xref: /openbmc/linux/fs/btrfs/volumes.c (revision c4ee0af3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 
44 static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 				struct btrfs_root *root,
46 				struct btrfs_device *device);
47 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
48 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
49 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
51 
52 static DEFINE_MUTEX(uuid_mutex);
53 static LIST_HEAD(fs_uuids);
54 
55 static void lock_chunks(struct btrfs_root *root)
56 {
57 	mutex_lock(&root->fs_info->chunk_mutex);
58 }
59 
60 static void unlock_chunks(struct btrfs_root *root)
61 {
62 	mutex_unlock(&root->fs_info->chunk_mutex);
63 }
64 
65 static struct btrfs_fs_devices *__alloc_fs_devices(void)
66 {
67 	struct btrfs_fs_devices *fs_devs;
68 
69 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
70 	if (!fs_devs)
71 		return ERR_PTR(-ENOMEM);
72 
73 	mutex_init(&fs_devs->device_list_mutex);
74 
75 	INIT_LIST_HEAD(&fs_devs->devices);
76 	INIT_LIST_HEAD(&fs_devs->alloc_list);
77 	INIT_LIST_HEAD(&fs_devs->list);
78 
79 	return fs_devs;
80 }
81 
82 /**
83  * alloc_fs_devices - allocate struct btrfs_fs_devices
84  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
85  *		generated.
86  *
87  * Return: a pointer to a new &struct btrfs_fs_devices on success;
88  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
89  * can be destroyed with kfree() right away.
90  */
91 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
92 {
93 	struct btrfs_fs_devices *fs_devs;
94 
95 	fs_devs = __alloc_fs_devices();
96 	if (IS_ERR(fs_devs))
97 		return fs_devs;
98 
99 	if (fsid)
100 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
101 	else
102 		generate_random_uuid(fs_devs->fsid);
103 
104 	return fs_devs;
105 }
106 
107 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
108 {
109 	struct btrfs_device *device;
110 	WARN_ON(fs_devices->opened);
111 	while (!list_empty(&fs_devices->devices)) {
112 		device = list_entry(fs_devices->devices.next,
113 				    struct btrfs_device, dev_list);
114 		list_del(&device->dev_list);
115 		rcu_string_free(device->name);
116 		kfree(device);
117 	}
118 	kfree(fs_devices);
119 }
120 
121 static void btrfs_kobject_uevent(struct block_device *bdev,
122 				 enum kobject_action action)
123 {
124 	int ret;
125 
126 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
127 	if (ret)
128 		pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
129 			action,
130 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
131 			&disk_to_dev(bdev->bd_disk)->kobj);
132 }
133 
134 void btrfs_cleanup_fs_uuids(void)
135 {
136 	struct btrfs_fs_devices *fs_devices;
137 
138 	while (!list_empty(&fs_uuids)) {
139 		fs_devices = list_entry(fs_uuids.next,
140 					struct btrfs_fs_devices, list);
141 		list_del(&fs_devices->list);
142 		free_fs_devices(fs_devices);
143 	}
144 }
145 
146 static struct btrfs_device *__alloc_device(void)
147 {
148 	struct btrfs_device *dev;
149 
150 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
151 	if (!dev)
152 		return ERR_PTR(-ENOMEM);
153 
154 	INIT_LIST_HEAD(&dev->dev_list);
155 	INIT_LIST_HEAD(&dev->dev_alloc_list);
156 
157 	spin_lock_init(&dev->io_lock);
158 
159 	spin_lock_init(&dev->reada_lock);
160 	atomic_set(&dev->reada_in_flight, 0);
161 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
162 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
163 
164 	return dev;
165 }
166 
167 static noinline struct btrfs_device *__find_device(struct list_head *head,
168 						   u64 devid, u8 *uuid)
169 {
170 	struct btrfs_device *dev;
171 
172 	list_for_each_entry(dev, head, dev_list) {
173 		if (dev->devid == devid &&
174 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
175 			return dev;
176 		}
177 	}
178 	return NULL;
179 }
180 
181 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
182 {
183 	struct btrfs_fs_devices *fs_devices;
184 
185 	list_for_each_entry(fs_devices, &fs_uuids, list) {
186 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
187 			return fs_devices;
188 	}
189 	return NULL;
190 }
191 
192 static int
193 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
194 		      int flush, struct block_device **bdev,
195 		      struct buffer_head **bh)
196 {
197 	int ret;
198 
199 	*bdev = blkdev_get_by_path(device_path, flags, holder);
200 
201 	if (IS_ERR(*bdev)) {
202 		ret = PTR_ERR(*bdev);
203 		printk(KERN_INFO "btrfs: open %s failed\n", device_path);
204 		goto error;
205 	}
206 
207 	if (flush)
208 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
209 	ret = set_blocksize(*bdev, 4096);
210 	if (ret) {
211 		blkdev_put(*bdev, flags);
212 		goto error;
213 	}
214 	invalidate_bdev(*bdev);
215 	*bh = btrfs_read_dev_super(*bdev);
216 	if (!*bh) {
217 		ret = -EINVAL;
218 		blkdev_put(*bdev, flags);
219 		goto error;
220 	}
221 
222 	return 0;
223 
224 error:
225 	*bdev = NULL;
226 	*bh = NULL;
227 	return ret;
228 }
229 
230 static void requeue_list(struct btrfs_pending_bios *pending_bios,
231 			struct bio *head, struct bio *tail)
232 {
233 
234 	struct bio *old_head;
235 
236 	old_head = pending_bios->head;
237 	pending_bios->head = head;
238 	if (pending_bios->tail)
239 		tail->bi_next = old_head;
240 	else
241 		pending_bios->tail = tail;
242 }
243 
244 /*
245  * we try to collect pending bios for a device so we don't get a large
246  * number of procs sending bios down to the same device.  This greatly
247  * improves the schedulers ability to collect and merge the bios.
248  *
249  * But, it also turns into a long list of bios to process and that is sure
250  * to eventually make the worker thread block.  The solution here is to
251  * make some progress and then put this work struct back at the end of
252  * the list if the block device is congested.  This way, multiple devices
253  * can make progress from a single worker thread.
254  */
255 static noinline void run_scheduled_bios(struct btrfs_device *device)
256 {
257 	struct bio *pending;
258 	struct backing_dev_info *bdi;
259 	struct btrfs_fs_info *fs_info;
260 	struct btrfs_pending_bios *pending_bios;
261 	struct bio *tail;
262 	struct bio *cur;
263 	int again = 0;
264 	unsigned long num_run;
265 	unsigned long batch_run = 0;
266 	unsigned long limit;
267 	unsigned long last_waited = 0;
268 	int force_reg = 0;
269 	int sync_pending = 0;
270 	struct blk_plug plug;
271 
272 	/*
273 	 * this function runs all the bios we've collected for
274 	 * a particular device.  We don't want to wander off to
275 	 * another device without first sending all of these down.
276 	 * So, setup a plug here and finish it off before we return
277 	 */
278 	blk_start_plug(&plug);
279 
280 	bdi = blk_get_backing_dev_info(device->bdev);
281 	fs_info = device->dev_root->fs_info;
282 	limit = btrfs_async_submit_limit(fs_info);
283 	limit = limit * 2 / 3;
284 
285 loop:
286 	spin_lock(&device->io_lock);
287 
288 loop_lock:
289 	num_run = 0;
290 
291 	/* take all the bios off the list at once and process them
292 	 * later on (without the lock held).  But, remember the
293 	 * tail and other pointers so the bios can be properly reinserted
294 	 * into the list if we hit congestion
295 	 */
296 	if (!force_reg && device->pending_sync_bios.head) {
297 		pending_bios = &device->pending_sync_bios;
298 		force_reg = 1;
299 	} else {
300 		pending_bios = &device->pending_bios;
301 		force_reg = 0;
302 	}
303 
304 	pending = pending_bios->head;
305 	tail = pending_bios->tail;
306 	WARN_ON(pending && !tail);
307 
308 	/*
309 	 * if pending was null this time around, no bios need processing
310 	 * at all and we can stop.  Otherwise it'll loop back up again
311 	 * and do an additional check so no bios are missed.
312 	 *
313 	 * device->running_pending is used to synchronize with the
314 	 * schedule_bio code.
315 	 */
316 	if (device->pending_sync_bios.head == NULL &&
317 	    device->pending_bios.head == NULL) {
318 		again = 0;
319 		device->running_pending = 0;
320 	} else {
321 		again = 1;
322 		device->running_pending = 1;
323 	}
324 
325 	pending_bios->head = NULL;
326 	pending_bios->tail = NULL;
327 
328 	spin_unlock(&device->io_lock);
329 
330 	while (pending) {
331 
332 		rmb();
333 		/* we want to work on both lists, but do more bios on the
334 		 * sync list than the regular list
335 		 */
336 		if ((num_run > 32 &&
337 		    pending_bios != &device->pending_sync_bios &&
338 		    device->pending_sync_bios.head) ||
339 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
340 		    device->pending_bios.head)) {
341 			spin_lock(&device->io_lock);
342 			requeue_list(pending_bios, pending, tail);
343 			goto loop_lock;
344 		}
345 
346 		cur = pending;
347 		pending = pending->bi_next;
348 		cur->bi_next = NULL;
349 
350 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
351 		    waitqueue_active(&fs_info->async_submit_wait))
352 			wake_up(&fs_info->async_submit_wait);
353 
354 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
355 
356 		/*
357 		 * if we're doing the sync list, record that our
358 		 * plug has some sync requests on it
359 		 *
360 		 * If we're doing the regular list and there are
361 		 * sync requests sitting around, unplug before
362 		 * we add more
363 		 */
364 		if (pending_bios == &device->pending_sync_bios) {
365 			sync_pending = 1;
366 		} else if (sync_pending) {
367 			blk_finish_plug(&plug);
368 			blk_start_plug(&plug);
369 			sync_pending = 0;
370 		}
371 
372 		btrfsic_submit_bio(cur->bi_rw, cur);
373 		num_run++;
374 		batch_run++;
375 		if (need_resched())
376 			cond_resched();
377 
378 		/*
379 		 * we made progress, there is more work to do and the bdi
380 		 * is now congested.  Back off and let other work structs
381 		 * run instead
382 		 */
383 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
384 		    fs_info->fs_devices->open_devices > 1) {
385 			struct io_context *ioc;
386 
387 			ioc = current->io_context;
388 
389 			/*
390 			 * the main goal here is that we don't want to
391 			 * block if we're going to be able to submit
392 			 * more requests without blocking.
393 			 *
394 			 * This code does two great things, it pokes into
395 			 * the elevator code from a filesystem _and_
396 			 * it makes assumptions about how batching works.
397 			 */
398 			if (ioc && ioc->nr_batch_requests > 0 &&
399 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
400 			    (last_waited == 0 ||
401 			     ioc->last_waited == last_waited)) {
402 				/*
403 				 * we want to go through our batch of
404 				 * requests and stop.  So, we copy out
405 				 * the ioc->last_waited time and test
406 				 * against it before looping
407 				 */
408 				last_waited = ioc->last_waited;
409 				if (need_resched())
410 					cond_resched();
411 				continue;
412 			}
413 			spin_lock(&device->io_lock);
414 			requeue_list(pending_bios, pending, tail);
415 			device->running_pending = 1;
416 
417 			spin_unlock(&device->io_lock);
418 			btrfs_requeue_work(&device->work);
419 			goto done;
420 		}
421 		/* unplug every 64 requests just for good measure */
422 		if (batch_run % 64 == 0) {
423 			blk_finish_plug(&plug);
424 			blk_start_plug(&plug);
425 			sync_pending = 0;
426 		}
427 	}
428 
429 	cond_resched();
430 	if (again)
431 		goto loop;
432 
433 	spin_lock(&device->io_lock);
434 	if (device->pending_bios.head || device->pending_sync_bios.head)
435 		goto loop_lock;
436 	spin_unlock(&device->io_lock);
437 
438 done:
439 	blk_finish_plug(&plug);
440 }
441 
442 static void pending_bios_fn(struct btrfs_work *work)
443 {
444 	struct btrfs_device *device;
445 
446 	device = container_of(work, struct btrfs_device, work);
447 	run_scheduled_bios(device);
448 }
449 
450 static noinline int device_list_add(const char *path,
451 			   struct btrfs_super_block *disk_super,
452 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
453 {
454 	struct btrfs_device *device;
455 	struct btrfs_fs_devices *fs_devices;
456 	struct rcu_string *name;
457 	u64 found_transid = btrfs_super_generation(disk_super);
458 
459 	fs_devices = find_fsid(disk_super->fsid);
460 	if (!fs_devices) {
461 		fs_devices = alloc_fs_devices(disk_super->fsid);
462 		if (IS_ERR(fs_devices))
463 			return PTR_ERR(fs_devices);
464 
465 		list_add(&fs_devices->list, &fs_uuids);
466 		fs_devices->latest_devid = devid;
467 		fs_devices->latest_trans = found_transid;
468 
469 		device = NULL;
470 	} else {
471 		device = __find_device(&fs_devices->devices, devid,
472 				       disk_super->dev_item.uuid);
473 	}
474 	if (!device) {
475 		if (fs_devices->opened)
476 			return -EBUSY;
477 
478 		device = btrfs_alloc_device(NULL, &devid,
479 					    disk_super->dev_item.uuid);
480 		if (IS_ERR(device)) {
481 			/* we can safely leave the fs_devices entry around */
482 			return PTR_ERR(device);
483 		}
484 
485 		name = rcu_string_strdup(path, GFP_NOFS);
486 		if (!name) {
487 			kfree(device);
488 			return -ENOMEM;
489 		}
490 		rcu_assign_pointer(device->name, name);
491 
492 		mutex_lock(&fs_devices->device_list_mutex);
493 		list_add_rcu(&device->dev_list, &fs_devices->devices);
494 		fs_devices->num_devices++;
495 		mutex_unlock(&fs_devices->device_list_mutex);
496 
497 		device->fs_devices = fs_devices;
498 	} else if (!device->name || strcmp(device->name->str, path)) {
499 		name = rcu_string_strdup(path, GFP_NOFS);
500 		if (!name)
501 			return -ENOMEM;
502 		rcu_string_free(device->name);
503 		rcu_assign_pointer(device->name, name);
504 		if (device->missing) {
505 			fs_devices->missing_devices--;
506 			device->missing = 0;
507 		}
508 	}
509 
510 	if (found_transid > fs_devices->latest_trans) {
511 		fs_devices->latest_devid = devid;
512 		fs_devices->latest_trans = found_transid;
513 	}
514 	*fs_devices_ret = fs_devices;
515 	return 0;
516 }
517 
518 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
519 {
520 	struct btrfs_fs_devices *fs_devices;
521 	struct btrfs_device *device;
522 	struct btrfs_device *orig_dev;
523 
524 	fs_devices = alloc_fs_devices(orig->fsid);
525 	if (IS_ERR(fs_devices))
526 		return fs_devices;
527 
528 	fs_devices->latest_devid = orig->latest_devid;
529 	fs_devices->latest_trans = orig->latest_trans;
530 	fs_devices->total_devices = orig->total_devices;
531 
532 	/* We have held the volume lock, it is safe to get the devices. */
533 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
534 		struct rcu_string *name;
535 
536 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
537 					    orig_dev->uuid);
538 		if (IS_ERR(device))
539 			goto error;
540 
541 		/*
542 		 * This is ok to do without rcu read locked because we hold the
543 		 * uuid mutex so nothing we touch in here is going to disappear.
544 		 */
545 		name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
546 		if (!name) {
547 			kfree(device);
548 			goto error;
549 		}
550 		rcu_assign_pointer(device->name, name);
551 
552 		list_add(&device->dev_list, &fs_devices->devices);
553 		device->fs_devices = fs_devices;
554 		fs_devices->num_devices++;
555 	}
556 	return fs_devices;
557 error:
558 	free_fs_devices(fs_devices);
559 	return ERR_PTR(-ENOMEM);
560 }
561 
562 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
563 			       struct btrfs_fs_devices *fs_devices, int step)
564 {
565 	struct btrfs_device *device, *next;
566 
567 	struct block_device *latest_bdev = NULL;
568 	u64 latest_devid = 0;
569 	u64 latest_transid = 0;
570 
571 	mutex_lock(&uuid_mutex);
572 again:
573 	/* This is the initialized path, it is safe to release the devices. */
574 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
575 		if (device->in_fs_metadata) {
576 			if (!device->is_tgtdev_for_dev_replace &&
577 			    (!latest_transid ||
578 			     device->generation > latest_transid)) {
579 				latest_devid = device->devid;
580 				latest_transid = device->generation;
581 				latest_bdev = device->bdev;
582 			}
583 			continue;
584 		}
585 
586 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
587 			/*
588 			 * In the first step, keep the device which has
589 			 * the correct fsid and the devid that is used
590 			 * for the dev_replace procedure.
591 			 * In the second step, the dev_replace state is
592 			 * read from the device tree and it is known
593 			 * whether the procedure is really active or
594 			 * not, which means whether this device is
595 			 * used or whether it should be removed.
596 			 */
597 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
598 				continue;
599 			}
600 		}
601 		if (device->bdev) {
602 			blkdev_put(device->bdev, device->mode);
603 			device->bdev = NULL;
604 			fs_devices->open_devices--;
605 		}
606 		if (device->writeable) {
607 			list_del_init(&device->dev_alloc_list);
608 			device->writeable = 0;
609 			if (!device->is_tgtdev_for_dev_replace)
610 				fs_devices->rw_devices--;
611 		}
612 		list_del_init(&device->dev_list);
613 		fs_devices->num_devices--;
614 		rcu_string_free(device->name);
615 		kfree(device);
616 	}
617 
618 	if (fs_devices->seed) {
619 		fs_devices = fs_devices->seed;
620 		goto again;
621 	}
622 
623 	fs_devices->latest_bdev = latest_bdev;
624 	fs_devices->latest_devid = latest_devid;
625 	fs_devices->latest_trans = latest_transid;
626 
627 	mutex_unlock(&uuid_mutex);
628 }
629 
630 static void __free_device(struct work_struct *work)
631 {
632 	struct btrfs_device *device;
633 
634 	device = container_of(work, struct btrfs_device, rcu_work);
635 
636 	if (device->bdev)
637 		blkdev_put(device->bdev, device->mode);
638 
639 	rcu_string_free(device->name);
640 	kfree(device);
641 }
642 
643 static void free_device(struct rcu_head *head)
644 {
645 	struct btrfs_device *device;
646 
647 	device = container_of(head, struct btrfs_device, rcu);
648 
649 	INIT_WORK(&device->rcu_work, __free_device);
650 	schedule_work(&device->rcu_work);
651 }
652 
653 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
654 {
655 	struct btrfs_device *device;
656 
657 	if (--fs_devices->opened > 0)
658 		return 0;
659 
660 	mutex_lock(&fs_devices->device_list_mutex);
661 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
662 		struct btrfs_device *new_device;
663 		struct rcu_string *name;
664 
665 		if (device->bdev)
666 			fs_devices->open_devices--;
667 
668 		if (device->writeable &&
669 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 			list_del_init(&device->dev_alloc_list);
671 			fs_devices->rw_devices--;
672 		}
673 
674 		if (device->can_discard)
675 			fs_devices->num_can_discard--;
676 		if (device->missing)
677 			fs_devices->missing_devices--;
678 
679 		new_device = btrfs_alloc_device(NULL, &device->devid,
680 						device->uuid);
681 		BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
682 
683 		/* Safe because we are under uuid_mutex */
684 		if (device->name) {
685 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
686 			BUG_ON(!name); /* -ENOMEM */
687 			rcu_assign_pointer(new_device->name, name);
688 		}
689 
690 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
691 		new_device->fs_devices = device->fs_devices;
692 
693 		call_rcu(&device->rcu, free_device);
694 	}
695 	mutex_unlock(&fs_devices->device_list_mutex);
696 
697 	WARN_ON(fs_devices->open_devices);
698 	WARN_ON(fs_devices->rw_devices);
699 	fs_devices->opened = 0;
700 	fs_devices->seeding = 0;
701 
702 	return 0;
703 }
704 
705 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
706 {
707 	struct btrfs_fs_devices *seed_devices = NULL;
708 	int ret;
709 
710 	mutex_lock(&uuid_mutex);
711 	ret = __btrfs_close_devices(fs_devices);
712 	if (!fs_devices->opened) {
713 		seed_devices = fs_devices->seed;
714 		fs_devices->seed = NULL;
715 	}
716 	mutex_unlock(&uuid_mutex);
717 
718 	while (seed_devices) {
719 		fs_devices = seed_devices;
720 		seed_devices = fs_devices->seed;
721 		__btrfs_close_devices(fs_devices);
722 		free_fs_devices(fs_devices);
723 	}
724 	/*
725 	 * Wait for rcu kworkers under __btrfs_close_devices
726 	 * to finish all blkdev_puts so device is really
727 	 * free when umount is done.
728 	 */
729 	rcu_barrier();
730 	return ret;
731 }
732 
733 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
734 				fmode_t flags, void *holder)
735 {
736 	struct request_queue *q;
737 	struct block_device *bdev;
738 	struct list_head *head = &fs_devices->devices;
739 	struct btrfs_device *device;
740 	struct block_device *latest_bdev = NULL;
741 	struct buffer_head *bh;
742 	struct btrfs_super_block *disk_super;
743 	u64 latest_devid = 0;
744 	u64 latest_transid = 0;
745 	u64 devid;
746 	int seeding = 1;
747 	int ret = 0;
748 
749 	flags |= FMODE_EXCL;
750 
751 	list_for_each_entry(device, head, dev_list) {
752 		if (device->bdev)
753 			continue;
754 		if (!device->name)
755 			continue;
756 
757 		/* Just open everything we can; ignore failures here */
758 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
759 					    &bdev, &bh))
760 			continue;
761 
762 		disk_super = (struct btrfs_super_block *)bh->b_data;
763 		devid = btrfs_stack_device_id(&disk_super->dev_item);
764 		if (devid != device->devid)
765 			goto error_brelse;
766 
767 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
768 			   BTRFS_UUID_SIZE))
769 			goto error_brelse;
770 
771 		device->generation = btrfs_super_generation(disk_super);
772 		if (!latest_transid || device->generation > latest_transid) {
773 			latest_devid = devid;
774 			latest_transid = device->generation;
775 			latest_bdev = bdev;
776 		}
777 
778 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
779 			device->writeable = 0;
780 		} else {
781 			device->writeable = !bdev_read_only(bdev);
782 			seeding = 0;
783 		}
784 
785 		q = bdev_get_queue(bdev);
786 		if (blk_queue_discard(q)) {
787 			device->can_discard = 1;
788 			fs_devices->num_can_discard++;
789 		}
790 
791 		device->bdev = bdev;
792 		device->in_fs_metadata = 0;
793 		device->mode = flags;
794 
795 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
796 			fs_devices->rotating = 1;
797 
798 		fs_devices->open_devices++;
799 		if (device->writeable &&
800 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
801 			fs_devices->rw_devices++;
802 			list_add(&device->dev_alloc_list,
803 				 &fs_devices->alloc_list);
804 		}
805 		brelse(bh);
806 		continue;
807 
808 error_brelse:
809 		brelse(bh);
810 		blkdev_put(bdev, flags);
811 		continue;
812 	}
813 	if (fs_devices->open_devices == 0) {
814 		ret = -EINVAL;
815 		goto out;
816 	}
817 	fs_devices->seeding = seeding;
818 	fs_devices->opened = 1;
819 	fs_devices->latest_bdev = latest_bdev;
820 	fs_devices->latest_devid = latest_devid;
821 	fs_devices->latest_trans = latest_transid;
822 	fs_devices->total_rw_bytes = 0;
823 out:
824 	return ret;
825 }
826 
827 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
828 		       fmode_t flags, void *holder)
829 {
830 	int ret;
831 
832 	mutex_lock(&uuid_mutex);
833 	if (fs_devices->opened) {
834 		fs_devices->opened++;
835 		ret = 0;
836 	} else {
837 		ret = __btrfs_open_devices(fs_devices, flags, holder);
838 	}
839 	mutex_unlock(&uuid_mutex);
840 	return ret;
841 }
842 
843 /*
844  * Look for a btrfs signature on a device. This may be called out of the mount path
845  * and we are not allowed to call set_blocksize during the scan. The superblock
846  * is read via pagecache
847  */
848 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
849 			  struct btrfs_fs_devices **fs_devices_ret)
850 {
851 	struct btrfs_super_block *disk_super;
852 	struct block_device *bdev;
853 	struct page *page;
854 	void *p;
855 	int ret = -EINVAL;
856 	u64 devid;
857 	u64 transid;
858 	u64 total_devices;
859 	u64 bytenr;
860 	pgoff_t index;
861 
862 	/*
863 	 * we would like to check all the supers, but that would make
864 	 * a btrfs mount succeed after a mkfs from a different FS.
