1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "compat.h" 32 #include "ctree.h" 33 #include "extent_map.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "raid56.h" 39 #include "async-thread.h" 40 #include "check-integrity.h" 41 #include "rcu-string.h" 42 #include "math.h" 43 #include "dev-replace.h" 44 45 static int init_first_rw_device(struct btrfs_trans_handle *trans, 46 struct btrfs_root *root, 47 struct btrfs_device *device); 48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 52 53 static DEFINE_MUTEX(uuid_mutex); 54 static LIST_HEAD(fs_uuids); 55 56 static void lock_chunks(struct btrfs_root *root) 57 { 58 mutex_lock(&root->fs_info->chunk_mutex); 59 } 60 61 static void unlock_chunks(struct btrfs_root *root) 62 { 63 mutex_unlock(&root->fs_info->chunk_mutex); 64 } 65 66 static struct btrfs_fs_devices *__alloc_fs_devices(void) 67 { 68 struct btrfs_fs_devices *fs_devs; 69 70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 71 if (!fs_devs) 72 return ERR_PTR(-ENOMEM); 73 74 mutex_init(&fs_devs->device_list_mutex); 75 76 INIT_LIST_HEAD(&fs_devs->devices); 77 INIT_LIST_HEAD(&fs_devs->alloc_list); 78 INIT_LIST_HEAD(&fs_devs->list); 79 80 return fs_devs; 81 } 82 83 /** 84 * alloc_fs_devices - allocate struct btrfs_fs_devices 85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 86 * generated. 87 * 88 * Return: a pointer to a new &struct btrfs_fs_devices on success; 89 * ERR_PTR() on error. Returned struct is not linked onto any lists and 90 * can be destroyed with kfree() right away. 91 */ 92 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 93 { 94 struct btrfs_fs_devices *fs_devs; 95 96 fs_devs = __alloc_fs_devices(); 97 if (IS_ERR(fs_devs)) 98 return fs_devs; 99 100 if (fsid) 101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 102 else 103 generate_random_uuid(fs_devs->fsid); 104 105 return fs_devs; 106 } 107 108 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 109 { 110 struct btrfs_device *device; 111 WARN_ON(fs_devices->opened); 112 while (!list_empty(&fs_devices->devices)) { 113 device = list_entry(fs_devices->devices.next, 114 struct btrfs_device, dev_list); 115 list_del(&device->dev_list); 116 rcu_string_free(device->name); 117 kfree(device); 118 } 119 kfree(fs_devices); 120 } 121 122 static void btrfs_kobject_uevent(struct block_device *bdev, 123 enum kobject_action action) 124 { 125 int ret; 126 127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 128 if (ret) 129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n", 130 action, 131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 132 &disk_to_dev(bdev->bd_disk)->kobj); 133 } 134 135 void btrfs_cleanup_fs_uuids(void) 136 { 137 struct btrfs_fs_devices *fs_devices; 138 139 while (!list_empty(&fs_uuids)) { 140 fs_devices = list_entry(fs_uuids.next, 141 struct btrfs_fs_devices, list); 142 list_del(&fs_devices->list); 143 free_fs_devices(fs_devices); 144 } 145 } 146 147 static struct btrfs_device *__alloc_device(void) 148 { 149 struct btrfs_device *dev; 150 151 dev = kzalloc(sizeof(*dev), GFP_NOFS); 152 if (!dev) 153 return ERR_PTR(-ENOMEM); 154 155 INIT_LIST_HEAD(&dev->dev_list); 156 INIT_LIST_HEAD(&dev->dev_alloc_list); 157 158 spin_lock_init(&dev->io_lock); 159 160 spin_lock_init(&dev->reada_lock); 161 atomic_set(&dev->reada_in_flight, 0); 162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT); 163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT); 164 165 return dev; 166 } 167 168 static noinline struct btrfs_device *__find_device(struct list_head *head, 169 u64 devid, u8 *uuid) 170 { 171 struct btrfs_device *dev; 172 173 list_for_each_entry(dev, head, dev_list) { 174 if (dev->devid == devid && 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 176 return dev; 177 } 178 } 179 return NULL; 180 } 181 182 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 183 { 184 struct btrfs_fs_devices *fs_devices; 185 186 list_for_each_entry(fs_devices, &fs_uuids, list) { 187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 188 return fs_devices; 189 } 190 return NULL; 191 } 192 193 static int 194 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 195 int flush, struct block_device **bdev, 196 struct buffer_head **bh) 197 { 198 int ret; 199 200 *bdev = blkdev_get_by_path(device_path, flags, holder); 201 202 if (IS_ERR(*bdev)) { 203 ret = PTR_ERR(*bdev); 204 printk(KERN_INFO "btrfs: open %s failed\n", device_path); 205 goto error; 206 } 207 208 if (flush) 209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 210 ret = set_blocksize(*bdev, 4096); 211 if (ret) { 212 blkdev_put(*bdev, flags); 213 goto error; 214 } 215 invalidate_bdev(*bdev); 216 *bh = btrfs_read_dev_super(*bdev); 217 if (!*bh) { 218 ret = -EINVAL; 219 blkdev_put(*bdev, flags); 220 goto error; 221 } 222 223 return 0; 224 225 error: 226 *bdev = NULL; 227 *bh = NULL; 228 return ret; 229 } 230 231 static void requeue_list(struct btrfs_pending_bios *pending_bios, 232 struct bio *head, struct bio *tail) 233 { 234 235 struct bio *old_head; 236 237 old_head = pending_bios->head; 238 pending_bios->head = head; 239 if (pending_bios->tail) 240 tail->bi_next = old_head; 241 else 242 pending_bios->tail = tail; 243 } 244 245 /* 246 * we try to collect pending bios for a device so we don't get a large 247 * number of procs sending bios down to the same device. This greatly 248 * improves the schedulers ability to collect and merge the bios. 249 * 250 * But, it also turns into a long list of bios to process and that is sure 251 * to eventually make the worker thread block. The solution here is to 252 * make some progress and then put this work struct back at the end of 253 * the list if the block device is congested. This way, multiple devices 254 * can make progress from a single worker thread. 255 */ 256 static noinline void run_scheduled_bios(struct btrfs_device *device) 257 { 258 struct bio *pending; 259 struct backing_dev_info *bdi; 260 struct btrfs_fs_info *fs_info; 261 struct btrfs_pending_bios *pending_bios; 262 struct bio *tail; 263 struct bio *cur; 264 int again = 0; 265 unsigned long num_run; 266 unsigned long batch_run = 0; 267 unsigned long limit; 268 unsigned long last_waited = 0; 269 int force_reg = 0; 270 int sync_pending = 0; 271 struct blk_plug plug; 272 273 /* 274 * this function runs all the bios we've collected for 275 * a particular device. We don't want to wander off to 276 * another device without first sending all of these down. 277 * So, setup a plug here and finish it off before we return 278 */ 279 blk_start_plug(&plug); 280 281 bdi = blk_get_backing_dev_info(device->bdev); 282 fs_info = device->dev_root->fs_info; 283 limit = btrfs_async_submit_limit(fs_info); 284 limit = limit * 2 / 3; 285 286 loop: 287 spin_lock(&device->io_lock); 288 289 loop_lock: 290 num_run = 0; 291 292 /* take all the bios off the list at once and process them 293 * later on (without the lock held). But, remember the 294 * tail and other pointers so the bios can be properly reinserted 295 * into the list if we hit congestion 296 */ 297 if (!force_reg && device->pending_sync_bios.head) { 298 pending_bios = &device->pending_sync_bios; 299 force_reg = 1; 300 } else { 301 pending_bios = &device->pending_bios; 302 force_reg = 0; 303 } 304 305 pending = pending_bios->head; 306 tail = pending_bios->tail; 307 WARN_ON(pending && !tail); 308 309 /* 310 * if pending was null this time around, no bios need processing 311 * at all and we can stop. Otherwise it'll loop back up again 312 * and do an additional check so no bios are missed. 313 * 314 * device->running_pending is used to synchronize with the 315 * schedule_bio code. 316 */ 317 if (device->pending_sync_bios.head == NULL && 318 device->pending_bios.head == NULL) { 319 again = 0; 320 device->running_pending = 0; 321 } else { 322 again = 1; 323 device->running_pending = 1; 324 } 325 326 pending_bios->head = NULL; 327 pending_bios->tail = NULL; 328 329 spin_unlock(&device->io_lock); 330 331 while (pending) { 332 333 rmb(); 334 /* we want to work on both lists, but do more bios on the 335 * sync list than the regular list 336 */ 337 if ((num_run > 32 && 338 pending_bios != &device->pending_sync_bios && 339 device->pending_sync_bios.head) || 340 (num_run > 64 && pending_bios == &device->pending_sync_bios && 341 device->pending_bios.head)) { 342 spin_lock(&device->io_lock); 343 requeue_list(pending_bios, pending, tail); 344 goto loop_lock; 345 } 346 347 cur = pending; 348 pending = pending->bi_next; 349 cur->bi_next = NULL; 350 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 352 waitqueue_active(&fs_info->async_submit_wait)) 353 wake_up(&fs_info->async_submit_wait); 354 355 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 356 357 /* 358 * if we're doing the sync list, record that our 359 * plug has some sync requests on it 360 * 361 * If we're doing the regular list and there are 362 * sync requests sitting around, unplug before 363 * we add more 364 */ 365 if (pending_bios == &device->pending_sync_bios) { 366 sync_pending = 1; 367 } else if (sync_pending) { 368 blk_finish_plug(&plug); 369 blk_start_plug(&plug); 370 sync_pending = 0; 371 } 372 373 btrfsic_submit_bio(cur->bi_rw, cur); 374 num_run++; 375 batch_run++; 376 if (need_resched()) 377 cond_resched(); 378 379 /* 380 * we made progress, there is more work to do and the bdi 381 * is now congested. Back off and let other work structs 382 * run instead 383 */ 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 385 fs_info->fs_devices->open_devices > 1) { 386 struct io_context *ioc; 387 388 ioc = current->io_context; 389 390 /* 391 * the main goal here is that we don't want to 392 * block if we're going to be able to submit 393 * more requests without blocking. 394 * 395 * This code does two great things, it pokes into 396 * the elevator code from a filesystem _and_ 397 * it makes assumptions about how batching works. 398 */ 399 if (ioc && ioc->nr_batch_requests > 0 && 400 time_before(jiffies, ioc->last_waited + HZ/50UL) && 401 (last_waited == 0 || 402 ioc->last_waited == last_waited)) { 403 /* 404 * we want to go through our batch of 405 * requests and stop. So, we copy out 406 * the ioc->last_waited time and test 407 * against it before looping 408 */ 409 last_waited = ioc->last_waited; 410 if (need_resched()) 411 cond_resched(); 412 continue; 413 } 414 spin_lock(&device->io_lock); 415 requeue_list(pending_bios, pending, tail); 416 device->running_pending = 1; 417 418 spin_unlock(&device->io_lock); 419 btrfs_requeue_work(&device->work); 420 goto done; 421 } 422 /* unplug every 64 requests just for good measure */ 423 if (batch_run % 64 == 0) { 424 blk_finish_plug(&plug); 425 blk_start_plug(&plug); 426 sync_pending = 0; 427 } 428 } 429 430 cond_resched(); 431 if (again) 432 goto loop; 433 434 spin_lock(&device->io_lock); 435 if (device->pending_bios.head || device->pending_sync_bios.head) 436 goto loop_lock; 437 spin_unlock(&device->io_lock); 438 439 done: 440 blk_finish_plug(&plug); 441 } 442 443 static void pending_bios_fn(struct btrfs_work *work) 444 { 445 struct btrfs_device *device; 446 447 device = container_of(work, struct btrfs_device, work); 448 run_scheduled_bios(device); 449 } 450 451 static noinline int device_list_add(const char *path, 452 struct btrfs_super_block *disk_super, 453 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 454 { 455 struct btrfs_device *device; 456 struct btrfs_fs_devices *fs_devices; 457 struct rcu_string *name; 458 u64 found_transid = btrfs_super_generation(disk_super); 459 460 fs_devices = find_fsid(disk_super->fsid); 461 if (!fs_devices) { 462 fs_devices = alloc_fs_devices(disk_super->fsid); 463 if (IS_ERR(fs_devices)) 464 return PTR_ERR(fs_devices); 465 466 list_add(&fs_devices->list, &fs_uuids); 467 fs_devices->latest_devid = devid; 468 fs_devices->latest_trans = found_transid; 469 470 device = NULL; 471 } else { 472 device = __find_device(&fs_devices->devices, devid, 473 disk_super->dev_item.uuid); 474 } 475 if (!device) { 476 if (fs_devices->opened) 477 return -EBUSY; 478 479 device = btrfs_alloc_device(NULL, &devid, 480 disk_super->dev_item.uuid); 481 if (IS_ERR(device)) { 482 /* we can safely leave the fs_devices entry around */ 483 return PTR_ERR(device); 484 } 485 486 name = rcu_string_strdup(path, GFP_NOFS); 487 if (!name) { 488 kfree(device); 489 return -ENOMEM; 490 } 491 rcu_assign_pointer(device->name, name); 492 493 mutex_lock(&fs_devices->device_list_mutex); 494 list_add_rcu(&device->dev_list, &fs_devices->devices); 495 fs_devices->num_devices++; 496 mutex_unlock(&fs_devices->device_list_mutex); 497 498 device->fs_devices = fs_devices; 499 } else if (!device->name || strcmp(device->name->str, path)) { 500 name = rcu_string_strdup(path, GFP_NOFS); 501 if (!name) 502 return -ENOMEM; 503 rcu_string_free(device->name); 504 rcu_assign_pointer(device->name, name); 505 if (device->missing) { 506 fs_devices->missing_devices--; 507 device->missing = 0; 508 } 509 } 510 511 if (found_transid > fs_devices->latest_trans) { 512 fs_devices->latest_devid = devid; 513 fs_devices->latest_trans = found_transid; 514 } 515 *fs_devices_ret = fs_devices; 516 return 0; 517 } 518 519 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 520 { 521 struct btrfs_fs_devices *fs_devices; 522 struct btrfs_device *device; 523 struct btrfs_device *orig_dev; 524 525 fs_devices = alloc_fs_devices(orig->fsid); 526 if (IS_ERR(fs_devices)) 527 return fs_devices; 528 529 fs_devices->latest_devid = orig->latest_devid; 530 fs_devices->latest_trans = orig->latest_trans; 531 fs_devices->total_devices = orig->total_devices; 532 533 /* We have held the volume lock, it is safe to get the devices. */ 534 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 535 struct rcu_string *name; 536 537 device = btrfs_alloc_device(NULL, &orig_dev->devid, 538 orig_dev->uuid); 539 if (IS_ERR(device)) 540 goto error; 541 542 /* 543 * This is ok to do without rcu read locked because we hold the 544 * uuid mutex so nothing we touch in here is going to disappear. 545 */ 546 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 547 if (!name) { 548 kfree(device); 549 goto error; 550 } 551 rcu_assign_pointer(device->name, name); 552 553 list_add(&device->dev_list, &fs_devices->devices); 554 device->fs_devices = fs_devices; 555 fs_devices->num_devices++; 556 } 557 return fs_devices; 558 error: 559 free_fs_devices(fs_devices); 560 return ERR_PTR(-ENOMEM); 561 } 562 563 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info, 564 struct btrfs_fs_devices *fs_devices, int step) 565 { 566 struct btrfs_device *device, *next; 567 568 struct block_device *latest_bdev = NULL; 569 u64 latest_devid = 0; 570 u64 latest_transid = 0; 571 572 mutex_lock(&uuid_mutex); 573 again: 574 /* This is the initialized path, it is safe to release the devices. */ 575 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 576 if (device->in_fs_metadata) { 577 if (!device->is_tgtdev_for_dev_replace && 578 (!latest_transid || 579 device->generation > latest_transid)) { 580 latest_devid = device->devid; 581 latest_transid = device->generation; 582 latest_bdev = device->bdev; 583 } 584 continue; 585 } 586 587 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 588 /* 589 * In the first step, keep the device which has 590 * the correct fsid and the devid that is used 591 * for the dev_replace procedure. 592 * In the second step, the dev_replace state is 593 * read from the device tree and it is known 594 * whether the procedure is really active or 595 * not, which means whether this device is 596 * used or whether it should be removed. 597 */ 598 if (step == 0 || device->is_tgtdev_for_dev_replace) { 599 continue; 600 } 601 } 602 if (device->bdev) { 603 blkdev_put(device->bdev, device->mode); 604 device->bdev = NULL; 605 fs_devices->open_devices--; 606 } 607 if (device->writeable) { 608 list_del_init(&device->dev_alloc_list); 609 device->writeable = 0; 610 if (!device->is_tgtdev_for_dev_replace) 611 fs_devices->rw_devices--; 612 } 613 list_del_init(&device->dev_list); 614 fs_devices->num_devices--; 615 rcu_string_free(device->name); 616 kfree(device); 617 } 618 619 if (fs_devices->seed) { 620 fs_devices = fs_devices->seed; 621 goto again; 622 } 623 624 fs_devices->latest_bdev = latest_bdev; 625 fs_devices->latest_devid = latest_devid; 626 fs_devices->latest_trans = latest_transid; 627 628 mutex_unlock(&uuid_mutex); 629 } 630 631 static void __free_device(struct work_struct *work) 632 { 633 struct btrfs_device *device; 634 635 device = container_of(work, struct btrfs_device, rcu_work); 636 637 if (device->bdev) 638 blkdev_put(device->bdev, device->mode); 639 640 rcu_string_free(device->name); 641 kfree(device); 642 } 643 644 static void free_device(struct rcu_head *head) 645 { 646 struct btrfs_device *device; 647 648 device = container_of(head, struct btrfs_device, rcu); 649 650 INIT_WORK(&device->rcu_work, __free_device); 651 schedule_work(&device->rcu_work); 652 } 653 654 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 655 { 656 struct btrfs_device *device; 657 658 if (--fs_devices->opened > 0) 659 return 0; 660 661 mutex_lock(&fs_devices->device_list_mutex); 662 list_for_each_entry(device, &fs_devices->devices, dev_list) { 663 struct btrfs_device *new_device; 664 struct rcu_string *name; 665 666 if (device->bdev) 667 fs_devices->open_devices--; 668 669 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 670 list_del_init(&device->dev_alloc_list); 671 fs_devices->rw_devices--; 672 } 673 674 if (device->can_discard) 675 fs_devices->num_can_discard--; 676 if (device->missing) 677 fs_devices->missing_devices--; 678 679 new_device = btrfs_alloc_device(NULL, &device->devid, 680 device->uuid); 681 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 682 683 /* Safe because we are under uuid_mutex */ 684 if (device->name) { 685 name = rcu_string_strdup(device->name->str, GFP_NOFS); 686 BUG_ON(!name); /* -ENOMEM */ 687 rcu_assign_pointer(new_device->name, name); 688 } 689 690 list_replace_rcu(&device->dev_list, &new_device->dev_list); 691 new_device->fs_devices = device->fs_devices; 692 693 call_rcu(&device->rcu, free_device); 694 } 695 mutex_unlock(&fs_devices->device_list_mutex); 696 697 WARN_ON(fs_devices->open_devices); 698 WARN_ON(fs_devices->rw_devices); 699 fs_devices->opened = 0; 700 fs_devices->seeding = 0; 701 702 return 0; 703 } 704 705 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 706 { 707 struct btrfs_fs_devices *seed_devices = NULL; 708 int ret; 709 710 mutex_lock(&uuid_mutex); 711 ret = __btrfs_close_devices(fs_devices); 712 if (!fs_devices->opened) { 713 seed_devices = fs_devices->seed; 714 fs_devices->seed = NULL; 715 } 716 mutex_unlock(&uuid_mutex); 717 718 while (seed_devices) { 719 fs_devices = seed_devices; 720 seed_devices = fs_devices->seed; 721 __btrfs_close_devices(fs_devices); 722 free_fs_devices(fs_devices); 723 } 724 /* 725 * Wait for rcu kworkers under __btrfs_close_devices 726 * to finish all blkdev_puts so device is really 727 * free when umount is done. 728 */ 729 rcu_barrier(); 730 return ret; 731 } 732 733 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 734 fmode_t flags, void *holder) 735 { 736 struct request_queue *q; 737 struct block_device *bdev; 738 struct list_head *head = &fs_devices->devices; 739 struct btrfs_device *device; 740 struct block_device *latest_bdev = NULL; 741 struct buffer_head *bh; 742 struct btrfs_super_block *disk_super; 743 u64 latest_devid = 0; 744 u64 latest_transid = 0; 745 u64 devid; 746 int seeding = 1; 747 int ret = 0; 748 749 flags |= FMODE_EXCL; 750 751 list_for_each_entry(device, head, dev_list) { 752 if (device->bdev) 753 continue; 754 if (!device->name) 755 continue; 756 757 /* Just open everything we can; ignore failures here */ 758 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 759 &bdev, &bh)) 760 continue; 761 762 disk_super = (struct btrfs_super_block *)bh->b_data; 763 devid = btrfs_stack_device_id(&disk_super->dev_item); 764 if (devid != device->devid) 765 goto error_brelse; 766 767 if (memcmp(device->uuid, disk_super->dev_item.uuid, 768 BTRFS_UUID_SIZE)) 769 goto error_brelse; 770 771 device->generation = btrfs_super_generation(disk_super); 772 if (!latest_transid || device->generation > latest_transid) { 773 latest_devid = devid; 774 latest_transid = device->generation; 775 latest_bdev = bdev; 776 } 777 778 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 779 device->writeable = 0; 780 } else { 781 device->writeable = !bdev_read_only(bdev); 782 seeding = 0; 783 } 784 785 q = bdev_get_queue(bdev); 786 if (blk_queue_discard(q)) { 787 device->can_discard = 1; 788 fs_devices->num_can_discard++; 789 } 790 791 device->bdev = bdev; 792 device->in_fs_metadata = 0; 793 device->mode = flags; 794 795 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 796 fs_devices->rotating = 1; 797 798 fs_devices->open_devices++; 799 if (device->writeable && 800 device->devid != BTRFS_DEV_REPLACE_DEVID) { 801 fs_devices->rw_devices++; 802 list_add(&device->dev_alloc_list, 803 &fs_devices->alloc_list); 804 } 805 brelse(bh); 806 continue; 807 808 error_brelse: 809 brelse(bh); 810 blkdev_put(bdev, flags); 811 continue; 812 } 813 if (fs_devices->open_devices == 0) { 814 ret = -EINVAL; 815 goto out; 816 } 817 fs_devices->seeding = seeding; 818 fs_devices->opened = 1; 819 fs_devices->latest_bdev = latest_bdev; 820 fs_devices->latest_devid = latest_devid; 821 fs_devices->latest_trans = latest_transid; 822 fs_devices->total_rw_bytes = 0; 823 out: 824 return ret; 825 } 826 827 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 828 fmode_t flags, void *holder) 829 { 830 int ret; 831 832 mutex_lock(&uuid_mutex); 833 if (fs_devices->opened) { 834 fs_devices->opened++; 835 ret = 0; 836 } else { 837 ret = __btrfs_open_devices(fs_devices, flags, holder); 838 } 839 mutex_unlock(&uuid_mutex); 840 return ret; 841 } 842 843 /* 844 * Look for a btrfs signature on a device. This may be called out of the mount path 845 * and we are not allowed to call set_blocksize during the scan. The superblock 846 * is read via pagecache 847 */ 848 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 849 struct btrfs_fs_devices **fs_devices_ret) 850 { 851 struct btrfs_super_block *disk_super; 852 struct block_device *bdev; 853 struct page *page; 854 void *p; 855 int ret = -EINVAL; 856 u64 devid; 857 u64 transid; 858 u64 total_devices; 859 u64 bytenr; 860 pgoff_t