xref: /openbmc/linux/fs/btrfs/volumes.c (revision cea9e445)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <asm/div64.h>
22 #include "ctree.h"
23 #include "extent_map.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "volumes.h"
28 
29 struct map_lookup {
30 	u64 type;
31 	int io_align;
32 	int io_width;
33 	int stripe_len;
34 	int sector_size;
35 	int num_stripes;
36 	struct btrfs_bio_stripe stripes[];
37 };
38 
39 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
40 			    (sizeof(struct btrfs_bio_stripe) * (n)))
41 
42 static DEFINE_MUTEX(uuid_mutex);
43 static LIST_HEAD(fs_uuids);
44 
45 int btrfs_cleanup_fs_uuids(void)
46 {
47 	struct btrfs_fs_devices *fs_devices;
48 	struct list_head *uuid_cur;
49 	struct list_head *devices_cur;
50 	struct btrfs_device *dev;
51 
52 	list_for_each(uuid_cur, &fs_uuids) {
53 		fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
54 					list);
55 		while(!list_empty(&fs_devices->devices)) {
56 			devices_cur = fs_devices->devices.next;
57 			dev = list_entry(devices_cur, struct btrfs_device,
58 					 dev_list);
59 			printk("uuid cleanup finds %s\n", dev->name);
60 			if (dev->bdev) {
61 				printk("closing\n");
62 				close_bdev_excl(dev->bdev);
63 			}
64 			list_del(&dev->dev_list);
65 			kfree(dev);
66 		}
67 	}
68 	return 0;
69 }
70 
71 static struct btrfs_device *__find_device(struct list_head *head, u64 devid)
72 {
73 	struct btrfs_device *dev;
74 	struct list_head *cur;
75 
76 	list_for_each(cur, head) {
77 		dev = list_entry(cur, struct btrfs_device, dev_list);
78 		if (dev->devid == devid)
79 			return dev;
80 	}
81 	return NULL;
82 }
83 
84 static struct btrfs_fs_devices *find_fsid(u8 *fsid)
85 {
86 	struct list_head *cur;
87 	struct btrfs_fs_devices *fs_devices;
88 
89 	list_for_each(cur, &fs_uuids) {
90 		fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
91 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
92 			return fs_devices;
93 	}
94 	return NULL;
95 }
96 
97 static int device_list_add(const char *path,
98 			   struct btrfs_super_block *disk_super,
99 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
100 {
101 	struct btrfs_device *device;
102 	struct btrfs_fs_devices *fs_devices;
103 	u64 found_transid = btrfs_super_generation(disk_super);
104 
105 	fs_devices = find_fsid(disk_super->fsid);
106 	if (!fs_devices) {
107 		fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
108 		if (!fs_devices)
109 			return -ENOMEM;
110 		INIT_LIST_HEAD(&fs_devices->devices);
111 		list_add(&fs_devices->list, &fs_uuids);
112 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
113 		fs_devices->latest_devid = devid;
114 		fs_devices->latest_trans = found_transid;
115 		fs_devices->lowest_devid = (u64)-1;
116 		fs_devices->num_devices = 0;
117 		device = NULL;
118 	} else {
119 		device = __find_device(&fs_devices->devices, devid);
120 	}
121 	if (!device) {
122 		device = kzalloc(sizeof(*device), GFP_NOFS);
123 		if (!device) {
124 			/* we can safely leave the fs_devices entry around */
125 			return -ENOMEM;
126 		}
127 		device->devid = devid;
128 		device->name = kstrdup(path, GFP_NOFS);
129 		if (!device->name) {
130 			kfree(device);
131 			return -ENOMEM;
132 		}
133 		list_add(&device->dev_list, &fs_devices->devices);
134 		fs_devices->num_devices++;
135 	}
136 
137 	if (found_transid > fs_devices->latest_trans) {
138 		fs_devices->latest_devid = devid;
139 		fs_devices->latest_trans = found_transid;
140 	}
141 	if (fs_devices->lowest_devid > devid) {
142 		fs_devices->lowest_devid = devid;
143 		printk("lowest devid now %Lu\n", devid);
144 	}
145 	*fs_devices_ret = fs_devices;
146 	return 0;
147 }
148 
149 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
150 {
151 	struct list_head *head = &fs_devices->devices;
152 	struct list_head *cur;
153 	struct btrfs_device *device;
154 
155 	mutex_lock(&uuid_mutex);
156 	list_for_each(cur, head) {
157 		device = list_entry(cur, struct btrfs_device, dev_list);
158 		if (device->bdev) {
159 			close_bdev_excl(device->bdev);
160 			printk("close devices closes %s\n", device->name);
161 		}
162 		device->bdev = NULL;
163 	}
164 	mutex_unlock(&uuid_mutex);
165 	return 0;
166 }
167 
168 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
