xref: /openbmc/linux/fs/btrfs/volumes.c (revision cefd754d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 	[BTRFS_RAID_RAID10] = {
37 		.sub_stripes	= 2,
38 		.dev_stripes	= 1,
39 		.devs_max	= 0,	/* 0 == as many as possible */
40 		.devs_min	= 4,
41 		.tolerated_failures = 1,
42 		.devs_increment	= 2,
43 		.ncopies	= 2,
44 		.nparity        = 0,
45 		.raid_name	= "raid10",
46 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
47 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 	},
49 	[BTRFS_RAID_RAID1] = {
50 		.sub_stripes	= 1,
51 		.dev_stripes	= 1,
52 		.devs_max	= 2,
53 		.devs_min	= 2,
54 		.tolerated_failures = 1,
55 		.devs_increment	= 2,
56 		.ncopies	= 2,
57 		.nparity        = 0,
58 		.raid_name	= "raid1",
59 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
60 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 	},
62 	[BTRFS_RAID_RAID1C3] = {
63 		.sub_stripes	= 1,
64 		.dev_stripes	= 1,
65 		.devs_max	= 3,
66 		.devs_min	= 3,
67 		.tolerated_failures = 2,
68 		.devs_increment	= 3,
69 		.ncopies	= 3,
70 		.nparity        = 0,
71 		.raid_name	= "raid1c3",
72 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
73 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 	},
75 	[BTRFS_RAID_RAID1C4] = {
76 		.sub_stripes	= 1,
77 		.dev_stripes	= 1,
78 		.devs_max	= 4,
79 		.devs_min	= 4,
80 		.tolerated_failures = 3,
81 		.devs_increment	= 4,
82 		.ncopies	= 4,
83 		.nparity        = 0,
84 		.raid_name	= "raid1c4",
85 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
86 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 	},
88 	[BTRFS_RAID_DUP] = {
89 		.sub_stripes	= 1,
90 		.dev_stripes	= 2,
91 		.devs_max	= 1,
92 		.devs_min	= 1,
93 		.tolerated_failures = 0,
94 		.devs_increment	= 1,
95 		.ncopies	= 2,
96 		.nparity        = 0,
97 		.raid_name	= "dup",
98 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
99 		.mindev_error	= 0,
100 	},
101 	[BTRFS_RAID_RAID0] = {
102 		.sub_stripes	= 1,
103 		.dev_stripes	= 1,
104 		.devs_max	= 0,
105 		.devs_min	= 2,
106 		.tolerated_failures = 0,
107 		.devs_increment	= 1,
108 		.ncopies	= 1,
109 		.nparity        = 0,
110 		.raid_name	= "raid0",
111 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
112 		.mindev_error	= 0,
113 	},
114 	[BTRFS_RAID_SINGLE] = {
115 		.sub_stripes	= 1,
116 		.dev_stripes	= 1,
117 		.devs_max	= 1,
118 		.devs_min	= 1,
119 		.tolerated_failures = 0,
120 		.devs_increment	= 1,
121 		.ncopies	= 1,
122 		.nparity        = 0,
123 		.raid_name	= "single",
124 		.bg_flag	= 0,
125 		.mindev_error	= 0,
126 	},
127 	[BTRFS_RAID_RAID5] = {
128 		.sub_stripes	= 1,
129 		.dev_stripes	= 1,
130 		.devs_max	= 0,
131 		.devs_min	= 2,
132 		.tolerated_failures = 1,
133 		.devs_increment	= 1,
134 		.ncopies	= 1,
135 		.nparity        = 1,
136 		.raid_name	= "raid5",
137 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
138 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
139 	},
140 	[BTRFS_RAID_RAID6] = {
141 		.sub_stripes	= 1,
142 		.dev_stripes	= 1,
143 		.devs_max	= 0,
144 		.devs_min	= 3,
145 		.tolerated_failures = 2,
146 		.devs_increment	= 1,
147 		.ncopies	= 1,
148 		.nparity        = 2,
149 		.raid_name	= "raid6",
150 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
151 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
152 	},
153 };
154 
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
156 {
157 	const int index = btrfs_bg_flags_to_raid_index(flags);
158 
159 	if (index >= BTRFS_NR_RAID_TYPES)
160 		return NULL;
161 
162 	return btrfs_raid_array[index].raid_name;
163 }
164 
165 /*
166  * Fill @buf with textual description of @bg_flags, no more than @size_buf
167  * bytes including terminating null byte.
168  */
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170 {
171 	int i;
172 	int ret;
173 	char *bp = buf;
174 	u64 flags = bg_flags;
175 	u32 size_bp = size_buf;
176 
177 	if (!flags) {
178 		strcpy(bp, "NONE");
179 		return;
180 	}
181 
182 #define DESCRIBE_FLAG(flag, desc)						\
183 	do {								\
184 		if (flags & (flag)) {					\
185 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
186 			if (ret < 0 || ret >= size_bp)			\
187 				goto out_overflow;			\
188 			size_bp -= ret;					\
189 			bp += ret;					\
190 			flags &= ~(flag);				\
191 		}							\
192 	} while (0)
193 
194 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197 
198 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 			      btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
203 
204 	if (flags) {
205 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 		size_bp -= ret;
207 	}
208 
209 	if (size_bp < size_buf)
210 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211 
212 	/*
213 	 * The text is trimmed, it's up to the caller to provide sufficiently
214 	 * large buffer
215 	 */
216 out_overflow:;
217 }
218 
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 			     enum btrfs_map_op op,
225 			     u64 logical, u64 *length,
226 			     struct btrfs_bio **bbio_ret,
227 			     int mirror_num, int need_raid_map);
228 
229 /*
230  * Device locking
231  * ==============
232  *
233  * There are several mutexes that protect manipulation of devices and low-level
234  * structures like chunks but not block groups, extents or files
235  *
236  * uuid_mutex (global lock)
237  * ------------------------
238  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240  * device) or requested by the device= mount option
241  *
242  * the mutex can be very coarse and can cover long-running operations
243  *
244  * protects: updates to fs_devices counters like missing devices, rw devices,
245  * seeding, structure cloning, opening/closing devices at mount/umount time
246  *
247  * global::fs_devs - add, remove, updates to the global list
248  *
249  * does not protect: manipulation of the fs_devices::devices list in general
250  * but in mount context it could be used to exclude list modifications by eg.
251  * scan ioctl
252  *
253  * btrfs_device::name - renames (write side), read is RCU
254  *
255  * fs_devices::device_list_mutex (per-fs, with RCU)
256  * ------------------------------------------------
257  * protects updates to fs_devices::devices, ie. adding and deleting
258  *
259  * simple list traversal with read-only actions can be done with RCU protection
260  *
261  * may be used to exclude some operations from running concurrently without any
262  * modifications to the list (see write_all_supers)
263  *
264  * Is not required at mount and close times, because our device list is
265  * protected by the uuid_mutex at that point.
266  *
267  * balance_mutex
268  * -------------
269  * protects balance structures (status, state) and context accessed from
270  * several places (internally, ioctl)
271  *
272  * chunk_mutex
273  * -----------
274  * protects chunks, adding or removing during allocation, trim or when a new
275  * device is added/removed. Additionally it also protects post_commit_list of
276  * individual devices, since they can be added to the transaction's
277  * post_commit_list only with chunk_mutex held.
278  *
279  * cleaner_mutex
280  * -------------
281  * a big lock that is held by the cleaner thread and prevents running subvolume
282  * cleaning together with relocation or delayed iputs
283  *
284  *
285  * Lock nesting
286  * ============
287  *
288  * uuid_mutex
289  *   device_list_mutex
290  *     chunk_mutex
291  *   balance_mutex
292  *
293  *
294  * Exclusive operations
295  * ====================
296  *
297  * Maintains the exclusivity of the following operations that apply to the
298  * whole filesystem and cannot run in parallel.
299  *
300  * - Balance (*)
301  * - Device add
302  * - Device remove
303  * - Device replace (*)
304  * - Resize
305  *
306  * The device operations (as above) can be in one of the following states:
307  *
308  * - Running state
309  * - Paused state
310  * - Completed state
311  *
312  * Only device operations marked with (*) can go into the Paused state for the
313  * following reasons:
314  *
315  * - ioctl (only Balance can be Paused through ioctl)
316  * - filesystem remounted as read-only
317  * - filesystem unmounted and mounted as read-only
318  * - system power-cycle and filesystem mounted as read-only
319  * - filesystem or device errors leading to forced read-only
320  *
321  * The status of exclusive operation is set and cleared atomically.
322  * During the course of Paused state, fs_info::exclusive_operation remains set.
323  * A device operation in Paused or Running state can be canceled or resumed
324  * either by ioctl (Balance only) or when remounted as read-write.
325  * The exclusive status is cleared when the device operation is canceled or
326  * completed.
327  */
328 
329 DEFINE_MUTEX(uuid_mutex);
330 static LIST_HEAD(fs_uuids);
331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
332 {
333 	return &fs_uuids;
334 }
335 
336 /*
337  * alloc_fs_devices - allocate struct btrfs_fs_devices
338  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
339  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
340  *
341  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
342  * The returned struct is not linked onto any lists and can be destroyed with
343  * kfree() right away.
344  */
345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
346 						 const u8 *metadata_fsid)
347 {
348 	struct btrfs_fs_devices *fs_devs;
349 
350 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
351 	if (!fs_devs)
352 		return ERR_PTR(-ENOMEM);
353 
354 	mutex_init(&fs_devs->device_list_mutex);
355 
356 	INIT_LIST_HEAD(&fs_devs->devices);
357 	INIT_LIST_HEAD(&fs_devs->alloc_list);
358 	INIT_LIST_HEAD(&fs_devs->fs_list);
359 	INIT_LIST_HEAD(&fs_devs->seed_list);
360 	if (fsid)
361 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
362 
363 	if (metadata_fsid)
364 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
365 	else if (fsid)
366 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
367 
368 	return fs_devs;
369 }
370 
371 void btrfs_free_device(struct btrfs_device *device)
372 {
373 	WARN_ON(!list_empty(&device->post_commit_list));
374 	rcu_string_free(device->name);
375 	extent_io_tree_release(&device->alloc_state);
376 	bio_put(device->flush_bio);
377 	kfree(device);
378 }
379 
380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
381 {
382 	struct btrfs_device *device;
383 	WARN_ON(fs_devices->opened);
384 	while (!list_empty(&fs_devices->devices)) {
385 		device = list_entry(fs_devices->devices.next,
386 				    struct btrfs_device, dev_list);
387 		list_del(&device->dev_list);
388 		btrfs_free_device(device);
389 	}
390 	kfree(fs_devices);
391 }
392 
393 void __exit btrfs_cleanup_fs_uuids(void)
394 {
395 	struct btrfs_fs_devices *fs_devices;
396 
397 	while (!list_empty(&fs_uuids)) {
398 		fs_devices = list_entry(fs_uuids.next,
399 					struct btrfs_fs_devices, fs_list);
400 		list_del(&fs_devices->fs_list);
401 		free_fs_devices(fs_devices);
402 	}
403 }
404 
405 /*
406  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
407  * Returned struct is not linked onto any lists and must be destroyed using
408  * btrfs_free_device.
409  */
410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
411 {
412 	struct btrfs_device *dev;
413 
414 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 	if (!dev)
416 		return ERR_PTR(-ENOMEM);
417 
418 	/*
419 	 * Preallocate a bio that's always going to be used for flushing device
420 	 * barriers and matches the device lifespan
421 	 */
422 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
423 	if (!dev->flush_bio) {
424 		kfree(dev);
425 		return ERR_PTR(-ENOMEM);
426 	}
427 
428 	INIT_LIST_HEAD(&dev->dev_list);
429 	INIT_LIST_HEAD(&dev->dev_alloc_list);
430 	INIT_LIST_HEAD(&dev->post_commit_list);
431 
432 	atomic_set(&dev->reada_in_flight, 0);
433 	atomic_set(&dev->dev_stats_ccnt, 0);
434 	btrfs_device_data_ordered_init(dev, fs_info);
435 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
436 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 	extent_io_tree_init(fs_info, &dev->alloc_state,
438 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
439 
440 	return dev;
441 }
442 
443 static noinline struct btrfs_fs_devices *find_fsid(
444 		const u8 *fsid, const u8 *metadata_fsid)
445 {
446 	struct btrfs_fs_devices *fs_devices;
447 
448 	ASSERT(fsid);
449 
450 	/* Handle non-split brain cases */
451 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 		if (metadata_fsid) {
453 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
454 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
455 				      BTRFS_FSID_SIZE) == 0)
456 				return fs_devices;
457 		} else {
458 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
459 				return fs_devices;
460 		}
461 	}
462 	return NULL;
463 }
464 
465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
466 				struct btrfs_super_block *disk_super)
467 {
468 
469 	struct btrfs_fs_devices *fs_devices;
470 
471 	/*
472 	 * Handle scanned device having completed its fsid change but
473 	 * belonging to a fs_devices that was created by first scanning
474 	 * a device which didn't have its fsid/metadata_uuid changed
475 	 * at all and the CHANGING_FSID_V2 flag set.
476 	 */
477 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
478 		if (fs_devices->fsid_change &&
479 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
480 			   BTRFS_FSID_SIZE) == 0 &&
481 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
482 			   BTRFS_FSID_SIZE) == 0) {
483 			return fs_devices;
484 		}
485 	}
486 	/*
487 	 * Handle scanned device having completed its fsid change but
488 	 * belonging to a fs_devices that was created by a device that
489 	 * has an outdated pair of fsid/metadata_uuid and
490 	 * CHANGING_FSID_V2 flag set.
491 	 */
492 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
493 		if (fs_devices->fsid_change &&
494 		    memcmp(fs_devices->metadata_uuid,
495 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
496 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
497 			   BTRFS_FSID_SIZE) == 0) {
498 			return fs_devices;
499 		}
500 	}
501 
502 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
503 }
504 
505 
506 static int
507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
508 		      int flush, struct block_device **bdev,
509 		      struct btrfs_super_block **disk_super)
510 {
511 	int ret;
512 
513 	*bdev = blkdev_get_by_path(device_path, flags, holder);
514 
515 	if (IS_ERR(*bdev)) {
516 		ret = PTR_ERR(*bdev);
517 		goto error;
518 	}
519 
520 	if (flush)
521 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
522 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
523 	if (ret) {
524 		blkdev_put(*bdev, flags);
525 		goto error;
526 	}
527 	invalidate_bdev(*bdev);
528 	*disk_super = btrfs_read_dev_super(*bdev);
529 	if (IS_ERR(*disk_super)) {
530 		ret = PTR_ERR(*disk_super);
531 		blkdev_put(*bdev, flags);
532 		goto error;
533 	}
534 
535 	return 0;
536 
537 error:
538 	*bdev = NULL;
539 	return ret;
540 }
541 
542 static bool device_path_matched(const char *path, struct btrfs_device *device)
543 {
544 	int found;
545 
546 	rcu_read_lock();
547 	found = strcmp(rcu_str_deref(device->name), path);
548 	rcu_read_unlock();
549 
550 	return found == 0;
551 }
552 
553 /*
554  *  Search and remove all stale (devices which are not mounted) devices.
555  *  When both inputs are NULL, it will search and release all stale devices.
556  *  path:	Optional. When provided will it release all unmounted devices
557  *		matching this path only.
558  *  skip_dev:	Optional. Will skip this device when searching for the stale
559  *		devices.
560  *  Return:	0 for success or if @path is NULL.
561  * 		-EBUSY if @path is a mounted device.
562  * 		-ENOENT if @path does not match any device in the list.
563  */
564 static int btrfs_free_stale_devices(const char *path,
565 				     struct btrfs_device *skip_device)
566 {
567 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
568 	struct btrfs_device *device, *tmp_device;
569 	int ret = 0;
570 
571 	if (path)
572 		ret = -ENOENT;
573 
574 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
575 
576 		mutex_lock(&fs_devices->device_list_mutex);
577 		list_for_each_entry_safe(device, tmp_device,
578 					 &fs_devices->devices, dev_list) {
579 			if (skip_device && skip_device == device)
580 				continue;
581 			if (path && !device->name)
582 				continue;
583 			if (path && !device_path_matched(path, device))
584 				continue;
585 			if (fs_devices->opened) {
586 				/* for an already deleted device return 0 */
587 				if (path && ret != 0)
588 					ret = -EBUSY;
589 				break;
590 			}
591 
592 			/* delete the stale device */
593 			fs_devices->num_devices--;
594 			list_del(&device->dev_list);
595 			btrfs_free_device(device);
596 
597 			ret = 0;
598 		}
599 		mutex_unlock(&fs_devices->device_list_mutex);
600 
601 		if (fs_devices->num_devices == 0) {
602 			btrfs_sysfs_remove_fsid(fs_devices);
603 			list_del(&fs_devices->fs_list);
604 			free_fs_devices(fs_devices);
605 		}
606 	}
607 
608 	return ret;
609 }
610 
611 /*
612  * This is only used on mount, and we are protected from competing things
613  * messing with our fs_devices by the uuid_mutex, thus we do not need the
614  * fs_devices->device_list_mutex here.
615  */
616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
617 			struct btrfs_device *device, fmode_t flags,
618 			void *holder)
619 {
620 	struct request_queue *q;
621 	struct block_device *bdev;
622 	struct btrfs_super_block *disk_super;
623 	u64 devid;
624 	int ret;
625 
626 	if (device->bdev)
627 		return -EINVAL;
628 	if (!device->name)
629 		return -EINVAL;
630 
631 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
632 				    &bdev, &disk_super);
633 	if (ret)
634 		return ret;
635 
636 	devid = btrfs_stack_device_id(&disk_super->dev_item);
637 	if (devid != device->devid)
638 		goto error_free_page;
639 
640 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
641 		goto error_free_page;
642 
643 	device->generation = btrfs_super_generation(disk_super);
644 
645 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
646 		if (btrfs_super_incompat_flags(disk_super) &
647 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
648 			pr_err(
649 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
650 			goto error_free_page;
651 		}
652 
653 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
654 		fs_devices->seeding = true;
655 	} else {
656 		if (bdev_read_only(bdev))
657 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658 		else
659 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660 	}
661 
662 	q = bdev_get_queue(bdev);
663 	if (!blk_queue_nonrot(q))
664 		fs_devices->rotating = true;
665 
666 	device->bdev = bdev;
667 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
668 	device->mode = flags;
669 
670 	fs_devices->open_devices++;
671 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
672 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
673 		fs_devices->rw_devices++;
674 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
675 	}
676 	btrfs_release_disk_super(disk_super);
677 
678 	return 0;
679 
680 error_free_page:
681 	btrfs_release_disk_super(disk_super);
682 	blkdev_put(bdev, flags);
683 
684 	return -EINVAL;
685 }
686 
687 /*
688  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
689  * being created with a disk that has already completed its fsid change. Such
690  * disk can belong to an fs which has its FSID changed or to one which doesn't.
691  * Handle both cases here.
692  */
693 static struct btrfs_fs_devices *find_fsid_inprogress(
694 					struct btrfs_super_block *disk_super)
695 {
696 	struct btrfs_fs_devices *fs_devices;
697 
698 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
699 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
700 			   BTRFS_FSID_SIZE) != 0 &&
701 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
702 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
703 			return fs_devices;
704 		}
705 	}
706 
707 	return find_fsid(disk_super->fsid, NULL);
708 }
709 
710 
711 static struct btrfs_fs_devices *find_fsid_changed(
712 					struct btrfs_super_block *disk_super)
713 {
714 	struct btrfs_fs_devices *fs_devices;
715 
716 	/*
717 	 * Handles the case where scanned device is part of an fs that had
718 	 * multiple successful changes of FSID but curently device didn't
719 	 * observe it. Meaning our fsid will be different than theirs. We need
720 	 * to handle two subcases :
721 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
722 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
723 	 *  are equal).
724 	 */
725 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
726 		/* Changed UUIDs */
727 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
728 			   BTRFS_FSID_SIZE) != 0 &&
729 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
730 			   BTRFS_FSID_SIZE) == 0 &&
731 		    memcmp(fs_devices->fsid, disk_super->fsid,
732 			   BTRFS_FSID_SIZE) != 0)
733 			return fs_devices;
734 
735 		/* Unchanged UUIDs */
736 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 			   BTRFS_FSID_SIZE) == 0 &&
738 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 			   BTRFS_FSID_SIZE) == 0)
740 			return fs_devices;
741 	}
742 
743 	return NULL;
744 }
745 
746 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 				struct btrfs_super_block *disk_super)
748 {
749 	struct btrfs_fs_devices *fs_devices;
750 
751 	/*
752 	 * Handle the case where the scanned device is part of an fs whose last
753 	 * metadata UUID change reverted it to the original FSID. At the same
754 	 * time * fs_devices was first created by another constitutent device
755 	 * which didn't fully observe the operation. This results in an
756 	 * btrfs_fs_devices created with metadata/fsid different AND
757 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 	 * fs_devices equal to the FSID of the disk.
759 	 */
760 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
761 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
762 			   BTRFS_FSID_SIZE) != 0 &&
763 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
764 			   BTRFS_FSID_SIZE) == 0 &&
765 		    fs_devices->fsid_change)
766 			return fs_devices;
767 	}
768 
769 	return NULL;
770 }
771 /*
772  * Add new device to list of registered devices
773  *
774  * Returns:
775  * device pointer which was just added or updated when successful
776  * error pointer when failed
777  */
778 static noinline struct btrfs_device *device_list_add(const char *path,
779 			   struct btrfs_super_block *disk_super,
780 			   bool *new_device_added)
781 {
782 	struct btrfs_device *device;
783 	struct btrfs_fs_devices *fs_devices = NULL;
784 	struct rcu_string *name;
785 	u64 found_transid = btrfs_super_generation(disk_super);
786 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
787 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
788 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
789 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
790 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
791 
792 	if (fsid_change_in_progress) {
793 		if (!has_metadata_uuid)
794 			fs_devices = find_fsid_inprogress(disk_super);
795 		else
796 			fs_devices = find_fsid_changed(disk_super);
797 	} else if (has_metadata_uuid) {
798 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
799 	} else {
800 		fs_devices = find_fsid_reverted_metadata(disk_super);
801 		if (!fs_devices)
802 			fs_devices = find_fsid(disk_super->fsid, NULL);
803 	}
804 
805 
806 	if (!fs_devices) {
807 		if (has_metadata_uuid)
808 			fs_devices = alloc_fs_devices(disk_super->fsid,
809 						      disk_super->metadata_uuid);
810 		else
811 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
812 
813 		if (IS_ERR(fs_devices))
814 			return ERR_CAST(fs_devices);
815 
816 		fs_devices->fsid_change = fsid_change_in_progress;
817 
818 		mutex_lock(&fs_devices->device_list_mutex);
819 		list_add(&fs_devices->fs_list, &fs_uuids);
820 
821 		device = NULL;
822 	} else {
823 		mutex_lock(&fs_devices->device_list_mutex);
824 		device = btrfs_find_device(fs_devices, devid,
825 				disk_super->dev_item.uuid, NULL, false);
826 
827 		/*
828 		 * If this disk has been pulled into an fs devices created by
829 		 * a device which had the CHANGING_FSID_V2 flag then replace the
830 		 * metadata_uuid/fsid values of the fs_devices.
831 		 */
832 		if (fs_devices->fsid_change &&
833 		    found_transid > fs_devices->latest_generation) {
834 			memcpy(fs_devices->fsid, disk_super->fsid,
835 					BTRFS_FSID_SIZE);
836 
837 			if (has_metadata_uuid)
838 				memcpy(fs_devices->metadata_uuid,
839 				       disk_super->metadata_uuid,
840 				       BTRFS_FSID_SIZE);
841 			else
842 				memcpy(fs_devices->metadata_uuid,
843 				       disk_super->fsid, BTRFS_FSID_SIZE);
844 
845 			fs_devices->fsid_change = false;
846 		}
847 	}
848 
849 	if (!device) {
850 		if (fs_devices->opened) {
851 			mutex_unlock(&fs_devices->device_list_mutex);
852 			return ERR_PTR(-EBUSY);
853 		}
854 
855 		device = btrfs_alloc_device(NULL, &devid,
856 					    disk_super->dev_item.uuid);
857 		if (IS_ERR(device)) {
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			/* we can safely leave the fs_devices entry around */
860 			return device;
861 		}
862 
863 		name = rcu_string_strdup(path, GFP_NOFS);
864 		if (!name) {
865 			btrfs_free_device(device);
866 			mutex_unlock(&fs_devices->device_list_mutex);
867 			return ERR_PTR(-ENOMEM);
868 		}
869 		rcu_assign_pointer(device->name, name);
870 
871 		list_add_rcu(&device->dev_list, &fs_devices->devices);
872 		fs_devices->num_devices++;
873 
874 		device->fs_devices = fs_devices;
875 		*new_device_added = true;
876 
877 		if (disk_super->label[0])
878 			pr_info(
879 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
880 				disk_super->label, devid, found_transid, path,
881 				current->comm, task_pid_nr(current));
882 		else
883 			pr_info(
884 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
885 				disk_super->fsid, devid, found_transid, path,
886 				current->comm, task_pid_nr(current));
887 
888 	} else if (!device->name || strcmp(device->name->str, path)) {
889 		/*
890 		 * When FS is already mounted.
891 		 * 1. If you are here and if the device->name is NULL that
892 		 *    means this device was missing at time of FS mount.
893 		 * 2. If you are here and if the device->name is different
894 		 *    from 'path' that means either
895 		 *      a. The same device disappeared and reappeared with
896 		 *         different name. or
897 		 *      b. The missing-disk-which-was-replaced, has
898 		 *         reappeared now.
899 		 *
900 		 * We must allow 1 and 2a above. But 2b would be a spurious
901 		 * and unintentional.
902 		 *
903 		 * Further in case of 1 and 2a above, the disk at 'path'
904 		 * would have missed some transaction when it was away and
905 		 * in case of 2a the stale bdev has to be updated as well.
906 		 * 2b must not be allowed at all time.
907 		 */
908 
909 		/*
910 		 * For now, we do allow update to btrfs_fs_device through the
911 		 * btrfs dev scan cli after FS has been mounted.  We're still
912 		 * tracking a problem where systems fail mount by subvolume id
913 		 * when we reject replacement on a mounted FS.
914 		 */
915 		if (!fs_devices->opened && found_transid < device->generation) {
916 			/*
917 			 * That is if the FS is _not_ mounted and if you
918 			 * are here, that means there is more than one
919 			 * disk with same uuid and devid.We keep the one
920 			 * with larger generation number or the last-in if
921 			 * generation are equal.
922 			 */
923 			mutex_unlock(&fs_devices->device_list_mutex);
924 			return ERR_PTR(-EEXIST);
925 		}
926 
927 		/*
928 		 * We are going to replace the device path for a given devid,
929 		 * make sure it's the same device if the device is mounted
930 		 */
931 		if (device->bdev) {
932 			struct block_device *path_bdev;
933 
934 			path_bdev = lookup_bdev(path);
935 			if (IS_ERR(path_bdev)) {
936 				mutex_unlock(&fs_devices->device_list_mutex);
937 				return ERR_CAST(path_bdev);
938 			}
939 
940 			if (device->bdev != path_bdev) {
941 				bdput(path_bdev);
942 				mutex_unlock(&fs_devices->device_list_mutex);
943 				btrfs_warn_in_rcu(device->fs_info,
944 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
945 						  path, devid, found_transid,
946 						  current->comm,
947 						  task_pid_nr(current));
948 				return ERR_PTR(-EEXIST);
949 			}
950 			bdput(path_bdev);
951 			btrfs_info_in_rcu(device->fs_info,
952 	"devid %llu device path %s changed to %s scanned by %s (%d)",
953 					  devid, rcu_str_deref(device->name),
954 					  path, current->comm,
955 					  task_pid_nr(current));
956 		}
957 
958 		name = rcu_string_strdup(path, GFP_NOFS);
959 		if (!name) {
960 			mutex_unlock(&fs_devices->device_list_mutex);
961 			return ERR_PTR(-ENOMEM);
962 		}
963 		rcu_string_free(device->name);
964 		rcu_assign_pointer(device->name, name);
965 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
966 			fs_devices->missing_devices--;
967 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
968 		}
969 	}
970 
971 	/*
972 	 * Unmount does not free the btrfs_device struct but would zero
973 	 * generation along with most of the other members. So just update
974 	 * it back. We need it to pick the disk with largest generation
975 	 * (as above).
976 	 */
977 	if (!fs_devices->opened) {
978 		device->generation = found_transid;
979 		fs_devices->latest_generation = max_t(u64, found_transid,
980 						fs_devices->latest_generation);
981 	}
982 
983 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
984 
985 	mutex_unlock(&fs_devices->device_list_mutex);
986 	return device;
987 }
988 
989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
990 {
991 	struct btrfs_fs_devices *fs_devices;
992 	struct btrfs_device *device;
993 	struct btrfs_device *orig_dev;
994 	int ret = 0;
995 
996 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
997 	if (IS_ERR(fs_devices))
998 		return fs_devices;
999 
1000 	mutex_lock(&orig->device_list_mutex);
1001 	fs_devices->total_devices = orig->total_devices;
1002 
1003 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1004 		struct rcu_string *name;
1005 
1006 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1007 					    orig_dev->uuid);
1008 		if (IS_ERR(device)) {
1009 			ret = PTR_ERR(device);
1010 			goto error;
1011 		}
1012 
1013 		/*
1014 		 * This is ok to do without rcu read locked because we hold the
1015 		 * uuid mutex so nothing we touch in here is going to disappear.