index; 861 862 /* 863 * we would like to check all the supers, but that would make 864 * a btrfs mount succeed after a mkfs from a different FS. 865 * So, we need to add a special mount option to scan for 866 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 867 */ 868 bytenr = btrfs_sb_offset(0); 869 flags |= FMODE_EXCL; 870 mutex_lock(&uuid_mutex); 871 872 bdev = blkdev_get_by_path(path, flags, holder); 873 874 if (IS_ERR(bdev)) { 875 ret = PTR_ERR(bdev); 876 goto error; 877 } 878 879 /* make sure our super fits in the device */ 880 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 881 goto error_bdev_put; 882 883 /* make sure our super fits in the page */ 884 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 885 goto error_bdev_put; 886 887 /* make sure our super doesn't straddle pages on disk */ 888 index = bytenr >> PAGE_CACHE_SHIFT; 889 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 890 goto error_bdev_put; 891 892 /* pull in the page with our super */ 893 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 894 index, GFP_NOFS); 895 896 if (IS_ERR_OR_NULL(page)) 897 goto error_bdev_put; 898 899 p = kmap(page); 900 901 /* align our pointer to the offset of the super block */ 902 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 903 904 if (btrfs_super_bytenr(disk_super) != bytenr || 905 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 906 goto error_unmap; 907 908 devid = btrfs_stack_device_id(&disk_super->dev_item); 909 transid = btrfs_super_generation(disk_super); 910 total_devices = btrfs_super_num_devices(disk_super); 911 912 if (disk_super->label[0]) { 913 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 914 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 915 printk(KERN_INFO "btrfs: device label %s ", disk_super->label); 916 } else { 917 printk(KERN_INFO "btrfs: device fsid %pU ", disk_super->fsid); 918 } 919 920 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 921 922 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 923 if (!ret && fs_devices_ret) 924 (*fs_devices_ret)->total_devices = total_devices; 925 926 error_unmap: 927 kunmap(page); 928 page_cache_release(page); 929 930 error_bdev_put: 931 blkdev_put(bdev, flags); 932 error: 933 mutex_unlock(&uuid_mutex); 934 return ret; 935 } 936 937 /* helper to account the used device space in the range */ 938 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 939 u64 end, u64 *length) 940 { 941 struct btrfs_key key; 942 struct btrfs_root *root = device->dev_root; 943 struct btrfs_dev_extent *dev_extent; 944 struct btrfs_path *path; 945 u64 extent_end; 946 int ret; 947 int slot; 948 struct extent_buffer *l; 949 950 *length = 0; 951 952 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 953 return 0; 954 955 path = btrfs_alloc_path(); 956 if (!path) 957 return -ENOMEM; 958 path->reada = 2; 959 960 key.objectid = device->devid; 961 key.offset = start; 962 key.type = BTRFS_DEV_EXTENT_KEY; 963 964 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 965 if (ret < 0) 966 goto out; 967 if (ret > 0) { 968 ret = btrfs_previous_item(root, path, key.objectid, key.type); 969 if (ret < 0) 970 goto out; 971 } 972 973 while (1) { 974 l = path->nodes[0]; 975 slot = path->slots[0]; 976 if (slot >= btrfs_header_nritems(l)) { 977 ret = btrfs_next_leaf(root, path); 978 if (ret == 0) 979 continue; 980 if (ret < 0) 981 goto out; 982 983 break; 984 } 985 btrfs_item_key_to_cpu(l, &key, slot); 986 987 if (key.objectid < device->devid) 988 goto next; 989 990 if (key.objectid > device->devid) 991 break; 992 993 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 994 goto next; 995 996 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 997 extent_end = key.offset + btrfs_dev_extent_length(l, 998 dev_extent); 999 if (key.offset <= start && extent_end > end) { 1000 *length = end - start + 1; 1001 break; 1002 } else if (key.offset <= start && extent_end > start) 1003 *length += extent_end - start; 1004 else if (key.offset > start && extent_end <= end) 1005 *length += extent_end - key.offset; 1006 else if (key.offset > start && key.offset <= end) { 1007 *length += end - key.offset + 1; 1008 break; 1009 } else if (key.offset > end) 1010 break; 1011 1012 next: 1013 path->slots[0]++; 1014 } 1015 ret = 0; 1016 out: 1017 btrfs_free_path(path); 1018 return ret; 1019 } 1020 1021 static int contains_pending_extent(struct btrfs_trans_handle *trans, 1022 struct btrfs_device *device, 1023 u64 *start, u64 len) 1024 { 1025 struct extent_map *em; 1026 int ret = 0; 1027 1028 list_for_each_entry(em, &trans->transaction->pending_chunks, list) { 1029 struct map_lookup *map; 1030 int i; 1031 1032 map = (struct map_lookup *)em->bdev; 1033 for (i = 0; i < map->num_stripes; i++) { 1034 if (map->stripes[i].dev != device) 1035 continue; 1036 if (map->stripes[i].physical >= *start + len || 1037 map->stripes[i].physical + em->orig_block_len <= 1038 *start) 1039 continue; 1040 *start = map->stripes[i].physical + 1041 em->orig_block_len; 1042 ret = 1; 1043 } 1044 } 1045 1046 return ret; 1047 } 1048 1049 1050 /* 1051 * find_free_dev_extent - find free space in the specified device 1052 * @device: the device which we search the free space in 1053 * @num_bytes: the size of the free space that we need 1054 * @start: store the start of the free space. 1055 * @len: the size of the free space. that we find, or the size of the max 1056 * free space if we don't find suitable free space 1057 * 1058 * this uses a pretty simple search, the expectation is that it is 1059 * called very infrequently and that a given device has a small number 1060 * of extents 1061 * 1062 * @start is used to store the start of the free space if we find. But if we 1063 * don't find suitable free space, it will be used to store the start position 1064 * of the max free space. 1065 * 1066 * @len is used to store the size of the free space that we find. 1067 * But if we don't find suitable free space, it is used to store the size of 1068 * the max free space. 1069 */ 1070 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1071 struct btrfs_device *device, u64 num_bytes, 1072 u64 *start, u64 *len) 1073 { 1074 struct btrfs_key key; 1075 struct btrfs_root *root = device->dev_root; 1076 struct btrfs_dev_extent *dev_extent; 1077 struct btrfs_path *path; 1078 u64 hole_size; 1079 u64 max_hole_start; 1080 u64 max_hole_size; 1081 u64 extent_end; 1082 u64 search_start; 1083 u64 search_end = device->total_bytes; 1084 int ret; 1085 int slot; 1086 struct extent_buffer *l; 1087 1088 /* FIXME use last free of some kind */ 1089 1090 /* we don't want to overwrite the superblock on the drive, 1091 * so we make sure to start at an offset of at least 1MB 1092 */ 1093 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return -ENOMEM; 1098 again: 1099 max_hole_start = search_start; 1100 max_hole_size = 0; 1101 hole_size = 0; 1102 1103 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1104 ret = -ENOSPC; 1105 goto out; 1106 } 1107 1108 path->reada = 2; 1109 path->search_commit_root = 1; 1110 path->skip_locking = 1; 1111 1112 key.objectid = device->devid; 1113 key.offset = search_start; 1114 key.type = BTRFS_DEV_EXTENT_KEY; 1115 1116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1117 if (ret < 0) 1118 goto out; 1119 if (ret > 0) { 1120 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1121 if (ret < 0) 1122 goto out; 1123 } 1124 1125 while (1) { 1126 l = path->nodes[0]; 1127 slot = path->slots[0]; 1128 if (slot >= btrfs_header_nritems(l)) { 1129 ret = btrfs_next_leaf(root, path); 1130 if (ret == 0) 1131 continue; 1132 if (ret < 0) 1133 goto out; 1134 1135 break; 1136 } 1137 btrfs_item_key_to_cpu(l, &key, slot); 1138 1139 if (key.objectid < device->devid) 1140 goto next; 1141 1142 if (key.objectid > device->devid) 1143 break; 1144 1145 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 1146 goto next; 1147 1148 if (key.offset > search_start) { 1149 hole_size = key.offset - search_start; 1150 1151 /* 1152 * Have to check before we set max_hole_start, otherwise 1153 * we could end up sending back this offset anyway. 1154 */ 1155 if (contains_pending_extent(trans, device, 1156 &search_start, 1157 hole_size)) 1158 hole_size = 0; 1159 1160 if (hole_size > max_hole_size) { 1161 max_hole_start = search_start; 1162 max_hole_size = hole_size; 1163 } 1164 1165 /* 1166 * If this free space is greater than which we need, 1167 * it must be the max free space that we have found 1168 * until now, so max_hole_start must point to the start 1169 * of this free space and the length of this free space 1170 * is stored in max_hole_size. Thus, we return 1171 * max_hole_start and max_hole_size and go back to the 1172 * caller. 1173 */ 1174 if (hole_size >= num_bytes) { 1175 ret = 0; 1176 goto out; 1177 } 1178 } 1179 1180 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1181 extent_end = key.offset + btrfs_dev_extent_length(l, 1182 dev_extent); 1183 if (extent_end > search_start) 1184 search_start = extent_end; 1185 next: 1186 path->slots[0]++; 1187 cond_resched(); 1188 } 1189 1190 /* 1191 * At this point, search_start should be the end of 1192 * allocated dev extents, and when shrinking the device, 1193 * search_end may be smaller than search_start. 1194 */ 1195 if (search_end > search_start) 1196 hole_size = search_end - search_start; 1197 1198 if (hole_size > max_hole_size) { 1199 max_hole_start = search_start; 1200 max_hole_size = hole_size; 1201 } 1202 1203 if (contains_pending_extent(trans, device, &search_start, hole_size)) { 1204 btrfs_release_path(path); 1205 goto again; 1206 } 1207 1208 /* See above. */ 1209 if (hole_size < num_bytes) 1210 ret = -ENOSPC; 1211 else 1212 ret = 0; 1213 1214 out: 1215 btrfs_free_path(path); 1216 *start = max_hole_start; 1217 if (len) 1218 *len = max_hole_size; 1219 return ret; 1220 } 1221 1222 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1223 struct btrfs_device *device, 1224 u64 start) 1225 { 1226 int ret; 1227 struct btrfs_path *path; 1228 struct btrfs_root *root = device->dev_root; 1229 struct btrfs_key key; 1230 struct btrfs_key found_key; 1231 struct extent_buffer *leaf = NULL; 1232 struct btrfs_dev_extent *extent = NULL; 1233 1234 path = btrfs_alloc_path(); 1235 if (!path) 1236 return -ENOMEM; 1237 1238 key.objectid = device->devid; 1239 key.offset = start; 1240 key.type = BTRFS_DEV_EXTENT_KEY; 1241 again: 1242 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1243 if (ret > 0) { 1244 ret = btrfs_previous_item(root, path, key.objectid, 1245 BTRFS_DEV_EXTENT_KEY); 1246 if (ret) 1247 goto out; 1248 leaf = path->nodes[0]; 1249 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1250 extent = btrfs_item_ptr(leaf, path->slots[0], 1251 struct btrfs_dev_extent); 1252 BUG_ON(found_key.offset > start || found_key.offset + 1253 btrfs_dev_extent_length(leaf, extent) < start); 1254 key = found_key; 1255 btrfs_release_path(path); 1256 goto again; 1257 } else if (ret == 0) { 1258 leaf = path->nodes[0]; 1259 extent = btrfs_item_ptr(leaf, path->slots[0], 1260 struct btrfs_dev_extent); 1261 } else { 1262 btrfs_error(root->fs_info, ret, "Slot search failed"); 1263 goto out; 1264 } 1265 1266 if (device->bytes_used > 0) { 1267 u64 len = btrfs_dev_extent_length(leaf, extent); 1268 device->bytes_used -= len; 1269 spin_lock(&root->fs_info->free_chunk_lock); 1270 root->fs_info->free_chunk_space += len; 1271 spin_unlock(&root->fs_info->free_chunk_lock); 1272 } 1273 ret = btrfs_del_item(trans, root, path); 1274 if (ret) { 1275 btrfs_error(root->fs_info, ret, 1276 "Failed to remove dev extent item"); 1277 } 1278 out: 1279 btrfs_free_path(path); 1280 return ret; 1281 } 1282 1283 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1284 struct btrfs_device *device, 1285 u64 chunk_tree, u64 chunk_objectid, 1286 u64 chunk_offset, u64 start, u64 num_bytes) 1287 { 1288 int ret; 1289 struct btrfs_path *path; 1290 struct btrfs_root *root = device->dev_root; 1291 struct btrfs_dev_extent *extent; 1292 struct extent_buffer *leaf; 1293 struct btrfs_key key; 1294 1295 WARN_ON(!device->in_fs_metadata); 1296 WARN_ON(device->is_tgtdev_for_dev_replace); 1297 path = btrfs_alloc_path(); 1298 if (!path) 1299 return -ENOMEM; 1300 1301 key.objectid = device->devid; 1302 key.offset = start; 1303 key.type = BTRFS_DEV_EXTENT_KEY; 1304 ret = btrfs_insert_empty_item(trans, root, path, &key, 1305 sizeof(*extent)); 1306 if (ret) 1307 goto out; 1308 1309 leaf = path->nodes[0]; 1310 extent = btrfs_item_ptr(leaf, path->slots[0], 1311 struct btrfs_dev_extent); 1312 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1313 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1314 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1315 1316 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1317 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1318 1319 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1320 btrfs_mark_buffer_dirty(leaf); 1321 out: 1322 btrfs_free_path(path); 1323 return ret; 1324 } 1325 1326 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1327 { 1328 struct extent_map_tree *em_tree; 1329 struct extent_map *em; 1330 struct rb_node *n; 1331 u64 ret = 0; 1332 1333 em_tree = &fs_info->mapping_tree.map_tree; 1334 read_lock(&em_tree->lock); 1335 n = rb_last(&em_tree->map); 1336 if (n) { 1337 em = rb_entry(n, struct extent_map, rb_node); 1338 ret = em->start + em->len; 1339 } 1340 read_unlock(&em_tree->lock); 1341 1342 return ret; 1343 } 1344 1345 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1346 u64 *devid_ret) 1347 { 1348 int ret; 1349 struct btrfs_key key; 1350 struct btrfs_key found_key; 1351 struct btrfs_path *path; 1352 1353 path = btrfs_alloc_path(); 1354 if (!path) 1355 return -ENOMEM; 1356 1357 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1358 key.type = BTRFS_DEV_ITEM_KEY; 1359 key.offset = (u64)-1; 1360 1361 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1362 if (ret < 0) 1363 goto error; 1364 1365 BUG_ON(ret == 0); /* Corruption */ 1366 1367 ret = btrfs_previous_item(fs_info->chunk_root, path, 1368 BTRFS_DEV_ITEMS_OBJECTID, 1369 BTRFS_DEV_ITEM_KEY); 1370 if (ret) { 1371 *devid_ret = 1; 1372 } else { 1373 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1374 path->slots[0]); 1375 *devid_ret = found_key.offset + 1; 1376 } 1377 ret = 0; 1378 error: 1379 btrfs_free_path(path); 1380 return ret; 1381 } 1382 1383 /* 1384 * the device information is stored in the chunk root 1385 * the btrfs_device struct should be fully filled in 1386 */ 1387 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1388 struct btrfs_root *root, 1389 struct btrfs_device *device) 1390 { 1391 int ret; 1392 struct btrfs_path *path; 1393 struct btrfs_dev_item *dev_item; 1394 struct extent_buffer *leaf; 1395 struct btrfs_key key; 1396 unsigned long ptr; 1397 1398 root = root->fs_info->chunk_root; 1399 1400 path = btrfs_alloc_path(); 1401 if (!path) 1402 return -ENOMEM; 1403 1404 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1405 key.type = BTRFS_DEV_ITEM_KEY; 1406 key.offset = device->devid; 1407 1408 ret = btrfs_insert_empty_item(trans, root, path, &key, 1409 sizeof(*dev_item)); 1410 if (ret) 1411 goto out; 1412 1413 leaf = path->nodes[0]; 1414 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1415 1416 btrfs_set_device_id(leaf, dev_item, device->devid); 1417 btrfs_set_device_generation(leaf, dev_item, 0); 1418 btrfs_set_device_type(leaf, dev_item, device->type); 1419 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1420 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1421 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1422 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); 1423 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1424 btrfs_set_device_group(leaf, dev_item, 0); 1425 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1426 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1427 btrfs_set_device_start_offset(leaf, dev_item, 0); 1428 1429 ptr = btrfs_device_uuid(dev_item); 1430 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1431 ptr = btrfs_device_fsid(dev_item); 1432 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1433 btrfs_mark_buffer_dirty(leaf); 1434 1435 ret = 0; 1436 out: 1437 btrfs_free_path(path); 1438 return ret; 1439 } 1440 1441 static int btrfs_rm_dev_item(struct btrfs_root *root, 1442 struct btrfs_device *device) 1443 { 1444 int ret; 1445 struct btrfs_path *path; 1446 struct btrfs_key key; 1447 struct btrfs_trans_handle *trans; 1448 1449 root = root->fs_info->chunk_root; 1450 1451 path = btrfs_alloc_path(); 1452 if (!path) 1453 return -ENOMEM; 1454 1455 trans = btrfs_start_transaction(root, 0); 1456 if (IS_ERR(trans)) { 1457 btrfs_free_path(path); 1458 return PTR_ERR(trans); 1459 } 1460 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1461 key.type = BTRFS_DEV_ITEM_KEY; 1462 key.offset = device->devid; 1463 lock_chunks(root); 1464 1465 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1466 if (ret < 0) 1467 goto out; 1468 1469 if (ret > 0) { 1470 ret = -ENOENT; 1471 goto out; 1472 } 1473 1474 ret = btrfs_del_item(trans, root, path); 1475 if (ret) 1476 goto out; 1477 out: 1478 btrfs_free_path(path); 1479 unlock_chunks(root); 1480 btrfs_commit_transaction(trans, root); 1481 return ret; 1482 } 1483 1484 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1485 { 1486 struct btrfs_device *device; 1487 struct btrfs_device *next_device; 1488 struct block_device *bdev; 1489 struct buffer_head *bh = NULL; 1490 struct btrfs_super_block *disk_super; 1491 struct btrfs_fs_devices *cur_devices; 1492 u64 all_avail; 1493 u64 devid; 1494 u64 num_devices; 1495 u8 *dev_uuid; 1496 unsigned seq; 1497 int ret = 0; 1498 bool clear_super = false; 1499 1500 mutex_lock(&uuid_mutex); 1501 1502 do { 1503 seq = read_seqbegin(&root->fs_info->profiles_lock); 1504 1505 all_avail = root->fs_info->avail_data_alloc_bits | 1506 root->fs_info->avail_system_alloc_bits | 1507 root->fs_info->avail_metadata_alloc_bits; 1508 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1509 1510 num_devices = root->fs_info->fs_devices->num_devices; 1511 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1512 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1513 WARN_ON(num_devices < 1); 1514 num_devices--; 1515 } 1516 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1517 1518 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1519 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1520 goto out; 1521 } 1522 1523 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1524 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1525 goto out; 1526 } 1527 1528 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1529 root->fs_info->fs_devices->rw_devices <= 2) { 1530 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1531 goto out; 1532 } 1533 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1534 root->fs_info->fs_devices->rw_devices <= 3) { 1535 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1536 goto out; 1537 } 1538 1539 if (strcmp(device_path, "missing") == 0) { 1540 struct list_head *devices; 1541 struct btrfs_device *tmp; 1542 1543 device = NULL; 1544 devices = &root->fs_info->fs_devices->devices; 1545 /* 1546 * It is safe to read the devices since the volume_mutex 1547 * is held. 1548 */ 1549 list_for_each_entry(tmp, devices, dev_list) { 1550 if (tmp->in_fs_metadata && 1551 !tmp->is_tgtdev_for_dev_replace && 1552 !tmp->bdev) { 1553 device = tmp; 1554 break; 1555 } 1556 } 1557 bdev = NULL; 1558 bh = NULL; 1559 disk_super = NULL; 1560 if (!device) { 1561 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1562 goto out; 1563 } 1564 } else { 1565 ret = btrfs_get_bdev_and_sb(device_path, 1566 FMODE_WRITE | FMODE_EXCL, 1567 root->fs_info->bdev_holder, 0, 1568 &bdev, &bh); 1569 if (ret) 1570 goto out; 1571 disk_super = (struct btrfs_super_block *)bh->b_data; 1572 devid = btrfs_stack_device_id(&disk_super->dev_item); 1573 dev_uuid = disk_super->dev_item.uuid; 1574 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1575 disk_super->fsid); 1576 if (!device) { 1577 ret = -ENOENT; 1578 goto error_brelse; 1579 } 1580 } 1581 1582 if (device->is_tgtdev_for_dev_replace) { 1583 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1584 goto error_brelse; 1585 } 1586 1587 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1588 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1589 goto error_brelse; 1590 } 1591 1592 if (device->writeable) { 1593 lock_chunks(root); 1594 list_del_init(&device->dev_alloc_list); 1595 unlock_chunks(root); 1596 root->fs_info->fs_devices->rw_devices--; 1597 clear_super = true; 1598 } 1599 1600 mutex_unlock(&uuid_mutex); 1601 ret = btrfs_shrink_device(device, 0); 1602 mutex_lock(&uuid_mutex); 1603 if (ret) 1604 goto error_undo; 1605 1606 /* 1607 * TODO: the superblock still includes this device in its num_devices 1608 * counter although write_all_supers() is not locked out. This 1609 * could give a filesystem state which requires a degraded mount. 1610 */ 1611 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1612 if (ret) 1613 goto error_undo; 1614 1615 spin_lock(&root->fs_info->free_chunk_lock); 1616 root->fs_info->free_chunk_space = device->total_bytes - 1617 device->bytes_used; 1618 spin_unlock(&root->fs_info->free_chunk_lock); 1619 1620 device->in_fs_metadata = 0; 1621 btrfs_scrub_cancel_dev(root->fs_info, device); 1622 1623 /* 1624 * the device list mutex makes sure that we don't change 1625 * the device list while someone else is writing out all 1626 * the device supers. Whoever is writing all supers, should 1627 * lock the device list mutex before getting the number of 1628 * devices in the super block (super_copy). Conversely, 1629 * whoever updates the number of devices in the super block 1630 * (super_copy) should hold the device list mutex. 