169 		       int flags, void *holder)
170 {
171 	struct block_device *bdev;
172 	struct list_head *head = &fs_devices->devices;
173 	struct list_head *cur;
174 	struct btrfs_device *device;
175 	int ret;
176 
177 	mutex_lock(&uuid_mutex);
178 	list_for_each(cur, head) {
179 		device = list_entry(cur, struct btrfs_device, dev_list);
180 		bdev = open_bdev_excl(device->name, flags, holder);
181 printk("opening %s devid %Lu\n", device->name, device->devid);
182 		if (IS_ERR(bdev)) {
183 			printk("open %s failed\n", device->name);
184 			ret = PTR_ERR(bdev);
185 			goto fail;
186 		}
187 		if (device->devid == fs_devices->latest_devid)
188 			fs_devices->latest_bdev = bdev;
189 		if (device->devid == fs_devices->lowest_devid) {
190 			fs_devices->lowest_bdev = bdev;
191 printk("lowest bdev %s\n", device->name);
192 		}
193 		device->bdev = bdev;
194 	}
195 	mutex_unlock(&uuid_mutex);
196 	return 0;
197 fail:
198 	mutex_unlock(&uuid_mutex);
199 	btrfs_close_devices(fs_devices);
200 	return ret;
201 }
202 
203 int btrfs_scan_one_device(const char *path, int flags, void *holder,
204 			  struct btrfs_fs_devices **fs_devices_ret)
205 {
206 	struct btrfs_super_block *disk_super;
207 	struct block_device *bdev;
208 	struct buffer_head *bh;
209 	int ret;
210 	u64 devid;
211 
212 	mutex_lock(&uuid_mutex);
213 
214 	printk("scan one opens %s\n", path);
215 	bdev = open_bdev_excl(path, flags, holder);
216 
217 	if (IS_ERR(bdev)) {
218 		printk("open failed\n");
219 		ret = PTR_ERR(bdev);
220 		goto error;
221 	}
222 
223 	ret = set_blocksize(bdev, 4096);
224 	if (ret)
225 		goto error_close;
226 	bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
227 	if (!bh) {
228 		ret = -EIO;
229 		goto error_close;
230 	}
231 	disk_super = (struct btrfs_super_block *)bh->b_data;
232 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
233 	    sizeof(disk_super->magic))) {
234 		printk("no btrfs found on %s\n", path);
235 		ret = -EINVAL;
236 		goto error_brelse;
237 	}
238 	devid = le64_to_cpu(disk_super->dev_item.devid);
239 	printk("found device %Lu on %s\n", devid, path);
240 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
241 
242 error_brelse:
243 	brelse(bh);
244 error_close:
245 	close_bdev_excl(bdev);
246 	printk("scan one closes bdev %s\n", path);
247 error:
248 	mutex_unlock(&uuid_mutex);
249 	return ret;
250 }
251 
252 /*
253  * this uses a pretty simple search, the expectation is that it is
254  * called very infrequently and that a given device has a small number
255  * of extents
256  */
257 static int find_free_dev_extent(struct btrfs_trans_handle *trans,
258 				struct btrfs_device *device,
259 				struct btrfs_path *path,
260 				u64 num_bytes, u64 *start)
261 {
262 	struct btrfs_key key;
263 	struct btrfs_root *root = device->dev_root;
264 	struct btrfs_dev_extent *dev_extent = NULL;
265 	u64 hole_size = 0;
266 	u64 last_byte = 0;
267 	u64 search_start = 0;
268 	u64 search_end = device->total_bytes;
269 	int ret;
270 	int slot = 0;
271 	int start_found;
272 	struct extent_buffer *l;
273 
274 	start_found = 0;
275 	path->reada = 2;
276 
277 	/* FIXME use last free of some kind */
278 
279 	/* we don't want to overwrite the superblock on the drive,
280 	 * so we make sure to start at an offset of at least 1MB
281 	 */
282 	search_start = max((u64)1024 * 1024, search_start);
283 	key.objectid = device->devid;
284 	key.offset = search_start;
285 	key.type = BTRFS_DEV_EXTENT_KEY;
286 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
287 	if (ret < 0)
288 		goto error;
289 	ret = btrfs_previous_item(root, path, 0, key.type);
290 	if (ret < 0)
291 		goto error;
292 	l = path->nodes[0];
293 	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
294 	while (1) {
295 		l = path->nodes[0];
296 		slot = path->slots[0];
297 		if (slot >= btrfs_header_nritems(l)) {
298 			ret = btrfs_next_leaf(root, path);
299 			if (ret == 0)
300 				continue;
301 			if (ret < 0)
302 				goto error;
303 no_more_items:
304 			if (!start_found) {
305 				if (search_start >= search_end) {
306 					ret = -ENOSPC;
307 					goto error;
308 				}
309 				*start = search_start;
310 				start_found = 1;
311 				goto check_pending;
312 			}
313 			*start = last_byte > search_start ?
