xref: /openbmc/linux/fs/btrfs/volumes.c (revision d2999e1b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 
44 static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 				struct btrfs_root *root,
46 				struct btrfs_device *device);
47 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
48 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
49 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
51 
52 static DEFINE_MUTEX(uuid_mutex);
53 static LIST_HEAD(fs_uuids);
54 
55 static void lock_chunks(struct btrfs_root *root)
56 {
57 	mutex_lock(&root->fs_info->chunk_mutex);
58 }
59 
60 static void unlock_chunks(struct btrfs_root *root)
61 {
62 	mutex_unlock(&root->fs_info->chunk_mutex);
63 }
64 
65 static struct btrfs_fs_devices *__alloc_fs_devices(void)
66 {
67 	struct btrfs_fs_devices *fs_devs;
68 
69 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
70 	if (!fs_devs)
71 		return ERR_PTR(-ENOMEM);
72 
73 	mutex_init(&fs_devs->device_list_mutex);
74 
75 	INIT_LIST_HEAD(&fs_devs->devices);
76 	INIT_LIST_HEAD(&fs_devs->alloc_list);
77 	INIT_LIST_HEAD(&fs_devs->list);
78 
79 	return fs_devs;
80 }
81 
82 /**
83  * alloc_fs_devices - allocate struct btrfs_fs_devices
84  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
85  *		generated.
86  *
87  * Return: a pointer to a new &struct btrfs_fs_devices on success;
88  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
89  * can be destroyed with kfree() right away.
90  */
91 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
92 {
93 	struct btrfs_fs_devices *fs_devs;
94 
95 	fs_devs = __alloc_fs_devices();
96 	if (IS_ERR(fs_devs))
97 		return fs_devs;
98 
99 	if (fsid)
100 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
101 	else
102 		generate_random_uuid(fs_devs->fsid);
103 
104 	return fs_devs;
105 }
106 
107 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
108 {
109 	struct btrfs_device *device;
110 	WARN_ON(fs_devices->opened);
111 	while (!list_empty(&fs_devices->devices)) {
112 		device = list_entry(fs_devices->devices.next,
113 				    struct btrfs_device, dev_list);
114 		list_del(&device->dev_list);
115 		rcu_string_free(device->name);
116 		kfree(device);
117 	}
118 	kfree(fs_devices);
119 }
120 
121 static void btrfs_kobject_uevent(struct block_device *bdev,
122 				 enum kobject_action action)
123 {
124 	int ret;
125 
126 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
127 	if (ret)
128 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
129 			action,
130 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
131 			&disk_to_dev(bdev->bd_disk)->kobj);
132 }
133 
134 void btrfs_cleanup_fs_uuids(void)
135 {
136 	struct btrfs_fs_devices *fs_devices;
137 
138 	while (!list_empty(&fs_uuids)) {
139 		fs_devices = list_entry(fs_uuids.next,
140 					struct btrfs_fs_devices, list);
141 		list_del(&fs_devices->list);
142 		free_fs_devices(fs_devices);
143 	}
144 }
145 
146 static struct btrfs_device *__alloc_device(void)
147 {
148 	struct btrfs_device *dev;
149 
150 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
151 	if (!dev)
152 		return ERR_PTR(-ENOMEM);
153 
154 	INIT_LIST_HEAD(&dev->dev_list);
155 	INIT_LIST_HEAD(&dev->dev_alloc_list);
156 
157 	spin_lock_init(&dev->io_lock);
158 
159 	spin_lock_init(&dev->reada_lock);
160 	atomic_set(&dev->reada_in_flight, 0);
161 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
162 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
163 
164 	return dev;
165 }
166 
167 static noinline struct btrfs_device *__find_device(struct list_head *head,
168 						   u64 devid, u8 *uuid)
169 {
170 	struct btrfs_device *dev;
171 
172 	list_for_each_entry(dev, head, dev_list) {
173 		if (dev->devid == devid &&
174 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
175 			return dev;
176 		}
177 	}
178 	return NULL;
179 }
180 
181 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
182 {
183 	struct btrfs_fs_devices *fs_devices;
184 
185 	list_for_each_entry(fs_devices, &fs_uuids, list) {
186 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
187 			return fs_devices;
188 	}
189 	return NULL;
190 }
191 
192 static int
193 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
194 		      int flush, struct block_device **bdev,
195 		      struct buffer_head **bh)
196 {
197 	int ret;
198 
199 	*bdev = blkdev_get_by_path(device_path, flags, holder);
200 
201 	if (IS_ERR(*bdev)) {
202 		ret = PTR_ERR(*bdev);
203 		printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
204 		goto error;
205 	}
206 
207 	if (flush)
208 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
209 	ret = set_blocksize(*bdev, 4096);
210 	if (ret) {
211 		blkdev_put(*bdev, flags);
212 		goto error;
213 	}
214 	invalidate_bdev(*bdev);
215 	*bh = btrfs_read_dev_super(*bdev);
216 	if (!*bh) {
217 		ret = -EINVAL;
218 		blkdev_put(*bdev, flags);
219 		goto error;
220 	}
221 
222 	return 0;
223 
224 error:
225 	*bdev = NULL;
226 	*bh = NULL;
227 	return ret;
228 }
229 
230 static void requeue_list(struct btrfs_pending_bios *pending_bios,
231 			struct bio *head, struct bio *tail)
232 {
233 
234 	struct bio *old_head;
235 
236 	old_head = pending_bios->head;
237 	pending_bios->head = head;
238 	if (pending_bios->tail)
239 		tail->bi_next = old_head;
240 	else
241 		pending_bios->tail = tail;
242 }
243 
244 /*
245  * we try to collect pending bios for a device so we don't get a large
246  * number of procs sending bios down to the same device.  This greatly
247  * improves the schedulers ability to collect and merge the bios.
248  *
249  * But, it also turns into a long list of bios to process and that is sure
250  * to eventually make the worker thread block.  The solution here is to
251  * make some progress and then put this work struct back at the end of
252  * the list if the block device is congested.  This way, multiple devices
253  * can make progress from a single worker thread.
254  */
255 static noinline void run_scheduled_bios(struct btrfs_device *device)
256 {
257 	struct bio *pending;
258 	struct backing_dev_info *bdi;
259 	struct btrfs_fs_info *fs_info;
260 	struct btrfs_pending_bios *pending_bios;
261 	struct bio *tail;
262 	struct bio *cur;
263 	int again = 0;
264 	unsigned long num_run;
265 	unsigned long batch_run = 0;
266 	unsigned long limit;
267 	unsigned long last_waited = 0;
268 	int force_reg = 0;
269 	int sync_pending = 0;
270 	struct blk_plug plug;
271 
272 	/*
273 	 * this function runs all the bios we've collected for
274 	 * a particular device.  We don't want to wander off to
275 	 * another device without first sending all of these down.
276 	 * So, setup a plug here and finish it off before we return
277 	 */
278 	blk_start_plug(&plug);
279 
280 	bdi = blk_get_backing_dev_info(device->bdev);
281 	fs_info = device->dev_root->fs_info;
282 	limit = btrfs_async_submit_limit(fs_info);
283 	limit = limit * 2 / 3;
284 
285 loop:
286 	spin_lock(&device->io_lock);
287 
288 loop_lock:
289 	num_run = 0;
290 
291 	/* take all the bios off the list at once and process them
292 	 * later on (without the lock held).  But, remember the
293 	 * tail and other pointers so the bios can be properly reinserted
294 	 * into the list if we hit congestion
295 	 */
296 	if (!force_reg && device->pending_sync_bios.head) {
297 		pending_bios = &device->pending_sync_bios;
298 		force_reg = 1;
299 	} else {
300 		pending_bios = &device->pending_bios;
301 		force_reg = 0;
302 	}
303 
304 	pending = pending_bios->head;
305 	tail = pending_bios->tail;
306 	WARN_ON(pending && !tail);
307 
308 	/*
309 	 * if pending was null this time around, no bios need processing
310 	 * at all and we can stop.  Otherwise it'll loop back up again
311 	 * and do an additional check so no bios are missed.
312 	 *
313 	 * device->running_pending is used to synchronize with the
314 	 * schedule_bio code.
315 	 */
316 	if (device->pending_sync_bios.head == NULL &&
317 	    device->pending_bios.head == NULL) {
318 		again = 0;
319 		device->running_pending = 0;
320 	} else {
321 		again = 1;
322 		device->running_pending = 1;
323 	}
324 
325 	pending_bios->head = NULL;
326 	pending_bios->tail = NULL;
327 
328 	spin_unlock(&device->io_lock);
329 
330 	while (pending) {
331 
332 		rmb();
333 		/* we want to work on both lists, but do more bios on the
334 		 * sync list than the regular list
335 		 */
336 		if ((num_run > 32 &&
337 		    pending_bios != &device->pending_sync_bios &&
338 		    device->pending_sync_bios.head) ||
339 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
340 		    device->pending_bios.head)) {
341 			spin_lock(&device->io_lock);
342 			requeue_list(pending_bios, pending, tail);
343 			goto loop_lock;
344 		}
345 
346 		cur = pending;
347 		pending = pending->bi_next;
348 		cur->bi_next = NULL;
349 
350 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
351 		    waitqueue_active(&fs_info->async_submit_wait))
352 			wake_up(&fs_info->async_submit_wait);
353 
354 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
355 
356 		/*
357 		 * if we're doing the sync list, record that our
358 		 * plug has some sync requests on it
359 		 *
360 		 * If we're doing the regular list and there are
361 		 * sync requests sitting around, unplug before
362 		 * we add more
363 		 */
364 		if (pending_bios == &device->pending_sync_bios) {
365 			sync_pending = 1;
366 		} else if (sync_pending) {
367 			blk_finish_plug(&plug);
368 			blk_start_plug(&plug);
369 			sync_pending = 0;
370 		}
371 
372 		btrfsic_submit_bio(cur->bi_rw, cur);
373 		num_run++;
374 		batch_run++;
375 		if (need_resched())
376 			cond_resched();
377 
378 		/*
379 		 * we made progress, there is more work to do and the bdi
380 		 * is now congested.  Back off and let other work structs
381 		 * run instead
382 		 */
383 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
384 		    fs_info->fs_devices->open_devices > 1) {
385 			struct io_context *ioc;
386 
387 			ioc = current->io_context;
388 
389 			/*
390 			 * the main goal here is that we don't want to
391 			 * block if we're going to be able to submit
392 			 * more requests without blocking.
393 			 *
394 			 * This code does two great things, it pokes into
395 			 * the elevator code from a filesystem _and_
396 			 * it makes assumptions about how batching works.
397 			 */
398 			if (ioc && ioc->nr_batch_requests > 0 &&
399 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
400 			    (last_waited == 0 ||
401 			     ioc->last_waited == last_waited)) {
402 				/*
403 				 * we want to go through our batch of
404 				 * requests and stop.  So, we copy out
405 				 * the ioc->last_waited time and test
406 				 * against it before looping
407 				 */
408 				last_waited = ioc->last_waited;
409 				if (need_resched())
410 					cond_resched();
411 				continue;
412 			}
413 			spin_lock(&device->io_lock);
414 			requeue_list(pending_bios, pending, tail);
415 			device->running_pending = 1;
416 
417 			spin_unlock(&device->io_lock);
418 			btrfs_queue_work(fs_info->submit_workers,
419 					 &device->work);
420 			goto done;
421 		}
422 		/* unplug every 64 requests just for good measure */
423 		if (batch_run % 64 == 0) {
424 			blk_finish_plug(&plug);
425 			blk_start_plug(&plug);
426 			sync_pending = 0;
427 		}
428 	}
429 
430 	cond_resched();
431 	if (again)
432 		goto loop;
433 
434 	spin_lock(&device->io_lock);
435 	if (device->pending_bios.head || device->pending_sync_bios.head)
436 		goto loop_lock;
437 	spin_unlock(&device->io_lock);
438 
439 done:
440 	blk_finish_plug(&plug);
441 }
442 
443 static void pending_bios_fn(struct btrfs_work *work)
444 {
445 	struct btrfs_device *device;
446 
447 	device = container_of(work, struct btrfs_device, work);
448 	run_scheduled_bios(device);
449 }
450 
451 /*
452  * Add new device to list of registered devices
453  *
454  * Returns:
455  * 1   - first time device is seen
456  * 0   - device already known
457  * < 0 - error
458  */
459 static noinline int device_list_add(const char *path,
460 			   struct btrfs_super_block *disk_super,
461 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
462 {
463 	struct btrfs_device *device;
464 	struct btrfs_fs_devices *fs_devices;
465 	struct rcu_string *name;
466 	int ret = 0;
467 	u64 found_transid = btrfs_super_generation(disk_super);
468 
469 	fs_devices = find_fsid(disk_super->fsid);
470 	if (!fs_devices) {
471 		fs_devices = alloc_fs_devices(disk_super->fsid);
472 		if (IS_ERR(fs_devices))
473 			return PTR_ERR(fs_devices);
474 
475 		list_add(&fs_devices->list, &fs_uuids);
476 		fs_devices->latest_devid = devid;
477 		fs_devices->latest_trans = found_transid;
478 
479 		device = NULL;
480 	} else {
481 		device = __find_device(&fs_devices->devices, devid,
482 				       disk_super->dev_item.uuid);
483 	}
484 	if (!device) {
485 		if (fs_devices->opened)
486 			return -EBUSY;
487 
488 		device = btrfs_alloc_device(NULL, &devid,
489 					    disk_super->dev_item.uuid);
490 		if (IS_ERR(device)) {
491 			/* we can safely leave the fs_devices entry around */
492 			return PTR_ERR(device);
493 		}
494 
495 		name = rcu_string_strdup(path, GFP_NOFS);
496 		if (!name) {
497 			kfree(device);
498 			return -ENOMEM;
499 		}
500 		rcu_assign_pointer(device->name, name);
501 
502 		mutex_lock(&fs_devices->device_list_mutex);
503 		list_add_rcu(&device->dev_list, &fs_devices->devices);
504 		fs_devices->num_devices++;
505 		mutex_unlock(&fs_devices->device_list_mutex);
506 
507 		ret = 1;
508 		device->fs_devices = fs_devices;
509 	} else if (!device->name || strcmp(device->name->str, path)) {
510 		name = rcu_string_strdup(path, GFP_NOFS);
511 		if (!name)
512 			return -ENOMEM;
513 		rcu_string_free(device->name);
514 		rcu_assign_pointer(device->name, name);
515 		if (device->missing) {
516 			fs_devices->missing_devices--;
517 			device->missing = 0;
518 		}
519 	}
520 
521 	if (found_transid > fs_devices->latest_trans) {
522 		fs_devices->latest_devid = devid;
523 		fs_devices->latest_trans = found_transid;
524 	}
525 	*fs_devices_ret = fs_devices;
526 
527 	return ret;
528 }
529 
530 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
531 {
532 	struct btrfs_fs_devices *fs_devices;
533 	struct btrfs_device *device;
534 	struct btrfs_device *orig_dev;
535 
536 	fs_devices = alloc_fs_devices(orig->fsid);
537 	if (IS_ERR(fs_devices))
538 		return fs_devices;
539 
540 	fs_devices->latest_devid = orig->latest_devid;
541 	fs_devices->latest_trans = orig->latest_trans;
542 	fs_devices->total_devices = orig->total_devices;
543 
544 	/* We have held the volume lock, it is safe to get the devices. */
545 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
546 		struct rcu_string *name;
547 
548 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
549 					    orig_dev->uuid);
550 		if (IS_ERR(device))
551 			goto error;
552 
553 		/*
554 		 * This is ok to do without rcu read locked because we hold the
555 		 * uuid mutex so nothing we touch in here is going to disappear.
556 		 */
557 		name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
558 		if (!name) {
559 			kfree(device);
560 			goto error;
561 		}
562 		rcu_assign_pointer(device->name, name);
563 
564 		list_add(&device->dev_list, &fs_devices->devices);
565 		device->fs_devices = fs_devices;
566 		fs_devices->num_devices++;
567 	}
568 	return fs_devices;
569 error:
570 	free_fs_devices(fs_devices);
571 	return ERR_PTR(-ENOMEM);
572 }
573 
574 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
575 			       struct btrfs_fs_devices *fs_devices, int step)
576 {
577 	struct btrfs_device *device, *next;
578 
579 	struct block_device *latest_bdev = NULL;
580 	u64 latest_devid = 0;
581 	u64 latest_transid = 0;
582 
583 	mutex_lock(&uuid_mutex);
584 again:
585 	/* This is the initialized path, it is safe to release the devices. */
586 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
587 		if (device->in_fs_metadata) {
588 			if (!device->is_tgtdev_for_dev_replace &&
589 			    (!latest_transid ||
590 			     device->generation > latest_transid)) {
591 				latest_devid = device->devid;
592 				latest_transid = device->generation;
593 				latest_bdev = device->bdev;
594 			}
595 			continue;
596 		}
597 
598 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
599 			/*
600 			 * In the first step, keep the device which has
601 			 * the correct fsid and the devid that is used
602 			 * for the dev_replace procedure.
603 			 * In the second step, the dev_replace state is
604 			 * read from the device tree and it is known
605 			 * whether the procedure is really active or
606 			 * not, which means whether this device is
607 			 * used or whether it should be removed.
608 			 */
609 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
610 				continue;
611 			}
612 		}
613 		if (device->bdev) {
614 			blkdev_put(device->bdev, device->mode);
615 			device->bdev = NULL;
616 			fs_devices->open_devices--;
617 		}
618 		if (device->writeable) {
619 			list_del_init(&device->dev_alloc_list);
620 			device->writeable = 0;
621 			if (!device->is_tgtdev_for_dev_replace)
622 				fs_devices->rw_devices--;
623 		}
624 		list_del_init(&device->dev_list);
625 		fs_devices->num_devices--;
626 		rcu_string_free(device->name);
627 		kfree(device);
628 	}
629 
630 	if (fs_devices->seed) {
631 		fs_devices = fs_devices->seed;
632 		goto again;
633 	}
634 
635 	fs_devices->latest_bdev = latest_bdev;
636 	fs_devices->latest_devid = latest_devid;
637 	fs_devices->latest_trans = latest_transid;
638 
639 	mutex_unlock(&uuid_mutex);
640 }
641 
642 static void __free_device(struct work_struct *work)
643 {
644 	struct btrfs_device *device;
645 
646 	device = container_of(work, struct btrfs_device, rcu_work);
647 
648 	if (device->bdev)
649 		blkdev_put(device->bdev, device->mode);
650 
651 	rcu_string_free(device->name);
652 	kfree(device);
653 }
654 
655 static void free_device(struct rcu_head *head)
656 {
657 	struct btrfs_device *device;
658 
659 	device = container_of(head, struct btrfs_device, rcu);
660 
661 	INIT_WORK(&device->rcu_work, __free_device);
662 	schedule_work(&device->rcu_work);
663 }
664 
665 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
666 {
667 	struct btrfs_device *device;
668 
669 	if (--fs_devices->opened > 0)
670 		return 0;
671 
672 	mutex_lock(&fs_devices->device_list_mutex);
673 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
674 		struct btrfs_device *new_device;
675 		struct rcu_string *name;
676 
677 		if (device->bdev)
678 			fs_devices->open_devices--;
679 
680 		if (device->writeable &&
681 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
682 			list_del_init(&device->dev_alloc_list);
683 			fs_devices->rw_devices--;
684 		}
685 
686 		if (device->can_discard)
687 			fs_devices->num_can_discard--;
688 		if (device->missing)
689 			fs_devices->missing_devices--;
690 
691 		new_device = btrfs_alloc_device(NULL, &device->devid,
692 						device->uuid);
693 		BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
694 
695 		/* Safe because we are under uuid_mutex */
696 		if (device->name) {
697 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
698 			BUG_ON(!name); /* -ENOMEM */
699 			rcu_assign_pointer(new_device->name, name);
700 		}
701 
702 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
703 		new_device->fs_devices = device->fs_devices;
704 
705 		call_rcu(&device->rcu, free_device);
706 	}
707 	mutex_unlock(&fs_devices->device_list_mutex);
708 
709 	WARN_ON(fs_devices->open_devices);
710 	WARN_ON(fs_devices->rw_devices);
711 	fs_devices->opened = 0;
712 	fs_devices->seeding = 0;
713 
714 	return 0;
715 }
716 
717 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
718 {
719 	struct btrfs_fs_devices *seed_devices = NULL;
720 	int ret;
721 
722 	mutex_lock(&uuid_mutex);
723 	ret = __btrfs_close_devices(fs_devices);
724 	if (!fs_devices->opened) {
725 		seed_devices = fs_devices->seed;
726 		fs_devices->seed = NULL;
727 	}
728 	mutex_unlock(&uuid_mutex);
729 
730 	while (seed_devices) {
731 		fs_devices = seed_devices;
732 		seed_devices = fs_devices->seed;
733 		__btrfs_close_devices(fs_devices);
734 		free_fs_devices(fs_devices);
735 	}
736 	/*
737 	 * Wait for rcu kworkers under __btrfs_close_devices
738 	 * to finish all blkdev_puts so device is really
739 	 * free when umount is done.
740 	 */
741 	rcu_barrier();
742 	return ret;
743 }
744 
745 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
746 				fmode_t flags, void *holder)
747 {
748 	struct request_queue *q;
749 	struct block_device *bdev;
750 	struct list_head *head = &fs_devices->devices;
751 	struct btrfs_device *device;
752 	struct block_device *latest_bdev = NULL;
753 	struct buffer_head *bh;
754 	struct btrfs_super_block *disk_super;
755 	u64 latest_devid = 0;
756 	u64 latest_transid = 0;
757 	u64 devid;
758 	int seeding = 1;
759 	int ret = 0;
760 
761 	flags |= FMODE_EXCL;
762 
763 	list_for_each_entry(device, head, dev_list) {
764 		if (device->bdev)
765 			continue;
766 		if (!device->name)
767 			continue;
768 
769 		/* Just open everything we can; ignore failures here */
770 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
771 					    &bdev, &bh))
772 			continue;
773 
774 		disk_super = (struct btrfs_super_block *)bh->b_data;
775 		devid = btrfs_stack_device_id(&disk_super->dev_item);
776 		if (devid != device->devid)
777 			goto error_brelse;
778 
779 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
780 			   BTRFS_UUID_SIZE))
781 			goto error_brelse;
782 
783 		device->generation = btrfs_super_generation(disk_super);
784 		if (!latest_transid || device->generation > latest_transid) {
785 			latest_devid = devid;
786 			latest_transid = device->generation;
787 			latest_bdev = bdev;
788 		}
789 
790 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
791 			device->writeable = 0;
792 		} else {
793 			device->writeable = !bdev_read_only(bdev);
794 			seeding = 0;
795 		}
796 
797 		q = bdev_get_queue(bdev);
798 		if (blk_queue_discard(q)) {
799 			device->can_discard = 1;
800 			fs_devices->num_can_discard++;
801 		}
802 
803 		device->bdev = bdev;
804 		device->in_fs_metadata = 0;
805 		device->mode = flags;
806 
807 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
808 			fs_devices->rotating = 1;
809 
810 		fs_devices->open_devices++;
811 		if (device->writeable &&
812 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
813 			fs_devices->rw_devices++;
814 			list_add(&device->dev_alloc_list,
815 				 &fs_devices->alloc_list);
816 		}
817 		brelse(bh);
818 		continue;
819 
820 error_brelse:
821 		brelse(bh);
822 		blkdev_put(bdev, flags);
823 		continue;
824 	}
825 	if (fs_devices->open_devices == 0) {
826 		ret = -EINVAL;
827 		goto out;
828 	}
829 	fs_devices->seeding = seeding;
830 	fs_devices->opened = 1;
831 	fs_devices->latest_bdev = latest_bdev;
832 	fs_devices->latest_devid = latest_devid;
833 	fs_devices->latest_trans = latest_transid;
834 	fs_devices->total_rw_bytes = 0;
835 out:
836 	return ret;
837 }
838 
839 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
840 		       fmode_t flags, void *holder)
841 {
842 	int ret;
843 
844 	mutex_lock(&uuid_mutex);
845 	if (fs_devices->opened) {
846 		fs_devices->opened++;
847 		ret = 0;
848 	} else {
849 		ret = __btrfs_open_devices(fs_devices, flags, holder);
850 	}
851 	mutex_unlock(&uuid_mutex);
852 	return ret;
853 }
854 
855 /*
856  * Look for a btrfs signature on a device. This may be called out of the mount path
857  * and we are not allowed to call set_blocksize during the scan. The superblock
858  * is read via pagecache
859  */
860 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
861 			  struct btrfs_fs_devices **fs_devices_ret)
862 {
863 	struct btrfs_super_block *disk_super;
864 	struct block_device *bdev;
865 	struct page *page;
866 	void *p;
867 	int ret = -EINVAL;
868 	u64 devid;
869 	u64 transid;
870 	u64 total_devices;
871 	u64 bytenr;
872 	pgoff_t index;
873 
874 	/*
875 	 * we would like to check all the supers, but that would make
876 	 * a btrfs mount succeed after a mkfs from a different FS.