1631 */ 1632 1633 cur_devices = device->fs_devices; 1634 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1635 list_del_rcu(&device->dev_list); 1636 1637 device->fs_devices->num_devices--; 1638 device->fs_devices->total_devices--; 1639 1640 if (device->missing) 1641 root->fs_info->fs_devices->missing_devices--; 1642 1643 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1644 struct btrfs_device, dev_list); 1645 if (device->bdev == root->fs_info->sb->s_bdev) 1646 root->fs_info->sb->s_bdev = next_device->bdev; 1647 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1648 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1649 1650 if (device->bdev) 1651 device->fs_devices->open_devices--; 1652 1653 call_rcu(&device->rcu, free_device); 1654 1655 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1656 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1657 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1658 1659 if (cur_devices->open_devices == 0) { 1660 struct btrfs_fs_devices *fs_devices; 1661 fs_devices = root->fs_info->fs_devices; 1662 while (fs_devices) { 1663 if (fs_devices->seed == cur_devices) 1664 break; 1665 fs_devices = fs_devices->seed; 1666 } 1667 fs_devices->seed = cur_devices->seed; 1668 cur_devices->seed = NULL; 1669 lock_chunks(root); 1670 __btrfs_close_devices(cur_devices); 1671 unlock_chunks(root); 1672 free_fs_devices(cur_devices); 1673 } 1674 1675 root->fs_info->num_tolerated_disk_barrier_failures = 1676 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1677 1678 /* 1679 * at this point, the device is zero sized. We want to 1680 * remove it from the devices list and zero out the old super 1681 */ 1682 if (clear_super && disk_super) { 1683 /* make sure this device isn't detected as part of 1684 * the FS anymore 1685 */ 1686 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1687 set_buffer_dirty(bh); 1688 sync_dirty_buffer(bh); 1689 } 1690 1691 ret = 0; 1692 1693 /* Notify udev that device has changed */ 1694 if (bdev) 1695 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1696 1697 error_brelse: 1698 brelse(bh); 1699 if (bdev) 1700 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1701 out: 1702 mutex_unlock(&uuid_mutex); 1703 return ret; 1704 error_undo: 1705 if (device->writeable) { 1706 lock_chunks(root); 1707 list_add(&device->dev_alloc_list, 1708 &root->fs_info->fs_devices->alloc_list); 1709 unlock_chunks(root); 1710 root->fs_info->fs_devices->rw_devices++; 1711 } 1712 goto error_brelse; 1713 } 1714 1715 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info, 1716 struct btrfs_device *srcdev) 1717 { 1718 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1719 1720 list_del_rcu(&srcdev->dev_list); 1721 list_del_rcu(&srcdev->dev_alloc_list); 1722 fs_info->fs_devices->num_devices--; 1723 if (srcdev->missing) { 1724 fs_info->fs_devices->missing_devices--; 1725 fs_info->fs_devices->rw_devices++; 1726 } 1727 if (srcdev->can_discard) 1728 fs_info->fs_devices->num_can_discard--; 1729 if (srcdev->bdev) { 1730 fs_info->fs_devices->open_devices--; 1731 1732 /* zero out the old super */ 1733 btrfs_scratch_superblock(srcdev); 1734 } 1735 1736 call_rcu(&srcdev->rcu, free_device); 1737 } 1738 1739 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 1740 struct btrfs_device *tgtdev) 1741 { 1742 struct btrfs_device *next_device; 1743 1744 WARN_ON(!tgtdev); 1745 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1746 if (tgtdev->bdev) { 1747 btrfs_scratch_superblock(tgtdev); 1748 fs_info->fs_devices->open_devices--; 1749 } 1750 fs_info->fs_devices->num_devices--; 1751 if (tgtdev->can_discard) 1752 fs_info->fs_devices->num_can_discard++; 1753 1754 next_device = list_entry(fs_info->fs_devices->devices.next, 1755 struct btrfs_device, dev_list); 1756 if (tgtdev->bdev == fs_info->sb->s_bdev) 1757 fs_info->sb->s_bdev = next_device->bdev; 1758 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 1759 fs_info->fs_devices->latest_bdev = next_device->bdev; 1760 list_del_rcu(&tgtdev->dev_list); 1761 1762 call_rcu(&tgtdev->rcu, free_device); 1763 1764 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1765 } 1766 1767 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 1768 struct btrfs_device **device) 1769 { 1770 int ret = 0; 1771 struct btrfs_super_block *disk_super; 1772 u64 devid; 1773 u8 *dev_uuid; 1774 struct block_device *bdev; 1775 struct buffer_head *bh; 1776 1777 *device = NULL; 1778 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 1779 root->fs_info->bdev_holder, 0, &bdev, &bh); 1780 if (ret) 1781 return ret; 1782 disk_super = (struct btrfs_super_block *)bh->b_data; 1783 devid = btrfs_stack_device_id(&disk_super->dev_item); 1784 dev_uuid = disk_super->dev_item.uuid; 1785 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1786 disk_super->fsid); 1787 brelse(bh); 1788 if (!*device) 1789 ret = -ENOENT; 1790 blkdev_put(bdev, FMODE_READ); 1791 return ret; 1792 } 1793 1794 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 1795 char *device_path, 1796 struct btrfs_device **device) 1797 { 1798 *device = NULL; 1799 if (strcmp(device_path, "missing") == 0) { 1800 struct list_head *devices; 1801 struct btrfs_device *tmp; 1802 1803 devices = &root->fs_info->fs_devices->devices; 1804 /* 1805 * It is safe to read the devices since the volume_mutex 1806 * is held by the caller. 1807 */ 1808 list_for_each_entry(tmp, devices, dev_list) { 1809 if (tmp->in_fs_metadata && !tmp->bdev) { 1810 *device = tmp; 1811 break; 1812 } 1813 } 1814 1815 if (!*device) { 1816 pr_err("btrfs: no missing device found\n"); 1817 return -ENOENT; 1818 } 1819 1820 return 0; 1821 } else { 1822 return btrfs_find_device_by_path(root, device_path, device); 1823 } 1824 } 1825 1826 /* 1827 * does all the dirty work required for changing file system's UUID. 1828 */ 1829 static int btrfs_prepare_sprout(struct btrfs_root *root) 1830 { 1831 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1832 struct btrfs_fs_devices *old_devices; 1833 struct btrfs_fs_devices *seed_devices; 1834 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1835 struct btrfs_device *device; 1836 u64 super_flags; 1837 1838 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1839 if (!fs_devices->seeding) 1840 return -EINVAL; 1841 1842 seed_devices = __alloc_fs_devices(); 1843 if (IS_ERR(seed_devices)) 1844 return PTR_ERR(seed_devices); 1845 1846 old_devices = clone_fs_devices(fs_devices); 1847 if (IS_ERR(old_devices)) { 1848 kfree(seed_devices); 1849 return PTR_ERR(old_devices); 1850 } 1851 1852 list_add(&old_devices->list, &fs_uuids); 1853 1854 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1855 seed_devices->opened = 1; 1856 INIT_LIST_HEAD(&seed_devices->devices); 1857 INIT_LIST_HEAD(&seed_devices->alloc_list); 1858 mutex_init(&seed_devices->device_list_mutex); 1859 1860 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1861 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1862 synchronize_rcu); 1863 1864 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1865 list_for_each_entry(device, &seed_devices->devices, dev_list) { 1866 device->fs_devices = seed_devices; 1867 } 1868 1869 fs_devices->seeding = 0; 1870 fs_devices->num_devices = 0; 1871 fs_devices->open_devices = 0; 1872 fs_devices->total_devices = 0; 1873 fs_devices->seed = seed_devices; 1874 1875 generate_random_uuid(fs_devices->fsid); 1876 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1877 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1878 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1879 1880 super_flags = btrfs_super_flags(disk_super) & 1881 ~BTRFS_SUPER_FLAG_SEEDING; 1882 btrfs_set_super_flags(disk_super, super_flags); 1883 1884 return 0; 1885 } 1886 1887 /* 1888 * strore the expected generation for seed devices in device items. 1889 */ 1890 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 1891 struct btrfs_root *root) 1892 { 1893 struct btrfs_path *path; 1894 struct extent_buffer *leaf; 1895 struct btrfs_dev_item *dev_item; 1896 struct btrfs_device *device; 1897 struct btrfs_key key; 1898 u8 fs_uuid[BTRFS_UUID_SIZE]; 1899 u8 dev_uuid[BTRFS_UUID_SIZE]; 1900 u64 devid; 1901 int ret; 1902 1903 path = btrfs_alloc_path(); 1904 if (!path) 1905 return -ENOMEM; 1906 1907 root = root->fs_info->chunk_root; 1908 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1909 key.offset = 0; 1910 key.type = BTRFS_DEV_ITEM_KEY; 1911 1912 while (1) { 1913 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1914 if (ret < 0) 1915 goto error; 1916 1917 leaf = path->nodes[0]; 1918 next_slot: 1919 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1920 ret = btrfs_next_leaf(root, path); 1921 if (ret > 0) 1922 break; 1923 if (ret < 0) 1924 goto error; 1925 leaf = path->nodes[0]; 1926 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1927 btrfs_release_path(path); 1928 continue; 1929 } 1930 1931 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1932 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 1933 key.type != BTRFS_DEV_ITEM_KEY) 1934 break; 1935 1936 dev_item = btrfs_item_ptr(leaf, path->slots[0], 1937 struct btrfs_dev_item); 1938 devid = btrfs_device_id(leaf, dev_item); 1939 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 1940 BTRFS_UUID_SIZE); 1941 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 1942 BTRFS_UUID_SIZE); 1943 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1944 fs_uuid); 1945 BUG_ON(!device); /* Logic error */ 1946 1947 if (device->fs_devices->seeding) { 1948 btrfs_set_device_generation(leaf, dev_item, 1949 device->generation); 1950 btrfs_mark_buffer_dirty(leaf); 1951 } 1952 1953 path->slots[0]++; 1954 goto next_slot; 1955 } 1956 ret = 0; 1957 error: 1958 btrfs_free_path(path); 1959 return ret; 1960 } 1961 1962 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 1963 { 1964 struct request_queue *q; 1965 struct btrfs_trans_handle *trans; 1966 struct btrfs_device *device; 1967 struct block_device *bdev; 1968 struct list_head *devices; 1969 struct super_block *sb = root->fs_info->sb; 1970 struct rcu_string *name; 1971 u64 total_bytes; 1972 int seeding_dev = 0; 1973 int ret = 0; 1974 1975 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 1976 return -EROFS; 1977 1978 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 1979 root->fs_info->bdev_holder); 1980 if (IS_ERR(bdev)) 1981 return PTR_ERR(bdev); 1982 1983 if (root->fs_info->fs_devices->seeding) { 1984 seeding_dev = 1; 1985 down_write(&sb->s_umount); 1986 mutex_lock(&uuid_mutex); 1987 } 1988 1989 filemap_write_and_wait(bdev->bd_inode->i_mapping); 1990 1991 devices = &root->fs_info->fs_devices->devices; 1992 1993 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1994 list_for_each_entry(device, devices, dev_list) { 1995 if (device->bdev == bdev) { 1996 ret = -EEXIST; 1997 mutex_unlock( 1998 &root->fs_info->fs_devices->device_list_mutex); 1999 goto error; 2000 } 2001 } 2002 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2003 2004 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2005 if (IS_ERR(device)) { 2006 /* we can safely leave the fs_devices entry around */ 2007 ret = PTR_ERR(device); 2008 goto error; 2009 } 2010 2011 name = rcu_string_strdup(device_path, GFP_NOFS); 2012 if (!name) { 2013 kfree(device); 2014 ret = -ENOMEM; 2015 goto error; 2016 } 2017 rcu_assign_pointer(device->name, name); 2018 2019 trans = btrfs_start_transaction(root, 0); 2020 if (IS_ERR(trans)) { 2021 rcu_string_free(device->name); 2022 kfree(device); 2023 ret = PTR_ERR(trans); 2024 goto error; 2025 } 2026 2027 lock_chunks(root); 2028 2029 q = bdev_get_queue(bdev); 2030 if (blk_queue_discard(q)) 2031 device->can_discard = 1; 2032 device->writeable = 1; 2033 device->generation = trans->transid; 2034 device->io_width = root->sectorsize; 2035 device->io_align = root->sectorsize; 2036 device->sector_size = root->sectorsize; 2037 device->total_bytes = i_size_read(bdev->bd_inode); 2038 device->disk_total_bytes = device->total_bytes; 2039 device->dev_root = root->fs_info->dev_root; 2040 device->bdev = bdev; 2041 device->in_fs_metadata = 1; 2042 device->is_tgtdev_for_dev_replace = 0; 2043 device->mode = FMODE_EXCL; 2044 set_blocksize(device->bdev, 4096); 2045 2046 if (seeding_dev) { 2047 sb->s_flags &= ~MS_RDONLY; 2048 ret = btrfs_prepare_sprout(root); 2049 BUG_ON(ret); /* -ENOMEM */ 2050 } 2051 2052 device->fs_devices = root->fs_info->fs_devices; 2053 2054 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2055 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2056 list_add(&device->dev_alloc_list, 2057 &root->fs_info->fs_devices->alloc_list); 2058 root->fs_info->fs_devices->num_devices++; 2059 root->fs_info->fs_devices->open_devices++; 2060 root->fs_info->fs_devices->rw_devices++; 2061 root->fs_info->fs_devices->total_devices++; 2062 if (device->can_discard) 2063 root->fs_info->fs_devices->num_can_discard++; 2064 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2065 2066 spin_lock(&root->fs_info->free_chunk_lock); 2067 root->fs_info->free_chunk_space += device->total_bytes; 2068 spin_unlock(&root->fs_info->free_chunk_lock); 2069 2070 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2071 root->fs_info->fs_devices->rotating = 1; 2072 2073 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); 2074 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2075 total_bytes + device->total_bytes); 2076 2077 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); 2078 btrfs_set_super_num_devices(root->fs_info->super_copy, 2079 total_bytes + 1); 2080 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2081 2082 if (seeding_dev) { 2083 ret = init_first_rw_device(trans, root, device); 2084 if (ret) { 2085 btrfs_abort_transaction(trans, root, ret); 2086 goto error_trans; 2087 } 2088 ret = btrfs_finish_sprout(trans, root); 2089 if (ret) { 2090 btrfs_abort_transaction(trans, root, ret); 2091 goto error_trans; 2092 } 2093 } else { 2094 ret = btrfs_add_device(trans, root, device); 2095 if (ret) { 2096 btrfs_abort_transaction(trans, root, ret); 2097 goto error_trans; 2098 } 2099 } 2100 2101 /* 2102 * we've got more storage, clear any full flags on the space 2103 * infos 2104 */ 2105 btrfs_clear_space_info_full(root->fs_info); 2106 2107 unlock_chunks(root); 2108 root->fs_info->num_tolerated_disk_barrier_failures = 2109 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2110 ret = btrfs_commit_transaction(trans, root); 2111 2112 if (seeding_dev) { 2113 mutex_unlock(&uuid_mutex); 2114 up_write(&sb->s_umount); 2115 2116 if (ret) /* transaction commit */ 2117 return ret; 2118 2119 ret = btrfs_relocate_sys_chunks(root); 2120 if (ret < 0) 2121 btrfs_error(root->fs_info, ret, 2122 "Failed to relocate sys chunks after " 2123 "device initialization. This can be fixed " 2124 "using the \"btrfs balance\" command."); 2125 trans = btrfs_attach_transaction(root); 2126 if (IS_ERR(trans)) { 2127 if (PTR_ERR(trans) == -ENOENT) 2128 return 0; 2129 return PTR_ERR(trans); 2130 } 2131 ret = btrfs_commit_transaction(trans, root); 2132 } 2133 2134 return ret; 2135 2136 error_trans: 2137 unlock_chunks(root); 2138 btrfs_end_transaction(trans, root); 2139 rcu_string_free(device->name); 2140 kfree(device); 2141 error: 2142 blkdev_put(bdev, FMODE_EXCL); 2143 if (seeding_dev) { 2144 mutex_unlock(&uuid_mutex); 2145 up_write(&sb->s_umount); 2146 } 2147 return ret; 2148 } 2149 2150 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2151 struct btrfs_device **device_out) 2152 { 2153 struct request_queue *q; 2154 struct btrfs_device *device; 2155 struct block_device *bdev; 2156 struct btrfs_fs_info *fs_info = root->fs_info; 2157 struct list_head *devices; 2158 struct rcu_string *name; 2159 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2160 int ret = 0; 2161 2162 *device_out = NULL; 2163 if (fs_info->fs_devices->seeding) 2164 return -EINVAL; 2165 2166 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2167 fs_info->bdev_holder); 2168 if (IS_ERR(bdev)) 2169 return PTR_ERR(bdev); 2170 2171 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2172 2173 devices = &fs_info->fs_devices->devices; 2174 list_for_each_entry(device, devices, dev_list) { 2175 if (device->bdev == bdev) { 2176 ret = -EEXIST; 2177 goto error; 2178 } 2179 } 2180 2181 device = btrfs_alloc_device(NULL, &devid, NULL); 2182 if (IS_ERR(device)) { 2183 ret = PTR_ERR(device); 2184 goto error; 2185 } 2186 2187 name = rcu_string_strdup(device_path, GFP_NOFS); 2188 if (!name) { 2189 kfree(device); 2190 ret = -ENOMEM; 2191 goto error; 2192 } 2193 rcu_assign_pointer(device->name, name); 2194 2195 q = bdev_get_queue(bdev); 2196 if (blk_queue_discard(q)) 2197 device->can_discard = 1; 2198 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2199 device->writeable = 1; 2200 device->generation = 0; 2201 device->io_width = root->sectorsize; 2202 device->io_align = root->sectorsize; 2203 device->sector_size = root->sectorsize; 2204 device->total_bytes = i_size_read(bdev->bd_inode); 2205 device->disk_total_bytes = device->total_bytes; 2206 device->dev_root = fs_info->dev_root; 2207 device->bdev = bdev; 2208 device->in_fs_metadata = 1; 2209 device->is_tgtdev_for_dev_replace = 1; 2210 device->mode = FMODE_EXCL; 2211 set_blocksize(device->bdev, 4096); 2212 device->fs_devices = fs_info->fs_devices; 2213 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2214 fs_info->fs_devices->num_devices++; 2215 fs_info->fs_devices->open_devices++; 2216 if (device->can_discard) 2217 fs_info->fs_devices->num_can_discard++; 2218 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2219 2220 *device_out = device; 2221 return ret; 2222 2223 error: 2224 blkdev_put(bdev, FMODE_EXCL); 2225 return ret; 2226 } 2227 2228 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2229 struct btrfs_device *tgtdev) 2230 { 2231 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2232 tgtdev->io_width = fs_info->dev_root->sectorsize; 2233 tgtdev->io_align = fs_info->dev_root->sectorsize; 2234 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2235 tgtdev->dev_root = fs_info->dev_root; 2236 tgtdev->in_fs_metadata = 1; 2237 } 2238 2239 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2240 struct btrfs_device *device) 2241 { 2242 int ret; 2243 struct btrfs_path *path; 2244 struct btrfs_root *root; 2245 struct btrfs_dev_item *dev_item; 2246 struct extent_buffer *leaf; 2247 struct btrfs_key key; 2248 2249 root = device->dev_root->fs_info->chunk_root; 2250 2251 path = btrfs_alloc_path(); 2252 if (!path) 2253 return -ENOMEM; 2254 2255 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2256 key.type = BTRFS_DEV_ITEM_KEY; 2257 key.offset = device->devid; 2258 2259 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2260 if (ret < 0) 2261 goto out; 2262 2263 if (ret > 0) { 2264 ret = -ENOENT; 2265 goto out; 2266 } 2267 2268 leaf = path->nodes[0]; 2269 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2270 2271 btrfs_set_device_id(leaf, dev_item, device->devid); 2272 btrfs_set_device_type(leaf, dev_item, device->type); 2273 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2274 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2275 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2276 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); 2277 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 2278 btrfs_mark_buffer_dirty(leaf); 2279 2280 out: 2281 btrfs_free_path(path); 2282 return ret; 2283 } 2284 2285 static int __btrfs_grow_device(struct btrfs_trans_handle *trans, 2286 struct btrfs_device *device, u64 new_size) 2287 { 2288 struct btrfs_super_block *super_copy = 2289 device->dev_root->fs_info->super_copy; 2290 u64 old_total = btrfs_super_total_bytes(super_copy); 2291 u64 diff = new_size - device->total_bytes; 2292 2293 if (!device->writeable) 2294 return -EACCES; 2295 if (new_size <= device->total_bytes || 2296 device->is_tgtdev_for_dev_replace) 2297 return -EINVAL; 2298 2299 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2300 device->fs_devices->total_rw_bytes += diff; 2301 2302 device->total_bytes = new_size; 2303 device->disk_total_bytes = new_size; 2304 btrfs_clear_space_info_full(device->dev_root->fs_info); 2305 2306 return btrfs_update_device(trans, device); 2307 } 2308 2309 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2310 struct btrfs_device *device, u64 new_size) 2311 { 2312 int ret; 2313 lock_chunks(device->dev_root); 2314 ret = __btrfs_grow_device(trans, device, new_size); 2315 unlock_chunks(device->dev_root); 2316 return ret; 2317 } 2318 2319 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2320 struct btrfs_root *root, 2321 u64 chunk_tree, u64 chunk_objectid, 2322 u64 chunk_offset) 2323 { 2324 int ret; 2325 struct btrfs_path *path; 2326 struct btrfs_key key; 2327 2328 root = root->fs_info->chunk_root; 2329 path = btrfs_alloc_path(); 2330 if (!path) 2331 return -ENOMEM; 2332 2333 key.objectid = chunk_objectid; 2334 key.offset = chunk_offset; 2335 key.type = BTRFS_CHUNK_ITEM_KEY; 2336 2337 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2338 if (ret < 0) 2339 goto out; 2340 else if (ret > 0) { /* Logic error or corruption */ 2341 btrfs_error(root->fs_info, -ENOENT, 2342 "Failed lookup while freeing chunk."); 2343 ret = -ENOENT; 2344 goto out; 2345 } 2346 2347 ret = btrfs_del_item(trans, root, path); 2348 if (ret < 0) 2349 btrfs_error(root->fs_info, ret, 2350 "Failed to delete chunk item."); 2351 out: 2352 btrfs_free_path(path); 2353 return ret; 2354 } 2355 2356 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2357 chunk_offset) 2358 { 2359 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2360 struct btrfs_disk_key *disk_key; 2361 struct btrfs_chunk *chunk; 2362 u8 *ptr; 2363 int ret = 0; 2364 u32 num_stripes; 2365 u32 array_size; 2366 u32 len = 0; 2367 u32 cur; 2368 struct btrfs_key key; 2369 2370 array_size = btrfs_super_sys_array_size(super_copy); 2371 2372 ptr = super_copy->sys_chunk_array; 2373 cur = 0; 2374 2375 while (cur < array_size) { 2376 disk_key = (struct btrfs_disk_key *)ptr; 2377 btrfs_disk_key_to_cpu(&key, disk_key); 2378 2379 len = sizeof(*disk_key); 2380 2381 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2382 chunk = (struct btrfs_chunk *)(ptr + len); 2383 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2384 len += btrfs_chunk_item_size(num_stripes); 2385 } else { 2386 ret = -EIO; 2387 break; 2388 } 2389 if (key.objectid == chunk_objectid && 2390 key.offset == chunk_offset) { 2391 memmove(ptr, ptr + len, array_size - (cur + len)); 2392 array_size -= len; 2393 btrfs_set_super_sys_array_size(super_copy, array_size); 2394 } else { 2395 ptr += len; 2396 cur += len; 2397 } 2398 } 2399 return ret; 2400 } 2401 2402 static int btrfs_relocate_chunk(struct btrfs_root *root, 2403 u64 chunk_tree, u64 chunk_objectid, 2404 u64 chunk_offset) 2405 { 2406 struct extent_map_tree *em_tree; 2407 struct btrfs_root *extent_root; 2408 struct btrfs_trans_handle *trans; 2409 struct extent_map *em; 2410 struct map_lookup *map; 2411 int ret; 2412 int i; 2413 2414 root = root->fs_info->chunk_root; 2415 extent_root = root->fs_info->extent_root; 