1016 		 */
1017 		if (orig_dev->name) {
1018 			name = rcu_string_strdup(orig_dev->name->str,
1019 					GFP_KERNEL);
1020 			if (!name) {
1021 				btrfs_free_device(device);
1022 				ret = -ENOMEM;
1023 				goto error;
1024 			}
1025 			rcu_assign_pointer(device->name, name);
1026 		}
1027 
1028 		list_add(&device->dev_list, &fs_devices->devices);
1029 		device->fs_devices = fs_devices;
1030 		fs_devices->num_devices++;
1031 	}
1032 	mutex_unlock(&orig->device_list_mutex);
1033 	return fs_devices;
1034 error:
1035 	mutex_unlock(&orig->device_list_mutex);
1036 	free_fs_devices(fs_devices);
1037 	return ERR_PTR(ret);
1038 }
1039 
1040 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1041 				      int step, struct btrfs_device **latest_dev)
1042 {
1043 	struct btrfs_device *device, *next;
1044 
1045 	/* This is the initialized path, it is safe to release the devices. */
1046 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1047 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1048 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1049 				      &device->dev_state) &&
1050 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1051 				      &device->dev_state) &&
1052 			    (!*latest_dev ||
1053 			     device->generation > (*latest_dev)->generation)) {
1054 				*latest_dev = device;
1055 			}
1056 			continue;
1057 		}
1058 
1059 		/*
1060 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1061 		 * in btrfs_init_dev_replace() so just continue.
1062 		 */
1063 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1064 			continue;
1065 
1066 		if (device->bdev) {
1067 			blkdev_put(device->bdev, device->mode);
1068 			device->bdev = NULL;
1069 			fs_devices->open_devices--;
1070 		}
1071 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1072 			list_del_init(&device->dev_alloc_list);
1073 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1074 		}
1075 		list_del_init(&device->dev_list);
1076 		fs_devices->num_devices--;
1077 		btrfs_free_device(device);
1078 	}
1079 
1080 }
1081 
1082 /*
1083  * After we have read the system tree and know devids belonging to this
1084  * filesystem, remove the device which does not belong there.
1085  */
1086 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1087 {
1088 	struct btrfs_device *latest_dev = NULL;
1089 	struct btrfs_fs_devices *seed_dev;
1090 
1091 	mutex_lock(&uuid_mutex);
1092 	__btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1093 
1094 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1095 		__btrfs_free_extra_devids(seed_dev, step, &latest_dev);
1096 
1097 	fs_devices->latest_bdev = latest_dev->bdev;
1098 
1099 	mutex_unlock(&uuid_mutex);
1100 }
1101 
1102 static void btrfs_close_bdev(struct btrfs_device *device)
1103 {
1104 	if (!device->bdev)
1105 		return;
1106 
1107 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1108 		sync_blockdev(device->bdev);
1109 		invalidate_bdev(device->bdev);
1110 	}
1111 
1112 	blkdev_put(device->bdev, device->mode);
1113 }
1114 
1115 static void btrfs_close_one_device(struct btrfs_device *device)
1116 {
1117 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1118 
1119 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1120 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1121 		list_del_init(&device->dev_alloc_list);
1122 		fs_devices->rw_devices--;
1123 	}
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1126 		fs_devices->missing_devices--;
1127 
1128 	btrfs_close_bdev(device);
1129 	if (device->bdev) {
1130 		fs_devices->open_devices--;
1131 		device->bdev = NULL;
1132 	}
1133 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1134 
1135 	device->fs_info = NULL;
1136 	atomic_set(&device->dev_stats_ccnt, 0);
1137 	extent_io_tree_release(&device->alloc_state);
1138 
1139 	/* Verify the device is back in a pristine state  */
1140 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1141 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1142 	ASSERT(list_empty(&device->dev_alloc_list));
1143 	ASSERT(list_empty(&device->post_commit_list));
1144 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1145 }
1146 
1147 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1148 {
1149 	struct btrfs_device *device, *tmp;
1150 
1151 	lockdep_assert_held(&uuid_mutex);
1152 
1153 	if (--fs_devices->opened > 0)
1154 		return;
1155 
1156 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1157 		btrfs_close_one_device(device);
1158 
1159 	WARN_ON(fs_devices->open_devices);
1160 	WARN_ON(fs_devices->rw_devices);
1161 	fs_devices->opened = 0;
1162 	fs_devices->seeding = false;
1163 	fs_devices->fs_info = NULL;
1164 }
1165 
1166 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1167 {
1168 	LIST_HEAD(list);
1169 	struct btrfs_fs_devices *tmp;
1170 
1171 	mutex_lock(&uuid_mutex);
1172 	close_fs_devices(fs_devices);
1173 	if (!fs_devices->opened)
1174 		list_splice_init(&fs_devices->seed_list, &list);
1175 
1176 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1177 		close_fs_devices(fs_devices);
1178 		list_del(&fs_devices->seed_list);
1179 		free_fs_devices(fs_devices);
1180 	}
1181 	mutex_unlock(&uuid_mutex);
1182 }
1183 
1184 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1185 				fmode_t flags, void *holder)
1186 {
1187 	struct btrfs_device *device;
1188 	struct btrfs_device *latest_dev = NULL;
1189 	struct btrfs_device *tmp_device;
1190 
1191 	flags |= FMODE_EXCL;
1192 
1193 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1194 				 dev_list) {
1195 		int ret;
1196 
1197 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1198 		if (ret == 0 &&
1199 		    (!latest_dev || device->generation > latest_dev->generation)) {
1200 			latest_dev = device;
1201 		} else if (ret == -ENODATA) {
1202 			fs_devices->num_devices--;
1203 			list_del(&device->dev_list);
1204 			btrfs_free_device(device);
1205 		}
1206 	}
1207 	if (fs_devices->open_devices == 0)
1208 		return -EINVAL;
1209 
1210 	fs_devices->opened = 1;
1211 	fs_devices->latest_bdev = latest_dev->bdev;
1212 	fs_devices->total_rw_bytes = 0;
1213 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1214 
1215 	return 0;
1216 }
1217 
1218 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1219 {
1220 	struct btrfs_device *dev1, *dev2;
1221 
1222 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1223 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1224 
1225 	if (dev1->devid < dev2->devid)
1226 		return -1;
1227 	else if (dev1->devid > dev2->devid)
1228 		return 1;
1229 	return 0;
1230 }
1231 
1232 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1233 		       fmode_t flags, void *holder)
1234 {
1235 	int ret;
1236 
1237 	lockdep_assert_held(&uuid_mutex);
1238 	/*
1239 	 * The device_list_mutex cannot be taken here in case opening the
1240 	 * underlying device takes further locks like bd_mutex.
1241 	 *
1242 	 * We also don't need the lock here as this is called during mount and
1243 	 * exclusion is provided by uuid_mutex
1244 	 */
1245 
1246 	if (fs_devices->opened) {
1247 		fs_devices->opened++;
1248 		ret = 0;
1249 	} else {
1250 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1251 		ret = open_fs_devices(fs_devices, flags, holder);
1252 	}
1253 
1254 	return ret;
1255 }
1256 
1257 void btrfs_release_disk_super(struct btrfs_super_block *super)
1258 {
1259 	struct page *page = virt_to_page(super);
1260 
1261 	put_page(page);
1262 }
1263 
1264 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1265 						       u64 bytenr)
1266 {
1267 	struct btrfs_super_block *disk_super;
1268 	struct page *page;
1269 	void *p;
1270 	pgoff_t index;
1271 
1272 	/* make sure our super fits in the device */
1273 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1274 		return ERR_PTR(-EINVAL);
1275 
1276 	/* make sure our super fits in the page */
1277 	if (sizeof(*disk_super) > PAGE_SIZE)
1278 		return ERR_PTR(-EINVAL);
1279 
1280 	/* make sure our super doesn't straddle pages on disk */
1281 	index = bytenr >> PAGE_SHIFT;
1282 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1283 		return ERR_PTR(-EINVAL);
1284 
1285 	/* pull in the page with our super */
1286 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1287 
1288 	if (IS_ERR(page))
1289 		return ERR_CAST(page);
1290 
1291 	p = page_address(page);
1292 
1293 	/* align our pointer to the offset of the super block */
1294 	disk_super = p + offset_in_page(bytenr);
1295 
1296 	if (btrfs_super_bytenr(disk_super) != bytenr ||
1297 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1298 		btrfs_release_disk_super(p);
1299 		return ERR_PTR(-EINVAL);
1300 	}
1301 
1302 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1303 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1304 
1305 	return disk_super;
1306 }
1307 
1308 int btrfs_forget_devices(const char *path)
1309 {
1310 	int ret;
1311 
1312 	mutex_lock(&uuid_mutex);
1313 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1314 	mutex_unlock(&uuid_mutex);
1315 
1316 	return ret;
1317 }
1318 
1319 /*
1320  * Look for a btrfs signature on a device. This may be called out of the mount path
1321  * and we are not allowed to call set_blocksize during the scan. The superblock
1322  * is read via pagecache
1323  */
1324 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1325 					   void *holder)
1326 {
1327 	struct btrfs_super_block *disk_super;
1328 	bool new_device_added = false;
1329 	struct btrfs_device *device = NULL;
1330 	struct block_device *bdev;
1331 	u64 bytenr;
1332 
1333 	lockdep_assert_held(&uuid_mutex);
1334 
1335 	/*
1336 	 * we would like to check all the supers, but that would make
1337 	 * a btrfs mount succeed after a mkfs from a different FS.
1338 	 * So, we need to add a special mount option to scan for
1339 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1340 	 */
1341 	bytenr = btrfs_sb_offset(0);
1342 	flags |= FMODE_EXCL;
1343 
1344 	bdev = blkdev_get_by_path(path, flags, holder);
1345 	if (IS_ERR(bdev))
1346 		return ERR_CAST(bdev);
1347 
1348 	disk_super = btrfs_read_disk_super(bdev, bytenr);
1349 	if (IS_ERR(disk_super)) {
1350 		device = ERR_CAST(disk_super);
1351 		goto error_bdev_put;
1352 	}
1353 
1354 	device = device_list_add(path, disk_super, &new_device_added);
1355 	if (!IS_ERR(device)) {
1356 		if (new_device_added)
1357 			btrfs_free_stale_devices(path, device);
1358 	}
1359 
1360 	btrfs_release_disk_super(disk_super);
1361 
1362 error_bdev_put:
1363 	blkdev_put(bdev, flags);
1364 
1365 	return device;
1366 }
1367 
1368 /*
1369  * Try to find a chunk that intersects [start, start + len] range and when one
1370  * such is found, record the end of it in *start
1371  */
1372 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1373 				    u64 len)
1374 {
1375 	u64 physical_start, physical_end;
1376 
1377 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1378 
1379 	if (!find_first_extent_bit(&device->alloc_state, *start,
1380 				   &physical_start, &physical_end,
1381 				   CHUNK_ALLOCATED, NULL)) {
1382 
1383 		if (in_range(physical_start, *start, len) ||
1384 		    in_range(*start, physical_start,
1385 			     physical_end - physical_start)) {
1386 			*start = physical_end + 1;
1387 			return true;
1388 		}
1389 	}
1390 	return false;
1391 }
1392 
1393 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1394 {
1395 	switch (device->fs_devices->chunk_alloc_policy) {
1396 	case BTRFS_CHUNK_ALLOC_REGULAR:
1397 		/*
1398 		 * We don't want to overwrite the superblock on the drive nor
1399 		 * any area used by the boot loader (grub for example), so we
1400 		 * make sure to start at an offset of at least 1MB.
1401 		 */
1402 		return max_t(u64, start, SZ_1M);
1403 	default:
1404 		BUG();
1405 	}
1406 }
1407 
1408 /**
1409  * dev_extent_hole_check - check if specified hole is suitable for allocation
1410  * @device:	the device which we have the hole
1411  * @hole_start: starting position of the hole
1412  * @hole_size:	the size of the hole
1413  * @num_bytes:	the size of the free space that we need
1414  *
1415  * This function may modify @hole_start and @hole_end to reflect the suitable
1416  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1417  */
1418 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1419 				  u64 *hole_size, u64 num_bytes)
1420 {
1421 	bool changed = false;
1422 	u64 hole_end = *hole_start + *hole_size;
1423 
1424 	/*
1425 	 * Check before we set max_hole_start, otherwise we could end up
1426 	 * sending back this offset anyway.
1427 	 */
1428 	if (contains_pending_extent(device, hole_start, *hole_size)) {
1429 		if (hole_end >= *hole_start)
1430 			*hole_size = hole_end - *hole_start;
1431 		else
1432 			*hole_size = 0;
1433 		changed = true;
1434 	}
1435 
1436 	switch (device->fs_devices->chunk_alloc_policy) {
1437 	case BTRFS_CHUNK_ALLOC_REGULAR:
1438 		/* No extra check */
1439 		break;
1440 	default:
1441 		BUG();
1442 	}
1443 
1444 	return changed;
1445 }
1446 
1447 /*
1448  * find_free_dev_extent_start - find free space in the specified device
1449  * @device:	  the device which we search the free space in
1450  * @num_bytes:	  the size of the free space that we need
1451  * @search_start: the position from which to begin the search
1452  * @start:	  store the start of the free space.
1453  * @len:	  the size of the free space. that we find, or the size
1454  *		  of the max free space if we don't find suitable free space
1455  *
1456  * this uses a pretty simple search, the expectation is that it is
1457  * called very infrequently and that a given device has a small number
1458  * of extents
1459  *
1460  * @start is used to store the start of the free space if we find. But if we
1461  * don't find suitable free space, it will be used to store the start position
1462  * of the max free space.
1463  *
1464  * @len is used to store the size of the free space that we find.
1465  * But if we don't find suitable free space, it is used to store the size of
1466  * the max free space.
1467  *
1468  * NOTE: This function will search *commit* root of device tree, and does extra
1469  * check to ensure dev extents are not double allocated.
1470  * This makes the function safe to allocate dev extents but may not report
1471  * correct usable device space, as device extent freed in current transaction
1472  * is not reported as avaiable.
1473  */
1474 static int find_free_dev_extent_start(struct btrfs_device *device,
1475 				u64 num_bytes, u64 search_start, u64 *start,
1476 				u64 *len)
1477 {
1478 	struct btrfs_fs_info *fs_info = device->fs_info;
1479 	struct btrfs_root *root = fs_info->dev_root;
1480 	struct btrfs_key key;
1481 	struct btrfs_dev_extent *dev_extent;
1482 	struct btrfs_path *path;
1483 	u64 hole_size;
1484 	u64 max_hole_start;
1485 	u64 max_hole_size;
1486 	u64 extent_end;
1487 	u64 search_end = device->total_bytes;
1488 	int ret;
1489 	int slot;
1490 	struct extent_buffer *l;
1491 
1492 	search_start = dev_extent_search_start(device, search_start);
1493 
1494 	path = btrfs_alloc_path();
1495 	if (!path)
1496 		return -ENOMEM;
1497 
1498 	max_hole_start = search_start;
1499 	max_hole_size = 0;
1500 
1501 again:
1502 	if (search_start >= search_end ||
1503 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1504 		ret = -ENOSPC;
1505 		goto out;
1506 	}
1507 
1508 	path->reada = READA_FORWARD;
1509 	path->search_commit_root = 1;
1510 	path->skip_locking = 1;
1511 
1512 	key.objectid = device->devid;
1513 	key.offset = search_start;
1514 	key.type = BTRFS_DEV_EXTENT_KEY;
1515 
1516 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1517 	if (ret < 0)
1518 		goto out;
1519 	if (ret > 0) {
1520 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1521 		if (ret < 0)
1522 			goto out;
1523 	}
1524 
1525 	while (1) {
1526 		l = path->nodes[0];
1527 		slot = path->slots[0];
1528 		if (slot >= btrfs_header_nritems(l)) {
1529 			ret = btrfs_next_leaf(root, path);
1530 			if (ret == 0)
1531 				continue;
1532 			if (ret < 0)
1533 				goto out;
1534 
1535 			break;
1536 		}
1537 		btrfs_item_key_to_cpu(l, &key, slot);
1538 
1539 		if (key.objectid < device->devid)
1540 			goto next;
1541 
1542 		if (key.objectid > device->devid)
1543 			break;
1544 
1545 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1546 			goto next;
1547 
1548 		if (key.offset > search_start) {
1549 			hole_size = key.offset - search_start;
1550 			dev_extent_hole_check(device, &search_start, &hole_size,
1551 					      num_bytes);
1552 
1553 			if (hole_size > max_hole_size) {
1554 				max_hole_start = search_start;
1555 				max_hole_size = hole_size;
1556 			}
1557 
1558 			/*
1559 			 * If this free space is greater than which we need,
1560 			 * it must be the max free space that we have found
1561 			 * until now, so max_hole_start must point to the start
1562 			 * of this free space and the length of this free space
1563 			 * is stored in max_hole_size. Thus, we return
1564 			 * max_hole_start and max_hole_size and go back to the
1565 			 * caller.
1566 			 */
1567 			if (hole_size >= num_bytes) {
1568 				ret = 0;
1569 				goto out;
1570 			}
1571 		}
1572 
1573 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1574 		extent_end = key.offset + btrfs_dev_extent_length(l,
1575 								  dev_extent);
1576 		if (extent_end > search_start)
1577 			search_start = extent_end;
1578 next:
1579 		path->slots[0]++;
1580 		cond_resched();
1581 	}
1582 
1583 	/*
1584 	 * At this point, search_start should be the end of
1585 	 * allocated dev extents, and when shrinking the device,
1586 	 * search_end may be smaller than search_start.
1587 	 */
1588 	if (search_end > search_start) {
1589 		hole_size = search_end - search_start;
1590 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1591 					  num_bytes)) {
1592 			btrfs_release_path(path);
1593 			goto again;
1594 		}
1595 
1596 		if (hole_size > max_hole_size) {
1597 			max_hole_start = search_start;
1598 			max_hole_size = hole_size;
1599 		}
1600 	}
1601 
1602 	/* See above. */
1603 	if (max_hole_size < num_bytes)
1604 		ret = -ENOSPC;
1605 	else
1606 		ret = 0;
1607 
1608 out:
1609 	btrfs_free_path(path);
1610 	*start = max_hole_start;
1611 	if (len)
1612 		*len = max_hole_size;
1613 	return ret;
1614 }
1615 
1616 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1617 			 u64 *start, u64 *len)
1618 {
1619 	/* FIXME use last free of some kind */
1620 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1621 }
1622 
1623 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1624 			  struct btrfs_device *device,
1625 			  u64 start, u64 *dev_extent_len)
1626 {
1627 	struct btrfs_fs_info *fs_info = device->fs_info;
1628 	struct btrfs_root *root = fs_info->dev_root;
1629 	int ret;
1630 	struct btrfs_path *path;
1631 	struct btrfs_key key;
1632 	struct btrfs_key found_key;
1633 	struct extent_buffer *leaf = NULL;
1634 	struct btrfs_dev_extent *extent = NULL;
1635 
1636 	path = btrfs_alloc_path();
1637 	if (!path)
1638 		return -ENOMEM;
1639 
1640 	key.objectid = device->devid;
1641 	key.offset = start;
1642 	key.type = BTRFS_DEV_EXTENT_KEY;
1643 again:
1644 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1645 	if (ret > 0) {
1646 		ret = btrfs_previous_item(root, path, key.objectid,
1647 					  BTRFS_DEV_EXTENT_KEY);
1648 		if (ret)
1649 			goto out;
1650 		leaf = path->nodes[0];
1651 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1652 		extent = btrfs_item_ptr(leaf, path->slots[0],
1653 					struct btrfs_dev_extent);
1654 		BUG_ON(found_key.offset > start || found_key.offset +
1655 		       btrfs_dev_extent_length(leaf, extent) < start);
1656 		key = found_key;
1657 		btrfs_release_path(path);
1658 		goto again;
1659 	} else if (ret == 0) {
1660 		leaf = path->nodes[0];
1661 		extent = btrfs_item_ptr(leaf, path->slots[0],
1662 					struct btrfs_dev_extent);
1663 	} else {
1664 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1665 		goto out;
1666 	}
1667 
1668 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1669 
1670 	ret = btrfs_del_item(trans, root, path);
1671 	if (ret) {
1672 		btrfs_handle_fs_error(fs_info, ret,
1673 				      "Failed to remove dev extent item");
1674 	} else {
1675 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1676 	}
1677 out:
1678 	btrfs_free_path(path);
1679 	return ret;
1680 }
1681 
1682 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1683 				  struct btrfs_device *device,
1684 				  u64 chunk_offset, u64 start, u64 num_bytes)
1685 {
1686 	int ret;
1687 	struct btrfs_path *path;
1688 	struct btrfs_fs_info *fs_info = device->fs_info;
1689 	struct btrfs_root *root = fs_info->dev_root;
1690 	struct btrfs_dev_extent *extent;
1691 	struct extent_buffer *leaf;
1692 	struct btrfs_key key;
1693 
1694 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1695 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1696 	path = btrfs_alloc_path();
1697 	if (!path)
1698 		return -ENOMEM;
1699 
1700 	key.objectid = device->devid;
1701 	key.offset = start;
1702 	key.type = BTRFS_DEV_EXTENT_KEY;
1703 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1704 				      sizeof(*extent));
1705 	if (ret)
1706 		goto out;
1707 
1708 	leaf = path->nodes[0];
1709 	extent = btrfs_item_ptr(leaf, path->slots[0],
1710 				struct btrfs_dev_extent);
1711 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1712 					BTRFS_CHUNK_TREE_OBJECTID);
1713 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1714 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1715 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1716 
1717 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1718 	btrfs_mark_buffer_dirty(leaf);
1719 out:
1720 	btrfs_free_path(path);
1721 	return ret;
1722 }
1723 
1724 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1725 {
1726 	struct extent_map_tree *em_tree;
1727 	struct extent_map *em;
1728 	struct rb_node *n;
1729 	u64 ret = 0;
1730 
1731 	em_tree = &fs_info->mapping_tree;
1732 	read_lock(&em_tree->lock);
1733 	n = rb_last(&em_tree->map.rb_root);
1734 	if (n) {
1735 		em = rb_entry(n, struct extent_map, rb_node);
1736 		ret = em->start + em->len;
1737 	}
1738 	read_unlock(&em_tree->lock);
1739 
1740 	return ret;
1741 }
1742 
1743 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1744 				    u64 *devid_ret)
1745 {
1746 	int ret;
1747 	struct btrfs_key key;
1748 	struct btrfs_key found_key;
1749 	struct btrfs_path *path;
1750 
1751 	path = btrfs_alloc_path();
1752 	if (!path)
1753 		return -ENOMEM;
1754 
1755 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1756 	key.type = BTRFS_DEV_ITEM_KEY;
1757 	key.offset = (u64)-1;
1758 
1759 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1760 	if (ret < 0)
1761 		goto error;
1762 
1763 	if (ret == 0) {
1764 		/* Corruption */
1765 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1766 		ret = -EUCLEAN;
1767 		goto error;
1768 	}
1769 
1770 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1771 				  BTRFS_DEV_ITEMS_OBJECTID,
1772 				  BTRFS_DEV_ITEM_KEY);
1773 	if (ret) {
1774 		*devid_ret = 1;
1775 	} else {
1776 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1777 				      path->slots[0]);
1778 		*devid_ret = found_key.offset + 1;
1779 	}
1780 	ret = 0;
1781 error:
1782 	btrfs_free_path(path);
1783 	return ret;
1784 }
1785 
1786 /*
1787  * the device information is stored in the chunk root
1788  * the btrfs_device struct should be fully filled in
1789  */
1790 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1791 			    struct btrfs_device *device)
1792 {
1793 	int ret;
1794 	struct btrfs_path *path;
1795 	struct btrfs_dev_item *dev_item;
1796 	struct extent_buffer *leaf;
1797 	struct btrfs_key key;
1798 	unsigned long ptr;
1799 
1800 	path = btrfs_alloc_path();
1801 	if (!path)
1802 		return -ENOMEM;
1803 
1804 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805 	key.type = BTRFS_DEV_ITEM_KEY;
1806 	key.offset = device->devid;
1807 
1808 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1809 				      &key, sizeof(*dev_item));
1810 	if (ret)
1811 		goto out;
1812 
1813 	leaf = path->nodes[0];
1814 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1815 
1816 	btrfs_set_device_id(leaf, dev_item, device->devid);
1817 	btrfs_set_device_generation(leaf, dev_item, 0);
1818 	btrfs_set_device_type(leaf, dev_item, device->type);
1819 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1820 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1821 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1822 	btrfs_set_device_total_bytes(leaf, dev_item,
1823 				     btrfs_device_get_disk_total_bytes(device));
1824 	btrfs_set_device_bytes_used(leaf, dev_item,
1825 				    btrfs_device_get_bytes_used(device));
1826 	btrfs_set_device_group(leaf, dev_item, 0);
1827 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1828 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1829 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1830 
1831 	ptr = btrfs_device_uuid(dev_item);
1832 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1833 	ptr = btrfs_device_fsid(dev_item);
1834 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1835 			    ptr, BTRFS_FSID_SIZE);
1836 	btrfs_mark_buffer_dirty(leaf);
1837 
1838 	ret = 0;
1839 out:
1840 	btrfs_free_path(path);
1841 	return ret;
1842 }
1843 
1844 /*
1845  * Function to update ctime/mtime for a given device path.
1846  * Mainly used for ctime/mtime based probe like libblkid.
1847  */
1848 static void update_dev_time(const char *path_name)
1849 {
1850 	struct file *filp;
1851 
1852 	filp = filp_open(path_name, O_RDWR, 0);
1853 	if (IS_ERR(filp))
1854 		return;
1855 	file_update_time(filp);
1856 	filp_close(filp, NULL);
1857 }
1858 
1859 static int btrfs_rm_dev_item(struct btrfs_device *device)
1860 {
1861 	struct btrfs_root *root = device->fs_info->chunk_root;
1862 	int ret;
1863 	struct btrfs_path *path;
1864 	struct btrfs_key key;
1865 	struct btrfs_trans_handle *trans;
1866 
1867 	path = btrfs_alloc_path();
1868 	if (!path)
1869 		return -ENOMEM;
1870 
1871 	trans = btrfs_start_transaction(root, 0);
1872 	if (IS_ERR(trans)) {
1873 		btrfs_free_path(path);
1874 		return PTR_ERR(trans);
1875 	}
1876 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1877 	key.type = BTRFS_DEV_ITEM_KEY;
1878 	key.offset = device->devid;
1879 
1880 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1881 	if (ret) {
1882 		if (ret > 0)
1883 			ret = -ENOENT;
1884 		btrfs_abort_transaction(trans, ret);
1885 		btrfs_end_transaction(trans);
1886 		goto out;
1887 	}
1888 
1889 	ret = btrfs_del_item(trans, root, path);
1890 	if (ret) {
1891 		btrfs_abort_transaction(trans, ret);
1892 		btrfs_end_transaction(trans);
1893 	}
1894 
1895 out:
1896 	btrfs_free_path(path);
1897 	if (!ret)
1898 		ret = btrfs_commit_transaction(trans);
1899 	return ret;
1900 }
1901 
1902 /*
1903  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1904  * filesystem. It's up to the caller to adjust that number regarding eg. device
1905  * replace.
1906  */
1907 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1908 		u64 num_devices)
1909 {
1910 	u64 all_avail;
1911 	unsigned seq;
1912 	int i;
1913 
1914 	do {
1915 		seq = read_seqbegin(&fs_info->profiles_lock);
1916 
1917 		all_avail = fs_info->avail_data_alloc_bits |
1918 			    fs_info->avail_system_alloc_bits |
1919 			    fs_info->avail_metadata_alloc_bits;
1920 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1921 
1922 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1923 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1924 			continue;
1925 
1926 		if (num_devices < btrfs_raid_array[i].devs_min) {
1927 			int ret = btrfs_raid_array[i].mindev_error;
1928 
1929 			if (ret)
1930 				return ret;
1931 		}
1932 	}
1933 
1934 	return 0;
1935 }
1936 
1937 static struct btrfs_device * btrfs_find_next_active_device(
1938 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1939 {
1940 	struct btrfs_device *next_device;
1941 
1942 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1943 		if (next_device != device &&
1944 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1945 		    && next_device->bdev)
1946 			return next_device;
1947 	}
1948 
1949 	return NULL;
1950 }
1951 
1952 /*
1953  * Helper function to check if the given device is part of s_bdev / latest_bdev
1954  * and replace it with the provided or the next active device, in the context
1955  * where this function called, there should be always be another device (or
1956  * this_dev) which is active.
1957  */
1958 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1959 					    struct btrfs_device *next_device)
1960 {
1961 	struct btrfs_fs_info *fs_info = device->fs_info;
1962 
1963 	if (!next_device)
1964 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1965 							    device);
1966 	ASSERT(next_device);
1967 
1968 	if (fs_info->sb->s_bdev &&
1969 			(fs_info->sb->s_bdev == device->bdev))
1970 		fs_info->sb->s_bdev = next_device->bdev;
1971 
1972 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1973 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1974 }
1975 
1976 /*
1977  * Return btrfs_fs_devices::num_devices excluding the device that's being
1978  * currently replaced.