314 				last_byte : search_start;
315 			if (search_end <= *start) {
316 				ret = -ENOSPC;
317 				goto error;
318 			}
319 			goto check_pending;
320 		}
321 		btrfs_item_key_to_cpu(l, &key, slot);
322 
323 		if (key.objectid < device->devid)
324 			goto next;
325 
326 		if (key.objectid > device->devid)
327 			goto no_more_items;
328 
329 		if (key.offset >= search_start && key.offset > last_byte &&
330 		    start_found) {
331 			if (last_byte < search_start)
332 				last_byte = search_start;
333 			hole_size = key.offset - last_byte;
334 			if (key.offset > last_byte &&
335 			    hole_size >= num_bytes) {
336 				*start = last_byte;
337 				goto check_pending;
338 			}
339 		}
340 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
341 			goto next;
342 		}
343 
344 		start_found = 1;
345 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
346 		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
347 next:
348 		path->slots[0]++;
349 		cond_resched();
350 	}
351 check_pending:
352 	/* we have to make sure we didn't find an extent that has already
353 	 * been allocated by the map tree or the original allocation
354 	 */
355 	btrfs_release_path(root, path);
356 	BUG_ON(*start < search_start);
357 
358 	if (*start + num_bytes > search_end) {
359 		ret = -ENOSPC;
360 		goto error;
361 	}
362 	/* check for pending inserts here */
363 	return 0;
364 
365 error:
366 	btrfs_release_path(root, path);
367 	return ret;
368 }
369 
370 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
371 			   struct btrfs_device *device,
372 			   u64 owner, u64 num_bytes, u64 *start)
373 {
374 	int ret;
375 	struct btrfs_path *path;
376 	struct btrfs_root *root = device->dev_root;
377 	struct btrfs_dev_extent *extent;
378 	struct extent_buffer *leaf;
379 	struct btrfs_key key;
380 
381 	path = btrfs_alloc_path();
382 	if (!path)
383 		return -ENOMEM;
384 
385 	ret = find_free_dev_extent(trans, device, path, num_bytes, start);
386 	if (ret) {
387 		goto err;
388 	}
389 
390 	key.objectid = device->devid;
391 	key.offset = *start;
392 	key.type = BTRFS_DEV_EXTENT_KEY;
393 	ret = btrfs_insert_empty_item(trans, root, path, &key,
394 				      sizeof(*extent));
395 	BUG_ON(ret);
396 
397 	leaf = path->nodes[0];
398 	extent = btrfs_item_ptr(leaf, path->slots[0],
399 				struct btrfs_dev_extent);
400 	btrfs_set_dev_extent_owner(leaf, extent, owner);
401 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
402 	btrfs_mark_buffer_dirty(leaf);
403 err:
404 	btrfs_free_path(path);
405 	return ret;
406 }
407 
408 static int find_next_chunk(struct btrfs_root *root, u64 *objectid)
409 {
410 	struct btrfs_path *path;
411 	int ret;
412 	struct btrfs_key key;
413 	struct btrfs_key found_key;
414 
415 	path = btrfs_alloc_path();
416 	BUG_ON(!path);
417 
418 	key.objectid = (u64)-1;
419 	key.offset = (u64)-1;
420 	key.type = BTRFS_CHUNK_ITEM_KEY;
421 
422 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
423 	if (ret < 0)
424 		goto error;
425 
426 	BUG_ON(ret == 0);
427 
428 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
429 	if (ret) {
430 		*objectid = 0;
431 	} else {
432 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
433 				      path->slots[0]);
434 		*objectid = found_key.objectid + found_key.offset;
435 	}
436 	ret = 0;
437 error:
438 	btrfs_free_path(path);
439 	return ret;
440 }
441 
442 static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
443 			   u64 *objectid)
444 {
445 	int ret;
446 	struct btrfs_key key;
447 	struct btrfs_key found_key;
448 
449 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
450 	key.type = BTRFS_DEV_ITEM_KEY;
451 	key.offset = (u64)-1;
452 
453 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
454 	if (ret < 0)
455 		goto error;
456 
457 	BUG_ON(ret == 0);
458 
459 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
460 				  BTRFS_DEV_ITEM_KEY);
461 	if (ret) {
462 		*objectid = 1;
463 	} else {
464 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
465 				      path->slots[0]);
466 		*objectid = found_key.offset + 1;
467 	}
468 	ret = 0;
469 error:
470 	btrfs_release_path(root, path);
471 	return ret;
472 }
473 
474 /*
475  * the device information is stored in the chunk root
476  * the btrfs_device struct should be fully filled in
477  */
478 int btrfs_add_device(struct btrfs_trans_handle *trans,
479 		     struct btrfs_root *root,
480 		     struct btrfs_device *device)
481 {
482 	int ret;
483 	struct btrfs_path *path;
484 	struct btrfs_dev_item *dev_item;
485 	struct extent_buffer *leaf;
486 	struct btrfs_key key;
487 	unsigned long ptr;
488 	u64 free_devid;
489 