2416 em_tree = &root->fs_info->mapping_tree.map_tree; 2417 2418 ret = btrfs_can_relocate(extent_root, chunk_offset); 2419 if (ret) 2420 return -ENOSPC; 2421 2422 /* step one, relocate all the extents inside this chunk */ 2423 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2424 if (ret) 2425 return ret; 2426 2427 trans = btrfs_start_transaction(root, 0); 2428 if (IS_ERR(trans)) { 2429 ret = PTR_ERR(trans); 2430 btrfs_std_error(root->fs_info, ret); 2431 return ret; 2432 } 2433 2434 lock_chunks(root); 2435 2436 /* 2437 * step two, delete the device extents and the 2438 * chunk tree entries 2439 */ 2440 read_lock(&em_tree->lock); 2441 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2442 read_unlock(&em_tree->lock); 2443 2444 BUG_ON(!em || em->start > chunk_offset || 2445 em->start + em->len < chunk_offset); 2446 map = (struct map_lookup *)em->bdev; 2447 2448 for (i = 0; i < map->num_stripes; i++) { 2449 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, 2450 map->stripes[i].physical); 2451 BUG_ON(ret); 2452 2453 if (map->stripes[i].dev) { 2454 ret = btrfs_update_device(trans, map->stripes[i].dev); 2455 BUG_ON(ret); 2456 } 2457 } 2458 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, 2459 chunk_offset); 2460 2461 BUG_ON(ret); 2462 2463 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2464 2465 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2466 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2467 BUG_ON(ret); 2468 } 2469 2470 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); 2471 BUG_ON(ret); 2472 2473 write_lock(&em_tree->lock); 2474 remove_extent_mapping(em_tree, em); 2475 write_unlock(&em_tree->lock); 2476 2477 kfree(map); 2478 em->bdev = NULL; 2479 2480 /* once for the tree */ 2481 free_extent_map(em); 2482 /* once for us */ 2483 free_extent_map(em); 2484 2485 unlock_chunks(root); 2486 btrfs_end_transaction(trans, root); 2487 return 0; 2488 } 2489 2490 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2491 { 2492 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2493 struct btrfs_path *path; 2494 struct extent_buffer *leaf; 2495 struct btrfs_chunk *chunk; 2496 struct btrfs_key key; 2497 struct btrfs_key found_key; 2498 u64 chunk_tree = chunk_root->root_key.objectid; 2499 u64 chunk_type; 2500 bool retried = false; 2501 int failed = 0; 2502 int ret; 2503 2504 path = btrfs_alloc_path(); 2505 if (!path) 2506 return -ENOMEM; 2507 2508 again: 2509 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2510 key.offset = (u64)-1; 2511 key.type = BTRFS_CHUNK_ITEM_KEY; 2512 2513 while (1) { 2514 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2515 if (ret < 0) 2516 goto error; 2517 BUG_ON(ret == 0); /* Corruption */ 2518 2519 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2520 key.type); 2521 if (ret < 0) 2522 goto error; 2523 if (ret > 0) 2524 break; 2525 2526 leaf = path->nodes[0]; 2527 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2528 2529 chunk = btrfs_item_ptr(leaf, path->slots[0], 2530 struct btrfs_chunk); 2531 chunk_type = btrfs_chunk_type(leaf, chunk); 2532 btrfs_release_path(path); 2533 2534 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2535 ret = btrfs_relocate_chunk(chunk_root, chunk_tree, 2536 found_key.objectid, 2537 found_key.offset); 2538 if (ret == -ENOSPC) 2539 failed++; 2540 else if (ret) 2541 BUG(); 2542 } 2543 2544 if (found_key.offset == 0) 2545 break; 2546 key.offset = found_key.offset - 1; 2547 } 2548 ret = 0; 2549 if (failed && !retried) { 2550 failed = 0; 2551 retried = true; 2552 goto again; 2553 } else if (failed && retried) { 2554 WARN_ON(1); 2555 ret = -ENOSPC; 2556 } 2557 error: 2558 btrfs_free_path(path); 2559 return ret; 2560 } 2561 2562 static int insert_balance_item(struct btrfs_root *root, 2563 struct btrfs_balance_control *bctl) 2564 { 2565 struct btrfs_trans_handle *trans; 2566 struct btrfs_balance_item *item; 2567 struct btrfs_disk_balance_args disk_bargs; 2568 struct btrfs_path *path; 2569 struct extent_buffer *leaf; 2570 struct btrfs_key key; 2571 int ret, err; 2572 2573 path = btrfs_alloc_path(); 2574 if (!path) 2575 return -ENOMEM; 2576 2577 trans = btrfs_start_transaction(root, 0); 2578 if (IS_ERR(trans)) { 2579 btrfs_free_path(path); 2580 return PTR_ERR(trans); 2581 } 2582 2583 key.objectid = BTRFS_BALANCE_OBJECTID; 2584 key.type = BTRFS_BALANCE_ITEM_KEY; 2585 key.offset = 0; 2586 2587 ret = btrfs_insert_empty_item(trans, root, path, &key, 2588 sizeof(*item)); 2589 if (ret) 2590 goto out; 2591 2592 leaf = path->nodes[0]; 2593 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2594 2595 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2596 2597 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2598 btrfs_set_balance_data(leaf, item, &disk_bargs); 2599 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2600 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2601 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2602 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2603 2604 btrfs_set_balance_flags(leaf, item, bctl->flags); 2605 2606 btrfs_mark_buffer_dirty(leaf); 2607 out: 2608 btrfs_free_path(path); 2609 err = btrfs_commit_transaction(trans, root); 2610 if (err && !ret) 2611 ret = err; 2612 return ret; 2613 } 2614 2615 static int del_balance_item(struct btrfs_root *root) 2616 { 2617 struct btrfs_trans_handle *trans; 2618 struct btrfs_path *path; 2619 struct btrfs_key key; 2620 int ret, err; 2621 2622 path = btrfs_alloc_path(); 2623 if (!path) 2624 return -ENOMEM; 2625 2626 trans = btrfs_start_transaction(root, 0); 2627 if (IS_ERR(trans)) { 2628 btrfs_free_path(path); 2629 return PTR_ERR(trans); 2630 } 2631 2632 key.objectid = BTRFS_BALANCE_OBJECTID; 2633 key.type = BTRFS_BALANCE_ITEM_KEY; 2634 key.offset = 0; 2635 2636 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2637 if (ret < 0) 2638 goto out; 2639 if (ret > 0) { 2640 ret = -ENOENT; 2641 goto out; 2642 } 2643 2644 ret = btrfs_del_item(trans, root, path); 2645 out: 2646 btrfs_free_path(path); 2647 err = btrfs_commit_transaction(trans, root); 2648 if (err && !ret) 2649 ret = err; 2650 return ret; 2651 } 2652 2653 /* 2654 * This is a heuristic used to reduce the number of chunks balanced on 2655 * resume after balance was interrupted. 2656 */ 2657 static void update_balance_args(struct btrfs_balance_control *bctl) 2658 { 2659 /* 2660 * Turn on soft mode for chunk types that were being converted. 2661 */ 2662 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2663 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2664 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2665 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2666 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2667 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2668 2669 /* 2670 * Turn on usage filter if is not already used. The idea is 2671 * that chunks that we have already balanced should be 2672 * reasonably full. Don't do it for chunks that are being 2673 * converted - that will keep us from relocating unconverted 2674 * (albeit full) chunks. 2675 */ 2676 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2677 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2678 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2679 bctl->data.usage = 90; 2680 } 2681 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2682 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2683 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2684 bctl->sys.usage = 90; 2685 } 2686 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2687 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2688 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2689 bctl->meta.usage = 90; 2690 } 2691 } 2692 2693 /* 2694 * Should be called with both balance and volume mutexes held to 2695 * serialize other volume operations (add_dev/rm_dev/resize) with 2696 * restriper. Same goes for unset_balance_control. 2697 */ 2698 static void set_balance_control(struct btrfs_balance_control *bctl) 2699 { 2700 struct btrfs_fs_info *fs_info = bctl->fs_info; 2701 2702 BUG_ON(fs_info->balance_ctl); 2703 2704 spin_lock(&fs_info->balance_lock); 2705 fs_info->balance_ctl = bctl; 2706 spin_unlock(&fs_info->balance_lock); 2707 } 2708 2709 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2710 { 2711 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2712 2713 BUG_ON(!fs_info->balance_ctl); 2714 2715 spin_lock(&fs_info->balance_lock); 2716 fs_info->balance_ctl = NULL; 2717 spin_unlock(&fs_info->balance_lock); 2718 2719 kfree(bctl); 2720 } 2721 2722 /* 2723 * Balance filters. Return 1 if chunk should be filtered out 2724 * (should not be balanced). 2725 */ 2726 static int chunk_profiles_filter(u64 chunk_type, 2727 struct btrfs_balance_args *bargs) 2728 { 2729 chunk_type = chunk_to_extended(chunk_type) & 2730 BTRFS_EXTENDED_PROFILE_MASK; 2731 2732 if (bargs->profiles & chunk_type) 2733 return 0; 2734 2735 return 1; 2736 } 2737 2738 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2739 struct btrfs_balance_args *bargs) 2740 { 2741 struct btrfs_block_group_cache *cache; 2742 u64 chunk_used, user_thresh; 2743 int ret = 1; 2744 2745 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2746 chunk_used = btrfs_block_group_used(&cache->item); 2747 2748 if (bargs->usage == 0) 2749 user_thresh = 1; 2750 else if (bargs->usage > 100) 2751 user_thresh = cache->key.offset; 2752 else 2753 user_thresh = div_factor_fine(cache->key.offset, 2754 bargs->usage); 2755 2756 if (chunk_used < user_thresh) 2757 ret = 0; 2758 2759 btrfs_put_block_group(cache); 2760 return ret; 2761 } 2762 2763 static int chunk_devid_filter(struct extent_buffer *leaf, 2764 struct btrfs_chunk *chunk, 2765 struct btrfs_balance_args *bargs) 2766 { 2767 struct btrfs_stripe *stripe; 2768 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2769 int i; 2770 2771 for (i = 0; i < num_stripes; i++) { 2772 stripe = btrfs_stripe_nr(chunk, i); 2773 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2774 return 0; 2775 } 2776 2777 return 1; 2778 } 2779 2780 /* [pstart, pend) */ 2781 static int chunk_drange_filter(struct extent_buffer *leaf, 2782 struct btrfs_chunk *chunk, 2783 u64 chunk_offset, 2784 struct btrfs_balance_args *bargs) 2785 { 2786 struct btrfs_stripe *stripe; 2787 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2788 u64 stripe_offset; 2789 u64 stripe_length; 2790 int factor; 2791 int i; 2792 2793 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 2794 return 0; 2795 2796 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 2797 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 2798 factor = num_stripes / 2; 2799 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 2800 factor = num_stripes - 1; 2801 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 2802 factor = num_stripes - 2; 2803 } else { 2804 factor = num_stripes; 2805 } 2806 2807 for (i = 0; i < num_stripes; i++) { 2808 stripe = btrfs_stripe_nr(chunk, i); 2809 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 2810 continue; 2811 2812 stripe_offset = btrfs_stripe_offset(leaf, stripe); 2813 stripe_length = btrfs_chunk_length(leaf, chunk); 2814 do_div(stripe_length, factor); 2815 2816 if (stripe_offset < bargs->pend && 2817 stripe_offset + stripe_length > bargs->pstart) 2818 return 0; 2819 } 2820 2821 return 1; 2822 } 2823 2824 /* [vstart, vend) */ 2825 static int chunk_vrange_filter(struct extent_buffer *leaf, 2826 struct btrfs_chunk *chunk, 2827 u64 chunk_offset, 2828 struct btrfs_balance_args *bargs) 2829 { 2830 if (chunk_offset < bargs->vend && 2831 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 2832 /* at least part of the chunk is inside this vrange */ 2833 return 0; 2834 2835 return 1; 2836 } 2837 2838 static int chunk_soft_convert_filter(u64 chunk_type, 2839 struct btrfs_balance_args *bargs) 2840 { 2841 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 2842 return 0; 2843 2844 chunk_type = chunk_to_extended(chunk_type) & 2845 BTRFS_EXTENDED_PROFILE_MASK; 2846 2847 if (bargs->target == chunk_type) 2848 return 1; 2849 2850 return 0; 2851 } 2852 2853 static int should_balance_chunk(struct btrfs_root *root, 2854 struct extent_buffer *leaf, 2855 struct btrfs_chunk *chunk, u64 chunk_offset) 2856 { 2857 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 2858 struct btrfs_balance_args *bargs = NULL; 2859 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 2860 2861 /* type filter */ 2862 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 2863 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 2864 return 0; 2865 } 2866 2867 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 2868 bargs = &bctl->data; 2869 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 2870 bargs = &bctl->sys; 2871 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 2872 bargs = &bctl->meta; 2873 2874 /* profiles filter */ 2875 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 2876 chunk_profiles_filter(chunk_type, bargs)) { 2877 return 0; 2878 } 2879 2880 /* usage filter */ 2881 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 2882 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 2883 return 0; 2884 } 2885 2886 /* devid filter */ 2887 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 2888 chunk_devid_filter(leaf, chunk, bargs)) { 2889 return 0; 2890 } 2891 2892 /* drange filter, makes sense only with devid filter */ 2893 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 2894 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 2895 return 0; 2896 } 2897 2898 /* vrange filter */ 2899 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 2900 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 2901 return 0; 2902 } 2903 2904 /* soft profile changing mode */ 2905 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 2906 chunk_soft_convert_filter(chunk_type, bargs)) { 2907 return 0; 2908 } 2909 2910 return 1; 2911 } 2912 2913 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 2914 { 2915 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2916 struct btrfs_root *chunk_root = fs_info->chunk_root; 2917 struct btrfs_root *dev_root = fs_info->dev_root; 2918 struct list_head *devices; 2919 struct btrfs_device *device; 2920 u64 old_size; 2921 u64 size_to_free; 2922 struct btrfs_chunk *chunk; 2923 struct btrfs_path *path; 2924 struct btrfs_key key; 2925 struct btrfs_key found_key; 2926 struct btrfs_trans_handle *trans; 2927 struct extent_buffer *leaf; 2928 int slot; 2929 int ret; 2930 int enospc_errors = 0; 2931 bool counting = true; 2932 2933 /* step one make some room on all the devices */ 2934 devices = &fs_info->fs_devices->devices; 2935 list_for_each_entry(device, devices, dev_list) { 2936 old_size = device->total_bytes; 2937 size_to_free = div_factor(old_size, 1); 2938 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 2939 if (!device->writeable || 2940 device->total_bytes - device->bytes_used > size_to_free || 2941 device->is_tgtdev_for_dev_replace) 2942 continue; 2943 2944 ret = btrfs_shrink_device(device, old_size - size_to_free); 2945 if (ret == -ENOSPC) 2946 break; 2947 BUG_ON(ret); 2948 2949 trans = btrfs_start_transaction(dev_root, 0); 2950 BUG_ON(IS_ERR(trans)); 2951 2952 ret = btrfs_grow_device(trans, device, old_size); 2953 BUG_ON(ret); 2954 2955 btrfs_end_transaction(trans, dev_root); 2956 } 2957 2958 /* step two, relocate all the chunks */ 2959 path = btrfs_alloc_path(); 2960 if (!path) { 2961 ret = -ENOMEM; 2962 goto error; 2963 } 2964 2965 /* zero out stat counters */ 2966 spin_lock(&fs_info->balance_lock); 2967 memset(&bctl->stat, 0, sizeof(bctl->stat)); 2968 spin_unlock(&fs_info->balance_lock); 2969 again: 2970 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2971 key.offset = (u64)-1; 2972 key.type = BTRFS_CHUNK_ITEM_KEY; 2973 2974 while (1) { 2975 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 2976 atomic_read(&fs_info->balance_cancel_req)) { 2977 ret = -ECANCELED; 2978 goto error; 2979 } 2980 2981 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2982 if (ret < 0) 2983 goto error; 2984 2985 /* 2986 * this shouldn't happen, it means the last relocate 2987 * failed 2988 */ 2989 if (ret == 0) 2990 BUG(); /* FIXME break ? */ 2991 2992 ret = btrfs_previous_item(chunk_root, path, 0, 2993 BTRFS_CHUNK_ITEM_KEY); 2994 if (ret) { 2995 ret = 0; 2996 break; 2997 } 2998 2999 leaf = path->nodes[0]; 3000 slot = path->slots[0]; 3001 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3002 3003 if (found_key.objectid != key.objectid) 3004 break; 3005 3006 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3007 3008 if (!counting) { 3009 spin_lock(&fs_info->balance_lock); 3010 bctl->stat.considered++; 3011 spin_unlock(&fs_info->balance_lock); 3012 } 3013 3014 ret = should_balance_chunk(chunk_root, leaf, chunk, 3015 found_key.offset); 3016 btrfs_release_path(path); 3017 if (!ret) 3018 goto loop; 3019 3020 if (counting) { 3021 spin_lock(&fs_info->balance_lock); 3022 bctl->stat.expected++; 3023 spin_unlock(&fs_info->balance_lock); 3024 goto loop; 3025 } 3026 3027 ret = btrfs_relocate_chunk(chunk_root, 3028 chunk_root->root_key.objectid, 3029 found_key.objectid, 3030 found_key.offset); 3031 if (ret && ret != -ENOSPC) 3032 goto error; 3033 if (ret == -ENOSPC) { 3034 enospc_errors++; 3035 } else { 3036 spin_lock(&fs_info->balance_lock); 3037 bctl->stat.completed++; 3038 spin_unlock(&fs_info->balance_lock); 3039 } 3040 loop: 3041 if (found_key.offset == 0) 3042 break; 3043 key.offset = found_key.offset - 1; 3044 } 3045 3046 if (counting) { 3047 btrfs_release_path(path); 3048 counting = false; 3049 goto again; 3050 } 3051 error: 3052 btrfs_free_path(path); 3053 if (enospc_errors) { 3054 printk(KERN_INFO "btrfs: %d enospc errors during balance\n", 3055 enospc_errors); 3056 if (!ret) 3057 ret = -ENOSPC; 3058 } 3059 3060 return ret; 3061 } 3062 3063 /** 3064 * alloc_profile_is_valid - see if a given profile is valid and reduced 3065 * @flags: profile to validate 3066 * @extended: if true @flags is treated as an extended profile 3067 */ 3068 static int alloc_profile_is_valid(u64 flags, int extended) 3069 { 3070 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3071 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3072 3073 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3074 3075 /* 1) check that all other bits are zeroed */ 3076 if (flags & ~mask) 3077 return 0; 3078 3079 /* 2) see if profile is reduced */ 3080 if (flags == 0) 3081 return !extended; /* "0" is valid for usual profiles */ 3082 3083 /* true if exactly one bit set */ 3084 return (flags & (flags - 1)) == 0; 3085 } 3086 3087 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3088 { 3089 /* cancel requested || normal exit path */ 3090 return atomic_read(&fs_info->balance_cancel_req) || 3091 (atomic_read(&fs_info->balance_pause_req) == 0 && 3092 atomic_read(&fs_info->balance_cancel_req) == 0); 3093 } 3094 3095 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3096 { 3097 int ret; 3098 3099 unset_balance_control(fs_info); 3100 ret = del_balance_item(fs_info->tree_root); 3101 if (ret) 3102 btrfs_std_error(fs_info, ret); 3103 3104 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3105 } 3106 3107 /* 3108 * Should be called with both balance and volume mutexes held 3109 */ 3110 int btrfs_balance(struct btrfs_balance_control *bctl, 3111 struct btrfs_ioctl_balance_args *bargs) 3112 { 3113 struct btrfs_fs_info *fs_info = bctl->fs_info; 3114 u64 allowed; 3115 int mixed = 0; 3116 int ret; 3117 u64 num_devices; 3118 unsigned seq; 3119 3120 if (btrfs_fs_closing(fs_info) || 3121 atomic_read(&fs_info->balance_pause_req) || 3122 atomic_read(&fs_info->balance_cancel_req)) { 3123 ret = -EINVAL; 3124 goto out; 3125 } 3126 3127 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3128 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3129 mixed = 1; 3130 3131 /* 3132 * In case of mixed groups both data and meta should be picked, 3133 * and identical options should be given for both of them. 3134 */ 3135 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3136 if (mixed && (bctl->flags & allowed)) { 3137 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3138 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3139 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3140 printk(KERN_ERR "btrfs: with mixed groups data and " 3141 "metadata balance options must be the same\n"); 3142 ret = -EINVAL; 3143 goto out; 3144 } 3145 } 3146 3147 num_devices = fs_info->fs_devices->num_devices; 3148 btrfs_dev_replace_lock(&fs_info->dev_replace); 3149 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3150 BUG_ON(num_devices < 1); 3151 num_devices--; 3152 } 3153 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3154 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3155 if (num_devices == 1) 3156 allowed |= BTRFS_BLOCK_GROUP_DUP; 3157 else if (num_devices > 1) 3158 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3159 if (num_devices > 2) 3160 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3161 if (num_devices > 3) 3162 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3163 BTRFS_BLOCK_GROUP_RAID6); 3164 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3165 (!alloc_profile_is_valid(bctl->data.target, 1) || 3166 (bctl->data.target & ~allowed))) { 3167 printk(KERN_ERR "btrfs: unable to start balance with target " 3168 "data profile %llu\n", 3169 bctl->data.target); 3170 ret = -EINVAL; 3171 goto out; 3172 } 3173 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3174 (!alloc_profile_is_valid(bctl->meta.target, 1) || 3175 (bctl->meta.target & ~allowed))) { 3176 printk(KERN_ERR "btrfs: unable to start balance with target " 3177 "metadata profile %llu\n", 3178 bctl->meta.target); 3179 ret = -EINVAL; 3180 goto out; 3181 } 3182 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3183 (!alloc_profile_is_valid(bctl->sys.target, 1) || 3184 (bctl->sys.target & ~allowed))) { 3185 printk(KERN_ERR "btrfs: unable to start balance with target " 3186 "system profile %llu\n", 3187 bctl->sys.target); 3188 ret = -EINVAL; 3189 goto out; 3190 } 3191 3192 /* allow dup'ed data chunks only in mixed mode */ 3193 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3194 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3195 printk(KERN_ERR "btrfs: dup for data is not allowed\n"); 3196 ret = -EINVAL; 3197 goto out; 3198 } 3199 3200 /* allow to reduce meta or sys integrity only if force set */ 3201 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3202 BTRFS_BLOCK_GROUP_RAID10 | 3203 BTRFS_BLOCK_GROUP_RAID5 | 3204 BTRFS_BLOCK_GROUP_RAID6; 3205 do { 3206 seq = read_seqbegin(&fs_info->profiles_lock); 3207 3208 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3209 (fs_info->avail_system_alloc_bits & allowed) && 3210 !