xref: /openbmc/linux/fs/btrfs/volumes.c (revision c8f14e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36 
37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
38 					 BTRFS_BLOCK_GROUP_RAID10 | \
39 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
40 
41 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
42 	[BTRFS_RAID_RAID10] = {
43 		.sub_stripes	= 2,
44 		.dev_stripes	= 1,
45 		.devs_max	= 0,	/* 0 == as many as possible */
46 		.devs_min	= 2,
47 		.tolerated_failures = 1,
48 		.devs_increment	= 2,
49 		.ncopies	= 2,
50 		.nparity        = 0,
51 		.raid_name	= "raid10",
52 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
53 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 		.nparity        = 0,
64 		.raid_name	= "raid1",
65 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
66 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
67 	},
68 	[BTRFS_RAID_RAID1C3] = {
69 		.sub_stripes	= 1,
70 		.dev_stripes	= 1,
71 		.devs_max	= 3,
72 		.devs_min	= 3,
73 		.tolerated_failures = 2,
74 		.devs_increment	= 3,
75 		.ncopies	= 3,
76 		.nparity        = 0,
77 		.raid_name	= "raid1c3",
78 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
79 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
80 	},
81 	[BTRFS_RAID_RAID1C4] = {
82 		.sub_stripes	= 1,
83 		.dev_stripes	= 1,
84 		.devs_max	= 4,
85 		.devs_min	= 4,
86 		.tolerated_failures = 3,
87 		.devs_increment	= 4,
88 		.ncopies	= 4,
89 		.nparity        = 0,
90 		.raid_name	= "raid1c4",
91 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
92 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
93 	},
94 	[BTRFS_RAID_DUP] = {
95 		.sub_stripes	= 1,
96 		.dev_stripes	= 2,
97 		.devs_max	= 1,
98 		.devs_min	= 1,
99 		.tolerated_failures = 0,
100 		.devs_increment	= 1,
101 		.ncopies	= 2,
102 		.nparity        = 0,
103 		.raid_name	= "dup",
104 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
105 		.mindev_error	= 0,
106 	},
107 	[BTRFS_RAID_RAID0] = {
108 		.sub_stripes	= 1,
109 		.dev_stripes	= 1,
110 		.devs_max	= 0,
111 		.devs_min	= 1,
112 		.tolerated_failures = 0,
113 		.devs_increment	= 1,
114 		.ncopies	= 1,
115 		.nparity        = 0,
116 		.raid_name	= "raid0",
117 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
118 		.mindev_error	= 0,
119 	},
120 	[BTRFS_RAID_SINGLE] = {
121 		.sub_stripes	= 1,
122 		.dev_stripes	= 1,
123 		.devs_max	= 1,
124 		.devs_min	= 1,
125 		.tolerated_failures = 0,
126 		.devs_increment	= 1,
127 		.ncopies	= 1,
128 		.nparity        = 0,
129 		.raid_name	= "single",
130 		.bg_flag	= 0,
131 		.mindev_error	= 0,
132 	},
133 	[BTRFS_RAID_RAID5] = {
134 		.sub_stripes	= 1,
135 		.dev_stripes	= 1,
136 		.devs_max	= 0,
137 		.devs_min	= 2,
138 		.tolerated_failures = 1,
139 		.devs_increment	= 1,
140 		.ncopies	= 1,
141 		.nparity        = 1,
142 		.raid_name	= "raid5",
143 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
144 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
145 	},
146 	[BTRFS_RAID_RAID6] = {
147 		.sub_stripes	= 1,
148 		.dev_stripes	= 1,
149 		.devs_max	= 0,
150 		.devs_min	= 3,
151 		.tolerated_failures = 2,
152 		.devs_increment	= 1,
153 		.ncopies	= 1,
154 		.nparity        = 2,
155 		.raid_name	= "raid6",
156 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
157 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
158 	},
159 };
160 
161 /*
162  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
163  * can be used as index to access btrfs_raid_array[].
164  */
165 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
166 {
167 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
168 		return BTRFS_RAID_RAID10;
169 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
170 		return BTRFS_RAID_RAID1;
171 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
172 		return BTRFS_RAID_RAID1C3;
173 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
174 		return BTRFS_RAID_RAID1C4;
175 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
176 		return BTRFS_RAID_DUP;
177 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
178 		return BTRFS_RAID_RAID0;
179 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
180 		return BTRFS_RAID_RAID5;
181 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
182 		return BTRFS_RAID_RAID6;
183 
184 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
197 /*
198  * Fill @buf with textual description of @bg_flags, no more than @size_buf
199  * bytes including terminating null byte.
200  */
201 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
202 {
203 	int i;
204 	int ret;
205 	char *bp = buf;
206 	u64 flags = bg_flags;
207 	u32 size_bp = size_buf;
208 
209 	if (!flags) {
210 		strcpy(bp, "NONE");
211 		return;
212 	}
213 
214 #define DESCRIBE_FLAG(flag, desc)						\
215 	do {								\
216 		if (flags & (flag)) {					\
217 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
218 			if (ret < 0 || ret >= size_bp)			\
219 				goto out_overflow;			\
220 			size_bp -= ret;					\
221 			bp += ret;					\
222 			flags &= ~(flag);				\
223 		}							\
224 	} while (0)
225 
226 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
227 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
228 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
229 
230 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
231 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
232 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
233 			      btrfs_raid_array[i].raid_name);
234 #undef DESCRIBE_FLAG
235 
236 	if (flags) {
237 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
238 		size_bp -= ret;
239 	}
240 
241 	if (size_bp < size_buf)
242 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
243 
244 	/*
245 	 * The text is trimmed, it's up to the caller to provide sufficiently
246 	 * large buffer
247 	 */
248 out_overflow:;
249 }
250 
251 static int init_first_rw_device(struct btrfs_trans_handle *trans);
252 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
253 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
254 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
255 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
256 			     enum btrfs_map_op op,
257 			     u64 logical, u64 *length,
258 			     struct btrfs_io_context **bioc_ret,
259 			     int mirror_num, int need_raid_map);
260 
261 /*
262  * Device locking
263  * ==============
264  *
265  * There are several mutexes that protect manipulation of devices and low-level
266  * structures like chunks but not block groups, extents or files
267  *
268  * uuid_mutex (global lock)
269  * ------------------------
270  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
271  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
272  * device) or requested by the device= mount option
273  *
274  * the mutex can be very coarse and can cover long-running operations
275  *
276  * protects: updates to fs_devices counters like missing devices, rw devices,
277  * seeding, structure cloning, opening/closing devices at mount/umount time
278  *
279  * global::fs_devs - add, remove, updates to the global list
280  *
281  * does not protect: manipulation of the fs_devices::devices list in general
282  * but in mount context it could be used to exclude list modifications by eg.
283  * scan ioctl
284  *
285  * btrfs_device::name - renames (write side), read is RCU
286  *
287  * fs_devices::device_list_mutex (per-fs, with RCU)
288  * ------------------------------------------------
289  * protects updates to fs_devices::devices, ie. adding and deleting
290  *
291  * simple list traversal with read-only actions can be done with RCU protection
292  *
293  * may be used to exclude some operations from running concurrently without any
294  * modifications to the list (see write_all_supers)
295  *
296  * Is not required at mount and close times, because our device list is
297  * protected by the uuid_mutex at that point.
298  *
299  * balance_mutex
300  * -------------
301  * protects balance structures (status, state) and context accessed from
302  * several places (internally, ioctl)
303  *
304  * chunk_mutex
305  * -----------
306  * protects chunks, adding or removing during allocation, trim or when a new
307  * device is added/removed. Additionally it also protects post_commit_list of
308  * individual devices, since they can be added to the transaction's
309  * post_commit_list only with chunk_mutex held.
310  *
311  * cleaner_mutex
312  * -------------
313  * a big lock that is held by the cleaner thread and prevents running subvolume
314  * cleaning together with relocation or delayed iputs
315  *
316  *
317  * Lock nesting
318  * ============
319  *
320  * uuid_mutex
321  *   device_list_mutex
322  *     chunk_mutex
323  *   balance_mutex
324  *
325  *
326  * Exclusive operations
327  * ====================
328  *
329  * Maintains the exclusivity of the following operations that apply to the
330  * whole filesystem and cannot run in parallel.
331  *
332  * - Balance (*)
333  * - Device add
334  * - Device remove
335  * - Device replace (*)
336  * - Resize
337  *
338  * The device operations (as above) can be in one of the following states:
339  *
340  * - Running state
341  * - Paused state
342  * - Completed state
343  *
344  * Only device operations marked with (*) can go into the Paused state for the
345  * following reasons:
346  *
347  * - ioctl (only Balance can be Paused through ioctl)
348  * - filesystem remounted as read-only
349  * - filesystem unmounted and mounted as read-only
350  * - system power-cycle and filesystem mounted as read-only
351  * - filesystem or device errors leading to forced read-only
352  *
353  * The status of exclusive operation is set and cleared atomically.
354  * During the course of Paused state, fs_info::exclusive_operation remains set.
355  * A device operation in Paused or Running state can be canceled or resumed
356  * either by ioctl (Balance only) or when remounted as read-write.
357  * The exclusive status is cleared when the device operation is canceled or
358  * completed.
359  */
360 
361 DEFINE_MUTEX(uuid_mutex);
362 static LIST_HEAD(fs_uuids);
363 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
364 {
365 	return &fs_uuids;
366 }
367 
368 /*
369  * alloc_fs_devices - allocate struct btrfs_fs_devices
370  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
371  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
372  *
373  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
374  * The returned struct is not linked onto any lists and can be destroyed with
375  * kfree() right away.
376  */
377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
378 						 const u8 *metadata_fsid)
379 {
380 	struct btrfs_fs_devices *fs_devs;
381 
382 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
383 	if (!fs_devs)
384 		return ERR_PTR(-ENOMEM);
385 
386 	mutex_init(&fs_devs->device_list_mutex);
387 
388 	INIT_LIST_HEAD(&fs_devs->devices);
389 	INIT_LIST_HEAD(&fs_devs->alloc_list);
390 	INIT_LIST_HEAD(&fs_devs->fs_list);
391 	INIT_LIST_HEAD(&fs_devs->seed_list);
392 	if (fsid)
393 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
394 
395 	if (metadata_fsid)
396 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
397 	else if (fsid)
398 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 
400 	return fs_devs;
401 }
402 
403 void btrfs_free_device(struct btrfs_device *device)
404 {
405 	WARN_ON(!list_empty(&device->post_commit_list));
406 	rcu_string_free(device->name);
407 	extent_io_tree_release(&device->alloc_state);
408 	bio_put(device->flush_bio);
409 	btrfs_destroy_dev_zone_info(device);
410 	kfree(device);
411 }
412 
413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414 {
415 	struct btrfs_device *device;
416 	WARN_ON(fs_devices->opened);
417 	while (!list_empty(&fs_devices->devices)) {
418 		device = list_entry(fs_devices->devices.next,
419 				    struct btrfs_device, dev_list);
420 		list_del(&device->dev_list);
421 		btrfs_free_device(device);
422 	}
423 	kfree(fs_devices);
424 }
425 
426 void __exit btrfs_cleanup_fs_uuids(void)
427 {
428 	struct btrfs_fs_devices *fs_devices;
429 
430 	while (!list_empty(&fs_uuids)) {
431 		fs_devices = list_entry(fs_uuids.next,
432 					struct btrfs_fs_devices, fs_list);
433 		list_del(&fs_devices->fs_list);
434 		free_fs_devices(fs_devices);
435 	}
436 }
437 
438 static noinline struct btrfs_fs_devices *find_fsid(
439 		const u8 *fsid, const u8 *metadata_fsid)
440 {
441 	struct btrfs_fs_devices *fs_devices;
442 
443 	ASSERT(fsid);
444 
445 	/* Handle non-split brain cases */
446 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
447 		if (metadata_fsid) {
448 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
449 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
450 				      BTRFS_FSID_SIZE) == 0)
451 				return fs_devices;
452 		} else {
453 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
454 				return fs_devices;
455 		}
456 	}
457 	return NULL;
458 }
459 
460 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
461 				struct btrfs_super_block *disk_super)
462 {
463 
464 	struct btrfs_fs_devices *fs_devices;
465 
466 	/*
467 	 * Handle scanned device having completed its fsid change but
468 	 * belonging to a fs_devices that was created by first scanning
469 	 * a device which didn't have its fsid/metadata_uuid changed
470 	 * at all and the CHANGING_FSID_V2 flag set.
471 	 */
472 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
473 		if (fs_devices->fsid_change &&
474 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
475 			   BTRFS_FSID_SIZE) == 0 &&
476 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
477 			   BTRFS_FSID_SIZE) == 0) {
478 			return fs_devices;
479 		}
480 	}
481 	/*
482 	 * Handle scanned device having completed its fsid change but
483 	 * belonging to a fs_devices that was created by a device that
484 	 * has an outdated pair of fsid/metadata_uuid and
485 	 * CHANGING_FSID_V2 flag set.
486 	 */
487 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
488 		if (fs_devices->fsid_change &&
489 		    memcmp(fs_devices->metadata_uuid,
490 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
491 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
492 			   BTRFS_FSID_SIZE) == 0) {
493 			return fs_devices;
494 		}
495 	}
496 
497 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
498 }
499 
500 
501 static int
502 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
503 		      int flush, struct block_device **bdev,
504 		      struct btrfs_super_block **disk_super)
505 {
506 	int ret;
507 
508 	*bdev = blkdev_get_by_path(device_path, flags, holder);
509 
510 	if (IS_ERR(*bdev)) {
511 		ret = PTR_ERR(*bdev);
512 		goto error;
513 	}
514 
515 	if (flush)
516 		sync_blockdev(*bdev);
517 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
518 	if (ret) {
519 		blkdev_put(*bdev, flags);
520 		goto error;
521 	}
522 	invalidate_bdev(*bdev);
523 	*disk_super = btrfs_read_dev_super(*bdev);
524 	if (IS_ERR(*disk_super)) {
525 		ret = PTR_ERR(*disk_super);
526 		blkdev_put(*bdev, flags);
527 		goto error;
528 	}
529 
530 	return 0;
531 
532 error:
533 	*bdev = NULL;
534 	return ret;
535 }
536 
537 /**
538  *  Search and remove all stale devices (which are not mounted).
539  *  When both inputs are NULL, it will search and release all stale devices.
540  *
541  *  @devt:	Optional. When provided will it release all unmounted devices
542  *		matching this devt only.
543  *  @skip_device:  Optional. Will skip this device when searching for the stale
544  *		devices.
545  *
546  *  Return:	0 for success or if @devt is 0.
547  *		-EBUSY if @devt is a mounted device.
548  *		-ENOENT if @devt does not match any device in the list.
549  */
550 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
551 {
552 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
553 	struct btrfs_device *device, *tmp_device;
554 	int ret = 0;
555 
556 	lockdep_assert_held(&uuid_mutex);
557 
558 	if (devt)
559 		ret = -ENOENT;
560 
561 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
562 
563 		mutex_lock(&fs_devices->device_list_mutex);
564 		list_for_each_entry_safe(device, tmp_device,
565 					 &fs_devices->devices, dev_list) {
566 			if (skip_device && skip_device == device)
567 				continue;
568 			if (devt && devt != device->devt)
569 				continue;
570 			if (fs_devices->opened) {
571 				/* for an already deleted device return 0 */
572 				if (devt && ret != 0)
573 					ret = -EBUSY;
574 				break;
575 			}
576 
577 			/* delete the stale device */
578 			fs_devices->num_devices--;
579 			list_del(&device->dev_list);
580 			btrfs_free_device(device);
581 
582 			ret = 0;
583 		}
584 		mutex_unlock(&fs_devices->device_list_mutex);
585 
586 		if (fs_devices->num_devices == 0) {
587 			btrfs_sysfs_remove_fsid(fs_devices);
588 			list_del(&fs_devices->fs_list);
589 			free_fs_devices(fs_devices);
590 		}
591 	}
592 
593 	return ret;
594 }
595 
596 /*
597  * This is only used on mount, and we are protected from competing things
598  * messing with our fs_devices by the uuid_mutex, thus we do not need the
599  * fs_devices->device_list_mutex here.
600  */
601 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
602 			struct btrfs_device *device, fmode_t flags,
603 			void *holder)
604 {
605 	struct block_device *bdev;
606 	struct btrfs_super_block *disk_super;
607 	u64 devid;
608 	int ret;
609 
610 	if (device->bdev)
611 		return -EINVAL;
612 	if (!device->name)
613 		return -EINVAL;
614 
615 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
616 				    &bdev, &disk_super);
617 	if (ret)
618 		return ret;
619 
620 	devid = btrfs_stack_device_id(&disk_super->dev_item);
621 	if (devid != device->devid)
622 		goto error_free_page;
623 
624 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
625 		goto error_free_page;
626 
627 	device->generation = btrfs_super_generation(disk_super);
628 
629 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
630 		if (btrfs_super_incompat_flags(disk_super) &
631 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
632 			pr_err(
633 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
634 			goto error_free_page;
635 		}
636 
637 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
638 		fs_devices->seeding = true;
639 	} else {
640 		if (bdev_read_only(bdev))
641 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
642 		else
643 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
644 	}
645 
646 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
647 		fs_devices->rotating = true;
648 
649 	device->bdev = bdev;
650 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
651 	device->mode = flags;
652 
653 	fs_devices->open_devices++;
654 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
655 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
656 		fs_devices->rw_devices++;
657 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
658 	}
659 	btrfs_release_disk_super(disk_super);
660 
661 	return 0;
662 
663 error_free_page:
664 	btrfs_release_disk_super(disk_super);
665 	blkdev_put(bdev, flags);
666 
667 	return -EINVAL;
668 }
669 
670 /*
671  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
672  * being created with a disk that has already completed its fsid change. Such
673  * disk can belong to an fs which has its FSID changed or to one which doesn't.
674  * Handle both cases here.
675  */
676 static struct btrfs_fs_devices *find_fsid_inprogress(
677 					struct btrfs_super_block *disk_super)
678 {
679 	struct btrfs_fs_devices *fs_devices;
680 
681 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
682 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
683 			   BTRFS_FSID_SIZE) != 0 &&
684 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
685 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
686 			return fs_devices;
687 		}
688 	}
689 
690 	return find_fsid(disk_super->fsid, NULL);
691 }
692 
693 
694 static struct btrfs_fs_devices *find_fsid_changed(
695 					struct btrfs_super_block *disk_super)
696 {
697 	struct btrfs_fs_devices *fs_devices;
698 
699 	/*
700 	 * Handles the case where scanned device is part of an fs that had
701 	 * multiple successful changes of FSID but currently device didn't
702 	 * observe it. Meaning our fsid will be different than theirs. We need
703 	 * to handle two subcases :
704 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
705 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
706 	 *  are equal).
707 	 */
708 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
709 		/* Changed UUIDs */
710 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
711 			   BTRFS_FSID_SIZE) != 0 &&
712 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
713 			   BTRFS_FSID_SIZE) == 0 &&
714 		    memcmp(fs_devices->fsid, disk_super->fsid,
715 			   BTRFS_FSID_SIZE) != 0)
716 			return fs_devices;
717 
718 		/* Unchanged UUIDs */
719 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720 			   BTRFS_FSID_SIZE) == 0 &&
721 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
722 			   BTRFS_FSID_SIZE) == 0)
723 			return fs_devices;
724 	}
725 
726 	return NULL;
727 }
728 
729 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
730 				struct btrfs_super_block *disk_super)
731 {
732 	struct btrfs_fs_devices *fs_devices;
733 
734 	/*
735 	 * Handle the case where the scanned device is part of an fs whose last
736 	 * metadata UUID change reverted it to the original FSID. At the same
737 	 * time * fs_devices was first created by another constitutent device
738 	 * which didn't fully observe the operation. This results in an
739 	 * btrfs_fs_devices created with metadata/fsid different AND
740 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
741 	 * fs_devices equal to the FSID of the disk.
742 	 */
743 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
744 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
745 			   BTRFS_FSID_SIZE) != 0 &&
746 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
747 			   BTRFS_FSID_SIZE) == 0 &&
748 		    fs_devices->fsid_change)
749 			return fs_devices;
750 	}
751 
752 	return NULL;
753 }
754 /*
755  * Add new device to list of registered devices
756  *
757  * Returns:
758  * device pointer which was just added or updated when successful
759  * error pointer when failed
760  */
761 static noinline struct btrfs_device *device_list_add(const char *path,
762 			   struct btrfs_super_block *disk_super,
763 			   bool *new_device_added)
764 {
765 	struct btrfs_device *device;
766 	struct btrfs_fs_devices *fs_devices = NULL;
767 	struct rcu_string *name;
768 	u64 found_transid = btrfs_super_generation(disk_super);
769 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
770 	dev_t path_devt;
771 	int error;
772 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
773 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
774 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
775 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
776 
777 	error = lookup_bdev(path, &path_devt);
778 	if (error)
779 		return ERR_PTR(error);
780 
781 	if (fsid_change_in_progress) {
782 		if (!has_metadata_uuid)
783 			fs_devices = find_fsid_inprogress(disk_super);
784 		else
785 			fs_devices = find_fsid_changed(disk_super);
786 	} else if (has_metadata_uuid) {
787 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
788 	} else {
789 		fs_devices = find_fsid_reverted_metadata(disk_super);
790 		if (!fs_devices)
791 			fs_devices = find_fsid(disk_super->fsid, NULL);
792 	}
793 
794 
795 	if (!fs_devices) {
796 		if (has_metadata_uuid)
797 			fs_devices = alloc_fs_devices(disk_super->fsid,
798 						      disk_super->metadata_uuid);
799 		else
800 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
801 
802 		if (IS_ERR(fs_devices))
803 			return ERR_CAST(fs_devices);
804 
805 		fs_devices->fsid_change = fsid_change_in_progress;
806 
807 		mutex_lock(&fs_devices->device_list_mutex);
808 		list_add(&fs_devices->fs_list, &fs_uuids);
809 
810 		device = NULL;
811 	} else {
812 		struct btrfs_dev_lookup_args args = {
813 			.devid = devid,
814 			.uuid = disk_super->dev_item.uuid,
815 		};
816 
817 		mutex_lock(&fs_devices->device_list_mutex);
818 		device = btrfs_find_device(fs_devices, &args);
819 
820 		/*
821 		 * If this disk has been pulled into an fs devices created by
822 		 * a device which had the CHANGING_FSID_V2 flag then replace the
823 		 * metadata_uuid/fsid values of the fs_devices.
824 		 */
825 		if (fs_devices->fsid_change &&
826 		    found_transid > fs_devices->latest_generation) {
827 			memcpy(fs_devices->fsid, disk_super->fsid,
828 					BTRFS_FSID_SIZE);
829 
830 			if (has_metadata_uuid)
831 				memcpy(fs_devices->metadata_uuid,
832 				       disk_super->metadata_uuid,
833 				       BTRFS_FSID_SIZE);
834 			else
835 				memcpy(fs_devices->metadata_uuid,
836 				       disk_super->fsid, BTRFS_FSID_SIZE);
837 
838 			fs_devices->fsid_change = false;
839 		}
840 	}
841 
842 	if (!device) {
843 		if (fs_devices->opened) {
844 			mutex_unlock(&fs_devices->device_list_mutex);
845 			return ERR_PTR(-EBUSY);
846 		}
847 
848 		device = btrfs_alloc_device(NULL, &devid,
849 					    disk_super->dev_item.uuid);
850 		if (IS_ERR(device)) {
851 			mutex_unlock(&fs_devices->device_list_mutex);
852 			/* we can safely leave the fs_devices entry around */
853 			return device;
854 		}
855 
856 		name = rcu_string_strdup(path, GFP_NOFS);
857 		if (!name) {
858 			btrfs_free_device(device);
859 			mutex_unlock(&fs_devices->device_list_mutex);
860 			return ERR_PTR(-ENOMEM);
861 		}
862 		rcu_assign_pointer(device->name, name);
863 		device->devt = path_devt;
864 
865 		list_add_rcu(&device->dev_list, &fs_devices->devices);
866 		fs_devices->num_devices++;
867 
868 		device->fs_devices = fs_devices;
869 		*new_device_added = true;
870 
871 		if (disk_super->label[0])
872 			pr_info(
873 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
874 				disk_super->label, devid, found_transid, path,
875 				current->comm, task_pid_nr(current));
876 		else
877 			pr_info(
878 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
879 				disk_super->fsid, devid, found_transid, path,
880 				current->comm, task_pid_nr(current));
881 
882 	} else if (!device->name || strcmp(device->name->str, path)) {
883 		/*
884 		 * When FS is already mounted.
885 		 * 1. If you are here and if the device->name is NULL that
886 		 *    means this device was missing at time of FS mount.
887 		 * 2. If you are here and if the device->name is different
888 		 *    from 'path' that means either
889 		 *      a. The same device disappeared and reappeared with
890 		 *         different name. or
891 		 *      b. The missing-disk-which-was-replaced, has
892 		 *         reappeared now.
893 		 *
894 		 * We must allow 1 and 2a above. But 2b would be a spurious
895 		 * and unintentional.
896 		 *
897 		 * Further in case of 1 and 2a above, the disk at 'path'
898 		 * would have missed some transaction when it was away and
899 		 * in case of 2a the stale bdev has to be updated as well.
900 		 * 2b must not be allowed at all time.
901 		 */
902 
903 		/*
904 		 * For now, we do allow update to btrfs_fs_device through the
905 		 * btrfs dev scan cli after FS has been mounted.  We're still
906 		 * tracking a problem where systems fail mount by subvolume id
907 		 * when we reject replacement on a mounted FS.
908 		 */
909 		if (!fs_devices->opened && found_transid < device->generation) {
910 			/*
911 			 * That is if the FS is _not_ mounted and if you
912 			 * are here, that means there is more than one
913 			 * disk with same uuid and devid.We keep the one
914 			 * with larger generation number or the last-in if
915 			 * generation are equal.
916 			 */
917 			mutex_unlock(&fs_devices->device_list_mutex);
918 			return ERR_PTR(-EEXIST);
919 		}
920 
921 		/*
922 		 * We are going to replace the device path for a given devid,
923 		 * make sure it's the same device if the device is mounted
924 		 *
925 		 * NOTE: the device->fs_info may not be reliable here so pass
926 		 * in a NULL to message helpers instead. This avoids a possible
927 		 * use-after-free when the fs_info and fs_info->sb are already
928 		 * torn down.
929 		 */
930 		if (device->bdev) {
931 			if (device->devt != path_devt) {
932 				mutex_unlock(&fs_devices->device_list_mutex);
933 				btrfs_warn_in_rcu(NULL,
934 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 						  path, devid, found_transid,
936 						  current->comm,
937 						  task_pid_nr(current));
938 				return ERR_PTR(-EEXIST);
939 			}
940 			btrfs_info_in_rcu(NULL,
941 	"devid %llu device path %s changed to %s scanned by %s (%d)",
942 					  devid, rcu_str_deref(device->name),
943 					  path, current->comm,
944 					  task_pid_nr(current));
945 		}
946 
947 		name = rcu_string_strdup(path, GFP_NOFS);
948 		if (!name) {
949 			mutex_unlock(&fs_devices->device_list_mutex);
950 			return ERR_PTR(-ENOMEM);
951 		}
952 		rcu_string_free(device->name);
953 		rcu_assign_pointer(device->name, name);
954 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
955 			fs_devices->missing_devices--;
956 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
957 		}
958 		device->devt = path_devt;
959 	}
960 
961 	/*
962 	 * Unmount does not free the btrfs_device struct but would zero
963 	 * generation along with most of the other members. So just update
964 	 * it back. We need it to pick the disk with largest generation
965 	 * (as above).
966 	 */
967 	if (!fs_devices->opened) {
968 		device->generation = found_transid;
969 		fs_devices->latest_generation = max_t(u64, found_transid,
970 						fs_devices->latest_generation);
971 	}
972 
973 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974 
975 	mutex_unlock(&fs_devices->device_list_mutex);
976 	return device;
977 }
978 
979 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980 {
981 	struct btrfs_fs_devices *fs_devices;
982 	struct btrfs_device *device;
983 	struct btrfs_device *orig_dev;
984 	int ret = 0;
985 
986 	lockdep_assert_held(&uuid_mutex);
987 
988 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 	if (IS_ERR(fs_devices))
990 		return fs_devices;
991 
992 	fs_devices->total_devices = orig->total_devices;
993 
994 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
995 		struct rcu_string *name;
996 
997 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
998 					    orig_dev->uuid);
999 		if (IS_ERR(device)) {
1000 			ret = PTR_ERR(device);
1001 			goto error;
1002 		}
1003 
1004 		/*
1005 		 * This is ok to do without rcu read locked because we hold the
1006 		 * uuid mutex so nothing we touch in here is going to disappear.
1007 		 */
1008 		if (orig_dev->name) {
1009 			name = rcu_string_strdup(orig_dev->name->str,
1010 					GFP_KERNEL);
1011 			if (!name) {
1012 				btrfs_free_device(device);
1013 				ret = -ENOMEM;
1014 				goto error;
1015 			}
1016 			rcu_assign_pointer(device->name, name);
1017 		}
1018 
1019 		list_add(&device->dev_list, &fs_devices->devices);
1020 		device->fs_devices = fs_devices;
1021 		fs_devices->num_devices++;
1022 	}
1023 	return fs_devices;
1024 error:
1025 	free_fs_devices(fs_devices);
1026 	return ERR_PTR(ret);
1027 }
1028 
1029 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1030 				      struct btrfs_device **latest_dev)
1031 {
1032 	struct btrfs_device *device, *next;
1033 
1034 	/* This is the initialized path, it is safe to release the devices. */
1035 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1036 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1037 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1038 				      &device->dev_state) &&
1039 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1040 				      &device->dev_state) &&
1041 			    (!*latest_dev ||
1042 			     device->generation > (*latest_dev)->generation)) {
1043 				*latest_dev = device;
1044 			}
1045 			continue;
1046 		}
1047 
1048 		/*
1049 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1050 		 * in btrfs_init_dev_replace() so just continue.
1051 		 */
1052 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1053 			continue;
1054 
1055 		if (device->bdev) {
1056 			blkdev_put(device->bdev, device->mode);
1057 			device->bdev = NULL;
1058 			fs_devices->open_devices--;
1059 		}
1060 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1061 			list_del_init(&device->dev_alloc_list);
1062 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1063 			fs_devices->rw_devices--;
1064 		}
1065 		list_del_init(&device->dev_list);
1066 		fs_devices->num_devices--;
1067 		btrfs_free_device(device);
1068 	}
1069 
1070 }
1071 
1072 /*
1073  * After we have read the system tree and know devids belonging to this
1074  * filesystem, remove the device which does not belong there.
1075  */
1076 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1077 {
1078 	struct btrfs_device *latest_dev = NULL;
1079 	struct btrfs_fs_devices *seed_dev;
1080 
1081 	mutex_lock(&uuid_mutex);
1082 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1083 
1084 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1085 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1086 
1087 	fs_devices->latest_dev = latest_dev;
1088 
1089 	mutex_unlock(&uuid_mutex);
1090 }
1091 
1092 static void btrfs_close_bdev(struct btrfs_device *device)
1093 {
1094 	if (!device->bdev)
1095 		return;
1096 
1097 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1098 		sync_blockdev(device->bdev);
1099 		invalidate_bdev(device->bdev);
1100 	}
1101 
1102 	blkdev_put(device->bdev, device->mode);
1103 }
1104 
1105 static void btrfs_close_one_device(struct btrfs_device *device)
1106 {
1107 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1108 
1109 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1110 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1111 		list_del_init(&device->dev_alloc_list);
1112 		fs_devices->rw_devices--;
1113 	}
1114 
1115 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1116 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1117 
1118 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1119 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1120 		fs_devices->missing_devices--;
1121 	}
1122 
1123 	btrfs_close_bdev(device);
1124 	if (device->bdev) {
1125 		fs_devices->open_devices--;
1126 		device->bdev = NULL;
1127 	}
1128 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1129 	btrfs_destroy_dev_zone_info(device);
1130 
1131 	device->fs_info = NULL;
1132 	atomic_set(&device->dev_stats_ccnt, 0);
1133 	extent_io_tree_release(&device->alloc_state);
1134 
1135 	/*
1136 	 * Reset the flush error record. We might have a transient flush error
1137 	 * in this mount, and if so we aborted the current transaction and set
1138 	 * the fs to an error state, guaranteeing no super blocks can be further
1139 	 * committed. However that error might be transient and if we unmount the
1140 	 * filesystem and mount it again, we should allow the mount to succeed
1141 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1142 	 * filesystem again we still get flush errors, then we will again abort
1143 	 * any transaction and set the error state, guaranteeing no commits of
1144 	 * unsafe super blocks.