1979  */
1980 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1981 {
1982 	u64 num_devices = fs_info->fs_devices->num_devices;
1983 
1984 	down_read(&fs_info->dev_replace.rwsem);
1985 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1986 		ASSERT(num_devices > 1);
1987 		num_devices--;
1988 	}
1989 	up_read(&fs_info->dev_replace.rwsem);
1990 
1991 	return num_devices;
1992 }
1993 
1994 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
1995 			       struct block_device *bdev,
1996 			       const char *device_path)
1997 {
1998 	struct btrfs_super_block *disk_super;
1999 	int copy_num;
2000 
2001 	if (!bdev)
2002 		return;
2003 
2004 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2005 		struct page *page;
2006 		int ret;
2007 
2008 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2009 		if (IS_ERR(disk_super))
2010 			continue;
2011 
2012 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2013 
2014 		page = virt_to_page(disk_super);
2015 		set_page_dirty(page);
2016 		lock_page(page);
2017 		/* write_on_page() unlocks the page */
2018 		ret = write_one_page(page);
2019 		if (ret)
2020 			btrfs_warn(fs_info,
2021 				"error clearing superblock number %d (%d)",
2022 				copy_num, ret);
2023 		btrfs_release_disk_super(disk_super);
2024 
2025 	}
2026 
2027 	/* Notify udev that device has changed */
2028 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2029 
2030 	/* Update ctime/mtime for device path for libblkid */
2031 	update_dev_time(device_path);
2032 }
2033 
2034 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2035 		    u64 devid)
2036 {
2037 	struct btrfs_device *device;
2038 	struct btrfs_fs_devices *cur_devices;
2039 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2040 	u64 num_devices;
2041 	int ret = 0;
2042 
2043 	mutex_lock(&uuid_mutex);
2044 
2045 	num_devices = btrfs_num_devices(fs_info);
2046 
2047 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2048 	if (ret)
2049 		goto out;
2050 
2051 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2052 
2053 	if (IS_ERR(device)) {
2054 		if (PTR_ERR(device) == -ENOENT &&
2055 		    strcmp(device_path, "missing") == 0)
2056 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2057 		else
2058 			ret = PTR_ERR(device);
2059 		goto out;
2060 	}
2061 
2062 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2063 		btrfs_warn_in_rcu(fs_info,
2064 		  "cannot remove device %s (devid %llu) due to active swapfile",
2065 				  rcu_str_deref(device->name), device->devid);
2066 		ret = -ETXTBSY;
2067 		goto out;
2068 	}
2069 
2070 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2071 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2072 		goto out;
2073 	}
2074 
2075 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2076 	    fs_info->fs_devices->rw_devices == 1) {
2077 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2078 		goto out;
2079 	}
2080 
2081 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2082 		mutex_lock(&fs_info->chunk_mutex);
2083 		list_del_init(&device->dev_alloc_list);
2084 		device->fs_devices->rw_devices--;
2085 		mutex_unlock(&fs_info->chunk_mutex);
2086 	}
2087 
2088 	mutex_unlock(&uuid_mutex);
2089 	ret = btrfs_shrink_device(device, 0);
2090 	if (!ret)
2091 		btrfs_reada_remove_dev(device);
2092 	mutex_lock(&uuid_mutex);
2093 	if (ret)
2094 		goto error_undo;
2095 
2096 	/*
2097 	 * TODO: the superblock still includes this device in its num_devices
2098 	 * counter although write_all_supers() is not locked out. This
2099 	 * could give a filesystem state which requires a degraded mount.
2100 	 */
2101 	ret = btrfs_rm_dev_item(device);
2102 	if (ret)
2103 		goto error_undo;
2104 
2105 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2106 	btrfs_scrub_cancel_dev(device);
2107 
2108 	/*
2109 	 * the device list mutex makes sure that we don't change
2110 	 * the device list while someone else is writing out all
2111 	 * the device supers. Whoever is writing all supers, should
2112 	 * lock the device list mutex before getting the number of
2113 	 * devices in the super block (super_copy). Conversely,
2114 	 * whoever updates the number of devices in the super block
2115 	 * (super_copy) should hold the device list mutex.
2116 	 */
2117 
2118 	/*
2119 	 * In normal cases the cur_devices == fs_devices. But in case
2120 	 * of deleting a seed device, the cur_devices should point to
2121 	 * its own fs_devices listed under the fs_devices->seed.
2122 	 */
2123 	cur_devices = device->fs_devices;
2124 	mutex_lock(&fs_devices->device_list_mutex);
2125 	list_del_rcu(&device->dev_list);
2126 
2127 	cur_devices->num_devices--;
2128 	cur_devices->total_devices--;
2129 	/* Update total_devices of the parent fs_devices if it's seed */
2130 	if (cur_devices != fs_devices)
2131 		fs_devices->total_devices--;
2132 
2133 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2134 		cur_devices->missing_devices--;
2135 
2136 	btrfs_assign_next_active_device(device, NULL);
2137 
2138 	if (device->bdev) {
2139 		cur_devices->open_devices--;
2140 		/* remove sysfs entry */
2141 		btrfs_sysfs_remove_device(device);
2142 	}
2143 
2144 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2145 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2146 	mutex_unlock(&fs_devices->device_list_mutex);
2147 
2148 	/*
2149 	 * at this point, the device is zero sized and detached from
2150 	 * the devices list.  All that's left is to zero out the old
2151 	 * supers and free the device.
2152 	 */
2153 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2154 		btrfs_scratch_superblocks(fs_info, device->bdev,
2155 					  device->name->str);
2156 
2157 	btrfs_close_bdev(device);
2158 	synchronize_rcu();
2159 	btrfs_free_device(device);
2160 
2161 	if (cur_devices->open_devices == 0) {
2162 		list_del_init(&cur_devices->seed_list);
2163 		close_fs_devices(cur_devices);
2164 		free_fs_devices(cur_devices);
2165 	}
2166 
2167 out:
2168 	mutex_unlock(&uuid_mutex);
2169 	return ret;
2170 
2171 error_undo:
2172 	btrfs_reada_undo_remove_dev(device);
2173 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2174 		mutex_lock(&fs_info->chunk_mutex);
2175 		list_add(&device->dev_alloc_list,
2176 			 &fs_devices->alloc_list);
2177 		device->fs_devices->rw_devices++;
2178 		mutex_unlock(&fs_info->chunk_mutex);
2179 	}
2180 	goto out;
2181 }
2182 
2183 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2184 {
2185 	struct btrfs_fs_devices *fs_devices;
2186 
2187 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2188 
2189 	/*
2190 	 * in case of fs with no seed, srcdev->fs_devices will point
2191 	 * to fs_devices of fs_info. However when the dev being replaced is
2192 	 * a seed dev it will point to the seed's local fs_devices. In short
2193 	 * srcdev will have its correct fs_devices in both the cases.
2194 	 */
2195 	fs_devices = srcdev->fs_devices;
2196 
2197 	list_del_rcu(&srcdev->dev_list);
2198 	list_del(&srcdev->dev_alloc_list);
2199 	fs_devices->num_devices--;
2200 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2201 		fs_devices->missing_devices--;
2202 
2203 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2204 		fs_devices->rw_devices--;
2205 
2206 	if (srcdev->bdev)
2207 		fs_devices->open_devices--;
2208 }
2209 
2210 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2211 {
2212 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2213 
2214 	mutex_lock(&uuid_mutex);
2215 
2216 	btrfs_close_bdev(srcdev);
2217 	synchronize_rcu();
2218 	btrfs_free_device(srcdev);
2219 
2220 	/* if this is no devs we rather delete the fs_devices */
2221 	if (!fs_devices->num_devices) {
2222 		/*
2223 		 * On a mounted FS, num_devices can't be zero unless it's a
2224 		 * seed. In case of a seed device being replaced, the replace
2225 		 * target added to the sprout FS, so there will be no more
2226 		 * device left under the seed FS.
2227 		 */
2228 		ASSERT(fs_devices->seeding);
2229 
2230 		list_del_init(&fs_devices->seed_list);
2231 		close_fs_devices(fs_devices);
2232 		free_fs_devices(fs_devices);
2233 	}
2234 	mutex_unlock(&uuid_mutex);
2235 }
2236 
2237 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2238 {
2239 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2240 
2241 	mutex_lock(&fs_devices->device_list_mutex);
2242 
2243 	btrfs_sysfs_remove_device(tgtdev);
2244 
2245 	if (tgtdev->bdev)
2246 		fs_devices->open_devices--;
2247 
2248 	fs_devices->num_devices--;
2249 
2250 	btrfs_assign_next_active_device(tgtdev, NULL);
2251 
2252 	list_del_rcu(&tgtdev->dev_list);
2253 
2254 	mutex_unlock(&fs_devices->device_list_mutex);
2255 
2256 	/*
2257 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2258 	 * may lead to a call to btrfs_show_devname() which will try
2259 	 * to hold device_list_mutex. And here this device
2260 	 * is already out of device list, so we don't have to hold
2261 	 * the device_list_mutex lock.
2262 	 */
2263 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2264 				  tgtdev->name->str);
2265 
2266 	btrfs_close_bdev(tgtdev);
2267 	synchronize_rcu();
2268 	btrfs_free_device(tgtdev);
2269 }
2270 
2271 static struct btrfs_device *btrfs_find_device_by_path(
2272 		struct btrfs_fs_info *fs_info, const char *device_path)
2273 {
2274 	int ret = 0;
2275 	struct btrfs_super_block *disk_super;
2276 	u64 devid;
2277 	u8 *dev_uuid;
2278 	struct block_device *bdev;
2279 	struct btrfs_device *device;
2280 
2281 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2282 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2283 	if (ret)
2284 		return ERR_PTR(ret);
2285 
2286 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2287 	dev_uuid = disk_super->dev_item.uuid;
2288 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2289 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2290 					   disk_super->metadata_uuid, true);
2291 	else
2292 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2293 					   disk_super->fsid, true);
2294 
2295 	btrfs_release_disk_super(disk_super);
2296 	if (!device)
2297 		device = ERR_PTR(-ENOENT);
2298 	blkdev_put(bdev, FMODE_READ);
2299 	return device;
2300 }
2301 
2302 /*
2303  * Lookup a device given by device id, or the path if the id is 0.
2304  */
2305 struct btrfs_device *btrfs_find_device_by_devspec(
2306 		struct btrfs_fs_info *fs_info, u64 devid,
2307 		const char *device_path)
2308 {
2309 	struct btrfs_device *device;
2310 
2311 	if (devid) {
2312 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2313 					   NULL, true);
2314 		if (!device)
2315 			return ERR_PTR(-ENOENT);
2316 		return device;
2317 	}
2318 
2319 	if (!device_path || !device_path[0])
2320 		return ERR_PTR(-EINVAL);
2321 
2322 	if (strcmp(device_path, "missing") == 0) {
2323 		/* Find first missing device */
2324 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2325 				    dev_list) {
2326 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2327 				     &device->dev_state) && !device->bdev)
2328 				return device;
2329 		}
2330 		return ERR_PTR(-ENOENT);
2331 	}
2332 
2333 	return btrfs_find_device_by_path(fs_info, device_path);
2334 }
2335 
2336 /*
2337  * does all the dirty work required for changing file system's UUID.
2338  */
2339 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2340 {
2341 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2342 	struct btrfs_fs_devices *old_devices;
2343 	struct btrfs_fs_devices *seed_devices;
2344 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2345 	struct btrfs_device *device;
2346 	u64 super_flags;
2347 
2348 	lockdep_assert_held(&uuid_mutex);
2349 	if (!fs_devices->seeding)
2350 		return -EINVAL;
2351 
2352 	/*
2353 	 * Private copy of the seed devices, anchored at
2354 	 * fs_info->fs_devices->seed_list
2355 	 */
2356 	seed_devices = alloc_fs_devices(NULL, NULL);
2357 	if (IS_ERR(seed_devices))
2358 		return PTR_ERR(seed_devices);
2359 
2360 	/*
2361 	 * It's necessary to retain a copy of the original seed fs_devices in
2362 	 * fs_uuids so that filesystems which have been seeded can successfully
2363 	 * reference the seed device from open_seed_devices. This also supports
2364 	 * multiple fs seed.
2365 	 */
2366 	old_devices = clone_fs_devices(fs_devices);
2367 	if (IS_ERR(old_devices)) {
2368 		kfree(seed_devices);
2369 		return PTR_ERR(old_devices);
2370 	}
2371 
2372 	list_add(&old_devices->fs_list, &fs_uuids);
2373 
2374 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2375 	seed_devices->opened = 1;
2376 	INIT_LIST_HEAD(&seed_devices->devices);
2377 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2378 	mutex_init(&seed_devices->device_list_mutex);
2379 
2380 	mutex_lock(&fs_devices->device_list_mutex);
2381 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2382 			      synchronize_rcu);
2383 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2384 		device->fs_devices = seed_devices;
2385 
2386 	fs_devices->seeding = false;
2387 	fs_devices->num_devices = 0;
2388 	fs_devices->open_devices = 0;
2389 	fs_devices->missing_devices = 0;
2390 	fs_devices->rotating = false;
2391 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2392 
2393 	generate_random_uuid(fs_devices->fsid);
2394 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2395 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2396 	mutex_unlock(&fs_devices->device_list_mutex);
2397 
2398 	super_flags = btrfs_super_flags(disk_super) &
2399 		      ~BTRFS_SUPER_FLAG_SEEDING;
2400 	btrfs_set_super_flags(disk_super, super_flags);
2401 
2402 	return 0;
2403 }
2404 
2405 /*
2406  * Store the expected generation for seed devices in device items.
2407  */
2408 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2409 {
2410 	struct btrfs_fs_info *fs_info = trans->fs_info;
2411 	struct btrfs_root *root = fs_info->chunk_root;
2412 	struct btrfs_path *path;
2413 	struct extent_buffer *leaf;
2414 	struct btrfs_dev_item *dev_item;
2415 	struct btrfs_device *device;
2416 	struct btrfs_key key;
2417 	u8 fs_uuid[BTRFS_FSID_SIZE];
2418 	u8 dev_uuid[BTRFS_UUID_SIZE];
2419 	u64 devid;
2420 	int ret;
2421 
2422 	path = btrfs_alloc_path();
2423 	if (!path)
2424 		return -ENOMEM;
2425 
2426 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2427 	key.offset = 0;
2428 	key.type = BTRFS_DEV_ITEM_KEY;
2429 
2430 	while (1) {
2431 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2432 		if (ret < 0)
2433 			goto error;
2434 
2435 		leaf = path->nodes[0];
2436 next_slot:
2437 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2438 			ret = btrfs_next_leaf(root, path);
2439 			if (ret > 0)
2440 				break;
2441 			if (ret < 0)
2442 				goto error;
2443 			leaf = path->nodes[0];
2444 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2445 			btrfs_release_path(path);
2446 			continue;
2447 		}
2448 
2449 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2450 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2451 		    key.type != BTRFS_DEV_ITEM_KEY)
2452 			break;
2453 
2454 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2455 					  struct btrfs_dev_item);
2456 		devid = btrfs_device_id(leaf, dev_item);
2457 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2458 				   BTRFS_UUID_SIZE);
2459 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2460 				   BTRFS_FSID_SIZE);
2461 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2462 					   fs_uuid, true);
2463 		BUG_ON(!device); /* Logic error */
2464 
2465 		if (device->fs_devices->seeding) {
2466 			btrfs_set_device_generation(leaf, dev_item,
2467 						    device->generation);
2468 			btrfs_mark_buffer_dirty(leaf);
2469 		}
2470 
2471 		path->slots[0]++;
2472 		goto next_slot;
2473 	}
2474 	ret = 0;
2475 error:
2476 	btrfs_free_path(path);
2477 	return ret;
2478 }
2479 
2480 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2481 {
2482 	struct btrfs_root *root = fs_info->dev_root;
2483 	struct request_queue *q;
2484 	struct btrfs_trans_handle *trans;
2485 	struct btrfs_device *device;
2486 	struct block_device *bdev;
2487 	struct super_block *sb = fs_info->sb;
2488 	struct rcu_string *name;
2489 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2490 	u64 orig_super_total_bytes;
2491 	u64 orig_super_num_devices;
2492 	int seeding_dev = 0;
2493 	int ret = 0;
2494 	bool locked = false;
2495 
2496 	if (sb_rdonly(sb) && !fs_devices->seeding)
2497 		return -EROFS;
2498 
2499 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2500 				  fs_info->bdev_holder);
2501 	if (IS_ERR(bdev))
2502 		return PTR_ERR(bdev);
2503 
2504 	if (fs_devices->seeding) {
2505 		seeding_dev = 1;
2506 		down_write(&sb->s_umount);
2507 		mutex_lock(&uuid_mutex);
2508 		locked = true;
2509 	}
2510 
2511 	sync_blockdev(bdev);
2512 
2513 	rcu_read_lock();
2514 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2515 		if (device->bdev == bdev) {
2516 			ret = -EEXIST;
2517 			rcu_read_unlock();
2518 			goto error;
2519 		}
2520 	}
2521 	rcu_read_unlock();
2522 
2523 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2524 	if (IS_ERR(device)) {
2525 		/* we can safely leave the fs_devices entry around */
2526 		ret = PTR_ERR(device);
2527 		goto error;
2528 	}
2529 
2530 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2531 	if (!name) {
2532 		ret = -ENOMEM;
2533 		goto error_free_device;
2534 	}
2535 	rcu_assign_pointer(device->name, name);
2536 
2537 	trans = btrfs_start_transaction(root, 0);
2538 	if (IS_ERR(trans)) {
2539 		ret = PTR_ERR(trans);
2540 		goto error_free_device;
2541 	}
2542 
2543 	q = bdev_get_queue(bdev);
2544 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2545 	device->generation = trans->transid;
2546 	device->io_width = fs_info->sectorsize;
2547 	device->io_align = fs_info->sectorsize;
2548 	device->sector_size = fs_info->sectorsize;
2549 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2550 					 fs_info->sectorsize);
2551 	device->disk_total_bytes = device->total_bytes;
2552 	device->commit_total_bytes = device->total_bytes;
2553 	device->fs_info = fs_info;
2554 	device->bdev = bdev;
2555 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2556 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2557 	device->mode = FMODE_EXCL;
2558 	device->dev_stats_valid = 1;
2559 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2560 
2561 	if (seeding_dev) {
2562 		sb->s_flags &= ~SB_RDONLY;
2563 		ret = btrfs_prepare_sprout(fs_info);
2564 		if (ret) {
2565 			btrfs_abort_transaction(trans, ret);
2566 			goto error_trans;
2567 		}
2568 	}
2569 
2570 	device->fs_devices = fs_devices;
2571 
2572 	mutex_lock(&fs_devices->device_list_mutex);
2573 	mutex_lock(&fs_info->chunk_mutex);
2574 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2575 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2576 	fs_devices->num_devices++;
2577 	fs_devices->open_devices++;
2578 	fs_devices->rw_devices++;
2579 	fs_devices->total_devices++;
2580 	fs_devices->total_rw_bytes += device->total_bytes;
2581 
2582 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2583 
2584 	if (!blk_queue_nonrot(q))
2585 		fs_devices->rotating = true;
2586 
2587 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2588 	btrfs_set_super_total_bytes(fs_info->super_copy,
2589 		round_down(orig_super_total_bytes + device->total_bytes,
2590 			   fs_info->sectorsize));
2591 
2592 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2593 	btrfs_set_super_num_devices(fs_info->super_copy,
2594 				    orig_super_num_devices + 1);
2595 
2596 	/*
2597 	 * we've got more storage, clear any full flags on the space
2598 	 * infos
2599 	 */
2600 	btrfs_clear_space_info_full(fs_info);
2601 
2602 	mutex_unlock(&fs_info->chunk_mutex);
2603 
2604 	/* Add sysfs device entry */
2605 	btrfs_sysfs_add_device(device);
2606 
2607 	mutex_unlock(&fs_devices->device_list_mutex);
2608 
2609 	if (seeding_dev) {
2610 		mutex_lock(&fs_info->chunk_mutex);
2611 		ret = init_first_rw_device(trans);
2612 		mutex_unlock(&fs_info->chunk_mutex);
2613 		if (ret) {
2614 			btrfs_abort_transaction(trans, ret);
2615 			goto error_sysfs;
2616 		}
2617 	}
2618 
2619 	ret = btrfs_add_dev_item(trans, device);
2620 	if (ret) {
2621 		btrfs_abort_transaction(trans, ret);
2622 		goto error_sysfs;
2623 	}
2624 
2625 	if (seeding_dev) {
2626 		ret = btrfs_finish_sprout(trans);
2627 		if (ret) {
2628 			btrfs_abort_transaction(trans, ret);
2629 			goto error_sysfs;
2630 		}
2631 
2632 		/*
2633 		 * fs_devices now represents the newly sprouted filesystem and
2634 		 * its fsid has been changed by btrfs_prepare_sprout
2635 		 */
2636 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2637 	}
2638 
2639 	ret = btrfs_commit_transaction(trans);
2640 
2641 	if (seeding_dev) {
2642 		mutex_unlock(&uuid_mutex);
2643 		up_write(&sb->s_umount);
2644 		locked = false;
2645 
2646 		if (ret) /* transaction commit */
2647 			return ret;
2648 
2649 		ret = btrfs_relocate_sys_chunks(fs_info);
2650 		if (ret < 0)
2651 			btrfs_handle_fs_error(fs_info, ret,
2652 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2653 		trans = btrfs_attach_transaction(root);
2654 		if (IS_ERR(trans)) {
2655 			if (PTR_ERR(trans) == -ENOENT)
2656 				return 0;
2657 			ret = PTR_ERR(trans);
2658 			trans = NULL;
2659 			goto error_sysfs;
2660 		}
2661 		ret = btrfs_commit_transaction(trans);
2662 	}
2663 
2664 	/*
2665 	 * Now that we have written a new super block to this device, check all
2666 	 * other fs_devices list if device_path alienates any other scanned
2667 	 * device.
2668 	 * We can ignore the return value as it typically returns -EINVAL and
2669 	 * only succeeds if the device was an alien.
2670 	 */
2671 	btrfs_forget_devices(device_path);
2672 
2673 	/* Update ctime/mtime for blkid or udev */
2674 	update_dev_time(device_path);
2675 
2676 	return ret;
2677 
2678 error_sysfs:
2679 	btrfs_sysfs_remove_device(device);
2680 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2681 	mutex_lock(&fs_info->chunk_mutex);
2682 	list_del_rcu(&device->dev_list);
2683 	list_del(&device->dev_alloc_list);
2684 	fs_info->fs_devices->num_devices--;
2685 	fs_info->fs_devices->open_devices--;
2686 	fs_info->fs_devices->rw_devices--;
2687 	fs_info->fs_devices->total_devices--;
2688 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2689 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2690 	btrfs_set_super_total_bytes(fs_info->super_copy,
2691 				    orig_super_total_bytes);
2692 	btrfs_set_super_num_devices(fs_info->super_copy,
2693 				    orig_super_num_devices);
2694 	mutex_unlock(&fs_info->chunk_mutex);
2695 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2696 error_trans:
2697 	if (seeding_dev)
2698 		sb->s_flags |= SB_RDONLY;
2699 	if (trans)
2700 		btrfs_end_transaction(trans);
2701 error_free_device:
2702 	btrfs_free_device(device);
2703 error:
2704 	blkdev_put(bdev, FMODE_EXCL);
2705 	if (locked) {
2706 		mutex_unlock(&uuid_mutex);
2707 		up_write(&sb->s_umount);
2708 	}
2709 	return ret;
2710 }
2711 
2712 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2713 					struct btrfs_device *device)
2714 {
2715 	int ret;
2716 	struct btrfs_path *path;
2717 	struct btrfs_root *root = device->fs_info->chunk_root;
2718 	struct btrfs_dev_item *dev_item;
2719 	struct extent_buffer *leaf;
2720 	struct btrfs_key key;
2721 
2722 	path = btrfs_alloc_path();
2723 	if (!path)
2724 		return -ENOMEM;
2725 
2726 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2727 	key.type = BTRFS_DEV_ITEM_KEY;
2728 	key.offset = device->devid;
2729 
2730 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2731 	if (ret < 0)
2732 		goto out;
2733 
2734 	if (ret > 0) {
2735 		ret = -ENOENT;
2736 		goto out;
2737 	}
2738 
2739 	leaf = path->nodes[0];
2740 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2741 
2742 	btrfs_set_device_id(leaf, dev_item, device->devid);
2743 	btrfs_set_device_type(leaf, dev_item, device->type);
2744 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2745 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2746 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2747 	btrfs_set_device_total_bytes(leaf, dev_item,
2748 				     btrfs_device_get_disk_total_bytes(device));
2749 	btrfs_set_device_bytes_used(leaf, dev_item,
2750 				    btrfs_device_get_bytes_used(device));
2751 	btrfs_mark_buffer_dirty(leaf);
2752 
2753 out:
2754 	btrfs_free_path(path);
2755 	return ret;
2756 }
2757 
2758 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2759 		      struct btrfs_device *device, u64 new_size)
2760 {
2761 	struct btrfs_fs_info *fs_info = device->fs_info;
2762 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2763 	u64 old_total;
2764 	u64 diff;
2765 
2766 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2767 		return -EACCES;
2768 
2769 	new_size = round_down(new_size, fs_info->sectorsize);
2770 
2771 	mutex_lock(&fs_info->chunk_mutex);
2772 	old_total = btrfs_super_total_bytes(super_copy);
2773 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2774 
2775 	if (new_size <= device->total_bytes ||
2776 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2777 		mutex_unlock(&fs_info->chunk_mutex);
2778 		return -EINVAL;
2779 	}
2780 
2781 	btrfs_set_super_total_bytes(super_copy,
2782 			round_down(old_total + diff, fs_info->sectorsize));
2783 	device->fs_devices->total_rw_bytes += diff;
2784 
2785 	btrfs_device_set_total_bytes(device, new_size);
2786 	btrfs_device_set_disk_total_bytes(device, new_size);
2787 	btrfs_clear_space_info_full(device->fs_info);
2788 	if (list_empty(&device->post_commit_list))
2789 		list_add_tail(&device->post_commit_list,
2790 			      &trans->transaction->dev_update_list);
2791 	mutex_unlock(&fs_info->chunk_mutex);
2792 
2793 	return btrfs_update_device(trans, device);
2794 }
2795 
2796 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2797 {
2798 	struct btrfs_fs_info *fs_info = trans->fs_info;
2799 	struct btrfs_root *root = fs_info->chunk_root;
2800 	int ret;
2801 	struct btrfs_path *path;
2802 	struct btrfs_key key;
2803 
2804 	path = btrfs_alloc_path();
2805 	if (!path)
2806 		return -ENOMEM;
2807 
2808 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2809 	key.offset = chunk_offset;
2810 	key.type = BTRFS_CHUNK_ITEM_KEY;
2811 
2812 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2813 	if (ret < 0)
2814 		goto out;
2815 	else if (ret > 0) { /* Logic error or corruption */
2816 		btrfs_handle_fs_error(fs_info, -ENOENT,
2817 				      "Failed lookup while freeing chunk.");
2818 		ret = -ENOENT;
2819 		goto out;
2820 	}
2821 
2822 	ret = btrfs_del_item(trans, root, path);
2823 	if (ret < 0)
2824 		btrfs_handle_fs_error(fs_info, ret,
2825 				      "Failed to delete chunk item.");
2826 out:
2827 	btrfs_free_path(path);
2828 	return ret;
2829 }
2830 
2831 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2832 {
2833 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2834 	struct btrfs_disk_key *disk_key;
2835 	struct btrfs_chunk *chunk;
2836 	u8 *ptr;
2837 	int ret = 0;
2838 	u32 num_stripes;
2839 	u32 array_size;
2840 	u32 len = 0;
2841 	u32 cur;
2842 	struct btrfs_key key;
2843 
2844 	mutex_lock(&fs_info->chunk_mutex);
2845 	array_size = btrfs_super_sys_array_size(super_copy);
2846 
2847 	ptr = super_copy->sys_chunk_array;
2848 	cur = 0;
2849 
2850 	while (cur < array_size) {
2851 		disk_key = (struct btrfs_disk_key *)ptr;
2852 		btrfs_disk_key_to_cpu(&key, disk_key);
2853 
2854 		len = sizeof(*disk_key);
2855 
2856 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2857 			chunk = (struct btrfs_chunk *)(ptr + len);
2858 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2859 			len += btrfs_chunk_item_size(num_stripes);
2860 		} else {
2861 			ret = -EIO;
2862 			break;
2863 		}
2864 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2865 		    key.offset == chunk_offset) {
2866 			memmove(ptr, ptr + len, array_size - (cur + len));
2867 			array_size -= len;
2868 			btrfs_set_super_sys_array_size(super_copy, array_size);
2869 		} else {
2870 			ptr += len;
2871 			cur += len;
2872 		}
2873 	}
2874 	mutex_unlock(&fs_info->chunk_mutex);
2875 	return ret;
2876 }
2877 
2878 /*
2879  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2880  * @logical: Logical block offset in bytes.
2881  * @length: Length of extent in bytes.
2882  *
2883  * Return: Chunk mapping or ERR_PTR.
2884  */
2885 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2886 				       u64 logical, u64 length)
2887 {
2888 	struct extent_map_tree *em_tree;
2889 	struct extent_map *em;
2890 
2891 	em_tree = &fs_info->mapping_tree;
2892 	read_lock(&em_tree->lock);
2893 	em = lookup_extent_mapping(em_tree, logical, length);
2894 	read_unlock(&em_tree->lock);
2895 
2896 	if (!em) {
2897 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2898 			   logical, length);
2899 		return ERR_PTR(-EINVAL);
2900 	}
2901 
2902 	if (em->start > logical || em->start + em->len < logical) {
2903 		btrfs_crit(fs_info,
2904 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2905 			   logical, length, em->start, em->start + em->len);
2906 		free_extent_map(em);
2907 		return ERR_PTR(-EINVAL);
2908 	}
2909 
2910 	/* callers are responsible for dropping em's ref. */
2911 	return em;
2912 }
2913 
2914 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2915 {
2916 	struct btrfs_fs_info *fs_info = trans->fs_info;
2917 	struct extent_map *em;
2918 	struct map_lookup *map;
2919 	u64 dev_extent_len = 0;
2920 	int i, ret = 0;
2921 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2922 
2923 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2924 	if (IS_ERR(em)) {
2925 		/*
2926 		 * This is a logic error, but we don't want to just rely on the
2927 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2928 		 * do anything we still error out.