(bctl->sys.target & allowed)) || 3211 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3212 (fs_info->avail_metadata_alloc_bits & allowed) && 3213 !(bctl->meta.target & allowed))) { 3214 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3215 printk(KERN_INFO "btrfs: force reducing metadata " 3216 "integrity\n"); 3217 } else { 3218 printk(KERN_ERR "btrfs: balance will reduce metadata " 3219 "integrity, use force if you want this\n"); 3220 ret = -EINVAL; 3221 goto out; 3222 } 3223 } 3224 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3225 3226 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3227 int num_tolerated_disk_barrier_failures; 3228 u64 target = bctl->sys.target; 3229 3230 num_tolerated_disk_barrier_failures = 3231 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3232 if (num_tolerated_disk_barrier_failures > 0 && 3233 (target & 3234 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3235 BTRFS_AVAIL_ALLOC_BIT_SINGLE))) 3236 num_tolerated_disk_barrier_failures = 0; 3237 else if (num_tolerated_disk_barrier_failures > 1 && 3238 (target & 3239 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) 3240 num_tolerated_disk_barrier_failures = 1; 3241 3242 fs_info->num_tolerated_disk_barrier_failures = 3243 num_tolerated_disk_barrier_failures; 3244 } 3245 3246 ret = insert_balance_item(fs_info->tree_root, bctl); 3247 if (ret && ret != -EEXIST) 3248 goto out; 3249 3250 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3251 BUG_ON(ret == -EEXIST); 3252 set_balance_control(bctl); 3253 } else { 3254 BUG_ON(ret != -EEXIST); 3255 spin_lock(&fs_info->balance_lock); 3256 update_balance_args(bctl); 3257 spin_unlock(&fs_info->balance_lock); 3258 } 3259 3260 atomic_inc(&fs_info->balance_running); 3261 mutex_unlock(&fs_info->balance_mutex); 3262 3263 ret = __btrfs_balance(fs_info); 3264 3265 mutex_lock(&fs_info->balance_mutex); 3266 atomic_dec(&fs_info->balance_running); 3267 3268 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3269 fs_info->num_tolerated_disk_barrier_failures = 3270 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3271 } 3272 3273 if (bargs) { 3274 memset(bargs, 0, sizeof(*bargs)); 3275 update_ioctl_balance_args(fs_info, 0, bargs); 3276 } 3277 3278 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3279 balance_need_close(fs_info)) { 3280 __cancel_balance(fs_info); 3281 } 3282 3283 wake_up(&fs_info->balance_wait_q); 3284 3285 return ret; 3286 out: 3287 if (bctl->flags & BTRFS_BALANCE_RESUME) 3288 __cancel_balance(fs_info); 3289 else { 3290 kfree(bctl); 3291 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3292 } 3293 return ret; 3294 } 3295 3296 static int balance_kthread(void *data) 3297 { 3298 struct btrfs_fs_info *fs_info = data; 3299 int ret = 0; 3300 3301 mutex_lock(&fs_info->volume_mutex); 3302 mutex_lock(&fs_info->balance_mutex); 3303 3304 if (fs_info->balance_ctl) { 3305 printk(KERN_INFO "btrfs: continuing balance\n"); 3306 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3307 } 3308 3309 mutex_unlock(&fs_info->balance_mutex); 3310 mutex_unlock(&fs_info->volume_mutex); 3311 3312 return ret; 3313 } 3314 3315 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3316 { 3317 struct task_struct *tsk; 3318 3319 spin_lock(&fs_info->balance_lock); 3320 if (!fs_info->balance_ctl) { 3321 spin_unlock(&fs_info->balance_lock); 3322 return 0; 3323 } 3324 spin_unlock(&fs_info->balance_lock); 3325 3326 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3327 printk(KERN_INFO "btrfs: force skipping balance\n"); 3328 return 0; 3329 } 3330 3331 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3332 return PTR_ERR_OR_ZERO(tsk); 3333 } 3334 3335 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3336 { 3337 struct btrfs_balance_control *bctl; 3338 struct btrfs_balance_item *item; 3339 struct btrfs_disk_balance_args disk_bargs; 3340 struct btrfs_path *path; 3341 struct extent_buffer *leaf; 3342 struct btrfs_key key; 3343 int ret; 3344 3345 path = btrfs_alloc_path(); 3346 if (!path) 3347 return -ENOMEM; 3348 3349 key.objectid = BTRFS_BALANCE_OBJECTID; 3350 key.type = BTRFS_BALANCE_ITEM_KEY; 3351 key.offset = 0; 3352 3353 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3354 if (ret < 0) 3355 goto out; 3356 if (ret > 0) { /* ret = -ENOENT; */ 3357 ret = 0; 3358 goto out; 3359 } 3360 3361 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3362 if (!bctl) { 3363 ret = -ENOMEM; 3364 goto out; 3365 } 3366 3367 leaf = path->nodes[0]; 3368 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3369 3370 bctl->fs_info = fs_info; 3371 bctl->flags = btrfs_balance_flags(leaf, item); 3372 bctl->flags |= BTRFS_BALANCE_RESUME; 3373 3374 btrfs_balance_data(leaf, item, &disk_bargs); 3375 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3376 btrfs_balance_meta(leaf, item, &disk_bargs); 3377 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3378 btrfs_balance_sys(leaf, item, &disk_bargs); 3379 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3380 3381 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3382 3383 mutex_lock(&fs_info->volume_mutex); 3384 mutex_lock(&fs_info->balance_mutex); 3385 3386 set_balance_control(bctl); 3387 3388 mutex_unlock(&fs_info->balance_mutex); 3389 mutex_unlock(&fs_info->volume_mutex); 3390 out: 3391 btrfs_free_path(path); 3392 return ret; 3393 } 3394 3395 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3396 { 3397 int ret = 0; 3398 3399 mutex_lock(&fs_info->balance_mutex); 3400 if (!fs_info->balance_ctl) { 3401 mutex_unlock(&fs_info->balance_mutex); 3402 return -ENOTCONN; 3403 } 3404 3405 if (atomic_read(&fs_info->balance_running)) { 3406 atomic_inc(&fs_info->balance_pause_req); 3407 mutex_unlock(&fs_info->balance_mutex); 3408 3409 wait_event(fs_info->balance_wait_q, 3410 atomic_read(&fs_info->balance_running) == 0); 3411 3412 mutex_lock(&fs_info->balance_mutex); 3413 /* we are good with balance_ctl ripped off from under us */ 3414 BUG_ON(atomic_read(&fs_info->balance_running)); 3415 atomic_dec(&fs_info->balance_pause_req); 3416 } else { 3417 ret = -ENOTCONN; 3418 } 3419 3420 mutex_unlock(&fs_info->balance_mutex); 3421 return ret; 3422 } 3423 3424 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3425 { 3426 mutex_lock(&fs_info->balance_mutex); 3427 if (!fs_info->balance_ctl) { 3428 mutex_unlock(&fs_info->balance_mutex); 3429 return -ENOTCONN; 3430 } 3431 3432 atomic_inc(&fs_info->balance_cancel_req); 3433 /* 3434 * if we are running just wait and return, balance item is 3435 * deleted in btrfs_balance in this case 3436 */ 3437 if (atomic_read(&fs_info->balance_running)) { 3438 mutex_unlock(&fs_info->balance_mutex); 3439 wait_event(fs_info->balance_wait_q, 3440 atomic_read(&fs_info->balance_running) == 0); 3441 mutex_lock(&fs_info->balance_mutex); 3442 } else { 3443 /* __cancel_balance needs volume_mutex */ 3444 mutex_unlock(&fs_info->balance_mutex); 3445 mutex_lock(&fs_info->volume_mutex); 3446 mutex_lock(&fs_info->balance_mutex); 3447 3448 if (fs_info->balance_ctl) 3449 __cancel_balance(fs_info); 3450 3451 mutex_unlock(&fs_info->volume_mutex); 3452 } 3453 3454 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3455 atomic_dec(&fs_info->balance_cancel_req); 3456 mutex_unlock(&fs_info->balance_mutex); 3457 return 0; 3458 } 3459 3460 static int btrfs_uuid_scan_kthread(void *data) 3461 { 3462 struct btrfs_fs_info *fs_info = data; 3463 struct btrfs_root *root = fs_info->tree_root; 3464 struct btrfs_key key; 3465 struct btrfs_key max_key; 3466 struct btrfs_path *path = NULL; 3467 int ret = 0; 3468 struct extent_buffer *eb; 3469 int slot; 3470 struct btrfs_root_item root_item; 3471 u32 item_size; 3472 struct btrfs_trans_handle *trans = NULL; 3473 3474 path = btrfs_alloc_path(); 3475 if (!path) { 3476 ret = -ENOMEM; 3477 goto out; 3478 } 3479 3480 key.objectid = 0; 3481 key.type = BTRFS_ROOT_ITEM_KEY; 3482 key.offset = 0; 3483 3484 max_key.objectid = (u64)-1; 3485 max_key.type = BTRFS_ROOT_ITEM_KEY; 3486 max_key.offset = (u64)-1; 3487 3488 path->keep_locks = 1; 3489 3490 while (1) { 3491 ret = btrfs_search_forward(root, &key, &max_key, path, 0); 3492 if (ret) { 3493 if (ret > 0) 3494 ret = 0; 3495 break; 3496 } 3497 3498 if (key.type != BTRFS_ROOT_ITEM_KEY || 3499 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 3500 key.objectid != BTRFS_FS_TREE_OBJECTID) || 3501 key.objectid > BTRFS_LAST_FREE_OBJECTID) 3502 goto skip; 3503 3504 eb = path->nodes[0]; 3505 slot = path->slots[0]; 3506 item_size = btrfs_item_size_nr(eb, slot); 3507 if (item_size < sizeof(root_item)) 3508 goto skip; 3509 3510 read_extent_buffer(eb, &root_item, 3511 btrfs_item_ptr_offset(eb, slot), 3512 (int)sizeof(root_item)); 3513 if (btrfs_root_refs(&root_item) == 0) 3514 goto skip; 3515 3516 if (!btrfs_is_empty_uuid(root_item.uuid) || 3517 !btrfs_is_empty_uuid(root_item.received_uuid)) { 3518 if (trans) 3519 goto update_tree; 3520 3521 btrfs_release_path(path); 3522 /* 3523 * 1 - subvol uuid item 3524 * 1 - received_subvol uuid item 3525 */ 3526 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 3527 if (IS_ERR(trans)) { 3528 ret = PTR_ERR(trans); 3529 break; 3530 } 3531 continue; 3532 } else { 3533 goto skip; 3534 } 3535 update_tree: 3536 if (!btrfs_is_empty_uuid(root_item.uuid)) { 3537 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3538 root_item.uuid, 3539 BTRFS_UUID_KEY_SUBVOL, 3540 key.objectid); 3541 if (ret < 0) { 3542 pr_warn("btrfs: uuid_tree_add failed %d\n", 3543 ret); 3544 break; 3545 } 3546 } 3547 3548 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 3549 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3550 root_item.received_uuid, 3551 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3552 key.objectid); 3553 if (ret < 0) { 3554 pr_warn("btrfs: uuid_tree_add failed %d\n", 3555 ret); 3556 break; 3557 } 3558 } 3559 3560 skip: 3561 if (trans) { 3562 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 3563 trans = NULL; 3564 if (ret) 3565 break; 3566 } 3567 3568 btrfs_release_path(path); 3569 if (key.offset < (u64)-1) { 3570 key.offset++; 3571 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 3572 key.offset = 0; 3573 key.type = BTRFS_ROOT_ITEM_KEY; 3574 } else if (key.objectid < (u64)-1) { 3575 key.offset = 0; 3576 key.type = BTRFS_ROOT_ITEM_KEY; 3577 key.objectid++; 3578 } else { 3579 break; 3580 } 3581 cond_resched(); 3582 } 3583 3584 out: 3585 btrfs_free_path(path); 3586 if (trans && !IS_ERR(trans)) 3587 btrfs_end_transaction(trans, fs_info->uuid_root); 3588 if (ret) 3589 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret); 3590 else 3591 fs_info->update_uuid_tree_gen = 1; 3592 up(&fs_info->uuid_tree_rescan_sem); 3593 return 0; 3594 } 3595 3596 /* 3597 * Callback for btrfs_uuid_tree_iterate(). 3598 * returns: 3599 * 0 check succeeded, the entry is not outdated. 3600 * < 0 if an error occured. 3601 * > 0 if the check failed, which means the caller shall remove the entry. 3602 */ 3603 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 3604 u8 *uuid, u8 type, u64 subid) 3605 { 3606 struct btrfs_key key; 3607 int ret = 0; 3608 struct btrfs_root *subvol_root; 3609 3610 if (type != BTRFS_UUID_KEY_SUBVOL && 3611 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 3612 goto out; 3613 3614 key.objectid = subid; 3615 key.type = BTRFS_ROOT_ITEM_KEY; 3616 key.offset = (u64)-1; 3617 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 3618 if (IS_ERR(subvol_root)) { 3619 ret = PTR_ERR(subvol_root); 3620 if (ret == -ENOENT) 3621 ret = 1; 3622 goto out; 3623 } 3624 3625 switch (type) { 3626 case BTRFS_UUID_KEY_SUBVOL: 3627 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 3628 ret = 1; 3629 break; 3630 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 3631 if (memcmp(uuid, subvol_root->root_item.received_uuid, 3632 BTRFS_UUID_SIZE)) 3633 ret = 1; 3634 break; 3635 } 3636 3637 out: 3638 return ret; 3639 } 3640 3641 static int btrfs_uuid_rescan_kthread(void *data) 3642 { 3643 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3644 int ret; 3645 3646 /* 3647 * 1st step is to iterate through the existing UUID tree and 3648 * to delete all entries that contain outdated data. 3649 * 2nd step is to add all missing entries to the UUID tree. 3650 */ 3651 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 3652 if (ret < 0) { 3653 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret); 3654 up(&fs_info->uuid_tree_rescan_sem); 3655 return ret; 3656 } 3657 return btrfs_uuid_scan_kthread(data); 3658 } 3659 3660 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 3661 { 3662 struct btrfs_trans_handle *trans; 3663 struct btrfs_root *tree_root = fs_info->tree_root; 3664 struct btrfs_root *uuid_root; 3665 struct task_struct *task; 3666 int ret; 3667 3668 /* 3669 * 1 - root node 3670 * 1 - root item 3671 */ 3672 trans = btrfs_start_transaction(tree_root, 2); 3673 if (IS_ERR(trans)) 3674 return PTR_ERR(trans); 3675 3676 uuid_root = btrfs_create_tree(trans, fs_info, 3677 BTRFS_UUID_TREE_OBJECTID); 3678 if (IS_ERR(uuid_root)) { 3679 btrfs_abort_transaction(trans, tree_root, 3680 PTR_ERR(uuid_root)); 3681 return PTR_ERR(uuid_root); 3682 } 3683 3684 fs_info->uuid_root = uuid_root; 3685 3686 ret = btrfs_commit_transaction(trans, tree_root); 3687 if (ret) 3688 return ret; 3689 3690 down(&fs_info->uuid_tree_rescan_sem); 3691 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 3692 if (IS_ERR(task)) { 3693 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3694 pr_warn("btrfs: failed to start uuid_scan task\n"); 3695 up(&fs_info->uuid_tree_rescan_sem); 3696 return PTR_ERR(task); 3697 } 3698 3699 return 0; 3700 } 3701 3702 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3703 { 3704 struct task_struct *task; 3705 3706 down(&fs_info->uuid_tree_rescan_sem); 3707 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3708 if (IS_ERR(task)) { 3709 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3710 pr_warn("btrfs: failed to start uuid_rescan task\n"); 3711 up(&fs_info->uuid_tree_rescan_sem); 3712 return PTR_ERR(task); 3713 } 3714 3715 return 0; 3716 } 3717 3718 /* 3719 * shrinking a device means finding all of the device extents past 3720 * the new size, and then following the back refs to the chunks. 3721 * The chunk relocation code actually frees the device extent 3722 */ 3723 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3724 { 3725 struct btrfs_trans_handle *trans; 3726 struct btrfs_root *root = device->dev_root; 3727 struct btrfs_dev_extent *dev_extent = NULL; 3728 struct btrfs_path *path; 3729 u64 length; 3730 u64 chunk_tree; 3731 u64 chunk_objectid; 3732 u64 chunk_offset; 3733 int ret; 3734 int slot; 3735 int failed = 0; 3736 bool retried = false; 3737 struct extent_buffer *l; 3738 struct btrfs_key key; 3739 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3740 u64 old_total = btrfs_super_total_bytes(super_copy); 3741 u64 old_size = device->total_bytes; 3742 u64 diff = device->total_bytes - new_size; 3743 3744 if (device->is_tgtdev_for_dev_replace) 3745 return -EINVAL; 3746 3747 path = btrfs_alloc_path(); 3748 if (!path) 3749 return -ENOMEM; 3750 3751 path->reada = 2; 3752 3753 lock_chunks(root); 3754 3755 device->total_bytes = new_size; 3756 if (device->writeable) { 3757 device->fs_devices->total_rw_bytes -= diff; 3758 spin_lock(&root->fs_info->free_chunk_lock); 3759 root->fs_info->free_chunk_space -= diff; 3760 spin_unlock(&root->fs_info->free_chunk_lock); 3761 } 3762 unlock_chunks(root); 3763 3764 again: 3765 key.objectid = device->devid; 3766 key.offset = (u64)-1; 3767 key.type = BTRFS_DEV_EXTENT_KEY; 3768 3769 do { 3770 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3771 if (ret < 0) 3772 goto done; 3773 3774 ret = btrfs_previous_item(root, path, 0, key.type); 3775 if (ret < 0) 3776 goto done; 3777 if (ret) { 3778 ret = 0; 3779 btrfs_release_path(path); 3780 break; 3781 } 3782 3783 l = path->nodes[0]; 3784 slot = path->slots[0]; 3785 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 3786 3787 if (key.objectid != device->devid) { 3788 btrfs_release_path(path); 3789 break; 3790 } 3791 3792 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3793 length = btrfs_dev_extent_length(l, dev_extent); 3794 3795 if (key.offset + length <= new_size) { 3796 btrfs_release_path(path); 3797 break; 3798 } 3799 3800 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3801 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3802 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3803 btrfs_release_path(path); 3804 3805 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, 3806 chunk_offset); 3807 if (ret && ret != -ENOSPC) 3808 goto done; 3809 if (ret == -ENOSPC) 3810 failed++; 3811 } while (key.offset-- > 0); 3812 3813 if (failed && !retried) { 3814 failed = 0; 3815 retried = true; 3816 goto again; 3817 } else if (failed && retried) { 3818 ret = -ENOSPC; 3819 lock_chunks(root); 3820 3821 device->total_bytes = old_size; 3822 if (device->writeable) 3823 device->fs_devices->total_rw_bytes += diff; 3824 spin_lock(&root->fs_info->free_chunk_lock); 3825 root->fs_info->free_chunk_space += diff; 3826 spin_unlock(&root->fs_info->free_chunk_lock); 3827 unlock_chunks(root); 3828 goto done; 3829 } 3830 3831 /* Shrinking succeeded, else we would be at "done". */ 3832 trans = btrfs_start_transaction(root, 0); 3833 if (IS_ERR(trans)) { 3834 ret = PTR_ERR(trans); 3835 goto done; 3836 } 3837 3838 lock_chunks(root); 3839 3840 device->disk_total_bytes = new_size; 3841 /* Now btrfs_update_device() will change the on-disk size. */ 3842 ret = btrfs_update_device(trans, device); 3843 if (ret) { 3844 unlock_chunks(root); 3845 btrfs_end_transaction(trans, root); 3846 goto done; 3847 } 3848 WARN_ON(diff > old_total); 3849 btrfs_set_super_total_bytes(super_copy, old_total - diff); 3850 unlock_chunks(root); 3851 btrfs_end_transaction(trans, root); 3852 done: 3853 btrfs_free_path(path); 3854 return ret; 3855 } 3856 3857 static int btrfs_add_system_chunk(struct btrfs_root *root, 3858 struct btrfs_key *key, 3859 struct btrfs_chunk *chunk, int item_size) 3860 { 3861 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3862 struct btrfs_disk_key disk_key; 3863 u32 array_size; 3864 u8 *ptr; 3865 3866 array_size = btrfs_super_sys_array_size(super_copy); 3867 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 3868 return -EFBIG; 3869 3870 ptr = super_copy->sys_chunk_array + array_size; 3871 btrfs_cpu_key_to_disk(&disk_key, key); 3872 memcpy(ptr, &disk_key, sizeof(disk_key)); 3873 ptr += sizeof(disk_key); 3874 memcpy(ptr, chunk, item_size); 3875 item_size += sizeof(disk_key); 3876 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 3877 return 0; 3878 } 3879 3880 /* 3881 * sort the devices in descending order by max_avail, total_avail 3882 */ 3883 static int btrfs_cmp_device_info(const void *a, const void *b) 3884 { 3885 const struct btrfs_device_info *di_a = a; 3886 const struct btrfs_device_info *di_b = b; 3887 3888 if (di_a->max_avail > di_b->max_avail) 3889 return -1; 3890 if (di_a->max_avail < di_b->max_avail) 3891 return 1; 3892 if (di_a->total_avail > di_b->total_avail) 3893 return -1; 3894 if (di_a->total_avail < di_b->total_avail) 3895 return 1; 3896 return 0; 3897 } 3898 3899 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 3900 [BTRFS_RAID_RAID10] = { 3901 .sub_stripes = 2, 3902 .dev_stripes = 1, 3903 .devs_max = 0, /* 0 == as many as possible */ 3904 .devs_min = 4, 3905 .devs_increment = 2, 3906 .ncopies = 2, 3907 }, 3908 [BTRFS_RAID_RAID1] = { 3909 .sub_stripes = 1, 3910 .dev_stripes = 1, 3911 .devs_max = 2, 3912 .devs_min = 2, 3913 .devs_increment = 2, 3914 .ncopies = 2, 3915 }, 3916 [BTRFS_RAID_DUP] = { 3917 .sub_stripes = 1, 3918 .dev_stripes = 2, 3919 .devs_max = 1, 3920 .devs_min = 1, 3921 .devs_increment = 1, 3922 .ncopies = 2, 3923 }, 3924 [BTRFS_RAID_RAID0] = { 3925 .sub_stripes = 1, 3926 .dev_stripes = 1, 3927 .devs_max = 0, 3928 .devs_min = 2, 3929 .devs_increment = 1, 3930 .ncopies = 1, 3931 }, 3932 [BTRFS_RAID_SINGLE] = { 3933 .sub_stripes = 1, 3934 .dev_stripes = 1, 3935 .devs_max = 1, 3936 .devs_min = 1, 3937 .devs_increment = 1, 3938 .ncopies = 1, 3939 }, 3940 [BTRFS_RAID_RAID5] = { 3941 .sub_stripes = 1, 3942 .dev_stripes = 1, 3943 .devs_max = 0, 3944 .devs_min = 2, 3945 .devs_increment = 1, 3946 .ncopies = 2, 3947 }, 3948 [BTRFS_RAID_RAID6] = { 3949 .sub_stripes = 1, 3950 .dev_stripes = 1, 3951 .devs_max = 0, 3952 .devs_min = 3, 3953 .devs_increment = 1, 3954 .ncopies = 3, 3955 }, 3956 }; 3957 3958 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 3959 { 3960 /* TODO allow them to set a preferred stripe size */ 3961 return 64 * 1024; 3962 } 3963 3964 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 3965 { 3966 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))) 3967 return; 3968 3969 btrfs_set_fs_incompat(info, RAID56); 3970 } 3971 3972 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 3973 struct btrfs_root *extent_root, u64 start, 3974 u64 type) 3975 { 3976 struct btrfs_fs_info *info = extent_root->fs_info; 3977 struct btrfs_fs_devices *fs_devices = info->fs_devices; 3978 struct list_head *cur; 3979 struct map_lookup *map = NULL; 3980 struct extent_map_tree *em_tree; 3981 struct extent_map *em; 3982 struct btrfs_device_info *devices_info = NULL; 3983 u64 total_avail; 3984 int num_stripes; /* total number of stripes to allocate */ 3985 int data_stripes; /* number of stripes that count for 3986 block group size */ 3987 int sub_stripes; /* sub_stripes info for map */ 3988 int dev_stripes; /* stripes per dev */ 3989 int devs_max; /* max devs to use */ 3990 int devs_min; /* min devs needed */ 3991 int devs_increment; /* ndevs has to be a multiple of this */ 3992 int ncopies; /* how many copies to data has */ 3993 int ret; 3994 u64 max_stripe_size; 3995 u64 max_chunk_size; 3996 u64 stripe_size; 3997 u64 num_bytes; 3998 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 3999 int ndevs; 4000 int i; 4001 int j; 4002 int index; 4003 4004 BUG_ON(!alloc_profile_is_valid(type, 0)); 4005 4006 if (list_empty(&fs_devices->alloc_list)) 4007 return -ENOSPC; 4008 4009 index = __get_raid_index(type); 4010 4011 sub_stripes = btrfs_raid_array[index].sub_stripes; 4012 dev_stripes = btrfs_raid_array[index].dev_stripes; 4013 devs_max = btrfs_raid_array[index].devs_max; 4014 devs_min = btrfs_raid_array[index].devs_min; 4015 devs_increment = btrfs_raid_array[index].devs_increment; 4016 ncopies = btrfs_raid_array[index].ncopies; 4017 4018 if (type & BTRFS_BLOCK_GROUP_DATA) { 4019 max_stripe_size = 1024 * 1024 * 1024; 4020 max_chunk_size = 10 * max_stripe_size; 4021 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4022 /* for larger filesystems, use larger metadata chunks */ 4023 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4024 max_stripe_size = 1024 * 1024 * 1024; 4025 else 4026 max_stripe_size = 256 * 1024 * 1024; 4027 max_chunk_size = max_stripe_size; 4028 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4029 max_stripe_size = 32 * 1024 * 1024; 4030 max_chunk_size = 2 * max_stripe_size; 4031 } else { 4032 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n", 4033 type); 4034 BUG_ON(1); 4035 } 4036 4037 /* we don't want a chunk larger than 10% of writeable space */ 4038 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4039 max_chunk_size); 4040 4041 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, 4042 GFP_NOFS); 4043 if (!devices_info) 4044 return -ENOMEM; 4045 4046 cur = fs_devices->alloc_list.next; 4047 4048 /* 4049 * in the first pass through the devices list, we gather information 4050 * about the available holes on each device. 