1145 	 */
1146 	device->last_flush_error = 0;
1147 
1148 	/* Verify the device is back in a pristine state  */
1149 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1150 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1151 	ASSERT(list_empty(&device->dev_alloc_list));
1152 	ASSERT(list_empty(&device->post_commit_list));
1153 }
1154 
1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1156 {
1157 	struct btrfs_device *device, *tmp;
1158 
1159 	lockdep_assert_held(&uuid_mutex);
1160 
1161 	if (--fs_devices->opened > 0)
1162 		return;
1163 
1164 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1165 		btrfs_close_one_device(device);
1166 
1167 	WARN_ON(fs_devices->open_devices);
1168 	WARN_ON(fs_devices->rw_devices);
1169 	fs_devices->opened = 0;
1170 	fs_devices->seeding = false;
1171 	fs_devices->fs_info = NULL;
1172 }
1173 
1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1175 {
1176 	LIST_HEAD(list);
1177 	struct btrfs_fs_devices *tmp;
1178 
1179 	mutex_lock(&uuid_mutex);
1180 	close_fs_devices(fs_devices);
1181 	if (!fs_devices->opened)
1182 		list_splice_init(&fs_devices->seed_list, &list);
1183 
1184 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1185 		close_fs_devices(fs_devices);
1186 		list_del(&fs_devices->seed_list);
1187 		free_fs_devices(fs_devices);
1188 	}
1189 	mutex_unlock(&uuid_mutex);
1190 }
1191 
1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1193 				fmode_t flags, void *holder)
1194 {
1195 	struct btrfs_device *device;
1196 	struct btrfs_device *latest_dev = NULL;
1197 	struct btrfs_device *tmp_device;
1198 
1199 	flags |= FMODE_EXCL;
1200 
1201 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1202 				 dev_list) {
1203 		int ret;
1204 
1205 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1206 		if (ret == 0 &&
1207 		    (!latest_dev || device->generation > latest_dev->generation)) {
1208 			latest_dev = device;
1209 		} else if (ret == -ENODATA) {
1210 			fs_devices->num_devices--;
1211 			list_del(&device->dev_list);
1212 			btrfs_free_device(device);
1213 		}
1214 	}
1215 	if (fs_devices->open_devices == 0)
1216 		return -EINVAL;
1217 
1218 	fs_devices->opened = 1;
1219 	fs_devices->latest_dev = latest_dev;
1220 	fs_devices->total_rw_bytes = 0;
1221 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1222 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223 
1224 	return 0;
1225 }
1226 
1227 static int devid_cmp(void *priv, const struct list_head *a,
1228 		     const struct list_head *b)
1229 {
1230 	const struct btrfs_device *dev1, *dev2;
1231 
1232 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1233 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1234 
1235 	if (dev1->devid < dev2->devid)
1236 		return -1;
1237 	else if (dev1->devid > dev2->devid)
1238 		return 1;
1239 	return 0;
1240 }
1241 
1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1243 		       fmode_t flags, void *holder)
1244 {
1245 	int ret;
1246 
1247 	lockdep_assert_held(&uuid_mutex);
1248 	/*
1249 	 * The device_list_mutex cannot be taken here in case opening the
1250 	 * underlying device takes further locks like open_mutex.
1251 	 *
1252 	 * We also don't need the lock here as this is called during mount and
1253 	 * exclusion is provided by uuid_mutex
1254 	 */
1255 
1256 	if (fs_devices->opened) {
1257 		fs_devices->opened++;
1258 		ret = 0;
1259 	} else {
1260 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1261 		ret = open_fs_devices(fs_devices, flags, holder);
1262 	}
1263 
1264 	return ret;
1265 }
1266 
1267 void btrfs_release_disk_super(struct btrfs_super_block *super)
1268 {
1269 	struct page *page = virt_to_page(super);
1270 
1271 	put_page(page);
1272 }
1273 
1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1275 						       u64 bytenr, u64 bytenr_orig)
1276 {
1277 	struct btrfs_super_block *disk_super;
1278 	struct page *page;
1279 	void *p;
1280 	pgoff_t index;
1281 
1282 	/* make sure our super fits in the device */
1283 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1284 		return ERR_PTR(-EINVAL);
1285 
1286 	/* make sure our super fits in the page */
1287 	if (sizeof(*disk_super) > PAGE_SIZE)
1288 		return ERR_PTR(-EINVAL);
1289 
1290 	/* make sure our super doesn't straddle pages on disk */
1291 	index = bytenr >> PAGE_SHIFT;
1292 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1293 		return ERR_PTR(-EINVAL);
1294 
1295 	/* pull in the page with our super */
1296 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1297 
1298 	if (IS_ERR(page))
1299 		return ERR_CAST(page);
1300 
1301 	p = page_address(page);
1302 
1303 	/* align our pointer to the offset of the super block */
1304 	disk_super = p + offset_in_page(bytenr);
1305 
1306 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1307 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1308 		btrfs_release_disk_super(p);
1309 		return ERR_PTR(-EINVAL);
1310 	}
1311 
1312 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1313 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1314 
1315 	return disk_super;
1316 }
1317 
1318 int btrfs_forget_devices(dev_t devt)
1319 {
1320 	int ret;
1321 
1322 	mutex_lock(&uuid_mutex);
1323 	ret = btrfs_free_stale_devices(devt, NULL);
1324 	mutex_unlock(&uuid_mutex);
1325 
1326 	return ret;
1327 }
1328 
1329 /*
1330  * Look for a btrfs signature on a device. This may be called out of the mount path
1331  * and we are not allowed to call set_blocksize during the scan. The superblock
1332  * is read via pagecache
1333  */
1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1335 					   void *holder)
1336 {
1337 	struct btrfs_super_block *disk_super;
1338 	bool new_device_added = false;
1339 	struct btrfs_device *device = NULL;
1340 	struct block_device *bdev;
1341 	u64 bytenr, bytenr_orig;
1342 	int ret;
1343 
1344 	lockdep_assert_held(&uuid_mutex);
1345 
1346 	/*
1347 	 * we would like to check all the supers, but that would make
1348 	 * a btrfs mount succeed after a mkfs from a different FS.
1349 	 * So, we need to add a special mount option to scan for
1350 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1351 	 */
1352 	flags |= FMODE_EXCL;
1353 
1354 	bdev = blkdev_get_by_path(path, flags, holder);
1355 	if (IS_ERR(bdev))
1356 		return ERR_CAST(bdev);
1357 
1358 	bytenr_orig = btrfs_sb_offset(0);
1359 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1360 	if (ret) {
1361 		device = ERR_PTR(ret);
1362 		goto error_bdev_put;
1363 	}
1364 
1365 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1366 	if (IS_ERR(disk_super)) {
1367 		device = ERR_CAST(disk_super);
1368 		goto error_bdev_put;
1369 	}
1370 
1371 	device = device_list_add(path, disk_super, &new_device_added);
1372 	if (!IS_ERR(device) && new_device_added)
1373 		btrfs_free_stale_devices(device->devt, device);
1374 
1375 	btrfs_release_disk_super(disk_super);
1376 
1377 error_bdev_put:
1378 	blkdev_put(bdev, flags);
1379 
1380 	return device;
1381 }
1382 
1383 /*
1384  * Try to find a chunk that intersects [start, start + len] range and when one
1385  * such is found, record the end of it in *start
1386  */
1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1388 				    u64 len)
1389 {
1390 	u64 physical_start, physical_end;
1391 
1392 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1393 
1394 	if (!find_first_extent_bit(&device->alloc_state, *start,
1395 				   &physical_start, &physical_end,
1396 				   CHUNK_ALLOCATED, NULL)) {
1397 
1398 		if (in_range(physical_start, *start, len) ||
1399 		    in_range(*start, physical_start,
1400 			     physical_end - physical_start)) {
1401 			*start = physical_end + 1;
1402 			return true;
1403 		}
1404 	}
1405 	return false;
1406 }
1407 
1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1409 {
1410 	switch (device->fs_devices->chunk_alloc_policy) {
1411 	case BTRFS_CHUNK_ALLOC_REGULAR:
1412 		/*
1413 		 * We don't want to overwrite the superblock on the drive nor
1414 		 * any area used by the boot loader (grub for example), so we
1415 		 * make sure to start at an offset of at least 1MB.
1416 		 */
1417 		return max_t(u64, start, SZ_1M);
1418 	case BTRFS_CHUNK_ALLOC_ZONED:
1419 		/*
1420 		 * We don't care about the starting region like regular
1421 		 * allocator, because we anyway use/reserve the first two zones
1422 		 * for superblock logging.
1423 		 */
1424 		return ALIGN(start, device->zone_info->zone_size);
1425 	default:
1426 		BUG();
1427 	}
1428 }
1429 
1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1431 					u64 *hole_start, u64 *hole_size,
1432 					u64 num_bytes)
1433 {
1434 	u64 zone_size = device->zone_info->zone_size;
1435 	u64 pos;
1436 	int ret;
1437 	bool changed = false;
1438 
1439 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1440 
1441 	while (*hole_size > 0) {
1442 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1443 						   *hole_start + *hole_size,
1444 						   num_bytes);
1445 		if (pos != *hole_start) {
1446 			*hole_size = *hole_start + *hole_size - pos;
1447 			*hole_start = pos;
1448 			changed = true;
1449 			if (*hole_size < num_bytes)
1450 				break;
1451 		}
1452 
1453 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1454 
1455 		/* Range is ensured to be empty */
1456 		if (!ret)
1457 			return changed;
1458 
1459 		/* Given hole range was invalid (outside of device) */
1460 		if (ret == -ERANGE) {
1461 			*hole_start += *hole_size;
1462 			*hole_size = 0;
1463 			return true;
1464 		}
1465 
1466 		*hole_start += zone_size;
1467 		*hole_size -= zone_size;
1468 		changed = true;
1469 	}
1470 
1471 	return changed;
1472 }
1473 
1474 /**
1475  * dev_extent_hole_check - check if specified hole is suitable for allocation
1476  * @device:	the device which we have the hole
1477  * @hole_start: starting position of the hole
1478  * @hole_size:	the size of the hole
1479  * @num_bytes:	the size of the free space that we need
1480  *
1481  * This function may modify @hole_start and @hole_size to reflect the suitable
1482  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1483  */
1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1485 				  u64 *hole_size, u64 num_bytes)
1486 {
1487 	bool changed = false;
1488 	u64 hole_end = *hole_start + *hole_size;
1489 
1490 	for (;;) {
1491 		/*
1492 		 * Check before we set max_hole_start, otherwise we could end up
1493 		 * sending back this offset anyway.
1494 		 */
1495 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1496 			if (hole_end >= *hole_start)
1497 				*hole_size = hole_end - *hole_start;
1498 			else
1499 				*hole_size = 0;
1500 			changed = true;
1501 		}
1502 
1503 		switch (device->fs_devices->chunk_alloc_policy) {
1504 		case BTRFS_CHUNK_ALLOC_REGULAR:
1505 			/* No extra check */
1506 			break;
1507 		case BTRFS_CHUNK_ALLOC_ZONED:
1508 			if (dev_extent_hole_check_zoned(device, hole_start,
1509 							hole_size, num_bytes)) {
1510 				changed = true;
1511 				/*
1512 				 * The changed hole can contain pending extent.
1513 				 * Loop again to check that.
1514 				 */
1515 				continue;
1516 			}
1517 			break;
1518 		default:
1519 			BUG();
1520 		}
1521 
1522 		break;
1523 	}
1524 
1525 	return changed;
1526 }
1527 
1528 /*
1529  * find_free_dev_extent_start - find free space in the specified device
1530  * @device:	  the device which we search the free space in
1531  * @num_bytes:	  the size of the free space that we need
1532  * @search_start: the position from which to begin the search
1533  * @start:	  store the start of the free space.
1534  * @len:	  the size of the free space. that we find, or the size
1535  *		  of the max free space if we don't find suitable free space
1536  *
1537  * this uses a pretty simple search, the expectation is that it is
1538  * called very infrequently and that a given device has a small number
1539  * of extents
1540  *
1541  * @start is used to store the start of the free space if we find. But if we
1542  * don't find suitable free space, it will be used to store the start position
1543  * of the max free space.
1544  *
1545  * @len is used to store the size of the free space that we find.
1546  * But if we don't find suitable free space, it is used to store the size of
1547  * the max free space.
1548  *
1549  * NOTE: This function will search *commit* root of device tree, and does extra
1550  * check to ensure dev extents are not double allocated.
1551  * This makes the function safe to allocate dev extents but may not report
1552  * correct usable device space, as device extent freed in current transaction
1553  * is not reported as available.
1554  */
1555 static int find_free_dev_extent_start(struct btrfs_device *device,
1556 				u64 num_bytes, u64 search_start, u64 *start,
1557 				u64 *len)
1558 {
1559 	struct btrfs_fs_info *fs_info = device->fs_info;
1560 	struct btrfs_root *root = fs_info->dev_root;
1561 	struct btrfs_key key;
1562 	struct btrfs_dev_extent *dev_extent;
1563 	struct btrfs_path *path;
1564 	u64 hole_size;
1565 	u64 max_hole_start;
1566 	u64 max_hole_size;
1567 	u64 extent_end;
1568 	u64 search_end = device->total_bytes;
1569 	int ret;
1570 	int slot;
1571 	struct extent_buffer *l;
1572 
1573 	search_start = dev_extent_search_start(device, search_start);
1574 
1575 	WARN_ON(device->zone_info &&
1576 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1577 
1578 	path = btrfs_alloc_path();
1579 	if (!path)
1580 		return -ENOMEM;
1581 
1582 	max_hole_start = search_start;
1583 	max_hole_size = 0;
1584 
1585 again:
1586 	if (search_start >= search_end ||
1587 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1588 		ret = -ENOSPC;
1589 		goto out;
1590 	}
1591 
1592 	path->reada = READA_FORWARD;
1593 	path->search_commit_root = 1;
1594 	path->skip_locking = 1;
1595 
1596 	key.objectid = device->devid;
1597 	key.offset = search_start;
1598 	key.type = BTRFS_DEV_EXTENT_KEY;
1599 
1600 	ret = btrfs_search_backwards(root, &key, path);
1601 	if (ret < 0)
1602 		goto out;
1603 
1604 	while (1) {
1605 		l = path->nodes[0];
1606 		slot = path->slots[0];
1607 		if (slot >= btrfs_header_nritems(l)) {
1608 			ret = btrfs_next_leaf(root, path);
1609 			if (ret == 0)
1610 				continue;
1611 			if (ret < 0)
1612 				goto out;
1613 
1614 			break;
1615 		}
1616 		btrfs_item_key_to_cpu(l, &key, slot);
1617 
1618 		if (key.objectid < device->devid)
1619 			goto next;
1620 
1621 		if (key.objectid > device->devid)
1622 			break;
1623 
1624 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1625 			goto next;
1626 
1627 		if (key.offset > search_start) {
1628 			hole_size = key.offset - search_start;
1629 			dev_extent_hole_check(device, &search_start, &hole_size,
1630 					      num_bytes);
1631 
1632 			if (hole_size > max_hole_size) {
1633 				max_hole_start = search_start;
1634 				max_hole_size = hole_size;
1635 			}
1636 
1637 			/*
1638 			 * If this free space is greater than which we need,
1639 			 * it must be the max free space that we have found
1640 			 * until now, so max_hole_start must point to the start
1641 			 * of this free space and the length of this free space
1642 			 * is stored in max_hole_size. Thus, we return
1643 			 * max_hole_start and max_hole_size and go back to the
1644 			 * caller.
1645 			 */
1646 			if (hole_size >= num_bytes) {
1647 				ret = 0;
1648 				goto out;
1649 			}
1650 		}
1651 
1652 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1653 		extent_end = key.offset + btrfs_dev_extent_length(l,
1654 								  dev_extent);
1655 		if (extent_end > search_start)
1656 			search_start = extent_end;
1657 next:
1658 		path->slots[0]++;
1659 		cond_resched();
1660 	}
1661 
1662 	/*
1663 	 * At this point, search_start should be the end of
1664 	 * allocated dev extents, and when shrinking the device,
1665 	 * search_end may be smaller than search_start.
1666 	 */
1667 	if (search_end > search_start) {
1668 		hole_size = search_end - search_start;
1669 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1670 					  num_bytes)) {
1671 			btrfs_release_path(path);
1672 			goto again;
1673 		}
1674 
1675 		if (hole_size > max_hole_size) {
1676 			max_hole_start = search_start;
1677 			max_hole_size = hole_size;
1678 		}
1679 	}
1680 
1681 	/* See above. */
1682 	if (max_hole_size < num_bytes)
1683 		ret = -ENOSPC;
1684 	else
1685 		ret = 0;
1686 
1687 out:
1688 	btrfs_free_path(path);
1689 	*start = max_hole_start;
1690 	if (len)
1691 		*len = max_hole_size;
1692 	return ret;
1693 }
1694 
1695 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1696 			 u64 *start, u64 *len)
1697 {
1698 	/* FIXME use last free of some kind */
1699 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1700 }
1701 
1702 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1703 			  struct btrfs_device *device,
1704 			  u64 start, u64 *dev_extent_len)
1705 {
1706 	struct btrfs_fs_info *fs_info = device->fs_info;
1707 	struct btrfs_root *root = fs_info->dev_root;
1708 	int ret;
1709 	struct btrfs_path *path;
1710 	struct btrfs_key key;
1711 	struct btrfs_key found_key;
1712 	struct extent_buffer *leaf = NULL;
1713 	struct btrfs_dev_extent *extent = NULL;
1714 
1715 	path = btrfs_alloc_path();
1716 	if (!path)
1717 		return -ENOMEM;
1718 
1719 	key.objectid = device->devid;
1720 	key.offset = start;
1721 	key.type = BTRFS_DEV_EXTENT_KEY;
1722 again:
1723 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1724 	if (ret > 0) {
1725 		ret = btrfs_previous_item(root, path, key.objectid,
1726 					  BTRFS_DEV_EXTENT_KEY);
1727 		if (ret)
1728 			goto out;
1729 		leaf = path->nodes[0];
1730 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1731 		extent = btrfs_item_ptr(leaf, path->slots[0],
1732 					struct btrfs_dev_extent);
1733 		BUG_ON(found_key.offset > start || found_key.offset +
1734 		       btrfs_dev_extent_length(leaf, extent) < start);
1735 		key = found_key;
1736 		btrfs_release_path(path);
1737 		goto again;
1738 	} else if (ret == 0) {
1739 		leaf = path->nodes[0];
1740 		extent = btrfs_item_ptr(leaf, path->slots[0],
1741 					struct btrfs_dev_extent);
1742 	} else {
1743 		goto out;
1744 	}
1745 
1746 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1747 
1748 	ret = btrfs_del_item(trans, root, path);
1749 	if (ret == 0)
1750 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1751 out:
1752 	btrfs_free_path(path);
1753 	return ret;
1754 }
1755 
1756 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1757 {
1758 	struct extent_map_tree *em_tree;
1759 	struct extent_map *em;
1760 	struct rb_node *n;
1761 	u64 ret = 0;
1762 
1763 	em_tree = &fs_info->mapping_tree;
1764 	read_lock(&em_tree->lock);
1765 	n = rb_last(&em_tree->map.rb_root);
1766 	if (n) {
1767 		em = rb_entry(n, struct extent_map, rb_node);
1768 		ret = em->start + em->len;
1769 	}
1770 	read_unlock(&em_tree->lock);
1771 
1772 	return ret;
1773 }
1774 
1775 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1776 				    u64 *devid_ret)
1777 {
1778 	int ret;
1779 	struct btrfs_key key;
1780 	struct btrfs_key found_key;
1781 	struct btrfs_path *path;
1782 
1783 	path = btrfs_alloc_path();
1784 	if (!path)
1785 		return -ENOMEM;
1786 
1787 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1788 	key.type = BTRFS_DEV_ITEM_KEY;
1789 	key.offset = (u64)-1;
1790 
1791 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1792 	if (ret < 0)
1793 		goto error;
1794 
1795 	if (ret == 0) {
1796 		/* Corruption */
1797 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1798 		ret = -EUCLEAN;
1799 		goto error;
1800 	}
1801 
1802 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1803 				  BTRFS_DEV_ITEMS_OBJECTID,
1804 				  BTRFS_DEV_ITEM_KEY);
1805 	if (ret) {
1806 		*devid_ret = 1;
1807 	} else {
1808 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1809 				      path->slots[0]);
1810 		*devid_ret = found_key.offset + 1;
1811 	}
1812 	ret = 0;
1813 error:
1814 	btrfs_free_path(path);
1815 	return ret;
1816 }
1817 
1818 /*
1819  * the device information is stored in the chunk root
1820  * the btrfs_device struct should be fully filled in
1821  */
1822 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1823 			    struct btrfs_device *device)
1824 {
1825 	int ret;
1826 	struct btrfs_path *path;
1827 	struct btrfs_dev_item *dev_item;
1828 	struct extent_buffer *leaf;
1829 	struct btrfs_key key;
1830 	unsigned long ptr;
1831 
1832 	path = btrfs_alloc_path();
1833 	if (!path)
1834 		return -ENOMEM;
1835 
1836 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1837 	key.type = BTRFS_DEV_ITEM_KEY;
1838 	key.offset = device->devid;
1839 
1840 	btrfs_reserve_chunk_metadata(trans, true);
1841 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1842 				      &key, sizeof(*dev_item));
1843 	btrfs_trans_release_chunk_metadata(trans);
1844 	if (ret)
1845 		goto out;
1846 
1847 	leaf = path->nodes[0];
1848 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1849 
1850 	btrfs_set_device_id(leaf, dev_item, device->devid);
1851 	btrfs_set_device_generation(leaf, dev_item, 0);
1852 	btrfs_set_device_type(leaf, dev_item, device->type);
1853 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1854 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1855 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1856 	btrfs_set_device_total_bytes(leaf, dev_item,
1857 				     btrfs_device_get_disk_total_bytes(device));
1858 	btrfs_set_device_bytes_used(leaf, dev_item,
1859 				    btrfs_device_get_bytes_used(device));
1860 	btrfs_set_device_group(leaf, dev_item, 0);
1861 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1862 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1863 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1864 
1865 	ptr = btrfs_device_uuid(dev_item);
1866 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1867 	ptr = btrfs_device_fsid(dev_item);
1868 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1869 			    ptr, BTRFS_FSID_SIZE);
1870 	btrfs_mark_buffer_dirty(leaf);
1871 
1872 	ret = 0;
1873 out:
1874 	btrfs_free_path(path);
1875 	return ret;
1876 }
1877 
1878 /*
1879  * Function to update ctime/mtime for a given device path.
1880  * Mainly used for ctime/mtime based probe like libblkid.
1881  *
1882  * We don't care about errors here, this is just to be kind to userspace.
1883  */
1884 static void update_dev_time(const char *device_path)
1885 {
1886 	struct path path;
1887 	struct timespec64 now;
1888 	int ret;
1889 
1890 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1891 	if (ret)
1892 		return;
1893 
1894 	now = current_time(d_inode(path.dentry));
1895 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1896 	path_put(&path);
1897 }
1898 
1899 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1900 			     struct btrfs_device *device)
1901 {
1902 	struct btrfs_root *root = device->fs_info->chunk_root;
1903 	int ret;
1904 	struct btrfs_path *path;
1905 	struct btrfs_key key;
1906 
1907 	path = btrfs_alloc_path();
1908 	if (!path)
1909 		return -ENOMEM;
1910 
1911 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1912 	key.type = BTRFS_DEV_ITEM_KEY;
1913 	key.offset = device->devid;
1914 
1915 	btrfs_reserve_chunk_metadata(trans, false);
1916 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1917 	btrfs_trans_release_chunk_metadata(trans);
1918 	if (ret) {
1919 		if (ret > 0)
1920 			ret = -ENOENT;
1921 		goto out;
1922 	}
1923 
1924 	ret = btrfs_del_item(trans, root, path);
1925 out:
1926 	btrfs_free_path(path);
1927 	return ret;
1928 }
1929 
1930 /*
1931  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1932  * filesystem. It's up to the caller to adjust that number regarding eg. device
1933  * replace.
1934  */
1935 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1936 		u64 num_devices)
1937 {
1938 	u64 all_avail;
1939 	unsigned seq;
1940 	int i;
1941 
1942 	do {
1943 		seq = read_seqbegin(&fs_info->profiles_lock);
1944 
1945 		all_avail = fs_info->avail_data_alloc_bits |
1946 			    fs_info->avail_system_alloc_bits |
1947 			    fs_info->avail_metadata_alloc_bits;
1948 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1949 
1950 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1951 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1952 			continue;
1953 
1954 		if (num_devices < btrfs_raid_array[i].devs_min)
1955 			return btrfs_raid_array[i].mindev_error;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 static struct btrfs_device * btrfs_find_next_active_device(
1962 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1963 {
1964 	struct btrfs_device *next_device;
1965 
1966 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1967 		if (next_device != device &&
1968 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1969 		    && next_device->bdev)
1970 			return next_device;
1971 	}
1972 
1973 	return NULL;
1974 }
1975 
1976 /*
1977  * Helper function to check if the given device is part of s_bdev / latest_dev
1978  * and replace it with the provided or the next active device, in the context
1979  * where this function called, there should be always be another device (or
1980  * this_dev) which is active.
1981  */
1982 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1983 					    struct btrfs_device *next_device)
1984 {
1985 	struct btrfs_fs_info *fs_info = device->fs_info;
1986 
1987 	if (!next_device)
1988 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1989 							    device);
1990 	ASSERT(next_device);
1991 
1992 	if (fs_info->sb->s_bdev &&
1993 			(fs_info->sb->s_bdev == device->bdev))
1994 		fs_info->sb->s_bdev = next_device->bdev;
1995 
1996 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1997 		fs_info->fs_devices->latest_dev = next_device;
1998 }
1999 
2000 /*
2001  * Return btrfs_fs_devices::num_devices excluding the device that's being
2002  * currently replaced.
2003  */
2004 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2005 {
2006 	u64 num_devices = fs_info->fs_devices->num_devices;
2007 
2008 	down_read(&fs_info->dev_replace.rwsem);
2009 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2010 		ASSERT(num_devices > 1);
2011 		num_devices--;
2012 	}
2013 	up_read(&fs_info->dev_replace.rwsem);
2014 
2015 	return num_devices;
2016 }
2017 
2018 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2019 			       struct block_device *bdev,
2020 			       const char *device_path)
2021 {
2022 	struct btrfs_super_block *disk_super;
2023 	int copy_num;
2024 
2025 	if (!bdev)
2026 		return;
2027 
2028 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2029 		struct page *page;
2030 		int ret;
2031 
2032 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2033 		if (IS_ERR(disk_super))
2034 			continue;
2035 
2036 		if (bdev_is_zoned(bdev)) {
2037 			btrfs_reset_sb_log_zones(bdev, copy_num);
2038 			continue;
2039 		}
2040 
2041 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2042 
2043 		page = virt_to_page(disk_super);
2044 		set_page_dirty(page);
2045 		lock_page(page);
2046 		/* write_on_page() unlocks the page */
2047 		ret = write_one_page(page);
2048 		if (ret)
2049 			btrfs_warn(fs_info,
2050 				"error clearing superblock number %d (%d)",
2051 				copy_num, ret);
2052 		btrfs_release_disk_super(disk_super);
2053 
2054 	}
2055 
2056 	/* Notify udev that device has changed */
2057 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2058 
2059 	/* Update ctime/mtime for device path for libblkid */
2060 	update_dev_time(device_path);
2061 }
2062 
2063 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2064 		    struct btrfs_dev_lookup_args *args,
2065 		    struct block_device **bdev, fmode_t *mode)
2066 {
2067 	struct btrfs_trans_handle *trans;
2068 	struct btrfs_device *device;
2069 	struct btrfs_fs_devices *cur_devices;
2070 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2071 	u64 num_devices;
2072 	int ret = 0;
2073 
2074 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2075 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2076 		return -EINVAL;
2077 	}
2078 
2079 	/*
2080 	 * The device list in fs_devices is accessed without locks (neither
2081 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2082 	 * filesystem and another device rm cannot run.
2083 	 */
2084 	num_devices = btrfs_num_devices(fs_info);
2085 
2086 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2087 	if (ret)
2088 		return ret;
2089 
2090 	device = btrfs_find_device(fs_info->fs_devices, args);
2091 	if (!device) {
2092 		if (args->missing)
2093 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2094 		else
2095 			ret = -ENOENT;
2096 		return ret;
2097 	}
2098 
2099 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2100 		btrfs_warn_in_rcu(fs_info,
2101 		  "cannot remove device %s (devid %llu) due to active swapfile",
2102 				  rcu_str_deref(device->name), device->devid);
2103 		return -ETXTBSY;
2104 	}
2105 
2106 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2107 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2108 
2109 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2110 	    fs_info->fs_devices->rw_devices == 1)
2111 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2112 
2113 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2114 		mutex_lock(&fs_info->chunk_mutex);
2115 		list_del_init(&device->dev_alloc_list);
2116 		device->fs_devices->rw_devices--;
2117 		mutex_unlock(&fs_info->chunk_mutex);
2118 	}
2119 
2120 	ret = btrfs_shrink_device(device, 0);
2121 	if (ret)
2122 		goto error_undo;
2123 
2124 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2125 	if (IS_ERR(trans)) {
2126 		ret = PTR_ERR(trans);
2127 		goto error_undo;
2128 	}
2129 
2130 	ret = btrfs_rm_dev_item(trans, device);
2131 	if (ret) {
2132 		/* Any error in dev item removal is critical */
2133 		btrfs_crit(fs_info,
2134 			   "failed to remove device item for devid %llu: %d",
2135 			   device->devid, ret);
2136 		btrfs_abort_transaction(trans, ret);
2137 		btrfs_end_transaction(trans);
2138 		return ret;
2139 	}
2140 
2141 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2142 	btrfs_scrub_cancel_dev(device);
2143 
2144 	/*
2145 	 * the device list mutex makes sure that we don't change
2146 	 * the device list while someone else is writing out all
2147 	 * the device supers. Whoever is writing all supers, should
2148 	 * lock the device list mutex before getting the number of
2149 	 * devices in the super block (super_copy). Conversely,
2150 	 * whoever updates the number of devices in the super block
2151 	 * (super_copy) should hold the device list mutex.
2152 	 */
2153 
2154 	/*
2155 	 * In normal cases the cur_devices == fs_devices. But in case
2156 	 * of deleting a seed device, the cur_devices should point to
2157 	 * its own fs_devices listed under the fs_devices->seed_list.