2929 		 */
2930 		ASSERT(0);
2931 		return PTR_ERR(em);
2932 	}
2933 	map = em->map_lookup;
2934 	mutex_lock(&fs_info->chunk_mutex);
2935 	check_system_chunk(trans, map->type);
2936 	mutex_unlock(&fs_info->chunk_mutex);
2937 
2938 	/*
2939 	 * Take the device list mutex to prevent races with the final phase of
2940 	 * a device replace operation that replaces the device object associated
2941 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2942 	 */
2943 	mutex_lock(&fs_devices->device_list_mutex);
2944 	for (i = 0; i < map->num_stripes; i++) {
2945 		struct btrfs_device *device = map->stripes[i].dev;
2946 		ret = btrfs_free_dev_extent(trans, device,
2947 					    map->stripes[i].physical,
2948 					    &dev_extent_len);
2949 		if (ret) {
2950 			mutex_unlock(&fs_devices->device_list_mutex);
2951 			btrfs_abort_transaction(trans, ret);
2952 			goto out;
2953 		}
2954 
2955 		if (device->bytes_used > 0) {
2956 			mutex_lock(&fs_info->chunk_mutex);
2957 			btrfs_device_set_bytes_used(device,
2958 					device->bytes_used - dev_extent_len);
2959 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2960 			btrfs_clear_space_info_full(fs_info);
2961 			mutex_unlock(&fs_info->chunk_mutex);
2962 		}
2963 
2964 		ret = btrfs_update_device(trans, device);
2965 		if (ret) {
2966 			mutex_unlock(&fs_devices->device_list_mutex);
2967 			btrfs_abort_transaction(trans, ret);
2968 			goto out;
2969 		}
2970 	}
2971 	mutex_unlock(&fs_devices->device_list_mutex);
2972 
2973 	ret = btrfs_free_chunk(trans, chunk_offset);
2974 	if (ret) {
2975 		btrfs_abort_transaction(trans, ret);
2976 		goto out;
2977 	}
2978 
2979 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2980 
2981 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2982 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2983 		if (ret) {
2984 			btrfs_abort_transaction(trans, ret);
2985 			goto out;
2986 		}
2987 	}
2988 
2989 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
2990 	if (ret) {
2991 		btrfs_abort_transaction(trans, ret);
2992 		goto out;
2993 	}
2994 
2995 out:
2996 	/* once for us */
2997 	free_extent_map(em);
2998 	return ret;
2999 }
3000 
3001 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3002 {
3003 	struct btrfs_root *root = fs_info->chunk_root;
3004 	struct btrfs_trans_handle *trans;
3005 	struct btrfs_block_group *block_group;
3006 	int ret;
3007 
3008 	/*
3009 	 * Prevent races with automatic removal of unused block groups.
3010 	 * After we relocate and before we remove the chunk with offset
3011 	 * chunk_offset, automatic removal of the block group can kick in,
3012 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3013 	 *
3014 	 * Make sure to acquire this mutex before doing a tree search (dev
3015 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3016 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3017 	 * we release the path used to search the chunk/dev tree and before
3018 	 * the current task acquires this mutex and calls us.
3019 	 */
3020 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3021 
3022 	/* step one, relocate all the extents inside this chunk */
3023 	btrfs_scrub_pause(fs_info);
3024 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3025 	btrfs_scrub_continue(fs_info);
3026 	if (ret)
3027 		return ret;
3028 
3029 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3030 	if (!block_group)
3031 		return -ENOENT;
3032 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3033 	btrfs_put_block_group(block_group);
3034 
3035 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3036 						     chunk_offset);
3037 	if (IS_ERR(trans)) {
3038 		ret = PTR_ERR(trans);
3039 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3040 		return ret;
3041 	}
3042 
3043 	/*
3044 	 * step two, delete the device extents and the
3045 	 * chunk tree entries
3046 	 */
3047 	ret = btrfs_remove_chunk(trans, chunk_offset);
3048 	btrfs_end_transaction(trans);
3049 	return ret;
3050 }
3051 
3052 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3053 {
3054 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3055 	struct btrfs_path *path;
3056 	struct extent_buffer *leaf;
3057 	struct btrfs_chunk *chunk;
3058 	struct btrfs_key key;
3059 	struct btrfs_key found_key;
3060 	u64 chunk_type;
3061 	bool retried = false;
3062 	int failed = 0;
3063 	int ret;
3064 
3065 	path = btrfs_alloc_path();
3066 	if (!path)
3067 		return -ENOMEM;
3068 
3069 again:
3070 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3071 	key.offset = (u64)-1;
3072 	key.type = BTRFS_CHUNK_ITEM_KEY;
3073 
3074 	while (1) {
3075 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3076 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3077 		if (ret < 0) {
3078 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3079 			goto error;
3080 		}
3081 		BUG_ON(ret == 0); /* Corruption */
3082 
3083 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3084 					  key.type);
3085 		if (ret)
3086 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3087 		if (ret < 0)
3088 			goto error;
3089 		if (ret > 0)
3090 			break;
3091 
3092 		leaf = path->nodes[0];
3093 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3094 
3095 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3096 				       struct btrfs_chunk);
3097 		chunk_type = btrfs_chunk_type(leaf, chunk);
3098 		btrfs_release_path(path);
3099 
3100 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3101 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3102 			if (ret == -ENOSPC)
3103 				failed++;
3104 			else
3105 				BUG_ON(ret);
3106 		}
3107 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3108 
3109 		if (found_key.offset == 0)
3110 			break;
3111 		key.offset = found_key.offset - 1;
3112 	}
3113 	ret = 0;
3114 	if (failed && !retried) {
3115 		failed = 0;
3116 		retried = true;
3117 		goto again;
3118 	} else if (WARN_ON(failed && retried)) {
3119 		ret = -ENOSPC;
3120 	}
3121 error:
3122 	btrfs_free_path(path);
3123 	return ret;
3124 }
3125 
3126 /*
3127  * return 1 : allocate a data chunk successfully,
3128  * return <0: errors during allocating a data chunk,
3129  * return 0 : no need to allocate a data chunk.
3130  */
3131 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3132 				      u64 chunk_offset)
3133 {
3134 	struct btrfs_block_group *cache;
3135 	u64 bytes_used;
3136 	u64 chunk_type;
3137 
3138 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3139 	ASSERT(cache);
3140 	chunk_type = cache->flags;
3141 	btrfs_put_block_group(cache);
3142 
3143 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3144 		return 0;
3145 
3146 	spin_lock(&fs_info->data_sinfo->lock);
3147 	bytes_used = fs_info->data_sinfo->bytes_used;
3148 	spin_unlock(&fs_info->data_sinfo->lock);
3149 
3150 	if (!bytes_used) {
3151 		struct btrfs_trans_handle *trans;
3152 		int ret;
3153 
3154 		trans =	btrfs_join_transaction(fs_info->tree_root);
3155 		if (IS_ERR(trans))
3156 			return PTR_ERR(trans);
3157 
3158 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3159 		btrfs_end_transaction(trans);
3160 		if (ret < 0)
3161 			return ret;
3162 		return 1;
3163 	}
3164 
3165 	return 0;
3166 }
3167 
3168 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3169 			       struct btrfs_balance_control *bctl)
3170 {
3171 	struct btrfs_root *root = fs_info->tree_root;
3172 	struct btrfs_trans_handle *trans;
3173 	struct btrfs_balance_item *item;
3174 	struct btrfs_disk_balance_args disk_bargs;
3175 	struct btrfs_path *path;
3176 	struct extent_buffer *leaf;
3177 	struct btrfs_key key;
3178 	int ret, err;
3179 
3180 	path = btrfs_alloc_path();
3181 	if (!path)
3182 		return -ENOMEM;
3183 
3184 	trans = btrfs_start_transaction(root, 0);
3185 	if (IS_ERR(trans)) {
3186 		btrfs_free_path(path);
3187 		return PTR_ERR(trans);
3188 	}
3189 
3190 	key.objectid = BTRFS_BALANCE_OBJECTID;
3191 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3192 	key.offset = 0;
3193 
3194 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3195 				      sizeof(*item));
3196 	if (ret)
3197 		goto out;
3198 
3199 	leaf = path->nodes[0];
3200 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3201 
3202 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3203 
3204 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3205 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3206 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3207 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3208 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3209 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3210 
3211 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3212 
3213 	btrfs_mark_buffer_dirty(leaf);
3214 out:
3215 	btrfs_free_path(path);
3216 	err = btrfs_commit_transaction(trans);
3217 	if (err && !ret)
3218 		ret = err;
3219 	return ret;
3220 }
3221 
3222 static int del_balance_item(struct btrfs_fs_info *fs_info)
3223 {
3224 	struct btrfs_root *root = fs_info->tree_root;
3225 	struct btrfs_trans_handle *trans;
3226 	struct btrfs_path *path;
3227 	struct btrfs_key key;
3228 	int ret, err;
3229 
3230 	path = btrfs_alloc_path();
3231 	if (!path)
3232 		return -ENOMEM;
3233 
3234 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3235 	if (IS_ERR(trans)) {
3236 		btrfs_free_path(path);
3237 		return PTR_ERR(trans);
3238 	}
3239 
3240 	key.objectid = BTRFS_BALANCE_OBJECTID;
3241 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3242 	key.offset = 0;
3243 
3244 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3245 	if (ret < 0)
3246 		goto out;
3247 	if (ret > 0) {
3248 		ret = -ENOENT;
3249 		goto out;
3250 	}
3251 
3252 	ret = btrfs_del_item(trans, root, path);
3253 out:
3254 	btrfs_free_path(path);
3255 	err = btrfs_commit_transaction(trans);
3256 	if (err && !ret)
3257 		ret = err;
3258 	return ret;
3259 }
3260 
3261 /*
3262  * This is a heuristic used to reduce the number of chunks balanced on
3263  * resume after balance was interrupted.
3264  */
3265 static void update_balance_args(struct btrfs_balance_control *bctl)
3266 {
3267 	/*
3268 	 * Turn on soft mode for chunk types that were being converted.
3269 	 */
3270 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3271 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3272 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3273 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3274 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3275 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3276 
3277 	/*
3278 	 * Turn on usage filter if is not already used.  The idea is
3279 	 * that chunks that we have already balanced should be
3280 	 * reasonably full.  Don't do it for chunks that are being
3281 	 * converted - that will keep us from relocating unconverted
3282 	 * (albeit full) chunks.
3283 	 */
3284 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3285 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3286 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3287 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3288 		bctl->data.usage = 90;
3289 	}
3290 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3291 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3292 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3293 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3294 		bctl->sys.usage = 90;
3295 	}
3296 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3297 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3298 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3299 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3300 		bctl->meta.usage = 90;
3301 	}
3302 }
3303 
3304 /*
3305  * Clear the balance status in fs_info and delete the balance item from disk.
3306  */
3307 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3308 {
3309 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3310 	int ret;
3311 
3312 	BUG_ON(!fs_info->balance_ctl);
3313 
3314 	spin_lock(&fs_info->balance_lock);
3315 	fs_info->balance_ctl = NULL;
3316 	spin_unlock(&fs_info->balance_lock);
3317 
3318 	kfree(bctl);
3319 	ret = del_balance_item(fs_info);
3320 	if (ret)
3321 		btrfs_handle_fs_error(fs_info, ret, NULL);
3322 }
3323 
3324 /*
3325  * Balance filters.  Return 1 if chunk should be filtered out
3326  * (should not be balanced).
3327  */
3328 static int chunk_profiles_filter(u64 chunk_type,
3329 				 struct btrfs_balance_args *bargs)
3330 {
3331 	chunk_type = chunk_to_extended(chunk_type) &
3332 				BTRFS_EXTENDED_PROFILE_MASK;
3333 
3334 	if (bargs->profiles & chunk_type)
3335 		return 0;
3336 
3337 	return 1;
3338 }
3339 
3340 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3341 			      struct btrfs_balance_args *bargs)
3342 {
3343 	struct btrfs_block_group *cache;
3344 	u64 chunk_used;
3345 	u64 user_thresh_min;
3346 	u64 user_thresh_max;
3347 	int ret = 1;
3348 
3349 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3350 	chunk_used = cache->used;
3351 
3352 	if (bargs->usage_min == 0)
3353 		user_thresh_min = 0;
3354 	else
3355 		user_thresh_min = div_factor_fine(cache->length,
3356 						  bargs->usage_min);
3357 
3358 	if (bargs->usage_max == 0)
3359 		user_thresh_max = 1;
3360 	else if (bargs->usage_max > 100)
3361 		user_thresh_max = cache->length;
3362 	else
3363 		user_thresh_max = div_factor_fine(cache->length,
3364 						  bargs->usage_max);
3365 
3366 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3367 		ret = 0;
3368 
3369 	btrfs_put_block_group(cache);
3370 	return ret;
3371 }
3372 
3373 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3374 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3375 {
3376 	struct btrfs_block_group *cache;
3377 	u64 chunk_used, user_thresh;
3378 	int ret = 1;
3379 
3380 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3381 	chunk_used = cache->used;
3382 
3383 	if (bargs->usage_min == 0)
3384 		user_thresh = 1;
3385 	else if (bargs->usage > 100)
3386 		user_thresh = cache->length;
3387 	else
3388 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3389 
3390 	if (chunk_used < user_thresh)
3391 		ret = 0;
3392 
3393 	btrfs_put_block_group(cache);
3394 	return ret;
3395 }
3396 
3397 static int chunk_devid_filter(struct extent_buffer *leaf,
3398 			      struct btrfs_chunk *chunk,
3399 			      struct btrfs_balance_args *bargs)
3400 {
3401 	struct btrfs_stripe *stripe;
3402 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3403 	int i;
3404 
3405 	for (i = 0; i < num_stripes; i++) {
3406 		stripe = btrfs_stripe_nr(chunk, i);
3407 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3408 			return 0;
3409 	}
3410 
3411 	return 1;
3412 }
3413 
3414 static u64 calc_data_stripes(u64 type, int num_stripes)
3415 {
3416 	const int index = btrfs_bg_flags_to_raid_index(type);
3417 	const int ncopies = btrfs_raid_array[index].ncopies;
3418 	const int nparity = btrfs_raid_array[index].nparity;
3419 
3420 	if (nparity)
3421 		return num_stripes - nparity;
3422 	else
3423 		return num_stripes / ncopies;
3424 }
3425 
3426 /* [pstart, pend) */
3427 static int chunk_drange_filter(struct extent_buffer *leaf,
3428 			       struct btrfs_chunk *chunk,
3429 			       struct btrfs_balance_args *bargs)
3430 {
3431 	struct btrfs_stripe *stripe;
3432 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3433 	u64 stripe_offset;
3434 	u64 stripe_length;
3435 	u64 type;
3436 	int factor;
3437 	int i;
3438 
3439 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3440 		return 0;
3441 
3442 	type = btrfs_chunk_type(leaf, chunk);
3443 	factor = calc_data_stripes(type, num_stripes);
3444 
3445 	for (i = 0; i < num_stripes; i++) {
3446 		stripe = btrfs_stripe_nr(chunk, i);
3447 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3448 			continue;
3449 
3450 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3451 		stripe_length = btrfs_chunk_length(leaf, chunk);
3452 		stripe_length = div_u64(stripe_length, factor);
3453 
3454 		if (stripe_offset < bargs->pend &&
3455 		    stripe_offset + stripe_length > bargs->pstart)
3456 			return 0;
3457 	}
3458 
3459 	return 1;
3460 }
3461 
3462 /* [vstart, vend) */
3463 static int chunk_vrange_filter(struct extent_buffer *leaf,
3464 			       struct btrfs_chunk *chunk,
3465 			       u64 chunk_offset,
3466 			       struct btrfs_balance_args *bargs)
3467 {
3468 	if (chunk_offset < bargs->vend &&
3469 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3470 		/* at least part of the chunk is inside this vrange */
3471 		return 0;
3472 
3473 	return 1;
3474 }
3475 
3476 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3477 			       struct btrfs_chunk *chunk,
3478 			       struct btrfs_balance_args *bargs)
3479 {
3480 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3481 
3482 	if (bargs->stripes_min <= num_stripes
3483 			&& num_stripes <= bargs->stripes_max)
3484 		return 0;
3485 
3486 	return 1;
3487 }
3488 
3489 static int chunk_soft_convert_filter(u64 chunk_type,
3490 				     struct btrfs_balance_args *bargs)
3491 {
3492 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3493 		return 0;
3494 
3495 	chunk_type = chunk_to_extended(chunk_type) &
3496 				BTRFS_EXTENDED_PROFILE_MASK;
3497 
3498 	if (bargs->target == chunk_type)
3499 		return 1;
3500 
3501 	return 0;
3502 }
3503 
3504 static int should_balance_chunk(struct extent_buffer *leaf,
3505 				struct btrfs_chunk *chunk, u64 chunk_offset)
3506 {
3507 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3508 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3509 	struct btrfs_balance_args *bargs = NULL;
3510 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3511 
3512 	/* type filter */
3513 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3514 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3515 		return 0;
3516 	}
3517 
3518 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3519 		bargs = &bctl->data;
3520 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3521 		bargs = &bctl->sys;
3522 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3523 		bargs = &bctl->meta;
3524 
3525 	/* profiles filter */
3526 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3527 	    chunk_profiles_filter(chunk_type, bargs)) {
3528 		return 0;
3529 	}
3530 
3531 	/* usage filter */
3532 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3533 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3534 		return 0;
3535 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3536 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3537 		return 0;
3538 	}
3539 
3540 	/* devid filter */
3541 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3542 	    chunk_devid_filter(leaf, chunk, bargs)) {
3543 		return 0;
3544 	}
3545 
3546 	/* drange filter, makes sense only with devid filter */
3547 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3548 	    chunk_drange_filter(leaf, chunk, bargs)) {
3549 		return 0;
3550 	}
3551 
3552 	/* vrange filter */
3553 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3554 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3555 		return 0;
3556 	}
3557 
3558 	/* stripes filter */
3559 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3560 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3561 		return 0;
3562 	}
3563 
3564 	/* soft profile changing mode */
3565 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3566 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3567 		return 0;
3568 	}
3569 
3570 	/*
3571 	 * limited by count, must be the last filter
3572 	 */
3573 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3574 		if (bargs->limit == 0)
3575 			return 0;
3576 		else
3577 			bargs->limit--;
3578 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3579 		/*
3580 		 * Same logic as the 'limit' filter; the minimum cannot be
3581 		 * determined here because we do not have the global information
3582 		 * about the count of all chunks that satisfy the filters.
3583 		 */
3584 		if (bargs->limit_max == 0)
3585 			return 0;
3586 		else
3587 			bargs->limit_max--;
3588 	}
3589 
3590 	return 1;
3591 }
3592 
3593 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3594 {
3595 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3596 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3597 	u64 chunk_type;
3598 	struct btrfs_chunk *chunk;
3599 	struct btrfs_path *path = NULL;
3600 	struct btrfs_key key;
3601 	struct btrfs_key found_key;
3602 	struct extent_buffer *leaf;
3603 	int slot;
3604 	int ret;
3605 	int enospc_errors = 0;
3606 	bool counting = true;
3607 	/* The single value limit and min/max limits use the same bytes in the */
3608 	u64 limit_data = bctl->data.limit;
3609 	u64 limit_meta = bctl->meta.limit;
3610 	u64 limit_sys = bctl->sys.limit;
3611 	u32 count_data = 0;
3612 	u32 count_meta = 0;
3613 	u32 count_sys = 0;
3614 	int chunk_reserved = 0;
3615 
3616 	path = btrfs_alloc_path();
3617 	if (!path) {
3618 		ret = -ENOMEM;
3619 		goto error;
3620 	}
3621 
3622 	/* zero out stat counters */
3623 	spin_lock(&fs_info->balance_lock);
3624 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3625 	spin_unlock(&fs_info->balance_lock);
3626 again:
3627 	if (!counting) {
3628 		/*
3629 		 * The single value limit and min/max limits use the same bytes
3630 		 * in the
3631 		 */
3632 		bctl->data.limit = limit_data;
3633 		bctl->meta.limit = limit_meta;
3634 		bctl->sys.limit = limit_sys;
3635 	}
3636 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3637 	key.offset = (u64)-1;
3638 	key.type = BTRFS_CHUNK_ITEM_KEY;
3639 
3640 	while (1) {
3641 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3642 		    atomic_read(&fs_info->balance_cancel_req)) {
3643 			ret = -ECANCELED;
3644 			goto error;
3645 		}
3646 
3647 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3648 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3649 		if (ret < 0) {
3650 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3651 			goto error;
3652 		}
3653 
3654 		/*
3655 		 * this shouldn't happen, it means the last relocate
3656 		 * failed
3657 		 */
3658 		if (ret == 0)
3659 			BUG(); /* FIXME break ? */
3660 
3661 		ret = btrfs_previous_item(chunk_root, path, 0,
3662 					  BTRFS_CHUNK_ITEM_KEY);
3663 		if (ret) {
3664 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3665 			ret = 0;
3666 			break;
3667 		}
3668 
3669 		leaf = path->nodes[0];
3670 		slot = path->slots[0];
3671 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3672 
3673 		if (found_key.objectid != key.objectid) {
3674 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675 			break;
3676 		}
3677 
3678 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3679 		chunk_type = btrfs_chunk_type(leaf, chunk);
3680 
3681 		if (!counting) {
3682 			spin_lock(&fs_info->balance_lock);
3683 			bctl->stat.considered++;
3684 			spin_unlock(&fs_info->balance_lock);
3685 		}
3686 
3687 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3688 
3689 		btrfs_release_path(path);
3690 		if (!ret) {
3691 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3692 			goto loop;
3693 		}
3694 
3695 		if (counting) {
3696 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697 			spin_lock(&fs_info->balance_lock);
3698 			bctl->stat.expected++;
3699 			spin_unlock(&fs_info->balance_lock);
3700 
3701 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3702 				count_data++;
3703 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3704 				count_sys++;
3705 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3706 				count_meta++;
3707 
3708 			goto loop;
3709 		}
3710 
3711 		/*
3712 		 * Apply limit_min filter, no need to check if the LIMITS
3713 		 * filter is used, limit_min is 0 by default
3714 		 */
3715 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3716 					count_data < bctl->data.limit_min)
3717 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3718 					count_meta < bctl->meta.limit_min)
3719 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3720 					count_sys < bctl->sys.limit_min)) {
3721 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3722 			goto loop;
3723 		}
3724 
3725 		if (!chunk_reserved) {
3726 			/*
3727 			 * We may be relocating the only data chunk we have,
3728 			 * which could potentially end up with losing data's
3729 			 * raid profile, so lets allocate an empty one in
3730 			 * advance.
3731 			 */
3732 			ret = btrfs_may_alloc_data_chunk(fs_info,
3733 							 found_key.offset);
3734 			if (ret < 0) {
3735 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3736 				goto error;
3737 			} else if (ret == 1) {
3738 				chunk_reserved = 1;
3739 			}
3740 		}
3741 
3742 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3743 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3744 		if (ret == -ENOSPC) {
3745 			enospc_errors++;
3746 		} else if (ret == -ETXTBSY) {
3747 			btrfs_info(fs_info,
3748 	   "skipping relocation of block group %llu due to active swapfile",
3749 				   found_key.offset);
3750 			ret = 0;
3751 		} else if (ret) {
3752 			goto error;
3753 		} else {
3754 			spin_lock(&fs_info->balance_lock);
3755 			bctl->stat.completed++;
3756 			spin_unlock(&fs_info->balance_lock);
3757 		}
3758 loop:
3759 		if (found_key.offset == 0)
3760 			break;
3761 		key.offset = found_key.offset - 1;
3762 	}
3763 
3764 	if (counting) {
3765 		btrfs_release_path(path);
3766 		counting = false;
3767 		goto again;
3768 	}
3769 error:
3770 	btrfs_free_path(path);
3771 	if (enospc_errors) {
3772 		btrfs_info(fs_info, "%d enospc errors during balance",
3773 			   enospc_errors);
3774 		if (!ret)
3775 			ret = -ENOSPC;
3776 	}
3777 
3778 	return ret;
3779 }
3780 
3781 /**
3782  * alloc_profile_is_valid - see if a given profile is valid and reduced
3783  * @flags: profile to validate
3784  * @extended: if true @flags is treated as an extended profile
3785  */
3786 static int alloc_profile_is_valid(u64 flags, int extended)
3787 {
3788 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3789 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3790 
3791 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3792 
3793 	/* 1) check that all other bits are zeroed */
3794 	if (flags & ~mask)
3795 		return 0;
3796 
3797 	/* 2) see if profile is reduced */
3798 	if (flags == 0)
3799 		return !extended; /* "0" is valid for usual profiles */
3800 
3801 	return has_single_bit_set(flags);
3802 }
3803 
3804 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3805 {
3806 	/* cancel requested || normal exit path */
3807 	return atomic_read(&fs_info->balance_cancel_req) ||
3808 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3809 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3810 }
3811 
3812 /*
3813  * Validate target profile against allowed profiles and return true if it's OK.
3814  * Otherwise print the error message and return false.
3815  */
3816 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3817 		const struct btrfs_balance_args *bargs,
3818 		u64 allowed, const char *type)
3819 {
3820 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3821 		return true;
3822 
3823 	/* Profile is valid and does not have bits outside of the allowed set */
3824 	if (alloc_profile_is_valid(bargs->target, 1) &&
3825 	    (bargs->target & ~allowed) == 0)
3826 		return true;
3827 
3828 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3829 			type, btrfs_bg_type_to_raid_name(bargs->target));
3830 	return false;
3831 }
3832 
3833 /*
3834  * Fill @buf with textual description of balance filter flags @bargs, up to
3835  * @size_buf including the terminating null. The output may be trimmed if it
3836  * does not fit into the provided buffer.
3837  */
3838 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3839 				 u32 size_buf)
3840 {
3841 	int ret;
3842 	u32 size_bp = size_buf;
3843 	char *bp = buf;
3844 	u64 flags = bargs->flags;
3845 	char tmp_buf[128] = {'\0'};
3846 
3847 	if (!flags)
3848 		return;
3849 
3850 #define CHECK_APPEND_NOARG(a)						\
3851 	do {								\
3852 		ret = snprintf(bp, size_bp, (a));			\
3853 		if (ret < 0 || ret >= size_bp)				\
3854 			goto out_overflow;				\
3855 		size_bp -= ret;						\
3856 		bp += ret;						\
3857 	} while (0)
3858 
3859 #define CHECK_APPEND_1ARG(a, v1)					\
3860 	do {								\
3861 		ret = snprintf(bp, size_bp, (a), (v1));			\
3862 		if (ret < 0 || ret >= size_bp)				\
3863 			goto out_overflow;				\
3864 		size_bp -= ret;						\
3865 		bp += ret;						\
3866 	} while (0)
3867 
3868 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3869 	do {								\
3870 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3871 		if (ret < 0 || ret >= size_bp)				\
3872 			goto out_overflow;				\
3873 		size_bp -= ret;						\
3874 		bp += ret;						\
3875 	} while (0)
3876 
3877 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3878 		CHECK_APPEND_1ARG("convert=%s,",
3879 				  btrfs_bg_type_to_raid_name(bargs->target));
3880 
3881 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3882 		CHECK_APPEND_NOARG("soft,");
3883 
3884 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3885 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3886 					    sizeof(tmp_buf));
3887 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3888 	}
3889 
3890 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3891 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3892 
3893 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3894 		CHECK_APPEND_2ARG("usage=%u..%u,",
3895 				  bargs->usage_min, bargs->usage_max);
3896 
3897 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3898 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3899 
3900 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3901 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3902 				  bargs->pstart, bargs->pend);
3903 
3904 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3905 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3906 				  bargs->vstart, bargs->vend);
3907 
3908 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3909 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3910 
3911 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3912 		CHECK_APPEND_2ARG("limit=%u..%u,",
3913 				bargs->limit_min, bargs->limit_max);
3914 
3915 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3916 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3917 				  bargs->stripes_min, bargs->stripes_max);
3918 
3919 #undef CHECK_APPEND_2ARG
3920 #undef CHECK_APPEND_1ARG
3921 #undef CHECK_APPEND_NOARG
3922 
3923 out_overflow:
3924 
3925 	if (size_bp < size_buf)
3926 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3927 	else
3928 		buf[0] = '\0';
3929 }
3930 
3931 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3932 {
3933 	u32 size_buf = 1024;
3934 	char tmp_buf[192] = {'\0'};
3935 	char *buf;
3936 	char *bp;
3937 	u32 size_bp = size_buf;
3938 	int ret;
3939 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3940 
3941 	buf = kzalloc(size_buf, GFP_KERNEL);
3942 	if (!buf)
3943 		return;
3944 
3945 	bp = buf;
3946 
3947 #define CHECK_APPEND_1ARG(a, v1)					\
3948 	do {								\
3949 		ret = snprintf(bp, size_bp, (a), (v1));			\
3950 		if (ret < 0 || ret >= size_bp)				\
3951 			goto out_overflow;				\
3952 		size_bp -= ret;						\
3953 		bp += ret;						\
3954 	} while (0)
3955 
3956 	if (bctl->flags & BTRFS_BALANCE_FORCE)
3957 		CHECK_APPEND_1ARG("%s", "-f ");
3958 
3959 	if (bctl->flags & BTRFS_BALANCE_DATA) {
3960 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3961 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3962 	}
3963 
3964 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
3965 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3966 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3967 	}
3968 
3969 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3970 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3971 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3972 	}
3973 
3974 #undef CHECK_APPEND_1ARG
3975 
3976 out_overflow:
3977 
3978 	if (size_bp < size_buf)
3979 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3980 	btrfs_info(fs_info, "balance: %s %s",
3981 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
3982 		   "resume" : "start", buf);
3983 
3984 	kfree(buf);
3985 }
3986 
3987 /*
3988  * Should be called with balance mutexe held
3989  */
3990 int btrfs_balance(struct btrfs_fs_info *fs_info,
3991 		  struct btrfs_balance_control *bctl,
3992 		  struct btrfs_ioctl_balance_args *bargs)
3993 {
3994 	u64 meta_target, data_target;
3995 	u64 allowed;
3996 	int mixed = 0;
3997 	int ret;
3998 	u64 num_devices;
3999 	unsigned seq;
4000 	bool reducing_redundancy;
4001 	int i;
4002 
4003 	if (btrfs_fs_closing(fs_info) ||
4004 	    atomic_read(&fs_info->balance_pause_req) ||
4005 	    btrfs_should_cancel_balance(fs_info)) {
4006 		ret = -EINVAL;
4007 		goto out;
4008 	}
4009 
4010 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4011 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4012 		mixed = 1;
4013 
4014 	/*
4015 	 * In case of mixed groups both data and meta should be picked,
4016 	 * and identical options should be given for both of them.
