xref: /openbmc/linux/fs/btrfs/volumes.c (revision d2ba09c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/iocontext.h>
12 #include <linux/capability.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kthread.h>
15 #include <linux/raid/pq.h>
16 #include <linux/semaphore.h>
17 #include <linux/uuid.h>
18 #include <linux/list_sort.h>
19 #include <asm/div64.h>
20 #include "ctree.h"
21 #include "extent_map.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "volumes.h"
26 #include "raid56.h"
27 #include "async-thread.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
30 #include "math.h"
31 #include "dev-replace.h"
32 #include "sysfs.h"
33 
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 	[BTRFS_RAID_RAID10] = {
36 		.sub_stripes	= 2,
37 		.dev_stripes	= 1,
38 		.devs_max	= 0,	/* 0 == as many as possible */
39 		.devs_min	= 4,
40 		.tolerated_failures = 1,
41 		.devs_increment	= 2,
42 		.ncopies	= 2,
43 	},
44 	[BTRFS_RAID_RAID1] = {
45 		.sub_stripes	= 1,
46 		.dev_stripes	= 1,
47 		.devs_max	= 2,
48 		.devs_min	= 2,
49 		.tolerated_failures = 1,
50 		.devs_increment	= 2,
51 		.ncopies	= 2,
52 	},
53 	[BTRFS_RAID_DUP] = {
54 		.sub_stripes	= 1,
55 		.dev_stripes	= 2,
56 		.devs_max	= 1,
57 		.devs_min	= 1,
58 		.tolerated_failures = 0,
59 		.devs_increment	= 1,
60 		.ncopies	= 2,
61 	},
62 	[BTRFS_RAID_RAID0] = {
63 		.sub_stripes	= 1,
64 		.dev_stripes	= 1,
65 		.devs_max	= 0,
66 		.devs_min	= 2,
67 		.tolerated_failures = 0,
68 		.devs_increment	= 1,
69 		.ncopies	= 1,
70 	},
71 	[BTRFS_RAID_SINGLE] = {
72 		.sub_stripes	= 1,
73 		.dev_stripes	= 1,
74 		.devs_max	= 1,
75 		.devs_min	= 1,
76 		.tolerated_failures = 0,
77 		.devs_increment	= 1,
78 		.ncopies	= 1,
79 	},
80 	[BTRFS_RAID_RAID5] = {
81 		.sub_stripes	= 1,
82 		.dev_stripes	= 1,
83 		.devs_max	= 0,
84 		.devs_min	= 2,
85 		.tolerated_failures = 1,
86 		.devs_increment	= 1,
87 		.ncopies	= 2,
88 	},
89 	[BTRFS_RAID_RAID6] = {
90 		.sub_stripes	= 1,
91 		.dev_stripes	= 1,
92 		.devs_max	= 0,
93 		.devs_min	= 3,
94 		.tolerated_failures = 2,
95 		.devs_increment	= 1,
96 		.ncopies	= 3,
97 	},
98 };
99 
100 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
101 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
102 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
103 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
104 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
105 	[BTRFS_RAID_SINGLE] = 0,
106 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
107 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
108 };
109 
110 /*
111  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
112  * condition is not met. Zero means there's no corresponding
113  * BTRFS_ERROR_DEV_*_NOT_MET value.
114  */
115 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
116 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
117 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
118 	[BTRFS_RAID_DUP]    = 0,
119 	[BTRFS_RAID_RAID0]  = 0,
120 	[BTRFS_RAID_SINGLE] = 0,
121 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
122 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
123 };
124 
125 static int init_first_rw_device(struct btrfs_trans_handle *trans,
126 				struct btrfs_fs_info *fs_info);
127 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
128 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
129 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
131 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
132 			     enum btrfs_map_op op,
133 			     u64 logical, u64 *length,
134 			     struct btrfs_bio **bbio_ret,
135 			     int mirror_num, int need_raid_map);
136 
137 /*
138  * Device locking
139  * ==============
140  *
141  * There are several mutexes that protect manipulation of devices and low-level
142  * structures like chunks but not block groups, extents or files
143  *
144  * uuid_mutex (global lock)
145  * ------------------------
146  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
147  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
148  * device) or requested by the device= mount option
149  *
150  * the mutex can be very coarse and can cover long-running operations
151  *
152  * protects: updates to fs_devices counters like missing devices, rw devices,
153  * seeding, structure cloning, openning/closing devices at mount/umount time
154  *
155  * global::fs_devs - add, remove, updates to the global list
156  *
157  * does not protect: manipulation of the fs_devices::devices list!
158  *
159  * btrfs_device::name - renames (write side), read is RCU
160  *
161  * fs_devices::device_list_mutex (per-fs, with RCU)
162  * ------------------------------------------------
163  * protects updates to fs_devices::devices, ie. adding and deleting
164  *
165  * simple list traversal with read-only actions can be done with RCU protection
166  *
167  * may be used to exclude some operations from running concurrently without any
168  * modifications to the list (see write_all_supers)
169  *
170  * volume_mutex
171  * ------------
172  * coarse lock owned by a mounted filesystem; used to exclude some operations
173  * that cannot run in parallel and affect the higher-level properties of the
174  * filesystem like: device add/deleting/resize/replace, or balance
175  *
176  * balance_mutex
177  * -------------
178  * protects balance structures (status, state) and context accessed from
179  * several places (internally, ioctl)
180  *
181  * chunk_mutex
182  * -----------
183  * protects chunks, adding or removing during allocation, trim or when a new
184  * device is added/removed
185  *
186  * cleaner_mutex
187  * -------------
188  * a big lock that is held by the cleaner thread and prevents running subvolume
189  * cleaning together with relocation or delayed iputs
190  *
191  *
192  * Lock nesting
193  * ============
194  *
195  * uuid_mutex
196  *   volume_mutex
197  *     device_list_mutex
198  *       chunk_mutex
199  *     balance_mutex
200  */
201 
202 DEFINE_MUTEX(uuid_mutex);
203 static LIST_HEAD(fs_uuids);
204 struct list_head *btrfs_get_fs_uuids(void)
205 {
206 	return &fs_uuids;
207 }
208 
209 /*
210  * alloc_fs_devices - allocate struct btrfs_fs_devices
211  * @fsid:	if not NULL, copy the uuid to fs_devices::fsid
212  *
213  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
214  * The returned struct is not linked onto any lists and can be destroyed with
215  * kfree() right away.
216  */
217 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
218 {
219 	struct btrfs_fs_devices *fs_devs;
220 
221 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
222 	if (!fs_devs)
223 		return ERR_PTR(-ENOMEM);
224 
225 	mutex_init(&fs_devs->device_list_mutex);
226 
227 	INIT_LIST_HEAD(&fs_devs->devices);
228 	INIT_LIST_HEAD(&fs_devs->resized_devices);
229 	INIT_LIST_HEAD(&fs_devs->alloc_list);
230 	INIT_LIST_HEAD(&fs_devs->list);
231 	if (fsid)
232 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
233 
234 	return fs_devs;
235 }
236 
237 static void free_device(struct btrfs_device *device)
238 {
239 	rcu_string_free(device->name);
240 	bio_put(device->flush_bio);
241 	kfree(device);
242 }
243 
244 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
245 {
246 	struct btrfs_device *device;
247 	WARN_ON(fs_devices->opened);
248 	while (!list_empty(&fs_devices->devices)) {
249 		device = list_entry(fs_devices->devices.next,
250 				    struct btrfs_device, dev_list);
251 		list_del(&device->dev_list);
252 		free_device(device);
253 	}
254 	kfree(fs_devices);
255 }
256 
257 static void btrfs_kobject_uevent(struct block_device *bdev,
258 				 enum kobject_action action)
259 {
260 	int ret;
261 
262 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
263 	if (ret)
264 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
265 			action,
266 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
267 			&disk_to_dev(bdev->bd_disk)->kobj);
268 }
269 
270 void __exit btrfs_cleanup_fs_uuids(void)
271 {
272 	struct btrfs_fs_devices *fs_devices;
273 
274 	while (!list_empty(&fs_uuids)) {
275 		fs_devices = list_entry(fs_uuids.next,
276 					struct btrfs_fs_devices, list);
277 		list_del(&fs_devices->list);
278 		free_fs_devices(fs_devices);
279 	}
280 }
281 
282 /*
283  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
284  * Returned struct is not linked onto any lists and must be destroyed using
285  * free_device.
286  */
287 static struct btrfs_device *__alloc_device(void)
288 {
289 	struct btrfs_device *dev;
290 
291 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
292 	if (!dev)
293 		return ERR_PTR(-ENOMEM);
294 
295 	/*
296 	 * Preallocate a bio that's always going to be used for flushing device
297 	 * barriers and matches the device lifespan
298 	 */
299 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
300 	if (!dev->flush_bio) {
301 		kfree(dev);
302 		return ERR_PTR(-ENOMEM);
303 	}
304 
305 	INIT_LIST_HEAD(&dev->dev_list);
306 	INIT_LIST_HEAD(&dev->dev_alloc_list);
307 	INIT_LIST_HEAD(&dev->resized_list);
308 
309 	spin_lock_init(&dev->io_lock);
310 
311 	atomic_set(&dev->reada_in_flight, 0);
312 	atomic_set(&dev->dev_stats_ccnt, 0);
313 	btrfs_device_data_ordered_init(dev);
314 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
315 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
316 
317 	return dev;
318 }
319 
320 /*
321  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
322  * return NULL.
323  *
324  * If devid and uuid are both specified, the match must be exact, otherwise
325  * only devid is used.
326  */
327 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
328 		u64 devid, const u8 *uuid)
329 {
330 	struct list_head *head = &fs_devices->devices;
331 	struct btrfs_device *dev;
332 
333 	list_for_each_entry(dev, head, dev_list) {
334 		if (dev->devid == devid &&
335 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
336 			return dev;
337 		}
338 	}
339 	return NULL;
340 }
341 
342 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
343 {
344 	struct btrfs_fs_devices *fs_devices;
345 
346 	list_for_each_entry(fs_devices, &fs_uuids, list) {
347 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
348 			return fs_devices;
349 	}
350 	return NULL;
351 }
352 
353 static int
354 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
355 		      int flush, struct block_device **bdev,
356 		      struct buffer_head **bh)
357 {
358 	int ret;
359 
360 	*bdev = blkdev_get_by_path(device_path, flags, holder);
361 
362 	if (IS_ERR(*bdev)) {
363 		ret = PTR_ERR(*bdev);
364 		goto error;
365 	}
366 
367 	if (flush)
368 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
369 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
370 	if (ret) {
371 		blkdev_put(*bdev, flags);
372 		goto error;
373 	}
374 	invalidate_bdev(*bdev);
375 	*bh = btrfs_read_dev_super(*bdev);
376 	if (IS_ERR(*bh)) {
377 		ret = PTR_ERR(*bh);
378 		blkdev_put(*bdev, flags);
379 		goto error;
380 	}
381 
382 	return 0;
383 
384 error:
385 	*bdev = NULL;
386 	*bh = NULL;
387 	return ret;
388 }
389 
390 static void requeue_list(struct btrfs_pending_bios *pending_bios,
391 			struct bio *head, struct bio *tail)
392 {
393 
394 	struct bio *old_head;
395 
396 	old_head = pending_bios->head;
397 	pending_bios->head = head;
398 	if (pending_bios->tail)
399 		tail->bi_next = old_head;
400 	else
401 		pending_bios->tail = tail;
402 }
403 
404 /*
405  * we try to collect pending bios for a device so we don't get a large
406  * number of procs sending bios down to the same device.  This greatly
407  * improves the schedulers ability to collect and merge the bios.
408  *
409  * But, it also turns into a long list of bios to process and that is sure
410  * to eventually make the worker thread block.  The solution here is to
411  * make some progress and then put this work struct back at the end of
412  * the list if the block device is congested.  This way, multiple devices
413  * can make progress from a single worker thread.
414  */
415 static noinline void run_scheduled_bios(struct btrfs_device *device)
416 {
417 	struct btrfs_fs_info *fs_info = device->fs_info;
418 	struct bio *pending;
419 	struct backing_dev_info *bdi;
420 	struct btrfs_pending_bios *pending_bios;
421 	struct bio *tail;
422 	struct bio *cur;
423 	int again = 0;
424 	unsigned long num_run;
425 	unsigned long batch_run = 0;
426 	unsigned long last_waited = 0;
427 	int force_reg = 0;
428 	int sync_pending = 0;
429 	struct blk_plug plug;
430 
431 	/*
432 	 * this function runs all the bios we've collected for
433 	 * a particular device.  We don't want to wander off to
434 	 * another device without first sending all of these down.
435 	 * So, setup a plug here and finish it off before we return
436 	 */
437 	blk_start_plug(&plug);
438 
439 	bdi = device->bdev->bd_bdi;
440 
441 loop:
442 	spin_lock(&device->io_lock);
443 
444 loop_lock:
445 	num_run = 0;
446 
447 	/* take all the bios off the list at once and process them
448 	 * later on (without the lock held).  But, remember the
449 	 * tail and other pointers so the bios can be properly reinserted
450 	 * into the list if we hit congestion
451 	 */
452 	if (!force_reg && device->pending_sync_bios.head) {
453 		pending_bios = &device->pending_sync_bios;
454 		force_reg = 1;
455 	} else {
456 		pending_bios = &device->pending_bios;
457 		force_reg = 0;
458 	}
459 
460 	pending = pending_bios->head;
461 	tail = pending_bios->tail;
462 	WARN_ON(pending && !tail);
463 
464 	/*
465 	 * if pending was null this time around, no bios need processing
466 	 * at all and we can stop.  Otherwise it'll loop back up again
467 	 * and do an additional check so no bios are missed.
468 	 *
469 	 * device->running_pending is used to synchronize with the
470 	 * schedule_bio code.
471 	 */
472 	if (device->pending_sync_bios.head == NULL &&
473 	    device->pending_bios.head == NULL) {
474 		again = 0;
475 		device->running_pending = 0;
476 	} else {
477 		again = 1;
478 		device->running_pending = 1;
479 	}
480 
481 	pending_bios->head = NULL;
482 	pending_bios->tail = NULL;
483 
484 	spin_unlock(&device->io_lock);
485 
486 	while (pending) {
487 
488 		rmb();
489 		/* we want to work on both lists, but do more bios on the
490 		 * sync list than the regular list
491 		 */
492 		if ((num_run > 32 &&
493 		    pending_bios != &device->pending_sync_bios &&
494 		    device->pending_sync_bios.head) ||
495 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
496 		    device->pending_bios.head)) {
497 			spin_lock(&device->io_lock);
498 			requeue_list(pending_bios, pending, tail);
499 			goto loop_lock;
500 		}
501 
502 		cur = pending;
503 		pending = pending->bi_next;
504 		cur->bi_next = NULL;
505 
506 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
507 
508 		/*
509 		 * if we're doing the sync list, record that our
510 		 * plug has some sync requests on it
511 		 *
512 		 * If we're doing the regular list and there are
513 		 * sync requests sitting around, unplug before
514 		 * we add more
515 		 */
516 		if (pending_bios == &device->pending_sync_bios) {
517 			sync_pending = 1;
518 		} else if (sync_pending) {
519 			blk_finish_plug(&plug);
520 			blk_start_plug(&plug);
521 			sync_pending = 0;
522 		}
523 
524 		btrfsic_submit_bio(cur);
525 		num_run++;
526 		batch_run++;
527 
528 		cond_resched();
529 
530 		/*
531 		 * we made progress, there is more work to do and the bdi
532 		 * is now congested.  Back off and let other work structs
533 		 * run instead
534 		 */
535 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
536 		    fs_info->fs_devices->open_devices > 1) {
537 			struct io_context *ioc;
538 
539 			ioc = current->io_context;
540 
541 			/*
542 			 * the main goal here is that we don't want to
543 			 * block if we're going to be able to submit
544 			 * more requests without blocking.
545 			 *
546 			 * This code does two great things, it pokes into
547 			 * the elevator code from a filesystem _and_
548 			 * it makes assumptions about how batching works.
549 			 */
550 			if (ioc && ioc->nr_batch_requests > 0 &&
551 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
552 			    (last_waited == 0 ||
553 			     ioc->last_waited == last_waited)) {
554 				/*
555 				 * we want to go through our batch of
556 				 * requests and stop.  So, we copy out
557 				 * the ioc->last_waited time and test
558 				 * against it before looping
559 				 */
560 				last_waited = ioc->last_waited;
561 				cond_resched();
562 				continue;
563 			}
564 			spin_lock(&device->io_lock);
565 			requeue_list(pending_bios, pending, tail);
566 			device->running_pending = 1;
567 
568 			spin_unlock(&device->io_lock);
569 			btrfs_queue_work(fs_info->submit_workers,
570 					 &device->work);
571 			goto done;
572 		}
573 	}
574 
575 	cond_resched();
576 	if (again)
577 		goto loop;
578 
579 	spin_lock(&device->io_lock);
580 	if (device->pending_bios.head || device->pending_sync_bios.head)
581 		goto loop_lock;
582 	spin_unlock(&device->io_lock);
583 
584 done:
585 	blk_finish_plug(&plug);
586 }
587 
588 static void pending_bios_fn(struct btrfs_work *work)
589 {
590 	struct btrfs_device *device;
591 
592 	device = container_of(work, struct btrfs_device, work);
593 	run_scheduled_bios(device);
594 }
595 
596 /*
597  *  Search and remove all stale (devices which are not mounted) devices.
598  *  When both inputs are NULL, it will search and release all stale devices.
599  *  path:	Optional. When provided will it release all unmounted devices
600  *		matching this path only.
601  *  skip_dev:	Optional. Will skip this device when searching for the stale
602  *		devices.
603  */
604 static void btrfs_free_stale_devices(const char *path,
605 				     struct btrfs_device *skip_dev)
606 {
607 	struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
608 	struct btrfs_device *dev, *tmp_dev;
609 
610 	list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
611 
612 		if (fs_devs->opened)
613 			continue;
614 
615 		list_for_each_entry_safe(dev, tmp_dev,
616 					 &fs_devs->devices, dev_list) {
617 			int not_found = 0;
618 
619 			if (skip_dev && skip_dev == dev)
620 				continue;
621 			if (path && !dev->name)
622 				continue;
623 
624 			rcu_read_lock();
625 			if (path)
626 				not_found = strcmp(rcu_str_deref(dev->name),
627 						   path);
628 			rcu_read_unlock();
629 			if (not_found)
630 				continue;
631 
632 			/* delete the stale device */
633 			if (fs_devs->num_devices == 1) {
634 				btrfs_sysfs_remove_fsid(fs_devs);
635 				list_del(&fs_devs->list);
636 				free_fs_devices(fs_devs);
637 				break;
638 			} else {
639 				fs_devs->num_devices--;
640 				list_del(&dev->dev_list);
641 				free_device(dev);
642 			}
643 		}
644 	}
645 }
646 
647 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
648 			struct btrfs_device *device, fmode_t flags,
649 			void *holder)
650 {
651 	struct request_queue *q;
652 	struct block_device *bdev;
653 	struct buffer_head *bh;
654 	struct btrfs_super_block *disk_super;
655 	u64 devid;
656 	int ret;
657 
658 	if (device->bdev)
659 		return -EINVAL;
660 	if (!device->name)
661 		return -EINVAL;
662 
663 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
664 				    &bdev, &bh);
665 	if (ret)
666 		return ret;
667 
668 	disk_super = (struct btrfs_super_block *)bh->b_data;
669 	devid = btrfs_stack_device_id(&disk_super->dev_item);
670 	if (devid != device->devid)
671 		goto error_brelse;
672 
673 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
674 		goto error_brelse;
675 
676 	device->generation = btrfs_super_generation(disk_super);
677 
678 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
679 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
680 		fs_devices->seeding = 1;
681 	} else {
682 		if (bdev_read_only(bdev))
683 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
684 		else
685 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 	}
687 
688 	q = bdev_get_queue(bdev);
689 	if (!blk_queue_nonrot(q))
690 		fs_devices->rotating = 1;
691 
692 	device->bdev = bdev;
693 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
694 	device->mode = flags;
695 
696 	fs_devices->open_devices++;
697 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
698 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
699 		fs_devices->rw_devices++;
700 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
701 	}
702 	brelse(bh);
703 
704 	return 0;
705 
706 error_brelse:
707 	brelse(bh);
708 	blkdev_put(bdev, flags);
709 
710 	return -EINVAL;
711 }
712 
713 /*
714  * Add new device to list of registered devices
715  *
716  * Returns:
717  * device pointer which was just added or updated when successful
718  * error pointer when failed
719  */
720 static noinline struct btrfs_device *device_list_add(const char *path,
721 			   struct btrfs_super_block *disk_super)
722 {
723 	struct btrfs_device *device;
724 	struct btrfs_fs_devices *fs_devices;
725 	struct rcu_string *name;
726 	u64 found_transid = btrfs_super_generation(disk_super);
727 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
728 
729 	fs_devices = find_fsid(disk_super->fsid);
730 	if (!fs_devices) {
731 		fs_devices = alloc_fs_devices(disk_super->fsid);
732 		if (IS_ERR(fs_devices))
733 			return ERR_CAST(fs_devices);
734 
735 		list_add(&fs_devices->list, &fs_uuids);
736 
737 		device = NULL;
738 	} else {
739 		device = find_device(fs_devices, devid,
740 				disk_super->dev_item.uuid);
741 	}
742 
743 	if (!device) {
744 		if (fs_devices->opened)
745 			return ERR_PTR(-EBUSY);
746 
747 		device = btrfs_alloc_device(NULL, &devid,
748 					    disk_super->dev_item.uuid);
749 		if (IS_ERR(device)) {
750 			/* we can safely leave the fs_devices entry around */
751 			return device;
752 		}
753 
754 		name = rcu_string_strdup(path, GFP_NOFS);
755 		if (!name) {
756 			free_device(device);
757 			return ERR_PTR(-ENOMEM);
758 		}
759 		rcu_assign_pointer(device->name, name);
760 
761 		mutex_lock(&fs_devices->device_list_mutex);
762 		list_add_rcu(&device->dev_list, &fs_devices->devices);
763 		fs_devices->num_devices++;
764 		mutex_unlock(&fs_devices->device_list_mutex);
765 
766 		device->fs_devices = fs_devices;
767 		btrfs_free_stale_devices(path, device);
768 
769 		if (disk_super->label[0])
770 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
771 				disk_super->label, devid, found_transid, path);
772 		else
773 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
774 				disk_super->fsid, devid, found_transid, path);
775 
776 	} else if (!device->name || strcmp(device->name->str, path)) {
777 		/*
778 		 * When FS is already mounted.
779 		 * 1. If you are here and if the device->name is NULL that
780 		 *    means this device was missing at time of FS mount.
781 		 * 2. If you are here and if the device->name is different
782 		 *    from 'path' that means either
783 		 *      a. The same device disappeared and reappeared with
784 		 *         different name. or
785 		 *      b. The missing-disk-which-was-replaced, has
786 		 *         reappeared now.
787 		 *
788 		 * We must allow 1 and 2a above. But 2b would be a spurious
789 		 * and unintentional.
790 		 *
791 		 * Further in case of 1 and 2a above, the disk at 'path'
792 		 * would have missed some transaction when it was away and
793 		 * in case of 2a the stale bdev has to be updated as well.
794 		 * 2b must not be allowed at all time.
795 		 */
796 
797 		/*
798 		 * For now, we do allow update to btrfs_fs_device through the
799 		 * btrfs dev scan cli after FS has been mounted.  We're still
800 		 * tracking a problem where systems fail mount by subvolume id
801 		 * when we reject replacement on a mounted FS.
802 		 */
803 		if (!fs_devices->opened && found_transid < device->generation) {
804 			/*
805 			 * That is if the FS is _not_ mounted and if you
806 			 * are here, that means there is more than one
807 			 * disk with same uuid and devid.We keep the one
808 			 * with larger generation number or the last-in if
809 			 * generation are equal.
810 			 */
811 			return ERR_PTR(-EEXIST);
812 		}
813 
814 		name = rcu_string_strdup(path, GFP_NOFS);
815 		if (!name)
816 			return ERR_PTR(-ENOMEM);
817 		rcu_string_free(device->name);
818 		rcu_assign_pointer(device->name, name);
819 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
820 			fs_devices->missing_devices--;
821 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
822 		}
823 	}
824 
825 	/*
826 	 * Unmount does not free the btrfs_device struct but would zero
827 	 * generation along with most of the other members. So just update
828 	 * it back. We need it to pick the disk with largest generation
829 	 * (as above).
830 	 */
831 	if (!fs_devices->opened)
832 		device->generation = found_transid;
833 
834 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
835 
836 	return device;
837 }
838 
839 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
840 {
841 	struct btrfs_fs_devices *fs_devices;
842 	struct btrfs_device *device;
843 	struct btrfs_device *orig_dev;
844 
845 	fs_devices = alloc_fs_devices(orig->fsid);
846 	if (IS_ERR(fs_devices))
847 		return fs_devices;
848 
849 	mutex_lock(&orig->device_list_mutex);
850 	fs_devices->total_devices = orig->total_devices;
851 
852 	/* We have held the volume lock, it is safe to get the devices. */
853 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
854 		struct rcu_string *name;
855 
856 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
857 					    orig_dev->uuid);
858 		if (IS_ERR(device))
859 			goto error;
860 
861 		/*
862 		 * This is ok to do without rcu read locked because we hold the
863 		 * uuid mutex so nothing we touch in here is going to disappear.
864 		 */
865 		if (orig_dev->name) {
866 			name = rcu_string_strdup(orig_dev->name->str,
867 					GFP_KERNEL);
868 			if (!name) {
869 				free_device(device);
870 				goto error;
871 			}
872 			rcu_assign_pointer(device->name, name);
873 		}
874 
875 		list_add(&device->dev_list, &fs_devices->devices);
876 		device->fs_devices = fs_devices;
877 		fs_devices->num_devices++;
878 	}
879 	mutex_unlock(&orig->device_list_mutex);
880 	return fs_devices;
881 error:
882 	mutex_unlock(&orig->device_list_mutex);
883 	free_fs_devices(fs_devices);
884 	return ERR_PTR(-ENOMEM);
885 }
886 
887 /*
888  * After we have read the system tree and know devids belonging to
889  * this filesystem, remove the device which does not belong there.
890  */
891 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
892 {
893 	struct btrfs_device *device, *next;
894 	struct btrfs_device *latest_dev = NULL;
895 
896 	mutex_lock(&uuid_mutex);
897 again:
898 	/* This is the initialized path, it is safe to release the devices. */
899 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
900 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
901 							&device->dev_state)) {
902 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
903 			     &device->dev_state) &&
904 			     (!latest_dev ||
905 			      device->generation > latest_dev->generation)) {
906 				latest_dev = device;
907 			}
908 			continue;
909 		}
910 
911 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
912 			/*
913 			 * In the first step, keep the device which has
914 			 * the correct fsid and the devid that is used
915 			 * for the dev_replace procedure.
916 			 * In the second step, the dev_replace state is
917 			 * read from the device tree and it is known
918 			 * whether the procedure is really active or
919 			 * not, which means whether this device is
920 			 * used or whether it should be removed.
