1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "extent_map.h" 18 #include "disk-io.h" 19 #include "transaction.h" 20 #include "print-tree.h" 21 #include "volumes.h" 22 #include "raid56.h" 23 #include "rcu-string.h" 24 #include "dev-replace.h" 25 #include "sysfs.h" 26 #include "tree-checker.h" 27 #include "space-info.h" 28 #include "block-group.h" 29 #include "discard.h" 30 #include "zoned.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 #include "super.h" 38 39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 40 BTRFS_BLOCK_GROUP_RAID10 | \ 41 BTRFS_BLOCK_GROUP_RAID56_MASK) 42 43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 44 [BTRFS_RAID_RAID10] = { 45 .sub_stripes = 2, 46 .dev_stripes = 1, 47 .devs_max = 0, /* 0 == as many as possible */ 48 .devs_min = 2, 49 .tolerated_failures = 1, 50 .devs_increment = 2, 51 .ncopies = 2, 52 .nparity = 0, 53 .raid_name = "raid10", 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 56 }, 57 [BTRFS_RAID_RAID1] = { 58 .sub_stripes = 1, 59 .dev_stripes = 1, 60 .devs_max = 2, 61 .devs_min = 2, 62 .tolerated_failures = 1, 63 .devs_increment = 2, 64 .ncopies = 2, 65 .nparity = 0, 66 .raid_name = "raid1", 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 69 }, 70 [BTRFS_RAID_RAID1C3] = { 71 .sub_stripes = 1, 72 .dev_stripes = 1, 73 .devs_max = 3, 74 .devs_min = 3, 75 .tolerated_failures = 2, 76 .devs_increment = 3, 77 .ncopies = 3, 78 .nparity = 0, 79 .raid_name = "raid1c3", 80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 82 }, 83 [BTRFS_RAID_RAID1C4] = { 84 .sub_stripes = 1, 85 .dev_stripes = 1, 86 .devs_max = 4, 87 .devs_min = 4, 88 .tolerated_failures = 3, 89 .devs_increment = 4, 90 .ncopies = 4, 91 .nparity = 0, 92 .raid_name = "raid1c4", 93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 95 }, 96 [BTRFS_RAID_DUP] = { 97 .sub_stripes = 1, 98 .dev_stripes = 2, 99 .devs_max = 1, 100 .devs_min = 1, 101 .tolerated_failures = 0, 102 .devs_increment = 1, 103 .ncopies = 2, 104 .nparity = 0, 105 .raid_name = "dup", 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 107 .mindev_error = 0, 108 }, 109 [BTRFS_RAID_RAID0] = { 110 .sub_stripes = 1, 111 .dev_stripes = 1, 112 .devs_max = 0, 113 .devs_min = 1, 114 .tolerated_failures = 0, 115 .devs_increment = 1, 116 .ncopies = 1, 117 .nparity = 0, 118 .raid_name = "raid0", 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 120 .mindev_error = 0, 121 }, 122 [BTRFS_RAID_SINGLE] = { 123 .sub_stripes = 1, 124 .dev_stripes = 1, 125 .devs_max = 1, 126 .devs_min = 1, 127 .tolerated_failures = 0, 128 .devs_increment = 1, 129 .ncopies = 1, 130 .nparity = 0, 131 .raid_name = "single", 132 .bg_flag = 0, 133 .mindev_error = 0, 134 }, 135 [BTRFS_RAID_RAID5] = { 136 .sub_stripes = 1, 137 .dev_stripes = 1, 138 .devs_max = 0, 139 .devs_min = 2, 140 .tolerated_failures = 1, 141 .devs_increment = 1, 142 .ncopies = 1, 143 .nparity = 1, 144 .raid_name = "raid5", 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 147 }, 148 [BTRFS_RAID_RAID6] = { 149 .sub_stripes = 1, 150 .dev_stripes = 1, 151 .devs_max = 0, 152 .devs_min = 3, 153 .tolerated_failures = 2, 154 .devs_increment = 1, 155 .ncopies = 1, 156 .nparity = 2, 157 .raid_name = "raid6", 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 160 }, 161 }; 162 163 /* 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 165 * can be used as index to access btrfs_raid_array[]. 166 */ 167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 168 { 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 170 171 if (!profile) 172 return BTRFS_RAID_SINGLE; 173 174 return BTRFS_BG_FLAG_TO_INDEX(profile); 175 } 176 177 const char *btrfs_bg_type_to_raid_name(u64 flags) 178 { 179 const int index = btrfs_bg_flags_to_raid_index(flags); 180 181 if (index >= BTRFS_NR_RAID_TYPES) 182 return NULL; 183 184 return btrfs_raid_array[index].raid_name; 185 } 186 187 int btrfs_nr_parity_stripes(u64 type) 188 { 189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 190 191 return btrfs_raid_array[index].nparity; 192 } 193 194 /* 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf 196 * bytes including terminating null byte. 197 */ 198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 199 { 200 int i; 201 int ret; 202 char *bp = buf; 203 u64 flags = bg_flags; 204 u32 size_bp = size_buf; 205 206 if (!flags) { 207 strcpy(bp, "NONE"); 208 return; 209 } 210 211 #define DESCRIBE_FLAG(flag, desc) \ 212 do { \ 213 if (flags & (flag)) { \ 214 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 215 if (ret < 0 || ret >= size_bp) \ 216 goto out_overflow; \ 217 size_bp -= ret; \ 218 bp += ret; \ 219 flags &= ~(flag); \ 220 } \ 221 } while (0) 222 223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 226 227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 230 btrfs_raid_array[i].raid_name); 231 #undef DESCRIBE_FLAG 232 233 if (flags) { 234 ret = snprintf(bp, size_bp, "0x%llx|", flags); 235 size_bp -= ret; 236 } 237 238 if (size_bp < size_buf) 239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 240 241 /* 242 * The text is trimmed, it's up to the caller to provide sufficiently 243 * large buffer 244 */ 245 out_overflow:; 246 } 247 248 static int init_first_rw_device(struct btrfs_trans_handle *trans); 249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 251 252 /* 253 * Device locking 254 * ============== 255 * 256 * There are several mutexes that protect manipulation of devices and low-level 257 * structures like chunks but not block groups, extents or files 258 * 259 * uuid_mutex (global lock) 260 * ------------------------ 261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 263 * device) or requested by the device= mount option 264 * 265 * the mutex can be very coarse and can cover long-running operations 266 * 267 * protects: updates to fs_devices counters like missing devices, rw devices, 268 * seeding, structure cloning, opening/closing devices at mount/umount time 269 * 270 * global::fs_devs - add, remove, updates to the global list 271 * 272 * does not protect: manipulation of the fs_devices::devices list in general 273 * but in mount context it could be used to exclude list modifications by eg. 274 * scan ioctl 275 * 276 * btrfs_device::name - renames (write side), read is RCU 277 * 278 * fs_devices::device_list_mutex (per-fs, with RCU) 279 * ------------------------------------------------ 280 * protects updates to fs_devices::devices, ie. adding and deleting 281 * 282 * simple list traversal with read-only actions can be done with RCU protection 283 * 284 * may be used to exclude some operations from running concurrently without any 285 * modifications to the list (see write_all_supers) 286 * 287 * Is not required at mount and close times, because our device list is 288 * protected by the uuid_mutex at that point. 289 * 290 * balance_mutex 291 * ------------- 292 * protects balance structures (status, state) and context accessed from 293 * several places (internally, ioctl) 294 * 295 * chunk_mutex 296 * ----------- 297 * protects chunks, adding or removing during allocation, trim or when a new 298 * device is added/removed. Additionally it also protects post_commit_list of 299 * individual devices, since they can be added to the transaction's 300 * post_commit_list only with chunk_mutex held. 301 * 302 * cleaner_mutex 303 * ------------- 304 * a big lock that is held by the cleaner thread and prevents running subvolume 305 * cleaning together with relocation or delayed iputs 306 * 307 * 308 * Lock nesting 309 * ============ 310 * 311 * uuid_mutex 312 * device_list_mutex 313 * chunk_mutex 314 * balance_mutex 315 * 316 * 317 * Exclusive operations 318 * ==================== 319 * 320 * Maintains the exclusivity of the following operations that apply to the 321 * whole filesystem and cannot run in parallel. 322 * 323 * - Balance (*) 324 * - Device add 325 * - Device remove 326 * - Device replace (*) 327 * - Resize 328 * 329 * The device operations (as above) can be in one of the following states: 330 * 331 * - Running state 332 * - Paused state 333 * - Completed state 334 * 335 * Only device operations marked with (*) can go into the Paused state for the 336 * following reasons: 337 * 338 * - ioctl (only Balance can be Paused through ioctl) 339 * - filesystem remounted as read-only 340 * - filesystem unmounted and mounted as read-only 341 * - system power-cycle and filesystem mounted as read-only 342 * - filesystem or device errors leading to forced read-only 343 * 344 * The status of exclusive operation is set and cleared atomically. 345 * During the course of Paused state, fs_info::exclusive_operation remains set. 346 * A device operation in Paused or Running state can be canceled or resumed 347 * either by ioctl (Balance only) or when remounted as read-write. 348 * The exclusive status is cleared when the device operation is canceled or 349 * completed. 350 */ 351 352 DEFINE_MUTEX(uuid_mutex); 353 static LIST_HEAD(fs_uuids); 354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 355 { 356 return &fs_uuids; 357 } 358 359 /* 360 * alloc_fs_devices - allocate struct btrfs_fs_devices 361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 363 * 364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 365 * The returned struct is not linked onto any lists and can be destroyed with 366 * kfree() right away. 367 */ 368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 369 const u8 *metadata_fsid) 370 { 371 struct btrfs_fs_devices *fs_devs; 372 373 ASSERT(fsid || !metadata_fsid); 374 375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 376 if (!fs_devs) 377 return ERR_PTR(-ENOMEM); 378 379 mutex_init(&fs_devs->device_list_mutex); 380 381 INIT_LIST_HEAD(&fs_devs->devices); 382 INIT_LIST_HEAD(&fs_devs->alloc_list); 383 INIT_LIST_HEAD(&fs_devs->fs_list); 384 INIT_LIST_HEAD(&fs_devs->seed_list); 385 386 if (fsid) { 387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 388 memcpy(fs_devs->metadata_uuid, 389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE); 390 } 391 392 return fs_devs; 393 } 394 395 static void btrfs_free_device(struct btrfs_device *device) 396 { 397 WARN_ON(!list_empty(&device->post_commit_list)); 398 rcu_string_free(device->name); 399 extent_io_tree_release(&device->alloc_state); 400 btrfs_destroy_dev_zone_info(device); 401 kfree(device); 402 } 403 404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 405 { 406 struct btrfs_device *device; 407 408 WARN_ON(fs_devices->opened); 409 while (!list_empty(&fs_devices->devices)) { 410 device = list_entry(fs_devices->devices.next, 411 struct btrfs_device, dev_list); 412 list_del(&device->dev_list); 413 btrfs_free_device(device); 414 } 415 kfree(fs_devices); 416 } 417 418 void __exit btrfs_cleanup_fs_uuids(void) 419 { 420 struct btrfs_fs_devices *fs_devices; 421 422 while (!list_empty(&fs_uuids)) { 423 fs_devices = list_entry(fs_uuids.next, 424 struct btrfs_fs_devices, fs_list); 425 list_del(&fs_devices->fs_list); 426 free_fs_devices(fs_devices); 427 } 428 } 429 430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 431 const u8 *fsid, const u8 *metadata_fsid) 432 { 433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 434 return false; 435 436 if (!metadata_fsid) 437 return true; 438 439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 440 return false; 441 442 return true; 443 } 444 445 static noinline struct btrfs_fs_devices *find_fsid( 446 const u8 *fsid, const u8 *metadata_fsid) 447 { 448 struct btrfs_fs_devices *fs_devices; 449 450 ASSERT(fsid); 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 455 return fs_devices; 456 } 457 return NULL; 458 } 459 460 /* 461 * First check if the metadata_uuid is different from the fsid in the given 462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid 463 * in the fs_devices. If it is, return true; otherwise, return false. 464 */ 465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices, 466 const u8 *fsid) 467 { 468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 469 BTRFS_FSID_SIZE) != 0 && 470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0; 471 } 472 473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 474 struct btrfs_super_block *disk_super) 475 { 476 477 struct btrfs_fs_devices *fs_devices; 478 479 /* 480 * Handle scanned device having completed its fsid change but 481 * belonging to a fs_devices that was created by first scanning 482 * a device which didn't have its fsid/metadata_uuid changed 483 * at all and the CHANGING_FSID_V2 flag set. 484 */ 485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 486 if (!fs_devices->fsid_change) 487 continue; 488 489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid, 490 fs_devices->fsid)) 491 return fs_devices; 492 } 493 494 /* 495 * Handle scanned device having completed its fsid change but 496 * belonging to a fs_devices that was created by a device that 497 * has an outdated pair of fsid/metadata_uuid and 498 * CHANGING_FSID_V2 flag set. 499 */ 500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 501 if (!fs_devices->fsid_change) 502 continue; 503 504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid)) 505 return fs_devices; 506 } 507 508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 509 } 510 511 512 static int 513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 514 int flush, struct block_device **bdev, 515 struct btrfs_super_block **disk_super) 516 { 517 int ret; 518 519 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL); 520 521 if (IS_ERR(*bdev)) { 522 ret = PTR_ERR(*bdev); 523 goto error; 524 } 525 526 if (flush) 527 sync_blockdev(*bdev); 528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 529 if (ret) { 530 blkdev_put(*bdev, holder); 531 goto error; 532 } 533 invalidate_bdev(*bdev); 534 *disk_super = btrfs_read_dev_super(*bdev); 535 if (IS_ERR(*disk_super)) { 536 ret = PTR_ERR(*disk_super); 537 blkdev_put(*bdev, holder); 538 goto error; 539 } 540 541 return 0; 542 543 error: 544 *bdev = NULL; 545 return ret; 546 } 547 548 /* 549 * Search and remove all stale devices (which are not mounted). When both 550 * inputs are NULL, it will search and release all stale devices. 551 * 552 * @devt: Optional. When provided will it release all unmounted devices 553 * matching this devt only. 554 * @skip_device: Optional. Will skip this device when searching for the stale 555 * devices. 556 * 557 * Return: 0 for success or if @devt is 0. 558 * -EBUSY if @devt is a mounted device. 559 * -ENOENT if @devt does not match any device in the list. 560 */ 561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 562 { 563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 564 struct btrfs_device *device, *tmp_device; 565 int ret = 0; 566 567 lockdep_assert_held(&uuid_mutex); 568 569 if (devt) 570 ret = -ENOENT; 571 572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 573 574 mutex_lock(&fs_devices->device_list_mutex); 575 list_for_each_entry_safe(device, tmp_device, 576 &fs_devices->devices, dev_list) { 577 if (skip_device && skip_device == device) 578 continue; 579 if (devt && devt != device->devt) 580 continue; 581 if (fs_devices->opened) { 582 /* for an already deleted device return 0 */ 583 if (devt && ret != 0) 584 ret = -EBUSY; 585 break; 586 } 587 588 /* delete the stale device */ 589 fs_devices->num_devices--; 590 list_del(&device->dev_list); 591 btrfs_free_device(device); 592 593 ret = 0; 594 } 595 mutex_unlock(&fs_devices->device_list_mutex); 596 597 if (fs_devices->num_devices == 0) { 598 btrfs_sysfs_remove_fsid(fs_devices); 599 list_del(&fs_devices->fs_list); 600 free_fs_devices(fs_devices); 601 } 602 } 603 604 return ret; 605 } 606 607 /* 608 * This is only used on mount, and we are protected from competing things 609 * messing with our fs_devices by the uuid_mutex, thus we do not need the 610 * fs_devices->device_list_mutex here. 611 */ 612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 613 struct btrfs_device *device, blk_mode_t flags, 614 void *holder) 615 { 616 struct block_device *bdev; 617 struct btrfs_super_block *disk_super; 618 u64 devid; 619 int ret; 620 621 if (device->bdev) 622 return -EINVAL; 623 if (!device->name) 624 return -EINVAL; 625 626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 627 &bdev, &disk_super); 628 if (ret) 629 return ret; 630 631 devid = btrfs_stack_device_id(&disk_super->dev_item); 632 if (devid != device->devid) 633 goto error_free_page; 634 635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 636 goto error_free_page; 637 638 device->generation = btrfs_super_generation(disk_super); 639 640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 641 if (btrfs_super_incompat_flags(disk_super) & 642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 643 pr_err( 644 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 645 goto error_free_page; 646 } 647 648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 649 fs_devices->seeding = true; 650 } else { 651 if (bdev_read_only(bdev)) 652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 653 else 654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 655 } 656 657 if (!bdev_nonrot(bdev)) 658 fs_devices->rotating = true; 659 660 if (bdev_max_discard_sectors(bdev)) 661 fs_devices->discardable = true; 662 663 device->bdev = bdev; 664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 665 device->holder = holder; 666 667 fs_devices->open_devices++; 668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 669 device->devid != BTRFS_DEV_REPLACE_DEVID) { 670 fs_devices->rw_devices++; 671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 672 } 673 btrfs_release_disk_super(disk_super); 674 675 return 0; 676 677 error_free_page: 678 btrfs_release_disk_super(disk_super); 679 blkdev_put(bdev, holder); 680 681 return -EINVAL; 682 } 683 684 /* 685 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 686 * being created with a disk that has already completed its fsid change. Such 687 * disk can belong to an fs which has its FSID changed or to one which doesn't. 688 * Handle both cases here. 689 */ 690 static struct btrfs_fs_devices *find_fsid_inprogress( 691 struct btrfs_super_block *disk_super) 692 { 693 struct btrfs_fs_devices *fs_devices; 694 695 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 696 if (fs_devices->fsid_change) 697 continue; 698 699 if (check_fsid_changed(fs_devices, disk_super->fsid)) 700 return fs_devices; 701 } 702 703 return find_fsid(disk_super->fsid, NULL); 704 } 705 706 static struct btrfs_fs_devices *find_fsid_changed( 707 struct btrfs_super_block *disk_super) 708 { 709 struct btrfs_fs_devices *fs_devices; 710 711 /* 712 * Handles the case where scanned device is part of an fs that had 713 * multiple successful changes of FSID but currently device didn't 714 * observe it. Meaning our fsid will be different than theirs. We need 715 * to handle two subcases : 716 * 1 - The fs still continues to have different METADATA/FSID uuids. 717 * 2 - The fs is switched back to its original FSID (METADATA/FSID 718 * are equal). 719 */ 720 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 721 /* Changed UUIDs */ 722 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) && 723 memcmp(fs_devices->fsid, disk_super->fsid, 724 BTRFS_FSID_SIZE) != 0) 725 return fs_devices; 726 727 /* Unchanged UUIDs */ 728 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 729 BTRFS_FSID_SIZE) == 0 && 730 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 731 BTRFS_FSID_SIZE) == 0) 732 return fs_devices; 733 } 734 735 return NULL; 736 } 737 738 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 739 struct btrfs_super_block *disk_super) 740 { 741 struct btrfs_fs_devices *fs_devices; 742 743 /* 744 * Handle the case where the scanned device is part of an fs whose last 745 * metadata UUID change reverted it to the original FSID. At the same 746 * time fs_devices was first created by another constituent device 747 * which didn't fully observe the operation. This results in an 748 * btrfs_fs_devices created with metadata/fsid different AND 749 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 750 * fs_devices equal to the FSID of the disk. 751 */ 752 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 753 if (!fs_devices->fsid_change) 754 continue; 755 756 if (check_fsid_changed(fs_devices, disk_super->fsid)) 757 return fs_devices; 758 } 759 760 return NULL; 761 } 762 /* 763 * Add new device to list of registered devices 764 * 765 * Returns: 766 * device pointer which was just added or updated when successful 767 * error pointer when failed 768 */ 769 static noinline struct btrfs_device *device_list_add(const char *path, 770 struct btrfs_super_block *disk_super, 771 bool *new_device_added) 772 { 773 struct btrfs_device *device; 774 struct btrfs_fs_devices *fs_devices = NULL; 775 struct rcu_string *name; 776 u64 found_transid = btrfs_super_generation(disk_super); 777 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 778 dev_t path_devt; 779 int error; 780 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 781 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 782 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 783 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 784 785 error = lookup_bdev(path, &path_devt); 786 if (error) { 787 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 788 path, error); 789 return ERR_PTR(error); 790 } 791 792 if (fsid_change_in_progress) { 793 if (!has_metadata_uuid) 794 fs_devices = find_fsid_inprogress(disk_super); 795 else 796 fs_devices = find_fsid_changed(disk_super); 797 } else if (has_metadata_uuid) { 798 fs_devices = find_fsid_with_metadata_uuid(disk_super); 799 } else { 800 fs_devices = find_fsid_reverted_metadata(disk_super); 801 if (!fs_devices) 802 fs_devices = find_fsid(disk_super->fsid, NULL); 803 } 804 805 806 if (!fs_devices) { 807 fs_devices = alloc_fs_devices(disk_super->fsid, 808 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 809 if (IS_ERR(fs_devices)) 810 return ERR_CAST(fs_devices); 811 812 fs_devices->fsid_change = fsid_change_in_progress; 813 814 mutex_lock(&fs_devices->device_list_mutex); 815 list_add(&fs_devices->fs_list, &fs_uuids); 816 817 device = NULL; 818 } else { 819 struct btrfs_dev_lookup_args args = { 820 .devid = devid, 821 .uuid = disk_super->dev_item.uuid, 822 }; 823 824 mutex_lock(&fs_devices->device_list_mutex); 825 device = btrfs_find_device(fs_devices, &args); 826 827 /* 828 * If this disk has been pulled into an fs devices created by 829 * a device which had the CHANGING_FSID_V2 flag then replace the 830 * metadata_uuid/fsid values of the fs_devices. 831 */ 832 if (fs_devices->fsid_change && 833 found_transid > fs_devices->latest_generation) { 834 memcpy(fs_devices->fsid, disk_super->fsid, 835 BTRFS_FSID_SIZE); 836 837 if (has_metadata_uuid) 838 memcpy(fs_devices->metadata_uuid, 839 disk_super->metadata_uuid, 840 BTRFS_FSID_SIZE); 841 else 842 memcpy(fs_devices->metadata_uuid, 843 disk_super->fsid, BTRFS_FSID_SIZE); 844 845 fs_devices->fsid_change = false; 846 } 847 } 848 849 if (!device) { 850 unsigned int nofs_flag; 851 852 if (fs_devices->opened) { 853 btrfs_err(NULL, 854 "device %s belongs to fsid %pU, and the fs is already mounted", 855 path, fs_devices->fsid); 856 mutex_unlock(&fs_devices->device_list_mutex); 857 return ERR_PTR(-EBUSY); 858 } 859 860 nofs_flag = memalloc_nofs_save(); 861 device = btrfs_alloc_device(NULL, &devid, 862 disk_super->dev_item.uuid, path); 863 memalloc_nofs_restore(nofs_flag); 864 if (IS_ERR(device)) { 865 mutex_unlock(&fs_devices->device_list_mutex); 866 /* we can safely leave the fs_devices entry around */ 867 return device; 868 } 869 870 device->devt = path_devt; 871 872 list_add_rcu(&device->dev_list, &fs_devices->devices); 873 fs_devices->num_devices++; 874 875 device->fs_devices = fs_devices; 876 *new_device_added = true; 877 878 if (disk_super->label[0]) 879 pr_info( 880 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 881 disk_super->label, devid, found_transid, path, 882 current->comm, task_pid_nr(current)); 883 else 884 pr_info( 885 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 886 disk_super->fsid, devid, found_transid, path, 887 current->comm, task_pid_nr(current)); 888 889 } else if (!device->name || strcmp(device->name->str, path)) { 890 /* 891 * When FS is already mounted. 892 * 1. If you are here and if the device->name is NULL that 893 * means this device was missing at time of FS mount. 894 * 2. If you are here and if the device->name is different 895 * from 'path' that means either 896 * a. The same device disappeared and reappeared with 897 * different name. or 898 * b. The missing-disk-which-was-replaced, has 899 * reappeared now. 900 * 901 * We must allow 1 and 2a above. But 2b would be a spurious 902 * and unintentional. 903 * 904 * Further in case of 1 and 2a above, the disk at 'path' 905 * would have missed some transaction when it was away and 906 * in case of 2a the stale bdev has to be updated as well. 907 * 2b must not be allowed at all time. 908 */ 909 910 /* 911 * For now, we do allow update to btrfs_fs_device through the 912 * btrfs dev scan cli after FS has been mounted. We're still 913 * tracking a problem where systems fail mount by subvolume id 914 * when we reject replacement on a mounted FS. 915 */ 916 if (!fs_devices->opened && found_transid < device->generation) { 917 /* 918 * That is if the FS is _not_ mounted and if you 919 * are here, that means there is more than one 920 * disk with same uuid and devid.We keep the one 921 * with larger generation number or the last-in if 922 * generation are equal. 923 */ 924 mutex_unlock(&fs_devices->device_list_mutex); 925 btrfs_err(NULL, 926 "device %s already registered with a higher generation, found %llu expect %llu", 927 path, found_transid, device->generation); 928 return ERR_PTR(-EEXIST); 929 } 930 931 /* 932 * We are going to replace the device path for a given devid, 933 * make sure it's the same device if the device is mounted 934 * 935 * NOTE: the device->fs_info may not be reliable here so pass 936 * in a NULL to message helpers instead. This avoids a possible 937 * use-after-free when the fs_info and fs_info->sb are already 938 * torn down. 939 */ 940 if (device->bdev) { 941 if (device->devt != path_devt) { 942 mutex_unlock(&fs_devices->device_list_mutex); 943 btrfs_warn_in_rcu(NULL, 944 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 945 path, devid, found_transid, 946 current->comm, 947 task_pid_nr(current)); 948 return ERR_PTR(-EEXIST); 949 } 950 btrfs_info_in_rcu(NULL, 951 "devid %llu device path %s changed to %s scanned by %s (%d)", 952 devid, btrfs_dev_name(device), 953 path, current->comm, 954 task_pid_nr(current)); 955 } 956 957 name = rcu_string_strdup(path, GFP_NOFS); 958 if (!name) { 959 mutex_unlock(&fs_devices->device_list_mutex); 960 return ERR_PTR(-ENOMEM); 961 } 962 rcu_string_free(device->name); 963 rcu_assign_pointer(device->name, name); 964 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 965 fs_devices->missing_devices--; 966 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 967 } 968 device->devt = path_devt; 969 } 970 971 /* 972 * Unmount does not free the btrfs_device struct but would zero 973 * generation along with most of the other members. So just update 974 * it back. We need it to pick the disk with largest generation 975 * (as above). 976 */ 977 if (!fs_devices->opened) { 978 device->generation = found_transid; 979 fs_devices->latest_generation = max_t(u64, found_transid, 980 fs_devices->latest_generation); 981 } 982 983 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 984 985 mutex_unlock(&fs_devices->device_list_mutex); 986 return device; 987 } 988 989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 990 { 991 struct btrfs_fs_devices *fs_devices; 992 struct btrfs_device *device; 993 struct btrfs_device *orig_dev; 994 int ret = 0; 995 996 lockdep_assert_held(&uuid_mutex); 997 998 fs_devices = alloc_fs_devices(orig->fsid, NULL); 999 if (IS_ERR(fs_devices)) 1000 return fs_devices; 1001 1002 fs_devices->total_devices = orig->total_devices; 1003 1004 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1005 const char *dev_path = NULL; 1006 1007 /* 1008 * This is ok to do without RCU read locked because we hold the 1009 * uuid mutex so nothing we touch in here is going to disappear. 1010 */ 1011 if (orig_dev->name) 1012 dev_path = orig_dev->name->str; 1013 1014 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1015 orig_dev->uuid, dev_path); 1016 if (IS_ERR(device)) { 1017 ret = PTR_ERR(device); 1018 goto error; 1019 } 1020 1021 if (orig_dev->zone_info) { 1022 struct btrfs_zoned_device_info *zone_info; 1023 1024 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1025 if (!zone_info) { 1026 btrfs_free_device(device); 1027 ret = -ENOMEM; 1028 goto error; 1029 } 1030 device->zone_info = zone_info; 1031 } 1032 1033 list_add(&device->dev_list, &fs_devices->devices); 1034 device->fs_devices = fs_devices; 1035 fs_devices->num_devices++; 1036 } 1037 return fs_devices; 1038 error: 1039 free_fs_devices(fs_devices); 1040 return ERR_PTR(ret); 1041 } 1042 1043 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1044 struct btrfs_device **latest_dev) 1045 { 1046 struct btrfs_device *device, *next; 1047 1048 /* This is the initialized path, it is safe to release the devices. */ 1049 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1050 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1051 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1052 &device->dev_state) && 1053 !test_bit(BTRFS_DEV_STATE_MISSING, 1054 &device->dev_state) && 1055 (!*latest_dev || 1056 device->generation > (*latest_dev)->generation)) { 1057 *latest_dev = device; 1058 } 1059 continue; 1060 } 1061 1062 /* 1063 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1064 * in btrfs_init_dev_replace() so just continue. 