865 	 * So, we need to add a special mount option to scan for
866 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
867 	 */
868 	bytenr = btrfs_sb_offset(0);
869 	flags |= FMODE_EXCL;
870 	mutex_lock(&uuid_mutex);
871 
872 	bdev = blkdev_get_by_path(path, flags, holder);
873 
874 	if (IS_ERR(bdev)) {
875 		ret = PTR_ERR(bdev);
876 		goto error;
877 	}
878 
879 	/* make sure our super fits in the device */
880 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
881 		goto error_bdev_put;
882 
883 	/* make sure our super fits in the page */
884 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
885 		goto error_bdev_put;
886 
887 	/* make sure our super doesn't straddle pages on disk */
888 	index = bytenr >> PAGE_CACHE_SHIFT;
889 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
890 		goto error_bdev_put;
891 
892 	/* pull in the page with our super */
893 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
894 				   index, GFP_NOFS);
895 
896 	if (IS_ERR_OR_NULL(page))
897 		goto error_bdev_put;
898 
899 	p = kmap(page);
900 
901 	/* align our pointer to the offset of the super block */
902 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
903 
904 	if (btrfs_super_bytenr(disk_super) != bytenr ||
905 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
906 		goto error_unmap;
907 
908 	devid = btrfs_stack_device_id(&disk_super->dev_item);
909 	transid = btrfs_super_generation(disk_super);
910 	total_devices = btrfs_super_num_devices(disk_super);
911 
912 	if (disk_super->label[0]) {
913 		if (disk_super->label[BTRFS_LABEL_SIZE - 1])
914 			disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
915 		printk(KERN_INFO "btrfs: device label %s ", disk_super->label);
916 	} else {
917 		printk(KERN_INFO "btrfs: device fsid %pU ", disk_super->fsid);
918 	}
919 
920 	printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
921 
922 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
923 	if (!ret && fs_devices_ret)
924 		(*fs_devices_ret)->total_devices = total_devices;
925 
926 error_unmap:
927 	kunmap(page);
928 	page_cache_release(page);
929 
930 error_bdev_put:
931 	blkdev_put(bdev, flags);
932 error:
933 	mutex_unlock(&uuid_mutex);
934 	return ret;
935 }
936 
937 /* helper to account the used device space in the range */
938 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
939 				   u64 end, u64 *length)
940 {
941 	struct btrfs_key key;
942 	struct btrfs_root *root = device->dev_root;
943 	struct btrfs_dev_extent *dev_extent;
944 	struct btrfs_path *path;
945 	u64 extent_end;
946 	int ret;
947 	int slot;
948 	struct extent_buffer *l;
949 
950 	*length = 0;
951 
952 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
953 		return 0;
954 
955 	path = btrfs_alloc_path();
956 	if (!path)
957 		return -ENOMEM;
958 	path->reada = 2;
959 
960 	key.objectid = device->devid;
961 	key.offset = start;
962 	key.type = BTRFS_DEV_EXTENT_KEY;
963 
964 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
965 	if (ret < 0)
966 		goto out;
967 	if (ret > 0) {
968 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
969 		if (ret < 0)
970 			goto out;
971 	}
972 
973 	while (1) {
974 		l = path->nodes[0];
975 		slot = path->slots[0];
976 		if (slot >= btrfs_header_nritems(l)) {
977 			ret = btrfs_next_leaf(root, path);
978 			if (ret == 0)
979 				continue;
980 			if (ret < 0)
981 				goto out;
982 
983 			break;
984 		}
985 		btrfs_item_key_to_cpu(l, &key, slot);
986 
987 		if (key.objectid < device->devid)
988 			goto next;
989 
990 		if (key.objectid > device->devid)
991 			break;
992 
993 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
994 			goto next;
995 
996 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
997 		extent_end = key.offset + btrfs_dev_extent_length(l,
998 								  dev_extent);
999 		if (key.offset <= start && extent_end > end) {
1000 			*length = end - start + 1;
1001 			break;
1002 		} else if (key.offset <= start && extent_end > start)
1003 			*length += extent_end - start;
1004 		else if (key.offset > start && extent_end <= end)
1005 			*length += extent_end - key.offset;
1006 		else if (key.offset > start && key.offset <= end) {
1007 			*length += end - key.offset + 1;
1008 			break;
1009 		} else if (key.offset > end)
1010 			break;
1011 
1012 next:
1013 		path->slots[0]++;
1014 	}
1015 	ret = 0;
1016 out:
1017 	btrfs_free_path(path);
1018 	return ret;
1019 }
1020 
1021 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1022 				   struct btrfs_device *device,
1023 				   u64 *start, u64 len)
1024 {
1025 	struct extent_map *em;
1026 	int ret = 0;
1027 
1028 	list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1029 		struct map_lookup *map;
1030 		int i;
1031 
1032 		map = (struct map_lookup *)em->bdev;
1033 		for (i = 0; i < map->num_stripes; i++) {
1034 			if (map->stripes[i].dev != device)
1035 				continue;
1036 			if (map->stripes[i].physical >= *start + len ||
1037 			    map->stripes[i].physical + em->orig_block_len <=
1038 			    *start)
1039 				continue;
1040 			*start = map->stripes[i].physical +
1041 				em->orig_block_len;
1042 			ret = 1;
1043 		}
1044 	}
1045 
1046 	return ret;
1047 }
1048 
1049 
1050 /*
1051  * find_free_dev_extent - find free space in the specified device
1052  * @device:	the device which we search the free space in
1053  * @num_bytes:	the size of the free space that we need
1054  * @start:	store the start of the free space.
1055  * @len:	the size of the free space. that we find, or the size of the max
1056  * 		free space if we don't find suitable free space
1057  *
1058  * this uses a pretty simple search, the expectation is that it is
1059  * called very infrequently and that a given device has a small number
1060  * of extents
1061  *
1062  * @start is used to store the start of the free space if we find. But if we
1063  * don't find suitable free space, it will be used to store the start position
1064  * of the max free space.
1065  *
1066  * @len is used to store the size of the free space that we find.
1067  * But if we don't find suitable free space, it is used to store the size of
1068  * the max free space.
1069  */
1070 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1071 			 struct btrfs_device *device, u64 num_bytes,
1072 			 u64 *start, u64 *len)
1073 {
1074 	struct btrfs_key key;
1075 	struct btrfs_root *root = device->dev_root;
1076 	struct btrfs_dev_extent *dev_extent;
1077 	struct btrfs_path *path;
1078 	u64 hole_size;
1079 	u64 max_hole_start;
1080 	u64 max_hole_size;
1081 	u64 extent_end;
1082 	u64 search_start;
1083 	u64 search_end = device->total_bytes;
1084 	int ret;
1085 	int slot;
1086 	struct extent_buffer *l;
1087 
1088 	/* FIXME use last free of some kind */
1089 
1090 	/* we don't want to overwrite the superblock on the drive,
1091 	 * so we make sure to start at an offset of at least 1MB
1092 	 */
1093 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1094 
1095 	path = btrfs_alloc_path();
1096 	if (!path)
1097 		return -ENOMEM;
1098 again:
1099 	max_hole_start = search_start;
1100 	max_hole_size = 0;
1101 	hole_size = 0;
1102 
1103 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1104 		ret = -ENOSPC;
1105 		goto out;
1106 	}
1107 
1108 	path->reada = 2;
1109 	path->search_commit_root = 1;
1110 	path->skip_locking = 1;
1111 
1112 	key.objectid = device->devid;
1113 	key.offset = search_start;
1114 	key.type = BTRFS_DEV_EXTENT_KEY;
1115 
1116 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1117 	if (ret < 0)
1118 		goto out;
1119 	if (ret > 0) {
1120 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1121 		if (ret < 0)
1122 			goto out;
1123 	}
1124 
1125 	while (1) {
1126 		l = path->nodes[0];
1127 		slot = path->slots[0];
1128 		if (slot >= btrfs_header_nritems(l)) {
1129 			ret = btrfs_next_leaf(root, path);
1130 			if (ret == 0)
1131 				continue;
1132 			if (ret < 0)
1133 				goto out;
1134 
1135 			break;
1136 		}
1137 		btrfs_item_key_to_cpu(l, &key, slot);
1138 
1139 		if (key.objectid < device->devid)
1140 			goto next;
1141 
1142 		if (key.objectid > device->devid)
1143 			break;
1144 
1145 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1146 			goto next;
1147 
1148 		if (key.offset > search_start) {
1149 			hole_size = key.offset - search_start;
1150 
1151 			/*
1152 			 * Have to check before we set max_hole_start, otherwise
1153 			 * we could end up sending back this offset anyway.
1154 			 */
1155 			if (contains_pending_extent(trans, device,
1156 						    &search_start,
1157 						    hole_size))
1158 				hole_size = 0;
1159 
1160 			if (hole_size > max_hole_size) {
1161 				max_hole_start = search_start;
1162 				max_hole_size = hole_size;
1163 			}
1164 
1165 			/*
1166 			 * If this free space is greater than which we need,
1167 			 * it must be the max free space that we have found
1168 			 * until now, so max_hole_start must point to the start
1169 			 * of this free space and the length of this free space
1170 			 * is stored in max_hole_size. Thus, we return
1171 			 * max_hole_start and max_hole_size and go back to the
1172 			 * caller.
1173 			 */
1174 			if (hole_size >= num_bytes) {
1175 				ret = 0;
1176 				goto out;
1177 			}
1178 		}
1179 
1180 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1181 		extent_end = key.offset + btrfs_dev_extent_length(l,
1182 								  dev_extent);
1183 		if (extent_end > search_start)
1184 			search_start = extent_end;
1185 next:
1186 		path->slots[0]++;
1187 		cond_resched();
1188 	}
1189 
1190 	/*
1191 	 * At this point, search_start should be the end of
1192 	 * allocated dev extents, and when shrinking the device,
1193 	 * search_end may be smaller than search_start.
1194 	 */
1195 	if (search_end > search_start)
1196 		hole_size = search_end - search_start;
1197 
1198 	if (hole_size > max_hole_size) {
1199 		max_hole_start = search_start;
1200 		max_hole_size = hole_size;
1201 	}
1202 
1203 	if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1204 		btrfs_release_path(path);
1205 		goto again;
1206 	}
1207 
1208 	/* See above. */
1209 	if (hole_size < num_bytes)
1210 		ret = -ENOSPC;
1211 	else
1212 		ret = 0;
1213 
1214 out:
1215 	btrfs_free_path(path);
1216 	*start = max_hole_start;
1217 	if (len)
1218 		*len = max_hole_size;
1219 	return ret;
1220 }
1221 
1222 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1223 			  struct btrfs_device *device,
1224 			  u64 start)
1225 {
1226 	int ret;
1227 	struct btrfs_path *path;
1228 	struct btrfs_root *root = device->dev_root;
1229 	struct btrfs_key key;
1230 	struct btrfs_key found_key;
1231 	struct extent_buffer *leaf = NULL;
1232 	struct btrfs_dev_extent *extent = NULL;
1233 
1234 	path = btrfs_alloc_path();
1235 	if (!path)
1236 		return -ENOMEM;
1237 
1238 	key.objectid = device->devid;
1239 	key.offset = start;
1240 	key.type = BTRFS_DEV_EXTENT_KEY;
1241 again:
1242 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1243 	if (ret > 0) {
1244 		ret = btrfs_previous_item(root, path, key.objectid,
1245 					  BTRFS_DEV_EXTENT_KEY);
1246 		if (ret)
1247 			goto out;
1248 		leaf = path->nodes[0];
1249 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1250 		extent = btrfs_item_ptr(leaf, path->slots[0],
1251 					struct btrfs_dev_extent);
1252 		BUG_ON(found_key.offset > start || found_key.offset +
1253 		       btrfs_dev_extent_length(leaf, extent) < start);
1254 		key = found_key;
1255 		btrfs_release_path(path);
1256 		goto again;
1257 	} else if (ret == 0) {
1258 		leaf = path->nodes[0];
1259 		extent = btrfs_item_ptr(leaf, path->slots[0],
1260 					struct btrfs_dev_extent);
1261 	} else {
1262 		btrfs_error(root->fs_info, ret, "Slot search failed");
1263 		goto out;
1264 	}
1265 
1266 	if (device->bytes_used > 0) {
1267 		u64 len = btrfs_dev_extent_length(leaf, extent);
1268 		device->bytes_used -= len;
1269 		spin_lock(&root->fs_info->free_chunk_lock);
1270 		root->fs_info->free_chunk_space += len;
1271 		spin_unlock(&root->fs_info->free_chunk_lock);
1272 	}
1273 	ret = btrfs_del_item(trans, root, path);
1274 	if (ret) {
1275 		btrfs_error(root->fs_info, ret,
1276 			    "Failed to remove dev extent item");
1277 	}
1278 out:
1279 	btrfs_free_path(path);
1280 	return ret;
1281 }
1282 
1283 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1284 				  struct btrfs_device *device,
1285 				  u64 chunk_tree, u64 chunk_objectid,
1286 				  u64 chunk_offset, u64 start, u64 num_bytes)
1287 {
1288 	int ret;
1289 	struct btrfs_path *path;
1290 	struct btrfs_root *root = device->dev_root;
1291 	struct btrfs_dev_extent *extent;
1292 	struct extent_buffer *leaf;
1293 	struct btrfs_key key;
1294 
1295 	WARN_ON(!device->in_fs_metadata);
1296 	WARN_ON(device->is_tgtdev_for_dev_replace);
1297 	path = btrfs_alloc_path();
1298 	if (!path)
1299 		return -ENOMEM;
1300 
1301 	key.objectid = device->devid;
1302 	key.offset = start;
1303 	key.type = BTRFS_DEV_EXTENT_KEY;
1304 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1305 				      sizeof(*extent));
1306 	if (ret)
1307 		goto out;
1308 
1309 	leaf = path->nodes[0];
1310 	extent = btrfs_item_ptr(leaf, path->slots[0],
1311 				struct btrfs_dev_extent);
1312 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1313 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1314 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1315 
1316 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1317 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1318 
1319 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1320 	btrfs_mark_buffer_dirty(leaf);
1321 out:
1322 	btrfs_free_path(path);
1323 	return ret;
1324 }
1325 
1326 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1327 {
1328 	struct extent_map_tree *em_tree;
1329 	struct extent_map *em;
1330 	struct rb_node *n;
1331 	u64 ret = 0;
1332 
1333 	em_tree = &fs_info->mapping_tree.map_tree;
1334 	read_lock(&em_tree->lock);
1335 	n = rb_last(&em_tree->map);
1336 	if (n) {
1337 		em = rb_entry(n, struct extent_map, rb_node);
1338 		ret = em->start + em->len;
1339 	}
1340 	read_unlock(&em_tree->lock);
1341 
1342 	return ret;
1343 }
1344 
1345 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1346 				    u64 *devid_ret)
1347 {
1348 	int ret;
1349 	struct btrfs_key key;
1350 	struct btrfs_key found_key;
1351 	struct btrfs_path *path;
1352 
1353 	path = btrfs_alloc_path();
1354 	if (!path)
1355 		return -ENOMEM;
1356 
1357 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1358 	key.type = BTRFS_DEV_ITEM_KEY;
1359 	key.offset = (u64)-1;
1360 
1361 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1362 	if (ret < 0)
1363 		goto error;
1364 
1365 	BUG_ON(ret == 0); /* Corruption */
1366 
1367 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1368 				  BTRFS_DEV_ITEMS_OBJECTID,
1369 				  BTRFS_DEV_ITEM_KEY);
1370 	if (ret) {
1371 		*devid_ret = 1;
1372 	} else {
1373 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1374 				      path->slots[0]);
1375 		*devid_ret = found_key.offset + 1;
1376 	}
1377 	ret = 0;
1378 error:
1379 	btrfs_free_path(path);
1380 	return ret;
1381 }
1382 
1383 /*
1384  * the device information is stored in the chunk root
1385  * the btrfs_device struct should be fully filled in
1386  */
1387 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1388 			    struct btrfs_root *root,
1389 			    struct btrfs_device *device)
1390 {
1391 	int ret;
1392 	struct btrfs_path *path;
1393 	struct btrfs_dev_item *dev_item;
1394 	struct extent_buffer *leaf;
1395 	struct btrfs_key key;
1396 	unsigned long ptr;
1397 
1398 	root = root->fs_info->chunk_root;
1399 
1400 	path = btrfs_alloc_path();
1401 	if (!path)
1402 		return -ENOMEM;
1403 
1404 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1405 	key.type = BTRFS_DEV_ITEM_KEY;
1406 	key.offset = device->devid;
1407 
1408 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1409 				      sizeof(*dev_item));
1410 	if (ret)
1411 		goto out;
1412 
1413 	leaf = path->nodes[0];
1414 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1415 
1416 	btrfs_set_device_id(leaf, dev_item, device->devid);
1417 	btrfs_set_device_generation(leaf, dev_item, 0);
1418 	btrfs_set_device_type(leaf, dev_item, device->type);
1419 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1420 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1421 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1422 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1423 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1424 	btrfs_set_device_group(leaf, dev_item, 0);
1425 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1426 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1427 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1428 
1429 	ptr = btrfs_device_uuid(dev_item);
1430 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1431 	ptr = btrfs_device_fsid(dev_item);
1432 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1433 	btrfs_mark_buffer_dirty(leaf);
1434 
1435 	ret = 0;
1436 out:
1437 	btrfs_free_path(path);
1438 	return ret;
1439 }
1440 
1441 static int btrfs_rm_dev_item(struct btrfs_root *root,
1442 			     struct btrfs_device *device)
1443 {
1444 	int ret;
1445 	struct btrfs_path *path;
1446 	struct btrfs_key key;
1447 	struct btrfs_trans_handle *trans;
1448 
1449 	root = root->fs_info->chunk_root;
1450 
1451 	path = btrfs_alloc_path();
1452 	if (!path)
1453 		return -ENOMEM;
1454 
1455 	trans = btrfs_start_transaction(root, 0);
1456 	if (IS_ERR(trans)) {
1457 		btrfs_free_path(path);
1458 		return PTR_ERR(trans);
1459 	}
1460 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1461 	key.type = BTRFS_DEV_ITEM_KEY;
1462 	key.offset = device->devid;
1463 	lock_chunks(root);
1464 
1465 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1466 	if (ret < 0)
1467 		goto out;
1468 
1469 	if (ret > 0) {
1470 		ret = -ENOENT;
1471 		goto out;
1472 	}
1473 
1474 	ret = btrfs_del_item(trans, root, path);
1475 	if (ret)
1476 		goto out;
1477 out:
1478 	btrfs_free_path(path);
1479 	unlock_chunks(root);
1480 	btrfs_commit_transaction(trans, root);
1481 	return ret;
1482 }
1483 
1484 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1485 {
1486 	struct btrfs_device *device;
1487 	struct btrfs_device *next_device;
1488 	struct block_device *bdev;
1489 	struct buffer_head *bh = NULL;
1490 	struct btrfs_super_block *disk_super;
1491 	struct btrfs_fs_devices *cur_devices;
1492 	u64 all_avail;
1493 	u64 devid;
1494 	u64 num_devices;
1495 	u8 *dev_uuid;
1496 	unsigned seq;
1497 	int ret = 0;
1498 	bool clear_super = false;
1499 
1500 	mutex_lock(&uuid_mutex);
1501 
1502 	do {
1503 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1504 
1505 		all_avail = root->fs_info->avail_data_alloc_bits |
1506 			    root->fs_info->avail_system_alloc_bits |
1507 			    root->fs_info->avail_metadata_alloc_bits;
1508 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1509 
1510 	num_devices = root->fs_info->fs_devices->num_devices;
1511 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1512 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1513 		WARN_ON(num_devices < 1);
1514 		num_devices--;
1515 	}
1516 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1517 
1518 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1519 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1520 		goto out;
1521 	}
1522 
1523 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1524 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1525 		goto out;
1526 	}
1527 
1528 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1529 	    root->fs_info->fs_devices->rw_devices <= 2) {
1530 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1531 		goto out;
1532 	}
1533 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1534 	    root->fs_info->fs_devices->rw_devices <= 3) {
1535 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1536 		goto out;
1537 	}
1538 
1539 	if (strcmp(device_path, "missing") == 0) {
1540 		struct list_head *devices;
1541 		struct btrfs_device *tmp;
1542 
1543 		device = NULL;
1544 		devices = &root->fs_info->fs_devices->devices;
1545 		/*
1546 		 * It is safe to read the devices since the volume_mutex
1547 		 * is held.
1548 		 */
1549 		list_for_each_entry(tmp, devices, dev_list) {
1550 			if (tmp->in_fs_metadata &&
1551 			    !tmp->is_tgtdev_for_dev_replace &&
1552 			    !tmp->bdev) {
1553 				device = tmp;
1554 				break;
1555 			}
1556 		}
1557 		bdev = NULL;
1558 		bh = NULL;
1559 		disk_super = NULL;
1560 		if (!device) {
1561 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1562 			goto out;
1563 		}
1564 	} else {
1565 		ret = btrfs_get_bdev_and_sb(device_path,
1566 					    FMODE_WRITE | FMODE_EXCL,
1567 					    root->fs_info->bdev_holder, 0,
1568 					    &bdev, &bh);
1569 		if (ret)
1570 			goto out;
1571 		disk_super = (struct btrfs_super_block *)bh->b_data;
1572 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1573 		dev_uuid = disk_super->dev_item.uuid;
1574 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1575 					   disk_super->fsid);
1576 		if (!device) {
1577 			ret = -ENOENT;
1578 			goto error_brelse;
1579 		}
1580 	}
1581 
1582 	if (device->is_tgtdev_for_dev_replace) {
1583 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1584 		goto error_brelse;
1585 	}
1586 
1587 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1588 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1589 		goto error_brelse;
1590 	}
1591 
1592 	if (device->writeable) {
1593 		lock_chunks(root);
1594 		list_del_init(&device->dev_alloc_list);
1595 		unlock_chunks(root);
1596 		root->fs_info->fs_devices->rw_devices--;
1597 		clear_super = true;
1598 	}
1599 
1600 	mutex_unlock(&uuid_mutex);
1601 	ret = btrfs_shrink_device(device, 0);
1602 	mutex_lock(&uuid_mutex);
1603 	if (ret)
1604 		goto error_undo;
1605 
1606 	/*
1607 	 * TODO: the superblock still includes this device in its num_devices
1608 	 * counter although write_all_supers() is not locked out. This
1609 	 * could give a filesystem state which requires a degraded mount.
1610 	 */
1611 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1612 	if (ret)
1613 		goto error_undo;
1614 
1615 	spin_lock(&root->fs_info->free_chunk_lock);
1616 	root->fs_info->free_chunk_space = device->total_bytes -
1617 		device->bytes_used;
1618 	spin_unlock(&root->fs_info->free_chunk_lock);
1619 
1620 	device->in_fs_metadata = 0;
1621 	btrfs_scrub_cancel_dev(root->fs_info, device);
1622 
1623 	/*
1624 	 * the device list mutex makes sure that we don't change
1625 	 * the device list while someone else is writing out all
1626 	 * the device supers. Whoever is writing all supers, should
1627 	 * lock the device list mutex before getting the number of
1628 	 * devices in the super block (super_copy). Conversely,
1629 	 * whoever updates the number of devices in the super block
1630 	 * (super_copy) should hold the device list mutex.