921 			 */
922 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
923 						  &device->dev_state)) {
924 				continue;
925 			}
926 		}
927 		if (device->bdev) {
928 			blkdev_put(device->bdev, device->mode);
929 			device->bdev = NULL;
930 			fs_devices->open_devices--;
931 		}
932 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
933 			list_del_init(&device->dev_alloc_list);
934 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
935 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
936 				      &device->dev_state))
937 				fs_devices->rw_devices--;
938 		}
939 		list_del_init(&device->dev_list);
940 		fs_devices->num_devices--;
941 		free_device(device);
942 	}
943 
944 	if (fs_devices->seed) {
945 		fs_devices = fs_devices->seed;
946 		goto again;
947 	}
948 
949 	fs_devices->latest_bdev = latest_dev->bdev;
950 
951 	mutex_unlock(&uuid_mutex);
952 }
953 
954 static void free_device_rcu(struct rcu_head *head)
955 {
956 	struct btrfs_device *device;
957 
958 	device = container_of(head, struct btrfs_device, rcu);
959 	free_device(device);
960 }
961 
962 static void btrfs_close_bdev(struct btrfs_device *device)
963 {
964 	if (!device->bdev)
965 		return;
966 
967 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
968 		sync_blockdev(device->bdev);
969 		invalidate_bdev(device->bdev);
970 	}
971 
972 	blkdev_put(device->bdev, device->mode);
973 }
974 
975 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
976 {
977 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
978 	struct btrfs_device *new_device;
979 	struct rcu_string *name;
980 
981 	if (device->bdev)
982 		fs_devices->open_devices--;
983 
984 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
985 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
986 		list_del_init(&device->dev_alloc_list);
987 		fs_devices->rw_devices--;
988 	}
989 
990 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
991 		fs_devices->missing_devices--;
992 
993 	new_device = btrfs_alloc_device(NULL, &device->devid,
994 					device->uuid);
995 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
996 
997 	/* Safe because we are under uuid_mutex */
998 	if (device->name) {
999 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1000 		BUG_ON(!name); /* -ENOMEM */
1001 		rcu_assign_pointer(new_device->name, name);
1002 	}
1003 
1004 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1005 	new_device->fs_devices = device->fs_devices;
1006 }
1007 
1008 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1009 {
1010 	struct btrfs_device *device, *tmp;
1011 	struct list_head pending_put;
1012 
1013 	INIT_LIST_HEAD(&pending_put);
1014 
1015 	if (--fs_devices->opened > 0)
1016 		return 0;
1017 
1018 	mutex_lock(&fs_devices->device_list_mutex);
1019 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1020 		btrfs_prepare_close_one_device(device);
1021 		list_add(&device->dev_list, &pending_put);
1022 	}
1023 	mutex_unlock(&fs_devices->device_list_mutex);
1024 
1025 	/*
1026 	 * btrfs_show_devname() is using the device_list_mutex,
1027 	 * sometimes call to blkdev_put() leads vfs calling
1028 	 * into this func. So do put outside of device_list_mutex,
1029 	 * as of now.
1030 	 */
1031 	while (!list_empty(&pending_put)) {
1032 		device = list_first_entry(&pending_put,
1033 				struct btrfs_device, dev_list);
1034 		list_del(&device->dev_list);
1035 		btrfs_close_bdev(device);
1036 		call_rcu(&device->rcu, free_device_rcu);
1037 	}
1038 
1039 	WARN_ON(fs_devices->open_devices);
1040 	WARN_ON(fs_devices->rw_devices);
1041 	fs_devices->opened = 0;
1042 	fs_devices->seeding = 0;
1043 
1044 	return 0;
1045 }
1046 
1047 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1048 {
1049 	struct btrfs_fs_devices *seed_devices = NULL;
1050 	int ret;
1051 
1052 	mutex_lock(&uuid_mutex);
1053 	ret = __btrfs_close_devices(fs_devices);
1054 	if (!fs_devices->opened) {
1055 		seed_devices = fs_devices->seed;
1056 		fs_devices->seed = NULL;
1057 	}
1058 	mutex_unlock(&uuid_mutex);
1059 
1060 	while (seed_devices) {
1061 		fs_devices = seed_devices;
1062 		seed_devices = fs_devices->seed;
1063 		__btrfs_close_devices(fs_devices);
1064 		free_fs_devices(fs_devices);
1065 	}
1066 	return ret;
1067 }
1068 
1069 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1070 				fmode_t flags, void *holder)
1071 {
1072 	struct list_head *head = &fs_devices->devices;
1073 	struct btrfs_device *device;
1074 	struct btrfs_device *latest_dev = NULL;
1075 	int ret = 0;
1076 
1077 	flags |= FMODE_EXCL;
1078 
1079 	list_for_each_entry(device, head, dev_list) {
1080 		/* Just open everything we can; ignore failures here */
1081 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1082 			continue;
1083 
1084 		if (!latest_dev ||
1085 		    device->generation > latest_dev->generation)
1086 			latest_dev = device;
1087 	}
1088 	if (fs_devices->open_devices == 0) {
1089 		ret = -EINVAL;
1090 		goto out;
1091 	}
1092 	fs_devices->opened = 1;
1093 	fs_devices->latest_bdev = latest_dev->bdev;
1094 	fs_devices->total_rw_bytes = 0;
1095 out:
1096 	return ret;
1097 }
1098 
1099 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1100 {
1101 	struct btrfs_device *dev1, *dev2;
1102 
1103 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1104 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1105 
1106 	if (dev1->devid < dev2->devid)
1107 		return -1;
1108 	else if (dev1->devid > dev2->devid)
1109 		return 1;
1110 	return 0;
1111 }
1112 
1113 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1114 		       fmode_t flags, void *holder)
1115 {
1116 	int ret;
1117 
1118 	mutex_lock(&uuid_mutex);
1119 	if (fs_devices->opened) {
1120 		fs_devices->opened++;
1121 		ret = 0;
1122 	} else {
1123 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1124 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1125 	}
1126 	mutex_unlock(&uuid_mutex);
1127 	return ret;
1128 }
1129 
1130 static void btrfs_release_disk_super(struct page *page)
1131 {
1132 	kunmap(page);
1133 	put_page(page);
1134 }
1135 
1136 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1137 				 struct page **page,
1138 				 struct btrfs_super_block **disk_super)
1139 {
1140 	void *p;
1141 	pgoff_t index;
1142 
1143 	/* make sure our super fits in the device */
1144 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1145 		return 1;
1146 
1147 	/* make sure our super fits in the page */
1148 	if (sizeof(**disk_super) > PAGE_SIZE)
1149 		return 1;
1150 
1151 	/* make sure our super doesn't straddle pages on disk */
1152 	index = bytenr >> PAGE_SHIFT;
1153 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1154 		return 1;
1155 
1156 	/* pull in the page with our super */
1157 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1158 				   index, GFP_KERNEL);
1159 
1160 	if (IS_ERR_OR_NULL(*page))
1161 		return 1;
1162 
1163 	p = kmap(*page);
1164 
1165 	/* align our pointer to the offset of the super block */
1166 	*disk_super = p + (bytenr & ~PAGE_MASK);
1167 
1168 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1169 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1170 		btrfs_release_disk_super(*page);
1171 		return 1;
1172 	}
1173 
1174 	if ((*disk_super)->label[0] &&
1175 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1176 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1177 
1178 	return 0;
1179 }
1180 
1181 /*
1182  * Look for a btrfs signature on a device. This may be called out of the mount path
1183  * and we are not allowed to call set_blocksize during the scan. The superblock
1184  * is read via pagecache
1185  */
1186 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1187 			  struct btrfs_fs_devices **fs_devices_ret)
1188 {
1189 	struct btrfs_super_block *disk_super;
1190 	struct btrfs_device *device;
1191 	struct block_device *bdev;
1192 	struct page *page;
1193 	int ret = 0;
1194 	u64 bytenr;
1195 
1196 	/*
1197 	 * we would like to check all the supers, but that would make
1198 	 * a btrfs mount succeed after a mkfs from a different FS.
1199 	 * So, we need to add a special mount option to scan for
1200 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1201 	 */
1202 	bytenr = btrfs_sb_offset(0);
1203 	flags |= FMODE_EXCL;
1204 	mutex_lock(&uuid_mutex);
1205 
1206 	bdev = blkdev_get_by_path(path, flags, holder);
1207 	if (IS_ERR(bdev)) {
1208 		ret = PTR_ERR(bdev);
1209 		goto error;
1210 	}
1211 
1212 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1213 		ret = -EINVAL;
1214 		goto error_bdev_put;
1215 	}
1216 
1217 	device = device_list_add(path, disk_super);
1218 	if (IS_ERR(device))
1219 		ret = PTR_ERR(device);
1220 	else
1221 		*fs_devices_ret = device->fs_devices;
1222 
1223 	btrfs_release_disk_super(page);
1224 
1225 error_bdev_put:
1226 	blkdev_put(bdev, flags);
1227 error:
1228 	mutex_unlock(&uuid_mutex);
1229 	return ret;
1230 }
1231 
1232 /* helper to account the used device space in the range */
1233 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1234 				   u64 end, u64 *length)
1235 {
1236 	struct btrfs_key key;
1237 	struct btrfs_root *root = device->fs_info->dev_root;
1238 	struct btrfs_dev_extent *dev_extent;
1239 	struct btrfs_path *path;
1240 	u64 extent_end;
1241 	int ret;
1242 	int slot;
1243 	struct extent_buffer *l;
1244 
1245 	*length = 0;
1246 
1247 	if (start >= device->total_bytes ||
1248 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1249 		return 0;
1250 
1251 	path = btrfs_alloc_path();
1252 	if (!path)
1253 		return -ENOMEM;
1254 	path->reada = READA_FORWARD;
1255 
1256 	key.objectid = device->devid;
1257 	key.offset = start;
1258 	key.type = BTRFS_DEV_EXTENT_KEY;
1259 
1260 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1261 	if (ret < 0)
1262 		goto out;
1263 	if (ret > 0) {
1264 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1265 		if (ret < 0)
1266 			goto out;
1267 	}
1268 
1269 	while (1) {
1270 		l = path->nodes[0];
1271 		slot = path->slots[0];
1272 		if (slot >= btrfs_header_nritems(l)) {
1273 			ret = btrfs_next_leaf(root, path);
1274 			if (ret == 0)
1275 				continue;
1276 			if (ret < 0)
1277 				goto out;
1278 
1279 			break;
1280 		}
1281 		btrfs_item_key_to_cpu(l, &key, slot);
1282 
1283 		if (key.objectid < device->devid)
1284 			goto next;
1285 
1286 		if (key.objectid > device->devid)
1287 			break;
1288 
1289 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1290 			goto next;
1291 
1292 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1293 		extent_end = key.offset + btrfs_dev_extent_length(l,
1294 								  dev_extent);
1295 		if (key.offset <= start && extent_end > end) {
1296 			*length = end - start + 1;
1297 			break;
1298 		} else if (key.offset <= start && extent_end > start)
1299 			*length += extent_end - start;
1300 		else if (key.offset > start && extent_end <= end)
1301 			*length += extent_end - key.offset;
1302 		else if (key.offset > start && key.offset <= end) {
1303 			*length += end - key.offset + 1;
1304 			break;
1305 		} else if (key.offset > end)
1306 			break;
1307 
1308 next:
1309 		path->slots[0]++;
1310 	}
1311 	ret = 0;
1312 out:
1313 	btrfs_free_path(path);
1314 	return ret;
1315 }
1316 
1317 static int contains_pending_extent(struct btrfs_transaction *transaction,
1318 				   struct btrfs_device *device,
1319 				   u64 *start, u64 len)
1320 {
1321 	struct btrfs_fs_info *fs_info = device->fs_info;
1322 	struct extent_map *em;
1323 	struct list_head *search_list = &fs_info->pinned_chunks;
1324 	int ret = 0;
1325 	u64 physical_start = *start;
1326 
1327 	if (transaction)
1328 		search_list = &transaction->pending_chunks;
1329 again:
1330 	list_for_each_entry(em, search_list, list) {
1331 		struct map_lookup *map;
1332 		int i;
1333 
1334 		map = em->map_lookup;
1335 		for (i = 0; i < map->num_stripes; i++) {
1336 			u64 end;
1337 
1338 			if (map->stripes[i].dev != device)
1339 				continue;
1340 			if (map->stripes[i].physical >= physical_start + len ||
1341 			    map->stripes[i].physical + em->orig_block_len <=
1342 			    physical_start)
1343 				continue;
1344 			/*
1345 			 * Make sure that while processing the pinned list we do
1346 			 * not override our *start with a lower value, because
1347 			 * we can have pinned chunks that fall within this
1348 			 * device hole and that have lower physical addresses
1349 			 * than the pending chunks we processed before. If we
1350 			 * do not take this special care we can end up getting
1351 			 * 2 pending chunks that start at the same physical
1352 			 * device offsets because the end offset of a pinned
1353 			 * chunk can be equal to the start offset of some
1354 			 * pending chunk.
1355 			 */
1356 			end = map->stripes[i].physical + em->orig_block_len;
1357 			if (end > *start) {
1358 				*start = end;
1359 				ret = 1;
1360 			}
1361 		}
1362 	}
1363 	if (search_list != &fs_info->pinned_chunks) {
1364 		search_list = &fs_info->pinned_chunks;
1365 		goto again;
1366 	}
1367 
1368 	return ret;
1369 }
1370 
1371 
1372 /*
1373  * find_free_dev_extent_start - find free space in the specified device
1374  * @device:	  the device which we search the free space in
1375  * @num_bytes:	  the size of the free space that we need
1376  * @search_start: the position from which to begin the search
1377  * @start:	  store the start of the free space.
1378  * @len:	  the size of the free space. that we find, or the size
1379  *		  of the max free space if we don't find suitable free space
1380  *
1381  * this uses a pretty simple search, the expectation is that it is
1382  * called very infrequently and that a given device has a small number
1383  * of extents
1384  *
1385  * @start is used to store the start of the free space if we find. But if we
1386  * don't find suitable free space, it will be used to store the start position
1387  * of the max free space.
1388  *
1389  * @len is used to store the size of the free space that we find.
1390  * But if we don't find suitable free space, it is used to store the size of
1391  * the max free space.
1392  */
1393 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1394 			       struct btrfs_device *device, u64 num_bytes,
1395 			       u64 search_start, u64 *start, u64 *len)
1396 {
1397 	struct btrfs_fs_info *fs_info = device->fs_info;
1398 	struct btrfs_root *root = fs_info->dev_root;
1399 	struct btrfs_key key;
1400 	struct btrfs_dev_extent *dev_extent;
1401 	struct btrfs_path *path;
1402 	u64 hole_size;
1403 	u64 max_hole_start;
1404 	u64 max_hole_size;
1405 	u64 extent_end;
1406 	u64 search_end = device->total_bytes;
1407 	int ret;
1408 	int slot;
1409 	struct extent_buffer *l;
1410 
1411 	/*
1412 	 * We don't want to overwrite the superblock on the drive nor any area
1413 	 * used by the boot loader (grub for example), so we make sure to start
1414 	 * at an offset of at least 1MB.
1415 	 */
1416 	search_start = max_t(u64, search_start, SZ_1M);
1417 
1418 	path = btrfs_alloc_path();
1419 	if (!path)
1420 		return -ENOMEM;
1421 
1422 	max_hole_start = search_start;
1423 	max_hole_size = 0;
1424 
1425 again:
1426 	if (search_start >= search_end ||
1427 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1428 		ret = -ENOSPC;
1429 		goto out;
1430 	}
1431 
1432 	path->reada = READA_FORWARD;
1433 	path->search_commit_root = 1;
1434 	path->skip_locking = 1;
1435 
1436 	key.objectid = device->devid;
1437 	key.offset = search_start;
1438 	key.type = BTRFS_DEV_EXTENT_KEY;
1439 
1440 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1441 	if (ret < 0)
1442 		goto out;
1443 	if (ret > 0) {
1444 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1445 		if (ret < 0)
1446 			goto out;
1447 	}
1448 
1449 	while (1) {
1450 		l = path->nodes[0];
1451 		slot = path->slots[0];
1452 		if (slot >= btrfs_header_nritems(l)) {
1453 			ret = btrfs_next_leaf(root, path);
1454 			if (ret == 0)
1455 				continue;
1456 			if (ret < 0)
1457 				goto out;
1458 
1459 			break;
1460 		}
1461 		btrfs_item_key_to_cpu(l, &key, slot);
1462 
1463 		if (key.objectid < device->devid)
1464 			goto next;
1465 
1466 		if (key.objectid > device->devid)
1467 			break;
1468 
1469 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1470 			goto next;
1471 
1472 		if (key.offset > search_start) {
1473 			hole_size = key.offset - search_start;
1474 
1475 			/*
1476 			 * Have to check before we set max_hole_start, otherwise
1477 			 * we could end up sending back this offset anyway.
1478 			 */
1479 			if (contains_pending_extent(transaction, device,
1480 						    &search_start,
1481 						    hole_size)) {
1482 				if (key.offset >= search_start) {
1483 					hole_size = key.offset - search_start;
1484 				} else {
1485 					WARN_ON_ONCE(1);
1486 					hole_size = 0;
1487 				}
1488 			}
1489 
1490 			if (hole_size > max_hole_size) {
1491 				max_hole_start = search_start;
1492 				max_hole_size = hole_size;
1493 			}
1494 
1495 			/*
1496 			 * If this free space is greater than which we need,
1497 			 * it must be the max free space that we have found
1498 			 * until now, so max_hole_start must point to the start
1499 			 * of this free space and the length of this free space
1500 			 * is stored in max_hole_size. Thus, we return
1501 			 * max_hole_start and max_hole_size and go back to the
1502 			 * caller.
1503 			 */
1504 			if (hole_size >= num_bytes) {
1505 				ret = 0;
1506 				goto out;
1507 			}
1508 		}
1509 
1510 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1511 		extent_end = key.offset + btrfs_dev_extent_length(l,
1512 								  dev_extent);
1513 		if (extent_end > search_start)
1514 			search_start = extent_end;
1515 next:
1516 		path->slots[0]++;
1517 		cond_resched();
1518 	}
1519 
1520 	/*
1521 	 * At this point, search_start should be the end of
1522 	 * allocated dev extents, and when shrinking the device,
1523 	 * search_end may be smaller than search_start.
1524 	 */
1525 	if (search_end > search_start) {
1526 		hole_size = search_end - search_start;
1527 
1528 		if (contains_pending_extent(transaction, device, &search_start,
1529 					    hole_size)) {
1530 			btrfs_release_path(path);
1531 			goto again;
1532 		}
1533 
1534 		if (hole_size > max_hole_size) {
1535 			max_hole_start = search_start;
1536 			max_hole_size = hole_size;
1537 		}
1538 	}
1539 
1540 	/* See above. */
1541 	if (max_hole_size < num_bytes)
1542 		ret = -ENOSPC;
1543 	else
1544 		ret = 0;
1545 
1546 out:
1547 	btrfs_free_path(path);
1548 	*start = max_hole_start;
1549 	if (len)
1550 		*len = max_hole_size;
1551 	return ret;
1552 }
1553 
1554 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1555 			 struct btrfs_device *device, u64 num_bytes,
1556 			 u64 *start, u64 *len)
1557 {
1558 	/* FIXME use last free of some kind */
1559 	return find_free_dev_extent_start(trans->transaction, device,
1560 					  num_bytes, 0, start, len);
1561 }
1562 
1563 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1564 			  struct btrfs_device *device,
1565 			  u64 start, u64 *dev_extent_len)
1566 {
1567 	struct btrfs_fs_info *fs_info = device->fs_info;
1568 	struct btrfs_root *root = fs_info->dev_root;
1569 	int ret;
1570 	struct btrfs_path *path;
1571 	struct btrfs_key key;
1572 	struct btrfs_key found_key;
1573 	struct extent_buffer *leaf = NULL;
1574 	struct btrfs_dev_extent *extent = NULL;
1575 
1576 	path = btrfs_alloc_path();
1577 	if (!path)
1578 		return -ENOMEM;
1579 
1580 	key.objectid = device->devid;
1581 	key.offset = start;
1582 	key.type = BTRFS_DEV_EXTENT_KEY;
1583 again:
1584 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1585 	if (ret > 0) {
1586 		ret = btrfs_previous_item(root, path, key.objectid,
1587 					  BTRFS_DEV_EXTENT_KEY);
1588 		if (ret)
1589 			goto out;
1590 		leaf = path->nodes[0];
1591 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1592 		extent = btrfs_item_ptr(leaf, path->slots[0],
1593 					struct btrfs_dev_extent);
1594 		BUG_ON(found_key.offset > start || found_key.offset +
1595 		       btrfs_dev_extent_length(leaf, extent) < start);
1596 		key = found_key;
1597 		btrfs_release_path(path);
1598 		goto again;
1599 	} else if (ret == 0) {
1600 		leaf = path->nodes[0];
1601 		extent = btrfs_item_ptr(leaf, path->slots[0],
1602 					struct btrfs_dev_extent);
1603 	} else {
1604 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1605 		goto out;
1606 	}
1607 
1608 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1609 
1610 	ret = btrfs_del_item(trans, root, path);
1611 	if (ret) {
1612 		btrfs_handle_fs_error(fs_info, ret,
1613 				      "Failed to remove dev extent item");
1614 	} else {
1615 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1616 	}
1617 out:
1618 	btrfs_free_path(path);
1619 	return ret;
1620 }
1621 
1622 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1623 				  struct btrfs_device *device,
1624 				  u64 chunk_offset, u64 start, u64 num_bytes)
1625 {
1626 	int ret;
1627 	struct btrfs_path *path;
1628 	struct btrfs_fs_info *fs_info = device->fs_info;
1629 	struct btrfs_root *root = fs_info->dev_root;
1630 	struct btrfs_dev_extent *extent;
1631 	struct extent_buffer *leaf;
1632 	struct btrfs_key key;
1633 
1634 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1635 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1636 	path = btrfs_alloc_path();
1637 	if (!path)
1638 		return -ENOMEM;
1639 
1640 	key.objectid = device->devid;
1641 	key.offset = start;
1642 	key.type = BTRFS_DEV_EXTENT_KEY;
1643 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1644 				      sizeof(*extent));
1645 	if (ret)
1646 		goto out;
1647 
1648 	leaf = path->nodes[0];
1649 	extent = btrfs_item_ptr(leaf, path->slots[0],
1650 				struct btrfs_dev_extent);
1651 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1652 					BTRFS_CHUNK_TREE_OBJECTID);
1653 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1654 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1655 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1656 
1657 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1658 	btrfs_mark_buffer_dirty(leaf);
1659 out:
1660 	btrfs_free_path(path);
1661 	return ret;
1662 }
1663 
1664 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1665 {
1666 	struct extent_map_tree *em_tree;
1667 	struct extent_map *em;
1668 	struct rb_node *n;
1669 	u64 ret = 0;
1670 
1671 	em_tree = &fs_info->mapping_tree.map_tree;
1672 	read_lock(&em_tree->lock);
1673 	n = rb_last(&em_tree->map);
1674 	if (n) {
1675 		em = rb_entry(n, struct extent_map, rb_node);
1676 		ret = em->start + em->len;
1677 	}
1678 	read_unlock(&em_tree->lock);
1679 
1680 	return ret;
1681 }
1682 
1683 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1684 				    u64 *devid_ret)
1685 {
1686 	int ret;
1687 	struct btrfs_key key;
1688 	struct btrfs_key found_key;
1689 	struct btrfs_path *path;
1690 
1691 	path = btrfs_alloc_path();
1692 	if (!path)
1693 		return -ENOMEM;
1694 
1695 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1696 	key.type = BTRFS_DEV_ITEM_KEY;
1697 	key.offset = (u64)-1;
1698 
1699 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1700 	if (ret < 0)
1701 		goto error;
1702 
1703 	BUG_ON(ret == 0); /* Corruption */
1704 
1705 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1706 				  BTRFS_DEV_ITEMS_OBJECTID,
1707 				  BTRFS_DEV_ITEM_KEY);
1708 	if (ret) {
1709 		*devid_ret = 1;
1710 	} else {
1711 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1712 				      path->slots[0]);
1713 		*devid_ret = found_key.offset + 1;
1714 	}
1715 	ret = 0;
1716 error:
1717 	btrfs_free_path(path);
1718 	return ret;
1719 }
1720 
1721 /*
1722  * the device information is stored in the chunk root
1723  * the btrfs_device struct should be fully filled in
1724  */
1725 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1726 			    struct btrfs_fs_info *fs_info,
1727 			    struct btrfs_device *device)
1728 {
1729 	struct btrfs_root *root = fs_info->chunk_root;
1730 	int ret;
1731 	struct btrfs_path *path;
1732 	struct btrfs_dev_item *dev_item;
1733 	struct extent_buffer *leaf;
1734 	struct btrfs_key key;
1735 	unsigned long ptr;
1736 
1737 	path = btrfs_alloc_path();
1738 	if (!path)
1739 		return -ENOMEM;
1740 
1741 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1742 	key.type = BTRFS_DEV_ITEM_KEY;
1743 	key.offset = device->devid;
1744 
1745 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1746 				      sizeof(*dev_item));
1747 	if (ret)
1748 		goto out;
1749 
1750 	leaf = path->nodes[0];
1751 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1752 
1753 	btrfs_set_device_id(leaf, dev_item, device->devid);
1754 	btrfs_set_device_generation(leaf, dev_item, 0);
1755 	btrfs_set_device_type(leaf, dev_item, device->type);
1756 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1757 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1758 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1759 	btrfs_set_device_total_bytes(leaf, dev_item,
1760 				     btrfs_device_get_disk_total_bytes(device));
1761 	btrfs_set_device_bytes_used(leaf, dev_item,
1762 				    btrfs_device_get_bytes_used(device));
1763 	btrfs_set_device_group(leaf, dev_item, 0);
1764 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1765 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1766 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1767 
1768 	ptr = btrfs_device_uuid(dev_item);
1769 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1770 	ptr = btrfs_device_fsid(dev_item);
1771 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1772 	btrfs_mark_buffer_dirty(leaf);
1773 
1774 	ret = 0;
1775 out:
1776 	btrfs_free_path(path);
1777 	return ret;
1778 }
1779 
1780 /*
1781  * Function to update ctime/mtime for a given device path.
1782  * Mainly used for ctime/mtime based probe like libblkid.
1783  */
1784 static void update_dev_time(const char *path_name)
1785 {
1786 	struct file *filp;
1787 
1788 	filp = filp_open(path_name, O_RDWR, 0);
1789 	if (IS_ERR(filp))
1790 		return;
1791 	file_update_time(filp);
1792 	filp_close(filp, NULL);
1793 }
1794 
1795 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1796 			     struct btrfs_device *device)
1797 {
1798 	struct btrfs_root *root = fs_info->chunk_root;
1799 	int ret;
1800 	struct btrfs_path *path;
1801 	struct btrfs_key key;
1802 	struct btrfs_trans_handle *trans;
1803 
1804 	path = btrfs_alloc_path();
1805 	if (!path)
1806 		return -ENOMEM;
1807 
1808 	trans = btrfs_start_transaction(root, 0);
1809 	if (IS_ERR(trans)) {
1810 		btrfs_free_path(path);
1811 		return PTR_ERR(trans);
1812 	}
1813 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1814 	key.type = BTRFS_DEV_ITEM_KEY;
1815 	key.offset = device->devid;
1816 
1817 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1818 	if (ret) {
1819 		if (ret > 0)
1820 			ret = -ENOENT;
1821 		btrfs_abort_transaction(trans, ret);
1822 		btrfs_end_transaction(trans);
1823 		goto out;
1824 	}
1825 
1826 	ret = btrfs_del_item(trans, root, path);
1827 	if (ret) {
1828 		btrfs_abort_transaction(trans, ret);
1829 		btrfs_end_transaction(trans);
1830 	}
1831 
1832 out:
1833 	btrfs_free_path(path);
1834 	if (!ret)
1835 		ret = btrfs_commit_transaction(trans);
1836 	return ret;
1837 }
1838 
1839 /*
1840  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1841  * filesystem. It's up to the caller to adjust that number regarding eg. device
1842  * replace.
1843  */
1844 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1845 		u64 num_devices)
1846 {
1847 	u64 all_avail;
1848 	unsigned seq;
1849 	int i;
1850 
1851 	do {
1852 		seq = read_seqbegin(&fs_info->profiles_lock);
1853 
1854 		all_avail = fs_info->avail_data_alloc_bits |
1855 			    fs_info->avail_system_alloc_bits |
1856 			    fs_info->avail_metadata_alloc_bits;
1857 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1858 
1859 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1860 		if (!(all_avail & btrfs_raid_group[i]))
1861 			continue;
1862 
1863 		if (num_devices < btrfs_raid_array[i].devs_min) {
1864 			int ret = btrfs_raid_mindev_error[i];
1865 
1866 			if (ret)
1867 				return ret;
1868 		}
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 static struct btrfs_device * btrfs_find_next_active_device(
1875 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1876 {
1877 	struct btrfs_device *next_device;
1878 
1879 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1880 		if (next_device != device &&
1881 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1882 		    && next_device->bdev)
1883 			return next_device;
1884 	}
1885 
1886 	return NULL;
1887 }
1888 
1889 /*
1890  * Helper function to check if the given device is part of s_bdev / latest_bdev
1891  * and replace it with the provided or the next active device, in the context
1892  * where this function called, there should be always be another device (or
1893  * this_dev) which is active.