4017 	 */
4018 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4019 	if (mixed && (bctl->flags & allowed)) {
4020 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4021 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4022 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4023 			btrfs_err(fs_info,
4024 	  "balance: mixed groups data and metadata options must be the same");
4025 			ret = -EINVAL;
4026 			goto out;
4027 		}
4028 	}
4029 
4030 	/*
4031 	 * rw_devices will not change at the moment, device add/delete/replace
4032 	 * are exclusive
4033 	 */
4034 	num_devices = fs_info->fs_devices->rw_devices;
4035 
4036 	/*
4037 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4038 	 * special bit for it, to make it easier to distinguish.  Thus we need
4039 	 * to set it manually, or balance would refuse the profile.
4040 	 */
4041 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4042 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4043 		if (num_devices >= btrfs_raid_array[i].devs_min)
4044 			allowed |= btrfs_raid_array[i].bg_flag;
4045 
4046 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4047 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4048 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4049 		ret = -EINVAL;
4050 		goto out;
4051 	}
4052 
4053 	/*
4054 	 * Allow to reduce metadata or system integrity only if force set for
4055 	 * profiles with redundancy (copies, parity)
4056 	 */
4057 	allowed = 0;
4058 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4059 		if (btrfs_raid_array[i].ncopies >= 2 ||
4060 		    btrfs_raid_array[i].tolerated_failures >= 1)
4061 			allowed |= btrfs_raid_array[i].bg_flag;
4062 	}
4063 	do {
4064 		seq = read_seqbegin(&fs_info->profiles_lock);
4065 
4066 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4067 		     (fs_info->avail_system_alloc_bits & allowed) &&
4068 		     !(bctl->sys.target & allowed)) ||
4069 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4070 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4071 		     !(bctl->meta.target & allowed)))
4072 			reducing_redundancy = true;
4073 		else
4074 			reducing_redundancy = false;
4075 
4076 		/* if we're not converting, the target field is uninitialized */
4077 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4078 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4079 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4080 			bctl->data.target : fs_info->avail_data_alloc_bits;
4081 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4082 
4083 	if (reducing_redundancy) {
4084 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4085 			btrfs_info(fs_info,
4086 			   "balance: force reducing metadata redundancy");
4087 		} else {
4088 			btrfs_err(fs_info,
4089 	"balance: reduces metadata redundancy, use --force if you want this");
4090 			ret = -EINVAL;
4091 			goto out;
4092 		}
4093 	}
4094 
4095 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4096 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4097 		btrfs_warn(fs_info,
4098 	"balance: metadata profile %s has lower redundancy than data profile %s",
4099 				btrfs_bg_type_to_raid_name(meta_target),
4100 				btrfs_bg_type_to_raid_name(data_target));
4101 	}
4102 
4103 	if (fs_info->send_in_progress) {
4104 		btrfs_warn_rl(fs_info,
4105 "cannot run balance while send operations are in progress (%d in progress)",
4106 			      fs_info->send_in_progress);
4107 		ret = -EAGAIN;
4108 		goto out;
4109 	}
4110 
4111 	ret = insert_balance_item(fs_info, bctl);
4112 	if (ret && ret != -EEXIST)
4113 		goto out;
4114 
4115 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4116 		BUG_ON(ret == -EEXIST);
4117 		BUG_ON(fs_info->balance_ctl);
4118 		spin_lock(&fs_info->balance_lock);
4119 		fs_info->balance_ctl = bctl;
4120 		spin_unlock(&fs_info->balance_lock);
4121 	} else {
4122 		BUG_ON(ret != -EEXIST);
4123 		spin_lock(&fs_info->balance_lock);
4124 		update_balance_args(bctl);
4125 		spin_unlock(&fs_info->balance_lock);
4126 	}
4127 
4128 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4129 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4130 	describe_balance_start_or_resume(fs_info);
4131 	mutex_unlock(&fs_info->balance_mutex);
4132 
4133 	ret = __btrfs_balance(fs_info);
4134 
4135 	mutex_lock(&fs_info->balance_mutex);
4136 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4137 		btrfs_info(fs_info, "balance: paused");
4138 	/*
4139 	 * Balance can be canceled by:
4140 	 *
4141 	 * - Regular cancel request
4142 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4143 	 *
4144 	 * - Fatal signal to "btrfs" process
4145 	 *   Either the signal caught by wait_reserve_ticket() and callers
4146 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4147 	 *   got -ECANCELED.
4148 	 *   Either way, in this case balance_cancel_req = 0, and
4149 	 *   ret == -EINTR or ret == -ECANCELED.
4150 	 *
4151 	 * So here we only check the return value to catch canceled balance.
4152 	 */
4153 	else if (ret == -ECANCELED || ret == -EINTR)
4154 		btrfs_info(fs_info, "balance: canceled");
4155 	else
4156 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4157 
4158 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4159 
4160 	if (bargs) {
4161 		memset(bargs, 0, sizeof(*bargs));
4162 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4163 	}
4164 
4165 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4166 	    balance_need_close(fs_info)) {
4167 		reset_balance_state(fs_info);
4168 		btrfs_exclop_finish(fs_info);
4169 	}
4170 
4171 	wake_up(&fs_info->balance_wait_q);
4172 
4173 	return ret;
4174 out:
4175 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4176 		reset_balance_state(fs_info);
4177 	else
4178 		kfree(bctl);
4179 	btrfs_exclop_finish(fs_info);
4180 
4181 	return ret;
4182 }
4183 
4184 static int balance_kthread(void *data)
4185 {
4186 	struct btrfs_fs_info *fs_info = data;
4187 	int ret = 0;
4188 
4189 	mutex_lock(&fs_info->balance_mutex);
4190 	if (fs_info->balance_ctl)
4191 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4192 	mutex_unlock(&fs_info->balance_mutex);
4193 
4194 	return ret;
4195 }
4196 
4197 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4198 {
4199 	struct task_struct *tsk;
4200 
4201 	mutex_lock(&fs_info->balance_mutex);
4202 	if (!fs_info->balance_ctl) {
4203 		mutex_unlock(&fs_info->balance_mutex);
4204 		return 0;
4205 	}
4206 	mutex_unlock(&fs_info->balance_mutex);
4207 
4208 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4209 		btrfs_info(fs_info, "balance: resume skipped");
4210 		return 0;
4211 	}
4212 
4213 	/*
4214 	 * A ro->rw remount sequence should continue with the paused balance
4215 	 * regardless of who pauses it, system or the user as of now, so set
4216 	 * the resume flag.
4217 	 */
4218 	spin_lock(&fs_info->balance_lock);
4219 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4220 	spin_unlock(&fs_info->balance_lock);
4221 
4222 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4223 	return PTR_ERR_OR_ZERO(tsk);
4224 }
4225 
4226 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4227 {
4228 	struct btrfs_balance_control *bctl;
4229 	struct btrfs_balance_item *item;
4230 	struct btrfs_disk_balance_args disk_bargs;
4231 	struct btrfs_path *path;
4232 	struct extent_buffer *leaf;
4233 	struct btrfs_key key;
4234 	int ret;
4235 
4236 	path = btrfs_alloc_path();
4237 	if (!path)
4238 		return -ENOMEM;
4239 
4240 	key.objectid = BTRFS_BALANCE_OBJECTID;
4241 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4242 	key.offset = 0;
4243 
4244 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4245 	if (ret < 0)
4246 		goto out;
4247 	if (ret > 0) { /* ret = -ENOENT; */
4248 		ret = 0;
4249 		goto out;
4250 	}
4251 
4252 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4253 	if (!bctl) {
4254 		ret = -ENOMEM;
4255 		goto out;
4256 	}
4257 
4258 	leaf = path->nodes[0];
4259 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4260 
4261 	bctl->flags = btrfs_balance_flags(leaf, item);
4262 	bctl->flags |= BTRFS_BALANCE_RESUME;
4263 
4264 	btrfs_balance_data(leaf, item, &disk_bargs);
4265 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4266 	btrfs_balance_meta(leaf, item, &disk_bargs);
4267 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4268 	btrfs_balance_sys(leaf, item, &disk_bargs);
4269 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4270 
4271 	/*
4272 	 * This should never happen, as the paused balance state is recovered
4273 	 * during mount without any chance of other exclusive ops to collide.
4274 	 *
4275 	 * This gives the exclusive op status to balance and keeps in paused
4276 	 * state until user intervention (cancel or umount). If the ownership
4277 	 * cannot be assigned, show a message but do not fail. The balance
4278 	 * is in a paused state and must have fs_info::balance_ctl properly
4279 	 * set up.
4280 	 */
4281 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4282 		btrfs_warn(fs_info,
4283 	"balance: cannot set exclusive op status, resume manually");
4284 
4285 	mutex_lock(&fs_info->balance_mutex);
4286 	BUG_ON(fs_info->balance_ctl);
4287 	spin_lock(&fs_info->balance_lock);
4288 	fs_info->balance_ctl = bctl;
4289 	spin_unlock(&fs_info->balance_lock);
4290 	mutex_unlock(&fs_info->balance_mutex);
4291 out:
4292 	btrfs_free_path(path);
4293 	return ret;
4294 }
4295 
4296 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4297 {
4298 	int ret = 0;
4299 
4300 	mutex_lock(&fs_info->balance_mutex);
4301 	if (!fs_info->balance_ctl) {
4302 		mutex_unlock(&fs_info->balance_mutex);
4303 		return -ENOTCONN;
4304 	}
4305 
4306 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4307 		atomic_inc(&fs_info->balance_pause_req);
4308 		mutex_unlock(&fs_info->balance_mutex);
4309 
4310 		wait_event(fs_info->balance_wait_q,
4311 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4312 
4313 		mutex_lock(&fs_info->balance_mutex);
4314 		/* we are good with balance_ctl ripped off from under us */
4315 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4316 		atomic_dec(&fs_info->balance_pause_req);
4317 	} else {
4318 		ret = -ENOTCONN;
4319 	}
4320 
4321 	mutex_unlock(&fs_info->balance_mutex);
4322 	return ret;
4323 }
4324 
4325 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4326 {
4327 	mutex_lock(&fs_info->balance_mutex);
4328 	if (!fs_info->balance_ctl) {
4329 		mutex_unlock(&fs_info->balance_mutex);
4330 		return -ENOTCONN;
4331 	}
4332 
4333 	/*
4334 	 * A paused balance with the item stored on disk can be resumed at
4335 	 * mount time if the mount is read-write. Otherwise it's still paused
4336 	 * and we must not allow cancelling as it deletes the item.
4337 	 */
4338 	if (sb_rdonly(fs_info->sb)) {
4339 		mutex_unlock(&fs_info->balance_mutex);
4340 		return -EROFS;
4341 	}
4342 
4343 	atomic_inc(&fs_info->balance_cancel_req);
4344 	/*
4345 	 * if we are running just wait and return, balance item is
4346 	 * deleted in btrfs_balance in this case
4347 	 */
4348 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4349 		mutex_unlock(&fs_info->balance_mutex);
4350 		wait_event(fs_info->balance_wait_q,
4351 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4352 		mutex_lock(&fs_info->balance_mutex);
4353 	} else {
4354 		mutex_unlock(&fs_info->balance_mutex);
4355 		/*
4356 		 * Lock released to allow other waiters to continue, we'll
4357 		 * reexamine the status again.
4358 		 */
4359 		mutex_lock(&fs_info->balance_mutex);
4360 
4361 		if (fs_info->balance_ctl) {
4362 			reset_balance_state(fs_info);
4363 			btrfs_exclop_finish(fs_info);
4364 			btrfs_info(fs_info, "balance: canceled");
4365 		}
4366 	}
4367 
4368 	BUG_ON(fs_info->balance_ctl ||
4369 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4370 	atomic_dec(&fs_info->balance_cancel_req);
4371 	mutex_unlock(&fs_info->balance_mutex);
4372 	return 0;
4373 }
4374 
4375 int btrfs_uuid_scan_kthread(void *data)
4376 {
4377 	struct btrfs_fs_info *fs_info = data;
4378 	struct btrfs_root *root = fs_info->tree_root;
4379 	struct btrfs_key key;
4380 	struct btrfs_path *path = NULL;
4381 	int ret = 0;
4382 	struct extent_buffer *eb;
4383 	int slot;
4384 	struct btrfs_root_item root_item;
4385 	u32 item_size;
4386 	struct btrfs_trans_handle *trans = NULL;
4387 	bool closing = false;
4388 
4389 	path = btrfs_alloc_path();
4390 	if (!path) {
4391 		ret = -ENOMEM;
4392 		goto out;
4393 	}
4394 
4395 	key.objectid = 0;
4396 	key.type = BTRFS_ROOT_ITEM_KEY;
4397 	key.offset = 0;
4398 
4399 	while (1) {
4400 		if (btrfs_fs_closing(fs_info)) {
4401 			closing = true;
4402 			break;
4403 		}
4404 		ret = btrfs_search_forward(root, &key, path,
4405 				BTRFS_OLDEST_GENERATION);
4406 		if (ret) {
4407 			if (ret > 0)
4408 				ret = 0;
4409 			break;
4410 		}
4411 
4412 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4413 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4414 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4415 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4416 			goto skip;
4417 
4418 		eb = path->nodes[0];
4419 		slot = path->slots[0];
4420 		item_size = btrfs_item_size_nr(eb, slot);
4421 		if (item_size < sizeof(root_item))
4422 			goto skip;
4423 
4424 		read_extent_buffer(eb, &root_item,
4425 				   btrfs_item_ptr_offset(eb, slot),
4426 				   (int)sizeof(root_item));
4427 		if (btrfs_root_refs(&root_item) == 0)
4428 			goto skip;
4429 
4430 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4431 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4432 			if (trans)
4433 				goto update_tree;
4434 
4435 			btrfs_release_path(path);
4436 			/*
4437 			 * 1 - subvol uuid item
4438 			 * 1 - received_subvol uuid item
4439 			 */
4440 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4441 			if (IS_ERR(trans)) {
4442 				ret = PTR_ERR(trans);
4443 				break;
4444 			}
4445 			continue;
4446 		} else {
4447 			goto skip;
4448 		}
4449 update_tree:
4450 		btrfs_release_path(path);
4451 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4452 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4453 						  BTRFS_UUID_KEY_SUBVOL,
4454 						  key.objectid);
4455 			if (ret < 0) {
4456 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4457 					ret);
4458 				break;
4459 			}
4460 		}
4461 
4462 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4463 			ret = btrfs_uuid_tree_add(trans,
4464 						  root_item.received_uuid,
4465 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4466 						  key.objectid);
4467 			if (ret < 0) {
4468 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4469 					ret);
4470 				break;
4471 			}
4472 		}
4473 
4474 skip:
4475 		btrfs_release_path(path);
4476 		if (trans) {
4477 			ret = btrfs_end_transaction(trans);
4478 			trans = NULL;
4479 			if (ret)
4480 				break;
4481 		}
4482 
4483 		if (key.offset < (u64)-1) {
4484 			key.offset++;
4485 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4486 			key.offset = 0;
4487 			key.type = BTRFS_ROOT_ITEM_KEY;
4488 		} else if (key.objectid < (u64)-1) {
4489 			key.offset = 0;
4490 			key.type = BTRFS_ROOT_ITEM_KEY;
4491 			key.objectid++;
4492 		} else {
4493 			break;
4494 		}
4495 		cond_resched();
4496 	}
4497 
4498 out:
4499 	btrfs_free_path(path);
4500 	if (trans && !IS_ERR(trans))
4501 		btrfs_end_transaction(trans);
4502 	if (ret)
4503 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4504 	else if (!closing)
4505 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4506 	up(&fs_info->uuid_tree_rescan_sem);
4507 	return 0;
4508 }
4509 
4510 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4511 {
4512 	struct btrfs_trans_handle *trans;
4513 	struct btrfs_root *tree_root = fs_info->tree_root;
4514 	struct btrfs_root *uuid_root;
4515 	struct task_struct *task;
4516 	int ret;
4517 
4518 	/*
4519 	 * 1 - root node
4520 	 * 1 - root item
4521 	 */
4522 	trans = btrfs_start_transaction(tree_root, 2);
4523 	if (IS_ERR(trans))
4524 		return PTR_ERR(trans);
4525 
4526 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4527 	if (IS_ERR(uuid_root)) {
4528 		ret = PTR_ERR(uuid_root);
4529 		btrfs_abort_transaction(trans, ret);
4530 		btrfs_end_transaction(trans);
4531 		return ret;
4532 	}
4533 
4534 	fs_info->uuid_root = uuid_root;
4535 
4536 	ret = btrfs_commit_transaction(trans);
4537 	if (ret)
4538 		return ret;
4539 
4540 	down(&fs_info->uuid_tree_rescan_sem);
4541 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4542 	if (IS_ERR(task)) {
4543 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4544 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4545 		up(&fs_info->uuid_tree_rescan_sem);
4546 		return PTR_ERR(task);
4547 	}
4548 
4549 	return 0;
4550 }
4551 
4552 /*
4553  * shrinking a device means finding all of the device extents past
4554  * the new size, and then following the back refs to the chunks.
4555  * The chunk relocation code actually frees the device extent
4556  */
4557 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4558 {
4559 	struct btrfs_fs_info *fs_info = device->fs_info;
4560 	struct btrfs_root *root = fs_info->dev_root;
4561 	struct btrfs_trans_handle *trans;
4562 	struct btrfs_dev_extent *dev_extent = NULL;
4563 	struct btrfs_path *path;
4564 	u64 length;
4565 	u64 chunk_offset;
4566 	int ret;
4567 	int slot;
4568 	int failed = 0;
4569 	bool retried = false;
4570 	struct extent_buffer *l;
4571 	struct btrfs_key key;
4572 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4573 	u64 old_total = btrfs_super_total_bytes(super_copy);
4574 	u64 old_size = btrfs_device_get_total_bytes(device);
4575 	u64 diff;
4576 	u64 start;
4577 
4578 	new_size = round_down(new_size, fs_info->sectorsize);
4579 	start = new_size;
4580 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4581 
4582 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4583 		return -EINVAL;
4584 
4585 	path = btrfs_alloc_path();
4586 	if (!path)
4587 		return -ENOMEM;
4588 
4589 	path->reada = READA_BACK;
4590 
4591 	trans = btrfs_start_transaction(root, 0);
4592 	if (IS_ERR(trans)) {
4593 		btrfs_free_path(path);
4594 		return PTR_ERR(trans);
4595 	}
4596 
4597 	mutex_lock(&fs_info->chunk_mutex);
4598 
4599 	btrfs_device_set_total_bytes(device, new_size);
4600 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4601 		device->fs_devices->total_rw_bytes -= diff;
4602 		atomic64_sub(diff, &fs_info->free_chunk_space);
4603 	}
4604 
4605 	/*
4606 	 * Once the device's size has been set to the new size, ensure all
4607 	 * in-memory chunks are synced to disk so that the loop below sees them
4608 	 * and relocates them accordingly.
4609 	 */
4610 	if (contains_pending_extent(device, &start, diff)) {
4611 		mutex_unlock(&fs_info->chunk_mutex);
4612 		ret = btrfs_commit_transaction(trans);
4613 		if (ret)
4614 			goto done;
4615 	} else {
4616 		mutex_unlock(&fs_info->chunk_mutex);
4617 		btrfs_end_transaction(trans);
4618 	}
4619 
4620 again:
4621 	key.objectid = device->devid;
4622 	key.offset = (u64)-1;
4623 	key.type = BTRFS_DEV_EXTENT_KEY;
4624 
4625 	do {
4626 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4627 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4628 		if (ret < 0) {
4629 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4630 			goto done;
4631 		}
4632 
4633 		ret = btrfs_previous_item(root, path, 0, key.type);
4634 		if (ret)
4635 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4636 		if (ret < 0)
4637 			goto done;
4638 		if (ret) {
4639 			ret = 0;
4640 			btrfs_release_path(path);
4641 			break;
4642 		}
4643 
4644 		l = path->nodes[0];
4645 		slot = path->slots[0];
4646 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4647 
4648 		if (key.objectid != device->devid) {
4649 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4650 			btrfs_release_path(path);
4651 			break;
4652 		}
4653 
4654 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4655 		length = btrfs_dev_extent_length(l, dev_extent);
4656 
4657 		if (key.offset + length <= new_size) {
4658 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4659 			btrfs_release_path(path);
4660 			break;
4661 		}
4662 
4663 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4664 		btrfs_release_path(path);
4665 
4666 		/*
4667 		 * We may be relocating the only data chunk we have,
4668 		 * which could potentially end up with losing data's
4669 		 * raid profile, so lets allocate an empty one in
4670 		 * advance.
4671 		 */
4672 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4673 		if (ret < 0) {
4674 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4675 			goto done;
4676 		}
4677 
4678 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4679 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4680 		if (ret == -ENOSPC) {
4681 			failed++;
4682 		} else if (ret) {
4683 			if (ret == -ETXTBSY) {
4684 				btrfs_warn(fs_info,
4685 		   "could not shrink block group %llu due to active swapfile",
4686 					   chunk_offset);
4687 			}
4688 			goto done;
4689 		}
4690 	} while (key.offset-- > 0);
4691 
4692 	if (failed && !retried) {
4693 		failed = 0;
4694 		retried = true;
4695 		goto again;
4696 	} else if (failed && retried) {
4697 		ret = -ENOSPC;
4698 		goto done;
4699 	}
4700 
4701 	/* Shrinking succeeded, else we would be at "done". */
4702 	trans = btrfs_start_transaction(root, 0);
4703 	if (IS_ERR(trans)) {
4704 		ret = PTR_ERR(trans);
4705 		goto done;
4706 	}
4707 
4708 	mutex_lock(&fs_info->chunk_mutex);
4709 	/* Clear all state bits beyond the shrunk device size */
4710 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4711 			  CHUNK_STATE_MASK);
4712 
4713 	btrfs_device_set_disk_total_bytes(device, new_size);
4714 	if (list_empty(&device->post_commit_list))
4715 		list_add_tail(&device->post_commit_list,
4716 			      &trans->transaction->dev_update_list);
4717 
4718 	WARN_ON(diff > old_total);
4719 	btrfs_set_super_total_bytes(super_copy,
4720 			round_down(old_total - diff, fs_info->sectorsize));
4721 	mutex_unlock(&fs_info->chunk_mutex);
4722 
4723 	/* Now btrfs_update_device() will change the on-disk size. */
4724 	ret = btrfs_update_device(trans, device);
4725 	if (ret < 0) {
4726 		btrfs_abort_transaction(trans, ret);
4727 		btrfs_end_transaction(trans);
4728 	} else {
4729 		ret = btrfs_commit_transaction(trans);
4730 	}
4731 done:
4732 	btrfs_free_path(path);
4733 	if (ret) {
4734 		mutex_lock(&fs_info->chunk_mutex);
4735 		btrfs_device_set_total_bytes(device, old_size);
4736 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4737 			device->fs_devices->total_rw_bytes += diff;
4738 		atomic64_add(diff, &fs_info->free_chunk_space);
4739 		mutex_unlock(&fs_info->chunk_mutex);
4740 	}
4741 	return ret;
4742 }
4743 
4744 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4745 			   struct btrfs_key *key,
4746 			   struct btrfs_chunk *chunk, int item_size)
4747 {
4748 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4749 	struct btrfs_disk_key disk_key;
4750 	u32 array_size;
4751 	u8 *ptr;
4752 
4753 	mutex_lock(&fs_info->chunk_mutex);
4754 	array_size = btrfs_super_sys_array_size(super_copy);
4755 	if (array_size + item_size + sizeof(disk_key)
4756 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4757 		mutex_unlock(&fs_info->chunk_mutex);
4758 		return -EFBIG;
4759 	}
4760 
4761 	ptr = super_copy->sys_chunk_array + array_size;
4762 	btrfs_cpu_key_to_disk(&disk_key, key);
4763 	memcpy(ptr, &disk_key, sizeof(disk_key));
4764 	ptr += sizeof(disk_key);
4765 	memcpy(ptr, chunk, item_size);
4766 	item_size += sizeof(disk_key);
4767 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4768 	mutex_unlock(&fs_info->chunk_mutex);
4769 
4770 	return 0;
4771 }
4772 
4773 /*
4774  * sort the devices in descending order by max_avail, total_avail
4775  */
4776 static int btrfs_cmp_device_info(const void *a, const void *b)
4777 {
4778 	const struct btrfs_device_info *di_a = a;
4779 	const struct btrfs_device_info *di_b = b;
4780 
4781 	if (di_a->max_avail > di_b->max_avail)
4782 		return -1;
4783 	if (di_a->max_avail < di_b->max_avail)
4784 		return 1;
4785 	if (di_a->total_avail > di_b->total_avail)
4786 		return -1;
4787 	if (di_a->total_avail < di_b->total_avail)
4788 		return 1;
4789 	return 0;
4790 }
4791 
4792 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4793 {
4794 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4795 		return;
4796 
4797 	btrfs_set_fs_incompat(info, RAID56);
4798 }
4799 
4800 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4801 {
4802 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4803 		return;
4804 
4805 	btrfs_set_fs_incompat(info, RAID1C34);
4806 }
4807 
4808 /*
4809  * Structure used internally for __btrfs_alloc_chunk() function.
4810  * Wraps needed parameters.
4811  */
4812 struct alloc_chunk_ctl {
4813 	u64 start;
4814 	u64 type;
4815 	/* Total number of stripes to allocate */
4816 	int num_stripes;
4817 	/* sub_stripes info for map */
4818 	int sub_stripes;
4819 	/* Stripes per device */
4820 	int dev_stripes;
4821 	/* Maximum number of devices to use */
4822 	int devs_max;
4823 	/* Minimum number of devices to use */
4824 	int devs_min;
4825 	/* ndevs has to be a multiple of this */
4826 	int devs_increment;
4827 	/* Number of copies */
4828 	int ncopies;
4829 	/* Number of stripes worth of bytes to store parity information */
4830 	int nparity;
4831 	u64 max_stripe_size;
4832 	u64 max_chunk_size;
4833 	u64 dev_extent_min;
4834 	u64 stripe_size;
4835 	u64 chunk_size;
4836 	int ndevs;
4837 };
4838 
4839 static void init_alloc_chunk_ctl_policy_regular(
4840 				struct btrfs_fs_devices *fs_devices,
4841 				struct alloc_chunk_ctl *ctl)
4842 {
4843 	u64 type = ctl->type;
4844 
4845 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4846 		ctl->max_stripe_size = SZ_1G;
4847 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4848 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4849 		/* For larger filesystems, use larger metadata chunks */
4850 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4851 			ctl->max_stripe_size = SZ_1G;
4852 		else
4853 			ctl->max_stripe_size = SZ_256M;
4854 		ctl->max_chunk_size = ctl->max_stripe_size;
4855 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4856 		ctl->max_stripe_size = SZ_32M;
4857 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4858 		ctl->devs_max = min_t(int, ctl->devs_max,
4859 				      BTRFS_MAX_DEVS_SYS_CHUNK);
4860 	} else {
4861 		BUG();
4862 	}
4863 
4864 	/* We don't want a chunk larger than 10% of writable space */
4865 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4866 				  ctl->max_chunk_size);
4867 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4868 }
4869 
4870 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4871 				 struct alloc_chunk_ctl *ctl)
4872 {
4873 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
4874 
4875 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4876 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4877 	ctl->devs_max = btrfs_raid_array[index].devs_max;
4878 	if (!ctl->devs_max)
4879 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4880 	ctl->devs_min = btrfs_raid_array[index].devs_min;
4881 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4882 	ctl->ncopies = btrfs_raid_array[index].ncopies;
4883 	ctl->nparity = btrfs_raid_array[index].nparity;
4884 	ctl->ndevs = 0;
4885 
4886 	switch (fs_devices->chunk_alloc_policy) {
4887 	case BTRFS_CHUNK_ALLOC_REGULAR:
4888 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4889 		break;
4890 	default:
4891 		BUG();
4892 	}
4893 }
4894 
4895 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4896 			      struct alloc_chunk_ctl *ctl,
4897 			      struct btrfs_device_info *devices_info)
4898 {
4899 	struct btrfs_fs_info *info = fs_devices->fs_info;
4900 	struct btrfs_device *device;
4901 	u64 total_avail;
4902 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4903 	int ret;
4904 	int ndevs = 0;
4905 	u64 max_avail;
4906 	u64 dev_offset;
4907 
4908 	/*
4909 	 * in the first pass through the devices list, we gather information
4910 	 * about the available holes on each device.
