xref: /openbmc/linux/fs/btrfs/volumes.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36 
37 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
38 	[BTRFS_RAID_RAID10] = {
39 		.sub_stripes	= 2,
40 		.dev_stripes	= 1,
41 		.devs_max	= 0,	/* 0 == as many as possible */
42 		.devs_min	= 2,
43 		.tolerated_failures = 1,
44 		.devs_increment	= 2,
45 		.ncopies	= 2,
46 		.nparity        = 0,
47 		.raid_name	= "raid10",
48 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
49 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
50 	},
51 	[BTRFS_RAID_RAID1] = {
52 		.sub_stripes	= 1,
53 		.dev_stripes	= 1,
54 		.devs_max	= 2,
55 		.devs_min	= 2,
56 		.tolerated_failures = 1,
57 		.devs_increment	= 2,
58 		.ncopies	= 2,
59 		.nparity        = 0,
60 		.raid_name	= "raid1",
61 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
62 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
63 	},
64 	[BTRFS_RAID_RAID1C3] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 1,
67 		.devs_max	= 3,
68 		.devs_min	= 3,
69 		.tolerated_failures = 2,
70 		.devs_increment	= 3,
71 		.ncopies	= 3,
72 		.nparity        = 0,
73 		.raid_name	= "raid1c3",
74 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
75 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
76 	},
77 	[BTRFS_RAID_RAID1C4] = {
78 		.sub_stripes	= 1,
79 		.dev_stripes	= 1,
80 		.devs_max	= 4,
81 		.devs_min	= 4,
82 		.tolerated_failures = 3,
83 		.devs_increment	= 4,
84 		.ncopies	= 4,
85 		.nparity        = 0,
86 		.raid_name	= "raid1c4",
87 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
88 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
89 	},
90 	[BTRFS_RAID_DUP] = {
91 		.sub_stripes	= 1,
92 		.dev_stripes	= 2,
93 		.devs_max	= 1,
94 		.devs_min	= 1,
95 		.tolerated_failures = 0,
96 		.devs_increment	= 1,
97 		.ncopies	= 2,
98 		.nparity        = 0,
99 		.raid_name	= "dup",
100 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
101 		.mindev_error	= 0,
102 	},
103 	[BTRFS_RAID_RAID0] = {
104 		.sub_stripes	= 1,
105 		.dev_stripes	= 1,
106 		.devs_max	= 0,
107 		.devs_min	= 1,
108 		.tolerated_failures = 0,
109 		.devs_increment	= 1,
110 		.ncopies	= 1,
111 		.nparity        = 0,
112 		.raid_name	= "raid0",
113 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
114 		.mindev_error	= 0,
115 	},
116 	[BTRFS_RAID_SINGLE] = {
117 		.sub_stripes	= 1,
118 		.dev_stripes	= 1,
119 		.devs_max	= 1,
120 		.devs_min	= 1,
121 		.tolerated_failures = 0,
122 		.devs_increment	= 1,
123 		.ncopies	= 1,
124 		.nparity        = 0,
125 		.raid_name	= "single",
126 		.bg_flag	= 0,
127 		.mindev_error	= 0,
128 	},
129 	[BTRFS_RAID_RAID5] = {
130 		.sub_stripes	= 1,
131 		.dev_stripes	= 1,
132 		.devs_max	= 0,
133 		.devs_min	= 2,
134 		.tolerated_failures = 1,
135 		.devs_increment	= 1,
136 		.ncopies	= 1,
137 		.nparity        = 1,
138 		.raid_name	= "raid5",
139 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
140 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
141 	},
142 	[BTRFS_RAID_RAID6] = {
143 		.sub_stripes	= 1,
144 		.dev_stripes	= 1,
145 		.devs_max	= 0,
146 		.devs_min	= 3,
147 		.tolerated_failures = 2,
148 		.devs_increment	= 1,
149 		.ncopies	= 1,
150 		.nparity        = 2,
151 		.raid_name	= "raid6",
152 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
153 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
154 	},
155 };
156 
157 /*
158  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
159  * can be used as index to access btrfs_raid_array[].
160  */
161 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
162 {
163 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
164 		return BTRFS_RAID_RAID10;
165 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
166 		return BTRFS_RAID_RAID1;
167 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
168 		return BTRFS_RAID_RAID1C3;
169 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
170 		return BTRFS_RAID_RAID1C4;
171 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
172 		return BTRFS_RAID_DUP;
173 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
174 		return BTRFS_RAID_RAID0;
175 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
176 		return BTRFS_RAID_RAID5;
177 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
178 		return BTRFS_RAID_RAID6;
179 
180 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
181 }
182 
183 const char *btrfs_bg_type_to_raid_name(u64 flags)
184 {
185 	const int index = btrfs_bg_flags_to_raid_index(flags);
186 
187 	if (index >= BTRFS_NR_RAID_TYPES)
188 		return NULL;
189 
190 	return btrfs_raid_array[index].raid_name;
191 }
192 
193 /*
194  * Fill @buf with textual description of @bg_flags, no more than @size_buf
195  * bytes including terminating null byte.
196  */
197 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
198 {
199 	int i;
200 	int ret;
201 	char *bp = buf;
202 	u64 flags = bg_flags;
203 	u32 size_bp = size_buf;
204 
205 	if (!flags) {
206 		strcpy(bp, "NONE");
207 		return;
208 	}
209 
210 #define DESCRIBE_FLAG(flag, desc)						\
211 	do {								\
212 		if (flags & (flag)) {					\
213 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
214 			if (ret < 0 || ret >= size_bp)			\
215 				goto out_overflow;			\
216 			size_bp -= ret;					\
217 			bp += ret;					\
218 			flags &= ~(flag);				\
219 		}							\
220 	} while (0)
221 
222 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
224 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
225 
226 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
227 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
228 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
229 			      btrfs_raid_array[i].raid_name);
230 #undef DESCRIBE_FLAG
231 
232 	if (flags) {
233 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
234 		size_bp -= ret;
235 	}
236 
237 	if (size_bp < size_buf)
238 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
239 
240 	/*
241 	 * The text is trimmed, it's up to the caller to provide sufficiently
242 	 * large buffer
243 	 */
244 out_overflow:;
245 }
246 
247 static int init_first_rw_device(struct btrfs_trans_handle *trans);
248 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
249 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
252 			     enum btrfs_map_op op,
253 			     u64 logical, u64 *length,
254 			     struct btrfs_io_context **bioc_ret,
255 			     int mirror_num, int need_raid_map);
256 
257 /*
258  * Device locking
259  * ==============
260  *
261  * There are several mutexes that protect manipulation of devices and low-level
262  * structures like chunks but not block groups, extents or files
263  *
264  * uuid_mutex (global lock)
265  * ------------------------
266  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
267  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
268  * device) or requested by the device= mount option
269  *
270  * the mutex can be very coarse and can cover long-running operations
271  *
272  * protects: updates to fs_devices counters like missing devices, rw devices,
273  * seeding, structure cloning, opening/closing devices at mount/umount time
274  *
275  * global::fs_devs - add, remove, updates to the global list
276  *
277  * does not protect: manipulation of the fs_devices::devices list in general
278  * but in mount context it could be used to exclude list modifications by eg.
279  * scan ioctl
280  *
281  * btrfs_device::name - renames (write side), read is RCU
282  *
283  * fs_devices::device_list_mutex (per-fs, with RCU)
284  * ------------------------------------------------
285  * protects updates to fs_devices::devices, ie. adding and deleting
286  *
287  * simple list traversal with read-only actions can be done with RCU protection
288  *
289  * may be used to exclude some operations from running concurrently without any
290  * modifications to the list (see write_all_supers)
291  *
292  * Is not required at mount and close times, because our device list is
293  * protected by the uuid_mutex at that point.
294  *
295  * balance_mutex
296  * -------------
297  * protects balance structures (status, state) and context accessed from
298  * several places (internally, ioctl)
299  *
300  * chunk_mutex
301  * -----------
302  * protects chunks, adding or removing during allocation, trim or when a new
303  * device is added/removed. Additionally it also protects post_commit_list of
304  * individual devices, since they can be added to the transaction's
305  * post_commit_list only with chunk_mutex held.