490 	root = root->fs_info->chunk_root;
491 
492 	path = btrfs_alloc_path();
493 	if (!path)
494 		return -ENOMEM;
495 
496 	ret = find_next_devid(root, path, &free_devid);
497 	if (ret)
498 		goto out;
499 
500 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
501 	key.type = BTRFS_DEV_ITEM_KEY;
502 	key.offset = free_devid;
503 
504 	ret = btrfs_insert_empty_item(trans, root, path, &key,
505 				      sizeof(*dev_item));
506 	if (ret)
507 		goto out;
508 
509 	leaf = path->nodes[0];
510 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
511 
512 	device->devid = free_devid;
513 	btrfs_set_device_id(leaf, dev_item, device->devid);
514 	btrfs_set_device_type(leaf, dev_item, device->type);
515 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
516 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
517 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
518 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
519 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
520 
521 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
522 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
523 	btrfs_mark_buffer_dirty(leaf);
524 	ret = 0;
525 
526 out:
527 	btrfs_free_path(path);
528 	return ret;
529 }
530 int btrfs_update_device(struct btrfs_trans_handle *trans,
531 			struct btrfs_device *device)
532 {
533 	int ret;
534 	struct btrfs_path *path;
535 	struct btrfs_root *root;
536 	struct btrfs_dev_item *dev_item;
537 	struct extent_buffer *leaf;
538 	struct btrfs_key key;
539 
540 	root = device->dev_root->fs_info->chunk_root;
541 
542 	path = btrfs_alloc_path();
543 	if (!path)
544 		return -ENOMEM;
545 
546 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
547 	key.type = BTRFS_DEV_ITEM_KEY;
548 	key.offset = device->devid;
549 
550 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
551 	if (ret < 0)
552 		goto out;
553 
554 	if (ret > 0) {
555 		ret = -ENOENT;
556 		goto out;
557 	}
558 
559 	leaf = path->nodes[0];
560 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
561 
562 	btrfs_set_device_id(leaf, dev_item, device->devid);
563 	btrfs_set_device_type(leaf, dev_item, device->type);
564 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
565 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
566 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
567 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
568 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
569 	btrfs_mark_buffer_dirty(leaf);
570 
571 out:
572 	btrfs_free_path(path);
573 	return ret;
574 }
575 
576 int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
577 			   struct btrfs_root *root,
578 			   struct btrfs_key *key,
579 			   struct btrfs_chunk *chunk, int item_size)
580 {
581 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
582 	struct btrfs_disk_key disk_key;
583 	u32 array_size;
584 	u8 *ptr;
585 
586 	array_size = btrfs_super_sys_array_size(super_copy);
587 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
588 		return -EFBIG;
589 
590 	ptr = super_copy->sys_chunk_array + array_size;
591 	btrfs_cpu_key_to_disk(&disk_key, key);
592 	memcpy(ptr, &disk_key, sizeof(disk_key));
593 	ptr += sizeof(disk_key);
594 	memcpy(ptr, chunk, item_size);
595 	item_size += sizeof(disk_key);
596 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
597 	return 0;
598 }
599 
600 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
601 		      struct btrfs_root *extent_root, u64 *start,
602 		      u64 *num_bytes, u64 type)
603 {
604 	u64 dev_offset;
605 	struct btrfs_fs_info *info = extent_root->fs_info;
606 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
607 	struct btrfs_stripe *stripes;
608 	struct btrfs_device *device = NULL;
609 	struct btrfs_chunk *chunk;
610 	struct list_head private_devs;
611 	struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
612 	struct list_head *cur;
613 	struct extent_map_tree *em_tree;
614 	struct map_lookup *map;
615 	struct extent_map *em;
616 	u64 physical;
617 	u64 calc_size = 1024 * 1024 * 1024;
618 	u64 min_free = calc_size;
619 	u64 avail;
620 	u64 max_avail = 0;
621 	int num_stripes = 1;
622 	int looped = 0;
623 	int ret;
624 	int index;
625 	int stripe_len = 64 * 1024;
626 	struct btrfs_key key;
627 
628 	if (list_empty(dev_list))
629 		return -ENOSPC;
630 
631 	if (type & (BTRFS_BLOCK_GROUP_RAID0))
632 		num_stripes = btrfs_super_num_devices(&info->super_copy);
633 	if (type & (BTRFS_BLOCK_GROUP_DUP))
634 		num_stripes = 2;
635 	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
636 		num_stripes = min_t(u64, 2,
637 				  btrfs_super_num_devices(&info->super_copy));
638 	}
639 again:
