906 	    atomic_read(&fs_info->balance_pause_req) ||
3907 	    atomic_read(&fs_info->balance_cancel_req)) {
3908 		ret = -EINVAL;
3909 		goto out;
3910 	}
3911 
3912 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3913 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3914 		mixed = 1;
3915 
3916 	/*
3917 	 * In case of mixed groups both data and meta should be picked,
3918 	 * and identical options should be given for both of them.
3919 	 */
3920 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3921 	if (mixed && (bctl->flags & allowed)) {
3922 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3923 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3924 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3925 			btrfs_err(fs_info,
3926 	  "balance: mixed groups data and metadata options must be the same");
3927 			ret = -EINVAL;
3928 			goto out;
3929 		}
3930 	}
3931 
3932 	/*
3933 	 * rw_devices will not change at the moment, device add/delete/replace
3934 	 * are excluded by EXCL_OP
3935 	 */
3936 	num_devices = fs_info->fs_devices->rw_devices;
3937 
3938 	/*
3939 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
3940 	 * special bit for it, to make it easier to distinguish.  Thus we need
3941 	 * to set it manually, or balance would refuse the profile.
3942 	 */
3943 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3944 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
3945 		if (num_devices >= btrfs_raid_array[i].devs_min)
3946 			allowed |= btrfs_raid_array[i].bg_flag;
3947 
3948 	if (validate_convert_profile(&bctl->data, allowed)) {
3949 		btrfs_err(fs_info,
3950 			  "balance: invalid convert data profile %s",
3951 			  btrfs_bg_type_to_raid_name(bctl->data.target));
3952 		ret = -EINVAL;
3953 		goto out;
3954 	}
3955 	if (validate_convert_profile(&bctl->meta, allowed)) {
3956 		btrfs_err(fs_info,
3957 			  "balance: invalid convert metadata profile %s",
3958 			  btrfs_bg_type_to_raid_name(bctl->meta.target));
3959 		ret = -EINVAL;
3960 		goto out;
3961 	}
3962 	if (validate_convert_profile(&bctl->sys, allowed)) {
3963 		btrfs_err(fs_info,
3964 			  "balance: invalid convert system profile %s",
3965 			  btrfs_bg_type_to_raid_name(bctl->sys.target));
3966 		ret = -EINVAL;
3967 		goto out;
3968 	}
3969 
3970 	/*
3971 	 * Allow to reduce metadata or system integrity only if force set for
3972 	 * profiles with redundancy (copies, parity)
3973 	 */
3974 	allowed = 0;
3975 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
3976 		if (btrfs_raid_array[i].ncopies >= 2 ||
3977 		    btrfs_raid_array[i].tolerated_failures >= 1)
3978 			allowed |= btrfs_raid_array[i].bg_flag;
3979 	}
3980 	do {
3981 		seq = read_seqbegin(&fs_info->profiles_lock);
3982 
3983 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3984 		     (fs_info->avail_system_alloc_bits & allowed) &&
3985 		     !(bctl->sys.target & allowed)) ||
3986 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3987 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3988 		     !(bctl->meta.target & allowed)))
3989 			reducing_redundancy = true;
3990 		else
3991 			reducing_redundancy = false;
3992 
3993 		/* if we're not converting, the target field is uninitialized */
3994 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3995 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3996 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3997 			bctl->data.target : fs_info->avail_data_alloc_bits;
3998 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3999 
4000 	if (reducing_redundancy) {
4001 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4002 			btrfs_info(fs_info,
4003 			   "balance: force reducing metadata redundancy");
4004 		} else {
4005 			btrfs_err(fs_info,
4006 	"balance: reduces metadata redundancy, use --force if you want this");
4007 			ret = -EINVAL;
4008 			goto out;
4009 		}
4010 	}
4011 
4012 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4013 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4014 		btrfs_warn(fs_info,
4015 	"balance: metadata profile %s has lower redundancy than data profile %s",
4016 				btrfs_bg_type_to_raid_name(meta_target),
4017 				btrfs_bg_type_to_raid_name(data_target));
4018 	}
4019 
4020 	if (fs_info->send_in_progress) {
4021 		btrfs_warn_rl(fs_info,
4022 "cannot run balance while send operations are in progress (%d in progress)",
4023 			      fs_info->send_in_progress);
4024 		ret = -EAGAIN;
4025 		goto out;
4026 	}
4027 
4028 	ret = insert_balance_item(fs_info, bctl);
4029 	if (ret && ret != -EEXIST)
4030 		goto out;
4031 
4032 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4033 		BUG_ON(ret == -EEXIST);
4034 		BUG_ON(fs_info->balance_ctl);
4035 		spin_lock(&fs_info->balance_lock);
4036 		fs_info->balance_ctl = bctl;
4037 		spin_unlock(&fs_info->balance_lock);
4038 	} else {
4039 		BUG_ON(ret != -EEXIST);
4040 		spin_lock(&fs_info->balance_lock);
4041 		update_balance_args(bctl);
4042 		spin_unlock(&fs_info->balance_lock);
4043 	}
4044 
4045 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4046 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4047 	describe_balance_start_or_resume(fs_info);
4048 	mutex_unlock(&fs_info->balance_mutex);
4049 
4050 	ret = __btrfs_balance(fs_info);
4051 
4052 	mutex_lock(&fs_info->balance_mutex);
4053 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4054 		btrfs_info(fs_info, "balance: paused");
4055 	else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4056 		btrfs_info(fs_info, "balance: canceled");
4057 	else
4058 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4059 
4060 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4061 
4062 	if (bargs) {
4063 		memset(bargs, 0, sizeof(*bargs));
4064 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4065 	}
4066 
4067 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4068 	    balance_need_close(fs_info)) {
4069 		reset_balance_state(fs_info);
4070 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4071 	}
4072 
4073 	wake_up(&fs_info->balance_wait_q);
4074 
4075 	return ret;
4076 out:
4077 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4078 		reset_balance_state(fs_info);
4079 	else
4080 		kfree(bctl);
4081 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4082 
4083 	return ret;
4084 }
4085 
4086 static int balance_kthread(void *data)
4087 {
4088 	struct btrfs_fs_info *fs_info = data;
4089 	int ret = 0;
4090 
4091 	mutex_lock(&fs_info->balance_mutex);
4092 	if (fs_info->balance_ctl)
4093 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4094 	mutex_unlock(&fs_info->balance_mutex);
4095 
4096 	return ret;
4097 }
4098 
4099 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4100 {
4101 	struct task_struct *tsk;
4102 
4103 	mutex_lock(&fs_info->balance_mutex);
4104 	if (!fs_info->balance_ctl) {
4105 		mutex_unlock(&fs_info->balance_mutex);
4106 		return 0;
4107 	}
4108 	mutex_unlock(&fs_info->balance_mutex);
4109 
4110 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4111 		btrfs_info(fs_info, "balance: resume skipped");
4112 		return 0;
4113 	}
4114 
4115 	/*
4116 	 * A ro->rw remount sequence should continue with the paused balance
4117 	 * regardless of who pauses it, system or the user as of now, so set
4118 	 * the resume flag.
4119 	 */
4120 	spin_lock(&fs_info->balance_lock);
4121 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4122 	spin_unlock(&fs_info->balance_lock);
4123 
4124 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4125 	return PTR_ERR_OR_ZERO(tsk);
4126 }
4127 
4128 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4129 {
4130 	struct btrfs_balance_control *bctl;
4131 	struct btrfs_balance_item *item;
4132 	struct btrfs_disk_balance_args disk_bargs;
4133 	struct btrfs_path *path;
4134 	struct extent_buffer *leaf;
4135 	struct btrfs_key key;
4136 	int ret;
4137 
4138 	path = btrfs_alloc_path();
4139 	if (!path)
4140 		return -ENOMEM;
4141 
4142 	key.objectid = BTRFS_BALANCE_OBJECTID;
4143 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4144 	key.offset = 0;
4145 
4146 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4147 	if (ret < 0)
4148 		goto out;
4149 	if (ret > 0) { /* ret = -ENOENT; */
4150 		ret = 0;
4151 		goto out;
4152 	}
4153 
4154 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4155 	if (!bctl) {
4156 		ret = -ENOMEM;
4157 		goto out;
4158 	}
4159 
4160 	leaf = path->nodes[0];
4161 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4162 
4163 	bctl->flags = btrfs_balance_flags(leaf, item);
4164 	bctl->flags |= BTRFS_BALANCE_RESUME;
4165 
4166 	btrfs_balance_data(leaf, item, &disk_bargs);
4167 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4168 	btrfs_balance_meta(leaf, item, &disk_bargs);
4169 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4170 	btrfs_balance_sys(leaf, item, &disk_bargs);
4171 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4172 
4173 	/*
4174 	 * This should never happen, as the paused balance state is recovered
4175 	 * during mount without any chance of other exclusive ops to collide.
4176 	 *
4177 	 * This gives the exclusive op status to balance and keeps in paused
4178 	 * state until user intervention (cancel or umount). If the ownership
4179 	 * cannot be assigned, show a message but do not fail. The balance
4180 	 * is in a paused state and must have fs_info::balance_ctl properly
4181 	 * set up.
4182 	 */
4183 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4184 		btrfs_warn(fs_info,
4185 	"balance: cannot set exclusive op status, resume manually");
4186 
4187 	mutex_lock(&fs_info->balance_mutex);
4188 	BUG_ON(fs_info->balance_ctl);
4189 	spin_lock(&fs_info->balance_lock);
4190 	fs_info->balance_ctl = bctl;
4191 	spin_unlock(&fs_info->balance_lock);
4192 	mutex_unlock(&fs_info->balance_mutex);
4193 out:
4194 	btrfs_free_path(path);
4195 	return ret;
4196 }
4197 
4198 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4199 {
4200 	int ret = 0;
4201 
4202 	mutex_lock(&fs_info->balance_mutex);
4203 	if (!fs_info->balance_ctl) {
4204 		mutex_unlock(&fs_info->balance_mutex);
4205 		return -ENOTCONN;
4206 	}
4207 
4208 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4209 		atomic_inc(&fs_info->balance_pause_req);
4210 		mutex_unlock(&fs_info->balance_mutex);
4211 
4212 		wait_event(fs_info->balance_wait_q,
4213 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4214 
4215 		mutex_lock(&fs_info->balance_mutex);
4216 		/* we are good with balance_ctl ripped off from under us */
4217 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4218 		atomic_dec(&fs_info->balance_pause_req);
4219 	} else {
4220 		ret = -ENOTCONN;
4221 	}
4222 
4223 	mutex_unlock(&fs_info->balance_mutex);
4224 	return ret;
4225 }
4226 
4227 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4228 {
4229 	mutex_lock(&fs_info->balance_mutex);
4230 	if (!fs_info->balance_ctl) {
4231 		mutex_unlock(&fs_info->balance_mutex);
4232 		return -ENOTCONN;
4233 	}
4234 
4235 	/*
4236 	 * A paused balance with the item stored on disk can be resumed at
4237 	 * mount time if the mount is read-write. Otherwise it's still paused
4238 	 * and we must not allow cancelling as it deletes the item.
4239 	 */
4240 	if (sb_rdonly(fs_info->sb)) {
4241 		mutex_unlock(&fs_info->balance_mutex);
4242 		return -EROFS;
4243 	}
4244 
4245 	atomic_inc(&fs_info->balance_cancel_req);
4246 	/*
4247 	 * if we are running just wait and return, balance item is
4248 	 * deleted in btrfs_balance in this case
4249 	 */
4250 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4251 		mutex_unlock(&fs_info->balance_mutex);
4252 		wait_event(fs_info->balance_wait_q,
4253 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4254 		mutex_lock(&fs_info->balance_mutex);
4255 	} else {
4256 		mutex_unlock(&fs_info->balance_mutex);
4257 		/*
4258 		 * Lock released to allow other waiters to continue, we'll
4259 		 * reexamine the status again.
4260 		 */
4261 		mutex_lock(&fs_info->balance_mutex);
4262 
4263 		if (fs_info->balance_ctl) {
4264 			reset_balance_state(fs_info);
4265 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4266 			btrfs_info(fs_info, "balance: canceled");
4267 		}
4268 	}
4269 
4270 	BUG_ON(fs_info->balance_ctl ||
4271 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4272 	atomic_dec(&fs_info->balance_cancel_req);
4273 	mutex_unlock(&fs_info->balance_mutex);
4274 	return 0;
4275 }
4276 
4277 static int btrfs_uuid_scan_kthread(void *data)
4278 {
4279 	struct btrfs_fs_info *fs_info = data;
4280 	struct btrfs_root *root = fs_info->tree_root;
4281 	struct btrfs_key key;
4282 	struct btrfs_path *path = NULL;
4283 	int ret = 0;
4284 	struct extent_buffer *eb;
4285 	int slot;
4286 	struct btrfs_root_item root_item;
4287 	u32 item_size;
4288 	struct btrfs_trans_handle *trans = NULL;
4289 
4290 	path = btrfs_alloc_path();
4291 	if (!path) {
4292 		ret = -ENOMEM;
4293 		goto out;
4294 	}
4295 
4296 	key.objectid = 0;
4297 	key.type = BTRFS_ROOT_ITEM_KEY;
4298 	key.offset = 0;
4299 
4300 	while (1) {
4301 		ret = btrfs_search_forward(root, &key, path,
4302 				BTRFS_OLDEST_GENERATION);
4303 		if (ret) {
4304 			if (ret > 0)
4305 				ret = 0;
4306 			break;
4307 		}
4308 
4309 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4310 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4311 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4312 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4313 			goto skip;
4314 
4315 		eb = path->nodes[0];
4316 		slot = path->slots[0];
4317 		item_size = btrfs_item_size_nr(eb, slot);
4318 		if (item_size < sizeof(root_item))
4319 			goto skip;
4320 
4321 		read_extent_buffer(eb, &root_item,
4322 				   btrfs_item_ptr_offset(eb, slot),
4323 				   (int)sizeof(root_item));
4324 		if (btrfs_root_refs(&root_item) == 0)
4325 			goto skip;
4326 
4327 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4328 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4329 			if (trans)
4330 				goto update_tree;
4331 
4332 			btrfs_release_path(path);
4333 			/*
4334 			 * 1 - subvol uuid item
4335 			 * 1 - received_subvol uuid item
4336 			 */
4337 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4338 			if (IS_ERR(trans)) {
4339 				ret = PTR_ERR(trans);
4340 				break;
4341 			}
4342 			continue;
4343 		} else {
4344 			goto skip;
4345 		}
4346 update_tree:
4347 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4348 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4349 						  BTRFS_UUID_KEY_SUBVOL,
4350 						  key.objectid);
4351 			if (ret < 0) {
4352 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4353 					ret);
4354 				break;
4355 			}
4356 		}
4357 
4358 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4359 			ret = btrfs_uuid_tree_add(trans,
4360 						  root_item.received_uuid,
4361 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4362 						  key.objectid);
4363 			if (ret < 0) {
4364 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4365 					ret);
4366 				break;
4367 			}
4368 		}
4369 
4370 skip:
4371 		if (trans) {
4372 			ret = btrfs_end_transaction(trans);
4373 			trans = NULL;
4374 			if (ret)
4375 				break;
4376 		}
4377 
4378 		btrfs_release_path(path);
4379 		if (key.offset < (u64)-1) {
4380 			key.offset++;
4381 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4382 			key.offset = 0;
4383 			key.type = BTRFS_ROOT_ITEM_KEY;
4384 		} else if (key.objectid < (u64)-1) {
4385 			key.offset = 0;
4386 			key.type = BTRFS_ROOT_ITEM_KEY;
4387 			key.objectid++;
4388 		} else {
4389 			break;
4390 		}
4391 		cond_resched();
4392 	}
4393 
4394 out:
4395 	btrfs_free_path(path);
4396 	if (trans && !IS_ERR(trans))
4397 		btrfs_end_transaction(trans);
4398 	if (ret)
4399 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4400 	else
4401 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4402 	up(&fs_info->uuid_tree_rescan_sem);
4403 	return 0;
4404 }
4405 
4406 /*
4407  * Callback for btrfs_uuid_tree_iterate().