306  *
307  * cleaner_mutex
308  * -------------
309  * a big lock that is held by the cleaner thread and prevents running subvolume
310  * cleaning together with relocation or delayed iputs
311  *
312  *
313  * Lock nesting
314  * ============
315  *
316  * uuid_mutex
317  *   device_list_mutex
318  *     chunk_mutex
319  *   balance_mutex
320  *
321  *
322  * Exclusive operations
323  * ====================
324  *
325  * Maintains the exclusivity of the following operations that apply to the
326  * whole filesystem and cannot run in parallel.
327  *
328  * - Balance (*)
329  * - Device add
330  * - Device remove
331  * - Device replace (*)
332  * - Resize
333  *
334  * The device operations (as above) can be in one of the following states:
335  *
336  * - Running state
337  * - Paused state
338  * - Completed state
339  *
340  * Only device operations marked with (*) can go into the Paused state for the
341  * following reasons:
342  *
343  * - ioctl (only Balance can be Paused through ioctl)
344  * - filesystem remounted as read-only
345  * - filesystem unmounted and mounted as read-only
346  * - system power-cycle and filesystem mounted as read-only
347  * - filesystem or device errors leading to forced read-only
348  *
349  * The status of exclusive operation is set and cleared atomically.
350  * During the course of Paused state, fs_info::exclusive_operation remains set.
351  * A device operation in Paused or Running state can be canceled or resumed
352  * either by ioctl (Balance only) or when remounted as read-write.
353  * The exclusive status is cleared when the device operation is canceled or
354  * completed.
355  */
356 
357 DEFINE_MUTEX(uuid_mutex);
358 static LIST_HEAD(fs_uuids);
359 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
360 {
361 	return &fs_uuids;
362 }
363 
364 /*
365  * alloc_fs_devices - allocate struct btrfs_fs_devices
366  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
367  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
368  *
369  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
370  * The returned struct is not linked onto any lists and can be destroyed with
371  * kfree() right away.
372  */
373 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
374 						 const u8 *metadata_fsid)
375 {
376 	struct btrfs_fs_devices *fs_devs;
377 
378 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
379 	if (!fs_devs)
380 		return ERR_PTR(-ENOMEM);
381 
382 	mutex_init(&fs_devs->device_list_mutex);
383 
384 	INIT_LIST_HEAD(&fs_devs->devices);
385 	INIT_LIST_HEAD(&fs_devs->alloc_list);
386 	INIT_LIST_HEAD(&fs_devs->fs_list);
387 	INIT_LIST_HEAD(&fs_devs->seed_list);
388 	if (fsid)
389 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
390 
391 	if (metadata_fsid)
392 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
393 	else if (fsid)
394 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395 
396 	return fs_devs;
397 }
398 
399 void btrfs_free_device(struct btrfs_device *device)
400 {
401 	WARN_ON(!list_empty(&device->post_commit_list));
402 	rcu_string_free(device->name);
403 	extent_io_tree_release(&device->alloc_state);
404 	bio_put(device->flush_bio);
405 	btrfs_destroy_dev_zone_info(device);
406 	kfree(device);
407 }
408 
409 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
410 {
411 	struct btrfs_device *device;
412 	WARN_ON(fs_devices->opened);
413 	while (!list_empty(&fs_devices->devices)) {
414 		device = list_entry(fs_devices->devices.next,
415 				    struct btrfs_device, dev_list);
416 		list_del(&device->dev_list);
417 		btrfs_free_device(device);
418 	}
419 	kfree(fs_devices);
420 }
421 
422 void __exit btrfs_cleanup_fs_uuids(void)
423 {
424 	struct btrfs_fs_devices *fs_devices;
425 
426 	while (!list_empty(&fs_uuids)) {
427 		fs_devices = list_entry(fs_uuids.next,
428 					struct btrfs_fs_devices, fs_list);
429 		list_del(&fs_devices->fs_list);
430 		free_fs_devices(fs_devices);
431 	}
432 }
433 
434 static noinline struct btrfs_fs_devices *find_fsid(
435 		const u8 *fsid, const u8 *metadata_fsid)
436 {
437 	struct btrfs_fs_devices *fs_devices;
438 
439 	ASSERT(fsid);
440 
441 	/* Handle non-split brain cases */
442 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
443 		if (metadata_fsid) {
444 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
445 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 				      BTRFS_FSID_SIZE) == 0)
447 				return fs_devices;
448 		} else {
449 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
450 				return fs_devices;
451 		}
452 	}
453 	return NULL;
454 }
455 
456 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
457 				struct btrfs_super_block *disk_super)
458 {
459 
460 	struct btrfs_fs_devices *fs_devices;
461 
462 	/*
463 	 * Handle scanned device having completed its fsid change but
464 	 * belonging to a fs_devices that was created by first scanning
465 	 * a device which didn't have its fsid/metadata_uuid changed
466 	 * at all and the CHANGING_FSID_V2 flag set.
467 	 */
468 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469 		if (fs_devices->fsid_change &&
470 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
471 			   BTRFS_FSID_SIZE) == 0 &&
472 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
473 			   BTRFS_FSID_SIZE) == 0) {
474 			return fs_devices;
475 		}
476 	}
477 	/*
478 	 * Handle scanned device having completed its fsid change but
479 	 * belonging to a fs_devices that was created by a device that
480 	 * has an outdated pair of fsid/metadata_uuid and
481 	 * CHANGING_FSID_V2 flag set.
482 	 */
483 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
484 		if (fs_devices->fsid_change &&
485 		    memcmp(fs_devices->metadata_uuid,
486 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
487 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
488 			   BTRFS_FSID_SIZE) == 0) {
489 			return fs_devices;
490 		}
491 	}
492 
493 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
494 }
495 
496 
497 static int
498 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
499 		      int flush, struct block_device **bdev,
500 		      struct btrfs_super_block **disk_super)
501 {
502 	int ret;
503 
504 	*bdev = blkdev_get_by_path(device_path, flags, holder);
505 
506 	if (IS_ERR(*bdev)) {
507 		ret = PTR_ERR(*bdev);
508 		goto error;
509 	}
510 
511 	if (flush)
512 		sync_blockdev(*bdev);
513 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
514 	if (ret) {
515 		blkdev_put(*bdev, flags);
516 		goto error;
517 	}
518 	invalidate_bdev(*bdev);
519 	*disk_super = btrfs_read_dev_super(*bdev);
520 	if (IS_ERR(*disk_super)) {
521 		ret = PTR_ERR(*disk_super);
522 		blkdev_put(*bdev, flags);
523 		goto error;
524 	}
525 
526 	return 0;
527 
528 error:
529 	*bdev = NULL;
530 	return ret;
531 }
532 
533 static bool device_path_matched(const char *path, struct btrfs_device *device)
534 {
535 	int found;
536 
537 	rcu_read_lock();
538 	found = strcmp(rcu_str_deref(device->name), path);
539 	rcu_read_unlock();
540 
541 	return found == 0;
542 }
543 
544 /*
545  *  Search and remove all stale (devices which are not mounted) devices.
546  *  When both inputs are NULL, it will search and release all stale devices.
547  *  path:	Optional. When provided will it release all unmounted devices
548  *		matching this path only.
549  *  skip_dev:	Optional. Will skip this device when searching for the stale
550  *		devices.
551  *  Return:	0 for success or if @path is NULL.
552  * 		-EBUSY if @path is a mounted device.
553  * 		-ENOENT if @path does not match any device in the list.
554  */
555 static int btrfs_free_stale_devices(const char *path,
556 				     struct btrfs_device *skip_device)
557 {
558 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
559 	struct btrfs_device *device, *tmp_device;
560 	int ret = 0;
561 
562 	lockdep_assert_held(&uuid_mutex);
563 
564 	if (path)
565 		ret = -ENOENT;
566 
567 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
568 
569 		mutex_lock(&fs_devices->device_list_mutex);
570 		list_for_each_entry_safe(device, tmp_device,
571 					 &fs_devices->devices, dev_list) {
572 			if (skip_device && skip_device == device)
573 				continue;
574 			if (path && !device->name)
575 				continue;
576 			if (path && !device_path_matched(path, device))
577 				continue;
578 			if (fs_devices->opened) {
579 				/* for an already deleted device return 0 */
580 				if (path && ret != 0)
581 					ret = -EBUSY;
582 				break;
583 			}
584 
585 			/* delete the stale device */
586 			fs_devices->num_devices--;
587 			list_del(&device->dev_list);
588 			btrfs_free_device(device);
589 
590 			ret = 0;
591 		}
592 		mutex_unlock(&fs_devices->device_list_mutex);
593 
594 		if (fs_devices->num_devices == 0) {
595 			btrfs_sysfs_remove_fsid(fs_devices);
596 			list_del(&fs_devices->fs_list);
597 			free_fs_devices(fs_devices);
598 		}
599 	}
600 
601 	return ret;
602 }
603 
604 /*
605  * This is only used on mount, and we are protected from competing things
606  * messing with our fs_devices by the uuid_mutex, thus we do not need the
607  * fs_devices->device_list_mutex here.