1065 */ 1066 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1067 continue; 1068 1069 if (device->bdev) { 1070 blkdev_put(device->bdev, device->holder); 1071 device->bdev = NULL; 1072 fs_devices->open_devices--; 1073 } 1074 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1075 list_del_init(&device->dev_alloc_list); 1076 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1077 fs_devices->rw_devices--; 1078 } 1079 list_del_init(&device->dev_list); 1080 fs_devices->num_devices--; 1081 btrfs_free_device(device); 1082 } 1083 1084 } 1085 1086 /* 1087 * After we have read the system tree and know devids belonging to this 1088 * filesystem, remove the device which does not belong there. 1089 */ 1090 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1091 { 1092 struct btrfs_device *latest_dev = NULL; 1093 struct btrfs_fs_devices *seed_dev; 1094 1095 mutex_lock(&uuid_mutex); 1096 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1097 1098 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1099 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1100 1101 fs_devices->latest_dev = latest_dev; 1102 1103 mutex_unlock(&uuid_mutex); 1104 } 1105 1106 static void btrfs_close_bdev(struct btrfs_device *device) 1107 { 1108 if (!device->bdev) 1109 return; 1110 1111 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1112 sync_blockdev(device->bdev); 1113 invalidate_bdev(device->bdev); 1114 } 1115 1116 blkdev_put(device->bdev, device->holder); 1117 } 1118 1119 static void btrfs_close_one_device(struct btrfs_device *device) 1120 { 1121 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1122 1123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1124 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1125 list_del_init(&device->dev_alloc_list); 1126 fs_devices->rw_devices--; 1127 } 1128 1129 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1130 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1131 1132 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1133 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1134 fs_devices->missing_devices--; 1135 } 1136 1137 btrfs_close_bdev(device); 1138 if (device->bdev) { 1139 fs_devices->open_devices--; 1140 device->bdev = NULL; 1141 } 1142 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1143 btrfs_destroy_dev_zone_info(device); 1144 1145 device->fs_info = NULL; 1146 atomic_set(&device->dev_stats_ccnt, 0); 1147 extent_io_tree_release(&device->alloc_state); 1148 1149 /* 1150 * Reset the flush error record. We might have a transient flush error 1151 * in this mount, and if so we aborted the current transaction and set 1152 * the fs to an error state, guaranteeing no super blocks can be further 1153 * committed. However that error might be transient and if we unmount the 1154 * filesystem and mount it again, we should allow the mount to succeed 1155 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1156 * filesystem again we still get flush errors, then we will again abort 1157 * any transaction and set the error state, guaranteeing no commits of 1158 * unsafe super blocks. 1159 */ 1160 device->last_flush_error = 0; 1161 1162 /* Verify the device is back in a pristine state */ 1163 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1164 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1165 WARN_ON(!list_empty(&device->dev_alloc_list)); 1166 WARN_ON(!list_empty(&device->post_commit_list)); 1167 } 1168 1169 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1170 { 1171 struct btrfs_device *device, *tmp; 1172 1173 lockdep_assert_held(&uuid_mutex); 1174 1175 if (--fs_devices->opened > 0) 1176 return; 1177 1178 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1179 btrfs_close_one_device(device); 1180 1181 WARN_ON(fs_devices->open_devices); 1182 WARN_ON(fs_devices->rw_devices); 1183 fs_devices->opened = 0; 1184 fs_devices->seeding = false; 1185 fs_devices->fs_info = NULL; 1186 } 1187 1188 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1189 { 1190 LIST_HEAD(list); 1191 struct btrfs_fs_devices *tmp; 1192 1193 mutex_lock(&uuid_mutex); 1194 close_fs_devices(fs_devices); 1195 if (!fs_devices->opened) { 1196 list_splice_init(&fs_devices->seed_list, &list); 1197 1198 /* 1199 * If the struct btrfs_fs_devices is not assembled with any 1200 * other device, it can be re-initialized during the next mount 1201 * without the needing device-scan step. Therefore, it can be 1202 * fully freed. 1203 */ 1204 if (fs_devices->num_devices == 1) { 1205 list_del(&fs_devices->fs_list); 1206 free_fs_devices(fs_devices); 1207 } 1208 } 1209 1210 1211 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1212 close_fs_devices(fs_devices); 1213 list_del(&fs_devices->seed_list); 1214 free_fs_devices(fs_devices); 1215 } 1216 mutex_unlock(&uuid_mutex); 1217 } 1218 1219 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1220 blk_mode_t flags, void *holder) 1221 { 1222 struct btrfs_device *device; 1223 struct btrfs_device *latest_dev = NULL; 1224 struct btrfs_device *tmp_device; 1225 1226 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1227 dev_list) { 1228 int ret; 1229 1230 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1231 if (ret == 0 && 1232 (!latest_dev || device->generation > latest_dev->generation)) { 1233 latest_dev = device; 1234 } else if (ret == -ENODATA) { 1235 fs_devices->num_devices--; 1236 list_del(&device->dev_list); 1237 btrfs_free_device(device); 1238 } 1239 } 1240 if (fs_devices->open_devices == 0) 1241 return -EINVAL; 1242 1243 fs_devices->opened = 1; 1244 fs_devices->latest_dev = latest_dev; 1245 fs_devices->total_rw_bytes = 0; 1246 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1247 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1248 1249 return 0; 1250 } 1251 1252 static int devid_cmp(void *priv, const struct list_head *a, 1253 const struct list_head *b) 1254 { 1255 const struct btrfs_device *dev1, *dev2; 1256 1257 dev1 = list_entry(a, struct btrfs_device, dev_list); 1258 dev2 = list_entry(b, struct btrfs_device, dev_list); 1259 1260 if (dev1->devid < dev2->devid) 1261 return -1; 1262 else if (dev1->devid > dev2->devid) 1263 return 1; 1264 return 0; 1265 } 1266 1267 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1268 blk_mode_t flags, void *holder) 1269 { 1270 int ret; 1271 1272 lockdep_assert_held(&uuid_mutex); 1273 /* 1274 * The device_list_mutex cannot be taken here in case opening the 1275 * underlying device takes further locks like open_mutex. 1276 * 1277 * We also don't need the lock here as this is called during mount and 1278 * exclusion is provided by uuid_mutex 1279 */ 1280 1281 if (fs_devices->opened) { 1282 fs_devices->opened++; 1283 ret = 0; 1284 } else { 1285 list_sort(NULL, &fs_devices->devices, devid_cmp); 1286 ret = open_fs_devices(fs_devices, flags, holder); 1287 } 1288 1289 return ret; 1290 } 1291 1292 void btrfs_release_disk_super(struct btrfs_super_block *super) 1293 { 1294 struct page *page = virt_to_page(super); 1295 1296 put_page(page); 1297 } 1298 1299 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1300 u64 bytenr, u64 bytenr_orig) 1301 { 1302 struct btrfs_super_block *disk_super; 1303 struct page *page; 1304 void *p; 1305 pgoff_t index; 1306 1307 /* make sure our super fits in the device */ 1308 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1309 return ERR_PTR(-EINVAL); 1310 1311 /* make sure our super fits in the page */ 1312 if (sizeof(*disk_super) > PAGE_SIZE) 1313 return ERR_PTR(-EINVAL); 1314 1315 /* make sure our super doesn't straddle pages on disk */ 1316 index = bytenr >> PAGE_SHIFT; 1317 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1318 return ERR_PTR(-EINVAL); 1319 1320 /* pull in the page with our super */ 1321 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1322 1323 if (IS_ERR(page)) 1324 return ERR_CAST(page); 1325 1326 p = page_address(page); 1327 1328 /* align our pointer to the offset of the super block */ 1329 disk_super = p + offset_in_page(bytenr); 1330 1331 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1332 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1333 btrfs_release_disk_super(p); 1334 return ERR_PTR(-EINVAL); 1335 } 1336 1337 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1338 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1339 1340 return disk_super; 1341 } 1342 1343 int btrfs_forget_devices(dev_t devt) 1344 { 1345 int ret; 1346 1347 mutex_lock(&uuid_mutex); 1348 ret = btrfs_free_stale_devices(devt, NULL); 1349 mutex_unlock(&uuid_mutex); 1350 1351 return ret; 1352 } 1353 1354 /* 1355 * Look for a btrfs signature on a device. This may be called out of the mount path 1356 * and we are not allowed to call set_blocksize during the scan. The superblock 1357 * is read via pagecache 1358 */ 1359 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags) 1360 { 1361 struct btrfs_super_block *disk_super; 1362 bool new_device_added = false; 1363 struct btrfs_device *device = NULL; 1364 struct block_device *bdev; 1365 u64 bytenr, bytenr_orig; 1366 int ret; 1367 1368 lockdep_assert_held(&uuid_mutex); 1369 1370 /* 1371 * we would like to check all the supers, but that would make 1372 * a btrfs mount succeed after a mkfs from a different FS. 1373 * So, we need to add a special mount option to scan for 1374 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1375 */ 1376 1377 /* 1378 * Avoid an exclusive open here, as the systemd-udev may initiate the 1379 * device scan which may race with the user's mount or mkfs command, 1380 * resulting in failure. 1381 * Since the device scan is solely for reading purposes, there is no 1382 * need for an exclusive open. Additionally, the devices are read again 1383 * during the mount process. It is ok to get some inconsistent 1384 * values temporarily, as the device paths of the fsid are the only 1385 * required information for assembling the volume. 1386 */ 1387 bdev = blkdev_get_by_path(path, flags, NULL, NULL); 1388 if (IS_ERR(bdev)) 1389 return ERR_CAST(bdev); 1390 1391 bytenr_orig = btrfs_sb_offset(0); 1392 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1393 if (ret) { 1394 device = ERR_PTR(ret); 1395 goto error_bdev_put; 1396 } 1397 1398 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1399 if (IS_ERR(disk_super)) { 1400 device = ERR_CAST(disk_super); 1401 goto error_bdev_put; 1402 } 1403 1404 device = device_list_add(path, disk_super, &new_device_added); 1405 if (!IS_ERR(device) && new_device_added) 1406 btrfs_free_stale_devices(device->devt, device); 1407 1408 btrfs_release_disk_super(disk_super); 1409 1410 error_bdev_put: 1411 blkdev_put(bdev, NULL); 1412 1413 return device; 1414 } 1415 1416 /* 1417 * Try to find a chunk that intersects [start, start + len] range and when one 1418 * such is found, record the end of it in *start 1419 */ 1420 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1421 u64 len) 1422 { 1423 u64 physical_start, physical_end; 1424 1425 lockdep_assert_held(&device->fs_info->chunk_mutex); 1426 1427 if (!find_first_extent_bit(&device->alloc_state, *start, 1428 &physical_start, &physical_end, 1429 CHUNK_ALLOCATED, NULL)) { 1430 1431 if (in_range(physical_start, *start, len) || 1432 in_range(*start, physical_start, 1433 physical_end - physical_start)) { 1434 *start = physical_end + 1; 1435 return true; 1436 } 1437 } 1438 return false; 1439 } 1440 1441 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1442 { 1443 switch (device->fs_devices->chunk_alloc_policy) { 1444 case BTRFS_CHUNK_ALLOC_REGULAR: 1445 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 1446 case BTRFS_CHUNK_ALLOC_ZONED: 1447 /* 1448 * We don't care about the starting region like regular 1449 * allocator, because we anyway use/reserve the first two zones 1450 * for superblock logging. 1451 */ 1452 return ALIGN(start, device->zone_info->zone_size); 1453 default: 1454 BUG(); 1455 } 1456 } 1457 1458 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1459 u64 *hole_start, u64 *hole_size, 1460 u64 num_bytes) 1461 { 1462 u64 zone_size = device->zone_info->zone_size; 1463 u64 pos; 1464 int ret; 1465 bool changed = false; 1466 1467 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1468 1469 while (*hole_size > 0) { 1470 pos = btrfs_find_allocatable_zones(device, *hole_start, 1471 *hole_start + *hole_size, 1472 num_bytes); 1473 if (pos != *hole_start) { 1474 *hole_size = *hole_start + *hole_size - pos; 1475 *hole_start = pos; 1476 changed = true; 1477 if (*hole_size < num_bytes) 1478 break; 1479 } 1480 1481 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1482 1483 /* Range is ensured to be empty */ 1484 if (!ret) 1485 return changed; 1486 1487 /* Given hole range was invalid (outside of device) */ 1488 if (ret == -ERANGE) { 1489 *hole_start += *hole_size; 1490 *hole_size = 0; 1491 return true; 1492 } 1493 1494 *hole_start += zone_size; 1495 *hole_size -= zone_size; 1496 changed = true; 1497 } 1498 1499 return changed; 1500 } 1501 1502 /* 1503 * Check if specified hole is suitable for allocation. 1504 * 1505 * @device: the device which we have the hole 1506 * @hole_start: starting position of the hole 1507 * @hole_size: the size of the hole 1508 * @num_bytes: the size of the free space that we need 1509 * 1510 * This function may modify @hole_start and @hole_size to reflect the suitable 1511 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1512 */ 1513 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1514 u64 *hole_size, u64 num_bytes) 1515 { 1516 bool changed = false; 1517 u64 hole_end = *hole_start + *hole_size; 1518 1519 for (;;) { 1520 /* 1521 * Check before we set max_hole_start, otherwise we could end up 1522 * sending back this offset anyway. 1523 */ 1524 if (contains_pending_extent(device, hole_start, *hole_size)) { 1525 if (hole_end >= *hole_start) 1526 *hole_size = hole_end - *hole_start; 1527 else 1528 *hole_size = 0; 1529 changed = true; 1530 } 1531 1532 switch (device->fs_devices->chunk_alloc_policy) { 1533 case BTRFS_CHUNK_ALLOC_REGULAR: 1534 /* No extra check */ 1535 break; 1536 case BTRFS_CHUNK_ALLOC_ZONED: 1537 if (dev_extent_hole_check_zoned(device, hole_start, 1538 hole_size, num_bytes)) { 1539 changed = true; 1540 /* 1541 * The changed hole can contain pending extent. 1542 * Loop again to check that. 1543 */ 1544 continue; 1545 } 1546 break; 1547 default: 1548 BUG(); 1549 } 1550 1551 break; 1552 } 1553 1554 return changed; 1555 } 1556 1557 /* 1558 * Find free space in the specified device. 1559 * 1560 * @device: the device which we search the free space in 1561 * @num_bytes: the size of the free space that we need 1562 * @search_start: the position from which to begin the search 1563 * @start: store the start of the free space. 1564 * @len: the size of the free space. that we find, or the size 1565 * of the max free space if we don't find suitable free space 1566 * 1567 * This does a pretty simple search, the expectation is that it is called very 1568 * infrequently and that a given device has a small number of extents. 1569 * 1570 * @start is used to store the start of the free space if we find. But if we 1571 * don't find suitable free space, it will be used to store the start position 1572 * of the max free space. 1573 * 1574 * @len is used to store the size of the free space that we find. 1575 * But if we don't find suitable free space, it is used to store the size of 1576 * the max free space. 1577 * 1578 * NOTE: This function will search *commit* root of device tree, and does extra 1579 * check to ensure dev extents are not double allocated. 1580 * This makes the function safe to allocate dev extents but may not report 1581 * correct usable device space, as device extent freed in current transaction 1582 * is not reported as available. 1583 */ 1584 static int find_free_dev_extent_start(struct btrfs_device *device, 1585 u64 num_bytes, u64 search_start, u64 *start, 1586 u64 *len) 1587 { 1588 struct btrfs_fs_info *fs_info = device->fs_info; 1589 struct btrfs_root *root = fs_info->dev_root; 1590 struct btrfs_key key; 1591 struct btrfs_dev_extent *dev_extent; 1592 struct btrfs_path *path; 1593 u64 hole_size; 1594 u64 max_hole_start; 1595 u64 max_hole_size; 1596 u64 extent_end; 1597 u64 search_end = device->total_bytes; 1598 int ret; 1599 int slot; 1600 struct extent_buffer *l; 1601 1602 search_start = dev_extent_search_start(device, search_start); 1603 1604 WARN_ON(device->zone_info && 1605 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1606 1607 path = btrfs_alloc_path(); 1608 if (!path) 1609 return -ENOMEM; 1610 1611 max_hole_start = search_start; 1612 max_hole_size = 0; 1613 1614 again: 1615 if (search_start >= search_end || 1616 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1617 ret = -ENOSPC; 1618 goto out; 1619 } 1620 1621 path->reada = READA_FORWARD; 1622 path->search_commit_root = 1; 1623 path->skip_locking = 1; 1624 1625 key.objectid = device->devid; 1626 key.offset = search_start; 1627 key.type = BTRFS_DEV_EXTENT_KEY; 1628 1629 ret = btrfs_search_backwards(root, &key, path); 1630 if (ret < 0) 1631 goto out; 1632 1633 while (search_start < search_end) { 1634 l = path->nodes[0]; 1635 slot = path->slots[0]; 1636 if (slot >= btrfs_header_nritems(l)) { 1637 ret = btrfs_next_leaf(root, path); 1638 if (ret == 0) 1639 continue; 1640 if (ret < 0) 1641 goto out; 1642 1643 break; 1644 } 1645 btrfs_item_key_to_cpu(l, &key, slot); 1646 1647 if (key.objectid < device->devid) 1648 goto next; 1649 1650 if (key.objectid > device->devid) 1651 break; 1652 1653 if (key.type != BTRFS_DEV_EXTENT_KEY) 1654 goto next; 1655 1656 if (key.offset > search_end) 1657 break; 1658 1659 if (key.offset > search_start) { 1660 hole_size = key.offset - search_start; 1661 dev_extent_hole_check(device, &search_start, &hole_size, 1662 num_bytes); 1663 1664 if (hole_size > max_hole_size) { 1665 max_hole_start = search_start; 1666 max_hole_size = hole_size; 1667 } 1668 1669 /* 1670 * If this free space is greater than which we need, 1671 * it must be the max free space that we have found 1672 * until now, so max_hole_start must point to the start 1673 * of this free space and the length of this free space 1674 * is stored in max_hole_size. Thus, we return 1675 * max_hole_start and max_hole_size and go back to the 1676 * caller. 1677 */ 1678 if (hole_size >= num_bytes) { 1679 ret = 0; 1680 goto out; 1681 } 1682 } 1683 1684 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1685 extent_end = key.offset + btrfs_dev_extent_length(l, 1686 dev_extent); 1687 if (extent_end > search_start) 1688 search_start = extent_end; 1689 next: 1690 path->slots[0]++; 1691 cond_resched(); 1692 } 1693 1694 /* 1695 * At this point, search_start should be the end of 1696 * allocated dev extents, and when shrinking the device, 1697 * search_end may be smaller than search_start. 1698 */ 1699 if (search_end > search_start) { 1700 hole_size = search_end - search_start; 1701 if (dev_extent_hole_check(device, &search_start, &hole_size, 1702 num_bytes)) { 1703 btrfs_release_path(path); 1704 goto again; 1705 } 1706 1707 if (hole_size > max_hole_size) { 1708 max_hole_start = search_start; 1709 max_hole_size = hole_size; 1710 } 1711 } 1712 1713 /* See above. */ 1714 if (max_hole_size < num_bytes) 1715 ret = -ENOSPC; 1716 else 1717 ret = 0; 1718 1719 ASSERT(max_hole_start + max_hole_size <= search_end); 1720 out: 1721 btrfs_free_path(path); 1722 *start = max_hole_start; 1723 if (len) 1724 *len = max_hole_size; 1725 return ret; 1726 } 1727 1728 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1729 u64 *start, u64 *len) 1730 { 1731 /* FIXME use last free of some kind */ 1732 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1733 } 1734 1735 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1736 struct btrfs_device *device, 1737 u64 start, u64 *dev_extent_len) 1738 { 1739 struct btrfs_fs_info *fs_info = device->fs_info; 1740 struct btrfs_root *root = fs_info->dev_root; 1741 int ret; 1742 struct btrfs_path *path; 1743 struct btrfs_key key; 1744 struct btrfs_key found_key; 1745 struct extent_buffer *leaf = NULL; 1746 struct btrfs_dev_extent *extent = NULL; 1747 1748 path = btrfs_alloc_path(); 1749 if (!path) 1750 return -ENOMEM; 1751 1752 key.objectid = device->devid; 1753 key.offset = start; 1754 key.type = BTRFS_DEV_EXTENT_KEY; 1755 again: 1756 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1757 if (ret > 0) { 1758 ret = btrfs_previous_item(root, path, key.objectid, 1759 BTRFS_DEV_EXTENT_KEY); 1760 if (ret) 1761 goto out; 1762 leaf = path->nodes[0]; 1763 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1764 extent = btrfs_item_ptr(leaf, path->slots[0], 1765 struct btrfs_dev_extent); 1766 BUG_ON(found_key.offset > start || found_key.offset + 1767 btrfs_dev_extent_length(leaf, extent) < start); 1768 key = found_key; 1769 btrfs_release_path(path); 1770 goto again; 1771 } else if (ret == 0) { 1772 leaf = path->nodes[0]; 1773 extent = btrfs_item_ptr(leaf, path->slots[0], 1774 struct btrfs_dev_extent); 1775 } else { 1776 goto out; 1777 } 1778 1779 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1780 1781 ret = btrfs_del_item(trans, root, path); 1782 if (ret == 0) 1783 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1784 out: 1785 btrfs_free_path(path); 1786 return ret; 1787 } 1788 1789 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1790 { 1791 struct extent_map_tree *em_tree; 1792 struct extent_map *em; 1793 struct rb_node *n; 1794 u64 ret = 0; 1795 1796 em_tree = &fs_info->mapping_tree; 1797 read_lock(&em_tree->lock); 1798 n = rb_last(&em_tree->map.rb_root); 1799 if (n) { 1800 em = rb_entry(n, struct extent_map, rb_node); 1801 ret = em->start + em->len; 1802 } 1803 read_unlock(&em_tree->lock); 1804 1805 return ret; 1806 } 1807 1808 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1809 u64 *devid_ret) 1810 { 1811 int ret; 1812 struct btrfs_key key; 1813 struct btrfs_key found_key; 1814 struct btrfs_path *path; 1815 1816 path = btrfs_alloc_path(); 1817 if (!path) 1818 return -ENOMEM; 1819 1820 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1821 key.type = BTRFS_DEV_ITEM_KEY; 1822 key.offset = (u64)-1; 1823 1824 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1825 if (ret < 0) 1826 goto error; 1827 1828 if (ret == 0) { 1829 /* Corruption */ 1830 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1831 ret = -EUCLEAN; 1832 goto error; 1833 } 1834 1835 ret = btrfs_previous_item(fs_info->chunk_root, path, 1836 BTRFS_DEV_ITEMS_OBJECTID, 1837 BTRFS_DEV_ITEM_KEY); 1838 if (ret) { 1839 *devid_ret = 1; 1840 } else { 1841 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1842 path->slots[0]); 1843 *devid_ret = found_key.offset + 1; 1844 } 1845 ret = 0; 1846 error: 1847 btrfs_free_path(path); 1848 return ret; 1849 } 1850 1851 /* 1852 * the device information is stored in the chunk root 1853 * the btrfs_device struct should be fully filled in 1854 */ 1855 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1856 struct btrfs_device *device) 1857 { 1858 int ret; 1859 struct btrfs_path *path; 1860 struct btrfs_dev_item *dev_item; 1861 struct extent_buffer *leaf; 1862 struct btrfs_key key; 1863 unsigned long ptr; 1864 1865 path = btrfs_alloc_path(); 1866 if (!path) 1867 return -ENOMEM; 1868 1869 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1870 key.type = BTRFS_DEV_ITEM_KEY; 1871 key.offset = device->devid; 1872 1873 btrfs_reserve_chunk_metadata(trans, true); 1874 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1875 &key, sizeof(*dev_item)); 1876 btrfs_trans_release_chunk_metadata(trans); 1877 if (ret) 1878 goto out; 1879 1880 leaf = path->nodes[0]; 1881 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1882 1883 btrfs_set_device_id(leaf, dev_item, device->devid); 1884 btrfs_set_device_generation(leaf, dev_item, 0); 1885 btrfs_set_device_type(leaf, dev_item, device->type); 1886 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1887 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1888 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1889 btrfs_set_device_total_bytes(leaf, dev_item, 1890 btrfs_device_get_disk_total_bytes(device)); 1891 btrfs_set_device_bytes_used(leaf, dev_item, 1892 btrfs_device_get_bytes_used(device)); 1893 btrfs_set_device_group(leaf, dev_item, 0); 1894 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1895 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1896 btrfs_set_device_start_offset(leaf, dev_item, 0); 1897 1898 ptr = btrfs_device_uuid(dev_item); 1899 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1900 ptr = btrfs_device_fsid(dev_item); 1901 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1902 ptr, BTRFS_FSID_SIZE); 1903 btrfs_mark_buffer_dirty(leaf); 1904 1905 ret = 0; 1906 out: 1907 btrfs_free_path(path); 1908 return ret; 1909 } 1910 1911 /* 1912 * Function to update ctime/mtime for a given device path. 1913 * Mainly used for ctime/mtime based probe like libblkid. 1914 * 1915 * We don't care about errors here, this is just to be kind to userspace. 1916 */ 1917 static void update_dev_time(const char *device_path) 1918 { 1919 struct path path; 1920 struct timespec64 now; 1921 int ret; 1922 1923 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1924 if (ret) 1925 return; 1926 1927 now = current_time(d_inode(path.dentry)); 1928 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME | S_VERSION); 1929 path_put(&path); 1930 } 1931 1932 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1933 struct btrfs_device *device) 1934 { 1935 struct btrfs_root *root = device->fs_info->chunk_root; 1936 int ret; 1937 struct btrfs_path *path; 1938 struct btrfs_key key; 1939 1940 path = btrfs_alloc_path(); 1941 if (!path) 1942 return -ENOMEM; 1943 1944 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1945 key.type = BTRFS_DEV_ITEM_KEY; 1946 key.offset = device->devid; 1947 1948 btrfs_reserve_chunk_metadata(trans, false); 1949 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1950 btrfs_trans_release_chunk_metadata(trans); 1951 if (ret) { 1952 if (ret > 0) 1953 ret = -ENOENT; 1954 goto out; 1955 } 1956 1957 ret = btrfs_del_item(trans, root, path); 1958 out: 1959 btrfs_free_path(path); 1960 return ret; 1961 } 1962 1963 /* 1964 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1965 * filesystem. It's up to the caller to adjust that number regarding eg. device 1966 * replace. 1967 */ 1968 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1969 u64 num_devices) 1970 { 1971 u64 all_avail; 1972 unsigned seq; 1973 int i; 1974 1975 do { 1976 seq = read_seqbegin(&fs_info->profiles_lock); 1977 1978 all_avail = fs_info->avail_data_alloc_bits | 1979 fs_info->avail_system_alloc_bits | 1980 fs_info->avail_metadata_alloc_bits; 1981 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1982 1983 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1984 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1985 continue; 1986 1987 if (num_devices < btrfs_raid_array[i].devs_min) 1988 return btrfs_raid_array[i].mindev_error; 1989 } 1990 1991 return 0; 1992 } 1993 1994 static struct btrfs_device * btrfs_find_next_active_device( 1995 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1996 { 1997 struct btrfs_device *next_device; 1998 1999 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2000 if (next_device != device && 2001 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2002 && next_device->bdev) 2003 return next_device; 2004 } 2005 2006 return NULL; 2007 } 2008 2009 /* 2010 * Helper function to check if the given device is part of s_bdev / latest_dev 2011 * and replace it with the provided or the next active device, in the context 2012 * where this function called, there should be always be another device (or 2013 * this_dev) which is active. 2014 */ 2015 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2016 struct btrfs_device *next_device) 2017 { 2018 struct btrfs_fs_info *fs_info = device->fs_info; 2019 2020 if (!next_device) 2021 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2022 device); 2023 ASSERT(next_device); 2024 2025 if (fs_info->sb->s_bdev && 2026 (fs_info->sb->s_bdev == device->bdev)) 2027 fs_info->sb->s_bdev = next_device->bdev; 2028 2029 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2030 fs_info->fs_devices->latest_dev = next_device; 2031 } 2032 2033 /* 2034 * Return btrfs_fs_devices::num_devices excluding the device that's being 2035 * currently replaced. 