1631 	 */
1632 
1633 	cur_devices = device->fs_devices;
1634 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1635 	list_del_rcu(&device->dev_list);
1636 
1637 	device->fs_devices->num_devices--;
1638 	device->fs_devices->total_devices--;
1639 
1640 	if (device->missing)
1641 		root->fs_info->fs_devices->missing_devices--;
1642 
1643 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1644 				 struct btrfs_device, dev_list);
1645 	if (device->bdev == root->fs_info->sb->s_bdev)
1646 		root->fs_info->sb->s_bdev = next_device->bdev;
1647 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1648 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1649 
1650 	if (device->bdev)
1651 		device->fs_devices->open_devices--;
1652 
1653 	call_rcu(&device->rcu, free_device);
1654 
1655 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1656 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1657 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1658 
1659 	if (cur_devices->open_devices == 0) {
1660 		struct btrfs_fs_devices *fs_devices;
1661 		fs_devices = root->fs_info->fs_devices;
1662 		while (fs_devices) {
1663 			if (fs_devices->seed == cur_devices)
1664 				break;
1665 			fs_devices = fs_devices->seed;
1666 		}
1667 		fs_devices->seed = cur_devices->seed;
1668 		cur_devices->seed = NULL;
1669 		lock_chunks(root);
1670 		__btrfs_close_devices(cur_devices);
1671 		unlock_chunks(root);
1672 		free_fs_devices(cur_devices);
1673 	}
1674 
1675 	root->fs_info->num_tolerated_disk_barrier_failures =
1676 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1677 
1678 	/*
1679 	 * at this point, the device is zero sized.  We want to
1680 	 * remove it from the devices list and zero out the old super
1681 	 */
1682 	if (clear_super && disk_super) {
1683 		/* make sure this device isn't detected as part of
1684 		 * the FS anymore
1685 		 */
1686 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1687 		set_buffer_dirty(bh);
1688 		sync_dirty_buffer(bh);
1689 	}
1690 
1691 	ret = 0;
1692 
1693 	/* Notify udev that device has changed */
1694 	if (bdev)
1695 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1696 
1697 error_brelse:
1698 	brelse(bh);
1699 	if (bdev)
1700 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1701 out:
1702 	mutex_unlock(&uuid_mutex);
1703 	return ret;
1704 error_undo:
1705 	if (device->writeable) {
1706 		lock_chunks(root);
1707 		list_add(&device->dev_alloc_list,
1708 			 &root->fs_info->fs_devices->alloc_list);
1709 		unlock_chunks(root);
1710 		root->fs_info->fs_devices->rw_devices++;
1711 	}
1712 	goto error_brelse;
1713 }
1714 
1715 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1716 				 struct btrfs_device *srcdev)
1717 {
1718 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1719 
1720 	list_del_rcu(&srcdev->dev_list);
1721 	list_del_rcu(&srcdev->dev_alloc_list);
1722 	fs_info->fs_devices->num_devices--;
1723 	if (srcdev->missing) {
1724 		fs_info->fs_devices->missing_devices--;
1725 		fs_info->fs_devices->rw_devices++;
1726 	}
1727 	if (srcdev->can_discard)
1728 		fs_info->fs_devices->num_can_discard--;
1729 	if (srcdev->bdev) {
1730 		fs_info->fs_devices->open_devices--;
1731 
1732 		/* zero out the old super */
1733 		btrfs_scratch_superblock(srcdev);
1734 	}
1735 
1736 	call_rcu(&srcdev->rcu, free_device);
1737 }
1738 
1739 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1740 				      struct btrfs_device *tgtdev)
1741 {
1742 	struct btrfs_device *next_device;
1743 
1744 	WARN_ON(!tgtdev);
1745 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1746 	if (tgtdev->bdev) {
1747 		btrfs_scratch_superblock(tgtdev);
1748 		fs_info->fs_devices->open_devices--;
1749 	}
1750 	fs_info->fs_devices->num_devices--;
1751 	if (tgtdev->can_discard)
1752 		fs_info->fs_devices->num_can_discard++;
1753 
1754 	next_device = list_entry(fs_info->fs_devices->devices.next,
1755 				 struct btrfs_device, dev_list);
1756 	if (tgtdev->bdev == fs_info->sb->s_bdev)
1757 		fs_info->sb->s_bdev = next_device->bdev;
1758 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1759 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1760 	list_del_rcu(&tgtdev->dev_list);
1761 
1762 	call_rcu(&tgtdev->rcu, free_device);
1763 
1764 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1765 }
1766 
1767 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1768 				     struct btrfs_device **device)
1769 {
1770 	int ret = 0;
1771 	struct btrfs_super_block *disk_super;
1772 	u64 devid;
1773 	u8 *dev_uuid;
1774 	struct block_device *bdev;
1775 	struct buffer_head *bh;
1776 
1777 	*device = NULL;
1778 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1779 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
1780 	if (ret)
1781 		return ret;
1782 	disk_super = (struct btrfs_super_block *)bh->b_data;
1783 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1784 	dev_uuid = disk_super->dev_item.uuid;
1785 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1786 				    disk_super->fsid);
1787 	brelse(bh);
1788 	if (!*device)
1789 		ret = -ENOENT;
1790 	blkdev_put(bdev, FMODE_READ);
1791 	return ret;
1792 }
1793 
1794 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1795 					 char *device_path,
1796 					 struct btrfs_device **device)
1797 {
1798 	*device = NULL;
1799 	if (strcmp(device_path, "missing") == 0) {
1800 		struct list_head *devices;
1801 		struct btrfs_device *tmp;
1802 
1803 		devices = &root->fs_info->fs_devices->devices;
1804 		/*
1805 		 * It is safe to read the devices since the volume_mutex
1806 		 * is held by the caller.
1807 		 */
1808 		list_for_each_entry(tmp, devices, dev_list) {
1809 			if (tmp->in_fs_metadata && !tmp->bdev) {
1810 				*device = tmp;
1811 				break;
1812 			}
1813 		}
1814 
1815 		if (!*device) {
1816 			pr_err("btrfs: no missing device found\n");
1817 			return -ENOENT;
1818 		}
1819 
1820 		return 0;
1821 	} else {
1822 		return btrfs_find_device_by_path(root, device_path, device);
1823 	}
1824 }
1825 
1826 /*
1827  * does all the dirty work required for changing file system's UUID.
1828  */
1829 static int btrfs_prepare_sprout(struct btrfs_root *root)
1830 {
1831 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1832 	struct btrfs_fs_devices *old_devices;
1833 	struct btrfs_fs_devices *seed_devices;
1834 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1835 	struct btrfs_device *device;
1836 	u64 super_flags;
1837 
1838 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1839 	if (!fs_devices->seeding)
1840 		return -EINVAL;
1841 
1842 	seed_devices = __alloc_fs_devices();
1843 	if (IS_ERR(seed_devices))
1844 		return PTR_ERR(seed_devices);
1845 
1846 	old_devices = clone_fs_devices(fs_devices);
1847 	if (IS_ERR(old_devices)) {
1848 		kfree(seed_devices);
1849 		return PTR_ERR(old_devices);
1850 	}
1851 
1852 	list_add(&old_devices->list, &fs_uuids);
1853 
1854 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1855 	seed_devices->opened = 1;
1856 	INIT_LIST_HEAD(&seed_devices->devices);
1857 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1858 	mutex_init(&seed_devices->device_list_mutex);
1859 
1860 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1861 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1862 			      synchronize_rcu);
1863 
1864 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1865 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1866 		device->fs_devices = seed_devices;
1867 	}
1868 
1869 	fs_devices->seeding = 0;
1870 	fs_devices->num_devices = 0;
1871 	fs_devices->open_devices = 0;
1872 	fs_devices->total_devices = 0;
1873 	fs_devices->seed = seed_devices;
1874 
1875 	generate_random_uuid(fs_devices->fsid);
1876 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1877 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1878 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1879 
1880 	super_flags = btrfs_super_flags(disk_super) &
1881 		      ~BTRFS_SUPER_FLAG_SEEDING;
1882 	btrfs_set_super_flags(disk_super, super_flags);
1883 
1884 	return 0;
1885 }
1886 
1887 /*
1888  * strore the expected generation for seed devices in device items.
1889  */
1890 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1891 			       struct btrfs_root *root)
1892 {
1893 	struct btrfs_path *path;
1894 	struct extent_buffer *leaf;
1895 	struct btrfs_dev_item *dev_item;
1896 	struct btrfs_device *device;
1897 	struct btrfs_key key;
1898 	u8 fs_uuid[BTRFS_UUID_SIZE];
1899 	u8 dev_uuid[BTRFS_UUID_SIZE];
1900 	u64 devid;
1901 	int ret;
1902 
1903 	path = btrfs_alloc_path();
1904 	if (!path)
1905 		return -ENOMEM;
1906 
1907 	root = root->fs_info->chunk_root;
1908 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1909 	key.offset = 0;
1910 	key.type = BTRFS_DEV_ITEM_KEY;
1911 
1912 	while (1) {
1913 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1914 		if (ret < 0)
1915 			goto error;
1916 
1917 		leaf = path->nodes[0];
1918 next_slot:
1919 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1920 			ret = btrfs_next_leaf(root, path);
1921 			if (ret > 0)
1922 				break;
1923 			if (ret < 0)
1924 				goto error;
1925 			leaf = path->nodes[0];
1926 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1927 			btrfs_release_path(path);
1928 			continue;
1929 		}
1930 
1931 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1932 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1933 		    key.type != BTRFS_DEV_ITEM_KEY)
1934 			break;
1935 
1936 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1937 					  struct btrfs_dev_item);
1938 		devid = btrfs_device_id(leaf, dev_item);
1939 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
1940 				   BTRFS_UUID_SIZE);
1941 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
1942 				   BTRFS_UUID_SIZE);
1943 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1944 					   fs_uuid);
1945 		BUG_ON(!device); /* Logic error */
1946 
1947 		if (device->fs_devices->seeding) {
1948 			btrfs_set_device_generation(leaf, dev_item,
1949 						    device->generation);
1950 			btrfs_mark_buffer_dirty(leaf);
1951 		}
1952 
1953 		path->slots[0]++;
1954 		goto next_slot;
1955 	}
1956 	ret = 0;
1957 error:
1958 	btrfs_free_path(path);
1959 	return ret;
1960 }
1961 
1962 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1963 {
1964 	struct request_queue *q;
1965 	struct btrfs_trans_handle *trans;
1966 	struct btrfs_device *device;
1967 	struct block_device *bdev;
1968 	struct list_head *devices;
1969 	struct super_block *sb = root->fs_info->sb;
1970 	struct rcu_string *name;
1971 	u64 total_bytes;
1972 	int seeding_dev = 0;
1973 	int ret = 0;
1974 
1975 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1976 		return -EROFS;
1977 
1978 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1979 				  root->fs_info->bdev_holder);
1980 	if (IS_ERR(bdev))
1981 		return PTR_ERR(bdev);
1982 
1983 	if (root->fs_info->fs_devices->seeding) {
1984 		seeding_dev = 1;
1985 		down_write(&sb->s_umount);
1986 		mutex_lock(&uuid_mutex);
1987 	}
1988 
1989 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1990 
1991 	devices = &root->fs_info->fs_devices->devices;
1992 
1993 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1994 	list_for_each_entry(device, devices, dev_list) {
1995 		if (device->bdev == bdev) {
1996 			ret = -EEXIST;
1997 			mutex_unlock(
1998 				&root->fs_info->fs_devices->device_list_mutex);
1999 			goto error;
2000 		}
2001 	}
2002 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2003 
2004 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2005 	if (IS_ERR(device)) {
2006 		/* we can safely leave the fs_devices entry around */
2007 		ret = PTR_ERR(device);
2008 		goto error;
2009 	}
2010 
2011 	name = rcu_string_strdup(device_path, GFP_NOFS);
2012 	if (!name) {
2013 		kfree(device);
2014 		ret = -ENOMEM;
2015 		goto error;
2016 	}
2017 	rcu_assign_pointer(device->name, name);
2018 
2019 	trans = btrfs_start_transaction(root, 0);
2020 	if (IS_ERR(trans)) {
2021 		rcu_string_free(device->name);
2022 		kfree(device);
2023 		ret = PTR_ERR(trans);
2024 		goto error;
2025 	}
2026 
2027 	lock_chunks(root);
2028 
2029 	q = bdev_get_queue(bdev);
2030 	if (blk_queue_discard(q))
2031 		device->can_discard = 1;
2032 	device->writeable = 1;
2033 	device->generation = trans->transid;
2034 	device->io_width = root->sectorsize;
2035 	device->io_align = root->sectorsize;
2036 	device->sector_size = root->sectorsize;
2037 	device->total_bytes = i_size_read(bdev->bd_inode);
2038 	device->disk_total_bytes = device->total_bytes;
2039 	device->dev_root = root->fs_info->dev_root;
2040 	device->bdev = bdev;
2041 	device->in_fs_metadata = 1;
2042 	device->is_tgtdev_for_dev_replace = 0;
2043 	device->mode = FMODE_EXCL;
2044 	device->dev_stats_valid = 1;
2045 	set_blocksize(device->bdev, 4096);
2046 
2047 	if (seeding_dev) {
2048 		sb->s_flags &= ~MS_RDONLY;
2049 		ret = btrfs_prepare_sprout(root);
2050 		BUG_ON(ret); /* -ENOMEM */
2051 	}
2052 
2053 	device->fs_devices = root->fs_info->fs_devices;
2054 
2055 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2056 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2057 	list_add(&device->dev_alloc_list,
2058 		 &root->fs_info->fs_devices->alloc_list);
2059 	root->fs_info->fs_devices->num_devices++;
2060 	root->fs_info->fs_devices->open_devices++;
2061 	root->fs_info->fs_devices->rw_devices++;
2062 	root->fs_info->fs_devices->total_devices++;
2063 	if (device->can_discard)
2064 		root->fs_info->fs_devices->num_can_discard++;
2065 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2066 
2067 	spin_lock(&root->fs_info->free_chunk_lock);
2068 	root->fs_info->free_chunk_space += device->total_bytes;
2069 	spin_unlock(&root->fs_info->free_chunk_lock);
2070 
2071 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2072 		root->fs_info->fs_devices->rotating = 1;
2073 
2074 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2075 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2076 				    total_bytes + device->total_bytes);
2077 
2078 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2079 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2080 				    total_bytes + 1);
2081 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2082 
2083 	if (seeding_dev) {
2084 		ret = init_first_rw_device(trans, root, device);
2085 		if (ret) {
2086 			btrfs_abort_transaction(trans, root, ret);
2087 			goto error_trans;
2088 		}
2089 		ret = btrfs_finish_sprout(trans, root);
2090 		if (ret) {
2091 			btrfs_abort_transaction(trans, root, ret);
2092 			goto error_trans;
2093 		}
2094 	} else {
2095 		ret = btrfs_add_device(trans, root, device);
2096 		if (ret) {
2097 			btrfs_abort_transaction(trans, root, ret);
2098 			goto error_trans;
2099 		}
2100 	}
2101 
2102 	/*
2103 	 * we've got more storage, clear any full flags on the space
2104 	 * infos
2105 	 */
2106 	btrfs_clear_space_info_full(root->fs_info);
2107 
2108 	unlock_chunks(root);
2109 	root->fs_info->num_tolerated_disk_barrier_failures =
2110 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2111 	ret = btrfs_commit_transaction(trans, root);
2112 
2113 	if (seeding_dev) {
2114 		mutex_unlock(&uuid_mutex);
2115 		up_write(&sb->s_umount);
2116 
2117 		if (ret) /* transaction commit */
2118 			return ret;
2119 
2120 		ret = btrfs_relocate_sys_chunks(root);
2121 		if (ret < 0)
2122 			btrfs_error(root->fs_info, ret,
2123 				    "Failed to relocate sys chunks after "
2124 				    "device initialization. This can be fixed "
2125 				    "using the \"btrfs balance\" command.");
2126 		trans = btrfs_attach_transaction(root);
2127 		if (IS_ERR(trans)) {
2128 			if (PTR_ERR(trans) == -ENOENT)
2129 				return 0;
2130 			return PTR_ERR(trans);
2131 		}
2132 		ret = btrfs_commit_transaction(trans, root);
2133 	}
2134 
2135 	return ret;
2136 
2137 error_trans:
2138 	unlock_chunks(root);
2139 	btrfs_end_transaction(trans, root);
2140 	rcu_string_free(device->name);
2141 	kfree(device);
2142 error:
2143 	blkdev_put(bdev, FMODE_EXCL);
2144 	if (seeding_dev) {
2145 		mutex_unlock(&uuid_mutex);
2146 		up_write(&sb->s_umount);
2147 	}
2148 	return ret;
2149 }
2150 
2151 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2152 				  struct btrfs_device **device_out)
2153 {
2154 	struct request_queue *q;
2155 	struct btrfs_device *device;
2156 	struct block_device *bdev;
2157 	struct btrfs_fs_info *fs_info = root->fs_info;
2158 	struct list_head *devices;
2159 	struct rcu_string *name;
2160 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2161 	int ret = 0;
2162 
2163 	*device_out = NULL;
2164 	if (fs_info->fs_devices->seeding)
2165 		return -EINVAL;
2166 
2167 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2168 				  fs_info->bdev_holder);
2169 	if (IS_ERR(bdev))
2170 		return PTR_ERR(bdev);
2171 
2172 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2173 
2174 	devices = &fs_info->fs_devices->devices;
2175 	list_for_each_entry(device, devices, dev_list) {
2176 		if (device->bdev == bdev) {
2177 			ret = -EEXIST;
2178 			goto error;
2179 		}
2180 	}
2181 
2182 	device = btrfs_alloc_device(NULL, &devid, NULL);
2183 	if (IS_ERR(device)) {
2184 		ret = PTR_ERR(device);
2185 		goto error;
2186 	}
2187 
2188 	name = rcu_string_strdup(device_path, GFP_NOFS);
2189 	if (!name) {
2190 		kfree(device);
2191 		ret = -ENOMEM;
2192 		goto error;
2193 	}
2194 	rcu_assign_pointer(device->name, name);
2195 
2196 	q = bdev_get_queue(bdev);
2197 	if (blk_queue_discard(q))
2198 		device->can_discard = 1;
2199 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2200 	device->writeable = 1;
2201 	device->generation = 0;
2202 	device->io_width = root->sectorsize;
2203 	device->io_align = root->sectorsize;
2204 	device->sector_size = root->sectorsize;
2205 	device->total_bytes = i_size_read(bdev->bd_inode);
2206 	device->disk_total_bytes = device->total_bytes;
2207 	device->dev_root = fs_info->dev_root;
2208 	device->bdev = bdev;
2209 	device->in_fs_metadata = 1;
2210 	device->is_tgtdev_for_dev_replace = 1;
2211 	device->mode = FMODE_EXCL;
2212 	device->dev_stats_valid = 1;
2213 	set_blocksize(device->bdev, 4096);
2214 	device->fs_devices = fs_info->fs_devices;
2215 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2216 	fs_info->fs_devices->num_devices++;
2217 	fs_info->fs_devices->open_devices++;
2218 	if (device->can_discard)
2219 		fs_info->fs_devices->num_can_discard++;
2220 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2221 
2222 	*device_out = device;
2223 	return ret;
2224 
2225 error:
2226 	blkdev_put(bdev, FMODE_EXCL);
2227 	return ret;
2228 }
2229 
2230 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2231 					      struct btrfs_device *tgtdev)
2232 {
2233 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2234 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2235 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2236 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2237 	tgtdev->dev_root = fs_info->dev_root;
2238 	tgtdev->in_fs_metadata = 1;
2239 }
2240 
2241 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2242 					struct btrfs_device *device)
2243 {
2244 	int ret;
2245 	struct btrfs_path *path;
2246 	struct btrfs_root *root;
2247 	struct btrfs_dev_item *dev_item;
2248 	struct extent_buffer *leaf;
2249 	struct btrfs_key key;
2250 
2251 	root = device->dev_root->fs_info->chunk_root;
2252 
2253 	path = btrfs_alloc_path();
2254 	if (!path)
2255 		return -ENOMEM;
2256 
2257 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2258 	key.type = BTRFS_DEV_ITEM_KEY;
2259 	key.offset = device->devid;
2260 
2261 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2262 	if (ret < 0)
2263 		goto out;
2264 
2265 	if (ret > 0) {
2266 		ret = -ENOENT;
2267 		goto out;
2268 	}
2269 
2270 	leaf = path->nodes[0];
2271 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2272 
2273 	btrfs_set_device_id(leaf, dev_item, device->devid);
2274 	btrfs_set_device_type(leaf, dev_item, device->type);
2275 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2276 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2277 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2278 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2279 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2280 	btrfs_mark_buffer_dirty(leaf);
2281 
2282 out:
2283 	btrfs_free_path(path);
2284 	return ret;
2285 }
2286 
2287 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2288 		      struct btrfs_device *device, u64 new_size)
2289 {
2290 	struct btrfs_super_block *super_copy =
2291 		device->dev_root->fs_info->super_copy;
2292 	u64 old_total = btrfs_super_total_bytes(super_copy);
2293 	u64 diff = new_size - device->total_bytes;
2294 
2295 	if (!device->writeable)
2296 		return -EACCES;
2297 	if (new_size <= device->total_bytes ||
2298 	    device->is_tgtdev_for_dev_replace)
2299 		return -EINVAL;
2300 
2301 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2302 	device->fs_devices->total_rw_bytes += diff;
2303 
2304 	device->total_bytes = new_size;
2305 	device->disk_total_bytes = new_size;
2306 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2307 
2308 	return btrfs_update_device(trans, device);
2309 }
2310 
2311 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2312 		      struct btrfs_device *device, u64 new_size)
2313 {
2314 	int ret;
2315 	lock_chunks(device->dev_root);
2316 	ret = __btrfs_grow_device(trans, device, new_size);
2317 	unlock_chunks(device->dev_root);
2318 	return ret;
2319 }
2320 
2321 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2322 			    struct btrfs_root *root,
2323 			    u64 chunk_tree, u64 chunk_objectid,
2324 			    u64 chunk_offset)
2325 {
2326 	int ret;
2327 	struct btrfs_path *path;
2328 	struct btrfs_key key;
2329 
2330 	root = root->fs_info->chunk_root;
2331 	path = btrfs_alloc_path();
2332 	if (!path)
2333 		return -ENOMEM;
2334 
2335 	key.objectid = chunk_objectid;
2336 	key.offset = chunk_offset;
2337 	key.type = BTRFS_CHUNK_ITEM_KEY;
2338 
2339 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2340 	if (ret < 0)
2341 		goto out;
2342 	else if (ret > 0) { /* Logic error or corruption */
2343 		btrfs_error(root->fs_info, -ENOENT,
2344 			    "Failed lookup while freeing chunk.");
2345 		ret = -ENOENT;
2346 		goto out;
2347 	}
2348 
2349 	ret = btrfs_del_item(trans, root, path);
2350 	if (ret < 0)
2351 		btrfs_error(root->fs_info, ret,
2352 			    "Failed to delete chunk item.");
2353 out:
2354 	btrfs_free_path(path);
2355 	return ret;
2356 }
2357 
2358 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2359 			chunk_offset)
2360 {
2361 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2362 	struct btrfs_disk_key *disk_key;
2363 	struct btrfs_chunk *chunk;
2364 	u8 *ptr;
2365 	int ret = 0;
2366 	u32 num_stripes;
2367 	u32 array_size;
2368 	u32 len = 0;
2369 	u32 cur;
2370 	struct btrfs_key key;
2371 
2372 	array_size = btrfs_super_sys_array_size(super_copy);
2373 
2374 	ptr = super_copy->sys_chunk_array;
2375 	cur = 0;
2376 
2377 	while (cur < array_size) {
2378 		disk_key = (struct btrfs_disk_key *)ptr;
2379 		btrfs_disk_key_to_cpu(&key, disk_key);
2380 
2381 		len = sizeof(*disk_key);
2382 
2383 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2384 			chunk = (struct btrfs_chunk *)(ptr + len);
2385 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2386 			len += btrfs_chunk_item_size(num_stripes);
2387 		} else {
2388 			ret = -EIO;
2389 			break;
2390 		}
2391 		if (key.objectid == chunk_objectid &&
2392 		    key.offset == chunk_offset) {
2393 			memmove(ptr, ptr + len, array_size - (cur + len));
2394 			array_size -= len;
2395 			btrfs_set_super_sys_array_size(super_copy, array_size);
2396 		} else {
2397 			ptr += len;
2398 			cur += len;
2399 		}
2400 	}
2401 	return ret;
2402 }
2403 
2404 static int btrfs_relocate_chunk(struct btrfs_root *root,
2405 			 u64 chunk_tree, u64 chunk_objectid,
2406 			 u64 chunk_offset)
2407 {
2408 	struct extent_map_tree *em_tree;
2409 	struct btrfs_root *extent_root;
2410 	struct btrfs_trans_handle *trans;
2411 	struct extent_map *em;
2412 	struct map_lookup *map;
2413 	int ret;
2414 	int i;
2415 
2416 	root = root->fs_info->chunk_root;
2417 	extent_root = root->fs_info->extent_root;
2418 	em_tree = &root->fs_info->mapping_tree.map_tree;
2419 
2420 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2421 	if (ret)
2422 		return -ENOSPC;
2423 
2424 	/* step one, relocate all the extents inside this chunk */
2425 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2426 	if (ret)
2427 		return ret;
2428 
2429 	trans = btrfs_start_transaction(root, 0);
2430 	if (IS_ERR(trans)) {
2431 		ret = PTR_ERR(trans);
2432 		btrfs_std_error(root->fs_info, ret);
2433 		return ret;
2434 	}
2435 
2436 	lock_chunks(root);
2437 
2438 	/*
2439 	 * step two, delete the device extents and the
2440 	 * chunk tree entries
2441 	 */
2442 	read_lock(&em_tree->lock);
2443 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2444 	read_unlock(&em_tree->lock);
2445 
2446 	BUG_ON(!em || em->start > chunk_offset ||
2447 	       em->start + em->len < chunk_offset);
2448 	map = (struct map_lookup *)em->bdev;
2449 
2450 	for (i = 0; i < map->num_stripes; i++) {
2451 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2452 					    map->stripes[i].physical);
2453 		BUG_ON(ret);
2454 
2455 		if (map->stripes[i].dev) {
2456 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2457 			BUG_ON(ret);
2458 		}
2459 	}
2460 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2461 			       chunk_offset);
2462 
2463 	BUG_ON(ret);
2464 
2465 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2466 
2467 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2468 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2469 		BUG_ON(ret);
2470 	}
2471 
2472 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2473 	BUG_ON(ret);
2474 
2475 	write_lock(&em_tree->lock);
2476 	remove_extent_mapping(em_tree, em);
2477 	write_unlock(&em_tree->lock);
2478 
2479 	kfree(map);
2480 	em->bdev = NULL;
2481 
2482 	/* once for the tree */
2483 	free_extent_map(em);
2484 	/* once for us */
2485 	free_extent_map(em);
2486 
2487 	unlock_chunks(root);
2488 	btrfs_end_transaction(trans, root);
2489 	return 0;
2490 }
2491 
2492 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2493 {
2494 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2495 	struct btrfs_path *path;
2496 	struct extent_buffer *leaf;
2497 	struct btrfs_chunk *chunk;
2498 	struct btrfs_key key;
2499 	struct btrfs_key found_key;
2500 	u64 chunk_tree = chunk_root->root_key.objectid;
2501 	u64 chunk_type;
2502 	bool retried = false;
2503 	int failed = 0;
2504 	int ret;
2505 
2506 	path = btrfs_alloc_path();
2507 	if (!path)
2508 		return -ENOMEM;
2509 
2510 again:
2511 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2512 	key.offset = (u64)-1;
2513 	key.type = BTRFS_CHUNK_ITEM_KEY;
2514 
2515 	while (1) {
2516 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2517 		if (ret < 0)
2518 			goto error;
2519 		BUG_ON(ret == 0); /* Corruption */
2520 
2521 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2522 					  key.type);
2523 		if (ret < 0)
2524 			goto error;
2525 		if (ret > 0)
2526 			break;
2527 
2528 		leaf = path->nodes[0];
2529 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2530 
2531 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2532 				       struct btrfs_chunk);
2533 		chunk_type = btrfs_chunk_type(leaf, chunk);
2534 		btrfs_release_path(path);
2535 
2536 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2537 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2538 						   found_key.objectid,
2539 						   found_key.offset);
2540 			if (ret == -ENOSPC)
2541 				failed++;
2542 			else if (ret)
2543 				BUG();
2544 		}
2545 
2546 		if (found_key.offset == 0)
2547 			break;
2548 		key.offset = found_key.offset - 1;
2549 	}
2550 	ret = 0;
2551 	if (failed && !retried) {
2552 		failed = 0;
2553 		retried = true;
2554 		goto again;
2555 	} else if (WARN_ON(failed && retried)) {
2556 		ret = -ENOSPC;
2557 	}
2558 error:
2559 	btrfs_free_path(path);
2560 	return ret;
2561 }
2562 
2563 static int insert_balance_item(struct btrfs_root *root,
2564 			       struct btrfs_balance_control *bctl)
2565 {
2566 	struct btrfs_trans_handle *trans;
2567 	struct btrfs_balance_item *item;
2568 	struct btrfs_disk_balance_args disk_bargs;
2569 	struct btrfs_path *path;
2570 	struct extent_buffer *leaf;
2571 	struct btrfs_key key;
2572 	int ret, err;
2573 
2574 	path = btrfs_alloc_path();
2575 	if (!path)
2576 		return -ENOMEM;
2577 
2578 	trans = btrfs_start_transaction(root, 0);
2579 	if (IS_ERR(trans)) {
2580 		btrfs_free_path(path);
2581 		return PTR_ERR(trans);
2582 	}
2583 
2584 	key.objectid = BTRFS_BALANCE_OBJECTID;
2585 	key.type = BTRFS_BALANCE_ITEM_KEY;
2586 	key.offset = 0;
2587 
2588 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2589 				      sizeof(*item));
2590 	if (ret)
2591 		goto out;
2592 
2593 	leaf = path->nodes[0];
2594 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2595 
2596 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2597 
2598 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2599 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2600 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2601 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2602 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2603 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2604 
2605 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2606 
2607 	btrfs_mark_buffer_dirty(leaf);
2608 out:
2609 	btrfs_free_path(path);
2610 	err = btrfs_commit_transaction(trans, root);
2611 	if (err && !ret)
2612 		ret = err;
2613 	return ret;
2614 }
2615 
2616 static int del_balance_item(struct btrfs_root *root)
2617 {
2618 	struct btrfs_trans_handle *trans;
2619 	struct btrfs_path *path;
2620 	struct btrfs_key key;
2621 	int ret, err;
2622 
2623 	path = btrfs_alloc_path();
2624 	if (!path)
2625 		return -ENOMEM;
2626 
2627 	trans = btrfs_start_transaction(root, 0);
2628 	if (IS_ERR(trans)) {
2629 		btrfs_free_path(path);
2630 		return PTR_ERR(trans);
2631 	}
2632 
2633 	key.objectid = BTRFS_BALANCE_OBJECTID;
2634 	key.type = BTRFS_BALANCE_ITEM_KEY;
2635 	key.offset = 0;
2636 
2637 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2638 	if (ret < 0)
2639 		goto out;
2640 	if (ret > 0) {
2641 		ret = -ENOENT;
2642 		goto out;
2643 	}
2644 
2645 	ret = btrfs_del_item(trans, root, path);
2646 out:
2647 	btrfs_free_path(path);
2648 	err = btrfs_commit_transaction(trans, root);
2649 	if (err && !ret)
2650 		ret = err;
2651 	return ret;
2652 }
2653 
2654 /*
2655  * This is a heuristic used to reduce the number of chunks balanced on
2656  * resume after balance was interrupted.