877 	 * So, we need to add a special mount option to scan for
878 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
879 	 */
880 	bytenr = btrfs_sb_offset(0);
881 	flags |= FMODE_EXCL;
882 	mutex_lock(&uuid_mutex);
883 
884 	bdev = blkdev_get_by_path(path, flags, holder);
885 
886 	if (IS_ERR(bdev)) {
887 		ret = PTR_ERR(bdev);
888 		goto error;
889 	}
890 
891 	/* make sure our super fits in the device */
892 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
893 		goto error_bdev_put;
894 
895 	/* make sure our super fits in the page */
896 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
897 		goto error_bdev_put;
898 
899 	/* make sure our super doesn't straddle pages on disk */
900 	index = bytenr >> PAGE_CACHE_SHIFT;
901 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
902 		goto error_bdev_put;
903 
904 	/* pull in the page with our super */
905 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
906 				   index, GFP_NOFS);
907 
908 	if (IS_ERR_OR_NULL(page))
909 		goto error_bdev_put;
910 
911 	p = kmap(page);
912 
913 	/* align our pointer to the offset of the super block */
914 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
915 
916 	if (btrfs_super_bytenr(disk_super) != bytenr ||
917 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
918 		goto error_unmap;
919 
920 	devid = btrfs_stack_device_id(&disk_super->dev_item);
921 	transid = btrfs_super_generation(disk_super);
922 	total_devices = btrfs_super_num_devices(disk_super);
923 
924 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
925 	if (ret > 0) {
926 		if (disk_super->label[0]) {
927 			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
928 				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
929 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
930 		} else {
931 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
932 		}
933 
934 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
935 		ret = 0;
936 	}
937 	if (!ret && fs_devices_ret)
938 		(*fs_devices_ret)->total_devices = total_devices;
939 
940 error_unmap:
941 	kunmap(page);
942 	page_cache_release(page);
943 
944 error_bdev_put:
945 	blkdev_put(bdev, flags);
946 error:
947 	mutex_unlock(&uuid_mutex);
948 	return ret;
949 }
950 
951 /* helper to account the used device space in the range */
952 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
953 				   u64 end, u64 *length)
954 {
955 	struct btrfs_key key;
956 	struct btrfs_root *root = device->dev_root;
957 	struct btrfs_dev_extent *dev_extent;
958 	struct btrfs_path *path;
959 	u64 extent_end;
960 	int ret;
961 	int slot;
962 	struct extent_buffer *l;
963 
964 	*length = 0;
965 
966 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
967 		return 0;
968 
969 	path = btrfs_alloc_path();
970 	if (!path)
971 		return -ENOMEM;
972 	path->reada = 2;
973 
974 	key.objectid = device->devid;
975 	key.offset = start;
976 	key.type = BTRFS_DEV_EXTENT_KEY;
977 
978 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
979 	if (ret < 0)
980 		goto out;
981 	if (ret > 0) {
982 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
983 		if (ret < 0)
984 			goto out;
985 	}
986 
987 	while (1) {
988 		l = path->nodes[0];
989 		slot = path->slots[0];
990 		if (slot >= btrfs_header_nritems(l)) {
991 			ret = btrfs_next_leaf(root, path);
992 			if (ret == 0)
993 				continue;
994 			if (ret < 0)
995 				goto out;
996 
997 			break;
998 		}
999 		btrfs_item_key_to_cpu(l, &key, slot);
1000 
1001 		if (key.objectid < device->devid)
1002 			goto next;
1003 
1004 		if (key.objectid > device->devid)
1005 			break;
1006 
1007 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1008 			goto next;
1009 
1010 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1011 		extent_end = key.offset + btrfs_dev_extent_length(l,
1012 								  dev_extent);
1013 		if (key.offset <= start && extent_end > end) {
1014 			*length = end - start + 1;
1015 			break;
1016 		} else if (key.offset <= start && extent_end > start)
1017 			*length += extent_end - start;
1018 		else if (key.offset > start && extent_end <= end)
1019 			*length += extent_end - key.offset;
1020 		else if (key.offset > start && key.offset <= end) {
1021 			*length += end - key.offset + 1;
1022 			break;
1023 		} else if (key.offset > end)
1024 			break;
1025 
1026 next:
1027 		path->slots[0]++;
1028 	}
1029 	ret = 0;
1030 out:
1031 	btrfs_free_path(path);
1032 	return ret;
1033 }
1034 
1035 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1036 				   struct btrfs_device *device,
1037 				   u64 *start, u64 len)
1038 {
1039 	struct extent_map *em;
1040 	int ret = 0;
1041 
1042 	list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1043 		struct map_lookup *map;
1044 		int i;
1045 
1046 		map = (struct map_lookup *)em->bdev;
1047 		for (i = 0; i < map->num_stripes; i++) {
1048 			if (map->stripes[i].dev != device)
1049 				continue;
1050 			if (map->stripes[i].physical >= *start + len ||
1051 			    map->stripes[i].physical + em->orig_block_len <=
1052 			    *start)
1053 				continue;
1054 			*start = map->stripes[i].physical +
1055 				em->orig_block_len;
1056 			ret = 1;
1057 		}
1058 	}
1059 
1060 	return ret;
1061 }
1062 
1063 
1064 /*
1065  * find_free_dev_extent - find free space in the specified device
1066  * @device:	the device which we search the free space in
1067  * @num_bytes:	the size of the free space that we need
1068  * @start:	store the start of the free space.
1069  * @len:	the size of the free space. that we find, or the size of the max
1070  * 		free space if we don't find suitable free space
1071  *
1072  * this uses a pretty simple search, the expectation is that it is
1073  * called very infrequently and that a given device has a small number
1074  * of extents
1075  *
1076  * @start is used to store the start of the free space if we find. But if we
1077  * don't find suitable free space, it will be used to store the start position
1078  * of the max free space.
1079  *
1080  * @len is used to store the size of the free space that we find.
1081  * But if we don't find suitable free space, it is used to store the size of
1082  * the max free space.
1083  */
1084 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1085 			 struct btrfs_device *device, u64 num_bytes,
1086 			 u64 *start, u64 *len)
1087 {
1088 	struct btrfs_key key;
1089 	struct btrfs_root *root = device->dev_root;
1090 	struct btrfs_dev_extent *dev_extent;
1091 	struct btrfs_path *path;
1092 	u64 hole_size;
1093 	u64 max_hole_start;
1094 	u64 max_hole_size;
1095 	u64 extent_end;
1096 	u64 search_start;
1097 	u64 search_end = device->total_bytes;
1098 	int ret;
1099 	int slot;
1100 	struct extent_buffer *l;
1101 
1102 	/* FIXME use last free of some kind */
1103 
1104 	/* we don't want to overwrite the superblock on the drive,
1105 	 * so we make sure to start at an offset of at least 1MB
1106 	 */
1107 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1108 
1109 	path = btrfs_alloc_path();
1110 	if (!path)
1111 		return -ENOMEM;
1112 again:
1113 	max_hole_start = search_start;
1114 	max_hole_size = 0;
1115 	hole_size = 0;
1116 
1117 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1118 		ret = -ENOSPC;
1119 		goto out;
1120 	}
1121 
1122 	path->reada = 2;
1123 	path->search_commit_root = 1;
1124 	path->skip_locking = 1;
1125 
1126 	key.objectid = device->devid;
1127 	key.offset = search_start;
1128 	key.type = BTRFS_DEV_EXTENT_KEY;
1129 
1130 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1131 	if (ret < 0)
1132 		goto out;
1133 	if (ret > 0) {
1134 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1135 		if (ret < 0)
1136 			goto out;
1137 	}
1138 
1139 	while (1) {
1140 		l = path->nodes[0];
1141 		slot = path->slots[0];
1142 		if (slot >= btrfs_header_nritems(l)) {
1143 			ret = btrfs_next_leaf(root, path);
1144 			if (ret == 0)
1145 				continue;
1146 			if (ret < 0)
1147 				goto out;
1148 
1149 			break;
1150 		}
1151 		btrfs_item_key_to_cpu(l, &key, slot);
1152 
1153 		if (key.objectid < device->devid)
1154 			goto next;
1155 
1156 		if (key.objectid > device->devid)
1157 			break;
1158 
1159 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1160 			goto next;
1161 
1162 		if (key.offset > search_start) {
1163 			hole_size = key.offset - search_start;
1164 
1165 			/*
1166 			 * Have to check before we set max_hole_start, otherwise
1167 			 * we could end up sending back this offset anyway.
1168 			 */
1169 			if (contains_pending_extent(trans, device,
1170 						    &search_start,
1171 						    hole_size))
1172 				hole_size = 0;
1173 
1174 			if (hole_size > max_hole_size) {
1175 				max_hole_start = search_start;
1176 				max_hole_size = hole_size;
1177 			}
1178 
1179 			/*
1180 			 * If this free space is greater than which we need,
1181 			 * it must be the max free space that we have found
1182 			 * until now, so max_hole_start must point to the start
1183 			 * of this free space and the length of this free space
1184 			 * is stored in max_hole_size. Thus, we return
1185 			 * max_hole_start and max_hole_size and go back to the
1186 			 * caller.
1187 			 */
1188 			if (hole_size >= num_bytes) {
1189 				ret = 0;
1190 				goto out;
1191 			}
1192 		}
1193 
1194 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1195 		extent_end = key.offset + btrfs_dev_extent_length(l,
1196 								  dev_extent);
1197 		if (extent_end > search_start)
1198 			search_start = extent_end;
1199 next:
1200 		path->slots[0]++;
1201 		cond_resched();
1202 	}
1203 
1204 	/*
1205 	 * At this point, search_start should be the end of
1206 	 * allocated dev extents, and when shrinking the device,
1207 	 * search_end may be smaller than search_start.
1208 	 */
1209 	if (search_end > search_start)
1210 		hole_size = search_end - search_start;
1211 
1212 	if (hole_size > max_hole_size) {
1213 		max_hole_start = search_start;
1214 		max_hole_size = hole_size;
1215 	}
1216 
1217 	if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1218 		btrfs_release_path(path);
1219 		goto again;
1220 	}
1221 
1222 	/* See above. */
1223 	if (hole_size < num_bytes)
1224 		ret = -ENOSPC;
1225 	else
1226 		ret = 0;
1227 
1228 out:
1229 	btrfs_free_path(path);
1230 	*start = max_hole_start;
1231 	if (len)
1232 		*len = max_hole_size;
1233 	return ret;
1234 }
1235 
1236 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1237 			  struct btrfs_device *device,
1238 			  u64 start)
1239 {
1240 	int ret;
1241 	struct btrfs_path *path;
1242 	struct btrfs_root *root = device->dev_root;
1243 	struct btrfs_key key;
1244 	struct btrfs_key found_key;
1245 	struct extent_buffer *leaf = NULL;
1246 	struct btrfs_dev_extent *extent = NULL;
1247 
1248 	path = btrfs_alloc_path();
1249 	if (!path)
1250 		return -ENOMEM;
1251 
1252 	key.objectid = device->devid;
1253 	key.offset = start;
1254 	key.type = BTRFS_DEV_EXTENT_KEY;
1255 again:
1256 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1257 	if (ret > 0) {
1258 		ret = btrfs_previous_item(root, path, key.objectid,
1259 					  BTRFS_DEV_EXTENT_KEY);
1260 		if (ret)
1261 			goto out;
1262 		leaf = path->nodes[0];
1263 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1264 		extent = btrfs_item_ptr(leaf, path->slots[0],
1265 					struct btrfs_dev_extent);
1266 		BUG_ON(found_key.offset > start || found_key.offset +
1267 		       btrfs_dev_extent_length(leaf, extent) < start);
1268 		key = found_key;
1269 		btrfs_release_path(path);
1270 		goto again;
1271 	} else if (ret == 0) {
1272 		leaf = path->nodes[0];
1273 		extent = btrfs_item_ptr(leaf, path->slots[0],
1274 					struct btrfs_dev_extent);
1275 	} else {
1276 		btrfs_error(root->fs_info, ret, "Slot search failed");
1277 		goto out;
1278 	}
1279 
1280 	if (device->bytes_used > 0) {
1281 		u64 len = btrfs_dev_extent_length(leaf, extent);
1282 		device->bytes_used -= len;
1283 		spin_lock(&root->fs_info->free_chunk_lock);
1284 		root->fs_info->free_chunk_space += len;
1285 		spin_unlock(&root->fs_info->free_chunk_lock);
1286 	}
1287 	ret = btrfs_del_item(trans, root, path);
1288 	if (ret) {
1289 		btrfs_error(root->fs_info, ret,
1290 			    "Failed to remove dev extent item");
1291 	}
1292 out:
1293 	btrfs_free_path(path);
1294 	return ret;
1295 }
1296 
1297 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1298 				  struct btrfs_device *device,
1299 				  u64 chunk_tree, u64 chunk_objectid,
1300 				  u64 chunk_offset, u64 start, u64 num_bytes)
1301 {
1302 	int ret;
1303 	struct btrfs_path *path;
1304 	struct btrfs_root *root = device->dev_root;
1305 	struct btrfs_dev_extent *extent;
1306 	struct extent_buffer *leaf;
1307 	struct btrfs_key key;
1308 
1309 	WARN_ON(!device->in_fs_metadata);
1310 	WARN_ON(device->is_tgtdev_for_dev_replace);
1311 	path = btrfs_alloc_path();
1312 	if (!path)
1313 		return -ENOMEM;
1314 
1315 	key.objectid = device->devid;
1316 	key.offset = start;
1317 	key.type = BTRFS_DEV_EXTENT_KEY;
1318 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1319 				      sizeof(*extent));
1320 	if (ret)
1321 		goto out;
1322 
1323 	leaf = path->nodes[0];
1324 	extent = btrfs_item_ptr(leaf, path->slots[0],
1325 				struct btrfs_dev_extent);
1326 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1327 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1328 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1329 
1330 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1331 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1332 
1333 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1334 	btrfs_mark_buffer_dirty(leaf);
1335 out:
1336 	btrfs_free_path(path);
1337 	return ret;
1338 }
1339 
1340 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1341 {
1342 	struct extent_map_tree *em_tree;
1343 	struct extent_map *em;
1344 	struct rb_node *n;
1345 	u64 ret = 0;
1346 
1347 	em_tree = &fs_info->mapping_tree.map_tree;
1348 	read_lock(&em_tree->lock);
1349 	n = rb_last(&em_tree->map);
1350 	if (n) {
1351 		em = rb_entry(n, struct extent_map, rb_node);
1352 		ret = em->start + em->len;
1353 	}
1354 	read_unlock(&em_tree->lock);
1355 
1356 	return ret;
1357 }
1358 
1359 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1360 				    u64 *devid_ret)
1361 {
1362 	int ret;
1363 	struct btrfs_key key;
1364 	struct btrfs_key found_key;
1365 	struct btrfs_path *path;
1366 
1367 	path = btrfs_alloc_path();
1368 	if (!path)
1369 		return -ENOMEM;
1370 
1371 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1372 	key.type = BTRFS_DEV_ITEM_KEY;
1373 	key.offset = (u64)-1;
1374 
1375 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1376 	if (ret < 0)
1377 		goto error;
1378 
1379 	BUG_ON(ret == 0); /* Corruption */
1380 
1381 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1382 				  BTRFS_DEV_ITEMS_OBJECTID,
1383 				  BTRFS_DEV_ITEM_KEY);
1384 	if (ret) {
1385 		*devid_ret = 1;
1386 	} else {
1387 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1388 				      path->slots[0]);
1389 		*devid_ret = found_key.offset + 1;
1390 	}
1391 	ret = 0;
1392 error:
1393 	btrfs_free_path(path);
1394 	return ret;
1395 }
1396 
1397 /*
1398  * the device information is stored in the chunk root
1399  * the btrfs_device struct should be fully filled in
1400  */
1401 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1402 			    struct btrfs_root *root,
1403 			    struct btrfs_device *device)
1404 {
1405 	int ret;
1406 	struct btrfs_path *path;
1407 	struct btrfs_dev_item *dev_item;
1408 	struct extent_buffer *leaf;
1409 	struct btrfs_key key;
1410 	unsigned long ptr;
1411 
1412 	root = root->fs_info->chunk_root;
1413 
1414 	path = btrfs_alloc_path();
1415 	if (!path)
1416 		return -ENOMEM;
1417 
1418 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1419 	key.type = BTRFS_DEV_ITEM_KEY;
1420 	key.offset = device->devid;
1421 
1422 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1423 				      sizeof(*dev_item));
1424 	if (ret)
1425 		goto out;
1426 
1427 	leaf = path->nodes[0];
1428 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1429 
1430 	btrfs_set_device_id(leaf, dev_item, device->devid);
1431 	btrfs_set_device_generation(leaf, dev_item, 0);
1432 	btrfs_set_device_type(leaf, dev_item, device->type);
1433 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1434 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1435 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1436 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1437 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1438 	btrfs_set_device_group(leaf, dev_item, 0);
1439 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1440 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1441 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1442 
1443 	ptr = btrfs_device_uuid(dev_item);
1444 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1445 	ptr = btrfs_device_fsid(dev_item);
1446 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1447 	btrfs_mark_buffer_dirty(leaf);
1448 
1449 	ret = 0;
1450 out:
1451 	btrfs_free_path(path);
1452 	return ret;
1453 }
1454 
1455 /*
1456  * Function to update ctime/mtime for a given device path.
1457  * Mainly used for ctime/mtime based probe like libblkid.
1458  */
1459 static void update_dev_time(char *path_name)
1460 {
1461 	struct file *filp;
1462 
1463 	filp = filp_open(path_name, O_RDWR, 0);
1464 	if (!filp)
1465 		return;
1466 	file_update_time(filp);
1467 	filp_close(filp, NULL);
1468 	return;
1469 }
1470 
1471 static int btrfs_rm_dev_item(struct btrfs_root *root,
1472 			     struct btrfs_device *device)
1473 {
1474 	int ret;
1475 	struct btrfs_path *path;
1476 	struct btrfs_key key;
1477 	struct btrfs_trans_handle *trans;
1478 
1479 	root = root->fs_info->chunk_root;
1480 
1481 	path = btrfs_alloc_path();
1482 	if (!path)
1483 		return -ENOMEM;
1484 
1485 	trans = btrfs_start_transaction(root, 0);
1486 	if (IS_ERR(trans)) {
1487 		btrfs_free_path(path);
1488 		return PTR_ERR(trans);
1489 	}
1490 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1491 	key.type = BTRFS_DEV_ITEM_KEY;
1492 	key.offset = device->devid;
1493 	lock_chunks(root);
1494 
1495 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1496 	if (ret < 0)
1497 		goto out;
1498 
1499 	if (ret > 0) {
1500 		ret = -ENOENT;
1501 		goto out;
1502 	}
1503 
1504 	ret = btrfs_del_item(trans, root, path);
1505 	if (ret)
1506 		goto out;
1507 out:
1508 	btrfs_free_path(path);
1509 	unlock_chunks(root);
1510 	btrfs_commit_transaction(trans, root);
1511 	return ret;
1512 }
1513 
1514 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1515 {
1516 	struct btrfs_device *device;
1517 	struct btrfs_device *next_device;
1518 	struct block_device *bdev;
1519 	struct buffer_head *bh = NULL;
1520 	struct btrfs_super_block *disk_super;
1521 	struct btrfs_fs_devices *cur_devices;
1522 	u64 all_avail;
1523 	u64 devid;
1524 	u64 num_devices;
1525 	u8 *dev_uuid;
1526 	unsigned seq;
1527 	int ret = 0;
1528 	bool clear_super = false;
1529 
1530 	mutex_lock(&uuid_mutex);
1531 
1532 	do {
1533 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1534 
1535 		all_avail = root->fs_info->avail_data_alloc_bits |
1536 			    root->fs_info->avail_system_alloc_bits |
1537 			    root->fs_info->avail_metadata_alloc_bits;
1538 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1539 
1540 	num_devices = root->fs_info->fs_devices->num_devices;
1541 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1542 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1543 		WARN_ON(num_devices < 1);
1544 		num_devices--;
1545 	}
1546 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1547 
1548 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1549 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1550 		goto out;
1551 	}
1552 
1553 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1554 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1555 		goto out;
1556 	}
1557 
1558 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1559 	    root->fs_info->fs_devices->rw_devices <= 2) {
1560 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1561 		goto out;
1562 	}
1563 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1564 	    root->fs_info->fs_devices->rw_devices <= 3) {
1565 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1566 		goto out;
1567 	}
1568 
1569 	if (strcmp(device_path, "missing") == 0) {
1570 		struct list_head *devices;
1571 		struct btrfs_device *tmp;
1572 
1573 		device = NULL;
1574 		devices = &root->fs_info->fs_devices->devices;
1575 		/*
1576 		 * It is safe to read the devices since the volume_mutex
1577 		 * is held.
1578 		 */
1579 		list_for_each_entry(tmp, devices, dev_list) {
1580 			if (tmp->in_fs_metadata &&
1581 			    !tmp->is_tgtdev_for_dev_replace &&
1582 			    !tmp->bdev) {
1583 				device = tmp;
1584 				break;
1585 			}
1586 		}
1587 		bdev = NULL;
1588 		bh = NULL;
1589 		disk_super = NULL;
1590 		if (!device) {
1591 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1592 			goto out;
1593 		}
1594 	} else {
1595 		ret = btrfs_get_bdev_and_sb(device_path,
1596 					    FMODE_WRITE | FMODE_EXCL,
1597 					    root->fs_info->bdev_holder, 0,
1598 					    &bdev, &bh);
1599 		if (ret)
1600 			goto out;
1601 		disk_super = (struct btrfs_super_block *)bh->b_data;
1602 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1603 		dev_uuid = disk_super->dev_item.uuid;
1604 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1605 					   disk_super->fsid);
1606 		if (!device) {
1607 			ret = -ENOENT;
1608 			goto error_brelse;
1609 		}
1610 	}
1611 
1612 	if (device->is_tgtdev_for_dev_replace) {
1613 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1614 		goto error_brelse;
1615 	}
1616 
1617 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1618 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1619 		goto error_brelse;
1620 	}
1621 
1622 	if (device->writeable) {
1623 		lock_chunks(root);
1624 		list_del_init(&device->dev_alloc_list);
1625 		unlock_chunks(root);
1626 		root->fs_info->fs_devices->rw_devices--;
1627 		clear_super = true;
1628 	}
1629 
1630 	mutex_unlock(&uuid_mutex);
1631 	ret = btrfs_shrink_device(device, 0);
1632 	mutex_lock(&uuid_mutex);
1633 	if (ret)
1634 		goto error_undo;
1635 
1636 	/*
1637 	 * TODO: the superblock still includes this device in its num_devices
1638 	 * counter although write_all_supers() is not locked out. This
1639 	 * could give a filesystem state which requires a degraded mount.
1640 	 */
1641 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1642 	if (ret)
1643 		goto error_undo;
1644 
1645 	spin_lock(&root->fs_info->free_chunk_lock);
1646 	root->fs_info->free_chunk_space = device->total_bytes -
1647 		device->bytes_used;
1648 	spin_unlock(&root->fs_info->free_chunk_lock);
1649 
1650 	device->in_fs_metadata = 0;
1651 	btrfs_scrub_cancel_dev(root->fs_info, device);
1652 
1653 	/*
1654 	 * the device list mutex makes sure that we don't change
1655 	 * the device list while someone else is writing out all
1656 	 * the device supers. Whoever is writing all supers, should
1657 	 * lock the device list mutex before getting the number of
1658 	 * devices in the super block (super_copy). Conversely,
1659 	 * whoever updates the number of devices in the super block
1660 	 * (super_copy) should hold the device list mutex.