2158 	 */
2159 	cur_devices = device->fs_devices;
2160 	mutex_lock(&fs_devices->device_list_mutex);
2161 	list_del_rcu(&device->dev_list);
2162 
2163 	cur_devices->num_devices--;
2164 	cur_devices->total_devices--;
2165 	/* Update total_devices of the parent fs_devices if it's seed */
2166 	if (cur_devices != fs_devices)
2167 		fs_devices->total_devices--;
2168 
2169 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2170 		cur_devices->missing_devices--;
2171 
2172 	btrfs_assign_next_active_device(device, NULL);
2173 
2174 	if (device->bdev) {
2175 		cur_devices->open_devices--;
2176 		/* remove sysfs entry */
2177 		btrfs_sysfs_remove_device(device);
2178 	}
2179 
2180 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2181 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2182 	mutex_unlock(&fs_devices->device_list_mutex);
2183 
2184 	/*
2185 	 * At this point, the device is zero sized and detached from the
2186 	 * devices list.  All that's left is to zero out the old supers and
2187 	 * free the device.
2188 	 *
2189 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2190 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2191 	 * block device and it's dependencies.  Instead just flush the device
2192 	 * and let the caller do the final blkdev_put.
2193 	 */
2194 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2195 		btrfs_scratch_superblocks(fs_info, device->bdev,
2196 					  device->name->str);
2197 		if (device->bdev) {
2198 			sync_blockdev(device->bdev);
2199 			invalidate_bdev(device->bdev);
2200 		}
2201 	}
2202 
2203 	*bdev = device->bdev;
2204 	*mode = device->mode;
2205 	synchronize_rcu();
2206 	btrfs_free_device(device);
2207 
2208 	/*
2209 	 * This can happen if cur_devices is the private seed devices list.  We
2210 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2211 	 * to be held, but in fact we don't need that for the private
2212 	 * seed_devices, we can simply decrement cur_devices->opened and then
2213 	 * remove it from our list and free the fs_devices.
2214 	 */
2215 	if (cur_devices->num_devices == 0) {
2216 		list_del_init(&cur_devices->seed_list);
2217 		ASSERT(cur_devices->opened == 1);
2218 		cur_devices->opened--;
2219 		free_fs_devices(cur_devices);
2220 	}
2221 
2222 	ret = btrfs_commit_transaction(trans);
2223 
2224 	return ret;
2225 
2226 error_undo:
2227 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2228 		mutex_lock(&fs_info->chunk_mutex);
2229 		list_add(&device->dev_alloc_list,
2230 			 &fs_devices->alloc_list);
2231 		device->fs_devices->rw_devices++;
2232 		mutex_unlock(&fs_info->chunk_mutex);
2233 	}
2234 	return ret;
2235 }
2236 
2237 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2238 {
2239 	struct btrfs_fs_devices *fs_devices;
2240 
2241 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2242 
2243 	/*
2244 	 * in case of fs with no seed, srcdev->fs_devices will point
2245 	 * to fs_devices of fs_info. However when the dev being replaced is
2246 	 * a seed dev it will point to the seed's local fs_devices. In short
2247 	 * srcdev will have its correct fs_devices in both the cases.
2248 	 */
2249 	fs_devices = srcdev->fs_devices;
2250 
2251 	list_del_rcu(&srcdev->dev_list);
2252 	list_del(&srcdev->dev_alloc_list);
2253 	fs_devices->num_devices--;
2254 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2255 		fs_devices->missing_devices--;
2256 
2257 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2258 		fs_devices->rw_devices--;
2259 
2260 	if (srcdev->bdev)
2261 		fs_devices->open_devices--;
2262 }
2263 
2264 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2265 {
2266 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2267 
2268 	mutex_lock(&uuid_mutex);
2269 
2270 	btrfs_close_bdev(srcdev);
2271 	synchronize_rcu();
2272 	btrfs_free_device(srcdev);
2273 
2274 	/* if this is no devs we rather delete the fs_devices */
2275 	if (!fs_devices->num_devices) {
2276 		/*
2277 		 * On a mounted FS, num_devices can't be zero unless it's a
2278 		 * seed. In case of a seed device being replaced, the replace
2279 		 * target added to the sprout FS, so there will be no more
2280 		 * device left under the seed FS.
2281 		 */
2282 		ASSERT(fs_devices->seeding);
2283 
2284 		list_del_init(&fs_devices->seed_list);
2285 		close_fs_devices(fs_devices);
2286 		free_fs_devices(fs_devices);
2287 	}
2288 	mutex_unlock(&uuid_mutex);
2289 }
2290 
2291 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2292 {
2293 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2294 
2295 	mutex_lock(&fs_devices->device_list_mutex);
2296 
2297 	btrfs_sysfs_remove_device(tgtdev);
2298 
2299 	if (tgtdev->bdev)
2300 		fs_devices->open_devices--;
2301 
2302 	fs_devices->num_devices--;
2303 
2304 	btrfs_assign_next_active_device(tgtdev, NULL);
2305 
2306 	list_del_rcu(&tgtdev->dev_list);
2307 
2308 	mutex_unlock(&fs_devices->device_list_mutex);
2309 
2310 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2311 				  tgtdev->name->str);
2312 
2313 	btrfs_close_bdev(tgtdev);
2314 	synchronize_rcu();
2315 	btrfs_free_device(tgtdev);
2316 }
2317 
2318 /**
2319  * Populate args from device at path
2320  *
2321  * @fs_info:	the filesystem
2322  * @args:	the args to populate
2323  * @path:	the path to the device
2324  *
2325  * This will read the super block of the device at @path and populate @args with
2326  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2327  * lookup a device to operate on, but need to do it before we take any locks.
2328  * This properly handles the special case of "missing" that a user may pass in,
2329  * and does some basic sanity checks.  The caller must make sure that @path is
2330  * properly NUL terminated before calling in, and must call
2331  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2332  * uuid buffers.
2333  *
2334  * Return: 0 for success, -errno for failure
2335  */
2336 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2337 				 struct btrfs_dev_lookup_args *args,
2338 				 const char *path)
2339 {
2340 	struct btrfs_super_block *disk_super;
2341 	struct block_device *bdev;
2342 	int ret;
2343 
2344 	if (!path || !path[0])
2345 		return -EINVAL;
2346 	if (!strcmp(path, "missing")) {
2347 		args->missing = true;
2348 		return 0;
2349 	}
2350 
2351 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2352 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2353 	if (!args->uuid || !args->fsid) {
2354 		btrfs_put_dev_args_from_path(args);
2355 		return -ENOMEM;
2356 	}
2357 
2358 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2359 				    &bdev, &disk_super);
2360 	if (ret)
2361 		return ret;
2362 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2363 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2364 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2365 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2366 	else
2367 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2368 	btrfs_release_disk_super(disk_super);
2369 	blkdev_put(bdev, FMODE_READ);
2370 	return 0;
2371 }
2372 
2373 /*
2374  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2375  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2376  * that don't need to be freed.
2377  */
2378 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2379 {
2380 	kfree(args->uuid);
2381 	kfree(args->fsid);
2382 	args->uuid = NULL;
2383 	args->fsid = NULL;
2384 }
2385 
2386 struct btrfs_device *btrfs_find_device_by_devspec(
2387 		struct btrfs_fs_info *fs_info, u64 devid,
2388 		const char *device_path)
2389 {
2390 	BTRFS_DEV_LOOKUP_ARGS(args);
2391 	struct btrfs_device *device;
2392 	int ret;
2393 
2394 	if (devid) {
2395 		args.devid = devid;
2396 		device = btrfs_find_device(fs_info->fs_devices, &args);
2397 		if (!device)
2398 			return ERR_PTR(-ENOENT);
2399 		return device;
2400 	}
2401 
2402 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2403 	if (ret)
2404 		return ERR_PTR(ret);
2405 	device = btrfs_find_device(fs_info->fs_devices, &args);
2406 	btrfs_put_dev_args_from_path(&args);
2407 	if (!device)
2408 		return ERR_PTR(-ENOENT);
2409 	return device;
2410 }
2411 
2412 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2413 {
2414 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2415 	struct btrfs_fs_devices *old_devices;
2416 	struct btrfs_fs_devices *seed_devices;
2417 
2418 	lockdep_assert_held(&uuid_mutex);
2419 	if (!fs_devices->seeding)
2420 		return ERR_PTR(-EINVAL);
2421 
2422 	/*
2423 	 * Private copy of the seed devices, anchored at
2424 	 * fs_info->fs_devices->seed_list
2425 	 */
2426 	seed_devices = alloc_fs_devices(NULL, NULL);
2427 	if (IS_ERR(seed_devices))
2428 		return seed_devices;
2429 
2430 	/*
2431 	 * It's necessary to retain a copy of the original seed fs_devices in
2432 	 * fs_uuids so that filesystems which have been seeded can successfully
2433 	 * reference the seed device from open_seed_devices. This also supports
2434 	 * multiple fs seed.
2435 	 */
2436 	old_devices = clone_fs_devices(fs_devices);
2437 	if (IS_ERR(old_devices)) {
2438 		kfree(seed_devices);
2439 		return old_devices;
2440 	}
2441 
2442 	list_add(&old_devices->fs_list, &fs_uuids);
2443 
2444 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2445 	seed_devices->opened = 1;
2446 	INIT_LIST_HEAD(&seed_devices->devices);
2447 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2448 	mutex_init(&seed_devices->device_list_mutex);
2449 
2450 	return seed_devices;
2451 }
2452 
2453 /*
2454  * Splice seed devices into the sprout fs_devices.
2455  * Generate a new fsid for the sprouted read-write filesystem.
2456  */
2457 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2458 			       struct btrfs_fs_devices *seed_devices)
2459 {
2460 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2461 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2462 	struct btrfs_device *device;
2463 	u64 super_flags;
2464 
2465 	/*
2466 	 * We are updating the fsid, the thread leading to device_list_add()
2467 	 * could race, so uuid_mutex is needed.
2468 	 */
2469 	lockdep_assert_held(&uuid_mutex);
2470 
2471 	/*
2472 	 * The threads listed below may traverse dev_list but can do that without
2473 	 * device_list_mutex:
2474 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2475 	 * - Various dev_list readers - are using RCU.
2476 	 * - btrfs_ioctl_fitrim() - is using RCU.
2477 	 *
2478 	 * For-read threads as below are using device_list_mutex:
2479 	 * - Readonly scrub btrfs_scrub_dev()
2480 	 * - Readonly scrub btrfs_scrub_progress()
2481 	 * - btrfs_get_dev_stats()
2482 	 */
2483 	lockdep_assert_held(&fs_devices->device_list_mutex);
2484 
2485 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2486 			      synchronize_rcu);
2487 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2488 		device->fs_devices = seed_devices;
2489 
2490 	fs_devices->seeding = false;
2491 	fs_devices->num_devices = 0;
2492 	fs_devices->open_devices = 0;
2493 	fs_devices->missing_devices = 0;
2494 	fs_devices->rotating = false;
2495 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2496 
2497 	generate_random_uuid(fs_devices->fsid);
2498 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2499 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2500 
2501 	super_flags = btrfs_super_flags(disk_super) &
2502 		      ~BTRFS_SUPER_FLAG_SEEDING;
2503 	btrfs_set_super_flags(disk_super, super_flags);
2504 }
2505 
2506 /*
2507  * Store the expected generation for seed devices in device items.
2508  */
2509 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2510 {
2511 	BTRFS_DEV_LOOKUP_ARGS(args);
2512 	struct btrfs_fs_info *fs_info = trans->fs_info;
2513 	struct btrfs_root *root = fs_info->chunk_root;
2514 	struct btrfs_path *path;
2515 	struct extent_buffer *leaf;
2516 	struct btrfs_dev_item *dev_item;
2517 	struct btrfs_device *device;
2518 	struct btrfs_key key;
2519 	u8 fs_uuid[BTRFS_FSID_SIZE];
2520 	u8 dev_uuid[BTRFS_UUID_SIZE];
2521 	int ret;
2522 
2523 	path = btrfs_alloc_path();
2524 	if (!path)
2525 		return -ENOMEM;
2526 
2527 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2528 	key.offset = 0;
2529 	key.type = BTRFS_DEV_ITEM_KEY;
2530 
2531 	while (1) {
2532 		btrfs_reserve_chunk_metadata(trans, false);
2533 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2534 		btrfs_trans_release_chunk_metadata(trans);
2535 		if (ret < 0)
2536 			goto error;
2537 
2538 		leaf = path->nodes[0];
2539 next_slot:
2540 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2541 			ret = btrfs_next_leaf(root, path);
2542 			if (ret > 0)
2543 				break;
2544 			if (ret < 0)
2545 				goto error;
2546 			leaf = path->nodes[0];
2547 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2548 			btrfs_release_path(path);
2549 			continue;
2550 		}
2551 
2552 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2553 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2554 		    key.type != BTRFS_DEV_ITEM_KEY)
2555 			break;
2556 
2557 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2558 					  struct btrfs_dev_item);
2559 		args.devid = btrfs_device_id(leaf, dev_item);
2560 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2561 				   BTRFS_UUID_SIZE);
2562 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2563 				   BTRFS_FSID_SIZE);
2564 		args.uuid = dev_uuid;
2565 		args.fsid = fs_uuid;
2566 		device = btrfs_find_device(fs_info->fs_devices, &args);
2567 		BUG_ON(!device); /* Logic error */
2568 
2569 		if (device->fs_devices->seeding) {
2570 			btrfs_set_device_generation(leaf, dev_item,
2571 						    device->generation);
2572 			btrfs_mark_buffer_dirty(leaf);
2573 		}
2574 
2575 		path->slots[0]++;
2576 		goto next_slot;
2577 	}
2578 	ret = 0;
2579 error:
2580 	btrfs_free_path(path);
2581 	return ret;
2582 }
2583 
2584 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2585 {
2586 	struct btrfs_root *root = fs_info->dev_root;
2587 	struct btrfs_trans_handle *trans;
2588 	struct btrfs_device *device;
2589 	struct block_device *bdev;
2590 	struct super_block *sb = fs_info->sb;
2591 	struct rcu_string *name;
2592 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2593 	struct btrfs_fs_devices *seed_devices;
2594 	u64 orig_super_total_bytes;
2595 	u64 orig_super_num_devices;
2596 	int ret = 0;
2597 	bool seeding_dev = false;
2598 	bool locked = false;
2599 
2600 	if (sb_rdonly(sb) && !fs_devices->seeding)
2601 		return -EROFS;
2602 
2603 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2604 				  fs_info->bdev_holder);
2605 	if (IS_ERR(bdev))
2606 		return PTR_ERR(bdev);
2607 
2608 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2609 		ret = -EINVAL;
2610 		goto error;
2611 	}
2612 
2613 	if (fs_devices->seeding) {
2614 		seeding_dev = true;
2615 		down_write(&sb->s_umount);
2616 		mutex_lock(&uuid_mutex);
2617 		locked = true;
2618 	}
2619 
2620 	sync_blockdev(bdev);
2621 
2622 	rcu_read_lock();
2623 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2624 		if (device->bdev == bdev) {
2625 			ret = -EEXIST;
2626 			rcu_read_unlock();
2627 			goto error;
2628 		}
2629 	}
2630 	rcu_read_unlock();
2631 
2632 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2633 	if (IS_ERR(device)) {
2634 		/* we can safely leave the fs_devices entry around */
2635 		ret = PTR_ERR(device);
2636 		goto error;
2637 	}
2638 
2639 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2640 	if (!name) {
2641 		ret = -ENOMEM;
2642 		goto error_free_device;
2643 	}
2644 	rcu_assign_pointer(device->name, name);
2645 
2646 	device->fs_info = fs_info;
2647 	device->bdev = bdev;
2648 	ret = lookup_bdev(device_path, &device->devt);
2649 	if (ret)
2650 		goto error_free_device;
2651 
2652 	ret = btrfs_get_dev_zone_info(device, false);
2653 	if (ret)
2654 		goto error_free_device;
2655 
2656 	trans = btrfs_start_transaction(root, 0);
2657 	if (IS_ERR(trans)) {
2658 		ret = PTR_ERR(trans);
2659 		goto error_free_zone;
2660 	}
2661 
2662 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2663 	device->generation = trans->transid;
2664 	device->io_width = fs_info->sectorsize;
2665 	device->io_align = fs_info->sectorsize;
2666 	device->sector_size = fs_info->sectorsize;
2667 	device->total_bytes =
2668 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2669 	device->disk_total_bytes = device->total_bytes;
2670 	device->commit_total_bytes = device->total_bytes;
2671 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2672 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2673 	device->mode = FMODE_EXCL;
2674 	device->dev_stats_valid = 1;
2675 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2676 
2677 	if (seeding_dev) {
2678 		btrfs_clear_sb_rdonly(sb);
2679 
2680 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2681 		seed_devices = btrfs_init_sprout(fs_info);
2682 		if (IS_ERR(seed_devices)) {
2683 			ret = PTR_ERR(seed_devices);
2684 			btrfs_abort_transaction(trans, ret);
2685 			goto error_trans;
2686 		}
2687 	}
2688 
2689 	mutex_lock(&fs_devices->device_list_mutex);
2690 	if (seeding_dev) {
2691 		btrfs_setup_sprout(fs_info, seed_devices);
2692 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2693 						device);
2694 	}
2695 
2696 	device->fs_devices = fs_devices;
2697 
2698 	mutex_lock(&fs_info->chunk_mutex);
2699 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2700 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2701 	fs_devices->num_devices++;
2702 	fs_devices->open_devices++;
2703 	fs_devices->rw_devices++;
2704 	fs_devices->total_devices++;
2705 	fs_devices->total_rw_bytes += device->total_bytes;
2706 
2707 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2708 
2709 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2710 		fs_devices->rotating = true;
2711 
2712 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2713 	btrfs_set_super_total_bytes(fs_info->super_copy,
2714 		round_down(orig_super_total_bytes + device->total_bytes,
2715 			   fs_info->sectorsize));
2716 
2717 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2718 	btrfs_set_super_num_devices(fs_info->super_copy,
2719 				    orig_super_num_devices + 1);
2720 
2721 	/*
2722 	 * we've got more storage, clear any full flags on the space
2723 	 * infos
2724 	 */
2725 	btrfs_clear_space_info_full(fs_info);
2726 
2727 	mutex_unlock(&fs_info->chunk_mutex);
2728 
2729 	/* Add sysfs device entry */
2730 	btrfs_sysfs_add_device(device);
2731 
2732 	mutex_unlock(&fs_devices->device_list_mutex);
2733 
2734 	if (seeding_dev) {
2735 		mutex_lock(&fs_info->chunk_mutex);
2736 		ret = init_first_rw_device(trans);
2737 		mutex_unlock(&fs_info->chunk_mutex);
2738 		if (ret) {
2739 			btrfs_abort_transaction(trans, ret);
2740 			goto error_sysfs;
2741 		}
2742 	}
2743 
2744 	ret = btrfs_add_dev_item(trans, device);
2745 	if (ret) {
2746 		btrfs_abort_transaction(trans, ret);
2747 		goto error_sysfs;
2748 	}
2749 
2750 	if (seeding_dev) {
2751 		ret = btrfs_finish_sprout(trans);
2752 		if (ret) {
2753 			btrfs_abort_transaction(trans, ret);
2754 			goto error_sysfs;
2755 		}
2756 
2757 		/*
2758 		 * fs_devices now represents the newly sprouted filesystem and
2759 		 * its fsid has been changed by btrfs_sprout_splice().
2760 		 */
2761 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2762 	}
2763 
2764 	ret = btrfs_commit_transaction(trans);
2765 
2766 	if (seeding_dev) {
2767 		mutex_unlock(&uuid_mutex);
2768 		up_write(&sb->s_umount);
2769 		locked = false;
2770 
2771 		if (ret) /* transaction commit */
2772 			return ret;
2773 
2774 		ret = btrfs_relocate_sys_chunks(fs_info);
2775 		if (ret < 0)
2776 			btrfs_handle_fs_error(fs_info, ret,
2777 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2778 		trans = btrfs_attach_transaction(root);
2779 		if (IS_ERR(trans)) {
2780 			if (PTR_ERR(trans) == -ENOENT)
2781 				return 0;
2782 			ret = PTR_ERR(trans);
2783 			trans = NULL;
2784 			goto error_sysfs;
2785 		}
2786 		ret = btrfs_commit_transaction(trans);
2787 	}
2788 
2789 	/*
2790 	 * Now that we have written a new super block to this device, check all
2791 	 * other fs_devices list if device_path alienates any other scanned
2792 	 * device.
2793 	 * We can ignore the return value as it typically returns -EINVAL and
2794 	 * only succeeds if the device was an alien.
2795 	 */
2796 	btrfs_forget_devices(device->devt);
2797 
2798 	/* Update ctime/mtime for blkid or udev */
2799 	update_dev_time(device_path);
2800 
2801 	return ret;
2802 
2803 error_sysfs:
2804 	btrfs_sysfs_remove_device(device);
2805 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2806 	mutex_lock(&fs_info->chunk_mutex);
2807 	list_del_rcu(&device->dev_list);
2808 	list_del(&device->dev_alloc_list);
2809 	fs_info->fs_devices->num_devices--;
2810 	fs_info->fs_devices->open_devices--;
2811 	fs_info->fs_devices->rw_devices--;
2812 	fs_info->fs_devices->total_devices--;
2813 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2814 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2815 	btrfs_set_super_total_bytes(fs_info->super_copy,
2816 				    orig_super_total_bytes);
2817 	btrfs_set_super_num_devices(fs_info->super_copy,
2818 				    orig_super_num_devices);
2819 	mutex_unlock(&fs_info->chunk_mutex);
2820 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2821 error_trans:
2822 	if (seeding_dev)
2823 		btrfs_set_sb_rdonly(sb);
2824 	if (trans)
2825 		btrfs_end_transaction(trans);
2826 error_free_zone:
2827 	btrfs_destroy_dev_zone_info(device);
2828 error_free_device:
2829 	btrfs_free_device(device);
2830 error:
2831 	blkdev_put(bdev, FMODE_EXCL);
2832 	if (locked) {
2833 		mutex_unlock(&uuid_mutex);
2834 		up_write(&sb->s_umount);
2835 	}
2836 	return ret;
2837 }
2838 
2839 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2840 					struct btrfs_device *device)
2841 {
2842 	int ret;
2843 	struct btrfs_path *path;
2844 	struct btrfs_root *root = device->fs_info->chunk_root;
2845 	struct btrfs_dev_item *dev_item;
2846 	struct extent_buffer *leaf;
2847 	struct btrfs_key key;
2848 
2849 	path = btrfs_alloc_path();
2850 	if (!path)
2851 		return -ENOMEM;
2852 
2853 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2854 	key.type = BTRFS_DEV_ITEM_KEY;
2855 	key.offset = device->devid;
2856 
2857 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2858 	if (ret < 0)
2859 		goto out;
2860 
2861 	if (ret > 0) {
2862 		ret = -ENOENT;
2863 		goto out;
2864 	}
2865 
2866 	leaf = path->nodes[0];
2867 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2868 
2869 	btrfs_set_device_id(leaf, dev_item, device->devid);
2870 	btrfs_set_device_type(leaf, dev_item, device->type);
2871 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2872 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2873 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2874 	btrfs_set_device_total_bytes(leaf, dev_item,
2875 				     btrfs_device_get_disk_total_bytes(device));
2876 	btrfs_set_device_bytes_used(leaf, dev_item,
2877 				    btrfs_device_get_bytes_used(device));
2878 	btrfs_mark_buffer_dirty(leaf);
2879 
2880 out:
2881 	btrfs_free_path(path);
2882 	return ret;
2883 }
2884 
2885 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2886 		      struct btrfs_device *device, u64 new_size)
2887 {
2888 	struct btrfs_fs_info *fs_info = device->fs_info;
2889 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2890 	u64 old_total;
2891 	u64 diff;
2892 	int ret;
2893 
2894 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2895 		return -EACCES;
2896 
2897 	new_size = round_down(new_size, fs_info->sectorsize);
2898 
2899 	mutex_lock(&fs_info->chunk_mutex);
2900 	old_total = btrfs_super_total_bytes(super_copy);
2901 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2902 
2903 	if (new_size <= device->total_bytes ||
2904 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2905 		mutex_unlock(&fs_info->chunk_mutex);
2906 		return -EINVAL;
2907 	}
2908 
2909 	btrfs_set_super_total_bytes(super_copy,
2910 			round_down(old_total + diff, fs_info->sectorsize));
2911 	device->fs_devices->total_rw_bytes += diff;
2912 
2913 	btrfs_device_set_total_bytes(device, new_size);
2914 	btrfs_device_set_disk_total_bytes(device, new_size);
2915 	btrfs_clear_space_info_full(device->fs_info);
2916 	if (list_empty(&device->post_commit_list))
2917 		list_add_tail(&device->post_commit_list,
2918 			      &trans->transaction->dev_update_list);
2919 	mutex_unlock(&fs_info->chunk_mutex);
2920 
2921 	btrfs_reserve_chunk_metadata(trans, false);
2922 	ret = btrfs_update_device(trans, device);
2923 	btrfs_trans_release_chunk_metadata(trans);
2924 
2925 	return ret;
2926 }
2927 
2928 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2929 {
2930 	struct btrfs_fs_info *fs_info = trans->fs_info;
2931 	struct btrfs_root *root = fs_info->chunk_root;
2932 	int ret;
2933 	struct btrfs_path *path;
2934 	struct btrfs_key key;
2935 
2936 	path = btrfs_alloc_path();
2937 	if (!path)
2938 		return -ENOMEM;
2939 
2940 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2941 	key.offset = chunk_offset;
2942 	key.type = BTRFS_CHUNK_ITEM_KEY;
2943 
2944 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2945 	if (ret < 0)
2946 		goto out;
2947 	else if (ret > 0) { /* Logic error or corruption */
2948 		btrfs_handle_fs_error(fs_info, -ENOENT,
2949 				      "Failed lookup while freeing chunk.");
2950 		ret = -ENOENT;
2951 		goto out;
2952 	}
2953 
2954 	ret = btrfs_del_item(trans, root, path);
2955 	if (ret < 0)
2956 		btrfs_handle_fs_error(fs_info, ret,
2957 				      "Failed to delete chunk item.");
2958 out:
2959 	btrfs_free_path(path);
2960 	return ret;
2961 }
2962 
2963 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2964 {
2965 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2966 	struct btrfs_disk_key *disk_key;
2967 	struct btrfs_chunk *chunk;
2968 	u8 *ptr;
2969 	int ret = 0;
2970 	u32 num_stripes;
2971 	u32 array_size;
2972 	u32 len = 0;
2973 	u32 cur;
2974 	struct btrfs_key key;
2975 
2976 	lockdep_assert_held(&fs_info->chunk_mutex);
2977 	array_size = btrfs_super_sys_array_size(super_copy);
2978 
2979 	ptr = super_copy->sys_chunk_array;
2980 	cur = 0;
2981 
2982 	while (cur < array_size) {
2983 		disk_key = (struct btrfs_disk_key *)ptr;
2984 		btrfs_disk_key_to_cpu(&key, disk_key);
2985 
2986 		len = sizeof(*disk_key);
2987 
2988 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2989 			chunk = (struct btrfs_chunk *)(ptr + len);
2990 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2991 			len += btrfs_chunk_item_size(num_stripes);
2992 		} else {
2993 			ret = -EIO;
2994 			break;
2995 		}
2996 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2997 		    key.offset == chunk_offset) {
2998 			memmove(ptr, ptr + len, array_size - (cur + len));
2999 			array_size -= len;
3000 			btrfs_set_super_sys_array_size(super_copy, array_size);
3001 		} else {
3002 			ptr += len;
3003 			cur += len;
3004 		}
3005 	}
3006 	return ret;
3007 }
3008 
3009 /*
3010  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3011  * @logical: Logical block offset in bytes.
3012  * @length: Length of extent in bytes.
3013  *
3014  * Return: Chunk mapping or ERR_PTR.
3015  */
3016 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3017 				       u64 logical, u64 length)
3018 {
3019 	struct extent_map_tree *em_tree;
3020 	struct extent_map *em;
3021 
3022 	em_tree = &fs_info->mapping_tree;
3023 	read_lock(&em_tree->lock);
3024 	em = lookup_extent_mapping(em_tree, logical, length);
3025 	read_unlock(&em_tree->lock);
3026 
3027 	if (!em) {
3028 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3029 			   logical, length);
3030 		return ERR_PTR(-EINVAL);
3031 	}
3032 
3033 	if (em->start > logical || em->start + em->len < logical) {
3034 		btrfs_crit(fs_info,
3035 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3036 			   logical, length, em->start, em->start + em->len);
3037 		free_extent_map(em);
3038 		return ERR_PTR(-EINVAL);
3039 	}
3040 
3041 	/* callers are responsible for dropping em's ref. */
3042 	return em;
3043 }
3044 
3045 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3046 			     struct map_lookup *map, u64 chunk_offset)
3047 {
3048 	int i;
3049 
3050 	/*
3051 	 * Removing chunk items and updating the device items in the chunks btree
3052 	 * requires holding the chunk_mutex.
3053 	 * See the comment at btrfs_chunk_alloc() for the details.
3054 	 */
3055 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3056 
3057 	for (i = 0; i < map->num_stripes; i++) {
3058 		int ret;
3059 
3060 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3061 		if (ret)
3062 			return ret;
3063 	}
3064 
3065 	return btrfs_free_chunk(trans, chunk_offset);
3066 }
3067 
3068 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3069 {
3070 	struct btrfs_fs_info *fs_info = trans->fs_info;
3071 	struct extent_map *em;
3072 	struct map_lookup *map;
3073 	u64 dev_extent_len = 0;
3074 	int i, ret = 0;
3075 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3076 
3077 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3078 	if (IS_ERR(em)) {
3079 		/*
3080 		 * This is a logic error, but we don't want to just rely on the
3081 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3082 		 * do anything we still error out.
3083 		 */
3084 		ASSERT(0);
3085 		return PTR_ERR(em);
3086 	}
3087 	map = em->map_lookup;
3088 
3089 	/*
3090 	 * First delete the device extent items from the devices btree.
3091 	 * We take the device_list_mutex to avoid racing with the finishing phase
3092 	 * of a device replace operation. See the comment below before acquiring
3093 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3094 	 * because that can result in a deadlock when deleting the device extent
3095 	 * items from the devices btree - COWing an extent buffer from the btree
3096 	 * may result in allocating a new metadata chunk, which would attempt to
3097 	 * lock again fs_info->chunk_mutex.
3098 	 */
3099 	mutex_lock(&fs_devices->device_list_mutex);
3100 	for (i = 0; i < map->num_stripes; i++) {
3101 		struct btrfs_device *device = map->stripes[i].dev;
3102 		ret = btrfs_free_dev_extent(trans, device,
3103 					    map->stripes[i].physical,
3104 					    &dev_extent_len);
3105 		if (ret) {
3106 			mutex_unlock(&fs_devices->device_list_mutex);
3107 			btrfs_abort_transaction(trans, ret);
3108 			goto out;
3109 		}
3110 
3111 		if (device->bytes_used > 0) {
3112 			mutex_lock(&fs_info->chunk_mutex);
3113 			btrfs_device_set_bytes_used(device,
3114 					device->bytes_used - dev_extent_len);
3115 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3116 			btrfs_clear_space_info_full(fs_info);
3117 			mutex_unlock(&fs_info->chunk_mutex);
3118 		}
3119 	}
3120 	mutex_unlock(&fs_devices->device_list_mutex);
3121 
3122 	/*
3123 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3124 	 *
3125 	 * 1) Just like with the first phase of the chunk allocation, we must
3126 	 *    reserve system space, do all chunk btree updates and deletions, and
3127 	 *    update the system chunk array in the superblock while holding this
3128 	 *    mutex. This is for similar reasons as explained on the comment at
3129 	 *    the top of btrfs_chunk_alloc();
3130 	 *
3131 	 * 2) Prevent races with the final phase of a device replace operation
3132 	 *    that replaces the device object associated with the map's stripes,
3133 	 *    because the device object's id can change at any time during that
3134 	 *    final phase of the device replace operation
3135 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3136 	 *    replaced device and then see it with an ID of
3137 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3138 	 *    the device item, which does not exists on the chunk btree.