2036 */ 2037 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2038 { 2039 u64 num_devices = fs_info->fs_devices->num_devices; 2040 2041 down_read(&fs_info->dev_replace.rwsem); 2042 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2043 ASSERT(num_devices > 1); 2044 num_devices--; 2045 } 2046 up_read(&fs_info->dev_replace.rwsem); 2047 2048 return num_devices; 2049 } 2050 2051 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2052 struct block_device *bdev, int copy_num) 2053 { 2054 struct btrfs_super_block *disk_super; 2055 const size_t len = sizeof(disk_super->magic); 2056 const u64 bytenr = btrfs_sb_offset(copy_num); 2057 int ret; 2058 2059 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2060 if (IS_ERR(disk_super)) 2061 return; 2062 2063 memset(&disk_super->magic, 0, len); 2064 folio_mark_dirty(virt_to_folio(disk_super)); 2065 btrfs_release_disk_super(disk_super); 2066 2067 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2068 if (ret) 2069 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2070 copy_num, ret); 2071 } 2072 2073 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2074 struct block_device *bdev, 2075 const char *device_path) 2076 { 2077 int copy_num; 2078 2079 if (!bdev) 2080 return; 2081 2082 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2083 if (bdev_is_zoned(bdev)) 2084 btrfs_reset_sb_log_zones(bdev, copy_num); 2085 else 2086 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2087 } 2088 2089 /* Notify udev that device has changed */ 2090 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2091 2092 /* Update ctime/mtime for device path for libblkid */ 2093 update_dev_time(device_path); 2094 } 2095 2096 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2097 struct btrfs_dev_lookup_args *args, 2098 struct block_device **bdev, void **holder) 2099 { 2100 struct btrfs_trans_handle *trans; 2101 struct btrfs_device *device; 2102 struct btrfs_fs_devices *cur_devices; 2103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2104 u64 num_devices; 2105 int ret = 0; 2106 2107 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2108 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2109 return -EINVAL; 2110 } 2111 2112 /* 2113 * The device list in fs_devices is accessed without locks (neither 2114 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2115 * filesystem and another device rm cannot run. 2116 */ 2117 num_devices = btrfs_num_devices(fs_info); 2118 2119 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2120 if (ret) 2121 return ret; 2122 2123 device = btrfs_find_device(fs_info->fs_devices, args); 2124 if (!device) { 2125 if (args->missing) 2126 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2127 else 2128 ret = -ENOENT; 2129 return ret; 2130 } 2131 2132 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2133 btrfs_warn_in_rcu(fs_info, 2134 "cannot remove device %s (devid %llu) due to active swapfile", 2135 btrfs_dev_name(device), device->devid); 2136 return -ETXTBSY; 2137 } 2138 2139 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2140 return BTRFS_ERROR_DEV_TGT_REPLACE; 2141 2142 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2143 fs_info->fs_devices->rw_devices == 1) 2144 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2145 2146 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2147 mutex_lock(&fs_info->chunk_mutex); 2148 list_del_init(&device->dev_alloc_list); 2149 device->fs_devices->rw_devices--; 2150 mutex_unlock(&fs_info->chunk_mutex); 2151 } 2152 2153 ret = btrfs_shrink_device(device, 0); 2154 if (ret) 2155 goto error_undo; 2156 2157 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2158 if (IS_ERR(trans)) { 2159 ret = PTR_ERR(trans); 2160 goto error_undo; 2161 } 2162 2163 ret = btrfs_rm_dev_item(trans, device); 2164 if (ret) { 2165 /* Any error in dev item removal is critical */ 2166 btrfs_crit(fs_info, 2167 "failed to remove device item for devid %llu: %d", 2168 device->devid, ret); 2169 btrfs_abort_transaction(trans, ret); 2170 btrfs_end_transaction(trans); 2171 return ret; 2172 } 2173 2174 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2175 btrfs_scrub_cancel_dev(device); 2176 2177 /* 2178 * the device list mutex makes sure that we don't change 2179 * the device list while someone else is writing out all 2180 * the device supers. Whoever is writing all supers, should 2181 * lock the device list mutex before getting the number of 2182 * devices in the super block (super_copy). Conversely, 2183 * whoever updates the number of devices in the super block 2184 * (super_copy) should hold the device list mutex. 2185 */ 2186 2187 /* 2188 * In normal cases the cur_devices == fs_devices. But in case 2189 * of deleting a seed device, the cur_devices should point to 2190 * its own fs_devices listed under the fs_devices->seed_list. 2191 */ 2192 cur_devices = device->fs_devices; 2193 mutex_lock(&fs_devices->device_list_mutex); 2194 list_del_rcu(&device->dev_list); 2195 2196 cur_devices->num_devices--; 2197 cur_devices->total_devices--; 2198 /* Update total_devices of the parent fs_devices if it's seed */ 2199 if (cur_devices != fs_devices) 2200 fs_devices->total_devices--; 2201 2202 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2203 cur_devices->missing_devices--; 2204 2205 btrfs_assign_next_active_device(device, NULL); 2206 2207 if (device->bdev) { 2208 cur_devices->open_devices--; 2209 /* remove sysfs entry */ 2210 btrfs_sysfs_remove_device(device); 2211 } 2212 2213 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2214 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2215 mutex_unlock(&fs_devices->device_list_mutex); 2216 2217 /* 2218 * At this point, the device is zero sized and detached from the 2219 * devices list. All that's left is to zero out the old supers and 2220 * free the device. 2221 * 2222 * We cannot call btrfs_close_bdev() here because we're holding the sb 2223 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2224 * block device and it's dependencies. Instead just flush the device 2225 * and let the caller do the final blkdev_put. 2226 */ 2227 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2228 btrfs_scratch_superblocks(fs_info, device->bdev, 2229 device->name->str); 2230 if (device->bdev) { 2231 sync_blockdev(device->bdev); 2232 invalidate_bdev(device->bdev); 2233 } 2234 } 2235 2236 *bdev = device->bdev; 2237 *holder = device->holder; 2238 synchronize_rcu(); 2239 btrfs_free_device(device); 2240 2241 /* 2242 * This can happen if cur_devices is the private seed devices list. We 2243 * cannot call close_fs_devices() here because it expects the uuid_mutex 2244 * to be held, but in fact we don't need that for the private 2245 * seed_devices, we can simply decrement cur_devices->opened and then 2246 * remove it from our list and free the fs_devices. 2247 */ 2248 if (cur_devices->num_devices == 0) { 2249 list_del_init(&cur_devices->seed_list); 2250 ASSERT(cur_devices->opened == 1); 2251 cur_devices->opened--; 2252 free_fs_devices(cur_devices); 2253 } 2254 2255 ret = btrfs_commit_transaction(trans); 2256 2257 return ret; 2258 2259 error_undo: 2260 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2261 mutex_lock(&fs_info->chunk_mutex); 2262 list_add(&device->dev_alloc_list, 2263 &fs_devices->alloc_list); 2264 device->fs_devices->rw_devices++; 2265 mutex_unlock(&fs_info->chunk_mutex); 2266 } 2267 return ret; 2268 } 2269 2270 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2271 { 2272 struct btrfs_fs_devices *fs_devices; 2273 2274 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2275 2276 /* 2277 * in case of fs with no seed, srcdev->fs_devices will point 2278 * to fs_devices of fs_info. However when the dev being replaced is 2279 * a seed dev it will point to the seed's local fs_devices. In short 2280 * srcdev will have its correct fs_devices in both the cases. 2281 */ 2282 fs_devices = srcdev->fs_devices; 2283 2284 list_del_rcu(&srcdev->dev_list); 2285 list_del(&srcdev->dev_alloc_list); 2286 fs_devices->num_devices--; 2287 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2288 fs_devices->missing_devices--; 2289 2290 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2291 fs_devices->rw_devices--; 2292 2293 if (srcdev->bdev) 2294 fs_devices->open_devices--; 2295 } 2296 2297 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2298 { 2299 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2300 2301 mutex_lock(&uuid_mutex); 2302 2303 btrfs_close_bdev(srcdev); 2304 synchronize_rcu(); 2305 btrfs_free_device(srcdev); 2306 2307 /* if this is no devs we rather delete the fs_devices */ 2308 if (!fs_devices->num_devices) { 2309 /* 2310 * On a mounted FS, num_devices can't be zero unless it's a 2311 * seed. In case of a seed device being replaced, the replace 2312 * target added to the sprout FS, so there will be no more 2313 * device left under the seed FS. 2314 */ 2315 ASSERT(fs_devices->seeding); 2316 2317 list_del_init(&fs_devices->seed_list); 2318 close_fs_devices(fs_devices); 2319 free_fs_devices(fs_devices); 2320 } 2321 mutex_unlock(&uuid_mutex); 2322 } 2323 2324 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2325 { 2326 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2327 2328 mutex_lock(&fs_devices->device_list_mutex); 2329 2330 btrfs_sysfs_remove_device(tgtdev); 2331 2332 if (tgtdev->bdev) 2333 fs_devices->open_devices--; 2334 2335 fs_devices->num_devices--; 2336 2337 btrfs_assign_next_active_device(tgtdev, NULL); 2338 2339 list_del_rcu(&tgtdev->dev_list); 2340 2341 mutex_unlock(&fs_devices->device_list_mutex); 2342 2343 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2344 tgtdev->name->str); 2345 2346 btrfs_close_bdev(tgtdev); 2347 synchronize_rcu(); 2348 btrfs_free_device(tgtdev); 2349 } 2350 2351 /* 2352 * Populate args from device at path. 2353 * 2354 * @fs_info: the filesystem 2355 * @args: the args to populate 2356 * @path: the path to the device 2357 * 2358 * This will read the super block of the device at @path and populate @args with 2359 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2360 * lookup a device to operate on, but need to do it before we take any locks. 2361 * This properly handles the special case of "missing" that a user may pass in, 2362 * and does some basic sanity checks. The caller must make sure that @path is 2363 * properly NUL terminated before calling in, and must call 2364 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2365 * uuid buffers. 2366 * 2367 * Return: 0 for success, -errno for failure 2368 */ 2369 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2370 struct btrfs_dev_lookup_args *args, 2371 const char *path) 2372 { 2373 struct btrfs_super_block *disk_super; 2374 struct block_device *bdev; 2375 int ret; 2376 2377 if (!path || !path[0]) 2378 return -EINVAL; 2379 if (!strcmp(path, "missing")) { 2380 args->missing = true; 2381 return 0; 2382 } 2383 2384 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2385 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2386 if (!args->uuid || !args->fsid) { 2387 btrfs_put_dev_args_from_path(args); 2388 return -ENOMEM; 2389 } 2390 2391 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2392 &bdev, &disk_super); 2393 if (ret) { 2394 btrfs_put_dev_args_from_path(args); 2395 return ret; 2396 } 2397 2398 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2399 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2400 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2401 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2402 else 2403 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2404 btrfs_release_disk_super(disk_super); 2405 blkdev_put(bdev, NULL); 2406 return 0; 2407 } 2408 2409 /* 2410 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2411 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2412 * that don't need to be freed. 2413 */ 2414 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2415 { 2416 kfree(args->uuid); 2417 kfree(args->fsid); 2418 args->uuid = NULL; 2419 args->fsid = NULL; 2420 } 2421 2422 struct btrfs_device *btrfs_find_device_by_devspec( 2423 struct btrfs_fs_info *fs_info, u64 devid, 2424 const char *device_path) 2425 { 2426 BTRFS_DEV_LOOKUP_ARGS(args); 2427 struct btrfs_device *device; 2428 int ret; 2429 2430 if (devid) { 2431 args.devid = devid; 2432 device = btrfs_find_device(fs_info->fs_devices, &args); 2433 if (!device) 2434 return ERR_PTR(-ENOENT); 2435 return device; 2436 } 2437 2438 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2439 if (ret) 2440 return ERR_PTR(ret); 2441 device = btrfs_find_device(fs_info->fs_devices, &args); 2442 btrfs_put_dev_args_from_path(&args); 2443 if (!device) 2444 return ERR_PTR(-ENOENT); 2445 return device; 2446 } 2447 2448 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2449 { 2450 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2451 struct btrfs_fs_devices *old_devices; 2452 struct btrfs_fs_devices *seed_devices; 2453 2454 lockdep_assert_held(&uuid_mutex); 2455 if (!fs_devices->seeding) 2456 return ERR_PTR(-EINVAL); 2457 2458 /* 2459 * Private copy of the seed devices, anchored at 2460 * fs_info->fs_devices->seed_list 2461 */ 2462 seed_devices = alloc_fs_devices(NULL, NULL); 2463 if (IS_ERR(seed_devices)) 2464 return seed_devices; 2465 2466 /* 2467 * It's necessary to retain a copy of the original seed fs_devices in 2468 * fs_uuids so that filesystems which have been seeded can successfully 2469 * reference the seed device from open_seed_devices. This also supports 2470 * multiple fs seed. 2471 */ 2472 old_devices = clone_fs_devices(fs_devices); 2473 if (IS_ERR(old_devices)) { 2474 kfree(seed_devices); 2475 return old_devices; 2476 } 2477 2478 list_add(&old_devices->fs_list, &fs_uuids); 2479 2480 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2481 seed_devices->opened = 1; 2482 INIT_LIST_HEAD(&seed_devices->devices); 2483 INIT_LIST_HEAD(&seed_devices->alloc_list); 2484 mutex_init(&seed_devices->device_list_mutex); 2485 2486 return seed_devices; 2487 } 2488 2489 /* 2490 * Splice seed devices into the sprout fs_devices. 2491 * Generate a new fsid for the sprouted read-write filesystem. 2492 */ 2493 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2494 struct btrfs_fs_devices *seed_devices) 2495 { 2496 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2497 struct btrfs_super_block *disk_super = fs_info->super_copy; 2498 struct btrfs_device *device; 2499 u64 super_flags; 2500 2501 /* 2502 * We are updating the fsid, the thread leading to device_list_add() 2503 * could race, so uuid_mutex is needed. 2504 */ 2505 lockdep_assert_held(&uuid_mutex); 2506 2507 /* 2508 * The threads listed below may traverse dev_list but can do that without 2509 * device_list_mutex: 2510 * - All device ops and balance - as we are in btrfs_exclop_start. 2511 * - Various dev_list readers - are using RCU. 2512 * - btrfs_ioctl_fitrim() - is using RCU. 2513 * 2514 * For-read threads as below are using device_list_mutex: 2515 * - Readonly scrub btrfs_scrub_dev() 2516 * - Readonly scrub btrfs_scrub_progress() 2517 * - btrfs_get_dev_stats() 2518 */ 2519 lockdep_assert_held(&fs_devices->device_list_mutex); 2520 2521 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2522 synchronize_rcu); 2523 list_for_each_entry(device, &seed_devices->devices, dev_list) 2524 device->fs_devices = seed_devices; 2525 2526 fs_devices->seeding = false; 2527 fs_devices->num_devices = 0; 2528 fs_devices->open_devices = 0; 2529 fs_devices->missing_devices = 0; 2530 fs_devices->rotating = false; 2531 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2532 2533 generate_random_uuid(fs_devices->fsid); 2534 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2535 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2536 2537 super_flags = btrfs_super_flags(disk_super) & 2538 ~BTRFS_SUPER_FLAG_SEEDING; 2539 btrfs_set_super_flags(disk_super, super_flags); 2540 } 2541 2542 /* 2543 * Store the expected generation for seed devices in device items. 2544 */ 2545 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2546 { 2547 BTRFS_DEV_LOOKUP_ARGS(args); 2548 struct btrfs_fs_info *fs_info = trans->fs_info; 2549 struct btrfs_root *root = fs_info->chunk_root; 2550 struct btrfs_path *path; 2551 struct extent_buffer *leaf; 2552 struct btrfs_dev_item *dev_item; 2553 struct btrfs_device *device; 2554 struct btrfs_key key; 2555 u8 fs_uuid[BTRFS_FSID_SIZE]; 2556 u8 dev_uuid[BTRFS_UUID_SIZE]; 2557 int ret; 2558 2559 path = btrfs_alloc_path(); 2560 if (!path) 2561 return -ENOMEM; 2562 2563 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2564 key.offset = 0; 2565 key.type = BTRFS_DEV_ITEM_KEY; 2566 2567 while (1) { 2568 btrfs_reserve_chunk_metadata(trans, false); 2569 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2570 btrfs_trans_release_chunk_metadata(trans); 2571 if (ret < 0) 2572 goto error; 2573 2574 leaf = path->nodes[0]; 2575 next_slot: 2576 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2577 ret = btrfs_next_leaf(root, path); 2578 if (ret > 0) 2579 break; 2580 if (ret < 0) 2581 goto error; 2582 leaf = path->nodes[0]; 2583 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2584 btrfs_release_path(path); 2585 continue; 2586 } 2587 2588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2589 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2590 key.type != BTRFS_DEV_ITEM_KEY) 2591 break; 2592 2593 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2594 struct btrfs_dev_item); 2595 args.devid = btrfs_device_id(leaf, dev_item); 2596 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2597 BTRFS_UUID_SIZE); 2598 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2599 BTRFS_FSID_SIZE); 2600 args.uuid = dev_uuid; 2601 args.fsid = fs_uuid; 2602 device = btrfs_find_device(fs_info->fs_devices, &args); 2603 BUG_ON(!device); /* Logic error */ 2604 2605 if (device->fs_devices->seeding) { 2606 btrfs_set_device_generation(leaf, dev_item, 2607 device->generation); 2608 btrfs_mark_buffer_dirty(leaf); 2609 } 2610 2611 path->slots[0]++; 2612 goto next_slot; 2613 } 2614 ret = 0; 2615 error: 2616 btrfs_free_path(path); 2617 return ret; 2618 } 2619 2620 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2621 { 2622 struct btrfs_root *root = fs_info->dev_root; 2623 struct btrfs_trans_handle *trans; 2624 struct btrfs_device *device; 2625 struct block_device *bdev; 2626 struct super_block *sb = fs_info->sb; 2627 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2628 struct btrfs_fs_devices *seed_devices = NULL; 2629 u64 orig_super_total_bytes; 2630 u64 orig_super_num_devices; 2631 int ret = 0; 2632 bool seeding_dev = false; 2633 bool locked = false; 2634 2635 if (sb_rdonly(sb) && !fs_devices->seeding) 2636 return -EROFS; 2637 2638 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE, 2639 fs_info->bdev_holder, NULL); 2640 if (IS_ERR(bdev)) 2641 return PTR_ERR(bdev); 2642 2643 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2644 ret = -EINVAL; 2645 goto error; 2646 } 2647 2648 if (fs_devices->seeding) { 2649 seeding_dev = true; 2650 down_write(&sb->s_umount); 2651 mutex_lock(&uuid_mutex); 2652 locked = true; 2653 } 2654 2655 sync_blockdev(bdev); 2656 2657 rcu_read_lock(); 2658 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2659 if (device->bdev == bdev) { 2660 ret = -EEXIST; 2661 rcu_read_unlock(); 2662 goto error; 2663 } 2664 } 2665 rcu_read_unlock(); 2666 2667 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2668 if (IS_ERR(device)) { 2669 /* we can safely leave the fs_devices entry around */ 2670 ret = PTR_ERR(device); 2671 goto error; 2672 } 2673 2674 device->fs_info = fs_info; 2675 device->bdev = bdev; 2676 ret = lookup_bdev(device_path, &device->devt); 2677 if (ret) 2678 goto error_free_device; 2679 2680 ret = btrfs_get_dev_zone_info(device, false); 2681 if (ret) 2682 goto error_free_device; 2683 2684 trans = btrfs_start_transaction(root, 0); 2685 if (IS_ERR(trans)) { 2686 ret = PTR_ERR(trans); 2687 goto error_free_zone; 2688 } 2689 2690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2691 device->generation = trans->transid; 2692 device->io_width = fs_info->sectorsize; 2693 device->io_align = fs_info->sectorsize; 2694 device->sector_size = fs_info->sectorsize; 2695 device->total_bytes = 2696 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2697 device->disk_total_bytes = device->total_bytes; 2698 device->commit_total_bytes = device->total_bytes; 2699 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2700 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2701 device->holder = fs_info->bdev_holder; 2702 device->dev_stats_valid = 1; 2703 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2704 2705 if (seeding_dev) { 2706 btrfs_clear_sb_rdonly(sb); 2707 2708 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2709 seed_devices = btrfs_init_sprout(fs_info); 2710 if (IS_ERR(seed_devices)) { 2711 ret = PTR_ERR(seed_devices); 2712 btrfs_abort_transaction(trans, ret); 2713 goto error_trans; 2714 } 2715 } 2716 2717 mutex_lock(&fs_devices->device_list_mutex); 2718 if (seeding_dev) { 2719 btrfs_setup_sprout(fs_info, seed_devices); 2720 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2721 device); 2722 } 2723 2724 device->fs_devices = fs_devices; 2725 2726 mutex_lock(&fs_info->chunk_mutex); 2727 list_add_rcu(&device->dev_list, &fs_devices->devices); 2728 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2729 fs_devices->num_devices++; 2730 fs_devices->open_devices++; 2731 fs_devices->rw_devices++; 2732 fs_devices->total_devices++; 2733 fs_devices->total_rw_bytes += device->total_bytes; 2734 2735 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2736 2737 if (!bdev_nonrot(bdev)) 2738 fs_devices->rotating = true; 2739 2740 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2741 btrfs_set_super_total_bytes(fs_info->super_copy, 2742 round_down(orig_super_total_bytes + device->total_bytes, 2743 fs_info->sectorsize)); 2744 2745 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2746 btrfs_set_super_num_devices(fs_info->super_copy, 2747 orig_super_num_devices + 1); 2748 2749 /* 2750 * we've got more storage, clear any full flags on the space 2751 * infos 2752 */ 2753 btrfs_clear_space_info_full(fs_info); 2754 2755 mutex_unlock(&fs_info->chunk_mutex); 2756 2757 /* Add sysfs device entry */ 2758 btrfs_sysfs_add_device(device); 2759 2760 mutex_unlock(&fs_devices->device_list_mutex); 2761 2762 if (seeding_dev) { 2763 mutex_lock(&fs_info->chunk_mutex); 2764 ret = init_first_rw_device(trans); 2765 mutex_unlock(&fs_info->chunk_mutex); 2766 if (ret) { 2767 btrfs_abort_transaction(trans, ret); 2768 goto error_sysfs; 2769 } 2770 } 2771 2772 ret = btrfs_add_dev_item(trans, device); 2773 if (ret) { 2774 btrfs_abort_transaction(trans, ret); 2775 goto error_sysfs; 2776 } 2777 2778 if (seeding_dev) { 2779 ret = btrfs_finish_sprout(trans); 2780 if (ret) { 2781 btrfs_abort_transaction(trans, ret); 2782 goto error_sysfs; 2783 } 2784 2785 /* 2786 * fs_devices now represents the newly sprouted filesystem and 2787 * its fsid has been changed by btrfs_sprout_splice(). 2788 */ 2789 btrfs_sysfs_update_sprout_fsid(fs_devices); 2790 } 2791 2792 ret = btrfs_commit_transaction(trans); 2793 2794 if (seeding_dev) { 2795 mutex_unlock(&uuid_mutex); 2796 up_write(&sb->s_umount); 2797 locked = false; 2798 2799 if (ret) /* transaction commit */ 2800 return ret; 2801 2802 ret = btrfs_relocate_sys_chunks(fs_info); 2803 if (ret < 0) 2804 btrfs_handle_fs_error(fs_info, ret, 2805 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2806 trans = btrfs_attach_transaction(root); 2807 if (IS_ERR(trans)) { 2808 if (PTR_ERR(trans) == -ENOENT) 2809 return 0; 2810 ret = PTR_ERR(trans); 2811 trans = NULL; 2812 goto error_sysfs; 2813 } 2814 ret = btrfs_commit_transaction(trans); 2815 } 2816 2817 /* 2818 * Now that we have written a new super block to this device, check all 2819 * other fs_devices list if device_path alienates any other scanned 2820 * device. 2821 * We can ignore the return value as it typically returns -EINVAL and 2822 * only succeeds if the device was an alien. 2823 */ 2824 btrfs_forget_devices(device->devt); 2825 2826 /* Update ctime/mtime for blkid or udev */ 2827 update_dev_time(device_path); 2828 2829 return ret; 2830 2831 error_sysfs: 2832 btrfs_sysfs_remove_device(device); 2833 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2834 mutex_lock(&fs_info->chunk_mutex); 2835 list_del_rcu(&device->dev_list); 2836 list_del(&device->dev_alloc_list); 2837 fs_info->fs_devices->num_devices--; 2838 fs_info->fs_devices->open_devices--; 2839 fs_info->fs_devices->rw_devices--; 2840 fs_info->fs_devices->total_devices--; 2841 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2842 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2843 btrfs_set_super_total_bytes(fs_info->super_copy, 2844 orig_super_total_bytes); 2845 btrfs_set_super_num_devices(fs_info->super_copy, 2846 orig_super_num_devices); 2847 mutex_unlock(&fs_info->chunk_mutex); 2848 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2849 error_trans: 2850 if (seeding_dev) 2851 btrfs_set_sb_rdonly(sb); 2852 if (trans) 2853 btrfs_end_transaction(trans); 2854 error_free_zone: 2855 btrfs_destroy_dev_zone_info(device); 2856 error_free_device: 2857 btrfs_free_device(device); 2858 error: 2859 blkdev_put(bdev, fs_info->bdev_holder); 2860 if (locked) { 2861 mutex_unlock(&uuid_mutex); 2862 up_write(&sb->s_umount); 2863 } 2864 return ret; 2865 } 2866 2867 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2868 struct btrfs_device *device) 2869 { 2870 int ret; 2871 struct btrfs_path *path; 2872 struct btrfs_root *root = device->fs_info->chunk_root; 2873 struct btrfs_dev_item *dev_item; 2874 struct extent_buffer *leaf; 2875 struct btrfs_key key; 2876 2877 path = btrfs_alloc_path(); 2878 if (!path) 2879 return -ENOMEM; 2880 2881 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2882 key.type = BTRFS_DEV_ITEM_KEY; 2883 key.offset = device->devid; 2884 2885 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2886 if (ret < 0) 2887 goto out; 2888 2889 if (ret > 0) { 2890 ret = -ENOENT; 2891 goto out; 2892 } 2893 2894 leaf = path->nodes[0]; 2895 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2896 2897 btrfs_set_device_id(leaf, dev_item, device->devid); 2898 btrfs_set_device_type(leaf, dev_item, device->type); 2899 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2900 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2901 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2902 btrfs_set_device_total_bytes(leaf, dev_item, 2903 btrfs_device_get_disk_total_bytes(device)); 2904 btrfs_set_device_bytes_used(leaf, dev_item, 2905 btrfs_device_get_bytes_used(device)); 2906 btrfs_mark_buffer_dirty(leaf); 2907 2908 out: 2909 btrfs_free_path(path); 2910 return ret; 2911 } 2912 2913 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2914 struct btrfs_device *device, u64 new_size) 2915 { 2916 struct btrfs_fs_info *fs_info = device->fs_info; 2917 struct btrfs_super_block *super_copy = fs_info->super_copy; 2918 u64 old_total; 2919 u64 diff; 2920 int ret; 2921 2922 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2923 return -EACCES; 2924 2925 new_size = round_down(new_size, fs_info->sectorsize); 2926 2927 mutex_lock(&fs_info->chunk_mutex); 2928 old_total = btrfs_super_total_bytes(super_copy); 2929 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2930 2931 if (new_size <= device->total_bytes || 2932 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2933 mutex_unlock(&fs_info->chunk_mutex); 2934 return -EINVAL; 2935 } 2936 2937 btrfs_set_super_total_bytes(super_copy, 2938 round_down(old_total + diff, fs_info->sectorsize)); 2939 device->fs_devices->total_rw_bytes += diff; 2940 2941 btrfs_device_set_total_bytes(device, new_size); 2942 btrfs_device_set_disk_total_bytes(device, new_size); 2943 btrfs_clear_space_info_full(device->fs_info); 2944 if (list_empty(&device->post_commit_list)) 2945 list_add_tail(&device->post_commit_list, 2946 &trans->transaction->dev_update_list); 2947 mutex_unlock(&fs_info->chunk_mutex); 2948 2949 btrfs_reserve_chunk_metadata(trans, false); 2950 ret = btrfs_update_device(trans, device); 2951 btrfs_trans_release_chunk_metadata(trans); 2952 2953 return ret; 2954 } 2955 2956 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2957 { 2958 struct btrfs_fs_info *fs_info = trans->fs_info; 2959 struct btrfs_root *root = fs_info->chunk_root; 2960 int ret; 2961 struct btrfs_path *path; 2962 struct btrfs_key key; 2963 2964 path = btrfs_alloc_path(); 2965 if (!path) 2966 return -ENOMEM; 2967 2968 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2969 key.offset = chunk_offset; 2970 key.type = BTRFS_CHUNK_ITEM_KEY; 2971 2972 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2973 if (ret < 0) 2974 goto out; 2975 else if (ret > 0) { /* Logic error or corruption */ 2976 btrfs_handle_fs_error(fs_info, -ENOENT, 2977 "Failed lookup while freeing chunk."); 2978 ret = -ENOENT; 2979 goto out; 2980 } 2981 2982 ret = btrfs_del_item(trans, root, path); 2983 if (ret < 0) 2984 btrfs_handle_fs_error(fs_info, ret, 2985 "Failed to delete chunk item."); 2986 out: 2987 btrfs_free_path(path); 2988 return ret; 2989 } 2990 2991 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2992 { 2993 struct btrfs_super_block *super_copy = fs_info->super_copy; 2994 struct btrfs_disk_key *disk_key; 2995 struct btrfs_chunk *chunk; 2996 u8 *ptr; 2997 int ret = 0; 2998 u32 num_stripes; 2999 u32 array_size; 3000 u32 len = 0; 3001 u32 cur; 3002 struct btrfs_key key; 3003 3004 lockdep_assert_held(&fs_info->chunk_mutex); 3005 array_size = btrfs_super_sys_array_size(super_copy); 3006 3007 ptr = super_copy->sys_chunk_array; 3008 cur = 0; 3009 3010 while (cur < array_size) { 3011 disk_key = (struct btrfs_disk_key *)ptr; 3012 btrfs_disk_key_to_cpu(&key, disk_key); 3013 3014 len = sizeof(*disk_key); 3015 3016 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3017 chunk = (struct btrfs_chunk *)(ptr + len); 3018 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3019 len += btrfs_chunk_item_size(num_stripes); 3020 } else { 3021 ret = -EIO; 3022 break; 3023 } 3024 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3025 key.offset == chunk_offset) { 3026 memmove(ptr, ptr + len, array_size - (cur + len)); 3027 array_size -= len; 3028 btrfs_set_super_sys_array_size(super_copy, array_size); 3029 } else { 3030 ptr += len; 3031 cur += len; 3032 } 3033 } 3034 return ret; 3035 } 3036 3037 /* 3038 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 3039 * @logical: Logical block offset in bytes. 3040 * @length: Length of extent in bytes. 3041 * 3042 * Return: Chunk mapping or ERR_PTR. 3043 */ 3044 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3045 u64 logical, u64 length) 3046 { 3047 struct extent_map_tree *em_tree; 3048 struct extent_map *em; 3049 3050 em_tree = &fs_info->mapping_tree; 3051 read_lock(&em_tree->lock); 3052 em = lookup_extent_mapping(em_tree, logical, length); 3053 read_unlock(&em_tree->lock); 3054 3055 if (!em) { 3056 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 3057 logical, length); 3058 return ERR_PTR(-EINVAL); 3059 } 3060 3061 if (em->start > logical || em->start + em->len < logical) { 3062 btrfs_crit(fs_info, 3063 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3064 logical, length, em->start, em->start + em->len); 3065 free_extent_map(em); 3066 return ERR_PTR(-EINVAL); 3067 } 3068 3069 /* callers are responsible for dropping em's ref. */ 3070 return em; 3071 } 3072 3073 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3074 struct map_lookup *map, u64 chunk_offset) 3075 { 3076 int i; 3077 3078 /* 3079 * Removing chunk items and updating the device items in the chunks btree 3080 * requires holding the chunk_mutex. 