4408  * returns:
4409  * 0	check succeeded, the entry is not outdated.
4410  * < 0	if an error occurred.
4411  * > 0	if the check failed, which means the caller shall remove the entry.
4412  */
4413 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4414 				       u8 *uuid, u8 type, u64 subid)
4415 {
4416 	struct btrfs_key key;
4417 	int ret = 0;
4418 	struct btrfs_root *subvol_root;
4419 
4420 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4421 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4422 		goto out;
4423 
4424 	key.objectid = subid;
4425 	key.type = BTRFS_ROOT_ITEM_KEY;
4426 	key.offset = (u64)-1;
4427 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4428 	if (IS_ERR(subvol_root)) {
4429 		ret = PTR_ERR(subvol_root);
4430 		if (ret == -ENOENT)
4431 			ret = 1;
4432 		goto out;
4433 	}
4434 
4435 	switch (type) {
4436 	case BTRFS_UUID_KEY_SUBVOL:
4437 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4438 			ret = 1;
4439 		break;
4440 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4441 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4442 			   BTRFS_UUID_SIZE))
4443 			ret = 1;
4444 		break;
4445 	}
4446 
4447 out:
4448 	return ret;
4449 }
4450 
4451 static int btrfs_uuid_rescan_kthread(void *data)
4452 {
4453 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4454 	int ret;
4455 
4456 	/*
4457 	 * 1st step is to iterate through the existing UUID tree and
4458 	 * to delete all entries that contain outdated data.
4459 	 * 2nd step is to add all missing entries to the UUID tree.
4460 	 */
4461 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4462 	if (ret < 0) {
4463 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4464 		up(&fs_info->uuid_tree_rescan_sem);
4465 		return ret;
4466 	}
4467 	return btrfs_uuid_scan_kthread(data);
4468 }
4469 
4470 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4471 {
4472 	struct btrfs_trans_handle *trans;
4473 	struct btrfs_root *tree_root = fs_info->tree_root;
4474 	struct btrfs_root *uuid_root;
4475 	struct task_struct *task;
4476 	int ret;
4477 
4478 	/*
4479 	 * 1 - root node
4480 	 * 1 - root item
4481 	 */
4482 	trans = btrfs_start_transaction(tree_root, 2);
4483 	if (IS_ERR(trans))
4484 		return PTR_ERR(trans);
4485 
4486 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4487 	if (IS_ERR(uuid_root)) {
4488 		ret = PTR_ERR(uuid_root);
4489 		btrfs_abort_transaction(trans, ret);
4490 		btrfs_end_transaction(trans);
4491 		return ret;
4492 	}
4493 
4494 	fs_info->uuid_root = uuid_root;
4495 
4496 	ret = btrfs_commit_transaction(trans);
4497 	if (ret)
4498 		return ret;
4499 
4500 	down(&fs_info->uuid_tree_rescan_sem);
4501 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4502 	if (IS_ERR(task)) {
4503 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4504 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4505 		up(&fs_info->uuid_tree_rescan_sem);
4506 		return PTR_ERR(task);
4507 	}
4508 
4509 	return 0;
4510 }
4511 
4512 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4513 {
4514 	struct task_struct *task;
4515 
4516 	down(&fs_info->uuid_tree_rescan_sem);
4517 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4518 	if (IS_ERR(task)) {
4519 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4520 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4521 		up(&fs_info->uuid_tree_rescan_sem);
4522 		return PTR_ERR(task);
4523 	}
4524 
4525 	return 0;
4526 }
4527 
4528 /*
4529  * shrinking a device means finding all of the device extents past
4530  * the new size, and then following the back refs to the chunks.
4531  * The chunk relocation code actually frees the device extent
4532  */
4533 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4534 {
4535 	struct btrfs_fs_info *fs_info = device->fs_info;
4536 	struct btrfs_root *root = fs_info->dev_root;
4537 	struct btrfs_trans_handle *trans;
4538 	struct btrfs_dev_extent *dev_extent = NULL;
4539 	struct btrfs_path *path;
4540 	u64 length;
4541 	u64 chunk_offset;
4542 	int ret;
4543 	int slot;
4544 	int failed = 0;
4545 	bool retried = false;
4546 	struct extent_buffer *l;
4547 	struct btrfs_key key;
4548 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4549 	u64 old_total = btrfs_super_total_bytes(super_copy);
4550 	u64 old_size = btrfs_device_get_total_bytes(device);
4551 	u64 diff;
4552 	u64 start;
4553 
4554 	new_size = round_down(new_size, fs_info->sectorsize);
4555 	start = new_size;
4556 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4557 
4558 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4559 		return -EINVAL;
4560 
4561 	path = btrfs_alloc_path();
4562 	if (!path)
4563 		return -ENOMEM;
4564 
4565 	path->reada = READA_BACK;
4566 
4567 	trans = btrfs_start_transaction(root, 0);
4568 	if (IS_ERR(trans)) {
4569 		btrfs_free_path(path);
4570 		return PTR_ERR(trans);
4571 	}
4572 
4573 	mutex_lock(&fs_info->chunk_mutex);
4574 
4575 	btrfs_device_set_total_bytes(device, new_size);
4576 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4577 		device->fs_devices->total_rw_bytes -= diff;
4578 		atomic64_sub(diff, &fs_info->free_chunk_space);
4579 	}
4580 
4581 	/*
4582 	 * Once the device's size has been set to the new size, ensure all
4583 	 * in-memory chunks are synced to disk so that the loop below sees them
4584 	 * and relocates them accordingly.
4585 	 */
4586 	if (contains_pending_extent(device, &start, diff)) {
4587 		mutex_unlock(&fs_info->chunk_mutex);
4588 		ret = btrfs_commit_transaction(trans);
4589 		if (ret)
4590 			goto done;
4591 	} else {
4592 		mutex_unlock(&fs_info->chunk_mutex);
4593 		btrfs_end_transaction(trans);
4594 	}
4595 
4596 again:
4597 	key.objectid = device->devid;
4598 	key.offset = (u64)-1;
4599 	key.type = BTRFS_DEV_EXTENT_KEY;
4600 
4601 	do {
4602 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4603 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4604 		if (ret < 0) {
4605 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4606 			goto done;
4607 		}
4608 
4609 		ret = btrfs_previous_item(root, path, 0, key.type);
4610 		if (ret)
4611 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4612 		if (ret < 0)
4613 			goto done;
4614 		if (ret) {
4615 			ret = 0;
4616 			btrfs_release_path(path);
4617 			break;
4618 		}
4619 
4620 		l = path->nodes[0];
4621 		slot = path->slots[0];
4622 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4623 
4624 		if (key.objectid != device->devid) {
4625 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4626 			btrfs_release_path(path);
4627 			break;
4628 		}
4629 
4630 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4631 		length = btrfs_dev_extent_length(l, dev_extent);
4632 
4633 		if (key.offset + length <= new_size) {
4634 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4635 			btrfs_release_path(path);
4636 			break;
4637 		}
4638 
4639 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4640 		btrfs_release_path(path);
4641 
4642 		/*
4643 		 * We may be relocating the only data chunk we have,
4644 		 * which could potentially end up with losing data's
4645 		 * raid profile, so lets allocate an empty one in
4646 		 * advance.
4647 		 */
4648 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4649 		if (ret < 0) {
4650 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4651 			goto done;
4652 		}
4653 
4654 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4655 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4656 		if (ret == -ENOSPC) {
4657 			failed++;
4658 		} else if (ret) {
4659 			if (ret == -ETXTBSY) {
4660 				btrfs_warn(fs_info,
4661 		   "could not shrink block group %llu due to active swapfile",
4662 					   chunk_offset);
4663 			}
4664 			goto done;
4665 		}
4666 	} while (key.offset-- > 0);
4667 
4668 	if (failed && !retried) {
4669 		failed = 0;
4670 		retried = true;
4671 		goto again;
4672 	} else if (failed && retried) {
4673 		ret = -ENOSPC;
4674 		goto done;
4675 	}
4676 
4677 	/* Shrinking succeeded, else we would be at "done". */
4678 	trans = btrfs_start_transaction(root, 0);
4679 	if (IS_ERR(trans)) {
4680 		ret = PTR_ERR(trans);
4681 		goto done;
4682 	}
4683 
4684 	mutex_lock(&fs_info->chunk_mutex);
4685 	btrfs_device_set_disk_total_bytes(device, new_size);
4686 	if (list_empty(&device->post_commit_list))
4687 		list_add_tail(&device->post_commit_list,
4688 			      &trans->transaction->dev_update_list);
4689 
4690 	WARN_ON(diff > old_total);
4691 	btrfs_set_super_total_bytes(super_copy,
4692 			round_down(old_total - diff, fs_info->sectorsize));
4693 	mutex_unlock(&fs_info->chunk_mutex);
4694 
4695 	/* Now btrfs_update_device() will change the on-disk size. */
4696 	ret = btrfs_update_device(trans, device);
4697 	if (ret < 0) {
4698 		btrfs_abort_transaction(trans, ret);
4699 		btrfs_end_transaction(trans);
4700 	} else {
4701 		ret = btrfs_commit_transaction(trans);
4702 	}
4703 done:
4704 	btrfs_free_path(path);
4705 	if (ret) {
4706 		mutex_lock(&fs_info->chunk_mutex);
4707 		btrfs_device_set_total_bytes(device, old_size);
4708 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4709 			device->fs_devices->total_rw_bytes += diff;
4710 		atomic64_add(diff, &fs_info->free_chunk_space);
4711 		mutex_unlock(&fs_info->chunk_mutex);
4712 	}
4713 	return ret;
4714 }
4715 
4716 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4717 			   struct btrfs_key *key,
4718 			   struct btrfs_chunk *chunk, int item_size)
4719 {
4720 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4721 	struct btrfs_disk_key disk_key;
4722 	u32 array_size;
4723 	u8 *ptr;
4724 
4725 	mutex_lock(&fs_info->chunk_mutex);
4726 	array_size = btrfs_super_sys_array_size(super_copy);
4727 	if (array_size + item_size + sizeof(disk_key)
4728 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4729 		mutex_unlock(&fs_info->chunk_mutex);
4730 		return -EFBIG;
4731 	}
4732 
4733 	ptr = super_copy->sys_chunk_array + array_size;
4734 	btrfs_cpu_key_to_disk(&disk_key, key);
4735 	memcpy(ptr, &disk_key, sizeof(disk_key));
4736 	ptr += sizeof(disk_key);
4737 	memcpy(ptr, chunk, item_size);
4738 	item_size += sizeof(disk_key);
4739 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4740 	mutex_unlock(&fs_info->chunk_mutex);
4741 
4742 	return 0;
4743 }
4744 
4745 /*
4746  * sort the devices in descending order by max_avail, total_avail
4747  */
4748 static int btrfs_cmp_device_info(const void *a, const void *b)
4749 {
4750 	const struct btrfs_device_info *di_a = a;
4751 	const struct btrfs_device_info *di_b = b;
4752 
4753 	if (di_a->max_avail > di_b->max_avail)
4754 		return -1;
4755 	if (di_a->max_avail < di_b->max_avail)
4756 		return 1;
4757 	if (di_a->total_avail > di_b->total_avail)
4758 		return -1;
4759 	if (di_a->total_avail < di_b->total_avail)
4760 		return 1;
4761 	return 0;
4762 }
4763 
4764 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4765 {
4766 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4767 		return;
4768 
4769 	btrfs_set_fs_incompat(info, RAID56);
4770 }
4771 
4772 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4773 {
4774 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4775 		return;
4776 
4777 	btrfs_set_fs_incompat(info, RAID1C34);
4778 }
4779 
4780 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4781 			       u64 start, u64 type)
4782 {
4783 	struct btrfs_fs_info *info = trans->fs_info;
4784 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4785 	struct btrfs_device *device;
4786 	struct map_lookup *map = NULL;
4787 	struct extent_map_tree *em_tree;
4788 	struct extent_map *em;
4789 	struct btrfs_device_info *devices_info = NULL;
4790 	u64 total_avail;
4791 	int num_stripes;	/* total number of stripes to allocate */
4792 	int data_stripes;	/* number of stripes that count for
4793 				   block group size */
4794 	int sub_stripes;	/* sub_stripes info for map */
4795 	int dev_stripes;	/* stripes per dev */
4796 	int devs_max;		/* max devs to use */
4797 	int devs_min;		/* min devs needed */
4798 	int devs_increment;	/* ndevs has to be a multiple of this */
4799 	int ncopies;		/* how many copies to data has */
4800 	int nparity;		/* number of stripes worth of bytes to
4801 				   store parity information */
4802 	int ret;
4803 	u64 max_stripe_size;
4804 	u64 max_chunk_size;
4805 	u64 stripe_size;
4806 	u64 chunk_size;
4807 	int ndevs;
4808 	int i;
4809 	int j;
4810 	int index;
4811 
4812 	BUG_ON(!alloc_profile_is_valid(type, 0));
4813 
4814 	if (list_empty(&fs_devices->alloc_list)) {
4815 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4816 			btrfs_debug(info, "%s: no writable device", __func__);
4817 		return -ENOSPC;
4818 	}
4819 
4820 	index = btrfs_bg_flags_to_raid_index(type);
4821 
4822 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4823 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4824 	devs_max = btrfs_raid_array[index].devs_max;
4825 	if (!devs_max)
4826 		devs_max = BTRFS_MAX_DEVS(info);
4827 	devs_min = btrfs_raid_array[index].devs_min;
4828 	devs_increment = btrfs_raid_array[index].devs_increment;
4829 	ncopies = btrfs_raid_array[index].ncopies;
4830 	nparity = btrfs_raid_array[index].nparity;
4831 
4832 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4833 		max_stripe_size = SZ_1G;
4834 		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4835 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4836 		/* for larger filesystems, use larger metadata chunks */
4837 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4838 			max_stripe_size = SZ_1G;
4839 		else
4840 			max_stripe_size = SZ_256M;
4841 		max_chunk_size = max_stripe_size;
4842 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4843 		max_stripe_size = SZ_32M;
4844 		max_chunk_size = 2 * max_stripe_size;
4845 		devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
4846 	} else {
4847 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4848 		       type);
4849 		BUG();
4850 	}
4851 
4852 	/* We don't want a chunk larger than 10% of writable space */
4853 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4854 			     max_chunk_size);
4855 
4856 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4857 			       GFP_NOFS);
4858 	if (!devices_info)
4859 		return -ENOMEM;
4860 
4861 	/*
4862 	 * in the first pass through the devices list, we gather information
4863 	 * about the available holes on each device.