3139 	 *    The finishing phase of device replace acquires both the
3140 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3141 	 *    safe by just acquiring the chunk_mutex.
3142 	 */
3143 	trans->removing_chunk = true;
3144 	mutex_lock(&fs_info->chunk_mutex);
3145 
3146 	check_system_chunk(trans, map->type);
3147 
3148 	ret = remove_chunk_item(trans, map, chunk_offset);
3149 	/*
3150 	 * Normally we should not get -ENOSPC since we reserved space before
3151 	 * through the call to check_system_chunk().
3152 	 *
3153 	 * Despite our system space_info having enough free space, we may not
3154 	 * be able to allocate extents from its block groups, because all have
3155 	 * an incompatible profile, which will force us to allocate a new system
3156 	 * block group with the right profile, or right after we called
3157 	 * check_system_space() above, a scrub turned the only system block group
3158 	 * with enough free space into RO mode.
3159 	 * This is explained with more detail at do_chunk_alloc().
3160 	 *
3161 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3162 	 */
3163 	if (ret == -ENOSPC) {
3164 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3165 		struct btrfs_block_group *sys_bg;
3166 
3167 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3168 		if (IS_ERR(sys_bg)) {
3169 			ret = PTR_ERR(sys_bg);
3170 			btrfs_abort_transaction(trans, ret);
3171 			goto out;
3172 		}
3173 
3174 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3175 		if (ret) {
3176 			btrfs_abort_transaction(trans, ret);
3177 			goto out;
3178 		}
3179 
3180 		ret = remove_chunk_item(trans, map, chunk_offset);
3181 		if (ret) {
3182 			btrfs_abort_transaction(trans, ret);
3183 			goto out;
3184 		}
3185 	} else if (ret) {
3186 		btrfs_abort_transaction(trans, ret);
3187 		goto out;
3188 	}
3189 
3190 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3191 
3192 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3193 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3194 		if (ret) {
3195 			btrfs_abort_transaction(trans, ret);
3196 			goto out;
3197 		}
3198 	}
3199 
3200 	mutex_unlock(&fs_info->chunk_mutex);
3201 	trans->removing_chunk = false;
3202 
3203 	/*
3204 	 * We are done with chunk btree updates and deletions, so release the
3205 	 * system space we previously reserved (with check_system_chunk()).
3206 	 */
3207 	btrfs_trans_release_chunk_metadata(trans);
3208 
3209 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3210 	if (ret) {
3211 		btrfs_abort_transaction(trans, ret);
3212 		goto out;
3213 	}
3214 
3215 out:
3216 	if (trans->removing_chunk) {
3217 		mutex_unlock(&fs_info->chunk_mutex);
3218 		trans->removing_chunk = false;
3219 	}
3220 	/* once for us */
3221 	free_extent_map(em);
3222 	return ret;
3223 }
3224 
3225 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3226 {
3227 	struct btrfs_root *root = fs_info->chunk_root;
3228 	struct btrfs_trans_handle *trans;
3229 	struct btrfs_block_group *block_group;
3230 	u64 length;
3231 	int ret;
3232 
3233 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3234 		btrfs_err(fs_info,
3235 			  "relocate: not supported on extent tree v2 yet");
3236 		return -EINVAL;
3237 	}
3238 
3239 	/*
3240 	 * Prevent races with automatic removal of unused block groups.
3241 	 * After we relocate and before we remove the chunk with offset
3242 	 * chunk_offset, automatic removal of the block group can kick in,
3243 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3244 	 *
3245 	 * Make sure to acquire this mutex before doing a tree search (dev
3246 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3247 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3248 	 * we release the path used to search the chunk/dev tree and before
3249 	 * the current task acquires this mutex and calls us.
3250 	 */
3251 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3252 
3253 	/* step one, relocate all the extents inside this chunk */
3254 	btrfs_scrub_pause(fs_info);
3255 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3256 	btrfs_scrub_continue(fs_info);
3257 	if (ret)
3258 		return ret;
3259 
3260 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3261 	if (!block_group)
3262 		return -ENOENT;
3263 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3264 	length = block_group->length;
3265 	btrfs_put_block_group(block_group);
3266 
3267 	/*
3268 	 * On a zoned file system, discard the whole block group, this will
3269 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3270 	 * resetting the zone fails, don't treat it as a fatal problem from the
3271 	 * filesystem's point of view.
3272 	 */
3273 	if (btrfs_is_zoned(fs_info)) {
3274 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3275 		if (ret)
3276 			btrfs_info(fs_info,
3277 				"failed to reset zone %llu after relocation",
3278 				chunk_offset);
3279 	}
3280 
3281 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3282 						     chunk_offset);
3283 	if (IS_ERR(trans)) {
3284 		ret = PTR_ERR(trans);
3285 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3286 		return ret;
3287 	}
3288 
3289 	/*
3290 	 * step two, delete the device extents and the
3291 	 * chunk tree entries
3292 	 */
3293 	ret = btrfs_remove_chunk(trans, chunk_offset);
3294 	btrfs_end_transaction(trans);
3295 	return ret;
3296 }
3297 
3298 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3299 {
3300 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3301 	struct btrfs_path *path;
3302 	struct extent_buffer *leaf;
3303 	struct btrfs_chunk *chunk;
3304 	struct btrfs_key key;
3305 	struct btrfs_key found_key;
3306 	u64 chunk_type;
3307 	bool retried = false;
3308 	int failed = 0;
3309 	int ret;
3310 
3311 	path = btrfs_alloc_path();
3312 	if (!path)
3313 		return -ENOMEM;
3314 
3315 again:
3316 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3317 	key.offset = (u64)-1;
3318 	key.type = BTRFS_CHUNK_ITEM_KEY;
3319 
3320 	while (1) {
3321 		mutex_lock(&fs_info->reclaim_bgs_lock);
3322 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3323 		if (ret < 0) {
3324 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3325 			goto error;
3326 		}
3327 		BUG_ON(ret == 0); /* Corruption */
3328 
3329 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3330 					  key.type);
3331 		if (ret)
3332 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3333 		if (ret < 0)
3334 			goto error;
3335 		if (ret > 0)
3336 			break;
3337 
3338 		leaf = path->nodes[0];
3339 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3340 
3341 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3342 				       struct btrfs_chunk);
3343 		chunk_type = btrfs_chunk_type(leaf, chunk);
3344 		btrfs_release_path(path);
3345 
3346 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3347 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3348 			if (ret == -ENOSPC)
3349 				failed++;
3350 			else
3351 				BUG_ON(ret);
3352 		}
3353 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3354 
3355 		if (found_key.offset == 0)
3356 			break;
3357 		key.offset = found_key.offset - 1;
3358 	}
3359 	ret = 0;
3360 	if (failed && !retried) {
3361 		failed = 0;
3362 		retried = true;
3363 		goto again;
3364 	} else if (WARN_ON(failed && retried)) {
3365 		ret = -ENOSPC;
3366 	}
3367 error:
3368 	btrfs_free_path(path);
3369 	return ret;
3370 }
3371 
3372 /*
3373  * return 1 : allocate a data chunk successfully,
3374  * return <0: errors during allocating a data chunk,
3375  * return 0 : no need to allocate a data chunk.
3376  */
3377 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3378 				      u64 chunk_offset)
3379 {
3380 	struct btrfs_block_group *cache;
3381 	u64 bytes_used;
3382 	u64 chunk_type;
3383 
3384 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3385 	ASSERT(cache);
3386 	chunk_type = cache->flags;
3387 	btrfs_put_block_group(cache);
3388 
3389 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3390 		return 0;
3391 
3392 	spin_lock(&fs_info->data_sinfo->lock);
3393 	bytes_used = fs_info->data_sinfo->bytes_used;
3394 	spin_unlock(&fs_info->data_sinfo->lock);
3395 
3396 	if (!bytes_used) {
3397 		struct btrfs_trans_handle *trans;
3398 		int ret;
3399 
3400 		trans =	btrfs_join_transaction(fs_info->tree_root);
3401 		if (IS_ERR(trans))
3402 			return PTR_ERR(trans);
3403 
3404 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3405 		btrfs_end_transaction(trans);
3406 		if (ret < 0)
3407 			return ret;
3408 		return 1;
3409 	}
3410 
3411 	return 0;
3412 }
3413 
3414 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3415 			       struct btrfs_balance_control *bctl)
3416 {
3417 	struct btrfs_root *root = fs_info->tree_root;
3418 	struct btrfs_trans_handle *trans;
3419 	struct btrfs_balance_item *item;
3420 	struct btrfs_disk_balance_args disk_bargs;
3421 	struct btrfs_path *path;
3422 	struct extent_buffer *leaf;
3423 	struct btrfs_key key;
3424 	int ret, err;
3425 
3426 	path = btrfs_alloc_path();
3427 	if (!path)
3428 		return -ENOMEM;
3429 
3430 	trans = btrfs_start_transaction(root, 0);
3431 	if (IS_ERR(trans)) {
3432 		btrfs_free_path(path);
3433 		return PTR_ERR(trans);
3434 	}
3435 
3436 	key.objectid = BTRFS_BALANCE_OBJECTID;
3437 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3438 	key.offset = 0;
3439 
3440 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3441 				      sizeof(*item));
3442 	if (ret)
3443 		goto out;
3444 
3445 	leaf = path->nodes[0];
3446 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3447 
3448 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3449 
3450 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3451 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3452 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3453 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3454 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3455 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3456 
3457 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3458 
3459 	btrfs_mark_buffer_dirty(leaf);
3460 out:
3461 	btrfs_free_path(path);
3462 	err = btrfs_commit_transaction(trans);
3463 	if (err && !ret)
3464 		ret = err;
3465 	return ret;
3466 }
3467 
3468 static int del_balance_item(struct btrfs_fs_info *fs_info)
3469 {
3470 	struct btrfs_root *root = fs_info->tree_root;
3471 	struct btrfs_trans_handle *trans;
3472 	struct btrfs_path *path;
3473 	struct btrfs_key key;
3474 	int ret, err;
3475 
3476 	path = btrfs_alloc_path();
3477 	if (!path)
3478 		return -ENOMEM;
3479 
3480 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3481 	if (IS_ERR(trans)) {
3482 		btrfs_free_path(path);
3483 		return PTR_ERR(trans);
3484 	}
3485 
3486 	key.objectid = BTRFS_BALANCE_OBJECTID;
3487 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3488 	key.offset = 0;
3489 
3490 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3491 	if (ret < 0)
3492 		goto out;
3493 	if (ret > 0) {
3494 		ret = -ENOENT;
3495 		goto out;
3496 	}
3497 
3498 	ret = btrfs_del_item(trans, root, path);
3499 out:
3500 	btrfs_free_path(path);
3501 	err = btrfs_commit_transaction(trans);
3502 	if (err && !ret)
3503 		ret = err;
3504 	return ret;
3505 }
3506 
3507 /*
3508  * This is a heuristic used to reduce the number of chunks balanced on
3509  * resume after balance was interrupted.
3510  */
3511 static void update_balance_args(struct btrfs_balance_control *bctl)
3512 {
3513 	/*
3514 	 * Turn on soft mode for chunk types that were being converted.
3515 	 */
3516 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3517 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3518 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3519 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3520 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3521 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3522 
3523 	/*
3524 	 * Turn on usage filter if is not already used.  The idea is
3525 	 * that chunks that we have already balanced should be
3526 	 * reasonably full.  Don't do it for chunks that are being
3527 	 * converted - that will keep us from relocating unconverted
3528 	 * (albeit full) chunks.
3529 	 */
3530 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3531 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3532 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3533 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3534 		bctl->data.usage = 90;
3535 	}
3536 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3537 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3538 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3539 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3540 		bctl->sys.usage = 90;
3541 	}
3542 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546 		bctl->meta.usage = 90;
3547 	}
3548 }
3549 
3550 /*
3551  * Clear the balance status in fs_info and delete the balance item from disk.
3552  */
3553 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3554 {
3555 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3556 	int ret;
3557 
3558 	BUG_ON(!fs_info->balance_ctl);
3559 
3560 	spin_lock(&fs_info->balance_lock);
3561 	fs_info->balance_ctl = NULL;
3562 	spin_unlock(&fs_info->balance_lock);
3563 
3564 	kfree(bctl);
3565 	ret = del_balance_item(fs_info);
3566 	if (ret)
3567 		btrfs_handle_fs_error(fs_info, ret, NULL);
3568 }
3569 
3570 /*
3571  * Balance filters.  Return 1 if chunk should be filtered out
3572  * (should not be balanced).
3573  */
3574 static int chunk_profiles_filter(u64 chunk_type,
3575 				 struct btrfs_balance_args *bargs)
3576 {
3577 	chunk_type = chunk_to_extended(chunk_type) &
3578 				BTRFS_EXTENDED_PROFILE_MASK;
3579 
3580 	if (bargs->profiles & chunk_type)
3581 		return 0;
3582 
3583 	return 1;
3584 }
3585 
3586 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3587 			      struct btrfs_balance_args *bargs)
3588 {
3589 	struct btrfs_block_group *cache;
3590 	u64 chunk_used;
3591 	u64 user_thresh_min;
3592 	u64 user_thresh_max;
3593 	int ret = 1;
3594 
3595 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3596 	chunk_used = cache->used;
3597 
3598 	if (bargs->usage_min == 0)
3599 		user_thresh_min = 0;
3600 	else
3601 		user_thresh_min = div_factor_fine(cache->length,
3602 						  bargs->usage_min);
3603 
3604 	if (bargs->usage_max == 0)
3605 		user_thresh_max = 1;
3606 	else if (bargs->usage_max > 100)
3607 		user_thresh_max = cache->length;
3608 	else
3609 		user_thresh_max = div_factor_fine(cache->length,
3610 						  bargs->usage_max);
3611 
3612 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3613 		ret = 0;
3614 
3615 	btrfs_put_block_group(cache);
3616 	return ret;
3617 }
3618 
3619 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3620 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3621 {
3622 	struct btrfs_block_group *cache;
3623 	u64 chunk_used, user_thresh;
3624 	int ret = 1;
3625 
3626 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3627 	chunk_used = cache->used;
3628 
3629 	if (bargs->usage_min == 0)
3630 		user_thresh = 1;
3631 	else if (bargs->usage > 100)
3632 		user_thresh = cache->length;
3633 	else
3634 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3635 
3636 	if (chunk_used < user_thresh)
3637 		ret = 0;
3638 
3639 	btrfs_put_block_group(cache);
3640 	return ret;
3641 }
3642 
3643 static int chunk_devid_filter(struct extent_buffer *leaf,
3644 			      struct btrfs_chunk *chunk,
3645 			      struct btrfs_balance_args *bargs)
3646 {
3647 	struct btrfs_stripe *stripe;
3648 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3649 	int i;
3650 
3651 	for (i = 0; i < num_stripes; i++) {
3652 		stripe = btrfs_stripe_nr(chunk, i);
3653 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3654 			return 0;
3655 	}
3656 
3657 	return 1;
3658 }
3659 
3660 static u64 calc_data_stripes(u64 type, int num_stripes)
3661 {
3662 	const int index = btrfs_bg_flags_to_raid_index(type);
3663 	const int ncopies = btrfs_raid_array[index].ncopies;
3664 	const int nparity = btrfs_raid_array[index].nparity;
3665 
3666 	return (num_stripes - nparity) / ncopies;
3667 }
3668 
3669 /* [pstart, pend) */
3670 static int chunk_drange_filter(struct extent_buffer *leaf,
3671 			       struct btrfs_chunk *chunk,
3672 			       struct btrfs_balance_args *bargs)
3673 {
3674 	struct btrfs_stripe *stripe;
3675 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3676 	u64 stripe_offset;
3677 	u64 stripe_length;
3678 	u64 type;
3679 	int factor;
3680 	int i;
3681 
3682 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3683 		return 0;
3684 
3685 	type = btrfs_chunk_type(leaf, chunk);
3686 	factor = calc_data_stripes(type, num_stripes);
3687 
3688 	for (i = 0; i < num_stripes; i++) {
3689 		stripe = btrfs_stripe_nr(chunk, i);
3690 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3691 			continue;
3692 
3693 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3694 		stripe_length = btrfs_chunk_length(leaf, chunk);
3695 		stripe_length = div_u64(stripe_length, factor);
3696 
3697 		if (stripe_offset < bargs->pend &&
3698 		    stripe_offset + stripe_length > bargs->pstart)
3699 			return 0;
3700 	}
3701 
3702 	return 1;
3703 }
3704 
3705 /* [vstart, vend) */
3706 static int chunk_vrange_filter(struct extent_buffer *leaf,
3707 			       struct btrfs_chunk *chunk,
3708 			       u64 chunk_offset,
3709 			       struct btrfs_balance_args *bargs)
3710 {
3711 	if (chunk_offset < bargs->vend &&
3712 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3713 		/* at least part of the chunk is inside this vrange */
3714 		return 0;
3715 
3716 	return 1;
3717 }
3718 
3719 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3720 			       struct btrfs_chunk *chunk,
3721 			       struct btrfs_balance_args *bargs)
3722 {
3723 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3724 
3725 	if (bargs->stripes_min <= num_stripes
3726 			&& num_stripes <= bargs->stripes_max)
3727 		return 0;
3728 
3729 	return 1;
3730 }
3731 
3732 static int chunk_soft_convert_filter(u64 chunk_type,
3733 				     struct btrfs_balance_args *bargs)
3734 {
3735 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3736 		return 0;
3737 
3738 	chunk_type = chunk_to_extended(chunk_type) &
3739 				BTRFS_EXTENDED_PROFILE_MASK;
3740 
3741 	if (bargs->target == chunk_type)
3742 		return 1;
3743 
3744 	return 0;
3745 }
3746 
3747 static int should_balance_chunk(struct extent_buffer *leaf,
3748 				struct btrfs_chunk *chunk, u64 chunk_offset)
3749 {
3750 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3751 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3752 	struct btrfs_balance_args *bargs = NULL;
3753 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3754 
3755 	/* type filter */
3756 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3757 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3758 		return 0;
3759 	}
3760 
3761 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3762 		bargs = &bctl->data;
3763 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3764 		bargs = &bctl->sys;
3765 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3766 		bargs = &bctl->meta;
3767 
3768 	/* profiles filter */
3769 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3770 	    chunk_profiles_filter(chunk_type, bargs)) {
3771 		return 0;
3772 	}
3773 
3774 	/* usage filter */
3775 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3776 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3777 		return 0;
3778 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3779 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3780 		return 0;
3781 	}
3782 
3783 	/* devid filter */
3784 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3785 	    chunk_devid_filter(leaf, chunk, bargs)) {
3786 		return 0;
3787 	}
3788 
3789 	/* drange filter, makes sense only with devid filter */
3790 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3791 	    chunk_drange_filter(leaf, chunk, bargs)) {
3792 		return 0;
3793 	}
3794 
3795 	/* vrange filter */
3796 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3797 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3798 		return 0;
3799 	}
3800 
3801 	/* stripes filter */
3802 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3803 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3804 		return 0;
3805 	}
3806 
3807 	/* soft profile changing mode */
3808 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3809 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3810 		return 0;
3811 	}
3812 
3813 	/*
3814 	 * limited by count, must be the last filter
3815 	 */
3816 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3817 		if (bargs->limit == 0)
3818 			return 0;
3819 		else
3820 			bargs->limit--;
3821 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3822 		/*
3823 		 * Same logic as the 'limit' filter; the minimum cannot be
3824 		 * determined here because we do not have the global information
3825 		 * about the count of all chunks that satisfy the filters.
3826 		 */
3827 		if (bargs->limit_max == 0)
3828 			return 0;
3829 		else
3830 			bargs->limit_max--;
3831 	}
3832 
3833 	return 1;
3834 }
3835 
3836 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3837 {
3838 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3839 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3840 	u64 chunk_type;
3841 	struct btrfs_chunk *chunk;
3842 	struct btrfs_path *path = NULL;
3843 	struct btrfs_key key;
3844 	struct btrfs_key found_key;
3845 	struct extent_buffer *leaf;
3846 	int slot;
3847 	int ret;
3848 	int enospc_errors = 0;
3849 	bool counting = true;
3850 	/* The single value limit and min/max limits use the same bytes in the */
3851 	u64 limit_data = bctl->data.limit;
3852 	u64 limit_meta = bctl->meta.limit;
3853 	u64 limit_sys = bctl->sys.limit;
3854 	u32 count_data = 0;
3855 	u32 count_meta = 0;
3856 	u32 count_sys = 0;
3857 	int chunk_reserved = 0;
3858 
3859 	path = btrfs_alloc_path();
3860 	if (!path) {
3861 		ret = -ENOMEM;
3862 		goto error;
3863 	}
3864 
3865 	/* zero out stat counters */
3866 	spin_lock(&fs_info->balance_lock);
3867 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3868 	spin_unlock(&fs_info->balance_lock);
3869 again:
3870 	if (!counting) {
3871 		/*
3872 		 * The single value limit and min/max limits use the same bytes
3873 		 * in the
3874 		 */
3875 		bctl->data.limit = limit_data;
3876 		bctl->meta.limit = limit_meta;
3877 		bctl->sys.limit = limit_sys;
3878 	}
3879 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3880 	key.offset = (u64)-1;
3881 	key.type = BTRFS_CHUNK_ITEM_KEY;
3882 
3883 	while (1) {
3884 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3885 		    atomic_read(&fs_info->balance_cancel_req)) {
3886 			ret = -ECANCELED;
3887 			goto error;
3888 		}
3889 
3890 		mutex_lock(&fs_info->reclaim_bgs_lock);
3891 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3892 		if (ret < 0) {
3893 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3894 			goto error;
3895 		}
3896 
3897 		/*
3898 		 * this shouldn't happen, it means the last relocate
3899 		 * failed
3900 		 */
3901 		if (ret == 0)
3902 			BUG(); /* FIXME break ? */
3903 
3904 		ret = btrfs_previous_item(chunk_root, path, 0,
3905 					  BTRFS_CHUNK_ITEM_KEY);
3906 		if (ret) {
3907 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3908 			ret = 0;
3909 			break;
3910 		}
3911 
3912 		leaf = path->nodes[0];
3913 		slot = path->slots[0];
3914 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3915 
3916 		if (found_key.objectid != key.objectid) {
3917 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3918 			break;
3919 		}
3920 
3921 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3922 		chunk_type = btrfs_chunk_type(leaf, chunk);
3923 
3924 		if (!counting) {
3925 			spin_lock(&fs_info->balance_lock);
3926 			bctl->stat.considered++;
3927 			spin_unlock(&fs_info->balance_lock);
3928 		}
3929 
3930 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3931 
3932 		btrfs_release_path(path);
3933 		if (!ret) {
3934 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3935 			goto loop;
3936 		}
3937 
3938 		if (counting) {
3939 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3940 			spin_lock(&fs_info->balance_lock);
3941 			bctl->stat.expected++;
3942 			spin_unlock(&fs_info->balance_lock);
3943 
3944 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3945 				count_data++;
3946 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3947 				count_sys++;
3948 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3949 				count_meta++;
3950 
3951 			goto loop;
3952 		}
3953 
3954 		/*
3955 		 * Apply limit_min filter, no need to check if the LIMITS
3956 		 * filter is used, limit_min is 0 by default
3957 		 */
3958 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3959 					count_data < bctl->data.limit_min)
3960 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3961 					count_meta < bctl->meta.limit_min)
3962 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3963 					count_sys < bctl->sys.limit_min)) {
3964 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3965 			goto loop;
3966 		}
3967 
3968 		if (!chunk_reserved) {
3969 			/*
3970 			 * We may be relocating the only data chunk we have,
3971 			 * which could potentially end up with losing data's
3972 			 * raid profile, so lets allocate an empty one in
3973 			 * advance.
3974 			 */
3975 			ret = btrfs_may_alloc_data_chunk(fs_info,
3976 							 found_key.offset);
3977 			if (ret < 0) {
3978 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3979 				goto error;
3980 			} else if (ret == 1) {
3981 				chunk_reserved = 1;
3982 			}
3983 		}
3984 
3985 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3986 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3987 		if (ret == -ENOSPC) {
3988 			enospc_errors++;
3989 		} else if (ret == -ETXTBSY) {
3990 			btrfs_info(fs_info,
3991 	   "skipping relocation of block group %llu due to active swapfile",
3992 				   found_key.offset);
3993 			ret = 0;
3994 		} else if (ret) {
3995 			goto error;
3996 		} else {
3997 			spin_lock(&fs_info->balance_lock);
3998 			bctl->stat.completed++;
3999 			spin_unlock(&fs_info->balance_lock);
4000 		}
4001 loop:
4002 		if (found_key.offset == 0)
4003 			break;
4004 		key.offset = found_key.offset - 1;
4005 	}
4006 
4007 	if (counting) {
4008 		btrfs_release_path(path);
4009 		counting = false;
4010 		goto again;
4011 	}
4012 error:
4013 	btrfs_free_path(path);
4014 	if (enospc_errors) {
4015 		btrfs_info(fs_info, "%d enospc errors during balance",
4016 			   enospc_errors);
4017 		if (!ret)
4018 			ret = -ENOSPC;
4019 	}
4020 
4021 	return ret;
4022 }
4023 
4024 /**
4025  * alloc_profile_is_valid - see if a given profile is valid and reduced
4026  * @flags: profile to validate
4027  * @extended: if true @flags is treated as an extended profile
4028  */
4029 static int alloc_profile_is_valid(u64 flags, int extended)
4030 {
4031 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4032 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4033 
4034 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4035 
4036 	/* 1) check that all other bits are zeroed */
4037 	if (flags & ~mask)
4038 		return 0;
4039 
4040 	/* 2) see if profile is reduced */
4041 	if (flags == 0)
4042 		return !extended; /* "0" is valid for usual profiles */
4043 
4044 	return has_single_bit_set(flags);
4045 }
4046 
4047 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4048 {
4049 	/* cancel requested || normal exit path */
4050 	return atomic_read(&fs_info->balance_cancel_req) ||
4051 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4052 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4053 }
4054 
4055 /*
4056  * Validate target profile against allowed profiles and return true if it's OK.
4057  * Otherwise print the error message and return false.
4058  */
4059 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4060 		const struct btrfs_balance_args *bargs,
4061 		u64 allowed, const char *type)
4062 {
4063 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4064 		return true;
4065 
4066 	if (fs_info->sectorsize < PAGE_SIZE &&
4067 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4068 		btrfs_err(fs_info,
4069 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
4070 			  fs_info->sectorsize, PAGE_SIZE);
4071 		return false;
4072 	}
4073 	/* Profile is valid and does not have bits outside of the allowed set */
4074 	if (alloc_profile_is_valid(bargs->target, 1) &&
4075 	    (bargs->target & ~allowed) == 0)
4076 		return true;
4077 
4078 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4079 			type, btrfs_bg_type_to_raid_name(bargs->target));
4080 	return false;
4081 }
4082 
4083 /*
4084  * Fill @buf with textual description of balance filter flags @bargs, up to
4085  * @size_buf including the terminating null. The output may be trimmed if it
4086  * does not fit into the provided buffer.
4087  */
4088 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4089 				 u32 size_buf)
4090 {
4091 	int ret;
4092 	u32 size_bp = size_buf;
4093 	char *bp = buf;
4094 	u64 flags = bargs->flags;
4095 	char tmp_buf[128] = {'\0'};
4096 
4097 	if (!flags)
4098 		return;
4099 
4100 #define CHECK_APPEND_NOARG(a)						\
4101 	do {								\
4102 		ret = snprintf(bp, size_bp, (a));			\
4103 		if (ret < 0 || ret >= size_bp)				\
4104 			goto out_overflow;				\
4105 		size_bp -= ret;						\
4106 		bp += ret;						\
4107 	} while (0)
4108 
4109 #define CHECK_APPEND_1ARG(a, v1)					\
4110 	do {								\
4111 		ret = snprintf(bp, size_bp, (a), (v1));			\
4112 		if (ret < 0 || ret >= size_bp)				\
4113 			goto out_overflow;				\
4114 		size_bp -= ret;						\
4115 		bp += ret;						\
4116 	} while (0)
4117 
4118 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4119 	do {								\
4120 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4121 		if (ret < 0 || ret >= size_bp)				\
4122 			goto out_overflow;				\
4123 		size_bp -= ret;						\
4124 		bp += ret;						\
4125 	} while (0)
4126 
4127 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4128 		CHECK_APPEND_1ARG("convert=%s,",
4129 				  btrfs_bg_type_to_raid_name(bargs->target));
4130 
4131 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4132 		CHECK_APPEND_NOARG("soft,");
4133 
4134 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4135 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4136 					    sizeof(tmp_buf));
4137 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4138 	}
4139 
4140 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4141 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4142 
4143 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4144 		CHECK_APPEND_2ARG("usage=%u..%u,",
4145 				  bargs->usage_min, bargs->usage_max);
4146 
4147 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4148 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4149 
4150 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4151 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4152 				  bargs->pstart, bargs->pend);
4153 
4154 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4155 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4156 				  bargs->vstart, bargs->vend);
4157 
4158 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4159 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4160 
4161 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4162 		CHECK_APPEND_2ARG("limit=%u..%u,",
4163 				bargs->limit_min, bargs->limit_max);
4164 
4165 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4166 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4167 				  bargs->stripes_min, bargs->stripes_max);
4168 
4169 #undef CHECK_APPEND_2ARG
4170 #undef CHECK_APPEND_1ARG
4171 #undef CHECK_APPEND_NOARG
4172 
4173 out_overflow:
4174 
4175 	if (size_bp < size_buf)
4176 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4177 	else
4178 		buf[0] = '\0';
4179 }
4180 
4181 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4182 {
4183 	u32 size_buf = 1024;
4184 	char tmp_buf[192] = {'\0'};
4185 	char *buf;
4186 	char *bp;
4187 	u32 size_bp = size_buf;
4188 	int ret;
4189 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4190 
4191 	buf = kzalloc(size_buf, GFP_KERNEL);
4192 	if (!buf)
4193 		return;
4194 
4195 	bp = buf;
4196 
4197 #define CHECK_APPEND_1ARG(a, v1)					\
4198 	do {								\
4199 		ret = snprintf(bp, size_bp, (a), (v1));			\
4200 		if (ret < 0 || ret >= size_bp)				\
4201 			goto out_overflow;				\
4202 		size_bp -= ret;						\
4203 		bp += ret;						\
4204 	} while (0)
4205 
4206 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4207 		CHECK_APPEND_1ARG("%s", "-f ");
4208 
4209 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4210 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4211 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4212 	}
4213 
4214 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4215 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4216 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4217 	}
4218 
4219 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4220 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4221 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4222 	}
4223 
4224 #undef CHECK_APPEND_1ARG
4225 
4226 out_overflow:
4227 
4228 	if (size_bp < size_buf)
4229 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4230 	btrfs_info(fs_info, "balance: %s %s",
4231 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4232 		   "resume" : "start", buf);
4233 
4234 	kfree(buf);
4235 }
4236 
4237 /*
4238  * Should be called with balance mutexe held
4239  */
4240 int btrfs_balance(struct btrfs_fs_info *fs_info,
4241 		  struct btrfs_balance_control *bctl,
4242 		  struct btrfs_ioctl_balance_args *bargs)
4243 {
4244 	u64 meta_target, data_target;
4245 	u64 allowed;
4246 	int mixed = 0;
4247 	int ret;
4248 	u64 num_devices;
4249 	unsigned seq;
4250 	bool reducing_redundancy;
4251 	int i;
4252 
4253 	if (btrfs_fs_closing(fs_info) ||
4254 	    atomic_read(&fs_info->balance_pause_req) ||
4255 	    btrfs_should_cancel_balance(fs_info)) {
4256 		ret = -EINVAL;
4257 		goto out;
4258 	}
4259 
4260 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4261 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4262 		mixed = 1;
4263 
4264 	/*
4265 	 * In case of mixed groups both data and meta should be picked,
4266 	 * and identical options should be given for both of them.