2657  */
2658 static void update_balance_args(struct btrfs_balance_control *bctl)
2659 {
2660 	/*
2661 	 * Turn on soft mode for chunk types that were being converted.
2662 	 */
2663 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2664 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2665 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2666 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2667 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2668 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2669 
2670 	/*
2671 	 * Turn on usage filter if is not already used.  The idea is
2672 	 * that chunks that we have already balanced should be
2673 	 * reasonably full.  Don't do it for chunks that are being
2674 	 * converted - that will keep us from relocating unconverted
2675 	 * (albeit full) chunks.
2676 	 */
2677 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2678 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2679 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2680 		bctl->data.usage = 90;
2681 	}
2682 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2683 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2684 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2685 		bctl->sys.usage = 90;
2686 	}
2687 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2688 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2689 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2690 		bctl->meta.usage = 90;
2691 	}
2692 }
2693 
2694 /*
2695  * Should be called with both balance and volume mutexes held to
2696  * serialize other volume operations (add_dev/rm_dev/resize) with
2697  * restriper.  Same goes for unset_balance_control.
2698  */
2699 static void set_balance_control(struct btrfs_balance_control *bctl)
2700 {
2701 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2702 
2703 	BUG_ON(fs_info->balance_ctl);
2704 
2705 	spin_lock(&fs_info->balance_lock);
2706 	fs_info->balance_ctl = bctl;
2707 	spin_unlock(&fs_info->balance_lock);
2708 }
2709 
2710 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2711 {
2712 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2713 
2714 	BUG_ON(!fs_info->balance_ctl);
2715 
2716 	spin_lock(&fs_info->balance_lock);
2717 	fs_info->balance_ctl = NULL;
2718 	spin_unlock(&fs_info->balance_lock);
2719 
2720 	kfree(bctl);
2721 }
2722 
2723 /*
2724  * Balance filters.  Return 1 if chunk should be filtered out
2725  * (should not be balanced).
2726  */
2727 static int chunk_profiles_filter(u64 chunk_type,
2728 				 struct btrfs_balance_args *bargs)
2729 {
2730 	chunk_type = chunk_to_extended(chunk_type) &
2731 				BTRFS_EXTENDED_PROFILE_MASK;
2732 
2733 	if (bargs->profiles & chunk_type)
2734 		return 0;
2735 
2736 	return 1;
2737 }
2738 
2739 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2740 			      struct btrfs_balance_args *bargs)
2741 {
2742 	struct btrfs_block_group_cache *cache;
2743 	u64 chunk_used, user_thresh;
2744 	int ret = 1;
2745 
2746 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2747 	chunk_used = btrfs_block_group_used(&cache->item);
2748 
2749 	if (bargs->usage == 0)
2750 		user_thresh = 1;
2751 	else if (bargs->usage > 100)
2752 		user_thresh = cache->key.offset;
2753 	else
2754 		user_thresh = div_factor_fine(cache->key.offset,
2755 					      bargs->usage);
2756 
2757 	if (chunk_used < user_thresh)
2758 		ret = 0;
2759 
2760 	btrfs_put_block_group(cache);
2761 	return ret;
2762 }
2763 
2764 static int chunk_devid_filter(struct extent_buffer *leaf,
2765 			      struct btrfs_chunk *chunk,
2766 			      struct btrfs_balance_args *bargs)
2767 {
2768 	struct btrfs_stripe *stripe;
2769 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2770 	int i;
2771 
2772 	for (i = 0; i < num_stripes; i++) {
2773 		stripe = btrfs_stripe_nr(chunk, i);
2774 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2775 			return 0;
2776 	}
2777 
2778 	return 1;
2779 }
2780 
2781 /* [pstart, pend) */
2782 static int chunk_drange_filter(struct extent_buffer *leaf,
2783 			       struct btrfs_chunk *chunk,
2784 			       u64 chunk_offset,
2785 			       struct btrfs_balance_args *bargs)
2786 {
2787 	struct btrfs_stripe *stripe;
2788 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2789 	u64 stripe_offset;
2790 	u64 stripe_length;
2791 	int factor;
2792 	int i;
2793 
2794 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2795 		return 0;
2796 
2797 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2798 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2799 		factor = num_stripes / 2;
2800 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2801 		factor = num_stripes - 1;
2802 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2803 		factor = num_stripes - 2;
2804 	} else {
2805 		factor = num_stripes;
2806 	}
2807 
2808 	for (i = 0; i < num_stripes; i++) {
2809 		stripe = btrfs_stripe_nr(chunk, i);
2810 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2811 			continue;
2812 
2813 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
2814 		stripe_length = btrfs_chunk_length(leaf, chunk);
2815 		do_div(stripe_length, factor);
2816 
2817 		if (stripe_offset < bargs->pend &&
2818 		    stripe_offset + stripe_length > bargs->pstart)
2819 			return 0;
2820 	}
2821 
2822 	return 1;
2823 }
2824 
2825 /* [vstart, vend) */
2826 static int chunk_vrange_filter(struct extent_buffer *leaf,
2827 			       struct btrfs_chunk *chunk,
2828 			       u64 chunk_offset,
2829 			       struct btrfs_balance_args *bargs)
2830 {
2831 	if (chunk_offset < bargs->vend &&
2832 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2833 		/* at least part of the chunk is inside this vrange */
2834 		return 0;
2835 
2836 	return 1;
2837 }
2838 
2839 static int chunk_soft_convert_filter(u64 chunk_type,
2840 				     struct btrfs_balance_args *bargs)
2841 {
2842 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2843 		return 0;
2844 
2845 	chunk_type = chunk_to_extended(chunk_type) &
2846 				BTRFS_EXTENDED_PROFILE_MASK;
2847 
2848 	if (bargs->target == chunk_type)
2849 		return 1;
2850 
2851 	return 0;
2852 }
2853 
2854 static int should_balance_chunk(struct btrfs_root *root,
2855 				struct extent_buffer *leaf,
2856 				struct btrfs_chunk *chunk, u64 chunk_offset)
2857 {
2858 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2859 	struct btrfs_balance_args *bargs = NULL;
2860 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2861 
2862 	/* type filter */
2863 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2864 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2865 		return 0;
2866 	}
2867 
2868 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2869 		bargs = &bctl->data;
2870 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2871 		bargs = &bctl->sys;
2872 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2873 		bargs = &bctl->meta;
2874 
2875 	/* profiles filter */
2876 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2877 	    chunk_profiles_filter(chunk_type, bargs)) {
2878 		return 0;
2879 	}
2880 
2881 	/* usage filter */
2882 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2883 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2884 		return 0;
2885 	}
2886 
2887 	/* devid filter */
2888 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2889 	    chunk_devid_filter(leaf, chunk, bargs)) {
2890 		return 0;
2891 	}
2892 
2893 	/* drange filter, makes sense only with devid filter */
2894 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2895 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2896 		return 0;
2897 	}
2898 
2899 	/* vrange filter */
2900 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2901 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2902 		return 0;
2903 	}
2904 
2905 	/* soft profile changing mode */
2906 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2907 	    chunk_soft_convert_filter(chunk_type, bargs)) {
2908 		return 0;
2909 	}
2910 
2911 	return 1;
2912 }
2913 
2914 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2915 {
2916 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2917 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2918 	struct btrfs_root *dev_root = fs_info->dev_root;
2919 	struct list_head *devices;
2920 	struct btrfs_device *device;
2921 	u64 old_size;
2922 	u64 size_to_free;
2923 	struct btrfs_chunk *chunk;
2924 	struct btrfs_path *path;
2925 	struct btrfs_key key;
2926 	struct btrfs_key found_key;
2927 	struct btrfs_trans_handle *trans;
2928 	struct extent_buffer *leaf;
2929 	int slot;
2930 	int ret;
2931 	int enospc_errors = 0;
2932 	bool counting = true;
2933 
2934 	/* step one make some room on all the devices */
2935 	devices = &fs_info->fs_devices->devices;
2936 	list_for_each_entry(device, devices, dev_list) {
2937 		old_size = device->total_bytes;
2938 		size_to_free = div_factor(old_size, 1);
2939 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2940 		if (!device->writeable ||
2941 		    device->total_bytes - device->bytes_used > size_to_free ||
2942 		    device->is_tgtdev_for_dev_replace)
2943 			continue;
2944 
2945 		ret = btrfs_shrink_device(device, old_size - size_to_free);
2946 		if (ret == -ENOSPC)
2947 			break;
2948 		BUG_ON(ret);
2949 
2950 		trans = btrfs_start_transaction(dev_root, 0);
2951 		BUG_ON(IS_ERR(trans));
2952 
2953 		ret = btrfs_grow_device(trans, device, old_size);
2954 		BUG_ON(ret);
2955 
2956 		btrfs_end_transaction(trans, dev_root);
2957 	}
2958 
2959 	/* step two, relocate all the chunks */
2960 	path = btrfs_alloc_path();
2961 	if (!path) {
2962 		ret = -ENOMEM;
2963 		goto error;
2964 	}
2965 
2966 	/* zero out stat counters */
2967 	spin_lock(&fs_info->balance_lock);
2968 	memset(&bctl->stat, 0, sizeof(bctl->stat));
2969 	spin_unlock(&fs_info->balance_lock);
2970 again:
2971 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2972 	key.offset = (u64)-1;
2973 	key.type = BTRFS_CHUNK_ITEM_KEY;
2974 
2975 	while (1) {
2976 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2977 		    atomic_read(&fs_info->balance_cancel_req)) {
2978 			ret = -ECANCELED;
2979 			goto error;
2980 		}
2981 
2982 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2983 		if (ret < 0)
2984 			goto error;
2985 
2986 		/*
2987 		 * this shouldn't happen, it means the last relocate
2988 		 * failed
2989 		 */
2990 		if (ret == 0)
2991 			BUG(); /* FIXME break ? */
2992 
2993 		ret = btrfs_previous_item(chunk_root, path, 0,
2994 					  BTRFS_CHUNK_ITEM_KEY);
2995 		if (ret) {
2996 			ret = 0;
2997 			break;
2998 		}
2999 
3000 		leaf = path->nodes[0];
3001 		slot = path->slots[0];
3002 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3003 
3004 		if (found_key.objectid != key.objectid)
3005 			break;
3006 
3007 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3008 
3009 		if (!counting) {
3010 			spin_lock(&fs_info->balance_lock);
3011 			bctl->stat.considered++;
3012 			spin_unlock(&fs_info->balance_lock);
3013 		}
3014 
3015 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3016 					   found_key.offset);
3017 		btrfs_release_path(path);
3018 		if (!ret)
3019 			goto loop;
3020 
3021 		if (counting) {
3022 			spin_lock(&fs_info->balance_lock);
3023 			bctl->stat.expected++;
3024 			spin_unlock(&fs_info->balance_lock);
3025 			goto loop;
3026 		}
3027 
3028 		ret = btrfs_relocate_chunk(chunk_root,
3029 					   chunk_root->root_key.objectid,
3030 					   found_key.objectid,
3031 					   found_key.offset);
3032 		if (ret && ret != -ENOSPC)
3033 			goto error;
3034 		if (ret == -ENOSPC) {
3035 			enospc_errors++;
3036 		} else {
3037 			spin_lock(&fs_info->balance_lock);
3038 			bctl->stat.completed++;
3039 			spin_unlock(&fs_info->balance_lock);
3040 		}
3041 loop:
3042 		if (found_key.offset == 0)
3043 			break;
3044 		key.offset = found_key.offset - 1;
3045 	}
3046 
3047 	if (counting) {
3048 		btrfs_release_path(path);
3049 		counting = false;
3050 		goto again;
3051 	}
3052 error:
3053 	btrfs_free_path(path);
3054 	if (enospc_errors) {
3055 		printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3056 		       enospc_errors);
3057 		if (!ret)
3058 			ret = -ENOSPC;
3059 	}
3060 
3061 	return ret;
3062 }
3063 
3064 /**
3065  * alloc_profile_is_valid - see if a given profile is valid and reduced
3066  * @flags: profile to validate
3067  * @extended: if true @flags is treated as an extended profile
3068  */
3069 static int alloc_profile_is_valid(u64 flags, int extended)
3070 {
3071 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3072 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3073 
3074 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3075 
3076 	/* 1) check that all other bits are zeroed */
3077 	if (flags & ~mask)
3078 		return 0;
3079 
3080 	/* 2) see if profile is reduced */
3081 	if (flags == 0)
3082 		return !extended; /* "0" is valid for usual profiles */
3083 
3084 	/* true if exactly one bit set */
3085 	return (flags & (flags - 1)) == 0;
3086 }
3087 
3088 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3089 {
3090 	/* cancel requested || normal exit path */
3091 	return atomic_read(&fs_info->balance_cancel_req) ||
3092 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3093 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3094 }
3095 
3096 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3097 {
3098 	int ret;
3099 
3100 	unset_balance_control(fs_info);
3101 	ret = del_balance_item(fs_info->tree_root);
3102 	if (ret)
3103 		btrfs_std_error(fs_info, ret);
3104 
3105 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3106 }
3107 
3108 /*
3109  * Should be called with both balance and volume mutexes held
3110  */
3111 int btrfs_balance(struct btrfs_balance_control *bctl,
3112 		  struct btrfs_ioctl_balance_args *bargs)
3113 {
3114 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3115 	u64 allowed;
3116 	int mixed = 0;
3117 	int ret;
3118 	u64 num_devices;
3119 	unsigned seq;
3120 
3121 	if (btrfs_fs_closing(fs_info) ||
3122 	    atomic_read(&fs_info->balance_pause_req) ||
3123 	    atomic_read(&fs_info->balance_cancel_req)) {
3124 		ret = -EINVAL;
3125 		goto out;
3126 	}
3127 
3128 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3129 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3130 		mixed = 1;
3131 
3132 	/*
3133 	 * In case of mixed groups both data and meta should be picked,
3134 	 * and identical options should be given for both of them.