1894  */
1895 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1896 		struct btrfs_device *device, struct btrfs_device *this_dev)
1897 {
1898 	struct btrfs_device *next_device;
1899 
1900 	if (this_dev)
1901 		next_device = this_dev;
1902 	else
1903 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1904 								device);
1905 	ASSERT(next_device);
1906 
1907 	if (fs_info->sb->s_bdev &&
1908 			(fs_info->sb->s_bdev == device->bdev))
1909 		fs_info->sb->s_bdev = next_device->bdev;
1910 
1911 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1912 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1913 }
1914 
1915 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1916 		u64 devid)
1917 {
1918 	struct btrfs_device *device;
1919 	struct btrfs_fs_devices *cur_devices;
1920 	u64 num_devices;
1921 	int ret = 0;
1922 
1923 	mutex_lock(&fs_info->volume_mutex);
1924 	mutex_lock(&uuid_mutex);
1925 
1926 	num_devices = fs_info->fs_devices->num_devices;
1927 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1928 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1929 		WARN_ON(num_devices < 1);
1930 		num_devices--;
1931 	}
1932 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1933 
1934 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1935 	if (ret)
1936 		goto out;
1937 
1938 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1939 					   &device);
1940 	if (ret)
1941 		goto out;
1942 
1943 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1944 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1945 		goto out;
1946 	}
1947 
1948 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1949 	    fs_info->fs_devices->rw_devices == 1) {
1950 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1951 		goto out;
1952 	}
1953 
1954 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1955 		mutex_lock(&fs_info->chunk_mutex);
1956 		list_del_init(&device->dev_alloc_list);
1957 		device->fs_devices->rw_devices--;
1958 		mutex_unlock(&fs_info->chunk_mutex);
1959 	}
1960 
1961 	mutex_unlock(&uuid_mutex);
1962 	ret = btrfs_shrink_device(device, 0);
1963 	mutex_lock(&uuid_mutex);
1964 	if (ret)
1965 		goto error_undo;
1966 
1967 	/*
1968 	 * TODO: the superblock still includes this device in its num_devices
1969 	 * counter although write_all_supers() is not locked out. This
1970 	 * could give a filesystem state which requires a degraded mount.
1971 	 */
1972 	ret = btrfs_rm_dev_item(fs_info, device);
1973 	if (ret)
1974 		goto error_undo;
1975 
1976 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1977 	btrfs_scrub_cancel_dev(fs_info, device);
1978 
1979 	/*
1980 	 * the device list mutex makes sure that we don't change
1981 	 * the device list while someone else is writing out all
1982 	 * the device supers. Whoever is writing all supers, should
1983 	 * lock the device list mutex before getting the number of
1984 	 * devices in the super block (super_copy). Conversely,
1985 	 * whoever updates the number of devices in the super block
1986 	 * (super_copy) should hold the device list mutex.
1987 	 */
1988 
1989 	cur_devices = device->fs_devices;
1990 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1991 	list_del_rcu(&device->dev_list);
1992 
1993 	device->fs_devices->num_devices--;
1994 	device->fs_devices->total_devices--;
1995 
1996 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1997 		device->fs_devices->missing_devices--;
1998 
1999 	btrfs_assign_next_active_device(fs_info, device, NULL);
2000 
2001 	if (device->bdev) {
2002 		device->fs_devices->open_devices--;
2003 		/* remove sysfs entry */
2004 		btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2005 	}
2006 
2007 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2008 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2009 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2010 
2011 	/*
2012 	 * at this point, the device is zero sized and detached from
2013 	 * the devices list.  All that's left is to zero out the old
2014 	 * supers and free the device.
2015 	 */
2016 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2017 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2018 
2019 	btrfs_close_bdev(device);
2020 	call_rcu(&device->rcu, free_device_rcu);
2021 
2022 	if (cur_devices->open_devices == 0) {
2023 		struct btrfs_fs_devices *fs_devices;
2024 		fs_devices = fs_info->fs_devices;
2025 		while (fs_devices) {
2026 			if (fs_devices->seed == cur_devices) {
2027 				fs_devices->seed = cur_devices->seed;
2028 				break;
2029 			}
2030 			fs_devices = fs_devices->seed;
2031 		}
2032 		cur_devices->seed = NULL;
2033 		__btrfs_close_devices(cur_devices);
2034 		free_fs_devices(cur_devices);
2035 	}
2036 
2037 out:
2038 	mutex_unlock(&uuid_mutex);
2039 	mutex_unlock(&fs_info->volume_mutex);
2040 	return ret;
2041 
2042 error_undo:
2043 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2044 		mutex_lock(&fs_info->chunk_mutex);
2045 		list_add(&device->dev_alloc_list,
2046 			 &fs_info->fs_devices->alloc_list);
2047 		device->fs_devices->rw_devices++;
2048 		mutex_unlock(&fs_info->chunk_mutex);
2049 	}
2050 	goto out;
2051 }
2052 
2053 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2054 					struct btrfs_device *srcdev)
2055 {
2056 	struct btrfs_fs_devices *fs_devices;
2057 
2058 	lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2059 
2060 	/*
2061 	 * in case of fs with no seed, srcdev->fs_devices will point
2062 	 * to fs_devices of fs_info. However when the dev being replaced is
2063 	 * a seed dev it will point to the seed's local fs_devices. In short
2064 	 * srcdev will have its correct fs_devices in both the cases.
2065 	 */
2066 	fs_devices = srcdev->fs_devices;
2067 
2068 	list_del_rcu(&srcdev->dev_list);
2069 	list_del(&srcdev->dev_alloc_list);
2070 	fs_devices->num_devices--;
2071 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2072 		fs_devices->missing_devices--;
2073 
2074 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2075 		fs_devices->rw_devices--;
2076 
2077 	if (srcdev->bdev)
2078 		fs_devices->open_devices--;
2079 }
2080 
2081 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2082 				      struct btrfs_device *srcdev)
2083 {
2084 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2085 
2086 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2087 		/* zero out the old super if it is writable */
2088 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2089 	}
2090 
2091 	btrfs_close_bdev(srcdev);
2092 	call_rcu(&srcdev->rcu, free_device_rcu);
2093 
2094 	/* if this is no devs we rather delete the fs_devices */
2095 	if (!fs_devices->num_devices) {
2096 		struct btrfs_fs_devices *tmp_fs_devices;
2097 
2098 		/*
2099 		 * On a mounted FS, num_devices can't be zero unless it's a
2100 		 * seed. In case of a seed device being replaced, the replace
2101 		 * target added to the sprout FS, so there will be no more
2102 		 * device left under the seed FS.
2103 		 */
2104 		ASSERT(fs_devices->seeding);
2105 
2106 		tmp_fs_devices = fs_info->fs_devices;
2107 		while (tmp_fs_devices) {
2108 			if (tmp_fs_devices->seed == fs_devices) {
2109 				tmp_fs_devices->seed = fs_devices->seed;
2110 				break;
2111 			}
2112 			tmp_fs_devices = tmp_fs_devices->seed;
2113 		}
2114 		fs_devices->seed = NULL;
2115 		__btrfs_close_devices(fs_devices);
2116 		free_fs_devices(fs_devices);
2117 	}
2118 }
2119 
2120 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2121 				      struct btrfs_device *tgtdev)
2122 {
2123 	mutex_lock(&uuid_mutex);
2124 	WARN_ON(!tgtdev);
2125 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2126 
2127 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2128 
2129 	if (tgtdev->bdev)
2130 		fs_info->fs_devices->open_devices--;
2131 
2132 	fs_info->fs_devices->num_devices--;
2133 
2134 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2135 
2136 	list_del_rcu(&tgtdev->dev_list);
2137 
2138 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2139 	mutex_unlock(&uuid_mutex);
2140 
2141 	/*
2142 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2143 	 * may lead to a call to btrfs_show_devname() which will try
2144 	 * to hold device_list_mutex. And here this device
2145 	 * is already out of device list, so we don't have to hold
2146 	 * the device_list_mutex lock.
2147 	 */
2148 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2149 
2150 	btrfs_close_bdev(tgtdev);
2151 	call_rcu(&tgtdev->rcu, free_device_rcu);
2152 }
2153 
2154 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2155 				     const char *device_path,
2156 				     struct btrfs_device **device)
2157 {
2158 	int ret = 0;
2159 	struct btrfs_super_block *disk_super;
2160 	u64 devid;
2161 	u8 *dev_uuid;
2162 	struct block_device *bdev;
2163 	struct buffer_head *bh;
2164 
2165 	*device = NULL;
2166 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2167 				    fs_info->bdev_holder, 0, &bdev, &bh);
2168 	if (ret)
2169 		return ret;
2170 	disk_super = (struct btrfs_super_block *)bh->b_data;
2171 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2172 	dev_uuid = disk_super->dev_item.uuid;
2173 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2174 	brelse(bh);
2175 	if (!*device)
2176 		ret = -ENOENT;
2177 	blkdev_put(bdev, FMODE_READ);
2178 	return ret;
2179 }
2180 
2181 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2182 					 const char *device_path,
2183 					 struct btrfs_device **device)
2184 {
2185 	*device = NULL;
2186 	if (strcmp(device_path, "missing") == 0) {
2187 		struct list_head *devices;
2188 		struct btrfs_device *tmp;
2189 
2190 		devices = &fs_info->fs_devices->devices;
2191 		/*
2192 		 * It is safe to read the devices since the volume_mutex
2193 		 * is held by the caller.
2194 		 */
2195 		list_for_each_entry(tmp, devices, dev_list) {
2196 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2197 					&tmp->dev_state) && !tmp->bdev) {
2198 				*device = tmp;
2199 				break;
2200 			}
2201 		}
2202 
2203 		if (!*device)
2204 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2205 
2206 		return 0;
2207 	} else {
2208 		return btrfs_find_device_by_path(fs_info, device_path, device);
2209 	}
2210 }
2211 
2212 /*
2213  * Lookup a device given by device id, or the path if the id is 0.
2214  */
2215 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2216 				 const char *devpath,
2217 				 struct btrfs_device **device)
2218 {
2219 	int ret;
2220 
2221 	if (devid) {
2222 		ret = 0;
2223 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2224 		if (!*device)
2225 			ret = -ENOENT;
2226 	} else {
2227 		if (!devpath || !devpath[0])
2228 			return -EINVAL;
2229 
2230 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2231 							   device);
2232 	}
2233 	return ret;
2234 }
2235 
2236 /*
2237  * does all the dirty work required for changing file system's UUID.
2238  */
2239 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2240 {
2241 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2242 	struct btrfs_fs_devices *old_devices;
2243 	struct btrfs_fs_devices *seed_devices;
2244 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2245 	struct btrfs_device *device;
2246 	u64 super_flags;
2247 
2248 	lockdep_assert_held(&uuid_mutex);
2249 	if (!fs_devices->seeding)
2250 		return -EINVAL;
2251 
2252 	seed_devices = alloc_fs_devices(NULL);
2253 	if (IS_ERR(seed_devices))
2254 		return PTR_ERR(seed_devices);
2255 
2256 	old_devices = clone_fs_devices(fs_devices);
2257 	if (IS_ERR(old_devices)) {
2258 		kfree(seed_devices);
2259 		return PTR_ERR(old_devices);
2260 	}
2261 
2262 	list_add(&old_devices->list, &fs_uuids);
2263 
2264 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2265 	seed_devices->opened = 1;
2266 	INIT_LIST_HEAD(&seed_devices->devices);
2267 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2268 	mutex_init(&seed_devices->device_list_mutex);
2269 
2270 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2271 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2272 			      synchronize_rcu);
2273 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2274 		device->fs_devices = seed_devices;
2275 
2276 	mutex_lock(&fs_info->chunk_mutex);
2277 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2278 	mutex_unlock(&fs_info->chunk_mutex);
2279 
2280 	fs_devices->seeding = 0;
2281 	fs_devices->num_devices = 0;
2282 	fs_devices->open_devices = 0;
2283 	fs_devices->missing_devices = 0;
2284 	fs_devices->rotating = 0;
2285 	fs_devices->seed = seed_devices;
2286 
2287 	generate_random_uuid(fs_devices->fsid);
2288 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2289 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2290 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2291 
2292 	super_flags = btrfs_super_flags(disk_super) &
2293 		      ~BTRFS_SUPER_FLAG_SEEDING;
2294 	btrfs_set_super_flags(disk_super, super_flags);
2295 
2296 	return 0;
2297 }
2298 
2299 /*
2300  * Store the expected generation for seed devices in device items.
2301  */
2302 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2303 			       struct btrfs_fs_info *fs_info)
2304 {
2305 	struct btrfs_root *root = fs_info->chunk_root;
2306 	struct btrfs_path *path;
2307 	struct extent_buffer *leaf;
2308 	struct btrfs_dev_item *dev_item;
2309 	struct btrfs_device *device;
2310 	struct btrfs_key key;
2311 	u8 fs_uuid[BTRFS_FSID_SIZE];
2312 	u8 dev_uuid[BTRFS_UUID_SIZE];
2313 	u64 devid;
2314 	int ret;
2315 
2316 	path = btrfs_alloc_path();
2317 	if (!path)
2318 		return -ENOMEM;
2319 
2320 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2321 	key.offset = 0;
2322 	key.type = BTRFS_DEV_ITEM_KEY;
2323 
2324 	while (1) {
2325 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2326 		if (ret < 0)
2327 			goto error;
2328 
2329 		leaf = path->nodes[0];
2330 next_slot:
2331 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2332 			ret = btrfs_next_leaf(root, path);
2333 			if (ret > 0)
2334 				break;
2335 			if (ret < 0)
2336 				goto error;
2337 			leaf = path->nodes[0];
2338 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2339 			btrfs_release_path(path);
2340 			continue;
2341 		}
2342 
2343 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2344 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2345 		    key.type != BTRFS_DEV_ITEM_KEY)
2346 			break;
2347 
2348 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2349 					  struct btrfs_dev_item);
2350 		devid = btrfs_device_id(leaf, dev_item);
2351 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2352 				   BTRFS_UUID_SIZE);
2353 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2354 				   BTRFS_FSID_SIZE);
2355 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2356 		BUG_ON(!device); /* Logic error */
2357 
2358 		if (device->fs_devices->seeding) {
2359 			btrfs_set_device_generation(leaf, dev_item,
2360 						    device->generation);
2361 			btrfs_mark_buffer_dirty(leaf);
2362 		}
2363 
2364 		path->slots[0]++;
2365 		goto next_slot;
2366 	}
2367 	ret = 0;
2368 error:
2369 	btrfs_free_path(path);
2370 	return ret;
2371 }
2372 
2373 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2374 {
2375 	struct btrfs_root *root = fs_info->dev_root;
2376 	struct request_queue *q;
2377 	struct btrfs_trans_handle *trans;
2378 	struct btrfs_device *device;
2379 	struct block_device *bdev;
2380 	struct list_head *devices;
2381 	struct super_block *sb = fs_info->sb;
2382 	struct rcu_string *name;
2383 	u64 tmp;
2384 	int seeding_dev = 0;
2385 	int ret = 0;
2386 	bool unlocked = false;
2387 
2388 	if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2389 		return -EROFS;
2390 
2391 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2392 				  fs_info->bdev_holder);
2393 	if (IS_ERR(bdev))
2394 		return PTR_ERR(bdev);
2395 
2396 	if (fs_info->fs_devices->seeding) {
2397 		seeding_dev = 1;
2398 		down_write(&sb->s_umount);
2399 		mutex_lock(&uuid_mutex);
2400 	}
2401 
2402 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2403 
2404 	devices = &fs_info->fs_devices->devices;
2405 
2406 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2407 	list_for_each_entry(device, devices, dev_list) {
2408 		if (device->bdev == bdev) {
2409 			ret = -EEXIST;
2410 			mutex_unlock(
2411 				&fs_info->fs_devices->device_list_mutex);
2412 			goto error;
2413 		}
2414 	}
2415 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2416 
2417 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2418 	if (IS_ERR(device)) {
2419 		/* we can safely leave the fs_devices entry around */
2420 		ret = PTR_ERR(device);
2421 		goto error;
2422 	}
2423 
2424 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2425 	if (!name) {
2426 		ret = -ENOMEM;
2427 		goto error_free_device;
2428 	}
2429 	rcu_assign_pointer(device->name, name);
2430 
2431 	trans = btrfs_start_transaction(root, 0);
2432 	if (IS_ERR(trans)) {
2433 		ret = PTR_ERR(trans);
2434 		goto error_free_device;
2435 	}
2436 
2437 	q = bdev_get_queue(bdev);
2438 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2439 	device->generation = trans->transid;
2440 	device->io_width = fs_info->sectorsize;
2441 	device->io_align = fs_info->sectorsize;
2442 	device->sector_size = fs_info->sectorsize;
2443 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2444 					 fs_info->sectorsize);
2445 	device->disk_total_bytes = device->total_bytes;
2446 	device->commit_total_bytes = device->total_bytes;
2447 	device->fs_info = fs_info;
2448 	device->bdev = bdev;
2449 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2450 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2451 	device->mode = FMODE_EXCL;
2452 	device->dev_stats_valid = 1;
2453 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2454 
2455 	if (seeding_dev) {
2456 		sb->s_flags &= ~SB_RDONLY;
2457 		ret = btrfs_prepare_sprout(fs_info);
2458 		if (ret) {
2459 			btrfs_abort_transaction(trans, ret);
2460 			goto error_trans;
2461 		}
2462 	}
2463 
2464 	device->fs_devices = fs_info->fs_devices;
2465 
2466 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2467 	mutex_lock(&fs_info->chunk_mutex);
2468 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2469 	list_add(&device->dev_alloc_list,
2470 		 &fs_info->fs_devices->alloc_list);
2471 	fs_info->fs_devices->num_devices++;
2472 	fs_info->fs_devices->open_devices++;
2473 	fs_info->fs_devices->rw_devices++;
2474 	fs_info->fs_devices->total_devices++;
2475 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2476 
2477 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2478 
2479 	if (!blk_queue_nonrot(q))
2480 		fs_info->fs_devices->rotating = 1;
2481 
2482 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2483 	btrfs_set_super_total_bytes(fs_info->super_copy,
2484 		round_down(tmp + device->total_bytes, fs_info->sectorsize));
2485 
2486 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2487 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2488 
2489 	/* add sysfs device entry */
2490 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2491 
2492 	/*
2493 	 * we've got more storage, clear any full flags on the space
2494 	 * infos
2495 	 */
2496 	btrfs_clear_space_info_full(fs_info);
2497 
2498 	mutex_unlock(&fs_info->chunk_mutex);
2499 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2500 
2501 	if (seeding_dev) {
2502 		mutex_lock(&fs_info->chunk_mutex);
2503 		ret = init_first_rw_device(trans, fs_info);
2504 		mutex_unlock(&fs_info->chunk_mutex);
2505 		if (ret) {
2506 			btrfs_abort_transaction(trans, ret);
2507 			goto error_sysfs;
2508 		}
2509 	}
2510 
2511 	ret = btrfs_add_dev_item(trans, fs_info, device);
2512 	if (ret) {
2513 		btrfs_abort_transaction(trans, ret);
2514 		goto error_sysfs;
2515 	}
2516 
2517 	if (seeding_dev) {
2518 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2519 
2520 		ret = btrfs_finish_sprout(trans, fs_info);
2521 		if (ret) {
2522 			btrfs_abort_transaction(trans, ret);
2523 			goto error_sysfs;
2524 		}
2525 
2526 		/* Sprouting would change fsid of the mounted root,
2527 		 * so rename the fsid on the sysfs
2528 		 */
2529 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2530 						fs_info->fsid);
2531 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2532 			btrfs_warn(fs_info,
2533 				   "sysfs: failed to create fsid for sprout");
2534 	}
2535 
2536 	ret = btrfs_commit_transaction(trans);
2537 
2538 	if (seeding_dev) {
2539 		mutex_unlock(&uuid_mutex);
2540 		up_write(&sb->s_umount);
2541 		unlocked = true;
2542 
2543 		if (ret) /* transaction commit */
2544 			return ret;
2545 
2546 		ret = btrfs_relocate_sys_chunks(fs_info);
2547 		if (ret < 0)
2548 			btrfs_handle_fs_error(fs_info, ret,
2549 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2550 		trans = btrfs_attach_transaction(root);
2551 		if (IS_ERR(trans)) {
2552 			if (PTR_ERR(trans) == -ENOENT)
2553 				return 0;
2554 			ret = PTR_ERR(trans);
2555 			trans = NULL;
2556 			goto error_sysfs;
2557 		}
2558 		ret = btrfs_commit_transaction(trans);
2559 	}
2560 
2561 	/* Update ctime/mtime for libblkid */
2562 	update_dev_time(device_path);
2563 	return ret;
2564 
2565 error_sysfs:
2566 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2567 error_trans:
2568 	if (seeding_dev)
2569 		sb->s_flags |= SB_RDONLY;
2570 	if (trans)
2571 		btrfs_end_transaction(trans);
2572 error_free_device:
2573 	free_device(device);
2574 error:
2575 	blkdev_put(bdev, FMODE_EXCL);
2576 	if (seeding_dev && !unlocked) {
2577 		mutex_unlock(&uuid_mutex);
2578 		up_write(&sb->s_umount);
2579 	}
2580 	return ret;
2581 }
2582 
2583 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2584 				  const char *device_path,
2585 				  struct btrfs_device *srcdev,
2586 				  struct btrfs_device **device_out)
2587 {
2588 	struct btrfs_device *device;
2589 	struct block_device *bdev;
2590 	struct list_head *devices;
2591 	struct rcu_string *name;
2592 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2593 	int ret = 0;
2594 
2595 	*device_out = NULL;
2596 	if (fs_info->fs_devices->seeding) {
2597 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2598 		return -EINVAL;
2599 	}
2600 
2601 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2602 				  fs_info->bdev_holder);
2603 	if (IS_ERR(bdev)) {
2604 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2605 		return PTR_ERR(bdev);
2606 	}
2607 
2608 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2609 
2610 	devices = &fs_info->fs_devices->devices;
2611 	list_for_each_entry(device, devices, dev_list) {
2612 		if (device->bdev == bdev) {
2613 			btrfs_err(fs_info,
2614 				  "target device is in the filesystem!");
2615 			ret = -EEXIST;
2616 			goto error;
2617 		}
2618 	}
2619 
2620 
2621 	if (i_size_read(bdev->bd_inode) <
2622 	    btrfs_device_get_total_bytes(srcdev)) {
2623 		btrfs_err(fs_info,
2624 			  "target device is smaller than source device!");
2625 		ret = -EINVAL;
2626 		goto error;
2627 	}
2628 
2629 
2630 	device = btrfs_alloc_device(NULL, &devid, NULL);
2631 	if (IS_ERR(device)) {
2632 		ret = PTR_ERR(device);
2633 		goto error;
2634 	}
2635 
2636 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2637 	if (!name) {
2638 		free_device(device);
2639 		ret = -ENOMEM;
2640 		goto error;
2641 	}
2642 	rcu_assign_pointer(device->name, name);
2643 
2644 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2645 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2646 	device->generation = 0;
2647 	device->io_width = fs_info->sectorsize;
2648 	device->io_align = fs_info->sectorsize;
2649 	device->sector_size = fs_info->sectorsize;
2650 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2651 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2652 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2653 	device->commit_total_bytes = srcdev->commit_total_bytes;
2654 	device->commit_bytes_used = device->bytes_used;
2655 	device->fs_info = fs_info;
2656 	device->bdev = bdev;
2657 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2658 	set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2659 	device->mode = FMODE_EXCL;
2660 	device->dev_stats_valid = 1;
2661 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2662 	device->fs_devices = fs_info->fs_devices;
2663 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2664 	fs_info->fs_devices->num_devices++;
2665 	fs_info->fs_devices->open_devices++;
2666 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2667 
2668 	*device_out = device;
2669 	return ret;
2670 
2671 error:
2672 	blkdev_put(bdev, FMODE_EXCL);
2673 	return ret;
2674 }
2675 
2676 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2677 					struct btrfs_device *device)
2678 {
2679 	int ret;
2680 	struct btrfs_path *path;
2681 	struct btrfs_root *root = device->fs_info->chunk_root;
2682 	struct btrfs_dev_item *dev_item;
2683 	struct extent_buffer *leaf;
2684 	struct btrfs_key key;
2685 
2686 	path = btrfs_alloc_path();
2687 	if (!path)
2688 		return -ENOMEM;
2689 
2690 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2691 	key.type = BTRFS_DEV_ITEM_KEY;
2692 	key.offset = device->devid;
2693 
2694 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2695 	if (ret < 0)
2696 		goto out;
2697 
2698 	if (ret > 0) {
2699 		ret = -ENOENT;
2700 		goto out;
2701 	}
2702 
2703 	leaf = path->nodes[0];
2704 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2705 
2706 	btrfs_set_device_id(leaf, dev_item, device->devid);
2707 	btrfs_set_device_type(leaf, dev_item, device->type);
2708 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2709 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2710 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2711 	btrfs_set_device_total_bytes(leaf, dev_item,
2712 				     btrfs_device_get_disk_total_bytes(device));
2713 	btrfs_set_device_bytes_used(leaf, dev_item,
2714 				    btrfs_device_get_bytes_used(device));
2715 	btrfs_mark_buffer_dirty(leaf);
2716 
2717 out:
2718 	btrfs_free_path(path);
2719 	return ret;
2720 }
2721 
2722 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2723 		      struct btrfs_device *device, u64 new_size)
2724 {
2725 	struct btrfs_fs_info *fs_info = device->fs_info;
2726 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2727 	struct btrfs_fs_devices *fs_devices;
2728 	u64 old_total;
2729 	u64 diff;
2730 
2731 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2732 		return -EACCES;
2733 
2734 	new_size = round_down(new_size, fs_info->sectorsize);
2735 
2736 	mutex_lock(&fs_info->chunk_mutex);
2737 	old_total = btrfs_super_total_bytes(super_copy);
2738 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2739 
2740 	if (new_size <= device->total_bytes ||
2741 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2742 		mutex_unlock(&fs_info->chunk_mutex);
2743 		return -EINVAL;
2744 	}
2745 
2746 	fs_devices = fs_info->fs_devices;
2747 
2748 	btrfs_set_super_total_bytes(super_copy,
2749 			round_down(old_total + diff, fs_info->sectorsize));
2750 	device->fs_devices->total_rw_bytes += diff;
2751 
2752 	btrfs_device_set_total_bytes(device, new_size);
2753 	btrfs_device_set_disk_total_bytes(device, new_size);
2754 	btrfs_clear_space_info_full(device->fs_info);
2755 	if (list_empty(&device->resized_list))
2756 		list_add_tail(&device->resized_list,
2757 			      &fs_devices->resized_devices);
2758 	mutex_unlock(&fs_info->chunk_mutex);
2759 
2760 	return btrfs_update_device(trans, device);
2761 }
2762 
2763 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2764 			    struct btrfs_fs_info *fs_info, u64 chunk_offset)
2765 {
2766 	struct btrfs_root *root = fs_info->chunk_root;
2767 	int ret;
2768 	struct btrfs_path *path;
2769 	struct btrfs_key key;
2770 
2771 	path = btrfs_alloc_path();
2772 	if (!path)
2773 		return -ENOMEM;
2774 
2775 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2776 	key.offset = chunk_offset;
2777 	key.type = BTRFS_CHUNK_ITEM_KEY;
2778 
2779 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2780 	if (ret < 0)
2781 		goto out;
2782 	else if (ret > 0) { /* Logic error or corruption */
2783 		btrfs_handle_fs_error(fs_info, -ENOENT,
2784 				      "Failed lookup while freeing chunk.");
2785 		ret = -ENOENT;
2786 		goto out;
2787 	}
2788 
2789 	ret = btrfs_del_item(trans, root, path);
2790 	if (ret < 0)
2791 		btrfs_handle_fs_error(fs_info, ret,
2792 				      "Failed to delete chunk item.");
2793 out:
2794 	btrfs_free_path(path);
2795 	return ret;
2796 }
2797 
2798 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2799 {
2800 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2801 	struct btrfs_disk_key *disk_key;
2802 	struct btrfs_chunk *chunk;
2803 	u8 *ptr;
2804 	int ret = 0;
2805 	u32 num_stripes;
2806 	u32 array_size;
2807 	u32 len = 0;
2808 	u32 cur;
2809 	struct btrfs_key key;
2810 
2811 	mutex_lock(&fs_info->chunk_mutex);
2812 	array_size = btrfs_super_sys_array_size(super_copy);
2813 
2814 	ptr = super_copy->sys_chunk_array;
2815 	cur = 0;
2816 
2817 	while (cur < array_size) {
2818 		disk_key = (struct btrfs_disk_key *)ptr;
2819 		btrfs_disk_key_to_cpu(&key, disk_key);
2820 
2821 		len = sizeof(*disk_key);
2822 
2823 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2824 			chunk = (struct btrfs_chunk *)(ptr + len);
2825 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2826 			len += btrfs_chunk_item_size(num_stripes);
2827 		} else {
2828 			ret = -EIO;
2829 			break;
2830 		}
2831 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2832 		    key.offset == chunk_offset) {
2833 			memmove(ptr, ptr + len, array_size - (cur + len));
2834 			array_size -= len;
2835 			btrfs_set_super_sys_array_size(super_copy, array_size);
2836 		} else {
2837 			ptr += len;
2838 			cur += len;
2839 		}
2840 	}
2841 	mutex_unlock(&fs_info->chunk_mutex);
2842 	return ret;
2843 }
2844 
2845 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2846 					u64 logical, u64 length)
2847 {
2848 	struct extent_map_tree *em_tree;
2849 	struct extent_map *em;
2850 
2851 	em_tree = &fs_info->mapping_tree.map_tree;
2852 	read_lock(&em_tree->lock);
2853 	em = lookup_extent_mapping(em_tree, logical, length);
2854 	read_unlock(&em_tree->lock);
2855 
2856 	if (!em) {
2857 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2858 			   logical, length);
2859 		return ERR_PTR(-EINVAL);
2860 	}
2861 
2862 	if (em->start > logical || em->start + em->len < logical) {
2863 		btrfs_crit(fs_info,
2864 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2865 			   logical, length, em->start, em->start + em->len);
2866 		free_extent_map(em);
2867 		return ERR_PTR(-EINVAL);
2868 	}
2869 
2870 	/* callers are responsible for dropping em's ref. */
2871 	return em;
2872 }
2873 
2874 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2875 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2876 {
2877 	struct extent_map *em;
2878 	struct map_lookup *map;
2879 	u64 dev_extent_len = 0;
2880 	int i, ret = 0;
2881 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2882 
2883 	em = get_chunk_map(fs_info, chunk_offset, 1);
2884 	if (IS_ERR(em)) {
2885 		/*
2886 		 * This is a logic error, but we don't want to just rely on the
2887 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2888 		 * do anything we still error out.