608  */
609 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
610 			struct btrfs_device *device, fmode_t flags,
611 			void *holder)
612 {
613 	struct request_queue *q;
614 	struct block_device *bdev;
615 	struct btrfs_super_block *disk_super;
616 	u64 devid;
617 	int ret;
618 
619 	if (device->bdev)
620 		return -EINVAL;
621 	if (!device->name)
622 		return -EINVAL;
623 
624 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
625 				    &bdev, &disk_super);
626 	if (ret)
627 		return ret;
628 
629 	devid = btrfs_stack_device_id(&disk_super->dev_item);
630 	if (devid != device->devid)
631 		goto error_free_page;
632 
633 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
634 		goto error_free_page;
635 
636 	device->generation = btrfs_super_generation(disk_super);
637 
638 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
639 		if (btrfs_super_incompat_flags(disk_super) &
640 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
641 			pr_err(
642 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
643 			goto error_free_page;
644 		}
645 
646 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
647 		fs_devices->seeding = true;
648 	} else {
649 		if (bdev_read_only(bdev))
650 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
651 		else
652 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 	}
654 
655 	q = bdev_get_queue(bdev);
656 	if (!blk_queue_nonrot(q))
657 		fs_devices->rotating = true;
658 
659 	device->bdev = bdev;
660 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
661 	device->mode = flags;
662 
663 	fs_devices->open_devices++;
664 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
665 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
666 		fs_devices->rw_devices++;
667 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
668 	}
669 	btrfs_release_disk_super(disk_super);
670 
671 	return 0;
672 
673 error_free_page:
674 	btrfs_release_disk_super(disk_super);
675 	blkdev_put(bdev, flags);
676 
677 	return -EINVAL;
678 }
679 
680 /*
681  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
682  * being created with a disk that has already completed its fsid change. Such
683  * disk can belong to an fs which has its FSID changed or to one which doesn't.
684  * Handle both cases here.
685  */
686 static struct btrfs_fs_devices *find_fsid_inprogress(
687 					struct btrfs_super_block *disk_super)
688 {
689 	struct btrfs_fs_devices *fs_devices;
690 
691 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
692 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
693 			   BTRFS_FSID_SIZE) != 0 &&
694 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
695 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
696 			return fs_devices;
697 		}
698 	}
699 
700 	return find_fsid(disk_super->fsid, NULL);
701 }
702 
703 
704 static struct btrfs_fs_devices *find_fsid_changed(
705 					struct btrfs_super_block *disk_super)
706 {
707 	struct btrfs_fs_devices *fs_devices;
708 
709 	/*
710 	 * Handles the case where scanned device is part of an fs that had
711 	 * multiple successful changes of FSID but currently device didn't
712 	 * observe it. Meaning our fsid will be different than theirs. We need
713 	 * to handle two subcases :
714 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
715 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
716 	 *  are equal).
717 	 */
718 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
719 		/* Changed UUIDs */
720 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
721 			   BTRFS_FSID_SIZE) != 0 &&
722 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
723 			   BTRFS_FSID_SIZE) == 0 &&
724 		    memcmp(fs_devices->fsid, disk_super->fsid,
725 			   BTRFS_FSID_SIZE) != 0)
726 			return fs_devices;
727 
728 		/* Unchanged UUIDs */
729 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730 			   BTRFS_FSID_SIZE) == 0 &&
731 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
732 			   BTRFS_FSID_SIZE) == 0)
733 			return fs_devices;
734 	}
735 
736 	return NULL;
737 }
738 
739 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
740 				struct btrfs_super_block *disk_super)
741 {
742 	struct btrfs_fs_devices *fs_devices;
743 
744 	/*
745 	 * Handle the case where the scanned device is part of an fs whose last
746 	 * metadata UUID change reverted it to the original FSID. At the same
747 	 * time * fs_devices was first created by another constitutent device
748 	 * which didn't fully observe the operation. This results in an
749 	 * btrfs_fs_devices created with metadata/fsid different AND
750 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
751 	 * fs_devices equal to the FSID of the disk.
752 	 */
753 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
754 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
755 			   BTRFS_FSID_SIZE) != 0 &&
756 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
757 			   BTRFS_FSID_SIZE) == 0 &&
758 		    fs_devices->fsid_change)
759 			return fs_devices;
760 	}
761 
762 	return NULL;
763 }
764 /*
765  * Add new device to list of registered devices
766  *
767  * Returns:
768  * device pointer which was just added or updated when successful
769  * error pointer when failed
770  */
771 static noinline struct btrfs_device *device_list_add(const char *path,
772 			   struct btrfs_super_block *disk_super,
773 			   bool *new_device_added)
774 {
775 	struct btrfs_device *device;
776 	struct btrfs_fs_devices *fs_devices = NULL;
777 	struct rcu_string *name;
778 	u64 found_transid = btrfs_super_generation(disk_super);
779 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
780 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
781 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
782 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
783 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
784 
785 	if (fsid_change_in_progress) {
786 		if (!has_metadata_uuid)
787 			fs_devices = find_fsid_inprogress(disk_super);
788 		else
789 			fs_devices = find_fsid_changed(disk_super);
790 	} else if (has_metadata_uuid) {
791 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
792 	} else {
793 		fs_devices = find_fsid_reverted_metadata(disk_super);
794 		if (!fs_devices)
795 			fs_devices = find_fsid(disk_super->fsid, NULL);
796 	}
797 
798 
799 	if (!fs_devices) {
800 		if (has_metadata_uuid)
801 			fs_devices = alloc_fs_devices(disk_super->fsid,
802 						      disk_super->metadata_uuid);
803 		else
804 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
805 
806 		if (IS_ERR(fs_devices))
807 			return ERR_CAST(fs_devices);
808 
809 		fs_devices->fsid_change = fsid_change_in_progress;
810 
811 		mutex_lock(&fs_devices->device_list_mutex);
812 		list_add(&fs_devices->fs_list, &fs_uuids);
813 
814 		device = NULL;
815 	} else {
816 		struct btrfs_dev_lookup_args args = {
817 			.devid = devid,
818 			.uuid = disk_super->dev_item.uuid,
819 		};
820 
821 		mutex_lock(&fs_devices->device_list_mutex);
822 		device = btrfs_find_device(fs_devices, &args);
823 
824 		/*
825 		 * If this disk has been pulled into an fs devices created by
826 		 * a device which had the CHANGING_FSID_V2 flag then replace the
827 		 * metadata_uuid/fsid values of the fs_devices.