3081 * See the comment at btrfs_chunk_alloc() for the details. 3082 */ 3083 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3084 3085 for (i = 0; i < map->num_stripes; i++) { 3086 int ret; 3087 3088 ret = btrfs_update_device(trans, map->stripes[i].dev); 3089 if (ret) 3090 return ret; 3091 } 3092 3093 return btrfs_free_chunk(trans, chunk_offset); 3094 } 3095 3096 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3097 { 3098 struct btrfs_fs_info *fs_info = trans->fs_info; 3099 struct extent_map *em; 3100 struct map_lookup *map; 3101 u64 dev_extent_len = 0; 3102 int i, ret = 0; 3103 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3104 3105 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3106 if (IS_ERR(em)) { 3107 /* 3108 * This is a logic error, but we don't want to just rely on the 3109 * user having built with ASSERT enabled, so if ASSERT doesn't 3110 * do anything we still error out. 3111 */ 3112 ASSERT(0); 3113 return PTR_ERR(em); 3114 } 3115 map = em->map_lookup; 3116 3117 /* 3118 * First delete the device extent items from the devices btree. 3119 * We take the device_list_mutex to avoid racing with the finishing phase 3120 * of a device replace operation. See the comment below before acquiring 3121 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3122 * because that can result in a deadlock when deleting the device extent 3123 * items from the devices btree - COWing an extent buffer from the btree 3124 * may result in allocating a new metadata chunk, which would attempt to 3125 * lock again fs_info->chunk_mutex. 3126 */ 3127 mutex_lock(&fs_devices->device_list_mutex); 3128 for (i = 0; i < map->num_stripes; i++) { 3129 struct btrfs_device *device = map->stripes[i].dev; 3130 ret = btrfs_free_dev_extent(trans, device, 3131 map->stripes[i].physical, 3132 &dev_extent_len); 3133 if (ret) { 3134 mutex_unlock(&fs_devices->device_list_mutex); 3135 btrfs_abort_transaction(trans, ret); 3136 goto out; 3137 } 3138 3139 if (device->bytes_used > 0) { 3140 mutex_lock(&fs_info->chunk_mutex); 3141 btrfs_device_set_bytes_used(device, 3142 device->bytes_used - dev_extent_len); 3143 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3144 btrfs_clear_space_info_full(fs_info); 3145 mutex_unlock(&fs_info->chunk_mutex); 3146 } 3147 } 3148 mutex_unlock(&fs_devices->device_list_mutex); 3149 3150 /* 3151 * We acquire fs_info->chunk_mutex for 2 reasons: 3152 * 3153 * 1) Just like with the first phase of the chunk allocation, we must 3154 * reserve system space, do all chunk btree updates and deletions, and 3155 * update the system chunk array in the superblock while holding this 3156 * mutex. This is for similar reasons as explained on the comment at 3157 * the top of btrfs_chunk_alloc(); 3158 * 3159 * 2) Prevent races with the final phase of a device replace operation 3160 * that replaces the device object associated with the map's stripes, 3161 * because the device object's id can change at any time during that 3162 * final phase of the device replace operation 3163 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3164 * replaced device and then see it with an ID of 3165 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3166 * the device item, which does not exists on the chunk btree. 3167 * The finishing phase of device replace acquires both the 3168 * device_list_mutex and the chunk_mutex, in that order, so we are 3169 * safe by just acquiring the chunk_mutex. 3170 */ 3171 trans->removing_chunk = true; 3172 mutex_lock(&fs_info->chunk_mutex); 3173 3174 check_system_chunk(trans, map->type); 3175 3176 ret = remove_chunk_item(trans, map, chunk_offset); 3177 /* 3178 * Normally we should not get -ENOSPC since we reserved space before 3179 * through the call to check_system_chunk(). 3180 * 3181 * Despite our system space_info having enough free space, we may not 3182 * be able to allocate extents from its block groups, because all have 3183 * an incompatible profile, which will force us to allocate a new system 3184 * block group with the right profile, or right after we called 3185 * check_system_space() above, a scrub turned the only system block group 3186 * with enough free space into RO mode. 3187 * This is explained with more detail at do_chunk_alloc(). 3188 * 3189 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3190 */ 3191 if (ret == -ENOSPC) { 3192 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3193 struct btrfs_block_group *sys_bg; 3194 3195 sys_bg = btrfs_create_chunk(trans, sys_flags); 3196 if (IS_ERR(sys_bg)) { 3197 ret = PTR_ERR(sys_bg); 3198 btrfs_abort_transaction(trans, ret); 3199 goto out; 3200 } 3201 3202 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3203 if (ret) { 3204 btrfs_abort_transaction(trans, ret); 3205 goto out; 3206 } 3207 3208 ret = remove_chunk_item(trans, map, chunk_offset); 3209 if (ret) { 3210 btrfs_abort_transaction(trans, ret); 3211 goto out; 3212 } 3213 } else if (ret) { 3214 btrfs_abort_transaction(trans, ret); 3215 goto out; 3216 } 3217 3218 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3219 3220 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3221 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3222 if (ret) { 3223 btrfs_abort_transaction(trans, ret); 3224 goto out; 3225 } 3226 } 3227 3228 mutex_unlock(&fs_info->chunk_mutex); 3229 trans->removing_chunk = false; 3230 3231 /* 3232 * We are done with chunk btree updates and deletions, so release the 3233 * system space we previously reserved (with check_system_chunk()). 3234 */ 3235 btrfs_trans_release_chunk_metadata(trans); 3236 3237 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3238 if (ret) { 3239 btrfs_abort_transaction(trans, ret); 3240 goto out; 3241 } 3242 3243 out: 3244 if (trans->removing_chunk) { 3245 mutex_unlock(&fs_info->chunk_mutex); 3246 trans->removing_chunk = false; 3247 } 3248 /* once for us */ 3249 free_extent_map(em); 3250 return ret; 3251 } 3252 3253 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3254 { 3255 struct btrfs_root *root = fs_info->chunk_root; 3256 struct btrfs_trans_handle *trans; 3257 struct btrfs_block_group *block_group; 3258 u64 length; 3259 int ret; 3260 3261 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3262 btrfs_err(fs_info, 3263 "relocate: not supported on extent tree v2 yet"); 3264 return -EINVAL; 3265 } 3266 3267 /* 3268 * Prevent races with automatic removal of unused block groups. 3269 * After we relocate and before we remove the chunk with offset 3270 * chunk_offset, automatic removal of the block group can kick in, 3271 * resulting in a failure when calling btrfs_remove_chunk() below. 3272 * 3273 * Make sure to acquire this mutex before doing a tree search (dev 3274 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3275 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3276 * we release the path used to search the chunk/dev tree and before 3277 * the current task acquires this mutex and calls us. 3278 */ 3279 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3280 3281 /* step one, relocate all the extents inside this chunk */ 3282 btrfs_scrub_pause(fs_info); 3283 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3284 btrfs_scrub_continue(fs_info); 3285 if (ret) { 3286 /* 3287 * If we had a transaction abort, stop all running scrubs. 3288 * See transaction.c:cleanup_transaction() why we do it here. 3289 */ 3290 if (BTRFS_FS_ERROR(fs_info)) 3291 btrfs_scrub_cancel(fs_info); 3292 return ret; 3293 } 3294 3295 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3296 if (!block_group) 3297 return -ENOENT; 3298 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3299 length = block_group->length; 3300 btrfs_put_block_group(block_group); 3301 3302 /* 3303 * On a zoned file system, discard the whole block group, this will 3304 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3305 * resetting the zone fails, don't treat it as a fatal problem from the 3306 * filesystem's point of view. 3307 */ 3308 if (btrfs_is_zoned(fs_info)) { 3309 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3310 if (ret) 3311 btrfs_info(fs_info, 3312 "failed to reset zone %llu after relocation", 3313 chunk_offset); 3314 } 3315 3316 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3317 chunk_offset); 3318 if (IS_ERR(trans)) { 3319 ret = PTR_ERR(trans); 3320 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3321 return ret; 3322 } 3323 3324 /* 3325 * step two, delete the device extents and the 3326 * chunk tree entries 3327 */ 3328 ret = btrfs_remove_chunk(trans, chunk_offset); 3329 btrfs_end_transaction(trans); 3330 return ret; 3331 } 3332 3333 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3334 { 3335 struct btrfs_root *chunk_root = fs_info->chunk_root; 3336 struct btrfs_path *path; 3337 struct extent_buffer *leaf; 3338 struct btrfs_chunk *chunk; 3339 struct btrfs_key key; 3340 struct btrfs_key found_key; 3341 u64 chunk_type; 3342 bool retried = false; 3343 int failed = 0; 3344 int ret; 3345 3346 path = btrfs_alloc_path(); 3347 if (!path) 3348 return -ENOMEM; 3349 3350 again: 3351 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3352 key.offset = (u64)-1; 3353 key.type = BTRFS_CHUNK_ITEM_KEY; 3354 3355 while (1) { 3356 mutex_lock(&fs_info->reclaim_bgs_lock); 3357 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3358 if (ret < 0) { 3359 mutex_unlock(&fs_info->reclaim_bgs_lock); 3360 goto error; 3361 } 3362 BUG_ON(ret == 0); /* Corruption */ 3363 3364 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3365 key.type); 3366 if (ret) 3367 mutex_unlock(&fs_info->reclaim_bgs_lock); 3368 if (ret < 0) 3369 goto error; 3370 if (ret > 0) 3371 break; 3372 3373 leaf = path->nodes[0]; 3374 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3375 3376 chunk = btrfs_item_ptr(leaf, path->slots[0], 3377 struct btrfs_chunk); 3378 chunk_type = btrfs_chunk_type(leaf, chunk); 3379 btrfs_release_path(path); 3380 3381 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3382 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3383 if (ret == -ENOSPC) 3384 failed++; 3385 else 3386 BUG_ON(ret); 3387 } 3388 mutex_unlock(&fs_info->reclaim_bgs_lock); 3389 3390 if (found_key.offset == 0) 3391 break; 3392 key.offset = found_key.offset - 1; 3393 } 3394 ret = 0; 3395 if (failed && !retried) { 3396 failed = 0; 3397 retried = true; 3398 goto again; 3399 } else if (WARN_ON(failed && retried)) { 3400 ret = -ENOSPC; 3401 } 3402 error: 3403 btrfs_free_path(path); 3404 return ret; 3405 } 3406 3407 /* 3408 * return 1 : allocate a data chunk successfully, 3409 * return <0: errors during allocating a data chunk, 3410 * return 0 : no need to allocate a data chunk. 3411 */ 3412 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3413 u64 chunk_offset) 3414 { 3415 struct btrfs_block_group *cache; 3416 u64 bytes_used; 3417 u64 chunk_type; 3418 3419 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3420 ASSERT(cache); 3421 chunk_type = cache->flags; 3422 btrfs_put_block_group(cache); 3423 3424 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3425 return 0; 3426 3427 spin_lock(&fs_info->data_sinfo->lock); 3428 bytes_used = fs_info->data_sinfo->bytes_used; 3429 spin_unlock(&fs_info->data_sinfo->lock); 3430 3431 if (!bytes_used) { 3432 struct btrfs_trans_handle *trans; 3433 int ret; 3434 3435 trans = btrfs_join_transaction(fs_info->tree_root); 3436 if (IS_ERR(trans)) 3437 return PTR_ERR(trans); 3438 3439 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3440 btrfs_end_transaction(trans); 3441 if (ret < 0) 3442 return ret; 3443 return 1; 3444 } 3445 3446 return 0; 3447 } 3448 3449 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3450 struct btrfs_balance_control *bctl) 3451 { 3452 struct btrfs_root *root = fs_info->tree_root; 3453 struct btrfs_trans_handle *trans; 3454 struct btrfs_balance_item *item; 3455 struct btrfs_disk_balance_args disk_bargs; 3456 struct btrfs_path *path; 3457 struct extent_buffer *leaf; 3458 struct btrfs_key key; 3459 int ret, err; 3460 3461 path = btrfs_alloc_path(); 3462 if (!path) 3463 return -ENOMEM; 3464 3465 trans = btrfs_start_transaction(root, 0); 3466 if (IS_ERR(trans)) { 3467 btrfs_free_path(path); 3468 return PTR_ERR(trans); 3469 } 3470 3471 key.objectid = BTRFS_BALANCE_OBJECTID; 3472 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3473 key.offset = 0; 3474 3475 ret = btrfs_insert_empty_item(trans, root, path, &key, 3476 sizeof(*item)); 3477 if (ret) 3478 goto out; 3479 3480 leaf = path->nodes[0]; 3481 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3482 3483 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3484 3485 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3486 btrfs_set_balance_data(leaf, item, &disk_bargs); 3487 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3488 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3489 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3490 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3491 3492 btrfs_set_balance_flags(leaf, item, bctl->flags); 3493 3494 btrfs_mark_buffer_dirty(leaf); 3495 out: 3496 btrfs_free_path(path); 3497 err = btrfs_commit_transaction(trans); 3498 if (err && !ret) 3499 ret = err; 3500 return ret; 3501 } 3502 3503 static int del_balance_item(struct btrfs_fs_info *fs_info) 3504 { 3505 struct btrfs_root *root = fs_info->tree_root; 3506 struct btrfs_trans_handle *trans; 3507 struct btrfs_path *path; 3508 struct btrfs_key key; 3509 int ret, err; 3510 3511 path = btrfs_alloc_path(); 3512 if (!path) 3513 return -ENOMEM; 3514 3515 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3516 if (IS_ERR(trans)) { 3517 btrfs_free_path(path); 3518 return PTR_ERR(trans); 3519 } 3520 3521 key.objectid = BTRFS_BALANCE_OBJECTID; 3522 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3523 key.offset = 0; 3524 3525 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3526 if (ret < 0) 3527 goto out; 3528 if (ret > 0) { 3529 ret = -ENOENT; 3530 goto out; 3531 } 3532 3533 ret = btrfs_del_item(trans, root, path); 3534 out: 3535 btrfs_free_path(path); 3536 err = btrfs_commit_transaction(trans); 3537 if (err && !ret) 3538 ret = err; 3539 return ret; 3540 } 3541 3542 /* 3543 * This is a heuristic used to reduce the number of chunks balanced on 3544 * resume after balance was interrupted. 3545 */ 3546 static void update_balance_args(struct btrfs_balance_control *bctl) 3547 { 3548 /* 3549 * Turn on soft mode for chunk types that were being converted. 3550 */ 3551 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3552 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3553 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3554 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3555 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3556 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3557 3558 /* 3559 * Turn on usage filter if is not already used. The idea is 3560 * that chunks that we have already balanced should be 3561 * reasonably full. Don't do it for chunks that are being 3562 * converted - that will keep us from relocating unconverted 3563 * (albeit full) chunks. 3564 */ 3565 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3566 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3567 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3568 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3569 bctl->data.usage = 90; 3570 } 3571 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3572 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3573 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3574 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3575 bctl->sys.usage = 90; 3576 } 3577 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3578 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3579 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3580 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3581 bctl->meta.usage = 90; 3582 } 3583 } 3584 3585 /* 3586 * Clear the balance status in fs_info and delete the balance item from disk. 3587 */ 3588 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3589 { 3590 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3591 int ret; 3592 3593 BUG_ON(!fs_info->balance_ctl); 3594 3595 spin_lock(&fs_info->balance_lock); 3596 fs_info->balance_ctl = NULL; 3597 spin_unlock(&fs_info->balance_lock); 3598 3599 kfree(bctl); 3600 ret = del_balance_item(fs_info); 3601 if (ret) 3602 btrfs_handle_fs_error(fs_info, ret, NULL); 3603 } 3604 3605 /* 3606 * Balance filters. Return 1 if chunk should be filtered out 3607 * (should not be balanced). 3608 */ 3609 static int chunk_profiles_filter(u64 chunk_type, 3610 struct btrfs_balance_args *bargs) 3611 { 3612 chunk_type = chunk_to_extended(chunk_type) & 3613 BTRFS_EXTENDED_PROFILE_MASK; 3614 3615 if (bargs->profiles & chunk_type) 3616 return 0; 3617 3618 return 1; 3619 } 3620 3621 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3622 struct btrfs_balance_args *bargs) 3623 { 3624 struct btrfs_block_group *cache; 3625 u64 chunk_used; 3626 u64 user_thresh_min; 3627 u64 user_thresh_max; 3628 int ret = 1; 3629 3630 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3631 chunk_used = cache->used; 3632 3633 if (bargs->usage_min == 0) 3634 user_thresh_min = 0; 3635 else 3636 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3637 3638 if (bargs->usage_max == 0) 3639 user_thresh_max = 1; 3640 else if (bargs->usage_max > 100) 3641 user_thresh_max = cache->length; 3642 else 3643 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3644 3645 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3646 ret = 0; 3647 3648 btrfs_put_block_group(cache); 3649 return ret; 3650 } 3651 3652 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3653 u64 chunk_offset, struct btrfs_balance_args *bargs) 3654 { 3655 struct btrfs_block_group *cache; 3656 u64 chunk_used, user_thresh; 3657 int ret = 1; 3658 3659 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3660 chunk_used = cache->used; 3661 3662 if (bargs->usage_min == 0) 3663 user_thresh = 1; 3664 else if (bargs->usage > 100) 3665 user_thresh = cache->length; 3666 else 3667 user_thresh = mult_perc(cache->length, bargs->usage); 3668 3669 if (chunk_used < user_thresh) 3670 ret = 0; 3671 3672 btrfs_put_block_group(cache); 3673 return ret; 3674 } 3675 3676 static int chunk_devid_filter(struct extent_buffer *leaf, 3677 struct btrfs_chunk *chunk, 3678 struct btrfs_balance_args *bargs) 3679 { 3680 struct btrfs_stripe *stripe; 3681 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3682 int i; 3683 3684 for (i = 0; i < num_stripes; i++) { 3685 stripe = btrfs_stripe_nr(chunk, i); 3686 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3687 return 0; 3688 } 3689 3690 return 1; 3691 } 3692 3693 static u64 calc_data_stripes(u64 type, int num_stripes) 3694 { 3695 const int index = btrfs_bg_flags_to_raid_index(type); 3696 const int ncopies = btrfs_raid_array[index].ncopies; 3697 const int nparity = btrfs_raid_array[index].nparity; 3698 3699 return (num_stripes - nparity) / ncopies; 3700 } 3701 3702 /* [pstart, pend) */ 3703 static int chunk_drange_filter(struct extent_buffer *leaf, 3704 struct btrfs_chunk *chunk, 3705 struct btrfs_balance_args *bargs) 3706 { 3707 struct btrfs_stripe *stripe; 3708 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3709 u64 stripe_offset; 3710 u64 stripe_length; 3711 u64 type; 3712 int factor; 3713 int i; 3714 3715 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3716 return 0; 3717 3718 type = btrfs_chunk_type(leaf, chunk); 3719 factor = calc_data_stripes(type, num_stripes); 3720 3721 for (i = 0; i < num_stripes; i++) { 3722 stripe = btrfs_stripe_nr(chunk, i); 3723 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3724 continue; 3725 3726 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3727 stripe_length = btrfs_chunk_length(leaf, chunk); 3728 stripe_length = div_u64(stripe_length, factor); 3729 3730 if (stripe_offset < bargs->pend && 3731 stripe_offset + stripe_length > bargs->pstart) 3732 return 0; 3733 } 3734 3735 return 1; 3736 } 3737 3738 /* [vstart, vend) */ 3739 static int chunk_vrange_filter(struct extent_buffer *leaf, 3740 struct btrfs_chunk *chunk, 3741 u64 chunk_offset, 3742 struct btrfs_balance_args *bargs) 3743 { 3744 if (chunk_offset < bargs->vend && 3745 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3746 /* at least part of the chunk is inside this vrange */ 3747 return 0; 3748 3749 return 1; 3750 } 3751 3752 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3753 struct btrfs_chunk *chunk, 3754 struct btrfs_balance_args *bargs) 3755 { 3756 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3757 3758 if (bargs->stripes_min <= num_stripes 3759 && num_stripes <= bargs->stripes_max) 3760 return 0; 3761 3762 return 1; 3763 } 3764 3765 static int chunk_soft_convert_filter(u64 chunk_type, 3766 struct btrfs_balance_args *bargs) 3767 { 3768 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3769 return 0; 3770 3771 chunk_type = chunk_to_extended(chunk_type) & 3772 BTRFS_EXTENDED_PROFILE_MASK; 3773 3774 if (bargs->target == chunk_type) 3775 return 1; 3776 3777 return 0; 3778 } 3779 3780 static int should_balance_chunk(struct extent_buffer *leaf, 3781 struct btrfs_chunk *chunk, u64 chunk_offset) 3782 { 3783 struct btrfs_fs_info *fs_info = leaf->fs_info; 3784 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3785 struct btrfs_balance_args *bargs = NULL; 3786 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3787 3788 /* type filter */ 3789 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3790 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3791 return 0; 3792 } 3793 3794 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3795 bargs = &bctl->data; 3796 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3797 bargs = &bctl->sys; 3798 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3799 bargs = &bctl->meta; 3800 3801 /* profiles filter */ 3802 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3803 chunk_profiles_filter(chunk_type, bargs)) { 3804 return 0; 3805 } 3806 3807 /* usage filter */ 3808 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3809 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3810 return 0; 3811 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3812 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3813 return 0; 3814 } 3815 3816 /* devid filter */ 3817 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3818 chunk_devid_filter(leaf, chunk, bargs)) { 3819 return 0; 3820 } 3821 3822 /* drange filter, makes sense only with devid filter */ 3823 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3824 chunk_drange_filter(leaf, chunk, bargs)) { 3825 return 0; 3826 } 3827 3828 /* vrange filter */ 3829 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3830 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3831 return 0; 3832 } 3833 3834 /* stripes filter */ 3835 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3836 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3837 return 0; 3838 } 3839 3840 /* soft profile changing mode */ 3841 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3842 chunk_soft_convert_filter(chunk_type, bargs)) { 3843 return 0; 3844 } 3845 3846 /* 3847 * limited by count, must be the last filter 3848 */ 3849 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3850 if (bargs->limit == 0) 3851 return 0; 3852 else 3853 bargs->limit--; 3854 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3855 /* 3856 * Same logic as the 'limit' filter; the minimum cannot be 3857 * determined here because we do not have the global information 3858 * about the count of all chunks that satisfy the filters. 3859 */ 3860 if (bargs->limit_max == 0) 3861 return 0; 3862 else 3863 bargs->limit_max--; 3864 } 3865 3866 return 1; 3867 } 3868 3869 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3870 { 3871 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3872 struct btrfs_root *chunk_root = fs_info->chunk_root; 3873 u64 chunk_type; 3874 struct btrfs_chunk *chunk; 3875 struct btrfs_path *path = NULL; 3876 struct btrfs_key key; 3877 struct btrfs_key found_key; 3878 struct extent_buffer *leaf; 3879 int slot; 3880 int ret; 3881 int enospc_errors = 0; 3882 bool counting = true; 3883 /* The single value limit and min/max limits use the same bytes in the */ 3884 u64 limit_data = bctl->data.limit; 3885 u64 limit_meta = bctl->meta.limit; 3886 u64 limit_sys = bctl->sys.limit; 3887 u32 count_data = 0; 3888 u32 count_meta = 0; 3889 u32 count_sys = 0; 3890 int chunk_reserved = 0; 3891 3892 path = btrfs_alloc_path(); 3893 if (!path) { 3894 ret = -ENOMEM; 3895 goto error; 3896 } 3897 3898 /* zero out stat counters */ 3899 spin_lock(&fs_info->balance_lock); 3900 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3901 spin_unlock(&fs_info->balance_lock); 3902 again: 3903 if (!counting) { 3904 /* 3905 * The single value limit and min/max limits use the same bytes 3906 * in the 3907 */ 3908 bctl->data.limit = limit_data; 3909 bctl->meta.limit = limit_meta; 3910 bctl->sys.limit = limit_sys; 3911 } 3912 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3913 key.offset = (u64)-1; 3914 key.type = BTRFS_CHUNK_ITEM_KEY; 3915 3916 while (1) { 3917 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3918 atomic_read(&fs_info->balance_cancel_req)) { 3919 ret = -ECANCELED; 3920 goto error; 3921 } 3922 3923 mutex_lock(&fs_info->reclaim_bgs_lock); 3924 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3925 if (ret < 0) { 3926 mutex_unlock(&fs_info->reclaim_bgs_lock); 3927 goto error; 3928 } 3929 3930 /* 3931 * this shouldn't happen, it means the last relocate 3932 * failed 3933 */ 3934 if (ret == 0) 3935 BUG(); /* FIXME break ? */ 3936 3937 ret = btrfs_previous_item(chunk_root, path, 0, 3938 BTRFS_CHUNK_ITEM_KEY); 3939 if (ret) { 3940 mutex_unlock(&fs_info->reclaim_bgs_lock); 3941 ret = 0; 3942 break; 3943 } 3944 3945 leaf = path->nodes[0]; 3946 slot = path->slots[0]; 3947 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3948 3949 if (found_key.objectid != key.objectid) { 3950 mutex_unlock(&fs_info->reclaim_bgs_lock); 3951 break; 3952 } 3953 3954 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3955 chunk_type = btrfs_chunk_type(leaf, chunk); 3956 3957 if (!counting) { 3958 spin_lock(&fs_info->balance_lock); 3959 bctl->stat.considered++; 3960 spin_unlock(&fs_info->balance_lock); 3961 } 3962 3963 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3964 3965 btrfs_release_path(path); 3966 if (!ret) { 3967 mutex_unlock(&fs_info->reclaim_bgs_lock); 3968 goto loop; 3969 } 3970 3971 if (counting) { 3972 mutex_unlock(&fs_info->reclaim_bgs_lock); 3973 spin_lock(&fs_info->balance_lock); 3974 bctl->stat.expected++; 3975 spin_unlock(&fs_info->balance_lock); 3976 3977 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3978 count_data++; 3979 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3980 count_sys++; 3981 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3982 count_meta++; 3983 3984 goto loop; 3985 } 3986 3987 /* 3988 * Apply limit_min filter, no need to check if the LIMITS 3989 * filter is used, limit_min is 0 by default 3990 */ 3991 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3992 count_data < bctl->data.limit_min) 3993 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3994 count_meta < bctl->meta.limit_min) 3995 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3996 count_sys < bctl->sys.limit_min)) { 3997 mutex_unlock(&fs_info->reclaim_bgs_lock); 3998 goto loop; 3999 } 4000 4001 if (!chunk_reserved) { 4002 /* 4003 * We may be relocating the only data chunk we have, 4004 * which could potentially end up with losing data's 4005 * raid profile, so lets allocate an empty one in 4006 * advance. 4007 */ 4008 ret = btrfs_may_alloc_data_chunk(fs_info, 4009 found_key.offset); 4010 if (ret < 0) { 4011 mutex_unlock(&fs_info->reclaim_bgs_lock); 4012 goto error; 4013 } else if (ret == 1) { 4014 chunk_reserved = 1; 4015 } 4016 } 4017 4018 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4019 mutex_unlock(&fs_info->reclaim_bgs_lock); 4020 if (ret == -ENOSPC) { 4021 enospc_errors++; 4022 } else if (ret == -ETXTBSY) { 4023 btrfs_info(fs_info, 4024 "skipping relocation of block group %llu due to active swapfile", 4025 found_key.offset); 4026 ret = 0; 4027 } else if (ret) { 4028 goto error; 4029 } else { 4030 spin_lock(&fs_info->balance_lock); 4031 bctl->stat.completed++; 4032 spin_unlock(&fs_info->balance_lock); 4033 } 4034 loop: 4035 if (found_key.offset == 0) 4036 break; 4037 key.offset = found_key.offset - 1; 4038 } 4039 4040 if (counting) { 4041 btrfs_release_path(path); 4042 counting = false; 4043 goto again; 4044 } 4045 error: 4046 btrfs_free_path(path); 4047 if (enospc_errors) { 4048 btrfs_info(fs_info, "%d enospc errors during balance", 4049 enospc_errors); 4050 if (!ret) 4051 ret = -ENOSPC; 4052 } 4053 4054 return ret; 4055 } 4056 4057 /* 4058 * See if a given profile is valid and reduced. 4059 * 4060 * @flags: profile to validate 4061 * @extended: if true @flags is treated as an extended profile 4062 */ 4063 static int alloc_profile_is_valid(u64 flags, int extended) 4064 { 4065 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4066 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4067 4068 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4069 4070 /* 1) check that all other bits are zeroed */ 4071 if (flags & ~mask) 4072 return 0; 4073 4074 /* 2) see if profile is reduced */ 4075 if (flags == 0) 4076 return !extended; /* "0" is valid for usual profiles */ 4077 4078 return has_single_bit_set(flags); 4079 } 4080 4081 /* 4082 * Validate target profile against allowed profiles and return true if it's OK. 4083 * Otherwise print the error message and return false. 