1661 	 */
1662 
1663 	cur_devices = device->fs_devices;
1664 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1665 	list_del_rcu(&device->dev_list);
1666 
1667 	device->fs_devices->num_devices--;
1668 	device->fs_devices->total_devices--;
1669 
1670 	if (device->missing)
1671 		root->fs_info->fs_devices->missing_devices--;
1672 
1673 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1674 				 struct btrfs_device, dev_list);
1675 	if (device->bdev == root->fs_info->sb->s_bdev)
1676 		root->fs_info->sb->s_bdev = next_device->bdev;
1677 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1678 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1679 
1680 	if (device->bdev)
1681 		device->fs_devices->open_devices--;
1682 
1683 	call_rcu(&device->rcu, free_device);
1684 
1685 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1686 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1687 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1688 
1689 	if (cur_devices->open_devices == 0) {
1690 		struct btrfs_fs_devices *fs_devices;
1691 		fs_devices = root->fs_info->fs_devices;
1692 		while (fs_devices) {
1693 			if (fs_devices->seed == cur_devices) {
1694 				fs_devices->seed = cur_devices->seed;
1695 				break;
1696 			}
1697 			fs_devices = fs_devices->seed;
1698 		}
1699 		cur_devices->seed = NULL;
1700 		lock_chunks(root);
1701 		__btrfs_close_devices(cur_devices);
1702 		unlock_chunks(root);
1703 		free_fs_devices(cur_devices);
1704 	}
1705 
1706 	root->fs_info->num_tolerated_disk_barrier_failures =
1707 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1708 
1709 	/*
1710 	 * at this point, the device is zero sized.  We want to
1711 	 * remove it from the devices list and zero out the old super
1712 	 */
1713 	if (clear_super && disk_super) {
1714 		u64 bytenr;
1715 		int i;
1716 
1717 		/* make sure this device isn't detected as part of
1718 		 * the FS anymore
1719 		 */
1720 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1721 		set_buffer_dirty(bh);
1722 		sync_dirty_buffer(bh);
1723 
1724 		/* clear the mirror copies of super block on the disk
1725 		 * being removed, 0th copy is been taken care above and
1726 		 * the below would take of the rest
1727 		 */
1728 		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1729 			bytenr = btrfs_sb_offset(i);
1730 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1731 					i_size_read(bdev->bd_inode))
1732 				break;
1733 
1734 			brelse(bh);
1735 			bh = __bread(bdev, bytenr / 4096,
1736 					BTRFS_SUPER_INFO_SIZE);
1737 			if (!bh)
1738 				continue;
1739 
1740 			disk_super = (struct btrfs_super_block *)bh->b_data;
1741 
1742 			if (btrfs_super_bytenr(disk_super) != bytenr ||
1743 				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1744 				continue;
1745 			}
1746 			memset(&disk_super->magic, 0,
1747 						sizeof(disk_super->magic));
1748 			set_buffer_dirty(bh);
1749 			sync_dirty_buffer(bh);
1750 		}
1751 	}
1752 
1753 	ret = 0;
1754 
1755 	if (bdev) {
1756 		/* Notify udev that device has changed */
1757 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1758 
1759 		/* Update ctime/mtime for device path for libblkid */
1760 		update_dev_time(device_path);
1761 	}
1762 
1763 error_brelse:
1764 	brelse(bh);
1765 	if (bdev)
1766 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1767 out:
1768 	mutex_unlock(&uuid_mutex);
1769 	return ret;
1770 error_undo:
1771 	if (device->writeable) {
1772 		lock_chunks(root);
1773 		list_add(&device->dev_alloc_list,
1774 			 &root->fs_info->fs_devices->alloc_list);
1775 		unlock_chunks(root);
1776 		root->fs_info->fs_devices->rw_devices++;
1777 	}
1778 	goto error_brelse;
1779 }
1780 
1781 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1782 				 struct btrfs_device *srcdev)
1783 {
1784 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1785 
1786 	list_del_rcu(&srcdev->dev_list);
1787 	list_del_rcu(&srcdev->dev_alloc_list);
1788 	fs_info->fs_devices->num_devices--;
1789 	if (srcdev->missing) {
1790 		fs_info->fs_devices->missing_devices--;
1791 		fs_info->fs_devices->rw_devices++;
1792 	}
1793 	if (srcdev->can_discard)
1794 		fs_info->fs_devices->num_can_discard--;
1795 	if (srcdev->bdev) {
1796 		fs_info->fs_devices->open_devices--;
1797 
1798 		/* zero out the old super */
1799 		btrfs_scratch_superblock(srcdev);
1800 	}
1801 
1802 	call_rcu(&srcdev->rcu, free_device);
1803 }
1804 
1805 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1806 				      struct btrfs_device *tgtdev)
1807 {
1808 	struct btrfs_device *next_device;
1809 
1810 	WARN_ON(!tgtdev);
1811 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1812 	if (tgtdev->bdev) {
1813 		btrfs_scratch_superblock(tgtdev);
1814 		fs_info->fs_devices->open_devices--;
1815 	}
1816 	fs_info->fs_devices->num_devices--;
1817 	if (tgtdev->can_discard)
1818 		fs_info->fs_devices->num_can_discard++;
1819 
1820 	next_device = list_entry(fs_info->fs_devices->devices.next,
1821 				 struct btrfs_device, dev_list);
1822 	if (tgtdev->bdev == fs_info->sb->s_bdev)
1823 		fs_info->sb->s_bdev = next_device->bdev;
1824 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1825 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1826 	list_del_rcu(&tgtdev->dev_list);
1827 
1828 	call_rcu(&tgtdev->rcu, free_device);
1829 
1830 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1831 }
1832 
1833 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1834 				     struct btrfs_device **device)
1835 {
1836 	int ret = 0;
1837 	struct btrfs_super_block *disk_super;
1838 	u64 devid;
1839 	u8 *dev_uuid;
1840 	struct block_device *bdev;
1841 	struct buffer_head *bh;
1842 
1843 	*device = NULL;
1844 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1845 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
1846 	if (ret)
1847 		return ret;
1848 	disk_super = (struct btrfs_super_block *)bh->b_data;
1849 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1850 	dev_uuid = disk_super->dev_item.uuid;
1851 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1852 				    disk_super->fsid);
1853 	brelse(bh);
1854 	if (!*device)
1855 		ret = -ENOENT;
1856 	blkdev_put(bdev, FMODE_READ);
1857 	return ret;
1858 }
1859 
1860 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1861 					 char *device_path,
1862 					 struct btrfs_device **device)
1863 {
1864 	*device = NULL;
1865 	if (strcmp(device_path, "missing") == 0) {
1866 		struct list_head *devices;
1867 		struct btrfs_device *tmp;
1868 
1869 		devices = &root->fs_info->fs_devices->devices;
1870 		/*
1871 		 * It is safe to read the devices since the volume_mutex
1872 		 * is held by the caller.
1873 		 */
1874 		list_for_each_entry(tmp, devices, dev_list) {
1875 			if (tmp->in_fs_metadata && !tmp->bdev) {
1876 				*device = tmp;
1877 				break;
1878 			}
1879 		}
1880 
1881 		if (!*device) {
1882 			btrfs_err(root->fs_info, "no missing device found");
1883 			return -ENOENT;
1884 		}
1885 
1886 		return 0;
1887 	} else {
1888 		return btrfs_find_device_by_path(root, device_path, device);
1889 	}
1890 }
1891 
1892 /*
1893  * does all the dirty work required for changing file system's UUID.
1894  */
1895 static int btrfs_prepare_sprout(struct btrfs_root *root)
1896 {
1897 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1898 	struct btrfs_fs_devices *old_devices;
1899 	struct btrfs_fs_devices *seed_devices;
1900 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1901 	struct btrfs_device *device;
1902 	u64 super_flags;
1903 
1904 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1905 	if (!fs_devices->seeding)
1906 		return -EINVAL;
1907 
1908 	seed_devices = __alloc_fs_devices();
1909 	if (IS_ERR(seed_devices))
1910 		return PTR_ERR(seed_devices);
1911 
1912 	old_devices = clone_fs_devices(fs_devices);
1913 	if (IS_ERR(old_devices)) {
1914 		kfree(seed_devices);
1915 		return PTR_ERR(old_devices);
1916 	}
1917 
1918 	list_add(&old_devices->list, &fs_uuids);
1919 
1920 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1921 	seed_devices->opened = 1;
1922 	INIT_LIST_HEAD(&seed_devices->devices);
1923 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1924 	mutex_init(&seed_devices->device_list_mutex);
1925 
1926 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1927 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1928 			      synchronize_rcu);
1929 
1930 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1931 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1932 		device->fs_devices = seed_devices;
1933 	}
1934 
1935 	fs_devices->seeding = 0;
1936 	fs_devices->num_devices = 0;
1937 	fs_devices->open_devices = 0;
1938 	fs_devices->seed = seed_devices;
1939 
1940 	generate_random_uuid(fs_devices->fsid);
1941 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1942 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1943 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1944 
1945 	super_flags = btrfs_super_flags(disk_super) &
1946 		      ~BTRFS_SUPER_FLAG_SEEDING;
1947 	btrfs_set_super_flags(disk_super, super_flags);
1948 
1949 	return 0;
1950 }
1951 
1952 /*
1953  * strore the expected generation for seed devices in device items.
1954  */
1955 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1956 			       struct btrfs_root *root)
1957 {
1958 	struct btrfs_path *path;
1959 	struct extent_buffer *leaf;
1960 	struct btrfs_dev_item *dev_item;
1961 	struct btrfs_device *device;
1962 	struct btrfs_key key;
1963 	u8 fs_uuid[BTRFS_UUID_SIZE];
1964 	u8 dev_uuid[BTRFS_UUID_SIZE];
1965 	u64 devid;
1966 	int ret;
1967 
1968 	path = btrfs_alloc_path();
1969 	if (!path)
1970 		return -ENOMEM;
1971 
1972 	root = root->fs_info->chunk_root;
1973 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1974 	key.offset = 0;
1975 	key.type = BTRFS_DEV_ITEM_KEY;
1976 
1977 	while (1) {
1978 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1979 		if (ret < 0)
1980 			goto error;
1981 
1982 		leaf = path->nodes[0];
1983 next_slot:
1984 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1985 			ret = btrfs_next_leaf(root, path);
1986 			if (ret > 0)
1987 				break;
1988 			if (ret < 0)
1989 				goto error;
1990 			leaf = path->nodes[0];
1991 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1992 			btrfs_release_path(path);
1993 			continue;
1994 		}
1995 
1996 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1997 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1998 		    key.type != BTRFS_DEV_ITEM_KEY)
1999 			break;
2000 
2001 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2002 					  struct btrfs_dev_item);
2003 		devid = btrfs_device_id(leaf, dev_item);
2004 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2005 				   BTRFS_UUID_SIZE);
2006 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2007 				   BTRFS_UUID_SIZE);
2008 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2009 					   fs_uuid);
2010 		BUG_ON(!device); /* Logic error */
2011 
2012 		if (device->fs_devices->seeding) {
2013 			btrfs_set_device_generation(leaf, dev_item,
2014 						    device->generation);
2015 			btrfs_mark_buffer_dirty(leaf);
2016 		}
2017 
2018 		path->slots[0]++;
2019 		goto next_slot;
2020 	}
2021 	ret = 0;
2022 error:
2023 	btrfs_free_path(path);
2024 	return ret;
2025 }
2026 
2027 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2028 {
2029 	struct request_queue *q;
2030 	struct btrfs_trans_handle *trans;
2031 	struct btrfs_device *device;
2032 	struct block_device *bdev;
2033 	struct list_head *devices;
2034 	struct super_block *sb = root->fs_info->sb;
2035 	struct rcu_string *name;
2036 	u64 total_bytes;
2037 	int seeding_dev = 0;
2038 	int ret = 0;
2039 
2040 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2041 		return -EROFS;
2042 
2043 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2044 				  root->fs_info->bdev_holder);
2045 	if (IS_ERR(bdev))
2046 		return PTR_ERR(bdev);
2047 
2048 	if (root->fs_info->fs_devices->seeding) {
2049 		seeding_dev = 1;
2050 		down_write(&sb->s_umount);
2051 		mutex_lock(&uuid_mutex);
2052 	}
2053 
2054 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2055 
2056 	devices = &root->fs_info->fs_devices->devices;
2057 
2058 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2059 	list_for_each_entry(device, devices, dev_list) {
2060 		if (device->bdev == bdev) {
2061 			ret = -EEXIST;
2062 			mutex_unlock(
2063 				&root->fs_info->fs_devices->device_list_mutex);
2064 			goto error;
2065 		}
2066 	}
2067 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2068 
2069 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2070 	if (IS_ERR(device)) {
2071 		/* we can safely leave the fs_devices entry around */
2072 		ret = PTR_ERR(device);
2073 		goto error;
2074 	}
2075 
2076 	name = rcu_string_strdup(device_path, GFP_NOFS);
2077 	if (!name) {
2078 		kfree(device);
2079 		ret = -ENOMEM;
2080 		goto error;
2081 	}
2082 	rcu_assign_pointer(device->name, name);
2083 
2084 	trans = btrfs_start_transaction(root, 0);
2085 	if (IS_ERR(trans)) {
2086 		rcu_string_free(device->name);
2087 		kfree(device);
2088 		ret = PTR_ERR(trans);
2089 		goto error;
2090 	}
2091 
2092 	lock_chunks(root);
2093 
2094 	q = bdev_get_queue(bdev);
2095 	if (blk_queue_discard(q))
2096 		device->can_discard = 1;
2097 	device->writeable = 1;
2098 	device->generation = trans->transid;
2099 	device->io_width = root->sectorsize;
2100 	device->io_align = root->sectorsize;
2101 	device->sector_size = root->sectorsize;
2102 	device->total_bytes = i_size_read(bdev->bd_inode);
2103 	device->disk_total_bytes = device->total_bytes;
2104 	device->dev_root = root->fs_info->dev_root;
2105 	device->bdev = bdev;
2106 	device->in_fs_metadata = 1;
2107 	device->is_tgtdev_for_dev_replace = 0;
2108 	device->mode = FMODE_EXCL;
2109 	device->dev_stats_valid = 1;
2110 	set_blocksize(device->bdev, 4096);
2111 
2112 	if (seeding_dev) {
2113 		sb->s_flags &= ~MS_RDONLY;
2114 		ret = btrfs_prepare_sprout(root);
2115 		BUG_ON(ret); /* -ENOMEM */
2116 	}
2117 
2118 	device->fs_devices = root->fs_info->fs_devices;
2119 
2120 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2121 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2122 	list_add(&device->dev_alloc_list,
2123 		 &root->fs_info->fs_devices->alloc_list);
2124 	root->fs_info->fs_devices->num_devices++;
2125 	root->fs_info->fs_devices->open_devices++;
2126 	root->fs_info->fs_devices->rw_devices++;
2127 	root->fs_info->fs_devices->total_devices++;
2128 	if (device->can_discard)
2129 		root->fs_info->fs_devices->num_can_discard++;
2130 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2131 
2132 	spin_lock(&root->fs_info->free_chunk_lock);
2133 	root->fs_info->free_chunk_space += device->total_bytes;
2134 	spin_unlock(&root->fs_info->free_chunk_lock);
2135 
2136 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2137 		root->fs_info->fs_devices->rotating = 1;
2138 
2139 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2140 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2141 				    total_bytes + device->total_bytes);
2142 
2143 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2144 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2145 				    total_bytes + 1);
2146 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2147 
2148 	if (seeding_dev) {
2149 		ret = init_first_rw_device(trans, root, device);
2150 		if (ret) {
2151 			btrfs_abort_transaction(trans, root, ret);
2152 			goto error_trans;
2153 		}
2154 		ret = btrfs_finish_sprout(trans, root);
2155 		if (ret) {
2156 			btrfs_abort_transaction(trans, root, ret);
2157 			goto error_trans;
2158 		}
2159 	} else {
2160 		ret = btrfs_add_device(trans, root, device);
2161 		if (ret) {
2162 			btrfs_abort_transaction(trans, root, ret);
2163 			goto error_trans;
2164 		}
2165 	}
2166 
2167 	/*
2168 	 * we've got more storage, clear any full flags on the space
2169 	 * infos
2170 	 */
2171 	btrfs_clear_space_info_full(root->fs_info);
2172 
2173 	unlock_chunks(root);
2174 	root->fs_info->num_tolerated_disk_barrier_failures =
2175 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2176 	ret = btrfs_commit_transaction(trans, root);
2177 
2178 	if (seeding_dev) {
2179 		mutex_unlock(&uuid_mutex);
2180 		up_write(&sb->s_umount);
2181 
2182 		if (ret) /* transaction commit */
2183 			return ret;
2184 
2185 		ret = btrfs_relocate_sys_chunks(root);
2186 		if (ret < 0)
2187 			btrfs_error(root->fs_info, ret,
2188 				    "Failed to relocate sys chunks after "
2189 				    "device initialization. This can be fixed "
2190 				    "using the \"btrfs balance\" command.");
2191 		trans = btrfs_attach_transaction(root);
2192 		if (IS_ERR(trans)) {
2193 			if (PTR_ERR(trans) == -ENOENT)
2194 				return 0;
2195 			return PTR_ERR(trans);
2196 		}
2197 		ret = btrfs_commit_transaction(trans, root);
2198 	}
2199 
2200 	/* Update ctime/mtime for libblkid */
2201 	update_dev_time(device_path);
2202 	return ret;
2203 
2204 error_trans:
2205 	unlock_chunks(root);
2206 	btrfs_end_transaction(trans, root);
2207 	rcu_string_free(device->name);
2208 	kfree(device);
2209 error:
2210 	blkdev_put(bdev, FMODE_EXCL);
2211 	if (seeding_dev) {
2212 		mutex_unlock(&uuid_mutex);
2213 		up_write(&sb->s_umount);
2214 	}
2215 	return ret;
2216 }
2217 
2218 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2219 				  struct btrfs_device **device_out)
2220 {
2221 	struct request_queue *q;
2222 	struct btrfs_device *device;
2223 	struct block_device *bdev;
2224 	struct btrfs_fs_info *fs_info = root->fs_info;
2225 	struct list_head *devices;
2226 	struct rcu_string *name;
2227 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2228 	int ret = 0;
2229 
2230 	*device_out = NULL;
2231 	if (fs_info->fs_devices->seeding)
2232 		return -EINVAL;
2233 
2234 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2235 				  fs_info->bdev_holder);
2236 	if (IS_ERR(bdev))
2237 		return PTR_ERR(bdev);
2238 
2239 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2240 
2241 	devices = &fs_info->fs_devices->devices;
2242 	list_for_each_entry(device, devices, dev_list) {
2243 		if (device->bdev == bdev) {
2244 			ret = -EEXIST;
2245 			goto error;
2246 		}
2247 	}
2248 
2249 	device = btrfs_alloc_device(NULL, &devid, NULL);
2250 	if (IS_ERR(device)) {
2251 		ret = PTR_ERR(device);
2252 		goto error;
2253 	}
2254 
2255 	name = rcu_string_strdup(device_path, GFP_NOFS);
2256 	if (!name) {
2257 		kfree(device);
2258 		ret = -ENOMEM;
2259 		goto error;
2260 	}
2261 	rcu_assign_pointer(device->name, name);
2262 
2263 	q = bdev_get_queue(bdev);
2264 	if (blk_queue_discard(q))
2265 		device->can_discard = 1;
2266 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2267 	device->writeable = 1;
2268 	device->generation = 0;
2269 	device->io_width = root->sectorsize;
2270 	device->io_align = root->sectorsize;
2271 	device->sector_size = root->sectorsize;
2272 	device->total_bytes = i_size_read(bdev->bd_inode);
2273 	device->disk_total_bytes = device->total_bytes;
2274 	device->dev_root = fs_info->dev_root;
2275 	device->bdev = bdev;
2276 	device->in_fs_metadata = 1;
2277 	device->is_tgtdev_for_dev_replace = 1;
2278 	device->mode = FMODE_EXCL;
2279 	device->dev_stats_valid = 1;
2280 	set_blocksize(device->bdev, 4096);
2281 	device->fs_devices = fs_info->fs_devices;
2282 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2283 	fs_info->fs_devices->num_devices++;
2284 	fs_info->fs_devices->open_devices++;
2285 	if (device->can_discard)
2286 		fs_info->fs_devices->num_can_discard++;
2287 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2288 
2289 	*device_out = device;
2290 	return ret;
2291 
2292 error:
2293 	blkdev_put(bdev, FMODE_EXCL);
2294 	return ret;
2295 }
2296 
2297 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2298 					      struct btrfs_device *tgtdev)
2299 {
2300 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2301 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2302 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2303 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2304 	tgtdev->dev_root = fs_info->dev_root;
2305 	tgtdev->in_fs_metadata = 1;
2306 }
2307 
2308 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2309 					struct btrfs_device *device)
2310 {
2311 	int ret;
2312 	struct btrfs_path *path;
2313 	struct btrfs_root *root;
2314 	struct btrfs_dev_item *dev_item;
2315 	struct extent_buffer *leaf;
2316 	struct btrfs_key key;
2317 
2318 	root = device->dev_root->fs_info->chunk_root;
2319 
2320 	path = btrfs_alloc_path();
2321 	if (!path)
2322 		return -ENOMEM;
2323 
2324 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2325 	key.type = BTRFS_DEV_ITEM_KEY;
2326 	key.offset = device->devid;
2327 
2328 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2329 	if (ret < 0)
2330 		goto out;
2331 
2332 	if (ret > 0) {
2333 		ret = -ENOENT;
2334 		goto out;
2335 	}
2336 
2337 	leaf = path->nodes[0];
2338 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2339 
2340 	btrfs_set_device_id(leaf, dev_item, device->devid);
2341 	btrfs_set_device_type(leaf, dev_item, device->type);
2342 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2343 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2344 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2345 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2346 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2347 	btrfs_mark_buffer_dirty(leaf);
2348 
2349 out:
2350 	btrfs_free_path(path);
2351 	return ret;
2352 }
2353 
2354 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2355 		      struct btrfs_device *device, u64 new_size)
2356 {
2357 	struct btrfs_super_block *super_copy =
2358 		device->dev_root->fs_info->super_copy;
2359 	u64 old_total = btrfs_super_total_bytes(super_copy);
2360 	u64 diff = new_size - device->total_bytes;
2361 
2362 	if (!device->writeable)
2363 		return -EACCES;
2364 	if (new_size <= device->total_bytes ||
2365 	    device->is_tgtdev_for_dev_replace)
2366 		return -EINVAL;
2367 
2368 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2369 	device->fs_devices->total_rw_bytes += diff;
2370 
2371 	device->total_bytes = new_size;
2372 	device->disk_total_bytes = new_size;
2373 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2374 
2375 	return btrfs_update_device(trans, device);
2376 }
2377 
2378 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2379 		      struct btrfs_device *device, u64 new_size)
2380 {
2381 	int ret;
2382 	lock_chunks(device->dev_root);
2383 	ret = __btrfs_grow_device(trans, device, new_size);
2384 	unlock_chunks(device->dev_root);
2385 	return ret;
2386 }
2387 
2388 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2389 			    struct btrfs_root *root,
2390 			    u64 chunk_tree, u64 chunk_objectid,
2391 			    u64 chunk_offset)
2392 {
2393 	int ret;
2394 	struct btrfs_path *path;
2395 	struct btrfs_key key;
2396 
2397 	root = root->fs_info->chunk_root;
2398 	path = btrfs_alloc_path();
2399 	if (!path)
2400 		return -ENOMEM;
2401 
2402 	key.objectid = chunk_objectid;
2403 	key.offset = chunk_offset;
2404 	key.type = BTRFS_CHUNK_ITEM_KEY;
2405 
2406 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2407 	if (ret < 0)
2408 		goto out;
2409 	else if (ret > 0) { /* Logic error or corruption */
2410 		btrfs_error(root->fs_info, -ENOENT,
2411 			    "Failed lookup while freeing chunk.");
2412 		ret = -ENOENT;
2413 		goto out;
2414 	}
2415 
2416 	ret = btrfs_del_item(trans, root, path);
2417 	if (ret < 0)
2418 		btrfs_error(root->fs_info, ret,
2419 			    "Failed to delete chunk item.");
2420 out:
2421 	btrfs_free_path(path);
2422 	return ret;
2423 }
2424 
2425 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2426 			chunk_offset)
2427 {
2428 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2429 	struct btrfs_disk_key *disk_key;
2430 	struct btrfs_chunk *chunk;
2431 	u8 *ptr;
2432 	int ret = 0;
2433 	u32 num_stripes;
2434 	u32 array_size;
2435 	u32 len = 0;
2436 	u32 cur;
2437 	struct btrfs_key key;
2438 
2439 	array_size = btrfs_super_sys_array_size(super_copy);
2440 
2441 	ptr = super_copy->sys_chunk_array;
2442 	cur = 0;
2443 
2444 	while (cur < array_size) {
2445 		disk_key = (struct btrfs_disk_key *)ptr;
2446 		btrfs_disk_key_to_cpu(&key, disk_key);
2447 
2448 		len = sizeof(*disk_key);
2449 
2450 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2451 			chunk = (struct btrfs_chunk *)(ptr + len);
2452 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2453 			len += btrfs_chunk_item_size(num_stripes);
2454 		} else {
2455 			ret = -EIO;
2456 			break;
2457 		}
2458 		if (key.objectid == chunk_objectid &&
2459 		    key.offset == chunk_offset) {
2460 			memmove(ptr, ptr + len, array_size - (cur + len));
2461 			array_size -= len;
2462 			btrfs_set_super_sys_array_size(super_copy, array_size);
2463 		} else {
2464 			ptr += len;
2465 			cur += len;
2466 		}
2467 	}
2468 	return ret;
2469 }
2470 
2471 static int btrfs_relocate_chunk(struct btrfs_root *root,
2472 			 u64 chunk_tree, u64 chunk_objectid,
2473 			 u64 chunk_offset)
2474 {
2475 	struct extent_map_tree *em_tree;
2476 	struct btrfs_root *extent_root;
2477 	struct btrfs_trans_handle *trans;
2478 	struct extent_map *em;
2479 	struct map_lookup *map;
2480 	int ret;
2481 	int i;
2482 
2483 	root = root->fs_info->chunk_root;
2484 	extent_root = root->fs_info->extent_root;
2485 	em_tree = &root->fs_info->mapping_tree.map_tree;
2486 
2487 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2488 	if (ret)
2489 		return -ENOSPC;
2490 
2491 	/* step one, relocate all the extents inside this chunk */
2492 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2493 	if (ret)
2494 		return ret;
2495 
2496 	trans = btrfs_start_transaction(root, 0);
2497 	if (IS_ERR(trans)) {
2498 		ret = PTR_ERR(trans);
2499 		btrfs_std_error(root->fs_info, ret);
2500 		return ret;
2501 	}
2502 
2503 	lock_chunks(root);
2504 
2505 	/*
2506 	 * step two, delete the device extents and the
2507 	 * chunk tree entries
2508 	 */
2509 	read_lock(&em_tree->lock);
2510 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2511 	read_unlock(&em_tree->lock);
2512 
2513 	BUG_ON(!em || em->start > chunk_offset ||
2514 	       em->start + em->len < chunk_offset);
2515 	map = (struct map_lookup *)em->bdev;
2516 
2517 	for (i = 0; i < map->num_stripes; i++) {
2518 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2519 					    map->stripes[i].physical);
2520 		BUG_ON(ret);
2521 
2522 		if (map->stripes[i].dev) {
2523 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2524 			BUG_ON(ret);
2525 		}
2526 	}
2527 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2528 			       chunk_offset);
2529 
2530 	BUG_ON(ret);
2531 
2532 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2533 
2534 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2535 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2536 		BUG_ON(ret);
2537 	}
2538 
2539 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2540 	BUG_ON(ret);
2541 
2542 	write_lock(&em_tree->lock);
2543 	remove_extent_mapping(em_tree, em);
2544 	write_unlock(&em_tree->lock);
2545 
2546 	/* once for the tree */
2547 	free_extent_map(em);
2548 	/* once for us */
2549 	free_extent_map(em);
2550 
2551 	unlock_chunks(root);
2552 	btrfs_end_transaction(trans, root);
2553 	return 0;
2554 }
2555 
2556 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2557 {
2558 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2559 	struct btrfs_path *path;
2560 	struct extent_buffer *leaf;
2561 	struct btrfs_chunk *chunk;
2562 	struct btrfs_key key;
2563 	struct btrfs_key found_key;
2564 	u64 chunk_tree = chunk_root->root_key.objectid;
2565 	u64 chunk_type;
2566 	bool retried = false;
2567 	int failed = 0;
2568 	int ret;
2569 
2570 	path = btrfs_alloc_path();
2571 	if (!path)
2572 		return -ENOMEM;
2573 
2574 again:
2575 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2576 	key.offset = (u64)-1;
2577 	key.type = BTRFS_CHUNK_ITEM_KEY;
2578 
2579 	while (1) {
2580 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2581 		if (ret < 0)
2582 			goto error;
2583 		BUG_ON(ret == 0); /* Corruption */
2584 
2585 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2586 					  key.type);
2587 		if (ret < 0)
2588 			goto error;
2589 		if (ret > 0)
2590 			break;
2591 
2592 		leaf = path->nodes[0];
2593 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2594 
2595 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2596 				       struct btrfs_chunk);
2597 		chunk_type = btrfs_chunk_type(leaf, chunk);
2598 		btrfs_release_path(path);
2599 
2600 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2601 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2602 						   found_key.objectid,
2603 						   found_key.offset);
2604 			if (ret == -ENOSPC)
2605 				failed++;
2606 			else if (ret)
2607 				BUG();
2608 		}
2609 
2610 		if (found_key.offset == 0)
2611 			break;
2612 		key.offset = found_key.offset - 1;
2613 	}
2614 	ret = 0;
2615 	if (failed && !retried) {
2616 		failed = 0;
2617 		retried = true;
2618 		goto again;
2619 	} else if (WARN_ON(failed && retried)) {
2620 		ret = -ENOSPC;
2621 	}
2622 error:
2623 	btrfs_free_path(path);
2624 	return ret;
2625 }
2626 
2627 static int insert_balance_item(struct btrfs_root *root,
2628 			       struct btrfs_balance_control *bctl)
2629 {
2630 	struct btrfs_trans_handle *trans;
2631 	struct btrfs_balance_item *item;
2632 	struct btrfs_disk_balance_args disk_bargs;
2633 	struct btrfs_path *path;
2634 	struct extent_buffer *leaf;
2635 	struct btrfs_key key;
2636 	int ret, err;
2637 
2638 	path = btrfs_alloc_path();
2639 	if (!path)
2640 		return -ENOMEM;
2641 
2642 	trans = btrfs_start_transaction(root, 0);
2643 	if (IS_ERR(trans)) {
2644 		btrfs_free_path(path);
2645 		return PTR_ERR(trans);
2646 	}
2647 
2648 	key.objectid = BTRFS_BALANCE_OBJECTID;
2649 	key.type = BTRFS_BALANCE_ITEM_KEY;
2650 	key.offset = 0;
2651 
2652 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2653 				      sizeof(*item));
2654 	if (ret)
2655 		goto out;
2656 
2657 	leaf = path->nodes[0];
2658 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2659 
2660 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2661 
2662 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2663 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2664 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2665 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2666 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2667 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2668 
2669 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2670 
2671 	btrfs_mark_buffer_dirty(leaf);
2672 out:
2673 	btrfs_free_path(path);
2674 	err = btrfs_commit_transaction(trans, root);
2675 	if (err && !ret)
2676 		ret = err;
2677 	return ret;
2678 }
2679 
2680 static int del_balance_item(struct btrfs_root *root)
2681 {
2682 	struct btrfs_trans_handle *trans;
2683 	struct btrfs_path *path;
2684 	struct btrfs_key key;
2685 	int ret, err;
2686 
2687 	path = btrfs_alloc_path();
2688 	if (!path)
2689 		return -ENOMEM;
2690 
2691 	trans = btrfs_start_transaction(root, 0);
2692 	if (IS_ERR(trans)) {
2693 		btrfs_free_path(path);
2694 		return PTR_ERR(trans);
2695 	}
2696 
2697 	key.objectid = BTRFS_BALANCE_OBJECTID;
2698 	key.type = BTRFS_BALANCE_ITEM_KEY;
2699 	key.offset = 0;
2700 
2701 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2702 	if (ret < 0)
2703 		goto out;
2704 	if (ret > 0) {
2705 		ret = -ENOENT;
2706 		goto out;
2707 	}
2708 
2709 	ret = btrfs_del_item(trans, root, path);
2710 out:
2711 	btrfs_free_path(path);
2712 	err = btrfs_commit_transaction(trans, root);
2713 	if (err && !ret)
2714 		ret = err;
2715 	return ret;
2716 }
2717 
2718 /*
2719  * This is a heuristic used to reduce the number of chunks balanced on
2720  * resume after balance was interrupted.