828 		 */
829 		if (fs_devices->fsid_change &&
830 		    found_transid > fs_devices->latest_generation) {
831 			memcpy(fs_devices->fsid, disk_super->fsid,
832 					BTRFS_FSID_SIZE);
833 
834 			if (has_metadata_uuid)
835 				memcpy(fs_devices->metadata_uuid,
836 				       disk_super->metadata_uuid,
837 				       BTRFS_FSID_SIZE);
838 			else
839 				memcpy(fs_devices->metadata_uuid,
840 				       disk_super->fsid, BTRFS_FSID_SIZE);
841 
842 			fs_devices->fsid_change = false;
843 		}
844 	}
845 
846 	if (!device) {
847 		if (fs_devices->opened) {
848 			mutex_unlock(&fs_devices->device_list_mutex);
849 			return ERR_PTR(-EBUSY);
850 		}
851 
852 		device = btrfs_alloc_device(NULL, &devid,
853 					    disk_super->dev_item.uuid);
854 		if (IS_ERR(device)) {
855 			mutex_unlock(&fs_devices->device_list_mutex);
856 			/* we can safely leave the fs_devices entry around */
857 			return device;
858 		}
859 
860 		name = rcu_string_strdup(path, GFP_NOFS);
861 		if (!name) {
862 			btrfs_free_device(device);
863 			mutex_unlock(&fs_devices->device_list_mutex);
864 			return ERR_PTR(-ENOMEM);
865 		}
866 		rcu_assign_pointer(device->name, name);
867 
868 		list_add_rcu(&device->dev_list, &fs_devices->devices);
869 		fs_devices->num_devices++;
870 
871 		device->fs_devices = fs_devices;
872 		*new_device_added = true;
873 
874 		if (disk_super->label[0])
875 			pr_info(
876 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
877 				disk_super->label, devid, found_transid, path,
878 				current->comm, task_pid_nr(current));
879 		else
880 			pr_info(
881 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
882 				disk_super->fsid, devid, found_transid, path,
883 				current->comm, task_pid_nr(current));
884 
885 	} else if (!device->name || strcmp(device->name->str, path)) {
886 		/*
887 		 * When FS is already mounted.
888 		 * 1. If you are here and if the device->name is NULL that
889 		 *    means this device was missing at time of FS mount.
890 		 * 2. If you are here and if the device->name is different
891 		 *    from 'path' that means either
892 		 *      a. The same device disappeared and reappeared with
893 		 *         different name. or
894 		 *      b. The missing-disk-which-was-replaced, has
895 		 *         reappeared now.
896 		 *
897 		 * We must allow 1 and 2a above. But 2b would be a spurious
898 		 * and unintentional.
899 		 *
900 		 * Further in case of 1 and 2a above, the disk at 'path'
901 		 * would have missed some transaction when it was away and
902 		 * in case of 2a the stale bdev has to be updated as well.
903 		 * 2b must not be allowed at all time.
904 		 */
905 
906 		/*
907 		 * For now, we do allow update to btrfs_fs_device through the
908 		 * btrfs dev scan cli after FS has been mounted.  We're still
909 		 * tracking a problem where systems fail mount by subvolume id
910 		 * when we reject replacement on a mounted FS.
911 		 */
912 		if (!fs_devices->opened && found_transid < device->generation) {
913 			/*
914 			 * That is if the FS is _not_ mounted and if you
915 			 * are here, that means there is more than one
916 			 * disk with same uuid and devid.We keep the one
917 			 * with larger generation number or the last-in if
918 			 * generation are equal.
919 			 */
920 			mutex_unlock(&fs_devices->device_list_mutex);
921 			return ERR_PTR(-EEXIST);
922 		}
923 
924 		/*
925 		 * We are going to replace the device path for a given devid,
926 		 * make sure it's the same device if the device is mounted
927 		 */
928 		if (device->bdev) {
929 			int error;
930 			dev_t path_dev;
931 
932 			error = lookup_bdev(path, &path_dev);
933 			if (error) {
934 				mutex_unlock(&fs_devices->device_list_mutex);
935 				return ERR_PTR(error);
936 			}
937 
938 			if (device->bdev->bd_dev != path_dev) {
939 				mutex_unlock(&fs_devices->device_list_mutex);
940 				/*
941 				 * device->fs_info may not be reliable here, so
942 				 * pass in a NULL instead. This avoids a
943 				 * possible use-after-free when the fs_info and
944 				 * fs_info->sb are already torn down.
945 				 */
946 				btrfs_warn_in_rcu(NULL,
947 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
948 						  path, devid, found_transid,
949 						  current->comm,
950 						  task_pid_nr(current));
951 				return ERR_PTR(-EEXIST);
952 			}
953 			btrfs_info_in_rcu(device->fs_info,
954 	"devid %llu device path %s changed to %s scanned by %s (%d)",
955 					  devid, rcu_str_deref(device->name),
956 					  path, current->comm,
957 					  task_pid_nr(current));
958 		}
959 
960 		name = rcu_string_strdup(path, GFP_NOFS);
961 		if (!name) {
962 			mutex_unlock(&fs_devices->device_list_mutex);
963 			return ERR_PTR(-ENOMEM);
964 		}
965 		rcu_string_free(device->name);
966 		rcu_assign_pointer(device->name, name);
967 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
968 			fs_devices->missing_devices--;
969 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
970 		}
971 	}
972 
973 	/*
974 	 * Unmount does not free the btrfs_device struct but would zero
975 	 * generation along with most of the other members. So just update
976 	 * it back. We need it to pick the disk with largest generation
977 	 * (as above).
978 	 */
979 	if (!fs_devices->opened) {
980 		device->generation = found_transid;
981 		fs_devices->latest_generation = max_t(u64, found_transid,
982 						fs_devices->latest_generation);
983 	}
984 
985 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
986 
987 	mutex_unlock(&fs_devices->device_list_mutex);
988 	return device;
989 }
990 
991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
992 {
993 	struct btrfs_fs_devices *fs_devices;
994 	struct btrfs_device *device;
995 	struct btrfs_device *orig_dev;
996 	int ret = 0;
997 
998 	lockdep_assert_held(&uuid_mutex);
999 
1000 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1001 	if (IS_ERR(fs_devices))
1002 		return fs_devices;
1003 
1004 	fs_devices->total_devices = orig->total_devices;
1005 
1006 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1007 		struct rcu_string *name;
1008 
1009 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1010 					    orig_dev->uuid);
1011 		if (IS_ERR(device)) {
1012 			ret = PTR_ERR(device);
1013 			goto error;
1014 		}
1015 
1016 		/*
1017 		 * This is ok to do without rcu read locked because we hold the
1018 		 * uuid mutex so nothing we touch in here is going to disappear.
1019 		 */
1020 		if (orig_dev->name) {
1021 			name = rcu_string_strdup(orig_dev->name->str,
1022 					GFP_KERNEL);
1023 			if (!name) {
1024 				btrfs_free_device(device);
1025 				ret = -ENOMEM;
1026 				goto error;
1027 			}
1028 			rcu_assign_pointer(device->name, name);
1029 		}
1030 
1031 		list_add(&device->dev_list, &fs_devices->devices);
1032 		device->fs_devices = fs_devices;
1033 		fs_devices->num_devices++;
1034 	}
1035 	return fs_devices;
1036 error:
1037 	free_fs_devices(fs_devices);
1038 	return ERR_PTR(ret);
1039 }
1040 
1041 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1042 				      struct btrfs_device **latest_dev)
1043 {
1044 	struct btrfs_device *device, *next;
1045 
1046 	/* This is the initialized path, it is safe to release the devices. */
1047 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1048 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1049 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1050 				      &device->dev_state) &&
1051 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1052 				      &device->dev_state) &&
1053 			    (!*latest_dev ||
1054 			     device->generation > (*latest_dev)->generation)) {
1055 				*latest_dev = device;
1056 			}
1057 			continue;
1058 		}
1059 
1060 		/*
1061 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1062 		 * in btrfs_init_dev_replace() so just continue.
1063 		 */
1064 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1065 			continue;
1066 
1067 		if (device->bdev) {
1068 			blkdev_put(device->bdev, device->mode);
1069 			device->bdev = NULL;
1070 			fs_devices->open_devices--;
1071 		}
1072 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1073 			list_del_init(&device->dev_alloc_list);
1074 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1075 			fs_devices->rw_devices--;
1076 		}
1077 		list_del_init(&device->dev_list);
1078 		fs_devices->num_devices--;
1079 		btrfs_free_device(device);
1080 	}
1081 
1082 }
1083 
1084 /*
1085  * After we have read the system tree and know devids belonging to this
1086  * filesystem, remove the device which does not belong there.