4084 */ 4085 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4086 const struct btrfs_balance_args *bargs, 4087 u64 allowed, const char *type) 4088 { 4089 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4090 return true; 4091 4092 /* Profile is valid and does not have bits outside of the allowed set */ 4093 if (alloc_profile_is_valid(bargs->target, 1) && 4094 (bargs->target & ~allowed) == 0) 4095 return true; 4096 4097 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4098 type, btrfs_bg_type_to_raid_name(bargs->target)); 4099 return false; 4100 } 4101 4102 /* 4103 * Fill @buf with textual description of balance filter flags @bargs, up to 4104 * @size_buf including the terminating null. The output may be trimmed if it 4105 * does not fit into the provided buffer. 4106 */ 4107 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4108 u32 size_buf) 4109 { 4110 int ret; 4111 u32 size_bp = size_buf; 4112 char *bp = buf; 4113 u64 flags = bargs->flags; 4114 char tmp_buf[128] = {'\0'}; 4115 4116 if (!flags) 4117 return; 4118 4119 #define CHECK_APPEND_NOARG(a) \ 4120 do { \ 4121 ret = snprintf(bp, size_bp, (a)); \ 4122 if (ret < 0 || ret >= size_bp) \ 4123 goto out_overflow; \ 4124 size_bp -= ret; \ 4125 bp += ret; \ 4126 } while (0) 4127 4128 #define CHECK_APPEND_1ARG(a, v1) \ 4129 do { \ 4130 ret = snprintf(bp, size_bp, (a), (v1)); \ 4131 if (ret < 0 || ret >= size_bp) \ 4132 goto out_overflow; \ 4133 size_bp -= ret; \ 4134 bp += ret; \ 4135 } while (0) 4136 4137 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4138 do { \ 4139 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4140 if (ret < 0 || ret >= size_bp) \ 4141 goto out_overflow; \ 4142 size_bp -= ret; \ 4143 bp += ret; \ 4144 } while (0) 4145 4146 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4147 CHECK_APPEND_1ARG("convert=%s,", 4148 btrfs_bg_type_to_raid_name(bargs->target)); 4149 4150 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4151 CHECK_APPEND_NOARG("soft,"); 4152 4153 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4154 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4155 sizeof(tmp_buf)); 4156 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4157 } 4158 4159 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4160 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4161 4162 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4163 CHECK_APPEND_2ARG("usage=%u..%u,", 4164 bargs->usage_min, bargs->usage_max); 4165 4166 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4167 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4168 4169 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4170 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4171 bargs->pstart, bargs->pend); 4172 4173 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4174 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4175 bargs->vstart, bargs->vend); 4176 4177 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4178 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4179 4180 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4181 CHECK_APPEND_2ARG("limit=%u..%u,", 4182 bargs->limit_min, bargs->limit_max); 4183 4184 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4185 CHECK_APPEND_2ARG("stripes=%u..%u,", 4186 bargs->stripes_min, bargs->stripes_max); 4187 4188 #undef CHECK_APPEND_2ARG 4189 #undef CHECK_APPEND_1ARG 4190 #undef CHECK_APPEND_NOARG 4191 4192 out_overflow: 4193 4194 if (size_bp < size_buf) 4195 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4196 else 4197 buf[0] = '\0'; 4198 } 4199 4200 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4201 { 4202 u32 size_buf = 1024; 4203 char tmp_buf[192] = {'\0'}; 4204 char *buf; 4205 char *bp; 4206 u32 size_bp = size_buf; 4207 int ret; 4208 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4209 4210 buf = kzalloc(size_buf, GFP_KERNEL); 4211 if (!buf) 4212 return; 4213 4214 bp = buf; 4215 4216 #define CHECK_APPEND_1ARG(a, v1) \ 4217 do { \ 4218 ret = snprintf(bp, size_bp, (a), (v1)); \ 4219 if (ret < 0 || ret >= size_bp) \ 4220 goto out_overflow; \ 4221 size_bp -= ret; \ 4222 bp += ret; \ 4223 } while (0) 4224 4225 if (bctl->flags & BTRFS_BALANCE_FORCE) 4226 CHECK_APPEND_1ARG("%s", "-f "); 4227 4228 if (bctl->flags & BTRFS_BALANCE_DATA) { 4229 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4230 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4231 } 4232 4233 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4234 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4235 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4236 } 4237 4238 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4239 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4240 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4241 } 4242 4243 #undef CHECK_APPEND_1ARG 4244 4245 out_overflow: 4246 4247 if (size_bp < size_buf) 4248 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4249 btrfs_info(fs_info, "balance: %s %s", 4250 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4251 "resume" : "start", buf); 4252 4253 kfree(buf); 4254 } 4255 4256 /* 4257 * Should be called with balance mutexe held 4258 */ 4259 int btrfs_balance(struct btrfs_fs_info *fs_info, 4260 struct btrfs_balance_control *bctl, 4261 struct btrfs_ioctl_balance_args *bargs) 4262 { 4263 u64 meta_target, data_target; 4264 u64 allowed; 4265 int mixed = 0; 4266 int ret; 4267 u64 num_devices; 4268 unsigned seq; 4269 bool reducing_redundancy; 4270 bool paused = false; 4271 int i; 4272 4273 if (btrfs_fs_closing(fs_info) || 4274 atomic_read(&fs_info->balance_pause_req) || 4275 btrfs_should_cancel_balance(fs_info)) { 4276 ret = -EINVAL; 4277 goto out; 4278 } 4279 4280 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4281 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4282 mixed = 1; 4283 4284 /* 4285 * In case of mixed groups both data and meta should be picked, 4286 * and identical options should be given for both of them. 4287 */ 4288 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4289 if (mixed && (bctl->flags & allowed)) { 4290 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4291 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4292 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4293 btrfs_err(fs_info, 4294 "balance: mixed groups data and metadata options must be the same"); 4295 ret = -EINVAL; 4296 goto out; 4297 } 4298 } 4299 4300 /* 4301 * rw_devices will not change at the moment, device add/delete/replace 4302 * are exclusive 4303 */ 4304 num_devices = fs_info->fs_devices->rw_devices; 4305 4306 /* 4307 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4308 * special bit for it, to make it easier to distinguish. Thus we need 4309 * to set it manually, or balance would refuse the profile. 4310 */ 4311 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4312 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4313 if (num_devices >= btrfs_raid_array[i].devs_min) 4314 allowed |= btrfs_raid_array[i].bg_flag; 4315 4316 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4317 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4318 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4319 ret = -EINVAL; 4320 goto out; 4321 } 4322 4323 /* 4324 * Allow to reduce metadata or system integrity only if force set for 4325 * profiles with redundancy (copies, parity) 4326 */ 4327 allowed = 0; 4328 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4329 if (btrfs_raid_array[i].ncopies >= 2 || 4330 btrfs_raid_array[i].tolerated_failures >= 1) 4331 allowed |= btrfs_raid_array[i].bg_flag; 4332 } 4333 do { 4334 seq = read_seqbegin(&fs_info->profiles_lock); 4335 4336 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4337 (fs_info->avail_system_alloc_bits & allowed) && 4338 !(bctl->sys.target & allowed)) || 4339 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4340 (fs_info->avail_metadata_alloc_bits & allowed) && 4341 !(bctl->meta.target & allowed))) 4342 reducing_redundancy = true; 4343 else 4344 reducing_redundancy = false; 4345 4346 /* if we're not converting, the target field is uninitialized */ 4347 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4348 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4349 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4350 bctl->data.target : fs_info->avail_data_alloc_bits; 4351 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4352 4353 if (reducing_redundancy) { 4354 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4355 btrfs_info(fs_info, 4356 "balance: force reducing metadata redundancy"); 4357 } else { 4358 btrfs_err(fs_info, 4359 "balance: reduces metadata redundancy, use --force if you want this"); 4360 ret = -EINVAL; 4361 goto out; 4362 } 4363 } 4364 4365 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4366 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4367 btrfs_warn(fs_info, 4368 "balance: metadata profile %s has lower redundancy than data profile %s", 4369 btrfs_bg_type_to_raid_name(meta_target), 4370 btrfs_bg_type_to_raid_name(data_target)); 4371 } 4372 4373 ret = insert_balance_item(fs_info, bctl); 4374 if (ret && ret != -EEXIST) 4375 goto out; 4376 4377 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4378 BUG_ON(ret == -EEXIST); 4379 BUG_ON(fs_info->balance_ctl); 4380 spin_lock(&fs_info->balance_lock); 4381 fs_info->balance_ctl = bctl; 4382 spin_unlock(&fs_info->balance_lock); 4383 } else { 4384 BUG_ON(ret != -EEXIST); 4385 spin_lock(&fs_info->balance_lock); 4386 update_balance_args(bctl); 4387 spin_unlock(&fs_info->balance_lock); 4388 } 4389 4390 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4391 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4392 describe_balance_start_or_resume(fs_info); 4393 mutex_unlock(&fs_info->balance_mutex); 4394 4395 ret = __btrfs_balance(fs_info); 4396 4397 mutex_lock(&fs_info->balance_mutex); 4398 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4399 btrfs_info(fs_info, "balance: paused"); 4400 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4401 paused = true; 4402 } 4403 /* 4404 * Balance can be canceled by: 4405 * 4406 * - Regular cancel request 4407 * Then ret == -ECANCELED and balance_cancel_req > 0 4408 * 4409 * - Fatal signal to "btrfs" process 4410 * Either the signal caught by wait_reserve_ticket() and callers 4411 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4412 * got -ECANCELED. 4413 * Either way, in this case balance_cancel_req = 0, and 4414 * ret == -EINTR or ret == -ECANCELED. 4415 * 4416 * So here we only check the return value to catch canceled balance. 4417 */ 4418 else if (ret == -ECANCELED || ret == -EINTR) 4419 btrfs_info(fs_info, "balance: canceled"); 4420 else 4421 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4422 4423 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4424 4425 if (bargs) { 4426 memset(bargs, 0, sizeof(*bargs)); 4427 btrfs_update_ioctl_balance_args(fs_info, bargs); 4428 } 4429 4430 /* We didn't pause, we can clean everything up. */ 4431 if (!paused) { 4432 reset_balance_state(fs_info); 4433 btrfs_exclop_finish(fs_info); 4434 } 4435 4436 wake_up(&fs_info->balance_wait_q); 4437 4438 return ret; 4439 out: 4440 if (bctl->flags & BTRFS_BALANCE_RESUME) 4441 reset_balance_state(fs_info); 4442 else 4443 kfree(bctl); 4444 btrfs_exclop_finish(fs_info); 4445 4446 return ret; 4447 } 4448 4449 static int balance_kthread(void *data) 4450 { 4451 struct btrfs_fs_info *fs_info = data; 4452 int ret = 0; 4453 4454 sb_start_write(fs_info->sb); 4455 mutex_lock(&fs_info->balance_mutex); 4456 if (fs_info->balance_ctl) 4457 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4458 mutex_unlock(&fs_info->balance_mutex); 4459 sb_end_write(fs_info->sb); 4460 4461 return ret; 4462 } 4463 4464 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4465 { 4466 struct task_struct *tsk; 4467 4468 mutex_lock(&fs_info->balance_mutex); 4469 if (!fs_info->balance_ctl) { 4470 mutex_unlock(&fs_info->balance_mutex); 4471 return 0; 4472 } 4473 mutex_unlock(&fs_info->balance_mutex); 4474 4475 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4476 btrfs_info(fs_info, "balance: resume skipped"); 4477 return 0; 4478 } 4479 4480 spin_lock(&fs_info->super_lock); 4481 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4482 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4483 spin_unlock(&fs_info->super_lock); 4484 /* 4485 * A ro->rw remount sequence should continue with the paused balance 4486 * regardless of who pauses it, system or the user as of now, so set 4487 * the resume flag. 4488 */ 4489 spin_lock(&fs_info->balance_lock); 4490 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4491 spin_unlock(&fs_info->balance_lock); 4492 4493 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4494 return PTR_ERR_OR_ZERO(tsk); 4495 } 4496 4497 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4498 { 4499 struct btrfs_balance_control *bctl; 4500 struct btrfs_balance_item *item; 4501 struct btrfs_disk_balance_args disk_bargs; 4502 struct btrfs_path *path; 4503 struct extent_buffer *leaf; 4504 struct btrfs_key key; 4505 int ret; 4506 4507 path = btrfs_alloc_path(); 4508 if (!path) 4509 return -ENOMEM; 4510 4511 key.objectid = BTRFS_BALANCE_OBJECTID; 4512 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4513 key.offset = 0; 4514 4515 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4516 if (ret < 0) 4517 goto out; 4518 if (ret > 0) { /* ret = -ENOENT; */ 4519 ret = 0; 4520 goto out; 4521 } 4522 4523 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4524 if (!bctl) { 4525 ret = -ENOMEM; 4526 goto out; 4527 } 4528 4529 leaf = path->nodes[0]; 4530 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4531 4532 bctl->flags = btrfs_balance_flags(leaf, item); 4533 bctl->flags |= BTRFS_BALANCE_RESUME; 4534 4535 btrfs_balance_data(leaf, item, &disk_bargs); 4536 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4537 btrfs_balance_meta(leaf, item, &disk_bargs); 4538 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4539 btrfs_balance_sys(leaf, item, &disk_bargs); 4540 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4541 4542 /* 4543 * This should never happen, as the paused balance state is recovered 4544 * during mount without any chance of other exclusive ops to collide. 4545 * 4546 * This gives the exclusive op status to balance and keeps in paused 4547 * state until user intervention (cancel or umount). If the ownership 4548 * cannot be assigned, show a message but do not fail. The balance 4549 * is in a paused state and must have fs_info::balance_ctl properly 4550 * set up. 4551 */ 4552 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4553 btrfs_warn(fs_info, 4554 "balance: cannot set exclusive op status, resume manually"); 4555 4556 btrfs_release_path(path); 4557 4558 mutex_lock(&fs_info->balance_mutex); 4559 BUG_ON(fs_info->balance_ctl); 4560 spin_lock(&fs_info->balance_lock); 4561 fs_info->balance_ctl = bctl; 4562 spin_unlock(&fs_info->balance_lock); 4563 mutex_unlock(&fs_info->balance_mutex); 4564 out: 4565 btrfs_free_path(path); 4566 return ret; 4567 } 4568 4569 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4570 { 4571 int ret = 0; 4572 4573 mutex_lock(&fs_info->balance_mutex); 4574 if (!fs_info->balance_ctl) { 4575 mutex_unlock(&fs_info->balance_mutex); 4576 return -ENOTCONN; 4577 } 4578 4579 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4580 atomic_inc(&fs_info->balance_pause_req); 4581 mutex_unlock(&fs_info->balance_mutex); 4582 4583 wait_event(fs_info->balance_wait_q, 4584 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4585 4586 mutex_lock(&fs_info->balance_mutex); 4587 /* we are good with balance_ctl ripped off from under us */ 4588 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4589 atomic_dec(&fs_info->balance_pause_req); 4590 } else { 4591 ret = -ENOTCONN; 4592 } 4593 4594 mutex_unlock(&fs_info->balance_mutex); 4595 return ret; 4596 } 4597 4598 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4599 { 4600 mutex_lock(&fs_info->balance_mutex); 4601 if (!fs_info->balance_ctl) { 4602 mutex_unlock(&fs_info->balance_mutex); 4603 return -ENOTCONN; 4604 } 4605 4606 /* 4607 * A paused balance with the item stored on disk can be resumed at 4608 * mount time if the mount is read-write. Otherwise it's still paused 4609 * and we must not allow cancelling as it deletes the item. 4610 */ 4611 if (sb_rdonly(fs_info->sb)) { 4612 mutex_unlock(&fs_info->balance_mutex); 4613 return -EROFS; 4614 } 4615 4616 atomic_inc(&fs_info->balance_cancel_req); 4617 /* 4618 * if we are running just wait and return, balance item is 4619 * deleted in btrfs_balance in this case 4620 */ 4621 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4622 mutex_unlock(&fs_info->balance_mutex); 4623 wait_event(fs_info->balance_wait_q, 4624 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4625 mutex_lock(&fs_info->balance_mutex); 4626 } else { 4627 mutex_unlock(&fs_info->balance_mutex); 4628 /* 4629 * Lock released to allow other waiters to continue, we'll 4630 * reexamine the status again. 4631 */ 4632 mutex_lock(&fs_info->balance_mutex); 4633 4634 if (fs_info->balance_ctl) { 4635 reset_balance_state(fs_info); 4636 btrfs_exclop_finish(fs_info); 4637 btrfs_info(fs_info, "balance: canceled"); 4638 } 4639 } 4640 4641 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4642 atomic_dec(&fs_info->balance_cancel_req); 4643 mutex_unlock(&fs_info->balance_mutex); 4644 return 0; 4645 } 4646 4647 int btrfs_uuid_scan_kthread(void *data) 4648 { 4649 struct btrfs_fs_info *fs_info = data; 4650 struct btrfs_root *root = fs_info->tree_root; 4651 struct btrfs_key key; 4652 struct btrfs_path *path = NULL; 4653 int ret = 0; 4654 struct extent_buffer *eb; 4655 int slot; 4656 struct btrfs_root_item root_item; 4657 u32 item_size; 4658 struct btrfs_trans_handle *trans = NULL; 4659 bool closing = false; 4660 4661 path = btrfs_alloc_path(); 4662 if (!path) { 4663 ret = -ENOMEM; 4664 goto out; 4665 } 4666 4667 key.objectid = 0; 4668 key.type = BTRFS_ROOT_ITEM_KEY; 4669 key.offset = 0; 4670 4671 while (1) { 4672 if (btrfs_fs_closing(fs_info)) { 4673 closing = true; 4674 break; 4675 } 4676 ret = btrfs_search_forward(root, &key, path, 4677 BTRFS_OLDEST_GENERATION); 4678 if (ret) { 4679 if (ret > 0) 4680 ret = 0; 4681 break; 4682 } 4683 4684 if (key.type != BTRFS_ROOT_ITEM_KEY || 4685 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4686 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4687 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4688 goto skip; 4689 4690 eb = path->nodes[0]; 4691 slot = path->slots[0]; 4692 item_size = btrfs_item_size(eb, slot); 4693 if (item_size < sizeof(root_item)) 4694 goto skip; 4695 4696 read_extent_buffer(eb, &root_item, 4697 btrfs_item_ptr_offset(eb, slot), 4698 (int)sizeof(root_item)); 4699 if (btrfs_root_refs(&root_item) == 0) 4700 goto skip; 4701 4702 if (!btrfs_is_empty_uuid(root_item.uuid) || 4703 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4704 if (trans) 4705 goto update_tree; 4706 4707 btrfs_release_path(path); 4708 /* 4709 * 1 - subvol uuid item 4710 * 1 - received_subvol uuid item 4711 */ 4712 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4713 if (IS_ERR(trans)) { 4714 ret = PTR_ERR(trans); 4715 break; 4716 } 4717 continue; 4718 } else { 4719 goto skip; 4720 } 4721 update_tree: 4722 btrfs_release_path(path); 4723 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4724 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4725 BTRFS_UUID_KEY_SUBVOL, 4726 key.objectid); 4727 if (ret < 0) { 4728 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4729 ret); 4730 break; 4731 } 4732 } 4733 4734 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4735 ret = btrfs_uuid_tree_add(trans, 4736 root_item.received_uuid, 4737 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4738 key.objectid); 4739 if (ret < 0) { 4740 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4741 ret); 4742 break; 4743 } 4744 } 4745 4746 skip: 4747 btrfs_release_path(path); 4748 if (trans) { 4749 ret = btrfs_end_transaction(trans); 4750 trans = NULL; 4751 if (ret) 4752 break; 4753 } 4754 4755 if (key.offset < (u64)-1) { 4756 key.offset++; 4757 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4758 key.offset = 0; 4759 key.type = BTRFS_ROOT_ITEM_KEY; 4760 } else if (key.objectid < (u64)-1) { 4761 key.offset = 0; 4762 key.type = BTRFS_ROOT_ITEM_KEY; 4763 key.objectid++; 4764 } else { 4765 break; 4766 } 4767 cond_resched(); 4768 } 4769 4770 out: 4771 btrfs_free_path(path); 4772 if (trans && !IS_ERR(trans)) 4773 btrfs_end_transaction(trans); 4774 if (ret) 4775 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4776 else if (!closing) 4777 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4778 up(&fs_info->uuid_tree_rescan_sem); 4779 return 0; 4780 } 4781 4782 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4783 { 4784 struct btrfs_trans_handle *trans; 4785 struct btrfs_root *tree_root = fs_info->tree_root; 4786 struct btrfs_root *uuid_root; 4787 struct task_struct *task; 4788 int ret; 4789 4790 /* 4791 * 1 - root node 4792 * 1 - root item 4793 */ 4794 trans = btrfs_start_transaction(tree_root, 2); 4795 if (IS_ERR(trans)) 4796 return PTR_ERR(trans); 4797 4798 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4799 if (IS_ERR(uuid_root)) { 4800 ret = PTR_ERR(uuid_root); 4801 btrfs_abort_transaction(trans, ret); 4802 btrfs_end_transaction(trans); 4803 return ret; 4804 } 4805 4806 fs_info->uuid_root = uuid_root; 4807 4808 ret = btrfs_commit_transaction(trans); 4809 if (ret) 4810 return ret; 4811 4812 down(&fs_info->uuid_tree_rescan_sem); 4813 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4814 if (IS_ERR(task)) { 4815 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4816 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4817 up(&fs_info->uuid_tree_rescan_sem); 4818 return PTR_ERR(task); 4819 } 4820 4821 return 0; 4822 } 4823 4824 /* 4825 * shrinking a device means finding all of the device extents past 4826 * the new size, and then following the back refs to the chunks. 4827 * The chunk relocation code actually frees the device extent 4828 */ 4829 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4830 { 4831 struct btrfs_fs_info *fs_info = device->fs_info; 4832 struct btrfs_root *root = fs_info->dev_root; 4833 struct btrfs_trans_handle *trans; 4834 struct btrfs_dev_extent *dev_extent = NULL; 4835 struct btrfs_path *path; 4836 u64 length; 4837 u64 chunk_offset; 4838 int ret; 4839 int slot; 4840 int failed = 0; 4841 bool retried = false; 4842 struct extent_buffer *l; 4843 struct btrfs_key key; 4844 struct btrfs_super_block *super_copy = fs_info->super_copy; 4845 u64 old_total = btrfs_super_total_bytes(super_copy); 4846 u64 old_size = btrfs_device_get_total_bytes(device); 4847 u64 diff; 4848 u64 start; 4849 4850 new_size = round_down(new_size, fs_info->sectorsize); 4851 start = new_size; 4852 diff = round_down(old_size - new_size, fs_info->sectorsize); 4853 4854 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4855 return -EINVAL; 4856 4857 path = btrfs_alloc_path(); 4858 if (!path) 4859 return -ENOMEM; 4860 4861 path->reada = READA_BACK; 4862 4863 trans = btrfs_start_transaction(root, 0); 4864 if (IS_ERR(trans)) { 4865 btrfs_free_path(path); 4866 return PTR_ERR(trans); 4867 } 4868 4869 mutex_lock(&fs_info->chunk_mutex); 4870 4871 btrfs_device_set_total_bytes(device, new_size); 4872 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4873 device->fs_devices->total_rw_bytes -= diff; 4874 atomic64_sub(diff, &fs_info->free_chunk_space); 4875 } 4876 4877 /* 4878 * Once the device's size has been set to the new size, ensure all 4879 * in-memory chunks are synced to disk so that the loop below sees them 4880 * and relocates them accordingly. 4881 */ 4882 if (contains_pending_extent(device, &start, diff)) { 4883 mutex_unlock(&fs_info->chunk_mutex); 4884 ret = btrfs_commit_transaction(trans); 4885 if (ret) 4886 goto done; 4887 } else { 4888 mutex_unlock(&fs_info->chunk_mutex); 4889 btrfs_end_transaction(trans); 4890 } 4891 4892 again: 4893 key.objectid = device->devid; 4894 key.offset = (u64)-1; 4895 key.type = BTRFS_DEV_EXTENT_KEY; 4896 4897 do { 4898 mutex_lock(&fs_info->reclaim_bgs_lock); 4899 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4900 if (ret < 0) { 4901 mutex_unlock(&fs_info->reclaim_bgs_lock); 4902 goto done; 4903 } 4904 4905 ret = btrfs_previous_item(root, path, 0, key.type); 4906 if (ret) { 4907 mutex_unlock(&fs_info->reclaim_bgs_lock); 4908 if (ret < 0) 4909 goto done; 4910 ret = 0; 4911 btrfs_release_path(path); 4912 break; 4913 } 4914 4915 l = path->nodes[0]; 4916 slot = path->slots[0]; 4917 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4918 4919 if (key.objectid != device->devid) { 4920 mutex_unlock(&fs_info->reclaim_bgs_lock); 4921 btrfs_release_path(path); 4922 break; 4923 } 4924 4925 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4926 length = btrfs_dev_extent_length(l, dev_extent); 4927 4928 if (key.offset + length <= new_size) { 4929 mutex_unlock(&fs_info->reclaim_bgs_lock); 4930 btrfs_release_path(path); 4931 break; 4932 } 4933 4934 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4935 btrfs_release_path(path); 4936 4937 /* 4938 * We may be relocating the only data chunk we have, 4939 * which could potentially end up with losing data's 4940 * raid profile, so lets allocate an empty one in 4941 * advance. 4942 */ 4943 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4944 if (ret < 0) { 4945 mutex_unlock(&fs_info->reclaim_bgs_lock); 4946 goto done; 4947 } 4948 4949 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4950 mutex_unlock(&fs_info->reclaim_bgs_lock); 4951 if (ret == -ENOSPC) { 4952 failed++; 4953 } else if (ret) { 4954 if (ret == -ETXTBSY) { 4955 btrfs_warn(fs_info, 4956 "could not shrink block group %llu due to active swapfile", 4957 chunk_offset); 4958 } 4959 goto done; 4960 } 4961 } while (key.offset-- > 0); 4962 4963 if (failed && !retried) { 4964 failed = 0; 4965 retried = true; 4966 goto again; 4967 } else if (failed && retried) { 4968 ret = -ENOSPC; 4969 goto done; 4970 } 4971 4972 /* Shrinking succeeded, else we would be at "done". */ 4973 trans = btrfs_start_transaction(root, 0); 4974 if (IS_ERR(trans)) { 4975 ret = PTR_ERR(trans); 4976 goto done; 4977 } 4978 4979 mutex_lock(&fs_info->chunk_mutex); 4980 /* Clear all state bits beyond the shrunk device size */ 4981 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4982 CHUNK_STATE_MASK); 4983 4984 btrfs_device_set_disk_total_bytes(device, new_size); 4985 if (list_empty(&device->post_commit_list)) 4986 list_add_tail(&device->post_commit_list, 4987 &trans->transaction->dev_update_list); 4988 4989 WARN_ON(diff > old_total); 4990 btrfs_set_super_total_bytes(super_copy, 4991 round_down(old_total - diff, fs_info->sectorsize)); 4992 mutex_unlock(&fs_info->chunk_mutex); 4993 4994 btrfs_reserve_chunk_metadata(trans, false); 4995 /* Now btrfs_update_device() will change the on-disk size. */ 4996 ret = btrfs_update_device(trans, device); 4997 btrfs_trans_release_chunk_metadata(trans); 4998 if (ret < 0) { 4999 btrfs_abort_transaction(trans, ret); 5000 btrfs_end_transaction(trans); 5001 } else { 5002 ret = btrfs_commit_transaction(trans); 5003 } 5004 done: 5005 btrfs_free_path(path); 5006 if (ret) { 5007 mutex_lock(&fs_info->chunk_mutex); 5008 btrfs_device_set_total_bytes(device, old_size); 5009 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5010 device->fs_devices->total_rw_bytes += diff; 5011 atomic64_add(diff, &fs_info->free_chunk_space); 5012 mutex_unlock(&fs_info->chunk_mutex); 5013 } 5014 return ret; 5015 } 5016 5017 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5018 struct btrfs_key *key, 5019 struct btrfs_chunk *chunk, int item_size) 5020 { 5021 struct btrfs_super_block *super_copy = fs_info->super_copy; 5022 struct btrfs_disk_key disk_key; 5023 u32 array_size; 5024 u8 *ptr; 5025 5026 lockdep_assert_held(&fs_info->chunk_mutex); 5027 5028 array_size = btrfs_super_sys_array_size(super_copy); 5029 if (array_size + item_size + sizeof(disk_key) 5030 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5031 return -EFBIG; 5032 5033 ptr = super_copy->sys_chunk_array + array_size; 5034 btrfs_cpu_key_to_disk(&disk_key, key); 5035 memcpy(ptr, &disk_key, sizeof(disk_key)); 5036 ptr += sizeof(disk_key); 5037 memcpy(ptr, chunk, item_size); 5038 item_size += sizeof(disk_key); 5039 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5040 5041 return 0; 5042 } 5043 5044 /* 5045 * sort the devices in descending order by max_avail, total_avail 5046 */ 5047 static int btrfs_cmp_device_info(const void *a, const void *b) 5048 { 5049 const struct btrfs_device_info *di_a = a; 5050 const struct btrfs_device_info *di_b = b; 5051 5052 if (di_a->max_avail > di_b->max_avail) 5053 return -1; 5054 if (di_a->max_avail < di_b->max_avail) 5055 return 1; 5056 if (di_a->total_avail > di_b->total_avail) 5057 return -1; 5058 if (di_a->total_avail < di_b->total_avail) 5059 return 1; 5060 return 0; 5061 } 5062 5063 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5064 { 5065 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5066 return; 5067 5068 btrfs_set_fs_incompat(info, RAID56); 5069 } 5070 5071 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5072 { 5073 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5074 return; 5075 5076 btrfs_set_fs_incompat(info, RAID1C34); 5077 } 5078 5079 /* 5080 * Structure used internally for btrfs_create_chunk() function. 5081 * Wraps needed parameters. 