2721  */
2722 static void update_balance_args(struct btrfs_balance_control *bctl)
2723 {
2724 	/*
2725 	 * Turn on soft mode for chunk types that were being converted.
2726 	 */
2727 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2728 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2729 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2730 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2731 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2732 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2733 
2734 	/*
2735 	 * Turn on usage filter if is not already used.  The idea is
2736 	 * that chunks that we have already balanced should be
2737 	 * reasonably full.  Don't do it for chunks that are being
2738 	 * converted - that will keep us from relocating unconverted
2739 	 * (albeit full) chunks.
2740 	 */
2741 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2742 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2743 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2744 		bctl->data.usage = 90;
2745 	}
2746 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2747 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2748 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2749 		bctl->sys.usage = 90;
2750 	}
2751 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2752 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2753 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2754 		bctl->meta.usage = 90;
2755 	}
2756 }
2757 
2758 /*
2759  * Should be called with both balance and volume mutexes held to
2760  * serialize other volume operations (add_dev/rm_dev/resize) with
2761  * restriper.  Same goes for unset_balance_control.
2762  */
2763 static void set_balance_control(struct btrfs_balance_control *bctl)
2764 {
2765 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2766 
2767 	BUG_ON(fs_info->balance_ctl);
2768 
2769 	spin_lock(&fs_info->balance_lock);
2770 	fs_info->balance_ctl = bctl;
2771 	spin_unlock(&fs_info->balance_lock);
2772 }
2773 
2774 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2775 {
2776 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2777 
2778 	BUG_ON(!fs_info->balance_ctl);
2779 
2780 	spin_lock(&fs_info->balance_lock);
2781 	fs_info->balance_ctl = NULL;
2782 	spin_unlock(&fs_info->balance_lock);
2783 
2784 	kfree(bctl);
2785 }
2786 
2787 /*
2788  * Balance filters.  Return 1 if chunk should be filtered out
2789  * (should not be balanced).
2790  */
2791 static int chunk_profiles_filter(u64 chunk_type,
2792 				 struct btrfs_balance_args *bargs)
2793 {
2794 	chunk_type = chunk_to_extended(chunk_type) &
2795 				BTRFS_EXTENDED_PROFILE_MASK;
2796 
2797 	if (bargs->profiles & chunk_type)
2798 		return 0;
2799 
2800 	return 1;
2801 }
2802 
2803 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2804 			      struct btrfs_balance_args *bargs)
2805 {
2806 	struct btrfs_block_group_cache *cache;
2807 	u64 chunk_used, user_thresh;
2808 	int ret = 1;
2809 
2810 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2811 	chunk_used = btrfs_block_group_used(&cache->item);
2812 
2813 	if (bargs->usage == 0)
2814 		user_thresh = 1;
2815 	else if (bargs->usage > 100)
2816 		user_thresh = cache->key.offset;
2817 	else
2818 		user_thresh = div_factor_fine(cache->key.offset,
2819 					      bargs->usage);
2820 
2821 	if (chunk_used < user_thresh)
2822 		ret = 0;
2823 
2824 	btrfs_put_block_group(cache);
2825 	return ret;
2826 }
2827 
2828 static int chunk_devid_filter(struct extent_buffer *leaf,
2829 			      struct btrfs_chunk *chunk,
2830 			      struct btrfs_balance_args *bargs)
2831 {
2832 	struct btrfs_stripe *stripe;
2833 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2834 	int i;
2835 
2836 	for (i = 0; i < num_stripes; i++) {
2837 		stripe = btrfs_stripe_nr(chunk, i);
2838 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2839 			return 0;
2840 	}
2841 
2842 	return 1;
2843 }
2844 
2845 /* [pstart, pend) */
2846 static int chunk_drange_filter(struct extent_buffer *leaf,
2847 			       struct btrfs_chunk *chunk,
2848 			       u64 chunk_offset,
2849 			       struct btrfs_balance_args *bargs)
2850 {
2851 	struct btrfs_stripe *stripe;
2852 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2853 	u64 stripe_offset;
2854 	u64 stripe_length;
2855 	int factor;
2856 	int i;
2857 
2858 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2859 		return 0;
2860 
2861 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2862 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2863 		factor = num_stripes / 2;
2864 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2865 		factor = num_stripes - 1;
2866 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2867 		factor = num_stripes - 2;
2868 	} else {
2869 		factor = num_stripes;
2870 	}
2871 
2872 	for (i = 0; i < num_stripes; i++) {
2873 		stripe = btrfs_stripe_nr(chunk, i);
2874 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2875 			continue;
2876 
2877 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
2878 		stripe_length = btrfs_chunk_length(leaf, chunk);
2879 		do_div(stripe_length, factor);
2880 
2881 		if (stripe_offset < bargs->pend &&
2882 		    stripe_offset + stripe_length > bargs->pstart)
2883 			return 0;
2884 	}
2885 
2886 	return 1;
2887 }
2888 
2889 /* [vstart, vend) */
2890 static int chunk_vrange_filter(struct extent_buffer *leaf,
2891 			       struct btrfs_chunk *chunk,
2892 			       u64 chunk_offset,
2893 			       struct btrfs_balance_args *bargs)
2894 {
2895 	if (chunk_offset < bargs->vend &&
2896 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2897 		/* at least part of the chunk is inside this vrange */
2898 		return 0;
2899 
2900 	return 1;
2901 }
2902 
2903 static int chunk_soft_convert_filter(u64 chunk_type,
2904 				     struct btrfs_balance_args *bargs)
2905 {
2906 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2907 		return 0;
2908 
2909 	chunk_type = chunk_to_extended(chunk_type) &
2910 				BTRFS_EXTENDED_PROFILE_MASK;
2911 
2912 	if (bargs->target == chunk_type)
2913 		return 1;
2914 
2915 	return 0;
2916 }
2917 
2918 static int should_balance_chunk(struct btrfs_root *root,
2919 				struct extent_buffer *leaf,
2920 				struct btrfs_chunk *chunk, u64 chunk_offset)
2921 {
2922 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2923 	struct btrfs_balance_args *bargs = NULL;
2924 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2925 
2926 	/* type filter */
2927 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2928 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2929 		return 0;
2930 	}
2931 
2932 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2933 		bargs = &bctl->data;
2934 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2935 		bargs = &bctl->sys;
2936 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2937 		bargs = &bctl->meta;
2938 
2939 	/* profiles filter */
2940 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2941 	    chunk_profiles_filter(chunk_type, bargs)) {
2942 		return 0;
2943 	}
2944 
2945 	/* usage filter */
2946 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2947 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2948 		return 0;
2949 	}
2950 
2951 	/* devid filter */
2952 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2953 	    chunk_devid_filter(leaf, chunk, bargs)) {
2954 		return 0;
2955 	}
2956 
2957 	/* drange filter, makes sense only with devid filter */
2958 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2959 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2960 		return 0;
2961 	}
2962 
2963 	/* vrange filter */
2964 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2965 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2966 		return 0;
2967 	}
2968 
2969 	/* soft profile changing mode */
2970 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2971 	    chunk_soft_convert_filter(chunk_type, bargs)) {
2972 		return 0;
2973 	}
2974 
2975 	/*
2976 	 * limited by count, must be the last filter
2977 	 */
2978 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
2979 		if (bargs->limit == 0)
2980 			return 0;
2981 		else
2982 			bargs->limit--;
2983 	}
2984 
2985 	return 1;
2986 }
2987 
2988 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2989 {
2990 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2991 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2992 	struct btrfs_root *dev_root = fs_info->dev_root;
2993 	struct list_head *devices;
2994 	struct btrfs_device *device;
2995 	u64 old_size;
2996 	u64 size_to_free;
2997 	struct btrfs_chunk *chunk;
2998 	struct btrfs_path *path;
2999 	struct btrfs_key key;
3000 	struct btrfs_key found_key;
3001 	struct btrfs_trans_handle *trans;
3002 	struct extent_buffer *leaf;
3003 	int slot;
3004 	int ret;
3005 	int enospc_errors = 0;
3006 	bool counting = true;
3007 	u64 limit_data = bctl->data.limit;
3008 	u64 limit_meta = bctl->meta.limit;
3009 	u64 limit_sys = bctl->sys.limit;
3010 
3011 	/* step one make some room on all the devices */
3012 	devices = &fs_info->fs_devices->devices;
3013 	list_for_each_entry(device, devices, dev_list) {
3014 		old_size = device->total_bytes;
3015 		size_to_free = div_factor(old_size, 1);
3016 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3017 		if (!device->writeable ||
3018 		    device->total_bytes - device->bytes_used > size_to_free ||
3019 		    device->is_tgtdev_for_dev_replace)
3020 			continue;
3021 
3022 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3023 		if (ret == -ENOSPC)
3024 			break;
3025 		BUG_ON(ret);
3026 
3027 		trans = btrfs_start_transaction(dev_root, 0);
3028 		BUG_ON(IS_ERR(trans));
3029 
3030 		ret = btrfs_grow_device(trans, device, old_size);
3031 		BUG_ON(ret);
3032 
3033 		btrfs_end_transaction(trans, dev_root);
3034 	}
3035 
3036 	/* step two, relocate all the chunks */
3037 	path = btrfs_alloc_path();
3038 	if (!path) {
3039 		ret = -ENOMEM;
3040 		goto error;
3041 	}
3042 
3043 	/* zero out stat counters */
3044 	spin_lock(&fs_info->balance_lock);
3045 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3046 	spin_unlock(&fs_info->balance_lock);
3047 again:
3048 	if (!counting) {
3049 		bctl->data.limit = limit_data;
3050 		bctl->meta.limit = limit_meta;
3051 		bctl->sys.limit = limit_sys;
3052 	}
3053 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3054 	key.offset = (u64)-1;
3055 	key.type = BTRFS_CHUNK_ITEM_KEY;
3056 
3057 	while (1) {
3058 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3059 		    atomic_read(&fs_info->balance_cancel_req)) {
3060 			ret = -ECANCELED;
3061 			goto error;
3062 		}
3063 
3064 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3065 		if (ret < 0)
3066 			goto error;
3067 
3068 		/*
3069 		 * this shouldn't happen, it means the last relocate
3070 		 * failed
3071 		 */
3072 		if (ret == 0)
3073 			BUG(); /* FIXME break ? */
3074 
3075 		ret = btrfs_previous_item(chunk_root, path, 0,
3076 					  BTRFS_CHUNK_ITEM_KEY);
3077 		if (ret) {
3078 			ret = 0;
3079 			break;
3080 		}
3081 
3082 		leaf = path->nodes[0];
3083 		slot = path->slots[0];
3084 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3085 
3086 		if (found_key.objectid != key.objectid)
3087 			break;
3088 
3089 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3090 
3091 		if (!counting) {
3092 			spin_lock(&fs_info->balance_lock);
3093 			bctl->stat.considered++;
3094 			spin_unlock(&fs_info->balance_lock);
3095 		}
3096 
3097 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3098 					   found_key.offset);
3099 		btrfs_release_path(path);
3100 		if (!ret)
3101 			goto loop;
3102 
3103 		if (counting) {
3104 			spin_lock(&fs_info->balance_lock);
3105 			bctl->stat.expected++;
3106 			spin_unlock(&fs_info->balance_lock);
3107 			goto loop;
3108 		}
3109 
3110 		ret = btrfs_relocate_chunk(chunk_root,
3111 					   chunk_root->root_key.objectid,
3112 					   found_key.objectid,
3113 					   found_key.offset);
3114 		if (ret && ret != -ENOSPC)
3115 			goto error;
3116 		if (ret == -ENOSPC) {
3117 			enospc_errors++;
3118 		} else {
3119 			spin_lock(&fs_info->balance_lock);
3120 			bctl->stat.completed++;
3121 			spin_unlock(&fs_info->balance_lock);
3122 		}
3123 loop:
3124 		if (found_key.offset == 0)
3125 			break;
3126 		key.offset = found_key.offset - 1;
3127 	}
3128 
3129 	if (counting) {
3130 		btrfs_release_path(path);
3131 		counting = false;
3132 		goto again;
3133 	}
3134 error:
3135 	btrfs_free_path(path);
3136 	if (enospc_errors) {
3137 		btrfs_info(fs_info, "%d enospc errors during balance",
3138 		       enospc_errors);
3139 		if (!ret)
3140 			ret = -ENOSPC;
3141 	}
3142 
3143 	return ret;
3144 }
3145 
3146 /**
3147  * alloc_profile_is_valid - see if a given profile is valid and reduced
3148  * @flags: profile to validate
3149  * @extended: if true @flags is treated as an extended profile
3150  */
3151 static int alloc_profile_is_valid(u64 flags, int extended)
3152 {
3153 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3154 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3155 
3156 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3157 
3158 	/* 1) check that all other bits are zeroed */
3159 	if (flags & ~mask)
3160 		return 0;
3161 
3162 	/* 2) see if profile is reduced */
3163 	if (flags == 0)
3164 		return !extended; /* "0" is valid for usual profiles */
3165 
3166 	/* true if exactly one bit set */
3167 	return (flags & (flags - 1)) == 0;
3168 }
3169 
3170 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3171 {
3172 	/* cancel requested || normal exit path */
3173 	return atomic_read(&fs_info->balance_cancel_req) ||
3174 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3175 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3176 }
3177 
3178 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3179 {
3180 	int ret;
3181 
3182 	unset_balance_control(fs_info);
3183 	ret = del_balance_item(fs_info->tree_root);
3184 	if (ret)
3185 		btrfs_std_error(fs_info, ret);
3186 
3187 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3188 }
3189 
3190 /*
3191  * Should be called with both balance and volume mutexes held
3192  */
3193 int btrfs_balance(struct btrfs_balance_control *bctl,
3194 		  struct btrfs_ioctl_balance_args *bargs)
3195 {
3196 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3197 	u64 allowed;
3198 	int mixed = 0;
3199 	int ret;
3200 	u64 num_devices;
3201 	unsigned seq;
3202 
3203 	if (btrfs_fs_closing(fs_info) ||
3204 	    atomic_read(&fs_info->balance_pause_req) ||
3205 	    atomic_read(&fs_info->balance_cancel_req)) {
3206 		ret = -EINVAL;
3207 		goto out;
3208 	}
3209 
3210 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3211 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3212 		mixed = 1;
3213 
3214 	/*
3215 	 * In case of mixed groups both data and meta should be picked,
3216 	 * and identical options should be given for both of them.