4051 */ 4052 ndevs = 0; 4053 while (cur != &fs_devices->alloc_list) { 4054 struct btrfs_device *device; 4055 u64 max_avail; 4056 u64 dev_offset; 4057 4058 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4059 4060 cur = cur->next; 4061 4062 if (!device->writeable) { 4063 WARN(1, KERN_ERR 4064 "btrfs: read-only device in alloc_list\n"); 4065 continue; 4066 } 4067 4068 if (!device->in_fs_metadata || 4069 device->is_tgtdev_for_dev_replace) 4070 continue; 4071 4072 if (device->total_bytes > device->bytes_used) 4073 total_avail = device->total_bytes - device->bytes_used; 4074 else 4075 total_avail = 0; 4076 4077 /* If there is no space on this device, skip it. */ 4078 if (total_avail == 0) 4079 continue; 4080 4081 ret = find_free_dev_extent(trans, device, 4082 max_stripe_size * dev_stripes, 4083 &dev_offset, &max_avail); 4084 if (ret && ret != -ENOSPC) 4085 goto error; 4086 4087 if (ret == 0) 4088 max_avail = max_stripe_size * dev_stripes; 4089 4090 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4091 continue; 4092 4093 if (ndevs == fs_devices->rw_devices) { 4094 WARN(1, "%s: found more than %llu devices\n", 4095 __func__, fs_devices->rw_devices); 4096 break; 4097 } 4098 devices_info[ndevs].dev_offset = dev_offset; 4099 devices_info[ndevs].max_avail = max_avail; 4100 devices_info[ndevs].total_avail = total_avail; 4101 devices_info[ndevs].dev = device; 4102 ++ndevs; 4103 } 4104 4105 /* 4106 * now sort the devices by hole size / available space 4107 */ 4108 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4109 btrfs_cmp_device_info, NULL); 4110 4111 /* round down to number of usable stripes */ 4112 ndevs -= ndevs % devs_increment; 4113 4114 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4115 ret = -ENOSPC; 4116 goto error; 4117 } 4118 4119 if (devs_max && ndevs > devs_max) 4120 ndevs = devs_max; 4121 /* 4122 * the primary goal is to maximize the number of stripes, so use as many 4123 * devices as possible, even if the stripes are not maximum sized. 4124 */ 4125 stripe_size = devices_info[ndevs-1].max_avail; 4126 num_stripes = ndevs * dev_stripes; 4127 4128 /* 4129 * this will have to be fixed for RAID1 and RAID10 over 4130 * more drives 4131 */ 4132 data_stripes = num_stripes / ncopies; 4133 4134 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4135 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4136 btrfs_super_stripesize(info->super_copy)); 4137 data_stripes = num_stripes - 1; 4138 } 4139 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4140 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4141 btrfs_super_stripesize(info->super_copy)); 4142 data_stripes = num_stripes - 2; 4143 } 4144 4145 /* 4146 * Use the number of data stripes to figure out how big this chunk 4147 * is really going to be in terms of logical address space, 4148 * and compare that answer with the max chunk size 4149 */ 4150 if (stripe_size * data_stripes > max_chunk_size) { 4151 u64 mask = (1ULL << 24) - 1; 4152 stripe_size = max_chunk_size; 4153 do_div(stripe_size, data_stripes); 4154 4155 /* bump the answer up to a 16MB boundary */ 4156 stripe_size = (stripe_size + mask) & ~mask; 4157 4158 /* but don't go higher than the limits we found 4159 * while searching for free extents 4160 */ 4161 if (stripe_size > devices_info[ndevs-1].max_avail) 4162 stripe_size = devices_info[ndevs-1].max_avail; 4163 } 4164 4165 do_div(stripe_size, dev_stripes); 4166 4167 /* align to BTRFS_STRIPE_LEN */ 4168 do_div(stripe_size, raid_stripe_len); 4169 stripe_size *= raid_stripe_len; 4170 4171 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4172 if (!map) { 4173 ret = -ENOMEM; 4174 goto error; 4175 } 4176 map->num_stripes = num_stripes; 4177 4178 for (i = 0; i < ndevs; ++i) { 4179 for (j = 0; j < dev_stripes; ++j) { 4180 int s = i * dev_stripes + j; 4181 map->stripes[s].dev = devices_info[i].dev; 4182 map->stripes[s].physical = devices_info[i].dev_offset + 4183 j * stripe_size; 4184 } 4185 } 4186 map->sector_size = extent_root->sectorsize; 4187 map->stripe_len = raid_stripe_len; 4188 map->io_align = raid_stripe_len; 4189 map->io_width = raid_stripe_len; 4190 map->type = type; 4191 map->sub_stripes = sub_stripes; 4192 4193 num_bytes = stripe_size * data_stripes; 4194 4195 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4196 4197 em = alloc_extent_map(); 4198 if (!em) { 4199 ret = -ENOMEM; 4200 goto error; 4201 } 4202 em->bdev = (struct block_device *)map; 4203 em->start = start; 4204 em->len = num_bytes; 4205 em->block_start = 0; 4206 em->block_len = em->len; 4207 em->orig_block_len = stripe_size; 4208 4209 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4210 write_lock(&em_tree->lock); 4211 ret = add_extent_mapping(em_tree, em, 0); 4212 if (!ret) { 4213 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4214 atomic_inc(&em->refs); 4215 } 4216 write_unlock(&em_tree->lock); 4217 if (ret) { 4218 free_extent_map(em); 4219 goto error; 4220 } 4221 4222 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4223 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4224 start, num_bytes); 4225 if (ret) 4226 goto error_del_extent; 4227 4228 free_extent_map(em); 4229 check_raid56_incompat_flag(extent_root->fs_info, type); 4230 4231 kfree(devices_info); 4232 return 0; 4233 4234 error_del_extent: 4235 write_lock(&em_tree->lock); 4236 remove_extent_mapping(em_tree, em); 4237 write_unlock(&em_tree->lock); 4238 4239 /* One for our allocation */ 4240 free_extent_map(em); 4241 /* One for the tree reference */ 4242 free_extent_map(em); 4243 error: 4244 kfree(map); 4245 kfree(devices_info); 4246 return ret; 4247 } 4248 4249 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4250 struct btrfs_root *extent_root, 4251 u64 chunk_offset, u64 chunk_size) 4252 { 4253 struct btrfs_key key; 4254 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4255 struct btrfs_device *device; 4256 struct btrfs_chunk *chunk; 4257 struct btrfs_stripe *stripe; 4258 struct extent_map_tree *em_tree; 4259 struct extent_map *em; 4260 struct map_lookup *map; 4261 size_t item_size; 4262 u64 dev_offset; 4263 u64 stripe_size; 4264 int i = 0; 4265 int ret; 4266 4267 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4268 read_lock(&em_tree->lock); 4269 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4270 read_unlock(&em_tree->lock); 4271 4272 if (!em) { 4273 btrfs_crit(extent_root->fs_info, "unable to find logical " 4274 "%Lu len %Lu", chunk_offset, chunk_size); 4275 return -EINVAL; 4276 } 4277 4278 if (em->start != chunk_offset || em->len != chunk_size) { 4279 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4280 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset, 4281 chunk_size, em->start, em->len); 4282 free_extent_map(em); 4283 return -EINVAL; 4284 } 4285 4286 map = (struct map_lookup *)em->bdev; 4287 item_size = btrfs_chunk_item_size(map->num_stripes); 4288 stripe_size = em->orig_block_len; 4289 4290 chunk = kzalloc(item_size, GFP_NOFS); 4291 if (!chunk) { 4292 ret = -ENOMEM; 4293 goto out; 4294 } 4295 4296 for (i = 0; i < map->num_stripes; i++) { 4297 device = map->stripes[i].dev; 4298 dev_offset = map->stripes[i].physical; 4299 4300 device->bytes_used += stripe_size; 4301 ret = btrfs_update_device(trans, device); 4302 if (ret) 4303 goto out; 4304 ret = btrfs_alloc_dev_extent(trans, device, 4305 chunk_root->root_key.objectid, 4306 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4307 chunk_offset, dev_offset, 4308 stripe_size); 4309 if (ret) 4310 goto out; 4311 } 4312 4313 spin_lock(&extent_root->fs_info->free_chunk_lock); 4314 extent_root->fs_info->free_chunk_space -= (stripe_size * 4315 map->num_stripes); 4316 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4317 4318 stripe = &chunk->stripe; 4319 for (i = 0; i < map->num_stripes; i++) { 4320 device = map->stripes[i].dev; 4321 dev_offset = map->stripes[i].physical; 4322 4323 btrfs_set_stack_stripe_devid(stripe, device->devid); 4324 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4325 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4326 stripe++; 4327 } 4328 4329 btrfs_set_stack_chunk_length(chunk, chunk_size); 4330 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4331 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4332 btrfs_set_stack_chunk_type(chunk, map->type); 4333 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4334 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4335 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4336 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4337 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4338 4339 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4340 key.type = BTRFS_CHUNK_ITEM_KEY; 4341 key.offset = chunk_offset; 4342 4343 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4344 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4345 /* 4346 * TODO: Cleanup of inserted chunk root in case of 4347 * failure. 4348 */ 4349 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4350 item_size); 4351 } 4352 4353 out: 4354 kfree(chunk); 4355 free_extent_map(em); 4356 return ret; 4357 } 4358 4359 /* 4360 * Chunk allocation falls into two parts. The first part does works 4361 * that make the new allocated chunk useable, but not do any operation 4362 * that modifies the chunk tree. The second part does the works that 4363 * require modifying the chunk tree. This division is important for the 4364 * bootstrap process of adding storage to a seed btrfs. 4365 */ 4366 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4367 struct btrfs_root *extent_root, u64 type) 4368 { 4369 u64 chunk_offset; 4370 4371 chunk_offset = find_next_chunk(extent_root->fs_info); 4372 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4373 } 4374 4375 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4376 struct btrfs_root *root, 4377 struct btrfs_device *device) 4378 { 4379 u64 chunk_offset; 4380 u64 sys_chunk_offset; 4381 u64 alloc_profile; 4382 struct btrfs_fs_info *fs_info = root->fs_info; 4383 struct btrfs_root *extent_root = fs_info->extent_root; 4384 int ret; 4385 4386 chunk_offset = find_next_chunk(fs_info); 4387 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4388 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4389 alloc_profile); 4390 if (ret) 4391 return ret; 4392 4393 sys_chunk_offset = find_next_chunk(root->fs_info); 4394 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4395 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4396 alloc_profile); 4397 if (ret) { 4398 btrfs_abort_transaction(trans, root, ret); 4399 goto out; 4400 } 4401 4402 ret = btrfs_add_device(trans, fs_info->chunk_root, device); 4403 if (ret) 4404 btrfs_abort_transaction(trans, root, ret); 4405 out: 4406 return ret; 4407 } 4408 4409 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4410 { 4411 struct extent_map *em; 4412 struct map_lookup *map; 4413 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4414 int readonly = 0; 4415 int i; 4416 4417 read_lock(&map_tree->map_tree.lock); 4418 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4419 read_unlock(&map_tree->map_tree.lock); 4420 if (!em) 4421 return 1; 4422 4423 if (btrfs_test_opt(root, DEGRADED)) { 4424 free_extent_map(em); 4425 return 0; 4426 } 4427 4428 map = (struct map_lookup *)em->bdev; 4429 for (i = 0; i < map->num_stripes; i++) { 4430 if (!map->stripes[i].dev->writeable) { 4431 readonly = 1; 4432 break; 4433 } 4434 } 4435 free_extent_map(em); 4436 return readonly; 4437 } 4438 4439 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4440 { 4441 extent_map_tree_init(&tree->map_tree); 4442 } 4443 4444 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4445 { 4446 struct extent_map *em; 4447 4448 while (1) { 4449 write_lock(&tree->map_tree.lock); 4450 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4451 if (em) 4452 remove_extent_mapping(&tree->map_tree, em); 4453 write_unlock(&tree->map_tree.lock); 4454 if (!em) 4455 break; 4456 kfree(em->bdev); 4457 /* once for us */ 4458 free_extent_map(em); 4459 /* once for the tree */ 4460 free_extent_map(em); 4461 } 4462 } 4463 4464 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 4465 { 4466 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4467 struct extent_map *em; 4468 struct map_lookup *map; 4469 struct extent_map_tree *em_tree = &map_tree->map_tree; 4470 int ret; 4471 4472 read_lock(&em_tree->lock); 4473 em = lookup_extent_mapping(em_tree, logical, len); 4474 read_unlock(&em_tree->lock); 4475 4476 /* 4477 * We could return errors for these cases, but that could get ugly and 4478 * we'd probably do the same thing which is just not do anything else 4479 * and exit, so return 1 so the callers don't try to use other copies. 4480 */ 4481 if (!em) { 4482 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical, 4483 logical+len); 4484 return 1; 4485 } 4486 4487 if (em->start > logical || em->start + em->len < logical) { 4488 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 4489 "%Lu-%Lu\n", logical, logical+len, em->start, 4490 em->start + em->len); 4491 return 1; 4492 } 4493 4494 map = (struct map_lookup *)em->bdev; 4495 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 4496 ret = map->num_stripes; 4497 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4498 ret = map->sub_stripes; 4499 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 4500 ret = 2; 4501 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4502 ret = 3; 4503 else 4504 ret = 1; 4505 free_extent_map(em); 4506 4507 btrfs_dev_replace_lock(&fs_info->dev_replace); 4508 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 4509 ret++; 4510 btrfs_dev_replace_unlock(&fs_info->dev_replace); 4511 4512 return ret; 4513 } 4514 4515 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 4516 struct btrfs_mapping_tree *map_tree, 4517 u64 logical) 4518 { 4519 struct extent_map *em; 4520 struct map_lookup *map; 4521 struct extent_map_tree *em_tree = &map_tree->map_tree; 4522 unsigned long len = root->sectorsize; 4523 4524 read_lock(&em_tree->lock); 4525 em = lookup_extent_mapping(em_tree, logical, len); 4526 read_unlock(&em_tree->lock); 4527 BUG_ON(!em); 4528 4529 BUG_ON(em->start > logical || em->start + em->len < logical); 4530 map = (struct map_lookup *)em->bdev; 4531 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4532 BTRFS_BLOCK_GROUP_RAID6)) { 4533 len = map->stripe_len * nr_data_stripes(map); 4534 } 4535 free_extent_map(em); 4536 return len; 4537 } 4538 4539 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 4540 u64 logical, u64 len, int mirror_num) 4541 { 4542 struct extent_map *em; 4543 struct map_lookup *map; 4544 struct extent_map_tree *em_tree = &map_tree->map_tree; 4545 int ret = 0; 4546 4547 read_lock(&em_tree->lock); 4548 em = lookup_extent_mapping(em_tree, logical, len); 4549 read_unlock(&em_tree->lock); 4550 BUG_ON(!em); 4551 4552 BUG_ON(em->start > logical || em->start + em->len < logical); 4553 map = (struct map_lookup *)em->bdev; 4554 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4555 BTRFS_BLOCK_GROUP_RAID6)) 4556 ret = 1; 4557 free_extent_map(em); 4558 return ret; 4559 } 4560 4561 static int find_live_mirror(struct btrfs_fs_info *fs_info, 4562 struct map_lookup *map, int first, int num, 4563 int optimal, int dev_replace_is_ongoing) 4564 { 4565 int i; 4566 int tolerance; 4567 struct btrfs_device *srcdev; 4568 4569 if (dev_replace_is_ongoing && 4570 fs_info->dev_replace.cont_reading_from_srcdev_mode == 4571 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 4572 srcdev = fs_info->dev_replace.srcdev; 4573 else 4574 srcdev = NULL; 4575 4576 /* 4577 * try to avoid the drive that is the source drive for a 4578 * dev-replace procedure, only choose it if no other non-missing 4579 * mirror is available 4580 */ 4581 for (tolerance = 0; tolerance < 2; tolerance++) { 4582 if (map->stripes[optimal].dev->bdev && 4583 (tolerance || map->stripes[optimal].dev != srcdev)) 4584 return optimal; 4585 for (i = first; i < first + num; i++) { 4586 if (map->stripes[i].dev->bdev && 4587 (tolerance || map->stripes[i].dev != srcdev)) 4588 return i; 4589 } 4590 } 4591 4592 /* we couldn't find one that doesn't fail. Just return something 4593 * and the io error handling code will clean up eventually 4594 */ 4595 return optimal; 4596 } 4597 4598 static inline int parity_smaller(u64 a, u64 b) 4599 { 4600 return a > b; 4601 } 4602 4603 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 4604 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map) 4605 { 4606 struct btrfs_bio_stripe s; 4607 int i; 4608 u64 l; 4609 int again = 1; 4610 4611 while (again) { 4612 again = 0; 4613 for (i = 0; i < bbio->num_stripes - 1; i++) { 4614 if (parity_smaller(raid_map[i], raid_map[i+1])) { 4615 s = bbio->stripes[i]; 4616 l = raid_map[i]; 4617 bbio->stripes[i] = bbio->stripes[i+1]; 4618 raid_map[i] = raid_map[i+1]; 4619 bbio->stripes[i+1] = s; 4620 raid_map[i+1] = l; 4621 again = 1; 4622 } 4623 } 4624 } 4625 } 4626 4627 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 4628 u64 logical, u64 *length, 4629 struct btrfs_bio **bbio_ret, 4630 int mirror_num, u64 **raid_map_ret) 4631 { 4632 struct extent_map *em; 4633 struct map_lookup *map; 4634 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4635 struct extent_map_tree *em_tree = &map_tree->map_tree; 4636 u64 offset; 4637 u64 stripe_offset; 4638 u64 stripe_end_offset; 4639 u64 stripe_nr; 4640 u64 stripe_nr_orig; 4641 u64 stripe_nr_end; 4642 u64 stripe_len; 4643 u64 *raid_map = NULL; 4644 int stripe_index; 4645 int i; 4646 int ret = 0; 4647 int num_stripes; 4648 int max_errors = 0; 4649 struct btrfs_bio *bbio = NULL; 4650 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 4651 int dev_replace_is_ongoing = 0; 4652 int num_alloc_stripes; 4653 int patch_the_first_stripe_for_dev_replace = 0; 4654 u64 physical_to_patch_in_first_stripe = 0; 4655 u64 raid56_full_stripe_start = (u64)-1; 4656 4657 read_lock(&em_tree->lock); 4658 em = lookup_extent_mapping(em_tree, logical, *length); 4659 read_unlock(&em_tree->lock); 4660 4661 if (!em) { 4662 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 4663 logical, *length); 4664 return -EINVAL; 4665 } 4666 4667 if (em->start > logical || em->start + em->len < logical) { 4668 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 4669 "found %Lu-%Lu\n", logical, em->start, 4670 em->start + em->len); 4671 return -EINVAL; 4672 } 4673 4674 map = (struct map_lookup *)em->bdev; 4675 offset = logical - em->start; 4676 4677 stripe_len = map->stripe_len; 4678 stripe_nr = offset; 4679 /* 4680 * stripe_nr counts the total number of stripes we have to stride 4681 * to get to this block 4682 */ 4683 do_div(stripe_nr, stripe_len); 4684 4685 stripe_offset = stripe_nr * stripe_len; 4686 BUG_ON(offset < stripe_offset); 4687 4688 /* stripe_offset is the offset of this block in its stripe*/ 4689 stripe_offset = offset - stripe_offset; 4690 4691 /* if we're here for raid56, we need to know the stripe aligned start */ 4692 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { 4693 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 4694 raid56_full_stripe_start = offset; 4695 4696 /* allow a write of a full stripe, but make sure we don't 4697 * allow straddling of stripes 4698 */ 4699 do_div(raid56_full_stripe_start, full_stripe_len); 4700 raid56_full_stripe_start *= full_stripe_len; 4701 } 4702 4703 if (rw & REQ_DISCARD) { 4704 /* we don't discard raid56 yet */ 4705 if (map->type & 4706 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { 4707 ret = -EOPNOTSUPP; 4708 goto out; 4709 } 4710 *length = min_t(u64, em->len - offset, *length); 4711 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 4712 u64 max_len; 4713 /* For writes to RAID[56], allow a full stripeset across all disks. 4714 For other RAID types and for RAID[56] reads, just allow a single 4715 stripe (on a single disk). */ 4716 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) && 4717 (rw & REQ_WRITE)) { 4718 max_len = stripe_len * nr_data_stripes(map) - 4719 (offset - raid56_full_stripe_start); 4720 } else { 4721 /* we limit the length of each bio to what fits in a stripe */ 4722 max_len = stripe_len - stripe_offset; 4723 } 4724 *length = min_t(u64, em->len - offset, max_len); 4725 } else { 4726 *length = em->len - offset; 4727 } 4728 4729 /* This is for when we're called from btrfs_merge_bio_hook() and all 4730 it cares about is the length */ 4731 if (!bbio_ret) 4732 goto out; 4733 4734 btrfs_dev_replace_lock(dev_replace); 4735 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 4736 if (!dev_replace_is_ongoing) 4737 btrfs_dev_replace_unlock(dev_replace); 4738 4739 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 4740 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 4741 dev_replace->tgtdev != NULL) { 4742 /* 4743 * in dev-replace case, for repair case (that's the only 4744 * case where the mirror is selected explicitly when 4745 * calling btrfs_map_block), blocks left of the left cursor 4746 * can also be read from the target drive. 