5082 */ 5083 struct alloc_chunk_ctl { 5084 u64 start; 5085 u64 type; 5086 /* Total number of stripes to allocate */ 5087 int num_stripes; 5088 /* sub_stripes info for map */ 5089 int sub_stripes; 5090 /* Stripes per device */ 5091 int dev_stripes; 5092 /* Maximum number of devices to use */ 5093 int devs_max; 5094 /* Minimum number of devices to use */ 5095 int devs_min; 5096 /* ndevs has to be a multiple of this */ 5097 int devs_increment; 5098 /* Number of copies */ 5099 int ncopies; 5100 /* Number of stripes worth of bytes to store parity information */ 5101 int nparity; 5102 u64 max_stripe_size; 5103 u64 max_chunk_size; 5104 u64 dev_extent_min; 5105 u64 stripe_size; 5106 u64 chunk_size; 5107 int ndevs; 5108 }; 5109 5110 static void init_alloc_chunk_ctl_policy_regular( 5111 struct btrfs_fs_devices *fs_devices, 5112 struct alloc_chunk_ctl *ctl) 5113 { 5114 struct btrfs_space_info *space_info; 5115 5116 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5117 ASSERT(space_info); 5118 5119 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5120 ctl->max_stripe_size = ctl->max_chunk_size; 5121 5122 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5123 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5124 5125 /* We don't want a chunk larger than 10% of writable space */ 5126 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5127 ctl->max_chunk_size); 5128 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5129 } 5130 5131 static void init_alloc_chunk_ctl_policy_zoned( 5132 struct btrfs_fs_devices *fs_devices, 5133 struct alloc_chunk_ctl *ctl) 5134 { 5135 u64 zone_size = fs_devices->fs_info->zone_size; 5136 u64 limit; 5137 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5138 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5139 u64 min_chunk_size = min_data_stripes * zone_size; 5140 u64 type = ctl->type; 5141 5142 ctl->max_stripe_size = zone_size; 5143 if (type & BTRFS_BLOCK_GROUP_DATA) { 5144 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5145 zone_size); 5146 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5147 ctl->max_chunk_size = ctl->max_stripe_size; 5148 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5149 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5150 ctl->devs_max = min_t(int, ctl->devs_max, 5151 BTRFS_MAX_DEVS_SYS_CHUNK); 5152 } else { 5153 BUG(); 5154 } 5155 5156 /* We don't want a chunk larger than 10% of writable space */ 5157 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5158 zone_size), 5159 min_chunk_size); 5160 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5161 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5162 } 5163 5164 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5165 struct alloc_chunk_ctl *ctl) 5166 { 5167 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5168 5169 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5170 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5171 ctl->devs_max = btrfs_raid_array[index].devs_max; 5172 if (!ctl->devs_max) 5173 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5174 ctl->devs_min = btrfs_raid_array[index].devs_min; 5175 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5176 ctl->ncopies = btrfs_raid_array[index].ncopies; 5177 ctl->nparity = btrfs_raid_array[index].nparity; 5178 ctl->ndevs = 0; 5179 5180 switch (fs_devices->chunk_alloc_policy) { 5181 case BTRFS_CHUNK_ALLOC_REGULAR: 5182 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5183 break; 5184 case BTRFS_CHUNK_ALLOC_ZONED: 5185 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5186 break; 5187 default: 5188 BUG(); 5189 } 5190 } 5191 5192 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5193 struct alloc_chunk_ctl *ctl, 5194 struct btrfs_device_info *devices_info) 5195 { 5196 struct btrfs_fs_info *info = fs_devices->fs_info; 5197 struct btrfs_device *device; 5198 u64 total_avail; 5199 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5200 int ret; 5201 int ndevs = 0; 5202 u64 max_avail; 5203 u64 dev_offset; 5204 5205 /* 5206 * in the first pass through the devices list, we gather information 5207 * about the available holes on each device. 5208 */ 5209 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5210 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5211 WARN(1, KERN_ERR 5212 "BTRFS: read-only device in alloc_list\n"); 5213 continue; 5214 } 5215 5216 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5217 &device->dev_state) || 5218 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5219 continue; 5220 5221 if (device->total_bytes > device->bytes_used) 5222 total_avail = device->total_bytes - device->bytes_used; 5223 else 5224 total_avail = 0; 5225 5226 /* If there is no space on this device, skip it. */ 5227 if (total_avail < ctl->dev_extent_min) 5228 continue; 5229 5230 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5231 &max_avail); 5232 if (ret && ret != -ENOSPC) 5233 return ret; 5234 5235 if (ret == 0) 5236 max_avail = dev_extent_want; 5237 5238 if (max_avail < ctl->dev_extent_min) { 5239 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5240 btrfs_debug(info, 5241 "%s: devid %llu has no free space, have=%llu want=%llu", 5242 __func__, device->devid, max_avail, 5243 ctl->dev_extent_min); 5244 continue; 5245 } 5246 5247 if (ndevs == fs_devices->rw_devices) { 5248 WARN(1, "%s: found more than %llu devices\n", 5249 __func__, fs_devices->rw_devices); 5250 break; 5251 } 5252 devices_info[ndevs].dev_offset = dev_offset; 5253 devices_info[ndevs].max_avail = max_avail; 5254 devices_info[ndevs].total_avail = total_avail; 5255 devices_info[ndevs].dev = device; 5256 ++ndevs; 5257 } 5258 ctl->ndevs = ndevs; 5259 5260 /* 5261 * now sort the devices by hole size / available space 5262 */ 5263 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5264 btrfs_cmp_device_info, NULL); 5265 5266 return 0; 5267 } 5268 5269 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5270 struct btrfs_device_info *devices_info) 5271 { 5272 /* Number of stripes that count for block group size */ 5273 int data_stripes; 5274 5275 /* 5276 * The primary goal is to maximize the number of stripes, so use as 5277 * many devices as possible, even if the stripes are not maximum sized. 5278 * 5279 * The DUP profile stores more than one stripe per device, the 5280 * max_avail is the total size so we have to adjust. 5281 */ 5282 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5283 ctl->dev_stripes); 5284 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5285 5286 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5287 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5288 5289 /* 5290 * Use the number of data stripes to figure out how big this chunk is 5291 * really going to be in terms of logical address space, and compare 5292 * that answer with the max chunk size. If it's higher, we try to 5293 * reduce stripe_size. 5294 */ 5295 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5296 /* 5297 * Reduce stripe_size, round it up to a 16MB boundary again and 5298 * then use it, unless it ends up being even bigger than the 5299 * previous value we had already. 5300 */ 5301 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5302 data_stripes), SZ_16M), 5303 ctl->stripe_size); 5304 } 5305 5306 /* Stripe size should not go beyond 1G. */ 5307 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5308 5309 /* Align to BTRFS_STRIPE_LEN */ 5310 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5311 ctl->chunk_size = ctl->stripe_size * data_stripes; 5312 5313 return 0; 5314 } 5315 5316 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5317 struct btrfs_device_info *devices_info) 5318 { 5319 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5320 /* Number of stripes that count for block group size */ 5321 int data_stripes; 5322 5323 /* 5324 * It should hold because: 5325 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5326 */ 5327 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5328 5329 ctl->stripe_size = zone_size; 5330 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5331 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5332 5333 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5334 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5335 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5336 ctl->stripe_size) + ctl->nparity, 5337 ctl->dev_stripes); 5338 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5339 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5340 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5341 } 5342 5343 ctl->chunk_size = ctl->stripe_size * data_stripes; 5344 5345 return 0; 5346 } 5347 5348 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5349 struct alloc_chunk_ctl *ctl, 5350 struct btrfs_device_info *devices_info) 5351 { 5352 struct btrfs_fs_info *info = fs_devices->fs_info; 5353 5354 /* 5355 * Round down to number of usable stripes, devs_increment can be any 5356 * number so we can't use round_down() that requires power of 2, while 5357 * rounddown is safe. 5358 */ 5359 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5360 5361 if (ctl->ndevs < ctl->devs_min) { 5362 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5363 btrfs_debug(info, 5364 "%s: not enough devices with free space: have=%d minimum required=%d", 5365 __func__, ctl->ndevs, ctl->devs_min); 5366 } 5367 return -ENOSPC; 5368 } 5369 5370 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5371 5372 switch (fs_devices->chunk_alloc_policy) { 5373 case BTRFS_CHUNK_ALLOC_REGULAR: 5374 return decide_stripe_size_regular(ctl, devices_info); 5375 case BTRFS_CHUNK_ALLOC_ZONED: 5376 return decide_stripe_size_zoned(ctl, devices_info); 5377 default: 5378 BUG(); 5379 } 5380 } 5381 5382 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5383 struct alloc_chunk_ctl *ctl, 5384 struct btrfs_device_info *devices_info) 5385 { 5386 struct btrfs_fs_info *info = trans->fs_info; 5387 struct map_lookup *map = NULL; 5388 struct extent_map_tree *em_tree; 5389 struct btrfs_block_group *block_group; 5390 struct extent_map *em; 5391 u64 start = ctl->start; 5392 u64 type = ctl->type; 5393 int ret; 5394 int i; 5395 int j; 5396 5397 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5398 if (!map) 5399 return ERR_PTR(-ENOMEM); 5400 map->num_stripes = ctl->num_stripes; 5401 5402 for (i = 0; i < ctl->ndevs; ++i) { 5403 for (j = 0; j < ctl->dev_stripes; ++j) { 5404 int s = i * ctl->dev_stripes + j; 5405 map->stripes[s].dev = devices_info[i].dev; 5406 map->stripes[s].physical = devices_info[i].dev_offset + 5407 j * ctl->stripe_size; 5408 } 5409 } 5410 map->io_align = BTRFS_STRIPE_LEN; 5411 map->io_width = BTRFS_STRIPE_LEN; 5412 map->type = type; 5413 map->sub_stripes = ctl->sub_stripes; 5414 5415 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5416 5417 em = alloc_extent_map(); 5418 if (!em) { 5419 kfree(map); 5420 return ERR_PTR(-ENOMEM); 5421 } 5422 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5423 em->map_lookup = map; 5424 em->start = start; 5425 em->len = ctl->chunk_size; 5426 em->block_start = 0; 5427 em->block_len = em->len; 5428 em->orig_block_len = ctl->stripe_size; 5429 5430 em_tree = &info->mapping_tree; 5431 write_lock(&em_tree->lock); 5432 ret = add_extent_mapping(em_tree, em, 0); 5433 if (ret) { 5434 write_unlock(&em_tree->lock); 5435 free_extent_map(em); 5436 return ERR_PTR(ret); 5437 } 5438 write_unlock(&em_tree->lock); 5439 5440 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5441 if (IS_ERR(block_group)) 5442 goto error_del_extent; 5443 5444 for (i = 0; i < map->num_stripes; i++) { 5445 struct btrfs_device *dev = map->stripes[i].dev; 5446 5447 btrfs_device_set_bytes_used(dev, 5448 dev->bytes_used + ctl->stripe_size); 5449 if (list_empty(&dev->post_commit_list)) 5450 list_add_tail(&dev->post_commit_list, 5451 &trans->transaction->dev_update_list); 5452 } 5453 5454 atomic64_sub(ctl->stripe_size * map->num_stripes, 5455 &info->free_chunk_space); 5456 5457 free_extent_map(em); 5458 check_raid56_incompat_flag(info, type); 5459 check_raid1c34_incompat_flag(info, type); 5460 5461 return block_group; 5462 5463 error_del_extent: 5464 write_lock(&em_tree->lock); 5465 remove_extent_mapping(em_tree, em); 5466 write_unlock(&em_tree->lock); 5467 5468 /* One for our allocation */ 5469 free_extent_map(em); 5470 /* One for the tree reference */ 5471 free_extent_map(em); 5472 5473 return block_group; 5474 } 5475 5476 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5477 u64 type) 5478 { 5479 struct btrfs_fs_info *info = trans->fs_info; 5480 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5481 struct btrfs_device_info *devices_info = NULL; 5482 struct alloc_chunk_ctl ctl; 5483 struct btrfs_block_group *block_group; 5484 int ret; 5485 5486 lockdep_assert_held(&info->chunk_mutex); 5487 5488 if (!alloc_profile_is_valid(type, 0)) { 5489 ASSERT(0); 5490 return ERR_PTR(-EINVAL); 5491 } 5492 5493 if (list_empty(&fs_devices->alloc_list)) { 5494 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5495 btrfs_debug(info, "%s: no writable device", __func__); 5496 return ERR_PTR(-ENOSPC); 5497 } 5498 5499 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5500 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5501 ASSERT(0); 5502 return ERR_PTR(-EINVAL); 5503 } 5504 5505 ctl.start = find_next_chunk(info); 5506 ctl.type = type; 5507 init_alloc_chunk_ctl(fs_devices, &ctl); 5508 5509 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5510 GFP_NOFS); 5511 if (!devices_info) 5512 return ERR_PTR(-ENOMEM); 5513 5514 ret = gather_device_info(fs_devices, &ctl, devices_info); 5515 if (ret < 0) { 5516 block_group = ERR_PTR(ret); 5517 goto out; 5518 } 5519 5520 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5521 if (ret < 0) { 5522 block_group = ERR_PTR(ret); 5523 goto out; 5524 } 5525 5526 block_group = create_chunk(trans, &ctl, devices_info); 5527 5528 out: 5529 kfree(devices_info); 5530 return block_group; 5531 } 5532 5533 /* 5534 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5535 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5536 * chunks. 5537 * 5538 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5539 * phases. 5540 */ 5541 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5542 struct btrfs_block_group *bg) 5543 { 5544 struct btrfs_fs_info *fs_info = trans->fs_info; 5545 struct btrfs_root *chunk_root = fs_info->chunk_root; 5546 struct btrfs_key key; 5547 struct btrfs_chunk *chunk; 5548 struct btrfs_stripe *stripe; 5549 struct extent_map *em; 5550 struct map_lookup *map; 5551 size_t item_size; 5552 int i; 5553 int ret; 5554 5555 /* 5556 * We take the chunk_mutex for 2 reasons: 5557 * 5558 * 1) Updates and insertions in the chunk btree must be done while holding 5559 * the chunk_mutex, as well as updating the system chunk array in the 5560 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5561 * details; 5562 * 5563 * 2) To prevent races with the final phase of a device replace operation 5564 * that replaces the device object associated with the map's stripes, 5565 * because the device object's id can change at any time during that 5566 * final phase of the device replace operation 5567 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5568 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5569 * which would cause a failure when updating the device item, which does 5570 * not exists, or persisting a stripe of the chunk item with such ID. 5571 * Here we can't use the device_list_mutex because our caller already 5572 * has locked the chunk_mutex, and the final phase of device replace 5573 * acquires both mutexes - first the device_list_mutex and then the 5574 * chunk_mutex. Using any of those two mutexes protects us from a 5575 * concurrent device replace. 5576 */ 5577 lockdep_assert_held(&fs_info->chunk_mutex); 5578 5579 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5580 if (IS_ERR(em)) { 5581 ret = PTR_ERR(em); 5582 btrfs_abort_transaction(trans, ret); 5583 return ret; 5584 } 5585 5586 map = em->map_lookup; 5587 item_size = btrfs_chunk_item_size(map->num_stripes); 5588 5589 chunk = kzalloc(item_size, GFP_NOFS); 5590 if (!chunk) { 5591 ret = -ENOMEM; 5592 btrfs_abort_transaction(trans, ret); 5593 goto out; 5594 } 5595 5596 for (i = 0; i < map->num_stripes; i++) { 5597 struct btrfs_device *device = map->stripes[i].dev; 5598 5599 ret = btrfs_update_device(trans, device); 5600 if (ret) 5601 goto out; 5602 } 5603 5604 stripe = &chunk->stripe; 5605 for (i = 0; i < map->num_stripes; i++) { 5606 struct btrfs_device *device = map->stripes[i].dev; 5607 const u64 dev_offset = map->stripes[i].physical; 5608 5609 btrfs_set_stack_stripe_devid(stripe, device->devid); 5610 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5611 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5612 stripe++; 5613 } 5614 5615 btrfs_set_stack_chunk_length(chunk, bg->length); 5616 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5617 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5618 btrfs_set_stack_chunk_type(chunk, map->type); 5619 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5620 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5621 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5622 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5623 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5624 5625 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5626 key.type = BTRFS_CHUNK_ITEM_KEY; 5627 key.offset = bg->start; 5628 5629 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5630 if (ret) 5631 goto out; 5632 5633 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5634 5635 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5636 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5637 if (ret) 5638 goto out; 5639 } 5640 5641 out: 5642 kfree(chunk); 5643 free_extent_map(em); 5644 return ret; 5645 } 5646 5647 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5648 { 5649 struct btrfs_fs_info *fs_info = trans->fs_info; 5650 u64 alloc_profile; 5651 struct btrfs_block_group *meta_bg; 5652 struct btrfs_block_group *sys_bg; 5653 5654 /* 5655 * When adding a new device for sprouting, the seed device is read-only 5656 * so we must first allocate a metadata and a system chunk. But before 5657 * adding the block group items to the extent, device and chunk btrees, 5658 * we must first: 5659 * 5660 * 1) Create both chunks without doing any changes to the btrees, as 5661 * otherwise we would get -ENOSPC since the block groups from the 5662 * seed device are read-only; 5663 * 5664 * 2) Add the device item for the new sprout device - finishing the setup 5665 * of a new block group requires updating the device item in the chunk 5666 * btree, so it must exist when we attempt to do it. The previous step 5667 * ensures this does not fail with -ENOSPC. 5668 * 5669 * After that we can add the block group items to their btrees: 5670 * update existing device item in the chunk btree, add a new block group 5671 * item to the extent btree, add a new chunk item to the chunk btree and 5672 * finally add the new device extent items to the devices btree. 5673 */ 5674 5675 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5676 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5677 if (IS_ERR(meta_bg)) 5678 return PTR_ERR(meta_bg); 5679 5680 alloc_profile = btrfs_system_alloc_profile(fs_info); 5681 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5682 if (IS_ERR(sys_bg)) 5683 return PTR_ERR(sys_bg); 5684 5685 return 0; 5686 } 5687 5688 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5689 { 5690 const int index = btrfs_bg_flags_to_raid_index(map->type); 5691 5692 return btrfs_raid_array[index].tolerated_failures; 5693 } 5694 5695 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5696 { 5697 struct extent_map *em; 5698 struct map_lookup *map; 5699 int miss_ndevs = 0; 5700 int i; 5701 bool ret = true; 5702 5703 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5704 if (IS_ERR(em)) 5705 return false; 5706 5707 map = em->map_lookup; 5708 for (i = 0; i < map->num_stripes; i++) { 5709 if (test_bit(BTRFS_DEV_STATE_MISSING, 5710 &map->stripes[i].dev->dev_state)) { 5711 miss_ndevs++; 5712 continue; 5713 } 5714 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5715 &map->stripes[i].dev->dev_state)) { 5716 ret = false; 5717 goto end; 5718 } 5719 } 5720 5721 /* 5722 * If the number of missing devices is larger than max errors, we can 5723 * not write the data into that chunk successfully. 5724 */ 5725 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5726 ret = false; 5727 end: 5728 free_extent_map(em); 5729 return ret; 5730 } 5731 5732 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5733 { 5734 struct extent_map *em; 5735 5736 while (1) { 5737 write_lock(&tree->lock); 5738 em = lookup_extent_mapping(tree, 0, (u64)-1); 5739 if (em) 5740 remove_extent_mapping(tree, em); 5741 write_unlock(&tree->lock); 5742 if (!em) 5743 break; 5744 /* once for us */ 5745 free_extent_map(em); 5746 /* once for the tree */ 5747 free_extent_map(em); 5748 } 5749 } 5750 5751 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5752 { 5753 struct extent_map *em; 5754 struct map_lookup *map; 5755 enum btrfs_raid_types index; 5756 int ret = 1; 5757 5758 em = btrfs_get_chunk_map(fs_info, logical, len); 5759 if (IS_ERR(em)) 5760 /* 5761 * We could return errors for these cases, but that could get 5762 * ugly and we'd probably do the same thing which is just not do 5763 * anything else and exit, so return 1 so the callers don't try 5764 * to use other copies. 5765 */ 5766 return 1; 5767 5768 map = em->map_lookup; 5769 index = btrfs_bg_flags_to_raid_index(map->type); 5770 5771 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5772 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5773 ret = btrfs_raid_array[index].ncopies; 5774 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5775 ret = 2; 5776 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5777 /* 5778 * There could be two corrupted data stripes, we need 5779 * to loop retry in order to rebuild the correct data. 5780 * 5781 * Fail a stripe at a time on every retry except the 5782 * stripe under reconstruction. 5783 */ 5784 ret = map->num_stripes; 5785 free_extent_map(em); 5786 return ret; 5787 } 5788 5789 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5790 u64 logical) 5791 { 5792 struct extent_map *em; 5793 struct map_lookup *map; 5794 unsigned long len = fs_info->sectorsize; 5795 5796 if (!btrfs_fs_incompat(fs_info, RAID56)) 5797 return len; 5798 5799 em = btrfs_get_chunk_map(fs_info, logical, len); 5800 5801 if (!WARN_ON(IS_ERR(em))) { 5802 map = em->map_lookup; 5803 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5804 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5805 free_extent_map(em); 5806 } 5807 return len; 5808 } 5809 5810 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5811 { 5812 struct extent_map *em; 5813 struct map_lookup *map; 5814 int ret = 0; 5815 5816 if (!btrfs_fs_incompat(fs_info, RAID56)) 5817 return 0; 5818 5819 em = btrfs_get_chunk_map(fs_info, logical, len); 5820 5821 if(!WARN_ON(IS_ERR(em))) { 5822 map = em->map_lookup; 5823 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5824 ret = 1; 5825 free_extent_map(em); 5826 } 5827 return ret; 5828 } 5829 5830 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5831 struct map_lookup *map, int first, 5832 int dev_replace_is_ongoing) 5833 { 5834 int i; 5835 int num_stripes; 5836 int preferred_mirror; 5837 int tolerance; 5838 struct btrfs_device *srcdev; 5839 5840 ASSERT((map->type & 5841 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5842 5843 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5844 num_stripes = map->sub_stripes; 5845 else 5846 num_stripes = map->num_stripes; 5847 5848 switch (fs_info->fs_devices->read_policy) { 5849 default: 5850 /* Shouldn't happen, just warn and use pid instead of failing */ 5851 btrfs_warn_rl(fs_info, 5852 "unknown read_policy type %u, reset to pid", 5853 fs_info->fs_devices->read_policy); 5854 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5855 fallthrough; 5856 case BTRFS_READ_POLICY_PID: 5857 preferred_mirror = first + (current->pid % num_stripes); 5858 break; 5859 } 5860 5861 if (dev_replace_is_ongoing && 5862 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5863 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5864 srcdev = fs_info->dev_replace.srcdev; 5865 else 5866 srcdev = NULL; 5867 5868 /* 5869 * try to avoid the drive that is the source drive for a 5870 * dev-replace procedure, only choose it if no other non-missing 5871 * mirror is available 5872 */ 5873 for (tolerance = 0; tolerance < 2; tolerance++) { 5874 if (map->stripes[preferred_mirror].dev->bdev && 5875 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5876 return preferred_mirror; 5877 for (i = first; i < first + num_stripes; i++) { 5878 if (map->stripes[i].dev->bdev && 5879 (tolerance || map->stripes[i].dev != srcdev)) 5880 return i; 5881 } 5882 } 5883 5884 /* we couldn't find one that doesn't fail. Just return something 5885 * and the io error handling code will clean up eventually 5886 */ 5887 return preferred_mirror; 5888 } 5889 5890 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5891 u16 total_stripes) 5892 { 5893 struct btrfs_io_context *bioc; 5894 5895 bioc = kzalloc( 5896 /* The size of btrfs_io_context */ 5897 sizeof(struct btrfs_io_context) + 5898 /* Plus the variable array for the stripes */ 5899 sizeof(struct btrfs_io_stripe) * (total_stripes), 5900 GFP_NOFS); 5901 5902 if (!bioc) 5903 return NULL; 5904 5905 refcount_set(&bioc->refs, 1); 5906 5907 bioc->fs_info = fs_info; 5908 bioc->replace_stripe_src = -1; 5909 bioc->full_stripe_logical = (u64)-1; 5910 5911 return bioc; 5912 } 5913 5914 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5915 { 5916 WARN_ON(!refcount_read(&bioc->refs)); 5917 refcount_inc(&bioc->refs); 5918 } 5919 5920 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5921 { 5922 if (!bioc) 5923 return; 5924 if (refcount_dec_and_test(&bioc->refs)) 5925 kfree(bioc); 5926 } 5927 5928 /* 5929 * Please note that, discard won't be sent to target device of device 5930 * replace. 5931 */ 5932 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 5933 u64 logical, u64 *length_ret, 5934 u32 *num_stripes) 5935 { 5936 struct extent_map *em; 5937 struct map_lookup *map; 5938 struct btrfs_discard_stripe *stripes; 5939 u64 length = *length_ret; 5940 u64 offset; 5941 u32 stripe_nr; 5942 u32 stripe_nr_end; 5943 u32 stripe_cnt; 5944 u64 stripe_end_offset; 5945 u64 stripe_offset; 5946 u32 stripe_index; 5947 u32 factor = 0; 5948 u32 sub_stripes = 0; 5949 u32 stripes_per_dev = 0; 5950 u32 remaining_stripes = 0; 5951 u32 last_stripe = 0; 5952 int ret; 5953 int i; 5954 5955 em = btrfs_get_chunk_map(fs_info, logical, length); 5956 if (IS_ERR(em)) 5957 return ERR_CAST(em); 5958 5959 map = em->map_lookup; 5960 5961 /* we don't discard raid56 yet */ 5962 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5963 ret = -EOPNOTSUPP; 5964 goto out_free_map; 5965 } 5966 5967 offset = logical - em->start; 5968 length = min_t(u64, em->start + em->len - logical, length); 5969 *length_ret = length; 5970 5971 /* 5972 * stripe_nr counts the total number of stripes we have to stride 5973 * to get to this block 5974 */ 5975 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 5976 5977 /* stripe_offset is the offset of this block in its stripe */ 5978 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 5979 5980 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 5981 BTRFS_STRIPE_LEN_SHIFT; 5982 stripe_cnt = stripe_nr_end - stripe_nr; 5983 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 5984 (offset + length); 5985 /* 5986 * after this, stripe_nr is the number of stripes on this 5987 * device we have to walk to find the data, and stripe_index is 5988 * the number of our device in the stripe array 5989 */ 5990 *num_stripes = 1; 5991 stripe_index = 0; 5992 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5993 BTRFS_BLOCK_GROUP_RAID10)) { 5994 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5995 sub_stripes = 1; 5996 else 5997 sub_stripes = map->sub_stripes; 5998 5999 factor = map->num_stripes / sub_stripes; 6000 *num_stripes = min_t(u64, map->num_stripes, 6001 sub_stripes * stripe_cnt); 6002 stripe_index = stripe_nr % factor; 6003 stripe_nr /= factor; 6004 stripe_index *= sub_stripes; 6005 6006 remaining_stripes = stripe_cnt % factor; 6007 stripes_per_dev = stripe_cnt / factor; 6008 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6009 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6010 BTRFS_BLOCK_GROUP_DUP)) { 6011 *num_stripes = map->num_stripes; 6012 } else { 6013 stripe_index = stripe_nr % map->num_stripes; 6014 stripe_nr /= map->num_stripes; 6015 } 6016 6017 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6018 if (!stripes) { 6019 ret = -ENOMEM; 6020 goto out_free_map; 6021 } 6022 6023 for (i = 0; i < *num_stripes; i++) { 6024 stripes[i].physical = 6025 map->stripes[stripe_index].physical + 6026 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6027 stripes[i].dev = map->stripes[stripe_index].dev; 6028 6029 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6030 BTRFS_BLOCK_GROUP_RAID10)) { 6031 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6032 6033 if (i / sub_stripes < remaining_stripes) 6034 stripes[i].length += BTRFS_STRIPE_LEN; 6035 6036 /* 6037 * Special for the first stripe and 6038 * the last stripe: 6039 * 6040 * |-------|...|-------| 6041 * |----------| 6042 * off end_off 6043 */ 6044 if (i < sub_stripes) 6045 stripes[i].length -= stripe_offset; 6046 6047 if (stripe_index >= last_stripe && 6048 stripe_index <= (last_stripe + 6049 sub_stripes - 1)) 6050 stripes[i].length -= stripe_end_offset; 6051 6052 if (i == sub_stripes - 1) 6053 stripe_offset = 0; 6054 } else { 6055 stripes[i].length = length; 6056 } 6057 6058 stripe_index++; 6059 if (stripe_index == map->num_stripes) { 6060 stripe_index = 0; 6061 stripe_nr++; 6062 } 6063 } 6064 6065 free_extent_map(em); 6066 return stripes; 6067 out_free_map: 6068 free_extent_map(em); 6069 return ERR_PTR(ret); 6070 } 6071 6072 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6073 { 6074 struct btrfs_block_group *cache; 6075 bool ret; 6076 6077 /* Non zoned filesystem does not use "to_copy" flag */ 6078 if (!btrfs_is_zoned(fs_info)) 6079 return false; 6080 6081 cache = btrfs_lookup_block_group(fs_info, logical); 6082 6083 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6084 6085 btrfs_put_block_group(cache); 6086 return ret; 6087 } 6088 6089 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6090 struct btrfs_io_context *bioc, 6091 struct btrfs_dev_replace *dev_replace, 6092 u64 logical, 6093 int *num_stripes_ret, int *max_errors_ret) 6094 { 6095 u64 srcdev_devid = dev_replace->srcdev->devid; 6096 /* 6097 * At this stage, num_stripes is still the real number of stripes, 6098 * excluding the duplicated stripes. 