1087  */
1088 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1089 {
1090 	struct btrfs_device *latest_dev = NULL;
1091 	struct btrfs_fs_devices *seed_dev;
1092 
1093 	mutex_lock(&uuid_mutex);
1094 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1095 
1096 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1097 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1098 
1099 	fs_devices->latest_dev = latest_dev;
1100 
1101 	mutex_unlock(&uuid_mutex);
1102 }
1103 
1104 static void btrfs_close_bdev(struct btrfs_device *device)
1105 {
1106 	if (!device->bdev)
1107 		return;
1108 
1109 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1110 		sync_blockdev(device->bdev);
1111 		invalidate_bdev(device->bdev);
1112 	}
1113 
1114 	blkdev_put(device->bdev, device->mode);
1115 }
1116 
1117 static void btrfs_close_one_device(struct btrfs_device *device)
1118 {
1119 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1120 
1121 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1122 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1123 		list_del_init(&device->dev_alloc_list);
1124 		fs_devices->rw_devices--;
1125 	}
1126 
1127 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1128 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1129 
1130 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1131 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1132 		fs_devices->missing_devices--;
1133 	}
1134 
1135 	btrfs_close_bdev(device);
1136 	if (device->bdev) {
1137 		fs_devices->open_devices--;
1138 		device->bdev = NULL;
1139 	}
1140 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1141 	btrfs_destroy_dev_zone_info(device);
1142 
1143 	device->fs_info = NULL;
1144 	atomic_set(&device->dev_stats_ccnt, 0);
1145 	extent_io_tree_release(&device->alloc_state);
1146 
1147 	/*
1148 	 * Reset the flush error record. We might have a transient flush error
1149 	 * in this mount, and if so we aborted the current transaction and set
1150 	 * the fs to an error state, guaranteeing no super blocks can be further
1151 	 * committed. However that error might be transient and if we unmount the
1152 	 * filesystem and mount it again, we should allow the mount to succeed
1153 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1154 	 * filesystem again we still get flush errors, then we will again abort
1155 	 * any transaction and set the error state, guaranteeing no commits of
1156 	 * unsafe super blocks.
1157 	 */
1158 	device->last_flush_error = 0;
1159 
1160 	/* Verify the device is back in a pristine state  */
1161 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1162 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1163 	ASSERT(list_empty(&device->dev_alloc_list));
1164 	ASSERT(list_empty(&device->post_commit_list));
1165 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1166 }
1167 
1168 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1169 {
1170 	struct btrfs_device *device, *tmp;
1171 
1172 	lockdep_assert_held(&uuid_mutex);
1173 
1174 	if (--fs_devices->opened > 0)
1175 		return;
1176 
1177 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1178 		btrfs_close_one_device(device);
1179 
1180 	WARN_ON(fs_devices->open_devices);
1181 	WARN_ON(fs_devices->rw_devices);
1182 	fs_devices->opened = 0;
1183 	fs_devices->seeding = false;
1184 	fs_devices->fs_info = NULL;
1185 }
1186 
1187 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1188 {
1189 	LIST_HEAD(list);
1190 	struct btrfs_fs_devices *tmp;
1191 
1192 	mutex_lock(&uuid_mutex);
1193 	close_fs_devices(fs_devices);
1194 	if (!fs_devices->opened)
1195 		list_splice_init(&fs_devices->seed_list, &list);
1196 
1197 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1198 		close_fs_devices(fs_devices);
1199 		list_del(&fs_devices->seed_list);
1200 		free_fs_devices(fs_devices);
1201 	}
1202 	mutex_unlock(&uuid_mutex);
1203 }
1204 
1205 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1206 				fmode_t flags, void *holder)
1207 {
1208 	struct btrfs_device *device;
1209 	struct btrfs_device *latest_dev = NULL;
1210 	struct btrfs_device *tmp_device;
1211 
1212 	flags |= FMODE_EXCL;
1213 
1214 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1215 				 dev_list) {
1216 		int ret;
1217 
1218 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1219 		if (ret == 0 &&
1220 		    (!latest_dev || device->generation > latest_dev->generation)) {
1221 			latest_dev = device;
1222 		} else if (ret == -ENODATA) {
1223 			fs_devices->num_devices--;
1224 			list_del(&device->dev_list);
1225 			btrfs_free_device(device);
1226 		}
1227 	}
1228 	if (fs_devices->open_devices == 0)
1229 		return -EINVAL;
1230 
1231 	fs_devices->opened = 1;
1232 	fs_devices->latest_dev = latest_dev;
1233 	fs_devices->total_rw_bytes = 0;
1234 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1235 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1236 
1237 	return 0;
1238 }
1239 
1240 static int devid_cmp(void *priv, const struct list_head *a,
1241 		     const struct list_head *b)
1242 {
1243 	const struct btrfs_device *dev1, *dev2;
1244 
1245 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1246 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1247 
1248 	if (dev1->devid < dev2->devid)
1249 		return -1;
1250 	else if (dev1->devid > dev2->devid)
1251 		return 1;
1252 	return 0;
1253 }
1254 
1255 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1256 		       fmode_t flags, void *holder)
1257 {
1258 	int ret;
1259 
1260 	lockdep_assert_held(&uuid_mutex);
1261 	/*
1262 	 * The device_list_mutex cannot be taken here in case opening the
1263 	 * underlying device takes further locks like open_mutex.
1264 	 *
1265 	 * We also don't need the lock here as this is called during mount and
1266 	 * exclusion is provided by uuid_mutex
1267 	 */
1268 
1269 	if (fs_devices->opened) {
1270 		fs_devices->opened++;
1271 		ret = 0;
1272 	} else {
1273 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1274 		ret = open_fs_devices(fs_devices, flags, holder);
1275 	}
1276 
1277 	return ret;
1278 }
1279 
1280 void btrfs_release_disk_super(struct btrfs_super_block *super)
1281 {
1282 	struct page *page = virt_to_page(super);
1283 
1284 	put_page(page);
1285 }
1286 
1287 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1288 						       u64 bytenr, u64 bytenr_orig)
1289 {
1290 	struct btrfs_super_block *disk_super;
1291 	struct page *page;
1292 	void *p;
1293 	pgoff_t index;
1294 
1295 	/* make sure our super fits in the device */
1296 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1297 		return ERR_PTR(-EINVAL);
1298 
1299 	/* make sure our super fits in the page */
1300 	if (sizeof(*disk_super) > PAGE_SIZE)
1301 		return ERR_PTR(-EINVAL);
1302 
1303 	/* make sure our super doesn't straddle pages on disk */
1304 	index = bytenr >> PAGE_SHIFT;
1305 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1306 		return ERR_PTR(-EINVAL);
1307 
1308 	/* pull in the page with our super */
1309 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1310 
1311 	if (IS_ERR(page))
1312 		return ERR_CAST(page);
1313 
1314 	p = page_address(page);
1315 
1316 	/* align our pointer to the offset of the super block */
1317 	disk_super = p + offset_in_page(bytenr);
1318 
1319 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1320 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1321 		btrfs_release_disk_super(p);
1322 		return ERR_PTR(-EINVAL);
1323 	}
1324 
1325 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1326 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1327 
1328 	return disk_super;
1329 }
1330 
1331 int btrfs_forget_devices(const char *path)
1332 {
1333 	int ret;
1334 
1335 	mutex_lock(&uuid_mutex);
1336 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1337 	mutex_unlock(&uuid_mutex);
1338 
1339 	return ret;
1340 }
1341 
1342 /*
1343  * Look for a btrfs signature on a device. This may be called out of the mount path
1344  * and we are not allowed to call set_blocksize during the scan. The superblock
1345  * is read via pagecache
1346  */
1347 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1348 					   void *holder)
1349 {
1350 	struct btrfs_super_block *disk_super;
1351 	bool new_device_added = false;
1352 	struct btrfs_device *device = NULL;
1353 	struct block_device *bdev;
1354 	u64 bytenr, bytenr_orig;
1355 	int ret;
1356 
1357 	lockdep_assert_held(&uuid_mutex);
1358 
1359 	/*
1360 	 * we would like to check all the supers, but that would make
1361 	 * a btrfs mount succeed after a mkfs from a different FS.