4267 	 */
4268 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4269 	if (mixed && (bctl->flags & allowed)) {
4270 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4271 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4272 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4273 			btrfs_err(fs_info,
4274 	  "balance: mixed groups data and metadata options must be the same");
4275 			ret = -EINVAL;
4276 			goto out;
4277 		}
4278 	}
4279 
4280 	/*
4281 	 * rw_devices will not change at the moment, device add/delete/replace
4282 	 * are exclusive
4283 	 */
4284 	num_devices = fs_info->fs_devices->rw_devices;
4285 
4286 	/*
4287 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4288 	 * special bit for it, to make it easier to distinguish.  Thus we need
4289 	 * to set it manually, or balance would refuse the profile.
4290 	 */
4291 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4292 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4293 		if (num_devices >= btrfs_raid_array[i].devs_min)
4294 			allowed |= btrfs_raid_array[i].bg_flag;
4295 
4296 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4297 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4298 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4299 		ret = -EINVAL;
4300 		goto out;
4301 	}
4302 
4303 	/*
4304 	 * Allow to reduce metadata or system integrity only if force set for
4305 	 * profiles with redundancy (copies, parity)
4306 	 */
4307 	allowed = 0;
4308 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4309 		if (btrfs_raid_array[i].ncopies >= 2 ||
4310 		    btrfs_raid_array[i].tolerated_failures >= 1)
4311 			allowed |= btrfs_raid_array[i].bg_flag;
4312 	}
4313 	do {
4314 		seq = read_seqbegin(&fs_info->profiles_lock);
4315 
4316 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4317 		     (fs_info->avail_system_alloc_bits & allowed) &&
4318 		     !(bctl->sys.target & allowed)) ||
4319 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4320 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4321 		     !(bctl->meta.target & allowed)))
4322 			reducing_redundancy = true;
4323 		else
4324 			reducing_redundancy = false;
4325 
4326 		/* if we're not converting, the target field is uninitialized */
4327 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4328 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4329 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4330 			bctl->data.target : fs_info->avail_data_alloc_bits;
4331 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4332 
4333 	if (reducing_redundancy) {
4334 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4335 			btrfs_info(fs_info,
4336 			   "balance: force reducing metadata redundancy");
4337 		} else {
4338 			btrfs_err(fs_info,
4339 	"balance: reduces metadata redundancy, use --force if you want this");
4340 			ret = -EINVAL;
4341 			goto out;
4342 		}
4343 	}
4344 
4345 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4346 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4347 		btrfs_warn(fs_info,
4348 	"balance: metadata profile %s has lower redundancy than data profile %s",
4349 				btrfs_bg_type_to_raid_name(meta_target),
4350 				btrfs_bg_type_to_raid_name(data_target));
4351 	}
4352 
4353 	ret = insert_balance_item(fs_info, bctl);
4354 	if (ret && ret != -EEXIST)
4355 		goto out;
4356 
4357 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4358 		BUG_ON(ret == -EEXIST);
4359 		BUG_ON(fs_info->balance_ctl);
4360 		spin_lock(&fs_info->balance_lock);
4361 		fs_info->balance_ctl = bctl;
4362 		spin_unlock(&fs_info->balance_lock);
4363 	} else {
4364 		BUG_ON(ret != -EEXIST);
4365 		spin_lock(&fs_info->balance_lock);
4366 		update_balance_args(bctl);
4367 		spin_unlock(&fs_info->balance_lock);
4368 	}
4369 
4370 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4371 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4372 	describe_balance_start_or_resume(fs_info);
4373 	mutex_unlock(&fs_info->balance_mutex);
4374 
4375 	ret = __btrfs_balance(fs_info);
4376 
4377 	mutex_lock(&fs_info->balance_mutex);
4378 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4379 		btrfs_info(fs_info, "balance: paused");
4380 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4381 	}
4382 	/*
4383 	 * Balance can be canceled by:
4384 	 *
4385 	 * - Regular cancel request
4386 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4387 	 *
4388 	 * - Fatal signal to "btrfs" process
4389 	 *   Either the signal caught by wait_reserve_ticket() and callers
4390 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4391 	 *   got -ECANCELED.
4392 	 *   Either way, in this case balance_cancel_req = 0, and
4393 	 *   ret == -EINTR or ret == -ECANCELED.
4394 	 *
4395 	 * So here we only check the return value to catch canceled balance.
4396 	 */
4397 	else if (ret == -ECANCELED || ret == -EINTR)
4398 		btrfs_info(fs_info, "balance: canceled");
4399 	else
4400 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4401 
4402 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4403 
4404 	if (bargs) {
4405 		memset(bargs, 0, sizeof(*bargs));
4406 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4407 	}
4408 
4409 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4410 	    balance_need_close(fs_info)) {
4411 		reset_balance_state(fs_info);
4412 		btrfs_exclop_finish(fs_info);
4413 	}
4414 
4415 	wake_up(&fs_info->balance_wait_q);
4416 
4417 	return ret;
4418 out:
4419 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4420 		reset_balance_state(fs_info);
4421 	else
4422 		kfree(bctl);
4423 	btrfs_exclop_finish(fs_info);
4424 
4425 	return ret;
4426 }
4427 
4428 static int balance_kthread(void *data)
4429 {
4430 	struct btrfs_fs_info *fs_info = data;
4431 	int ret = 0;
4432 
4433 	mutex_lock(&fs_info->balance_mutex);
4434 	if (fs_info->balance_ctl)
4435 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4436 	mutex_unlock(&fs_info->balance_mutex);
4437 
4438 	return ret;
4439 }
4440 
4441 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4442 {
4443 	struct task_struct *tsk;
4444 
4445 	mutex_lock(&fs_info->balance_mutex);
4446 	if (!fs_info->balance_ctl) {
4447 		mutex_unlock(&fs_info->balance_mutex);
4448 		return 0;
4449 	}
4450 	mutex_unlock(&fs_info->balance_mutex);
4451 
4452 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4453 		btrfs_info(fs_info, "balance: resume skipped");
4454 		return 0;
4455 	}
4456 
4457 	spin_lock(&fs_info->super_lock);
4458 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4459 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4460 	spin_unlock(&fs_info->super_lock);
4461 	/*
4462 	 * A ro->rw remount sequence should continue with the paused balance
4463 	 * regardless of who pauses it, system or the user as of now, so set
4464 	 * the resume flag.
4465 	 */
4466 	spin_lock(&fs_info->balance_lock);
4467 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4468 	spin_unlock(&fs_info->balance_lock);
4469 
4470 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4471 	return PTR_ERR_OR_ZERO(tsk);
4472 }
4473 
4474 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4475 {
4476 	struct btrfs_balance_control *bctl;
4477 	struct btrfs_balance_item *item;
4478 	struct btrfs_disk_balance_args disk_bargs;
4479 	struct btrfs_path *path;
4480 	struct extent_buffer *leaf;
4481 	struct btrfs_key key;
4482 	int ret;
4483 
4484 	path = btrfs_alloc_path();
4485 	if (!path)
4486 		return -ENOMEM;
4487 
4488 	key.objectid = BTRFS_BALANCE_OBJECTID;
4489 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4490 	key.offset = 0;
4491 
4492 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4493 	if (ret < 0)
4494 		goto out;
4495 	if (ret > 0) { /* ret = -ENOENT; */
4496 		ret = 0;
4497 		goto out;
4498 	}
4499 
4500 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4501 	if (!bctl) {
4502 		ret = -ENOMEM;
4503 		goto out;
4504 	}
4505 
4506 	leaf = path->nodes[0];
4507 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4508 
4509 	bctl->flags = btrfs_balance_flags(leaf, item);
4510 	bctl->flags |= BTRFS_BALANCE_RESUME;
4511 
4512 	btrfs_balance_data(leaf, item, &disk_bargs);
4513 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4514 	btrfs_balance_meta(leaf, item, &disk_bargs);
4515 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4516 	btrfs_balance_sys(leaf, item, &disk_bargs);
4517 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4518 
4519 	/*
4520 	 * This should never happen, as the paused balance state is recovered
4521 	 * during mount without any chance of other exclusive ops to collide.
4522 	 *
4523 	 * This gives the exclusive op status to balance and keeps in paused
4524 	 * state until user intervention (cancel or umount). If the ownership
4525 	 * cannot be assigned, show a message but do not fail. The balance
4526 	 * is in a paused state and must have fs_info::balance_ctl properly
4527 	 * set up.
4528 	 */
4529 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4530 		btrfs_warn(fs_info,
4531 	"balance: cannot set exclusive op status, resume manually");
4532 
4533 	btrfs_release_path(path);
4534 
4535 	mutex_lock(&fs_info->balance_mutex);
4536 	BUG_ON(fs_info->balance_ctl);
4537 	spin_lock(&fs_info->balance_lock);
4538 	fs_info->balance_ctl = bctl;
4539 	spin_unlock(&fs_info->balance_lock);
4540 	mutex_unlock(&fs_info->balance_mutex);
4541 out:
4542 	btrfs_free_path(path);
4543 	return ret;
4544 }
4545 
4546 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4547 {
4548 	int ret = 0;
4549 
4550 	mutex_lock(&fs_info->balance_mutex);
4551 	if (!fs_info->balance_ctl) {
4552 		mutex_unlock(&fs_info->balance_mutex);
4553 		return -ENOTCONN;
4554 	}
4555 
4556 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4557 		atomic_inc(&fs_info->balance_pause_req);
4558 		mutex_unlock(&fs_info->balance_mutex);
4559 
4560 		wait_event(fs_info->balance_wait_q,
4561 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4562 
4563 		mutex_lock(&fs_info->balance_mutex);
4564 		/* we are good with balance_ctl ripped off from under us */
4565 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4566 		atomic_dec(&fs_info->balance_pause_req);
4567 	} else {
4568 		ret = -ENOTCONN;
4569 	}
4570 
4571 	mutex_unlock(&fs_info->balance_mutex);
4572 	return ret;
4573 }
4574 
4575 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4576 {
4577 	mutex_lock(&fs_info->balance_mutex);
4578 	if (!fs_info->balance_ctl) {
4579 		mutex_unlock(&fs_info->balance_mutex);
4580 		return -ENOTCONN;
4581 	}
4582 
4583 	/*
4584 	 * A paused balance with the item stored on disk can be resumed at
4585 	 * mount time if the mount is read-write. Otherwise it's still paused
4586 	 * and we must not allow cancelling as it deletes the item.
4587 	 */
4588 	if (sb_rdonly(fs_info->sb)) {
4589 		mutex_unlock(&fs_info->balance_mutex);
4590 		return -EROFS;
4591 	}
4592 
4593 	atomic_inc(&fs_info->balance_cancel_req);
4594 	/*
4595 	 * if we are running just wait and return, balance item is
4596 	 * deleted in btrfs_balance in this case
4597 	 */
4598 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4599 		mutex_unlock(&fs_info->balance_mutex);
4600 		wait_event(fs_info->balance_wait_q,
4601 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4602 		mutex_lock(&fs_info->balance_mutex);
4603 	} else {
4604 		mutex_unlock(&fs_info->balance_mutex);
4605 		/*
4606 		 * Lock released to allow other waiters to continue, we'll
4607 		 * reexamine the status again.
4608 		 */
4609 		mutex_lock(&fs_info->balance_mutex);
4610 
4611 		if (fs_info->balance_ctl) {
4612 			reset_balance_state(fs_info);
4613 			btrfs_exclop_finish(fs_info);
4614 			btrfs_info(fs_info, "balance: canceled");
4615 		}
4616 	}
4617 
4618 	BUG_ON(fs_info->balance_ctl ||
4619 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4620 	atomic_dec(&fs_info->balance_cancel_req);
4621 	mutex_unlock(&fs_info->balance_mutex);
4622 	return 0;
4623 }
4624 
4625 int btrfs_uuid_scan_kthread(void *data)
4626 {
4627 	struct btrfs_fs_info *fs_info = data;
4628 	struct btrfs_root *root = fs_info->tree_root;
4629 	struct btrfs_key key;
4630 	struct btrfs_path *path = NULL;
4631 	int ret = 0;
4632 	struct extent_buffer *eb;
4633 	int slot;
4634 	struct btrfs_root_item root_item;
4635 	u32 item_size;
4636 	struct btrfs_trans_handle *trans = NULL;
4637 	bool closing = false;
4638 
4639 	path = btrfs_alloc_path();
4640 	if (!path) {
4641 		ret = -ENOMEM;
4642 		goto out;
4643 	}
4644 
4645 	key.objectid = 0;
4646 	key.type = BTRFS_ROOT_ITEM_KEY;
4647 	key.offset = 0;
4648 
4649 	while (1) {
4650 		if (btrfs_fs_closing(fs_info)) {
4651 			closing = true;
4652 			break;
4653 		}
4654 		ret = btrfs_search_forward(root, &key, path,
4655 				BTRFS_OLDEST_GENERATION);
4656 		if (ret) {
4657 			if (ret > 0)
4658 				ret = 0;
4659 			break;
4660 		}
4661 
4662 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4663 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4664 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4665 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4666 			goto skip;
4667 
4668 		eb = path->nodes[0];
4669 		slot = path->slots[0];
4670 		item_size = btrfs_item_size(eb, slot);
4671 		if (item_size < sizeof(root_item))
4672 			goto skip;
4673 
4674 		read_extent_buffer(eb, &root_item,
4675 				   btrfs_item_ptr_offset(eb, slot),
4676 				   (int)sizeof(root_item));
4677 		if (btrfs_root_refs(&root_item) == 0)
4678 			goto skip;
4679 
4680 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4681 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4682 			if (trans)
4683 				goto update_tree;
4684 
4685 			btrfs_release_path(path);
4686 			/*
4687 			 * 1 - subvol uuid item
4688 			 * 1 - received_subvol uuid item
4689 			 */
4690 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4691 			if (IS_ERR(trans)) {
4692 				ret = PTR_ERR(trans);
4693 				break;
4694 			}
4695 			continue;
4696 		} else {
4697 			goto skip;
4698 		}
4699 update_tree:
4700 		btrfs_release_path(path);
4701 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4702 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4703 						  BTRFS_UUID_KEY_SUBVOL,
4704 						  key.objectid);
4705 			if (ret < 0) {
4706 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4707 					ret);
4708 				break;
4709 			}
4710 		}
4711 
4712 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4713 			ret = btrfs_uuid_tree_add(trans,
4714 						  root_item.received_uuid,
4715 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4716 						  key.objectid);
4717 			if (ret < 0) {
4718 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4719 					ret);
4720 				break;
4721 			}
4722 		}
4723 
4724 skip:
4725 		btrfs_release_path(path);
4726 		if (trans) {
4727 			ret = btrfs_end_transaction(trans);
4728 			trans = NULL;
4729 			if (ret)
4730 				break;
4731 		}
4732 
4733 		if (key.offset < (u64)-1) {
4734 			key.offset++;
4735 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4736 			key.offset = 0;
4737 			key.type = BTRFS_ROOT_ITEM_KEY;
4738 		} else if (key.objectid < (u64)-1) {
4739 			key.offset = 0;
4740 			key.type = BTRFS_ROOT_ITEM_KEY;
4741 			key.objectid++;
4742 		} else {
4743 			break;
4744 		}
4745 		cond_resched();
4746 	}
4747 
4748 out:
4749 	btrfs_free_path(path);
4750 	if (trans && !IS_ERR(trans))
4751 		btrfs_end_transaction(trans);
4752 	if (ret)
4753 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4754 	else if (!closing)
4755 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4756 	up(&fs_info->uuid_tree_rescan_sem);
4757 	return 0;
4758 }
4759 
4760 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4761 {
4762 	struct btrfs_trans_handle *trans;
4763 	struct btrfs_root *tree_root = fs_info->tree_root;
4764 	struct btrfs_root *uuid_root;
4765 	struct task_struct *task;
4766 	int ret;
4767 
4768 	/*
4769 	 * 1 - root node
4770 	 * 1 - root item
4771 	 */
4772 	trans = btrfs_start_transaction(tree_root, 2);
4773 	if (IS_ERR(trans))
4774 		return PTR_ERR(trans);
4775 
4776 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4777 	if (IS_ERR(uuid_root)) {
4778 		ret = PTR_ERR(uuid_root);
4779 		btrfs_abort_transaction(trans, ret);
4780 		btrfs_end_transaction(trans);
4781 		return ret;
4782 	}
4783 
4784 	fs_info->uuid_root = uuid_root;
4785 
4786 	ret = btrfs_commit_transaction(trans);
4787 	if (ret)
4788 		return ret;
4789 
4790 	down(&fs_info->uuid_tree_rescan_sem);
4791 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4792 	if (IS_ERR(task)) {
4793 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4794 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4795 		up(&fs_info->uuid_tree_rescan_sem);
4796 		return PTR_ERR(task);
4797 	}
4798 
4799 	return 0;
4800 }
4801 
4802 /*
4803  * shrinking a device means finding all of the device extents past
4804  * the new size, and then following the back refs to the chunks.
4805  * The chunk relocation code actually frees the device extent
4806  */
4807 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4808 {
4809 	struct btrfs_fs_info *fs_info = device->fs_info;
4810 	struct btrfs_root *root = fs_info->dev_root;
4811 	struct btrfs_trans_handle *trans;
4812 	struct btrfs_dev_extent *dev_extent = NULL;
4813 	struct btrfs_path *path;
4814 	u64 length;
4815 	u64 chunk_offset;
4816 	int ret;
4817 	int slot;
4818 	int failed = 0;
4819 	bool retried = false;
4820 	struct extent_buffer *l;
4821 	struct btrfs_key key;
4822 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4823 	u64 old_total = btrfs_super_total_bytes(super_copy);
4824 	u64 old_size = btrfs_device_get_total_bytes(device);
4825 	u64 diff;
4826 	u64 start;
4827 
4828 	new_size = round_down(new_size, fs_info->sectorsize);
4829 	start = new_size;
4830 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4831 
4832 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4833 		return -EINVAL;
4834 
4835 	path = btrfs_alloc_path();
4836 	if (!path)
4837 		return -ENOMEM;
4838 
4839 	path->reada = READA_BACK;
4840 
4841 	trans = btrfs_start_transaction(root, 0);
4842 	if (IS_ERR(trans)) {
4843 		btrfs_free_path(path);
4844 		return PTR_ERR(trans);
4845 	}
4846 
4847 	mutex_lock(&fs_info->chunk_mutex);
4848 
4849 	btrfs_device_set_total_bytes(device, new_size);
4850 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4851 		device->fs_devices->total_rw_bytes -= diff;
4852 		atomic64_sub(diff, &fs_info->free_chunk_space);
4853 	}
4854 
4855 	/*
4856 	 * Once the device's size has been set to the new size, ensure all
4857 	 * in-memory chunks are synced to disk so that the loop below sees them
4858 	 * and relocates them accordingly.
4859 	 */
4860 	if (contains_pending_extent(device, &start, diff)) {
4861 		mutex_unlock(&fs_info->chunk_mutex);
4862 		ret = btrfs_commit_transaction(trans);
4863 		if (ret)
4864 			goto done;
4865 	} else {
4866 		mutex_unlock(&fs_info->chunk_mutex);
4867 		btrfs_end_transaction(trans);
4868 	}
4869 
4870 again:
4871 	key.objectid = device->devid;
4872 	key.offset = (u64)-1;
4873 	key.type = BTRFS_DEV_EXTENT_KEY;
4874 
4875 	do {
4876 		mutex_lock(&fs_info->reclaim_bgs_lock);
4877 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4878 		if (ret < 0) {
4879 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4880 			goto done;
4881 		}
4882 
4883 		ret = btrfs_previous_item(root, path, 0, key.type);
4884 		if (ret) {
4885 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 			if (ret < 0)
4887 				goto done;
4888 			ret = 0;
4889 			btrfs_release_path(path);
4890 			break;
4891 		}
4892 
4893 		l = path->nodes[0];
4894 		slot = path->slots[0];
4895 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4896 
4897 		if (key.objectid != device->devid) {
4898 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4899 			btrfs_release_path(path);
4900 			break;
4901 		}
4902 
4903 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4904 		length = btrfs_dev_extent_length(l, dev_extent);
4905 
4906 		if (key.offset + length <= new_size) {
4907 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4908 			btrfs_release_path(path);
4909 			break;
4910 		}
4911 
4912 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4913 		btrfs_release_path(path);
4914 
4915 		/*
4916 		 * We may be relocating the only data chunk we have,
4917 		 * which could potentially end up with losing data's
4918 		 * raid profile, so lets allocate an empty one in
4919 		 * advance.
4920 		 */
4921 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4922 		if (ret < 0) {
4923 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4924 			goto done;
4925 		}
4926 
4927 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4928 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4929 		if (ret == -ENOSPC) {
4930 			failed++;
4931 		} else if (ret) {
4932 			if (ret == -ETXTBSY) {
4933 				btrfs_warn(fs_info,
4934 		   "could not shrink block group %llu due to active swapfile",
4935 					   chunk_offset);
4936 			}
4937 			goto done;
4938 		}
4939 	} while (key.offset-- > 0);
4940 
4941 	if (failed && !retried) {
4942 		failed = 0;
4943 		retried = true;
4944 		goto again;
4945 	} else if (failed && retried) {
4946 		ret = -ENOSPC;
4947 		goto done;
4948 	}
4949 
4950 	/* Shrinking succeeded, else we would be at "done". */
4951 	trans = btrfs_start_transaction(root, 0);
4952 	if (IS_ERR(trans)) {
4953 		ret = PTR_ERR(trans);
4954 		goto done;
4955 	}
4956 
4957 	mutex_lock(&fs_info->chunk_mutex);
4958 	/* Clear all state bits beyond the shrunk device size */
4959 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4960 			  CHUNK_STATE_MASK);
4961 
4962 	btrfs_device_set_disk_total_bytes(device, new_size);
4963 	if (list_empty(&device->post_commit_list))
4964 		list_add_tail(&device->post_commit_list,
4965 			      &trans->transaction->dev_update_list);
4966 
4967 	WARN_ON(diff > old_total);
4968 	btrfs_set_super_total_bytes(super_copy,
4969 			round_down(old_total - diff, fs_info->sectorsize));
4970 	mutex_unlock(&fs_info->chunk_mutex);
4971 
4972 	btrfs_reserve_chunk_metadata(trans, false);
4973 	/* Now btrfs_update_device() will change the on-disk size. */
4974 	ret = btrfs_update_device(trans, device);
4975 	btrfs_trans_release_chunk_metadata(trans);
4976 	if (ret < 0) {
4977 		btrfs_abort_transaction(trans, ret);
4978 		btrfs_end_transaction(trans);
4979 	} else {
4980 		ret = btrfs_commit_transaction(trans);
4981 	}
4982 done:
4983 	btrfs_free_path(path);
4984 	if (ret) {
4985 		mutex_lock(&fs_info->chunk_mutex);
4986 		btrfs_device_set_total_bytes(device, old_size);
4987 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4988 			device->fs_devices->total_rw_bytes += diff;
4989 		atomic64_add(diff, &fs_info->free_chunk_space);
4990 		mutex_unlock(&fs_info->chunk_mutex);
4991 	}
4992 	return ret;
4993 }
4994 
4995 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4996 			   struct btrfs_key *key,
4997 			   struct btrfs_chunk *chunk, int item_size)
4998 {
4999 	struct btrfs_super_block *super_copy = fs_info->super_copy;
5000 	struct btrfs_disk_key disk_key;
5001 	u32 array_size;
5002 	u8 *ptr;
5003 
5004 	lockdep_assert_held(&fs_info->chunk_mutex);
5005 
5006 	array_size = btrfs_super_sys_array_size(super_copy);
5007 	if (array_size + item_size + sizeof(disk_key)
5008 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5009 		return -EFBIG;
5010 
5011 	ptr = super_copy->sys_chunk_array + array_size;
5012 	btrfs_cpu_key_to_disk(&disk_key, key);
5013 	memcpy(ptr, &disk_key, sizeof(disk_key));
5014 	ptr += sizeof(disk_key);
5015 	memcpy(ptr, chunk, item_size);
5016 	item_size += sizeof(disk_key);
5017 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5018 
5019 	return 0;
5020 }
5021 
5022 /*
5023  * sort the devices in descending order by max_avail, total_avail
5024  */
5025 static int btrfs_cmp_device_info(const void *a, const void *b)
5026 {
5027 	const struct btrfs_device_info *di_a = a;
5028 	const struct btrfs_device_info *di_b = b;
5029 
5030 	if (di_a->max_avail > di_b->max_avail)
5031 		return -1;
5032 	if (di_a->max_avail < di_b->max_avail)
5033 		return 1;
5034 	if (di_a->total_avail > di_b->total_avail)
5035 		return -1;
5036 	if (di_a->total_avail < di_b->total_avail)
5037 		return 1;
5038 	return 0;
5039 }
5040 
5041 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5042 {
5043 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5044 		return;
5045 
5046 	btrfs_set_fs_incompat(info, RAID56);
5047 }
5048 
5049 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5050 {
5051 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5052 		return;
5053 
5054 	btrfs_set_fs_incompat(info, RAID1C34);
5055 }
5056 
5057 /*
5058  * Structure used internally for btrfs_create_chunk() function.
5059  * Wraps needed parameters.
5060  */
5061 struct alloc_chunk_ctl {
5062 	u64 start;
5063 	u64 type;
5064 	/* Total number of stripes to allocate */
5065 	int num_stripes;
5066 	/* sub_stripes info for map */
5067 	int sub_stripes;
5068 	/* Stripes per device */
5069 	int dev_stripes;
5070 	/* Maximum number of devices to use */
5071 	int devs_max;
5072 	/* Minimum number of devices to use */
5073 	int devs_min;
5074 	/* ndevs has to be a multiple of this */
5075 	int devs_increment;
5076 	/* Number of copies */
5077 	int ncopies;
5078 	/* Number of stripes worth of bytes to store parity information */
5079 	int nparity;
5080 	u64 max_stripe_size;
5081 	u64 max_chunk_size;
5082 	u64 dev_extent_min;
5083 	u64 stripe_size;
5084 	u64 chunk_size;
5085 	int ndevs;
5086 };
5087 
5088 static void init_alloc_chunk_ctl_policy_regular(
5089 				struct btrfs_fs_devices *fs_devices,
5090 				struct alloc_chunk_ctl *ctl)
5091 {
5092 	u64 type = ctl->type;
5093 
5094 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5095 		ctl->max_stripe_size = SZ_1G;
5096 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5097 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5098 		/* For larger filesystems, use larger metadata chunks */
5099 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5100 			ctl->max_stripe_size = SZ_1G;
5101 		else
5102 			ctl->max_stripe_size = SZ_256M;
5103 		ctl->max_chunk_size = ctl->max_stripe_size;
5104 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5105 		ctl->max_stripe_size = SZ_32M;
5106 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5107 		ctl->devs_max = min_t(int, ctl->devs_max,
5108 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5109 	} else {
5110 		BUG();
5111 	}
5112 
5113 	/* We don't want a chunk larger than 10% of writable space */
5114 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5115 				  ctl->max_chunk_size);
5116 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5117 }
5118 
5119 static void init_alloc_chunk_ctl_policy_zoned(
5120 				      struct btrfs_fs_devices *fs_devices,
5121 				      struct alloc_chunk_ctl *ctl)
5122 {
5123 	u64 zone_size = fs_devices->fs_info->zone_size;
5124 	u64 limit;
5125 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5126 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5127 	u64 min_chunk_size = min_data_stripes * zone_size;
5128 	u64 type = ctl->type;
5129 
5130 	ctl->max_stripe_size = zone_size;
5131 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5132 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5133 						 zone_size);
5134 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5135 		ctl->max_chunk_size = ctl->max_stripe_size;
5136 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5137 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5138 		ctl->devs_max = min_t(int, ctl->devs_max,
5139 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5140 	} else {
5141 		BUG();
5142 	}
5143 
5144 	/* We don't want a chunk larger than 10% of writable space */
5145 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5146 			       zone_size),
5147 		    min_chunk_size);
5148 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5149 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5150 }
5151 
5152 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5153 				 struct alloc_chunk_ctl *ctl)
5154 {
5155 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5156 
5157 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5158 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5159 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5160 	if (!ctl->devs_max)
5161 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5162 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5163 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5164 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5165 	ctl->nparity = btrfs_raid_array[index].nparity;
5166 	ctl->ndevs = 0;
5167 
5168 	switch (fs_devices->chunk_alloc_policy) {
5169 	case BTRFS_CHUNK_ALLOC_REGULAR:
5170 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5171 		break;
5172 	case BTRFS_CHUNK_ALLOC_ZONED:
5173 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5174 		break;
5175 	default:
5176 		BUG();
5177 	}
5178 }
5179 
5180 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5181 			      struct alloc_chunk_ctl *ctl,
5182 			      struct btrfs_device_info *devices_info)
5183 {
5184 	struct btrfs_fs_info *info = fs_devices->fs_info;
5185 	struct btrfs_device *device;
5186 	u64 total_avail;
5187 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5188 	int ret;
5189 	int ndevs = 0;
5190 	u64 max_avail;
5191 	u64 dev_offset;
5192 
5193 	/*
5194 	 * in the first pass through the devices list, we gather information
5195 	 * about the available holes on each device.
5196 	 */
5197 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5198 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5199 			WARN(1, KERN_ERR
5200 			       "BTRFS: read-only device in alloc_list\n");
5201 			continue;
5202 		}
5203 
5204 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5205 					&device->dev_state) ||
5206 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5207 			continue;
5208 
5209 		if (device->total_bytes > device->bytes_used)
5210 			total_avail = device->total_bytes - device->bytes_used;
5211 		else
5212 			total_avail = 0;
5213 
5214 		/* If there is no space on this device, skip it. */
5215 		if (total_avail < ctl->dev_extent_min)
5216 			continue;
5217 
5218 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5219 					   &max_avail);
5220 		if (ret && ret != -ENOSPC)
5221 			return ret;
5222 
5223 		if (ret == 0)
5224 			max_avail = dev_extent_want;
5225 
5226 		if (max_avail < ctl->dev_extent_min) {
5227 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5228 				btrfs_debug(info,
5229 			"%s: devid %llu has no free space, have=%llu want=%llu",
5230 					    __func__, device->devid, max_avail,
5231 					    ctl->dev_extent_min);
5232 			continue;
5233 		}
5234 
5235 		if (ndevs == fs_devices->rw_devices) {
5236 			WARN(1, "%s: found more than %llu devices\n",
5237 			     __func__, fs_devices->rw_devices);
5238 			break;
5239 		}
5240 		devices_info[ndevs].dev_offset = dev_offset;
5241 		devices_info[ndevs].max_avail = max_avail;
5242 		devices_info[ndevs].total_avail = total_avail;
5243 		devices_info[ndevs].dev = device;
5244 		++ndevs;
5245 	}
5246 	ctl->ndevs = ndevs;
5247 
5248 	/*
5249 	 * now sort the devices by hole size / available space
5250 	 */
5251 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5252 	     btrfs_cmp_device_info, NULL);
5253 
5254 	return 0;
5255 }
5256 
5257 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5258 				      struct btrfs_device_info *devices_info)
5259 {
5260 	/* Number of stripes that count for block group size */
5261 	int data_stripes;
5262 
5263 	/*
5264 	 * The primary goal is to maximize the number of stripes, so use as
5265 	 * many devices as possible, even if the stripes are not maximum sized.
5266 	 *
5267 	 * The DUP profile stores more than one stripe per device, the
5268 	 * max_avail is the total size so we have to adjust.
5269 	 */
5270 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5271 				   ctl->dev_stripes);
5272 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5273 
5274 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5275 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5276 
5277 	/*
5278 	 * Use the number of data stripes to figure out how big this chunk is
5279 	 * really going to be in terms of logical address space, and compare
5280 	 * that answer with the max chunk size. If it's higher, we try to
5281 	 * reduce stripe_size.