4911 	 */
4912 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4913 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4914 			WARN(1, KERN_ERR
4915 			       "BTRFS: read-only device in alloc_list\n");
4916 			continue;
4917 		}
4918 
4919 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4920 					&device->dev_state) ||
4921 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4922 			continue;
4923 
4924 		if (device->total_bytes > device->bytes_used)
4925 			total_avail = device->total_bytes - device->bytes_used;
4926 		else
4927 			total_avail = 0;
4928 
4929 		/* If there is no space on this device, skip it. */
4930 		if (total_avail < ctl->dev_extent_min)
4931 			continue;
4932 
4933 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
4934 					   &max_avail);
4935 		if (ret && ret != -ENOSPC)
4936 			return ret;
4937 
4938 		if (ret == 0)
4939 			max_avail = dev_extent_want;
4940 
4941 		if (max_avail < ctl->dev_extent_min) {
4942 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4943 				btrfs_debug(info,
4944 			"%s: devid %llu has no free space, have=%llu want=%llu",
4945 					    __func__, device->devid, max_avail,
4946 					    ctl->dev_extent_min);
4947 			continue;
4948 		}
4949 
4950 		if (ndevs == fs_devices->rw_devices) {
4951 			WARN(1, "%s: found more than %llu devices\n",
4952 			     __func__, fs_devices->rw_devices);
4953 			break;
4954 		}
4955 		devices_info[ndevs].dev_offset = dev_offset;
4956 		devices_info[ndevs].max_avail = max_avail;
4957 		devices_info[ndevs].total_avail = total_avail;
4958 		devices_info[ndevs].dev = device;
4959 		++ndevs;
4960 	}
4961 	ctl->ndevs = ndevs;
4962 
4963 	/*
4964 	 * now sort the devices by hole size / available space
4965 	 */
4966 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4967 	     btrfs_cmp_device_info, NULL);
4968 
4969 	return 0;
4970 }
4971 
4972 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
4973 				      struct btrfs_device_info *devices_info)
4974 {
4975 	/* Number of stripes that count for block group size */
4976 	int data_stripes;
4977 
4978 	/*
4979 	 * The primary goal is to maximize the number of stripes, so use as
4980 	 * many devices as possible, even if the stripes are not maximum sized.
4981 	 *
4982 	 * The DUP profile stores more than one stripe per device, the
4983 	 * max_avail is the total size so we have to adjust.
4984 	 */
4985 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
4986 				   ctl->dev_stripes);
4987 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
4988 
4989 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
4990 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
4991 
4992 	/*
4993 	 * Use the number of data stripes to figure out how big this chunk is
4994 	 * really going to be in terms of logical address space, and compare
4995 	 * that answer with the max chunk size. If it's higher, we try to
4996 	 * reduce stripe_size.
4997 	 */
4998 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
4999 		/*
5000 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5001 		 * then use it, unless it ends up being even bigger than the
5002 		 * previous value we had already.
5003 		 */
5004 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5005 							data_stripes), SZ_16M),
5006 				       ctl->stripe_size);
5007 	}
5008 
5009 	/* Align to BTRFS_STRIPE_LEN */
5010 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5011 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5012 
5013 	return 0;
5014 }
5015 
5016 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5017 			      struct alloc_chunk_ctl *ctl,
5018 			      struct btrfs_device_info *devices_info)
5019 {
5020 	struct btrfs_fs_info *info = fs_devices->fs_info;
5021 
5022 	/*
5023 	 * Round down to number of usable stripes, devs_increment can be any
5024 	 * number so we can't use round_down() that requires power of 2, while
5025 	 * rounddown is safe.
5026 	 */
5027 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5028 
5029 	if (ctl->ndevs < ctl->devs_min) {
5030 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5031 			btrfs_debug(info,
5032 	"%s: not enough devices with free space: have=%d minimum required=%d",
5033 				    __func__, ctl->ndevs, ctl->devs_min);
5034 		}
5035 		return -ENOSPC;
5036 	}
5037 
5038 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5039 
5040 	switch (fs_devices->chunk_alloc_policy) {
5041 	case BTRFS_CHUNK_ALLOC_REGULAR:
5042 		return decide_stripe_size_regular(ctl, devices_info);
5043 	default:
5044 		BUG();
5045 	}
5046 }
5047 
5048 static int create_chunk(struct btrfs_trans_handle *trans,
5049 			struct alloc_chunk_ctl *ctl,
5050 			struct btrfs_device_info *devices_info)
5051 {
5052 	struct btrfs_fs_info *info = trans->fs_info;
5053 	struct map_lookup *map = NULL;
5054 	struct extent_map_tree *em_tree;
5055 	struct extent_map *em;
5056 	u64 start = ctl->start;
5057 	u64 type = ctl->type;
5058 	int ret;
5059 	int i;
5060 	int j;
5061 
5062 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5063 	if (!map)
5064 		return -ENOMEM;
5065 	map->num_stripes = ctl->num_stripes;
5066 
5067 	for (i = 0; i < ctl->ndevs; ++i) {
5068 		for (j = 0; j < ctl->dev_stripes; ++j) {
5069 			int s = i * ctl->dev_stripes + j;
5070 			map->stripes[s].dev = devices_info[i].dev;
5071 			map->stripes[s].physical = devices_info[i].dev_offset +
5072 						   j * ctl->stripe_size;
5073 		}
5074 	}
5075 	map->stripe_len = BTRFS_STRIPE_LEN;
5076 	map->io_align = BTRFS_STRIPE_LEN;
5077 	map->io_width = BTRFS_STRIPE_LEN;
5078 	map->type = type;
5079 	map->sub_stripes = ctl->sub_stripes;
5080 
5081 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5082 
5083 	em = alloc_extent_map();
5084 	if (!em) {
5085 		kfree(map);
5086 		return -ENOMEM;
5087 	}
5088 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5089 	em->map_lookup = map;
5090 	em->start = start;
5091 	em->len = ctl->chunk_size;
5092 	em->block_start = 0;
5093 	em->block_len = em->len;
5094 	em->orig_block_len = ctl->stripe_size;
5095 
5096 	em_tree = &info->mapping_tree;
5097 	write_lock(&em_tree->lock);
5098 	ret = add_extent_mapping(em_tree, em, 0);
5099 	if (ret) {
5100 		write_unlock(&em_tree->lock);
5101 		free_extent_map(em);
5102 		return ret;
5103 	}
5104 	write_unlock(&em_tree->lock);
5105 
5106 	ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5107 	if (ret)
5108 		goto error_del_extent;
5109 
5110 	for (i = 0; i < map->num_stripes; i++) {
5111 		struct btrfs_device *dev = map->stripes[i].dev;
5112 
5113 		btrfs_device_set_bytes_used(dev,
5114 					    dev->bytes_used + ctl->stripe_size);
5115 		if (list_empty(&dev->post_commit_list))
5116 			list_add_tail(&dev->post_commit_list,
5117 				      &trans->transaction->dev_update_list);
5118 	}
5119 
5120 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5121 		     &info->free_chunk_space);
5122 
5123 	free_extent_map(em);
5124 	check_raid56_incompat_flag(info, type);
5125 	check_raid1c34_incompat_flag(info, type);
5126 
5127 	return 0;
5128 
5129 error_del_extent:
5130 	write_lock(&em_tree->lock);
5131 	remove_extent_mapping(em_tree, em);
5132 	write_unlock(&em_tree->lock);
5133 
5134 	/* One for our allocation */
5135 	free_extent_map(em);
5136 	/* One for the tree reference */
5137 	free_extent_map(em);
5138 
5139 	return ret;
5140 }
5141 
5142 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5143 {
5144 	struct btrfs_fs_info *info = trans->fs_info;
5145 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5146 	struct btrfs_device_info *devices_info = NULL;
5147 	struct alloc_chunk_ctl ctl;
5148 	int ret;
5149 
5150 	lockdep_assert_held(&info->chunk_mutex);
5151 
5152 	if (!alloc_profile_is_valid(type, 0)) {
5153 		ASSERT(0);
5154 		return -EINVAL;
5155 	}
5156 
5157 	if (list_empty(&fs_devices->alloc_list)) {
5158 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5159 			btrfs_debug(info, "%s: no writable device", __func__);
5160 		return -ENOSPC;
5161 	}
5162 
5163 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5164 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5165 		ASSERT(0);
5166 		return -EINVAL;
5167 	}
5168 
5169 	ctl.start = find_next_chunk(info);
5170 	ctl.type = type;
5171 	init_alloc_chunk_ctl(fs_devices, &ctl);
5172 
5173 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5174 			       GFP_NOFS);
5175 	if (!devices_info)
5176 		return -ENOMEM;
5177 
5178 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5179 	if (ret < 0)
5180 		goto out;
5181 
5182 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5183 	if (ret < 0)
5184 		goto out;
5185 
5186 	ret = create_chunk(trans, &ctl, devices_info);
5187 
5188 out:
5189 	kfree(devices_info);
5190 	return ret;
5191 }
5192 
5193 /*
5194  * Chunk allocation falls into two parts. The first part does work
5195  * that makes the new allocated chunk usable, but does not do any operation
5196  * that modifies the chunk tree. The second part does the work that
5197  * requires modifying the chunk tree. This division is important for the
5198  * bootstrap process of adding storage to a seed btrfs.
5199  */
5200 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5201 			     u64 chunk_offset, u64 chunk_size)
5202 {
5203 	struct btrfs_fs_info *fs_info = trans->fs_info;
5204 	struct btrfs_root *extent_root = fs_info->extent_root;
5205 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5206 	struct btrfs_key key;
5207 	struct btrfs_device *device;
5208 	struct btrfs_chunk *chunk;
5209 	struct btrfs_stripe *stripe;
5210 	struct extent_map *em;
5211 	struct map_lookup *map;
5212 	size_t item_size;
5213 	u64 dev_offset;
5214 	u64 stripe_size;
5215 	int i = 0;
5216 	int ret = 0;
5217 
5218 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5219 	if (IS_ERR(em))
5220 		return PTR_ERR(em);
5221 
5222 	map = em->map_lookup;
5223 	item_size = btrfs_chunk_item_size(map->num_stripes);
5224 	stripe_size = em->orig_block_len;
5225 
5226 	chunk = kzalloc(item_size, GFP_NOFS);
5227 	if (!chunk) {
5228 		ret = -ENOMEM;
5229 		goto out;
5230 	}
5231 
5232 	/*
5233 	 * Take the device list mutex to prevent races with the final phase of
5234 	 * a device replace operation that replaces the device object associated
5235 	 * with the map's stripes, because the device object's id can change
5236 	 * at any time during that final phase of the device replace operation
5237 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5238 	 */
5239 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5240 	for (i = 0; i < map->num_stripes; i++) {
5241 		device = map->stripes[i].dev;
5242 		dev_offset = map->stripes[i].physical;
5243 
5244 		ret = btrfs_update_device(trans, device);
5245 		if (ret)
5246 			break;
5247 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5248 					     dev_offset, stripe_size);
5249 		if (ret)
5250 			break;
5251 	}
5252 	if (ret) {
5253 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5254 		goto out;
5255 	}
5256 
5257 	stripe = &chunk->stripe;
5258 	for (i = 0; i < map->num_stripes; i++) {
5259 		device = map->stripes[i].dev;
5260 		dev_offset = map->stripes[i].physical;
5261 
5262 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5263 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5264 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5265 		stripe++;
5266 	}
5267 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5268 
5269 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5270 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5271 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5272 	btrfs_set_stack_chunk_type(chunk, map->type);
5273 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5274 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5275 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5276 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5277 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5278 
5279 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5280 	key.type = BTRFS_CHUNK_ITEM_KEY;
5281 	key.offset = chunk_offset;
5282 
5283 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5284 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5285 		/*
5286 		 * TODO: Cleanup of inserted chunk root in case of
5287 		 * failure.
5288 		 */
5289 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5290 	}
5291 
5292 out:
5293 	kfree(chunk);
5294 	free_extent_map(em);
5295 	return ret;
5296 }
5297 
5298 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5299 {
5300 	struct btrfs_fs_info *fs_info = trans->fs_info;
5301 	u64 alloc_profile;
5302 	int ret;
5303 
5304 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5305 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5306 	if (ret)
5307 		return ret;
5308 
5309 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5310 	ret = btrfs_alloc_chunk(trans, alloc_profile);
5311 	return ret;
5312 }
5313 
5314 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5315 {
5316 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5317 
5318 	return btrfs_raid_array[index].tolerated_failures;
5319 }
5320 
5321 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5322 {
5323 	struct extent_map *em;
5324 	struct map_lookup *map;
5325 	int readonly = 0;
5326 	int miss_ndevs = 0;
5327 	int i;
5328 
5329 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5330 	if (IS_ERR(em))
5331 		return 1;
5332 
5333 	map = em->map_lookup;
5334 	for (i = 0; i < map->num_stripes; i++) {
5335 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5336 					&map->stripes[i].dev->dev_state)) {
5337 			miss_ndevs++;
5338 			continue;
5339 		}
5340 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5341 					&map->stripes[i].dev->dev_state)) {
5342 			readonly = 1;
5343 			goto end;
5344 		}
5345 	}
5346 
5347 	/*
5348 	 * If the number of missing devices is larger than max errors,
5349 	 * we can not write the data into that chunk successfully, so
5350 	 * set it readonly.
5351 	 */
5352 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5353 		readonly = 1;
5354 end:
5355 	free_extent_map(em);
5356 	return readonly;
5357 }
5358 
5359 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5360 {
5361 	struct extent_map *em;
5362 
5363 	while (1) {
5364 		write_lock(&tree->lock);
5365 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5366 		if (em)
5367 			remove_extent_mapping(tree, em);
5368 		write_unlock(&tree->lock);
5369 		if (!em)
5370 			break;
5371 		/* once for us */
5372 		free_extent_map(em);
5373 		/* once for the tree */
5374 		free_extent_map(em);
5375 	}
5376 }
5377 
5378 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5379 {
5380 	struct extent_map *em;
5381 	struct map_lookup *map;
5382 	int ret;
5383 
5384 	em = btrfs_get_chunk_map(fs_info, logical, len);
5385 	if (IS_ERR(em))
5386 		/*
5387 		 * We could return errors for these cases, but that could get
5388 		 * ugly and we'd probably do the same thing which is just not do
5389 		 * anything else and exit, so return 1 so the callers don't try
5390 		 * to use other copies.
5391 		 */
5392 		return 1;
5393 
5394 	map = em->map_lookup;
5395 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5396 		ret = map->num_stripes;
5397 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5398 		ret = map->sub_stripes;
5399 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5400 		ret = 2;
5401 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5402 		/*
5403 		 * There could be two corrupted data stripes, we need
5404 		 * to loop retry in order to rebuild the correct data.
5405 		 *
5406 		 * Fail a stripe at a time on every retry except the
5407 		 * stripe under reconstruction.
5408 		 */
5409 		ret = map->num_stripes;
5410 	else
5411 		ret = 1;
5412 	free_extent_map(em);
5413 
5414 	down_read(&fs_info->dev_replace.rwsem);
5415 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5416 	    fs_info->dev_replace.tgtdev)
5417 		ret++;
5418 	up_read(&fs_info->dev_replace.rwsem);
5419 
5420 	return ret;
5421 }
5422 
5423 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5424 				    u64 logical)
5425 {
5426 	struct extent_map *em;
5427 	struct map_lookup *map;
5428 	unsigned long len = fs_info->sectorsize;
5429 
5430 	em = btrfs_get_chunk_map(fs_info, logical, len);
5431 
5432 	if (!WARN_ON(IS_ERR(em))) {
5433 		map = em->map_lookup;
5434 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5435 			len = map->stripe_len * nr_data_stripes(map);
5436 		free_extent_map(em);
5437 	}
5438 	return len;
5439 }
5440 
5441 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5442 {
5443 	struct extent_map *em;
5444 	struct map_lookup *map;
5445 	int ret = 0;
5446 
5447 	em = btrfs_get_chunk_map(fs_info, logical, len);
5448 
5449 	if(!WARN_ON(IS_ERR(em))) {
5450 		map = em->map_lookup;
5451 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5452 			ret = 1;
5453 		free_extent_map(em);
5454 	}
5455 	return ret;
5456 }
5457 
5458 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5459 			    struct map_lookup *map, int first,
5460 			    int dev_replace_is_ongoing)
5461 {
5462 	int i;
5463 	int num_stripes;
5464 	int preferred_mirror;
5465 	int tolerance;
5466 	struct btrfs_device *srcdev;
5467 
5468 	ASSERT((map->type &
5469 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5470 
5471 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5472 		num_stripes = map->sub_stripes;
5473 	else
5474 		num_stripes = map->num_stripes;
5475 
5476 	preferred_mirror = first + current->pid % num_stripes;
5477 
5478 	if (dev_replace_is_ongoing &&
5479 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5480 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5481 		srcdev = fs_info->dev_replace.srcdev;
5482 	else
5483 		srcdev = NULL;
5484 
5485 	/*
5486 	 * try to avoid the drive that is the source drive for a
5487 	 * dev-replace procedure, only choose it if no other non-missing
5488 	 * mirror is available
5489 	 */
5490 	for (tolerance = 0; tolerance < 2; tolerance++) {
5491 		if (map->stripes[preferred_mirror].dev->bdev &&
5492 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5493 			return preferred_mirror;
5494 		for (i = first; i < first + num_stripes; i++) {
5495 			if (map->stripes[i].dev->bdev &&
5496 			    (tolerance || map->stripes[i].dev != srcdev))
5497 				return i;
5498 		}
5499 	}
5500 
5501 	/* we couldn't find one that doesn't fail.  Just return something
5502 	 * and the io error handling code will clean up eventually
5503 	 */
5504 	return preferred_mirror;
5505 }
5506 
5507 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5508 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5509 {
5510 	int i;
5511 	int again = 1;
5512 
5513 	while (again) {
5514 		again = 0;
5515 		for (i = 0; i < num_stripes - 1; i++) {
5516 			/* Swap if parity is on a smaller index */
5517 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5518 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5519 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5520 				again = 1;
5521 			}
5522 		}
5523 	}
5524 }
5525 
5526 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5527 {
5528 	struct btrfs_bio *bbio = kzalloc(
5529 		 /* the size of the btrfs_bio */
5530 		sizeof(struct btrfs_bio) +
5531 		/* plus the variable array for the stripes */
5532 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5533 		/* plus the variable array for the tgt dev */
5534 		sizeof(int) * (real_stripes) +
5535 		/*
5536 		 * plus the raid_map, which includes both the tgt dev
5537 		 * and the stripes
5538 		 */
5539 		sizeof(u64) * (total_stripes),
5540 		GFP_NOFS|__GFP_NOFAIL);
5541 
5542 	atomic_set(&bbio->error, 0);
5543 	refcount_set(&bbio->refs, 1);
5544 
5545 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5546 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5547 
5548 	return bbio;
5549 }
5550 
5551 void btrfs_get_bbio(struct btrfs_bio *bbio)
5552 {
5553 	WARN_ON(!refcount_read(&bbio->refs));
5554 	refcount_inc(&bbio->refs);
5555 }
5556 
5557 void btrfs_put_bbio(struct btrfs_bio *bbio)
5558 {
5559 	if (!bbio)
5560 		return;
5561 	if (refcount_dec_and_test(&bbio->refs))
5562 		kfree(bbio);
5563 }
5564 
5565 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5566 /*
5567  * Please note that, discard won't be sent to target device of device
5568  * replace.
5569  */
5570 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5571 					 u64 logical, u64 *length_ret,
5572 					 struct btrfs_bio **bbio_ret)
5573 {
5574 	struct extent_map *em;
5575 	struct map_lookup *map;
5576 	struct btrfs_bio *bbio;
5577 	u64 length = *length_ret;
5578 	u64 offset;
5579 	u64 stripe_nr;
5580 	u64 stripe_nr_end;
5581 	u64 stripe_end_offset;
5582 	u64 stripe_cnt;
5583 	u64 stripe_len;
5584 	u64 stripe_offset;
5585 	u64 num_stripes;
5586 	u32 stripe_index;
5587 	u32 factor = 0;
5588 	u32 sub_stripes = 0;
5589 	u64 stripes_per_dev = 0;
5590 	u32 remaining_stripes = 0;
5591 	u32 last_stripe = 0;
5592 	int ret = 0;
5593 	int i;
5594 
5595 	/* discard always return a bbio */
5596 	ASSERT(bbio_ret);
5597 
5598 	em = btrfs_get_chunk_map(fs_info, logical, length);
5599 	if (IS_ERR(em))
5600 		return PTR_ERR(em);
5601 
5602 	map = em->map_lookup;
5603 	/* we don't discard raid56 yet */
5604 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5605 		ret = -EOPNOTSUPP;
5606 		goto out;
5607 	}
5608 
5609 	offset = logical - em->start;
5610 	length = min_t(u64, em->start + em->len - logical, length);
5611 	*length_ret = length;
5612 
5613 	stripe_len = map->stripe_len;
5614 	/*
5615 	 * stripe_nr counts the total number of stripes we have to stride
5616 	 * to get to this block
5617 	 */
5618 	stripe_nr = div64_u64(offset, stripe_len);
5619 
5620 	/* stripe_offset is the offset of this block in its stripe */
5621 	stripe_offset = offset - stripe_nr * stripe_len;
5622 
5623 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5624 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5625 	stripe_cnt = stripe_nr_end - stripe_nr;
5626 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5627 			    (offset + length);
5628 	/*
5629 	 * after this, stripe_nr is the number of stripes on this
5630 	 * device we have to walk to find the data, and stripe_index is
5631 	 * the number of our device in the stripe array
5632 	 */
5633 	num_stripes = 1;
5634 	stripe_index = 0;
5635 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5636 			 BTRFS_BLOCK_GROUP_RAID10)) {
5637 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5638 			sub_stripes = 1;
5639 		else
5640 			sub_stripes = map->sub_stripes;
5641 
5642 		factor = map->num_stripes / sub_stripes;
5643 		num_stripes = min_t(u64, map->num_stripes,
5644 				    sub_stripes * stripe_cnt);
5645 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5646 		stripe_index *= sub_stripes;
5647 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5648 					      &remaining_stripes);
5649 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5650 		last_stripe *= sub_stripes;
5651 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5652 				BTRFS_BLOCK_GROUP_DUP)) {
5653 		num_stripes = map->num_stripes;
5654 	} else {
5655 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5656 					&stripe_index);
5657 	}
5658 
5659 	bbio = alloc_btrfs_bio(num_stripes, 0);
5660 	if (!bbio) {
5661 		ret = -ENOMEM;
5662 		goto out;
5663 	}
5664 
5665 	for (i = 0; i < num_stripes; i++) {
5666 		bbio->stripes[i].physical =
5667 			map->stripes[stripe_index].physical +
5668 			stripe_offset + stripe_nr * map->stripe_len;
5669 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5670 
5671 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5672 				 BTRFS_BLOCK_GROUP_RAID10)) {
5673 			bbio->stripes[i].length = stripes_per_dev *
5674 				map->stripe_len;
5675 
5676 			if (i / sub_stripes < remaining_stripes)
5677 				bbio->stripes[i].length +=
5678 					map->stripe_len;
5679 
5680 			/*
5681 			 * Special for the first stripe and
5682 			 * the last stripe:
5683 			 *
5684 			 * |-------|...|-------|
5685 			 *     |----------|
5686 			 *    off     end_off
5687 			 */
5688 			if (i < sub_stripes)
5689 				bbio->stripes[i].length -=
5690 					stripe_offset;
5691 
5692 			if (stripe_index >= last_stripe &&
5693 			    stripe_index <= (last_stripe +
5694 					     sub_stripes - 1))
5695 				bbio->stripes[i].length -=
5696 					stripe_end_offset;
5697 
5698 			if (i == sub_stripes - 1)
5699 				stripe_offset = 0;
5700 		} else {
5701 			bbio->stripes[i].length = length;
5702 		}
5703 
5704 		stripe_index++;
5705 		if (stripe_index == map->num_stripes) {
5706 			stripe_index = 0;
5707 			stripe_nr++;
5708 		}
5709 	}
5710 
5711 	*bbio_ret = bbio;
5712 	bbio->map_type = map->type;
5713 	bbio->num_stripes = num_stripes;
5714 out:
5715 	free_extent_map(em);
5716 	return ret;
5717 }
5718 
5719 /*
5720  * In dev-replace case, for repair case (that's the only case where the mirror
5721  * is selected explicitly when calling btrfs_map_block), blocks left of the
5722  * left cursor can also be read from the target drive.
5723  *
5724  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5725  * array of stripes.
5726  * For READ, it also needs to be supported using the same mirror number.
5727  *
5728  * If the requested block is not left of the left cursor, EIO is returned. This
5729  * can happen because btrfs_num_copies() returns one more in the dev-replace
5730  * case.
5731  */
5732 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5733 					 u64 logical, u64 length,
5734 					 u64 srcdev_devid, int *mirror_num,
5735 					 u64 *physical)
5736 {
5737 	struct btrfs_bio *bbio = NULL;
5738 	int num_stripes;
5739 	int index_srcdev = 0;
5740 	int found = 0;
5741 	u64 physical_of_found = 0;
5742 	int i;
5743 	int ret = 0;
5744 
5745 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5746 				logical, &length, &bbio, 0, 0);
5747 	if (ret) {
5748 		ASSERT(bbio == NULL);
5749 		return ret;
5750 	}
5751 
5752 	num_stripes = bbio->num_stripes;
5753 	if (*mirror_num > num_stripes) {
5754 		/*
5755 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5756 		 * that means that the requested area is not left of the left
5757 		 * cursor
5758 		 */
5759 		btrfs_put_bbio(bbio);
5760 		return -EIO;
5761 	}
5762 
5763 	/*
5764 	 * process the rest of the function using the mirror_num of the source
5765 	 * drive. Therefore look it up first.  At the end, patch the device
5766 	 * pointer to the one of the target drive.
5767 	 */
5768 	for (i = 0; i < num_stripes; i++) {
5769 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5770 			continue;
5771 
5772 		/*
5773 		 * In case of DUP, in order to keep it simple, only add the
5774 		 * mirror with the lowest physical address
5775 		 */
5776 		if (found &&
5777 		    physical_of_found <= bbio->stripes[i].physical)
5778 			continue;
5779 
5780 		index_srcdev = i;
5781 		found = 1;
5782 		physical_of_found = bbio->stripes[i].physical;
5783 	}
5784 
5785 	btrfs_put_bbio(bbio);
5786 
5787 	ASSERT(found);
5788 	if (!found)
5789 		return -EIO;
5790 
5791 	*mirror_num = index_srcdev + 1;
5792 	*physical = physical_of_found;
5793 	return ret;
5794 }
5795 
5796 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5797 				      struct btrfs_bio **bbio_ret,
5798 				      struct btrfs_dev_replace *dev_replace,
5799 				      int *num_stripes_ret, int *max_errors_ret)
5800 {
5801 	struct btrfs_bio *bbio = *bbio_ret;
5802 	u64 srcdev_devid = dev_replace->srcdev->devid;
5803 	int tgtdev_indexes = 0;
5804 	int num_stripes = *num_stripes_ret;
5805 	int max_errors = *max_errors_ret;
5806 	int i;
5807 
5808 	if (op == BTRFS_MAP_WRITE) {
5809 		int index_where_to_add;
5810 
5811 		/*
5812 		 * duplicate the write operations while the dev replace
5813 		 * procedure is running. Since the copying of the old disk to
5814 		 * the new disk takes place at run time while the filesystem is
5815 		 * mounted writable, the regular write operations to the old
5816 		 * disk have to be duplicated to go to the new disk as well.
5817 		 *
5818 		 * Note that device->missing is handled by the caller, and that
5819 		 * the write to the old disk is already set up in the stripes
5820 		 * array.
5821 		 */
5822 		index_where_to_add = num_stripes;
5823 		for (i = 0; i < num_stripes; i++) {
5824 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5825 				/* write to new disk, too */
5826 				struct btrfs_bio_stripe *new =
5827 					bbio->stripes + index_where_to_add;
5828 				struct btrfs_bio_stripe *old =
5829 					bbio->stripes + i;
5830 
5831 				new->physical = old->physical;
5832 				new->length = old->length;
5833 				new->dev = dev_replace->tgtdev;
5834 				bbio->tgtdev_map[i] = index_where_to_add;
5835 				index_where_to_add++;
5836 				max_errors++;
5837 				tgtdev_indexes++;
5838 			}
5839 		}
5840 		num_stripes = index_where_to_add;
5841 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5842 		int index_srcdev = 0;
5843 		int found = 0;
5844 		u64 physical_of_found = 0;
5845 
5846 		/*
5847 		 * During the dev-replace procedure, the target drive can also
5848 		 * be used to read data in case it is needed to repair a corrupt
5849 		 * block elsewhere. This is possible if the requested area is
5850 		 * left of the left cursor. In this area, the target drive is a
5851 		 * full copy of the source drive.