1362 	 * So, we need to add a special mount option to scan for
1363 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1364 	 */
1365 	flags |= FMODE_EXCL;
1366 
1367 	bdev = blkdev_get_by_path(path, flags, holder);
1368 	if (IS_ERR(bdev))
1369 		return ERR_CAST(bdev);
1370 
1371 	bytenr_orig = btrfs_sb_offset(0);
1372 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1373 	if (ret)
1374 		return ERR_PTR(ret);
1375 
1376 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1377 	if (IS_ERR(disk_super)) {
1378 		device = ERR_CAST(disk_super);
1379 		goto error_bdev_put;
1380 	}
1381 
1382 	device = device_list_add(path, disk_super, &new_device_added);
1383 	if (!IS_ERR(device)) {
1384 		if (new_device_added)
1385 			btrfs_free_stale_devices(path, device);
1386 	}
1387 
1388 	btrfs_release_disk_super(disk_super);
1389 
1390 error_bdev_put:
1391 	blkdev_put(bdev, flags);
1392 
1393 	return device;
1394 }
1395 
1396 /*
1397  * Try to find a chunk that intersects [start, start + len] range and when one
1398  * such is found, record the end of it in *start
1399  */
1400 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1401 				    u64 len)
1402 {
1403 	u64 physical_start, physical_end;
1404 
1405 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1406 
1407 	if (!find_first_extent_bit(&device->alloc_state, *start,
1408 				   &physical_start, &physical_end,
1409 				   CHUNK_ALLOCATED, NULL)) {
1410 
1411 		if (in_range(physical_start, *start, len) ||
1412 		    in_range(*start, physical_start,
1413 			     physical_end - physical_start)) {
1414 			*start = physical_end + 1;
1415 			return true;
1416 		}
1417 	}
1418 	return false;
1419 }
1420 
1421 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1422 {
1423 	switch (device->fs_devices->chunk_alloc_policy) {
1424 	case BTRFS_CHUNK_ALLOC_REGULAR:
1425 		/*
1426 		 * We don't want to overwrite the superblock on the drive nor
1427 		 * any area used by the boot loader (grub for example), so we
1428 		 * make sure to start at an offset of at least 1MB.
1429 		 */
1430 		return max_t(u64, start, SZ_1M);
1431 	case BTRFS_CHUNK_ALLOC_ZONED:
1432 		/*
1433 		 * We don't care about the starting region like regular
1434 		 * allocator, because we anyway use/reserve the first two zones
1435 		 * for superblock logging.
1436 		 */
1437 		return ALIGN(start, device->zone_info->zone_size);
1438 	default:
1439 		BUG();
1440 	}
1441 }
1442 
1443 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1444 					u64 *hole_start, u64 *hole_size,
1445 					u64 num_bytes)
1446 {
1447 	u64 zone_size = device->zone_info->zone_size;
1448 	u64 pos;
1449 	int ret;
1450 	bool changed = false;
1451 
1452 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1453 
1454 	while (*hole_size > 0) {
1455 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1456 						   *hole_start + *hole_size,
1457 						   num_bytes);
1458 		if (pos != *hole_start) {
1459 			*hole_size = *hole_start + *hole_size - pos;
1460 			*hole_start = pos;
1461 			changed = true;
1462 			if (*hole_size < num_bytes)
1463 				break;
1464 		}
1465 
1466 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1467 
1468 		/* Range is ensured to be empty */
1469 		if (!ret)
1470 			return changed;
1471 
1472 		/* Given hole range was invalid (outside of device) */
1473 		if (ret == -ERANGE) {
1474 			*hole_start += *hole_size;
1475 			*hole_size = 0;
1476 			return true;
1477 		}
1478 
1479 		*hole_start += zone_size;
1480 		*hole_size -= zone_size;
1481 		changed = true;
1482 	}
1483 
1484 	return changed;
1485 }
1486 
1487 /**
1488  * dev_extent_hole_check - check if specified hole is suitable for allocation
1489  * @device:	the device which we have the hole
1490  * @hole_start: starting position of the hole
1491  * @hole_size:	the size of the hole
1492  * @num_bytes:	the size of the free space that we need
1493  *
1494  * This function may modify @hole_start and @hole_size to reflect the suitable
1495  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496  */
1497 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498 				  u64 *hole_size, u64 num_bytes)
1499 {
1500 	bool changed = false;
1501 	u64 hole_end = *hole_start + *hole_size;
1502 
1503 	for (;;) {
1504 		/*
1505 		 * Check before we set max_hole_start, otherwise we could end up
1506 		 * sending back this offset anyway.
1507 		 */
1508 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1509 			if (hole_end >= *hole_start)
1510 				*hole_size = hole_end - *hole_start;
1511 			else
1512 				*hole_size = 0;
1513 			changed = true;
1514 		}
1515 
1516 		switch (device->fs_devices->chunk_alloc_policy) {
1517 		case BTRFS_CHUNK_ALLOC_REGULAR:
1518 			/* No extra check */
1519 			break;
1520 		case BTRFS_CHUNK_ALLOC_ZONED:
1521 			if (dev_extent_hole_check_zoned(device, hole_start,
1522 							hole_size, num_bytes)) {
1523 				changed = true;
1524 				/*
1525 				 * The changed hole can contain pending extent.
1526 				 * Loop again to check that.
1527 				 */
1528 				continue;
1529 			}
1530 			break;
1531 		default:
1532 			BUG();
1533 		}
1534 
1535 		break;
1536 	}
1537 
1538 	return changed;
1539 }
1540 
1541 /*
1542  * find_free_dev_extent_start - find free space in the specified device
1543  * @device:	  the device which we search the free space in
1544  * @num_bytes:	  the size of the free space that we need
1545  * @search_start: the position from which to begin the search
1546  * @start:	  store the start of the free space.
1547  * @len:	  the size of the free space. that we find, or the size
1548  *		  of the max free space if we don't find suitable free space
1549  *
1550  * this uses a pretty simple search, the expectation is that it is
1551  * called very infrequently and that a given device has a small number
1552  * of extents
1553  *
1554  * @start is used to store the start of the free space if we find. But if we
1555  * don't find suitable free space, it will be used to store the start position
1556  * of the max free space.
1557  *
1558  * @len is used to store the size of the free space that we find.
1559  * But if we don't find suitable free space, it is used to store the size of
1560  * the max free space.
1561  *
1562  * NOTE: This function will search *commit* root of device tree, and does extra
1563  * check to ensure dev extents are not double allocated.
1564  * This makes the function safe to allocate dev extents but may not report
1565  * correct usable device space, as device extent freed in current transaction
1566  * is not reported as available.
1567  */
1568 static int find_free_dev_extent_start(struct btrfs_device *device,
1569 				u64 num_bytes, u64 search_start, u64 *start,
1570 				u64 *len)
1571 {
1572 	struct btrfs_fs_info *fs_info = device->fs_info;
1573 	struct btrfs_root *root = fs_info->dev_root;
1574 	struct btrfs_key key;
1575 	struct btrfs_dev_extent *dev_extent;
1576 	struct btrfs_path *path;
1577 	u64 hole_size;
1578 	u64 max_hole_start;
1579 	u64 max_hole_size;
1580 	u64 extent_end;
1581 	u64 search_end = device->total_bytes;
1582 	int ret;
1583 	int slot;
1584 	struct extent_buffer *l;
1585 
1586 	search_start = dev_extent_search_start(device, search_start);
1587 
1588 	WARN_ON(device->zone_info &&
1589 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590 
1591 	path = btrfs_alloc_path();
1592 	if (!path)
1593 		return -ENOMEM;
1594 
1595 	max_hole_start = search_start;
1596 	max_hole_size = 0;
1597 
1598 again:
1599 	if (search_start >= search_end ||
1600 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601 		ret = -ENOSPC;
1602 		goto out;
1603 	}
1604 
1605 	path->reada = READA_FORWARD;
1606 	path->search_commit_root = 1;
1607 	path->skip_locking = 1;
1608 
1609 	key.objectid = device->devid;
1610 	key.offset = search_start;
1611 	key.type = BTRFS_DEV_EXTENT_KEY;
1612 
1613 	ret = btrfs_search_backwards(root, &key, path);
1614 	if (ret < 0)
1615 		goto out;
1616 
1617 	while (1) {
1618 		l = path->nodes[0];
1619 		slot = path->slots[0];
1620 		if (slot >= btrfs_header_nritems(l)) {
1621 			ret = btrfs_next_leaf(root, path);
1622 			if (ret == 0)
1623 				continue;
1624 			if (ret < 0)
1625 				goto out;
1626 
1627 			break;
1628 		}
1629 		btrfs_item_key_to_cpu(l, &key, slot);
1630 
1631 		if (key.objectid < device->devid)
1632 			goto next;
1633 
1634 		if (key.objectid > device->devid)
1635 			break;
1636 
1637 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1638 			goto next;
1639 
1640 		if (key.offset > search_start) {
1641 			hole_size = key.offset - search_start;
1642 			dev_extent_hole_check(device, &search_start, &hole_size,
1643 					      num_bytes);
1644 
1645 			if (hole_size > max_hole_size) {
1646 				max_hole_start = search_start;
1647 				max_hole_size = hole_size;
1648 			}
1649 
1650 			/*
1651 			 * If this free space is greater than which we need,
1652 			 * it must be the max free space that we have found
1653 			 * until now, so max_hole_start must point to the start
1654 			 * of this free space and the length of this free space
1655 			 * is stored in max_hole_size. Thus, we return
1656 			 * max_hole_start and max_hole_size and go back to the
1657 			 * caller.