3217 	 */
3218 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3219 	if (mixed && (bctl->flags & allowed)) {
3220 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3221 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3222 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3223 			btrfs_err(fs_info, "with mixed groups data and "
3224 				   "metadata balance options must be the same");
3225 			ret = -EINVAL;
3226 			goto out;
3227 		}
3228 	}
3229 
3230 	num_devices = fs_info->fs_devices->num_devices;
3231 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3232 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3233 		BUG_ON(num_devices < 1);
3234 		num_devices--;
3235 	}
3236 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3237 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3238 	if (num_devices == 1)
3239 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3240 	else if (num_devices > 1)
3241 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3242 	if (num_devices > 2)
3243 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3244 	if (num_devices > 3)
3245 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3246 			    BTRFS_BLOCK_GROUP_RAID6);
3247 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3248 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
3249 	     (bctl->data.target & ~allowed))) {
3250 		btrfs_err(fs_info, "unable to start balance with target "
3251 			   "data profile %llu",
3252 		       bctl->data.target);
3253 		ret = -EINVAL;
3254 		goto out;
3255 	}
3256 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3257 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3258 	     (bctl->meta.target & ~allowed))) {
3259 		btrfs_err(fs_info,
3260 			   "unable to start balance with target metadata profile %llu",
3261 		       bctl->meta.target);
3262 		ret = -EINVAL;
3263 		goto out;
3264 	}
3265 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3266 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3267 	     (bctl->sys.target & ~allowed))) {
3268 		btrfs_err(fs_info,
3269 			   "unable to start balance with target system profile %llu",
3270 		       bctl->sys.target);
3271 		ret = -EINVAL;
3272 		goto out;
3273 	}
3274 
3275 	/* allow dup'ed data chunks only in mixed mode */
3276 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3277 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3278 		btrfs_err(fs_info, "dup for data is not allowed");
3279 		ret = -EINVAL;
3280 		goto out;
3281 	}
3282 
3283 	/* allow to reduce meta or sys integrity only if force set */
3284 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3285 			BTRFS_BLOCK_GROUP_RAID10 |
3286 			BTRFS_BLOCK_GROUP_RAID5 |
3287 			BTRFS_BLOCK_GROUP_RAID6;
3288 	do {
3289 		seq = read_seqbegin(&fs_info->profiles_lock);
3290 
3291 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3292 		     (fs_info->avail_system_alloc_bits & allowed) &&
3293 		     !(bctl->sys.target & allowed)) ||
3294 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3295 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3296 		     !(bctl->meta.target & allowed))) {
3297 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3298 				btrfs_info(fs_info, "force reducing metadata integrity");
3299 			} else {
3300 				btrfs_err(fs_info, "balance will reduce metadata "
3301 					   "integrity, use force if you want this");
3302 				ret = -EINVAL;
3303 				goto out;
3304 			}
3305 		}
3306 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3307 
3308 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3309 		int num_tolerated_disk_barrier_failures;
3310 		u64 target = bctl->sys.target;
3311 
3312 		num_tolerated_disk_barrier_failures =
3313 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3314 		if (num_tolerated_disk_barrier_failures > 0 &&
3315 		    (target &
3316 		     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3317 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3318 			num_tolerated_disk_barrier_failures = 0;
3319 		else if (num_tolerated_disk_barrier_failures > 1 &&
3320 			 (target &
3321 			  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3322 			num_tolerated_disk_barrier_failures = 1;
3323 
3324 		fs_info->num_tolerated_disk_barrier_failures =
3325 			num_tolerated_disk_barrier_failures;
3326 	}
3327 
3328 	ret = insert_balance_item(fs_info->tree_root, bctl);
3329 	if (ret && ret != -EEXIST)
3330 		goto out;
3331 
3332 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3333 		BUG_ON(ret == -EEXIST);
3334 		set_balance_control(bctl);
3335 	} else {
3336 		BUG_ON(ret != -EEXIST);
3337 		spin_lock(&fs_info->balance_lock);
3338 		update_balance_args(bctl);
3339 		spin_unlock(&fs_info->balance_lock);
3340 	}
3341 
3342 	atomic_inc(&fs_info->balance_running);
3343 	mutex_unlock(&fs_info->balance_mutex);
3344 
3345 	ret = __btrfs_balance(fs_info);
3346 
3347 	mutex_lock(&fs_info->balance_mutex);
3348 	atomic_dec(&fs_info->balance_running);
3349 
3350 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3351 		fs_info->num_tolerated_disk_barrier_failures =
3352 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3353 	}
3354 
3355 	if (bargs) {
3356 		memset(bargs, 0, sizeof(*bargs));
3357 		update_ioctl_balance_args(fs_info, 0, bargs);
3358 	}
3359 
3360 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3361 	    balance_need_close(fs_info)) {
3362 		__cancel_balance(fs_info);
3363 	}
3364 
3365 	wake_up(&fs_info->balance_wait_q);
3366 
3367 	return ret;
3368 out:
3369 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3370 		__cancel_balance(fs_info);
3371 	else {
3372 		kfree(bctl);
3373 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3374 	}
3375 	return ret;
3376 }
3377 
3378 static int balance_kthread(void *data)
3379 {
3380 	struct btrfs_fs_info *fs_info = data;
3381 	int ret = 0;
3382 
3383 	mutex_lock(&fs_info->volume_mutex);
3384 	mutex_lock(&fs_info->balance_mutex);
3385 
3386 	if (fs_info->balance_ctl) {
3387 		btrfs_info(fs_info, "continuing balance");
3388 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3389 	}
3390 
3391 	mutex_unlock(&fs_info->balance_mutex);
3392 	mutex_unlock(&fs_info->volume_mutex);
3393 
3394 	return ret;
3395 }
3396 
3397 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3398 {
3399 	struct task_struct *tsk;
3400 
3401 	spin_lock(&fs_info->balance_lock);
3402 	if (!fs_info->balance_ctl) {
3403 		spin_unlock(&fs_info->balance_lock);
3404 		return 0;
3405 	}
3406 	spin_unlock(&fs_info->balance_lock);
3407 
3408 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3409 		btrfs_info(fs_info, "force skipping balance");
3410 		return 0;
3411 	}
3412 
3413 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3414 	return PTR_ERR_OR_ZERO(tsk);
3415 }
3416 
3417 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3418 {
3419 	struct btrfs_balance_control *bctl;
3420 	struct btrfs_balance_item *item;
3421 	struct btrfs_disk_balance_args disk_bargs;
3422 	struct btrfs_path *path;
3423 	struct extent_buffer *leaf;
3424 	struct btrfs_key key;
3425 	int ret;
3426 
3427 	path = btrfs_alloc_path();
3428 	if (!path)
3429 		return -ENOMEM;
3430 
3431 	key.objectid = BTRFS_BALANCE_OBJECTID;
3432 	key.type = BTRFS_BALANCE_ITEM_KEY;
3433 	key.offset = 0;
3434 
3435 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3436 	if (ret < 0)
3437 		goto out;
3438 	if (ret > 0) { /* ret = -ENOENT; */
3439 		ret = 0;
3440 		goto out;
3441 	}
3442 
3443 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3444 	if (!bctl) {
3445 		ret = -ENOMEM;
3446 		goto out;
3447 	}
3448 
3449 	leaf = path->nodes[0];
3450 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3451 
3452 	bctl->fs_info = fs_info;
3453 	bctl->flags = btrfs_balance_flags(leaf, item);
3454 	bctl->flags |= BTRFS_BALANCE_RESUME;
3455 
3456 	btrfs_balance_data(leaf, item, &disk_bargs);
3457 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3458 	btrfs_balance_meta(leaf, item, &disk_bargs);
3459 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3460 	btrfs_balance_sys(leaf, item, &disk_bargs);
3461 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3462 
3463 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3464 
3465 	mutex_lock(&fs_info->volume_mutex);
3466 	mutex_lock(&fs_info->balance_mutex);
3467 
3468 	set_balance_control(bctl);
3469 
3470 	mutex_unlock(&fs_info->balance_mutex);
3471 	mutex_unlock(&fs_info->volume_mutex);
3472 out:
3473 	btrfs_free_path(path);
3474 	return ret;
3475 }
3476 
3477 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3478 {
3479 	int ret = 0;
3480 
3481 	mutex_lock(&fs_info->balance_mutex);
3482 	if (!fs_info->balance_ctl) {
3483 		mutex_unlock(&fs_info->balance_mutex);
3484 		return -ENOTCONN;
3485 	}
3486 
3487 	if (atomic_read(&fs_info->balance_running)) {
3488 		atomic_inc(&fs_info->balance_pause_req);
3489 		mutex_unlock(&fs_info->balance_mutex);
3490 
3491 		wait_event(fs_info->balance_wait_q,
3492 			   atomic_read(&fs_info->balance_running) == 0);
3493 
3494 		mutex_lock(&fs_info->balance_mutex);
3495 		/* we are good with balance_ctl ripped off from under us */
3496 		BUG_ON(atomic_read(&fs_info->balance_running));
3497 		atomic_dec(&fs_info->balance_pause_req);
3498 	} else {
3499 		ret = -ENOTCONN;
3500 	}
3501 
3502 	mutex_unlock(&fs_info->balance_mutex);
3503 	return ret;
3504 }
3505 
3506 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3507 {
3508 	if (fs_info->sb->s_flags & MS_RDONLY)
3509 		return -EROFS;
3510 
3511 	mutex_lock(&fs_info->balance_mutex);
3512 	if (!fs_info->balance_ctl) {
3513 		mutex_unlock(&fs_info->balance_mutex);
3514 		return -ENOTCONN;
3515 	}
3516 
3517 	atomic_inc(&fs_info->balance_cancel_req);
3518 	/*
3519 	 * if we are running just wait and return, balance item is
3520 	 * deleted in btrfs_balance in this case
3521 	 */
3522 	if (atomic_read(&fs_info->balance_running)) {
3523 		mutex_unlock(&fs_info->balance_mutex);
3524 		wait_event(fs_info->balance_wait_q,
3525 			   atomic_read(&fs_info->balance_running) == 0);
3526 		mutex_lock(&fs_info->balance_mutex);
3527 	} else {
3528 		/* __cancel_balance needs volume_mutex */
3529 		mutex_unlock(&fs_info->balance_mutex);
3530 		mutex_lock(&fs_info->volume_mutex);
3531 		mutex_lock(&fs_info->balance_mutex);
3532 
3533 		if (fs_info->balance_ctl)
3534 			__cancel_balance(fs_info);
3535 
3536 		mutex_unlock(&fs_info->volume_mutex);
3537 	}
3538 
3539 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3540 	atomic_dec(&fs_info->balance_cancel_req);
3541 	mutex_unlock(&fs_info->balance_mutex);
3542 	return 0;
3543 }
3544 
3545 static int btrfs_uuid_scan_kthread(void *data)
3546 {
3547 	struct btrfs_fs_info *fs_info = data;
3548 	struct btrfs_root *root = fs_info->tree_root;
3549 	struct btrfs_key key;
3550 	struct btrfs_key max_key;
3551 	struct btrfs_path *path = NULL;
3552 	int ret = 0;
3553 	struct extent_buffer *eb;
3554 	int slot;
3555 	struct btrfs_root_item root_item;
3556 	u32 item_size;
3557 	struct btrfs_trans_handle *trans = NULL;
3558 
3559 	path = btrfs_alloc_path();
3560 	if (!path) {
3561 		ret = -ENOMEM;
3562 		goto out;
3563 	}
3564 
3565 	key.objectid = 0;
3566 	key.type = BTRFS_ROOT_ITEM_KEY;
3567 	key.offset = 0;
3568 
3569 	max_key.objectid = (u64)-1;
3570 	max_key.type = BTRFS_ROOT_ITEM_KEY;
3571 	max_key.offset = (u64)-1;
3572 
3573 	path->keep_locks = 1;
3574 
3575 	while (1) {
3576 		ret = btrfs_search_forward(root, &key, path, 0);
3577 		if (ret) {
3578 			if (ret > 0)
3579 				ret = 0;
3580 			break;
3581 		}
3582 
3583 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
3584 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3585 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3586 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3587 			goto skip;
3588 
3589 		eb = path->nodes[0];
3590 		slot = path->slots[0];
3591 		item_size = btrfs_item_size_nr(eb, slot);
3592 		if (item_size < sizeof(root_item))
3593 			goto skip;
3594 
3595 		read_extent_buffer(eb, &root_item,
3596 				   btrfs_item_ptr_offset(eb, slot),
3597 				   (int)sizeof(root_item));
3598 		if (btrfs_root_refs(&root_item) == 0)
3599 			goto skip;
3600 
3601 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
3602 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3603 			if (trans)
3604 				goto update_tree;
3605 
3606 			btrfs_release_path(path);
3607 			/*
3608 			 * 1 - subvol uuid item
3609 			 * 1 - received_subvol uuid item
3610 			 */
3611 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3612 			if (IS_ERR(trans)) {
3613 				ret = PTR_ERR(trans);
3614 				break;
3615 			}
3616 			continue;
3617 		} else {
3618 			goto skip;
3619 		}
3620 update_tree:
3621 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3622 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3623 						  root_item.uuid,
3624 						  BTRFS_UUID_KEY_SUBVOL,
3625 						  key.objectid);
3626 			if (ret < 0) {
3627 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3628 					ret);
3629 				break;
3630 			}
3631 		}
3632 
3633 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3634 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3635 						  root_item.received_uuid,
3636 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3637 						  key.objectid);
3638 			if (ret < 0) {
3639 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3640 					ret);
3641 				break;
3642 			}
3643 		}
3644 
3645 skip:
3646 		if (trans) {
3647 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3648 			trans = NULL;
3649 			if (ret)
3650 				break;
3651 		}
3652 
3653 		btrfs_release_path(path);
3654 		if (key.offset < (u64)-1) {
3655 			key.offset++;
3656 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3657 			key.offset = 0;
3658 			key.type = BTRFS_ROOT_ITEM_KEY;
3659 		} else if (key.objectid < (u64)-1) {
3660 			key.offset = 0;
3661 			key.type = BTRFS_ROOT_ITEM_KEY;
3662 			key.objectid++;
3663 		} else {
3664 			break;
3665 		}
3666 		cond_resched();
3667 	}
3668 
3669 out:
3670 	btrfs_free_path(path);
3671 	if (trans && !IS_ERR(trans))
3672 		btrfs_end_transaction(trans, fs_info->uuid_root);
3673 	if (ret)
3674 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3675 	else
3676 		fs_info->update_uuid_tree_gen = 1;
3677 	up(&fs_info->uuid_tree_rescan_sem);
3678 	return 0;
3679 }
3680 
3681 /*
3682  * Callback for btrfs_uuid_tree_iterate().
3683  * returns:
3684  * 0	check succeeded, the entry is not outdated.
3685  * < 0	if an error occured.
3686  * > 0	if the check failed, which means the caller shall remove the entry.
3687  */
3688 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3689 				       u8 *uuid, u8 type, u64 subid)
3690 {
3691 	struct btrfs_key key;
3692 	int ret = 0;
3693 	struct btrfs_root *subvol_root;
3694 
3695 	if (type != BTRFS_UUID_KEY_SUBVOL &&
3696 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3697 		goto out;
3698 
3699 	key.objectid = subid;
3700 	key.type = BTRFS_ROOT_ITEM_KEY;
3701 	key.offset = (u64)-1;
3702 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3703 	if (IS_ERR(subvol_root)) {
3704 		ret = PTR_ERR(subvol_root);
3705 		if (ret == -ENOENT)
3706 			ret = 1;
3707 		goto out;
3708 	}
3709 
3710 	switch (type) {
3711 	case BTRFS_UUID_KEY_SUBVOL:
3712 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3713 			ret = 1;
3714 		break;
3715 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3716 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
3717 			   BTRFS_UUID_SIZE))
3718 			ret = 1;
3719 		break;
3720 	}
3721 
3722 out:
3723 	return ret;
3724 }
3725 
3726 static int btrfs_uuid_rescan_kthread(void *data)
3727 {
3728 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3729 	int ret;
3730 
3731 	/*
3732 	 * 1st step is to iterate through the existing UUID tree and
3733 	 * to delete all entries that contain outdated data.
3734 	 * 2nd step is to add all missing entries to the UUID tree.
3735 	 */
3736 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3737 	if (ret < 0) {
3738 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3739 		up(&fs_info->uuid_tree_rescan_sem);
3740 		return ret;
3741 	}
3742 	return btrfs_uuid_scan_kthread(data);
3743 }
3744 
3745 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3746 {
3747 	struct btrfs_trans_handle *trans;
3748 	struct btrfs_root *tree_root = fs_info->tree_root;
3749 	struct btrfs_root *uuid_root;
3750 	struct task_struct *task;
3751 	int ret;
3752 
3753 	/*
3754 	 * 1 - root node
3755 	 * 1 - root item
3756 	 */
3757 	trans = btrfs_start_transaction(tree_root, 2);
3758 	if (IS_ERR(trans))
3759 		return PTR_ERR(trans);
3760 
3761 	uuid_root = btrfs_create_tree(trans, fs_info,
3762 				      BTRFS_UUID_TREE_OBJECTID);
3763 	if (IS_ERR(uuid_root)) {
3764 		btrfs_abort_transaction(trans, tree_root,
3765 					PTR_ERR(uuid_root));
3766 		return PTR_ERR(uuid_root);
3767 	}
3768 
3769 	fs_info->uuid_root = uuid_root;
3770 
3771 	ret = btrfs_commit_transaction(trans, tree_root);
3772 	if (ret)
3773 		return ret;
3774 
3775 	down(&fs_info->uuid_tree_rescan_sem);
3776 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3777 	if (IS_ERR(task)) {
3778 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3779 		btrfs_warn(fs_info, "failed to start uuid_scan task");
3780 		up(&fs_info->uuid_tree_rescan_sem);
3781 		return PTR_ERR(task);
3782 	}
3783 
3784 	return 0;
3785 }
3786 
3787 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3788 {
3789 	struct task_struct *task;
3790 
3791 	down(&fs_info->uuid_tree_rescan_sem);
3792 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3793 	if (IS_ERR(task)) {
3794 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3795 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3796 		up(&fs_info->uuid_tree_rescan_sem);
3797 		return PTR_ERR(task);
3798 	}
3799 
3800 	return 0;
3801 }
3802 
3803 /*
3804  * shrinking a device means finding all of the device extents past
3805  * the new size, and then following the back refs to the chunks.
3806  * The chunk relocation code actually frees the device extent
3807  */
3808 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3809 {
3810 	struct btrfs_trans_handle *trans;
3811 	struct btrfs_root *root = device->dev_root;
3812 	struct btrfs_dev_extent *dev_extent = NULL;
3813 	struct btrfs_path *path;
3814 	u64 length;
3815 	u64 chunk_tree;
3816 	u64 chunk_objectid;
3817 	u64 chunk_offset;
3818 	int ret;
3819 	int slot;
3820 	int failed = 0;
3821 	bool retried = false;
3822 	struct extent_buffer *l;
3823 	struct btrfs_key key;
3824 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3825 	u64 old_total = btrfs_super_total_bytes(super_copy);
3826 	u64 old_size = device->total_bytes;
3827 	u64 diff = device->total_bytes - new_size;
3828 
3829 	if (device->is_tgtdev_for_dev_replace)
3830 		return -EINVAL;
3831 
3832 	path = btrfs_alloc_path();
3833 	if (!path)
3834 		return -ENOMEM;
3835 
3836 	path->reada = 2;
3837 
3838 	lock_chunks(root);
3839 
3840 	device->total_bytes = new_size;
3841 	if (device->writeable) {
3842 		device->fs_devices->total_rw_bytes -= diff;
3843 		spin_lock(&root->fs_info->free_chunk_lock);
3844 		root->fs_info->free_chunk_space -= diff;
3845 		spin_unlock(&root->fs_info->free_chunk_lock);
3846 	}
3847 	unlock_chunks(root);
3848 
3849 again:
3850 	key.objectid = device->devid;
3851 	key.offset = (u64)-1;
3852 	key.type = BTRFS_DEV_EXTENT_KEY;
3853 
3854 	do {
3855 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3856 		if (ret < 0)
3857 			goto done;
3858 
3859 		ret = btrfs_previous_item(root, path, 0, key.type);
3860 		if (ret < 0)
3861 			goto done;
3862 		if (ret) {
3863 			ret = 0;
3864 			btrfs_release_path(path);
3865 			break;
3866 		}
3867 
3868 		l = path->nodes[0];
3869 		slot = path->slots[0];
3870 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3871 
3872 		if (key.objectid != device->devid) {
3873 			btrfs_release_path(path);
3874 			break;
3875 		}
3876 
3877 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3878 		length = btrfs_dev_extent_length(l, dev_extent);
3879 
3880 		if (key.offset + length <= new_size) {
3881 			btrfs_release_path(path);
3882 			break;
3883 		}
3884 
3885 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3886 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3887 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3888 		btrfs_release_path(path);
3889 
3890 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3891 					   chunk_offset);
3892 		if (ret && ret != -ENOSPC)
3893 			goto done;
3894 		if (ret == -ENOSPC)
3895 			failed++;
3896 	} while (key.offset-- > 0);
3897 
3898 	if (failed && !retried) {
3899 		failed = 0;
3900 		retried = true;
3901 		goto again;
3902 	} else if (failed && retried) {
3903 		ret = -ENOSPC;
3904 		lock_chunks(root);
3905 
3906 		device->total_bytes = old_size;
3907 		if (device->writeable)
3908 			device->fs_devices->total_rw_bytes += diff;
3909 		spin_lock(&root->fs_info->free_chunk_lock);
3910 		root->fs_info->free_chunk_space += diff;
3911 		spin_unlock(&root->fs_info->free_chunk_lock);
3912 		unlock_chunks(root);
3913 		goto done;
3914 	}
3915 
3916 	/* Shrinking succeeded, else we would be at "done". */
3917 	trans = btrfs_start_transaction(root, 0);
3918 	if (IS_ERR(trans)) {
3919 		ret = PTR_ERR(trans);
3920 		goto done;
3921 	}
3922 
3923 	lock_chunks(root);
3924 
3925 	device->disk_total_bytes = new_size;
3926 	/* Now btrfs_update_device() will change the on-disk size. */
3927 	ret = btrfs_update_device(trans, device);
3928 	if (ret) {
3929 		unlock_chunks(root);
3930 		btrfs_end_transaction(trans, root);
3931 		goto done;
3932 	}
3933 	WARN_ON(diff > old_total);
3934 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
3935 	unlock_chunks(root);
3936 	btrfs_end_transaction(trans, root);
3937 done:
3938 	btrfs_free_path(path);
3939 	return ret;
3940 }
3941 
3942 static int btrfs_add_system_chunk(struct btrfs_root *root,
3943 			   struct btrfs_key *key,
3944 			   struct btrfs_chunk *chunk, int item_size)
3945 {
3946 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3947 	struct btrfs_disk_key disk_key;
3948 	u32 array_size;
3949 	u8 *ptr;
3950 
3951 	array_size = btrfs_super_sys_array_size(super_copy);
3952 	if (array_size + item_size + sizeof(disk_key)
3953 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3954 		return -EFBIG;
3955 
3956 	ptr = super_copy->sys_chunk_array + array_size;
3957 	btrfs_cpu_key_to_disk(&disk_key, key);
3958 	memcpy(ptr, &disk_key, sizeof(disk_key));
3959 	ptr += sizeof(disk_key);
3960 	memcpy(ptr, chunk, item_size);
3961 	item_size += sizeof(disk_key);
3962 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3963 	return 0;
3964 }
3965 
3966 /*
3967  * sort the devices in descending order by max_avail, total_avail
3968  */
3969 static int btrfs_cmp_device_info(const void *a, const void *b)
3970 {
3971 	const struct btrfs_device_info *di_a = a;
3972 	const struct btrfs_device_info *di_b = b;
3973 
3974 	if (di_a->max_avail > di_b->max_avail)
3975 		return -1;
3976 	if (di_a->max_avail < di_b->max_avail)
3977 		return 1;
3978 	if (di_a->total_avail > di_b->total_avail)
3979 		return -1;
3980 	if (di_a->total_avail < di_b->total_avail)
3981 		return 1;
3982 	return 0;
3983 }
3984 
3985 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3986 	[BTRFS_RAID_RAID10] = {
3987 		.sub_stripes	= 2,
3988 		.dev_stripes	= 1,
3989 		.devs_max	= 0,	/* 0 == as many as possible */
3990 		.devs_min	= 4,
3991 		.devs_increment	= 2,
3992 		.ncopies	= 2,
3993 	},
3994 	[BTRFS_RAID_RAID1] = {
3995 		.sub_stripes	= 1,
3996 		.dev_stripes	= 1,
3997 		.devs_max	= 2,
3998 		.devs_min	= 2,
3999 		.devs_increment	= 2,
4000 		.ncopies	= 2,
4001 	},
4002 	[BTRFS_RAID_DUP] = {
4003 		.sub_stripes	= 1,
4004 		.dev_stripes	= 2,
4005 		.devs_max	= 1,
4006 		.devs_min	= 1,
4007 		.devs_increment	= 1,
4008 		.ncopies	= 2,
4009 	},
4010 	[BTRFS_RAID_RAID0] = {
4011 		.sub_stripes	= 1,
4012 		.dev_stripes	= 1,
4013 		.devs_max	= 0,
4014 		.devs_min	= 2,
4015 		.devs_increment	= 1,
4016 		.ncopies	= 1,
4017 	},
4018 	[BTRFS_RAID_SINGLE] = {
4019 		.sub_stripes	= 1,
4020 		.dev_stripes	= 1,
4021 		.devs_max	= 1,
4022 		.devs_min	= 1,
4023 		.devs_increment	= 1,
4024 		.ncopies	= 1,
4025 	},
4026 	[BTRFS_RAID_RAID5] = {
4027 		.sub_stripes	= 1,
4028 		.dev_stripes	= 1,
4029 		.devs_max	= 0,
4030 		.devs_min	= 2,
4031 		.devs_increment	= 1,
4032 		.ncopies	= 2,
4033 	},
4034 	[BTRFS_RAID_RAID6] = {
4035 		.sub_stripes	= 1,
4036 		.dev_stripes	= 1,
4037 		.devs_max	= 0,
4038 		.devs_min	= 3,
4039 		.devs_increment	= 1,
4040 		.ncopies	= 3,
4041 	},
4042 };
4043 
4044 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4045 {
4046 	/* TODO allow them to set a preferred stripe size */
4047 	return 64 * 1024;
4048 }
4049 
4050 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4051 {
4052 	if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4053 		return;
4054 
4055 	btrfs_set_fs_incompat(info, RAID56);
4056 }
4057 
4058 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4059 			- sizeof(struct btrfs_item)		\
4060 			- sizeof(struct btrfs_chunk))		\
4061 			/ sizeof(struct btrfs_stripe) + 1)
4062 
4063 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4064 				- 2 * sizeof(struct btrfs_disk_key)	\
4065 				- 2 * sizeof(struct btrfs_chunk))	\
4066 				/ sizeof(struct btrfs_stripe) + 1)
4067 
4068 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4069 			       struct btrfs_root *extent_root, u64 start,
4070 			       u64 type)
4071 {
4072 	struct btrfs_fs_info *info = extent_root->fs_info;
4073 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4074 	struct list_head *cur;
4075 	struct map_lookup *map = NULL;
4076 	struct extent_map_tree *em_tree;
4077 	struct extent_map *em;
4078 	struct btrfs_device_info *devices_info = NULL;
4079 	u64 total_avail;
4080 	int num_stripes;	/* total number of stripes to allocate */
4081 	int data_stripes;	/* number of stripes that count for
4082 				   block group size */
4083 	int sub_stripes;	/* sub_stripes info for map */
4084 	int dev_stripes;	/* stripes per dev */
4085 	int devs_max;		/* max devs to use */
4086 	int devs_min;		/* min devs needed */
4087 	int devs_increment;	/* ndevs has to be a multiple of this */
4088 	int ncopies;		/* how many copies to data has */
4089 	int ret;
4090 	u64 max_stripe_size;
4091 	u64 max_chunk_size;
4092 	u64 stripe_size;
4093 	u64 num_bytes;
4094 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4095 	int ndevs;
4096 	int i;
4097 	int j;
4098 	int index;
4099 
4100 	BUG_ON(!alloc_profile_is_valid(type, 0));
4101 
4102 	if (list_empty(&fs_devices->alloc_list))
4103 		return -ENOSPC;
4104 
4105 	index = __get_raid_index(type);
4106 
4107 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4108 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4109 	devs_max = btrfs_raid_array[index].devs_max;
4110 	devs_min = btrfs_raid_array[index].devs_min;
4111 	devs_increment = btrfs_raid_array[index].devs_increment;
4112 	ncopies = btrfs_raid_array[index].ncopies;
4113 
4114 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4115 		max_stripe_size = 1024 * 1024 * 1024;
4116 		max_chunk_size = 10 * max_stripe_size;
4117 		if (!devs_max)
4118 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4119 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4120 		/* for larger filesystems, use larger metadata chunks */
4121 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4122 			max_stripe_size = 1024 * 1024 * 1024;
4123 		else
4124 			max_stripe_size = 256 * 1024 * 1024;
4125 		max_chunk_size = max_stripe_size;
4126 		if (!devs_max)
4127 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4128 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4129 		max_stripe_size = 32 * 1024 * 1024;
4130 		max_chunk_size = 2 * max_stripe_size;
4131 		if (!devs_max)
4132 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4133 	} else {
4134 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4135 		       type);
4136 		BUG_ON(1);
4137 	}
4138 
4139 	/* we don't want a chunk larger than 10% of writeable space */
4140 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4141 			     max_chunk_size);
4142 
4143 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4144 			       GFP_NOFS);
4145 	if (!devices_info)
4146 		return -ENOMEM;
4147 
4148 	cur = fs_devices->alloc_list.next;
4149 
4150 	/*
4151 	 * in the first pass through the devices list, we gather information
4152 	 * about the available holes on each device.