4864 	 */
4865 	ndevs = 0;
4866 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4867 		u64 max_avail;
4868 		u64 dev_offset;
4869 
4870 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4871 			WARN(1, KERN_ERR
4872 			       "BTRFS: read-only device in alloc_list\n");
4873 			continue;
4874 		}
4875 
4876 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4877 					&device->dev_state) ||
4878 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4879 			continue;
4880 
4881 		if (device->total_bytes > device->bytes_used)
4882 			total_avail = device->total_bytes - device->bytes_used;
4883 		else
4884 			total_avail = 0;
4885 
4886 		/* If there is no space on this device, skip it. */
4887 		if (total_avail == 0)
4888 			continue;
4889 
4890 		ret = find_free_dev_extent(device,
4891 					   max_stripe_size * dev_stripes,
4892 					   &dev_offset, &max_avail);
4893 		if (ret && ret != -ENOSPC)
4894 			goto error;
4895 
4896 		if (ret == 0)
4897 			max_avail = max_stripe_size * dev_stripes;
4898 
4899 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4900 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4901 				btrfs_debug(info,
4902 			"%s: devid %llu has no free space, have=%llu want=%u",
4903 					    __func__, device->devid, max_avail,
4904 					    BTRFS_STRIPE_LEN * dev_stripes);
4905 			continue;
4906 		}
4907 
4908 		if (ndevs == fs_devices->rw_devices) {
4909 			WARN(1, "%s: found more than %llu devices\n",
4910 			     __func__, fs_devices->rw_devices);
4911 			break;
4912 		}
4913 		devices_info[ndevs].dev_offset = dev_offset;
4914 		devices_info[ndevs].max_avail = max_avail;
4915 		devices_info[ndevs].total_avail = total_avail;
4916 		devices_info[ndevs].dev = device;
4917 		++ndevs;
4918 	}
4919 
4920 	/*
4921 	 * now sort the devices by hole size / available space
4922 	 */
4923 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4924 	     btrfs_cmp_device_info, NULL);
4925 
4926 	/*
4927 	 * Round down to number of usable stripes, devs_increment can be any
4928 	 * number so we can't use round_down()
4929 	 */
4930 	ndevs -= ndevs % devs_increment;
4931 
4932 	if (ndevs < devs_min) {
4933 		ret = -ENOSPC;
4934 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4935 			btrfs_debug(info,
4936 	"%s: not enough devices with free space: have=%d minimum required=%d",
4937 				    __func__, ndevs, devs_min);
4938 		}
4939 		goto error;
4940 	}
4941 
4942 	ndevs = min(ndevs, devs_max);
4943 
4944 	/*
4945 	 * The primary goal is to maximize the number of stripes, so use as
4946 	 * many devices as possible, even if the stripes are not maximum sized.
4947 	 *
4948 	 * The DUP profile stores more than one stripe per device, the
4949 	 * max_avail is the total size so we have to adjust.
4950 	 */
4951 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4952 	num_stripes = ndevs * dev_stripes;
4953 
4954 	/*
4955 	 * this will have to be fixed for RAID1 and RAID10 over
4956 	 * more drives
4957 	 */
4958 	data_stripes = (num_stripes - nparity) / ncopies;
4959 
4960 	/*
4961 	 * Use the number of data stripes to figure out how big this chunk
4962 	 * is really going to be in terms of logical address space,
4963 	 * and compare that answer with the max chunk size. If it's higher,
4964 	 * we try to reduce stripe_size.
4965 	 */
4966 	if (stripe_size * data_stripes > max_chunk_size) {
4967 		/*
4968 		 * Reduce stripe_size, round it up to a 16MB boundary again and
4969 		 * then use it, unless it ends up being even bigger than the
4970 		 * previous value we had already.
4971 		 */
4972 		stripe_size = min(round_up(div_u64(max_chunk_size,
4973 						   data_stripes), SZ_16M),
4974 				  stripe_size);
4975 	}
4976 
4977 	/* align to BTRFS_STRIPE_LEN */
4978 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4979 
4980 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4981 	if (!map) {
4982 		ret = -ENOMEM;
4983 		goto error;
4984 	}
4985 	map->num_stripes = num_stripes;
4986 
4987 	for (i = 0; i < ndevs; ++i) {
4988 		for (j = 0; j < dev_stripes; ++j) {
4989 			int s = i * dev_stripes + j;
4990 			map->stripes[s].dev = devices_info[i].dev;
4991 			map->stripes[s].physical = devices_info[i].dev_offset +
4992 						   j * stripe_size;
4993 		}
4994 	}
4995 	map->stripe_len = BTRFS_STRIPE_LEN;
4996 	map->io_align = BTRFS_STRIPE_LEN;
4997 	map->io_width = BTRFS_STRIPE_LEN;
4998 	map->type = type;
4999 	map->sub_stripes = sub_stripes;
5000 
5001 	chunk_size = stripe_size * data_stripes;
5002 
5003 	trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5004 
5005 	em = alloc_extent_map();
5006 	if (!em) {
5007 		kfree(map);
5008 		ret = -ENOMEM;
5009 		goto error;
5010 	}
5011 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5012 	em->map_lookup = map;
5013 	em->start = start;
5014 	em->len = chunk_size;
5015 	em->block_start = 0;
5016 	em->block_len = em->len;
5017 	em->orig_block_len = stripe_size;
5018 
5019 	em_tree = &info->mapping_tree;
5020 	write_lock(&em_tree->lock);
5021 	ret = add_extent_mapping(em_tree, em, 0);
5022 	if (ret) {
5023 		write_unlock(&em_tree->lock);
5024 		free_extent_map(em);
5025 		goto error;
5026 	}
5027 	write_unlock(&em_tree->lock);
5028 
5029 	ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5030 	if (ret)
5031 		goto error_del_extent;
5032 
5033 	for (i = 0; i < map->num_stripes; i++) {
5034 		struct btrfs_device *dev = map->stripes[i].dev;
5035 
5036 		btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5037 		if (list_empty(&dev->post_commit_list))
5038 			list_add_tail(&dev->post_commit_list,
5039 				      &trans->transaction->dev_update_list);
5040 	}
5041 
5042 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5043 
5044 	free_extent_map(em);
5045 	check_raid56_incompat_flag(info, type);
5046 	check_raid1c34_incompat_flag(info, type);
5047 
5048 	kfree(devices_info);
5049 	return 0;
5050 
5051 error_del_extent:
5052 	write_lock(&em_tree->lock);
5053 	remove_extent_mapping(em_tree, em);
5054 	write_unlock(&em_tree->lock);
5055 
5056 	/* One for our allocation */
5057 	free_extent_map(em);
5058 	/* One for the tree reference */
5059 	free_extent_map(em);
5060 error:
5061 	kfree(devices_info);
5062 	return ret;
5063 }
5064 
5065 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5066 			     u64 chunk_offset, u64 chunk_size)
5067 {
5068 	struct btrfs_fs_info *fs_info = trans->fs_info;
5069 	struct btrfs_root *extent_root = fs_info->extent_root;
5070 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5071 	struct btrfs_key key;
5072 	struct btrfs_device *device;
5073 	struct btrfs_chunk *chunk;
5074 	struct btrfs_stripe *stripe;
5075 	struct extent_map *em;
5076 	struct map_lookup *map;
5077 	size_t item_size;
5078 	u64 dev_offset;
5079 	u64 stripe_size;
5080 	int i = 0;
5081 	int ret = 0;
5082 
5083 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5084 	if (IS_ERR(em))
5085 		return PTR_ERR(em);
5086 
5087 	map = em->map_lookup;
5088 	item_size = btrfs_chunk_item_size(map->num_stripes);
5089 	stripe_size = em->orig_block_len;
5090 
5091 	chunk = kzalloc(item_size, GFP_NOFS);
5092 	if (!chunk) {
5093 		ret = -ENOMEM;
5094 		goto out;
5095 	}
5096 
5097 	/*
5098 	 * Take the device list mutex to prevent races with the final phase of
5099 	 * a device replace operation that replaces the device object associated
5100 	 * with the map's stripes, because the device object's id can change
5101 	 * at any time during that final phase of the device replace operation
5102 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5103 	 */
5104 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5105 	for (i = 0; i < map->num_stripes; i++) {
5106 		device = map->stripes[i].dev;
5107 		dev_offset = map->stripes[i].physical;
5108 
5109 		ret = btrfs_update_device(trans, device);
5110 		if (ret)
5111 			break;
5112 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5113 					     dev_offset, stripe_size);
5114 		if (ret)
5115 			break;
5116 	}
5117 	if (ret) {
5118 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5119 		goto out;
5120 	}
5121 
5122 	stripe = &chunk->stripe;
5123 	for (i = 0; i < map->num_stripes; i++) {
5124 		device = map->stripes[i].dev;
5125 		dev_offset = map->stripes[i].physical;
5126 
5127 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5128 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5129 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5130 		stripe++;
5131 	}
5132 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5133 
5134 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5135 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5136 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5137 	btrfs_set_stack_chunk_type(chunk, map->type);
5138 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5139 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5140 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5141 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5142 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5143 
5144 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5145 	key.type = BTRFS_CHUNK_ITEM_KEY;
5146 	key.offset = chunk_offset;
5147 
5148 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5149 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5150 		/*
5151 		 * TODO: Cleanup of inserted chunk root in case of
5152 		 * failure.
5153 		 */
5154 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5155 	}
5156 
5157 out:
5158 	kfree(chunk);
5159 	free_extent_map(em);
5160 	return ret;
5161 }
5162 
5163 /*
5164  * Chunk allocation falls into two parts. The first part does work
5165  * that makes the new allocated chunk usable, but does not do any operation
5166  * that modifies the chunk tree. The second part does the work that
5167  * requires modifying the chunk tree. This division is important for the
5168  * bootstrap process of adding storage to a seed btrfs.
5169  */
5170 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5171 {
5172 	u64 chunk_offset;
5173 
5174 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
5175 	chunk_offset = find_next_chunk(trans->fs_info);
5176 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5177 }
5178 
5179 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5180 {
5181 	struct btrfs_fs_info *fs_info = trans->fs_info;
5182 	u64 chunk_offset;
5183 	u64 sys_chunk_offset;
5184 	u64 alloc_profile;
5185 	int ret;
5186 
5187 	chunk_offset = find_next_chunk(fs_info);
5188 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5189 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5190 	if (ret)
5191 		return ret;
5192 
5193 	sys_chunk_offset = find_next_chunk(fs_info);
5194 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5195 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5196 	return ret;
5197 }
5198 
5199 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5200 {
5201 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5202 
5203 	return btrfs_raid_array[index].tolerated_failures;
5204 }
5205 
5206 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5207 {
5208 	struct extent_map *em;
5209 	struct map_lookup *map;
5210 	int readonly = 0;
5211 	int miss_ndevs = 0;
5212 	int i;
5213 
5214 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5215 	if (IS_ERR(em))
5216 		return 1;
5217 
5218 	map = em->map_lookup;
5219 	for (i = 0; i < map->num_stripes; i++) {
5220 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5221 					&map->stripes[i].dev->dev_state)) {
5222 			miss_ndevs++;
5223 			continue;
5224 		}
5225 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5226 					&map->stripes[i].dev->dev_state)) {
5227 			readonly = 1;
5228 			goto end;
5229 		}
5230 	}
5231 
5232 	/*
5233 	 * If the number of missing devices is larger than max errors,
5234 	 * we can not write the data into that chunk successfully, so
5235 	 * set it readonly.
5236 	 */
5237 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5238 		readonly = 1;
5239 end:
5240 	free_extent_map(em);
5241 	return readonly;
5242 }
5243 
5244 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5245 {
5246 	struct extent_map *em;
5247 
5248 	while (1) {
5249 		write_lock(&tree->lock);
5250 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5251 		if (em)
5252 			remove_extent_mapping(tree, em);
5253 		write_unlock(&tree->lock);
5254 		if (!em)
5255 			break;
5256 		/* once for us */
5257 		free_extent_map(em);
5258 		/* once for the tree */
5259 		free_extent_map(em);
5260 	}
5261 }
5262 
5263 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5264 {
5265 	struct extent_map *em;
5266 	struct map_lookup *map;
5267 	int ret;
5268 
5269 	em = btrfs_get_chunk_map(fs_info, logical, len);
5270 	if (IS_ERR(em))
5271 		/*
5272 		 * We could return errors for these cases, but that could get
5273 		 * ugly and we'd probably do the same thing which is just not do
5274 		 * anything else and exit, so return 1 so the callers don't try
5275 		 * to use other copies.
5276 		 */
5277 		return 1;
5278 
5279 	map = em->map_lookup;
5280 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5281 		ret = map->num_stripes;
5282 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5283 		ret = map->sub_stripes;
5284 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5285 		ret = 2;
5286 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5287 		/*
5288 		 * There could be two corrupted data stripes, we need
5289 		 * to loop retry in order to rebuild the correct data.
5290 		 *
5291 		 * Fail a stripe at a time on every retry except the
5292 		 * stripe under reconstruction.