2889 		 */
2890 		ASSERT(0);
2891 		return PTR_ERR(em);
2892 	}
2893 	map = em->map_lookup;
2894 	mutex_lock(&fs_info->chunk_mutex);
2895 	check_system_chunk(trans, fs_info, map->type);
2896 	mutex_unlock(&fs_info->chunk_mutex);
2897 
2898 	/*
2899 	 * Take the device list mutex to prevent races with the final phase of
2900 	 * a device replace operation that replaces the device object associated
2901 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2902 	 */
2903 	mutex_lock(&fs_devices->device_list_mutex);
2904 	for (i = 0; i < map->num_stripes; i++) {
2905 		struct btrfs_device *device = map->stripes[i].dev;
2906 		ret = btrfs_free_dev_extent(trans, device,
2907 					    map->stripes[i].physical,
2908 					    &dev_extent_len);
2909 		if (ret) {
2910 			mutex_unlock(&fs_devices->device_list_mutex);
2911 			btrfs_abort_transaction(trans, ret);
2912 			goto out;
2913 		}
2914 
2915 		if (device->bytes_used > 0) {
2916 			mutex_lock(&fs_info->chunk_mutex);
2917 			btrfs_device_set_bytes_used(device,
2918 					device->bytes_used - dev_extent_len);
2919 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2920 			btrfs_clear_space_info_full(fs_info);
2921 			mutex_unlock(&fs_info->chunk_mutex);
2922 		}
2923 
2924 		if (map->stripes[i].dev) {
2925 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2926 			if (ret) {
2927 				mutex_unlock(&fs_devices->device_list_mutex);
2928 				btrfs_abort_transaction(trans, ret);
2929 				goto out;
2930 			}
2931 		}
2932 	}
2933 	mutex_unlock(&fs_devices->device_list_mutex);
2934 
2935 	ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2936 	if (ret) {
2937 		btrfs_abort_transaction(trans, ret);
2938 		goto out;
2939 	}
2940 
2941 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2942 
2943 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2944 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2945 		if (ret) {
2946 			btrfs_abort_transaction(trans, ret);
2947 			goto out;
2948 		}
2949 	}
2950 
2951 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2952 	if (ret) {
2953 		btrfs_abort_transaction(trans, ret);
2954 		goto out;
2955 	}
2956 
2957 out:
2958 	/* once for us */
2959 	free_extent_map(em);
2960 	return ret;
2961 }
2962 
2963 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2964 {
2965 	struct btrfs_root *root = fs_info->chunk_root;
2966 	struct btrfs_trans_handle *trans;
2967 	int ret;
2968 
2969 	/*
2970 	 * Prevent races with automatic removal of unused block groups.
2971 	 * After we relocate and before we remove the chunk with offset
2972 	 * chunk_offset, automatic removal of the block group can kick in,
2973 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2974 	 *
2975 	 * Make sure to acquire this mutex before doing a tree search (dev
2976 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2977 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2978 	 * we release the path used to search the chunk/dev tree and before
2979 	 * the current task acquires this mutex and calls us.
2980 	 */
2981 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2982 
2983 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2984 	if (ret)
2985 		return -ENOSPC;
2986 
2987 	/* step one, relocate all the extents inside this chunk */
2988 	btrfs_scrub_pause(fs_info);
2989 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2990 	btrfs_scrub_continue(fs_info);
2991 	if (ret)
2992 		return ret;
2993 
2994 	/*
2995 	 * We add the kobjects here (and after forcing data chunk creation)
2996 	 * since relocation is the only place we'll create chunks of a new
2997 	 * type at runtime.  The only place where we'll remove the last
2998 	 * chunk of a type is the call immediately below this one.  Even
2999 	 * so, we're protected against races with the cleaner thread since
3000 	 * we're covered by the delete_unused_bgs_mutex.
3001 	 */
3002 	btrfs_add_raid_kobjects(fs_info);
3003 
3004 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3005 						     chunk_offset);
3006 	if (IS_ERR(trans)) {
3007 		ret = PTR_ERR(trans);
3008 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3009 		return ret;
3010 	}
3011 
3012 	/*
3013 	 * step two, delete the device extents and the
3014 	 * chunk tree entries
3015 	 */
3016 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3017 	btrfs_end_transaction(trans);
3018 	return ret;
3019 }
3020 
3021 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3022 {
3023 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3024 	struct btrfs_path *path;
3025 	struct extent_buffer *leaf;
3026 	struct btrfs_chunk *chunk;
3027 	struct btrfs_key key;
3028 	struct btrfs_key found_key;
3029 	u64 chunk_type;
3030 	bool retried = false;
3031 	int failed = 0;
3032 	int ret;
3033 
3034 	path = btrfs_alloc_path();
3035 	if (!path)
3036 		return -ENOMEM;
3037 
3038 again:
3039 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3040 	key.offset = (u64)-1;
3041 	key.type = BTRFS_CHUNK_ITEM_KEY;
3042 
3043 	while (1) {
3044 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3045 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3046 		if (ret < 0) {
3047 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3048 			goto error;
3049 		}
3050 		BUG_ON(ret == 0); /* Corruption */
3051 
3052 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3053 					  key.type);
3054 		if (ret)
3055 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3056 		if (ret < 0)
3057 			goto error;
3058 		if (ret > 0)
3059 			break;
3060 
3061 		leaf = path->nodes[0];
3062 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3063 
3064 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3065 				       struct btrfs_chunk);
3066 		chunk_type = btrfs_chunk_type(leaf, chunk);
3067 		btrfs_release_path(path);
3068 
3069 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3070 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3071 			if (ret == -ENOSPC)
3072 				failed++;
3073 			else
3074 				BUG_ON(ret);
3075 		}
3076 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3077 
3078 		if (found_key.offset == 0)
3079 			break;
3080 		key.offset = found_key.offset - 1;
3081 	}
3082 	ret = 0;
3083 	if (failed && !retried) {
3084 		failed = 0;
3085 		retried = true;
3086 		goto again;
3087 	} else if (WARN_ON(failed && retried)) {
3088 		ret = -ENOSPC;
3089 	}
3090 error:
3091 	btrfs_free_path(path);
3092 	return ret;
3093 }
3094 
3095 /*
3096  * return 1 : allocate a data chunk successfully,
3097  * return <0: errors during allocating a data chunk,
3098  * return 0 : no need to allocate a data chunk.
3099  */
3100 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3101 				      u64 chunk_offset)
3102 {
3103 	struct btrfs_block_group_cache *cache;
3104 	u64 bytes_used;
3105 	u64 chunk_type;
3106 
3107 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3108 	ASSERT(cache);
3109 	chunk_type = cache->flags;
3110 	btrfs_put_block_group(cache);
3111 
3112 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3113 		spin_lock(&fs_info->data_sinfo->lock);
3114 		bytes_used = fs_info->data_sinfo->bytes_used;
3115 		spin_unlock(&fs_info->data_sinfo->lock);
3116 
3117 		if (!bytes_used) {
3118 			struct btrfs_trans_handle *trans;
3119 			int ret;
3120 
3121 			trans =	btrfs_join_transaction(fs_info->tree_root);
3122 			if (IS_ERR(trans))
3123 				return PTR_ERR(trans);
3124 
3125 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3126 						      BTRFS_BLOCK_GROUP_DATA);
3127 			btrfs_end_transaction(trans);
3128 			if (ret < 0)
3129 				return ret;
3130 
3131 			btrfs_add_raid_kobjects(fs_info);
3132 
3133 			return 1;
3134 		}
3135 	}
3136 	return 0;
3137 }
3138 
3139 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3140 			       struct btrfs_balance_control *bctl)
3141 {
3142 	struct btrfs_root *root = fs_info->tree_root;
3143 	struct btrfs_trans_handle *trans;
3144 	struct btrfs_balance_item *item;
3145 	struct btrfs_disk_balance_args disk_bargs;
3146 	struct btrfs_path *path;
3147 	struct extent_buffer *leaf;
3148 	struct btrfs_key key;
3149 	int ret, err;
3150 
3151 	path = btrfs_alloc_path();
3152 	if (!path)
3153 		return -ENOMEM;
3154 
3155 	trans = btrfs_start_transaction(root, 0);
3156 	if (IS_ERR(trans)) {
3157 		btrfs_free_path(path);
3158 		return PTR_ERR(trans);
3159 	}
3160 
3161 	key.objectid = BTRFS_BALANCE_OBJECTID;
3162 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3163 	key.offset = 0;
3164 
3165 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3166 				      sizeof(*item));
3167 	if (ret)
3168 		goto out;
3169 
3170 	leaf = path->nodes[0];
3171 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3172 
3173 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3174 
3175 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3176 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3177 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3178 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3179 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3180 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3181 
3182 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3183 
3184 	btrfs_mark_buffer_dirty(leaf);
3185 out:
3186 	btrfs_free_path(path);
3187 	err = btrfs_commit_transaction(trans);
3188 	if (err && !ret)
3189 		ret = err;
3190 	return ret;
3191 }
3192 
3193 static int del_balance_item(struct btrfs_fs_info *fs_info)
3194 {
3195 	struct btrfs_root *root = fs_info->tree_root;
3196 	struct btrfs_trans_handle *trans;
3197 	struct btrfs_path *path;
3198 	struct btrfs_key key;
3199 	int ret, err;
3200 
3201 	path = btrfs_alloc_path();
3202 	if (!path)
3203 		return -ENOMEM;
3204 
3205 	trans = btrfs_start_transaction(root, 0);
3206 	if (IS_ERR(trans)) {
3207 		btrfs_free_path(path);
3208 		return PTR_ERR(trans);
3209 	}
3210 
3211 	key.objectid = BTRFS_BALANCE_OBJECTID;
3212 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3213 	key.offset = 0;
3214 
3215 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3216 	if (ret < 0)
3217 		goto out;
3218 	if (ret > 0) {
3219 		ret = -ENOENT;
3220 		goto out;
3221 	}
3222 
3223 	ret = btrfs_del_item(trans, root, path);
3224 out:
3225 	btrfs_free_path(path);
3226 	err = btrfs_commit_transaction(trans);
3227 	if (err && !ret)
3228 		ret = err;
3229 	return ret;
3230 }
3231 
3232 /*
3233  * This is a heuristic used to reduce the number of chunks balanced on
3234  * resume after balance was interrupted.
3235  */
3236 static void update_balance_args(struct btrfs_balance_control *bctl)
3237 {
3238 	/*
3239 	 * Turn on soft mode for chunk types that were being converted.
3240 	 */
3241 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3242 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3243 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3244 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3245 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3246 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3247 
3248 	/*
3249 	 * Turn on usage filter if is not already used.  The idea is
3250 	 * that chunks that we have already balanced should be
3251 	 * reasonably full.  Don't do it for chunks that are being
3252 	 * converted - that will keep us from relocating unconverted
3253 	 * (albeit full) chunks.
3254 	 */
3255 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3256 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3257 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3258 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3259 		bctl->data.usage = 90;
3260 	}
3261 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3262 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3263 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3264 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3265 		bctl->sys.usage = 90;
3266 	}
3267 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3268 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3269 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3270 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3271 		bctl->meta.usage = 90;
3272 	}
3273 }
3274 
3275 /*
3276  * Should be called with both balance and volume mutexes held to
3277  * serialize other volume operations (add_dev/rm_dev/resize) with
3278  * restriper.  Same goes for unset_balance_control.
3279  */
3280 static void set_balance_control(struct btrfs_balance_control *bctl)
3281 {
3282 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3283 
3284 	BUG_ON(fs_info->balance_ctl);
3285 
3286 	spin_lock(&fs_info->balance_lock);
3287 	fs_info->balance_ctl = bctl;
3288 	spin_unlock(&fs_info->balance_lock);
3289 }
3290 
3291 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3292 {
3293 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3294 
3295 	BUG_ON(!fs_info->balance_ctl);
3296 
3297 	spin_lock(&fs_info->balance_lock);
3298 	fs_info->balance_ctl = NULL;
3299 	spin_unlock(&fs_info->balance_lock);
3300 
3301 	kfree(bctl);
3302 }
3303 
3304 /*
3305  * Balance filters.  Return 1 if chunk should be filtered out
3306  * (should not be balanced).
3307  */
3308 static int chunk_profiles_filter(u64 chunk_type,
3309 				 struct btrfs_balance_args *bargs)
3310 {
3311 	chunk_type = chunk_to_extended(chunk_type) &
3312 				BTRFS_EXTENDED_PROFILE_MASK;
3313 
3314 	if (bargs->profiles & chunk_type)
3315 		return 0;
3316 
3317 	return 1;
3318 }
3319 
3320 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3321 			      struct btrfs_balance_args *bargs)
3322 {
3323 	struct btrfs_block_group_cache *cache;
3324 	u64 chunk_used;
3325 	u64 user_thresh_min;
3326 	u64 user_thresh_max;
3327 	int ret = 1;
3328 
3329 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3330 	chunk_used = btrfs_block_group_used(&cache->item);
3331 
3332 	if (bargs->usage_min == 0)
3333 		user_thresh_min = 0;
3334 	else
3335 		user_thresh_min = div_factor_fine(cache->key.offset,
3336 					bargs->usage_min);
3337 
3338 	if (bargs->usage_max == 0)
3339 		user_thresh_max = 1;
3340 	else if (bargs->usage_max > 100)
3341 		user_thresh_max = cache->key.offset;
3342 	else
3343 		user_thresh_max = div_factor_fine(cache->key.offset,
3344 					bargs->usage_max);
3345 
3346 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3347 		ret = 0;
3348 
3349 	btrfs_put_block_group(cache);
3350 	return ret;
3351 }
3352 
3353 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3354 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3355 {
3356 	struct btrfs_block_group_cache *cache;
3357 	u64 chunk_used, user_thresh;
3358 	int ret = 1;
3359 
3360 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3361 	chunk_used = btrfs_block_group_used(&cache->item);
3362 
3363 	if (bargs->usage_min == 0)
3364 		user_thresh = 1;
3365 	else if (bargs->usage > 100)
3366 		user_thresh = cache->key.offset;
3367 	else
3368 		user_thresh = div_factor_fine(cache->key.offset,
3369 					      bargs->usage);
3370 
3371 	if (chunk_used < user_thresh)
3372 		ret = 0;
3373 
3374 	btrfs_put_block_group(cache);
3375 	return ret;
3376 }
3377 
3378 static int chunk_devid_filter(struct extent_buffer *leaf,
3379 			      struct btrfs_chunk *chunk,
3380 			      struct btrfs_balance_args *bargs)
3381 {
3382 	struct btrfs_stripe *stripe;
3383 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3384 	int i;
3385 
3386 	for (i = 0; i < num_stripes; i++) {
3387 		stripe = btrfs_stripe_nr(chunk, i);
3388 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3389 			return 0;
3390 	}
3391 
3392 	return 1;
3393 }
3394 
3395 /* [pstart, pend) */
3396 static int chunk_drange_filter(struct extent_buffer *leaf,
3397 			       struct btrfs_chunk *chunk,
3398 			       struct btrfs_balance_args *bargs)
3399 {
3400 	struct btrfs_stripe *stripe;
3401 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3402 	u64 stripe_offset;
3403 	u64 stripe_length;
3404 	int factor;
3405 	int i;
3406 
3407 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3408 		return 0;
3409 
3410 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3411 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3412 		factor = num_stripes / 2;
3413 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3414 		factor = num_stripes - 1;
3415 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3416 		factor = num_stripes - 2;
3417 	} else {
3418 		factor = num_stripes;
3419 	}
3420 
3421 	for (i = 0; i < num_stripes; i++) {
3422 		stripe = btrfs_stripe_nr(chunk, i);
3423 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3424 			continue;
3425 
3426 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3427 		stripe_length = btrfs_chunk_length(leaf, chunk);
3428 		stripe_length = div_u64(stripe_length, factor);
3429 
3430 		if (stripe_offset < bargs->pend &&
3431 		    stripe_offset + stripe_length > bargs->pstart)
3432 			return 0;
3433 	}
3434 
3435 	return 1;
3436 }
3437 
3438 /* [vstart, vend) */
3439 static int chunk_vrange_filter(struct extent_buffer *leaf,
3440 			       struct btrfs_chunk *chunk,
3441 			       u64 chunk_offset,
3442 			       struct btrfs_balance_args *bargs)
3443 {
3444 	if (chunk_offset < bargs->vend &&
3445 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3446 		/* at least part of the chunk is inside this vrange */
3447 		return 0;
3448 
3449 	return 1;
3450 }
3451 
3452 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3453 			       struct btrfs_chunk *chunk,
3454 			       struct btrfs_balance_args *bargs)
3455 {
3456 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3457 
3458 	if (bargs->stripes_min <= num_stripes
3459 			&& num_stripes <= bargs->stripes_max)
3460 		return 0;
3461 
3462 	return 1;
3463 }
3464 
3465 static int chunk_soft_convert_filter(u64 chunk_type,
3466 				     struct btrfs_balance_args *bargs)
3467 {
3468 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3469 		return 0;
3470 
3471 	chunk_type = chunk_to_extended(chunk_type) &
3472 				BTRFS_EXTENDED_PROFILE_MASK;
3473 
3474 	if (bargs->target == chunk_type)
3475 		return 1;
3476 
3477 	return 0;
3478 }
3479 
3480 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3481 				struct extent_buffer *leaf,
3482 				struct btrfs_chunk *chunk, u64 chunk_offset)
3483 {
3484 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3485 	struct btrfs_balance_args *bargs = NULL;
3486 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3487 
3488 	/* type filter */
3489 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3490 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3491 		return 0;
3492 	}
3493 
3494 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3495 		bargs = &bctl->data;
3496 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3497 		bargs = &bctl->sys;
3498 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3499 		bargs = &bctl->meta;
3500 
3501 	/* profiles filter */
3502 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3503 	    chunk_profiles_filter(chunk_type, bargs)) {
3504 		return 0;
3505 	}
3506 
3507 	/* usage filter */
3508 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3509 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3510 		return 0;
3511 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3512 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3513 		return 0;
3514 	}
3515 
3516 	/* devid filter */
3517 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3518 	    chunk_devid_filter(leaf, chunk, bargs)) {
3519 		return 0;
3520 	}
3521 
3522 	/* drange filter, makes sense only with devid filter */
3523 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3524 	    chunk_drange_filter(leaf, chunk, bargs)) {
3525 		return 0;
3526 	}
3527 
3528 	/* vrange filter */
3529 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3530 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3531 		return 0;
3532 	}
3533 
3534 	/* stripes filter */
3535 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3536 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3537 		return 0;
3538 	}
3539 
3540 	/* soft profile changing mode */
3541 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3542 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3543 		return 0;
3544 	}
3545 
3546 	/*
3547 	 * limited by count, must be the last filter
3548 	 */
3549 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3550 		if (bargs->limit == 0)
3551 			return 0;
3552 		else
3553 			bargs->limit--;
3554 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3555 		/*
3556 		 * Same logic as the 'limit' filter; the minimum cannot be
3557 		 * determined here because we do not have the global information
3558 		 * about the count of all chunks that satisfy the filters.
3559 		 */
3560 		if (bargs->limit_max == 0)
3561 			return 0;
3562 		else
3563 			bargs->limit_max--;
3564 	}
3565 
3566 	return 1;
3567 }
3568 
3569 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3570 {
3571 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3572 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3573 	struct btrfs_root *dev_root = fs_info->dev_root;
3574 	struct list_head *devices;
3575 	struct btrfs_device *device;
3576 	u64 old_size;
3577 	u64 size_to_free;
3578 	u64 chunk_type;
3579 	struct btrfs_chunk *chunk;
3580 	struct btrfs_path *path = NULL;
3581 	struct btrfs_key key;
3582 	struct btrfs_key found_key;
3583 	struct btrfs_trans_handle *trans;
3584 	struct extent_buffer *leaf;
3585 	int slot;
3586 	int ret;
3587 	int enospc_errors = 0;
3588 	bool counting = true;
3589 	/* The single value limit and min/max limits use the same bytes in the */
3590 	u64 limit_data = bctl->data.limit;
3591 	u64 limit_meta = bctl->meta.limit;
3592 	u64 limit_sys = bctl->sys.limit;
3593 	u32 count_data = 0;
3594 	u32 count_meta = 0;
3595 	u32 count_sys = 0;
3596 	int chunk_reserved = 0;
3597 
3598 	/* step one make some room on all the devices */
3599 	devices = &fs_info->fs_devices->devices;
3600 	list_for_each_entry(device, devices, dev_list) {
3601 		old_size = btrfs_device_get_total_bytes(device);
3602 		size_to_free = div_factor(old_size, 1);
3603 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3604 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3605 		    btrfs_device_get_total_bytes(device) -
3606 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3607 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3608 			continue;
3609 
3610 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3611 		if (ret == -ENOSPC)
3612 			break;
3613 		if (ret) {
3614 			/* btrfs_shrink_device never returns ret > 0 */
3615 			WARN_ON(ret > 0);
3616 			goto error;
3617 		}
3618 
3619 		trans = btrfs_start_transaction(dev_root, 0);
3620 		if (IS_ERR(trans)) {
3621 			ret = PTR_ERR(trans);
3622 			btrfs_info_in_rcu(fs_info,
3623 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3624 					  rcu_str_deref(device->name), ret,
3625 					  old_size, old_size - size_to_free);
3626 			goto error;
3627 		}
3628 
3629 		ret = btrfs_grow_device(trans, device, old_size);
3630 		if (ret) {
3631 			btrfs_end_transaction(trans);
3632 			/* btrfs_grow_device never returns ret > 0 */
3633 			WARN_ON(ret > 0);
3634 			btrfs_info_in_rcu(fs_info,
3635 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3636 					  rcu_str_deref(device->name), ret,
3637 					  old_size, old_size - size_to_free);
3638 			goto error;
3639 		}
3640 
3641 		btrfs_end_transaction(trans);
3642 	}
3643 
3644 	/* step two, relocate all the chunks */
3645 	path = btrfs_alloc_path();
3646 	if (!path) {
3647 		ret = -ENOMEM;
3648 		goto error;
3649 	}
3650 
3651 	/* zero out stat counters */
3652 	spin_lock(&fs_info->balance_lock);
3653 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3654 	spin_unlock(&fs_info->balance_lock);
3655 again:
3656 	if (!counting) {
3657 		/*
3658 		 * The single value limit and min/max limits use the same bytes
3659 		 * in the
3660 		 */
3661 		bctl->data.limit = limit_data;
3662 		bctl->meta.limit = limit_meta;
3663 		bctl->sys.limit = limit_sys;
3664 	}
3665 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3666 	key.offset = (u64)-1;
3667 	key.type = BTRFS_CHUNK_ITEM_KEY;
3668 
3669 	while (1) {
3670 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3671 		    atomic_read(&fs_info->balance_cancel_req)) {
3672 			ret = -ECANCELED;
3673 			goto error;
3674 		}
3675 
3676 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3677 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3678 		if (ret < 0) {
3679 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3680 			goto error;
3681 		}
3682 
3683 		/*
3684 		 * this shouldn't happen, it means the last relocate
3685 		 * failed
3686 		 */
3687 		if (ret == 0)
3688 			BUG(); /* FIXME break ? */
3689 
3690 		ret = btrfs_previous_item(chunk_root, path, 0,
3691 					  BTRFS_CHUNK_ITEM_KEY);
3692 		if (ret) {
3693 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3694 			ret = 0;
3695 			break;
3696 		}
3697 
3698 		leaf = path->nodes[0];
3699 		slot = path->slots[0];
3700 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3701 
3702 		if (found_key.objectid != key.objectid) {
3703 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3704 			break;
3705 		}
3706 
3707 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3708 		chunk_type = btrfs_chunk_type(leaf, chunk);
3709 
3710 		if (!counting) {
3711 			spin_lock(&fs_info->balance_lock);
3712 			bctl->stat.considered++;
3713 			spin_unlock(&fs_info->balance_lock);
3714 		}
3715 
3716 		ret = should_balance_chunk(fs_info, leaf, chunk,
3717 					   found_key.offset);
3718 
3719 		btrfs_release_path(path);
3720 		if (!ret) {
3721 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3722 			goto loop;
3723 		}
3724 
3725 		if (counting) {
3726 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3727 			spin_lock(&fs_info->balance_lock);
3728 			bctl->stat.expected++;
3729 			spin_unlock(&fs_info->balance_lock);
3730 
3731 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3732 				count_data++;
3733 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3734 				count_sys++;
3735 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3736 				count_meta++;
3737 
3738 			goto loop;
3739 		}
3740 
3741 		/*
3742 		 * Apply limit_min filter, no need to check if the LIMITS
3743 		 * filter is used, limit_min is 0 by default
3744 		 */
3745 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3746 					count_data < bctl->data.limit_min)
3747 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3748 					count_meta < bctl->meta.limit_min)
3749 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3750 					count_sys < bctl->sys.limit_min)) {
3751 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3752 			goto loop;
3753 		}
3754 
3755 		if (!chunk_reserved) {
3756 			/*
3757 			 * We may be relocating the only data chunk we have,
3758 			 * which could potentially end up with losing data's
3759 			 * raid profile, so lets allocate an empty one in
3760 			 * advance.