4153 	 */
4154 	ndevs = 0;
4155 	while (cur != &fs_devices->alloc_list) {
4156 		struct btrfs_device *device;
4157 		u64 max_avail;
4158 		u64 dev_offset;
4159 
4160 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4161 
4162 		cur = cur->next;
4163 
4164 		if (!device->writeable) {
4165 			WARN(1, KERN_ERR
4166 			       "BTRFS: read-only device in alloc_list\n");
4167 			continue;
4168 		}
4169 
4170 		if (!device->in_fs_metadata ||
4171 		    device->is_tgtdev_for_dev_replace)
4172 			continue;
4173 
4174 		if (device->total_bytes > device->bytes_used)
4175 			total_avail = device->total_bytes - device->bytes_used;
4176 		else
4177 			total_avail = 0;
4178 
4179 		/* If there is no space on this device, skip it. */
4180 		if (total_avail == 0)
4181 			continue;
4182 
4183 		ret = find_free_dev_extent(trans, device,
4184 					   max_stripe_size * dev_stripes,
4185 					   &dev_offset, &max_avail);
4186 		if (ret && ret != -ENOSPC)
4187 			goto error;
4188 
4189 		if (ret == 0)
4190 			max_avail = max_stripe_size * dev_stripes;
4191 
4192 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4193 			continue;
4194 
4195 		if (ndevs == fs_devices->rw_devices) {
4196 			WARN(1, "%s: found more than %llu devices\n",
4197 			     __func__, fs_devices->rw_devices);
4198 			break;
4199 		}
4200 		devices_info[ndevs].dev_offset = dev_offset;
4201 		devices_info[ndevs].max_avail = max_avail;
4202 		devices_info[ndevs].total_avail = total_avail;
4203 		devices_info[ndevs].dev = device;
4204 		++ndevs;
4205 	}
4206 
4207 	/*
4208 	 * now sort the devices by hole size / available space
4209 	 */
4210 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4211 	     btrfs_cmp_device_info, NULL);
4212 
4213 	/* round down to number of usable stripes */
4214 	ndevs -= ndevs % devs_increment;
4215 
4216 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4217 		ret = -ENOSPC;
4218 		goto error;
4219 	}
4220 
4221 	if (devs_max && ndevs > devs_max)
4222 		ndevs = devs_max;
4223 	/*
4224 	 * the primary goal is to maximize the number of stripes, so use as many
4225 	 * devices as possible, even if the stripes are not maximum sized.
4226 	 */
4227 	stripe_size = devices_info[ndevs-1].max_avail;
4228 	num_stripes = ndevs * dev_stripes;
4229 
4230 	/*
4231 	 * this will have to be fixed for RAID1 and RAID10 over
4232 	 * more drives
4233 	 */
4234 	data_stripes = num_stripes / ncopies;
4235 
4236 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4237 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4238 				 btrfs_super_stripesize(info->super_copy));
4239 		data_stripes = num_stripes - 1;
4240 	}
4241 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4242 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4243 				 btrfs_super_stripesize(info->super_copy));
4244 		data_stripes = num_stripes - 2;
4245 	}
4246 
4247 	/*
4248 	 * Use the number of data stripes to figure out how big this chunk
4249 	 * is really going to be in terms of logical address space,
4250 	 * and compare that answer with the max chunk size
4251 	 */
4252 	if (stripe_size * data_stripes > max_chunk_size) {
4253 		u64 mask = (1ULL << 24) - 1;
4254 		stripe_size = max_chunk_size;
4255 		do_div(stripe_size, data_stripes);
4256 
4257 		/* bump the answer up to a 16MB boundary */
4258 		stripe_size = (stripe_size + mask) & ~mask;
4259 
4260 		/* but don't go higher than the limits we found
4261 		 * while searching for free extents
4262 		 */
4263 		if (stripe_size > devices_info[ndevs-1].max_avail)
4264 			stripe_size = devices_info[ndevs-1].max_avail;
4265 	}
4266 
4267 	do_div(stripe_size, dev_stripes);
4268 
4269 	/* align to BTRFS_STRIPE_LEN */
4270 	do_div(stripe_size, raid_stripe_len);
4271 	stripe_size *= raid_stripe_len;
4272 
4273 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4274 	if (!map) {
4275 		ret = -ENOMEM;
4276 		goto error;
4277 	}
4278 	map->num_stripes = num_stripes;
4279 
4280 	for (i = 0; i < ndevs; ++i) {
4281 		for (j = 0; j < dev_stripes; ++j) {
4282 			int s = i * dev_stripes + j;
4283 			map->stripes[s].dev = devices_info[i].dev;
4284 			map->stripes[s].physical = devices_info[i].dev_offset +
4285 						   j * stripe_size;
4286 		}
4287 	}
4288 	map->sector_size = extent_root->sectorsize;
4289 	map->stripe_len = raid_stripe_len;
4290 	map->io_align = raid_stripe_len;
4291 	map->io_width = raid_stripe_len;
4292 	map->type = type;
4293 	map->sub_stripes = sub_stripes;
4294 
4295 	num_bytes = stripe_size * data_stripes;
4296 
4297 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4298 
4299 	em = alloc_extent_map();
4300 	if (!em) {
4301 		kfree(map);
4302 		ret = -ENOMEM;
4303 		goto error;
4304 	}
4305 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4306 	em->bdev = (struct block_device *)map;
4307 	em->start = start;
4308 	em->len = num_bytes;
4309 	em->block_start = 0;
4310 	em->block_len = em->len;
4311 	em->orig_block_len = stripe_size;
4312 
4313 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4314 	write_lock(&em_tree->lock);
4315 	ret = add_extent_mapping(em_tree, em, 0);
4316 	if (!ret) {
4317 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4318 		atomic_inc(&em->refs);
4319 	}
4320 	write_unlock(&em_tree->lock);
4321 	if (ret) {
4322 		free_extent_map(em);
4323 		goto error;
4324 	}
4325 
4326 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4327 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4328 				     start, num_bytes);
4329 	if (ret)
4330 		goto error_del_extent;
4331 
4332 	free_extent_map(em);
4333 	check_raid56_incompat_flag(extent_root->fs_info, type);
4334 
4335 	kfree(devices_info);
4336 	return 0;
4337 
4338 error_del_extent:
4339 	write_lock(&em_tree->lock);
4340 	remove_extent_mapping(em_tree, em);
4341 	write_unlock(&em_tree->lock);
4342 
4343 	/* One for our allocation */
4344 	free_extent_map(em);
4345 	/* One for the tree reference */
4346 	free_extent_map(em);
4347 error:
4348 	kfree(devices_info);
4349 	return ret;
4350 }
4351 
4352 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4353 				struct btrfs_root *extent_root,
4354 				u64 chunk_offset, u64 chunk_size)
4355 {
4356 	struct btrfs_key key;
4357 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4358 	struct btrfs_device *device;
4359 	struct btrfs_chunk *chunk;
4360 	struct btrfs_stripe *stripe;
4361 	struct extent_map_tree *em_tree;
4362 	struct extent_map *em;
4363 	struct map_lookup *map;
4364 	size_t item_size;
4365 	u64 dev_offset;
4366 	u64 stripe_size;
4367 	int i = 0;
4368 	int ret;
4369 
4370 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4371 	read_lock(&em_tree->lock);
4372 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4373 	read_unlock(&em_tree->lock);
4374 
4375 	if (!em) {
4376 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4377 			   "%Lu len %Lu", chunk_offset, chunk_size);
4378 		return -EINVAL;
4379 	}
4380 
4381 	if (em->start != chunk_offset || em->len != chunk_size) {
4382 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4383 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4384 			  chunk_size, em->start, em->len);
4385 		free_extent_map(em);
4386 		return -EINVAL;
4387 	}
4388 
4389 	map = (struct map_lookup *)em->bdev;
4390 	item_size = btrfs_chunk_item_size(map->num_stripes);
4391 	stripe_size = em->orig_block_len;
4392 
4393 	chunk = kzalloc(item_size, GFP_NOFS);
4394 	if (!chunk) {
4395 		ret = -ENOMEM;
4396 		goto out;
4397 	}
4398 
4399 	for (i = 0; i < map->num_stripes; i++) {
4400 		device = map->stripes[i].dev;
4401 		dev_offset = map->stripes[i].physical;
4402 
4403 		device->bytes_used += stripe_size;
4404 		ret = btrfs_update_device(trans, device);
4405 		if (ret)
4406 			goto out;
4407 		ret = btrfs_alloc_dev_extent(trans, device,
4408 					     chunk_root->root_key.objectid,
4409 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4410 					     chunk_offset, dev_offset,
4411 					     stripe_size);
4412 		if (ret)
4413 			goto out;
4414 	}
4415 
4416 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4417 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4418 						   map->num_stripes);
4419 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4420 
4421 	stripe = &chunk->stripe;
4422 	for (i = 0; i < map->num_stripes; i++) {
4423 		device = map->stripes[i].dev;
4424 		dev_offset = map->stripes[i].physical;
4425 
4426 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4427 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4428 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4429 		stripe++;
4430 	}
4431 
4432 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4433 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4434 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4435 	btrfs_set_stack_chunk_type(chunk, map->type);
4436 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4437 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4438 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4439 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4440 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4441 
4442 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4443 	key.type = BTRFS_CHUNK_ITEM_KEY;
4444 	key.offset = chunk_offset;
4445 
4446 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4447 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4448 		/*
4449 		 * TODO: Cleanup of inserted chunk root in case of
4450 		 * failure.
4451 		 */
4452 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4453 					     item_size);
4454 	}
4455 
4456 out:
4457 	kfree(chunk);
4458 	free_extent_map(em);
4459 	return ret;
4460 }
4461 
4462 /*
4463  * Chunk allocation falls into two parts. The first part does works
4464  * that make the new allocated chunk useable, but not do any operation
4465  * that modifies the chunk tree. The second part does the works that
4466  * require modifying the chunk tree. This division is important for the
4467  * bootstrap process of adding storage to a seed btrfs.
4468  */
4469 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4470 		      struct btrfs_root *extent_root, u64 type)
4471 {
4472 	u64 chunk_offset;
4473 
4474 	chunk_offset = find_next_chunk(extent_root->fs_info);
4475 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4476 }
4477 
4478 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4479 					 struct btrfs_root *root,
4480 					 struct btrfs_device *device)
4481 {
4482 	u64 chunk_offset;
4483 	u64 sys_chunk_offset;
4484 	u64 alloc_profile;
4485 	struct btrfs_fs_info *fs_info = root->fs_info;
4486 	struct btrfs_root *extent_root = fs_info->extent_root;
4487 	int ret;
4488 
4489 	chunk_offset = find_next_chunk(fs_info);
4490 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4491 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4492 				  alloc_profile);
4493 	if (ret)
4494 		return ret;
4495 
4496 	sys_chunk_offset = find_next_chunk(root->fs_info);
4497 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4498 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4499 				  alloc_profile);
4500 	if (ret) {
4501 		btrfs_abort_transaction(trans, root, ret);
4502 		goto out;
4503 	}
4504 
4505 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4506 	if (ret)
4507 		btrfs_abort_transaction(trans, root, ret);
4508 out:
4509 	return ret;
4510 }
4511 
4512 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4513 {
4514 	struct extent_map *em;
4515 	struct map_lookup *map;
4516 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4517 	int readonly = 0;
4518 	int i;
4519 
4520 	read_lock(&map_tree->map_tree.lock);
4521 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4522 	read_unlock(&map_tree->map_tree.lock);
4523 	if (!em)
4524 		return 1;
4525 
4526 	if (btrfs_test_opt(root, DEGRADED)) {
4527 		free_extent_map(em);
4528 		return 0;
4529 	}
4530 
4531 	map = (struct map_lookup *)em->bdev;
4532 	for (i = 0; i < map->num_stripes; i++) {
4533 		if (!map->stripes[i].dev->writeable) {
4534 			readonly = 1;
4535 			break;
4536 		}
4537 	}
4538 	free_extent_map(em);
4539 	return readonly;
4540 }
4541 
4542 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4543 {
4544 	extent_map_tree_init(&tree->map_tree);
4545 }
4546 
4547 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4548 {
4549 	struct extent_map *em;
4550 
4551 	while (1) {
4552 		write_lock(&tree->map_tree.lock);
4553 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4554 		if (em)
4555 			remove_extent_mapping(&tree->map_tree, em);
4556 		write_unlock(&tree->map_tree.lock);
4557 		if (!em)
4558 			break;
4559 		/* once for us */
4560 		free_extent_map(em);
4561 		/* once for the tree */
4562 		free_extent_map(em);
4563 	}
4564 }
4565 
4566 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4567 {
4568 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4569 	struct extent_map *em;
4570 	struct map_lookup *map;
4571 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4572 	int ret;
4573 
4574 	read_lock(&em_tree->lock);
4575 	em = lookup_extent_mapping(em_tree, logical, len);
4576 	read_unlock(&em_tree->lock);
4577 
4578 	/*
4579 	 * We could return errors for these cases, but that could get ugly and
4580 	 * we'd probably do the same thing which is just not do anything else
4581 	 * and exit, so return 1 so the callers don't try to use other copies.
4582 	 */
4583 	if (!em) {
4584 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4585 			    logical+len);
4586 		return 1;
4587 	}
4588 
4589 	if (em->start > logical || em->start + em->len < logical) {
4590 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4591 			    "%Lu-%Lu", logical, logical+len, em->start,
4592 			    em->start + em->len);
4593 		free_extent_map(em);
4594 		return 1;
4595 	}
4596 
4597 	map = (struct map_lookup *)em->bdev;
4598 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4599 		ret = map->num_stripes;
4600 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4601 		ret = map->sub_stripes;
4602 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4603 		ret = 2;
4604 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4605 		ret = 3;
4606 	else
4607 		ret = 1;
4608 	free_extent_map(em);
4609 
4610 	btrfs_dev_replace_lock(&fs_info->dev_replace);
4611 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4612 		ret++;
4613 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
4614 
4615 	return ret;
4616 }
4617 
4618 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4619 				    struct btrfs_mapping_tree *map_tree,
4620 				    u64 logical)
4621 {
4622 	struct extent_map *em;
4623 	struct map_lookup *map;
4624 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4625 	unsigned long len = root->sectorsize;
4626 
4627 	read_lock(&em_tree->lock);
4628 	em = lookup_extent_mapping(em_tree, logical, len);
4629 	read_unlock(&em_tree->lock);
4630 	BUG_ON(!em);
4631 
4632 	BUG_ON(em->start > logical || em->start + em->len < logical);
4633 	map = (struct map_lookup *)em->bdev;
4634 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4635 			 BTRFS_BLOCK_GROUP_RAID6)) {
4636 		len = map->stripe_len * nr_data_stripes(map);
4637 	}
4638 	free_extent_map(em);
4639 	return len;
4640 }
4641 
4642 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4643 			   u64 logical, u64 len, int mirror_num)
4644 {
4645 	struct extent_map *em;
4646 	struct map_lookup *map;
4647 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4648 	int ret = 0;
4649 
4650 	read_lock(&em_tree->lock);
4651 	em = lookup_extent_mapping(em_tree, logical, len);
4652 	read_unlock(&em_tree->lock);
4653 	BUG_ON(!em);
4654 
4655 	BUG_ON(em->start > logical || em->start + em->len < logical);
4656 	map = (struct map_lookup *)em->bdev;
4657 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4658 			 BTRFS_BLOCK_GROUP_RAID6))
4659 		ret = 1;
4660 	free_extent_map(em);
4661 	return ret;
4662 }
4663 
4664 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4665 			    struct map_lookup *map, int first, int num,
4666 			    int optimal, int dev_replace_is_ongoing)
4667 {
4668 	int i;
4669 	int tolerance;
4670 	struct btrfs_device *srcdev;
4671 
4672 	if (dev_replace_is_ongoing &&
4673 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4674 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4675 		srcdev = fs_info->dev_replace.srcdev;
4676 	else
4677 		srcdev = NULL;
4678 
4679 	/*
4680 	 * try to avoid the drive that is the source drive for a
4681 	 * dev-replace procedure, only choose it if no other non-missing
4682 	 * mirror is available
4683 	 */
4684 	for (tolerance = 0; tolerance < 2; tolerance++) {
4685 		if (map->stripes[optimal].dev->bdev &&
4686 		    (tolerance || map->stripes[optimal].dev != srcdev))
4687 			return optimal;
4688 		for (i = first; i < first + num; i++) {
4689 			if (map->stripes[i].dev->bdev &&
4690 			    (tolerance || map->stripes[i].dev != srcdev))
4691 				return i;
4692 		}
4693 	}
4694 
4695 	/* we couldn't find one that doesn't fail.  Just return something
4696 	 * and the io error handling code will clean up eventually
4697 	 */
4698 	return optimal;
4699 }
4700 
4701 static inline int parity_smaller(u64 a, u64 b)
4702 {
4703 	return a > b;
4704 }
4705 
4706 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4707 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4708 {
4709 	struct btrfs_bio_stripe s;
4710 	int i;
4711 	u64 l;
4712 	int again = 1;
4713 
4714 	while (again) {
4715 		again = 0;
4716 		for (i = 0; i < bbio->num_stripes - 1; i++) {
4717 			if (parity_smaller(raid_map[i], raid_map[i+1])) {
4718 				s = bbio->stripes[i];
4719 				l = raid_map[i];
4720 				bbio->stripes[i] = bbio->stripes[i+1];
4721 				raid_map[i] = raid_map[i+1];
4722 				bbio->stripes[i+1] = s;
4723 				raid_map[i+1] = l;
4724 				again = 1;
4725 			}
4726 		}
4727 	}
4728 }
4729 
4730 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4731 			     u64 logical, u64 *length,
4732 			     struct btrfs_bio **bbio_ret,
4733 			     int mirror_num, u64 **raid_map_ret)
4734 {
4735 	struct extent_map *em;
4736 	struct map_lookup *map;
4737 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4738 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4739 	u64 offset;
4740 	u64 stripe_offset;
4741 	u64 stripe_end_offset;
4742 	u64 stripe_nr;
4743 	u64 stripe_nr_orig;
4744 	u64 stripe_nr_end;
4745 	u64 stripe_len;
4746 	u64 *raid_map = NULL;
4747 	int stripe_index;
4748 	int i;
4749 	int ret = 0;
4750 	int num_stripes;
4751 	int max_errors = 0;
4752 	struct btrfs_bio *bbio = NULL;
4753 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4754 	int dev_replace_is_ongoing = 0;
4755 	int num_alloc_stripes;
4756 	int patch_the_first_stripe_for_dev_replace = 0;
4757 	u64 physical_to_patch_in_first_stripe = 0;
4758 	u64 raid56_full_stripe_start = (u64)-1;
4759 
4760 	read_lock(&em_tree->lock);
4761 	em = lookup_extent_mapping(em_tree, logical, *length);
4762 	read_unlock(&em_tree->lock);
4763 
4764 	if (!em) {
4765 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4766 			logical, *length);
4767 		return -EINVAL;
4768 	}
4769 
4770 	if (em->start > logical || em->start + em->len < logical) {
4771 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4772 			   "found %Lu-%Lu", logical, em->start,
4773 			   em->start + em->len);
4774 		free_extent_map(em);
4775 		return -EINVAL;
4776 	}
4777 
4778 	map = (struct map_lookup *)em->bdev;
4779 	offset = logical - em->start;
4780 
4781 	stripe_len = map->stripe_len;
4782 	stripe_nr = offset;
4783 	/*
4784 	 * stripe_nr counts the total number of stripes we have to stride
4785 	 * to get to this block
4786 	 */
4787 	do_div(stripe_nr, stripe_len);
4788 
4789 	stripe_offset = stripe_nr * stripe_len;
4790 	BUG_ON(offset < stripe_offset);
4791 
4792 	/* stripe_offset is the offset of this block in its stripe*/
4793 	stripe_offset = offset - stripe_offset;
4794 
4795 	/* if we're here for raid56, we need to know the stripe aligned start */
4796 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4797 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4798 		raid56_full_stripe_start = offset;
4799 
4800 		/* allow a write of a full stripe, but make sure we don't
4801 		 * allow straddling of stripes
4802 		 */
4803 		do_div(raid56_full_stripe_start, full_stripe_len);
4804 		raid56_full_stripe_start *= full_stripe_len;
4805 	}
4806 
4807 	if (rw & REQ_DISCARD) {
4808 		/* we don't discard raid56 yet */
4809 		if (map->type &
4810 		    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4811 			ret = -EOPNOTSUPP;
4812 			goto out;
4813 		}
4814 		*length = min_t(u64, em->len - offset, *length);
4815 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4816 		u64 max_len;
4817 		/* For writes to RAID[56], allow a full stripeset across all disks.
4818 		   For other RAID types and for RAID[56] reads, just allow a single
4819 		   stripe (on a single disk). */
4820 		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4821 		    (rw & REQ_WRITE)) {
4822 			max_len = stripe_len * nr_data_stripes(map) -
4823 				(offset - raid56_full_stripe_start);
4824 		} else {
4825 			/* we limit the length of each bio to what fits in a stripe */
4826 			max_len = stripe_len - stripe_offset;
4827 		}
4828 		*length = min_t(u64, em->len - offset, max_len);
4829 	} else {
4830 		*length = em->len - offset;
4831 	}
4832 
4833 	/* This is for when we're called from btrfs_merge_bio_hook() and all
4834 	   it cares about is the length */
4835 	if (!bbio_ret)
4836 		goto out;
4837 
4838 	btrfs_dev_replace_lock(dev_replace);
4839 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4840 	if (!dev_replace_is_ongoing)
4841 		btrfs_dev_replace_unlock(dev_replace);
4842 
4843 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4844 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4845 	    dev_replace->tgtdev != NULL) {
4846 		/*
4847 		 * in dev-replace case, for repair case (that's the only
4848 		 * case where the mirror is selected explicitly when
4849 		 * calling btrfs_map_block), blocks left of the left cursor
4850 		 * can also be read from the target drive.
4851 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
4852 		 * the last one to the array of stripes. For READ, it also
4853 		 * needs to be supported using the same mirror number.
4854 		 * If the requested block is not left of the left cursor,
4855 		 * EIO is returned. This can happen because btrfs_num_copies()
4856 		 * returns one more in the dev-replace case.