5282 	 */
5283 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5284 		/*
5285 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5286 		 * then use it, unless it ends up being even bigger than the
5287 		 * previous value we had already.
5288 		 */
5289 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5290 							data_stripes), SZ_16M),
5291 				       ctl->stripe_size);
5292 	}
5293 
5294 	/* Align to BTRFS_STRIPE_LEN */
5295 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5296 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5297 
5298 	return 0;
5299 }
5300 
5301 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5302 				    struct btrfs_device_info *devices_info)
5303 {
5304 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5305 	/* Number of stripes that count for block group size */
5306 	int data_stripes;
5307 
5308 	/*
5309 	 * It should hold because:
5310 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5311 	 */
5312 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5313 
5314 	ctl->stripe_size = zone_size;
5315 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5316 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5317 
5318 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5319 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5320 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5321 					     ctl->stripe_size) + ctl->nparity,
5322 				     ctl->dev_stripes);
5323 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5324 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5325 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5326 	}
5327 
5328 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5329 
5330 	return 0;
5331 }
5332 
5333 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5334 			      struct alloc_chunk_ctl *ctl,
5335 			      struct btrfs_device_info *devices_info)
5336 {
5337 	struct btrfs_fs_info *info = fs_devices->fs_info;
5338 
5339 	/*
5340 	 * Round down to number of usable stripes, devs_increment can be any
5341 	 * number so we can't use round_down() that requires power of 2, while
5342 	 * rounddown is safe.
5343 	 */
5344 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5345 
5346 	if (ctl->ndevs < ctl->devs_min) {
5347 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5348 			btrfs_debug(info,
5349 	"%s: not enough devices with free space: have=%d minimum required=%d",
5350 				    __func__, ctl->ndevs, ctl->devs_min);
5351 		}
5352 		return -ENOSPC;
5353 	}
5354 
5355 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5356 
5357 	switch (fs_devices->chunk_alloc_policy) {
5358 	case BTRFS_CHUNK_ALLOC_REGULAR:
5359 		return decide_stripe_size_regular(ctl, devices_info);
5360 	case BTRFS_CHUNK_ALLOC_ZONED:
5361 		return decide_stripe_size_zoned(ctl, devices_info);
5362 	default:
5363 		BUG();
5364 	}
5365 }
5366 
5367 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5368 			struct alloc_chunk_ctl *ctl,
5369 			struct btrfs_device_info *devices_info)
5370 {
5371 	struct btrfs_fs_info *info = trans->fs_info;
5372 	struct map_lookup *map = NULL;
5373 	struct extent_map_tree *em_tree;
5374 	struct btrfs_block_group *block_group;
5375 	struct extent_map *em;
5376 	u64 start = ctl->start;
5377 	u64 type = ctl->type;
5378 	int ret;
5379 	int i;
5380 	int j;
5381 
5382 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5383 	if (!map)
5384 		return ERR_PTR(-ENOMEM);
5385 	map->num_stripes = ctl->num_stripes;
5386 
5387 	for (i = 0; i < ctl->ndevs; ++i) {
5388 		for (j = 0; j < ctl->dev_stripes; ++j) {
5389 			int s = i * ctl->dev_stripes + j;
5390 			map->stripes[s].dev = devices_info[i].dev;
5391 			map->stripes[s].physical = devices_info[i].dev_offset +
5392 						   j * ctl->stripe_size;
5393 		}
5394 	}
5395 	map->stripe_len = BTRFS_STRIPE_LEN;
5396 	map->io_align = BTRFS_STRIPE_LEN;
5397 	map->io_width = BTRFS_STRIPE_LEN;
5398 	map->type = type;
5399 	map->sub_stripes = ctl->sub_stripes;
5400 
5401 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5402 
5403 	em = alloc_extent_map();
5404 	if (!em) {
5405 		kfree(map);
5406 		return ERR_PTR(-ENOMEM);
5407 	}
5408 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5409 	em->map_lookup = map;
5410 	em->start = start;
5411 	em->len = ctl->chunk_size;
5412 	em->block_start = 0;
5413 	em->block_len = em->len;
5414 	em->orig_block_len = ctl->stripe_size;
5415 
5416 	em_tree = &info->mapping_tree;
5417 	write_lock(&em_tree->lock);
5418 	ret = add_extent_mapping(em_tree, em, 0);
5419 	if (ret) {
5420 		write_unlock(&em_tree->lock);
5421 		free_extent_map(em);
5422 		return ERR_PTR(ret);
5423 	}
5424 	write_unlock(&em_tree->lock);
5425 
5426 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5427 	if (IS_ERR(block_group))
5428 		goto error_del_extent;
5429 
5430 	for (i = 0; i < map->num_stripes; i++) {
5431 		struct btrfs_device *dev = map->stripes[i].dev;
5432 
5433 		btrfs_device_set_bytes_used(dev,
5434 					    dev->bytes_used + ctl->stripe_size);
5435 		if (list_empty(&dev->post_commit_list))
5436 			list_add_tail(&dev->post_commit_list,
5437 				      &trans->transaction->dev_update_list);
5438 	}
5439 
5440 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5441 		     &info->free_chunk_space);
5442 
5443 	free_extent_map(em);
5444 	check_raid56_incompat_flag(info, type);
5445 	check_raid1c34_incompat_flag(info, type);
5446 
5447 	return block_group;
5448 
5449 error_del_extent:
5450 	write_lock(&em_tree->lock);
5451 	remove_extent_mapping(em_tree, em);
5452 	write_unlock(&em_tree->lock);
5453 
5454 	/* One for our allocation */
5455 	free_extent_map(em);
5456 	/* One for the tree reference */
5457 	free_extent_map(em);
5458 
5459 	return block_group;
5460 }
5461 
5462 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5463 					    u64 type)
5464 {
5465 	struct btrfs_fs_info *info = trans->fs_info;
5466 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5467 	struct btrfs_device_info *devices_info = NULL;
5468 	struct alloc_chunk_ctl ctl;
5469 	struct btrfs_block_group *block_group;
5470 	int ret;
5471 
5472 	lockdep_assert_held(&info->chunk_mutex);
5473 
5474 	if (!alloc_profile_is_valid(type, 0)) {
5475 		ASSERT(0);
5476 		return ERR_PTR(-EINVAL);
5477 	}
5478 
5479 	if (list_empty(&fs_devices->alloc_list)) {
5480 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5481 			btrfs_debug(info, "%s: no writable device", __func__);
5482 		return ERR_PTR(-ENOSPC);
5483 	}
5484 
5485 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5486 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5487 		ASSERT(0);
5488 		return ERR_PTR(-EINVAL);
5489 	}
5490 
5491 	ctl.start = find_next_chunk(info);
5492 	ctl.type = type;
5493 	init_alloc_chunk_ctl(fs_devices, &ctl);
5494 
5495 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5496 			       GFP_NOFS);
5497 	if (!devices_info)
5498 		return ERR_PTR(-ENOMEM);
5499 
5500 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5501 	if (ret < 0) {
5502 		block_group = ERR_PTR(ret);
5503 		goto out;
5504 	}
5505 
5506 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5507 	if (ret < 0) {
5508 		block_group = ERR_PTR(ret);
5509 		goto out;
5510 	}
5511 
5512 	block_group = create_chunk(trans, &ctl, devices_info);
5513 
5514 out:
5515 	kfree(devices_info);
5516 	return block_group;
5517 }
5518 
5519 /*
5520  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5521  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5522  * chunks.
5523  *
5524  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5525  * phases.
5526  */
5527 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5528 				     struct btrfs_block_group *bg)
5529 {
5530 	struct btrfs_fs_info *fs_info = trans->fs_info;
5531 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5532 	struct btrfs_key key;
5533 	struct btrfs_chunk *chunk;
5534 	struct btrfs_stripe *stripe;
5535 	struct extent_map *em;
5536 	struct map_lookup *map;
5537 	size_t item_size;
5538 	int i;
5539 	int ret;
5540 
5541 	/*
5542 	 * We take the chunk_mutex for 2 reasons:
5543 	 *
5544 	 * 1) Updates and insertions in the chunk btree must be done while holding
5545 	 *    the chunk_mutex, as well as updating the system chunk array in the
5546 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5547 	 *    details;
5548 	 *
5549 	 * 2) To prevent races with the final phase of a device replace operation
5550 	 *    that replaces the device object associated with the map's stripes,
5551 	 *    because the device object's id can change at any time during that
5552 	 *    final phase of the device replace operation
5553 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5554 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5555 	 *    which would cause a failure when updating the device item, which does
5556 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5557 	 *    Here we can't use the device_list_mutex because our caller already
5558 	 *    has locked the chunk_mutex, and the final phase of device replace
5559 	 *    acquires both mutexes - first the device_list_mutex and then the
5560 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5561 	 *    concurrent device replace.
5562 	 */
5563 	lockdep_assert_held(&fs_info->chunk_mutex);
5564 
5565 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5566 	if (IS_ERR(em)) {
5567 		ret = PTR_ERR(em);
5568 		btrfs_abort_transaction(trans, ret);
5569 		return ret;
5570 	}
5571 
5572 	map = em->map_lookup;
5573 	item_size = btrfs_chunk_item_size(map->num_stripes);
5574 
5575 	chunk = kzalloc(item_size, GFP_NOFS);
5576 	if (!chunk) {
5577 		ret = -ENOMEM;
5578 		btrfs_abort_transaction(trans, ret);
5579 		goto out;
5580 	}
5581 
5582 	for (i = 0; i < map->num_stripes; i++) {
5583 		struct btrfs_device *device = map->stripes[i].dev;
5584 
5585 		ret = btrfs_update_device(trans, device);
5586 		if (ret)
5587 			goto out;
5588 	}
5589 
5590 	stripe = &chunk->stripe;
5591 	for (i = 0; i < map->num_stripes; i++) {
5592 		struct btrfs_device *device = map->stripes[i].dev;
5593 		const u64 dev_offset = map->stripes[i].physical;
5594 
5595 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5596 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5597 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5598 		stripe++;
5599 	}
5600 
5601 	btrfs_set_stack_chunk_length(chunk, bg->length);
5602 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5603 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5604 	btrfs_set_stack_chunk_type(chunk, map->type);
5605 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5606 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5607 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5608 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5609 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5610 
5611 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5612 	key.type = BTRFS_CHUNK_ITEM_KEY;
5613 	key.offset = bg->start;
5614 
5615 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5616 	if (ret)
5617 		goto out;
5618 
5619 	bg->chunk_item_inserted = 1;
5620 
5621 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5622 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5623 		if (ret)
5624 			goto out;
5625 	}
5626 
5627 out:
5628 	kfree(chunk);
5629 	free_extent_map(em);
5630 	return ret;
5631 }
5632 
5633 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5634 {
5635 	struct btrfs_fs_info *fs_info = trans->fs_info;
5636 	u64 alloc_profile;
5637 	struct btrfs_block_group *meta_bg;
5638 	struct btrfs_block_group *sys_bg;
5639 
5640 	/*
5641 	 * When adding a new device for sprouting, the seed device is read-only
5642 	 * so we must first allocate a metadata and a system chunk. But before
5643 	 * adding the block group items to the extent, device and chunk btrees,
5644 	 * we must first:
5645 	 *
5646 	 * 1) Create both chunks without doing any changes to the btrees, as
5647 	 *    otherwise we would get -ENOSPC since the block groups from the
5648 	 *    seed device are read-only;
5649 	 *
5650 	 * 2) Add the device item for the new sprout device - finishing the setup
5651 	 *    of a new block group requires updating the device item in the chunk
5652 	 *    btree, so it must exist when we attempt to do it. The previous step
5653 	 *    ensures this does not fail with -ENOSPC.
5654 	 *
5655 	 * After that we can add the block group items to their btrees:
5656 	 * update existing device item in the chunk btree, add a new block group
5657 	 * item to the extent btree, add a new chunk item to the chunk btree and
5658 	 * finally add the new device extent items to the devices btree.
5659 	 */
5660 
5661 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5662 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5663 	if (IS_ERR(meta_bg))
5664 		return PTR_ERR(meta_bg);
5665 
5666 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5667 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5668 	if (IS_ERR(sys_bg))
5669 		return PTR_ERR(sys_bg);
5670 
5671 	return 0;
5672 }
5673 
5674 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5675 {
5676 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5677 
5678 	return btrfs_raid_array[index].tolerated_failures;
5679 }
5680 
5681 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5682 {
5683 	struct extent_map *em;
5684 	struct map_lookup *map;
5685 	int miss_ndevs = 0;
5686 	int i;
5687 	bool ret = true;
5688 
5689 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5690 	if (IS_ERR(em))
5691 		return false;
5692 
5693 	map = em->map_lookup;
5694 	for (i = 0; i < map->num_stripes; i++) {
5695 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5696 					&map->stripes[i].dev->dev_state)) {
5697 			miss_ndevs++;
5698 			continue;
5699 		}
5700 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5701 					&map->stripes[i].dev->dev_state)) {
5702 			ret = false;
5703 			goto end;
5704 		}
5705 	}
5706 
5707 	/*
5708 	 * If the number of missing devices is larger than max errors, we can
5709 	 * not write the data into that chunk successfully.
5710 	 */
5711 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5712 		ret = false;
5713 end:
5714 	free_extent_map(em);
5715 	return ret;
5716 }
5717 
5718 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5719 {
5720 	struct extent_map *em;
5721 
5722 	while (1) {
5723 		write_lock(&tree->lock);
5724 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5725 		if (em)
5726 			remove_extent_mapping(tree, em);
5727 		write_unlock(&tree->lock);
5728 		if (!em)
5729 			break;
5730 		/* once for us */
5731 		free_extent_map(em);
5732 		/* once for the tree */
5733 		free_extent_map(em);
5734 	}
5735 }
5736 
5737 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5738 {
5739 	struct extent_map *em;
5740 	struct map_lookup *map;
5741 	int ret;
5742 
5743 	em = btrfs_get_chunk_map(fs_info, logical, len);
5744 	if (IS_ERR(em))
5745 		/*
5746 		 * We could return errors for these cases, but that could get
5747 		 * ugly and we'd probably do the same thing which is just not do
5748 		 * anything else and exit, so return 1 so the callers don't try
5749 		 * to use other copies.
5750 		 */
5751 		return 1;
5752 
5753 	map = em->map_lookup;
5754 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5755 		ret = map->num_stripes;
5756 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5757 		ret = map->sub_stripes;
5758 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5759 		ret = 2;
5760 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5761 		/*
5762 		 * There could be two corrupted data stripes, we need
5763 		 * to loop retry in order to rebuild the correct data.
5764 		 *
5765 		 * Fail a stripe at a time on every retry except the
5766 		 * stripe under reconstruction.
5767 		 */
5768 		ret = map->num_stripes;
5769 	else
5770 		ret = 1;
5771 	free_extent_map(em);
5772 
5773 	down_read(&fs_info->dev_replace.rwsem);
5774 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5775 	    fs_info->dev_replace.tgtdev)
5776 		ret++;
5777 	up_read(&fs_info->dev_replace.rwsem);
5778 
5779 	return ret;
5780 }
5781 
5782 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5783 				    u64 logical)
5784 {
5785 	struct extent_map *em;
5786 	struct map_lookup *map;
5787 	unsigned long len = fs_info->sectorsize;
5788 
5789 	em = btrfs_get_chunk_map(fs_info, logical, len);
5790 
5791 	if (!WARN_ON(IS_ERR(em))) {
5792 		map = em->map_lookup;
5793 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5794 			len = map->stripe_len * nr_data_stripes(map);
5795 		free_extent_map(em);
5796 	}
5797 	return len;
5798 }
5799 
5800 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5801 {
5802 	struct extent_map *em;
5803 	struct map_lookup *map;
5804 	int ret = 0;
5805 
5806 	em = btrfs_get_chunk_map(fs_info, logical, len);
5807 
5808 	if(!WARN_ON(IS_ERR(em))) {
5809 		map = em->map_lookup;
5810 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5811 			ret = 1;
5812 		free_extent_map(em);
5813 	}
5814 	return ret;
5815 }
5816 
5817 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5818 			    struct map_lookup *map, int first,
5819 			    int dev_replace_is_ongoing)
5820 {
5821 	int i;
5822 	int num_stripes;
5823 	int preferred_mirror;
5824 	int tolerance;
5825 	struct btrfs_device *srcdev;
5826 
5827 	ASSERT((map->type &
5828 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5829 
5830 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5831 		num_stripes = map->sub_stripes;
5832 	else
5833 		num_stripes = map->num_stripes;
5834 
5835 	switch (fs_info->fs_devices->read_policy) {
5836 	default:
5837 		/* Shouldn't happen, just warn and use pid instead of failing */
5838 		btrfs_warn_rl(fs_info,
5839 			      "unknown read_policy type %u, reset to pid",
5840 			      fs_info->fs_devices->read_policy);
5841 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5842 		fallthrough;
5843 	case BTRFS_READ_POLICY_PID:
5844 		preferred_mirror = first + (current->pid % num_stripes);
5845 		break;
5846 	}
5847 
5848 	if (dev_replace_is_ongoing &&
5849 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5850 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5851 		srcdev = fs_info->dev_replace.srcdev;
5852 	else
5853 		srcdev = NULL;
5854 
5855 	/*
5856 	 * try to avoid the drive that is the source drive for a
5857 	 * dev-replace procedure, only choose it if no other non-missing
5858 	 * mirror is available
5859 	 */
5860 	for (tolerance = 0; tolerance < 2; tolerance++) {
5861 		if (map->stripes[preferred_mirror].dev->bdev &&
5862 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5863 			return preferred_mirror;
5864 		for (i = first; i < first + num_stripes; i++) {
5865 			if (map->stripes[i].dev->bdev &&
5866 			    (tolerance || map->stripes[i].dev != srcdev))
5867 				return i;
5868 		}
5869 	}
5870 
5871 	/* we couldn't find one that doesn't fail.  Just return something
5872 	 * and the io error handling code will clean up eventually
5873 	 */
5874 	return preferred_mirror;
5875 }
5876 
5877 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5878 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5879 {
5880 	int i;
5881 	int again = 1;
5882 
5883 	while (again) {
5884 		again = 0;
5885 		for (i = 0; i < num_stripes - 1; i++) {
5886 			/* Swap if parity is on a smaller index */
5887 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5888 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5889 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5890 				again = 1;
5891 			}
5892 		}
5893 	}
5894 }
5895 
5896 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5897 						       int total_stripes,
5898 						       int real_stripes)
5899 {
5900 	struct btrfs_io_context *bioc = kzalloc(
5901 		 /* The size of btrfs_io_context */
5902 		sizeof(struct btrfs_io_context) +
5903 		/* Plus the variable array for the stripes */
5904 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5905 		/* Plus the variable array for the tgt dev */
5906 		sizeof(int) * (real_stripes) +
5907 		/*
5908 		 * Plus the raid_map, which includes both the tgt dev
5909 		 * and the stripes.
5910 		 */
5911 		sizeof(u64) * (total_stripes),
5912 		GFP_NOFS|__GFP_NOFAIL);
5913 
5914 	atomic_set(&bioc->error, 0);
5915 	refcount_set(&bioc->refs, 1);
5916 
5917 	bioc->fs_info = fs_info;
5918 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5919 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5920 
5921 	return bioc;
5922 }
5923 
5924 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5925 {
5926 	WARN_ON(!refcount_read(&bioc->refs));
5927 	refcount_inc(&bioc->refs);
5928 }
5929 
5930 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5931 {
5932 	if (!bioc)
5933 		return;
5934 	if (refcount_dec_and_test(&bioc->refs))
5935 		kfree(bioc);
5936 }
5937 
5938 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5939 /*
5940  * Please note that, discard won't be sent to target device of device
5941  * replace.
5942  */
5943 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5944 					 u64 logical, u64 *length_ret,
5945 					 struct btrfs_io_context **bioc_ret)
5946 {
5947 	struct extent_map *em;
5948 	struct map_lookup *map;
5949 	struct btrfs_io_context *bioc;
5950 	u64 length = *length_ret;
5951 	u64 offset;
5952 	u64 stripe_nr;
5953 	u64 stripe_nr_end;
5954 	u64 stripe_end_offset;
5955 	u64 stripe_cnt;
5956 	u64 stripe_len;
5957 	u64 stripe_offset;
5958 	u64 num_stripes;
5959 	u32 stripe_index;
5960 	u32 factor = 0;
5961 	u32 sub_stripes = 0;
5962 	u64 stripes_per_dev = 0;
5963 	u32 remaining_stripes = 0;
5964 	u32 last_stripe = 0;
5965 	int ret = 0;
5966 	int i;
5967 
5968 	/* Discard always returns a bioc. */
5969 	ASSERT(bioc_ret);
5970 
5971 	em = btrfs_get_chunk_map(fs_info, logical, length);
5972 	if (IS_ERR(em))
5973 		return PTR_ERR(em);
5974 
5975 	map = em->map_lookup;
5976 	/* we don't discard raid56 yet */
5977 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5978 		ret = -EOPNOTSUPP;
5979 		goto out;
5980 	}
5981 
5982 	offset = logical - em->start;
5983 	length = min_t(u64, em->start + em->len - logical, length);
5984 	*length_ret = length;
5985 
5986 	stripe_len = map->stripe_len;
5987 	/*
5988 	 * stripe_nr counts the total number of stripes we have to stride
5989 	 * to get to this block
5990 	 */
5991 	stripe_nr = div64_u64(offset, stripe_len);
5992 
5993 	/* stripe_offset is the offset of this block in its stripe */
5994 	stripe_offset = offset - stripe_nr * stripe_len;
5995 
5996 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5997 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5998 	stripe_cnt = stripe_nr_end - stripe_nr;
5999 	stripe_end_offset = stripe_nr_end * map->stripe_len -
6000 			    (offset + length);
6001 	/*
6002 	 * after this, stripe_nr is the number of stripes on this
6003 	 * device we have to walk to find the data, and stripe_index is
6004 	 * the number of our device in the stripe array
6005 	 */
6006 	num_stripes = 1;
6007 	stripe_index = 0;
6008 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6009 			 BTRFS_BLOCK_GROUP_RAID10)) {
6010 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6011 			sub_stripes = 1;
6012 		else
6013 			sub_stripes = map->sub_stripes;
6014 
6015 		factor = map->num_stripes / sub_stripes;
6016 		num_stripes = min_t(u64, map->num_stripes,
6017 				    sub_stripes * stripe_cnt);
6018 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6019 		stripe_index *= sub_stripes;
6020 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6021 					      &remaining_stripes);
6022 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6023 		last_stripe *= sub_stripes;
6024 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6025 				BTRFS_BLOCK_GROUP_DUP)) {
6026 		num_stripes = map->num_stripes;
6027 	} else {
6028 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6029 					&stripe_index);
6030 	}
6031 
6032 	bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6033 	if (!bioc) {
6034 		ret = -ENOMEM;
6035 		goto out;
6036 	}
6037 
6038 	for (i = 0; i < num_stripes; i++) {
6039 		bioc->stripes[i].physical =
6040 			map->stripes[stripe_index].physical +
6041 			stripe_offset + stripe_nr * map->stripe_len;
6042 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6043 
6044 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6045 				 BTRFS_BLOCK_GROUP_RAID10)) {
6046 			bioc->stripes[i].length = stripes_per_dev *
6047 				map->stripe_len;
6048 
6049 			if (i / sub_stripes < remaining_stripes)
6050 				bioc->stripes[i].length += map->stripe_len;
6051 
6052 			/*
6053 			 * Special for the first stripe and
6054 			 * the last stripe:
6055 			 *
6056 			 * |-------|...|-------|
6057 			 *     |----------|
6058 			 *    off     end_off
6059 			 */
6060 			if (i < sub_stripes)
6061 				bioc->stripes[i].length -= stripe_offset;
6062 
6063 			if (stripe_index >= last_stripe &&
6064 			    stripe_index <= (last_stripe +
6065 					     sub_stripes - 1))
6066 				bioc->stripes[i].length -= stripe_end_offset;
6067 
6068 			if (i == sub_stripes - 1)
6069 				stripe_offset = 0;
6070 		} else {
6071 			bioc->stripes[i].length = length;
6072 		}
6073 
6074 		stripe_index++;
6075 		if (stripe_index == map->num_stripes) {
6076 			stripe_index = 0;
6077 			stripe_nr++;
6078 		}
6079 	}
6080 
6081 	*bioc_ret = bioc;
6082 	bioc->map_type = map->type;
6083 	bioc->num_stripes = num_stripes;
6084 out:
6085 	free_extent_map(em);
6086 	return ret;
6087 }
6088 
6089 /*
6090  * In dev-replace case, for repair case (that's the only case where the mirror
6091  * is selected explicitly when calling btrfs_map_block), blocks left of the
6092  * left cursor can also be read from the target drive.
6093  *
6094  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6095  * array of stripes.
6096  * For READ, it also needs to be supported using the same mirror number.
6097  *
6098  * If the requested block is not left of the left cursor, EIO is returned. This
6099  * can happen because btrfs_num_copies() returns one more in the dev-replace
6100  * case.
6101  */
6102 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6103 					 u64 logical, u64 length,
6104 					 u64 srcdev_devid, int *mirror_num,
6105 					 u64 *physical)
6106 {
6107 	struct btrfs_io_context *bioc = NULL;
6108 	int num_stripes;
6109 	int index_srcdev = 0;
6110 	int found = 0;
6111 	u64 physical_of_found = 0;
6112 	int i;
6113 	int ret = 0;
6114 
6115 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6116 				logical, &length, &bioc, 0, 0);
6117 	if (ret) {
6118 		ASSERT(bioc == NULL);
6119 		return ret;
6120 	}
6121 
6122 	num_stripes = bioc->num_stripes;
6123 	if (*mirror_num > num_stripes) {
6124 		/*
6125 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6126 		 * that means that the requested area is not left of the left
6127 		 * cursor
6128 		 */
6129 		btrfs_put_bioc(bioc);
6130 		return -EIO;
6131 	}
6132 
6133 	/*
6134 	 * process the rest of the function using the mirror_num of the source
6135 	 * drive. Therefore look it up first.  At the end, patch the device
6136 	 * pointer to the one of the target drive.
6137 	 */
6138 	for (i = 0; i < num_stripes; i++) {
6139 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6140 			continue;
6141 
6142 		/*
6143 		 * In case of DUP, in order to keep it simple, only add the
6144 		 * mirror with the lowest physical address
6145 		 */
6146 		if (found &&
6147 		    physical_of_found <= bioc->stripes[i].physical)
6148 			continue;
6149 
6150 		index_srcdev = i;
6151 		found = 1;
6152 		physical_of_found = bioc->stripes[i].physical;
6153 	}
6154 
6155 	btrfs_put_bioc(bioc);
6156 
6157 	ASSERT(found);
6158 	if (!found)
6159 		return -EIO;
6160 
6161 	*mirror_num = index_srcdev + 1;
6162 	*physical = physical_of_found;
6163 	return ret;
6164 }
6165 
6166 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6167 {
6168 	struct btrfs_block_group *cache;
6169 	bool ret;
6170 
6171 	/* Non zoned filesystem does not use "to_copy" flag */
6172 	if (!btrfs_is_zoned(fs_info))
6173 		return false;
6174 
6175 	cache = btrfs_lookup_block_group(fs_info, logical);
6176 
6177 	spin_lock(&cache->lock);
6178 	ret = cache->to_copy;
6179 	spin_unlock(&cache->lock);
6180 
6181 	btrfs_put_block_group(cache);
6182 	return ret;
6183 }
6184 
6185 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6186 				      struct btrfs_io_context **bioc_ret,
6187 				      struct btrfs_dev_replace *dev_replace,
6188 				      u64 logical,
6189 				      int *num_stripes_ret, int *max_errors_ret)
6190 {
6191 	struct btrfs_io_context *bioc = *bioc_ret;
6192 	u64 srcdev_devid = dev_replace->srcdev->devid;
6193 	int tgtdev_indexes = 0;
6194 	int num_stripes = *num_stripes_ret;
6195 	int max_errors = *max_errors_ret;
6196 	int i;
6197 
6198 	if (op == BTRFS_MAP_WRITE) {
6199 		int index_where_to_add;
6200 
6201 		/*
6202 		 * A block group which have "to_copy" set will eventually
6203 		 * copied by dev-replace process. We can avoid cloning IO here.
6204 		 */
6205 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6206 			return;
6207 
6208 		/*
6209 		 * duplicate the write operations while the dev replace
6210 		 * procedure is running. Since the copying of the old disk to
6211 		 * the new disk takes place at run time while the filesystem is
6212 		 * mounted writable, the regular write operations to the old
6213 		 * disk have to be duplicated to go to the new disk as well.
6214 		 *
6215 		 * Note that device->missing is handled by the caller, and that
6216 		 * the write to the old disk is already set up in the stripes
6217 		 * array.
6218 		 */
6219 		index_where_to_add = num_stripes;
6220 		for (i = 0; i < num_stripes; i++) {
6221 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6222 				/* write to new disk, too */
6223 				struct btrfs_io_stripe *new =
6224 					bioc->stripes + index_where_to_add;
6225 				struct btrfs_io_stripe *old =
6226 					bioc->stripes + i;
6227 
6228 				new->physical = old->physical;
6229 				new->length = old->length;
6230 				new->dev = dev_replace->tgtdev;
6231 				bioc->tgtdev_map[i] = index_where_to_add;
6232 				index_where_to_add++;
6233 				max_errors++;
6234 				tgtdev_indexes++;
6235 			}
6236 		}
6237 		num_stripes = index_where_to_add;
6238 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6239 		int index_srcdev = 0;
6240 		int found = 0;
6241 		u64 physical_of_found = 0;
6242 
6243 		/*
6244 		 * During the dev-replace procedure, the target drive can also
6245 		 * be used to read data in case it is needed to repair a corrupt
6246 		 * block elsewhere. This is possible if the requested area is
6247 		 * left of the left cursor. In this area, the target drive is a
6248 		 * full copy of the source drive.
6249 		 */
6250 		for (i = 0; i < num_stripes; i++) {
6251 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6252 				/*
6253 				 * In case of DUP, in order to keep it simple,
6254 				 * only add the mirror with the lowest physical
6255 				 * address
6256 				 */
6257 				if (found &&
6258 				    physical_of_found <= bioc->stripes[i].physical)
6259 					continue;
6260 				index_srcdev = i;
6261 				found = 1;
6262 				physical_of_found = bioc->stripes[i].physical;
6263 			}
6264 		}
6265 		if (found) {
6266 			struct btrfs_io_stripe *tgtdev_stripe =
6267 				bioc->stripes + num_stripes;
6268 
6269 			tgtdev_stripe->physical = physical_of_found;
6270 			tgtdev_stripe->length =
6271 				bioc->stripes[index_srcdev].length;
6272 			tgtdev_stripe->dev = dev_replace->tgtdev;
6273 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6274 
6275 			tgtdev_indexes++;
6276 			num_stripes++;
6277 		}
6278 	}
6279 
6280 	*num_stripes_ret = num_stripes;
6281 	*max_errors_ret = max_errors;
6282 	bioc->num_tgtdevs = tgtdev_indexes;
6283 	*bioc_ret = bioc;
6284 }
6285 
6286 static bool need_full_stripe(enum btrfs_map_op op)
6287 {
6288 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6289 }
6290 
6291 /*
6292  * Calculate the geometry of a particular (address, len) tuple. This
6293  * information is used to calculate how big a particular bio can get before it
6294  * straddles a stripe.