6099 */ 6100 int num_stripes = *num_stripes_ret; 6101 int nr_extra_stripes = 0; 6102 int max_errors = *max_errors_ret; 6103 int i; 6104 6105 /* 6106 * A block group which has "to_copy" set will eventually be copied by 6107 * the dev-replace process. We can avoid cloning IO here. 6108 */ 6109 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6110 return; 6111 6112 /* 6113 * Duplicate the write operations while the dev-replace procedure is 6114 * running. Since the copying of the old disk to the new disk takes 6115 * place at run time while the filesystem is mounted writable, the 6116 * regular write operations to the old disk have to be duplicated to go 6117 * to the new disk as well. 6118 * 6119 * Note that device->missing is handled by the caller, and that the 6120 * write to the old disk is already set up in the stripes array. 6121 */ 6122 for (i = 0; i < num_stripes; i++) { 6123 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6124 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6125 6126 if (old->dev->devid != srcdev_devid) 6127 continue; 6128 6129 new->physical = old->physical; 6130 new->dev = dev_replace->tgtdev; 6131 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6132 bioc->replace_stripe_src = i; 6133 nr_extra_stripes++; 6134 } 6135 6136 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6137 ASSERT(nr_extra_stripes <= 2); 6138 /* 6139 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6140 * replace. 6141 * If we have 2 extra stripes, only choose the one with smaller physical. 6142 */ 6143 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6144 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6145 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6146 6147 /* Only DUP can have two extra stripes. */ 6148 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6149 6150 /* 6151 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6152 * The extra stripe would still be there, but won't be accessed. 6153 */ 6154 if (first->physical > second->physical) { 6155 swap(second->physical, first->physical); 6156 swap(second->dev, first->dev); 6157 nr_extra_stripes--; 6158 } 6159 } 6160 6161 *num_stripes_ret = num_stripes + nr_extra_stripes; 6162 *max_errors_ret = max_errors + nr_extra_stripes; 6163 bioc->replace_nr_stripes = nr_extra_stripes; 6164 } 6165 6166 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op, 6167 u64 offset, u32 *stripe_nr, u64 *stripe_offset, 6168 u64 *full_stripe_start) 6169 { 6170 /* 6171 * Stripe_nr is the stripe where this block falls. stripe_offset is 6172 * the offset of this block in its stripe. 6173 */ 6174 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6175 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6176 ASSERT(*stripe_offset < U32_MAX); 6177 6178 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6179 unsigned long full_stripe_len = 6180 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6181 6182 /* 6183 * For full stripe start, we use previously calculated 6184 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6185 * STRIPE_LEN. 6186 * 6187 * By this we can avoid u64 division completely. And we have 6188 * to go rounddown(), not round_down(), as nr_data_stripes is 6189 * not ensured to be power of 2. 6190 */ 6191 *full_stripe_start = 6192 btrfs_stripe_nr_to_offset( 6193 rounddown(*stripe_nr, nr_data_stripes(map))); 6194 6195 ASSERT(*full_stripe_start + full_stripe_len > offset); 6196 ASSERT(*full_stripe_start <= offset); 6197 /* 6198 * For writes to RAID56, allow to write a full stripe set, but 6199 * no straddling of stripe sets. 6200 */ 6201 if (op == BTRFS_MAP_WRITE) 6202 return full_stripe_len - (offset - *full_stripe_start); 6203 } 6204 6205 /* 6206 * For other RAID types and for RAID56 reads, allow a single stripe (on 6207 * a single disk). 6208 */ 6209 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6210 return BTRFS_STRIPE_LEN - *stripe_offset; 6211 return U64_MAX; 6212 } 6213 6214 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map, 6215 u32 stripe_index, u64 stripe_offset, u32 stripe_nr) 6216 { 6217 dst->dev = map->stripes[stripe_index].dev; 6218 dst->physical = map->stripes[stripe_index].physical + 6219 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6220 } 6221 6222 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6223 u64 logical, u64 *length, 6224 struct btrfs_io_context **bioc_ret, 6225 struct btrfs_io_stripe *smap, int *mirror_num_ret, 6226 int need_raid_map) 6227 { 6228 struct extent_map *em; 6229 struct map_lookup *map; 6230 u64 map_offset; 6231 u64 stripe_offset; 6232 u32 stripe_nr; 6233 u32 stripe_index; 6234 int data_stripes; 6235 int i; 6236 int ret = 0; 6237 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6238 int num_stripes; 6239 int num_copies; 6240 int max_errors = 0; 6241 struct btrfs_io_context *bioc = NULL; 6242 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6243 int dev_replace_is_ongoing = 0; 6244 u16 num_alloc_stripes; 6245 u64 raid56_full_stripe_start = (u64)-1; 6246 u64 max_len; 6247 6248 ASSERT(bioc_ret); 6249 6250 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6251 if (mirror_num > num_copies) 6252 return -EINVAL; 6253 6254 em = btrfs_get_chunk_map(fs_info, logical, *length); 6255 if (IS_ERR(em)) 6256 return PTR_ERR(em); 6257 6258 map = em->map_lookup; 6259 data_stripes = nr_data_stripes(map); 6260 6261 map_offset = logical - em->start; 6262 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr, 6263 &stripe_offset, &raid56_full_stripe_start); 6264 *length = min_t(u64, em->len - map_offset, max_len); 6265 6266 down_read(&dev_replace->rwsem); 6267 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6268 /* 6269 * Hold the semaphore for read during the whole operation, write is 6270 * requested at commit time but must wait. 6271 */ 6272 if (!dev_replace_is_ongoing) 6273 up_read(&dev_replace->rwsem); 6274 6275 num_stripes = 1; 6276 stripe_index = 0; 6277 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6278 stripe_index = stripe_nr % map->num_stripes; 6279 stripe_nr /= map->num_stripes; 6280 if (op == BTRFS_MAP_READ) 6281 mirror_num = 1; 6282 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6283 if (op != BTRFS_MAP_READ) { 6284 num_stripes = map->num_stripes; 6285 } else if (mirror_num) { 6286 stripe_index = mirror_num - 1; 6287 } else { 6288 stripe_index = find_live_mirror(fs_info, map, 0, 6289 dev_replace_is_ongoing); 6290 mirror_num = stripe_index + 1; 6291 } 6292 6293 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6294 if (op != BTRFS_MAP_READ) { 6295 num_stripes = map->num_stripes; 6296 } else if (mirror_num) { 6297 stripe_index = mirror_num - 1; 6298 } else { 6299 mirror_num = 1; 6300 } 6301 6302 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6303 u32 factor = map->num_stripes / map->sub_stripes; 6304 6305 stripe_index = (stripe_nr % factor) * map->sub_stripes; 6306 stripe_nr /= factor; 6307 6308 if (op != BTRFS_MAP_READ) 6309 num_stripes = map->sub_stripes; 6310 else if (mirror_num) 6311 stripe_index += mirror_num - 1; 6312 else { 6313 int old_stripe_index = stripe_index; 6314 stripe_index = find_live_mirror(fs_info, map, 6315 stripe_index, 6316 dev_replace_is_ongoing); 6317 mirror_num = stripe_index - old_stripe_index + 1; 6318 } 6319 6320 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6321 if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) { 6322 /* 6323 * Push stripe_nr back to the start of the full stripe 6324 * For those cases needing a full stripe, @stripe_nr 6325 * is the full stripe number. 6326 * 6327 * Originally we go raid56_full_stripe_start / full_stripe_len, 6328 * but that can be expensive. Here we just divide 6329 * @stripe_nr with @data_stripes. 6330 */ 6331 stripe_nr /= data_stripes; 6332 6333 /* RAID[56] write or recovery. Return all stripes */ 6334 num_stripes = map->num_stripes; 6335 max_errors = btrfs_chunk_max_errors(map); 6336 6337 /* Return the length to the full stripe end */ 6338 *length = min(logical + *length, 6339 raid56_full_stripe_start + em->start + 6340 btrfs_stripe_nr_to_offset(data_stripes)) - 6341 logical; 6342 stripe_index = 0; 6343 stripe_offset = 0; 6344 } else { 6345 /* 6346 * Mirror #0 or #1 means the original data block. 6347 * Mirror #2 is RAID5 parity block. 6348 * Mirror #3 is RAID6 Q block. 6349 */ 6350 stripe_index = stripe_nr % data_stripes; 6351 stripe_nr /= data_stripes; 6352 if (mirror_num > 1) 6353 stripe_index = data_stripes + mirror_num - 2; 6354 6355 /* We distribute the parity blocks across stripes */ 6356 stripe_index = (stripe_nr + stripe_index) % map->num_stripes; 6357 if (op == BTRFS_MAP_READ && mirror_num <= 1) 6358 mirror_num = 1; 6359 } 6360 } else { 6361 /* 6362 * After this, stripe_nr is the number of stripes on this 6363 * device we have to walk to find the data, and stripe_index is 6364 * the number of our device in the stripe array 6365 */ 6366 stripe_index = stripe_nr % map->num_stripes; 6367 stripe_nr /= map->num_stripes; 6368 mirror_num = stripe_index + 1; 6369 } 6370 if (stripe_index >= map->num_stripes) { 6371 btrfs_crit(fs_info, 6372 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6373 stripe_index, map->num_stripes); 6374 ret = -EINVAL; 6375 goto out; 6376 } 6377 6378 num_alloc_stripes = num_stripes; 6379 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6380 op != BTRFS_MAP_READ) 6381 /* 6382 * For replace case, we need to add extra stripes for extra 6383 * duplicated stripes. 6384 * 6385 * For both WRITE and GET_READ_MIRRORS, we may have at most 6386 * 2 more stripes (DUP types, otherwise 1). 6387 */ 6388 num_alloc_stripes += 2; 6389 6390 /* 6391 * If this I/O maps to a single device, try to return the device and 6392 * physical block information on the stack instead of allocating an 6393 * I/O context structure. 6394 */ 6395 if (smap && num_alloc_stripes == 1 && 6396 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) && 6397 (op == BTRFS_MAP_READ || !dev_replace_is_ongoing || 6398 !dev_replace->tgtdev)) { 6399 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr); 6400 if (mirror_num_ret) 6401 *mirror_num_ret = mirror_num; 6402 *bioc_ret = NULL; 6403 ret = 0; 6404 goto out; 6405 } 6406 6407 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes); 6408 if (!bioc) { 6409 ret = -ENOMEM; 6410 goto out; 6411 } 6412 bioc->map_type = map->type; 6413 6414 /* 6415 * For RAID56 full map, we need to make sure the stripes[] follows the 6416 * rule that data stripes are all ordered, then followed with P and Q 6417 * (if we have). 6418 * 6419 * It's still mostly the same as other profiles, just with extra rotation. 6420 */ 6421 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6422 (op != BTRFS_MAP_READ || mirror_num > 1)) { 6423 /* 6424 * For RAID56 @stripe_nr is already the number of full stripes 6425 * before us, which is also the rotation value (needs to modulo 6426 * with num_stripes). 6427 * 6428 * In this case, we just add @stripe_nr with @i, then do the 6429 * modulo, to reduce one modulo call. 6430 */ 6431 bioc->full_stripe_logical = em->start + 6432 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes); 6433 for (i = 0; i < num_stripes; i++) 6434 set_io_stripe(&bioc->stripes[i], map, 6435 (i + stripe_nr) % num_stripes, 6436 stripe_offset, stripe_nr); 6437 } else { 6438 /* 6439 * For all other non-RAID56 profiles, just copy the target 6440 * stripe into the bioc. 6441 */ 6442 for (i = 0; i < num_stripes; i++) { 6443 set_io_stripe(&bioc->stripes[i], map, stripe_index, 6444 stripe_offset, stripe_nr); 6445 stripe_index++; 6446 } 6447 } 6448 6449 if (op != BTRFS_MAP_READ) 6450 max_errors = btrfs_chunk_max_errors(map); 6451 6452 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6453 op != BTRFS_MAP_READ) { 6454 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6455 &num_stripes, &max_errors); 6456 } 6457 6458 *bioc_ret = bioc; 6459 bioc->num_stripes = num_stripes; 6460 bioc->max_errors = max_errors; 6461 bioc->mirror_num = mirror_num; 6462 6463 out: 6464 if (dev_replace_is_ongoing) { 6465 lockdep_assert_held(&dev_replace->rwsem); 6466 /* Unlock and let waiting writers proceed */ 6467 up_read(&dev_replace->rwsem); 6468 } 6469 free_extent_map(em); 6470 return ret; 6471 } 6472 6473 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6474 const struct btrfs_fs_devices *fs_devices) 6475 { 6476 if (args->fsid == NULL) 6477 return true; 6478 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6479 return true; 6480 return false; 6481 } 6482 6483 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6484 const struct btrfs_device *device) 6485 { 6486 if (args->missing) { 6487 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6488 !device->bdev) 6489 return true; 6490 return false; 6491 } 6492 6493 if (device->devid != args->devid) 6494 return false; 6495 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6496 return false; 6497 return true; 6498 } 6499 6500 /* 6501 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6502 * return NULL. 6503 * 6504 * If devid and uuid are both specified, the match must be exact, otherwise 6505 * only devid is used. 6506 */ 6507 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6508 const struct btrfs_dev_lookup_args *args) 6509 { 6510 struct btrfs_device *device; 6511 struct btrfs_fs_devices *seed_devs; 6512 6513 if (dev_args_match_fs_devices(args, fs_devices)) { 6514 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6515 if (dev_args_match_device(args, device)) 6516 return device; 6517 } 6518 } 6519 6520 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6521 if (!dev_args_match_fs_devices(args, seed_devs)) 6522 continue; 6523 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6524 if (dev_args_match_device(args, device)) 6525 return device; 6526 } 6527 } 6528 6529 return NULL; 6530 } 6531 6532 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6533 u64 devid, u8 *dev_uuid) 6534 { 6535 struct btrfs_device *device; 6536 unsigned int nofs_flag; 6537 6538 /* 6539 * We call this under the chunk_mutex, so we want to use NOFS for this 6540 * allocation, however we don't want to change btrfs_alloc_device() to 6541 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6542 * places. 6543 */ 6544 6545 nofs_flag = memalloc_nofs_save(); 6546 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6547 memalloc_nofs_restore(nofs_flag); 6548 if (IS_ERR(device)) 6549 return device; 6550 6551 list_add(&device->dev_list, &fs_devices->devices); 6552 device->fs_devices = fs_devices; 6553 fs_devices->num_devices++; 6554 6555 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6556 fs_devices->missing_devices++; 6557 6558 return device; 6559 } 6560 6561 /* 6562 * Allocate new device struct, set up devid and UUID. 6563 * 6564 * @fs_info: used only for generating a new devid, can be NULL if 6565 * devid is provided (i.e. @devid != NULL). 6566 * @devid: a pointer to devid for this device. If NULL a new devid 6567 * is generated. 6568 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6569 * is generated. 6570 * @path: a pointer to device path if available, NULL otherwise. 6571 * 6572 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6573 * on error. Returned struct is not linked onto any lists and must be 6574 * destroyed with btrfs_free_device. 6575 */ 6576 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6577 const u64 *devid, const u8 *uuid, 6578 const char *path) 6579 { 6580 struct btrfs_device *dev; 6581 u64 tmp; 6582 6583 if (WARN_ON(!devid && !fs_info)) 6584 return ERR_PTR(-EINVAL); 6585 6586 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6587 if (!dev) 6588 return ERR_PTR(-ENOMEM); 6589 6590 INIT_LIST_HEAD(&dev->dev_list); 6591 INIT_LIST_HEAD(&dev->dev_alloc_list); 6592 INIT_LIST_HEAD(&dev->post_commit_list); 6593 6594 atomic_set(&dev->dev_stats_ccnt, 0); 6595 btrfs_device_data_ordered_init(dev); 6596 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6597 6598 if (devid) 6599 tmp = *devid; 6600 else { 6601 int ret; 6602 6603 ret = find_next_devid(fs_info, &tmp); 6604 if (ret) { 6605 btrfs_free_device(dev); 6606 return ERR_PTR(ret); 6607 } 6608 } 6609 dev->devid = tmp; 6610 6611 if (uuid) 6612 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6613 else 6614 generate_random_uuid(dev->uuid); 6615 6616 if (path) { 6617 struct rcu_string *name; 6618 6619 name = rcu_string_strdup(path, GFP_KERNEL); 6620 if (!name) { 6621 btrfs_free_device(dev); 6622 return ERR_PTR(-ENOMEM); 6623 } 6624 rcu_assign_pointer(dev->name, name); 6625 } 6626 6627 return dev; 6628 } 6629 6630 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6631 u64 devid, u8 *uuid, bool error) 6632 { 6633 if (error) 6634 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6635 devid, uuid); 6636 else 6637 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6638 devid, uuid); 6639 } 6640 6641 u64 btrfs_calc_stripe_length(const struct extent_map *em) 6642 { 6643 const struct map_lookup *map = em->map_lookup; 6644 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6645 6646 return div_u64(em->len, data_stripes); 6647 } 6648 6649 #if BITS_PER_LONG == 32 6650 /* 6651 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6652 * can't be accessed on 32bit systems. 6653 * 6654 * This function do mount time check to reject the fs if it already has 6655 * metadata chunk beyond that limit. 6656 */ 6657 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6658 u64 logical, u64 length, u64 type) 6659 { 6660 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6661 return 0; 6662 6663 if (logical + length < MAX_LFS_FILESIZE) 6664 return 0; 6665 6666 btrfs_err_32bit_limit(fs_info); 6667 return -EOVERFLOW; 6668 } 6669 6670 /* 6671 * This is to give early warning for any metadata chunk reaching 6672 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6673 * Although we can still access the metadata, it's not going to be possible 6674 * once the limit is reached. 6675 */ 6676 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6677 u64 logical, u64 length, u64 type) 6678 { 6679 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6680 return; 6681 6682 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6683 return; 6684 6685 btrfs_warn_32bit_limit(fs_info); 6686 } 6687 #endif 6688 6689 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6690 u64 devid, u8 *uuid) 6691 { 6692 struct btrfs_device *dev; 6693 6694 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6695 btrfs_report_missing_device(fs_info, devid, uuid, true); 6696 return ERR_PTR(-ENOENT); 6697 } 6698 6699 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6700 if (IS_ERR(dev)) { 6701 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6702 devid, PTR_ERR(dev)); 6703 return dev; 6704 } 6705 btrfs_report_missing_device(fs_info, devid, uuid, false); 6706 6707 return dev; 6708 } 6709 6710 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6711 struct btrfs_chunk *chunk) 6712 { 6713 BTRFS_DEV_LOOKUP_ARGS(args); 6714 struct btrfs_fs_info *fs_info = leaf->fs_info; 6715 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6716 struct map_lookup *map; 6717 struct extent_map *em; 6718 u64 logical; 6719 u64 length; 6720 u64 devid; 6721 u64 type; 6722 u8 uuid[BTRFS_UUID_SIZE]; 6723 int index; 6724 int num_stripes; 6725 int ret; 6726 int i; 6727 6728 logical = key->offset; 6729 length = btrfs_chunk_length(leaf, chunk); 6730 type = btrfs_chunk_type(leaf, chunk); 6731 index = btrfs_bg_flags_to_raid_index(type); 6732 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6733 6734 #if BITS_PER_LONG == 32 6735 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6736 if (ret < 0) 6737 return ret; 6738 warn_32bit_meta_chunk(fs_info, logical, length, type); 6739 #endif 6740 6741 /* 6742 * Only need to verify chunk item if we're reading from sys chunk array, 6743 * as chunk item in tree block is already verified by tree-checker. 6744 */ 6745 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6746 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6747 if (ret) 6748 return ret; 6749 } 6750 6751 read_lock(&map_tree->lock); 6752 em = lookup_extent_mapping(map_tree, logical, 1); 6753 read_unlock(&map_tree->lock); 6754 6755 /* already mapped? */ 6756 if (em && em->start <= logical && em->start + em->len > logical) { 6757 free_extent_map(em); 6758 return 0; 6759 } else if (em) { 6760 free_extent_map(em); 6761 } 6762 6763 em = alloc_extent_map(); 6764 if (!em) 6765 return -ENOMEM; 6766 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6767 if (!map) { 6768 free_extent_map(em); 6769 return -ENOMEM; 6770 } 6771 6772 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6773 em->map_lookup = map; 6774 em->start = logical; 6775 em->len = length; 6776 em->orig_start = 0; 6777 em->block_start = 0; 6778 em->block_len = em->len; 6779 6780 map->num_stripes = num_stripes; 6781 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6782 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6783 map->type = type; 6784 /* 6785 * We can't use the sub_stripes value, as for profiles other than 6786 * RAID10, they may have 0 as sub_stripes for filesystems created by 6787 * older mkfs (<v5.4). 6788 * In that case, it can cause divide-by-zero errors later. 6789 * Since currently sub_stripes is fixed for each profile, let's 6790 * use the trusted value instead. 6791 */ 6792 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 6793 map->verified_stripes = 0; 6794 em->orig_block_len = btrfs_calc_stripe_length(em); 6795 for (i = 0; i < num_stripes; i++) { 6796 map->stripes[i].physical = 6797 btrfs_stripe_offset_nr(leaf, chunk, i); 6798 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6799 args.devid = devid; 6800 read_extent_buffer(leaf, uuid, (unsigned long) 6801 btrfs_stripe_dev_uuid_nr(chunk, i), 6802 BTRFS_UUID_SIZE); 6803 args.uuid = uuid; 6804 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 6805 if (!map->stripes[i].dev) { 6806 map->stripes[i].dev = handle_missing_device(fs_info, 6807 devid, uuid); 6808 if (IS_ERR(map->stripes[i].dev)) { 6809 ret = PTR_ERR(map->stripes[i].dev); 6810 free_extent_map(em); 6811 return ret; 6812 } 6813 } 6814 6815 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6816 &(map->stripes[i].dev->dev_state)); 6817 } 6818 6819 write_lock(&map_tree->lock); 6820 ret = add_extent_mapping(map_tree, em, 0); 6821 write_unlock(&map_tree->lock); 6822 if (ret < 0) { 6823 btrfs_err(fs_info, 6824 "failed to add chunk map, start=%llu len=%llu: %d", 6825 em->start, em->len, ret); 6826 } 6827 free_extent_map(em); 6828 6829 return ret; 6830 } 6831 6832 static void fill_device_from_item(struct extent_buffer *leaf, 6833 struct btrfs_dev_item *dev_item, 6834 struct btrfs_device *device) 6835 { 6836 unsigned long ptr; 6837 6838 device->devid = btrfs_device_id(leaf, dev_item); 6839 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6840 device->total_bytes = device->disk_total_bytes; 6841 device->commit_total_bytes = device->disk_total_bytes; 6842 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6843 device->commit_bytes_used = device->bytes_used; 6844 device->type = btrfs_device_type(leaf, dev_item); 6845 device->io_align = btrfs_device_io_align(leaf, dev_item); 6846 device->io_width = btrfs_device_io_width(leaf, dev_item); 6847 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6848 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6849 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6850 6851 ptr = btrfs_device_uuid(dev_item); 6852 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6853 } 6854 6855 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6856 u8 *fsid) 6857 { 6858 struct btrfs_fs_devices *fs_devices; 6859 int ret; 6860 6861 lockdep_assert_held(&uuid_mutex); 6862 ASSERT(fsid); 6863 6864 /* This will match only for multi-device seed fs */ 6865 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6866 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6867 return fs_devices; 6868 6869 6870 fs_devices = find_fsid(fsid, NULL); 6871 if (!fs_devices) { 6872 if (!btrfs_test_opt(fs_info, DEGRADED)) 6873 return ERR_PTR(-ENOENT); 6874 6875 fs_devices = alloc_fs_devices(fsid, NULL); 6876 if (IS_ERR(fs_devices)) 6877 return fs_devices; 6878 6879 fs_devices->seeding = true; 6880 fs_devices->opened = 1; 6881 return fs_devices; 6882 } 6883 6884 /* 6885 * Upon first call for a seed fs fsid, just create a private copy of the 6886 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6887 */ 6888 fs_devices = clone_fs_devices(fs_devices); 6889 if (IS_ERR(fs_devices)) 6890 return fs_devices; 6891 6892 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 6893 if (ret) { 6894 free_fs_devices(fs_devices); 6895 return ERR_PTR(ret); 6896 } 6897 6898 if (!fs_devices->seeding) { 6899 close_fs_devices(fs_devices); 6900 free_fs_devices(fs_devices); 6901 return ERR_PTR(-EINVAL); 6902 } 6903 6904 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6905 6906 return fs_devices; 6907 } 6908 6909 static int read_one_dev(struct extent_buffer *leaf, 6910 struct btrfs_dev_item *dev_item) 6911 { 6912 BTRFS_DEV_LOOKUP_ARGS(args); 6913 struct btrfs_fs_info *fs_info = leaf->fs_info; 6914 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6915 struct btrfs_device *device; 6916 u64 devid; 6917 int ret; 6918 u8 fs_uuid[BTRFS_FSID_SIZE]; 6919 u8 dev_uuid[BTRFS_UUID_SIZE]; 6920 6921 devid = btrfs_device_id(leaf, dev_item); 6922 args.devid = devid; 6923 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6924 BTRFS_UUID_SIZE); 6925 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6926 BTRFS_FSID_SIZE); 6927 args.uuid = dev_uuid; 6928 args.fsid = fs_uuid; 6929 6930 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6931 fs_devices = open_seed_devices(fs_info, fs_uuid); 6932 if (IS_ERR(fs_devices)) 6933 return PTR_ERR(fs_devices); 6934 } 6935 6936 device = btrfs_find_device(fs_info->fs_devices, &args); 6937 if (!device) { 6938 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6939 btrfs_report_missing_device(fs_info, devid, 6940 dev_uuid, true); 6941 return -ENOENT; 6942 } 6943 6944 device = add_missing_dev(fs_devices, devid, dev_uuid); 6945 if (IS_ERR(device)) { 6946 btrfs_err(fs_info, 6947 "failed to add missing dev %llu: %ld", 6948 devid, PTR_ERR(device)); 6949 return PTR_ERR(device); 6950 } 6951 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6952 } else { 6953 if (!device->bdev) { 6954 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6955 btrfs_report_missing_device(fs_info, 6956 devid, dev_uuid, true); 6957 return -ENOENT; 6958 } 6959 btrfs_report_missing_device(fs_info, devid, 6960 dev_uuid, false); 6961 } 6962 6963 if (!device->bdev && 6964 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6965 /* 6966 * this happens when a device that was properly setup 6967 * in the device info lists suddenly goes bad. 6968 * device->bdev is NULL, and so we have to set 6969 * device->missing to one here 6970 */ 6971 device->fs_devices->missing_devices++; 6972 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6973 } 6974 6975 /* Move the device to its own fs_devices */ 6976 if (device->fs_devices != fs_devices) { 6977 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6978 &device->dev_state)); 6979 6980 list_move(&device->dev_list, &fs_devices->devices); 6981 device->fs_devices->num_devices--; 6982 fs_devices->num_devices++; 6983 6984 device->fs_devices->missing_devices--; 6985 fs_devices->missing_devices++; 6986 6987 device->fs_devices = fs_devices; 6988 } 6989 } 6990 6991 if (device->fs_devices != fs_info->fs_devices) { 6992 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6993 if (device->generation != 6994 btrfs_device_generation(leaf, dev_item)) 6995 return -EINVAL; 6996 } 6997 6998 fill_device_from_item(leaf, dev_item, device); 6999 if (device->bdev) { 7000 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7001 7002 if (device->total_bytes > max_total_bytes) { 7003 btrfs_err(fs_info, 7004 "device total_bytes should be at most %llu but found %llu", 7005 max_total_bytes, device->total_bytes); 7006 return -EINVAL; 7007 } 7008 } 7009 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7010 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7011 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7012 device->fs_devices->total_rw_bytes += device->total_bytes; 7013 atomic64_add(device->total_bytes - device->bytes_used, 7014 &fs_info->free_chunk_space); 7015 } 7016 ret = 0; 7017 return ret; 7018 } 7019 7020 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7021 { 7022 struct btrfs_super_block *super_copy = fs_info->super_copy; 7023 struct extent_buffer *sb; 7024 struct btrfs_disk_key *disk_key; 7025 struct btrfs_chunk *chunk; 7026 u8 *array_ptr; 7027 unsigned long sb_array_offset; 7028 int ret = 0; 7029 u32 num_stripes; 7030 u32 array_size; 7031 u32 len = 0; 7032 u32 cur_offset; 7033 u64 type; 7034 struct btrfs_key key; 7035 7036 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7037 7038 /* 7039 * We allocated a dummy extent, just to use extent buffer accessors. 7040 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7041 * that's fine, we will not go beyond system chunk array anyway. 