5852 		 */
5853 		for (i = 0; i < num_stripes; i++) {
5854 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5855 				/*
5856 				 * In case of DUP, in order to keep it simple,
5857 				 * only add the mirror with the lowest physical
5858 				 * address
5859 				 */
5860 				if (found &&
5861 				    physical_of_found <=
5862 				     bbio->stripes[i].physical)
5863 					continue;
5864 				index_srcdev = i;
5865 				found = 1;
5866 				physical_of_found = bbio->stripes[i].physical;
5867 			}
5868 		}
5869 		if (found) {
5870 			struct btrfs_bio_stripe *tgtdev_stripe =
5871 				bbio->stripes + num_stripes;
5872 
5873 			tgtdev_stripe->physical = physical_of_found;
5874 			tgtdev_stripe->length =
5875 				bbio->stripes[index_srcdev].length;
5876 			tgtdev_stripe->dev = dev_replace->tgtdev;
5877 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5878 
5879 			tgtdev_indexes++;
5880 			num_stripes++;
5881 		}
5882 	}
5883 
5884 	*num_stripes_ret = num_stripes;
5885 	*max_errors_ret = max_errors;
5886 	bbio->num_tgtdevs = tgtdev_indexes;
5887 	*bbio_ret = bbio;
5888 }
5889 
5890 static bool need_full_stripe(enum btrfs_map_op op)
5891 {
5892 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5893 }
5894 
5895 /*
5896  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5897  *		       tuple. This information is used to calculate how big a
5898  *		       particular bio can get before it straddles a stripe.
5899  *
5900  * @fs_info - the filesystem
5901  * @logical - address that we want to figure out the geometry of
5902  * @len	    - the length of IO we are going to perform, starting at @logical
5903  * @op      - type of operation - write or read
5904  * @io_geom - pointer used to return values
5905  *
5906  * Returns < 0 in case a chunk for the given logical address cannot be found,
5907  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5908  */
5909 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5910 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5911 {
5912 	struct extent_map *em;
5913 	struct map_lookup *map;
5914 	u64 offset;
5915 	u64 stripe_offset;
5916 	u64 stripe_nr;
5917 	u64 stripe_len;
5918 	u64 raid56_full_stripe_start = (u64)-1;
5919 	int data_stripes;
5920 	int ret = 0;
5921 
5922 	ASSERT(op != BTRFS_MAP_DISCARD);
5923 
5924 	em = btrfs_get_chunk_map(fs_info, logical, len);
5925 	if (IS_ERR(em))
5926 		return PTR_ERR(em);
5927 
5928 	map = em->map_lookup;
5929 	/* Offset of this logical address in the chunk */
5930 	offset = logical - em->start;
5931 	/* Len of a stripe in a chunk */
5932 	stripe_len = map->stripe_len;
5933 	/* Stripe wher this block falls in */
5934 	stripe_nr = div64_u64(offset, stripe_len);
5935 	/* Offset of stripe in the chunk */
5936 	stripe_offset = stripe_nr * stripe_len;
5937 	if (offset < stripe_offset) {
5938 		btrfs_crit(fs_info,
5939 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5940 			stripe_offset, offset, em->start, logical, stripe_len);
5941 		ret = -EINVAL;
5942 		goto out;
5943 	}
5944 
5945 	/* stripe_offset is the offset of this block in its stripe */
5946 	stripe_offset = offset - stripe_offset;
5947 	data_stripes = nr_data_stripes(map);
5948 
5949 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5950 		u64 max_len = stripe_len - stripe_offset;
5951 
5952 		/*
5953 		 * In case of raid56, we need to know the stripe aligned start
5954 		 */
5955 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5956 			unsigned long full_stripe_len = stripe_len * data_stripes;
5957 			raid56_full_stripe_start = offset;
5958 
5959 			/*
5960 			 * Allow a write of a full stripe, but make sure we
5961 			 * don't allow straddling of stripes
5962 			 */
5963 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5964 					full_stripe_len);
5965 			raid56_full_stripe_start *= full_stripe_len;
5966 
5967 			/*
5968 			 * For writes to RAID[56], allow a full stripeset across
5969 			 * all disks. For other RAID types and for RAID[56]
5970 			 * reads, just allow a single stripe (on a single disk).
5971 			 */
5972 			if (op == BTRFS_MAP_WRITE) {
5973 				max_len = stripe_len * data_stripes -
5974 					  (offset - raid56_full_stripe_start);
5975 			}
5976 		}
5977 		len = min_t(u64, em->len - offset, max_len);
5978 	} else {
5979 		len = em->len - offset;
5980 	}
5981 
5982 	io_geom->len = len;
5983 	io_geom->offset = offset;
5984 	io_geom->stripe_len = stripe_len;
5985 	io_geom->stripe_nr = stripe_nr;
5986 	io_geom->stripe_offset = stripe_offset;
5987 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5988 
5989 out:
5990 	/* once for us */
5991 	free_extent_map(em);
5992 	return ret;
5993 }
5994 
5995 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5996 			     enum btrfs_map_op op,
5997 			     u64 logical, u64 *length,
5998 			     struct btrfs_bio **bbio_ret,
5999 			     int mirror_num, int need_raid_map)
6000 {
6001 	struct extent_map *em;
6002 	struct map_lookup *map;
6003 	u64 stripe_offset;
6004 	u64 stripe_nr;
6005 	u64 stripe_len;
6006 	u32 stripe_index;
6007 	int data_stripes;
6008 	int i;
6009 	int ret = 0;
6010 	int num_stripes;
6011 	int max_errors = 0;
6012 	int tgtdev_indexes = 0;
6013 	struct btrfs_bio *bbio = NULL;
6014 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6015 	int dev_replace_is_ongoing = 0;
6016 	int num_alloc_stripes;
6017 	int patch_the_first_stripe_for_dev_replace = 0;
6018 	u64 physical_to_patch_in_first_stripe = 0;
6019 	u64 raid56_full_stripe_start = (u64)-1;
6020 	struct btrfs_io_geometry geom;
6021 
6022 	ASSERT(bbio_ret);
6023 	ASSERT(op != BTRFS_MAP_DISCARD);
6024 
6025 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6026 	if (ret < 0)
6027 		return ret;
6028 
6029 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6030 	ASSERT(!IS_ERR(em));
6031 	map = em->map_lookup;
6032 
6033 	*length = geom.len;
6034 	stripe_len = geom.stripe_len;
6035 	stripe_nr = geom.stripe_nr;
6036 	stripe_offset = geom.stripe_offset;
6037 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6038 	data_stripes = nr_data_stripes(map);
6039 
6040 	down_read(&dev_replace->rwsem);
6041 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6042 	/*
6043 	 * Hold the semaphore for read during the whole operation, write is
6044 	 * requested at commit time but must wait.
6045 	 */
6046 	if (!dev_replace_is_ongoing)
6047 		up_read(&dev_replace->rwsem);
6048 
6049 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6050 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6051 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6052 						    dev_replace->srcdev->devid,
6053 						    &mirror_num,
6054 					    &physical_to_patch_in_first_stripe);
6055 		if (ret)
6056 			goto out;
6057 		else
6058 			patch_the_first_stripe_for_dev_replace = 1;
6059 	} else if (mirror_num > map->num_stripes) {
6060 		mirror_num = 0;
6061 	}
6062 
6063 	num_stripes = 1;
6064 	stripe_index = 0;
6065 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6066 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6067 				&stripe_index);
6068 		if (!need_full_stripe(op))
6069 			mirror_num = 1;
6070 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6071 		if (need_full_stripe(op))
6072 			num_stripes = map->num_stripes;
6073 		else if (mirror_num)
6074 			stripe_index = mirror_num - 1;
6075 		else {
6076 			stripe_index = find_live_mirror(fs_info, map, 0,
6077 					    dev_replace_is_ongoing);
6078 			mirror_num = stripe_index + 1;
6079 		}
6080 
6081 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6082 		if (need_full_stripe(op)) {
6083 			num_stripes = map->num_stripes;
6084 		} else if (mirror_num) {
6085 			stripe_index = mirror_num - 1;
6086 		} else {
6087 			mirror_num = 1;
6088 		}
6089 
6090 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6091 		u32 factor = map->num_stripes / map->sub_stripes;
6092 
6093 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6094 		stripe_index *= map->sub_stripes;
6095 
6096 		if (need_full_stripe(op))
6097 			num_stripes = map->sub_stripes;
6098 		else if (mirror_num)
6099 			stripe_index += mirror_num - 1;
6100 		else {
6101 			int old_stripe_index = stripe_index;
6102 			stripe_index = find_live_mirror(fs_info, map,
6103 					      stripe_index,
6104 					      dev_replace_is_ongoing);
6105 			mirror_num = stripe_index - old_stripe_index + 1;
6106 		}
6107 
6108 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6109 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6110 			/* push stripe_nr back to the start of the full stripe */
6111 			stripe_nr = div64_u64(raid56_full_stripe_start,
6112 					stripe_len * data_stripes);
6113 
6114 			/* RAID[56] write or recovery. Return all stripes */
6115 			num_stripes = map->num_stripes;
6116 			max_errors = nr_parity_stripes(map);
6117 
6118 			*length = map->stripe_len;
6119 			stripe_index = 0;
6120 			stripe_offset = 0;
6121 		} else {
6122 			/*
6123 			 * Mirror #0 or #1 means the original data block.
6124 			 * Mirror #2 is RAID5 parity block.
6125 			 * Mirror #3 is RAID6 Q block.
6126 			 */
6127 			stripe_nr = div_u64_rem(stripe_nr,
6128 					data_stripes, &stripe_index);
6129 			if (mirror_num > 1)
6130 				stripe_index = data_stripes + mirror_num - 2;
6131 
6132 			/* We distribute the parity blocks across stripes */
6133 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6134 					&stripe_index);
6135 			if (!need_full_stripe(op) && mirror_num <= 1)
6136 				mirror_num = 1;
6137 		}
6138 	} else {
6139 		/*
6140 		 * after this, stripe_nr is the number of stripes on this
6141 		 * device we have to walk to find the data, and stripe_index is
6142 		 * the number of our device in the stripe array
6143 		 */
6144 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6145 				&stripe_index);
6146 		mirror_num = stripe_index + 1;
6147 	}
6148 	if (stripe_index >= map->num_stripes) {
6149 		btrfs_crit(fs_info,
6150 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6151 			   stripe_index, map->num_stripes);
6152 		ret = -EINVAL;
6153 		goto out;
6154 	}
6155 
6156 	num_alloc_stripes = num_stripes;
6157 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6158 		if (op == BTRFS_MAP_WRITE)
6159 			num_alloc_stripes <<= 1;
6160 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6161 			num_alloc_stripes++;
6162 		tgtdev_indexes = num_stripes;
6163 	}
6164 
6165 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6166 	if (!bbio) {
6167 		ret = -ENOMEM;
6168 		goto out;
6169 	}
6170 
6171 	for (i = 0; i < num_stripes; i++) {
6172 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6173 			stripe_offset + stripe_nr * map->stripe_len;
6174 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6175 		stripe_index++;
6176 	}
6177 
6178 	/* build raid_map */
6179 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6180 	    (need_full_stripe(op) || mirror_num > 1)) {
6181 		u64 tmp;
6182 		unsigned rot;
6183 
6184 		/* Work out the disk rotation on this stripe-set */
6185 		div_u64_rem(stripe_nr, num_stripes, &rot);
6186 
6187 		/* Fill in the logical address of each stripe */
6188 		tmp = stripe_nr * data_stripes;
6189 		for (i = 0; i < data_stripes; i++)
6190 			bbio->raid_map[(i+rot) % num_stripes] =
6191 				em->start + (tmp + i) * map->stripe_len;
6192 
6193 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6194 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6195 			bbio->raid_map[(i+rot+1) % num_stripes] =
6196 				RAID6_Q_STRIPE;
6197 
6198 		sort_parity_stripes(bbio, num_stripes);
6199 	}
6200 
6201 	if (need_full_stripe(op))
6202 		max_errors = btrfs_chunk_max_errors(map);
6203 
6204 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6205 	    need_full_stripe(op)) {
6206 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6207 					  &max_errors);
6208 	}
6209 
6210 	*bbio_ret = bbio;
6211 	bbio->map_type = map->type;
6212 	bbio->num_stripes = num_stripes;
6213 	bbio->max_errors = max_errors;
6214 	bbio->mirror_num = mirror_num;
6215 
6216 	/*
6217 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6218 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6219 	 * available as a mirror
6220 	 */
6221 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6222 		WARN_ON(num_stripes > 1);
6223 		bbio->stripes[0].dev = dev_replace->tgtdev;
6224 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6225 		bbio->mirror_num = map->num_stripes + 1;
6226 	}
6227 out:
6228 	if (dev_replace_is_ongoing) {
6229 		lockdep_assert_held(&dev_replace->rwsem);
6230 		/* Unlock and let waiting writers proceed */
6231 		up_read(&dev_replace->rwsem);
6232 	}
6233 	free_extent_map(em);
6234 	return ret;
6235 }
6236 
6237 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6238 		      u64 logical, u64 *length,
6239 		      struct btrfs_bio **bbio_ret, int mirror_num)
6240 {
6241 	if (op == BTRFS_MAP_DISCARD)
6242 		return __btrfs_map_block_for_discard(fs_info, logical,
6243 						     length, bbio_ret);
6244 
6245 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6246 				 mirror_num, 0);
6247 }
6248 
6249 /* For Scrub/replace */
6250 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6251 		     u64 logical, u64 *length,
6252 		     struct btrfs_bio **bbio_ret)
6253 {
6254 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6255 }
6256 
6257 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6258 {
6259 	bio->bi_private = bbio->private;
6260 	bio->bi_end_io = bbio->end_io;
6261 	bio_endio(bio);
6262 
6263 	btrfs_put_bbio(bbio);
6264 }
6265 
6266 static void btrfs_end_bio(struct bio *bio)
6267 {
6268 	struct btrfs_bio *bbio = bio->bi_private;
6269 	int is_orig_bio = 0;
6270 
6271 	if (bio->bi_status) {
6272 		atomic_inc(&bbio->error);
6273 		if (bio->bi_status == BLK_STS_IOERR ||
6274 		    bio->bi_status == BLK_STS_TARGET) {
6275 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6276 
6277 			ASSERT(dev->bdev);
6278 			if (bio_op(bio) == REQ_OP_WRITE)
6279 				btrfs_dev_stat_inc_and_print(dev,
6280 						BTRFS_DEV_STAT_WRITE_ERRS);
6281 			else if (!(bio->bi_opf & REQ_RAHEAD))
6282 				btrfs_dev_stat_inc_and_print(dev,
6283 						BTRFS_DEV_STAT_READ_ERRS);
6284 			if (bio->bi_opf & REQ_PREFLUSH)
6285 				btrfs_dev_stat_inc_and_print(dev,
6286 						BTRFS_DEV_STAT_FLUSH_ERRS);
6287 		}
6288 	}
6289 
6290 	if (bio == bbio->orig_bio)
6291 		is_orig_bio = 1;
6292 
6293 	btrfs_bio_counter_dec(bbio->fs_info);
6294 
6295 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6296 		if (!is_orig_bio) {
6297 			bio_put(bio);
6298 			bio = bbio->orig_bio;
6299 		}
6300 
6301 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6302 		/* only send an error to the higher layers if it is
6303 		 * beyond the tolerance of the btrfs bio
6304 		 */
6305 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6306 			bio->bi_status = BLK_STS_IOERR;
6307 		} else {
6308 			/*
6309 			 * this bio is actually up to date, we didn't
6310 			 * go over the max number of errors
6311 			 */
6312 			bio->bi_status = BLK_STS_OK;
6313 		}
6314 
6315 		btrfs_end_bbio(bbio, bio);
6316 	} else if (!is_orig_bio) {
6317 		bio_put(bio);
6318 	}
6319 }
6320 
6321 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6322 			      u64 physical, struct btrfs_device *dev)
6323 {
6324 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6325 
6326 	bio->bi_private = bbio;
6327 	btrfs_io_bio(bio)->device = dev;
6328 	bio->bi_end_io = btrfs_end_bio;
6329 	bio->bi_iter.bi_sector = physical >> 9;
6330 	btrfs_debug_in_rcu(fs_info,
6331 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6332 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6333 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6334 		dev->devid, bio->bi_iter.bi_size);
6335 	bio_set_dev(bio, dev->bdev);
6336 
6337 	btrfs_bio_counter_inc_noblocked(fs_info);
6338 
6339 	btrfsic_submit_bio(bio);
6340 }
6341 
6342 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6343 {
6344 	atomic_inc(&bbio->error);
6345 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6346 		/* Should be the original bio. */
6347 		WARN_ON(bio != bbio->orig_bio);
6348 
6349 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6350 		bio->bi_iter.bi_sector = logical >> 9;
6351 		if (atomic_read(&bbio->error) > bbio->max_errors)
6352 			bio->bi_status = BLK_STS_IOERR;
6353 		else
6354 			bio->bi_status = BLK_STS_OK;
6355 		btrfs_end_bbio(bbio, bio);
6356 	}
6357 }
6358 
6359 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6360 			   int mirror_num)
6361 {
6362 	struct btrfs_device *dev;
6363 	struct bio *first_bio = bio;
6364 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6365 	u64 length = 0;
6366 	u64 map_length;
6367 	int ret;
6368 	int dev_nr;
6369 	int total_devs;
6370 	struct btrfs_bio *bbio = NULL;
6371 
6372 	length = bio->bi_iter.bi_size;
6373 	map_length = length;
6374 
6375 	btrfs_bio_counter_inc_blocked(fs_info);
6376 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6377 				&map_length, &bbio, mirror_num, 1);
6378 	if (ret) {
6379 		btrfs_bio_counter_dec(fs_info);
6380 		return errno_to_blk_status(ret);
6381 	}
6382 
6383 	total_devs = bbio->num_stripes;
6384 	bbio->orig_bio = first_bio;
6385 	bbio->private = first_bio->bi_private;
6386 	bbio->end_io = first_bio->bi_end_io;
6387 	bbio->fs_info = fs_info;
6388 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6389 
6390 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6391 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6392 		/* In this case, map_length has been set to the length of
6393 		   a single stripe; not the whole write */
6394 		if (bio_op(bio) == REQ_OP_WRITE) {
6395 			ret = raid56_parity_write(fs_info, bio, bbio,
6396 						  map_length);
6397 		} else {
6398 			ret = raid56_parity_recover(fs_info, bio, bbio,
6399 						    map_length, mirror_num, 1);
6400 		}
6401 
6402 		btrfs_bio_counter_dec(fs_info);
6403 		return errno_to_blk_status(ret);
6404 	}
6405 
6406 	if (map_length < length) {
6407 		btrfs_crit(fs_info,
6408 			   "mapping failed logical %llu bio len %llu len %llu",
6409 			   logical, length, map_length);
6410 		BUG();
6411 	}
6412 
6413 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6414 		dev = bbio->stripes[dev_nr].dev;
6415 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6416 						   &dev->dev_state) ||
6417 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6418 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6419 			bbio_error(bbio, first_bio, logical);
6420 			continue;
6421 		}
6422 
6423 		if (dev_nr < total_devs - 1)
6424 			bio = btrfs_bio_clone(first_bio);
6425 		else
6426 			bio = first_bio;
6427 
6428 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6429 	}
6430 	btrfs_bio_counter_dec(fs_info);
6431 	return BLK_STS_OK;
6432 }
6433 
6434 /*
6435  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6436  * return NULL.
6437  *
6438  * If devid and uuid are both specified, the match must be exact, otherwise
6439  * only devid is used.
6440  *
6441  * If @seed is true, traverse through the seed devices.
6442  */
6443 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6444 				       u64 devid, u8 *uuid, u8 *fsid,
6445 				       bool seed)
6446 {
6447 	struct btrfs_device *device;
6448 	struct btrfs_fs_devices *seed_devs;
6449 
6450 	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6451 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6452 			if (device->devid == devid &&
6453 			    (!uuid || memcmp(device->uuid, uuid,
6454 					     BTRFS_UUID_SIZE) == 0))
6455 				return device;
6456 		}
6457 	}
6458 
6459 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6460 		if (!fsid ||
6461 		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6462 			list_for_each_entry(device, &seed_devs->devices,
6463 					    dev_list) {
6464 				if (device->devid == devid &&
6465 				    (!uuid || memcmp(device->uuid, uuid,
6466 						     BTRFS_UUID_SIZE) == 0))
6467 					return device;
6468 			}
6469 		}
6470 	}
6471 
6472 	return NULL;
6473 }
6474 
6475 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6476 					    u64 devid, u8 *dev_uuid)
6477 {
6478 	struct btrfs_device *device;
6479 	unsigned int nofs_flag;
6480 
6481 	/*
6482 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6483 	 * allocation, however we don't want to change btrfs_alloc_device() to
6484 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6485 	 * places.
6486 	 */
6487 	nofs_flag = memalloc_nofs_save();
6488 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6489 	memalloc_nofs_restore(nofs_flag);
6490 	if (IS_ERR(device))
6491 		return device;
6492 
6493 	list_add(&device->dev_list, &fs_devices->devices);
6494 	device->fs_devices = fs_devices;
6495 	fs_devices->num_devices++;
6496 
6497 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6498 	fs_devices->missing_devices++;
6499 
6500 	return device;
6501 }
6502 
6503 /**
6504  * btrfs_alloc_device - allocate struct btrfs_device
6505  * @fs_info:	used only for generating a new devid, can be NULL if
6506  *		devid is provided (i.e. @devid != NULL).
6507  * @devid:	a pointer to devid for this device.  If NULL a new devid
6508  *		is generated.
6509  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6510  *		is generated.
6511  *
6512  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6513  * on error.  Returned struct is not linked onto any lists and must be
6514  * destroyed with btrfs_free_device.
6515  */
6516 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6517 					const u64 *devid,
6518 					const u8 *uuid)
6519 {
6520 	struct btrfs_device *dev;
6521 	u64 tmp;
6522 
6523 	if (WARN_ON(!devid && !fs_info))
6524 		return ERR_PTR(-EINVAL);
6525 
6526 	dev = __alloc_device(fs_info);
6527 	if (IS_ERR(dev))
6528 		return dev;
6529 
6530 	if (devid)
6531 		tmp = *devid;
6532 	else {
6533 		int ret;
6534 
6535 		ret = find_next_devid(fs_info, &tmp);
6536 		if (ret) {
6537 			btrfs_free_device(dev);
6538 			return ERR_PTR(ret);
6539 		}
6540 	}
6541 	dev->devid = tmp;
6542 
6543 	if (uuid)
6544 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6545 	else
6546 		generate_random_uuid(dev->uuid);
6547 
6548 	return dev;
6549 }
6550 
6551 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6552 					u64 devid, u8 *uuid, bool error)
6553 {
6554 	if (error)
6555 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6556 			      devid, uuid);
6557 	else
6558 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6559 			      devid, uuid);
6560 }
6561 
6562 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6563 {
6564 	int index = btrfs_bg_flags_to_raid_index(type);
6565 	int ncopies = btrfs_raid_array[index].ncopies;
6566 	const int nparity = btrfs_raid_array[index].nparity;
6567 	int data_stripes;
6568 
6569 	if (nparity)
6570 		data_stripes = num_stripes - nparity;
6571 	else
6572 		data_stripes = num_stripes / ncopies;
6573 
6574 	return div_u64(chunk_len, data_stripes);
6575 }
6576 
6577 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6578 			  struct btrfs_chunk *chunk)
6579 {
6580 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6581 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6582 	struct map_lookup *map;
6583 	struct extent_map *em;
6584 	u64 logical;
6585 	u64 length;
6586 	u64 devid;
6587 	u8 uuid[BTRFS_UUID_SIZE];
6588 	int num_stripes;
6589 	int ret;
6590 	int i;
6591 
6592 	logical = key->offset;
6593 	length = btrfs_chunk_length(leaf, chunk);
6594 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6595 
6596 	/*
6597 	 * Only need to verify chunk item if we're reading from sys chunk array,
6598 	 * as chunk item in tree block is already verified by tree-checker.
6599 	 */
6600 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6601 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6602 		if (ret)
6603 			return ret;
6604 	}
6605 
6606 	read_lock(&map_tree->lock);
6607 	em = lookup_extent_mapping(map_tree, logical, 1);
6608 	read_unlock(&map_tree->lock);
6609 
6610 	/* already mapped? */
6611 	if (em && em->start <= logical && em->start + em->len > logical) {
6612 		free_extent_map(em);
6613 		return 0;
6614 	} else if (em) {
6615 		free_extent_map(em);
6616 	}
6617 
6618 	em = alloc_extent_map();
6619 	if (!em)
6620 		return -ENOMEM;
6621 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6622 	if (!map) {
6623 		free_extent_map(em);
6624 		return -ENOMEM;
6625 	}
6626 
6627 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6628 	em->map_lookup = map;
6629 	em->start = logical;
6630 	em->len = length;
6631 	em->orig_start = 0;
6632 	em->block_start = 0;
6633 	em->block_len = em->len;
6634 
6635 	map->num_stripes = num_stripes;
6636 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6637 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6638 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6639 	map->type = btrfs_chunk_type(leaf, chunk);
6640 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6641 	map->verified_stripes = 0;
6642 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6643 						map->num_stripes);
6644 	for (i = 0; i < num_stripes; i++) {
6645 		map->stripes[i].physical =
6646 			btrfs_stripe_offset_nr(leaf, chunk, i);
6647 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6648 		read_extent_buffer(leaf, uuid, (unsigned long)
6649 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6650 				   BTRFS_UUID_SIZE);
6651 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6652 							devid, uuid, NULL, true);
6653 		if (!map->stripes[i].dev &&
6654 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6655 			free_extent_map(em);
6656 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6657 			return -ENOENT;
6658 		}
6659 		if (!map->stripes[i].dev) {
6660 			map->stripes[i].dev =
6661 				add_missing_dev(fs_info->fs_devices, devid,
6662 						uuid);
6663 			if (IS_ERR(map->stripes[i].dev)) {
6664 				free_extent_map(em);
6665 				btrfs_err(fs_info,
6666 					"failed to init missing dev %llu: %ld",
6667 					devid, PTR_ERR(map->stripes[i].dev));
6668 				return PTR_ERR(map->stripes[i].dev);
6669 			}
6670 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6671 		}
6672 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6673 				&(map->stripes[i].dev->dev_state));
6674 
6675 	}
6676 
6677 	write_lock(&map_tree->lock);
6678 	ret = add_extent_mapping(map_tree, em, 0);
6679 	write_unlock(&map_tree->lock);
6680 	if (ret < 0) {
6681 		btrfs_err(fs_info,
6682 			  "failed to add chunk map, start=%llu len=%llu: %d",
6683 			  em->start, em->len, ret);
6684 	}
6685 	free_extent_map(em);
6686 
6687 	return ret;
6688 }
6689 
6690 static void fill_device_from_item(struct extent_buffer *leaf,
6691 				 struct btrfs_dev_item *dev_item,
6692 				 struct btrfs_device *device)
6693 {
6694 	unsigned long ptr;
6695 
6696 	device->devid = btrfs_device_id(leaf, dev_item);
6697 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6698 	device->total_bytes = device->disk_total_bytes;
6699 	device->commit_total_bytes = device->disk_total_bytes;
6700 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6701 	device->commit_bytes_used = device->bytes_used;
6702 	device->type = btrfs_device_type(leaf, dev_item);
6703 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6704 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6705 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6706 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6707 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6708 
6709 	ptr = btrfs_device_uuid(dev_item);
6710 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6711 }
6712 
6713 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6714 						  u8 *fsid)
6715 {
6716 	struct btrfs_fs_devices *fs_devices;
6717 	int ret;
6718 
6719 	lockdep_assert_held(&uuid_mutex);
6720 	ASSERT(fsid);
6721 
6722 	/* This will match only for multi-device seed fs */
6723 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6724 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6725 			return fs_devices;
6726 
6727 
6728 	fs_devices = find_fsid(fsid, NULL);
6729 	if (!fs_devices) {
6730 		if (!btrfs_test_opt(fs_info, DEGRADED))
6731 			return ERR_PTR(-ENOENT);
6732 
6733 		fs_devices = alloc_fs_devices(fsid, NULL);
6734 		if (IS_ERR(fs_devices))
6735 			return fs_devices;
6736 
6737 		fs_devices->seeding = true;
6738 		fs_devices->opened = 1;
6739 		return fs_devices;
6740 	}
6741 
6742 	/*
6743 	 * Upon first call for a seed fs fsid, just create a private copy of the
6744 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6745 	 */
6746 	fs_devices = clone_fs_devices(fs_devices);
6747 	if (IS_ERR(fs_devices))
6748 		return fs_devices;
6749 
6750 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6751 	if (ret) {
6752 		free_fs_devices(fs_devices);
6753 		return ERR_PTR(ret);
6754 	}
6755 
6756 	if (!fs_devices->seeding) {
6757 		close_fs_devices(fs_devices);
6758 		free_fs_devices(fs_devices);
6759 		return ERR_PTR(-EINVAL);
6760 	}
6761 
6762 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6763 
6764 	return fs_devices;
6765 }
6766 
6767 static int read_one_dev(struct extent_buffer *leaf,
6768 			struct btrfs_dev_item *dev_item)
6769 {
6770 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6771 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6772 	struct btrfs_device *device;
6773 	u64 devid;
6774 	int ret;
6775 	u8 fs_uuid[BTRFS_FSID_SIZE];
6776 	u8 dev_uuid[BTRFS_UUID_SIZE];
6777 
6778 	devid = btrfs_device_id(leaf, dev_item);
6779 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6780 			   BTRFS_UUID_SIZE);
6781 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6782 			   BTRFS_FSID_SIZE);
6783 
6784 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6785 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6786 		if (IS_ERR(fs_devices))
6787 			return PTR_ERR(fs_devices);
6788 	}
6789 
6790 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6791 				   fs_uuid, true);
6792 	if (!device) {
6793 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6794 			btrfs_report_missing_device(fs_info, devid,
6795 							dev_uuid, true);
6796 			return -ENOENT;
6797 		}
6798 
6799 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6800 		if (IS_ERR(device)) {
6801 			btrfs_err(fs_info,
6802 				"failed to add missing dev %llu: %ld",
6803 				devid, PTR_ERR(device));
6804 			return PTR_ERR(device);
6805 		}
6806 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6807 	} else {
6808 		if (!device->bdev) {
6809 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6810 				btrfs_report_missing_device(fs_info,
6811 						devid, dev_uuid, true);
6812 				return -ENOENT;
6813 			}
6814 			btrfs_report_missing_device(fs_info, devid,
6815 							dev_uuid, false);
6816 		}
6817 
6818 		if (!device->bdev &&
6819 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6820 			/*
6821 			 * this happens when a device that was properly setup
6822 			 * in the device info lists suddenly goes bad.