6295  *
6296  * @fs_info: the filesystem
6297  * @em:      mapping containing the logical extent
6298  * @op:      type of operation - write or read
6299  * @logical: address that we want to figure out the geometry of
6300  * @io_geom: pointer used to return values
6301  *
6302  * Returns < 0 in case a chunk for the given logical address cannot be found,
6303  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6304  */
6305 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6306 			  enum btrfs_map_op op, u64 logical,
6307 			  struct btrfs_io_geometry *io_geom)
6308 {
6309 	struct map_lookup *map;
6310 	u64 len;
6311 	u64 offset;
6312 	u64 stripe_offset;
6313 	u64 stripe_nr;
6314 	u64 stripe_len;
6315 	u64 raid56_full_stripe_start = (u64)-1;
6316 	int data_stripes;
6317 
6318 	ASSERT(op != BTRFS_MAP_DISCARD);
6319 
6320 	map = em->map_lookup;
6321 	/* Offset of this logical address in the chunk */
6322 	offset = logical - em->start;
6323 	/* Len of a stripe in a chunk */
6324 	stripe_len = map->stripe_len;
6325 	/* Stripe where this block falls in */
6326 	stripe_nr = div64_u64(offset, stripe_len);
6327 	/* Offset of stripe in the chunk */
6328 	stripe_offset = stripe_nr * stripe_len;
6329 	if (offset < stripe_offset) {
6330 		btrfs_crit(fs_info,
6331 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6332 			stripe_offset, offset, em->start, logical, stripe_len);
6333 		return -EINVAL;
6334 	}
6335 
6336 	/* stripe_offset is the offset of this block in its stripe */
6337 	stripe_offset = offset - stripe_offset;
6338 	data_stripes = nr_data_stripes(map);
6339 
6340 	/* Only stripe based profiles needs to check against stripe length. */
6341 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6342 		u64 max_len = stripe_len - stripe_offset;
6343 
6344 		/*
6345 		 * In case of raid56, we need to know the stripe aligned start
6346 		 */
6347 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6348 			unsigned long full_stripe_len = stripe_len * data_stripes;
6349 			raid56_full_stripe_start = offset;
6350 
6351 			/*
6352 			 * Allow a write of a full stripe, but make sure we
6353 			 * don't allow straddling of stripes
6354 			 */
6355 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6356 					full_stripe_len);
6357 			raid56_full_stripe_start *= full_stripe_len;
6358 
6359 			/*
6360 			 * For writes to RAID[56], allow a full stripeset across
6361 			 * all disks. For other RAID types and for RAID[56]
6362 			 * reads, just allow a single stripe (on a single disk).
6363 			 */
6364 			if (op == BTRFS_MAP_WRITE) {
6365 				max_len = stripe_len * data_stripes -
6366 					  (offset - raid56_full_stripe_start);
6367 			}
6368 		}
6369 		len = min_t(u64, em->len - offset, max_len);
6370 	} else {
6371 		len = em->len - offset;
6372 	}
6373 
6374 	io_geom->len = len;
6375 	io_geom->offset = offset;
6376 	io_geom->stripe_len = stripe_len;
6377 	io_geom->stripe_nr = stripe_nr;
6378 	io_geom->stripe_offset = stripe_offset;
6379 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6380 
6381 	return 0;
6382 }
6383 
6384 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6385 			     enum btrfs_map_op op,
6386 			     u64 logical, u64 *length,
6387 			     struct btrfs_io_context **bioc_ret,
6388 			     int mirror_num, int need_raid_map)
6389 {
6390 	struct extent_map *em;
6391 	struct map_lookup *map;
6392 	u64 stripe_offset;
6393 	u64 stripe_nr;
6394 	u64 stripe_len;
6395 	u32 stripe_index;
6396 	int data_stripes;
6397 	int i;
6398 	int ret = 0;
6399 	int num_stripes;
6400 	int max_errors = 0;
6401 	int tgtdev_indexes = 0;
6402 	struct btrfs_io_context *bioc = NULL;
6403 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6404 	int dev_replace_is_ongoing = 0;
6405 	int num_alloc_stripes;
6406 	int patch_the_first_stripe_for_dev_replace = 0;
6407 	u64 physical_to_patch_in_first_stripe = 0;
6408 	u64 raid56_full_stripe_start = (u64)-1;
6409 	struct btrfs_io_geometry geom;
6410 
6411 	ASSERT(bioc_ret);
6412 	ASSERT(op != BTRFS_MAP_DISCARD);
6413 
6414 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6415 	ASSERT(!IS_ERR(em));
6416 
6417 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6418 	if (ret < 0)
6419 		return ret;
6420 
6421 	map = em->map_lookup;
6422 
6423 	*length = geom.len;
6424 	stripe_len = geom.stripe_len;
6425 	stripe_nr = geom.stripe_nr;
6426 	stripe_offset = geom.stripe_offset;
6427 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6428 	data_stripes = nr_data_stripes(map);
6429 
6430 	down_read(&dev_replace->rwsem);
6431 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6432 	/*
6433 	 * Hold the semaphore for read during the whole operation, write is
6434 	 * requested at commit time but must wait.
6435 	 */
6436 	if (!dev_replace_is_ongoing)
6437 		up_read(&dev_replace->rwsem);
6438 
6439 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6440 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6441 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6442 						    dev_replace->srcdev->devid,
6443 						    &mirror_num,
6444 					    &physical_to_patch_in_first_stripe);
6445 		if (ret)
6446 			goto out;
6447 		else
6448 			patch_the_first_stripe_for_dev_replace = 1;
6449 	} else if (mirror_num > map->num_stripes) {
6450 		mirror_num = 0;
6451 	}
6452 
6453 	num_stripes = 1;
6454 	stripe_index = 0;
6455 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6456 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6457 				&stripe_index);
6458 		if (!need_full_stripe(op))
6459 			mirror_num = 1;
6460 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6461 		if (need_full_stripe(op))
6462 			num_stripes = map->num_stripes;
6463 		else if (mirror_num)
6464 			stripe_index = mirror_num - 1;
6465 		else {
6466 			stripe_index = find_live_mirror(fs_info, map, 0,
6467 					    dev_replace_is_ongoing);
6468 			mirror_num = stripe_index + 1;
6469 		}
6470 
6471 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6472 		if (need_full_stripe(op)) {
6473 			num_stripes = map->num_stripes;
6474 		} else if (mirror_num) {
6475 			stripe_index = mirror_num - 1;
6476 		} else {
6477 			mirror_num = 1;
6478 		}
6479 
6480 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6481 		u32 factor = map->num_stripes / map->sub_stripes;
6482 
6483 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6484 		stripe_index *= map->sub_stripes;
6485 
6486 		if (need_full_stripe(op))
6487 			num_stripes = map->sub_stripes;
6488 		else if (mirror_num)
6489 			stripe_index += mirror_num - 1;
6490 		else {
6491 			int old_stripe_index = stripe_index;
6492 			stripe_index = find_live_mirror(fs_info, map,
6493 					      stripe_index,
6494 					      dev_replace_is_ongoing);
6495 			mirror_num = stripe_index - old_stripe_index + 1;
6496 		}
6497 
6498 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6499 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500 			/* push stripe_nr back to the start of the full stripe */
6501 			stripe_nr = div64_u64(raid56_full_stripe_start,
6502 					stripe_len * data_stripes);
6503 
6504 			/* RAID[56] write or recovery. Return all stripes */
6505 			num_stripes = map->num_stripes;
6506 			max_errors = nr_parity_stripes(map);
6507 
6508 			*length = map->stripe_len;
6509 			stripe_index = 0;
6510 			stripe_offset = 0;
6511 		} else {
6512 			/*
6513 			 * Mirror #0 or #1 means the original data block.
6514 			 * Mirror #2 is RAID5 parity block.
6515 			 * Mirror #3 is RAID6 Q block.
6516 			 */
6517 			stripe_nr = div_u64_rem(stripe_nr,
6518 					data_stripes, &stripe_index);
6519 			if (mirror_num > 1)
6520 				stripe_index = data_stripes + mirror_num - 2;
6521 
6522 			/* We distribute the parity blocks across stripes */
6523 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6524 					&stripe_index);
6525 			if (!need_full_stripe(op) && mirror_num <= 1)
6526 				mirror_num = 1;
6527 		}
6528 	} else {
6529 		/*
6530 		 * after this, stripe_nr is the number of stripes on this
6531 		 * device we have to walk to find the data, and stripe_index is
6532 		 * the number of our device in the stripe array
6533 		 */
6534 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6535 				&stripe_index);
6536 		mirror_num = stripe_index + 1;
6537 	}
6538 	if (stripe_index >= map->num_stripes) {
6539 		btrfs_crit(fs_info,
6540 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6541 			   stripe_index, map->num_stripes);
6542 		ret = -EINVAL;
6543 		goto out;
6544 	}
6545 
6546 	num_alloc_stripes = num_stripes;
6547 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6548 		if (op == BTRFS_MAP_WRITE)
6549 			num_alloc_stripes <<= 1;
6550 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6551 			num_alloc_stripes++;
6552 		tgtdev_indexes = num_stripes;
6553 	}
6554 
6555 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6556 	if (!bioc) {
6557 		ret = -ENOMEM;
6558 		goto out;
6559 	}
6560 
6561 	for (i = 0; i < num_stripes; i++) {
6562 		bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6563 			stripe_offset + stripe_nr * map->stripe_len;
6564 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6565 		stripe_index++;
6566 	}
6567 
6568 	/* Build raid_map */
6569 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6570 	    (need_full_stripe(op) || mirror_num > 1)) {
6571 		u64 tmp;
6572 		unsigned rot;
6573 
6574 		/* Work out the disk rotation on this stripe-set */
6575 		div_u64_rem(stripe_nr, num_stripes, &rot);
6576 
6577 		/* Fill in the logical address of each stripe */
6578 		tmp = stripe_nr * data_stripes;
6579 		for (i = 0; i < data_stripes; i++)
6580 			bioc->raid_map[(i + rot) % num_stripes] =
6581 				em->start + (tmp + i) * map->stripe_len;
6582 
6583 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6584 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6585 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6586 				RAID6_Q_STRIPE;
6587 
6588 		sort_parity_stripes(bioc, num_stripes);
6589 	}
6590 
6591 	if (need_full_stripe(op))
6592 		max_errors = btrfs_chunk_max_errors(map);
6593 
6594 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6595 	    need_full_stripe(op)) {
6596 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6597 					  &num_stripes, &max_errors);
6598 	}
6599 
6600 	*bioc_ret = bioc;
6601 	bioc->map_type = map->type;
6602 	bioc->num_stripes = num_stripes;
6603 	bioc->max_errors = max_errors;
6604 	bioc->mirror_num = mirror_num;
6605 
6606 	/*
6607 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6608 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6609 	 * available as a mirror
6610 	 */
6611 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6612 		WARN_ON(num_stripes > 1);
6613 		bioc->stripes[0].dev = dev_replace->tgtdev;
6614 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6615 		bioc->mirror_num = map->num_stripes + 1;
6616 	}
6617 out:
6618 	if (dev_replace_is_ongoing) {
6619 		lockdep_assert_held(&dev_replace->rwsem);
6620 		/* Unlock and let waiting writers proceed */
6621 		up_read(&dev_replace->rwsem);
6622 	}
6623 	free_extent_map(em);
6624 	return ret;
6625 }
6626 
6627 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6628 		      u64 logical, u64 *length,
6629 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6630 {
6631 	if (op == BTRFS_MAP_DISCARD)
6632 		return __btrfs_map_block_for_discard(fs_info, logical,
6633 						     length, bioc_ret);
6634 
6635 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6636 				 mirror_num, 0);
6637 }
6638 
6639 /* For Scrub/replace */
6640 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6641 		     u64 logical, u64 *length,
6642 		     struct btrfs_io_context **bioc_ret)
6643 {
6644 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6645 }
6646 
6647 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6648 {
6649 	bio->bi_private = bioc->private;
6650 	bio->bi_end_io = bioc->end_io;
6651 	bio_endio(bio);
6652 
6653 	btrfs_put_bioc(bioc);
6654 }
6655 
6656 static void btrfs_end_bio(struct bio *bio)
6657 {
6658 	struct btrfs_io_context *bioc = bio->bi_private;
6659 	int is_orig_bio = 0;
6660 
6661 	if (bio->bi_status) {
6662 		atomic_inc(&bioc->error);
6663 		if (bio->bi_status == BLK_STS_IOERR ||
6664 		    bio->bi_status == BLK_STS_TARGET) {
6665 			struct btrfs_device *dev = btrfs_bio(bio)->device;
6666 
6667 			ASSERT(dev->bdev);
6668 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6669 				btrfs_dev_stat_inc_and_print(dev,
6670 						BTRFS_DEV_STAT_WRITE_ERRS);
6671 			else if (!(bio->bi_opf & REQ_RAHEAD))
6672 				btrfs_dev_stat_inc_and_print(dev,
6673 						BTRFS_DEV_STAT_READ_ERRS);
6674 			if (bio->bi_opf & REQ_PREFLUSH)
6675 				btrfs_dev_stat_inc_and_print(dev,
6676 						BTRFS_DEV_STAT_FLUSH_ERRS);
6677 		}
6678 	}
6679 
6680 	if (bio == bioc->orig_bio)
6681 		is_orig_bio = 1;
6682 
6683 	btrfs_bio_counter_dec(bioc->fs_info);
6684 
6685 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6686 		if (!is_orig_bio) {
6687 			bio_put(bio);
6688 			bio = bioc->orig_bio;
6689 		}
6690 
6691 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6692 		/* only send an error to the higher layers if it is
6693 		 * beyond the tolerance of the btrfs bio
6694 		 */
6695 		if (atomic_read(&bioc->error) > bioc->max_errors) {
6696 			bio->bi_status = BLK_STS_IOERR;
6697 		} else {
6698 			/*
6699 			 * this bio is actually up to date, we didn't
6700 			 * go over the max number of errors
6701 			 */
6702 			bio->bi_status = BLK_STS_OK;
6703 		}
6704 
6705 		btrfs_end_bioc(bioc, bio);
6706 	} else if (!is_orig_bio) {
6707 		bio_put(bio);
6708 	}
6709 }
6710 
6711 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6712 			      u64 physical, struct btrfs_device *dev)
6713 {
6714 	struct btrfs_fs_info *fs_info = bioc->fs_info;
6715 
6716 	bio->bi_private = bioc;
6717 	btrfs_bio(bio)->device = dev;
6718 	bio->bi_end_io = btrfs_end_bio;
6719 	bio->bi_iter.bi_sector = physical >> 9;
6720 	/*
6721 	 * For zone append writing, bi_sector must point the beginning of the
6722 	 * zone
6723 	 */
6724 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6725 		if (btrfs_dev_is_sequential(dev, physical)) {
6726 			u64 zone_start = round_down(physical, fs_info->zone_size);
6727 
6728 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6729 		} else {
6730 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6731 			bio->bi_opf |= REQ_OP_WRITE;
6732 		}
6733 	}
6734 	btrfs_debug_in_rcu(fs_info,
6735 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6736 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6737 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6738 		dev->devid, bio->bi_iter.bi_size);
6739 	bio_set_dev(bio, dev->bdev);
6740 
6741 	btrfs_bio_counter_inc_noblocked(fs_info);
6742 
6743 	btrfsic_submit_bio(bio);
6744 }
6745 
6746 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6747 {
6748 	atomic_inc(&bioc->error);
6749 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6750 		/* Should be the original bio. */
6751 		WARN_ON(bio != bioc->orig_bio);
6752 
6753 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6754 		bio->bi_iter.bi_sector = logical >> 9;
6755 		if (atomic_read(&bioc->error) > bioc->max_errors)
6756 			bio->bi_status = BLK_STS_IOERR;
6757 		else
6758 			bio->bi_status = BLK_STS_OK;
6759 		btrfs_end_bioc(bioc, bio);
6760 	}
6761 }
6762 
6763 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6764 			   int mirror_num)
6765 {
6766 	struct btrfs_device *dev;
6767 	struct bio *first_bio = bio;
6768 	u64 logical = bio->bi_iter.bi_sector << 9;
6769 	u64 length = 0;
6770 	u64 map_length;
6771 	int ret;
6772 	int dev_nr;
6773 	int total_devs;
6774 	struct btrfs_io_context *bioc = NULL;
6775 
6776 	length = bio->bi_iter.bi_size;
6777 	map_length = length;
6778 
6779 	btrfs_bio_counter_inc_blocked(fs_info);
6780 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6781 				&map_length, &bioc, mirror_num, 1);
6782 	if (ret) {
6783 		btrfs_bio_counter_dec(fs_info);
6784 		return errno_to_blk_status(ret);
6785 	}
6786 
6787 	total_devs = bioc->num_stripes;
6788 	bioc->orig_bio = first_bio;
6789 	bioc->private = first_bio->bi_private;
6790 	bioc->end_io = first_bio->bi_end_io;
6791 	atomic_set(&bioc->stripes_pending, bioc->num_stripes);
6792 
6793 	if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6794 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6795 		/* In this case, map_length has been set to the length of
6796 		   a single stripe; not the whole write */
6797 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6798 			ret = raid56_parity_write(bio, bioc, map_length);
6799 		} else {
6800 			ret = raid56_parity_recover(bio, bioc, map_length,
6801 						    mirror_num, 1);
6802 		}
6803 
6804 		btrfs_bio_counter_dec(fs_info);
6805 		return errno_to_blk_status(ret);
6806 	}
6807 
6808 	if (map_length < length) {
6809 		btrfs_crit(fs_info,
6810 			   "mapping failed logical %llu bio len %llu len %llu",
6811 			   logical, length, map_length);
6812 		BUG();
6813 	}
6814 
6815 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6816 		dev = bioc->stripes[dev_nr].dev;
6817 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6818 						   &dev->dev_state) ||
6819 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6820 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6821 			bioc_error(bioc, first_bio, logical);
6822 			continue;
6823 		}
6824 
6825 		if (dev_nr < total_devs - 1)
6826 			bio = btrfs_bio_clone(first_bio);
6827 		else
6828 			bio = first_bio;
6829 
6830 		submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6831 	}
6832 	btrfs_bio_counter_dec(fs_info);
6833 	return BLK_STS_OK;
6834 }
6835 
6836 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6837 				      const struct btrfs_fs_devices *fs_devices)
6838 {
6839 	if (args->fsid == NULL)
6840 		return true;
6841 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6842 		return true;
6843 	return false;
6844 }
6845 
6846 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6847 				  const struct btrfs_device *device)
6848 {
6849 	ASSERT((args->devid != (u64)-1) || args->missing);
6850 
6851 	if ((args->devid != (u64)-1) && device->devid != args->devid)
6852 		return false;
6853 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6854 		return false;
6855 	if (!args->missing)
6856 		return true;
6857 	if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6858 	    !device->bdev)
6859 		return true;
6860 	return false;
6861 }
6862 
6863 /*
6864  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6865  * return NULL.
6866  *
6867  * If devid and uuid are both specified, the match must be exact, otherwise
6868  * only devid is used.
6869  */
6870 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6871 				       const struct btrfs_dev_lookup_args *args)
6872 {
6873 	struct btrfs_device *device;
6874 	struct btrfs_fs_devices *seed_devs;
6875 
6876 	if (dev_args_match_fs_devices(args, fs_devices)) {
6877 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6878 			if (dev_args_match_device(args, device))
6879 				return device;
6880 		}
6881 	}
6882 
6883 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6884 		if (!dev_args_match_fs_devices(args, seed_devs))
6885 			continue;
6886 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6887 			if (dev_args_match_device(args, device))
6888 				return device;
6889 		}
6890 	}
6891 
6892 	return NULL;
6893 }
6894 
6895 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6896 					    u64 devid, u8 *dev_uuid)
6897 {
6898 	struct btrfs_device *device;
6899 	unsigned int nofs_flag;
6900 
6901 	/*
6902 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6903 	 * allocation, however we don't want to change btrfs_alloc_device() to
6904 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6905 	 * places.
6906 	 */
6907 	nofs_flag = memalloc_nofs_save();
6908 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6909 	memalloc_nofs_restore(nofs_flag);
6910 	if (IS_ERR(device))
6911 		return device;
6912 
6913 	list_add(&device->dev_list, &fs_devices->devices);
6914 	device->fs_devices = fs_devices;
6915 	fs_devices->num_devices++;
6916 
6917 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6918 	fs_devices->missing_devices++;
6919 
6920 	return device;
6921 }
6922 
6923 /**
6924  * btrfs_alloc_device - allocate struct btrfs_device
6925  * @fs_info:	used only for generating a new devid, can be NULL if
6926  *		devid is provided (i.e. @devid != NULL).
6927  * @devid:	a pointer to devid for this device.  If NULL a new devid
6928  *		is generated.
6929  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6930  *		is generated.
6931  *
6932  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6933  * on error.  Returned struct is not linked onto any lists and must be
6934  * destroyed with btrfs_free_device.
6935  */
6936 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6937 					const u64 *devid,
6938 					const u8 *uuid)
6939 {
6940 	struct btrfs_device *dev;
6941 	u64 tmp;
6942 
6943 	if (WARN_ON(!devid && !fs_info))
6944 		return ERR_PTR(-EINVAL);
6945 
6946 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6947 	if (!dev)
6948 		return ERR_PTR(-ENOMEM);
6949 
6950 	/*
6951 	 * Preallocate a bio that's always going to be used for flushing device
6952 	 * barriers and matches the device lifespan
6953 	 */
6954 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6955 	if (!dev->flush_bio) {
6956 		kfree(dev);
6957 		return ERR_PTR(-ENOMEM);
6958 	}
6959 
6960 	INIT_LIST_HEAD(&dev->dev_list);
6961 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6962 	INIT_LIST_HEAD(&dev->post_commit_list);
6963 
6964 	atomic_set(&dev->dev_stats_ccnt, 0);
6965 	btrfs_device_data_ordered_init(dev);
6966 	extent_io_tree_init(fs_info, &dev->alloc_state,
6967 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6968 
6969 	if (devid)
6970 		tmp = *devid;
6971 	else {
6972 		int ret;
6973 
6974 		ret = find_next_devid(fs_info, &tmp);
6975 		if (ret) {
6976 			btrfs_free_device(dev);
6977 			return ERR_PTR(ret);
6978 		}
6979 	}
6980 	dev->devid = tmp;
6981 
6982 	if (uuid)
6983 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6984 	else
6985 		generate_random_uuid(dev->uuid);
6986 
6987 	return dev;
6988 }
6989 
6990 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6991 					u64 devid, u8 *uuid, bool error)
6992 {
6993 	if (error)
6994 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6995 			      devid, uuid);
6996 	else
6997 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6998 			      devid, uuid);
6999 }
7000 
7001 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7002 {
7003 	const int data_stripes = calc_data_stripes(type, num_stripes);
7004 
7005 	return div_u64(chunk_len, data_stripes);
7006 }
7007 
7008 #if BITS_PER_LONG == 32
7009 /*
7010  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7011  * can't be accessed on 32bit systems.
7012  *
7013  * This function do mount time check to reject the fs if it already has
7014  * metadata chunk beyond that limit.
7015  */
7016 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7017 				  u64 logical, u64 length, u64 type)
7018 {
7019 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7020 		return 0;
7021 
7022 	if (logical + length < MAX_LFS_FILESIZE)
7023 		return 0;
7024 
7025 	btrfs_err_32bit_limit(fs_info);
7026 	return -EOVERFLOW;
7027 }
7028 
7029 /*
7030  * This is to give early warning for any metadata chunk reaching
7031  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7032  * Although we can still access the metadata, it's not going to be possible
7033  * once the limit is reached.
7034  */
7035 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7036 				  u64 logical, u64 length, u64 type)
7037 {
7038 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7039 		return;
7040 
7041 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7042 		return;
7043 
7044 	btrfs_warn_32bit_limit(fs_info);
7045 }
7046 #endif
7047 
7048 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7049 						  u64 devid, u8 *uuid)
7050 {
7051 	struct btrfs_device *dev;
7052 
7053 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7054 		btrfs_report_missing_device(fs_info, devid, uuid, true);
7055 		return ERR_PTR(-ENOENT);
7056 	}
7057 
7058 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7059 	if (IS_ERR(dev)) {
7060 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7061 			  devid, PTR_ERR(dev));
7062 		return dev;
7063 	}
7064 	btrfs_report_missing_device(fs_info, devid, uuid, false);
7065 
7066 	return dev;
7067 }
7068 
7069 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7070 			  struct btrfs_chunk *chunk)
7071 {
7072 	BTRFS_DEV_LOOKUP_ARGS(args);
7073 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7074 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7075 	struct map_lookup *map;
7076 	struct extent_map *em;
7077 	u64 logical;
7078 	u64 length;
7079 	u64 devid;
7080 	u64 type;
7081 	u8 uuid[BTRFS_UUID_SIZE];
7082 	int num_stripes;
7083 	int ret;
7084 	int i;
7085 
7086 	logical = key->offset;
7087 	length = btrfs_chunk_length(leaf, chunk);
7088 	type = btrfs_chunk_type(leaf, chunk);
7089 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7090 
7091 #if BITS_PER_LONG == 32
7092 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7093 	if (ret < 0)
7094 		return ret;
7095 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7096 #endif
7097 
7098 	/*
7099 	 * Only need to verify chunk item if we're reading from sys chunk array,
7100 	 * as chunk item in tree block is already verified by tree-checker.
7101 	 */
7102 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7103 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7104 		if (ret)
7105 			return ret;
7106 	}
7107 
7108 	read_lock(&map_tree->lock);
7109 	em = lookup_extent_mapping(map_tree, logical, 1);
7110 	read_unlock(&map_tree->lock);
7111 
7112 	/* already mapped? */
7113 	if (em && em->start <= logical && em->start + em->len > logical) {
7114 		free_extent_map(em);
7115 		return 0;
7116 	} else if (em) {
7117 		free_extent_map(em);
7118 	}
7119 
7120 	em = alloc_extent_map();
7121 	if (!em)
7122 		return -ENOMEM;
7123 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7124 	if (!map) {
7125 		free_extent_map(em);
7126 		return -ENOMEM;
7127 	}
7128 
7129 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7130 	em->map_lookup = map;
7131 	em->start = logical;
7132 	em->len = length;
7133 	em->orig_start = 0;
7134 	em->block_start = 0;
7135 	em->block_len = em->len;
7136 
7137 	map->num_stripes = num_stripes;
7138 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7139 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7140 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7141 	map->type = type;
7142 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7143 	map->verified_stripes = 0;
7144 	em->orig_block_len = calc_stripe_length(type, em->len,
7145 						map->num_stripes);
7146 	for (i = 0; i < num_stripes; i++) {
7147 		map->stripes[i].physical =
7148 			btrfs_stripe_offset_nr(leaf, chunk, i);
7149 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7150 		args.devid = devid;
7151 		read_extent_buffer(leaf, uuid, (unsigned long)
7152 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7153 				   BTRFS_UUID_SIZE);
7154 		args.uuid = uuid;
7155 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7156 		if (!map->stripes[i].dev) {
7157 			map->stripes[i].dev = handle_missing_device(fs_info,
7158 								    devid, uuid);
7159 			if (IS_ERR(map->stripes[i].dev)) {
7160 				free_extent_map(em);
7161 				return PTR_ERR(map->stripes[i].dev);
7162 			}
7163 		}
7164 
7165 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7166 				&(map->stripes[i].dev->dev_state));
7167 	}
7168 
7169 	write_lock(&map_tree->lock);
7170 	ret = add_extent_mapping(map_tree, em, 0);
7171 	write_unlock(&map_tree->lock);
7172 	if (ret < 0) {
7173 		btrfs_err(fs_info,
7174 			  "failed to add chunk map, start=%llu len=%llu: %d",
7175 			  em->start, em->len, ret);
7176 	}
7177 	free_extent_map(em);
7178 
7179 	return ret;
7180 }
7181 
7182 static void fill_device_from_item(struct extent_buffer *leaf,
7183 				 struct btrfs_dev_item *dev_item,
7184 				 struct btrfs_device *device)
7185 {
7186 	unsigned long ptr;
7187 
7188 	device->devid = btrfs_device_id(leaf, dev_item);
7189 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7190 	device->total_bytes = device->disk_total_bytes;
7191 	device->commit_total_bytes = device->disk_total_bytes;
7192 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7193 	device->commit_bytes_used = device->bytes_used;
7194 	device->type = btrfs_device_type(leaf, dev_item);
7195 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7196 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7197 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7198 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7199 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7200 
7201 	ptr = btrfs_device_uuid(dev_item);
7202 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7203 }
7204 
7205 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7206 						  u8 *fsid)
7207 {
7208 	struct btrfs_fs_devices *fs_devices;
7209 	int ret;
7210 
7211 	lockdep_assert_held(&uuid_mutex);
7212 	ASSERT(fsid);
7213 
7214 	/* This will match only for multi-device seed fs */
7215 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7216 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7217 			return fs_devices;
7218 
7219 
7220 	fs_devices = find_fsid(fsid, NULL);
7221 	if (!fs_devices) {
7222 		if (!btrfs_test_opt(fs_info, DEGRADED))
7223 			return ERR_PTR(-ENOENT);
7224 
7225 		fs_devices = alloc_fs_devices(fsid, NULL);
7226 		if (IS_ERR(fs_devices))
7227 			return fs_devices;
7228 
7229 		fs_devices->seeding = true;
7230 		fs_devices->opened = 1;
7231 		return fs_devices;
7232 	}
7233 
7234 	/*
7235 	 * Upon first call for a seed fs fsid, just create a private copy of the
7236 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7237 	 */
7238 	fs_devices = clone_fs_devices(fs_devices);
7239 	if (IS_ERR(fs_devices))
7240 		return fs_devices;
7241 
7242 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7243 	if (ret) {
7244 		free_fs_devices(fs_devices);
7245 		return ERR_PTR(ret);
7246 	}
7247 
7248 	if (!fs_devices->seeding) {
7249 		close_fs_devices(fs_devices);
7250 		free_fs_devices(fs_devices);
7251 		return ERR_PTR(-EINVAL);
7252 	}
7253 
7254 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7255 
7256 	return fs_devices;
7257 }
7258 
7259 static int read_one_dev(struct extent_buffer *leaf,
7260 			struct btrfs_dev_item *dev_item)
7261 {
7262 	BTRFS_DEV_LOOKUP_ARGS(args);
7263 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7264 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7265 	struct btrfs_device *device;
7266 	u64 devid;
7267 	int ret;
7268 	u8 fs_uuid[BTRFS_FSID_SIZE];
7269 	u8 dev_uuid[BTRFS_UUID_SIZE];
7270 
7271 	devid = args.devid = btrfs_device_id(leaf, dev_item);
7272 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7273 			   BTRFS_UUID_SIZE);
7274 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7275 			   BTRFS_FSID_SIZE);
7276 	args.uuid = dev_uuid;
7277 	args.fsid = fs_uuid;
7278 
7279 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7280 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7281 		if (IS_ERR(fs_devices))
7282 			return PTR_ERR(fs_devices);
7283 	}
7284 
7285 	device = btrfs_find_device(fs_info->fs_devices, &args);
7286 	if (!device) {
7287 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7288 			btrfs_report_missing_device(fs_info, devid,
7289 							dev_uuid, true);
7290 			return -ENOENT;
7291 		}
7292 
7293 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7294 		if (IS_ERR(device)) {
7295 			btrfs_err(fs_info,
7296 				"failed to add missing dev %llu: %ld",
7297 				devid, PTR_ERR(device));
7298 			return PTR_ERR(device);
7299 		}
7300 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7301 	} else {
7302 		if (!device->bdev) {
7303 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7304 				btrfs_report_missing_device(fs_info,
7305 						devid, dev_uuid, true);
7306 				return -ENOENT;
7307 			}
7308 			btrfs_report_missing_device(fs_info, devid,
7309 							dev_uuid, false);
7310 		}
7311 
7312 		if (!device->bdev &&
7313 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7314 			/*
7315 			 * this happens when a device that was properly setup
7316 			 * in the device info lists suddenly goes bad.