7042 */ 7043 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7044 if (!sb) 7045 return -ENOMEM; 7046 set_extent_buffer_uptodate(sb); 7047 7048 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7049 array_size = btrfs_super_sys_array_size(super_copy); 7050 7051 array_ptr = super_copy->sys_chunk_array; 7052 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7053 cur_offset = 0; 7054 7055 while (cur_offset < array_size) { 7056 disk_key = (struct btrfs_disk_key *)array_ptr; 7057 len = sizeof(*disk_key); 7058 if (cur_offset + len > array_size) 7059 goto out_short_read; 7060 7061 btrfs_disk_key_to_cpu(&key, disk_key); 7062 7063 array_ptr += len; 7064 sb_array_offset += len; 7065 cur_offset += len; 7066 7067 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7068 btrfs_err(fs_info, 7069 "unexpected item type %u in sys_array at offset %u", 7070 (u32)key.type, cur_offset); 7071 ret = -EIO; 7072 break; 7073 } 7074 7075 chunk = (struct btrfs_chunk *)sb_array_offset; 7076 /* 7077 * At least one btrfs_chunk with one stripe must be present, 7078 * exact stripe count check comes afterwards 7079 */ 7080 len = btrfs_chunk_item_size(1); 7081 if (cur_offset + len > array_size) 7082 goto out_short_read; 7083 7084 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7085 if (!num_stripes) { 7086 btrfs_err(fs_info, 7087 "invalid number of stripes %u in sys_array at offset %u", 7088 num_stripes, cur_offset); 7089 ret = -EIO; 7090 break; 7091 } 7092 7093 type = btrfs_chunk_type(sb, chunk); 7094 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7095 btrfs_err(fs_info, 7096 "invalid chunk type %llu in sys_array at offset %u", 7097 type, cur_offset); 7098 ret = -EIO; 7099 break; 7100 } 7101 7102 len = btrfs_chunk_item_size(num_stripes); 7103 if (cur_offset + len > array_size) 7104 goto out_short_read; 7105 7106 ret = read_one_chunk(&key, sb, chunk); 7107 if (ret) 7108 break; 7109 7110 array_ptr += len; 7111 sb_array_offset += len; 7112 cur_offset += len; 7113 } 7114 clear_extent_buffer_uptodate(sb); 7115 free_extent_buffer_stale(sb); 7116 return ret; 7117 7118 out_short_read: 7119 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7120 len, cur_offset); 7121 clear_extent_buffer_uptodate(sb); 7122 free_extent_buffer_stale(sb); 7123 return -EIO; 7124 } 7125 7126 /* 7127 * Check if all chunks in the fs are OK for read-write degraded mount 7128 * 7129 * If the @failing_dev is specified, it's accounted as missing. 7130 * 7131 * Return true if all chunks meet the minimal RW mount requirements. 7132 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7133 */ 7134 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7135 struct btrfs_device *failing_dev) 7136 { 7137 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7138 struct extent_map *em; 7139 u64 next_start = 0; 7140 bool ret = true; 7141 7142 read_lock(&map_tree->lock); 7143 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7144 read_unlock(&map_tree->lock); 7145 /* No chunk at all? Return false anyway */ 7146 if (!em) { 7147 ret = false; 7148 goto out; 7149 } 7150 while (em) { 7151 struct map_lookup *map; 7152 int missing = 0; 7153 int max_tolerated; 7154 int i; 7155 7156 map = em->map_lookup; 7157 max_tolerated = 7158 btrfs_get_num_tolerated_disk_barrier_failures( 7159 map->type); 7160 for (i = 0; i < map->num_stripes; i++) { 7161 struct btrfs_device *dev = map->stripes[i].dev; 7162 7163 if (!dev || !dev->bdev || 7164 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7165 dev->last_flush_error) 7166 missing++; 7167 else if (failing_dev && failing_dev == dev) 7168 missing++; 7169 } 7170 if (missing > max_tolerated) { 7171 if (!failing_dev) 7172 btrfs_warn(fs_info, 7173 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7174 em->start, missing, max_tolerated); 7175 free_extent_map(em); 7176 ret = false; 7177 goto out; 7178 } 7179 next_start = extent_map_end(em); 7180 free_extent_map(em); 7181 7182 read_lock(&map_tree->lock); 7183 em = lookup_extent_mapping(map_tree, next_start, 7184 (u64)(-1) - next_start); 7185 read_unlock(&map_tree->lock); 7186 } 7187 out: 7188 return ret; 7189 } 7190 7191 static void readahead_tree_node_children(struct extent_buffer *node) 7192 { 7193 int i; 7194 const int nr_items = btrfs_header_nritems(node); 7195 7196 for (i = 0; i < nr_items; i++) 7197 btrfs_readahead_node_child(node, i); 7198 } 7199 7200 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7201 { 7202 struct btrfs_root *root = fs_info->chunk_root; 7203 struct btrfs_path *path; 7204 struct extent_buffer *leaf; 7205 struct btrfs_key key; 7206 struct btrfs_key found_key; 7207 int ret; 7208 int slot; 7209 int iter_ret = 0; 7210 u64 total_dev = 0; 7211 u64 last_ra_node = 0; 7212 7213 path = btrfs_alloc_path(); 7214 if (!path) 7215 return -ENOMEM; 7216 7217 /* 7218 * uuid_mutex is needed only if we are mounting a sprout FS 7219 * otherwise we don't need it. 7220 */ 7221 mutex_lock(&uuid_mutex); 7222 7223 /* 7224 * It is possible for mount and umount to race in such a way that 7225 * we execute this code path, but open_fs_devices failed to clear 7226 * total_rw_bytes. We certainly want it cleared before reading the 7227 * device items, so clear it here. 7228 */ 7229 fs_info->fs_devices->total_rw_bytes = 0; 7230 7231 /* 7232 * Lockdep complains about possible circular locking dependency between 7233 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7234 * used for freeze procection of a fs (struct super_block.s_writers), 7235 * which we take when starting a transaction, and extent buffers of the 7236 * chunk tree if we call read_one_dev() while holding a lock on an 7237 * extent buffer of the chunk tree. Since we are mounting the filesystem 7238 * and at this point there can't be any concurrent task modifying the 7239 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7240 */ 7241 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7242 path->skip_locking = 1; 7243 7244 /* 7245 * Read all device items, and then all the chunk items. All 7246 * device items are found before any chunk item (their object id 7247 * is smaller than the lowest possible object id for a chunk 7248 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7249 */ 7250 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7251 key.offset = 0; 7252 key.type = 0; 7253 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7254 struct extent_buffer *node = path->nodes[1]; 7255 7256 leaf = path->nodes[0]; 7257 slot = path->slots[0]; 7258 7259 if (node) { 7260 if (last_ra_node != node->start) { 7261 readahead_tree_node_children(node); 7262 last_ra_node = node->start; 7263 } 7264 } 7265 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7266 struct btrfs_dev_item *dev_item; 7267 dev_item = btrfs_item_ptr(leaf, slot, 7268 struct btrfs_dev_item); 7269 ret = read_one_dev(leaf, dev_item); 7270 if (ret) 7271 goto error; 7272 total_dev++; 7273 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7274 struct btrfs_chunk *chunk; 7275 7276 /* 7277 * We are only called at mount time, so no need to take 7278 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7279 * we always lock first fs_info->chunk_mutex before 7280 * acquiring any locks on the chunk tree. This is a 7281 * requirement for chunk allocation, see the comment on 7282 * top of btrfs_chunk_alloc() for details. 7283 */ 7284 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7285 ret = read_one_chunk(&found_key, leaf, chunk); 7286 if (ret) 7287 goto error; 7288 } 7289 } 7290 /* Catch error found during iteration */ 7291 if (iter_ret < 0) { 7292 ret = iter_ret; 7293 goto error; 7294 } 7295 7296 /* 7297 * After loading chunk tree, we've got all device information, 7298 * do another round of validation checks. 7299 */ 7300 if (total_dev != fs_info->fs_devices->total_devices) { 7301 btrfs_warn(fs_info, 7302 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7303 btrfs_super_num_devices(fs_info->super_copy), 7304 total_dev); 7305 fs_info->fs_devices->total_devices = total_dev; 7306 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7307 } 7308 if (btrfs_super_total_bytes(fs_info->super_copy) < 7309 fs_info->fs_devices->total_rw_bytes) { 7310 btrfs_err(fs_info, 7311 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7312 btrfs_super_total_bytes(fs_info->super_copy), 7313 fs_info->fs_devices->total_rw_bytes); 7314 ret = -EINVAL; 7315 goto error; 7316 } 7317 ret = 0; 7318 error: 7319 mutex_unlock(&uuid_mutex); 7320 7321 btrfs_free_path(path); 7322 return ret; 7323 } 7324 7325 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7326 { 7327 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7328 struct btrfs_device *device; 7329 int ret = 0; 7330 7331 fs_devices->fs_info = fs_info; 7332 7333 mutex_lock(&fs_devices->device_list_mutex); 7334 list_for_each_entry(device, &fs_devices->devices, dev_list) 7335 device->fs_info = fs_info; 7336 7337 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7338 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7339 device->fs_info = fs_info; 7340 ret = btrfs_get_dev_zone_info(device, false); 7341 if (ret) 7342 break; 7343 } 7344 7345 seed_devs->fs_info = fs_info; 7346 } 7347 mutex_unlock(&fs_devices->device_list_mutex); 7348 7349 return ret; 7350 } 7351 7352 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7353 const struct btrfs_dev_stats_item *ptr, 7354 int index) 7355 { 7356 u64 val; 7357 7358 read_extent_buffer(eb, &val, 7359 offsetof(struct btrfs_dev_stats_item, values) + 7360 ((unsigned long)ptr) + (index * sizeof(u64)), 7361 sizeof(val)); 7362 return val; 7363 } 7364 7365 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7366 struct btrfs_dev_stats_item *ptr, 7367 int index, u64 val) 7368 { 7369 write_extent_buffer(eb, &val, 7370 offsetof(struct btrfs_dev_stats_item, values) + 7371 ((unsigned long)ptr) + (index * sizeof(u64)), 7372 sizeof(val)); 7373 } 7374 7375 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7376 struct btrfs_path *path) 7377 { 7378 struct btrfs_dev_stats_item *ptr; 7379 struct extent_buffer *eb; 7380 struct btrfs_key key; 7381 int item_size; 7382 int i, ret, slot; 7383 7384 if (!device->fs_info->dev_root) 7385 return 0; 7386 7387 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7388 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7389 key.offset = device->devid; 7390 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7391 if (ret) { 7392 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7393 btrfs_dev_stat_set(device, i, 0); 7394 device->dev_stats_valid = 1; 7395 btrfs_release_path(path); 7396 return ret < 0 ? ret : 0; 7397 } 7398 slot = path->slots[0]; 7399 eb = path->nodes[0]; 7400 item_size = btrfs_item_size(eb, slot); 7401 7402 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7403 7404 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7405 if (item_size >= (1 + i) * sizeof(__le64)) 7406 btrfs_dev_stat_set(device, i, 7407 btrfs_dev_stats_value(eb, ptr, i)); 7408 else 7409 btrfs_dev_stat_set(device, i, 0); 7410 } 7411 7412 device->dev_stats_valid = 1; 7413 btrfs_dev_stat_print_on_load(device); 7414 btrfs_release_path(path); 7415 7416 return 0; 7417 } 7418 7419 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7420 { 7421 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7422 struct btrfs_device *device; 7423 struct btrfs_path *path = NULL; 7424 int ret = 0; 7425 7426 path = btrfs_alloc_path(); 7427 if (!path) 7428 return -ENOMEM; 7429 7430 mutex_lock(&fs_devices->device_list_mutex); 7431 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7432 ret = btrfs_device_init_dev_stats(device, path); 7433 if (ret) 7434 goto out; 7435 } 7436 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7437 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7438 ret = btrfs_device_init_dev_stats(device, path); 7439 if (ret) 7440 goto out; 7441 } 7442 } 7443 out: 7444 mutex_unlock(&fs_devices->device_list_mutex); 7445 7446 btrfs_free_path(path); 7447 return ret; 7448 } 7449 7450 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7451 struct btrfs_device *device) 7452 { 7453 struct btrfs_fs_info *fs_info = trans->fs_info; 7454 struct btrfs_root *dev_root = fs_info->dev_root; 7455 struct btrfs_path *path; 7456 struct btrfs_key key; 7457 struct extent_buffer *eb; 7458 struct btrfs_dev_stats_item *ptr; 7459 int ret; 7460 int i; 7461 7462 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7463 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7464 key.offset = device->devid; 7465 7466 path = btrfs_alloc_path(); 7467 if (!path) 7468 return -ENOMEM; 7469 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7470 if (ret < 0) { 7471 btrfs_warn_in_rcu(fs_info, 7472 "error %d while searching for dev_stats item for device %s", 7473 ret, btrfs_dev_name(device)); 7474 goto out; 7475 } 7476 7477 if (ret == 0 && 7478 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7479 /* need to delete old one and insert a new one */ 7480 ret = btrfs_del_item(trans, dev_root, path); 7481 if (ret != 0) { 7482 btrfs_warn_in_rcu(fs_info, 7483 "delete too small dev_stats item for device %s failed %d", 7484 btrfs_dev_name(device), ret); 7485 goto out; 7486 } 7487 ret = 1; 7488 } 7489 7490 if (ret == 1) { 7491 /* need to insert a new item */ 7492 btrfs_release_path(path); 7493 ret = btrfs_insert_empty_item(trans, dev_root, path, 7494 &key, sizeof(*ptr)); 7495 if (ret < 0) { 7496 btrfs_warn_in_rcu(fs_info, 7497 "insert dev_stats item for device %s failed %d", 7498 btrfs_dev_name(device), ret); 7499 goto out; 7500 } 7501 } 7502 7503 eb = path->nodes[0]; 7504 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7505 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7506 btrfs_set_dev_stats_value(eb, ptr, i, 7507 btrfs_dev_stat_read(device, i)); 7508 btrfs_mark_buffer_dirty(eb); 7509 7510 out: 7511 btrfs_free_path(path); 7512 return ret; 7513 } 7514 7515 /* 7516 * called from commit_transaction. Writes all changed device stats to disk. 7517 */ 7518 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7519 { 7520 struct btrfs_fs_info *fs_info = trans->fs_info; 7521 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7522 struct btrfs_device *device; 7523 int stats_cnt; 7524 int ret = 0; 7525 7526 mutex_lock(&fs_devices->device_list_mutex); 7527 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7528 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7529 if (!device->dev_stats_valid || stats_cnt == 0) 7530 continue; 7531 7532 7533 /* 7534 * There is a LOAD-LOAD control dependency between the value of 7535 * dev_stats_ccnt and updating the on-disk values which requires 7536 * reading the in-memory counters. Such control dependencies 7537 * require explicit read memory barriers. 7538 * 7539 * This memory barriers pairs with smp_mb__before_atomic in 7540 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7541 * barrier implied by atomic_xchg in 7542 * btrfs_dev_stats_read_and_reset 7543 */ 7544 smp_rmb(); 7545 7546 ret = update_dev_stat_item(trans, device); 7547 if (!ret) 7548 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7549 } 7550 mutex_unlock(&fs_devices->device_list_mutex); 7551 7552 return ret; 7553 } 7554 7555 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7556 { 7557 btrfs_dev_stat_inc(dev, index); 7558 7559 if (!dev->dev_stats_valid) 7560 return; 7561 btrfs_err_rl_in_rcu(dev->fs_info, 7562 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7563 btrfs_dev_name(dev), 7564 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7565 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7566 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7567 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7568 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7569 } 7570 7571 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7572 { 7573 int i; 7574 7575 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7576 if (btrfs_dev_stat_read(dev, i) != 0) 7577 break; 7578 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7579 return; /* all values == 0, suppress message */ 7580 7581 btrfs_info_in_rcu(dev->fs_info, 7582 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7583 btrfs_dev_name(dev), 7584 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7585 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7586 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7587 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7588 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7589 } 7590 7591 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7592 struct btrfs_ioctl_get_dev_stats *stats) 7593 { 7594 BTRFS_DEV_LOOKUP_ARGS(args); 7595 struct btrfs_device *dev; 7596 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7597 int i; 7598 7599 mutex_lock(&fs_devices->device_list_mutex); 7600 args.devid = stats->devid; 7601 dev = btrfs_find_device(fs_info->fs_devices, &args); 7602 mutex_unlock(&fs_devices->device_list_mutex); 7603 7604 if (!dev) { 7605 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7606 return -ENODEV; 7607 } else if (!dev->dev_stats_valid) { 7608 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7609 return -ENODEV; 7610 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7611 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7612 if (stats->nr_items > i) 7613 stats->values[i] = 7614 btrfs_dev_stat_read_and_reset(dev, i); 7615 else 7616 btrfs_dev_stat_set(dev, i, 0); 7617 } 7618 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7619 current->comm, task_pid_nr(current)); 7620 } else { 7621 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7622 if (stats->nr_items > i) 7623 stats->values[i] = btrfs_dev_stat_read(dev, i); 7624 } 7625 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7626 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7627 return 0; 7628 } 7629 7630 /* 7631 * Update the size and bytes used for each device where it changed. This is 7632 * delayed since we would otherwise get errors while writing out the 7633 * superblocks. 7634 * 7635 * Must be invoked during transaction commit. 7636 */ 7637 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7638 { 7639 struct btrfs_device *curr, *next; 7640 7641 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7642 7643 if (list_empty(&trans->dev_update_list)) 7644 return; 7645 7646 /* 7647 * We don't need the device_list_mutex here. This list is owned by the 7648 * transaction and the transaction must complete before the device is 7649 * released. 7650 */ 7651 mutex_lock(&trans->fs_info->chunk_mutex); 7652 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7653 post_commit_list) { 7654 list_del_init(&curr->post_commit_list); 7655 curr->commit_total_bytes = curr->disk_total_bytes; 7656 curr->commit_bytes_used = curr->bytes_used; 7657 } 7658 mutex_unlock(&trans->fs_info->chunk_mutex); 7659 } 7660 7661 /* 7662 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7663 */ 7664 int btrfs_bg_type_to_factor(u64 flags) 7665 { 7666 const int index = btrfs_bg_flags_to_raid_index(flags); 7667 7668 return btrfs_raid_array[index].ncopies; 7669 } 7670 7671 7672 7673 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7674 u64 chunk_offset, u64 devid, 7675 u64 physical_offset, u64 physical_len) 7676 { 7677 struct btrfs_dev_lookup_args args = { .devid = devid }; 7678 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7679 struct extent_map *em; 7680 struct map_lookup *map; 7681 struct btrfs_device *dev; 7682 u64 stripe_len; 7683 bool found = false; 7684 int ret = 0; 7685 int i; 7686 7687 read_lock(&em_tree->lock); 7688 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7689 read_unlock(&em_tree->lock); 7690 7691 if (!em) { 7692 btrfs_err(fs_info, 7693 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7694 physical_offset, devid); 7695 ret = -EUCLEAN; 7696 goto out; 7697 } 7698 7699 map = em->map_lookup; 7700 stripe_len = btrfs_calc_stripe_length(em); 7701 if (physical_len != stripe_len) { 7702 btrfs_err(fs_info, 7703 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7704 physical_offset, devid, em->start, physical_len, 7705 stripe_len); 7706 ret = -EUCLEAN; 7707 goto out; 7708 } 7709 7710 /* 7711 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7712 * space. Although kernel can handle it without problem, better to warn 7713 * the users. 7714 */ 7715 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7716 btrfs_warn(fs_info, 7717 "devid %llu physical %llu len %llu inside the reserved space", 7718 devid, physical_offset, physical_len); 7719 7720 for (i = 0; i < map->num_stripes; i++) { 7721 if (map->stripes[i].dev->devid == devid && 7722 map->stripes[i].physical == physical_offset) { 7723 found = true; 7724 if (map->verified_stripes >= map->num_stripes) { 7725 btrfs_err(fs_info, 7726 "too many dev extents for chunk %llu found", 7727 em->start); 7728 ret = -EUCLEAN; 7729 goto out; 7730 } 7731 map->verified_stripes++; 7732 break; 7733 } 7734 } 7735 if (!found) { 7736 btrfs_err(fs_info, 7737 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7738 physical_offset, devid); 7739 ret = -EUCLEAN; 7740 } 7741 7742 /* Make sure no dev extent is beyond device boundary */ 7743 dev = btrfs_find_device(fs_info->fs_devices, &args); 7744 if (!dev) { 7745 btrfs_err(fs_info, "failed to find devid %llu", devid); 7746 ret = -EUCLEAN; 7747 goto out; 7748 } 7749 7750 if (physical_offset + physical_len > dev->disk_total_bytes) { 7751 btrfs_err(fs_info, 7752 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7753 devid, physical_offset, physical_len, 7754 dev->disk_total_bytes); 7755 ret = -EUCLEAN; 7756 goto out; 7757 } 7758 7759 if (dev->zone_info) { 7760 u64 zone_size = dev->zone_info->zone_size; 7761 7762 if (!IS_ALIGNED(physical_offset, zone_size) || 7763 !IS_ALIGNED(physical_len, zone_size)) { 7764 btrfs_err(fs_info, 7765 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7766 devid, physical_offset, physical_len); 7767 ret = -EUCLEAN; 7768 goto out; 7769 } 7770 } 7771 7772 out: 7773 free_extent_map(em); 7774 return ret; 7775 } 7776 7777 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7778 { 7779 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7780 struct extent_map *em; 7781 struct rb_node *node; 7782 int ret = 0; 7783 7784 read_lock(&em_tree->lock); 7785 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7786 em = rb_entry(node, struct extent_map, rb_node); 7787 if (em->map_lookup->num_stripes != 7788 em->map_lookup->verified_stripes) { 7789 btrfs_err(fs_info, 7790 "chunk %llu has missing dev extent, have %d expect %d", 7791 em->start, em->map_lookup->verified_stripes, 7792 em->map_lookup->num_stripes); 7793 ret = -EUCLEAN; 7794 goto out; 7795 } 7796 } 7797 out: 7798 read_unlock(&em_tree->lock); 7799 return ret; 7800 } 7801 7802 /* 7803 * Ensure that all dev extents are mapped to correct chunk, otherwise 7804 * later chunk allocation/free would cause unexpected behavior. 7805 * 7806 * NOTE: This will iterate through the whole device tree, which should be of 7807 * the same size level as the chunk tree. This slightly increases mount time. 7808 */ 7809 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7810 { 7811 struct btrfs_path *path; 7812 struct btrfs_root *root = fs_info->dev_root; 7813 struct btrfs_key key; 7814 u64 prev_devid = 0; 7815 u64 prev_dev_ext_end = 0; 7816 int ret = 0; 7817 7818 /* 7819 * We don't have a dev_root because we mounted with ignorebadroots and 7820 * failed to load the root, so we want to skip the verification in this 7821 * case for sure. 7822 * 7823 * However if the dev root is fine, but the tree itself is corrupted 7824 * we'd still fail to mount. This verification is only to make sure 7825 * writes can happen safely, so instead just bypass this check 7826 * completely in the case of IGNOREBADROOTS. 7827 */ 7828 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7829 return 0; 7830 7831 key.objectid = 1; 7832 key.type = BTRFS_DEV_EXTENT_KEY; 7833 key.offset = 0; 7834 7835 path = btrfs_alloc_path(); 7836 if (!path) 7837 return -ENOMEM; 7838 7839 path->reada = READA_FORWARD; 7840 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7841 if (ret < 0) 7842 goto out; 7843 7844 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7845 ret = btrfs_next_leaf(root, path); 7846 if (ret < 0) 7847 goto out; 7848 /* No dev extents at all? Not good */ 7849 if (ret > 0) { 7850 ret = -EUCLEAN; 7851 goto out; 7852 } 7853 } 7854 while (1) { 7855 struct extent_buffer *leaf = path->nodes[0]; 7856 struct btrfs_dev_extent *dext; 7857 int slot = path->slots[0]; 7858 u64 chunk_offset; 7859 u64 physical_offset; 7860 u64 physical_len; 7861 u64 devid; 7862 7863 btrfs_item_key_to_cpu(leaf, &key, slot); 7864 if (key.type != BTRFS_DEV_EXTENT_KEY) 7865 break; 7866 devid = key.objectid; 7867 physical_offset = key.offset; 7868 7869 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7870 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7871 physical_len = btrfs_dev_extent_length(leaf, dext); 7872 7873 /* Check if this dev extent overlaps with the previous one */ 7874 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7875 btrfs_err(fs_info, 7876 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7877 devid, physical_offset, prev_dev_ext_end); 7878 ret = -EUCLEAN; 7879 goto out; 7880 } 7881 7882 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7883 physical_offset, physical_len); 7884 if (ret < 0) 7885 goto out; 7886 prev_devid = devid; 7887 prev_dev_ext_end = physical_offset + physical_len; 7888 7889 ret = btrfs_next_item(root, path); 7890 if (ret < 0) 7891 goto out; 7892 if (ret > 0) { 7893 ret = 0; 7894 break; 7895 } 7896 } 7897 7898 /* Ensure all chunks have corresponding dev extents */ 7899 ret = verify_chunk_dev_extent_mapping(fs_info); 7900 out: 7901 btrfs_free_path(path); 7902 return ret; 7903 } 7904 7905 /* 7906 * Check whether the given block group or device is pinned by any inode being 7907 * used as a swapfile. 7908 */ 7909 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7910 { 7911 struct btrfs_swapfile_pin *sp; 7912 struct rb_node *node; 7913 7914 spin_lock(&fs_info->swapfile_pins_lock); 7915 node = fs_info->swapfile_pins.rb_node; 7916 while (node) { 7917 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7918 if (ptr < sp->ptr) 7919 node = node->rb_left; 7920 else if (ptr > sp->ptr) 7921 node = node->rb_right; 7922 else 7923 break; 7924 } 7925 spin_unlock(&fs_info->swapfile_pins_lock); 7926 return node != NULL; 7927 } 7928 7929 static int relocating_repair_kthread(void *data) 7930 { 7931 struct btrfs_block_group *cache = data; 7932 struct btrfs_fs_info *fs_info = cache->fs_info; 7933 u64 target; 7934 int ret = 0; 7935 7936 target = cache->start; 7937 btrfs_put_block_group(cache); 7938 7939 sb_start_write(fs_info->sb); 7940 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 7941 btrfs_info(fs_info, 7942 "zoned: skip relocating block group %llu to repair: EBUSY", 7943 target); 7944 sb_end_write(fs_info->sb); 7945 return -EBUSY; 7946 } 7947 7948 mutex_lock(&fs_info->reclaim_bgs_lock); 7949 7950 /* Ensure block group still exists */ 7951 cache = btrfs_lookup_block_group(fs_info, target); 7952 if (!cache) 7953 goto out; 7954 7955 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 7956 goto out; 7957 7958 ret = btrfs_may_alloc_data_chunk(fs_info, target); 7959 if (ret < 0) 7960 goto out; 7961 7962 btrfs_info(fs_info, 7963 "zoned: relocating block group %llu to repair IO failure", 7964 target); 7965 ret = btrfs_relocate_chunk(fs_info, target); 7966 7967 out: 7968 if (cache) 7969 btrfs_put_block_group(cache); 7970 mutex_unlock(&fs_info->reclaim_bgs_lock); 7971 btrfs_exclop_finish(fs_info); 7972 sb_end_write(fs_info->sb); 7973 7974 return ret; 7975 } 7976 7977 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 7978 { 7979 struct btrfs_block_group *cache; 7980 7981 if (!btrfs_is_zoned(fs_info)) 7982 return false; 7983 7984 /* Do not attempt to repair in degraded state */ 7985 if (btrfs_test_opt(fs_info, DEGRADED)) 7986 return true; 7987 7988 cache = btrfs_lookup_block_group(fs_info, logical); 7989 if (!cache) 7990 return true; 7991 7992 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 7993 btrfs_put_block_group(cache); 7994 return true; 7995 } 7996 7997 kthread_run(relocating_repair_kthread, cache, 7998 "btrfs-relocating-repair"); 7999 8000 return true; 8001 } 8002 8003 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8004 struct btrfs_io_stripe *smap, 8005 u64 logical) 8006 { 8007 int data_stripes = nr_bioc_data_stripes(bioc); 8008 int i; 8009 8010 for (i = 0; i < data_stripes; i++) { 8011 u64 stripe_start = bioc->full_stripe_logical + 8012 btrfs_stripe_nr_to_offset(i); 8013 8014 if (logical >= stripe_start && 8015 logical < stripe_start + BTRFS_STRIPE_LEN) 8016 break; 8017 } 8018 ASSERT(i < data_stripes); 8019 smap->dev = bioc->stripes[i].dev; 8020 smap->physical = bioc->stripes[i].physical + 8021 ((logical - bioc->full_stripe_logical) & 8022 BTRFS_STRIPE_LEN_MASK); 8023 } 8024 8025 /* 8026 * Map a repair write into a single device. 8027 * 8028 * A repair write is triggered by read time repair or scrub, which would only 8029 * update the contents of a single device. 8030 * Not update any other mirrors nor go through RMW path. 8031 * 8032 * Callers should ensure: 8033 * 8034 * - Call btrfs_bio_counter_inc_blocked() first 8035 * - The range does not cross stripe boundary 8036 * - Has a valid @mirror_num passed in. 8037 */ 8038 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8039 struct btrfs_io_stripe *smap, u64 logical, 8040 u32 length, int mirror_num) 8041 { 8042 struct btrfs_io_context *bioc = NULL; 8043 u64 map_length = length; 8044 int mirror_ret = mirror_num; 8045 int ret; 8046 8047 ASSERT(mirror_num > 0); 8048 8049 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8050 &bioc, smap, &mirror_ret, true); 8051 if (ret < 0) 8052 return ret; 8053 8054 /* The map range should not cross stripe boundary. */ 8055 ASSERT(map_length >= length); 8056 8057 /* Already mapped to single stripe. */ 8058 if (!bioc) 8059 goto out; 8060 8061 /* Map the RAID56 multi-stripe writes to a single one. */ 8062 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8063 map_raid56_repair_block(bioc, smap, logical); 8064 goto out; 8065 } 8066 8067 ASSERT(mirror_num <= bioc->num_stripes); 8068 smap->dev = bioc->stripes[mirror_num - 1].dev; 8069 smap->physical = bioc->stripes[mirror_num - 1].physical; 8070 out: 8071 btrfs_put_bioc(bioc); 8072 ASSERT(smap->dev); 8073 return 0; 8074 } 8075