4857 		 */
4858 		u64 tmp_length = *length;
4859 		struct btrfs_bio *tmp_bbio = NULL;
4860 		int tmp_num_stripes;
4861 		u64 srcdev_devid = dev_replace->srcdev->devid;
4862 		int index_srcdev = 0;
4863 		int found = 0;
4864 		u64 physical_of_found = 0;
4865 
4866 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4867 			     logical, &tmp_length, &tmp_bbio, 0, NULL);
4868 		if (ret) {
4869 			WARN_ON(tmp_bbio != NULL);
4870 			goto out;
4871 		}
4872 
4873 		tmp_num_stripes = tmp_bbio->num_stripes;
4874 		if (mirror_num > tmp_num_stripes) {
4875 			/*
4876 			 * REQ_GET_READ_MIRRORS does not contain this
4877 			 * mirror, that means that the requested area
4878 			 * is not left of the left cursor
4879 			 */
4880 			ret = -EIO;
4881 			kfree(tmp_bbio);
4882 			goto out;
4883 		}
4884 
4885 		/*
4886 		 * process the rest of the function using the mirror_num
4887 		 * of the source drive. Therefore look it up first.
4888 		 * At the end, patch the device pointer to the one of the
4889 		 * target drive.
4890 		 */
4891 		for (i = 0; i < tmp_num_stripes; i++) {
4892 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4893 				/*
4894 				 * In case of DUP, in order to keep it
4895 				 * simple, only add the mirror with the
4896 				 * lowest physical address
4897 				 */
4898 				if (found &&
4899 				    physical_of_found <=
4900 				     tmp_bbio->stripes[i].physical)
4901 					continue;
4902 				index_srcdev = i;
4903 				found = 1;
4904 				physical_of_found =
4905 					tmp_bbio->stripes[i].physical;
4906 			}
4907 		}
4908 
4909 		if (found) {
4910 			mirror_num = index_srcdev + 1;
4911 			patch_the_first_stripe_for_dev_replace = 1;
4912 			physical_to_patch_in_first_stripe = physical_of_found;
4913 		} else {
4914 			WARN_ON(1);
4915 			ret = -EIO;
4916 			kfree(tmp_bbio);
4917 			goto out;
4918 		}
4919 
4920 		kfree(tmp_bbio);
4921 	} else if (mirror_num > map->num_stripes) {
4922 		mirror_num = 0;
4923 	}
4924 
4925 	num_stripes = 1;
4926 	stripe_index = 0;
4927 	stripe_nr_orig = stripe_nr;
4928 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4929 	do_div(stripe_nr_end, map->stripe_len);
4930 	stripe_end_offset = stripe_nr_end * map->stripe_len -
4931 			    (offset + *length);
4932 
4933 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4934 		if (rw & REQ_DISCARD)
4935 			num_stripes = min_t(u64, map->num_stripes,
4936 					    stripe_nr_end - stripe_nr_orig);
4937 		stripe_index = do_div(stripe_nr, map->num_stripes);
4938 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4939 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4940 			num_stripes = map->num_stripes;
4941 		else if (mirror_num)
4942 			stripe_index = mirror_num - 1;
4943 		else {
4944 			stripe_index = find_live_mirror(fs_info, map, 0,
4945 					    map->num_stripes,
4946 					    current->pid % map->num_stripes,
4947 					    dev_replace_is_ongoing);
4948 			mirror_num = stripe_index + 1;
4949 		}
4950 
4951 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4952 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4953 			num_stripes = map->num_stripes;
4954 		} else if (mirror_num) {
4955 			stripe_index = mirror_num - 1;
4956 		} else {
4957 			mirror_num = 1;
4958 		}
4959 
4960 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4961 		int factor = map->num_stripes / map->sub_stripes;
4962 
4963 		stripe_index = do_div(stripe_nr, factor);
4964 		stripe_index *= map->sub_stripes;
4965 
4966 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4967 			num_stripes = map->sub_stripes;
4968 		else if (rw & REQ_DISCARD)
4969 			num_stripes = min_t(u64, map->sub_stripes *
4970 					    (stripe_nr_end - stripe_nr_orig),
4971 					    map->num_stripes);
4972 		else if (mirror_num)
4973 			stripe_index += mirror_num - 1;
4974 		else {
4975 			int old_stripe_index = stripe_index;
4976 			stripe_index = find_live_mirror(fs_info, map,
4977 					      stripe_index,
4978 					      map->sub_stripes, stripe_index +
4979 					      current->pid % map->sub_stripes,
4980 					      dev_replace_is_ongoing);
4981 			mirror_num = stripe_index - old_stripe_index + 1;
4982 		}
4983 
4984 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4985 				BTRFS_BLOCK_GROUP_RAID6)) {
4986 		u64 tmp;
4987 
4988 		if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4989 		    && raid_map_ret) {
4990 			int i, rot;
4991 
4992 			/* push stripe_nr back to the start of the full stripe */
4993 			stripe_nr = raid56_full_stripe_start;
4994 			do_div(stripe_nr, stripe_len);
4995 
4996 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4997 
4998 			/* RAID[56] write or recovery. Return all stripes */
4999 			num_stripes = map->num_stripes;
5000 			max_errors = nr_parity_stripes(map);
5001 
5002 			raid_map = kmalloc_array(num_stripes, sizeof(u64),
5003 					   GFP_NOFS);
5004 			if (!raid_map) {
5005 				ret = -ENOMEM;
5006 				goto out;
5007 			}
5008 
5009 			/* Work out the disk rotation on this stripe-set */
5010 			tmp = stripe_nr;
5011 			rot = do_div(tmp, num_stripes);
5012 
5013 			/* Fill in the logical address of each stripe */
5014 			tmp = stripe_nr * nr_data_stripes(map);
5015 			for (i = 0; i < nr_data_stripes(map); i++)
5016 				raid_map[(i+rot) % num_stripes] =
5017 					em->start + (tmp + i) * map->stripe_len;
5018 
5019 			raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5020 			if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5021 				raid_map[(i+rot+1) % num_stripes] =
5022 					RAID6_Q_STRIPE;
5023 
5024 			*length = map->stripe_len;
5025 			stripe_index = 0;
5026 			stripe_offset = 0;
5027 		} else {
5028 			/*
5029 			 * Mirror #0 or #1 means the original data block.
5030 			 * Mirror #2 is RAID5 parity block.
5031 			 * Mirror #3 is RAID6 Q block.
5032 			 */
5033 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5034 			if (mirror_num > 1)
5035 				stripe_index = nr_data_stripes(map) +
5036 						mirror_num - 2;
5037 
5038 			/* We distribute the parity blocks across stripes */
5039 			tmp = stripe_nr + stripe_index;
5040 			stripe_index = do_div(tmp, map->num_stripes);
5041 		}
5042 	} else {
5043 		/*
5044 		 * after this do_div call, stripe_nr is the number of stripes
5045 		 * on this device we have to walk to find the data, and
5046 		 * stripe_index is the number of our device in the stripe array
5047 		 */
5048 		stripe_index = do_div(stripe_nr, map->num_stripes);
5049 		mirror_num = stripe_index + 1;
5050 	}
5051 	BUG_ON(stripe_index >= map->num_stripes);
5052 
5053 	num_alloc_stripes = num_stripes;
5054 	if (dev_replace_is_ongoing) {
5055 		if (rw & (REQ_WRITE | REQ_DISCARD))
5056 			num_alloc_stripes <<= 1;
5057 		if (rw & REQ_GET_READ_MIRRORS)
5058 			num_alloc_stripes++;
5059 	}
5060 	bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
5061 	if (!bbio) {
5062 		kfree(raid_map);
5063 		ret = -ENOMEM;
5064 		goto out;
5065 	}
5066 	atomic_set(&bbio->error, 0);
5067 
5068 	if (rw & REQ_DISCARD) {
5069 		int factor = 0;
5070 		int sub_stripes = 0;
5071 		u64 stripes_per_dev = 0;
5072 		u32 remaining_stripes = 0;
5073 		u32 last_stripe = 0;
5074 
5075 		if (map->type &
5076 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5077 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5078 				sub_stripes = 1;
5079 			else
5080 				sub_stripes = map->sub_stripes;
5081 
5082 			factor = map->num_stripes / sub_stripes;
5083 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5084 						      stripe_nr_orig,
5085 						      factor,
5086 						      &remaining_stripes);
5087 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5088 			last_stripe *= sub_stripes;
5089 		}
5090 
5091 		for (i = 0; i < num_stripes; i++) {
5092 			bbio->stripes[i].physical =
5093 				map->stripes[stripe_index].physical +
5094 				stripe_offset + stripe_nr * map->stripe_len;
5095 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5096 
5097 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5098 					 BTRFS_BLOCK_GROUP_RAID10)) {
5099 				bbio->stripes[i].length = stripes_per_dev *
5100 							  map->stripe_len;
5101 
5102 				if (i / sub_stripes < remaining_stripes)
5103 					bbio->stripes[i].length +=
5104 						map->stripe_len;
5105 
5106 				/*
5107 				 * Special for the first stripe and
5108 				 * the last stripe:
5109 				 *
5110 				 * |-------|...|-------|
5111 				 *     |----------|
5112 				 *    off     end_off
5113 				 */
5114 				if (i < sub_stripes)
5115 					bbio->stripes[i].length -=
5116 						stripe_offset;
5117 
5118 				if (stripe_index >= last_stripe &&
5119 				    stripe_index <= (last_stripe +
5120 						     sub_stripes - 1))
5121 					bbio->stripes[i].length -=
5122 						stripe_end_offset;
5123 
5124 				if (i == sub_stripes - 1)
5125 					stripe_offset = 0;
5126 			} else
5127 				bbio->stripes[i].length = *length;
5128 
5129 			stripe_index++;
5130 			if (stripe_index == map->num_stripes) {
5131 				/* This could only happen for RAID0/10 */
5132 				stripe_index = 0;
5133 				stripe_nr++;
5134 			}
5135 		}
5136 	} else {
5137 		for (i = 0; i < num_stripes; i++) {
5138 			bbio->stripes[i].physical =
5139 				map->stripes[stripe_index].physical +
5140 				stripe_offset +
5141 				stripe_nr * map->stripe_len;
5142 			bbio->stripes[i].dev =
5143 				map->stripes[stripe_index].dev;
5144 			stripe_index++;
5145 		}
5146 	}
5147 
5148 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5149 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5150 				 BTRFS_BLOCK_GROUP_RAID10 |
5151 				 BTRFS_BLOCK_GROUP_RAID5 |
5152 				 BTRFS_BLOCK_GROUP_DUP)) {
5153 			max_errors = 1;
5154 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5155 			max_errors = 2;
5156 		}
5157 	}
5158 
5159 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5160 	    dev_replace->tgtdev != NULL) {
5161 		int index_where_to_add;
5162 		u64 srcdev_devid = dev_replace->srcdev->devid;
5163 
5164 		/*
5165 		 * duplicate the write operations while the dev replace
5166 		 * procedure is running. Since the copying of the old disk
5167 		 * to the new disk takes place at run time while the
5168 		 * filesystem is mounted writable, the regular write
5169 		 * operations to the old disk have to be duplicated to go
5170 		 * to the new disk as well.
5171 		 * Note that device->missing is handled by the caller, and
5172 		 * that the write to the old disk is already set up in the
5173 		 * stripes array.
5174 		 */
5175 		index_where_to_add = num_stripes;
5176 		for (i = 0; i < num_stripes; i++) {
5177 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5178 				/* write to new disk, too */
5179 				struct btrfs_bio_stripe *new =
5180 					bbio->stripes + index_where_to_add;
5181 				struct btrfs_bio_stripe *old =
5182 					bbio->stripes + i;
5183 
5184 				new->physical = old->physical;
5185 				new->length = old->length;
5186 				new->dev = dev_replace->tgtdev;
5187 				index_where_to_add++;
5188 				max_errors++;
5189 			}
5190 		}
5191 		num_stripes = index_where_to_add;
5192 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5193 		   dev_replace->tgtdev != NULL) {
5194 		u64 srcdev_devid = dev_replace->srcdev->devid;
5195 		int index_srcdev = 0;
5196 		int found = 0;
5197 		u64 physical_of_found = 0;
5198 
5199 		/*
5200 		 * During the dev-replace procedure, the target drive can
5201 		 * also be used to read data in case it is needed to repair
5202 		 * a corrupt block elsewhere. This is possible if the
5203 		 * requested area is left of the left cursor. In this area,
5204 		 * the target drive is a full copy of the source drive.
5205 		 */
5206 		for (i = 0; i < num_stripes; i++) {
5207 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5208 				/*
5209 				 * In case of DUP, in order to keep it
5210 				 * simple, only add the mirror with the
5211 				 * lowest physical address
5212 				 */
5213 				if (found &&
5214 				    physical_of_found <=
5215 				     bbio->stripes[i].physical)
5216 					continue;
5217 				index_srcdev = i;
5218 				found = 1;
5219 				physical_of_found = bbio->stripes[i].physical;
5220 			}
5221 		}
5222 		if (found) {
5223 			u64 length = map->stripe_len;
5224 
5225 			if (physical_of_found + length <=
5226 			    dev_replace->cursor_left) {
5227 				struct btrfs_bio_stripe *tgtdev_stripe =
5228 					bbio->stripes + num_stripes;
5229 
5230 				tgtdev_stripe->physical = physical_of_found;
5231 				tgtdev_stripe->length =
5232 					bbio->stripes[index_srcdev].length;
5233 				tgtdev_stripe->dev = dev_replace->tgtdev;
5234 
5235 				num_stripes++;
5236 			}
5237 		}
5238 	}
5239 
5240 	*bbio_ret = bbio;
5241 	bbio->num_stripes = num_stripes;
5242 	bbio->max_errors = max_errors;
5243 	bbio->mirror_num = mirror_num;
5244 
5245 	/*
5246 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5247 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5248 	 * available as a mirror
5249 	 */
5250 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5251 		WARN_ON(num_stripes > 1);
5252 		bbio->stripes[0].dev = dev_replace->tgtdev;
5253 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5254 		bbio->mirror_num = map->num_stripes + 1;
5255 	}
5256 	if (raid_map) {
5257 		sort_parity_stripes(bbio, raid_map);
5258 		*raid_map_ret = raid_map;
5259 	}
5260 out:
5261 	if (dev_replace_is_ongoing)
5262 		btrfs_dev_replace_unlock(dev_replace);
5263 	free_extent_map(em);
5264 	return ret;
5265 }
5266 
5267 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5268 		      u64 logical, u64 *length,
5269 		      struct btrfs_bio **bbio_ret, int mirror_num)
5270 {
5271 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5272 				 mirror_num, NULL);
5273 }
5274 
5275 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5276 		     u64 chunk_start, u64 physical, u64 devid,
5277 		     u64 **logical, int *naddrs, int *stripe_len)
5278 {
5279 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5280 	struct extent_map *em;
5281 	struct map_lookup *map;
5282 	u64 *buf;
5283 	u64 bytenr;
5284 	u64 length;
5285 	u64 stripe_nr;
5286 	u64 rmap_len;
5287 	int i, j, nr = 0;
5288 
5289 	read_lock(&em_tree->lock);
5290 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5291 	read_unlock(&em_tree->lock);
5292 
5293 	if (!em) {
5294 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5295 		       chunk_start);
5296 		return -EIO;
5297 	}
5298 
5299 	if (em->start != chunk_start) {
5300 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5301 		       em->start, chunk_start);
5302 		free_extent_map(em);
5303 		return -EIO;
5304 	}
5305 	map = (struct map_lookup *)em->bdev;
5306 
5307 	length = em->len;
5308 	rmap_len = map->stripe_len;
5309 
5310 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5311 		do_div(length, map->num_stripes / map->sub_stripes);
5312 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5313 		do_div(length, map->num_stripes);
5314 	else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5315 			      BTRFS_BLOCK_GROUP_RAID6)) {
5316 		do_div(length, nr_data_stripes(map));
5317 		rmap_len = map->stripe_len * nr_data_stripes(map);
5318 	}
5319 
5320 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5321 	BUG_ON(!buf); /* -ENOMEM */
5322 
5323 	for (i = 0; i < map->num_stripes; i++) {
5324 		if (devid && map->stripes[i].dev->devid != devid)
5325 			continue;
5326 		if (map->stripes[i].physical > physical ||
5327 		    map->stripes[i].physical + length <= physical)
5328 			continue;
5329 
5330 		stripe_nr = physical - map->stripes[i].physical;
5331 		do_div(stripe_nr, map->stripe_len);
5332 
5333 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5334 			stripe_nr = stripe_nr * map->num_stripes + i;
5335 			do_div(stripe_nr, map->sub_stripes);
5336 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5337 			stripe_nr = stripe_nr * map->num_stripes + i;
5338 		} /* else if RAID[56], multiply by nr_data_stripes().
5339 		   * Alternatively, just use rmap_len below instead of
5340 		   * map->stripe_len */
5341 
5342 		bytenr = chunk_start + stripe_nr * rmap_len;
5343 		WARN_ON(nr >= map->num_stripes);
5344 		for (j = 0; j < nr; j++) {
5345 			if (buf[j] == bytenr)
5346 				break;
5347 		}
5348 		if (j == nr) {
5349 			WARN_ON(nr >= map->num_stripes);
5350 			buf[nr++] = bytenr;
5351 		}
5352 	}
5353 
5354 	*logical = buf;
5355 	*naddrs = nr;
5356 	*stripe_len = rmap_len;
5357 
5358 	free_extent_map(em);
5359 	return 0;
5360 }
5361 
5362 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5363 {
5364 	if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5365 		bio_endio_nodec(bio, err);
5366 	else
5367 		bio_endio(bio, err);
5368 	kfree(bbio);
5369 }
5370 
5371 static void btrfs_end_bio(struct bio *bio, int err)
5372 {
5373 	struct btrfs_bio *bbio = bio->bi_private;
5374 	struct btrfs_device *dev = bbio->stripes[0].dev;
5375 	int is_orig_bio = 0;
5376 
5377 	if (err) {
5378 		atomic_inc(&bbio->error);
5379 		if (err == -EIO || err == -EREMOTEIO) {
5380 			unsigned int stripe_index =
5381 				btrfs_io_bio(bio)->stripe_index;
5382 
5383 			BUG_ON(stripe_index >= bbio->num_stripes);
5384 			dev = bbio->stripes[stripe_index].dev;
5385 			if (dev->bdev) {
5386 				if (bio->bi_rw & WRITE)
5387 					btrfs_dev_stat_inc(dev,
5388 						BTRFS_DEV_STAT_WRITE_ERRS);
5389 				else
5390 					btrfs_dev_stat_inc(dev,
5391 						BTRFS_DEV_STAT_READ_ERRS);
5392 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5393 					btrfs_dev_stat_inc(dev,
5394 						BTRFS_DEV_STAT_FLUSH_ERRS);
5395 				btrfs_dev_stat_print_on_error(dev);
5396 			}
5397 		}
5398 	}
5399 
5400 	if (bio == bbio->orig_bio)
5401 		is_orig_bio = 1;
5402 
5403 	btrfs_bio_counter_dec(bbio->fs_info);
5404 
5405 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5406 		if (!is_orig_bio) {
5407 			bio_put(bio);
5408 			bio = bbio->orig_bio;
5409 		}
5410 
5411 		bio->bi_private = bbio->private;
5412 		bio->bi_end_io = bbio->end_io;
5413 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5414 		/* only send an error to the higher layers if it is
5415 		 * beyond the tolerance of the btrfs bio
5416 		 */
5417 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5418 			err = -EIO;
5419 		} else {
5420 			/*
5421 			 * this bio is actually up to date, we didn't
5422 			 * go over the max number of errors
5423 			 */
5424 			set_bit(BIO_UPTODATE, &bio->bi_flags);
5425 			err = 0;
5426 		}
5427 
5428 		btrfs_end_bbio(bbio, bio, err);
5429 	} else if (!is_orig_bio) {
5430 		bio_put(bio);
5431 	}
5432 }
5433 
5434 /*
5435  * see run_scheduled_bios for a description of why bios are collected for
5436  * async submit.
5437  *
5438  * This will add one bio to the pending list for a device and make sure
5439  * the work struct is scheduled.
5440  */
5441 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5442 					struct btrfs_device *device,
5443 					int rw, struct bio *bio)
5444 {
5445 	int should_queue = 1;
5446 	struct btrfs_pending_bios *pending_bios;
5447 
5448 	if (device->missing || !device->bdev) {
5449 		bio_endio(bio, -EIO);
5450 		return;
5451 	}
5452 
5453 	/* don't bother with additional async steps for reads, right now */
5454 	if (!(rw & REQ_WRITE)) {
5455 		bio_get(bio);
5456 		btrfsic_submit_bio(rw, bio);
5457 		bio_put(bio);
5458 		return;
5459 	}
5460 
5461 	/*
5462 	 * nr_async_bios allows us to reliably return congestion to the
5463 	 * higher layers.  Otherwise, the async bio makes it appear we have
5464 	 * made progress against dirty pages when we've really just put it
5465 	 * on a queue for later
5466 	 */
5467 	atomic_inc(&root->fs_info->nr_async_bios);
5468 	WARN_ON(bio->bi_next);
5469 	bio->bi_next = NULL;
5470 	bio->bi_rw |= rw;
5471 
5472 	spin_lock(&device->io_lock);
5473 	if (bio->bi_rw & REQ_SYNC)
5474 		pending_bios = &device->pending_sync_bios;
5475 	else
5476 		pending_bios = &device->pending_bios;
5477 
5478 	if (pending_bios->tail)
5479 		pending_bios->tail->bi_next = bio;
5480 
5481 	pending_bios->tail = bio;
5482 	if (!pending_bios->head)
5483 		pending_bios->head = bio;
5484 	if (device->running_pending)
5485 		should_queue = 0;
5486 
5487 	spin_unlock(&device->io_lock);
5488 
5489 	if (should_queue)
5490 		btrfs_queue_work(root->fs_info->submit_workers,
5491 				 &device->work);
5492 }
5493 
5494 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5495 		       sector_t sector)
5496 {
5497 	struct bio_vec *prev;
5498 	struct request_queue *q = bdev_get_queue(bdev);
5499 	unsigned int max_sectors = queue_max_sectors(q);
5500 	struct bvec_merge_data bvm = {
5501 		.bi_bdev = bdev,
5502 		.bi_sector = sector,
5503 		.bi_rw = bio->bi_rw,
5504 	};
5505 
5506 	if (WARN_ON(bio->bi_vcnt == 0))
5507 		return 1;
5508 
5509 	prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5510 	if (bio_sectors(bio) > max_sectors)
5511 		return 0;
5512 
5513 	if (!q->merge_bvec_fn)
5514 		return 1;
5515 
5516 	bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5517 	if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5518 		return 0;
5519 	return 1;
5520 }
5521 
5522 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5523 			      struct bio *bio, u64 physical, int dev_nr,
5524 			      int rw, int async)
5525 {
5526 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5527 
5528 	bio->bi_private = bbio;
5529 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5530 	bio->bi_end_io = btrfs_end_bio;
5531 	bio->bi_iter.bi_sector = physical >> 9;
5532 #ifdef DEBUG
5533 	{
5534 		struct rcu_string *name;
5535 
5536 		rcu_read_lock();
5537 		name = rcu_dereference(dev->name);
5538 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5539 			 "(%s id %llu), size=%u\n", rw,
5540 			 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5541 			 name->str, dev->devid, bio->bi_size);
5542 		rcu_read_unlock();
5543 	}
5544 #endif
5545 	bio->bi_bdev = dev->bdev;
5546 
5547 	btrfs_bio_counter_inc_noblocked(root->fs_info);
5548 
5549 	if (async)
5550 		btrfs_schedule_bio(root, dev, rw, bio);
5551 	else
5552 		btrfsic_submit_bio(rw, bio);
5553 }
5554 
5555 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5556 			      struct bio *first_bio, struct btrfs_device *dev,
5557 			      int dev_nr, int rw, int async)
5558 {
5559 	struct bio_vec *bvec = first_bio->bi_io_vec;
5560 	struct bio *bio;
5561 	int nr_vecs = bio_get_nr_vecs(dev->bdev);
5562 	u64 physical = bbio->stripes[dev_nr].physical;
5563 
5564 again:
5565 	bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5566 	if (!bio)
5567 		return -ENOMEM;
5568 
5569 	while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5570 		if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5571 				 bvec->bv_offset) < bvec->bv_len) {
5572 			u64 len = bio->bi_iter.bi_size;
5573 
5574 			atomic_inc(&bbio->stripes_pending);
5575 			submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5576 					  rw, async);
5577 			physical += len;
5578 			goto again;
5579 		}
5580 		bvec++;
5581 	}
5582 
5583 	submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5584 	return 0;
5585 }
5586 
5587 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5588 {
5589 	atomic_inc(&bbio->error);
5590 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5591 		/* Shoud be the original bio. */
5592 		WARN_ON(bio != bbio->orig_bio);
5593 
5594 		bio->bi_private = bbio->private;
5595 		bio->bi_end_io = bbio->end_io;
5596 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5597 		bio->bi_iter.bi_sector = logical >> 9;
5598 
5599 		btrfs_end_bbio(bbio, bio, -EIO);
5600 	}
5601 }
5602 
5603 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5604 		  int mirror_num, int async_submit)
5605 {
5606 	struct btrfs_device *dev;
5607 	struct bio *first_bio = bio;
5608 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5609 	u64 length = 0;
5610 	u64 map_length;
5611 	u64 *raid_map = NULL;
5612 	int ret;
5613 	int dev_nr = 0;
5614 	int total_devs = 1;
5615 	struct btrfs_bio *bbio = NULL;
5616 
5617 	length = bio->bi_iter.bi_size;
5618 	map_length = length;
5619 
5620 	btrfs_bio_counter_inc_blocked(root->fs_info);
5621 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5622 			      mirror_num, &raid_map);
5623 	if (ret) {
5624 		btrfs_bio_counter_dec(root->fs_info);
5625 		return ret;
5626 	}
5627 
5628 	total_devs = bbio->num_stripes;
5629 	bbio->orig_bio = first_bio;
5630 	bbio->private = first_bio->bi_private;
5631 	bbio->end_io = first_bio->bi_end_io;
5632 	bbio->fs_info = root->fs_info;
5633 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5634 
5635 	if (raid_map) {
5636 		/* In this case, map_length has been set to the length of
5637 		   a single stripe; not the whole write */
5638 		if (rw & WRITE) {
5639 			ret = raid56_parity_write(root, bio, bbio,
5640 						  raid_map, map_length);
5641 		} else {
5642 			ret = raid56_parity_recover(root, bio, bbio,
5643 						    raid_map, map_length,
5644 						    mirror_num);
5645 		}
5646 		/*
5647 		 * FIXME, replace dosen't support raid56 yet, please fix
5648 		 * it in the future.