3135 	 */
3136 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3137 	if (mixed && (bctl->flags & allowed)) {
3138 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3139 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3140 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3141 			printk(KERN_ERR "btrfs: with mixed groups data and "
3142 			       "metadata balance options must be the same\n");
3143 			ret = -EINVAL;
3144 			goto out;
3145 		}
3146 	}
3147 
3148 	num_devices = fs_info->fs_devices->num_devices;
3149 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3150 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3151 		BUG_ON(num_devices < 1);
3152 		num_devices--;
3153 	}
3154 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3155 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3156 	if (num_devices == 1)
3157 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3158 	else if (num_devices > 1)
3159 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3160 	if (num_devices > 2)
3161 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3162 	if (num_devices > 3)
3163 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3164 			    BTRFS_BLOCK_GROUP_RAID6);
3165 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3166 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
3167 	     (bctl->data.target & ~allowed))) {
3168 		printk(KERN_ERR "btrfs: unable to start balance with target "
3169 		       "data profile %llu\n",
3170 		       bctl->data.target);
3171 		ret = -EINVAL;
3172 		goto out;
3173 	}
3174 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3175 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3176 	     (bctl->meta.target & ~allowed))) {
3177 		printk(KERN_ERR "btrfs: unable to start balance with target "
3178 		       "metadata profile %llu\n",
3179 		       bctl->meta.target);
3180 		ret = -EINVAL;
3181 		goto out;
3182 	}
3183 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3184 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3185 	     (bctl->sys.target & ~allowed))) {
3186 		printk(KERN_ERR "btrfs: unable to start balance with target "
3187 		       "system profile %llu\n",
3188 		       bctl->sys.target);
3189 		ret = -EINVAL;
3190 		goto out;
3191 	}
3192 
3193 	/* allow dup'ed data chunks only in mixed mode */
3194 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3195 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3196 		printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3197 		ret = -EINVAL;
3198 		goto out;
3199 	}
3200 
3201 	/* allow to reduce meta or sys integrity only if force set */
3202 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3203 			BTRFS_BLOCK_GROUP_RAID10 |
3204 			BTRFS_BLOCK_GROUP_RAID5 |
3205 			BTRFS_BLOCK_GROUP_RAID6;
3206 	do {
3207 		seq = read_seqbegin(&fs_info->profiles_lock);
3208 
3209 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3210 		     (fs_info->avail_system_alloc_bits & allowed) &&
3211 		     !(bctl->sys.target & allowed)) ||
3212 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3213 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3214 		     !(bctl->meta.target & allowed))) {
3215 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3216 				printk(KERN_INFO "btrfs: force reducing metadata "
3217 				       "integrity\n");
3218 			} else {
3219 				printk(KERN_ERR "btrfs: balance will reduce metadata "
3220 				       "integrity, use force if you want this\n");
3221 				ret = -EINVAL;
3222 				goto out;
3223 			}
3224 		}
3225 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3226 
3227 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3228 		int num_tolerated_disk_barrier_failures;
3229 		u64 target = bctl->sys.target;
3230 
3231 		num_tolerated_disk_barrier_failures =
3232 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3233 		if (num_tolerated_disk_barrier_failures > 0 &&
3234 		    (target &
3235 		     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3236 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3237 			num_tolerated_disk_barrier_failures = 0;
3238 		else if (num_tolerated_disk_barrier_failures > 1 &&
3239 			 (target &
3240 			  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3241 			num_tolerated_disk_barrier_failures = 1;
3242 
3243 		fs_info->num_tolerated_disk_barrier_failures =
3244 			num_tolerated_disk_barrier_failures;
3245 	}
3246 
3247 	ret = insert_balance_item(fs_info->tree_root, bctl);
3248 	if (ret && ret != -EEXIST)
3249 		goto out;
3250 
3251 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3252 		BUG_ON(ret == -EEXIST);
3253 		set_balance_control(bctl);
3254 	} else {
3255 		BUG_ON(ret != -EEXIST);
3256 		spin_lock(&fs_info->balance_lock);
3257 		update_balance_args(bctl);
3258 		spin_unlock(&fs_info->balance_lock);
3259 	}
3260 
3261 	atomic_inc(&fs_info->balance_running);
3262 	mutex_unlock(&fs_info->balance_mutex);
3263 
3264 	ret = __btrfs_balance(fs_info);
3265 
3266 	mutex_lock(&fs_info->balance_mutex);
3267 	atomic_dec(&fs_info->balance_running);
3268 
3269 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3270 		fs_info->num_tolerated_disk_barrier_failures =
3271 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3272 	}
3273 
3274 	if (bargs) {
3275 		memset(bargs, 0, sizeof(*bargs));
3276 		update_ioctl_balance_args(fs_info, 0, bargs);
3277 	}
3278 
3279 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3280 	    balance_need_close(fs_info)) {
3281 		__cancel_balance(fs_info);
3282 	}
3283 
3284 	wake_up(&fs_info->balance_wait_q);
3285 
3286 	return ret;
3287 out:
3288 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3289 		__cancel_balance(fs_info);
3290 	else {
3291 		kfree(bctl);
3292 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3293 	}
3294 	return ret;
3295 }
3296 
3297 static int balance_kthread(void *data)
3298 {
3299 	struct btrfs_fs_info *fs_info = data;
3300 	int ret = 0;
3301 
3302 	mutex_lock(&fs_info->volume_mutex);
3303 	mutex_lock(&fs_info->balance_mutex);
3304 
3305 	if (fs_info->balance_ctl) {
3306 		printk(KERN_INFO "btrfs: continuing balance\n");
3307 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3308 	}
3309 
3310 	mutex_unlock(&fs_info->balance_mutex);
3311 	mutex_unlock(&fs_info->volume_mutex);
3312 
3313 	return ret;
3314 }
3315 
3316 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3317 {
3318 	struct task_struct *tsk;
3319 
3320 	spin_lock(&fs_info->balance_lock);
3321 	if (!fs_info->balance_ctl) {
3322 		spin_unlock(&fs_info->balance_lock);
3323 		return 0;
3324 	}
3325 	spin_unlock(&fs_info->balance_lock);
3326 
3327 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3328 		printk(KERN_INFO "btrfs: force skipping balance\n");
3329 		return 0;
3330 	}
3331 
3332 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3333 	return PTR_ERR_OR_ZERO(tsk);
3334 }
3335 
3336 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3337 {
3338 	struct btrfs_balance_control *bctl;
3339 	struct btrfs_balance_item *item;
3340 	struct btrfs_disk_balance_args disk_bargs;
3341 	struct btrfs_path *path;
3342 	struct extent_buffer *leaf;
3343 	struct btrfs_key key;
3344 	int ret;
3345 
3346 	path = btrfs_alloc_path();
3347 	if (!path)
3348 		return -ENOMEM;
3349 
3350 	key.objectid = BTRFS_BALANCE_OBJECTID;
3351 	key.type = BTRFS_BALANCE_ITEM_KEY;
3352 	key.offset = 0;
3353 
3354 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3355 	if (ret < 0)
3356 		goto out;
3357 	if (ret > 0) { /* ret = -ENOENT; */
3358 		ret = 0;
3359 		goto out;
3360 	}
3361 
3362 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3363 	if (!bctl) {
3364 		ret = -ENOMEM;
3365 		goto out;
3366 	}
3367 
3368 	leaf = path->nodes[0];
3369 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3370 
3371 	bctl->fs_info = fs_info;
3372 	bctl->flags = btrfs_balance_flags(leaf, item);
3373 	bctl->flags |= BTRFS_BALANCE_RESUME;
3374 
3375 	btrfs_balance_data(leaf, item, &disk_bargs);
3376 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3377 	btrfs_balance_meta(leaf, item, &disk_bargs);
3378 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3379 	btrfs_balance_sys(leaf, item, &disk_bargs);
3380 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3381 
3382 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3383 
3384 	mutex_lock(&fs_info->volume_mutex);
3385 	mutex_lock(&fs_info->balance_mutex);
3386 
3387 	set_balance_control(bctl);
3388 
3389 	mutex_unlock(&fs_info->balance_mutex);
3390 	mutex_unlock(&fs_info->volume_mutex);
3391 out:
3392 	btrfs_free_path(path);
3393 	return ret;
3394 }
3395 
3396 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3397 {
3398 	int ret = 0;
3399 
3400 	mutex_lock(&fs_info->balance_mutex);
3401 	if (!fs_info->balance_ctl) {
3402 		mutex_unlock(&fs_info->balance_mutex);
3403 		return -ENOTCONN;
3404 	}
3405 
3406 	if (atomic_read(&fs_info->balance_running)) {
3407 		atomic_inc(&fs_info->balance_pause_req);
3408 		mutex_unlock(&fs_info->balance_mutex);
3409 
3410 		wait_event(fs_info->balance_wait_q,
3411 			   atomic_read(&fs_info->balance_running) == 0);
3412 
3413 		mutex_lock(&fs_info->balance_mutex);
3414 		/* we are good with balance_ctl ripped off from under us */
3415 		BUG_ON(atomic_read(&fs_info->balance_running));
3416 		atomic_dec(&fs_info->balance_pause_req);
3417 	} else {
3418 		ret = -ENOTCONN;
3419 	}
3420 
3421 	mutex_unlock(&fs_info->balance_mutex);
3422 	return ret;
3423 }
3424 
3425 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3426 {
3427 	if (fs_info->sb->s_flags & MS_RDONLY)
3428 		return -EROFS;
3429 
3430 	mutex_lock(&fs_info->balance_mutex);
3431 	if (!fs_info->balance_ctl) {
3432 		mutex_unlock(&fs_info->balance_mutex);
3433 		return -ENOTCONN;
3434 	}
3435 
3436 	atomic_inc(&fs_info->balance_cancel_req);
3437 	/*
3438 	 * if we are running just wait and return, balance item is
3439 	 * deleted in btrfs_balance in this case
3440 	 */
3441 	if (atomic_read(&fs_info->balance_running)) {
3442 		mutex_unlock(&fs_info->balance_mutex);
3443 		wait_event(fs_info->balance_wait_q,
3444 			   atomic_read(&fs_info->balance_running) == 0);
3445 		mutex_lock(&fs_info->balance_mutex);
3446 	} else {
3447 		/* __cancel_balance needs volume_mutex */
3448 		mutex_unlock(&fs_info->balance_mutex);
3449 		mutex_lock(&fs_info->volume_mutex);
3450 		mutex_lock(&fs_info->balance_mutex);
3451 
3452 		if (fs_info->balance_ctl)
3453 			__cancel_balance(fs_info);
3454 
3455 		mutex_unlock(&fs_info->volume_mutex);
3456 	}
3457 
3458 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3459 	atomic_dec(&fs_info->balance_cancel_req);
3460 	mutex_unlock(&fs_info->balance_mutex);
3461 	return 0;
3462 }
3463 
3464 static int btrfs_uuid_scan_kthread(void *data)
3465 {
3466 	struct btrfs_fs_info *fs_info = data;
3467 	struct btrfs_root *root = fs_info->tree_root;
3468 	struct btrfs_key key;
3469 	struct btrfs_key max_key;
3470 	struct btrfs_path *path = NULL;
3471 	int ret = 0;
3472 	struct extent_buffer *eb;
3473 	int slot;
3474 	struct btrfs_root_item root_item;
3475 	u32 item_size;
3476 	struct btrfs_trans_handle *trans = NULL;
3477 
3478 	path = btrfs_alloc_path();
3479 	if (!path) {
3480 		ret = -ENOMEM;
3481 		goto out;
3482 	}
3483 
3484 	key.objectid = 0;
3485 	key.type = BTRFS_ROOT_ITEM_KEY;
3486 	key.offset = 0;
3487 
3488 	max_key.objectid = (u64)-1;
3489 	max_key.type = BTRFS_ROOT_ITEM_KEY;
3490 	max_key.offset = (u64)-1;
3491 
3492 	path->keep_locks = 1;
3493 
3494 	while (1) {
3495 		ret = btrfs_search_forward(root, &key, path, 0);
3496 		if (ret) {
3497 			if (ret > 0)
3498 				ret = 0;
3499 			break;
3500 		}
3501 
3502 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
3503 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3504 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3505 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3506 			goto skip;
3507 
3508 		eb = path->nodes[0];
3509 		slot = path->slots[0];
3510 		item_size = btrfs_item_size_nr(eb, slot);
3511 		if (item_size < sizeof(root_item))
3512 			goto skip;
3513 
3514 		read_extent_buffer(eb, &root_item,
3515 				   btrfs_item_ptr_offset(eb, slot),
3516 				   (int)sizeof(root_item));
3517 		if (btrfs_root_refs(&root_item) == 0)
3518 			goto skip;
3519 
3520 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
3521 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3522 			if (trans)
3523 				goto update_tree;
3524 
3525 			btrfs_release_path(path);
3526 			/*
3527 			 * 1 - subvol uuid item
3528 			 * 1 - received_subvol uuid item
3529 			 */
3530 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3531 			if (IS_ERR(trans)) {
3532 				ret = PTR_ERR(trans);
3533 				break;
3534 			}
3535 			continue;
3536 		} else {
3537 			goto skip;
3538 		}
3539 update_tree:
3540 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3541 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3542 						  root_item.uuid,
3543 						  BTRFS_UUID_KEY_SUBVOL,
3544 						  key.objectid);
3545 			if (ret < 0) {
3546 				pr_warn("btrfs: uuid_tree_add failed %d\n",
3547 					ret);
3548 				break;
3549 			}
3550 		}
3551 
3552 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3553 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3554 						  root_item.received_uuid,
3555 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3556 						  key.objectid);
3557 			if (ret < 0) {
3558 				pr_warn("btrfs: uuid_tree_add failed %d\n",
3559 					ret);
3560 				break;
3561 			}
3562 		}
3563 
3564 skip:
3565 		if (trans) {
3566 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3567 			trans = NULL;
3568 			if (ret)
3569 				break;
3570 		}
3571 
3572 		btrfs_release_path(path);
3573 		if (key.offset < (u64)-1) {
3574 			key.offset++;
3575 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3576 			key.offset = 0;
3577 			key.type = BTRFS_ROOT_ITEM_KEY;
3578 		} else if (key.objectid < (u64)-1) {
3579 			key.offset = 0;
3580 			key.type = BTRFS_ROOT_ITEM_KEY;
3581 			key.objectid++;
3582 		} else {
3583 			break;
3584 		}
3585 		cond_resched();
3586 	}
3587 
3588 out:
3589 	btrfs_free_path(path);
3590 	if (trans && !IS_ERR(trans))
3591 		btrfs_end_transaction(trans, fs_info->uuid_root);
3592 	if (ret)
3593 		pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
3594 	else
3595 		fs_info->update_uuid_tree_gen = 1;
3596 	up(&fs_info->uuid_tree_rescan_sem);
3597 	return 0;
3598 }
3599 
3600 /*
3601  * Callback for btrfs_uuid_tree_iterate().
3602  * returns:
3603  * 0	check succeeded, the entry is not outdated.
3604  * < 0	if an error occured.
3605  * > 0	if the check failed, which means the caller shall remove the entry.
3606  */
3607 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3608 				       u8 *uuid, u8 type, u64 subid)
3609 {
3610 	struct btrfs_key key;
3611 	int ret = 0;
3612 	struct btrfs_root *subvol_root;
3613 
3614 	if (type != BTRFS_UUID_KEY_SUBVOL &&
3615 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3616 		goto out;
3617 
3618 	key.objectid = subid;
3619 	key.type = BTRFS_ROOT_ITEM_KEY;
3620 	key.offset = (u64)-1;
3621 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3622 	if (IS_ERR(subvol_root)) {
3623 		ret = PTR_ERR(subvol_root);
3624 		if (ret == -ENOENT)
3625 			ret = 1;
3626 		goto out;
3627 	}
3628 
3629 	switch (type) {
3630 	case BTRFS_UUID_KEY_SUBVOL:
3631 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3632 			ret = 1;
3633 		break;
3634 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3635 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
3636 			   BTRFS_UUID_SIZE))
3637 			ret = 1;
3638 		break;
3639 	}
3640 
3641 out:
3642 	return ret;
3643 }
3644 
3645 static int btrfs_uuid_rescan_kthread(void *data)
3646 {
3647 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3648 	int ret;
3649 
3650 	/*
3651 	 * 1st step is to iterate through the existing UUID tree and
3652 	 * to delete all entries that contain outdated data.
3653 	 * 2nd step is to add all missing entries to the UUID tree.
3654 	 */
3655 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3656 	if (ret < 0) {
3657 		pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3658 		up(&fs_info->uuid_tree_rescan_sem);
3659 		return ret;
3660 	}
3661 	return btrfs_uuid_scan_kthread(data);
3662 }
3663 
3664 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3665 {
3666 	struct btrfs_trans_handle *trans;
3667 	struct btrfs_root *tree_root = fs_info->tree_root;
3668 	struct btrfs_root *uuid_root;
3669 	struct task_struct *task;
3670 	int ret;
3671 
3672 	/*
3673 	 * 1 - root node
3674 	 * 1 - root item
3675 	 */
3676 	trans = btrfs_start_transaction(tree_root, 2);
3677 	if (IS_ERR(trans))
3678 		return PTR_ERR(trans);
3679 
3680 	uuid_root = btrfs_create_tree(trans, fs_info,
3681 				      BTRFS_UUID_TREE_OBJECTID);
3682 	if (IS_ERR(uuid_root)) {
3683 		btrfs_abort_transaction(trans, tree_root,
3684 					PTR_ERR(uuid_root));
3685 		return PTR_ERR(uuid_root);
3686 	}
3687 
3688 	fs_info->uuid_root = uuid_root;
3689 
3690 	ret = btrfs_commit_transaction(trans, tree_root);
3691 	if (ret)
3692 		return ret;
3693 
3694 	down(&fs_info->uuid_tree_rescan_sem);
3695 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3696 	if (IS_ERR(task)) {
3697 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3698 		pr_warn("btrfs: failed to start uuid_scan task\n");
3699 		up(&fs_info->uuid_tree_rescan_sem);
3700 		return PTR_ERR(task);
3701 	}
3702 
3703 	return 0;
3704 }
3705 
3706 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3707 {
3708 	struct task_struct *task;
3709 
3710 	down(&fs_info->uuid_tree_rescan_sem);
3711 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3712 	if (IS_ERR(task)) {
3713 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3714 		pr_warn("btrfs: failed to start uuid_rescan task\n");
3715 		up(&fs_info->uuid_tree_rescan_sem);
3716 		return PTR_ERR(task);
3717 	}
3718 
3719 	return 0;
3720 }
3721 
3722 /*
3723  * shrinking a device means finding all of the device extents past
3724  * the new size, and then following the back refs to the chunks.
3725  * The chunk relocation code actually frees the device extent
3726  */
3727 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3728 {
3729 	struct btrfs_trans_handle *trans;
3730 	struct btrfs_root *root = device->dev_root;
3731 	struct btrfs_dev_extent *dev_extent = NULL;
3732 	struct btrfs_path *path;
3733 	u64 length;
3734 	u64 chunk_tree;
3735 	u64 chunk_objectid;
3736 	u64 chunk_offset;
3737 	int ret;
3738 	int slot;
3739 	int failed = 0;
3740 	bool retried = false;
3741 	struct extent_buffer *l;
3742 	struct btrfs_key key;
3743 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3744 	u64 old_total = btrfs_super_total_bytes(super_copy);
3745 	u64 old_size = device->total_bytes;
3746 	u64 diff = device->total_bytes - new_size;
3747 
3748 	if (device->is_tgtdev_for_dev_replace)
3749 		return -EINVAL;
3750 
3751 	path = btrfs_alloc_path();
3752 	if (!path)
3753 		return -ENOMEM;
3754 
3755 	path->reada = 2;
3756 
3757 	lock_chunks(root);
3758 
3759 	device->total_bytes = new_size;
3760 	if (device->writeable) {
3761 		device->fs_devices->total_rw_bytes -= diff;
3762 		spin_lock(&root->fs_info->free_chunk_lock);
3763 		root->fs_info->free_chunk_space -= diff;
3764 		spin_unlock(&root->fs_info->free_chunk_lock);
3765 	}
3766 	unlock_chunks(root);
3767 
3768 again:
3769 	key.objectid = device->devid;
3770 	key.offset = (u64)-1;
3771 	key.type = BTRFS_DEV_EXTENT_KEY;
3772 
3773 	do {
3774 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3775 		if (ret < 0)
3776 			goto done;
3777 
3778 		ret = btrfs_previous_item(root, path, 0, key.type);
3779 		if (ret < 0)
3780 			goto done;
3781 		if (ret) {
3782 			ret = 0;
3783 			btrfs_release_path(path);
3784 			break;
3785 		}
3786 
3787 		l = path->nodes[0];
3788 		slot = path->slots[0];
3789 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3790 
3791 		if (key.objectid != device->devid) {
3792 			btrfs_release_path(path);
3793 			break;
3794 		}
3795 
3796 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3797 		length = btrfs_dev_extent_length(l, dev_extent);
3798 
3799 		if (key.offset + length <= new_size) {
3800 			btrfs_release_path(path);
3801 			break;
3802 		}
3803 
3804 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3805 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3806 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3807 		btrfs_release_path(path);
3808 
3809 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3810 					   chunk_offset);
3811 		if (ret && ret != -ENOSPC)
3812 			goto done;
3813 		if (ret == -ENOSPC)
3814 			failed++;
3815 	} while (key.offset-- > 0);
3816 
3817 	if (failed && !retried) {
3818 		failed = 0;
3819 		retried = true;
3820 		goto again;
3821 	} else if (failed && retried) {
3822 		ret = -ENOSPC;
3823 		lock_chunks(root);
3824 
3825 		device->total_bytes = old_size;
3826 		if (device->writeable)
3827 			device->fs_devices->total_rw_bytes += diff;
3828 		spin_lock(&root->fs_info->free_chunk_lock);
3829 		root->fs_info->free_chunk_space += diff;
3830 		spin_unlock(&root->fs_info->free_chunk_lock);
3831 		unlock_chunks(root);
3832 		goto done;
3833 	}
3834 
3835 	/* Shrinking succeeded, else we would be at "done". */
3836 	trans = btrfs_start_transaction(root, 0);
3837 	if (IS_ERR(trans)) {
3838 		ret = PTR_ERR(trans);
3839 		goto done;
3840 	}
3841 
3842 	lock_chunks(root);
3843 
3844 	device->disk_total_bytes = new_size;
3845 	/* Now btrfs_update_device() will change the on-disk size. */
3846 	ret = btrfs_update_device(trans, device);
3847 	if (ret) {
3848 		unlock_chunks(root);
3849 		btrfs_end_transaction(trans, root);
3850 		goto done;
3851 	}
3852 	WARN_ON(diff > old_total);
3853 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
3854 	unlock_chunks(root);
3855 	btrfs_end_transaction(trans, root);
3856 done:
3857 	btrfs_free_path(path);
3858 	return ret;
3859 }
3860 
3861 static int btrfs_add_system_chunk(struct btrfs_root *root,
3862 			   struct btrfs_key *key,
3863 			   struct btrfs_chunk *chunk, int item_size)
3864 {
3865 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3866 	struct btrfs_disk_key disk_key;
3867 	u32 array_size;
3868 	u8 *ptr;
3869 
3870 	array_size = btrfs_super_sys_array_size(super_copy);
3871 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3872 		return -EFBIG;
3873 
3874 	ptr = super_copy->sys_chunk_array + array_size;
3875 	btrfs_cpu_key_to_disk(&disk_key, key);
3876 	memcpy(ptr, &disk_key, sizeof(disk_key));
3877 	ptr += sizeof(disk_key);
3878 	memcpy(ptr, chunk, item_size);
3879 	item_size += sizeof(disk_key);
3880 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3881 	return 0;
3882 }
3883 
3884 /*
3885  * sort the devices in descending order by max_avail, total_avail
3886  */
3887 static int btrfs_cmp_device_info(const void *a, const void *b)
3888 {
3889 	const struct btrfs_device_info *di_a = a;
3890 	const struct btrfs_device_info *di_b = b;
3891 
3892 	if (di_a->max_avail > di_b->max_avail)
3893 		return -1;
3894 	if (di_a->max_avail < di_b->max_avail)
3895 		return 1;
3896 	if (di_a->total_avail > di_b->total_avail)
3897 		return -1;
3898 	if (di_a->total_avail < di_b->total_avail)
3899 		return 1;
3900 	return 0;
3901 }
3902 
3903 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3904 	[BTRFS_RAID_RAID10] = {
3905 		.sub_stripes	= 2,
3906 		.dev_stripes	= 1,
3907 		.devs_max	= 0,	/* 0 == as many as possible */
3908 		.devs_min	= 4,
3909 		.devs_increment	= 2,
3910 		.ncopies	= 2,
3911 	},
3912 	[BTRFS_RAID_RAID1] = {
3913 		.sub_stripes	= 1,
3914 		.dev_stripes	= 1,
3915 		.devs_max	= 2,
3916 		.devs_min	= 2,
3917 		.devs_increment	= 2,
3918 		.ncopies	= 2,
3919 	},
3920 	[BTRFS_RAID_DUP] = {
3921 		.sub_stripes	= 1,
3922 		.dev_stripes	= 2,
3923 		.devs_max	= 1,
3924 		.devs_min	= 1,
3925 		.devs_increment	= 1,
3926 		.ncopies	= 2,
3927 	},
3928 	[BTRFS_RAID_RAID0] = {
3929 		.sub_stripes	= 1,
3930 		.dev_stripes	= 1,
3931 		.devs_max	= 0,
3932 		.devs_min	= 2,
3933 		.devs_increment	= 1,
3934 		.ncopies	= 1,
3935 	},
3936 	[BTRFS_RAID_SINGLE] = {
3937 		.sub_stripes	= 1,
3938 		.dev_stripes	= 1,
3939 		.devs_max	= 1,
3940 		.devs_min	= 1,
3941 		.devs_increment	= 1,
3942 		.ncopies	= 1,
3943 	},
3944 	[BTRFS_RAID_RAID5] = {
3945 		.sub_stripes	= 1,
3946 		.dev_stripes	= 1,
3947 		.devs_max	= 0,
3948 		.devs_min	= 2,
3949 		.devs_increment	= 1,
3950 		.ncopies	= 2,
3951 	},
3952 	[BTRFS_RAID_RAID6] = {
3953 		.sub_stripes	= 1,
3954 		.dev_stripes	= 1,
3955 		.devs_max	= 0,
3956 		.devs_min	= 3,
3957 		.devs_increment	= 1,
3958 		.ncopies	= 3,
3959 	},
3960 };
3961 
3962 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3963 {
3964 	/* TODO allow them to set a preferred stripe size */
3965 	return 64 * 1024;
3966 }
3967 
3968 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3969 {
3970 	if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3971 		return;
3972 
3973 	btrfs_set_fs_incompat(info, RAID56);
3974 }
3975 
3976 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3977 			       struct btrfs_root *extent_root, u64 start,
3978 			       u64 type)
3979 {
3980 	struct btrfs_fs_info *info = extent_root->fs_info;
3981 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
3982 	struct list_head *cur;
3983 	struct map_lookup *map = NULL;
3984 	struct extent_map_tree *em_tree;
3985 	struct extent_map *em;
3986 	struct btrfs_device_info *devices_info = NULL;
3987 	u64 total_avail;
3988 	int num_stripes;	/* total number of stripes to allocate */
3989 	int data_stripes;	/* number of stripes that count for
3990 				   block group size */
3991 	int sub_stripes;	/* sub_stripes info for map */
3992 	int dev_stripes;	/* stripes per dev */
3993 	int devs_max;		/* max devs to use */
3994 	int devs_min;		/* min devs needed */
3995 	int devs_increment;	/* ndevs has to be a multiple of this */
3996 	int ncopies;		/* how many copies to data has */
3997 	int ret;
3998 	u64 max_stripe_size;
3999 	u64 max_chunk_size;
4000 	u64 stripe_size;
4001 	u64 num_bytes;
4002 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4003 	int ndevs;
4004 	int i;
4005 	int j;
4006 	int index;
4007 
4008 	BUG_ON(!alloc_profile_is_valid(type, 0));
4009 
4010 	if (list_empty(&fs_devices->alloc_list))
4011 		return -ENOSPC;
4012 
4013 	index = __get_raid_index(type);
4014 
4015 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4016 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4017 	devs_max = btrfs_raid_array[index].devs_max;
4018 	devs_min = btrfs_raid_array[index].devs_min;
4019 	devs_increment = btrfs_raid_array[index].devs_increment;
4020 	ncopies = btrfs_raid_array[index].ncopies;
4021 
4022 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4023 		max_stripe_size = 1024 * 1024 * 1024;
4024 		max_chunk_size = 10 * max_stripe_size;
4025 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4026 		/* for larger filesystems, use larger metadata chunks */
4027 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4028 			max_stripe_size = 1024 * 1024 * 1024;
4029 		else
4030 			max_stripe_size = 256 * 1024 * 1024;
4031 		max_chunk_size = max_stripe_size;
4032 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4033 		max_stripe_size = 32 * 1024 * 1024;
4034 		max_chunk_size = 2 * max_stripe_size;
4035 	} else {
4036 		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4037 		       type);
4038 		BUG_ON(1);
4039 	}
4040 
4041 	/* we don't want a chunk larger than 10% of writeable space */
4042 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4043 			     max_chunk_size);
4044 
4045 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4046 			       GFP_NOFS);
4047 	if (!devices_info)
4048 		return -ENOMEM;
4049 
4050 	cur = fs_devices->alloc_list.next;
4051 
4052 	/*
4053 	 * in the first pass through the devices list, we gather information
4054 	 * about the available holes on each device.