3761 			 */
3762 			ret = btrfs_may_alloc_data_chunk(fs_info,
3763 							 found_key.offset);
3764 			if (ret < 0) {
3765 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3766 				goto error;
3767 			} else if (ret == 1) {
3768 				chunk_reserved = 1;
3769 			}
3770 		}
3771 
3772 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3773 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3774 		if (ret && ret != -ENOSPC)
3775 			goto error;
3776 		if (ret == -ENOSPC) {
3777 			enospc_errors++;
3778 		} else {
3779 			spin_lock(&fs_info->balance_lock);
3780 			bctl->stat.completed++;
3781 			spin_unlock(&fs_info->balance_lock);
3782 		}
3783 loop:
3784 		if (found_key.offset == 0)
3785 			break;
3786 		key.offset = found_key.offset - 1;
3787 	}
3788 
3789 	if (counting) {
3790 		btrfs_release_path(path);
3791 		counting = false;
3792 		goto again;
3793 	}
3794 error:
3795 	btrfs_free_path(path);
3796 	if (enospc_errors) {
3797 		btrfs_info(fs_info, "%d enospc errors during balance",
3798 			   enospc_errors);
3799 		if (!ret)
3800 			ret = -ENOSPC;
3801 	}
3802 
3803 	return ret;
3804 }
3805 
3806 /**
3807  * alloc_profile_is_valid - see if a given profile is valid and reduced
3808  * @flags: profile to validate
3809  * @extended: if true @flags is treated as an extended profile
3810  */
3811 static int alloc_profile_is_valid(u64 flags, int extended)
3812 {
3813 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3814 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3815 
3816 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3817 
3818 	/* 1) check that all other bits are zeroed */
3819 	if (flags & ~mask)
3820 		return 0;
3821 
3822 	/* 2) see if profile is reduced */
3823 	if (flags == 0)
3824 		return !extended; /* "0" is valid for usual profiles */
3825 
3826 	/* true if exactly one bit set */
3827 	return (flags & (flags - 1)) == 0;
3828 }
3829 
3830 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3831 {
3832 	/* cancel requested || normal exit path */
3833 	return atomic_read(&fs_info->balance_cancel_req) ||
3834 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3835 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3836 }
3837 
3838 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3839 {
3840 	int ret;
3841 
3842 	unset_balance_control(fs_info);
3843 	ret = del_balance_item(fs_info);
3844 	if (ret)
3845 		btrfs_handle_fs_error(fs_info, ret, NULL);
3846 
3847 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3848 }
3849 
3850 /* Non-zero return value signifies invalidity */
3851 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3852 		u64 allowed)
3853 {
3854 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3855 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3856 		 (bctl_arg->target & ~allowed)));
3857 }
3858 
3859 /*
3860  * Should be called with both balance and volume mutexes held
3861  */
3862 int btrfs_balance(struct btrfs_balance_control *bctl,
3863 		  struct btrfs_ioctl_balance_args *bargs)
3864 {
3865 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3866 	u64 meta_target, data_target;
3867 	u64 allowed;
3868 	int mixed = 0;
3869 	int ret;
3870 	u64 num_devices;
3871 	unsigned seq;
3872 
3873 	if (btrfs_fs_closing(fs_info) ||
3874 	    atomic_read(&fs_info->balance_pause_req) ||
3875 	    atomic_read(&fs_info->balance_cancel_req)) {
3876 		ret = -EINVAL;
3877 		goto out;
3878 	}
3879 
3880 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3881 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3882 		mixed = 1;
3883 
3884 	/*
3885 	 * In case of mixed groups both data and meta should be picked,
3886 	 * and identical options should be given for both of them.
3887 	 */
3888 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3889 	if (mixed && (bctl->flags & allowed)) {
3890 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3891 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3892 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3893 			btrfs_err(fs_info,
3894 				  "with mixed groups data and metadata balance options must be the same");
3895 			ret = -EINVAL;
3896 			goto out;
3897 		}
3898 	}
3899 
3900 	num_devices = fs_info->fs_devices->num_devices;
3901 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3902 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3903 		BUG_ON(num_devices < 1);
3904 		num_devices--;
3905 	}
3906 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3907 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3908 	if (num_devices > 1)
3909 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3910 	if (num_devices > 2)
3911 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3912 	if (num_devices > 3)
3913 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3914 			    BTRFS_BLOCK_GROUP_RAID6);
3915 	if (validate_convert_profile(&bctl->data, allowed)) {
3916 		btrfs_err(fs_info,
3917 			  "unable to start balance with target data profile %llu",
3918 			  bctl->data.target);
3919 		ret = -EINVAL;
3920 		goto out;
3921 	}
3922 	if (validate_convert_profile(&bctl->meta, allowed)) {
3923 		btrfs_err(fs_info,
3924 			  "unable to start balance with target metadata profile %llu",
3925 			  bctl->meta.target);
3926 		ret = -EINVAL;
3927 		goto out;
3928 	}
3929 	if (validate_convert_profile(&bctl->sys, allowed)) {
3930 		btrfs_err(fs_info,
3931 			  "unable to start balance with target system profile %llu",
3932 			  bctl->sys.target);
3933 		ret = -EINVAL;
3934 		goto out;
3935 	}
3936 
3937 	/* allow to reduce meta or sys integrity only if force set */
3938 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3939 			BTRFS_BLOCK_GROUP_RAID10 |
3940 			BTRFS_BLOCK_GROUP_RAID5 |
3941 			BTRFS_BLOCK_GROUP_RAID6;
3942 	do {
3943 		seq = read_seqbegin(&fs_info->profiles_lock);
3944 
3945 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3946 		     (fs_info->avail_system_alloc_bits & allowed) &&
3947 		     !(bctl->sys.target & allowed)) ||
3948 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3949 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3950 		     !(bctl->meta.target & allowed))) {
3951 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3952 				btrfs_info(fs_info,
3953 					   "force reducing metadata integrity");
3954 			} else {
3955 				btrfs_err(fs_info,
3956 					  "balance will reduce metadata integrity, use force if you want this");
3957 				ret = -EINVAL;
3958 				goto out;
3959 			}
3960 		}
3961 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3962 
3963 	/* if we're not converting, the target field is uninitialized */
3964 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3965 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3966 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3967 		bctl->data.target : fs_info->avail_data_alloc_bits;
3968 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3969 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3970 		btrfs_warn(fs_info,
3971 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3972 			   meta_target, data_target);
3973 	}
3974 
3975 	ret = insert_balance_item(fs_info, bctl);
3976 	if (ret && ret != -EEXIST)
3977 		goto out;
3978 
3979 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3980 		BUG_ON(ret == -EEXIST);
3981 		set_balance_control(bctl);
3982 	} else {
3983 		BUG_ON(ret != -EEXIST);
3984 		spin_lock(&fs_info->balance_lock);
3985 		update_balance_args(bctl);
3986 		spin_unlock(&fs_info->balance_lock);
3987 	}
3988 
3989 	atomic_inc(&fs_info->balance_running);
3990 	mutex_unlock(&fs_info->balance_mutex);
3991 
3992 	ret = __btrfs_balance(fs_info);
3993 
3994 	mutex_lock(&fs_info->balance_mutex);
3995 	atomic_dec(&fs_info->balance_running);
3996 
3997 	if (bargs) {
3998 		memset(bargs, 0, sizeof(*bargs));
3999 		update_ioctl_balance_args(fs_info, 0, bargs);
4000 	}
4001 
4002 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4003 	    balance_need_close(fs_info)) {
4004 		__cancel_balance(fs_info);
4005 	}
4006 
4007 	wake_up(&fs_info->balance_wait_q);
4008 
4009 	return ret;
4010 out:
4011 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4012 		__cancel_balance(fs_info);
4013 	else {
4014 		kfree(bctl);
4015 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4016 	}
4017 	return ret;
4018 }
4019 
4020 static int balance_kthread(void *data)
4021 {
4022 	struct btrfs_fs_info *fs_info = data;
4023 	int ret = 0;
4024 
4025 	mutex_lock(&fs_info->volume_mutex);
4026 	mutex_lock(&fs_info->balance_mutex);
4027 
4028 	if (fs_info->balance_ctl) {
4029 		btrfs_info(fs_info, "continuing balance");
4030 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
4031 	}
4032 
4033 	mutex_unlock(&fs_info->balance_mutex);
4034 	mutex_unlock(&fs_info->volume_mutex);
4035 
4036 	return ret;
4037 }
4038 
4039 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4040 {
4041 	struct task_struct *tsk;
4042 
4043 	spin_lock(&fs_info->balance_lock);
4044 	if (!fs_info->balance_ctl) {
4045 		spin_unlock(&fs_info->balance_lock);
4046 		return 0;
4047 	}
4048 	spin_unlock(&fs_info->balance_lock);
4049 
4050 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4051 		btrfs_info(fs_info, "force skipping balance");
4052 		return 0;
4053 	}
4054 
4055 	/*
4056 	 * A ro->rw remount sequence should continue with the paused balance
4057 	 * regardless of who pauses it, system or the user as of now, so set
4058 	 * the resume flag.
4059 	 */
4060 	spin_lock(&fs_info->balance_lock);
4061 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4062 	spin_unlock(&fs_info->balance_lock);
4063 
4064 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4065 	return PTR_ERR_OR_ZERO(tsk);
4066 }
4067 
4068 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4069 {
4070 	struct btrfs_balance_control *bctl;
4071 	struct btrfs_balance_item *item;
4072 	struct btrfs_disk_balance_args disk_bargs;
4073 	struct btrfs_path *path;
4074 	struct extent_buffer *leaf;
4075 	struct btrfs_key key;
4076 	int ret;
4077 
4078 	path = btrfs_alloc_path();
4079 	if (!path)
4080 		return -ENOMEM;
4081 
4082 	key.objectid = BTRFS_BALANCE_OBJECTID;
4083 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4084 	key.offset = 0;
4085 
4086 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4087 	if (ret < 0)
4088 		goto out;
4089 	if (ret > 0) { /* ret = -ENOENT; */
4090 		ret = 0;
4091 		goto out;
4092 	}
4093 
4094 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4095 	if (!bctl) {
4096 		ret = -ENOMEM;
4097 		goto out;
4098 	}
4099 
4100 	leaf = path->nodes[0];
4101 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4102 
4103 	bctl->fs_info = fs_info;
4104 	bctl->flags = btrfs_balance_flags(leaf, item);
4105 	bctl->flags |= BTRFS_BALANCE_RESUME;
4106 
4107 	btrfs_balance_data(leaf, item, &disk_bargs);
4108 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4109 	btrfs_balance_meta(leaf, item, &disk_bargs);
4110 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4111 	btrfs_balance_sys(leaf, item, &disk_bargs);
4112 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4113 
4114 	WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4115 
4116 	mutex_lock(&fs_info->volume_mutex);
4117 	mutex_lock(&fs_info->balance_mutex);
4118 
4119 	set_balance_control(bctl);
4120 
4121 	mutex_unlock(&fs_info->balance_mutex);
4122 	mutex_unlock(&fs_info->volume_mutex);
4123 out:
4124 	btrfs_free_path(path);
4125 	return ret;
4126 }
4127 
4128 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4129 {
4130 	int ret = 0;
4131 
4132 	mutex_lock(&fs_info->balance_mutex);
4133 	if (!fs_info->balance_ctl) {
4134 		mutex_unlock(&fs_info->balance_mutex);
4135 		return -ENOTCONN;
4136 	}
4137 
4138 	if (atomic_read(&fs_info->balance_running)) {
4139 		atomic_inc(&fs_info->balance_pause_req);
4140 		mutex_unlock(&fs_info->balance_mutex);
4141 
4142 		wait_event(fs_info->balance_wait_q,
4143 			   atomic_read(&fs_info->balance_running) == 0);
4144 
4145 		mutex_lock(&fs_info->balance_mutex);
4146 		/* we are good with balance_ctl ripped off from under us */
4147 		BUG_ON(atomic_read(&fs_info->balance_running));
4148 		atomic_dec(&fs_info->balance_pause_req);
4149 	} else {
4150 		ret = -ENOTCONN;
4151 	}
4152 
4153 	mutex_unlock(&fs_info->balance_mutex);
4154 	return ret;
4155 }
4156 
4157 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4158 {
4159 	if (sb_rdonly(fs_info->sb))
4160 		return -EROFS;
4161 
4162 	mutex_lock(&fs_info->balance_mutex);
4163 	if (!fs_info->balance_ctl) {
4164 		mutex_unlock(&fs_info->balance_mutex);
4165 		return -ENOTCONN;
4166 	}
4167 
4168 	atomic_inc(&fs_info->balance_cancel_req);
4169 	/*
4170 	 * if we are running just wait and return, balance item is
4171 	 * deleted in btrfs_balance in this case
4172 	 */
4173 	if (atomic_read(&fs_info->balance_running)) {
4174 		mutex_unlock(&fs_info->balance_mutex);
4175 		wait_event(fs_info->balance_wait_q,
4176 			   atomic_read(&fs_info->balance_running) == 0);
4177 		mutex_lock(&fs_info->balance_mutex);
4178 	} else {
4179 		/* __cancel_balance needs volume_mutex */
4180 		mutex_unlock(&fs_info->balance_mutex);
4181 		mutex_lock(&fs_info->volume_mutex);
4182 		mutex_lock(&fs_info->balance_mutex);
4183 
4184 		if (fs_info->balance_ctl)
4185 			__cancel_balance(fs_info);
4186 
4187 		mutex_unlock(&fs_info->volume_mutex);
4188 	}
4189 
4190 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4191 	atomic_dec(&fs_info->balance_cancel_req);
4192 	mutex_unlock(&fs_info->balance_mutex);
4193 	return 0;
4194 }
4195 
4196 static int btrfs_uuid_scan_kthread(void *data)
4197 {
4198 	struct btrfs_fs_info *fs_info = data;
4199 	struct btrfs_root *root = fs_info->tree_root;
4200 	struct btrfs_key key;
4201 	struct btrfs_path *path = NULL;
4202 	int ret = 0;
4203 	struct extent_buffer *eb;
4204 	int slot;
4205 	struct btrfs_root_item root_item;
4206 	u32 item_size;
4207 	struct btrfs_trans_handle *trans = NULL;
4208 
4209 	path = btrfs_alloc_path();
4210 	if (!path) {
4211 		ret = -ENOMEM;
4212 		goto out;
4213 	}
4214 
4215 	key.objectid = 0;
4216 	key.type = BTRFS_ROOT_ITEM_KEY;
4217 	key.offset = 0;
4218 
4219 	while (1) {
4220 		ret = btrfs_search_forward(root, &key, path,
4221 				BTRFS_OLDEST_GENERATION);
4222 		if (ret) {
4223 			if (ret > 0)
4224 				ret = 0;
4225 			break;
4226 		}
4227 
4228 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4229 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4230 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4231 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4232 			goto skip;
4233 
4234 		eb = path->nodes[0];
4235 		slot = path->slots[0];
4236 		item_size = btrfs_item_size_nr(eb, slot);
4237 		if (item_size < sizeof(root_item))
4238 			goto skip;
4239 
4240 		read_extent_buffer(eb, &root_item,
4241 				   btrfs_item_ptr_offset(eb, slot),
4242 				   (int)sizeof(root_item));
4243 		if (btrfs_root_refs(&root_item) == 0)
4244 			goto skip;
4245 
4246 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4247 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4248 			if (trans)
4249 				goto update_tree;
4250 
4251 			btrfs_release_path(path);
4252 			/*
4253 			 * 1 - subvol uuid item
4254 			 * 1 - received_subvol uuid item
4255 			 */
4256 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4257 			if (IS_ERR(trans)) {
4258 				ret = PTR_ERR(trans);
4259 				break;
4260 			}
4261 			continue;
4262 		} else {
4263 			goto skip;
4264 		}
4265 update_tree:
4266 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4267 			ret = btrfs_uuid_tree_add(trans, fs_info,
4268 						  root_item.uuid,
4269 						  BTRFS_UUID_KEY_SUBVOL,
4270 						  key.objectid);
4271 			if (ret < 0) {
4272 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4273 					ret);
4274 				break;
4275 			}
4276 		}
4277 
4278 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4279 			ret = btrfs_uuid_tree_add(trans, fs_info,
4280 						  root_item.received_uuid,
4281 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4282 						  key.objectid);
4283 			if (ret < 0) {
4284 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4285 					ret);
4286 				break;
4287 			}
4288 		}
4289 
4290 skip:
4291 		if (trans) {
4292 			ret = btrfs_end_transaction(trans);
4293 			trans = NULL;
4294 			if (ret)
4295 				break;
4296 		}
4297 
4298 		btrfs_release_path(path);
4299 		if (key.offset < (u64)-1) {
4300 			key.offset++;
4301 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4302 			key.offset = 0;
4303 			key.type = BTRFS_ROOT_ITEM_KEY;
4304 		} else if (key.objectid < (u64)-1) {
4305 			key.offset = 0;
4306 			key.type = BTRFS_ROOT_ITEM_KEY;
4307 			key.objectid++;
4308 		} else {
4309 			break;
4310 		}
4311 		cond_resched();
4312 	}
4313 
4314 out:
4315 	btrfs_free_path(path);
4316 	if (trans && !IS_ERR(trans))
4317 		btrfs_end_transaction(trans);
4318 	if (ret)
4319 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4320 	else
4321 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4322 	up(&fs_info->uuid_tree_rescan_sem);
4323 	return 0;
4324 }
4325 
4326 /*
4327  * Callback for btrfs_uuid_tree_iterate().
4328  * returns:
4329  * 0	check succeeded, the entry is not outdated.
4330  * < 0	if an error occurred.
4331  * > 0	if the check failed, which means the caller shall remove the entry.
4332  */
4333 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4334 				       u8 *uuid, u8 type, u64 subid)
4335 {
4336 	struct btrfs_key key;
4337 	int ret = 0;
4338 	struct btrfs_root *subvol_root;
4339 
4340 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4341 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4342 		goto out;
4343 
4344 	key.objectid = subid;
4345 	key.type = BTRFS_ROOT_ITEM_KEY;
4346 	key.offset = (u64)-1;
4347 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4348 	if (IS_ERR(subvol_root)) {
4349 		ret = PTR_ERR(subvol_root);
4350 		if (ret == -ENOENT)
4351 			ret = 1;
4352 		goto out;
4353 	}
4354 
4355 	switch (type) {
4356 	case BTRFS_UUID_KEY_SUBVOL:
4357 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4358 			ret = 1;
4359 		break;
4360 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4361 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4362 			   BTRFS_UUID_SIZE))
4363 			ret = 1;
4364 		break;
4365 	}
4366 
4367 out:
4368 	return ret;
4369 }
4370 
4371 static int btrfs_uuid_rescan_kthread(void *data)
4372 {
4373 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4374 	int ret;
4375 
4376 	/*
4377 	 * 1st step is to iterate through the existing UUID tree and
4378 	 * to delete all entries that contain outdated data.
4379 	 * 2nd step is to add all missing entries to the UUID tree.
4380 	 */
4381 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4382 	if (ret < 0) {
4383 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4384 		up(&fs_info->uuid_tree_rescan_sem);
4385 		return ret;
4386 	}
4387 	return btrfs_uuid_scan_kthread(data);
4388 }
4389 
4390 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4391 {
4392 	struct btrfs_trans_handle *trans;
4393 	struct btrfs_root *tree_root = fs_info->tree_root;
4394 	struct btrfs_root *uuid_root;
4395 	struct task_struct *task;
4396 	int ret;
4397 
4398 	/*
4399 	 * 1 - root node
4400 	 * 1 - root item
4401 	 */
4402 	trans = btrfs_start_transaction(tree_root, 2);
4403 	if (IS_ERR(trans))
4404 		return PTR_ERR(trans);
4405 
4406 	uuid_root = btrfs_create_tree(trans, fs_info,
4407 				      BTRFS_UUID_TREE_OBJECTID);
4408 	if (IS_ERR(uuid_root)) {
4409 		ret = PTR_ERR(uuid_root);
4410 		btrfs_abort_transaction(trans, ret);
4411 		btrfs_end_transaction(trans);
4412 		return ret;
4413 	}
4414 
4415 	fs_info->uuid_root = uuid_root;
4416 
4417 	ret = btrfs_commit_transaction(trans);
4418 	if (ret)
4419 		return ret;
4420 
4421 	down(&fs_info->uuid_tree_rescan_sem);
4422 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4423 	if (IS_ERR(task)) {
4424 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4425 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4426 		up(&fs_info->uuid_tree_rescan_sem);
4427 		return PTR_ERR(task);
4428 	}
4429 
4430 	return 0;
4431 }
4432 
4433 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4434 {
4435 	struct task_struct *task;
4436 
4437 	down(&fs_info->uuid_tree_rescan_sem);
4438 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4439 	if (IS_ERR(task)) {
4440 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4441 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4442 		up(&fs_info->uuid_tree_rescan_sem);
4443 		return PTR_ERR(task);
4444 	}
4445 
4446 	return 0;
4447 }
4448 
4449 /*
4450  * shrinking a device means finding all of the device extents past
4451  * the new size, and then following the back refs to the chunks.
4452  * The chunk relocation code actually frees the device extent
4453  */
4454 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4455 {
4456 	struct btrfs_fs_info *fs_info = device->fs_info;
4457 	struct btrfs_root *root = fs_info->dev_root;
4458 	struct btrfs_trans_handle *trans;
4459 	struct btrfs_dev_extent *dev_extent = NULL;
4460 	struct btrfs_path *path;
4461 	u64 length;
4462 	u64 chunk_offset;
4463 	int ret;
4464 	int slot;
4465 	int failed = 0;
4466 	bool retried = false;
4467 	bool checked_pending_chunks = false;
4468 	struct extent_buffer *l;
4469 	struct btrfs_key key;
4470 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4471 	u64 old_total = btrfs_super_total_bytes(super_copy);
4472 	u64 old_size = btrfs_device_get_total_bytes(device);
4473 	u64 diff;
4474 
4475 	new_size = round_down(new_size, fs_info->sectorsize);
4476 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4477 
4478 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4479 		return -EINVAL;
4480 
4481 	path = btrfs_alloc_path();
4482 	if (!path)
4483 		return -ENOMEM;
4484 
4485 	path->reada = READA_FORWARD;
4486 
4487 	mutex_lock(&fs_info->chunk_mutex);
4488 
4489 	btrfs_device_set_total_bytes(device, new_size);
4490 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4491 		device->fs_devices->total_rw_bytes -= diff;
4492 		atomic64_sub(diff, &fs_info->free_chunk_space);
4493 	}
4494 	mutex_unlock(&fs_info->chunk_mutex);
4495 
4496 again:
4497 	key.objectid = device->devid;
4498 	key.offset = (u64)-1;
4499 	key.type = BTRFS_DEV_EXTENT_KEY;
4500 
4501 	do {
4502 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4503 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4504 		if (ret < 0) {
4505 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4506 			goto done;
4507 		}
4508 
4509 		ret = btrfs_previous_item(root, path, 0, key.type);
4510 		if (ret)
4511 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4512 		if (ret < 0)
4513 			goto done;
4514 		if (ret) {
4515 			ret = 0;
4516 			btrfs_release_path(path);
4517 			break;
4518 		}
4519 
4520 		l = path->nodes[0];
4521 		slot = path->slots[0];
4522 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4523 
4524 		if (key.objectid != device->devid) {
4525 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4526 			btrfs_release_path(path);
4527 			break;
4528 		}
4529 
4530 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4531 		length = btrfs_dev_extent_length(l, dev_extent);
4532 
4533 		if (key.offset + length <= new_size) {
4534 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4535 			btrfs_release_path(path);
4536 			break;
4537 		}
4538 
4539 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4540 		btrfs_release_path(path);
4541 
4542 		/*
4543 		 * We may be relocating the only data chunk we have,
4544 		 * which could potentially end up with losing data's
4545 		 * raid profile, so lets allocate an empty one in
4546 		 * advance.
4547 		 */
4548 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4549 		if (ret < 0) {
4550 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4551 			goto done;
4552 		}
4553 
4554 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4555 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4556 		if (ret && ret != -ENOSPC)
4557 			goto done;
4558 		if (ret == -ENOSPC)
4559 			failed++;
4560 	} while (key.offset-- > 0);
4561 
4562 	if (failed && !retried) {
4563 		failed = 0;
4564 		retried = true;
4565 		goto again;
4566 	} else if (failed && retried) {
4567 		ret = -ENOSPC;
4568 		goto done;
4569 	}
4570 
4571 	/* Shrinking succeeded, else we would be at "done". */
4572 	trans = btrfs_start_transaction(root, 0);
4573 	if (IS_ERR(trans)) {
4574 		ret = PTR_ERR(trans);
4575 		goto done;
4576 	}
4577 
4578 	mutex_lock(&fs_info->chunk_mutex);
4579 
4580 	/*
4581 	 * We checked in the above loop all device extents that were already in
4582 	 * the device tree. However before we have updated the device's
4583 	 * total_bytes to the new size, we might have had chunk allocations that
4584 	 * have not complete yet (new block groups attached to transaction
4585 	 * handles), and therefore their device extents were not yet in the
4586 	 * device tree and we missed them in the loop above. So if we have any
4587 	 * pending chunk using a device extent that overlaps the device range
4588 	 * that we can not use anymore, commit the current transaction and
4589 	 * repeat the search on the device tree - this way we guarantee we will
4590 	 * not have chunks using device extents that end beyond 'new_size'.
4591 	 */
4592 	if (!checked_pending_chunks) {
4593 		u64 start = new_size;
4594 		u64 len = old_size - new_size;
4595 
4596 		if (contains_pending_extent(trans->transaction, device,
4597 					    &start, len)) {
4598 			mutex_unlock(&fs_info->chunk_mutex);
4599 			checked_pending_chunks = true;
4600 			failed = 0;
4601 			retried = false;
4602 			ret = btrfs_commit_transaction(trans);
4603 			if (ret)
4604 				goto done;
4605 			goto again;
4606 		}
4607 	}
4608 
4609 	btrfs_device_set_disk_total_bytes(device, new_size);
4610 	if (list_empty(&device->resized_list))
4611 		list_add_tail(&device->resized_list,
4612 			      &fs_info->fs_devices->resized_devices);
4613 
4614 	WARN_ON(diff > old_total);
4615 	btrfs_set_super_total_bytes(super_copy,
4616 			round_down(old_total - diff, fs_info->sectorsize));
4617 	mutex_unlock(&fs_info->chunk_mutex);
4618 
4619 	/* Now btrfs_update_device() will change the on-disk size. */
4620 	ret = btrfs_update_device(trans, device);
4621 	btrfs_end_transaction(trans);
4622 done:
4623 	btrfs_free_path(path);
4624 	if (ret) {
4625 		mutex_lock(&fs_info->chunk_mutex);
4626 		btrfs_device_set_total_bytes(device, old_size);
4627 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4628 			device->fs_devices->total_rw_bytes += diff;
4629 		atomic64_add(diff, &fs_info->free_chunk_space);
4630 		mutex_unlock(&fs_info->chunk_mutex);
4631 	}
4632 	return ret;
4633 }
4634 
4635 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4636 			   struct btrfs_key *key,
4637 			   struct btrfs_chunk *chunk, int item_size)
4638 {
4639 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4640 	struct btrfs_disk_key disk_key;
4641 	u32 array_size;
4642 	u8 *ptr;
4643 
4644 	mutex_lock(&fs_info->chunk_mutex);
4645 	array_size = btrfs_super_sys_array_size(super_copy);
4646 	if (array_size + item_size + sizeof(disk_key)
4647 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4648 		mutex_unlock(&fs_info->chunk_mutex);
4649 		return -EFBIG;
4650 	}
4651 
4652 	ptr = super_copy->sys_chunk_array + array_size;
4653 	btrfs_cpu_key_to_disk(&disk_key, key);
4654 	memcpy(ptr, &disk_key, sizeof(disk_key));
4655 	ptr += sizeof(disk_key);
4656 	memcpy(ptr, chunk, item_size);
4657 	item_size += sizeof(disk_key);
4658 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4659 	mutex_unlock(&fs_info->chunk_mutex);
4660 
4661 	return 0;
4662 }
4663 
4664 /*
4665  * sort the devices in descending order by max_avail, total_avail
4666  */
4667 static int btrfs_cmp_device_info(const void *a, const void *b)
4668 {
4669 	const struct btrfs_device_info *di_a = a;
4670 	const struct btrfs_device_info *di_b = b;
4671 
4672 	if (di_a->max_avail > di_b->max_avail)
4673 		return -1;
4674 	if (di_a->max_avail < di_b->max_avail)
4675 		return 1;
4676 	if (di_a->total_avail > di_b->total_avail)
4677 		return -1;
4678 	if (di_a->total_avail < di_b->total_avail)
4679 		return 1;
4680 	return 0;
4681 }
4682 
4683 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4684 {
4685 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4686 		return;
4687 
4688 	btrfs_set_fs_incompat(info, RAID56);
4689 }
4690 
4691 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
4692 			- sizeof(struct btrfs_chunk))		\
4693 			/ sizeof(struct btrfs_stripe) + 1)
4694 
4695 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4696 				- 2 * sizeof(struct btrfs_disk_key)	\
4697 				- 2 * sizeof(struct btrfs_chunk))	\
4698 				/ sizeof(struct btrfs_stripe) + 1)
4699 
4700 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4701 			       u64 start, u64 type)
4702 {
4703 	struct btrfs_fs_info *info = trans->fs_info;
4704 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4705 	struct btrfs_device *device;
4706 	struct map_lookup *map = NULL;
4707 	struct extent_map_tree *em_tree;
4708 	struct extent_map *em;
4709 	struct btrfs_device_info *devices_info = NULL;
4710 	u64 total_avail;
4711 	int num_stripes;	/* total number of stripes to allocate */
4712 	int data_stripes;	/* number of stripes that count for
4713 				   block group size */
4714 	int sub_stripes;	/* sub_stripes info for map */
4715 	int dev_stripes;	/* stripes per dev */
4716 	int devs_max;		/* max devs to use */
4717 	int devs_min;		/* min devs needed */
4718 	int devs_increment;	/* ndevs has to be a multiple of this */
4719 	int ncopies;		/* how many copies to data has */
4720 	int ret;
4721 	u64 max_stripe_size;
4722 	u64 max_chunk_size;
4723 	u64 stripe_size;
4724 	u64 num_bytes;
4725 	int ndevs;
4726 	int i;
4727 	int j;
4728 	int index;
4729 
4730 	BUG_ON(!alloc_profile_is_valid(type, 0));
4731 
4732 	if (list_empty(&fs_devices->alloc_list)) {
4733 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4734 			btrfs_debug(info, "%s: no writable device", __func__);
4735 		return -ENOSPC;
4736 	}
4737 
4738 	index = btrfs_bg_flags_to_raid_index(type);
4739 
4740 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4741 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4742 	devs_max = btrfs_raid_array[index].devs_max;
4743 	devs_min = btrfs_raid_array[index].devs_min;
4744 	devs_increment = btrfs_raid_array[index].devs_increment;
4745 	ncopies = btrfs_raid_array[index].ncopies;
4746 
4747 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4748 		max_stripe_size = SZ_1G;
4749 		max_chunk_size = 10 * max_stripe_size;
4750 		if (!devs_max)
4751 			devs_max = BTRFS_MAX_DEVS(info);
4752 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4753 		/* for larger filesystems, use larger metadata chunks */
4754 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4755 			max_stripe_size = SZ_1G;
4756 		else
4757 			max_stripe_size = SZ_256M;
4758 		max_chunk_size = max_stripe_size;
4759 		if (!devs_max)
4760 			devs_max = BTRFS_MAX_DEVS(info);
4761 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4762 		max_stripe_size = SZ_32M;
4763 		max_chunk_size = 2 * max_stripe_size;
4764 		if (!devs_max)
4765 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4766 	} else {
4767 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4768 		       type);
4769 		BUG_ON(1);
4770 	}
4771 
4772 	/* we don't want a chunk larger than 10% of writeable space */
4773 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4774 			     max_chunk_size);
4775 
4776 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4777 			       GFP_NOFS);
4778 	if (!devices_info)
4779 		return -ENOMEM;
4780 
4781 	/*
4782 	 * in the first pass through the devices list, we gather information
4783 	 * about the available holes on each device.