4747 * For REQ_GET_READ_MIRRORS, the target drive is added as 4748 * the last one to the array of stripes. For READ, it also 4749 * needs to be supported using the same mirror number. 4750 * If the requested block is not left of the left cursor, 4751 * EIO is returned. This can happen because btrfs_num_copies() 4752 * returns one more in the dev-replace case. 4753 */ 4754 u64 tmp_length = *length; 4755 struct btrfs_bio *tmp_bbio = NULL; 4756 int tmp_num_stripes; 4757 u64 srcdev_devid = dev_replace->srcdev->devid; 4758 int index_srcdev = 0; 4759 int found = 0; 4760 u64 physical_of_found = 0; 4761 4762 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 4763 logical, &tmp_length, &tmp_bbio, 0, NULL); 4764 if (ret) { 4765 WARN_ON(tmp_bbio != NULL); 4766 goto out; 4767 } 4768 4769 tmp_num_stripes = tmp_bbio->num_stripes; 4770 if (mirror_num > tmp_num_stripes) { 4771 /* 4772 * REQ_GET_READ_MIRRORS does not contain this 4773 * mirror, that means that the requested area 4774 * is not left of the left cursor 4775 */ 4776 ret = -EIO; 4777 kfree(tmp_bbio); 4778 goto out; 4779 } 4780 4781 /* 4782 * process the rest of the function using the mirror_num 4783 * of the source drive. Therefore look it up first. 4784 * At the end, patch the device pointer to the one of the 4785 * target drive. 4786 */ 4787 for (i = 0; i < tmp_num_stripes; i++) { 4788 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 4789 /* 4790 * In case of DUP, in order to keep it 4791 * simple, only add the mirror with the 4792 * lowest physical address 4793 */ 4794 if (found && 4795 physical_of_found <= 4796 tmp_bbio->stripes[i].physical) 4797 continue; 4798 index_srcdev = i; 4799 found = 1; 4800 physical_of_found = 4801 tmp_bbio->stripes[i].physical; 4802 } 4803 } 4804 4805 if (found) { 4806 mirror_num = index_srcdev + 1; 4807 patch_the_first_stripe_for_dev_replace = 1; 4808 physical_to_patch_in_first_stripe = physical_of_found; 4809 } else { 4810 WARN_ON(1); 4811 ret = -EIO; 4812 kfree(tmp_bbio); 4813 goto out; 4814 } 4815 4816 kfree(tmp_bbio); 4817 } else if (mirror_num > map->num_stripes) { 4818 mirror_num = 0; 4819 } 4820 4821 num_stripes = 1; 4822 stripe_index = 0; 4823 stripe_nr_orig = stripe_nr; 4824 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 4825 do_div(stripe_nr_end, map->stripe_len); 4826 stripe_end_offset = stripe_nr_end * map->stripe_len - 4827 (offset + *length); 4828 4829 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 4830 if (rw & REQ_DISCARD) 4831 num_stripes = min_t(u64, map->num_stripes, 4832 stripe_nr_end - stripe_nr_orig); 4833 stripe_index = do_div(stripe_nr, map->num_stripes); 4834 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 4835 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 4836 num_stripes = map->num_stripes; 4837 else if (mirror_num) 4838 stripe_index = mirror_num - 1; 4839 else { 4840 stripe_index = find_live_mirror(fs_info, map, 0, 4841 map->num_stripes, 4842 current->pid % map->num_stripes, 4843 dev_replace_is_ongoing); 4844 mirror_num = stripe_index + 1; 4845 } 4846 4847 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 4848 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 4849 num_stripes = map->num_stripes; 4850 } else if (mirror_num) { 4851 stripe_index = mirror_num - 1; 4852 } else { 4853 mirror_num = 1; 4854 } 4855 4856 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 4857 int factor = map->num_stripes / map->sub_stripes; 4858 4859 stripe_index = do_div(stripe_nr, factor); 4860 stripe_index *= map->sub_stripes; 4861 4862 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 4863 num_stripes = map->sub_stripes; 4864 else if (rw & REQ_DISCARD) 4865 num_stripes = min_t(u64, map->sub_stripes * 4866 (stripe_nr_end - stripe_nr_orig), 4867 map->num_stripes); 4868 else if (mirror_num) 4869 stripe_index += mirror_num - 1; 4870 else { 4871 int old_stripe_index = stripe_index; 4872 stripe_index = find_live_mirror(fs_info, map, 4873 stripe_index, 4874 map->sub_stripes, stripe_index + 4875 current->pid % map->sub_stripes, 4876 dev_replace_is_ongoing); 4877 mirror_num = stripe_index - old_stripe_index + 1; 4878 } 4879 4880 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4881 BTRFS_BLOCK_GROUP_RAID6)) { 4882 u64 tmp; 4883 4884 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1) 4885 && raid_map_ret) { 4886 int i, rot; 4887 4888 /* push stripe_nr back to the start of the full stripe */ 4889 stripe_nr = raid56_full_stripe_start; 4890 do_div(stripe_nr, stripe_len); 4891 4892 stripe_index = do_div(stripe_nr, nr_data_stripes(map)); 4893 4894 /* RAID[56] write or recovery. Return all stripes */ 4895 num_stripes = map->num_stripes; 4896 max_errors = nr_parity_stripes(map); 4897 4898 raid_map = kmalloc(sizeof(u64) * num_stripes, 4899 GFP_NOFS); 4900 if (!raid_map) { 4901 ret = -ENOMEM; 4902 goto out; 4903 } 4904 4905 /* Work out the disk rotation on this stripe-set */ 4906 tmp = stripe_nr; 4907 rot = do_div(tmp, num_stripes); 4908 4909 /* Fill in the logical address of each stripe */ 4910 tmp = stripe_nr * nr_data_stripes(map); 4911 for (i = 0; i < nr_data_stripes(map); i++) 4912 raid_map[(i+rot) % num_stripes] = 4913 em->start + (tmp + i) * map->stripe_len; 4914 4915 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 4916 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4917 raid_map[(i+rot+1) % num_stripes] = 4918 RAID6_Q_STRIPE; 4919 4920 *length = map->stripe_len; 4921 stripe_index = 0; 4922 stripe_offset = 0; 4923 } else { 4924 /* 4925 * Mirror #0 or #1 means the original data block. 4926 * Mirror #2 is RAID5 parity block. 4927 * Mirror #3 is RAID6 Q block. 4928 */ 4929 stripe_index = do_div(stripe_nr, nr_data_stripes(map)); 4930 if (mirror_num > 1) 4931 stripe_index = nr_data_stripes(map) + 4932 mirror_num - 2; 4933 4934 /* We distribute the parity blocks across stripes */ 4935 tmp = stripe_nr + stripe_index; 4936 stripe_index = do_div(tmp, map->num_stripes); 4937 } 4938 } else { 4939 /* 4940 * after this do_div call, stripe_nr is the number of stripes 4941 * on this device we have to walk to find the data, and 4942 * stripe_index is the number of our device in the stripe array 4943 */ 4944 stripe_index = do_div(stripe_nr, map->num_stripes); 4945 mirror_num = stripe_index + 1; 4946 } 4947 BUG_ON(stripe_index >= map->num_stripes); 4948 4949 num_alloc_stripes = num_stripes; 4950 if (dev_replace_is_ongoing) { 4951 if (rw & (REQ_WRITE | REQ_DISCARD)) 4952 num_alloc_stripes <<= 1; 4953 if (rw & REQ_GET_READ_MIRRORS) 4954 num_alloc_stripes++; 4955 } 4956 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS); 4957 if (!bbio) { 4958 kfree(raid_map); 4959 ret = -ENOMEM; 4960 goto out; 4961 } 4962 atomic_set(&bbio->error, 0); 4963 4964 if (rw & REQ_DISCARD) { 4965 int factor = 0; 4966 int sub_stripes = 0; 4967 u64 stripes_per_dev = 0; 4968 u32 remaining_stripes = 0; 4969 u32 last_stripe = 0; 4970 4971 if (map->type & 4972 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 4973 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 4974 sub_stripes = 1; 4975 else 4976 sub_stripes = map->sub_stripes; 4977 4978 factor = map->num_stripes / sub_stripes; 4979 stripes_per_dev = div_u64_rem(stripe_nr_end - 4980 stripe_nr_orig, 4981 factor, 4982 &remaining_stripes); 4983 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 4984 last_stripe *= sub_stripes; 4985 } 4986 4987 for (i = 0; i < num_stripes; i++) { 4988 bbio->stripes[i].physical = 4989 map->stripes[stripe_index].physical + 4990 stripe_offset + stripe_nr * map->stripe_len; 4991 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 4992 4993 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 4994 BTRFS_BLOCK_GROUP_RAID10)) { 4995 bbio->stripes[i].length = stripes_per_dev * 4996 map->stripe_len; 4997 4998 if (i / sub_stripes < remaining_stripes) 4999 bbio->stripes[i].length += 5000 map->stripe_len; 5001 5002 /* 5003 * Special for the first stripe and 5004 * the last stripe: 5005 * 5006 * |-------|...|-------| 5007 * |----------| 5008 * off end_off 5009 */ 5010 if (i < sub_stripes) 5011 bbio->stripes[i].length -= 5012 stripe_offset; 5013 5014 if (stripe_index >= last_stripe && 5015 stripe_index <= (last_stripe + 5016 sub_stripes - 1)) 5017 bbio->stripes[i].length -= 5018 stripe_end_offset; 5019 5020 if (i == sub_stripes - 1) 5021 stripe_offset = 0; 5022 } else 5023 bbio->stripes[i].length = *length; 5024 5025 stripe_index++; 5026 if (stripe_index == map->num_stripes) { 5027 /* This could only happen for RAID0/10 */ 5028 stripe_index = 0; 5029 stripe_nr++; 5030 } 5031 } 5032 } else { 5033 for (i = 0; i < num_stripes; i++) { 5034 bbio->stripes[i].physical = 5035 map->stripes[stripe_index].physical + 5036 stripe_offset + 5037 stripe_nr * map->stripe_len; 5038 bbio->stripes[i].dev = 5039 map->stripes[stripe_index].dev; 5040 stripe_index++; 5041 } 5042 } 5043 5044 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) { 5045 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5046 BTRFS_BLOCK_GROUP_RAID10 | 5047 BTRFS_BLOCK_GROUP_RAID5 | 5048 BTRFS_BLOCK_GROUP_DUP)) { 5049 max_errors = 1; 5050 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5051 max_errors = 2; 5052 } 5053 } 5054 5055 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5056 dev_replace->tgtdev != NULL) { 5057 int index_where_to_add; 5058 u64 srcdev_devid = dev_replace->srcdev->devid; 5059 5060 /* 5061 * duplicate the write operations while the dev replace 5062 * procedure is running. Since the copying of the old disk 5063 * to the new disk takes place at run time while the 5064 * filesystem is mounted writable, the regular write 5065 * operations to the old disk have to be duplicated to go 5066 * to the new disk as well. 5067 * Note that device->missing is handled by the caller, and 5068 * that the write to the old disk is already set up in the 5069 * stripes array. 5070 */ 5071 index_where_to_add = num_stripes; 5072 for (i = 0; i < num_stripes; i++) { 5073 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5074 /* write to new disk, too */ 5075 struct btrfs_bio_stripe *new = 5076 bbio->stripes + index_where_to_add; 5077 struct btrfs_bio_stripe *old = 5078 bbio->stripes + i; 5079 5080 new->physical = old->physical; 5081 new->length = old->length; 5082 new->dev = dev_replace->tgtdev; 5083 index_where_to_add++; 5084 max_errors++; 5085 } 5086 } 5087 num_stripes = index_where_to_add; 5088 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5089 dev_replace->tgtdev != NULL) { 5090 u64 srcdev_devid = dev_replace->srcdev->devid; 5091 int index_srcdev = 0; 5092 int found = 0; 5093 u64 physical_of_found = 0; 5094 5095 /* 5096 * During the dev-replace procedure, the target drive can 5097 * also be used to read data in case it is needed to repair 5098 * a corrupt block elsewhere. This is possible if the 5099 * requested area is left of the left cursor. In this area, 5100 * the target drive is a full copy of the source drive. 5101 */ 5102 for (i = 0; i < num_stripes; i++) { 5103 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5104 /* 5105 * In case of DUP, in order to keep it 5106 * simple, only add the mirror with the 5107 * lowest physical address 5108 */ 5109 if (found && 5110 physical_of_found <= 5111 bbio->stripes[i].physical) 5112 continue; 5113 index_srcdev = i; 5114 found = 1; 5115 physical_of_found = bbio->stripes[i].physical; 5116 } 5117 } 5118 if (found) { 5119 u64 length = map->stripe_len; 5120 5121 if (physical_of_found + length <= 5122 dev_replace->cursor_left) { 5123 struct btrfs_bio_stripe *tgtdev_stripe = 5124 bbio->stripes + num_stripes; 5125 5126 tgtdev_stripe->physical = physical_of_found; 5127 tgtdev_stripe->length = 5128 bbio->stripes[index_srcdev].length; 5129 tgtdev_stripe->dev = dev_replace->tgtdev; 5130 5131 num_stripes++; 5132 } 5133 } 5134 } 5135 5136 *bbio_ret = bbio; 5137 bbio->num_stripes = num_stripes; 5138 bbio->max_errors = max_errors; 5139 bbio->mirror_num = mirror_num; 5140 5141 /* 5142 * this is the case that REQ_READ && dev_replace_is_ongoing && 5143 * mirror_num == num_stripes + 1 && dev_replace target drive is 5144 * available as a mirror 5145 */ 5146 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5147 WARN_ON(num_stripes > 1); 5148 bbio->stripes[0].dev = dev_replace->tgtdev; 5149 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5150 bbio->mirror_num = map->num_stripes + 1; 5151 } 5152 if (raid_map) { 5153 sort_parity_stripes(bbio, raid_map); 5154 *raid_map_ret = raid_map; 5155 } 5156 out: 5157 if (dev_replace_is_ongoing) 5158 btrfs_dev_replace_unlock(dev_replace); 5159 free_extent_map(em); 5160 return ret; 5161 } 5162 5163 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5164 u64 logical, u64 *length, 5165 struct btrfs_bio **bbio_ret, int mirror_num) 5166 { 5167 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5168 mirror_num, NULL); 5169 } 5170 5171 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5172 u64 chunk_start, u64 physical, u64 devid, 5173 u64 **logical, int *naddrs, int *stripe_len) 5174 { 5175 struct extent_map_tree *em_tree = &map_tree->map_tree; 5176 struct extent_map *em; 5177 struct map_lookup *map; 5178 u64 *buf; 5179 u64 bytenr; 5180 u64 length; 5181 u64 stripe_nr; 5182 u64 rmap_len; 5183 int i, j, nr = 0; 5184 5185 read_lock(&em_tree->lock); 5186 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5187 read_unlock(&em_tree->lock); 5188 5189 if (!em) { 5190 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n", 5191 chunk_start); 5192 return -EIO; 5193 } 5194 5195 if (em->start != chunk_start) { 5196 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n", 5197 em->start, chunk_start); 5198 free_extent_map(em); 5199 return -EIO; 5200 } 5201 map = (struct map_lookup *)em->bdev; 5202 5203 length = em->len; 5204 rmap_len = map->stripe_len; 5205 5206 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5207 do_div(length, map->num_stripes / map->sub_stripes); 5208 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5209 do_div(length, map->num_stripes); 5210 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 5211 BTRFS_BLOCK_GROUP_RAID6)) { 5212 do_div(length, nr_data_stripes(map)); 5213 rmap_len = map->stripe_len * nr_data_stripes(map); 5214 } 5215 5216 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); 5217 BUG_ON(!buf); /* -ENOMEM */ 5218 5219 for (i = 0; i < map->num_stripes; i++) { 5220 if (devid && map->stripes[i].dev->devid != devid) 5221 continue; 5222 if (map->stripes[i].physical > physical || 5223 map->stripes[i].physical + length <= physical) 5224 continue; 5225 5226 stripe_nr = physical - map->stripes[i].physical; 5227 do_div(stripe_nr, map->stripe_len); 5228 5229 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5230 stripe_nr = stripe_nr * map->num_stripes + i; 5231 do_div(stripe_nr, map->sub_stripes); 5232 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5233 stripe_nr = stripe_nr * map->num_stripes + i; 5234 } /* else if RAID[56], multiply by nr_data_stripes(). 5235 * Alternatively, just use rmap_len below instead of 5236 * map->stripe_len */ 5237 5238 bytenr = chunk_start + stripe_nr * rmap_len; 5239 WARN_ON(nr >= map->num_stripes); 5240 for (j = 0; j < nr; j++) { 5241 if (buf[j] == bytenr) 5242 break; 5243 } 5244 if (j == nr) { 5245 WARN_ON(nr >= map->num_stripes); 5246 buf[nr++] = bytenr; 5247 } 5248 } 5249 5250 *logical = buf; 5251 *naddrs = nr; 5252 *stripe_len = rmap_len; 5253 5254 free_extent_map(em); 5255 return 0; 5256 } 5257 5258 static void btrfs_end_bio(struct bio *bio, int err) 5259 { 5260 struct btrfs_bio *bbio = bio->bi_private; 5261 int is_orig_bio = 0; 5262 5263 if (err) { 5264 atomic_inc(&bbio->error); 5265 if (err == -EIO || err == -EREMOTEIO) { 5266 unsigned int stripe_index = 5267 btrfs_io_bio(bio)->stripe_index; 5268 struct btrfs_device *dev; 5269 5270 BUG_ON(stripe_index >= bbio->num_stripes); 5271 dev = bbio->stripes[stripe_index].dev; 5272 if (dev->bdev) { 5273 if (bio->bi_rw & WRITE) 5274 btrfs_dev_stat_inc(dev, 5275 BTRFS_DEV_STAT_WRITE_ERRS); 5276 else 5277 btrfs_dev_stat_inc(dev, 5278 BTRFS_DEV_STAT_READ_ERRS); 5279 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5280 btrfs_dev_stat_inc(dev, 5281 BTRFS_DEV_STAT_FLUSH_ERRS); 5282 btrfs_dev_stat_print_on_error(dev); 5283 } 5284 } 5285 } 5286 5287 if (bio == bbio->orig_bio) 5288 is_orig_bio = 1; 5289 5290 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5291 if (!is_orig_bio) { 5292 bio_put(bio); 5293 bio = bbio->orig_bio; 5294 } 5295 bio->bi_private = bbio->private; 5296 bio->bi_end_io = bbio->end_io; 5297 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5298 /* only send an error to the higher layers if it is 5299 * beyond the tolerance of the btrfs bio 5300 */ 5301 if (atomic_read(&bbio->error) > bbio->max_errors) { 5302 err = -EIO; 5303 } else { 5304 /* 5305 * this bio is actually up to date, we didn't 5306 * go over the max number of errors 5307 */ 5308 set_bit(BIO_UPTODATE, &bio->bi_flags); 5309 err = 0; 5310 } 5311 kfree(bbio); 5312 5313 bio_endio(bio, err); 5314 } else if (!is_orig_bio) { 5315 bio_put(bio); 5316 } 5317 } 5318 5319 struct async_sched { 5320 struct bio *bio; 5321 int rw; 5322 struct btrfs_fs_info *info; 5323 struct btrfs_work work; 5324 }; 5325 5326 /* 5327 * see run_scheduled_bios for a description of why bios are collected for 5328 * async submit. 5329 * 5330 * This will add one bio to the pending list for a device and make sure 5331 * the work struct is scheduled. 5332 */ 5333 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5334 struct btrfs_device *device, 5335 int rw, struct bio *bio) 5336 { 5337 int should_queue = 1; 5338 struct btrfs_pending_bios *pending_bios; 5339 5340 if (device->missing || !device->bdev) { 5341 bio_endio(bio, -EIO); 5342 return; 5343 } 5344 5345 /* don't bother with additional async steps for reads, right now */ 5346 if (!(rw & REQ_WRITE)) { 5347 bio_get(bio); 5348 btrfsic_submit_bio(rw, bio); 5349 bio_put(bio); 5350 return; 5351 } 5352 5353 /* 5354 * nr_async_bios allows us to reliably return congestion to the 5355 * higher layers. Otherwise, the async bio makes it appear we have 5356 * made progress against dirty pages when we've really just put it 5357 * on a queue for later 5358 */ 5359 atomic_inc(&root->fs_info->nr_async_bios); 5360 WARN_ON(bio->bi_next); 5361 bio->bi_next = NULL; 5362 bio->bi_rw |= rw; 5363 5364 spin_lock(&device->io_lock); 5365 if (bio->bi_rw & REQ_SYNC) 5366 pending_bios = &device->pending_sync_bios; 5367 else 5368 pending_bios = &device->pending_bios; 5369 5370 if (pending_bios->tail) 5371 pending_bios->tail->bi_next = bio; 5372 5373 pending_bios->tail = bio; 5374 if (!pending_bios->head) 5375 pending_bios->head = bio; 5376 if (device->running_pending) 5377 should_queue = 0; 5378 5379 spin_unlock(&device->io_lock); 5380 5381 if (should_queue) 5382 btrfs_queue_worker(&root->fs_info->submit_workers, 5383 &device->work); 5384 } 5385 5386 static int bio_size_ok(struct block_device *bdev, struct bio *bio, 5387 sector_t sector) 5388 { 5389 struct bio_vec *prev; 5390 struct request_queue *q = bdev_get_queue(bdev); 5391 unsigned short max_sectors = queue_max_sectors(q); 5392 struct bvec_merge_data bvm = { 5393 .bi_bdev = bdev, 5394 .bi_sector = sector, 5395 .bi_rw = bio->bi_rw, 5396 }; 5397 5398 if (bio->bi_vcnt == 0) { 5399 WARN_ON(1); 5400 return 1; 5401 } 5402 5403 prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 5404 if (bio_sectors(bio) > max_sectors) 5405 return 0; 5406 5407 if (!q->merge_bvec_fn) 5408 return 1; 5409 5410 bvm.bi_size = bio->bi_size - prev->bv_len; 5411 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) 5412 return 0; 5413 return 1; 5414 } 5415 5416 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5417 struct bio *bio, u64 physical, int dev_nr, 5418 int rw, int async) 5419 { 5420 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5421 5422 bio->bi_private = bbio; 5423 btrfs_io_bio(bio)->stripe_index = dev_nr; 5424 bio->bi_end_io = btrfs_end_bio; 5425 bio->bi_sector = physical >> 9; 5426 #ifdef DEBUG 5427 { 5428 struct rcu_string *name; 5429 5430 rcu_read_lock(); 5431 name = rcu_dereference(dev->name); 5432 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 5433 "(%s id %llu), size=%u\n", rw, 5434 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, 5435 name->str, dev->devid, bio->bi_size); 5436 rcu_read_unlock(); 5437 } 5438 #endif 5439 bio->bi_bdev = dev->bdev; 5440 if (async) 5441 btrfs_schedule_bio(root, dev, rw, bio); 5442 else 5443 btrfsic_submit_bio(rw, bio); 5444 } 5445 5446 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5447 struct bio *first_bio, struct btrfs_device *dev, 5448 int dev_nr, int rw, int async) 5449 { 5450 struct bio_vec *bvec = first_bio->bi_io_vec; 5451 struct bio *bio; 5452 int nr_vecs = bio_get_nr_vecs(dev->bdev); 5453 u64 physical = bbio->stripes[dev_nr].physical; 5454 5455 again: 5456 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS); 5457 if (!bio) 5458 return -ENOMEM; 5459 5460 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) { 5461 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5462 bvec->bv_offset) < bvec->bv_len) { 5463 u64 len = bio->bi_size; 5464 5465 atomic_inc(&bbio->stripes_pending); 5466 submit_stripe_bio(root, bbio, bio, physical, dev_nr, 5467 rw, async); 5468 physical += len; 5469 goto again; 5470 } 5471 bvec++; 5472 } 5473 5474 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); 5475 return 0; 5476 } 5477 5478 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 5479 { 5480 atomic_inc(&bbio->error); 5481 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5482 bio->bi_private = bbio->private; 5483 bio->bi_end_io = bbio->end_io; 5484 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5485 bio->bi_sector = logical >> 9; 5486 kfree(bbio); 5487 bio_endio(bio, -EIO); 5488 } 5489 } 5490 5491 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 5492 int mirror_num, int async_submit) 5493 { 5494 struct btrfs_device *dev; 5495 struct bio *first_bio = bio; 5496 u64 logical = (u64)bio->bi_sector << 9; 5497 u64 length = 0; 5498 u64 map_length; 5499 u64 *raid_map = NULL; 5500 int ret; 5501 int dev_nr = 0; 5502 int total_devs = 1; 5503 struct btrfs_bio *bbio = NULL; 5504 5505 length = bio->bi_size; 5506 map_length = length; 5507 5508 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 5509 mirror_num, &raid_map); 5510 if (ret) /* -ENOMEM */ 5511 return ret; 5512 5513 total_devs = bbio->num_stripes; 5514 bbio->orig_bio = first_bio; 5515 bbio->private = first_bio->bi_private; 5516 bbio->end_io = first_bio->bi_end_io; 5517 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 5518 5519 if (raid_map) { 5520 /* In this case, map_length has been set to the length of 5521 a single stripe; not the whole write */ 5522 if (rw & WRITE) { 5523 return raid56_parity_write(root, bio, bbio, 5524 raid_map, map_length); 5525 } else { 5526 return raid56_parity_recover(root, bio, bbio, 5527 raid_map, map_length, 5528 mirror_num); 5529 } 5530 } 5531 5532 if (map_length < length) { 5533 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 5534 logical, length, map_length); 5535 BUG(); 5536 } 5537 5538 while (dev_nr < total_devs) { 5539 dev = bbio->stripes[dev_nr].dev; 5540 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 5541 bbio_error(bbio, first_bio, logical); 5542 dev_nr++; 5543 continue; 5544 } 5545 5546 /* 5547 * Check and see if we're ok with this bio based on it's size 5548 * and offset with the given device. 