4055 	 */
4056 	ndevs = 0;
4057 	while (cur != &fs_devices->alloc_list) {
4058 		struct btrfs_device *device;
4059 		u64 max_avail;
4060 		u64 dev_offset;
4061 
4062 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4063 
4064 		cur = cur->next;
4065 
4066 		if (!device->writeable) {
4067 			WARN(1, KERN_ERR
4068 			       "btrfs: read-only device in alloc_list\n");
4069 			continue;
4070 		}
4071 
4072 		if (!device->in_fs_metadata ||
4073 		    device->is_tgtdev_for_dev_replace)
4074 			continue;
4075 
4076 		if (device->total_bytes > device->bytes_used)
4077 			total_avail = device->total_bytes - device->bytes_used;
4078 		else
4079 			total_avail = 0;
4080 
4081 		/* If there is no space on this device, skip it. */
4082 		if (total_avail == 0)
4083 			continue;
4084 
4085 		ret = find_free_dev_extent(trans, device,
4086 					   max_stripe_size * dev_stripes,
4087 					   &dev_offset, &max_avail);
4088 		if (ret && ret != -ENOSPC)
4089 			goto error;
4090 
4091 		if (ret == 0)
4092 			max_avail = max_stripe_size * dev_stripes;
4093 
4094 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4095 			continue;
4096 
4097 		if (ndevs == fs_devices->rw_devices) {
4098 			WARN(1, "%s: found more than %llu devices\n",
4099 			     __func__, fs_devices->rw_devices);
4100 			break;
4101 		}
4102 		devices_info[ndevs].dev_offset = dev_offset;
4103 		devices_info[ndevs].max_avail = max_avail;
4104 		devices_info[ndevs].total_avail = total_avail;
4105 		devices_info[ndevs].dev = device;
4106 		++ndevs;
4107 	}
4108 
4109 	/*
4110 	 * now sort the devices by hole size / available space
4111 	 */
4112 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4113 	     btrfs_cmp_device_info, NULL);
4114 
4115 	/* round down to number of usable stripes */
4116 	ndevs -= ndevs % devs_increment;
4117 
4118 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4119 		ret = -ENOSPC;
4120 		goto error;
4121 	}
4122 
4123 	if (devs_max && ndevs > devs_max)
4124 		ndevs = devs_max;
4125 	/*
4126 	 * the primary goal is to maximize the number of stripes, so use as many
4127 	 * devices as possible, even if the stripes are not maximum sized.
4128 	 */
4129 	stripe_size = devices_info[ndevs-1].max_avail;
4130 	num_stripes = ndevs * dev_stripes;
4131 
4132 	/*
4133 	 * this will have to be fixed for RAID1 and RAID10 over
4134 	 * more drives
4135 	 */
4136 	data_stripes = num_stripes / ncopies;
4137 
4138 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4139 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4140 				 btrfs_super_stripesize(info->super_copy));
4141 		data_stripes = num_stripes - 1;
4142 	}
4143 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4144 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4145 				 btrfs_super_stripesize(info->super_copy));
4146 		data_stripes = num_stripes - 2;
4147 	}
4148 
4149 	/*
4150 	 * Use the number of data stripes to figure out how big this chunk
4151 	 * is really going to be in terms of logical address space,
4152 	 * and compare that answer with the max chunk size
4153 	 */
4154 	if (stripe_size * data_stripes > max_chunk_size) {
4155 		u64 mask = (1ULL << 24) - 1;
4156 		stripe_size = max_chunk_size;
4157 		do_div(stripe_size, data_stripes);
4158 
4159 		/* bump the answer up to a 16MB boundary */
4160 		stripe_size = (stripe_size + mask) & ~mask;
4161 
4162 		/* but don't go higher than the limits we found
4163 		 * while searching for free extents
4164 		 */
4165 		if (stripe_size > devices_info[ndevs-1].max_avail)
4166 			stripe_size = devices_info[ndevs-1].max_avail;
4167 	}
4168 
4169 	do_div(stripe_size, dev_stripes);
4170 
4171 	/* align to BTRFS_STRIPE_LEN */
4172 	do_div(stripe_size, raid_stripe_len);
4173 	stripe_size *= raid_stripe_len;
4174 
4175 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4176 	if (!map) {
4177 		ret = -ENOMEM;
4178 		goto error;
4179 	}
4180 	map->num_stripes = num_stripes;
4181 
4182 	for (i = 0; i < ndevs; ++i) {
4183 		for (j = 0; j < dev_stripes; ++j) {
4184 			int s = i * dev_stripes + j;
4185 			map->stripes[s].dev = devices_info[i].dev;
4186 			map->stripes[s].physical = devices_info[i].dev_offset +
4187 						   j * stripe_size;
4188 		}
4189 	}
4190 	map->sector_size = extent_root->sectorsize;
4191 	map->stripe_len = raid_stripe_len;
4192 	map->io_align = raid_stripe_len;
4193 	map->io_width = raid_stripe_len;
4194 	map->type = type;
4195 	map->sub_stripes = sub_stripes;
4196 
4197 	num_bytes = stripe_size * data_stripes;
4198 
4199 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4200 
4201 	em = alloc_extent_map();
4202 	if (!em) {
4203 		ret = -ENOMEM;
4204 		goto error;
4205 	}
4206 	em->bdev = (struct block_device *)map;
4207 	em->start = start;
4208 	em->len = num_bytes;
4209 	em->block_start = 0;
4210 	em->block_len = em->len;
4211 	em->orig_block_len = stripe_size;
4212 
4213 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4214 	write_lock(&em_tree->lock);
4215 	ret = add_extent_mapping(em_tree, em, 0);
4216 	if (!ret) {
4217 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4218 		atomic_inc(&em->refs);
4219 	}
4220 	write_unlock(&em_tree->lock);
4221 	if (ret) {
4222 		free_extent_map(em);
4223 		goto error;
4224 	}
4225 
4226 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4227 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4228 				     start, num_bytes);
4229 	if (ret)
4230 		goto error_del_extent;
4231 
4232 	free_extent_map(em);
4233 	check_raid56_incompat_flag(extent_root->fs_info, type);
4234 
4235 	kfree(devices_info);
4236 	return 0;
4237 
4238 error_del_extent:
4239 	write_lock(&em_tree->lock);
4240 	remove_extent_mapping(em_tree, em);
4241 	write_unlock(&em_tree->lock);
4242 
4243 	/* One for our allocation */
4244 	free_extent_map(em);
4245 	/* One for the tree reference */
4246 	free_extent_map(em);
4247 error:
4248 	kfree(map);
4249 	kfree(devices_info);
4250 	return ret;
4251 }
4252 
4253 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4254 				struct btrfs_root *extent_root,
4255 				u64 chunk_offset, u64 chunk_size)
4256 {
4257 	struct btrfs_key key;
4258 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4259 	struct btrfs_device *device;
4260 	struct btrfs_chunk *chunk;
4261 	struct btrfs_stripe *stripe;
4262 	struct extent_map_tree *em_tree;
4263 	struct extent_map *em;
4264 	struct map_lookup *map;
4265 	size_t item_size;
4266 	u64 dev_offset;
4267 	u64 stripe_size;
4268 	int i = 0;
4269 	int ret;
4270 
4271 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4272 	read_lock(&em_tree->lock);
4273 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4274 	read_unlock(&em_tree->lock);
4275 
4276 	if (!em) {
4277 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4278 			   "%Lu len %Lu", chunk_offset, chunk_size);
4279 		return -EINVAL;
4280 	}
4281 
4282 	if (em->start != chunk_offset || em->len != chunk_size) {
4283 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4284 			  " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4285 			  chunk_size, em->start, em->len);
4286 		free_extent_map(em);
4287 		return -EINVAL;
4288 	}
4289 
4290 	map = (struct map_lookup *)em->bdev;
4291 	item_size = btrfs_chunk_item_size(map->num_stripes);
4292 	stripe_size = em->orig_block_len;
4293 
4294 	chunk = kzalloc(item_size, GFP_NOFS);
4295 	if (!chunk) {
4296 		ret = -ENOMEM;
4297 		goto out;
4298 	}
4299 
4300 	for (i = 0; i < map->num_stripes; i++) {
4301 		device = map->stripes[i].dev;
4302 		dev_offset = map->stripes[i].physical;
4303 
4304 		device->bytes_used += stripe_size;
4305 		ret = btrfs_update_device(trans, device);
4306 		if (ret)
4307 			goto out;
4308 		ret = btrfs_alloc_dev_extent(trans, device,
4309 					     chunk_root->root_key.objectid,
4310 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4311 					     chunk_offset, dev_offset,
4312 					     stripe_size);
4313 		if (ret)
4314 			goto out;
4315 	}
4316 
4317 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4318 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4319 						   map->num_stripes);
4320 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4321 
4322 	stripe = &chunk->stripe;
4323 	for (i = 0; i < map->num_stripes; i++) {
4324 		device = map->stripes[i].dev;
4325 		dev_offset = map->stripes[i].physical;
4326 
4327 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4328 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4329 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4330 		stripe++;
4331 	}
4332 
4333 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4334 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4335 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4336 	btrfs_set_stack_chunk_type(chunk, map->type);
4337 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4338 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4339 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4340 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4341 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4342 
4343 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4344 	key.type = BTRFS_CHUNK_ITEM_KEY;
4345 	key.offset = chunk_offset;
4346 
4347 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4348 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4349 		/*
4350 		 * TODO: Cleanup of inserted chunk root in case of
4351 		 * failure.
4352 		 */
4353 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4354 					     item_size);
4355 	}
4356 
4357 out:
4358 	kfree(chunk);
4359 	free_extent_map(em);
4360 	return ret;
4361 }
4362 
4363 /*
4364  * Chunk allocation falls into two parts. The first part does works
4365  * that make the new allocated chunk useable, but not do any operation
4366  * that modifies the chunk tree. The second part does the works that
4367  * require modifying the chunk tree. This division is important for the
4368  * bootstrap process of adding storage to a seed btrfs.
4369  */
4370 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4371 		      struct btrfs_root *extent_root, u64 type)
4372 {
4373 	u64 chunk_offset;
4374 
4375 	chunk_offset = find_next_chunk(extent_root->fs_info);
4376 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4377 }
4378 
4379 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4380 					 struct btrfs_root *root,
4381 					 struct btrfs_device *device)
4382 {
4383 	u64 chunk_offset;
4384 	u64 sys_chunk_offset;
4385 	u64 alloc_profile;
4386 	struct btrfs_fs_info *fs_info = root->fs_info;
4387 	struct btrfs_root *extent_root = fs_info->extent_root;
4388 	int ret;
4389 
4390 	chunk_offset = find_next_chunk(fs_info);
4391 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4392 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4393 				  alloc_profile);
4394 	if (ret)
4395 		return ret;
4396 
4397 	sys_chunk_offset = find_next_chunk(root->fs_info);
4398 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4399 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4400 				  alloc_profile);
4401 	if (ret) {
4402 		btrfs_abort_transaction(trans, root, ret);
4403 		goto out;
4404 	}
4405 
4406 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4407 	if (ret)
4408 		btrfs_abort_transaction(trans, root, ret);
4409 out:
4410 	return ret;
4411 }
4412 
4413 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4414 {
4415 	struct extent_map *em;
4416 	struct map_lookup *map;
4417 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4418 	int readonly = 0;
4419 	int i;
4420 
4421 	read_lock(&map_tree->map_tree.lock);
4422 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4423 	read_unlock(&map_tree->map_tree.lock);
4424 	if (!em)
4425 		return 1;
4426 
4427 	if (btrfs_test_opt(root, DEGRADED)) {
4428 		free_extent_map(em);
4429 		return 0;
4430 	}
4431 
4432 	map = (struct map_lookup *)em->bdev;
4433 	for (i = 0; i < map->num_stripes; i++) {
4434 		if (!map->stripes[i].dev->writeable) {
4435 			readonly = 1;
4436 			break;
4437 		}
4438 	}
4439 	free_extent_map(em);
4440 	return readonly;
4441 }
4442 
4443 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4444 {
4445 	extent_map_tree_init(&tree->map_tree);
4446 }
4447 
4448 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4449 {
4450 	struct extent_map *em;
4451 
4452 	while (1) {
4453 		write_lock(&tree->map_tree.lock);
4454 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4455 		if (em)
4456 			remove_extent_mapping(&tree->map_tree, em);
4457 		write_unlock(&tree->map_tree.lock);
4458 		if (!em)
4459 			break;
4460 		kfree(em->bdev);
4461 		/* once for us */
4462 		free_extent_map(em);
4463 		/* once for the tree */
4464 		free_extent_map(em);
4465 	}
4466 }
4467 
4468 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4469 {
4470 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4471 	struct extent_map *em;
4472 	struct map_lookup *map;
4473 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4474 	int ret;
4475 
4476 	read_lock(&em_tree->lock);
4477 	em = lookup_extent_mapping(em_tree, logical, len);
4478 	read_unlock(&em_tree->lock);
4479 
4480 	/*
4481 	 * We could return errors for these cases, but that could get ugly and
4482 	 * we'd probably do the same thing which is just not do anything else
4483 	 * and exit, so return 1 so the callers don't try to use other copies.
4484 	 */
4485 	if (!em) {
4486 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
4487 			    logical+len);
4488 		return 1;
4489 	}
4490 
4491 	if (em->start > logical || em->start + em->len < logical) {
4492 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4493 			    "%Lu-%Lu\n", logical, logical+len, em->start,
4494 			    em->start + em->len);
4495 		free_extent_map(em);
4496 		return 1;
4497 	}
4498 
4499 	map = (struct map_lookup *)em->bdev;
4500 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4501 		ret = map->num_stripes;
4502 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4503 		ret = map->sub_stripes;
4504 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4505 		ret = 2;
4506 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4507 		ret = 3;
4508 	else
4509 		ret = 1;
4510 	free_extent_map(em);
4511 
4512 	btrfs_dev_replace_lock(&fs_info->dev_replace);
4513 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4514 		ret++;
4515 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
4516 
4517 	return ret;
4518 }
4519 
4520 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4521 				    struct btrfs_mapping_tree *map_tree,
4522 				    u64 logical)
4523 {
4524 	struct extent_map *em;
4525 	struct map_lookup *map;
4526 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4527 	unsigned long len = root->sectorsize;
4528 
4529 	read_lock(&em_tree->lock);
4530 	em = lookup_extent_mapping(em_tree, logical, len);
4531 	read_unlock(&em_tree->lock);
4532 	BUG_ON(!em);
4533 
4534 	BUG_ON(em->start > logical || em->start + em->len < logical);
4535 	map = (struct map_lookup *)em->bdev;
4536 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4537 			 BTRFS_BLOCK_GROUP_RAID6)) {
4538 		len = map->stripe_len * nr_data_stripes(map);
4539 	}
4540 	free_extent_map(em);
4541 	return len;
4542 }
4543 
4544 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4545 			   u64 logical, u64 len, int mirror_num)
4546 {
4547 	struct extent_map *em;
4548 	struct map_lookup *map;
4549 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4550 	int ret = 0;
4551 
4552 	read_lock(&em_tree->lock);
4553 	em = lookup_extent_mapping(em_tree, logical, len);
4554 	read_unlock(&em_tree->lock);
4555 	BUG_ON(!em);
4556 
4557 	BUG_ON(em->start > logical || em->start + em->len < logical);
4558 	map = (struct map_lookup *)em->bdev;
4559 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4560 			 BTRFS_BLOCK_GROUP_RAID6))
4561 		ret = 1;
4562 	free_extent_map(em);
4563 	return ret;
4564 }
4565 
4566 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4567 			    struct map_lookup *map, int first, int num,
4568 			    int optimal, int dev_replace_is_ongoing)
4569 {
4570 	int i;
4571 	int tolerance;
4572 	struct btrfs_device *srcdev;
4573 
4574 	if (dev_replace_is_ongoing &&
4575 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4576 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4577 		srcdev = fs_info->dev_replace.srcdev;
4578 	else
4579 		srcdev = NULL;
4580 
4581 	/*
4582 	 * try to avoid the drive that is the source drive for a
4583 	 * dev-replace procedure, only choose it if no other non-missing
4584 	 * mirror is available
4585 	 */
4586 	for (tolerance = 0; tolerance < 2; tolerance++) {
4587 		if (map->stripes[optimal].dev->bdev &&
4588 		    (tolerance || map->stripes[optimal].dev != srcdev))
4589 			return optimal;
4590 		for (i = first; i < first + num; i++) {
4591 			if (map->stripes[i].dev->bdev &&
4592 			    (tolerance || map->stripes[i].dev != srcdev))
4593 				return i;
4594 		}
4595 	}
4596 
4597 	/* we couldn't find one that doesn't fail.  Just return something
4598 	 * and the io error handling code will clean up eventually
4599 	 */
4600 	return optimal;
4601 }
4602 
4603 static inline int parity_smaller(u64 a, u64 b)
4604 {
4605 	return a > b;
4606 }
4607 
4608 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4609 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4610 {
4611 	struct btrfs_bio_stripe s;
4612 	int i;
4613 	u64 l;
4614 	int again = 1;
4615 
4616 	while (again) {
4617 		again = 0;
4618 		for (i = 0; i < bbio->num_stripes - 1; i++) {
4619 			if (parity_smaller(raid_map[i], raid_map[i+1])) {
4620 				s = bbio->stripes[i];
4621 				l = raid_map[i];
4622 				bbio->stripes[i] = bbio->stripes[i+1];
4623 				raid_map[i] = raid_map[i+1];
4624 				bbio->stripes[i+1] = s;
4625 				raid_map[i+1] = l;
4626 				again = 1;
4627 			}
4628 		}
4629 	}
4630 }
4631 
4632 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4633 			     u64 logical, u64 *length,
4634 			     struct btrfs_bio **bbio_ret,
4635 			     int mirror_num, u64 **raid_map_ret)
4636 {
4637 	struct extent_map *em;
4638 	struct map_lookup *map;
4639 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4640 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4641 	u64 offset;
4642 	u64 stripe_offset;
4643 	u64 stripe_end_offset;
4644 	u64 stripe_nr;
4645 	u64 stripe_nr_orig;
4646 	u64 stripe_nr_end;
4647 	u64 stripe_len;
4648 	u64 *raid_map = NULL;
4649 	int stripe_index;
4650 	int i;
4651 	int ret = 0;
4652 	int num_stripes;
4653 	int max_errors = 0;
4654 	struct btrfs_bio *bbio = NULL;
4655 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4656 	int dev_replace_is_ongoing = 0;
4657 	int num_alloc_stripes;
4658 	int patch_the_first_stripe_for_dev_replace = 0;
4659 	u64 physical_to_patch_in_first_stripe = 0;
4660 	u64 raid56_full_stripe_start = (u64)-1;
4661 
4662 	read_lock(&em_tree->lock);
4663 	em = lookup_extent_mapping(em_tree, logical, *length);
4664 	read_unlock(&em_tree->lock);
4665 
4666 	if (!em) {
4667 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4668 			logical, *length);
4669 		return -EINVAL;
4670 	}
4671 
4672 	if (em->start > logical || em->start + em->len < logical) {
4673 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4674 			   "found %Lu-%Lu\n", logical, em->start,
4675 			   em->start + em->len);
4676 		free_extent_map(em);
4677 		return -EINVAL;
4678 	}
4679 
4680 	map = (struct map_lookup *)em->bdev;
4681 	offset = logical - em->start;
4682 
4683 	stripe_len = map->stripe_len;
4684 	stripe_nr = offset;
4685 	/*
4686 	 * stripe_nr counts the total number of stripes we have to stride
4687 	 * to get to this block
4688 	 */
4689 	do_div(stripe_nr, stripe_len);
4690 
4691 	stripe_offset = stripe_nr * stripe_len;
4692 	BUG_ON(offset < stripe_offset);
4693 
4694 	/* stripe_offset is the offset of this block in its stripe*/
4695 	stripe_offset = offset - stripe_offset;
4696 
4697 	/* if we're here for raid56, we need to know the stripe aligned start */
4698 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4699 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4700 		raid56_full_stripe_start = offset;
4701 
4702 		/* allow a write of a full stripe, but make sure we don't
4703 		 * allow straddling of stripes
4704 		 */
4705 		do_div(raid56_full_stripe_start, full_stripe_len);
4706 		raid56_full_stripe_start *= full_stripe_len;
4707 	}
4708 
4709 	if (rw & REQ_DISCARD) {
4710 		/* we don't discard raid56 yet */
4711 		if (map->type &
4712 		    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4713 			ret = -EOPNOTSUPP;
4714 			goto out;
4715 		}
4716 		*length = min_t(u64, em->len - offset, *length);
4717 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4718 		u64 max_len;
4719 		/* For writes to RAID[56], allow a full stripeset across all disks.
4720 		   For other RAID types and for RAID[56] reads, just allow a single
4721 		   stripe (on a single disk). */
4722 		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4723 		    (rw & REQ_WRITE)) {
4724 			max_len = stripe_len * nr_data_stripes(map) -
4725 				(offset - raid56_full_stripe_start);
4726 		} else {
4727 			/* we limit the length of each bio to what fits in a stripe */
4728 			max_len = stripe_len - stripe_offset;
4729 		}
4730 		*length = min_t(u64, em->len - offset, max_len);
4731 	} else {
4732 		*length = em->len - offset;
4733 	}
4734 
4735 	/* This is for when we're called from btrfs_merge_bio_hook() and all
4736 	   it cares about is the length */
4737 	if (!bbio_ret)
4738 		goto out;
4739 
4740 	btrfs_dev_replace_lock(dev_replace);
4741 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4742 	if (!dev_replace_is_ongoing)
4743 		btrfs_dev_replace_unlock(dev_replace);
4744 
4745 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4746 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4747 	    dev_replace->tgtdev != NULL) {
4748 		/*
4749 		 * in dev-replace case, for repair case (that's the only
4750 		 * case where the mirror is selected explicitly when
4751 		 * calling btrfs_map_block), blocks left of the left cursor
4752 		 * can also be read from the target drive.
4753 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
4754 		 * the last one to the array of stripes. For READ, it also
4755 		 * needs to be supported using the same mirror number.
4756 		 * If the requested block is not left of the left cursor,
4757 		 * EIO is returned. This can happen because btrfs_num_copies()
4758 		 * returns one more in the dev-replace case.
4759 		 */
4760 		u64 tmp_length = *length;
4761 		struct btrfs_bio *tmp_bbio = NULL;
4762 		int tmp_num_stripes;
4763 		u64 srcdev_devid = dev_replace->srcdev->devid;
4764 		int index_srcdev = 0;
4765 		int found = 0;
4766 		u64 physical_of_found = 0;
4767 
4768 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4769 			     logical, &tmp_length, &tmp_bbio, 0, NULL);
4770 		if (ret) {
4771 			WARN_ON(tmp_bbio != NULL);
4772 			goto out;
4773 		}
4774 
4775 		tmp_num_stripes = tmp_bbio->num_stripes;
4776 		if (mirror_num > tmp_num_stripes) {
4777 			/*
4778 			 * REQ_GET_READ_MIRRORS does not contain this
4779 			 * mirror, that means that the requested area
4780 			 * is not left of the left cursor
4781 			 */
4782 			ret = -EIO;
4783 			kfree(tmp_bbio);
4784 			goto out;
4785 		}
4786 
4787 		/*
4788 		 * process the rest of the function using the mirror_num
4789 		 * of the source drive. Therefore look it up first.