4784 	 */
4785 	ndevs = 0;
4786 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4787 		u64 max_avail;
4788 		u64 dev_offset;
4789 
4790 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4791 			WARN(1, KERN_ERR
4792 			       "BTRFS: read-only device in alloc_list\n");
4793 			continue;
4794 		}
4795 
4796 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4797 					&device->dev_state) ||
4798 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4799 			continue;
4800 
4801 		if (device->total_bytes > device->bytes_used)
4802 			total_avail = device->total_bytes - device->bytes_used;
4803 		else
4804 			total_avail = 0;
4805 
4806 		/* If there is no space on this device, skip it. */
4807 		if (total_avail == 0)
4808 			continue;
4809 
4810 		ret = find_free_dev_extent(trans, device,
4811 					   max_stripe_size * dev_stripes,
4812 					   &dev_offset, &max_avail);
4813 		if (ret && ret != -ENOSPC)
4814 			goto error;
4815 
4816 		if (ret == 0)
4817 			max_avail = max_stripe_size * dev_stripes;
4818 
4819 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4820 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4821 				btrfs_debug(info,
4822 			"%s: devid %llu has no free space, have=%llu want=%u",
4823 					    __func__, device->devid, max_avail,
4824 					    BTRFS_STRIPE_LEN * dev_stripes);
4825 			continue;
4826 		}
4827 
4828 		if (ndevs == fs_devices->rw_devices) {
4829 			WARN(1, "%s: found more than %llu devices\n",
4830 			     __func__, fs_devices->rw_devices);
4831 			break;
4832 		}
4833 		devices_info[ndevs].dev_offset = dev_offset;
4834 		devices_info[ndevs].max_avail = max_avail;
4835 		devices_info[ndevs].total_avail = total_avail;
4836 		devices_info[ndevs].dev = device;
4837 		++ndevs;
4838 	}
4839 
4840 	/*
4841 	 * now sort the devices by hole size / available space
4842 	 */
4843 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4844 	     btrfs_cmp_device_info, NULL);
4845 
4846 	/* round down to number of usable stripes */
4847 	ndevs = round_down(ndevs, devs_increment);
4848 
4849 	if (ndevs < devs_min) {
4850 		ret = -ENOSPC;
4851 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4852 			btrfs_debug(info,
4853 	"%s: not enough devices with free space: have=%d minimum required=%d",
4854 				    __func__, ndevs, devs_min);
4855 		}
4856 		goto error;
4857 	}
4858 
4859 	ndevs = min(ndevs, devs_max);
4860 
4861 	/*
4862 	 * The primary goal is to maximize the number of stripes, so use as
4863 	 * many devices as possible, even if the stripes are not maximum sized.
4864 	 *
4865 	 * The DUP profile stores more than one stripe per device, the
4866 	 * max_avail is the total size so we have to adjust.
4867 	 */
4868 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4869 	num_stripes = ndevs * dev_stripes;
4870 
4871 	/*
4872 	 * this will have to be fixed for RAID1 and RAID10 over
4873 	 * more drives
4874 	 */
4875 	data_stripes = num_stripes / ncopies;
4876 
4877 	if (type & BTRFS_BLOCK_GROUP_RAID5)
4878 		data_stripes = num_stripes - 1;
4879 
4880 	if (type & BTRFS_BLOCK_GROUP_RAID6)
4881 		data_stripes = num_stripes - 2;
4882 
4883 	/*
4884 	 * Use the number of data stripes to figure out how big this chunk
4885 	 * is really going to be in terms of logical address space,
4886 	 * and compare that answer with the max chunk size
4887 	 */
4888 	if (stripe_size * data_stripes > max_chunk_size) {
4889 		stripe_size = div_u64(max_chunk_size, data_stripes);
4890 
4891 		/* bump the answer up to a 16MB boundary */
4892 		stripe_size = round_up(stripe_size, SZ_16M);
4893 
4894 		/*
4895 		 * But don't go higher than the limits we found while searching
4896 		 * for free extents
4897 		 */
4898 		stripe_size = min(devices_info[ndevs - 1].max_avail,
4899 				  stripe_size);
4900 	}
4901 
4902 	/* align to BTRFS_STRIPE_LEN */
4903 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4904 
4905 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4906 	if (!map) {
4907 		ret = -ENOMEM;
4908 		goto error;
4909 	}
4910 	map->num_stripes = num_stripes;
4911 
4912 	for (i = 0; i < ndevs; ++i) {
4913 		for (j = 0; j < dev_stripes; ++j) {
4914 			int s = i * dev_stripes + j;
4915 			map->stripes[s].dev = devices_info[i].dev;
4916 			map->stripes[s].physical = devices_info[i].dev_offset +
4917 						   j * stripe_size;
4918 		}
4919 	}
4920 	map->stripe_len = BTRFS_STRIPE_LEN;
4921 	map->io_align = BTRFS_STRIPE_LEN;
4922 	map->io_width = BTRFS_STRIPE_LEN;
4923 	map->type = type;
4924 	map->sub_stripes = sub_stripes;
4925 
4926 	num_bytes = stripe_size * data_stripes;
4927 
4928 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4929 
4930 	em = alloc_extent_map();
4931 	if (!em) {
4932 		kfree(map);
4933 		ret = -ENOMEM;
4934 		goto error;
4935 	}
4936 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4937 	em->map_lookup = map;
4938 	em->start = start;
4939 	em->len = num_bytes;
4940 	em->block_start = 0;
4941 	em->block_len = em->len;
4942 	em->orig_block_len = stripe_size;
4943 
4944 	em_tree = &info->mapping_tree.map_tree;
4945 	write_lock(&em_tree->lock);
4946 	ret = add_extent_mapping(em_tree, em, 0);
4947 	if (ret) {
4948 		write_unlock(&em_tree->lock);
4949 		free_extent_map(em);
4950 		goto error;
4951 	}
4952 
4953 	list_add_tail(&em->list, &trans->transaction->pending_chunks);
4954 	refcount_inc(&em->refs);
4955 	write_unlock(&em_tree->lock);
4956 
4957 	ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4958 	if (ret)
4959 		goto error_del_extent;
4960 
4961 	for (i = 0; i < map->num_stripes; i++) {
4962 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4963 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4964 	}
4965 
4966 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4967 
4968 	free_extent_map(em);
4969 	check_raid56_incompat_flag(info, type);
4970 
4971 	kfree(devices_info);
4972 	return 0;
4973 
4974 error_del_extent:
4975 	write_lock(&em_tree->lock);
4976 	remove_extent_mapping(em_tree, em);
4977 	write_unlock(&em_tree->lock);
4978 
4979 	/* One for our allocation */
4980 	free_extent_map(em);
4981 	/* One for the tree reference */
4982 	free_extent_map(em);
4983 	/* One for the pending_chunks list reference */
4984 	free_extent_map(em);
4985 error:
4986 	kfree(devices_info);
4987 	return ret;
4988 }
4989 
4990 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4991 				struct btrfs_fs_info *fs_info,
4992 				u64 chunk_offset, u64 chunk_size)
4993 {
4994 	struct btrfs_root *extent_root = fs_info->extent_root;
4995 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4996 	struct btrfs_key key;
4997 	struct btrfs_device *device;
4998 	struct btrfs_chunk *chunk;
4999 	struct btrfs_stripe *stripe;
5000 	struct extent_map *em;
5001 	struct map_lookup *map;
5002 	size_t item_size;
5003 	u64 dev_offset;
5004 	u64 stripe_size;
5005 	int i = 0;
5006 	int ret = 0;
5007 
5008 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
5009 	if (IS_ERR(em))
5010 		return PTR_ERR(em);
5011 
5012 	map = em->map_lookup;
5013 	item_size = btrfs_chunk_item_size(map->num_stripes);
5014 	stripe_size = em->orig_block_len;
5015 
5016 	chunk = kzalloc(item_size, GFP_NOFS);
5017 	if (!chunk) {
5018 		ret = -ENOMEM;
5019 		goto out;
5020 	}
5021 
5022 	/*
5023 	 * Take the device list mutex to prevent races with the final phase of
5024 	 * a device replace operation that replaces the device object associated
5025 	 * with the map's stripes, because the device object's id can change
5026 	 * at any time during that final phase of the device replace operation
5027 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5028 	 */
5029 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5030 	for (i = 0; i < map->num_stripes; i++) {
5031 		device = map->stripes[i].dev;
5032 		dev_offset = map->stripes[i].physical;
5033 
5034 		ret = btrfs_update_device(trans, device);
5035 		if (ret)
5036 			break;
5037 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5038 					     dev_offset, stripe_size);
5039 		if (ret)
5040 			break;
5041 	}
5042 	if (ret) {
5043 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5044 		goto out;
5045 	}
5046 
5047 	stripe = &chunk->stripe;
5048 	for (i = 0; i < map->num_stripes; i++) {
5049 		device = map->stripes[i].dev;
5050 		dev_offset = map->stripes[i].physical;
5051 
5052 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5053 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5054 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5055 		stripe++;
5056 	}
5057 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5058 
5059 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5060 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5061 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5062 	btrfs_set_stack_chunk_type(chunk, map->type);
5063 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5064 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5065 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5066 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5067 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5068 
5069 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5070 	key.type = BTRFS_CHUNK_ITEM_KEY;
5071 	key.offset = chunk_offset;
5072 
5073 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5074 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5075 		/*
5076 		 * TODO: Cleanup of inserted chunk root in case of
5077 		 * failure.
5078 		 */
5079 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5080 	}
5081 
5082 out:
5083 	kfree(chunk);
5084 	free_extent_map(em);
5085 	return ret;
5086 }
5087 
5088 /*
5089  * Chunk allocation falls into two parts. The first part does works
5090  * that make the new allocated chunk useable, but not do any operation
5091  * that modifies the chunk tree. The second part does the works that
5092  * require modifying the chunk tree. This division is important for the
5093  * bootstrap process of adding storage to a seed btrfs.
5094  */
5095 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5096 		      struct btrfs_fs_info *fs_info, u64 type)
5097 {
5098 	u64 chunk_offset;
5099 
5100 	lockdep_assert_held(&fs_info->chunk_mutex);
5101 	chunk_offset = find_next_chunk(fs_info);
5102 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5103 }
5104 
5105 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5106 					 struct btrfs_fs_info *fs_info)
5107 {
5108 	u64 chunk_offset;
5109 	u64 sys_chunk_offset;
5110 	u64 alloc_profile;
5111 	int ret;
5112 
5113 	chunk_offset = find_next_chunk(fs_info);
5114 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5115 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5116 	if (ret)
5117 		return ret;
5118 
5119 	sys_chunk_offset = find_next_chunk(fs_info);
5120 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5121 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5122 	return ret;
5123 }
5124 
5125 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5126 {
5127 	int max_errors;
5128 
5129 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5130 			 BTRFS_BLOCK_GROUP_RAID10 |
5131 			 BTRFS_BLOCK_GROUP_RAID5 |
5132 			 BTRFS_BLOCK_GROUP_DUP)) {
5133 		max_errors = 1;
5134 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5135 		max_errors = 2;
5136 	} else {
5137 		max_errors = 0;
5138 	}
5139 
5140 	return max_errors;
5141 }
5142 
5143 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5144 {
5145 	struct extent_map *em;
5146 	struct map_lookup *map;
5147 	int readonly = 0;
5148 	int miss_ndevs = 0;
5149 	int i;
5150 
5151 	em = get_chunk_map(fs_info, chunk_offset, 1);
5152 	if (IS_ERR(em))
5153 		return 1;
5154 
5155 	map = em->map_lookup;
5156 	for (i = 0; i < map->num_stripes; i++) {
5157 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5158 					&map->stripes[i].dev->dev_state)) {
5159 			miss_ndevs++;
5160 			continue;
5161 		}
5162 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5163 					&map->stripes[i].dev->dev_state)) {
5164 			readonly = 1;
5165 			goto end;
5166 		}
5167 	}
5168 
5169 	/*
5170 	 * If the number of missing devices is larger than max errors,
5171 	 * we can not write the data into that chunk successfully, so
5172 	 * set it readonly.
5173 	 */
5174 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5175 		readonly = 1;
5176 end:
5177 	free_extent_map(em);
5178 	return readonly;
5179 }
5180 
5181 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5182 {
5183 	extent_map_tree_init(&tree->map_tree);
5184 }
5185 
5186 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5187 {
5188 	struct extent_map *em;
5189 
5190 	while (1) {
5191 		write_lock(&tree->map_tree.lock);
5192 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5193 		if (em)
5194 			remove_extent_mapping(&tree->map_tree, em);
5195 		write_unlock(&tree->map_tree.lock);
5196 		if (!em)
5197 			break;
5198 		/* once for us */
5199 		free_extent_map(em);
5200 		/* once for the tree */
5201 		free_extent_map(em);
5202 	}
5203 }
5204 
5205 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5206 {
5207 	struct extent_map *em;
5208 	struct map_lookup *map;
5209 	int ret;
5210 
5211 	em = get_chunk_map(fs_info, logical, len);
5212 	if (IS_ERR(em))
5213 		/*
5214 		 * We could return errors for these cases, but that could get
5215 		 * ugly and we'd probably do the same thing which is just not do
5216 		 * anything else and exit, so return 1 so the callers don't try
5217 		 * to use other copies.
5218 		 */
5219 		return 1;
5220 
5221 	map = em->map_lookup;
5222 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5223 		ret = map->num_stripes;
5224 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5225 		ret = map->sub_stripes;
5226 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5227 		ret = 2;
5228 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5229 		/*
5230 		 * There could be two corrupted data stripes, we need
5231 		 * to loop retry in order to rebuild the correct data.
5232 		 *
5233 		 * Fail a stripe at a time on every retry except the
5234 		 * stripe under reconstruction.
5235 		 */
5236 		ret = map->num_stripes;
5237 	else
5238 		ret = 1;
5239 	free_extent_map(em);
5240 
5241 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5242 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5243 	    fs_info->dev_replace.tgtdev)
5244 		ret++;
5245 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5246 
5247 	return ret;
5248 }
5249 
5250 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5251 				    u64 logical)
5252 {
5253 	struct extent_map *em;
5254 	struct map_lookup *map;
5255 	unsigned long len = fs_info->sectorsize;
5256 
5257 	em = get_chunk_map(fs_info, logical, len);
5258 
5259 	if (!WARN_ON(IS_ERR(em))) {
5260 		map = em->map_lookup;
5261 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5262 			len = map->stripe_len * nr_data_stripes(map);
5263 		free_extent_map(em);
5264 	}
5265 	return len;
5266 }
5267 
5268 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5269 {
5270 	struct extent_map *em;
5271 	struct map_lookup *map;
5272 	int ret = 0;
5273 
5274 	em = get_chunk_map(fs_info, logical, len);
5275 
5276 	if(!WARN_ON(IS_ERR(em))) {
5277 		map = em->map_lookup;
5278 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5279 			ret = 1;
5280 		free_extent_map(em);
5281 	}
5282 	return ret;
5283 }
5284 
5285 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5286 			    struct map_lookup *map, int first,
5287 			    int dev_replace_is_ongoing)
5288 {
5289 	int i;
5290 	int num_stripes;
5291 	int preferred_mirror;
5292 	int tolerance;
5293 	struct btrfs_device *srcdev;
5294 
5295 	ASSERT((map->type &
5296 		 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5297 
5298 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5299 		num_stripes = map->sub_stripes;
5300 	else
5301 		num_stripes = map->num_stripes;
5302 
5303 	preferred_mirror = first + current->pid % num_stripes;
5304 
5305 	if (dev_replace_is_ongoing &&
5306 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5307 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5308 		srcdev = fs_info->dev_replace.srcdev;
5309 	else
5310 		srcdev = NULL;
5311 
5312 	/*
5313 	 * try to avoid the drive that is the source drive for a
5314 	 * dev-replace procedure, only choose it if no other non-missing
5315 	 * mirror is available
5316 	 */
5317 	for (tolerance = 0; tolerance < 2; tolerance++) {
5318 		if (map->stripes[preferred_mirror].dev->bdev &&
5319 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5320 			return preferred_mirror;
5321 		for (i = first; i < first + num_stripes; i++) {
5322 			if (map->stripes[i].dev->bdev &&
5323 			    (tolerance || map->stripes[i].dev != srcdev))
5324 				return i;
5325 		}
5326 	}
5327 
5328 	/* we couldn't find one that doesn't fail.  Just return something
5329 	 * and the io error handling code will clean up eventually
5330 	 */
5331 	return preferred_mirror;
5332 }
5333 
5334 static inline int parity_smaller(u64 a, u64 b)
5335 {
5336 	return a > b;
5337 }
5338 
5339 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5340 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5341 {
5342 	struct btrfs_bio_stripe s;
5343 	int i;
5344 	u64 l;
5345 	int again = 1;
5346 
5347 	while (again) {
5348 		again = 0;
5349 		for (i = 0; i < num_stripes - 1; i++) {
5350 			if (parity_smaller(bbio->raid_map[i],
5351 					   bbio->raid_map[i+1])) {
5352 				s = bbio->stripes[i];
5353 				l = bbio->raid_map[i];
5354 				bbio->stripes[i] = bbio->stripes[i+1];
5355 				bbio->raid_map[i] = bbio->raid_map[i+1];
5356 				bbio->stripes[i+1] = s;
5357 				bbio->raid_map[i+1] = l;
5358 
5359 				again = 1;
5360 			}
5361 		}
5362 	}
5363 }
5364 
5365 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5366 {
5367 	struct btrfs_bio *bbio = kzalloc(
5368 		 /* the size of the btrfs_bio */
5369 		sizeof(struct btrfs_bio) +
5370 		/* plus the variable array for the stripes */
5371 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5372 		/* plus the variable array for the tgt dev */
5373 		sizeof(int) * (real_stripes) +
5374 		/*
5375 		 * plus the raid_map, which includes both the tgt dev
5376 		 * and the stripes
5377 		 */
5378 		sizeof(u64) * (total_stripes),
5379 		GFP_NOFS|__GFP_NOFAIL);
5380 
5381 	atomic_set(&bbio->error, 0);
5382 	refcount_set(&bbio->refs, 1);
5383 
5384 	return bbio;
5385 }
5386 
5387 void btrfs_get_bbio(struct btrfs_bio *bbio)
5388 {
5389 	WARN_ON(!refcount_read(&bbio->refs));
5390 	refcount_inc(&bbio->refs);
5391 }
5392 
5393 void btrfs_put_bbio(struct btrfs_bio *bbio)
5394 {
5395 	if (!bbio)
5396 		return;
5397 	if (refcount_dec_and_test(&bbio->refs))
5398 		kfree(bbio);
5399 }
5400 
5401 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5402 /*
5403  * Please note that, discard won't be sent to target device of device
5404  * replace.
5405  */
5406 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5407 					 u64 logical, u64 length,
5408 					 struct btrfs_bio **bbio_ret)
5409 {
5410 	struct extent_map *em;
5411 	struct map_lookup *map;
5412 	struct btrfs_bio *bbio;
5413 	u64 offset;
5414 	u64 stripe_nr;
5415 	u64 stripe_nr_end;
5416 	u64 stripe_end_offset;
5417 	u64 stripe_cnt;
5418 	u64 stripe_len;
5419 	u64 stripe_offset;
5420 	u64 num_stripes;
5421 	u32 stripe_index;
5422 	u32 factor = 0;
5423 	u32 sub_stripes = 0;
5424 	u64 stripes_per_dev = 0;
5425 	u32 remaining_stripes = 0;
5426 	u32 last_stripe = 0;
5427 	int ret = 0;
5428 	int i;
5429 
5430 	/* discard always return a bbio */
5431 	ASSERT(bbio_ret);
5432 
5433 	em = get_chunk_map(fs_info, logical, length);
5434 	if (IS_ERR(em))
5435 		return PTR_ERR(em);
5436 
5437 	map = em->map_lookup;
5438 	/* we don't discard raid56 yet */
5439 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5440 		ret = -EOPNOTSUPP;
5441 		goto out;
5442 	}
5443 
5444 	offset = logical - em->start;
5445 	length = min_t(u64, em->len - offset, length);
5446 
5447 	stripe_len = map->stripe_len;
5448 	/*
5449 	 * stripe_nr counts the total number of stripes we have to stride
5450 	 * to get to this block
5451 	 */
5452 	stripe_nr = div64_u64(offset, stripe_len);
5453 
5454 	/* stripe_offset is the offset of this block in its stripe */
5455 	stripe_offset = offset - stripe_nr * stripe_len;
5456 
5457 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5458 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5459 	stripe_cnt = stripe_nr_end - stripe_nr;
5460 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5461 			    (offset + length);
5462 	/*
5463 	 * after this, stripe_nr is the number of stripes on this
5464 	 * device we have to walk to find the data, and stripe_index is
5465 	 * the number of our device in the stripe array
5466 	 */
5467 	num_stripes = 1;
5468 	stripe_index = 0;
5469 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5470 			 BTRFS_BLOCK_GROUP_RAID10)) {
5471 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5472 			sub_stripes = 1;
5473 		else
5474 			sub_stripes = map->sub_stripes;
5475 
5476 		factor = map->num_stripes / sub_stripes;
5477 		num_stripes = min_t(u64, map->num_stripes,
5478 				    sub_stripes * stripe_cnt);
5479 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5480 		stripe_index *= sub_stripes;
5481 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5482 					      &remaining_stripes);
5483 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5484 		last_stripe *= sub_stripes;
5485 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5486 				BTRFS_BLOCK_GROUP_DUP)) {
5487 		num_stripes = map->num_stripes;
5488 	} else {
5489 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5490 					&stripe_index);
5491 	}
5492 
5493 	bbio = alloc_btrfs_bio(num_stripes, 0);
5494 	if (!bbio) {
5495 		ret = -ENOMEM;
5496 		goto out;
5497 	}
5498 
5499 	for (i = 0; i < num_stripes; i++) {
5500 		bbio->stripes[i].physical =
5501 			map->stripes[stripe_index].physical +
5502 			stripe_offset + stripe_nr * map->stripe_len;
5503 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5504 
5505 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5506 				 BTRFS_BLOCK_GROUP_RAID10)) {
5507 			bbio->stripes[i].length = stripes_per_dev *
5508 				map->stripe_len;
5509 
5510 			if (i / sub_stripes < remaining_stripes)
5511 				bbio->stripes[i].length +=
5512 					map->stripe_len;
5513 
5514 			/*
5515 			 * Special for the first stripe and
5516 			 * the last stripe:
5517 			 *
5518 			 * |-------|...|-------|
5519 			 *     |----------|
5520 			 *    off     end_off
5521 			 */
5522 			if (i < sub_stripes)
5523 				bbio->stripes[i].length -=
5524 					stripe_offset;
5525 
5526 			if (stripe_index >= last_stripe &&
5527 			    stripe_index <= (last_stripe +
5528 					     sub_stripes - 1))
5529 				bbio->stripes[i].length -=
5530 					stripe_end_offset;
5531 
5532 			if (i == sub_stripes - 1)
5533 				stripe_offset = 0;
5534 		} else {
5535 			bbio->stripes[i].length = length;
5536 		}
5537 
5538 		stripe_index++;
5539 		if (stripe_index == map->num_stripes) {
5540 			stripe_index = 0;
5541 			stripe_nr++;
5542 		}
5543 	}
5544 
5545 	*bbio_ret = bbio;
5546 	bbio->map_type = map->type;
5547 	bbio->num_stripes = num_stripes;
5548 out:
5549 	free_extent_map(em);
5550 	return ret;
5551 }
5552 
5553 /*
5554  * In dev-replace case, for repair case (that's the only case where the mirror
5555  * is selected explicitly when calling btrfs_map_block), blocks left of the
5556  * left cursor can also be read from the target drive.
5557  *
5558  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5559  * array of stripes.
5560  * For READ, it also needs to be supported using the same mirror number.
5561  *
5562  * If the requested block is not left of the left cursor, EIO is returned. This
5563  * can happen because btrfs_num_copies() returns one more in the dev-replace
5564  * case.
5565  */
5566 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5567 					 u64 logical, u64 length,
5568 					 u64 srcdev_devid, int *mirror_num,
5569 					 u64 *physical)
5570 {
5571 	struct btrfs_bio *bbio = NULL;
5572 	int num_stripes;
5573 	int index_srcdev = 0;
5574 	int found = 0;
5575 	u64 physical_of_found = 0;
5576 	int i;
5577 	int ret = 0;
5578 
5579 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5580 				logical, &length, &bbio, 0, 0);
5581 	if (ret) {
5582 		ASSERT(bbio == NULL);
5583 		return ret;
5584 	}
5585 
5586 	num_stripes = bbio->num_stripes;
5587 	if (*mirror_num > num_stripes) {
5588 		/*
5589 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5590 		 * that means that the requested area is not left of the left
5591 		 * cursor
5592 		 */
5593 		btrfs_put_bbio(bbio);
5594 		return -EIO;
5595 	}
5596 
5597 	/*
5598 	 * process the rest of the function using the mirror_num of the source
5599 	 * drive. Therefore look it up first.  At the end, patch the device
5600 	 * pointer to the one of the target drive.