7317 			 * device->bdev is NULL, and so we have to set
7318 			 * device->missing to one here
7319 			 */
7320 			device->fs_devices->missing_devices++;
7321 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7322 		}
7323 
7324 		/* Move the device to its own fs_devices */
7325 		if (device->fs_devices != fs_devices) {
7326 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7327 							&device->dev_state));
7328 
7329 			list_move(&device->dev_list, &fs_devices->devices);
7330 			device->fs_devices->num_devices--;
7331 			fs_devices->num_devices++;
7332 
7333 			device->fs_devices->missing_devices--;
7334 			fs_devices->missing_devices++;
7335 
7336 			device->fs_devices = fs_devices;
7337 		}
7338 	}
7339 
7340 	if (device->fs_devices != fs_info->fs_devices) {
7341 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7342 		if (device->generation !=
7343 		    btrfs_device_generation(leaf, dev_item))
7344 			return -EINVAL;
7345 	}
7346 
7347 	fill_device_from_item(leaf, dev_item, device);
7348 	if (device->bdev) {
7349 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7350 
7351 		if (device->total_bytes > max_total_bytes) {
7352 			btrfs_err(fs_info,
7353 			"device total_bytes should be at most %llu but found %llu",
7354 				  max_total_bytes, device->total_bytes);
7355 			return -EINVAL;
7356 		}
7357 	}
7358 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7359 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7360 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7361 		device->fs_devices->total_rw_bytes += device->total_bytes;
7362 		atomic64_add(device->total_bytes - device->bytes_used,
7363 				&fs_info->free_chunk_space);
7364 	}
7365 	ret = 0;
7366 	return ret;
7367 }
7368 
7369 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7370 {
7371 	struct btrfs_root *root = fs_info->tree_root;
7372 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7373 	struct extent_buffer *sb;
7374 	struct btrfs_disk_key *disk_key;
7375 	struct btrfs_chunk *chunk;
7376 	u8 *array_ptr;
7377 	unsigned long sb_array_offset;
7378 	int ret = 0;
7379 	u32 num_stripes;
7380 	u32 array_size;
7381 	u32 len = 0;
7382 	u32 cur_offset;
7383 	u64 type;
7384 	struct btrfs_key key;
7385 
7386 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7387 	/*
7388 	 * This will create extent buffer of nodesize, superblock size is
7389 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7390 	 * overallocate but we can keep it as-is, only the first page is used.
7391 	 */
7392 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7393 					  root->root_key.objectid, 0);
7394 	if (IS_ERR(sb))
7395 		return PTR_ERR(sb);
7396 	set_extent_buffer_uptodate(sb);
7397 	/*
7398 	 * The sb extent buffer is artificial and just used to read the system array.
7399 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7400 	 * pages up-to-date when the page is larger: extent does not cover the
7401 	 * whole page and consequently check_page_uptodate does not find all
7402 	 * the page's extents up-to-date (the hole beyond sb),
7403 	 * write_extent_buffer then triggers a WARN_ON.
7404 	 *
7405 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7406 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7407 	 * to silence the warning eg. on PowerPC 64.
7408 	 */
7409 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7410 		SetPageUptodate(sb->pages[0]);
7411 
7412 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7413 	array_size = btrfs_super_sys_array_size(super_copy);
7414 
7415 	array_ptr = super_copy->sys_chunk_array;
7416 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7417 	cur_offset = 0;
7418 
7419 	while (cur_offset < array_size) {
7420 		disk_key = (struct btrfs_disk_key *)array_ptr;
7421 		len = sizeof(*disk_key);
7422 		if (cur_offset + len > array_size)
7423 			goto out_short_read;
7424 
7425 		btrfs_disk_key_to_cpu(&key, disk_key);
7426 
7427 		array_ptr += len;
7428 		sb_array_offset += len;
7429 		cur_offset += len;
7430 
7431 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7432 			btrfs_err(fs_info,
7433 			    "unexpected item type %u in sys_array at offset %u",
7434 				  (u32)key.type, cur_offset);
7435 			ret = -EIO;
7436 			break;
7437 		}
7438 
7439 		chunk = (struct btrfs_chunk *)sb_array_offset;
7440 		/*
7441 		 * At least one btrfs_chunk with one stripe must be present,
7442 		 * exact stripe count check comes afterwards
7443 		 */
7444 		len = btrfs_chunk_item_size(1);
7445 		if (cur_offset + len > array_size)
7446 			goto out_short_read;
7447 
7448 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7449 		if (!num_stripes) {
7450 			btrfs_err(fs_info,
7451 			"invalid number of stripes %u in sys_array at offset %u",
7452 				  num_stripes, cur_offset);
7453 			ret = -EIO;
7454 			break;
7455 		}
7456 
7457 		type = btrfs_chunk_type(sb, chunk);
7458 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7459 			btrfs_err(fs_info,
7460 			"invalid chunk type %llu in sys_array at offset %u",
7461 				  type, cur_offset);
7462 			ret = -EIO;
7463 			break;
7464 		}
7465 
7466 		len = btrfs_chunk_item_size(num_stripes);
7467 		if (cur_offset + len > array_size)
7468 			goto out_short_read;
7469 
7470 		ret = read_one_chunk(&key, sb, chunk);
7471 		if (ret)
7472 			break;
7473 
7474 		array_ptr += len;
7475 		sb_array_offset += len;
7476 		cur_offset += len;
7477 	}
7478 	clear_extent_buffer_uptodate(sb);
7479 	free_extent_buffer_stale(sb);
7480 	return ret;
7481 
7482 out_short_read:
7483 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7484 			len, cur_offset);
7485 	clear_extent_buffer_uptodate(sb);
7486 	free_extent_buffer_stale(sb);
7487 	return -EIO;
7488 }
7489 
7490 /*
7491  * Check if all chunks in the fs are OK for read-write degraded mount
7492  *
7493  * If the @failing_dev is specified, it's accounted as missing.
7494  *
7495  * Return true if all chunks meet the minimal RW mount requirements.
7496  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7497  */
7498 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7499 					struct btrfs_device *failing_dev)
7500 {
7501 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7502 	struct extent_map *em;
7503 	u64 next_start = 0;
7504 	bool ret = true;
7505 
7506 	read_lock(&map_tree->lock);
7507 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7508 	read_unlock(&map_tree->lock);
7509 	/* No chunk at all? Return false anyway */
7510 	if (!em) {
7511 		ret = false;
7512 		goto out;
7513 	}
7514 	while (em) {
7515 		struct map_lookup *map;
7516 		int missing = 0;
7517 		int max_tolerated;
7518 		int i;
7519 
7520 		map = em->map_lookup;
7521 		max_tolerated =
7522 			btrfs_get_num_tolerated_disk_barrier_failures(
7523 					map->type);
7524 		for (i = 0; i < map->num_stripes; i++) {
7525 			struct btrfs_device *dev = map->stripes[i].dev;
7526 
7527 			if (!dev || !dev->bdev ||
7528 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7529 			    dev->last_flush_error)
7530 				missing++;
7531 			else if (failing_dev && failing_dev == dev)
7532 				missing++;
7533 		}
7534 		if (missing > max_tolerated) {
7535 			if (!failing_dev)
7536 				btrfs_warn(fs_info,
7537 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7538 				   em->start, missing, max_tolerated);
7539 			free_extent_map(em);
7540 			ret = false;
7541 			goto out;
7542 		}
7543 		next_start = extent_map_end(em);
7544 		free_extent_map(em);
7545 
7546 		read_lock(&map_tree->lock);
7547 		em = lookup_extent_mapping(map_tree, next_start,
7548 					   (u64)(-1) - next_start);
7549 		read_unlock(&map_tree->lock);
7550 	}
7551 out:
7552 	return ret;
7553 }
7554 
7555 static void readahead_tree_node_children(struct extent_buffer *node)
7556 {
7557 	int i;
7558 	const int nr_items = btrfs_header_nritems(node);
7559 
7560 	for (i = 0; i < nr_items; i++)
7561 		btrfs_readahead_node_child(node, i);
7562 }
7563 
7564 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7565 {
7566 	struct btrfs_root *root = fs_info->chunk_root;
7567 	struct btrfs_path *path;
7568 	struct extent_buffer *leaf;
7569 	struct btrfs_key key;
7570 	struct btrfs_key found_key;
7571 	int ret;
7572 	int slot;
7573 	u64 total_dev = 0;
7574 	u64 last_ra_node = 0;
7575 
7576 	path = btrfs_alloc_path();
7577 	if (!path)
7578 		return -ENOMEM;
7579 
7580 	/*
7581 	 * uuid_mutex is needed only if we are mounting a sprout FS
7582 	 * otherwise we don't need it.
7583 	 */
7584 	mutex_lock(&uuid_mutex);
7585 
7586 	/*
7587 	 * It is possible for mount and umount to race in such a way that
7588 	 * we execute this code path, but open_fs_devices failed to clear
7589 	 * total_rw_bytes. We certainly want it cleared before reading the
7590 	 * device items, so clear it here.
7591 	 */
7592 	fs_info->fs_devices->total_rw_bytes = 0;
7593 
7594 	/*
7595 	 * Lockdep complains about possible circular locking dependency between
7596 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7597 	 * used for freeze procection of a fs (struct super_block.s_writers),
7598 	 * which we take when starting a transaction, and extent buffers of the
7599 	 * chunk tree if we call read_one_dev() while holding a lock on an
7600 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7601 	 * and at this point there can't be any concurrent task modifying the
7602 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7603 	 */
7604 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7605 	path->skip_locking = 1;
7606 
7607 	/*
7608 	 * Read all device items, and then all the chunk items. All
7609 	 * device items are found before any chunk item (their object id
7610 	 * is smaller than the lowest possible object id for a chunk
7611 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7612 	 */
7613 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7614 	key.offset = 0;
7615 	key.type = 0;
7616 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7617 	if (ret < 0)
7618 		goto error;
7619 	while (1) {
7620 		struct extent_buffer *node;
7621 
7622 		leaf = path->nodes[0];
7623 		slot = path->slots[0];
7624 		if (slot >= btrfs_header_nritems(leaf)) {
7625 			ret = btrfs_next_leaf(root, path);
7626 			if (ret == 0)
7627 				continue;
7628 			if (ret < 0)
7629 				goto error;
7630 			break;
7631 		}
7632 		node = path->nodes[1];
7633 		if (node) {
7634 			if (last_ra_node != node->start) {
7635 				readahead_tree_node_children(node);
7636 				last_ra_node = node->start;
7637 			}
7638 		}
7639 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7640 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7641 			struct btrfs_dev_item *dev_item;
7642 			dev_item = btrfs_item_ptr(leaf, slot,
7643 						  struct btrfs_dev_item);
7644 			ret = read_one_dev(leaf, dev_item);
7645 			if (ret)
7646 				goto error;
7647 			total_dev++;
7648 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7649 			struct btrfs_chunk *chunk;
7650 
7651 			/*
7652 			 * We are only called at mount time, so no need to take
7653 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7654 			 * we always lock first fs_info->chunk_mutex before
7655 			 * acquiring any locks on the chunk tree. This is a
7656 			 * requirement for chunk allocation, see the comment on
7657 			 * top of btrfs_chunk_alloc() for details.
7658 			 */
7659 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7660 			ret = read_one_chunk(&found_key, leaf, chunk);
7661 			if (ret)
7662 				goto error;
7663 		}
7664 		path->slots[0]++;
7665 	}
7666 
7667 	/*
7668 	 * After loading chunk tree, we've got all device information,
7669 	 * do another round of validation checks.
7670 	 */
7671 	if (total_dev != fs_info->fs_devices->total_devices) {
7672 		btrfs_err(fs_info,
7673 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7674 			  btrfs_super_num_devices(fs_info->super_copy),
7675 			  total_dev);
7676 		ret = -EINVAL;
7677 		goto error;
7678 	}
7679 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7680 	    fs_info->fs_devices->total_rw_bytes) {
7681 		btrfs_err(fs_info,
7682 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7683 			  btrfs_super_total_bytes(fs_info->super_copy),
7684 			  fs_info->fs_devices->total_rw_bytes);
7685 		ret = -EINVAL;
7686 		goto error;
7687 	}
7688 	ret = 0;
7689 error:
7690 	mutex_unlock(&uuid_mutex);
7691 
7692 	btrfs_free_path(path);
7693 	return ret;
7694 }
7695 
7696 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7697 {
7698 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7699 	struct btrfs_device *device;
7700 
7701 	fs_devices->fs_info = fs_info;
7702 
7703 	mutex_lock(&fs_devices->device_list_mutex);
7704 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7705 		device->fs_info = fs_info;
7706 
7707 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7708 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7709 			device->fs_info = fs_info;
7710 
7711 		seed_devs->fs_info = fs_info;
7712 	}
7713 	mutex_unlock(&fs_devices->device_list_mutex);
7714 }
7715 
7716 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7717 				 const struct btrfs_dev_stats_item *ptr,
7718 				 int index)
7719 {
7720 	u64 val;
7721 
7722 	read_extent_buffer(eb, &val,
7723 			   offsetof(struct btrfs_dev_stats_item, values) +
7724 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7725 			   sizeof(val));
7726 	return val;
7727 }
7728 
7729 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7730 				      struct btrfs_dev_stats_item *ptr,
7731 				      int index, u64 val)
7732 {
7733 	write_extent_buffer(eb, &val,
7734 			    offsetof(struct btrfs_dev_stats_item, values) +
7735 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7736 			    sizeof(val));
7737 }
7738 
7739 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7740 				       struct btrfs_path *path)
7741 {
7742 	struct btrfs_dev_stats_item *ptr;
7743 	struct extent_buffer *eb;
7744 	struct btrfs_key key;
7745 	int item_size;
7746 	int i, ret, slot;
7747 
7748 	if (!device->fs_info->dev_root)
7749 		return 0;
7750 
7751 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7752 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7753 	key.offset = device->devid;
7754 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7755 	if (ret) {
7756 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7757 			btrfs_dev_stat_set(device, i, 0);
7758 		device->dev_stats_valid = 1;
7759 		btrfs_release_path(path);
7760 		return ret < 0 ? ret : 0;
7761 	}
7762 	slot = path->slots[0];
7763 	eb = path->nodes[0];
7764 	item_size = btrfs_item_size(eb, slot);
7765 
7766 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7767 
7768 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7769 		if (item_size >= (1 + i) * sizeof(__le64))
7770 			btrfs_dev_stat_set(device, i,
7771 					   btrfs_dev_stats_value(eb, ptr, i));
7772 		else
7773 			btrfs_dev_stat_set(device, i, 0);
7774 	}
7775 
7776 	device->dev_stats_valid = 1;
7777 	btrfs_dev_stat_print_on_load(device);
7778 	btrfs_release_path(path);
7779 
7780 	return 0;
7781 }
7782 
7783 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7784 {
7785 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7786 	struct btrfs_device *device;
7787 	struct btrfs_path *path = NULL;
7788 	int ret = 0;
7789 
7790 	path = btrfs_alloc_path();
7791 	if (!path)
7792 		return -ENOMEM;
7793 
7794 	mutex_lock(&fs_devices->device_list_mutex);
7795 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7796 		ret = btrfs_device_init_dev_stats(device, path);
7797 		if (ret)
7798 			goto out;
7799 	}
7800 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7801 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7802 			ret = btrfs_device_init_dev_stats(device, path);
7803 			if (ret)
7804 				goto out;
7805 		}
7806 	}
7807 out:
7808 	mutex_unlock(&fs_devices->device_list_mutex);
7809 
7810 	btrfs_free_path(path);
7811 	return ret;
7812 }
7813 
7814 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7815 				struct btrfs_device *device)
7816 {
7817 	struct btrfs_fs_info *fs_info = trans->fs_info;
7818 	struct btrfs_root *dev_root = fs_info->dev_root;
7819 	struct btrfs_path *path;
7820 	struct btrfs_key key;
7821 	struct extent_buffer *eb;
7822 	struct btrfs_dev_stats_item *ptr;
7823 	int ret;
7824 	int i;
7825 
7826 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7827 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7828 	key.offset = device->devid;
7829 
7830 	path = btrfs_alloc_path();
7831 	if (!path)
7832 		return -ENOMEM;
7833 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7834 	if (ret < 0) {
7835 		btrfs_warn_in_rcu(fs_info,
7836 			"error %d while searching for dev_stats item for device %s",
7837 			      ret, rcu_str_deref(device->name));
7838 		goto out;
7839 	}
7840 
7841 	if (ret == 0 &&
7842 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7843 		/* need to delete old one and insert a new one */
7844 		ret = btrfs_del_item(trans, dev_root, path);
7845 		if (ret != 0) {
7846 			btrfs_warn_in_rcu(fs_info,
7847 				"delete too small dev_stats item for device %s failed %d",
7848 				      rcu_str_deref(device->name), ret);
7849 			goto out;
7850 		}
7851 		ret = 1;
7852 	}
7853 
7854 	if (ret == 1) {
7855 		/* need to insert a new item */
7856 		btrfs_release_path(path);
7857 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7858 					      &key, sizeof(*ptr));
7859 		if (ret < 0) {
7860 			btrfs_warn_in_rcu(fs_info,
7861 				"insert dev_stats item for device %s failed %d",
7862 				rcu_str_deref(device->name), ret);
7863 			goto out;
7864 		}
7865 	}
7866 
7867 	eb = path->nodes[0];
7868 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7869 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7870 		btrfs_set_dev_stats_value(eb, ptr, i,
7871 					  btrfs_dev_stat_read(device, i));
7872 	btrfs_mark_buffer_dirty(eb);
7873 
7874 out:
7875 	btrfs_free_path(path);
7876 	return ret;
7877 }
7878 
7879 /*
7880  * called from commit_transaction. Writes all changed device stats to disk.
7881  */
7882 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7883 {
7884 	struct btrfs_fs_info *fs_info = trans->fs_info;
7885 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7886 	struct btrfs_device *device;
7887 	int stats_cnt;
7888 	int ret = 0;
7889 
7890 	mutex_lock(&fs_devices->device_list_mutex);
7891 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7892 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7893 		if (!device->dev_stats_valid || stats_cnt == 0)
7894 			continue;
7895 
7896 
7897 		/*
7898 		 * There is a LOAD-LOAD control dependency between the value of
7899 		 * dev_stats_ccnt and updating the on-disk values which requires
7900 		 * reading the in-memory counters. Such control dependencies
7901 		 * require explicit read memory barriers.
7902 		 *
7903 		 * This memory barriers pairs with smp_mb__before_atomic in
7904 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7905 		 * barrier implied by atomic_xchg in
7906 		 * btrfs_dev_stats_read_and_reset
7907 		 */
7908 		smp_rmb();
7909 
7910 		ret = update_dev_stat_item(trans, device);
7911 		if (!ret)
7912 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7913 	}
7914 	mutex_unlock(&fs_devices->device_list_mutex);
7915 
7916 	return ret;
7917 }
7918 
7919 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7920 {
7921 	btrfs_dev_stat_inc(dev, index);
7922 	btrfs_dev_stat_print_on_error(dev);
7923 }
7924 
7925 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7926 {
7927 	if (!dev->dev_stats_valid)
7928 		return;
7929 	btrfs_err_rl_in_rcu(dev->fs_info,
7930 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7931 			   rcu_str_deref(dev->name),
7932 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7933 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7934 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7935 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7936 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7937 }
7938 
7939 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7940 {
7941 	int i;
7942 
7943 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7944 		if (btrfs_dev_stat_read(dev, i) != 0)
7945 			break;
7946 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7947 		return; /* all values == 0, suppress message */
7948 
7949 	btrfs_info_in_rcu(dev->fs_info,
7950 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7951 	       rcu_str_deref(dev->name),
7952 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7953 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7954 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7955 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7956 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7957 }
7958 
7959 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7960 			struct btrfs_ioctl_get_dev_stats *stats)
7961 {
7962 	BTRFS_DEV_LOOKUP_ARGS(args);
7963 	struct btrfs_device *dev;
7964 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7965 	int i;
7966 
7967 	mutex_lock(&fs_devices->device_list_mutex);
7968 	args.devid = stats->devid;
7969 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7970 	mutex_unlock(&fs_devices->device_list_mutex);
7971 
7972 	if (!dev) {
7973 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7974 		return -ENODEV;
7975 	} else if (!dev->dev_stats_valid) {
7976 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7977 		return -ENODEV;
7978 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7979 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7980 			if (stats->nr_items > i)
7981 				stats->values[i] =
7982 					btrfs_dev_stat_read_and_reset(dev, i);
7983 			else
7984 				btrfs_dev_stat_set(dev, i, 0);
7985 		}
7986 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7987 			   current->comm, task_pid_nr(current));
7988 	} else {
7989 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7990 			if (stats->nr_items > i)
7991 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7992 	}
7993 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7994 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7995 	return 0;
7996 }
7997 
7998 /*
7999  * Update the size and bytes used for each device where it changed.  This is
8000  * delayed since we would otherwise get errors while writing out the
8001  * superblocks.
8002  *
8003  * Must be invoked during transaction commit.
8004  */
8005 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
8006 {
8007 	struct btrfs_device *curr, *next;
8008 
8009 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
8010 
8011 	if (list_empty(&trans->dev_update_list))
8012 		return;
8013 
8014 	/*
8015 	 * We don't need the device_list_mutex here.  This list is owned by the
8016 	 * transaction and the transaction must complete before the device is
8017 	 * released.
8018 	 */
8019 	mutex_lock(&trans->fs_info->chunk_mutex);
8020 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
8021 				 post_commit_list) {
8022 		list_del_init(&curr->post_commit_list);
8023 		curr->commit_total_bytes = curr->disk_total_bytes;
8024 		curr->commit_bytes_used = curr->bytes_used;
8025 	}
8026 	mutex_unlock(&trans->fs_info->chunk_mutex);
8027 }
8028 
8029 /*
8030  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8031  */
8032 int btrfs_bg_type_to_factor(u64 flags)
8033 {
8034 	const int index = btrfs_bg_flags_to_raid_index(flags);
8035 
8036 	return btrfs_raid_array[index].ncopies;
8037 }
8038 
8039 
8040 
8041 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8042 				 u64 chunk_offset, u64 devid,
8043 				 u64 physical_offset, u64 physical_len)
8044 {
8045 	struct btrfs_dev_lookup_args args = { .devid = devid };
8046 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8047 	struct extent_map *em;
8048 	struct map_lookup *map;
8049 	struct btrfs_device *dev;
8050 	u64 stripe_len;
8051 	bool found = false;
8052 	int ret = 0;
8053 	int i;
8054 
8055 	read_lock(&em_tree->lock);
8056 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8057 	read_unlock(&em_tree->lock);
8058 
8059 	if (!em) {
8060 		btrfs_err(fs_info,
8061 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8062 			  physical_offset, devid);
8063 		ret = -EUCLEAN;
8064 		goto out;
8065 	}
8066 
8067 	map = em->map_lookup;
8068 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8069 	if (physical_len != stripe_len) {
8070 		btrfs_err(fs_info,
8071 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8072 			  physical_offset, devid, em->start, physical_len,
8073 			  stripe_len);
8074 		ret = -EUCLEAN;
8075 		goto out;
8076 	}
8077 
8078 	for (i = 0; i < map->num_stripes; i++) {
8079 		if (map->stripes[i].dev->devid == devid &&
8080 		    map->stripes[i].physical == physical_offset) {
8081 			found = true;
8082 			if (map->verified_stripes >= map->num_stripes) {
8083 				btrfs_err(fs_info,
8084 				"too many dev extents for chunk %llu found",
8085 					  em->start);
8086 				ret = -EUCLEAN;
8087 				goto out;
8088 			}
8089 			map->verified_stripes++;
8090 			break;
8091 		}
8092 	}
8093 	if (!found) {
8094 		btrfs_err(fs_info,
8095 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8096 			physical_offset, devid);
8097 		ret = -EUCLEAN;
8098 	}
8099 
8100 	/* Make sure no dev extent is beyond device boundary */
8101 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8102 	if (!dev) {
8103 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8104 		ret = -EUCLEAN;
8105 		goto out;
8106 	}
8107 
8108 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8109 		btrfs_err(fs_info,
8110 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8111 			  devid, physical_offset, physical_len,
8112 			  dev->disk_total_bytes);
8113 		ret = -EUCLEAN;
8114 		goto out;
8115 	}
8116 
8117 	if (dev->zone_info) {
8118 		u64 zone_size = dev->zone_info->zone_size;
8119 
8120 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8121 		    !IS_ALIGNED(physical_len, zone_size)) {
8122 			btrfs_err(fs_info,
8123 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8124 				  devid, physical_offset, physical_len);
8125 			ret = -EUCLEAN;
8126 			goto out;
8127 		}
8128 	}
8129 
8130 out:
8131 	free_extent_map(em);
8132 	return ret;
8133 }
8134 
8135 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8136 {
8137 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8138 	struct extent_map *em;
8139 	struct rb_node *node;
8140 	int ret = 0;
8141 
8142 	read_lock(&em_tree->lock);
8143 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8144 		em = rb_entry(node, struct extent_map, rb_node);
8145 		if (em->map_lookup->num_stripes !=
8146 		    em->map_lookup->verified_stripes) {
8147 			btrfs_err(fs_info,
8148 			"chunk %llu has missing dev extent, have %d expect %d",
8149 				  em->start, em->map_lookup->verified_stripes,
8150 				  em->map_lookup->num_stripes);
8151 			ret = -EUCLEAN;
8152 			goto out;
8153 		}
8154 	}
8155 out:
8156 	read_unlock(&em_tree->lock);
8157 	return ret;
8158 }
8159 
8160 /*
8161  * Ensure that all dev extents are mapped to correct chunk, otherwise
8162  * later chunk allocation/free would cause unexpected behavior.
8163  *
8164  * NOTE: This will iterate through the whole device tree, which should be of
8165  * the same size level as the chunk tree.  This slightly increases mount time.
8166  */
8167 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8168 {
8169 	struct btrfs_path *path;
8170 	struct btrfs_root *root = fs_info->dev_root;
8171 	struct btrfs_key key;
8172 	u64 prev_devid = 0;
8173 	u64 prev_dev_ext_end = 0;
8174 	int ret = 0;
8175 
8176 	/*
8177 	 * We don't have a dev_root because we mounted with ignorebadroots and
8178 	 * failed to load the root, so we want to skip the verification in this
8179 	 * case for sure.
8180 	 *
8181 	 * However if the dev root is fine, but the tree itself is corrupted
8182 	 * we'd still fail to mount.  This verification is only to make sure
8183 	 * writes can happen safely, so instead just bypass this check
8184 	 * completely in the case of IGNOREBADROOTS.
8185 	 */
8186 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8187 		return 0;
8188 
8189 	key.objectid = 1;
8190 	key.type = BTRFS_DEV_EXTENT_KEY;
8191 	key.offset = 0;
8192 
8193 	path = btrfs_alloc_path();
8194 	if (!path)
8195 		return -ENOMEM;
8196 
8197 	path->reada = READA_FORWARD;
8198 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8199 	if (ret < 0)
8200 		goto out;
8201 
8202 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8203 		ret = btrfs_next_leaf(root, path);
8204 		if (ret < 0)
8205 			goto out;
8206 		/* No dev extents at all? Not good */
8207 		if (ret > 0) {
8208 			ret = -EUCLEAN;
8209 			goto out;
8210 		}
8211 	}
8212 	while (1) {
8213 		struct extent_buffer *leaf = path->nodes[0];
8214 		struct btrfs_dev_extent *dext;
8215 		int slot = path->slots[0];
8216 		u64 chunk_offset;
8217 		u64 physical_offset;
8218 		u64 physical_len;
8219 		u64 devid;
8220 
8221 		btrfs_item_key_to_cpu(leaf, &key, slot);
8222 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8223 			break;
8224 		devid = key.objectid;
8225 		physical_offset = key.offset;
8226 
8227 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8228 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8229 		physical_len = btrfs_dev_extent_length(leaf, dext);
8230 
8231 		/* Check if this dev extent overlaps with the previous one */
8232 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8233 			btrfs_err(fs_info,
8234 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8235 				  devid, physical_offset, prev_dev_ext_end);
8236 			ret = -EUCLEAN;
8237 			goto out;
8238 		}
8239 
8240 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8241 					    physical_offset, physical_len);
8242 		if (ret < 0)
8243 			goto out;
8244 		prev_devid = devid;
8245 		prev_dev_ext_end = physical_offset + physical_len;
8246 
8247 		ret = btrfs_next_item(root, path);
8248 		if (ret < 0)
8249 			goto out;
8250 		if (ret > 0) {
8251 			ret = 0;
8252 			break;
8253 		}
8254 	}
8255 
8256 	/* Ensure all chunks have corresponding dev extents */
8257 	ret = verify_chunk_dev_extent_mapping(fs_info);
8258 out:
8259 	btrfs_free_path(path);
8260 	return ret;
8261 }
8262 
8263 /*
8264  * Check whether the given block group or device is pinned by any inode being
8265  * used as a swapfile.
8266  */
8267 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8268 {
8269 	struct btrfs_swapfile_pin *sp;
8270 	struct rb_node *node;
8271 
8272 	spin_lock(&fs_info->swapfile_pins_lock);
8273 	node = fs_info->swapfile_pins.rb_node;
8274 	while (node) {
8275 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8276 		if (ptr < sp->ptr)
8277 			node = node->rb_left;
8278 		else if (ptr > sp->ptr)
8279 			node = node->rb_right;
8280 		else
8281 			break;
8282 	}
8283 	spin_unlock(&fs_info->swapfile_pins_lock);
8284 	return node != NULL;
8285 }
8286 
8287 static int relocating_repair_kthread(void *data)
8288 {
8289 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8290 	struct btrfs_fs_info *fs_info = cache->fs_info;
8291 	u64 target;
8292 	int ret = 0;
8293 
8294 	target = cache->start;
8295 	btrfs_put_block_group(cache);
8296 
8297 	sb_start_write(fs_info->sb);
8298 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8299 		btrfs_info(fs_info,
8300 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8301 			   target);
8302 		sb_end_write(fs_info->sb);
8303 		return -EBUSY;
8304 	}
8305 
8306 	mutex_lock(&fs_info->reclaim_bgs_lock);
8307 
8308 	/* Ensure block group still exists */
8309 	cache = btrfs_lookup_block_group(fs_info, target);
8310 	if (!cache)
8311 		goto out;
8312 
8313 	if (!cache->relocating_repair)
8314 		goto out;
8315 
8316 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8317 	if (ret < 0)
8318 		goto out;
8319 
8320 	btrfs_info(fs_info,
8321 		   "zoned: relocating block group %llu to repair IO failure",
8322 		   target);
8323 	ret = btrfs_relocate_chunk(fs_info, target);
8324 
8325 out:
8326 	if (cache)
8327 		btrfs_put_block_group(cache);
8328 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8329 	btrfs_exclop_finish(fs_info);
8330 	sb_end_write(fs_info->sb);
8331 
8332 	return ret;
8333 }
8334 
8335 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8336 {
8337 	struct btrfs_block_group *cache;
8338 
8339 	if (!btrfs_is_zoned(fs_info))
8340 		return false;
8341 
8342 	/* Do not attempt to repair in degraded state */
8343 	if (btrfs_test_opt(fs_info, DEGRADED))
8344 		return true;
8345 
8346 	cache = btrfs_lookup_block_group(fs_info, logical);
8347 	if (!cache)
8348 		return true;
8349 
8350 	spin_lock(&cache->lock);
8351 	if (cache->relocating_repair) {
8352 		spin_unlock(&cache->lock);
8353 		btrfs_put_block_group(cache);
8354 		return true;
8355 	}
8356 	cache->relocating_repair = 1;
8357 	spin_unlock(&cache->lock);
8358 
8359 	kthread_run(relocating_repair_kthread, cache,
8360 		    "btrfs-relocating-repair");
8361 
8362 	return true;
8363 }
8364