640 	INIT_LIST_HEAD(&private_devs);
641 	cur = dev_list->next;
642 	index = 0;
643 
644 	if (type & BTRFS_BLOCK_GROUP_DUP)
645 		min_free = calc_size * 2;
646 
647 	/* build a private list of devices we will allocate from */
648 	while(index < num_stripes) {
649 		device = list_entry(cur, struct btrfs_device, dev_list);
650 
651 		avail = device->total_bytes - device->bytes_used;
652 		cur = cur->next;
653 		if (avail > max_avail)
654 			max_avail = avail;
655 		if (avail >= min_free) {
656 			list_move_tail(&device->dev_list, &private_devs);
657 			index++;
658 			if (type & BTRFS_BLOCK_GROUP_DUP)
659 				index++;
660 		}
661 		if (cur == dev_list)
662 			break;
663 	}
664 	if (index < num_stripes) {
665 		list_splice(&private_devs, dev_list);
666 		if (!looped && max_avail > 0) {
667 			looped = 1;
668 			calc_size = max_avail;
669 			goto again;
670 		}
671 		return -ENOSPC;
672 	}
673 
674 	ret = find_next_chunk(chunk_root, &key.objectid);
675 	if (ret)
676 		return ret;
677 
678 	chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
679 	if (!chunk)
680 		return -ENOMEM;
681 
682 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
683 	if (!map) {
684 		kfree(chunk);
685 		return -ENOMEM;
686 	}
687 
688 	stripes = &chunk->stripe;
689 
690 	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
691 		*num_bytes = calc_size;
692 	else
693 		*num_bytes = calc_size * num_stripes;
694 
695 	index = 0;
696 printk("new chunk type %Lu start %Lu size %Lu\n", type, key.objectid, *num_bytes);
697 	while(index < num_stripes) {
698 		BUG_ON(list_empty(&private_devs));
699 		cur = private_devs.next;
700 		device = list_entry(cur, struct btrfs_device, dev_list);
701 
702 		/* loop over this device again if we're doing a dup group */
703 		if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
704 		    (index == num_stripes - 1))
705 			list_move_tail(&device->dev_list, dev_list);
706 
707 		ret = btrfs_alloc_dev_extent(trans, device,
708 					     key.objectid,
709 					     calc_size, &dev_offset);
710 		BUG_ON(ret);
711 printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.objectid, calc_size, device->devid, type);
712 		device->bytes_used += calc_size;
713 		ret = btrfs_update_device(trans, device);
714 		BUG_ON(ret);
715 
716 		map->stripes[index].dev = device;
717 		map->stripes[index].physical = dev_offset;
718 		btrfs_set_stack_stripe_devid(stripes + index, device->devid);
719 		btrfs_set_stack_stripe_offset(stripes + index, dev_offset);
720 		physical = dev_offset;
721 		index++;
722 	}
723 	BUG_ON(!list_empty(&private_devs));
724 
725 	/* key.objectid was set above */
726 	key.offset = *num_bytes;
727 	key.type = BTRFS_CHUNK_ITEM_KEY;
728 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
729 	btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
730 	btrfs_set_stack_chunk_type(chunk, type);
731 	btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
732 	btrfs_set_stack_chunk_io_align(chunk, stripe_len);
733 	btrfs_set_stack_chunk_io_width(chunk, stripe_len);
734 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
735 	map->sector_size = extent_root->sectorsize;
736 	map->stripe_len = stripe_len;
737 	map->io_align = stripe_len;
738 	map->io_width = stripe_len;
739 	map->type = type;
740 	map->num_stripes = num_stripes;
741 
742 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
743 				btrfs_chunk_item_size(num_stripes));
744 	BUG_ON(ret);
745 	*start = key.objectid;
746 
747 	em = alloc_extent_map(GFP_NOFS);
748 	if (!em)
749 		return -ENOMEM;
750 	em->bdev = (struct block_device *)map;
751 	em->start = key.objectid;
752 	em->len = key.offset;
753 	em->block_start = 0;
754 
755 	kfree(chunk);
756 
757 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
758 	spin_lock(&em_tree->lock);
759 	ret = add_extent_mapping(em_tree, em);
760 	BUG_ON(ret);
761 	spin_unlock(&em_tree->lock);
762 	free_extent_map(em);
763 	return ret;
764 }
765 
766 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
767 {
768 	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
769 }
770 
771 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
772 {
773 	struct extent_map *em;
774 
775 	while(1) {
776 		spin_lock(&tree->map_tree.lock);
777 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
778 		if (em)
779 			remove_extent_mapping(&tree->map_tree, em);
780 		spin_unlock(&tree->map_tree.lock);
781 		if (!em)
782 			break;
783 		kfree(em->bdev);
784 		/* once for us */
785 		free_extent_map(em);
786 		/* once for the tree */
787 		free_extent_map(em);
788 	}
789 }
790 
791 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