5601 	 */
5602 	for (i = 0; i < num_stripes; i++) {
5603 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5604 			continue;
5605 
5606 		/*
5607 		 * In case of DUP, in order to keep it simple, only add the
5608 		 * mirror with the lowest physical address
5609 		 */
5610 		if (found &&
5611 		    physical_of_found <= bbio->stripes[i].physical)
5612 			continue;
5613 
5614 		index_srcdev = i;
5615 		found = 1;
5616 		physical_of_found = bbio->stripes[i].physical;
5617 	}
5618 
5619 	btrfs_put_bbio(bbio);
5620 
5621 	ASSERT(found);
5622 	if (!found)
5623 		return -EIO;
5624 
5625 	*mirror_num = index_srcdev + 1;
5626 	*physical = physical_of_found;
5627 	return ret;
5628 }
5629 
5630 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5631 				      struct btrfs_bio **bbio_ret,
5632 				      struct btrfs_dev_replace *dev_replace,
5633 				      int *num_stripes_ret, int *max_errors_ret)
5634 {
5635 	struct btrfs_bio *bbio = *bbio_ret;
5636 	u64 srcdev_devid = dev_replace->srcdev->devid;
5637 	int tgtdev_indexes = 0;
5638 	int num_stripes = *num_stripes_ret;
5639 	int max_errors = *max_errors_ret;
5640 	int i;
5641 
5642 	if (op == BTRFS_MAP_WRITE) {
5643 		int index_where_to_add;
5644 
5645 		/*
5646 		 * duplicate the write operations while the dev replace
5647 		 * procedure is running. Since the copying of the old disk to
5648 		 * the new disk takes place at run time while the filesystem is
5649 		 * mounted writable, the regular write operations to the old
5650 		 * disk have to be duplicated to go to the new disk as well.
5651 		 *
5652 		 * Note that device->missing is handled by the caller, and that
5653 		 * the write to the old disk is already set up in the stripes
5654 		 * array.
5655 		 */
5656 		index_where_to_add = num_stripes;
5657 		for (i = 0; i < num_stripes; i++) {
5658 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5659 				/* write to new disk, too */
5660 				struct btrfs_bio_stripe *new =
5661 					bbio->stripes + index_where_to_add;
5662 				struct btrfs_bio_stripe *old =
5663 					bbio->stripes + i;
5664 
5665 				new->physical = old->physical;
5666 				new->length = old->length;
5667 				new->dev = dev_replace->tgtdev;
5668 				bbio->tgtdev_map[i] = index_where_to_add;
5669 				index_where_to_add++;
5670 				max_errors++;
5671 				tgtdev_indexes++;
5672 			}
5673 		}
5674 		num_stripes = index_where_to_add;
5675 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5676 		int index_srcdev = 0;
5677 		int found = 0;
5678 		u64 physical_of_found = 0;
5679 
5680 		/*
5681 		 * During the dev-replace procedure, the target drive can also
5682 		 * be used to read data in case it is needed to repair a corrupt
5683 		 * block elsewhere. This is possible if the requested area is
5684 		 * left of the left cursor. In this area, the target drive is a
5685 		 * full copy of the source drive.
5686 		 */
5687 		for (i = 0; i < num_stripes; i++) {
5688 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5689 				/*
5690 				 * In case of DUP, in order to keep it simple,
5691 				 * only add the mirror with the lowest physical
5692 				 * address
5693 				 */
5694 				if (found &&
5695 				    physical_of_found <=
5696 				     bbio->stripes[i].physical)
5697 					continue;
5698 				index_srcdev = i;
5699 				found = 1;
5700 				physical_of_found = bbio->stripes[i].physical;
5701 			}
5702 		}
5703 		if (found) {
5704 			struct btrfs_bio_stripe *tgtdev_stripe =
5705 				bbio->stripes + num_stripes;
5706 
5707 			tgtdev_stripe->physical = physical_of_found;
5708 			tgtdev_stripe->length =
5709 				bbio->stripes[index_srcdev].length;
5710 			tgtdev_stripe->dev = dev_replace->tgtdev;
5711 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5712 
5713 			tgtdev_indexes++;
5714 			num_stripes++;
5715 		}
5716 	}
5717 
5718 	*num_stripes_ret = num_stripes;
5719 	*max_errors_ret = max_errors;
5720 	bbio->num_tgtdevs = tgtdev_indexes;
5721 	*bbio_ret = bbio;
5722 }
5723 
5724 static bool need_full_stripe(enum btrfs_map_op op)
5725 {
5726 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5727 }
5728 
5729 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5730 			     enum btrfs_map_op op,
5731 			     u64 logical, u64 *length,
5732 			     struct btrfs_bio **bbio_ret,
5733 			     int mirror_num, int need_raid_map)
5734 {
5735 	struct extent_map *em;
5736 	struct map_lookup *map;
5737 	u64 offset;
5738 	u64 stripe_offset;
5739 	u64 stripe_nr;
5740 	u64 stripe_len;
5741 	u32 stripe_index;
5742 	int i;
5743 	int ret = 0;
5744 	int num_stripes;
5745 	int max_errors = 0;
5746 	int tgtdev_indexes = 0;
5747 	struct btrfs_bio *bbio = NULL;
5748 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5749 	int dev_replace_is_ongoing = 0;
5750 	int num_alloc_stripes;
5751 	int patch_the_first_stripe_for_dev_replace = 0;
5752 	u64 physical_to_patch_in_first_stripe = 0;
5753 	u64 raid56_full_stripe_start = (u64)-1;
5754 
5755 	if (op == BTRFS_MAP_DISCARD)
5756 		return __btrfs_map_block_for_discard(fs_info, logical,
5757 						     *length, bbio_ret);
5758 
5759 	em = get_chunk_map(fs_info, logical, *length);
5760 	if (IS_ERR(em))
5761 		return PTR_ERR(em);
5762 
5763 	map = em->map_lookup;
5764 	offset = logical - em->start;
5765 
5766 	stripe_len = map->stripe_len;
5767 	stripe_nr = offset;
5768 	/*
5769 	 * stripe_nr counts the total number of stripes we have to stride
5770 	 * to get to this block
5771 	 */
5772 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5773 
5774 	stripe_offset = stripe_nr * stripe_len;
5775 	if (offset < stripe_offset) {
5776 		btrfs_crit(fs_info,
5777 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5778 			   stripe_offset, offset, em->start, logical,
5779 			   stripe_len);
5780 		free_extent_map(em);
5781 		return -EINVAL;
5782 	}
5783 
5784 	/* stripe_offset is the offset of this block in its stripe*/
5785 	stripe_offset = offset - stripe_offset;
5786 
5787 	/* if we're here for raid56, we need to know the stripe aligned start */
5788 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5789 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5790 		raid56_full_stripe_start = offset;
5791 
5792 		/* allow a write of a full stripe, but make sure we don't
5793 		 * allow straddling of stripes
5794 		 */
5795 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5796 				full_stripe_len);
5797 		raid56_full_stripe_start *= full_stripe_len;
5798 	}
5799 
5800 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5801 		u64 max_len;
5802 		/* For writes to RAID[56], allow a full stripeset across all disks.
5803 		   For other RAID types and for RAID[56] reads, just allow a single
5804 		   stripe (on a single disk). */
5805 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5806 		    (op == BTRFS_MAP_WRITE)) {
5807 			max_len = stripe_len * nr_data_stripes(map) -
5808 				(offset - raid56_full_stripe_start);
5809 		} else {
5810 			/* we limit the length of each bio to what fits in a stripe */
5811 			max_len = stripe_len - stripe_offset;
5812 		}
5813 		*length = min_t(u64, em->len - offset, max_len);
5814 	} else {
5815 		*length = em->len - offset;
5816 	}
5817 
5818 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5819 	   it cares about is the length */
5820 	if (!bbio_ret)
5821 		goto out;
5822 
5823 	btrfs_dev_replace_read_lock(dev_replace);
5824 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5825 	if (!dev_replace_is_ongoing)
5826 		btrfs_dev_replace_read_unlock(dev_replace);
5827 	else
5828 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5829 
5830 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5831 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5832 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5833 						    dev_replace->srcdev->devid,
5834 						    &mirror_num,
5835 					    &physical_to_patch_in_first_stripe);
5836 		if (ret)
5837 			goto out;
5838 		else
5839 			patch_the_first_stripe_for_dev_replace = 1;
5840 	} else if (mirror_num > map->num_stripes) {
5841 		mirror_num = 0;
5842 	}
5843 
5844 	num_stripes = 1;
5845 	stripe_index = 0;
5846 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5847 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5848 				&stripe_index);
5849 		if (!need_full_stripe(op))
5850 			mirror_num = 1;
5851 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5852 		if (need_full_stripe(op))
5853 			num_stripes = map->num_stripes;
5854 		else if (mirror_num)
5855 			stripe_index = mirror_num - 1;
5856 		else {
5857 			stripe_index = find_live_mirror(fs_info, map, 0,
5858 					    dev_replace_is_ongoing);
5859 			mirror_num = stripe_index + 1;
5860 		}
5861 
5862 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5863 		if (need_full_stripe(op)) {
5864 			num_stripes = map->num_stripes;
5865 		} else if (mirror_num) {
5866 			stripe_index = mirror_num - 1;
5867 		} else {
5868 			mirror_num = 1;
5869 		}
5870 
5871 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5872 		u32 factor = map->num_stripes / map->sub_stripes;
5873 
5874 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5875 		stripe_index *= map->sub_stripes;
5876 
5877 		if (need_full_stripe(op))
5878 			num_stripes = map->sub_stripes;
5879 		else if (mirror_num)
5880 			stripe_index += mirror_num - 1;
5881 		else {
5882 			int old_stripe_index = stripe_index;
5883 			stripe_index = find_live_mirror(fs_info, map,
5884 					      stripe_index,
5885 					      dev_replace_is_ongoing);
5886 			mirror_num = stripe_index - old_stripe_index + 1;
5887 		}
5888 
5889 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5890 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5891 			/* push stripe_nr back to the start of the full stripe */
5892 			stripe_nr = div64_u64(raid56_full_stripe_start,
5893 					stripe_len * nr_data_stripes(map));
5894 
5895 			/* RAID[56] write or recovery. Return all stripes */
5896 			num_stripes = map->num_stripes;
5897 			max_errors = nr_parity_stripes(map);
5898 
5899 			*length = map->stripe_len;
5900 			stripe_index = 0;
5901 			stripe_offset = 0;
5902 		} else {
5903 			/*
5904 			 * Mirror #0 or #1 means the original data block.
5905 			 * Mirror #2 is RAID5 parity block.
5906 			 * Mirror #3 is RAID6 Q block.
5907 			 */
5908 			stripe_nr = div_u64_rem(stripe_nr,
5909 					nr_data_stripes(map), &stripe_index);
5910 			if (mirror_num > 1)
5911 				stripe_index = nr_data_stripes(map) +
5912 						mirror_num - 2;
5913 
5914 			/* We distribute the parity blocks across stripes */
5915 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5916 					&stripe_index);
5917 			if (!need_full_stripe(op) && mirror_num <= 1)
5918 				mirror_num = 1;
5919 		}
5920 	} else {
5921 		/*
5922 		 * after this, stripe_nr is the number of stripes on this
5923 		 * device we have to walk to find the data, and stripe_index is
5924 		 * the number of our device in the stripe array
5925 		 */
5926 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5927 				&stripe_index);
5928 		mirror_num = stripe_index + 1;
5929 	}
5930 	if (stripe_index >= map->num_stripes) {
5931 		btrfs_crit(fs_info,
5932 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5933 			   stripe_index, map->num_stripes);
5934 		ret = -EINVAL;
5935 		goto out;
5936 	}
5937 
5938 	num_alloc_stripes = num_stripes;
5939 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5940 		if (op == BTRFS_MAP_WRITE)
5941 			num_alloc_stripes <<= 1;
5942 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5943 			num_alloc_stripes++;
5944 		tgtdev_indexes = num_stripes;
5945 	}
5946 
5947 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5948 	if (!bbio) {
5949 		ret = -ENOMEM;
5950 		goto out;
5951 	}
5952 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5953 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5954 
5955 	/* build raid_map */
5956 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5957 	    (need_full_stripe(op) || mirror_num > 1)) {
5958 		u64 tmp;
5959 		unsigned rot;
5960 
5961 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5962 				 sizeof(struct btrfs_bio_stripe) *
5963 				 num_alloc_stripes +
5964 				 sizeof(int) * tgtdev_indexes);
5965 
5966 		/* Work out the disk rotation on this stripe-set */
5967 		div_u64_rem(stripe_nr, num_stripes, &rot);
5968 
5969 		/* Fill in the logical address of each stripe */
5970 		tmp = stripe_nr * nr_data_stripes(map);
5971 		for (i = 0; i < nr_data_stripes(map); i++)
5972 			bbio->raid_map[(i+rot) % num_stripes] =
5973 				em->start + (tmp + i) * map->stripe_len;
5974 
5975 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5976 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5977 			bbio->raid_map[(i+rot+1) % num_stripes] =
5978 				RAID6_Q_STRIPE;
5979 	}
5980 
5981 
5982 	for (i = 0; i < num_stripes; i++) {
5983 		bbio->stripes[i].physical =
5984 			map->stripes[stripe_index].physical +
5985 			stripe_offset +
5986 			stripe_nr * map->stripe_len;
5987 		bbio->stripes[i].dev =
5988 			map->stripes[stripe_index].dev;
5989 		stripe_index++;
5990 	}
5991 
5992 	if (need_full_stripe(op))
5993 		max_errors = btrfs_chunk_max_errors(map);
5994 
5995 	if (bbio->raid_map)
5996 		sort_parity_stripes(bbio, num_stripes);
5997 
5998 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5999 	    need_full_stripe(op)) {
6000 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6001 					  &max_errors);
6002 	}
6003 
6004 	*bbio_ret = bbio;
6005 	bbio->map_type = map->type;
6006 	bbio->num_stripes = num_stripes;
6007 	bbio->max_errors = max_errors;
6008 	bbio->mirror_num = mirror_num;
6009 
6010 	/*
6011 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6012 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6013 	 * available as a mirror
6014 	 */
6015 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6016 		WARN_ON(num_stripes > 1);
6017 		bbio->stripes[0].dev = dev_replace->tgtdev;
6018 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6019 		bbio->mirror_num = map->num_stripes + 1;
6020 	}
6021 out:
6022 	if (dev_replace_is_ongoing) {
6023 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
6024 		btrfs_dev_replace_read_unlock(dev_replace);
6025 	}
6026 	free_extent_map(em);
6027 	return ret;
6028 }
6029 
6030 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6031 		      u64 logical, u64 *length,
6032 		      struct btrfs_bio **bbio_ret, int mirror_num)
6033 {
6034 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6035 				 mirror_num, 0);
6036 }
6037 
6038 /* For Scrub/replace */
6039 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6040 		     u64 logical, u64 *length,
6041 		     struct btrfs_bio **bbio_ret)
6042 {
6043 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6044 }
6045 
6046 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
6047 		     u64 chunk_start, u64 physical, u64 devid,
6048 		     u64 **logical, int *naddrs, int *stripe_len)
6049 {
6050 	struct extent_map *em;
6051 	struct map_lookup *map;
6052 	u64 *buf;
6053 	u64 bytenr;
6054 	u64 length;
6055 	u64 stripe_nr;
6056 	u64 rmap_len;
6057 	int i, j, nr = 0;
6058 
6059 	em = get_chunk_map(fs_info, chunk_start, 1);
6060 	if (IS_ERR(em))
6061 		return -EIO;
6062 
6063 	map = em->map_lookup;
6064 	length = em->len;
6065 	rmap_len = map->stripe_len;
6066 
6067 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6068 		length = div_u64(length, map->num_stripes / map->sub_stripes);
6069 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6070 		length = div_u64(length, map->num_stripes);
6071 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6072 		length = div_u64(length, nr_data_stripes(map));
6073 		rmap_len = map->stripe_len * nr_data_stripes(map);
6074 	}
6075 
6076 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6077 	BUG_ON(!buf); /* -ENOMEM */
6078 
6079 	for (i = 0; i < map->num_stripes; i++) {
6080 		if (devid && map->stripes[i].dev->devid != devid)
6081 			continue;
6082 		if (map->stripes[i].physical > physical ||
6083 		    map->stripes[i].physical + length <= physical)
6084 			continue;
6085 
6086 		stripe_nr = physical - map->stripes[i].physical;
6087 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6088 
6089 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6090 			stripe_nr = stripe_nr * map->num_stripes + i;
6091 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6092 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6093 			stripe_nr = stripe_nr * map->num_stripes + i;
6094 		} /* else if RAID[56], multiply by nr_data_stripes().
6095 		   * Alternatively, just use rmap_len below instead of
6096 		   * map->stripe_len */
6097 
6098 		bytenr = chunk_start + stripe_nr * rmap_len;
6099 		WARN_ON(nr >= map->num_stripes);
6100 		for (j = 0; j < nr; j++) {
6101 			if (buf[j] == bytenr)
6102 				break;
6103 		}
6104 		if (j == nr) {
6105 			WARN_ON(nr >= map->num_stripes);
6106 			buf[nr++] = bytenr;
6107 		}
6108 	}
6109 
6110 	*logical = buf;
6111 	*naddrs = nr;
6112 	*stripe_len = rmap_len;
6113 
6114 	free_extent_map(em);
6115 	return 0;
6116 }
6117 
6118 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6119 {
6120 	bio->bi_private = bbio->private;
6121 	bio->bi_end_io = bbio->end_io;
6122 	bio_endio(bio);
6123 
6124 	btrfs_put_bbio(bbio);
6125 }
6126 
6127 static void btrfs_end_bio(struct bio *bio)
6128 {
6129 	struct btrfs_bio *bbio = bio->bi_private;
6130 	int is_orig_bio = 0;
6131 
6132 	if (bio->bi_status) {
6133 		atomic_inc(&bbio->error);
6134 		if (bio->bi_status == BLK_STS_IOERR ||
6135 		    bio->bi_status == BLK_STS_TARGET) {
6136 			unsigned int stripe_index =
6137 				btrfs_io_bio(bio)->stripe_index;
6138 			struct btrfs_device *dev;
6139 
6140 			BUG_ON(stripe_index >= bbio->num_stripes);
6141 			dev = bbio->stripes[stripe_index].dev;
6142 			if (dev->bdev) {
6143 				if (bio_op(bio) == REQ_OP_WRITE)
6144 					btrfs_dev_stat_inc_and_print(dev,
6145 						BTRFS_DEV_STAT_WRITE_ERRS);
6146 				else
6147 					btrfs_dev_stat_inc_and_print(dev,
6148 						BTRFS_DEV_STAT_READ_ERRS);
6149 				if (bio->bi_opf & REQ_PREFLUSH)
6150 					btrfs_dev_stat_inc_and_print(dev,
6151 						BTRFS_DEV_STAT_FLUSH_ERRS);
6152 			}
6153 		}
6154 	}
6155 
6156 	if (bio == bbio->orig_bio)
6157 		is_orig_bio = 1;
6158 
6159 	btrfs_bio_counter_dec(bbio->fs_info);
6160 
6161 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6162 		if (!is_orig_bio) {
6163 			bio_put(bio);
6164 			bio = bbio->orig_bio;
6165 		}
6166 
6167 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6168 		/* only send an error to the higher layers if it is
6169 		 * beyond the tolerance of the btrfs bio
6170 		 */
6171 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6172 			bio->bi_status = BLK_STS_IOERR;
6173 		} else {
6174 			/*
6175 			 * this bio is actually up to date, we didn't
6176 			 * go over the max number of errors
6177 			 */
6178 			bio->bi_status = BLK_STS_OK;
6179 		}
6180 
6181 		btrfs_end_bbio(bbio, bio);
6182 	} else if (!is_orig_bio) {
6183 		bio_put(bio);
6184 	}
6185 }
6186 
6187 /*
6188  * see run_scheduled_bios for a description of why bios are collected for
6189  * async submit.
6190  *
6191  * This will add one bio to the pending list for a device and make sure
6192  * the work struct is scheduled.
6193  */
6194 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6195 					struct bio *bio)
6196 {
6197 	struct btrfs_fs_info *fs_info = device->fs_info;
6198 	int should_queue = 1;
6199 	struct btrfs_pending_bios *pending_bios;
6200 
6201 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6202 	    !device->bdev) {
6203 		bio_io_error(bio);
6204 		return;
6205 	}
6206 
6207 	/* don't bother with additional async steps for reads, right now */
6208 	if (bio_op(bio) == REQ_OP_READ) {
6209 		btrfsic_submit_bio(bio);
6210 		return;
6211 	}
6212 
6213 	WARN_ON(bio->bi_next);
6214 	bio->bi_next = NULL;
6215 
6216 	spin_lock(&device->io_lock);
6217 	if (op_is_sync(bio->bi_opf))
6218 		pending_bios = &device->pending_sync_bios;
6219 	else
6220 		pending_bios = &device->pending_bios;
6221 
6222 	if (pending_bios->tail)
6223 		pending_bios->tail->bi_next = bio;
6224 
6225 	pending_bios->tail = bio;
6226 	if (!pending_bios->head)
6227 		pending_bios->head = bio;
6228 	if (device->running_pending)
6229 		should_queue = 0;
6230 
6231 	spin_unlock(&device->io_lock);
6232 
6233 	if (should_queue)
6234 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6235 }
6236 
6237 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6238 			      u64 physical, int dev_nr, int async)
6239 {
6240 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6241 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6242 
6243 	bio->bi_private = bbio;
6244 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6245 	bio->bi_end_io = btrfs_end_bio;
6246 	bio->bi_iter.bi_sector = physical >> 9;
6247 #ifdef DEBUG
6248 	{
6249 		struct rcu_string *name;
6250 
6251 		rcu_read_lock();
6252 		name = rcu_dereference(dev->name);
6253 		btrfs_debug(fs_info,
6254 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6255 			bio_op(bio), bio->bi_opf,
6256 			(u64)bio->bi_iter.bi_sector,
6257 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6258 			bio->bi_iter.bi_size);
6259 		rcu_read_unlock();
6260 	}
6261 #endif
6262 	bio_set_dev(bio, dev->bdev);
6263 
6264 	btrfs_bio_counter_inc_noblocked(fs_info);
6265 
6266 	if (async)
6267 		btrfs_schedule_bio(dev, bio);
6268 	else
6269 		btrfsic_submit_bio(bio);
6270 }
6271 
6272 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6273 {
6274 	atomic_inc(&bbio->error);
6275 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6276 		/* Should be the original bio. */
6277 		WARN_ON(bio != bbio->orig_bio);
6278 
6279 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6280 		bio->bi_iter.bi_sector = logical >> 9;
6281 		if (atomic_read(&bbio->error) > bbio->max_errors)
6282 			bio->bi_status = BLK_STS_IOERR;
6283 		else
6284 			bio->bi_status = BLK_STS_OK;
6285 		btrfs_end_bbio(bbio, bio);
6286 	}
6287 }
6288 
6289 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6290 			   int mirror_num, int async_submit)
6291 {
6292 	struct btrfs_device *dev;
6293 	struct bio *first_bio = bio;
6294 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6295 	u64 length = 0;
6296 	u64 map_length;
6297 	int ret;
6298 	int dev_nr;
6299 	int total_devs;
6300 	struct btrfs_bio *bbio = NULL;
6301 
6302 	length = bio->bi_iter.bi_size;
6303 	map_length = length;
6304 
6305 	btrfs_bio_counter_inc_blocked(fs_info);
6306 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6307 				&map_length, &bbio, mirror_num, 1);
6308 	if (ret) {
6309 		btrfs_bio_counter_dec(fs_info);
6310 		return errno_to_blk_status(ret);
6311 	}
6312 
6313 	total_devs = bbio->num_stripes;
6314 	bbio->orig_bio = first_bio;
6315 	bbio->private = first_bio->bi_private;
6316 	bbio->end_io = first_bio->bi_end_io;
6317 	bbio->fs_info = fs_info;
6318 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6319 
6320 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6321 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6322 		/* In this case, map_length has been set to the length of
6323 		   a single stripe; not the whole write */
6324 		if (bio_op(bio) == REQ_OP_WRITE) {
6325 			ret = raid56_parity_write(fs_info, bio, bbio,
6326 						  map_length);
6327 		} else {
6328 			ret = raid56_parity_recover(fs_info, bio, bbio,
6329 						    map_length, mirror_num, 1);
6330 		}
6331 
6332 		btrfs_bio_counter_dec(fs_info);
6333 		return errno_to_blk_status(ret);
6334 	}
6335 
6336 	if (map_length < length) {
6337 		btrfs_crit(fs_info,
6338 			   "mapping failed logical %llu bio len %llu len %llu",
6339 			   logical, length, map_length);
6340 		BUG();
6341 	}
6342 
6343 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6344 		dev = bbio->stripes[dev_nr].dev;
6345 		if (!dev || !dev->bdev ||
6346 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6347 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6348 			bbio_error(bbio, first_bio, logical);
6349 			continue;
6350 		}
6351 
6352 		if (dev_nr < total_devs - 1)
6353 			bio = btrfs_bio_clone(first_bio);
6354 		else
6355 			bio = first_bio;
6356 
6357 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6358 				  dev_nr, async_submit);
6359 	}
6360 	btrfs_bio_counter_dec(fs_info);
6361 	return BLK_STS_OK;
6362 }
6363 
6364 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6365 				       u8 *uuid, u8 *fsid)
6366 {
6367 	struct btrfs_device *device;
6368 	struct btrfs_fs_devices *cur_devices;
6369 
6370 	cur_devices = fs_info->fs_devices;
6371 	while (cur_devices) {
6372 		if (!fsid ||
6373 		    !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6374 			device = find_device(cur_devices, devid, uuid);
6375 			if (device)
6376 				return device;
6377 		}
6378 		cur_devices = cur_devices->seed;
6379 	}
6380 	return NULL;
6381 }
6382 
6383 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6384 					    u64 devid, u8 *dev_uuid)
6385 {
6386 	struct btrfs_device *device;
6387 
6388 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6389 	if (IS_ERR(device))
6390 		return device;
6391 
6392 	list_add(&device->dev_list, &fs_devices->devices);
6393 	device->fs_devices = fs_devices;
6394 	fs_devices->num_devices++;
6395 
6396 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6397 	fs_devices->missing_devices++;
6398 
6399 	return device;
6400 }
6401 
6402 /**
6403  * btrfs_alloc_device - allocate struct btrfs_device
6404  * @fs_info:	used only for generating a new devid, can be NULL if
6405  *		devid is provided (i.e. @devid != NULL).
6406  * @devid:	a pointer to devid for this device.  If NULL a new devid
6407  *		is generated.
6408  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6409  *		is generated.
6410  *
6411  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6412  * on error.  Returned struct is not linked onto any lists and must be
6413  * destroyed with free_device.