6823 			 * device->bdev is NULL, and so we have to set
6824 			 * device->missing to one here
6825 			 */
6826 			device->fs_devices->missing_devices++;
6827 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6828 		}
6829 
6830 		/* Move the device to its own fs_devices */
6831 		if (device->fs_devices != fs_devices) {
6832 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6833 							&device->dev_state));
6834 
6835 			list_move(&device->dev_list, &fs_devices->devices);
6836 			device->fs_devices->num_devices--;
6837 			fs_devices->num_devices++;
6838 
6839 			device->fs_devices->missing_devices--;
6840 			fs_devices->missing_devices++;
6841 
6842 			device->fs_devices = fs_devices;
6843 		}
6844 	}
6845 
6846 	if (device->fs_devices != fs_info->fs_devices) {
6847 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6848 		if (device->generation !=
6849 		    btrfs_device_generation(leaf, dev_item))
6850 			return -EINVAL;
6851 	}
6852 
6853 	fill_device_from_item(leaf, dev_item, device);
6854 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6855 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6856 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6857 		device->fs_devices->total_rw_bytes += device->total_bytes;
6858 		atomic64_add(device->total_bytes - device->bytes_used,
6859 				&fs_info->free_chunk_space);
6860 	}
6861 	ret = 0;
6862 	return ret;
6863 }
6864 
6865 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6866 {
6867 	struct btrfs_root *root = fs_info->tree_root;
6868 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6869 	struct extent_buffer *sb;
6870 	struct btrfs_disk_key *disk_key;
6871 	struct btrfs_chunk *chunk;
6872 	u8 *array_ptr;
6873 	unsigned long sb_array_offset;
6874 	int ret = 0;
6875 	u32 num_stripes;
6876 	u32 array_size;
6877 	u32 len = 0;
6878 	u32 cur_offset;
6879 	u64 type;
6880 	struct btrfs_key key;
6881 
6882 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6883 	/*
6884 	 * This will create extent buffer of nodesize, superblock size is
6885 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6886 	 * overallocate but we can keep it as-is, only the first page is used.
6887 	 */
6888 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6889 	if (IS_ERR(sb))
6890 		return PTR_ERR(sb);
6891 	set_extent_buffer_uptodate(sb);
6892 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6893 	/*
6894 	 * The sb extent buffer is artificial and just used to read the system array.
6895 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6896 	 * pages up-to-date when the page is larger: extent does not cover the
6897 	 * whole page and consequently check_page_uptodate does not find all
6898 	 * the page's extents up-to-date (the hole beyond sb),
6899 	 * write_extent_buffer then triggers a WARN_ON.
6900 	 *
6901 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6902 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6903 	 * to silence the warning eg. on PowerPC 64.
6904 	 */
6905 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6906 		SetPageUptodate(sb->pages[0]);
6907 
6908 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6909 	array_size = btrfs_super_sys_array_size(super_copy);
6910 
6911 	array_ptr = super_copy->sys_chunk_array;
6912 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6913 	cur_offset = 0;
6914 
6915 	while (cur_offset < array_size) {
6916 		disk_key = (struct btrfs_disk_key *)array_ptr;
6917 		len = sizeof(*disk_key);
6918 		if (cur_offset + len > array_size)
6919 			goto out_short_read;
6920 
6921 		btrfs_disk_key_to_cpu(&key, disk_key);
6922 
6923 		array_ptr += len;
6924 		sb_array_offset += len;
6925 		cur_offset += len;
6926 
6927 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6928 			btrfs_err(fs_info,
6929 			    "unexpected item type %u in sys_array at offset %u",
6930 				  (u32)key.type, cur_offset);
6931 			ret = -EIO;
6932 			break;
6933 		}
6934 
6935 		chunk = (struct btrfs_chunk *)sb_array_offset;
6936 		/*
6937 		 * At least one btrfs_chunk with one stripe must be present,
6938 		 * exact stripe count check comes afterwards
6939 		 */
6940 		len = btrfs_chunk_item_size(1);
6941 		if (cur_offset + len > array_size)
6942 			goto out_short_read;
6943 
6944 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6945 		if (!num_stripes) {
6946 			btrfs_err(fs_info,
6947 			"invalid number of stripes %u in sys_array at offset %u",
6948 				  num_stripes, cur_offset);
6949 			ret = -EIO;
6950 			break;
6951 		}
6952 
6953 		type = btrfs_chunk_type(sb, chunk);
6954 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6955 			btrfs_err(fs_info,
6956 			"invalid chunk type %llu in sys_array at offset %u",
6957 				  type, cur_offset);
6958 			ret = -EIO;
6959 			break;
6960 		}
6961 
6962 		len = btrfs_chunk_item_size(num_stripes);
6963 		if (cur_offset + len > array_size)
6964 			goto out_short_read;
6965 
6966 		ret = read_one_chunk(&key, sb, chunk);
6967 		if (ret)
6968 			break;
6969 
6970 		array_ptr += len;
6971 		sb_array_offset += len;
6972 		cur_offset += len;
6973 	}
6974 	clear_extent_buffer_uptodate(sb);
6975 	free_extent_buffer_stale(sb);
6976 	return ret;
6977 
6978 out_short_read:
6979 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6980 			len, cur_offset);
6981 	clear_extent_buffer_uptodate(sb);
6982 	free_extent_buffer_stale(sb);
6983 	return -EIO;
6984 }
6985 
6986 /*
6987  * Check if all chunks in the fs are OK for read-write degraded mount
6988  *
6989  * If the @failing_dev is specified, it's accounted as missing.
6990  *
6991  * Return true if all chunks meet the minimal RW mount requirements.
6992  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6993  */
6994 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6995 					struct btrfs_device *failing_dev)
6996 {
6997 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6998 	struct extent_map *em;
6999 	u64 next_start = 0;
7000 	bool ret = true;
7001 
7002 	read_lock(&map_tree->lock);
7003 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7004 	read_unlock(&map_tree->lock);
7005 	/* No chunk at all? Return false anyway */
7006 	if (!em) {
7007 		ret = false;
7008 		goto out;
7009 	}
7010 	while (em) {
7011 		struct map_lookup *map;
7012 		int missing = 0;
7013 		int max_tolerated;
7014 		int i;
7015 
7016 		map = em->map_lookup;
7017 		max_tolerated =
7018 			btrfs_get_num_tolerated_disk_barrier_failures(
7019 					map->type);
7020 		for (i = 0; i < map->num_stripes; i++) {
7021 			struct btrfs_device *dev = map->stripes[i].dev;
7022 
7023 			if (!dev || !dev->bdev ||
7024 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7025 			    dev->last_flush_error)
7026 				missing++;
7027 			else if (failing_dev && failing_dev == dev)
7028 				missing++;
7029 		}
7030 		if (missing > max_tolerated) {
7031 			if (!failing_dev)
7032 				btrfs_warn(fs_info,
7033 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7034 				   em->start, missing, max_tolerated);
7035 			free_extent_map(em);
7036 			ret = false;
7037 			goto out;
7038 		}
7039 		next_start = extent_map_end(em);
7040 		free_extent_map(em);
7041 
7042 		read_lock(&map_tree->lock);
7043 		em = lookup_extent_mapping(map_tree, next_start,
7044 					   (u64)(-1) - next_start);
7045 		read_unlock(&map_tree->lock);
7046 	}
7047 out:
7048 	return ret;
7049 }
7050 
7051 static void readahead_tree_node_children(struct extent_buffer *node)
7052 {
7053 	int i;
7054 	const int nr_items = btrfs_header_nritems(node);
7055 
7056 	for (i = 0; i < nr_items; i++) {
7057 		u64 start;
7058 
7059 		start = btrfs_node_blockptr(node, i);
7060 		readahead_tree_block(node->fs_info, start);
7061 	}
7062 }
7063 
7064 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7065 {
7066 	struct btrfs_root *root = fs_info->chunk_root;
7067 	struct btrfs_path *path;
7068 	struct extent_buffer *leaf;
7069 	struct btrfs_key key;
7070 	struct btrfs_key found_key;
7071 	int ret;
7072 	int slot;
7073 	u64 total_dev = 0;
7074 	u64 last_ra_node = 0;
7075 
7076 	path = btrfs_alloc_path();
7077 	if (!path)
7078 		return -ENOMEM;
7079 
7080 	/*
7081 	 * uuid_mutex is needed only if we are mounting a sprout FS
7082 	 * otherwise we don't need it.
7083 	 */
7084 	mutex_lock(&uuid_mutex);
7085 
7086 	/*
7087 	 * It is possible for mount and umount to race in such a way that
7088 	 * we execute this code path, but open_fs_devices failed to clear
7089 	 * total_rw_bytes. We certainly want it cleared before reading the
7090 	 * device items, so clear it here.
7091 	 */
7092 	fs_info->fs_devices->total_rw_bytes = 0;
7093 
7094 	/*
7095 	 * Read all device items, and then all the chunk items. All
7096 	 * device items are found before any chunk item (their object id
7097 	 * is smaller than the lowest possible object id for a chunk
7098 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7099 	 */
7100 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7101 	key.offset = 0;
7102 	key.type = 0;
7103 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7104 	if (ret < 0)
7105 		goto error;
7106 	while (1) {
7107 		struct extent_buffer *node;
7108 
7109 		leaf = path->nodes[0];
7110 		slot = path->slots[0];
7111 		if (slot >= btrfs_header_nritems(leaf)) {
7112 			ret = btrfs_next_leaf(root, path);
7113 			if (ret == 0)
7114 				continue;
7115 			if (ret < 0)
7116 				goto error;
7117 			break;
7118 		}
7119 		/*
7120 		 * The nodes on level 1 are not locked but we don't need to do
7121 		 * that during mount time as nothing else can access the tree
7122 		 */
7123 		node = path->nodes[1];
7124 		if (node) {
7125 			if (last_ra_node != node->start) {
7126 				readahead_tree_node_children(node);
7127 				last_ra_node = node->start;
7128 			}
7129 		}
7130 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7131 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7132 			struct btrfs_dev_item *dev_item;
7133 			dev_item = btrfs_item_ptr(leaf, slot,
7134 						  struct btrfs_dev_item);
7135 			ret = read_one_dev(leaf, dev_item);
7136 			if (ret)
7137 				goto error;
7138 			total_dev++;
7139 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7140 			struct btrfs_chunk *chunk;
7141 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7142 			mutex_lock(&fs_info->chunk_mutex);
7143 			ret = read_one_chunk(&found_key, leaf, chunk);
7144 			mutex_unlock(&fs_info->chunk_mutex);
7145 			if (ret)
7146 				goto error;
7147 		}
7148 		path->slots[0]++;
7149 	}
7150 
7151 	/*
7152 	 * After loading chunk tree, we've got all device information,
7153 	 * do another round of validation checks.
7154 	 */
7155 	if (total_dev != fs_info->fs_devices->total_devices) {
7156 		btrfs_err(fs_info,
7157 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7158 			  btrfs_super_num_devices(fs_info->super_copy),
7159 			  total_dev);
7160 		ret = -EINVAL;
7161 		goto error;
7162 	}
7163 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7164 	    fs_info->fs_devices->total_rw_bytes) {
7165 		btrfs_err(fs_info,
7166 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7167 			  btrfs_super_total_bytes(fs_info->super_copy),
7168 			  fs_info->fs_devices->total_rw_bytes);
7169 		ret = -EINVAL;
7170 		goto error;
7171 	}
7172 	ret = 0;
7173 error:
7174 	mutex_unlock(&uuid_mutex);
7175 
7176 	btrfs_free_path(path);
7177 	return ret;
7178 }
7179 
7180 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7181 {
7182 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7183 	struct btrfs_device *device;
7184 
7185 	fs_devices->fs_info = fs_info;
7186 
7187 	mutex_lock(&fs_devices->device_list_mutex);
7188 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7189 		device->fs_info = fs_info;
7190 
7191 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7192 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7193 			device->fs_info = fs_info;
7194 
7195 		seed_devs->fs_info = fs_info;
7196 	}
7197 	mutex_unlock(&fs_devices->device_list_mutex);
7198 }
7199 
7200 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7201 				 const struct btrfs_dev_stats_item *ptr,
7202 				 int index)
7203 {
7204 	u64 val;
7205 
7206 	read_extent_buffer(eb, &val,
7207 			   offsetof(struct btrfs_dev_stats_item, values) +
7208 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7209 			   sizeof(val));
7210 	return val;
7211 }
7212 
7213 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7214 				      struct btrfs_dev_stats_item *ptr,
7215 				      int index, u64 val)
7216 {
7217 	write_extent_buffer(eb, &val,
7218 			    offsetof(struct btrfs_dev_stats_item, values) +
7219 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7220 			    sizeof(val));
7221 }
7222 
7223 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7224 				       struct btrfs_path *path)
7225 {
7226 	struct btrfs_dev_stats_item *ptr;
7227 	struct extent_buffer *eb;
7228 	struct btrfs_key key;
7229 	int item_size;
7230 	int i, ret, slot;
7231 
7232 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7233 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7234 	key.offset = device->devid;
7235 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7236 	if (ret) {
7237 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7238 			btrfs_dev_stat_set(device, i, 0);
7239 		device->dev_stats_valid = 1;
7240 		btrfs_release_path(path);
7241 		return ret < 0 ? ret : 0;
7242 	}
7243 	slot = path->slots[0];
7244 	eb = path->nodes[0];
7245 	item_size = btrfs_item_size_nr(eb, slot);
7246 
7247 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7248 
7249 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7250 		if (item_size >= (1 + i) * sizeof(__le64))
7251 			btrfs_dev_stat_set(device, i,
7252 					   btrfs_dev_stats_value(eb, ptr, i));
7253 		else
7254 			btrfs_dev_stat_set(device, i, 0);
7255 	}
7256 
7257 	device->dev_stats_valid = 1;
7258 	btrfs_dev_stat_print_on_load(device);
7259 	btrfs_release_path(path);
7260 
7261 	return 0;
7262 }
7263 
7264 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7265 {
7266 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7267 	struct btrfs_device *device;
7268 	struct btrfs_path *path = NULL;
7269 	int ret = 0;
7270 
7271 	path = btrfs_alloc_path();
7272 	if (!path)
7273 		return -ENOMEM;
7274 
7275 	mutex_lock(&fs_devices->device_list_mutex);
7276 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7277 		ret = btrfs_device_init_dev_stats(device, path);
7278 		if (ret)
7279 			goto out;
7280 	}
7281 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7282 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7283 			ret = btrfs_device_init_dev_stats(device, path);
7284 			if (ret)
7285 				goto out;
7286 		}
7287 	}
7288 out:
7289 	mutex_unlock(&fs_devices->device_list_mutex);
7290 
7291 	btrfs_free_path(path);
7292 	return ret;
7293 }
7294 
7295 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7296 				struct btrfs_device *device)
7297 {
7298 	struct btrfs_fs_info *fs_info = trans->fs_info;
7299 	struct btrfs_root *dev_root = fs_info->dev_root;
7300 	struct btrfs_path *path;
7301 	struct btrfs_key key;
7302 	struct extent_buffer *eb;
7303 	struct btrfs_dev_stats_item *ptr;
7304 	int ret;
7305 	int i;
7306 
7307 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7308 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7309 	key.offset = device->devid;
7310 
7311 	path = btrfs_alloc_path();
7312 	if (!path)
7313 		return -ENOMEM;
7314 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7315 	if (ret < 0) {
7316 		btrfs_warn_in_rcu(fs_info,
7317 			"error %d while searching for dev_stats item for device %s",
7318 			      ret, rcu_str_deref(device->name));
7319 		goto out;
7320 	}
7321 
7322 	if (ret == 0 &&
7323 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7324 		/* need to delete old one and insert a new one */
7325 		ret = btrfs_del_item(trans, dev_root, path);
7326 		if (ret != 0) {
7327 			btrfs_warn_in_rcu(fs_info,
7328 				"delete too small dev_stats item for device %s failed %d",
7329 				      rcu_str_deref(device->name), ret);
7330 			goto out;
7331 		}
7332 		ret = 1;
7333 	}
7334 
7335 	if (ret == 1) {
7336 		/* need to insert a new item */
7337 		btrfs_release_path(path);
7338 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7339 					      &key, sizeof(*ptr));
7340 		if (ret < 0) {
7341 			btrfs_warn_in_rcu(fs_info,
7342 				"insert dev_stats item for device %s failed %d",
7343 				rcu_str_deref(device->name), ret);
7344 			goto out;
7345 		}
7346 	}
7347 
7348 	eb = path->nodes[0];
7349 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7350 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7351 		btrfs_set_dev_stats_value(eb, ptr, i,
7352 					  btrfs_dev_stat_read(device, i));
7353 	btrfs_mark_buffer_dirty(eb);
7354 
7355 out:
7356 	btrfs_free_path(path);
7357 	return ret;
7358 }
7359 
7360 /*
7361  * called from commit_transaction. Writes all changed device stats to disk.
7362  */
7363 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7364 {
7365 	struct btrfs_fs_info *fs_info = trans->fs_info;
7366 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7367 	struct btrfs_device *device;
7368 	int stats_cnt;
7369 	int ret = 0;
7370 
7371 	mutex_lock(&fs_devices->device_list_mutex);
7372 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7373 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7374 		if (!device->dev_stats_valid || stats_cnt == 0)
7375 			continue;
7376 
7377 
7378 		/*
7379 		 * There is a LOAD-LOAD control dependency between the value of
7380 		 * dev_stats_ccnt and updating the on-disk values which requires
7381 		 * reading the in-memory counters. Such control dependencies
7382 		 * require explicit read memory barriers.
7383 		 *
7384 		 * This memory barriers pairs with smp_mb__before_atomic in
7385 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7386 		 * barrier implied by atomic_xchg in
7387 		 * btrfs_dev_stats_read_and_reset
7388 		 */
7389 		smp_rmb();
7390 
7391 		ret = update_dev_stat_item(trans, device);
7392 		if (!ret)
7393 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7394 	}
7395 	mutex_unlock(&fs_devices->device_list_mutex);
7396 
7397 	return ret;
7398 }
7399 
7400 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7401 {
7402 	btrfs_dev_stat_inc(dev, index);
7403 	btrfs_dev_stat_print_on_error(dev);
7404 }
7405 
7406 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7407 {
7408 	if (!dev->dev_stats_valid)
7409 		return;
7410 	btrfs_err_rl_in_rcu(dev->fs_info,
7411 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7412 			   rcu_str_deref(dev->name),
7413 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7414 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7415 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7416 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7417 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7418 }
7419 
7420 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7421 {
7422 	int i;
7423 
7424 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7425 		if (btrfs_dev_stat_read(dev, i) != 0)
7426 			break;
7427 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7428 		return; /* all values == 0, suppress message */
7429 
7430 	btrfs_info_in_rcu(dev->fs_info,
7431 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7432 	       rcu_str_deref(dev->name),
7433 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7434 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7435 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7436 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7437 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7438 }
7439 
7440 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7441 			struct btrfs_ioctl_get_dev_stats *stats)
7442 {
7443 	struct btrfs_device *dev;
7444 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7445 	int i;
7446 
7447 	mutex_lock(&fs_devices->device_list_mutex);
7448 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7449 				true);
7450 	mutex_unlock(&fs_devices->device_list_mutex);
7451 
7452 	if (!dev) {
7453 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7454 		return -ENODEV;
7455 	} else if (!dev->dev_stats_valid) {
7456 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7457 		return -ENODEV;
7458 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7459 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7460 			if (stats->nr_items > i)
7461 				stats->values[i] =
7462 					btrfs_dev_stat_read_and_reset(dev, i);
7463 			else
7464 				btrfs_dev_stat_set(dev, i, 0);
7465 		}
7466 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7467 			   current->comm, task_pid_nr(current));
7468 	} else {
7469 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7470 			if (stats->nr_items > i)
7471 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7472 	}
7473 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7474 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7475 	return 0;
7476 }
7477 
7478 /*
7479  * Update the size and bytes used for each device where it changed.  This is
7480  * delayed since we would otherwise get errors while writing out the
7481  * superblocks.
7482  *
7483  * Must be invoked during transaction commit.
7484  */
7485 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7486 {
7487 	struct btrfs_device *curr, *next;
7488 
7489 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7490 
7491 	if (list_empty(&trans->dev_update_list))
7492 		return;
7493 
7494 	/*
7495 	 * We don't need the device_list_mutex here.  This list is owned by the
7496 	 * transaction and the transaction must complete before the device is
7497 	 * released.
7498 	 */
7499 	mutex_lock(&trans->fs_info->chunk_mutex);
7500 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7501 				 post_commit_list) {
7502 		list_del_init(&curr->post_commit_list);
7503 		curr->commit_total_bytes = curr->disk_total_bytes;
7504 		curr->commit_bytes_used = curr->bytes_used;
7505 	}
7506 	mutex_unlock(&trans->fs_info->chunk_mutex);
7507 }
7508 
7509 /*
7510  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7511  */
7512 int btrfs_bg_type_to_factor(u64 flags)
7513 {
7514 	const int index = btrfs_bg_flags_to_raid_index(flags);
7515 
7516 	return btrfs_raid_array[index].ncopies;
7517 }
7518 
7519 
7520 
7521 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7522 				 u64 chunk_offset, u64 devid,
7523 				 u64 physical_offset, u64 physical_len)
7524 {
7525 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7526 	struct extent_map *em;
7527 	struct map_lookup *map;
7528 	struct btrfs_device *dev;
7529 	u64 stripe_len;
7530 	bool found = false;
7531 	int ret = 0;
7532 	int i;
7533 
7534 	read_lock(&em_tree->lock);
7535 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7536 	read_unlock(&em_tree->lock);
7537 
7538 	if (!em) {
7539 		btrfs_err(fs_info,
7540 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7541 			  physical_offset, devid);
7542 		ret = -EUCLEAN;
7543 		goto out;
7544 	}
7545 
7546 	map = em->map_lookup;
7547 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7548 	if (physical_len != stripe_len) {
7549 		btrfs_err(fs_info,
7550 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7551 			  physical_offset, devid, em->start, physical_len,
7552 			  stripe_len);
7553 		ret = -EUCLEAN;
7554 		goto out;
7555 	}
7556 
7557 	for (i = 0; i < map->num_stripes; i++) {
7558 		if (map->stripes[i].dev->devid == devid &&
7559 		    map->stripes[i].physical == physical_offset) {
7560 			found = true;
7561 			if (map->verified_stripes >= map->num_stripes) {
7562 				btrfs_err(fs_info,
7563 				"too many dev extents for chunk %llu found",
7564 					  em->start);
7565 				ret = -EUCLEAN;
7566 				goto out;
7567 			}
7568 			map->verified_stripes++;
7569 			break;
7570 		}
7571 	}
7572 	if (!found) {
7573 		btrfs_err(fs_info,
7574 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7575 			physical_offset, devid);
7576 		ret = -EUCLEAN;
7577 	}
7578 
7579 	/* Make sure no dev extent is beyond device bondary */
7580 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7581 	if (!dev) {
7582 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7583 		ret = -EUCLEAN;
7584 		goto out;
7585 	}
7586 
7587 	/* It's possible this device is a dummy for seed device */
7588 	if (dev->disk_total_bytes == 0) {
7589 		struct btrfs_fs_devices *devs;
7590 
7591 		devs = list_first_entry(&fs_info->fs_devices->seed_list,
7592 					struct btrfs_fs_devices, seed_list);
7593 		dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7594 		if (!dev) {
7595 			btrfs_err(fs_info, "failed to find seed devid %llu",
7596 				  devid);
7597 			ret = -EUCLEAN;
7598 			goto out;
7599 		}
7600 	}
7601 
7602 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7603 		btrfs_err(fs_info,
7604 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7605 			  devid, physical_offset, physical_len,
7606 			  dev->disk_total_bytes);
7607 		ret = -EUCLEAN;
7608 		goto out;
7609 	}
7610 out:
7611 	free_extent_map(em);
7612 	return ret;
7613 }
7614 
7615 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7616 {
7617 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7618 	struct extent_map *em;
7619 	struct rb_node *node;
7620 	int ret = 0;
7621 
7622 	read_lock(&em_tree->lock);
7623 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7624 		em = rb_entry(node, struct extent_map, rb_node);
7625 		if (em->map_lookup->num_stripes !=
7626 		    em->map_lookup->verified_stripes) {
7627 			btrfs_err(fs_info,
7628 			"chunk %llu has missing dev extent, have %d expect %d",
7629 				  em->start, em->map_lookup->verified_stripes,
7630 				  em->map_lookup->num_stripes);
7631 			ret = -EUCLEAN;
7632 			goto out;
7633 		}
7634 	}
7635 out:
7636 	read_unlock(&em_tree->lock);
7637 	return ret;
7638 }
7639 
7640 /*
7641  * Ensure that all dev extents are mapped to correct chunk, otherwise
7642  * later chunk allocation/free would cause unexpected behavior.
7643  *
7644  * NOTE: This will iterate through the whole device tree, which should be of
7645  * the same size level as the chunk tree.  This slightly increases mount time.
7646  */
7647 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7648 {
7649 	struct btrfs_path *path;
7650 	struct btrfs_root *root = fs_info->dev_root;
7651 	struct btrfs_key key;
7652 	u64 prev_devid = 0;
7653 	u64 prev_dev_ext_end = 0;
7654 	int ret = 0;
7655 
7656 	key.objectid = 1;
7657 	key.type = BTRFS_DEV_EXTENT_KEY;
7658 	key.offset = 0;
7659 
7660 	path = btrfs_alloc_path();
7661 	if (!path)
7662 		return -ENOMEM;
7663 
7664 	path->reada = READA_FORWARD;
7665 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7666 	if (ret < 0)
7667 		goto out;
7668 
7669 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7670 		ret = btrfs_next_item(root, path);
7671 		if (ret < 0)
7672 			goto out;
7673 		/* No dev extents at all? Not good */
7674 		if (ret > 0) {
7675 			ret = -EUCLEAN;
7676 			goto out;
7677 		}
7678 	}
7679 	while (1) {
7680 		struct extent_buffer *leaf = path->nodes[0];
7681 		struct btrfs_dev_extent *dext;
7682 		int slot = path->slots[0];
7683 		u64 chunk_offset;
7684 		u64 physical_offset;
7685 		u64 physical_len;
7686 		u64 devid;
7687 
7688 		btrfs_item_key_to_cpu(leaf, &key, slot);
7689 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7690 			break;
7691 		devid = key.objectid;
7692 		physical_offset = key.offset;
7693 
7694 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7695 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7696 		physical_len = btrfs_dev_extent_length(leaf, dext);
7697 
7698 		/* Check if this dev extent overlaps with the previous one */
7699 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7700 			btrfs_err(fs_info,
7701 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7702 				  devid, physical_offset, prev_dev_ext_end);
7703 			ret = -EUCLEAN;
7704 			goto out;
7705 		}
7706 
7707 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7708 					    physical_offset, physical_len);
7709 		if (ret < 0)
7710 			goto out;
7711 		prev_devid = devid;
7712 		prev_dev_ext_end = physical_offset + physical_len;
7713 
7714 		ret = btrfs_next_item(root, path);
7715 		if (ret < 0)
7716 			goto out;
7717 		if (ret > 0) {
7718 			ret = 0;
7719 			break;
7720 		}
7721 	}
7722 
7723 	/* Ensure all chunks have corresponding dev extents */
7724 	ret = verify_chunk_dev_extent_mapping(fs_info);
7725 out:
7726 	btrfs_free_path(path);
7727 	return ret;
7728 }
7729 
7730 /*
7731  * Check whether the given block group or device is pinned by any inode being
7732  * used as a swapfile.
7733  */
7734 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7735 {
7736 	struct btrfs_swapfile_pin *sp;
7737 	struct rb_node *node;
7738 
7739 	spin_lock(&fs_info->swapfile_pins_lock);
7740 	node = fs_info->swapfile_pins.rb_node;
7741 	while (node) {
7742 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7743 		if (ptr < sp->ptr)
7744 			node = node->rb_left;
7745 		else if (ptr > sp->ptr)
7746 			node = node->rb_right;
7747 		else
7748 			break;
7749 	}
7750 	spin_unlock(&fs_info->swapfile_pins_lock);
7751 	return node != NULL;
7752 }
7753