5293 		 */
5294 		ret = map->num_stripes;
5295 	else
5296 		ret = 1;
5297 	free_extent_map(em);
5298 
5299 	down_read(&fs_info->dev_replace.rwsem);
5300 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5301 	    fs_info->dev_replace.tgtdev)
5302 		ret++;
5303 	up_read(&fs_info->dev_replace.rwsem);
5304 
5305 	return ret;
5306 }
5307 
5308 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5309 				    u64 logical)
5310 {
5311 	struct extent_map *em;
5312 	struct map_lookup *map;
5313 	unsigned long len = fs_info->sectorsize;
5314 
5315 	em = btrfs_get_chunk_map(fs_info, logical, len);
5316 
5317 	if (!WARN_ON(IS_ERR(em))) {
5318 		map = em->map_lookup;
5319 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5320 			len = map->stripe_len * nr_data_stripes(map);
5321 		free_extent_map(em);
5322 	}
5323 	return len;
5324 }
5325 
5326 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5327 {
5328 	struct extent_map *em;
5329 	struct map_lookup *map;
5330 	int ret = 0;
5331 
5332 	em = btrfs_get_chunk_map(fs_info, logical, len);
5333 
5334 	if(!WARN_ON(IS_ERR(em))) {
5335 		map = em->map_lookup;
5336 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5337 			ret = 1;
5338 		free_extent_map(em);
5339 	}
5340 	return ret;
5341 }
5342 
5343 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5344 			    struct map_lookup *map, int first,
5345 			    int dev_replace_is_ongoing)
5346 {
5347 	int i;
5348 	int num_stripes;
5349 	int preferred_mirror;
5350 	int tolerance;
5351 	struct btrfs_device *srcdev;
5352 
5353 	ASSERT((map->type &
5354 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5355 
5356 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5357 		num_stripes = map->sub_stripes;
5358 	else
5359 		num_stripes = map->num_stripes;
5360 
5361 	preferred_mirror = first + current->pid % num_stripes;
5362 
5363 	if (dev_replace_is_ongoing &&
5364 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5365 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5366 		srcdev = fs_info->dev_replace.srcdev;
5367 	else
5368 		srcdev = NULL;
5369 
5370 	/*
5371 	 * try to avoid the drive that is the source drive for a
5372 	 * dev-replace procedure, only choose it if no other non-missing
5373 	 * mirror is available
5374 	 */
5375 	for (tolerance = 0; tolerance < 2; tolerance++) {
5376 		if (map->stripes[preferred_mirror].dev->bdev &&
5377 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5378 			return preferred_mirror;
5379 		for (i = first; i < first + num_stripes; i++) {
5380 			if (map->stripes[i].dev->bdev &&
5381 			    (tolerance || map->stripes[i].dev != srcdev))
5382 				return i;
5383 		}
5384 	}
5385 
5386 	/* we couldn't find one that doesn't fail.  Just return something
5387 	 * and the io error handling code will clean up eventually
5388 	 */
5389 	return preferred_mirror;
5390 }
5391 
5392 static inline int parity_smaller(u64 a, u64 b)
5393 {
5394 	return a > b;
5395 }
5396 
5397 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5398 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5399 {
5400 	struct btrfs_bio_stripe s;
5401 	int i;
5402 	u64 l;
5403 	int again = 1;
5404 
5405 	while (again) {
5406 		again = 0;
5407 		for (i = 0; i < num_stripes - 1; i++) {
5408 			if (parity_smaller(bbio->raid_map[i],
5409 					   bbio->raid_map[i+1])) {
5410 				s = bbio->stripes[i];
5411 				l = bbio->raid_map[i];
5412 				bbio->stripes[i] = bbio->stripes[i+1];
5413 				bbio->raid_map[i] = bbio->raid_map[i+1];
5414 				bbio->stripes[i+1] = s;
5415 				bbio->raid_map[i+1] = l;
5416 
5417 				again = 1;
5418 			}
5419 		}
5420 	}
5421 }
5422 
5423 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5424 {
5425 	struct btrfs_bio *bbio = kzalloc(
5426 		 /* the size of the btrfs_bio */
5427 		sizeof(struct btrfs_bio) +
5428 		/* plus the variable array for the stripes */
5429 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5430 		/* plus the variable array for the tgt dev */
5431 		sizeof(int) * (real_stripes) +
5432 		/*
5433 		 * plus the raid_map, which includes both the tgt dev
5434 		 * and the stripes
5435 		 */
5436 		sizeof(u64) * (total_stripes),
5437 		GFP_NOFS|__GFP_NOFAIL);
5438 
5439 	atomic_set(&bbio->error, 0);
5440 	refcount_set(&bbio->refs, 1);
5441 
5442 	return bbio;
5443 }
5444 
5445 void btrfs_get_bbio(struct btrfs_bio *bbio)
5446 {
5447 	WARN_ON(!refcount_read(&bbio->refs));
5448 	refcount_inc(&bbio->refs);
5449 }
5450 
5451 void btrfs_put_bbio(struct btrfs_bio *bbio)
5452 {
5453 	if (!bbio)
5454 		return;
5455 	if (refcount_dec_and_test(&bbio->refs))
5456 		kfree(bbio);
5457 }
5458 
5459 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5460 /*
5461  * Please note that, discard won't be sent to target device of device
5462  * replace.
5463  */
5464 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5465 					 u64 logical, u64 *length_ret,
5466 					 struct btrfs_bio **bbio_ret)
5467 {
5468 	struct extent_map *em;
5469 	struct map_lookup *map;
5470 	struct btrfs_bio *bbio;
5471 	u64 length = *length_ret;
5472 	u64 offset;
5473 	u64 stripe_nr;
5474 	u64 stripe_nr_end;
5475 	u64 stripe_end_offset;
5476 	u64 stripe_cnt;
5477 	u64 stripe_len;
5478 	u64 stripe_offset;
5479 	u64 num_stripes;
5480 	u32 stripe_index;
5481 	u32 factor = 0;
5482 	u32 sub_stripes = 0;
5483 	u64 stripes_per_dev = 0;
5484 	u32 remaining_stripes = 0;
5485 	u32 last_stripe = 0;
5486 	int ret = 0;
5487 	int i;
5488 
5489 	/* discard always return a bbio */
5490 	ASSERT(bbio_ret);
5491 
5492 	em = btrfs_get_chunk_map(fs_info, logical, length);
5493 	if (IS_ERR(em))
5494 		return PTR_ERR(em);
5495 
5496 	map = em->map_lookup;
5497 	/* we don't discard raid56 yet */
5498 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5499 		ret = -EOPNOTSUPP;
5500 		goto out;
5501 	}
5502 
5503 	offset = logical - em->start;
5504 	length = min_t(u64, em->start + em->len - logical, length);
5505 	*length_ret = length;
5506 
5507 	stripe_len = map->stripe_len;
5508 	/*
5509 	 * stripe_nr counts the total number of stripes we have to stride
5510 	 * to get to this block
5511 	 */
5512 	stripe_nr = div64_u64(offset, stripe_len);
5513 
5514 	/* stripe_offset is the offset of this block in its stripe */
5515 	stripe_offset = offset - stripe_nr * stripe_len;
5516 
5517 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5518 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5519 	stripe_cnt = stripe_nr_end - stripe_nr;
5520 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5521 			    (offset + length);
5522 	/*
5523 	 * after this, stripe_nr is the number of stripes on this
5524 	 * device we have to walk to find the data, and stripe_index is
5525 	 * the number of our device in the stripe array
5526 	 */
5527 	num_stripes = 1;
5528 	stripe_index = 0;
5529 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5530 			 BTRFS_BLOCK_GROUP_RAID10)) {
5531 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5532 			sub_stripes = 1;
5533 		else
5534 			sub_stripes = map->sub_stripes;
5535 
5536 		factor = map->num_stripes / sub_stripes;
5537 		num_stripes = min_t(u64, map->num_stripes,
5538 				    sub_stripes * stripe_cnt);
5539 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5540 		stripe_index *= sub_stripes;
5541 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5542 					      &remaining_stripes);
5543 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5544 		last_stripe *= sub_stripes;
5545 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5546 				BTRFS_BLOCK_GROUP_DUP)) {
5547 		num_stripes = map->num_stripes;
5548 	} else {
5549 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5550 					&stripe_index);
5551 	}
5552 
5553 	bbio = alloc_btrfs_bio(num_stripes, 0);
5554 	if (!bbio) {
5555 		ret = -ENOMEM;
5556 		goto out;
5557 	}
5558 
5559 	for (i = 0; i < num_stripes; i++) {
5560 		bbio->stripes[i].physical =
5561 			map->stripes[stripe_index].physical +
5562 			stripe_offset + stripe_nr * map->stripe_len;
5563 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5564 
5565 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5566 				 BTRFS_BLOCK_GROUP_RAID10)) {
5567 			bbio->stripes[i].length = stripes_per_dev *
5568 				map->stripe_len;
5569 
5570 			if (i / sub_stripes < remaining_stripes)
5571 				bbio->stripes[i].length +=
5572 					map->stripe_len;
5573 
5574 			/*
5575 			 * Special for the first stripe and
5576 			 * the last stripe:
5577 			 *
5578 			 * |-------|...|-------|
5579 			 *     |----------|
5580 			 *    off     end_off
5581 			 */
5582 			if (i < sub_stripes)
5583 				bbio->stripes[i].length -=
5584 					stripe_offset;
5585 
5586 			if (stripe_index >= last_stripe &&
5587 			    stripe_index <= (last_stripe +
5588 					     sub_stripes - 1))
5589 				bbio->stripes[i].length -=
5590 					stripe_end_offset;
5591 
5592 			if (i == sub_stripes - 1)
5593 				stripe_offset = 0;
5594 		} else {
5595 			bbio->stripes[i].length = length;
5596 		}
5597 
5598 		stripe_index++;
5599 		if (stripe_index == map->num_stripes) {
5600 			stripe_index = 0;
5601 			stripe_nr++;
5602 		}
5603 	}
5604 
5605 	*bbio_ret = bbio;
5606 	bbio->map_type = map->type;
5607 	bbio->num_stripes = num_stripes;
5608 out:
5609 	free_extent_map(em);
5610 	return ret;
5611 }
5612 
5613 /*
5614  * In dev-replace case, for repair case (that's the only case where the mirror
5615  * is selected explicitly when calling btrfs_map_block), blocks left of the
5616  * left cursor can also be read from the target drive.
5617  *
5618  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5619  * array of stripes.
5620  * For READ, it also needs to be supported using the same mirror number.
5621  *
5622  * If the requested block is not left of the left cursor, EIO is returned. This
5623  * can happen because btrfs_num_copies() returns one more in the dev-replace
5624  * case.
5625  */
5626 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5627 					 u64 logical, u64 length,
5628 					 u64 srcdev_devid, int *mirror_num,
5629 					 u64 *physical)
5630 {
5631 	struct btrfs_bio *bbio = NULL;
5632 	int num_stripes;
5633 	int index_srcdev = 0;
5634 	int found = 0;
5635 	u64 physical_of_found = 0;
5636 	int i;
5637 	int ret = 0;
5638 
5639 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5640 				logical, &length, &bbio, 0, 0);
5641 	if (ret) {
5642 		ASSERT(bbio == NULL);
5643 		return ret;
5644 	}
5645 
5646 	num_stripes = bbio->num_stripes;
5647 	if (*mirror_num > num_stripes) {
5648 		/*
5649 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5650 		 * that means that the requested area is not left of the left
5651 		 * cursor
5652 		 */
5653 		btrfs_put_bbio(bbio);
5654 		return -EIO;
5655 	}
5656 
5657 	/*
5658 	 * process the rest of the function using the mirror_num of the source
5659 	 * drive. Therefore look it up first.  At the end, patch the device
5660 	 * pointer to the one of the target drive.
5661 	 */
5662 	for (i = 0; i < num_stripes; i++) {
5663 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5664 			continue;
5665 
5666 		/*
5667 		 * In case of DUP, in order to keep it simple, only add the
5668 		 * mirror with the lowest physical address
5669 		 */
5670 		if (found &&
5671 		    physical_of_found <= bbio->stripes[i].physical)
5672 			continue;
5673 
5674 		index_srcdev = i;
5675 		found = 1;
5676 		physical_of_found = bbio->stripes[i].physical;
5677 	}
5678 
5679 	btrfs_put_bbio(bbio);
5680 
5681 	ASSERT(found);
5682 	if (!found)
5683 		return -EIO;
5684 
5685 	*mirror_num = index_srcdev + 1;
5686 	*physical = physical_of_found;
5687 	return ret;
5688 }
5689 
5690 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5691 				      struct btrfs_bio **bbio_ret,
5692 				      struct btrfs_dev_replace *dev_replace,
5693 				      int *num_stripes_ret, int *max_errors_ret)
5694 {
5695 	struct btrfs_bio *bbio = *bbio_ret;
5696 	u64 srcdev_devid = dev_replace->srcdev->devid;
5697 	int tgtdev_indexes = 0;
5698 	int num_stripes = *num_stripes_ret;
5699 	int max_errors = *max_errors_ret;
5700 	int i;
5701 
5702 	if (op == BTRFS_MAP_WRITE) {
5703 		int index_where_to_add;
5704 
5705 		/*
5706 		 * duplicate the write operations while the dev replace
5707 		 * procedure is running. Since the copying of the old disk to
5708 		 * the new disk takes place at run time while the filesystem is
5709 		 * mounted writable, the regular write operations to the old
5710 		 * disk have to be duplicated to go to the new disk as well.
5711 		 *
5712 		 * Note that device->missing is handled by the caller, and that
5713 		 * the write to the old disk is already set up in the stripes
5714 		 * array.
5715 		 */
5716 		index_where_to_add = num_stripes;
5717 		for (i = 0; i < num_stripes; i++) {
5718 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5719 				/* write to new disk, too */
5720 				struct btrfs_bio_stripe *new =
5721 					bbio->stripes + index_where_to_add;
5722 				struct btrfs_bio_stripe *old =
5723 					bbio->stripes + i;
5724 
5725 				new->physical = old->physical;
5726 				new->length = old->length;
5727 				new->dev = dev_replace->tgtdev;
5728 				bbio->tgtdev_map[i] = index_where_to_add;
5729 				index_where_to_add++;
5730 				max_errors++;
5731 				tgtdev_indexes++;
5732 			}
5733 		}
5734 		num_stripes = index_where_to_add;
5735 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5736 		int index_srcdev = 0;
5737 		int found = 0;
5738 		u64 physical_of_found = 0;
5739 
5740 		/*
5741 		 * During the dev-replace procedure, the target drive can also
5742 		 * be used to read data in case it is needed to repair a corrupt
5743 		 * block elsewhere. This is possible if the requested area is
5744 		 * left of the left cursor. In this area, the target drive is a
5745 		 * full copy of the source drive.