1658 			 */
1659 			if (hole_size >= num_bytes) {
1660 				ret = 0;
1661 				goto out;
1662 			}
1663 		}
1664 
1665 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1666 		extent_end = key.offset + btrfs_dev_extent_length(l,
1667 								  dev_extent);
1668 		if (extent_end > search_start)
1669 			search_start = extent_end;
1670 next:
1671 		path->slots[0]++;
1672 		cond_resched();
1673 	}
1674 
1675 	/*
1676 	 * At this point, search_start should be the end of
1677 	 * allocated dev extents, and when shrinking the device,
1678 	 * search_end may be smaller than search_start.
1679 	 */
1680 	if (search_end > search_start) {
1681 		hole_size = search_end - search_start;
1682 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1683 					  num_bytes)) {
1684 			btrfs_release_path(path);
1685 			goto again;
1686 		}
1687 
1688 		if (hole_size > max_hole_size) {
1689 			max_hole_start = search_start;
1690 			max_hole_size = hole_size;
1691 		}
1692 	}
1693 
1694 	/* See above. */
1695 	if (max_hole_size < num_bytes)
1696 		ret = -ENOSPC;
1697 	else
1698 		ret = 0;
1699 
1700 out:
1701 	btrfs_free_path(path);
1702 	*start = max_hole_start;
1703 	if (len)
1704 		*len = max_hole_size;
1705 	return ret;
1706 }
1707 
1708 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1709 			 u64 *start, u64 *len)
1710 {
1711 	/* FIXME use last free of some kind */
1712 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1713 }
1714 
1715 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1716 			  struct btrfs_device *device,
1717 			  u64 start, u64 *dev_extent_len)
1718 {
1719 	struct btrfs_fs_info *fs_info = device->fs_info;
1720 	struct btrfs_root *root = fs_info->dev_root;
1721 	int ret;
1722 	struct btrfs_path *path;
1723 	struct btrfs_key key;
1724 	struct btrfs_key found_key;
1725 	struct extent_buffer *leaf = NULL;
1726 	struct btrfs_dev_extent *extent = NULL;
1727 
1728 	path = btrfs_alloc_path();
1729 	if (!path)
1730 		return -ENOMEM;
1731 
1732 	key.objectid = device->devid;
1733 	key.offset = start;
1734 	key.type = BTRFS_DEV_EXTENT_KEY;
1735 again:
1736 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1737 	if (ret > 0) {
1738 		ret = btrfs_previous_item(root, path, key.objectid,
1739 					  BTRFS_DEV_EXTENT_KEY);
1740 		if (ret)
1741 			goto out;
1742 		leaf = path->nodes[0];
1743 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1744 		extent = btrfs_item_ptr(leaf, path->slots[0],
1745 					struct btrfs_dev_extent);
1746 		BUG_ON(found_key.offset > start || found_key.offset +
1747 		       btrfs_dev_extent_length(leaf, extent) < start);
1748 		key = found_key;
1749 		btrfs_release_path(path);
1750 		goto again;
1751 	} else if (ret == 0) {
1752 		leaf = path->nodes[0];
1753 		extent = btrfs_item_ptr(leaf, path->slots[0],
1754 					struct btrfs_dev_extent);
1755 	} else {
1756 		goto out;
1757 	}
1758 
1759 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1760 
1761 	ret = btrfs_del_item(trans, root, path);
1762 	if (ret == 0)
1763 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1764 out:
1765 	btrfs_free_path(path);
1766 	return ret;
1767 }
1768 
1769 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1770 {
1771 	struct extent_map_tree *em_tree;
1772 	struct extent_map *em;
1773 	struct rb_node *n;
1774 	u64 ret = 0;
1775 
1776 	em_tree = &fs_info->mapping_tree;
1777 	read_lock(&em_tree->lock);
1778 	n = rb_last(&em_tree->map.rb_root);
1779 	if (n) {
1780 		em = rb_entry(n, struct extent_map, rb_node);
1781 		ret = em->start + em->len;
1782 	}
1783 	read_unlock(&em_tree->lock);
1784 
1785 	return ret;
1786 }
1787 
1788 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1789 				    u64 *devid_ret)
1790 {
1791 	int ret;
1792 	struct btrfs_key key;
1793 	struct btrfs_key found_key;
1794 	struct btrfs_path *path;
1795 
1796 	path = btrfs_alloc_path();
1797 	if (!path)
1798 		return -ENOMEM;
1799 
1800 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1801 	key.type = BTRFS_DEV_ITEM_KEY;
1802 	key.offset = (u64)-1;
1803 
1804 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1805 	if (ret < 0)
1806 		goto error;
1807 
1808 	if (ret == 0) {
1809 		/* Corruption */
1810 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1811 		ret = -EUCLEAN;
1812 		goto error;
1813 	}
1814 
1815 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1816 				  BTRFS_DEV_ITEMS_OBJECTID,
1817 				  BTRFS_DEV_ITEM_KEY);
1818 	if (ret) {
1819 		*devid_ret = 1;
1820 	} else {
1821 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1822 				      path->slots[0]);
1823 		*devid_ret = found_key.offset + 1;
1824 	}
1825 	ret = 0;
1826 error:
1827 	btrfs_free_path(path);
1828 	return ret;
1829 }
1830 
1831 /*
1832  * the device information is stored in the chunk root
1833  * the btrfs_device struct should be fully filled in
1834  */
1835 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1836 			    struct btrfs_device *device)
1837 {
1838 	int ret;
1839 	struct btrfs_path *path;
1840 	struct btrfs_dev_item *dev_item;
1841 	struct extent_buffer *leaf;
1842 	struct btrfs_key key;
1843 	unsigned long ptr;
1844 
1845 	path = btrfs_alloc_path();
1846 	if (!path)
1847 		return -ENOMEM;
1848 
1849 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1850 	key.type = BTRFS_DEV_ITEM_KEY;
1851 	key.offset = device->devid;
1852 
1853 	btrfs_reserve_chunk_metadata(trans, true);
1854 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1855 				      &key, sizeof(*dev_item));
1856 	btrfs_trans_release_chunk_metadata(trans);
1857 	if (ret)
1858 		goto out;
1859 
1860 	leaf = path->nodes[0];
1861 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1862 
1863 	btrfs_set_device_id(leaf, dev_item, device->devid);
1864 	btrfs_set_device_generation(leaf, dev_item, 0);
1865 	btrfs_set_device_type(leaf, dev_item, device->type);
1866 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1867 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1868 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1869 	btrfs_set_device_total_bytes(leaf, dev_item,
1870 				     btrfs_device_get_disk_total_bytes(device));
1871 	btrfs_set_device_bytes_used(leaf, dev_item,
1872 				    btrfs_device_get_bytes_used(device));
1873 	btrfs_set_device_group(leaf, dev_item, 0);
1874 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1875 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1876 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1877 
1878 	ptr = btrfs_device_uuid(dev_item);
1879 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1880 	ptr = btrfs_device_fsid(dev_item);
1881 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1882 			    ptr, BTRFS_FSID_SIZE);
1883 	btrfs_mark_buffer_dirty(leaf);
1884 
1885 	ret = 0;
1886 out:
1887 	btrfs_free_path(path);
1888 	return ret;
1889 }
1890 
1891 /*
1892  * Function to update ctime/mtime for a given device path.
1893  * Mainly used for ctime/mtime based probe like libblkid.
1894  *
1895  * We don't care about errors here, this is just to be kind to userspace.