6414  */
6415 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6416 					const u64 *devid,
6417 					const u8 *uuid)
6418 {
6419 	struct btrfs_device *dev;
6420 	u64 tmp;
6421 
6422 	if (WARN_ON(!devid && !fs_info))
6423 		return ERR_PTR(-EINVAL);
6424 
6425 	dev = __alloc_device();
6426 	if (IS_ERR(dev))
6427 		return dev;
6428 
6429 	if (devid)
6430 		tmp = *devid;
6431 	else {
6432 		int ret;
6433 
6434 		ret = find_next_devid(fs_info, &tmp);
6435 		if (ret) {
6436 			free_device(dev);
6437 			return ERR_PTR(ret);
6438 		}
6439 	}
6440 	dev->devid = tmp;
6441 
6442 	if (uuid)
6443 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6444 	else
6445 		generate_random_uuid(dev->uuid);
6446 
6447 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6448 			pending_bios_fn, NULL, NULL);
6449 
6450 	return dev;
6451 }
6452 
6453 /* Return -EIO if any error, otherwise return 0. */
6454 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6455 				   struct extent_buffer *leaf,
6456 				   struct btrfs_chunk *chunk, u64 logical)
6457 {
6458 	u64 length;
6459 	u64 stripe_len;
6460 	u16 num_stripes;
6461 	u16 sub_stripes;
6462 	u64 type;
6463 
6464 	length = btrfs_chunk_length(leaf, chunk);
6465 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6466 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6467 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6468 	type = btrfs_chunk_type(leaf, chunk);
6469 
6470 	if (!num_stripes) {
6471 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6472 			  num_stripes);
6473 		return -EIO;
6474 	}
6475 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6476 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6477 		return -EIO;
6478 	}
6479 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6480 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6481 			  btrfs_chunk_sector_size(leaf, chunk));
6482 		return -EIO;
6483 	}
6484 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6485 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6486 		return -EIO;
6487 	}
6488 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6489 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6490 			  stripe_len);
6491 		return -EIO;
6492 	}
6493 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6494 	    type) {
6495 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6496 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6497 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6498 			  btrfs_chunk_type(leaf, chunk));
6499 		return -EIO;
6500 	}
6501 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6502 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6503 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6504 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6505 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6506 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6507 	     num_stripes != 1)) {
6508 		btrfs_err(fs_info,
6509 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6510 			num_stripes, sub_stripes,
6511 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6512 		return -EIO;
6513 	}
6514 
6515 	return 0;
6516 }
6517 
6518 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6519 					u64 devid, u8 *uuid, bool error)
6520 {
6521 	if (error)
6522 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6523 			      devid, uuid);
6524 	else
6525 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6526 			      devid, uuid);
6527 }
6528 
6529 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6530 			  struct extent_buffer *leaf,
6531 			  struct btrfs_chunk *chunk)
6532 {
6533 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6534 	struct map_lookup *map;
6535 	struct extent_map *em;
6536 	u64 logical;
6537 	u64 length;
6538 	u64 devid;
6539 	u8 uuid[BTRFS_UUID_SIZE];
6540 	int num_stripes;
6541 	int ret;
6542 	int i;
6543 
6544 	logical = key->offset;
6545 	length = btrfs_chunk_length(leaf, chunk);
6546 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6547 
6548 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6549 	if (ret)
6550 		return ret;
6551 
6552 	read_lock(&map_tree->map_tree.lock);
6553 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6554 	read_unlock(&map_tree->map_tree.lock);
6555 
6556 	/* already mapped? */
6557 	if (em && em->start <= logical && em->start + em->len > logical) {
6558 		free_extent_map(em);
6559 		return 0;
6560 	} else if (em) {
6561 		free_extent_map(em);
6562 	}
6563 
6564 	em = alloc_extent_map();
6565 	if (!em)
6566 		return -ENOMEM;
6567 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6568 	if (!map) {
6569 		free_extent_map(em);
6570 		return -ENOMEM;
6571 	}
6572 
6573 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6574 	em->map_lookup = map;
6575 	em->start = logical;
6576 	em->len = length;
6577 	em->orig_start = 0;
6578 	em->block_start = 0;
6579 	em->block_len = em->len;
6580 
6581 	map->num_stripes = num_stripes;
6582 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6583 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6584 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6585 	map->type = btrfs_chunk_type(leaf, chunk);
6586 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6587 	for (i = 0; i < num_stripes; i++) {
6588 		map->stripes[i].physical =
6589 			btrfs_stripe_offset_nr(leaf, chunk, i);
6590 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6591 		read_extent_buffer(leaf, uuid, (unsigned long)
6592 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6593 				   BTRFS_UUID_SIZE);
6594 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6595 							uuid, NULL);
6596 		if (!map->stripes[i].dev &&
6597 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6598 			free_extent_map(em);
6599 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6600 			return -ENOENT;
6601 		}
6602 		if (!map->stripes[i].dev) {
6603 			map->stripes[i].dev =
6604 				add_missing_dev(fs_info->fs_devices, devid,
6605 						uuid);
6606 			if (IS_ERR(map->stripes[i].dev)) {
6607 				free_extent_map(em);
6608 				btrfs_err(fs_info,
6609 					"failed to init missing dev %llu: %ld",
6610 					devid, PTR_ERR(map->stripes[i].dev));
6611 				return PTR_ERR(map->stripes[i].dev);
6612 			}
6613 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6614 		}
6615 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6616 				&(map->stripes[i].dev->dev_state));
6617 
6618 	}
6619 
6620 	write_lock(&map_tree->map_tree.lock);
6621 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6622 	write_unlock(&map_tree->map_tree.lock);
6623 	BUG_ON(ret); /* Tree corruption */
6624 	free_extent_map(em);
6625 
6626 	return 0;
6627 }
6628 
6629 static void fill_device_from_item(struct extent_buffer *leaf,
6630 				 struct btrfs_dev_item *dev_item,
6631 				 struct btrfs_device *device)
6632 {
6633 	unsigned long ptr;
6634 
6635 	device->devid = btrfs_device_id(leaf, dev_item);
6636 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6637 	device->total_bytes = device->disk_total_bytes;
6638 	device->commit_total_bytes = device->disk_total_bytes;
6639 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6640 	device->commit_bytes_used = device->bytes_used;
6641 	device->type = btrfs_device_type(leaf, dev_item);
6642 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6643 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6644 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6645 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6646 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6647 
6648 	ptr = btrfs_device_uuid(dev_item);
6649 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6650 }
6651 
6652 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6653 						  u8 *fsid)
6654 {
6655 	struct btrfs_fs_devices *fs_devices;
6656 	int ret;
6657 
6658 	lockdep_assert_held(&uuid_mutex);
6659 	ASSERT(fsid);
6660 
6661 	fs_devices = fs_info->fs_devices->seed;
6662 	while (fs_devices) {
6663 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6664 			return fs_devices;
6665 
6666 		fs_devices = fs_devices->seed;
6667 	}
6668 
6669 	fs_devices = find_fsid(fsid);
6670 	if (!fs_devices) {
6671 		if (!btrfs_test_opt(fs_info, DEGRADED))
6672 			return ERR_PTR(-ENOENT);
6673 
6674 		fs_devices = alloc_fs_devices(fsid);
6675 		if (IS_ERR(fs_devices))
6676 			return fs_devices;
6677 
6678 		fs_devices->seeding = 1;
6679 		fs_devices->opened = 1;
6680 		return fs_devices;
6681 	}
6682 
6683 	fs_devices = clone_fs_devices(fs_devices);
6684 	if (IS_ERR(fs_devices))
6685 		return fs_devices;
6686 
6687 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6688 				   fs_info->bdev_holder);
6689 	if (ret) {
6690 		free_fs_devices(fs_devices);
6691 		fs_devices = ERR_PTR(ret);
6692 		goto out;
6693 	}
6694 
6695 	if (!fs_devices->seeding) {
6696 		__btrfs_close_devices(fs_devices);
6697 		free_fs_devices(fs_devices);
6698 		fs_devices = ERR_PTR(-EINVAL);
6699 		goto out;
6700 	}
6701 
6702 	fs_devices->seed = fs_info->fs_devices->seed;
6703 	fs_info->fs_devices->seed = fs_devices;
6704 out:
6705 	return fs_devices;
6706 }
6707 
6708 static int read_one_dev(struct btrfs_fs_info *fs_info,
6709 			struct extent_buffer *leaf,
6710 			struct btrfs_dev_item *dev_item)
6711 {
6712 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6713 	struct btrfs_device *device;
6714 	u64 devid;
6715 	int ret;
6716 	u8 fs_uuid[BTRFS_FSID_SIZE];
6717 	u8 dev_uuid[BTRFS_UUID_SIZE];
6718 
6719 	devid = btrfs_device_id(leaf, dev_item);
6720 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6721 			   BTRFS_UUID_SIZE);
6722 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6723 			   BTRFS_FSID_SIZE);
6724 
6725 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6726 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6727 		if (IS_ERR(fs_devices))
6728 			return PTR_ERR(fs_devices);
6729 	}
6730 
6731 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6732 	if (!device) {
6733 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6734 			btrfs_report_missing_device(fs_info, devid,
6735 							dev_uuid, true);
6736 			return -ENOENT;
6737 		}
6738 
6739 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6740 		if (IS_ERR(device)) {
6741 			btrfs_err(fs_info,
6742 				"failed to add missing dev %llu: %ld",
6743 				devid, PTR_ERR(device));
6744 			return PTR_ERR(device);
6745 		}
6746 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6747 	} else {
6748 		if (!device->bdev) {
6749 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6750 				btrfs_report_missing_device(fs_info,
6751 						devid, dev_uuid, true);
6752 				return -ENOENT;
6753 			}
6754 			btrfs_report_missing_device(fs_info, devid,
6755 							dev_uuid, false);
6756 		}
6757 
6758 		if (!device->bdev &&
6759 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6760 			/*
6761 			 * this happens when a device that was properly setup
6762 			 * in the device info lists suddenly goes bad.
6763 			 * device->bdev is NULL, and so we have to set
6764 			 * device->missing to one here
6765 			 */
6766 			device->fs_devices->missing_devices++;
6767 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6768 		}
6769 
6770 		/* Move the device to its own fs_devices */
6771 		if (device->fs_devices != fs_devices) {
6772 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6773 							&device->dev_state));
6774 
6775 			list_move(&device->dev_list, &fs_devices->devices);
6776 			device->fs_devices->num_devices--;
6777 			fs_devices->num_devices++;
6778 
6779 			device->fs_devices->missing_devices--;
6780 			fs_devices->missing_devices++;
6781 
6782 			device->fs_devices = fs_devices;
6783 		}
6784 	}
6785 
6786 	if (device->fs_devices != fs_info->fs_devices) {
6787 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6788 		if (device->generation !=
6789 		    btrfs_device_generation(leaf, dev_item))
6790 			return -EINVAL;
6791 	}
6792 
6793 	fill_device_from_item(leaf, dev_item, device);
6794 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6795 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6796 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6797 		device->fs_devices->total_rw_bytes += device->total_bytes;
6798 		atomic64_add(device->total_bytes - device->bytes_used,
6799 				&fs_info->free_chunk_space);
6800 	}
6801 	ret = 0;
6802 	return ret;
6803 }
6804 
6805 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6806 {
6807 	struct btrfs_root *root = fs_info->tree_root;
6808 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6809 	struct extent_buffer *sb;
6810 	struct btrfs_disk_key *disk_key;
6811 	struct btrfs_chunk *chunk;
6812 	u8 *array_ptr;
6813 	unsigned long sb_array_offset;
6814 	int ret = 0;
6815 	u32 num_stripes;
6816 	u32 array_size;
6817 	u32 len = 0;
6818 	u32 cur_offset;
6819 	u64 type;
6820 	struct btrfs_key key;
6821 
6822 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6823 	/*
6824 	 * This will create extent buffer of nodesize, superblock size is
6825 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6826 	 * overallocate but we can keep it as-is, only the first page is used.
6827 	 */
6828 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6829 	if (IS_ERR(sb))
6830 		return PTR_ERR(sb);
6831 	set_extent_buffer_uptodate(sb);
6832 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6833 	/*
6834 	 * The sb extent buffer is artificial and just used to read the system array.
6835 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6836 	 * pages up-to-date when the page is larger: extent does not cover the
6837 	 * whole page and consequently check_page_uptodate does not find all
6838 	 * the page's extents up-to-date (the hole beyond sb),
6839 	 * write_extent_buffer then triggers a WARN_ON.
6840 	 *
6841 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6842 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6843 	 * to silence the warning eg. on PowerPC 64.
6844 	 */
6845 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6846 		SetPageUptodate(sb->pages[0]);
6847 
6848 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6849 	array_size = btrfs_super_sys_array_size(super_copy);
6850 
6851 	array_ptr = super_copy->sys_chunk_array;
6852 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6853 	cur_offset = 0;
6854 
6855 	while (cur_offset < array_size) {
6856 		disk_key = (struct btrfs_disk_key *)array_ptr;
6857 		len = sizeof(*disk_key);
6858 		if (cur_offset + len > array_size)
6859 			goto out_short_read;
6860 
6861 		btrfs_disk_key_to_cpu(&key, disk_key);
6862 
6863 		array_ptr += len;
6864 		sb_array_offset += len;
6865 		cur_offset += len;
6866 
6867 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6868 			chunk = (struct btrfs_chunk *)sb_array_offset;
6869 			/*
6870 			 * At least one btrfs_chunk with one stripe must be
6871 			 * present, exact stripe count check comes afterwards
6872 			 */
6873 			len = btrfs_chunk_item_size(1);
6874 			if (cur_offset + len > array_size)
6875 				goto out_short_read;
6876 
6877 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6878 			if (!num_stripes) {
6879 				btrfs_err(fs_info,
6880 					"invalid number of stripes %u in sys_array at offset %u",
6881 					num_stripes, cur_offset);
6882 				ret = -EIO;
6883 				break;
6884 			}
6885 
6886 			type = btrfs_chunk_type(sb, chunk);
6887 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6888 				btrfs_err(fs_info,
6889 			    "invalid chunk type %llu in sys_array at offset %u",
6890 					type, cur_offset);
6891 				ret = -EIO;
6892 				break;
6893 			}
6894 
6895 			len = btrfs_chunk_item_size(num_stripes);
6896 			if (cur_offset + len > array_size)
6897 				goto out_short_read;
6898 
6899 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6900 			if (ret)
6901 				break;
6902 		} else {
6903 			btrfs_err(fs_info,
6904 			    "unexpected item type %u in sys_array at offset %u",
6905 				  (u32)key.type, cur_offset);
6906 			ret = -EIO;
6907 			break;
6908 		}
6909 		array_ptr += len;
6910 		sb_array_offset += len;
6911 		cur_offset += len;
6912 	}
6913 	clear_extent_buffer_uptodate(sb);
6914 	free_extent_buffer_stale(sb);
6915 	return ret;
6916 
6917 out_short_read:
6918 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6919 			len, cur_offset);
6920 	clear_extent_buffer_uptodate(sb);
6921 	free_extent_buffer_stale(sb);
6922 	return -EIO;
6923 }
6924 
6925 /*
6926  * Check if all chunks in the fs are OK for read-write degraded mount
6927  *
6928  * If the @failing_dev is specified, it's accounted as missing.
6929  *
6930  * Return true if all chunks meet the minimal RW mount requirements.
6931  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6932  */
6933 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6934 					struct btrfs_device *failing_dev)
6935 {
6936 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6937 	struct extent_map *em;
6938 	u64 next_start = 0;
6939 	bool ret = true;
6940 
6941 	read_lock(&map_tree->map_tree.lock);
6942 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6943 	read_unlock(&map_tree->map_tree.lock);
6944 	/* No chunk at all? Return false anyway */
6945 	if (!em) {
6946 		ret = false;
6947 		goto out;
6948 	}
6949 	while (em) {
6950 		struct map_lookup *map;
6951 		int missing = 0;
6952 		int max_tolerated;
6953 		int i;
6954 
6955 		map = em->map_lookup;
6956 		max_tolerated =
6957 			btrfs_get_num_tolerated_disk_barrier_failures(
6958 					map->type);
6959 		for (i = 0; i < map->num_stripes; i++) {
6960 			struct btrfs_device *dev = map->stripes[i].dev;
6961 
6962 			if (!dev || !dev->bdev ||
6963 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6964 			    dev->last_flush_error)
6965 				missing++;
6966 			else if (failing_dev && failing_dev == dev)
6967 				missing++;
6968 		}
6969 		if (missing > max_tolerated) {
6970 			if (!failing_dev)
6971 				btrfs_warn(fs_info,
6972 	"chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6973 				   em->start, missing, max_tolerated);
6974 			free_extent_map(em);
6975 			ret = false;
6976 			goto out;
6977 		}
6978 		next_start = extent_map_end(em);
6979 		free_extent_map(em);
6980 
6981 		read_lock(&map_tree->map_tree.lock);
6982 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6983 					   (u64)(-1) - next_start);
6984 		read_unlock(&map_tree->map_tree.lock);
6985 	}
6986 out:
6987 	return ret;
6988 }
6989 
6990 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6991 {
6992 	struct btrfs_root *root = fs_info->chunk_root;
6993 	struct btrfs_path *path;
6994 	struct extent_buffer *leaf;
6995 	struct btrfs_key key;
6996 	struct btrfs_key found_key;
6997 	int ret;
6998 	int slot;
6999 	u64 total_dev = 0;
7000 
7001 	path = btrfs_alloc_path();
7002 	if (!path)
7003 		return -ENOMEM;
7004 
7005 	mutex_lock(&uuid_mutex);
7006 	mutex_lock(&fs_info->chunk_mutex);
7007 
7008 	/*
7009 	 * Read all device items, and then all the chunk items. All
7010 	 * device items are found before any chunk item (their object id
7011 	 * is smaller than the lowest possible object id for a chunk
7012 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7013 	 */
7014 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7015 	key.offset = 0;
7016 	key.type = 0;
7017 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7018 	if (ret < 0)
7019 		goto error;
7020 	while (1) {
7021 		leaf = path->nodes[0];
7022 		slot = path->slots[0];
7023 		if (slot >= btrfs_header_nritems(leaf)) {
7024 			ret = btrfs_next_leaf(root, path);
7025 			if (ret == 0)
7026 				continue;
7027 			if (ret < 0)
7028 				goto error;
7029 			break;
7030 		}
7031 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7032 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7033 			struct btrfs_dev_item *dev_item;
7034 			dev_item = btrfs_item_ptr(leaf, slot,
7035 						  struct btrfs_dev_item);
7036 			ret = read_one_dev(fs_info, leaf, dev_item);
7037 			if (ret)
7038 				goto error;
7039 			total_dev++;
7040 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7041 			struct btrfs_chunk *chunk;
7042 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7043 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7044 			if (ret)
7045 				goto error;
7046 		}
7047 		path->slots[0]++;
7048 	}
7049 
7050 	/*
7051 	 * After loading chunk tree, we've got all device information,
7052 	 * do another round of validation checks.
7053 	 */
7054 	if (total_dev != fs_info->fs_devices->total_devices) {
7055 		btrfs_err(fs_info,
7056 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7057 			  btrfs_super_num_devices(fs_info->super_copy),
7058 			  total_dev);
7059 		ret = -EINVAL;
7060 		goto error;
7061 	}
7062 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7063 	    fs_info->fs_devices->total_rw_bytes) {
7064 		btrfs_err(fs_info,
7065 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7066 			  btrfs_super_total_bytes(fs_info->super_copy),
7067 			  fs_info->fs_devices->total_rw_bytes);
7068 		ret = -EINVAL;
7069 		goto error;
7070 	}
7071 	ret = 0;
7072 error:
7073 	mutex_unlock(&fs_info->chunk_mutex);
7074 	mutex_unlock(&uuid_mutex);
7075 
7076 	btrfs_free_path(path);
7077 	return ret;
7078 }
7079 
7080 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7081 {
7082 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7083 	struct btrfs_device *device;
7084 
7085 	while (fs_devices) {
7086 		mutex_lock(&fs_devices->device_list_mutex);
7087 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7088 			device->fs_info = fs_info;
7089 		mutex_unlock(&fs_devices->device_list_mutex);
7090 
7091 		fs_devices = fs_devices->seed;
7092 	}
7093 }
7094 
7095 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7096 {
7097 	int i;
7098 
7099 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7100 		btrfs_dev_stat_reset(dev, i);
7101 }
7102 
7103 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7104 {
7105 	struct btrfs_key key;
7106 	struct btrfs_key found_key;
7107 	struct btrfs_root *dev_root = fs_info->dev_root;
7108 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7109 	struct extent_buffer *eb;
7110 	int slot;
7111 	int ret = 0;
7112 	struct btrfs_device *device;
7113 	struct btrfs_path *path = NULL;
7114 	int i;
7115 
7116 	path = btrfs_alloc_path();
7117 	if (!path) {
7118 		ret = -ENOMEM;
7119 		goto out;
7120 	}
7121 
7122 	mutex_lock(&fs_devices->device_list_mutex);
7123 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7124 		int item_size;
7125 		struct btrfs_dev_stats_item *ptr;
7126 
7127 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7128 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7129 		key.offset = device->devid;
7130 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7131 		if (ret) {
7132 			__btrfs_reset_dev_stats(device);
7133 			device->dev_stats_valid = 1;
7134 			btrfs_release_path(path);
7135 			continue;
7136 		}
7137 		slot = path->slots[0];
7138 		eb = path->nodes[0];
7139 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7140 		item_size = btrfs_item_size_nr(eb, slot);
7141 
7142 		ptr = btrfs_item_ptr(eb, slot,
7143 				     struct btrfs_dev_stats_item);
7144 
7145 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7146 			if (item_size >= (1 + i) * sizeof(__le64))
7147 				btrfs_dev_stat_set(device, i,
7148 					btrfs_dev_stats_value(eb, ptr, i));
7149 			else
7150 				btrfs_dev_stat_reset(device, i);
7151 		}
7152 
7153 		device->dev_stats_valid = 1;
7154 		btrfs_dev_stat_print_on_load(device);
7155 		btrfs_release_path(path);
7156 	}
7157 	mutex_unlock(&fs_devices->device_list_mutex);
7158 
7159 out:
7160 	btrfs_free_path(path);
7161 	return ret < 0 ? ret : 0;
7162 }
7163 
7164 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7165 				struct btrfs_fs_info *fs_info,
7166 				struct btrfs_device *device)
7167 {
7168 	struct btrfs_root *dev_root = fs_info->dev_root;
7169 	struct btrfs_path *path;
7170 	struct btrfs_key key;
7171 	struct extent_buffer *eb;
7172 	struct btrfs_dev_stats_item *ptr;
7173 	int ret;
7174 	int i;
7175 
7176 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7177 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7178 	key.offset = device->devid;
7179 
7180 	path = btrfs_alloc_path();
7181 	if (!path)
7182 		return -ENOMEM;
7183 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7184 	if (ret < 0) {
7185 		btrfs_warn_in_rcu(fs_info,
7186 			"error %d while searching for dev_stats item for device %s",
7187 			      ret, rcu_str_deref(device->name));
7188 		goto out;
7189 	}
7190 
7191 	if (ret == 0 &&
7192 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7193 		/* need to delete old one and insert a new one */
7194 		ret = btrfs_del_item(trans, dev_root, path);
7195 		if (ret != 0) {
7196 			btrfs_warn_in_rcu(fs_info,
7197 				"delete too small dev_stats item for device %s failed %d",
7198 				      rcu_str_deref(device->name), ret);
7199 			goto out;
7200 		}
7201 		ret = 1;
7202 	}
7203 
7204 	if (ret == 1) {
7205 		/* need to insert a new item */
7206 		btrfs_release_path(path);
7207 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7208 					      &key, sizeof(*ptr));
7209 		if (ret < 0) {
7210 			btrfs_warn_in_rcu(fs_info,
7211 				"insert dev_stats item for device %s failed %d",
7212 				rcu_str_deref(device->name), ret);
7213 			goto out;
7214 		}
7215 	}
7216 
7217 	eb = path->nodes[0];
7218 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7219 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7220 		btrfs_set_dev_stats_value(eb, ptr, i,
7221 					  btrfs_dev_stat_read(device, i));
7222 	btrfs_mark_buffer_dirty(eb);
7223 
7224 out:
7225 	btrfs_free_path(path);
7226 	return ret;
7227 }
7228 
7229 /*
7230  * called from commit_transaction. Writes all changed device stats to disk.
7231  */
7232 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7233 			struct btrfs_fs_info *fs_info)
7234 {
7235 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7236 	struct btrfs_device *device;
7237 	int stats_cnt;
7238 	int ret = 0;
7239 
7240 	mutex_lock(&fs_devices->device_list_mutex);
7241 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7242 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7243 		if (!device->dev_stats_valid || stats_cnt == 0)
7244 			continue;
7245 
7246 
7247 		/*
7248 		 * There is a LOAD-LOAD control dependency between the value of
7249 		 * dev_stats_ccnt and updating the on-disk values which requires
7250 		 * reading the in-memory counters. Such control dependencies
7251 		 * require explicit read memory barriers.
7252 		 *
7253 		 * This memory barriers pairs with smp_mb__before_atomic in
7254 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7255 		 * barrier implied by atomic_xchg in
7256 		 * btrfs_dev_stats_read_and_reset
7257 		 */
7258 		smp_rmb();
7259 
7260 		ret = update_dev_stat_item(trans, fs_info, device);
7261 		if (!ret)
7262 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7263 	}
7264 	mutex_unlock(&fs_devices->device_list_mutex);
7265 
7266 	return ret;
7267 }
7268 
7269 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7270 {
7271 	btrfs_dev_stat_inc(dev, index);
7272 	btrfs_dev_stat_print_on_error(dev);
7273 }
7274 
7275 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7276 {
7277 	if (!dev->dev_stats_valid)
7278 		return;
7279 	btrfs_err_rl_in_rcu(dev->fs_info,
7280 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7281 			   rcu_str_deref(dev->name),
7282 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7283 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7284 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7285 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7286 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7287 }
7288 
7289 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7290 {
7291 	int i;
7292 
7293 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7294 		if (btrfs_dev_stat_read(dev, i) != 0)
7295 			break;
7296 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7297 		return; /* all values == 0, suppress message */
7298 
7299 	btrfs_info_in_rcu(dev->fs_info,
7300 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7301 	       rcu_str_deref(dev->name),
7302 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7303 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7304 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7305 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7306 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7307 }
7308 
7309 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7310 			struct btrfs_ioctl_get_dev_stats *stats)
7311 {
7312 	struct btrfs_device *dev;
7313 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7314 	int i;
7315 
7316 	mutex_lock(&fs_devices->device_list_mutex);
7317 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7318 	mutex_unlock(&fs_devices->device_list_mutex);
7319 
7320 	if (!dev) {
7321 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7322 		return -ENODEV;
7323 	} else if (!dev->dev_stats_valid) {
7324 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7325 		return -ENODEV;
7326 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7327 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7328 			if (stats->nr_items > i)
7329 				stats->values[i] =
7330 					btrfs_dev_stat_read_and_reset(dev, i);
7331 			else
7332 				btrfs_dev_stat_reset(dev, i);
7333 		}
7334 	} else {
7335 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7336 			if (stats->nr_items > i)
7337 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7338 	}
7339 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7340 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7341 	return 0;
7342 }
7343 
7344 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7345 {
7346 	struct buffer_head *bh;
7347 	struct btrfs_super_block *disk_super;
7348 	int copy_num;
7349 
7350 	if (!bdev)
7351 		return;
7352 
7353 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7354 		copy_num++) {
7355 
7356 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7357 			continue;
7358 
7359 		disk_super = (struct btrfs_super_block *)bh->b_data;
7360 
7361 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7362 		set_buffer_dirty(bh);
7363 		sync_dirty_buffer(bh);
7364 		brelse(bh);
7365 	}
7366 
7367 	/* Notify udev that device has changed */
7368 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7369 
7370 	/* Update ctime/mtime for device path for libblkid */
7371 	update_dev_time(device_path);
7372 }
7373 
7374 /*
7375  * Update the size of all devices, which is used for writing out the
7376  * super blocks.
7377  */
7378 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7379 {
7380 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7381 	struct btrfs_device *curr, *next;
7382 
7383 	if (list_empty(&fs_devices->resized_devices))
7384 		return;
7385 
7386 	mutex_lock(&fs_devices->device_list_mutex);
7387 	mutex_lock(&fs_info->chunk_mutex);
7388 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7389 				 resized_list) {
7390 		list_del_init(&curr->resized_list);
7391 		curr->commit_total_bytes = curr->disk_total_bytes;
7392 	}
7393 	mutex_unlock(&fs_info->chunk_mutex);
7394 	mutex_unlock(&fs_devices->device_list_mutex);
7395 }
7396 
7397 /* Must be invoked during the transaction commit */
7398 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7399 {
7400 	struct btrfs_fs_info *fs_info = trans->fs_info;
7401 	struct extent_map *em;
7402 	struct map_lookup *map;
7403 	struct btrfs_device *dev;
7404 	int i;
7405 
7406 	if (list_empty(&trans->pending_chunks))
7407 		return;
7408 
7409 	/* In order to kick the device replace finish process */
7410 	mutex_lock(&fs_info->chunk_mutex);
7411 	list_for_each_entry(em, &trans->pending_chunks, list) {
7412 		map = em->map_lookup;
7413 
7414 		for (i = 0; i < map->num_stripes; i++) {
7415 			dev = map->stripes[i].dev;
7416 			dev->commit_bytes_used = dev->bytes_used;
7417 		}
7418 	}
7419 	mutex_unlock(&fs_info->chunk_mutex);
7420 }
7421 
7422 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7423 {
7424 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7425 	while (fs_devices) {
7426 		fs_devices->fs_info = fs_info;
7427 		fs_devices = fs_devices->seed;
7428 	}
7429 }
7430 
7431 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7432 {
7433 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7434 	while (fs_devices) {
7435 		fs_devices->fs_info = NULL;
7436 		fs_devices = fs_devices->seed;
7437 	}
7438 }
7439