5746 		 */
5747 		for (i = 0; i < num_stripes; i++) {
5748 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5749 				/*
5750 				 * In case of DUP, in order to keep it simple,
5751 				 * only add the mirror with the lowest physical
5752 				 * address
5753 				 */
5754 				if (found &&
5755 				    physical_of_found <=
5756 				     bbio->stripes[i].physical)
5757 					continue;
5758 				index_srcdev = i;
5759 				found = 1;
5760 				physical_of_found = bbio->stripes[i].physical;
5761 			}
5762 		}
5763 		if (found) {
5764 			struct btrfs_bio_stripe *tgtdev_stripe =
5765 				bbio->stripes + num_stripes;
5766 
5767 			tgtdev_stripe->physical = physical_of_found;
5768 			tgtdev_stripe->length =
5769 				bbio->stripes[index_srcdev].length;
5770 			tgtdev_stripe->dev = dev_replace->tgtdev;
5771 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5772 
5773 			tgtdev_indexes++;
5774 			num_stripes++;
5775 		}
5776 	}
5777 
5778 	*num_stripes_ret = num_stripes;
5779 	*max_errors_ret = max_errors;
5780 	bbio->num_tgtdevs = tgtdev_indexes;
5781 	*bbio_ret = bbio;
5782 }
5783 
5784 static bool need_full_stripe(enum btrfs_map_op op)
5785 {
5786 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5787 }
5788 
5789 /*
5790  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5791  *		       tuple. This information is used to calculate how big a
5792  *		       particular bio can get before it straddles a stripe.
5793  *
5794  * @fs_info - the filesystem
5795  * @logical - address that we want to figure out the geometry of
5796  * @len	    - the length of IO we are going to perform, starting at @logical
5797  * @op      - type of operation - write or read
5798  * @io_geom - pointer used to return values
5799  *
5800  * Returns < 0 in case a chunk for the given logical address cannot be found,
5801  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5802  */
5803 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5804 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5805 {
5806 	struct extent_map *em;
5807 	struct map_lookup *map;
5808 	u64 offset;
5809 	u64 stripe_offset;
5810 	u64 stripe_nr;
5811 	u64 stripe_len;
5812 	u64 raid56_full_stripe_start = (u64)-1;
5813 	int data_stripes;
5814 	int ret = 0;
5815 
5816 	ASSERT(op != BTRFS_MAP_DISCARD);
5817 
5818 	em = btrfs_get_chunk_map(fs_info, logical, len);
5819 	if (IS_ERR(em))
5820 		return PTR_ERR(em);
5821 
5822 	map = em->map_lookup;
5823 	/* Offset of this logical address in the chunk */
5824 	offset = logical - em->start;
5825 	/* Len of a stripe in a chunk */
5826 	stripe_len = map->stripe_len;
5827 	/* Stripe wher this block falls in */
5828 	stripe_nr = div64_u64(offset, stripe_len);
5829 	/* Offset of stripe in the chunk */
5830 	stripe_offset = stripe_nr * stripe_len;
5831 	if (offset < stripe_offset) {
5832 		btrfs_crit(fs_info,
5833 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5834 			stripe_offset, offset, em->start, logical, stripe_len);
5835 		ret = -EINVAL;
5836 		goto out;
5837 	}
5838 
5839 	/* stripe_offset is the offset of this block in its stripe */
5840 	stripe_offset = offset - stripe_offset;
5841 	data_stripes = nr_data_stripes(map);
5842 
5843 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5844 		u64 max_len = stripe_len - stripe_offset;
5845 
5846 		/*
5847 		 * In case of raid56, we need to know the stripe aligned start
5848 		 */
5849 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5850 			unsigned long full_stripe_len = stripe_len * data_stripes;
5851 			raid56_full_stripe_start = offset;
5852 
5853 			/*
5854 			 * Allow a write of a full stripe, but make sure we
5855 			 * don't allow straddling of stripes
5856 			 */
5857 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5858 					full_stripe_len);
5859 			raid56_full_stripe_start *= full_stripe_len;
5860 
5861 			/*
5862 			 * For writes to RAID[56], allow a full stripeset across
5863 			 * all disks. For other RAID types and for RAID[56]
5864 			 * reads, just allow a single stripe (on a single disk).
5865 			 */
5866 			if (op == BTRFS_MAP_WRITE) {
5867 				max_len = stripe_len * data_stripes -
5868 					  (offset - raid56_full_stripe_start);
5869 			}
5870 		}
5871 		len = min_t(u64, em->len - offset, max_len);
5872 	} else {
5873 		len = em->len - offset;
5874 	}
5875 
5876 	io_geom->len = len;
5877 	io_geom->offset = offset;
5878 	io_geom->stripe_len = stripe_len;
5879 	io_geom->stripe_nr = stripe_nr;
5880 	io_geom->stripe_offset = stripe_offset;
5881 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5882 
5883 out:
5884 	/* once for us */
5885 	free_extent_map(em);
5886 	return ret;
5887 }
5888 
5889 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5890 			     enum btrfs_map_op op,
5891 			     u64 logical, u64 *length,
5892 			     struct btrfs_bio **bbio_ret,
5893 			     int mirror_num, int need_raid_map)
5894 {
5895 	struct extent_map *em;
5896 	struct map_lookup *map;
5897 	u64 stripe_offset;
5898 	u64 stripe_nr;
5899 	u64 stripe_len;
5900 	u32 stripe_index;
5901 	int data_stripes;
5902 	int i;
5903 	int ret = 0;
5904 	int num_stripes;
5905 	int max_errors = 0;
5906 	int tgtdev_indexes = 0;
5907 	struct btrfs_bio *bbio = NULL;
5908 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5909 	int dev_replace_is_ongoing = 0;
5910 	int num_alloc_stripes;
5911 	int patch_the_first_stripe_for_dev_replace = 0;
5912 	u64 physical_to_patch_in_first_stripe = 0;
5913 	u64 raid56_full_stripe_start = (u64)-1;
5914 	struct btrfs_io_geometry geom;
5915 
5916 	ASSERT(bbio_ret);
5917 
5918 	if (op == BTRFS_MAP_DISCARD)
5919 		return __btrfs_map_block_for_discard(fs_info, logical,
5920 						     length, bbio_ret);
5921 
5922 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
5923 	if (ret < 0)
5924 		return ret;
5925 
5926 	em = btrfs_get_chunk_map(fs_info, logical, *length);
5927 	ASSERT(!IS_ERR(em));
5928 	map = em->map_lookup;
5929 
5930 	*length = geom.len;
5931 	stripe_len = geom.stripe_len;
5932 	stripe_nr = geom.stripe_nr;
5933 	stripe_offset = geom.stripe_offset;
5934 	raid56_full_stripe_start = geom.raid56_stripe_offset;
5935 	data_stripes = nr_data_stripes(map);
5936 
5937 	down_read(&dev_replace->rwsem);
5938 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5939 	/*
5940 	 * Hold the semaphore for read during the whole operation, write is
5941 	 * requested at commit time but must wait.
5942 	 */
5943 	if (!dev_replace_is_ongoing)
5944 		up_read(&dev_replace->rwsem);
5945 
5946 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5947 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5948 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5949 						    dev_replace->srcdev->devid,
5950 						    &mirror_num,
5951 					    &physical_to_patch_in_first_stripe);
5952 		if (ret)
5953 			goto out;
5954 		else
5955 			patch_the_first_stripe_for_dev_replace = 1;
5956 	} else if (mirror_num > map->num_stripes) {
5957 		mirror_num = 0;
5958 	}
5959 
5960 	num_stripes = 1;
5961 	stripe_index = 0;
5962 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5963 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5964 				&stripe_index);
5965 		if (!need_full_stripe(op))
5966 			mirror_num = 1;
5967 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
5968 		if (need_full_stripe(op))
5969 			num_stripes = map->num_stripes;
5970 		else if (mirror_num)
5971 			stripe_index = mirror_num - 1;
5972 		else {
5973 			stripe_index = find_live_mirror(fs_info, map, 0,
5974 					    dev_replace_is_ongoing);
5975 			mirror_num = stripe_index + 1;
5976 		}
5977 
5978 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5979 		if (need_full_stripe(op)) {
5980 			num_stripes = map->num_stripes;
5981 		} else if (mirror_num) {
5982 			stripe_index = mirror_num - 1;
5983 		} else {
5984 			mirror_num = 1;
5985 		}
5986 
5987 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5988 		u32 factor = map->num_stripes / map->sub_stripes;
5989 
5990 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5991 		stripe_index *= map->sub_stripes;
5992 
5993 		if (need_full_stripe(op))
5994 			num_stripes = map->sub_stripes;
5995 		else if (mirror_num)
5996 			stripe_index += mirror_num - 1;
5997 		else {
5998 			int old_stripe_index = stripe_index;
5999 			stripe_index = find_live_mirror(fs_info, map,
6000 					      stripe_index,
6001 					      dev_replace_is_ongoing);
6002 			mirror_num = stripe_index - old_stripe_index + 1;
6003 		}
6004 
6005 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6006 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6007 			/* push stripe_nr back to the start of the full stripe */
6008 			stripe_nr = div64_u64(raid56_full_stripe_start,
6009 					stripe_len * data_stripes);
6010 
6011 			/* RAID[56] write or recovery. Return all stripes */
6012 			num_stripes = map->num_stripes;
6013 			max_errors = nr_parity_stripes(map);
6014 
6015 			*length = map->stripe_len;
6016 			stripe_index = 0;
6017 			stripe_offset = 0;
6018 		} else {
6019 			/*
6020 			 * Mirror #0 or #1 means the original data block.
6021 			 * Mirror #2 is RAID5 parity block.
6022 			 * Mirror #3 is RAID6 Q block.
6023 			 */
6024 			stripe_nr = div_u64_rem(stripe_nr,
6025 					data_stripes, &stripe_index);
6026 			if (mirror_num > 1)
6027 				stripe_index = data_stripes + mirror_num - 2;
6028 
6029 			/* We distribute the parity blocks across stripes */
6030 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6031 					&stripe_index);
6032 			if (!need_full_stripe(op) && mirror_num <= 1)
6033 				mirror_num = 1;
6034 		}
6035 	} else {
6036 		/*
6037 		 * after this, stripe_nr is the number of stripes on this
6038 		 * device we have to walk to find the data, and stripe_index is
6039 		 * the number of our device in the stripe array
6040 		 */
6041 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6042 				&stripe_index);
6043 		mirror_num = stripe_index + 1;
6044 	}
6045 	if (stripe_index >= map->num_stripes) {
6046 		btrfs_crit(fs_info,
6047 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6048 			   stripe_index, map->num_stripes);
6049 		ret = -EINVAL;
6050 		goto out;
6051 	}
6052 
6053 	num_alloc_stripes = num_stripes;
6054 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6055 		if (op == BTRFS_MAP_WRITE)
6056 			num_alloc_stripes <<= 1;
6057 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6058 			num_alloc_stripes++;
6059 		tgtdev_indexes = num_stripes;
6060 	}
6061 
6062 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6063 	if (!bbio) {
6064 		ret = -ENOMEM;
6065 		goto out;
6066 	}
6067 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6068 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6069 
6070 	/* build raid_map */
6071 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6072 	    (need_full_stripe(op) || mirror_num > 1)) {
6073 		u64 tmp;
6074 		unsigned rot;
6075 
6076 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
6077 				 sizeof(struct btrfs_bio_stripe) *
6078 				 num_alloc_stripes +
6079 				 sizeof(int) * tgtdev_indexes);
6080 
6081 		/* Work out the disk rotation on this stripe-set */
6082 		div_u64_rem(stripe_nr, num_stripes, &rot);
6083 
6084 		/* Fill in the logical address of each stripe */
6085 		tmp = stripe_nr * data_stripes;
6086 		for (i = 0; i < data_stripes; i++)
6087 			bbio->raid_map[(i+rot) % num_stripes] =
6088 				em->start + (tmp + i) * map->stripe_len;
6089 
6090 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6091 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6092 			bbio->raid_map[(i+rot+1) % num_stripes] =
6093 				RAID6_Q_STRIPE;
6094 	}
6095 
6096 
6097 	for (i = 0; i < num_stripes; i++) {
6098 		bbio->stripes[i].physical =
6099 			map->stripes[stripe_index].physical +
6100 			stripe_offset +
6101 			stripe_nr * map->stripe_len;
6102 		bbio->stripes[i].dev =
6103 			map->stripes[stripe_index].dev;
6104 		stripe_index++;
6105 	}
6106 
6107 	if (need_full_stripe(op))
6108 		max_errors = btrfs_chunk_max_errors(map);
6109 
6110 	if (bbio->raid_map)
6111 		sort_parity_stripes(bbio, num_stripes);
6112 
6113 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6114 	    need_full_stripe(op)) {
6115 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6116 					  &max_errors);
6117 	}
6118 
6119 	*bbio_ret = bbio;
6120 	bbio->map_type = map->type;
6121 	bbio->num_stripes = num_stripes;
6122 	bbio->max_errors = max_errors;
6123 	bbio->mirror_num = mirror_num;
6124 
6125 	/*
6126 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6127 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6128 	 * available as a mirror
6129 	 */
6130 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6131 		WARN_ON(num_stripes > 1);
6132 		bbio->stripes[0].dev = dev_replace->tgtdev;
6133 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6134 		bbio->mirror_num = map->num_stripes + 1;
6135 	}
6136 out:
6137 	if (dev_replace_is_ongoing) {
6138 		lockdep_assert_held(&dev_replace->rwsem);
6139 		/* Unlock and let waiting writers proceed */
6140 		up_read(&dev_replace->rwsem);
6141 	}
6142 	free_extent_map(em);
6143 	return ret;
6144 }
6145 
6146 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6147 		      u64 logical, u64 *length,
6148 		      struct btrfs_bio **bbio_ret, int mirror_num)
6149 {
6150 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6151 				 mirror_num, 0);
6152 }
6153 
6154 /* For Scrub/replace */
6155 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6156 		     u64 logical, u64 *length,
6157 		     struct btrfs_bio **bbio_ret)
6158 {
6159 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6160 }
6161 
6162 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6163 {
6164 	bio->bi_private = bbio->private;
6165 	bio->bi_end_io = bbio->end_io;
6166 	bio_endio(bio);
6167 
6168 	btrfs_put_bbio(bbio);
6169 }
6170 
6171 static void btrfs_end_bio(struct bio *bio)
6172 {
6173 	struct btrfs_bio *bbio = bio->bi_private;
6174 	int is_orig_bio = 0;
6175 
6176 	if (bio->bi_status) {
6177 		atomic_inc(&bbio->error);
6178 		if (bio->bi_status == BLK_STS_IOERR ||
6179 		    bio->bi_status == BLK_STS_TARGET) {
6180 			unsigned int stripe_index =
6181 				btrfs_io_bio(bio)->stripe_index;
6182 			struct btrfs_device *dev;
6183 
6184 			BUG_ON(stripe_index >= bbio->num_stripes);
6185 			dev = bbio->stripes[stripe_index].dev;
6186 			if (dev->bdev) {
6187 				if (bio_op(bio) == REQ_OP_WRITE)
6188 					btrfs_dev_stat_inc_and_print(dev,
6189 						BTRFS_DEV_STAT_WRITE_ERRS);
6190 				else if (!(bio->bi_opf & REQ_RAHEAD))
6191 					btrfs_dev_stat_inc_and_print(dev,
6192 						BTRFS_DEV_STAT_READ_ERRS);
6193 				if (bio->bi_opf & REQ_PREFLUSH)
6194 					btrfs_dev_stat_inc_and_print(dev,
6195 						BTRFS_DEV_STAT_FLUSH_ERRS);
6196 			}
6197 		}
6198 	}
6199 
6200 	if (bio == bbio->orig_bio)
6201 		is_orig_bio = 1;
6202 
6203 	btrfs_bio_counter_dec(bbio->fs_info);
6204 
6205 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6206 		if (!is_orig_bio) {
6207 			bio_put(bio);
6208 			bio = bbio->orig_bio;
6209 		}
6210 
6211 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6212 		/* only send an error to the higher layers if it is
6213 		 * beyond the tolerance of the btrfs bio
6214 		 */
6215 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6216 			bio->bi_status = BLK_STS_IOERR;
6217 		} else {
6218 			/*
6219 			 * this bio is actually up to date, we didn't
6220 			 * go over the max number of errors