792 		    u64 logical, u64 *length,
793 		    struct btrfs_multi_bio **multi_ret)
794 {
795 	struct extent_map *em;
796 	struct map_lookup *map;
797 	struct extent_map_tree *em_tree = &map_tree->map_tree;
798 	u64 offset;
799 	u64 stripe_offset;
800 	u64 stripe_nr;
801 	int stripes_allocated = 8;
802 	int stripe_index;
803 	int i;
804 	struct btrfs_multi_bio *multi = NULL;
805 
806 	if (multi_ret && !(rw & (1 << BIO_RW))) {
807 		stripes_allocated = 1;
808 	}
809 again:
810 	if (multi_ret) {
811 		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
812 				GFP_NOFS);
813 		if (!multi)
814 			return -ENOMEM;
815 	}
816 
817 	spin_lock(&em_tree->lock);
818 	em = lookup_extent_mapping(em_tree, logical, *length);
819 	BUG_ON(!em);
820 
821 	BUG_ON(em->start > logical || em->start + em->len < logical);
822 	map = (struct map_lookup *)em->bdev;
823 	offset = logical - em->start;
824 
825 	/* if our multi bio struct is too small, back off and try again */
826 	if (multi_ret && (rw & (1 << BIO_RW)) &&
827 	    stripes_allocated < map->num_stripes &&
828 	    ((map->type & BTRFS_BLOCK_GROUP_RAID1) ||
829 	     (map->type & BTRFS_BLOCK_GROUP_DUP))) {
830 		stripes_allocated = map->num_stripes;
831 		spin_unlock(&em_tree->lock);
832 		free_extent_map(em);
833 		kfree(multi);
834 		goto again;
835 	}
836 	stripe_nr = offset;
837 	/*
838 	 * stripe_nr counts the total number of stripes we have to stride
839 	 * to get to this block
840 	 */
841 	do_div(stripe_nr, map->stripe_len);
842 
843 	stripe_offset = stripe_nr * map->stripe_len;
844 	BUG_ON(offset < stripe_offset);
845 
846 	/* stripe_offset is the offset of this block in its stripe*/
847 	stripe_offset = offset - stripe_offset;
848 
849 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
850 			 BTRFS_BLOCK_GROUP_DUP)) {
851 		/* we limit the length of each bio to what fits in a stripe */
852 		*length = min_t(u64, em->len - offset,
853 			      map->stripe_len - stripe_offset);
854 	} else {
855 		*length = em->len - offset;
856 	}
857 	if (!multi_ret)
858 		goto out;
859 
860 	multi->num_stripes = 1;
861 	stripe_index = 0;
862 	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
863 		if (rw & (1 << BIO_RW))
864 			multi->num_stripes = map->num_stripes;
865 		else {
866 			int i;
867 			u64 least = (u64)-1;
868 			struct btrfs_device *cur;
869 
870 			for (i = 0; i < map->num_stripes; i++) {
871 				cur = map->stripes[i].dev;
872 				spin_lock(&cur->io_lock);
873 				if (cur->total_ios < least) {
874 					least = cur->total_ios;
875 					stripe_index = i;
876 				}
877 				spin_unlock(&cur->io_lock);
878 			}
879 		}
880 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
881 		if (rw & (1 << BIO_RW))
882 			multi->num_stripes = map->num_stripes;
883 	} else {
884 		/*
885 		 * after this do_div call, stripe_nr is the number of stripes
886 		 * on this device we have to walk to find the data, and
887 		 * stripe_index is the number of our device in the stripe array
888 		 */
889 		stripe_index = do_div(stripe_nr, map->num_stripes);
890 	}
891 	BUG_ON(stripe_index >= map->num_stripes);
892 	BUG_ON(stripe_index != 0 && multi->num_stripes > 1);
893 
894 	for (i = 0; i < multi->num_stripes; i++) {
895 		multi->stripes[i].physical =
896 			map->stripes[stripe_index].physical + stripe_offset +
897 			stripe_nr * map->stripe_len;
898 		multi->stripes[i].dev = map->stripes[stripe_index].dev;
899 		stripe_index++;
900 	}
901 	*multi_ret = multi;
902 out:
903 	free_extent_map(em);
904 	spin_unlock(&em_tree->lock);
905 	return 0;
906 }
907 
908 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
909 static void end_bio_multi_stripe(struct bio *bio, int err)
910 #else
911 static int end_bio_multi_stripe(struct bio *bio,
912 				   unsigned int bytes_done, int err)
913 #endif
914 {
915 	struct btrfs_multi_bio *multi = bio->bi_private;
916 
917 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
918 	if (bio->bi_size)
919 		return 1;
920 #endif
921 	if (err)
922 		multi->error = err;
923 
924 	if (atomic_dec_and_test(&multi->stripes_pending)) {
925 		bio->bi_private = multi->private;
926 		bio->bi_end_io = multi->end_io;
927 
928 		if (!err && multi->error)
929 			err = multi->error;
930 		kfree(multi);
931 
932 		bio_endio(bio, err);
933 	} else {
934 		bio_put(bio);
935 	}
936 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
937 	return 0;
938 #endif
939 }
940 
941 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio)
942 {
943 	struct btrfs_mapping_tree *map_tree;
944 	struct btrfs_device *dev;
945 	struct bio *first_bio = bio;
946 	u64 logical = bio->bi_sector << 9;