4790 		 * At the end, patch the device pointer to the one of the
4791 		 * target drive.
4792 		 */
4793 		for (i = 0; i < tmp_num_stripes; i++) {
4794 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4795 				/*
4796 				 * In case of DUP, in order to keep it
4797 				 * simple, only add the mirror with the
4798 				 * lowest physical address
4799 				 */
4800 				if (found &&
4801 				    physical_of_found <=
4802 				     tmp_bbio->stripes[i].physical)
4803 					continue;
4804 				index_srcdev = i;
4805 				found = 1;
4806 				physical_of_found =
4807 					tmp_bbio->stripes[i].physical;
4808 			}
4809 		}
4810 
4811 		if (found) {
4812 			mirror_num = index_srcdev + 1;
4813 			patch_the_first_stripe_for_dev_replace = 1;
4814 			physical_to_patch_in_first_stripe = physical_of_found;
4815 		} else {
4816 			WARN_ON(1);
4817 			ret = -EIO;
4818 			kfree(tmp_bbio);
4819 			goto out;
4820 		}
4821 
4822 		kfree(tmp_bbio);
4823 	} else if (mirror_num > map->num_stripes) {
4824 		mirror_num = 0;
4825 	}
4826 
4827 	num_stripes = 1;
4828 	stripe_index = 0;
4829 	stripe_nr_orig = stripe_nr;
4830 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4831 	do_div(stripe_nr_end, map->stripe_len);
4832 	stripe_end_offset = stripe_nr_end * map->stripe_len -
4833 			    (offset + *length);
4834 
4835 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4836 		if (rw & REQ_DISCARD)
4837 			num_stripes = min_t(u64, map->num_stripes,
4838 					    stripe_nr_end - stripe_nr_orig);
4839 		stripe_index = do_div(stripe_nr, map->num_stripes);
4840 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4841 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4842 			num_stripes = map->num_stripes;
4843 		else if (mirror_num)
4844 			stripe_index = mirror_num - 1;
4845 		else {
4846 			stripe_index = find_live_mirror(fs_info, map, 0,
4847 					    map->num_stripes,
4848 					    current->pid % map->num_stripes,
4849 					    dev_replace_is_ongoing);
4850 			mirror_num = stripe_index + 1;
4851 		}
4852 
4853 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4854 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4855 			num_stripes = map->num_stripes;
4856 		} else if (mirror_num) {
4857 			stripe_index = mirror_num - 1;
4858 		} else {
4859 			mirror_num = 1;
4860 		}
4861 
4862 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4863 		int factor = map->num_stripes / map->sub_stripes;
4864 
4865 		stripe_index = do_div(stripe_nr, factor);
4866 		stripe_index *= map->sub_stripes;
4867 
4868 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4869 			num_stripes = map->sub_stripes;
4870 		else if (rw & REQ_DISCARD)
4871 			num_stripes = min_t(u64, map->sub_stripes *
4872 					    (stripe_nr_end - stripe_nr_orig),
4873 					    map->num_stripes);
4874 		else if (mirror_num)
4875 			stripe_index += mirror_num - 1;
4876 		else {
4877 			int old_stripe_index = stripe_index;
4878 			stripe_index = find_live_mirror(fs_info, map,
4879 					      stripe_index,
4880 					      map->sub_stripes, stripe_index +
4881 					      current->pid % map->sub_stripes,
4882 					      dev_replace_is_ongoing);
4883 			mirror_num = stripe_index - old_stripe_index + 1;
4884 		}
4885 
4886 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4887 				BTRFS_BLOCK_GROUP_RAID6)) {
4888 		u64 tmp;
4889 
4890 		if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4891 		    && raid_map_ret) {
4892 			int i, rot;
4893 
4894 			/* push stripe_nr back to the start of the full stripe */
4895 			stripe_nr = raid56_full_stripe_start;
4896 			do_div(stripe_nr, stripe_len);
4897 
4898 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4899 
4900 			/* RAID[56] write or recovery. Return all stripes */
4901 			num_stripes = map->num_stripes;
4902 			max_errors = nr_parity_stripes(map);
4903 
4904 			raid_map = kmalloc_array(num_stripes, sizeof(u64),
4905 					   GFP_NOFS);
4906 			if (!raid_map) {
4907 				ret = -ENOMEM;
4908 				goto out;
4909 			}
4910 
4911 			/* Work out the disk rotation on this stripe-set */
4912 			tmp = stripe_nr;
4913 			rot = do_div(tmp, num_stripes);
4914 
4915 			/* Fill in the logical address of each stripe */
4916 			tmp = stripe_nr * nr_data_stripes(map);
4917 			for (i = 0; i < nr_data_stripes(map); i++)
4918 				raid_map[(i+rot) % num_stripes] =
4919 					em->start + (tmp + i) * map->stripe_len;
4920 
4921 			raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4922 			if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4923 				raid_map[(i+rot+1) % num_stripes] =
4924 					RAID6_Q_STRIPE;
4925 
4926 			*length = map->stripe_len;
4927 			stripe_index = 0;
4928 			stripe_offset = 0;
4929 		} else {
4930 			/*
4931 			 * Mirror #0 or #1 means the original data block.
4932 			 * Mirror #2 is RAID5 parity block.
4933 			 * Mirror #3 is RAID6 Q block.
4934 			 */
4935 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4936 			if (mirror_num > 1)
4937 				stripe_index = nr_data_stripes(map) +
4938 						mirror_num - 2;
4939 
4940 			/* We distribute the parity blocks across stripes */
4941 			tmp = stripe_nr + stripe_index;
4942 			stripe_index = do_div(tmp, map->num_stripes);
4943 		}
4944 	} else {
4945 		/*
4946 		 * after this do_div call, stripe_nr is the number of stripes
4947 		 * on this device we have to walk to find the data, and
4948 		 * stripe_index is the number of our device in the stripe array
4949 		 */
4950 		stripe_index = do_div(stripe_nr, map->num_stripes);
4951 		mirror_num = stripe_index + 1;
4952 	}
4953 	BUG_ON(stripe_index >= map->num_stripes);
4954 
4955 	num_alloc_stripes = num_stripes;
4956 	if (dev_replace_is_ongoing) {
4957 		if (rw & (REQ_WRITE | REQ_DISCARD))
4958 			num_alloc_stripes <<= 1;
4959 		if (rw & REQ_GET_READ_MIRRORS)
4960 			num_alloc_stripes++;
4961 	}
4962 	bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
4963 	if (!bbio) {
4964 		kfree(raid_map);
4965 		ret = -ENOMEM;
4966 		goto out;
4967 	}
4968 	atomic_set(&bbio->error, 0);
4969 
4970 	if (rw & REQ_DISCARD) {
4971 		int factor = 0;
4972 		int sub_stripes = 0;
4973 		u64 stripes_per_dev = 0;
4974 		u32 remaining_stripes = 0;
4975 		u32 last_stripe = 0;
4976 
4977 		if (map->type &
4978 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4979 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4980 				sub_stripes = 1;
4981 			else
4982 				sub_stripes = map->sub_stripes;
4983 
4984 			factor = map->num_stripes / sub_stripes;
4985 			stripes_per_dev = div_u64_rem(stripe_nr_end -
4986 						      stripe_nr_orig,
4987 						      factor,
4988 						      &remaining_stripes);
4989 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4990 			last_stripe *= sub_stripes;
4991 		}
4992 
4993 		for (i = 0; i < num_stripes; i++) {
4994 			bbio->stripes[i].physical =
4995 				map->stripes[stripe_index].physical +
4996 				stripe_offset + stripe_nr * map->stripe_len;
4997 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
4998 
4999 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5000 					 BTRFS_BLOCK_GROUP_RAID10)) {
5001 				bbio->stripes[i].length = stripes_per_dev *
5002 							  map->stripe_len;
5003 
5004 				if (i / sub_stripes < remaining_stripes)
5005 					bbio->stripes[i].length +=
5006 						map->stripe_len;
5007 
5008 				/*
5009 				 * Special for the first stripe and
5010 				 * the last stripe:
5011 				 *
5012 				 * |-------|...|-------|
5013 				 *     |----------|
5014 				 *    off     end_off
5015 				 */
5016 				if (i < sub_stripes)
5017 					bbio->stripes[i].length -=
5018 						stripe_offset;
5019 
5020 				if (stripe_index >= last_stripe &&
5021 				    stripe_index <= (last_stripe +
5022 						     sub_stripes - 1))
5023 					bbio->stripes[i].length -=
5024 						stripe_end_offset;
5025 
5026 				if (i == sub_stripes - 1)
5027 					stripe_offset = 0;
5028 			} else
5029 				bbio->stripes[i].length = *length;
5030 
5031 			stripe_index++;
5032 			if (stripe_index == map->num_stripes) {
5033 				/* This could only happen for RAID0/10 */
5034 				stripe_index = 0;
5035 				stripe_nr++;
5036 			}
5037 		}
5038 	} else {
5039 		for (i = 0; i < num_stripes; i++) {
5040 			bbio->stripes[i].physical =
5041 				map->stripes[stripe_index].physical +
5042 				stripe_offset +
5043 				stripe_nr * map->stripe_len;
5044 			bbio->stripes[i].dev =
5045 				map->stripes[stripe_index].dev;
5046 			stripe_index++;
5047 		}
5048 	}
5049 
5050 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5051 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5052 				 BTRFS_BLOCK_GROUP_RAID10 |
5053 				 BTRFS_BLOCK_GROUP_RAID5 |
5054 				 BTRFS_BLOCK_GROUP_DUP)) {
5055 			max_errors = 1;
5056 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5057 			max_errors = 2;
5058 		}
5059 	}
5060 
5061 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5062 	    dev_replace->tgtdev != NULL) {
5063 		int index_where_to_add;
5064 		u64 srcdev_devid = dev_replace->srcdev->devid;
5065 
5066 		/*
5067 		 * duplicate the write operations while the dev replace
5068 		 * procedure is running. Since the copying of the old disk
5069 		 * to the new disk takes place at run time while the
5070 		 * filesystem is mounted writable, the regular write
5071 		 * operations to the old disk have to be duplicated to go
5072 		 * to the new disk as well.
5073 		 * Note that device->missing is handled by the caller, and
5074 		 * that the write to the old disk is already set up in the
5075 		 * stripes array.
5076 		 */
5077 		index_where_to_add = num_stripes;
5078 		for (i = 0; i < num_stripes; i++) {
5079 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5080 				/* write to new disk, too */
5081 				struct btrfs_bio_stripe *new =
5082 					bbio->stripes + index_where_to_add;
5083 				struct btrfs_bio_stripe *old =
5084 					bbio->stripes + i;
5085 
5086 				new->physical = old->physical;
5087 				new->length = old->length;
5088 				new->dev = dev_replace->tgtdev;
5089 				index_where_to_add++;
5090 				max_errors++;
5091 			}
5092 		}
5093 		num_stripes = index_where_to_add;
5094 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5095 		   dev_replace->tgtdev != NULL) {
5096 		u64 srcdev_devid = dev_replace->srcdev->devid;
5097 		int index_srcdev = 0;
5098 		int found = 0;
5099 		u64 physical_of_found = 0;
5100 
5101 		/*
5102 		 * During the dev-replace procedure, the target drive can
5103 		 * also be used to read data in case it is needed to repair
5104 		 * a corrupt block elsewhere. This is possible if the
5105 		 * requested area is left of the left cursor. In this area,
5106 		 * the target drive is a full copy of the source drive.
5107 		 */
5108 		for (i = 0; i < num_stripes; i++) {
5109 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5110 				/*
5111 				 * In case of DUP, in order to keep it
5112 				 * simple, only add the mirror with the
5113 				 * lowest physical address
5114 				 */
5115 				if (found &&
5116 				    physical_of_found <=
5117 				     bbio->stripes[i].physical)
5118 					continue;
5119 				index_srcdev = i;
5120 				found = 1;
5121 				physical_of_found = bbio->stripes[i].physical;
5122 			}
5123 		}
5124 		if (found) {
5125 			u64 length = map->stripe_len;
5126 
5127 			if (physical_of_found + length <=
5128 			    dev_replace->cursor_left) {
5129 				struct btrfs_bio_stripe *tgtdev_stripe =
5130 					bbio->stripes + num_stripes;
5131 
5132 				tgtdev_stripe->physical = physical_of_found;
5133 				tgtdev_stripe->length =
5134 					bbio->stripes[index_srcdev].length;
5135 				tgtdev_stripe->dev = dev_replace->tgtdev;
5136 
5137 				num_stripes++;
5138 			}
5139 		}
5140 	}
5141 
5142 	*bbio_ret = bbio;
5143 	bbio->num_stripes = num_stripes;
5144 	bbio->max_errors = max_errors;
5145 	bbio->mirror_num = mirror_num;
5146 
5147 	/*
5148 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5149 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5150 	 * available as a mirror
5151 	 */
5152 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5153 		WARN_ON(num_stripes > 1);
5154 		bbio->stripes[0].dev = dev_replace->tgtdev;
5155 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5156 		bbio->mirror_num = map->num_stripes + 1;
5157 	}
5158 	if (raid_map) {
5159 		sort_parity_stripes(bbio, raid_map);
5160 		*raid_map_ret = raid_map;
5161 	}
5162 out:
5163 	if (dev_replace_is_ongoing)
5164 		btrfs_dev_replace_unlock(dev_replace);
5165 	free_extent_map(em);
5166 	return ret;
5167 }
5168 
5169 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5170 		      u64 logical, u64 *length,
5171 		      struct btrfs_bio **bbio_ret, int mirror_num)
5172 {
5173 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5174 				 mirror_num, NULL);
5175 }
5176 
5177 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5178 		     u64 chunk_start, u64 physical, u64 devid,
5179 		     u64 **logical, int *naddrs, int *stripe_len)
5180 {
5181 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5182 	struct extent_map *em;
5183 	struct map_lookup *map;
5184 	u64 *buf;
5185 	u64 bytenr;
5186 	u64 length;
5187 	u64 stripe_nr;
5188 	u64 rmap_len;
5189 	int i, j, nr = 0;
5190 
5191 	read_lock(&em_tree->lock);
5192 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5193 	read_unlock(&em_tree->lock);
5194 
5195 	if (!em) {
5196 		printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5197 		       chunk_start);
5198 		return -EIO;
5199 	}
5200 
5201 	if (em->start != chunk_start) {
5202 		printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5203 		       em->start, chunk_start);
5204 		free_extent_map(em);
5205 		return -EIO;
5206 	}
5207 	map = (struct map_lookup *)em->bdev;
5208 
5209 	length = em->len;
5210 	rmap_len = map->stripe_len;
5211 
5212 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5213 		do_div(length, map->num_stripes / map->sub_stripes);
5214 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5215 		do_div(length, map->num_stripes);
5216 	else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5217 			      BTRFS_BLOCK_GROUP_RAID6)) {
5218 		do_div(length, nr_data_stripes(map));
5219 		rmap_len = map->stripe_len * nr_data_stripes(map);
5220 	}
5221 
5222 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5223 	BUG_ON(!buf); /* -ENOMEM */
5224 
5225 	for (i = 0; i < map->num_stripes; i++) {
5226 		if (devid && map->stripes[i].dev->devid != devid)
5227 			continue;
5228 		if (map->stripes[i].physical > physical ||
5229 		    map->stripes[i].physical + length <= physical)
5230 			continue;
5231 
5232 		stripe_nr = physical - map->stripes[i].physical;
5233 		do_div(stripe_nr, map->stripe_len);
5234 
5235 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5236 			stripe_nr = stripe_nr * map->num_stripes + i;
5237 			do_div(stripe_nr, map->sub_stripes);
5238 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5239 			stripe_nr = stripe_nr * map->num_stripes + i;
5240 		} /* else if RAID[56], multiply by nr_data_stripes().
5241 		   * Alternatively, just use rmap_len below instead of
5242 		   * map->stripe_len */
5243 
5244 		bytenr = chunk_start + stripe_nr * rmap_len;
5245 		WARN_ON(nr >= map->num_stripes);
5246 		for (j = 0; j < nr; j++) {
5247 			if (buf[j] == bytenr)
5248 				break;
5249 		}
5250 		if (j == nr) {
5251 			WARN_ON(nr >= map->num_stripes);
5252 			buf[nr++] = bytenr;
5253 		}
5254 	}
5255 
5256 	*logical = buf;
5257 	*naddrs = nr;
5258 	*stripe_len = rmap_len;
5259 
5260 	free_extent_map(em);
5261 	return 0;
5262 }
5263 
5264 static void btrfs_end_bio(struct bio *bio, int err)
5265 {
5266 	struct btrfs_bio *bbio = bio->bi_private;
5267 	int is_orig_bio = 0;
5268 
5269 	if (err) {
5270 		atomic_inc(&bbio->error);
5271 		if (err == -EIO || err == -EREMOTEIO) {
5272 			unsigned int stripe_index =
5273 				btrfs_io_bio(bio)->stripe_index;
5274 			struct btrfs_device *dev;
5275 
5276 			BUG_ON(stripe_index >= bbio->num_stripes);
5277 			dev = bbio->stripes[stripe_index].dev;
5278 			if (dev->bdev) {
5279 				if (bio->bi_rw & WRITE)
5280 					btrfs_dev_stat_inc(dev,
5281 						BTRFS_DEV_STAT_WRITE_ERRS);
5282 				else
5283 					btrfs_dev_stat_inc(dev,
5284 						BTRFS_DEV_STAT_READ_ERRS);
5285 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5286 					btrfs_dev_stat_inc(dev,
5287 						BTRFS_DEV_STAT_FLUSH_ERRS);
5288 				btrfs_dev_stat_print_on_error(dev);
5289 			}
5290 		}
5291 	}
5292 
5293 	if (bio == bbio->orig_bio)
5294 		is_orig_bio = 1;
5295 
5296 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5297 		if (!is_orig_bio) {
5298 			bio_put(bio);
5299 			bio = bbio->orig_bio;
5300 		}
5301 		bio->bi_private = bbio->private;
5302 		bio->bi_end_io = bbio->end_io;
5303 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5304 		/* only send an error to the higher layers if it is
5305 		 * beyond the tolerance of the btrfs bio
5306 		 */
5307 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5308 			err = -EIO;
5309 		} else {
5310 			/*
5311 			 * this bio is actually up to date, we didn't
5312 			 * go over the max number of errors
5313 			 */
5314 			set_bit(BIO_UPTODATE, &bio->bi_flags);
5315 			err = 0;
5316 		}
5317 		kfree(bbio);
5318 
5319 		bio_endio(bio, err);
5320 	} else if (!is_orig_bio) {
5321 		bio_put(bio);
5322 	}
5323 }
5324 
5325 struct async_sched {
5326 	struct bio *bio;
5327 	int rw;
5328 	struct btrfs_fs_info *info;
5329 	struct btrfs_work work;
5330 };
5331 
5332 /*
5333  * see run_scheduled_bios for a description of why bios are collected for
5334  * async submit.
5335  *
5336  * This will add one bio to the pending list for a device and make sure
5337  * the work struct is scheduled.
5338  */
5339 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5340 					struct btrfs_device *device,
5341 					int rw, struct bio *bio)
5342 {
5343 	int should_queue = 1;
5344 	struct btrfs_pending_bios *pending_bios;
5345 
5346 	if (device->missing || !device->bdev) {
5347 		bio_endio(bio, -EIO);
5348 		return;
5349 	}
5350 
5351 	/* don't bother with additional async steps for reads, right now */
5352 	if (!(rw & REQ_WRITE)) {
5353 		bio_get(bio);
5354 		btrfsic_submit_bio(rw, bio);
5355 		bio_put(bio);
5356 		return;
5357 	}
5358 
5359 	/*
5360 	 * nr_async_bios allows us to reliably return congestion to the
5361 	 * higher layers.  Otherwise, the async bio makes it appear we have
5362 	 * made progress against dirty pages when we've really just put it
5363 	 * on a queue for later
5364 	 */
5365 	atomic_inc(&root->fs_info->nr_async_bios);
5366 	WARN_ON(bio->bi_next);
5367 	bio->bi_next = NULL;
5368 	bio->bi_rw |= rw;
5369 
5370 	spin_lock(&device->io_lock);
5371 	if (bio->bi_rw & REQ_SYNC)
5372 		pending_bios = &device->pending_sync_bios;
5373 	else
5374 		pending_bios = &device->pending_bios;
5375 
5376 	if (pending_bios->tail)
5377 		pending_bios->tail->bi_next = bio;
5378 
5379 	pending_bios->tail = bio;
5380 	if (!pending_bios->head)
5381 		pending_bios->head = bio;
5382 	if (device->running_pending)
5383 		should_queue = 0;
5384 
5385 	spin_unlock(&device->io_lock);
5386 
5387 	if (should_queue)
5388 		btrfs_queue_worker(&root->fs_info->submit_workers,
5389 				   &device->work);
5390 }
5391 
5392 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5393 		       sector_t sector)
5394 {
5395 	struct bio_vec *prev;
5396 	struct request_queue *q = bdev_get_queue(bdev);
5397 	unsigned int max_sectors = queue_max_sectors(q);
5398 	struct bvec_merge_data bvm = {
5399 		.bi_bdev = bdev,
5400 		.bi_sector = sector,
5401 		.bi_rw = bio->bi_rw,
5402 	};
5403 
5404 	if (WARN_ON(bio->bi_vcnt == 0))
5405 		return 1;
5406 
5407 	prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5408 	if (bio_sectors(bio) > max_sectors)
5409 		return 0;
5410 
5411 	if (!q->merge_bvec_fn)
5412 		return 1;
5413 
5414 	bvm.bi_size = bio->bi_size - prev->bv_len;
5415 	if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5416 		return 0;
5417 	return 1;
5418 }
5419 
5420 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5421 			      struct bio *bio, u64 physical, int dev_nr,
5422 			      int rw, int async)
5423 {
5424 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5425 
5426 	bio->bi_private = bbio;
5427 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5428 	bio->bi_end_io = btrfs_end_bio;
5429 	bio->bi_sector = physical >> 9;
5430 #ifdef DEBUG
5431 	{
5432 		struct rcu_string *name;
5433 
5434 		rcu_read_lock();
5435 		name = rcu_dereference(dev->name);
5436 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5437 			 "(%s id %llu), size=%u\n", rw,
5438 			 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5439 			 name->str, dev->devid, bio->bi_size);
5440 		rcu_read_unlock();
5441 	}
5442 #endif
5443 	bio->bi_bdev = dev->bdev;
5444 	if (async)
5445 		btrfs_schedule_bio(root, dev, rw, bio);
5446 	else
5447 		btrfsic_submit_bio(rw, bio);
5448 }
5449 
5450 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5451 			      struct bio *first_bio, struct btrfs_device *dev,
5452 			      int dev_nr, int rw, int async)
5453 {
5454 	struct bio_vec *bvec = first_bio->bi_io_vec;
5455 	struct bio *bio;
5456 	int nr_vecs = bio_get_nr_vecs(dev->bdev);
5457 	u64 physical = bbio->stripes[dev_nr].physical;
5458 
5459 again:
5460 	bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5461 	if (!bio)
5462 		return -ENOMEM;
5463 
5464 	while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5465 		if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5466 				 bvec->bv_offset) < bvec->bv_len) {
5467 			u64 len = bio->bi_size;
5468 
5469 			atomic_inc(&bbio->stripes_pending);
5470 			submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5471 					  rw, async);
5472 			physical += len;
5473 			goto again;
5474 		}
5475 		bvec++;
5476 	}
5477 
5478 	submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5479 	return 0;
5480 }
5481 
5482 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5483 {
5484 	atomic_inc(&bbio->error);
5485 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5486 		bio->bi_private = bbio->private;
5487 		bio->bi_end_io = bbio->end_io;
5488 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5489 		bio->bi_sector = logical >> 9;
5490 		kfree(bbio);
5491 		bio_endio(bio, -EIO);
5492 	}
5493 }
5494 
5495 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5496 		  int mirror_num, int async_submit)
5497 {
5498 	struct btrfs_device *dev;
5499 	struct bio *first_bio = bio;
5500 	u64 logical = (u64)bio->bi_sector << 9;
5501 	u64 length = 0;
5502 	u64 map_length;
5503 	u64 *raid_map = NULL;
5504 	int ret;
5505 	int dev_nr = 0;
5506 	int total_devs = 1;
5507 	struct btrfs_bio *bbio = NULL;
5508 
5509 	length = bio->bi_size;
5510 	map_length = length;
5511 
5512 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5513 			      mirror_num, &raid_map);
5514 	if (ret) /* -ENOMEM */
5515 		return ret;
5516 
5517 	total_devs = bbio->num_stripes;
5518 	bbio->orig_bio = first_bio;
5519 	bbio->private = first_bio->bi_private;
5520 	bbio->end_io = first_bio->bi_end_io;
5521 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5522 
5523 	if (raid_map) {
5524 		/* In this case, map_length has been set to the length of
5525 		   a single stripe; not the whole write */
5526 		if (rw & WRITE) {
5527 			return raid56_parity_write(root, bio, bbio,
5528 						   raid_map, map_length);
5529 		} else {
5530 			return raid56_parity_recover(root, bio, bbio,
5531 						     raid_map, map_length,
5532 						     mirror_num);
5533 		}
5534 	}
5535 
5536 	if (map_length < length) {
5537 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5538 			logical, length, map_length);
5539 		BUG();
5540 	}
5541 
5542 	while (dev_nr < total_devs) {
5543 		dev = bbio->stripes[dev_nr].dev;
5544 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5545 			bbio_error(bbio, first_bio, logical);
5546 			dev_nr++;
5547 			continue;
5548 		}
5549 
5550 		/*
5551 		 * Check and see if we're ok with this bio based on it's size
5552 		 * and offset with the given device.