6221 			 */
6222 			bio->bi_status = BLK_STS_OK;
6223 		}
6224 
6225 		btrfs_end_bbio(bbio, bio);
6226 	} else if (!is_orig_bio) {
6227 		bio_put(bio);
6228 	}
6229 }
6230 
6231 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6232 			      u64 physical, int dev_nr)
6233 {
6234 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6235 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6236 
6237 	bio->bi_private = bbio;
6238 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6239 	bio->bi_end_io = btrfs_end_bio;
6240 	bio->bi_iter.bi_sector = physical >> 9;
6241 	btrfs_debug_in_rcu(fs_info,
6242 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6243 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6244 		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6245 		bio->bi_iter.bi_size);
6246 	bio_set_dev(bio, dev->bdev);
6247 
6248 	btrfs_bio_counter_inc_noblocked(fs_info);
6249 
6250 	btrfsic_submit_bio(bio);
6251 }
6252 
6253 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6254 {
6255 	atomic_inc(&bbio->error);
6256 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6257 		/* Should be the original bio. */
6258 		WARN_ON(bio != bbio->orig_bio);
6259 
6260 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6261 		bio->bi_iter.bi_sector = logical >> 9;
6262 		if (atomic_read(&bbio->error) > bbio->max_errors)
6263 			bio->bi_status = BLK_STS_IOERR;
6264 		else
6265 			bio->bi_status = BLK_STS_OK;
6266 		btrfs_end_bbio(bbio, bio);
6267 	}
6268 }
6269 
6270 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6271 			   int mirror_num)
6272 {
6273 	struct btrfs_device *dev;
6274 	struct bio *first_bio = bio;
6275 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6276 	u64 length = 0;
6277 	u64 map_length;
6278 	int ret;
6279 	int dev_nr;
6280 	int total_devs;
6281 	struct btrfs_bio *bbio = NULL;
6282 
6283 	length = bio->bi_iter.bi_size;
6284 	map_length = length;
6285 
6286 	btrfs_bio_counter_inc_blocked(fs_info);
6287 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6288 				&map_length, &bbio, mirror_num, 1);
6289 	if (ret) {
6290 		btrfs_bio_counter_dec(fs_info);
6291 		return errno_to_blk_status(ret);
6292 	}
6293 
6294 	total_devs = bbio->num_stripes;
6295 	bbio->orig_bio = first_bio;
6296 	bbio->private = first_bio->bi_private;
6297 	bbio->end_io = first_bio->bi_end_io;
6298 	bbio->fs_info = fs_info;
6299 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6300 
6301 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6302 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6303 		/* In this case, map_length has been set to the length of
6304 		   a single stripe; not the whole write */
6305 		if (bio_op(bio) == REQ_OP_WRITE) {
6306 			ret = raid56_parity_write(fs_info, bio, bbio,
6307 						  map_length);
6308 		} else {
6309 			ret = raid56_parity_recover(fs_info, bio, bbio,
6310 						    map_length, mirror_num, 1);
6311 		}
6312 
6313 		btrfs_bio_counter_dec(fs_info);
6314 		return errno_to_blk_status(ret);
6315 	}
6316 
6317 	if (map_length < length) {
6318 		btrfs_crit(fs_info,
6319 			   "mapping failed logical %llu bio len %llu len %llu",
6320 			   logical, length, map_length);
6321 		BUG();
6322 	}
6323 
6324 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6325 		dev = bbio->stripes[dev_nr].dev;
6326 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6327 						   &dev->dev_state) ||
6328 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6329 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6330 			bbio_error(bbio, first_bio, logical);
6331 			continue;
6332 		}
6333 
6334 		if (dev_nr < total_devs - 1)
6335 			bio = btrfs_bio_clone(first_bio);
6336 		else
6337 			bio = first_bio;
6338 
6339 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6340 				  dev_nr);
6341 	}
6342 	btrfs_bio_counter_dec(fs_info);
6343 	return BLK_STS_OK;
6344 }
6345 
6346 /*
6347  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6348  * return NULL.
6349  *
6350  * If devid and uuid are both specified, the match must be exact, otherwise
6351  * only devid is used.
6352  *
6353  * If @seed is true, traverse through the seed devices.
6354  */
6355 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6356 				       u64 devid, u8 *uuid, u8 *fsid,
6357 				       bool seed)
6358 {
6359 	struct btrfs_device *device;
6360 
6361 	while (fs_devices) {
6362 		if (!fsid ||
6363 		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6364 			list_for_each_entry(device, &fs_devices->devices,
6365 					    dev_list) {
6366 				if (device->devid == devid &&
6367 				    (!uuid || memcmp(device->uuid, uuid,
6368 						     BTRFS_UUID_SIZE) == 0))
6369 					return device;
6370 			}
6371 		}
6372 		if (seed)
6373 			fs_devices = fs_devices->seed;
6374 		else
6375 			return NULL;
6376 	}
6377 	return NULL;
6378 }
6379 
6380 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6381 					    u64 devid, u8 *dev_uuid)
6382 {
6383 	struct btrfs_device *device;
6384 
6385 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6386 	if (IS_ERR(device))
6387 		return device;
6388 
6389 	list_add(&device->dev_list, &fs_devices->devices);
6390 	device->fs_devices = fs_devices;
6391 	fs_devices->num_devices++;
6392 
6393 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6394 	fs_devices->missing_devices++;
6395 
6396 	return device;
6397 }
6398 
6399 /**
6400  * btrfs_alloc_device - allocate struct btrfs_device
6401  * @fs_info:	used only for generating a new devid, can be NULL if
6402  *		devid is provided (i.e. @devid != NULL).
6403  * @devid:	a pointer to devid for this device.  If NULL a new devid
6404  *		is generated.
6405  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6406  *		is generated.
6407  *
6408  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6409  * on error.  Returned struct is not linked onto any lists and must be
6410  * destroyed with btrfs_free_device.
6411  */
6412 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6413 					const u64 *devid,
6414 					const u8 *uuid)
6415 {
6416 	struct btrfs_device *dev;
6417 	u64 tmp;
6418 
6419 	if (WARN_ON(!devid && !fs_info))
6420 		return ERR_PTR(-EINVAL);
6421 
6422 	dev = __alloc_device();
6423 	if (IS_ERR(dev))
6424 		return dev;
6425 
6426 	if (devid)
6427 		tmp = *devid;
6428 	else {
6429 		int ret;
6430 
6431 		ret = find_next_devid(fs_info, &tmp);
6432 		if (ret) {
6433 			btrfs_free_device(dev);
6434 			return ERR_PTR(ret);
6435 		}
6436 	}
6437 	dev->devid = tmp;
6438 
6439 	if (uuid)
6440 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6441 	else
6442 		generate_random_uuid(dev->uuid);
6443 
6444 	return dev;
6445 }
6446 
6447 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6448 					u64 devid, u8 *uuid, bool error)
6449 {
6450 	if (error)
6451 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6452 			      devid, uuid);
6453 	else
6454 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6455 			      devid, uuid);
6456 }
6457 
6458 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6459 {
6460 	int index = btrfs_bg_flags_to_raid_index(type);
6461 	int ncopies = btrfs_raid_array[index].ncopies;
6462 	const int nparity = btrfs_raid_array[index].nparity;
6463 	int data_stripes;
6464 
6465 	if (nparity)
6466 		data_stripes = num_stripes - nparity;
6467 	else
6468 		data_stripes = num_stripes / ncopies;
6469 
6470 	return div_u64(chunk_len, data_stripes);
6471 }
6472 
6473 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6474 			  struct btrfs_chunk *chunk)
6475 {
6476 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6477 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6478 	struct map_lookup *map;
6479 	struct extent_map *em;
6480 	u64 logical;
6481 	u64 length;
6482 	u64 devid;
6483 	u8 uuid[BTRFS_UUID_SIZE];
6484 	int num_stripes;
6485 	int ret;
6486 	int i;
6487 
6488 	logical = key->offset;
6489 	length = btrfs_chunk_length(leaf, chunk);
6490 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6491 
6492 	/*
6493 	 * Only need to verify chunk item if we're reading from sys chunk array,
6494 	 * as chunk item in tree block is already verified by tree-checker.
6495 	 */
6496 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6497 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6498 		if (ret)
6499 			return ret;
6500 	}
6501 
6502 	read_lock(&map_tree->lock);
6503 	em = lookup_extent_mapping(map_tree, logical, 1);
6504 	read_unlock(&map_tree->lock);
6505 
6506 	/* already mapped? */
6507 	if (em && em->start <= logical && em->start + em->len > logical) {
6508 		free_extent_map(em);
6509 		return 0;
6510 	} else if (em) {
6511 		free_extent_map(em);
6512 	}
6513 
6514 	em = alloc_extent_map();
6515 	if (!em)
6516 		return -ENOMEM;
6517 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6518 	if (!map) {
6519 		free_extent_map(em);
6520 		return -ENOMEM;
6521 	}
6522 
6523 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6524 	em->map_lookup = map;
6525 	em->start = logical;
6526 	em->len = length;
6527 	em->orig_start = 0;
6528 	em->block_start = 0;
6529 	em->block_len = em->len;
6530 
6531 	map->num_stripes = num_stripes;
6532 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6533 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6534 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6535 	map->type = btrfs_chunk_type(leaf, chunk);
6536 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6537 	map->verified_stripes = 0;
6538 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6539 						map->num_stripes);
6540 	for (i = 0; i < num_stripes; i++) {
6541 		map->stripes[i].physical =
6542 			btrfs_stripe_offset_nr(leaf, chunk, i);
6543 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6544 		read_extent_buffer(leaf, uuid, (unsigned long)
6545 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6546 				   BTRFS_UUID_SIZE);
6547 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6548 							devid, uuid, NULL, true);
6549 		if (!map->stripes[i].dev &&
6550 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6551 			free_extent_map(em);
6552 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6553 			return -ENOENT;
6554 		}
6555 		if (!map->stripes[i].dev) {
6556 			map->stripes[i].dev =
6557 				add_missing_dev(fs_info->fs_devices, devid,
6558 						uuid);
6559 			if (IS_ERR(map->stripes[i].dev)) {
6560 				free_extent_map(em);
6561 				btrfs_err(fs_info,
6562 					"failed to init missing dev %llu: %ld",
6563 					devid, PTR_ERR(map->stripes[i].dev));
6564 				return PTR_ERR(map->stripes[i].dev);
6565 			}
6566 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6567 		}
6568 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6569 				&(map->stripes[i].dev->dev_state));
6570 
6571 	}
6572 
6573 	write_lock(&map_tree->lock);
6574 	ret = add_extent_mapping(map_tree, em, 0);
6575 	write_unlock(&map_tree->lock);
6576 	if (ret < 0) {
6577 		btrfs_err(fs_info,
6578 			  "failed to add chunk map, start=%llu len=%llu: %d",
6579 			  em->start, em->len, ret);
6580 	}
6581 	free_extent_map(em);
6582 
6583 	return ret;
6584 }
6585 
6586 static void fill_device_from_item(struct extent_buffer *leaf,
6587 				 struct btrfs_dev_item *dev_item,
6588 				 struct btrfs_device *device)
6589 {
6590 	unsigned long ptr;
6591 
6592 	device->devid = btrfs_device_id(leaf, dev_item);
6593 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6594 	device->total_bytes = device->disk_total_bytes;
6595 	device->commit_total_bytes = device->disk_total_bytes;
6596 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6597 	device->commit_bytes_used = device->bytes_used;
6598 	device->type = btrfs_device_type(leaf, dev_item);
6599 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6600 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6601 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6602 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6603 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6604 
6605 	ptr = btrfs_device_uuid(dev_item);
6606 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6607 }
6608 
6609 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6610 						  u8 *fsid)
6611 {
6612 	struct btrfs_fs_devices *fs_devices;
6613 	int ret;
6614 
6615 	lockdep_assert_held(&uuid_mutex);
6616 	ASSERT(fsid);
6617 
6618 	fs_devices = fs_info->fs_devices->seed;
6619 	while (fs_devices) {
6620 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6621 			return fs_devices;
6622 
6623 		fs_devices = fs_devices->seed;
6624 	}
6625 
6626 	fs_devices = find_fsid(fsid, NULL);
6627 	if (!fs_devices) {
6628 		if (!btrfs_test_opt(fs_info, DEGRADED))
6629 			return ERR_PTR(-ENOENT);
6630 
6631 		fs_devices = alloc_fs_devices(fsid, NULL);
6632 		if (IS_ERR(fs_devices))
6633 			return fs_devices;
6634 
6635 		fs_devices->seeding = true;
6636 		fs_devices->opened = 1;
6637 		return fs_devices;
6638 	}
6639 
6640 	fs_devices = clone_fs_devices(fs_devices);
6641 	if (IS_ERR(fs_devices))
6642 		return fs_devices;
6643 
6644 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6645 	if (ret) {
6646 		free_fs_devices(fs_devices);
6647 		fs_devices = ERR_PTR(ret);
6648 		goto out;
6649 	}
6650 
6651 	if (!fs_devices->seeding) {
6652 		close_fs_devices(fs_devices);
6653 		free_fs_devices(fs_devices);
6654 		fs_devices = ERR_PTR(-EINVAL);
6655 		goto out;
6656 	}
6657 
6658 	fs_devices->seed = fs_info->fs_devices->seed;
6659 	fs_info->fs_devices->seed = fs_devices;
6660 out:
6661 	return fs_devices;
6662 }
6663 
6664 static int read_one_dev(struct extent_buffer *leaf,
6665 			struct btrfs_dev_item *dev_item)
6666 {
6667 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6668 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6669 	struct btrfs_device *device;
6670 	u64 devid;
6671 	int ret;
6672 	u8 fs_uuid[BTRFS_FSID_SIZE];
6673 	u8 dev_uuid[BTRFS_UUID_SIZE];
6674 
6675 	devid = btrfs_device_id(leaf, dev_item);
6676 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6677 			   BTRFS_UUID_SIZE);
6678 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6679 			   BTRFS_FSID_SIZE);
6680 
6681 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6682 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6683 		if (IS_ERR(fs_devices))
6684 			return PTR_ERR(fs_devices);
6685 	}
6686 
6687 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6688 				   fs_uuid, true);
6689 	if (!device) {
6690 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6691 			btrfs_report_missing_device(fs_info, devid,
6692 							dev_uuid, true);
6693 			return -ENOENT;
6694 		}
6695 
6696 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6697 		if (IS_ERR(device)) {
6698 			btrfs_err(fs_info,
6699 				"failed to add missing dev %llu: %ld",
6700 				devid, PTR_ERR(device));
6701 			return PTR_ERR(device);
6702 		}
6703 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6704 	} else {
6705 		if (!device->bdev) {
6706 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6707 				btrfs_report_missing_device(fs_info,
6708 						devid, dev_uuid, true);
6709 				return -ENOENT;
6710 			}
6711 			btrfs_report_missing_device(fs_info, devid,
6712 							dev_uuid, false);
6713 		}
6714 
6715 		if (!device->bdev &&
6716 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6717 			/*
6718 			 * this happens when a device that was properly setup
6719 			 * in the device info lists suddenly goes bad.