947 	u64 length = 0;
948 	u64 map_length;
949 	struct bio_vec *bvec;
950 	struct btrfs_multi_bio *multi = NULL;
951 	int i;
952 	int ret;
953 	int dev_nr = 0;
954 	int total_devs = 1;
955 
956 	bio_for_each_segment(bvec, bio, i) {
957 		length += bvec->bv_len;
958 	}
959 
960 	map_tree = &root->fs_info->mapping_tree;
961 	map_length = length;
962 
963 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi);
964 	BUG_ON(ret);
965 
966 	total_devs = multi->num_stripes;
967 	if (map_length < length) {
968 		printk("mapping failed logical %Lu bio len %Lu "
969 		       "len %Lu\n", logical, length, map_length);
970 		BUG();
971 	}
972 	multi->end_io = first_bio->bi_end_io;
973 	multi->private = first_bio->bi_private;
974 	atomic_set(&multi->stripes_pending, multi->num_stripes);
975 
976 	while(dev_nr < total_devs) {
977 		if (total_devs > 1) {
978 			if (dev_nr < total_devs - 1) {
979 				bio = bio_clone(first_bio, GFP_NOFS);
980 				BUG_ON(!bio);
981 			} else {
982 				bio = first_bio;
983 			}
984 			bio->bi_private = multi;
985 			bio->bi_end_io = end_bio_multi_stripe;
986 		}
987 		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
988 		dev = multi->stripes[dev_nr].dev;
989 		bio->bi_bdev = dev->bdev;
990 		spin_lock(&dev->io_lock);
991 		dev->total_ios++;
992 		spin_unlock(&dev->io_lock);
993 		submit_bio(rw, bio);
994 		dev_nr++;
995 	}
996 	if (total_devs == 1)
997 		kfree(multi);
998 	return 0;
999 }
1000 
1001 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid)
1002 {
1003 	struct list_head *head = &root->fs_info->fs_devices->devices;
1004 
1005 	return __find_device(head, devid);
1006 }
1007 
1008 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1009 			  struct extent_buffer *leaf,
1010 			  struct btrfs_chunk *chunk)
1011 {
1012 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1013 	struct map_lookup *map;
1014 	struct extent_map *em;
1015 	u64 logical;
1016 	u64 length;
1017 	u64 devid;
1018 	int num_stripes;
1019 	int ret;
1020 	int i;
1021 
1022 	logical = key->objectid;
1023 	length = key->offset;
1024 	spin_lock(&map_tree->map_tree.lock);
1025 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
1026 
1027 	/* already mapped? */
1028 	if (em && em->start <= logical && em->start + em->len > logical) {
1029 		free_extent_map(em);
1030 		spin_unlock(&map_tree->map_tree.lock);
1031 		return 0;
1032 	} else if (em) {
1033 		free_extent_map(em);
1034 	}
1035 	spin_unlock(&map_tree->map_tree.lock);
1036 
1037 	map = kzalloc(sizeof(*map), GFP_NOFS);
1038 	if (!map)
1039 		return -ENOMEM;
1040 
1041 	em = alloc_extent_map(GFP_NOFS);
1042 	if (!em)
1043 		return -ENOMEM;
1044 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1045 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1046 	if (!map) {
1047 		free_extent_map(em);
1048 		return -ENOMEM;
1049 	}
1050 
1051 	em->bdev = (struct block_device *)map;
1052 	em->start = logical;
1053 	em->len = length;
1054 	em->block_start = 0;
1055 
1056 	map->num_stripes = num_stripes;
1057 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
1058 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
1059 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1060 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1061 	map->type = btrfs_chunk_type(leaf, chunk);
1062 	for (i = 0; i < num_stripes; i++) {
1063 		map->stripes[i].physical =
1064 			btrfs_stripe_offset_nr(leaf, chunk, i);
1065 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1066 		map->stripes[i].dev = btrfs_find_device(root, devid);
1067 		if (!map->stripes[i].dev) {
1068 			kfree(map);
1069 			free_extent_map(em);
1070 			return -EIO;
1071 		}
1072 	}
1073 
1074 	spin_lock(&map_tree->map_tree.lock);
1075 	ret = add_extent_mapping(&map_tree->map_tree, em);
1076 	BUG_ON(ret);
1077 	spin_unlock(&map_tree->map_tree.lock);
1078 	free_extent_map(em);
1079 
1080 	return 0;
1081 }
1082 
1083 static int fill_device_from_item(struct extent_buffer *leaf,
1084 				 struct btrfs_dev_item *dev_item,
1085 				 struct btrfs_device *device)
1086 {
1087 	unsigned long ptr;
1088 
1089 	device->devid = btrfs_device_id(leaf, dev_item);
1090 	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1091 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1092 	device->type = btrfs_device_type(leaf, dev_item);
1093 	device->io_align = btrfs_device_io_align(leaf, dev_item);
1094 	device->io_width = btrfs_device_io_width(leaf, dev_item);
1095 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
1096 
1097 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1098 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
1099 