5553 		 */
5554 		if (!bio_size_ok(dev->bdev, first_bio,
5555 				 bbio->stripes[dev_nr].physical >> 9)) {
5556 			ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5557 						 dev_nr, rw, async_submit);
5558 			BUG_ON(ret);
5559 			dev_nr++;
5560 			continue;
5561 		}
5562 
5563 		if (dev_nr < total_devs - 1) {
5564 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5565 			BUG_ON(!bio); /* -ENOMEM */
5566 		} else {
5567 			bio = first_bio;
5568 		}
5569 
5570 		submit_stripe_bio(root, bbio, bio,
5571 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
5572 				  async_submit);
5573 		dev_nr++;
5574 	}
5575 	return 0;
5576 }
5577 
5578 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5579 				       u8 *uuid, u8 *fsid)
5580 {
5581 	struct btrfs_device *device;
5582 	struct btrfs_fs_devices *cur_devices;
5583 
5584 	cur_devices = fs_info->fs_devices;
5585 	while (cur_devices) {
5586 		if (!fsid ||
5587 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5588 			device = __find_device(&cur_devices->devices,
5589 					       devid, uuid);
5590 			if (device)
5591 				return device;
5592 		}
5593 		cur_devices = cur_devices->seed;
5594 	}
5595 	return NULL;
5596 }
5597 
5598 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5599 					    u64 devid, u8 *dev_uuid)
5600 {
5601 	struct btrfs_device *device;
5602 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5603 
5604 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5605 	if (IS_ERR(device))
5606 		return NULL;
5607 
5608 	list_add(&device->dev_list, &fs_devices->devices);
5609 	device->fs_devices = fs_devices;
5610 	fs_devices->num_devices++;
5611 
5612 	device->missing = 1;
5613 	fs_devices->missing_devices++;
5614 
5615 	return device;
5616 }
5617 
5618 /**
5619  * btrfs_alloc_device - allocate struct btrfs_device
5620  * @fs_info:	used only for generating a new devid, can be NULL if
5621  *		devid is provided (i.e. @devid != NULL).
5622  * @devid:	a pointer to devid for this device.  If NULL a new devid
5623  *		is generated.
5624  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
5625  *		is generated.
5626  *
5627  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5628  * on error.  Returned struct is not linked onto any lists and can be
5629  * destroyed with kfree() right away.
5630  */
5631 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5632 					const u64 *devid,
5633 					const u8 *uuid)
5634 {
5635 	struct btrfs_device *dev;
5636 	u64 tmp;
5637 
5638 	if (WARN_ON(!devid && !fs_info))
5639 		return ERR_PTR(-EINVAL);
5640 
5641 	dev = __alloc_device();
5642 	if (IS_ERR(dev))
5643 		return dev;
5644 
5645 	if (devid)
5646 		tmp = *devid;
5647 	else {
5648 		int ret;
5649 
5650 		ret = find_next_devid(fs_info, &tmp);
5651 		if (ret) {
5652 			kfree(dev);
5653 			return ERR_PTR(ret);
5654 		}
5655 	}
5656 	dev->devid = tmp;
5657 
5658 	if (uuid)
5659 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5660 	else
5661 		generate_random_uuid(dev->uuid);
5662 
5663 	dev->work.func = pending_bios_fn;
5664 
5665 	return dev;
5666 }
5667 
5668 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5669 			  struct extent_buffer *leaf,
5670 			  struct btrfs_chunk *chunk)
5671 {
5672 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5673 	struct map_lookup *map;
5674 	struct extent_map *em;
5675 	u64 logical;
5676 	u64 length;
5677 	u64 devid;
5678 	u8 uuid[BTRFS_UUID_SIZE];
5679 	int num_stripes;
5680 	int ret;
5681 	int i;
5682 
5683 	logical = key->offset;
5684 	length = btrfs_chunk_length(leaf, chunk);
5685 
5686 	read_lock(&map_tree->map_tree.lock);
5687 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5688 	read_unlock(&map_tree->map_tree.lock);
5689 
5690 	/* already mapped? */
5691 	if (em && em->start <= logical && em->start + em->len > logical) {
5692 		free_extent_map(em);
5693 		return 0;
5694 	} else if (em) {
5695 		free_extent_map(em);
5696 	}
5697 
5698 	em = alloc_extent_map();
5699 	if (!em)
5700 		return -ENOMEM;
5701 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5702 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5703 	if (!map) {
5704 		free_extent_map(em);
5705 		return -ENOMEM;
5706 	}
5707 
5708 	em->bdev = (struct block_device *)map;
5709 	em->start = logical;
5710 	em->len = length;
5711 	em->orig_start = 0;
5712 	em->block_start = 0;
5713 	em->block_len = em->len;
5714 
5715 	map->num_stripes = num_stripes;
5716 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
5717 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
5718 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5719 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5720 	map->type = btrfs_chunk_type(leaf, chunk);
5721 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5722 	for (i = 0; i < num_stripes; i++) {
5723 		map->stripes[i].physical =
5724 			btrfs_stripe_offset_nr(leaf, chunk, i);
5725 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5726 		read_extent_buffer(leaf, uuid, (unsigned long)
5727 				   btrfs_stripe_dev_uuid_nr(chunk, i),
5728 				   BTRFS_UUID_SIZE);
5729 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5730 							uuid, NULL);
5731 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5732 			kfree(map);
5733 			free_extent_map(em);
5734 			return -EIO;
5735 		}
5736 		if (!map->stripes[i].dev) {
5737 			map->stripes[i].dev =
5738 				add_missing_dev(root, devid, uuid);
5739 			if (!map->stripes[i].dev) {
5740 				kfree(map);
5741 				free_extent_map(em);
5742 				return -EIO;
5743 			}
5744 		}
5745 		map->stripes[i].dev->in_fs_metadata = 1;
5746 	}
5747 
5748 	write_lock(&map_tree->map_tree.lock);
5749 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5750 	write_unlock(&map_tree->map_tree.lock);
5751 	BUG_ON(ret); /* Tree corruption */
5752 	free_extent_map(em);
5753 
5754 	return 0;
5755 }
5756 
5757 static void fill_device_from_item(struct extent_buffer *leaf,
5758 				 struct btrfs_dev_item *dev_item,
5759 				 struct btrfs_device *device)
5760 {
5761 	unsigned long ptr;
5762 
5763 	device->devid = btrfs_device_id(leaf, dev_item);
5764 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5765 	device->total_bytes = device->disk_total_bytes;
5766 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5767 	device->type = btrfs_device_type(leaf, dev_item);
5768 	device->io_align = btrfs_device_io_align(leaf, dev_item);
5769 	device->io_width = btrfs_device_io_width(leaf, dev_item);
5770 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5771 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5772 	device->is_tgtdev_for_dev_replace = 0;
5773 
5774 	ptr = btrfs_device_uuid(dev_item);
5775 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5776 }
5777 
5778 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5779 {
5780 	struct btrfs_fs_devices *fs_devices;
5781 	int ret;
5782 
5783 	BUG_ON(!mutex_is_locked(&uuid_mutex));
5784 
5785 	fs_devices = root->fs_info->fs_devices->seed;
5786 	while (fs_devices) {
5787 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5788 			ret = 0;
5789 			goto out;
5790 		}
5791 		fs_devices = fs_devices->seed;
5792 	}
5793 
5794 	fs_devices = find_fsid(fsid);
5795 	if (!fs_devices) {
5796 		ret = -ENOENT;
5797 		goto out;
5798 	}
5799 
5800 	fs_devices = clone_fs_devices(fs_devices);
5801 	if (IS_ERR(fs_devices)) {
5802 		ret = PTR_ERR(fs_devices);
5803 		goto out;
5804 	}
5805 
5806 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5807 				   root->fs_info->bdev_holder);
5808 	if (ret) {
5809 		free_fs_devices(fs_devices);
5810 		goto out;
5811 	}
5812 
5813 	if (!fs_devices->seeding) {
5814 		__btrfs_close_devices(fs_devices);
5815 		free_fs_devices(fs_devices);
5816 		ret = -EINVAL;
5817 		goto out;
5818 	}
5819 
5820 	fs_devices->seed = root->fs_info->fs_devices->seed;
5821 	root->fs_info->fs_devices->seed = fs_devices;
5822 out:
5823 	return ret;
5824 }
5825 
5826 static int read_one_dev(struct btrfs_root *root,
5827 			struct extent_buffer *leaf,
5828 			struct btrfs_dev_item *dev_item)
5829 {
5830 	struct btrfs_device *device;
5831 	u64 devid;
5832 	int ret;
5833 	u8 fs_uuid[BTRFS_UUID_SIZE];
5834 	u8 dev_uuid[BTRFS_UUID_SIZE];
5835 
5836 	devid = btrfs_device_id(leaf, dev_item);
5837 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5838 			   BTRFS_UUID_SIZE);
5839 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5840 			   BTRFS_UUID_SIZE);
5841 
5842 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5843 		ret = open_seed_devices(root, fs_uuid);
5844 		if (ret && !btrfs_test_opt(root, DEGRADED))
5845 			return ret;
5846 	}
5847 
5848 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5849 	if (!device || !device->bdev) {
5850 		if (!btrfs_test_opt(root, DEGRADED))
5851 			return -EIO;
5852 
5853 		if (!device) {
5854 			btrfs_warn(root->fs_info, "devid %llu missing", devid);
5855 			device = add_missing_dev(root, devid, dev_uuid);
5856 			if (!device)
5857 				return -ENOMEM;
5858 		} else if (!device->missing) {
5859 			/*
5860 			 * this happens when a device that was properly setup
5861 			 * in the device info lists suddenly goes bad.
5862 			 * device->bdev is NULL, and so we have to set
5863 			 * device->missing to one here
5864 			 */
5865 			root->fs_info->fs_devices->missing_devices++;
5866 			device->missing = 1;
5867 		}
5868 	}
5869 
5870 	if (device->fs_devices != root->fs_info->fs_devices) {
5871 		BUG_ON(device->writeable);
5872 		if (device->generation !=
5873 		    btrfs_device_generation(leaf, dev_item))
5874 			return -EINVAL;
5875 	}
5876 
5877 	fill_device_from_item(leaf, dev_item, device);
5878 	device->in_fs_metadata = 1;
5879 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5880 		device->fs_devices->total_rw_bytes += device->total_bytes;
5881 		spin_lock(&root->fs_info->free_chunk_lock);
5882 		root->fs_info->free_chunk_space += device->total_bytes -
5883 			device->bytes_used;
5884 		spin_unlock(&root->fs_info->free_chunk_lock);
5885 	}
5886 	ret = 0;
5887 	return ret;
5888 }
5889 
5890 int btrfs_read_sys_array(struct btrfs_root *root)
5891 {
5892 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
5893 	struct extent_buffer *sb;
5894 	struct btrfs_disk_key *disk_key;
5895 	struct btrfs_chunk *chunk;
5896 	u8 *ptr;
5897 	unsigned long sb_ptr;
5898 	int ret = 0;
5899 	u32 num_stripes;
5900 	u32 array_size;
5901 	u32 len = 0;
5902 	u32 cur;
5903 	struct btrfs_key key;
5904 
5905 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
5906 					  BTRFS_SUPER_INFO_SIZE);
5907 	if (!sb)
5908 		return -ENOMEM;
5909 	btrfs_set_buffer_uptodate(sb);
5910 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
5911 	/*
5912 	 * The sb extent buffer is artifical and just used to read the system array.
5913 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5914 	 * pages up-to-date when the page is larger: extent does not cover the
5915 	 * whole page and consequently check_page_uptodate does not find all
5916 	 * the page's extents up-to-date (the hole beyond sb),
5917 	 * write_extent_buffer then triggers a WARN_ON.
5918 	 *
5919 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5920 	 * but sb spans only this function. Add an explicit SetPageUptodate call
5921 	 * to silence the warning eg. on PowerPC 64.
5922 	 */
5923 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
5924 		SetPageUptodate(sb->pages[0]);
5925 
5926 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
5927 	array_size = btrfs_super_sys_array_size(super_copy);
5928 
5929 	ptr = super_copy->sys_chunk_array;
5930 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5931 	cur = 0;
5932 
5933 	while (cur < array_size) {
5934 		disk_key = (struct btrfs_disk_key *)ptr;
5935 		btrfs_disk_key_to_cpu(&key, disk_key);
5936 
5937 		len = sizeof(*disk_key); ptr += len;
5938 		sb_ptr += len;
5939 		cur += len;
5940 
5941 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
5942 			chunk = (struct btrfs_chunk *)sb_ptr;
5943 			ret = read_one_chunk(root, &key, sb, chunk);
5944 			if (ret)
5945 				break;
5946 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5947 			len = btrfs_chunk_item_size(num_stripes);
5948 		} else {
5949 			ret = -EIO;
5950 			break;
5951 		}
5952 		ptr += len;
5953 		sb_ptr += len;
5954 		cur += len;
5955 	}
5956 	free_extent_buffer(sb);
5957 	return ret;
5958 }
5959 
5960 int btrfs_read_chunk_tree(struct btrfs_root *root)
5961 {
5962 	struct btrfs_path *path;
5963 	struct extent_buffer *leaf;
5964 	struct btrfs_key key;
5965 	struct btrfs_key found_key;
5966 	int ret;
5967 	int slot;
5968 
5969 	root = root->fs_info->chunk_root;
5970 
5971 	path = btrfs_alloc_path();
5972 	if (!path)
5973 		return -ENOMEM;
5974 
5975 	mutex_lock(&uuid_mutex);
5976 	lock_chunks(root);
5977 
5978 	/*
5979 	 * Read all device items, and then all the chunk items. All
5980 	 * device items are found before any chunk item (their object id
5981 	 * is smaller than the lowest possible object id for a chunk
5982 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
5983 	 */
5984 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5985 	key.offset = 0;
5986 	key.type = 0;
5987 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5988 	if (ret < 0)
5989 		goto error;
5990 	while (1) {
5991 		leaf = path->nodes[0];
5992 		slot = path->slots[0];
5993 		if (slot >= btrfs_header_nritems(leaf)) {
5994 			ret = btrfs_next_leaf(root, path);
5995 			if (ret == 0)
5996 				continue;
5997 			if (ret < 0)
5998 				goto error;
5999 			break;
6000 		}
6001 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6002 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6003 			struct btrfs_dev_item *dev_item;
6004 			dev_item = btrfs_item_ptr(leaf, slot,
6005 						  struct btrfs_dev_item);
6006 			ret = read_one_dev(root, leaf, dev_item);
6007 			if (ret)
6008 				goto error;
6009 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6010 			struct btrfs_chunk *chunk;
6011 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6012 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6013 			if (ret)
6014 				goto error;
6015 		}
6016 		path->slots[0]++;
6017 	}
6018 	ret = 0;
6019 error:
6020 	unlock_chunks(root);
6021 	mutex_unlock(&uuid_mutex);
6022 
6023 	btrfs_free_path(path);
6024 	return ret;
6025 }
6026 
6027 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6028 {
6029 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6030 	struct btrfs_device *device;
6031 
6032 	mutex_lock(&fs_devices->device_list_mutex);
6033 	list_for_each_entry(device, &fs_devices->devices, dev_list)
6034 		device->dev_root = fs_info->dev_root;
6035 	mutex_unlock(&fs_devices->device_list_mutex);
6036 }
6037 
6038 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6039 {
6040 	int i;
6041 
6042 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6043 		btrfs_dev_stat_reset(dev, i);
6044 }
6045 
6046 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6047 {
6048 	struct btrfs_key key;
6049 	struct btrfs_key found_key;
6050 	struct btrfs_root *dev_root = fs_info->dev_root;
6051 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6052 	struct extent_buffer *eb;
6053 	int slot;
6054 	int ret = 0;
6055 	struct btrfs_device *device;
6056 	struct btrfs_path *path = NULL;
6057 	int i;
6058 
6059 	path = btrfs_alloc_path();
6060 	if (!path) {
6061 		ret = -ENOMEM;
6062 		goto out;
6063 	}
6064 
6065 	mutex_lock(&fs_devices->device_list_mutex);
6066 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6067 		int item_size;
6068 		struct btrfs_dev_stats_item *ptr;
6069 
6070 		key.objectid = 0;
6071 		key.type = BTRFS_DEV_STATS_KEY;
6072 		key.offset = device->devid;
6073 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6074 		if (ret) {
6075 			__btrfs_reset_dev_stats(device);
6076 			device->dev_stats_valid = 1;
6077 			btrfs_release_path(path);
6078 			continue;
6079 		}
6080 		slot = path->slots[0];
6081 		eb = path->nodes[0];
6082 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6083 		item_size = btrfs_item_size_nr(eb, slot);
6084 
6085 		ptr = btrfs_item_ptr(eb, slot,
6086 				     struct btrfs_dev_stats_item);
6087 
6088 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6089 			if (item_size >= (1 + i) * sizeof(__le64))
6090 				btrfs_dev_stat_set(device, i,
6091 					btrfs_dev_stats_value(eb, ptr, i));
6092 			else
6093 				btrfs_dev_stat_reset(device, i);
6094 		}
6095 
6096 		device->dev_stats_valid = 1;
6097 		btrfs_dev_stat_print_on_load(device);
6098 		btrfs_release_path(path);
6099 	}
6100 	mutex_unlock(&fs_devices->device_list_mutex);
6101 
6102 out:
6103 	btrfs_free_path(path);
6104 	return ret < 0 ? ret : 0;
6105 }
6106 
6107 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6108 				struct btrfs_root *dev_root,
6109 				struct btrfs_device *device)
6110 {
6111 	struct btrfs_path *path;
6112 	struct btrfs_key key;
6113 	struct extent_buffer *eb;
6114 	struct btrfs_dev_stats_item *ptr;
6115 	int ret;
6116 	int i;
6117 
6118 	key.objectid = 0;
6119 	key.type = BTRFS_DEV_STATS_KEY;
6120 	key.offset = device->devid;
6121 
6122 	path = btrfs_alloc_path();
6123 	BUG_ON(!path);
6124 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6125 	if (ret < 0) {
6126 		printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6127 			      ret, rcu_str_deref(device->name));
6128 		goto out;
6129 	}
6130 
6131 	if (ret == 0 &&
6132 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6133 		/* need to delete old one and insert a new one */
6134 		ret = btrfs_del_item(trans, dev_root, path);
6135 		if (ret != 0) {
6136 			printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6137 				      rcu_str_deref(device->name), ret);
6138 			goto out;
6139 		}
6140 		ret = 1;
6141 	}
6142 
6143 	if (ret == 1) {
6144 		/* need to insert a new item */
6145 		btrfs_release_path(path);
6146 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6147 					      &key, sizeof(*ptr));
6148 		if (ret < 0) {
6149 			printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6150 				      rcu_str_deref(device->name), ret);
6151 			goto out;
6152 		}
6153 	}
6154 
6155 	eb = path->nodes[0];
6156 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6157 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6158 		btrfs_set_dev_stats_value(eb, ptr, i,
6159 					  btrfs_dev_stat_read(device, i));
6160 	btrfs_mark_buffer_dirty(eb);
6161 
6162 out:
6163 	btrfs_free_path(path);
6164 	return ret;
6165 }
6166 
6167 /*
6168  * called from commit_transaction. Writes all changed device stats to disk.
6169  */
6170 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6171 			struct btrfs_fs_info *fs_info)
6172 {
6173 	struct btrfs_root *dev_root = fs_info->dev_root;
6174 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6175 	struct btrfs_device *device;
6176 	int ret = 0;
6177 
6178 	mutex_lock(&fs_devices->device_list_mutex);
6179 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6180 		if (!device->dev_stats_valid || !device->dev_stats_dirty)
6181 			continue;
6182 
6183 		ret = update_dev_stat_item(trans, dev_root, device);
6184 		if (!ret)
6185 			device->dev_stats_dirty = 0;
6186 	}
6187 	mutex_unlock(&fs_devices->device_list_mutex);
6188 
6189 	return ret;
6190 }
6191 
6192 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6193 {
6194 	btrfs_dev_stat_inc(dev, index);
6195 	btrfs_dev_stat_print_on_error(dev);
6196 }
6197 
6198 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6199 {
6200 	if (!dev->dev_stats_valid)
6201 		return;
6202 	printk_ratelimited_in_rcu(KERN_ERR
6203 			   "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6204 			   rcu_str_deref(dev->name),
6205 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6206 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6207 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6208 			   btrfs_dev_stat_read(dev,
6209 					       BTRFS_DEV_STAT_CORRUPTION_ERRS),
6210 			   btrfs_dev_stat_read(dev,
6211 					       BTRFS_DEV_STAT_GENERATION_ERRS));
6212 }
6213 
6214 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6215 {
6216 	int i;
6217 
6218 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6219 		if (btrfs_dev_stat_read(dev, i) != 0)
6220 			break;
6221 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6222 		return; /* all values == 0, suppress message */
6223 
6224 	printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6225 	       rcu_str_deref(dev->name),
6226 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6227 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6228 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6229 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6230 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6231 }
6232 
6233 int btrfs_get_dev_stats(struct btrfs_root *root,
6234 			struct btrfs_ioctl_get_dev_stats *stats)
6235 {
6236 	struct btrfs_device *dev;
6237 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6238 	int i;
6239 
6240 	mutex_lock(&fs_devices->device_list_mutex);
6241 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6242 	mutex_unlock(&fs_devices->device_list_mutex);
6243 
6244 	if (!dev) {
6245 		printk(KERN_WARNING
6246 		       "btrfs: get dev_stats failed, device not found\n");
6247 		return -ENODEV;
6248 	} else if (!dev->dev_stats_valid) {
6249 		printk(KERN_WARNING
6250 		       "btrfs: get dev_stats failed, not yet valid\n");
6251 		return -ENODEV;
6252 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6253 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6254 			if (stats->nr_items > i)
6255 				stats->values[i] =
6256 					btrfs_dev_stat_read_and_reset(dev, i);
6257 			else
6258 				btrfs_dev_stat_reset(dev, i);
6259 		}
6260 	} else {
6261 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6262 			if (stats->nr_items > i)
6263 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6264 	}
6265 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6266 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6267 	return 0;
6268 }
6269 
6270 int btrfs_scratch_superblock(struct btrfs_device *device)
6271 {
6272 	struct buffer_head *bh;
6273 	struct btrfs_super_block *disk_super;
6274 
6275 	bh = btrfs_read_dev_super(device->bdev);
6276 	if (!bh)
6277 		return -EINVAL;
6278 	disk_super = (struct btrfs_super_block *)bh->b_data;
6279 
6280 	memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6281 	set_buffer_dirty(bh);
6282 	sync_dirty_buffer(bh);
6283 	brelse(bh);
6284 
6285 	return 0;
6286 }
6287