6720 			 * device->bdev is NULL, and so we have to set
6721 			 * device->missing to one here
6722 			 */
6723 			device->fs_devices->missing_devices++;
6724 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6725 		}
6726 
6727 		/* Move the device to its own fs_devices */
6728 		if (device->fs_devices != fs_devices) {
6729 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6730 							&device->dev_state));
6731 
6732 			list_move(&device->dev_list, &fs_devices->devices);
6733 			device->fs_devices->num_devices--;
6734 			fs_devices->num_devices++;
6735 
6736 			device->fs_devices->missing_devices--;
6737 			fs_devices->missing_devices++;
6738 
6739 			device->fs_devices = fs_devices;
6740 		}
6741 	}
6742 
6743 	if (device->fs_devices != fs_info->fs_devices) {
6744 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6745 		if (device->generation !=
6746 		    btrfs_device_generation(leaf, dev_item))
6747 			return -EINVAL;
6748 	}
6749 
6750 	fill_device_from_item(leaf, dev_item, device);
6751 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6752 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6753 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6754 		device->fs_devices->total_rw_bytes += device->total_bytes;
6755 		atomic64_add(device->total_bytes - device->bytes_used,
6756 				&fs_info->free_chunk_space);
6757 	}
6758 	ret = 0;
6759 	return ret;
6760 }
6761 
6762 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6763 {
6764 	struct btrfs_root *root = fs_info->tree_root;
6765 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6766 	struct extent_buffer *sb;
6767 	struct btrfs_disk_key *disk_key;
6768 	struct btrfs_chunk *chunk;
6769 	u8 *array_ptr;
6770 	unsigned long sb_array_offset;
6771 	int ret = 0;
6772 	u32 num_stripes;
6773 	u32 array_size;
6774 	u32 len = 0;
6775 	u32 cur_offset;
6776 	u64 type;
6777 	struct btrfs_key key;
6778 
6779 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6780 	/*
6781 	 * This will create extent buffer of nodesize, superblock size is
6782 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6783 	 * overallocate but we can keep it as-is, only the first page is used.
6784 	 */
6785 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6786 	if (IS_ERR(sb))
6787 		return PTR_ERR(sb);
6788 	set_extent_buffer_uptodate(sb);
6789 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6790 	/*
6791 	 * The sb extent buffer is artificial and just used to read the system array.
6792 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6793 	 * pages up-to-date when the page is larger: extent does not cover the
6794 	 * whole page and consequently check_page_uptodate does not find all
6795 	 * the page's extents up-to-date (the hole beyond sb),
6796 	 * write_extent_buffer then triggers a WARN_ON.
6797 	 *
6798 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6799 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6800 	 * to silence the warning eg. on PowerPC 64.
6801 	 */
6802 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6803 		SetPageUptodate(sb->pages[0]);
6804 
6805 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6806 	array_size = btrfs_super_sys_array_size(super_copy);
6807 
6808 	array_ptr = super_copy->sys_chunk_array;
6809 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6810 	cur_offset = 0;
6811 
6812 	while (cur_offset < array_size) {
6813 		disk_key = (struct btrfs_disk_key *)array_ptr;
6814 		len = sizeof(*disk_key);
6815 		if (cur_offset + len > array_size)
6816 			goto out_short_read;
6817 
6818 		btrfs_disk_key_to_cpu(&key, disk_key);
6819 
6820 		array_ptr += len;
6821 		sb_array_offset += len;
6822 		cur_offset += len;
6823 
6824 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6825 			btrfs_err(fs_info,
6826 			    "unexpected item type %u in sys_array at offset %u",
6827 				  (u32)key.type, cur_offset);
6828 			ret = -EIO;
6829 			break;
6830 		}
6831 
6832 		chunk = (struct btrfs_chunk *)sb_array_offset;
6833 		/*
6834 		 * At least one btrfs_chunk with one stripe must be present,
6835 		 * exact stripe count check comes afterwards
6836 		 */
6837 		len = btrfs_chunk_item_size(1);
6838 		if (cur_offset + len > array_size)
6839 			goto out_short_read;
6840 
6841 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6842 		if (!num_stripes) {
6843 			btrfs_err(fs_info,
6844 			"invalid number of stripes %u in sys_array at offset %u",
6845 				  num_stripes, cur_offset);
6846 			ret = -EIO;
6847 			break;
6848 		}
6849 
6850 		type = btrfs_chunk_type(sb, chunk);
6851 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6852 			btrfs_err(fs_info,
6853 			"invalid chunk type %llu in sys_array at offset %u",
6854 				  type, cur_offset);
6855 			ret = -EIO;
6856 			break;
6857 		}
6858 
6859 		len = btrfs_chunk_item_size(num_stripes);
6860 		if (cur_offset + len > array_size)
6861 			goto out_short_read;
6862 
6863 		ret = read_one_chunk(&key, sb, chunk);
6864 		if (ret)
6865 			break;
6866 
6867 		array_ptr += len;
6868 		sb_array_offset += len;
6869 		cur_offset += len;
6870 	}
6871 	clear_extent_buffer_uptodate(sb);
6872 	free_extent_buffer_stale(sb);
6873 	return ret;
6874 
6875 out_short_read:
6876 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6877 			len, cur_offset);
6878 	clear_extent_buffer_uptodate(sb);
6879 	free_extent_buffer_stale(sb);
6880 	return -EIO;
6881 }
6882 
6883 /*
6884  * Check if all chunks in the fs are OK for read-write degraded mount
6885  *
6886  * If the @failing_dev is specified, it's accounted as missing.
6887  *
6888  * Return true if all chunks meet the minimal RW mount requirements.
6889  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6890  */
6891 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6892 					struct btrfs_device *failing_dev)
6893 {
6894 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6895 	struct extent_map *em;
6896 	u64 next_start = 0;
6897 	bool ret = true;
6898 
6899 	read_lock(&map_tree->lock);
6900 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
6901 	read_unlock(&map_tree->lock);
6902 	/* No chunk at all? Return false anyway */
6903 	if (!em) {
6904 		ret = false;
6905 		goto out;
6906 	}
6907 	while (em) {
6908 		struct map_lookup *map;
6909 		int missing = 0;
6910 		int max_tolerated;
6911 		int i;
6912 
6913 		map = em->map_lookup;
6914 		max_tolerated =
6915 			btrfs_get_num_tolerated_disk_barrier_failures(
6916 					map->type);
6917 		for (i = 0; i < map->num_stripes; i++) {
6918 			struct btrfs_device *dev = map->stripes[i].dev;
6919 
6920 			if (!dev || !dev->bdev ||
6921 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6922 			    dev->last_flush_error)
6923 				missing++;
6924 			else if (failing_dev && failing_dev == dev)
6925 				missing++;
6926 		}
6927 		if (missing > max_tolerated) {
6928 			if (!failing_dev)
6929 				btrfs_warn(fs_info,
6930 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
6931 				   em->start, missing, max_tolerated);
6932 			free_extent_map(em);
6933 			ret = false;
6934 			goto out;
6935 		}
6936 		next_start = extent_map_end(em);
6937 		free_extent_map(em);
6938 
6939 		read_lock(&map_tree->lock);
6940 		em = lookup_extent_mapping(map_tree, next_start,
6941 					   (u64)(-1) - next_start);
6942 		read_unlock(&map_tree->lock);
6943 	}
6944 out:
6945 	return ret;
6946 }
6947 
6948 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6949 {
6950 	struct btrfs_root *root = fs_info->chunk_root;
6951 	struct btrfs_path *path;
6952 	struct extent_buffer *leaf;
6953 	struct btrfs_key key;
6954 	struct btrfs_key found_key;
6955 	int ret;
6956 	int slot;
6957 	u64 total_dev = 0;
6958 
6959 	path = btrfs_alloc_path();
6960 	if (!path)
6961 		return -ENOMEM;
6962 
6963 	/*
6964 	 * uuid_mutex is needed only if we are mounting a sprout FS
6965 	 * otherwise we don't need it.
6966 	 */
6967 	mutex_lock(&uuid_mutex);
6968 	mutex_lock(&fs_info->chunk_mutex);
6969 
6970 	/*
6971 	 * Read all device items, and then all the chunk items. All
6972 	 * device items are found before any chunk item (their object id
6973 	 * is smaller than the lowest possible object id for a chunk
6974 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6975 	 */
6976 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6977 	key.offset = 0;
6978 	key.type = 0;
6979 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6980 	if (ret < 0)
6981 		goto error;
6982 	while (1) {
6983 		leaf = path->nodes[0];
6984 		slot = path->slots[0];
6985 		if (slot >= btrfs_header_nritems(leaf)) {
6986 			ret = btrfs_next_leaf(root, path);
6987 			if (ret == 0)
6988 				continue;
6989 			if (ret < 0)
6990 				goto error;
6991 			break;
6992 		}
6993 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6994 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6995 			struct btrfs_dev_item *dev_item;
6996 			dev_item = btrfs_item_ptr(leaf, slot,
6997 						  struct btrfs_dev_item);
6998 			ret = read_one_dev(leaf, dev_item);
6999 			if (ret)
7000 				goto error;
7001 			total_dev++;
7002 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7003 			struct btrfs_chunk *chunk;
7004 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7005 			ret = read_one_chunk(&found_key, leaf, chunk);
7006 			if (ret)
7007 				goto error;
7008 		}
7009 		path->slots[0]++;
7010 	}
7011 
7012 	/*
7013 	 * After loading chunk tree, we've got all device information,
7014 	 * do another round of validation checks.
7015 	 */
7016 	if (total_dev != fs_info->fs_devices->total_devices) {
7017 		btrfs_err(fs_info,
7018 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7019 			  btrfs_super_num_devices(fs_info->super_copy),
7020 			  total_dev);
7021 		ret = -EINVAL;
7022 		goto error;
7023 	}
7024 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7025 	    fs_info->fs_devices->total_rw_bytes) {
7026 		btrfs_err(fs_info,
7027 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7028 			  btrfs_super_total_bytes(fs_info->super_copy),
7029 			  fs_info->fs_devices->total_rw_bytes);
7030 		ret = -EINVAL;
7031 		goto error;
7032 	}
7033 	ret = 0;
7034 error:
7035 	mutex_unlock(&fs_info->chunk_mutex);
7036 	mutex_unlock(&uuid_mutex);
7037 
7038 	btrfs_free_path(path);
7039 	return ret;
7040 }
7041 
7042 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7043 {
7044 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7045 	struct btrfs_device *device;
7046 
7047 	while (fs_devices) {
7048 		mutex_lock(&fs_devices->device_list_mutex);
7049 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7050 			device->fs_info = fs_info;
7051 		mutex_unlock(&fs_devices->device_list_mutex);
7052 
7053 		fs_devices = fs_devices->seed;
7054 	}
7055 }
7056 
7057 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7058 				 const struct btrfs_dev_stats_item *ptr,
7059 				 int index)
7060 {
7061 	u64 val;
7062 
7063 	read_extent_buffer(eb, &val,
7064 			   offsetof(struct btrfs_dev_stats_item, values) +
7065 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7066 			   sizeof(val));
7067 	return val;
7068 }
7069 
7070 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7071 				      struct btrfs_dev_stats_item *ptr,
7072 				      int index, u64 val)
7073 {
7074 	write_extent_buffer(eb, &val,
7075 			    offsetof(struct btrfs_dev_stats_item, values) +
7076 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7077 			    sizeof(val));
7078 }
7079 
7080 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7081 {
7082 	struct btrfs_key key;
7083 	struct btrfs_root *dev_root = fs_info->dev_root;
7084 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7085 	struct extent_buffer *eb;
7086 	int slot;
7087 	int ret = 0;
7088 	struct btrfs_device *device;
7089 	struct btrfs_path *path = NULL;
7090 	int i;
7091 
7092 	path = btrfs_alloc_path();
7093 	if (!path)
7094 		return -ENOMEM;
7095 
7096 	mutex_lock(&fs_devices->device_list_mutex);
7097 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7098 		int item_size;
7099 		struct btrfs_dev_stats_item *ptr;
7100 
7101 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7102 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7103 		key.offset = device->devid;
7104 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7105 		if (ret) {
7106 			for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7107 				btrfs_dev_stat_set(device, i, 0);
7108 			device->dev_stats_valid = 1;
7109 			btrfs_release_path(path);
7110 			continue;
7111 		}
7112 		slot = path->slots[0];
7113 		eb = path->nodes[0];
7114 		item_size = btrfs_item_size_nr(eb, slot);
7115 
7116 		ptr = btrfs_item_ptr(eb, slot,
7117 				     struct btrfs_dev_stats_item);
7118 
7119 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7120 			if (item_size >= (1 + i) * sizeof(__le64))
7121 				btrfs_dev_stat_set(device, i,
7122 					btrfs_dev_stats_value(eb, ptr, i));
7123 			else
7124 				btrfs_dev_stat_set(device, i, 0);
7125 		}
7126 
7127 		device->dev_stats_valid = 1;
7128 		btrfs_dev_stat_print_on_load(device);
7129 		btrfs_release_path(path);
7130 	}
7131 	mutex_unlock(&fs_devices->device_list_mutex);
7132 
7133 	btrfs_free_path(path);
7134 	return ret < 0 ? ret : 0;
7135 }
7136 
7137 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7138 				struct btrfs_device *device)
7139 {
7140 	struct btrfs_fs_info *fs_info = trans->fs_info;
7141 	struct btrfs_root *dev_root = fs_info->dev_root;
7142 	struct btrfs_path *path;
7143 	struct btrfs_key key;
7144 	struct extent_buffer *eb;
7145 	struct btrfs_dev_stats_item *ptr;
7146 	int ret;
7147 	int i;
7148 
7149 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7150 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7151 	key.offset = device->devid;
7152 
7153 	path = btrfs_alloc_path();
7154 	if (!path)
7155 		return -ENOMEM;
7156 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7157 	if (ret < 0) {
7158 		btrfs_warn_in_rcu(fs_info,
7159 			"error %d while searching for dev_stats item for device %s",
7160 			      ret, rcu_str_deref(device->name));
7161 		goto out;
7162 	}
7163 
7164 	if (ret == 0 &&
7165 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7166 		/* need to delete old one and insert a new one */
7167 		ret = btrfs_del_item(trans, dev_root, path);
7168 		if (ret != 0) {
7169 			btrfs_warn_in_rcu(fs_info,
7170 				"delete too small dev_stats item for device %s failed %d",
7171 				      rcu_str_deref(device->name), ret);
7172 			goto out;
7173 		}
7174 		ret = 1;
7175 	}
7176 
7177 	if (ret == 1) {
7178 		/* need to insert a new item */
7179 		btrfs_release_path(path);
7180 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7181 					      &key, sizeof(*ptr));
7182 		if (ret < 0) {
7183 			btrfs_warn_in_rcu(fs_info,
7184 				"insert dev_stats item for device %s failed %d",
7185 				rcu_str_deref(device->name), ret);
7186 			goto out;
7187 		}
7188 	}
7189 
7190 	eb = path->nodes[0];
7191 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7192 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7193 		btrfs_set_dev_stats_value(eb, ptr, i,
7194 					  btrfs_dev_stat_read(device, i));
7195 	btrfs_mark_buffer_dirty(eb);
7196 
7197 out:
7198 	btrfs_free_path(path);
7199 	return ret;
7200 }
7201 
7202 /*
7203  * called from commit_transaction. Writes all changed device stats to disk.