5549 */ 5550 if (!bio_size_ok(dev->bdev, first_bio, 5551 bbio->stripes[dev_nr].physical >> 9)) { 5552 ret = breakup_stripe_bio(root, bbio, first_bio, dev, 5553 dev_nr, rw, async_submit); 5554 BUG_ON(ret); 5555 dev_nr++; 5556 continue; 5557 } 5558 5559 if (dev_nr < total_devs - 1) { 5560 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 5561 BUG_ON(!bio); /* -ENOMEM */ 5562 } else { 5563 bio = first_bio; 5564 } 5565 5566 submit_stripe_bio(root, bbio, bio, 5567 bbio->stripes[dev_nr].physical, dev_nr, rw, 5568 async_submit); 5569 dev_nr++; 5570 } 5571 return 0; 5572 } 5573 5574 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 5575 u8 *uuid, u8 *fsid) 5576 { 5577 struct btrfs_device *device; 5578 struct btrfs_fs_devices *cur_devices; 5579 5580 cur_devices = fs_info->fs_devices; 5581 while (cur_devices) { 5582 if (!fsid || 5583 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5584 device = __find_device(&cur_devices->devices, 5585 devid, uuid); 5586 if (device) 5587 return device; 5588 } 5589 cur_devices = cur_devices->seed; 5590 } 5591 return NULL; 5592 } 5593 5594 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 5595 u64 devid, u8 *dev_uuid) 5596 { 5597 struct btrfs_device *device; 5598 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 5599 5600 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 5601 if (IS_ERR(device)) 5602 return NULL; 5603 5604 list_add(&device->dev_list, &fs_devices->devices); 5605 device->fs_devices = fs_devices; 5606 fs_devices->num_devices++; 5607 5608 device->missing = 1; 5609 fs_devices->missing_devices++; 5610 5611 return device; 5612 } 5613 5614 /** 5615 * btrfs_alloc_device - allocate struct btrfs_device 5616 * @fs_info: used only for generating a new devid, can be NULL if 5617 * devid is provided (i.e. @devid != NULL). 5618 * @devid: a pointer to devid for this device. If NULL a new devid 5619 * is generated. 5620 * @uuid: a pointer to UUID for this device. If NULL a new UUID 5621 * is generated. 5622 * 5623 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 5624 * on error. Returned struct is not linked onto any lists and can be 5625 * destroyed with kfree() right away. 5626 */ 5627 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 5628 const u64 *devid, 5629 const u8 *uuid) 5630 { 5631 struct btrfs_device *dev; 5632 u64 tmp; 5633 5634 if (!devid && !fs_info) { 5635 WARN_ON(1); 5636 return ERR_PTR(-EINVAL); 5637 } 5638 5639 dev = __alloc_device(); 5640 if (IS_ERR(dev)) 5641 return dev; 5642 5643 if (devid) 5644 tmp = *devid; 5645 else { 5646 int ret; 5647 5648 ret = find_next_devid(fs_info, &tmp); 5649 if (ret) { 5650 kfree(dev); 5651 return ERR_PTR(ret); 5652 } 5653 } 5654 dev->devid = tmp; 5655 5656 if (uuid) 5657 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 5658 else 5659 generate_random_uuid(dev->uuid); 5660 5661 dev->work.func = pending_bios_fn; 5662 5663 return dev; 5664 } 5665 5666 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 5667 struct extent_buffer *leaf, 5668 struct btrfs_chunk *chunk) 5669 { 5670 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5671 struct map_lookup *map; 5672 struct extent_map *em; 5673 u64 logical; 5674 u64 length; 5675 u64 devid; 5676 u8 uuid[BTRFS_UUID_SIZE]; 5677 int num_stripes; 5678 int ret; 5679 int i; 5680 5681 logical = key->offset; 5682 length = btrfs_chunk_length(leaf, chunk); 5683 5684 read_lock(&map_tree->map_tree.lock); 5685 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 5686 read_unlock(&map_tree->map_tree.lock); 5687 5688 /* already mapped? */ 5689 if (em && em->start <= logical && em->start + em->len > logical) { 5690 free_extent_map(em); 5691 return 0; 5692 } else if (em) { 5693 free_extent_map(em); 5694 } 5695 5696 em = alloc_extent_map(); 5697 if (!em) 5698 return -ENOMEM; 5699 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 5700 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 5701 if (!map) { 5702 free_extent_map(em); 5703 return -ENOMEM; 5704 } 5705 5706 em->bdev = (struct block_device *)map; 5707 em->start = logical; 5708 em->len = length; 5709 em->orig_start = 0; 5710 em->block_start = 0; 5711 em->block_len = em->len; 5712 5713 map->num_stripes = num_stripes; 5714 map->io_width = btrfs_chunk_io_width(leaf, chunk); 5715 map->io_align = btrfs_chunk_io_align(leaf, chunk); 5716 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 5717 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 5718 map->type = btrfs_chunk_type(leaf, chunk); 5719 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 5720 for (i = 0; i < num_stripes; i++) { 5721 map->stripes[i].physical = 5722 btrfs_stripe_offset_nr(leaf, chunk, i); 5723 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 5724 read_extent_buffer(leaf, uuid, (unsigned long) 5725 btrfs_stripe_dev_uuid_nr(chunk, i), 5726 BTRFS_UUID_SIZE); 5727 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 5728 uuid, NULL); 5729 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 5730 kfree(map); 5731 free_extent_map(em); 5732 return -EIO; 5733 } 5734 if (!map->stripes[i].dev) { 5735 map->stripes[i].dev = 5736 add_missing_dev(root, devid, uuid); 5737 if (!map->stripes[i].dev) { 5738 kfree(map); 5739 free_extent_map(em); 5740 return -EIO; 5741 } 5742 } 5743 map->stripes[i].dev->in_fs_metadata = 1; 5744 } 5745 5746 write_lock(&map_tree->map_tree.lock); 5747 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 5748 write_unlock(&map_tree->map_tree.lock); 5749 BUG_ON(ret); /* Tree corruption */ 5750 free_extent_map(em); 5751 5752 return 0; 5753 } 5754 5755 static void fill_device_from_item(struct extent_buffer *leaf, 5756 struct btrfs_dev_item *dev_item, 5757 struct btrfs_device *device) 5758 { 5759 unsigned long ptr; 5760 5761 device->devid = btrfs_device_id(leaf, dev_item); 5762 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 5763 device->total_bytes = device->disk_total_bytes; 5764 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 5765 device->type = btrfs_device_type(leaf, dev_item); 5766 device->io_align = btrfs_device_io_align(leaf, dev_item); 5767 device->io_width = btrfs_device_io_width(leaf, dev_item); 5768 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 5769 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 5770 device->is_tgtdev_for_dev_replace = 0; 5771 5772 ptr = btrfs_device_uuid(dev_item); 5773 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 5774 } 5775 5776 static int open_seed_devices(struct btrfs_root *root, u8 *fsid) 5777 { 5778 struct btrfs_fs_devices *fs_devices; 5779 int ret; 5780 5781 BUG_ON(!mutex_is_locked(&uuid_mutex)); 5782 5783 fs_devices = root->fs_info->fs_devices->seed; 5784 while (fs_devices) { 5785 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5786 ret = 0; 5787 goto out; 5788 } 5789 fs_devices = fs_devices->seed; 5790 } 5791 5792 fs_devices = find_fsid(fsid); 5793 if (!fs_devices) { 5794 ret = -ENOENT; 5795 goto out; 5796 } 5797 5798 fs_devices = clone_fs_devices(fs_devices); 5799 if (IS_ERR(fs_devices)) { 5800 ret = PTR_ERR(fs_devices); 5801 goto out; 5802 } 5803 5804 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 5805 root->fs_info->bdev_holder); 5806 if (ret) { 5807 free_fs_devices(fs_devices); 5808 goto out; 5809 } 5810 5811 if (!fs_devices->seeding) { 5812 __btrfs_close_devices(fs_devices); 5813 free_fs_devices(fs_devices); 5814 ret = -EINVAL; 5815 goto out; 5816 } 5817 5818 fs_devices->seed = root->fs_info->fs_devices->seed; 5819 root->fs_info->fs_devices->seed = fs_devices; 5820 out: 5821 return ret; 5822 } 5823 5824 static int read_one_dev(struct btrfs_root *root, 5825 struct extent_buffer *leaf, 5826 struct btrfs_dev_item *dev_item) 5827 { 5828 struct btrfs_device *device; 5829 u64 devid; 5830 int ret; 5831 u8 fs_uuid[BTRFS_UUID_SIZE]; 5832 u8 dev_uuid[BTRFS_UUID_SIZE]; 5833 5834 devid = btrfs_device_id(leaf, dev_item); 5835 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 5836 BTRFS_UUID_SIZE); 5837 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 5838 BTRFS_UUID_SIZE); 5839 5840 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 5841 ret = open_seed_devices(root, fs_uuid); 5842 if (ret && !btrfs_test_opt(root, DEGRADED)) 5843 return ret; 5844 } 5845 5846 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 5847 if (!device || !device->bdev) { 5848 if (!btrfs_test_opt(root, DEGRADED)) 5849 return -EIO; 5850 5851 if (!device) { 5852 btrfs_warn(root->fs_info, "devid %llu missing", devid); 5853 device = add_missing_dev(root, devid, dev_uuid); 5854 if (!device) 5855 return -ENOMEM; 5856 } else if (!device->missing) { 5857 /* 5858 * this happens when a device that was properly setup 5859 * in the device info lists suddenly goes bad. 5860 * device->bdev is NULL, and so we have to set 5861 * device->missing to one here 5862 */ 5863 root->fs_info->fs_devices->missing_devices++; 5864 device->missing = 1; 5865 } 5866 } 5867 5868 if (device->fs_devices != root->fs_info->fs_devices) { 5869 BUG_ON(device->writeable); 5870 if (device->generation != 5871 btrfs_device_generation(leaf, dev_item)) 5872 return -EINVAL; 5873 } 5874 5875 fill_device_from_item(leaf, dev_item, device); 5876 device->in_fs_metadata = 1; 5877 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 5878 device->fs_devices->total_rw_bytes += device->total_bytes; 5879 spin_lock(&root->fs_info->free_chunk_lock); 5880 root->fs_info->free_chunk_space += device->total_bytes - 5881 device->bytes_used; 5882 spin_unlock(&root->fs_info->free_chunk_lock); 5883 } 5884 ret = 0; 5885 return ret; 5886 } 5887 5888 int btrfs_read_sys_array(struct btrfs_root *root) 5889 { 5890 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 5891 struct extent_buffer *sb; 5892 struct btrfs_disk_key *disk_key; 5893 struct btrfs_chunk *chunk; 5894 u8 *ptr; 5895 unsigned long sb_ptr; 5896 int ret = 0; 5897 u32 num_stripes; 5898 u32 array_size; 5899 u32 len = 0; 5900 u32 cur; 5901 struct btrfs_key key; 5902 5903 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, 5904 BTRFS_SUPER_INFO_SIZE); 5905 if (!sb) 5906 return -ENOMEM; 5907 btrfs_set_buffer_uptodate(sb); 5908 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 5909 /* 5910 * The sb extent buffer is artifical and just used to read the system array. 5911 * btrfs_set_buffer_uptodate() call does not properly mark all it's 5912 * pages up-to-date when the page is larger: extent does not cover the 5913 * whole page and consequently check_page_uptodate does not find all 5914 * the page's extents up-to-date (the hole beyond sb), 5915 * write_extent_buffer then triggers a WARN_ON. 5916 * 5917 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 5918 * but sb spans only this function. Add an explicit SetPageUptodate call 5919 * to silence the warning eg. on PowerPC 64. 5920 */ 5921 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 5922 SetPageUptodate(sb->pages[0]); 5923 5924 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 5925 array_size = btrfs_super_sys_array_size(super_copy); 5926 5927 ptr = super_copy->sys_chunk_array; 5928 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); 5929 cur = 0; 5930 5931 while (cur < array_size) { 5932 disk_key = (struct btrfs_disk_key *)ptr; 5933 btrfs_disk_key_to_cpu(&key, disk_key); 5934 5935 len = sizeof(*disk_key); ptr += len; 5936 sb_ptr += len; 5937 cur += len; 5938 5939 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 5940 chunk = (struct btrfs_chunk *)sb_ptr; 5941 ret = read_one_chunk(root, &key, sb, chunk); 5942 if (ret) 5943 break; 5944 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 5945 len = btrfs_chunk_item_size(num_stripes); 5946 } else { 5947 ret = -EIO; 5948 break; 5949 } 5950 ptr += len; 5951 sb_ptr += len; 5952 cur += len; 5953 } 5954 free_extent_buffer(sb); 5955 return ret; 5956 } 5957 5958 int btrfs_read_chunk_tree(struct btrfs_root *root) 5959 { 5960 struct btrfs_path *path; 5961 struct extent_buffer *leaf; 5962 struct btrfs_key key; 5963 struct btrfs_key found_key; 5964 int ret; 5965 int slot; 5966 5967 root = root->fs_info->chunk_root; 5968 5969 path = btrfs_alloc_path(); 5970 if (!path) 5971 return -ENOMEM; 5972 5973 mutex_lock(&uuid_mutex); 5974 lock_chunks(root); 5975 5976 /* 5977 * Read all device items, and then all the chunk items. All 5978 * device items are found before any chunk item (their object id 5979 * is smaller than the lowest possible object id for a chunk 5980 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 5981 */ 5982 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 5983 key.offset = 0; 5984 key.type = 0; 5985 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5986 if (ret < 0) 5987 goto error; 5988 while (1) { 5989 leaf = path->nodes[0]; 5990 slot = path->slots[0]; 5991 if (slot >= btrfs_header_nritems(leaf)) { 5992 ret = btrfs_next_leaf(root, path); 5993 if (ret == 0) 5994 continue; 5995 if (ret < 0) 5996 goto error; 5997 break; 5998 } 5999 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6000 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6001 struct btrfs_dev_item *dev_item; 6002 dev_item = btrfs_item_ptr(leaf, slot, 6003 struct btrfs_dev_item); 6004 ret = read_one_dev(root, leaf, dev_item); 6005 if (ret) 6006 goto error; 6007 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6008 struct btrfs_chunk *chunk; 6009 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6010 ret = read_one_chunk(root, &found_key, leaf, chunk); 6011 if (ret) 6012 goto error; 6013 } 6014 path->slots[0]++; 6015 } 6016 ret = 0; 6017 error: 6018 unlock_chunks(root); 6019 mutex_unlock(&uuid_mutex); 6020 6021 btrfs_free_path(path); 6022 return ret; 6023 } 6024 6025 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6026 { 6027 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6028 struct btrfs_device *device; 6029 6030 mutex_lock(&fs_devices->device_list_mutex); 6031 list_for_each_entry(device, &fs_devices->devices, dev_list) 6032 device->dev_root = fs_info->dev_root; 6033 mutex_unlock(&fs_devices->device_list_mutex); 6034 } 6035 6036 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6037 { 6038 int i; 6039 6040 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6041 btrfs_dev_stat_reset(dev, i); 6042 } 6043 6044 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6045 { 6046 struct btrfs_key key; 6047 struct btrfs_key found_key; 6048 struct btrfs_root *dev_root = fs_info->dev_root; 6049 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6050 struct extent_buffer *eb; 6051 int slot; 6052 int ret = 0; 6053 struct btrfs_device *device; 6054 struct btrfs_path *path = NULL; 6055 int i; 6056 6057 path = btrfs_alloc_path(); 6058 if (!path) { 6059 ret = -ENOMEM; 6060 goto out; 6061 } 6062 6063 mutex_lock(&fs_devices->device_list_mutex); 6064 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6065 int item_size; 6066 struct btrfs_dev_stats_item *ptr; 6067 6068 key.objectid = 0; 6069 key.type = BTRFS_DEV_STATS_KEY; 6070 key.offset = device->devid; 6071 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6072 if (ret) { 6073 __btrfs_reset_dev_stats(device); 6074 device->dev_stats_valid = 1; 6075 btrfs_release_path(path); 6076 continue; 6077 } 6078 slot = path->slots[0]; 6079 eb = path->nodes[0]; 6080 btrfs_item_key_to_cpu(eb, &found_key, slot); 6081 item_size = btrfs_item_size_nr(eb, slot); 6082 6083 ptr = btrfs_item_ptr(eb, slot, 6084 struct btrfs_dev_stats_item); 6085 6086 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6087 if (item_size >= (1 + i) * sizeof(__le64)) 6088 btrfs_dev_stat_set(device, i, 6089 btrfs_dev_stats_value(eb, ptr, i)); 6090 else 6091 btrfs_dev_stat_reset(device, i); 6092 } 6093 6094 device->dev_stats_valid = 1; 6095 btrfs_dev_stat_print_on_load(device); 6096 btrfs_release_path(path); 6097 } 6098 mutex_unlock(&fs_devices->device_list_mutex); 6099 6100 out: 6101 btrfs_free_path(path); 6102 return ret < 0 ? ret : 0; 6103 } 6104 6105 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6106 struct btrfs_root *dev_root, 6107 struct btrfs_device *device) 6108 { 6109 struct btrfs_path *path; 6110 struct btrfs_key key; 6111 struct extent_buffer *eb; 6112 struct btrfs_dev_stats_item *ptr; 6113 int ret; 6114 int i; 6115 6116 key.objectid = 0; 6117 key.type = BTRFS_DEV_STATS_KEY; 6118 key.offset = device->devid; 6119 6120 path = btrfs_alloc_path(); 6121 BUG_ON(!path); 6122 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6123 if (ret < 0) { 6124 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n", 6125 ret, rcu_str_deref(device->name)); 6126 goto out; 6127 } 6128 6129 if (ret == 0 && 6130 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6131 /* need to delete old one and insert a new one */ 6132 ret = btrfs_del_item(trans, dev_root, path); 6133 if (ret != 0) { 6134 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n", 6135 rcu_str_deref(device->name), ret); 6136 goto out; 6137 } 6138 ret = 1; 6139 } 6140 6141 if (ret == 1) { 6142 /* need to insert a new item */ 6143 btrfs_release_path(path); 6144 ret = btrfs_insert_empty_item(trans, dev_root, path, 6145 &key, sizeof(*ptr)); 6146 if (ret < 0) { 6147 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n", 6148 rcu_str_deref(device->name), ret); 6149 goto out; 6150 } 6151 } 6152 6153 eb = path->nodes[0]; 6154 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6155 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6156 btrfs_set_dev_stats_value(eb, ptr, i, 6157 btrfs_dev_stat_read(device, i)); 6158 btrfs_mark_buffer_dirty(eb); 6159 6160 out: 6161 btrfs_free_path(path); 6162 return ret; 6163 } 6164 6165 /* 6166 * called from commit_transaction. Writes all changed device stats to disk. 6167 */ 6168 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6169 struct btrfs_fs_info *fs_info) 6170 { 6171 struct btrfs_root *dev_root = fs_info->dev_root; 6172 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6173 struct btrfs_device *device; 6174 int ret = 0; 6175 6176 mutex_lock(&fs_devices->device_list_mutex); 6177 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6178 if (!device->dev_stats_valid || !device->dev_stats_dirty) 6179 continue; 6180 6181 ret = update_dev_stat_item(trans, dev_root, device); 6182 if (!ret) 6183 device->dev_stats_dirty = 0; 6184 } 6185 mutex_unlock(&fs_devices->device_list_mutex); 6186 6187 return ret; 6188 } 6189 6190 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6191 { 6192 btrfs_dev_stat_inc(dev, index); 6193 btrfs_dev_stat_print_on_error(dev); 6194 } 6195 6196 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6197 { 6198 if (!dev->dev_stats_valid) 6199 return; 6200 printk_ratelimited_in_rcu(KERN_ERR 6201 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6202 rcu_str_deref(dev->name), 6203 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6204 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6205 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6206 btrfs_dev_stat_read(dev, 6207 BTRFS_DEV_STAT_CORRUPTION_ERRS), 6208 btrfs_dev_stat_read(dev, 6209 BTRFS_DEV_STAT_GENERATION_ERRS)); 6210 } 6211 6212 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6213 { 6214 int i; 6215 6216 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6217 if (btrfs_dev_stat_read(dev, i) != 0) 6218 break; 6219 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6220 return; /* all values == 0, suppress message */ 6221 6222 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6223 rcu_str_deref(dev->name), 6224 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6225 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6226 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6227 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6228 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6229 } 6230 6231 int btrfs_get_dev_stats(struct btrfs_root *root, 6232 struct btrfs_ioctl_get_dev_stats *stats) 6233 { 6234 struct btrfs_device *dev; 6235 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6236 int i; 6237 6238 mutex_lock(&fs_devices->device_list_mutex); 6239 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6240 mutex_unlock(&fs_devices->device_list_mutex); 6241 6242 if (!dev) { 6243 printk(KERN_WARNING 6244 "btrfs: get dev_stats failed, device not found\n"); 6245 return -ENODEV; 6246 } else if (!dev->dev_stats_valid) { 6247 printk(KERN_WARNING 6248 "btrfs: get dev_stats failed, not yet valid\n"); 6249 return -ENODEV; 6250 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6251 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6252 if (stats->nr_items > i) 6253 stats->values[i] = 6254 btrfs_dev_stat_read_and_reset(dev, i); 6255 else 6256 btrfs_dev_stat_reset(dev, i); 6257 } 6258 } else { 6259 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6260 if (stats->nr_items > i) 6261 stats->values[i] = btrfs_dev_stat_read(dev, i); 6262 } 6263 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6264 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6265 return 0; 6266 } 6267 6268 int btrfs_scratch_superblock(struct btrfs_device *device) 6269 { 6270 struct buffer_head *bh; 6271 struct btrfs_super_block *disk_super; 6272 6273 bh = btrfs_read_dev_super(device->bdev); 6274 if (!bh) 6275 return -EINVAL; 6276 disk_super = (struct btrfs_super_block *)bh->b_data; 6277 6278 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6279 set_buffer_dirty(bh); 6280 sync_dirty_buffer(bh); 6281 brelse(bh); 6282 6283 return 0; 6284 } 6285