1100 	return 0;
1101 }
1102 
1103 static int read_one_dev(struct btrfs_root *root,
1104 			struct extent_buffer *leaf,
1105 			struct btrfs_dev_item *dev_item)
1106 {
1107 	struct btrfs_device *device;
1108 	u64 devid;
1109 	int ret;
1110 
1111 	devid = btrfs_device_id(leaf, dev_item);
1112 	device = btrfs_find_device(root, devid);
1113 	if (!device) {
1114 		printk("warning devid %Lu not found already\n", devid);
1115 		device = kmalloc(sizeof(*device), GFP_NOFS);
1116 		if (!device)
1117 			return -ENOMEM;
1118 		list_add(&device->dev_list,
1119 			 &root->fs_info->fs_devices->devices);
1120 		device->total_ios = 0;
1121 		spin_lock_init(&device->io_lock);
1122 	}
1123 
1124 	fill_device_from_item(leaf, dev_item, device);
1125 	device->dev_root = root->fs_info->dev_root;
1126 	ret = 0;
1127 #if 0
1128 	ret = btrfs_open_device(device);
1129 	if (ret) {
1130 		kfree(device);
1131 	}
1132 #endif
1133 	return ret;
1134 }
1135 
1136 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1137 {
1138 	struct btrfs_dev_item *dev_item;
1139 
1140 	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1141 						     dev_item);
1142 	return read_one_dev(root, buf, dev_item);
1143 }
1144 
1145 int btrfs_read_sys_array(struct btrfs_root *root)
1146 {
1147 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1148 	struct extent_buffer *sb = root->fs_info->sb_buffer;
1149 	struct btrfs_disk_key *disk_key;
1150 	struct btrfs_chunk *chunk;
1151 	struct btrfs_key key;
1152 	u32 num_stripes;
1153 	u32 array_size;
1154 	u32 len = 0;
1155 	u8 *ptr;
1156 	unsigned long sb_ptr;
1157 	u32 cur;
1158 	int ret;
1159 
1160 	array_size = btrfs_super_sys_array_size(super_copy);
1161 
1162 	/*
1163 	 * we do this loop twice, once for the device items and
1164 	 * once for all of the chunks.  This way there are device
1165 	 * structs filled in for every chunk
1166 	 */
1167 	ptr = super_copy->sys_chunk_array;
1168 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1169 	cur = 0;
1170 
1171 	while (cur < array_size) {
1172 		disk_key = (struct btrfs_disk_key *)ptr;
1173 		btrfs_disk_key_to_cpu(&key, disk_key);
1174 
1175 		len = sizeof(*disk_key);
1176 		ptr += len;
1177 		sb_ptr += len;
1178 		cur += len;
1179 
1180 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1181 			chunk = (struct btrfs_chunk *)sb_ptr;
1182 			ret = read_one_chunk(root, &key, sb, chunk);
1183 			BUG_ON(ret);
1184 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1185 			len = btrfs_chunk_item_size(num_stripes);
1186 		} else {
1187 			BUG();
1188 		}
1189 		ptr += len;
1190 		sb_ptr += len;
1191 		cur += len;
1192 	}
1193 	return 0;
1194 }
1195 
1196 int btrfs_read_chunk_tree(struct btrfs_root *root)
1197 {
1198 	struct btrfs_path *path;
1199 	struct extent_buffer *leaf;
1200 	struct btrfs_key key;
1201 	struct btrfs_key found_key;
1202 	int ret;
1203 	int slot;
1204 
1205 	root = root->fs_info->chunk_root;
1206 
1207 	path = btrfs_alloc_path();
1208 	if (!path)
1209 		return -ENOMEM;
1210 
1211 	/* first we search for all of the device items, and then we
1212 	 * read in all of the chunk items.  This way we can create chunk
1213 	 * mappings that reference all of the devices that are afound
1214 	 */
1215 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1216 	key.offset = 0;
1217 	key.type = 0;
1218 again:
1219 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1220 	while(1) {
1221 		leaf = path->nodes[0];
1222 		slot = path->slots[0];
1223 		if (slot >= btrfs_header_nritems(leaf)) {
1224 			ret = btrfs_next_leaf(root, path);
1225 			if (ret == 0)
1226 				continue;
1227 			if (ret < 0)
1228 				goto error;
1229 			break;
1230 		}
1231 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1232 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1233 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1234 				break;
1235 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1236 				struct btrfs_dev_item *dev_item;
1237 				dev_item = btrfs_item_ptr(leaf, slot,
1238 						  struct btrfs_dev_item);
1239 				ret = read_one_dev(root, leaf, dev_item);
1240 				BUG_ON(ret);
1241 			}
1242 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1243 			struct btrfs_chunk *chunk;
1244 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1245 			ret = read_one_chunk(root, &found_key, leaf, chunk);
1246 		}
1247 		path->slots[0]++;
1248 	}
1249 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1250 		key.objectid = 0;
1251 		btrfs_release_path(root, path);
1252 		goto again;
1253 	}
1254 
1255 	btrfs_free_path(path);
1256 	ret = 0;
1257 error:
1258 	return ret;
1259 }
1260 
1261