5649 		 */
5650 		btrfs_bio_counter_dec(root->fs_info);
5651 		return ret;
5652 	}
5653 
5654 	if (map_length < length) {
5655 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5656 			logical, length, map_length);
5657 		BUG();
5658 	}
5659 
5660 	while (dev_nr < total_devs) {
5661 		dev = bbio->stripes[dev_nr].dev;
5662 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5663 			bbio_error(bbio, first_bio, logical);
5664 			dev_nr++;
5665 			continue;
5666 		}
5667 
5668 		/*
5669 		 * Check and see if we're ok with this bio based on it's size
5670 		 * and offset with the given device.
5671 		 */
5672 		if (!bio_size_ok(dev->bdev, first_bio,
5673 				 bbio->stripes[dev_nr].physical >> 9)) {
5674 			ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5675 						 dev_nr, rw, async_submit);
5676 			BUG_ON(ret);
5677 			dev_nr++;
5678 			continue;
5679 		}
5680 
5681 		if (dev_nr < total_devs - 1) {
5682 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5683 			BUG_ON(!bio); /* -ENOMEM */
5684 		} else {
5685 			bio = first_bio;
5686 			bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5687 		}
5688 
5689 		submit_stripe_bio(root, bbio, bio,
5690 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
5691 				  async_submit);
5692 		dev_nr++;
5693 	}
5694 	btrfs_bio_counter_dec(root->fs_info);
5695 	return 0;
5696 }
5697 
5698 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5699 				       u8 *uuid, u8 *fsid)
5700 {
5701 	struct btrfs_device *device;
5702 	struct btrfs_fs_devices *cur_devices;
5703 
5704 	cur_devices = fs_info->fs_devices;
5705 	while (cur_devices) {
5706 		if (!fsid ||
5707 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5708 			device = __find_device(&cur_devices->devices,
5709 					       devid, uuid);
5710 			if (device)
5711 				return device;
5712 		}
5713 		cur_devices = cur_devices->seed;
5714 	}
5715 	return NULL;
5716 }
5717 
5718 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5719 					    u64 devid, u8 *dev_uuid)
5720 {
5721 	struct btrfs_device *device;
5722 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5723 
5724 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5725 	if (IS_ERR(device))
5726 		return NULL;
5727 
5728 	list_add(&device->dev_list, &fs_devices->devices);
5729 	device->fs_devices = fs_devices;
5730 	fs_devices->num_devices++;
5731 
5732 	device->missing = 1;
5733 	fs_devices->missing_devices++;
5734 
5735 	return device;
5736 }
5737 
5738 /**
5739  * btrfs_alloc_device - allocate struct btrfs_device
5740  * @fs_info:	used only for generating a new devid, can be NULL if
5741  *		devid is provided (i.e. @devid != NULL).
5742  * @devid:	a pointer to devid for this device.  If NULL a new devid
5743  *		is generated.
5744  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
5745  *		is generated.
5746  *
5747  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5748  * on error.  Returned struct is not linked onto any lists and can be
5749  * destroyed with kfree() right away.
5750  */
5751 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5752 					const u64 *devid,
5753 					const u8 *uuid)
5754 {
5755 	struct btrfs_device *dev;
5756 	u64 tmp;
5757 
5758 	if (WARN_ON(!devid && !fs_info))
5759 		return ERR_PTR(-EINVAL);
5760 
5761 	dev = __alloc_device();
5762 	if (IS_ERR(dev))
5763 		return dev;
5764 
5765 	if (devid)
5766 		tmp = *devid;
5767 	else {
5768 		int ret;
5769 
5770 		ret = find_next_devid(fs_info, &tmp);
5771 		if (ret) {
5772 			kfree(dev);
5773 			return ERR_PTR(ret);
5774 		}
5775 	}
5776 	dev->devid = tmp;
5777 
5778 	if (uuid)
5779 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5780 	else
5781 		generate_random_uuid(dev->uuid);
5782 
5783 	btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
5784 
5785 	return dev;
5786 }
5787 
5788 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5789 			  struct extent_buffer *leaf,
5790 			  struct btrfs_chunk *chunk)
5791 {
5792 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5793 	struct map_lookup *map;
5794 	struct extent_map *em;
5795 	u64 logical;
5796 	u64 length;
5797 	u64 devid;
5798 	u8 uuid[BTRFS_UUID_SIZE];
5799 	int num_stripes;
5800 	int ret;
5801 	int i;
5802 
5803 	logical = key->offset;
5804 	length = btrfs_chunk_length(leaf, chunk);
5805 
5806 	read_lock(&map_tree->map_tree.lock);
5807 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5808 	read_unlock(&map_tree->map_tree.lock);
5809 
5810 	/* already mapped? */
5811 	if (em && em->start <= logical && em->start + em->len > logical) {
5812 		free_extent_map(em);
5813 		return 0;
5814 	} else if (em) {
5815 		free_extent_map(em);
5816 	}
5817 
5818 	em = alloc_extent_map();
5819 	if (!em)
5820 		return -ENOMEM;
5821 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5822 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5823 	if (!map) {
5824 		free_extent_map(em);
5825 		return -ENOMEM;
5826 	}
5827 
5828 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5829 	em->bdev = (struct block_device *)map;
5830 	em->start = logical;
5831 	em->len = length;
5832 	em->orig_start = 0;
5833 	em->block_start = 0;
5834 	em->block_len = em->len;
5835 
5836 	map->num_stripes = num_stripes;
5837 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
5838 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
5839 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5840 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5841 	map->type = btrfs_chunk_type(leaf, chunk);
5842 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5843 	for (i = 0; i < num_stripes; i++) {
5844 		map->stripes[i].physical =
5845 			btrfs_stripe_offset_nr(leaf, chunk, i);
5846 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5847 		read_extent_buffer(leaf, uuid, (unsigned long)
5848 				   btrfs_stripe_dev_uuid_nr(chunk, i),
5849 				   BTRFS_UUID_SIZE);
5850 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5851 							uuid, NULL);
5852 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5853 			free_extent_map(em);
5854 			return -EIO;
5855 		}
5856 		if (!map->stripes[i].dev) {
5857 			map->stripes[i].dev =
5858 				add_missing_dev(root, devid, uuid);
5859 			if (!map->stripes[i].dev) {
5860 				free_extent_map(em);
5861 				return -EIO;
5862 			}
5863 		}
5864 		map->stripes[i].dev->in_fs_metadata = 1;
5865 	}
5866 
5867 	write_lock(&map_tree->map_tree.lock);
5868 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5869 	write_unlock(&map_tree->map_tree.lock);
5870 	BUG_ON(ret); /* Tree corruption */
5871 	free_extent_map(em);
5872 
5873 	return 0;
5874 }
5875 
5876 static void fill_device_from_item(struct extent_buffer *leaf,
5877 				 struct btrfs_dev_item *dev_item,
5878 				 struct btrfs_device *device)
5879 {
5880 	unsigned long ptr;
5881 
5882 	device->devid = btrfs_device_id(leaf, dev_item);
5883 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5884 	device->total_bytes = device->disk_total_bytes;
5885 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5886 	device->type = btrfs_device_type(leaf, dev_item);
5887 	device->io_align = btrfs_device_io_align(leaf, dev_item);
5888 	device->io_width = btrfs_device_io_width(leaf, dev_item);
5889 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5890 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5891 	device->is_tgtdev_for_dev_replace = 0;
5892 
5893 	ptr = btrfs_device_uuid(dev_item);
5894 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5895 }
5896 
5897 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5898 {
5899 	struct btrfs_fs_devices *fs_devices;
5900 	int ret;
5901 
5902 	BUG_ON(!mutex_is_locked(&uuid_mutex));
5903 
5904 	fs_devices = root->fs_info->fs_devices->seed;
5905 	while (fs_devices) {
5906 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5907 			ret = 0;
5908 			goto out;
5909 		}
5910 		fs_devices = fs_devices->seed;
5911 	}
5912 
5913 	fs_devices = find_fsid(fsid);
5914 	if (!fs_devices) {
5915 		ret = -ENOENT;
5916 		goto out;
5917 	}
5918 
5919 	fs_devices = clone_fs_devices(fs_devices);
5920 	if (IS_ERR(fs_devices)) {
5921 		ret = PTR_ERR(fs_devices);
5922 		goto out;
5923 	}
5924 
5925 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5926 				   root->fs_info->bdev_holder);
5927 	if (ret) {
5928 		free_fs_devices(fs_devices);
5929 		goto out;
5930 	}
5931 
5932 	if (!fs_devices->seeding) {
5933 		__btrfs_close_devices(fs_devices);
5934 		free_fs_devices(fs_devices);
5935 		ret = -EINVAL;
5936 		goto out;
5937 	}
5938 
5939 	fs_devices->seed = root->fs_info->fs_devices->seed;
5940 	root->fs_info->fs_devices->seed = fs_devices;
5941 out:
5942 	return ret;
5943 }
5944 
5945 static int read_one_dev(struct btrfs_root *root,
5946 			struct extent_buffer *leaf,
5947 			struct btrfs_dev_item *dev_item)
5948 {
5949 	struct btrfs_device *device;
5950 	u64 devid;
5951 	int ret;
5952 	u8 fs_uuid[BTRFS_UUID_SIZE];
5953 	u8 dev_uuid[BTRFS_UUID_SIZE];
5954 
5955 	devid = btrfs_device_id(leaf, dev_item);
5956 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5957 			   BTRFS_UUID_SIZE);
5958 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5959 			   BTRFS_UUID_SIZE);
5960 
5961 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5962 		ret = open_seed_devices(root, fs_uuid);
5963 		if (ret && !btrfs_test_opt(root, DEGRADED))
5964 			return ret;
5965 	}
5966 
5967 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5968 	if (!device || !device->bdev) {
5969 		if (!btrfs_test_opt(root, DEGRADED))
5970 			return -EIO;
5971 
5972 		if (!device) {
5973 			btrfs_warn(root->fs_info, "devid %llu missing", devid);
5974 			device = add_missing_dev(root, devid, dev_uuid);
5975 			if (!device)
5976 				return -ENOMEM;
5977 		} else if (!device->missing) {
5978 			/*
5979 			 * this happens when a device that was properly setup
5980 			 * in the device info lists suddenly goes bad.
5981 			 * device->bdev is NULL, and so we have to set
5982 			 * device->missing to one here
5983 			 */
5984 			root->fs_info->fs_devices->missing_devices++;
5985 			device->missing = 1;
5986 		}
5987 	}
5988 
5989 	if (device->fs_devices != root->fs_info->fs_devices) {
5990 		BUG_ON(device->writeable);
5991 		if (device->generation !=
5992 		    btrfs_device_generation(leaf, dev_item))
5993 			return -EINVAL;
5994 	}
5995 
5996 	fill_device_from_item(leaf, dev_item, device);
5997 	device->in_fs_metadata = 1;
5998 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5999 		device->fs_devices->total_rw_bytes += device->total_bytes;
6000 		spin_lock(&root->fs_info->free_chunk_lock);
6001 		root->fs_info->free_chunk_space += device->total_bytes -
6002 			device->bytes_used;
6003 		spin_unlock(&root->fs_info->free_chunk_lock);
6004 	}
6005 	ret = 0;
6006 	return ret;
6007 }
6008 
6009 int btrfs_read_sys_array(struct btrfs_root *root)
6010 {
6011 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6012 	struct extent_buffer *sb;
6013 	struct btrfs_disk_key *disk_key;
6014 	struct btrfs_chunk *chunk;
6015 	u8 *ptr;
6016 	unsigned long sb_ptr;
6017 	int ret = 0;
6018 	u32 num_stripes;
6019 	u32 array_size;
6020 	u32 len = 0;
6021 	u32 cur;
6022 	struct btrfs_key key;
6023 
6024 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
6025 					  BTRFS_SUPER_INFO_SIZE);
6026 	if (!sb)
6027 		return -ENOMEM;
6028 	btrfs_set_buffer_uptodate(sb);
6029 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6030 	/*
6031 	 * The sb extent buffer is artifical and just used to read the system array.
6032 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6033 	 * pages up-to-date when the page is larger: extent does not cover the
6034 	 * whole page and consequently check_page_uptodate does not find all
6035 	 * the page's extents up-to-date (the hole beyond sb),
6036 	 * write_extent_buffer then triggers a WARN_ON.
6037 	 *
6038 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6039 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6040 	 * to silence the warning eg. on PowerPC 64.
6041 	 */
6042 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6043 		SetPageUptodate(sb->pages[0]);
6044 
6045 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6046 	array_size = btrfs_super_sys_array_size(super_copy);
6047 
6048 	ptr = super_copy->sys_chunk_array;
6049 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6050 	cur = 0;
6051 
6052 	while (cur < array_size) {
6053 		disk_key = (struct btrfs_disk_key *)ptr;
6054 		btrfs_disk_key_to_cpu(&key, disk_key);
6055 
6056 		len = sizeof(*disk_key); ptr += len;
6057 		sb_ptr += len;
6058 		cur += len;
6059 
6060 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6061 			chunk = (struct btrfs_chunk *)sb_ptr;
6062 			ret = read_one_chunk(root, &key, sb, chunk);
6063 			if (ret)
6064 				break;
6065 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6066 			len = btrfs_chunk_item_size(num_stripes);
6067 		} else {
6068 			ret = -EIO;
6069 			break;
6070 		}
6071 		ptr += len;
6072 		sb_ptr += len;
6073 		cur += len;
6074 	}
6075 	free_extent_buffer(sb);
6076 	return ret;
6077 }
6078 
6079 int btrfs_read_chunk_tree(struct btrfs_root *root)
6080 {
6081 	struct btrfs_path *path;
6082 	struct extent_buffer *leaf;
6083 	struct btrfs_key key;
6084 	struct btrfs_key found_key;
6085 	int ret;
6086 	int slot;
6087 
6088 	root = root->fs_info->chunk_root;
6089 
6090 	path = btrfs_alloc_path();
6091 	if (!path)
6092 		return -ENOMEM;
6093 
6094 	mutex_lock(&uuid_mutex);
6095 	lock_chunks(root);
6096 
6097 	/*
6098 	 * Read all device items, and then all the chunk items. All
6099 	 * device items are found before any chunk item (their object id
6100 	 * is smaller than the lowest possible object id for a chunk
6101 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6102 	 */
6103 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6104 	key.offset = 0;
6105 	key.type = 0;
6106 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6107 	if (ret < 0)
6108 		goto error;
6109 	while (1) {
6110 		leaf = path->nodes[0];
6111 		slot = path->slots[0];
6112 		if (slot >= btrfs_header_nritems(leaf)) {
6113 			ret = btrfs_next_leaf(root, path);
6114 			if (ret == 0)
6115 				continue;
6116 			if (ret < 0)
6117 				goto error;
6118 			break;
6119 		}
6120 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6121 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6122 			struct btrfs_dev_item *dev_item;
6123 			dev_item = btrfs_item_ptr(leaf, slot,
6124 						  struct btrfs_dev_item);
6125 			ret = read_one_dev(root, leaf, dev_item);
6126 			if (ret)
6127 				goto error;
6128 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6129 			struct btrfs_chunk *chunk;
6130 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6131 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6132 			if (ret)
6133 				goto error;
6134 		}
6135 		path->slots[0]++;
6136 	}
6137 	ret = 0;
6138 error:
6139 	unlock_chunks(root);
6140 	mutex_unlock(&uuid_mutex);
6141 
6142 	btrfs_free_path(path);
6143 	return ret;
6144 }
6145 
6146 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6147 {
6148 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6149 	struct btrfs_device *device;
6150 
6151 	while (fs_devices) {
6152 		mutex_lock(&fs_devices->device_list_mutex);
6153 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6154 			device->dev_root = fs_info->dev_root;
6155 		mutex_unlock(&fs_devices->device_list_mutex);
6156 
6157 		fs_devices = fs_devices->seed;
6158 	}
6159 }
6160 
6161 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6162 {
6163 	int i;
6164 
6165 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6166 		btrfs_dev_stat_reset(dev, i);
6167 }
6168 
6169 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6170 {
6171 	struct btrfs_key key;
6172 	struct btrfs_key found_key;
6173 	struct btrfs_root *dev_root = fs_info->dev_root;
6174 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6175 	struct extent_buffer *eb;
6176 	int slot;
6177 	int ret = 0;
6178 	struct btrfs_device *device;
6179 	struct btrfs_path *path = NULL;
6180 	int i;
6181 
6182 	path = btrfs_alloc_path();
6183 	if (!path) {
6184 		ret = -ENOMEM;
6185 		goto out;
6186 	}
6187 
6188 	mutex_lock(&fs_devices->device_list_mutex);
6189 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6190 		int item_size;
6191 		struct btrfs_dev_stats_item *ptr;
6192 
6193 		key.objectid = 0;
6194 		key.type = BTRFS_DEV_STATS_KEY;
6195 		key.offset = device->devid;
6196 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6197 		if (ret) {
6198 			__btrfs_reset_dev_stats(device);
6199 			device->dev_stats_valid = 1;
6200 			btrfs_release_path(path);
6201 			continue;
6202 		}
6203 		slot = path->slots[0];
6204 		eb = path->nodes[0];
6205 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6206 		item_size = btrfs_item_size_nr(eb, slot);
6207 
6208 		ptr = btrfs_item_ptr(eb, slot,
6209 				     struct btrfs_dev_stats_item);
6210 
6211 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6212 			if (item_size >= (1 + i) * sizeof(__le64))
6213 				btrfs_dev_stat_set(device, i,
6214 					btrfs_dev_stats_value(eb, ptr, i));
6215 			else
6216 				btrfs_dev_stat_reset(device, i);
6217 		}
6218 
6219 		device->dev_stats_valid = 1;
6220 		btrfs_dev_stat_print_on_load(device);
6221 		btrfs_release_path(path);
6222 	}
6223 	mutex_unlock(&fs_devices->device_list_mutex);
6224 
6225 out:
6226 	btrfs_free_path(path);
6227 	return ret < 0 ? ret : 0;
6228 }
6229 
6230 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6231 				struct btrfs_root *dev_root,
6232 				struct btrfs_device *device)
6233 {
6234 	struct btrfs_path *path;
6235 	struct btrfs_key key;
6236 	struct extent_buffer *eb;
6237 	struct btrfs_dev_stats_item *ptr;
6238 	int ret;
6239 	int i;
6240 
6241 	key.objectid = 0;
6242 	key.type = BTRFS_DEV_STATS_KEY;
6243 	key.offset = device->devid;
6244 
6245 	path = btrfs_alloc_path();
6246 	BUG_ON(!path);
6247 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6248 	if (ret < 0) {
6249 		printk_in_rcu(KERN_WARNING "BTRFS: "
6250 			"error %d while searching for dev_stats item for device %s!\n",
6251 			      ret, rcu_str_deref(device->name));
6252 		goto out;
6253 	}
6254 
6255 	if (ret == 0 &&
6256 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6257 		/* need to delete old one and insert a new one */
6258 		ret = btrfs_del_item(trans, dev_root, path);
6259 		if (ret != 0) {
6260 			printk_in_rcu(KERN_WARNING "BTRFS: "
6261 				"delete too small dev_stats item for device %s failed %d!\n",
6262 				      rcu_str_deref(device->name), ret);
6263 			goto out;
6264 		}
6265 		ret = 1;
6266 	}
6267 
6268 	if (ret == 1) {
6269 		/* need to insert a new item */
6270 		btrfs_release_path(path);
6271 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6272 					      &key, sizeof(*ptr));
6273 		if (ret < 0) {
6274 			printk_in_rcu(KERN_WARNING "BTRFS: "
6275 					  "insert dev_stats item for device %s failed %d!\n",
6276 				      rcu_str_deref(device->name), ret);
6277 			goto out;
6278 		}
6279 	}
6280 
6281 	eb = path->nodes[0];
6282 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6283 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6284 		btrfs_set_dev_stats_value(eb, ptr, i,
6285 					  btrfs_dev_stat_read(device, i));
6286 	btrfs_mark_buffer_dirty(eb);
6287 
6288 out:
6289 	btrfs_free_path(path);
6290 	return ret;
6291 }
6292 
6293 /*
6294  * called from commit_transaction. Writes all changed device stats to disk.
6295  */
6296 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6297 			struct btrfs_fs_info *fs_info)
6298 {
6299 	struct btrfs_root *dev_root = fs_info->dev_root;
6300 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6301 	struct btrfs_device *device;
6302 	int ret = 0;
6303 
6304 	mutex_lock(&fs_devices->device_list_mutex);
6305 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6306 		if (!device->dev_stats_valid || !device->dev_stats_dirty)
6307 			continue;
6308 
6309 		ret = update_dev_stat_item(trans, dev_root, device);
6310 		if (!ret)
6311 			device->dev_stats_dirty = 0;
6312 	}
6313 	mutex_unlock(&fs_devices->device_list_mutex);
6314 
6315 	return ret;
6316 }
6317 
6318 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6319 {
6320 	btrfs_dev_stat_inc(dev, index);
6321 	btrfs_dev_stat_print_on_error(dev);
6322 }
6323 
6324 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6325 {
6326 	if (!dev->dev_stats_valid)
6327 		return;
6328 	printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6329 			   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6330 			   rcu_str_deref(dev->name),
6331 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6332 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6333 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6334 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6335 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6336 }
6337 
6338 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6339 {
6340 	int i;
6341 
6342 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6343 		if (btrfs_dev_stat_read(dev, i) != 0)
6344 			break;
6345 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6346 		return; /* all values == 0, suppress message */
6347 
6348 	printk_in_rcu(KERN_INFO "BTRFS: "
6349 		   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6350 	       rcu_str_deref(dev->name),
6351 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6352 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6353 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6354 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6355 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6356 }
6357 
6358 int btrfs_get_dev_stats(struct btrfs_root *root,
6359 			struct btrfs_ioctl_get_dev_stats *stats)
6360 {
6361 	struct btrfs_device *dev;
6362 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6363 	int i;
6364 
6365 	mutex_lock(&fs_devices->device_list_mutex);
6366 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6367 	mutex_unlock(&fs_devices->device_list_mutex);
6368 
6369 	if (!dev) {
6370 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6371 		return -ENODEV;
6372 	} else if (!dev->dev_stats_valid) {
6373 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6374 		return -ENODEV;
6375 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6376 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6377 			if (stats->nr_items > i)
6378 				stats->values[i] =
6379 					btrfs_dev_stat_read_and_reset(dev, i);
6380 			else
6381 				btrfs_dev_stat_reset(dev, i);
6382 		}
6383 	} else {
6384 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6385 			if (stats->nr_items > i)
6386 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6387 	}
6388 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6389 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6390 	return 0;
6391 }
6392 
6393 int btrfs_scratch_superblock(struct btrfs_device *device)
6394 {
6395 	struct buffer_head *bh;
6396 	struct btrfs_super_block *disk_super;
6397 
6398 	bh = btrfs_read_dev_super(device->bdev);
6399 	if (!bh)
6400 		return -EINVAL;
6401 	disk_super = (struct btrfs_super_block *)bh->b_data;
6402 
6403 	memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6404 	set_buffer_dirty(bh);
6405 	sync_dirty_buffer(bh);
6406 	brelse(bh);
6407 
6408 	return 0;
6409 }
6410