7204  */
7205 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7206 {
7207 	struct btrfs_fs_info *fs_info = trans->fs_info;
7208 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7209 	struct btrfs_device *device;
7210 	int stats_cnt;
7211 	int ret = 0;
7212 
7213 	mutex_lock(&fs_devices->device_list_mutex);
7214 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7215 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7216 		if (!device->dev_stats_valid || stats_cnt == 0)
7217 			continue;
7218 
7219 
7220 		/*
7221 		 * There is a LOAD-LOAD control dependency between the value of
7222 		 * dev_stats_ccnt and updating the on-disk values which requires
7223 		 * reading the in-memory counters. Such control dependencies
7224 		 * require explicit read memory barriers.
7225 		 *
7226 		 * This memory barriers pairs with smp_mb__before_atomic in
7227 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7228 		 * barrier implied by atomic_xchg in
7229 		 * btrfs_dev_stats_read_and_reset
7230 		 */
7231 		smp_rmb();
7232 
7233 		ret = update_dev_stat_item(trans, device);
7234 		if (!ret)
7235 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7236 	}
7237 	mutex_unlock(&fs_devices->device_list_mutex);
7238 
7239 	return ret;
7240 }
7241 
7242 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7243 {
7244 	btrfs_dev_stat_inc(dev, index);
7245 	btrfs_dev_stat_print_on_error(dev);
7246 }
7247 
7248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7249 {
7250 	if (!dev->dev_stats_valid)
7251 		return;
7252 	btrfs_err_rl_in_rcu(dev->fs_info,
7253 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7254 			   rcu_str_deref(dev->name),
7255 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7256 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7257 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7258 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7259 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7260 }
7261 
7262 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7263 {
7264 	int i;
7265 
7266 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7267 		if (btrfs_dev_stat_read(dev, i) != 0)
7268 			break;
7269 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7270 		return; /* all values == 0, suppress message */
7271 
7272 	btrfs_info_in_rcu(dev->fs_info,
7273 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7274 	       rcu_str_deref(dev->name),
7275 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7276 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7277 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7278 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7279 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7280 }
7281 
7282 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7283 			struct btrfs_ioctl_get_dev_stats *stats)
7284 {
7285 	struct btrfs_device *dev;
7286 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7287 	int i;
7288 
7289 	mutex_lock(&fs_devices->device_list_mutex);
7290 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7291 				true);
7292 	mutex_unlock(&fs_devices->device_list_mutex);
7293 
7294 	if (!dev) {
7295 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7296 		return -ENODEV;
7297 	} else if (!dev->dev_stats_valid) {
7298 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7299 		return -ENODEV;
7300 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7301 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7302 			if (stats->nr_items > i)
7303 				stats->values[i] =
7304 					btrfs_dev_stat_read_and_reset(dev, i);
7305 			else
7306 				btrfs_dev_stat_set(dev, i, 0);
7307 		}
7308 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7309 			   current->comm, task_pid_nr(current));
7310 	} else {
7311 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7312 			if (stats->nr_items > i)
7313 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7314 	}
7315 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7316 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7317 	return 0;
7318 }
7319 
7320 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7321 {
7322 	struct buffer_head *bh;
7323 	struct btrfs_super_block *disk_super;
7324 	int copy_num;
7325 
7326 	if (!bdev)
7327 		return;
7328 
7329 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7330 		copy_num++) {
7331 
7332 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7333 			continue;
7334 
7335 		disk_super = (struct btrfs_super_block *)bh->b_data;
7336 
7337 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7338 		set_buffer_dirty(bh);
7339 		sync_dirty_buffer(bh);
7340 		brelse(bh);
7341 	}
7342 
7343 	/* Notify udev that device has changed */
7344 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7345 
7346 	/* Update ctime/mtime for device path for libblkid */
7347 	update_dev_time(device_path);
7348 }
7349 
7350 /*
7351  * Update the size and bytes used for each device where it changed.  This is
7352  * delayed since we would otherwise get errors while writing out the
7353  * superblocks.
7354  *
7355  * Must be invoked during transaction commit.
7356  */
7357 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7358 {
7359 	struct btrfs_device *curr, *next;
7360 
7361 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7362 
7363 	if (list_empty(&trans->dev_update_list))
7364 		return;
7365 
7366 	/*
7367 	 * We don't need the device_list_mutex here.  This list is owned by the
7368 	 * transaction and the transaction must complete before the device is
7369 	 * released.
7370 	 */
7371 	mutex_lock(&trans->fs_info->chunk_mutex);
7372 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7373 				 post_commit_list) {
7374 		list_del_init(&curr->post_commit_list);
7375 		curr->commit_total_bytes = curr->disk_total_bytes;
7376 		curr->commit_bytes_used = curr->bytes_used;
7377 	}
7378 	mutex_unlock(&trans->fs_info->chunk_mutex);
7379 }
7380 
7381 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7382 {
7383 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7384 	while (fs_devices) {
7385 		fs_devices->fs_info = fs_info;
7386 		fs_devices = fs_devices->seed;
7387 	}
7388 }
7389 
7390 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7391 {
7392 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7393 	while (fs_devices) {
7394 		fs_devices->fs_info = NULL;
7395 		fs_devices = fs_devices->seed;
7396 	}
7397 }
7398 
7399 /*
7400  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7401  */
7402 int btrfs_bg_type_to_factor(u64 flags)
7403 {
7404 	const int index = btrfs_bg_flags_to_raid_index(flags);
7405 
7406 	return btrfs_raid_array[index].ncopies;
7407 }
7408 
7409 
7410 
7411 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7412 				 u64 chunk_offset, u64 devid,
7413 				 u64 physical_offset, u64 physical_len)
7414 {
7415 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7416 	struct extent_map *em;
7417 	struct map_lookup *map;
7418 	struct btrfs_device *dev;
7419 	u64 stripe_len;
7420 	bool found = false;
7421 	int ret = 0;
7422 	int i;
7423 
7424 	read_lock(&em_tree->lock);
7425 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7426 	read_unlock(&em_tree->lock);
7427 
7428 	if (!em) {
7429 		btrfs_err(fs_info,
7430 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7431 			  physical_offset, devid);
7432 		ret = -EUCLEAN;
7433 		goto out;
7434 	}
7435 
7436 	map = em->map_lookup;
7437 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7438 	if (physical_len != stripe_len) {
7439 		btrfs_err(fs_info,
7440 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7441 			  physical_offset, devid, em->start, physical_len,
7442 			  stripe_len);
7443 		ret = -EUCLEAN;
7444 		goto out;
7445 	}
7446 
7447 	for (i = 0; i < map->num_stripes; i++) {
7448 		if (map->stripes[i].dev->devid == devid &&
7449 		    map->stripes[i].physical == physical_offset) {
7450 			found = true;
7451 			if (map->verified_stripes >= map->num_stripes) {
7452 				btrfs_err(fs_info,
7453 				"too many dev extents for chunk %llu found",
7454 					  em->start);
7455 				ret = -EUCLEAN;
7456 				goto out;
7457 			}
7458 			map->verified_stripes++;
7459 			break;
7460 		}
7461 	}
7462 	if (!found) {
7463 		btrfs_err(fs_info,
7464 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7465 			physical_offset, devid);
7466 		ret = -EUCLEAN;
7467 	}
7468 
7469 	/* Make sure no dev extent is beyond device bondary */
7470 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7471 	if (!dev) {
7472 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7473 		ret = -EUCLEAN;
7474 		goto out;
7475 	}
7476 
7477 	/* It's possible this device is a dummy for seed device */
7478 	if (dev->disk_total_bytes == 0) {
7479 		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7480 					NULL, false);
7481 		if (!dev) {
7482 			btrfs_err(fs_info, "failed to find seed devid %llu",
7483 				  devid);
7484 			ret = -EUCLEAN;
7485 			goto out;
7486 		}
7487 	}
7488 
7489 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7490 		btrfs_err(fs_info,
7491 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7492 			  devid, physical_offset, physical_len,
7493 			  dev->disk_total_bytes);
7494 		ret = -EUCLEAN;
7495 		goto out;
7496 	}
7497 out:
7498 	free_extent_map(em);
7499 	return ret;
7500 }
7501 
7502 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7503 {
7504 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7505 	struct extent_map *em;
7506 	struct rb_node *node;
7507 	int ret = 0;
7508 
7509 	read_lock(&em_tree->lock);
7510 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7511 		em = rb_entry(node, struct extent_map, rb_node);
7512 		if (em->map_lookup->num_stripes !=
7513 		    em->map_lookup->verified_stripes) {
7514 			btrfs_err(fs_info,
7515 			"chunk %llu has missing dev extent, have %d expect %d",
7516 				  em->start, em->map_lookup->verified_stripes,
7517 				  em->map_lookup->num_stripes);
7518 			ret = -EUCLEAN;
7519 			goto out;
7520 		}
7521 	}
7522 out:
7523 	read_unlock(&em_tree->lock);
7524 	return ret;
7525 }
7526 
7527 /*
7528  * Ensure that all dev extents are mapped to correct chunk, otherwise
7529  * later chunk allocation/free would cause unexpected behavior.
7530  *
7531  * NOTE: This will iterate through the whole device tree, which should be of
7532  * the same size level as the chunk tree.  This slightly increases mount time.
7533  */
7534 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7535 {
7536 	struct btrfs_path *path;
7537 	struct btrfs_root *root = fs_info->dev_root;
7538 	struct btrfs_key key;
7539 	u64 prev_devid = 0;
7540 	u64 prev_dev_ext_end = 0;
7541 	int ret = 0;
7542 
7543 	key.objectid = 1;
7544 	key.type = BTRFS_DEV_EXTENT_KEY;
7545 	key.offset = 0;
7546 
7547 	path = btrfs_alloc_path();
7548 	if (!path)
7549 		return -ENOMEM;
7550 
7551 	path->reada = READA_FORWARD;
7552 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7553 	if (ret < 0)
7554 		goto out;
7555 
7556 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7557 		ret = btrfs_next_item(root, path);
7558 		if (ret < 0)
7559 			goto out;
7560 		/* No dev extents at all? Not good */
7561 		if (ret > 0) {
7562 			ret = -EUCLEAN;
7563 			goto out;
7564 		}
7565 	}
7566 	while (1) {
7567 		struct extent_buffer *leaf = path->nodes[0];
7568 		struct btrfs_dev_extent *dext;
7569 		int slot = path->slots[0];
7570 		u64 chunk_offset;
7571 		u64 physical_offset;
7572 		u64 physical_len;
7573 		u64 devid;
7574 
7575 		btrfs_item_key_to_cpu(leaf, &key, slot);
7576 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7577 			break;
7578 		devid = key.objectid;
7579 		physical_offset = key.offset;
7580 
7581 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7582 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7583 		physical_len = btrfs_dev_extent_length(leaf, dext);
7584 
7585 		/* Check if this dev extent overlaps with the previous one */
7586 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7587 			btrfs_err(fs_info,
7588 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7589 				  devid, physical_offset, prev_dev_ext_end);
7590 			ret = -EUCLEAN;
7591 			goto out;
7592 		}
7593 
7594 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7595 					    physical_offset, physical_len);
7596 		if (ret < 0)
7597 			goto out;
7598 		prev_devid = devid;
7599 		prev_dev_ext_end = physical_offset + physical_len;
7600 
7601 		ret = btrfs_next_item(root, path);
7602 		if (ret < 0)
7603 			goto out;
7604 		if (ret > 0) {
7605 			ret = 0;
7606 			break;
7607 		}
7608 	}
7609 
7610 	/* Ensure all chunks have corresponding dev extents */
7611 	ret = verify_chunk_dev_extent_mapping(fs_info);
7612 out:
7613 	btrfs_free_path(path);
7614 	return ret;
7615 }
7616 
7617 /*
7618  * Check whether the given block group or device is pinned by any inode being
7619  * used as a swapfile.
7620  */
7621 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7622 {
7623 	struct btrfs_swapfile_pin *sp;
7624 	struct rb_node *node;
7625 
7626 	spin_lock(&fs_info->swapfile_pins_lock);
7627 	node = fs_info->swapfile_pins.rb_node;
7628 	while (node) {
7629 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7630 		if (ptr < sp->ptr)
7631 			node = node->rb_left;
7632 		else if (ptr > sp->ptr)
7633 			node = node->rb_right;
7634 		else
7635 			break;
7636 	}
7637 	spin_unlock(&fs_info->swapfile_pins_lock);
7638 	return node != NULL;
7639 }
7640