1896  */
1897 static void update_dev_time(const char *device_path)
1898 {
1899 	struct path path;
1900 	struct timespec64 now;
1901 	int ret;
1902 
1903 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1904 	if (ret)
1905 		return;
1906 
1907 	now = current_time(d_inode(path.dentry));
1908 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1909 	path_put(&path);
1910 }
1911 
1912 static int btrfs_rm_dev_item(struct btrfs_device *device)
1913 {
1914 	struct btrfs_root *root = device->fs_info->chunk_root;
1915 	int ret;
1916 	struct btrfs_path *path;
1917 	struct btrfs_key key;
1918 	struct btrfs_trans_handle *trans;
1919 
1920 	path = btrfs_alloc_path();
1921 	if (!path)
1922 		return -ENOMEM;
1923 
1924 	trans = btrfs_start_transaction(root, 0);
1925 	if (IS_ERR(trans)) {
1926 		btrfs_free_path(path);
1927 		return PTR_ERR(trans);
1928 	}
1929 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1930 	key.type = BTRFS_DEV_ITEM_KEY;
1931 	key.offset = device->devid;
1932 
1933 	btrfs_reserve_chunk_metadata(trans, false);
1934 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1935 	btrfs_trans_release_chunk_metadata(trans);
1936 	if (ret) {
1937 		if (ret > 0)
1938 			ret = -ENOENT;
1939 		btrfs_abort_transaction(trans, ret);
1940 		btrfs_end_transaction(trans);
1941 		goto out;
1942 	}
1943 
1944 	ret = btrfs_del_item(trans, root, path);
1945 	if (ret) {
1946 		btrfs_abort_transaction(trans, ret);
1947 		btrfs_end_transaction(trans);
1948 	}
1949 
1950 out:
1951 	btrfs_free_path(path);
1952 	if (!ret)
1953 		ret = btrfs_commit_transaction(trans);
1954 	return ret;
1955 }
1956 
1957 /*
1958  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1959  * filesystem. It's up to the caller to adjust that number regarding eg. device
1960  * replace.
1961  */
1962 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1963 		u64 num_devices)
1964 {
1965 	u64 all_avail;
1966 	unsigned seq;
1967 	int i;
1968 
1969 	do {
1970 		seq = read_seqbegin(&fs_info->profiles_lock);
1971 
1972 		all_avail = fs_info->avail_data_alloc_bits |
1973 			    fs_info->avail_system_alloc_bits |
1974 			    fs_info->avail_metadata_alloc_bits;
1975 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1976 
1977 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1978 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1979 			continue;
1980 
1981 		if (num_devices < btrfs_raid_array[i].devs_min)
1982 			return btrfs_raid_array[i].mindev_error;
1983 	}
1984 
1985 	return 0;
1986 }
1987 
1988 static struct btrfs_device * btrfs_find_next_active_device(
1989 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1990 {
1991 	struct btrfs_device *next_device;
1992 
1993 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1994 		if (next_device != device &&
1995 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1996 		    && next_device->bdev)
1997 			return next_device;
1998 	}
1999 
2000 	return NULL;
2001 }
2002 
2003 /*
2004  * Helper function to check if the given device is part of s_bdev / latest_dev
2005  * and replace it with the provided or the next active device, in the context
2006  * where this function called, there should be always be another device (or
2007  * this_dev) which is active.
2008  */
2009 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2010 					    struct btrfs_device *next_device)
2011 {
2012 	struct btrfs_fs_info *fs_info = device->fs_info;
2013 
2014 	if (!next_device)
2015 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2016 							    device);
2017 	ASSERT(next_device);
2018 
2019 	if (fs_info->sb->s_bdev &&
2020 			(fs_info->sb->s_bdev == device->bdev))
2021 		fs_info->sb->s_bdev = next_device->bdev;
2022 
2023 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2024 		fs_info->fs_devices->latest_dev = next_device;
2025 }
2026 
2027 /*
2028  * Return btrfs_fs_devices::num_devices excluding the device that's being
2029  * currently replaced.
2030  */
2031 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2032 {
2033 	u64 num_devices = fs_info->fs_devices->num_devices;
2034 
2035 	down_read(&fs_info->dev_replace.rwsem);
2036 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2037 		ASSERT(num_devices > 1);
2038 		num_devices--;
2039 	}
2040 	up_read(&fs_info->dev_replace.rwsem);
2041 
2042 	return num_devices;
2043 }
2044 
2045 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2046 			       struct block_device *bdev,
2047 			       const char *device_path)
2048 {
2049 	struct btrfs_super_block *disk_super;
2050 	int copy_num;
2051 
2052 	if (!bdev)
2053 		return;
2054 
2055 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2056 		struct page *page;
2057 		int ret;
2058 
2059 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2060 		if (IS_ERR(disk_super))
2061 			continue;
2062 
2063 		if (bdev_is_zoned(bdev)) {
2064 			btrfs_reset_sb_log_zones(bdev, copy_num);
2065 			continue;
2066 		}
2067 
2068 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2069 
2070 		page = virt_to_page(disk_super);
2071 		set_page_dirty(page);
2072 		lock_page(page);
2073 		/* write_on_page() unlocks the page */
2074 		ret = write_one_page(page);
2075 		if (ret)
2076 			btrfs_warn(fs_info,
2077 				"error clearing superblock number %d (%d)",
2078 				copy_num, ret);
2079 		btrfs_release_disk_super(disk_super);
2080 
2081 	}
2082 
2083 	/* Notify udev that device has changed */
2084 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2085 
2086 	/* Update ctime/mtime for device path for libblkid */
2087 	update_dev_time(device_path);
2088 }
2089 
2090 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2091 		    struct btrfs_dev_lookup_args *args,
2092 		    struct block_device **bdev, fmode_t *mode)
2093 {
2094 	struct btrfs_device *device;
2095 	struct btrfs_fs_devices *cur_devices;
2096 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2097 	u64 num_devices;
2098 	int ret = 0;
2099 
2100 	/*
2101 	 * The device list in fs_devices is accessed without locks (neither
2102 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2103 	 * filesystem and another device rm cannot run.
2104 	 */
2105 	num_devices = btrfs_num_devices(fs_info);
2106 
2107 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2108 	if (ret)
2109 		goto out;
2110 
2111 	device = btrfs_find_device(fs_info->fs_devices, args);
2112 	if (!device) {
2113 		if (args->missing)
2114 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2115 		else
2116 			ret = -ENOENT;
2117 		goto out;
2118 	}
2119 
2120 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2121 		btrfs_warn_in_rcu(fs_info,
2122 		  "cannot remove device %s (devid %llu) due to active swapfile",
2123 				  rcu_str_deref(device->name), device->devid);
2124 		ret = -ETXTBSY;
2125 		goto out;
2126 	}
2127 
2128 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2129 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2130 		goto out;
2131 	}
2132 
2133 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2134 	    fs_info->fs_devices->rw_devices == 1) {
2135 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2136 		goto out;
2137 	}
2138 
2139 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2140 		mutex_lock(&fs_info->chunk_mutex);
2141 		list_del_init(&device->dev_alloc_list);
2142 		device->fs_devices->rw_devices--;
2143 		mutex_unlock(&fs_info->chunk_mutex);
2144 	}
2145 
2146 	ret = btrfs_shrink_device(device, 0);
2147 	if (!ret)
2148 		btrfs_reada_remove_dev(device);
2149 	if (ret)
2150 		goto error_undo;
2151 
2152 	/*
2153 	 * TODO: the superblock still includes this device in its num_devices
2154 	 * counter although write_all_supers() is not locked out. This
2155 	 * could give a filesystem state which requires a degraded mount.
2156 	 */
2157 	ret = btrfs_rm_dev_item(device);
2158 	if (ret)
2159 		goto error_undo;
2160 
2161 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2162 	btrfs_scrub_cancel_dev(device);
2163 
2164 	/*
2165 	 * the device list mutex makes sure that we don't change
2166 	 * the device list while someone else is writing out all
2167 	 * the device supers. Whoever is writing all supers, should
2168 	 * lock the device list mutex before getting the number of
2169 	 * devices in the super block (super_copy). Conversely,
2170 	 * whoever updates the number of devices in the super block
2171 	 * (super_copy) should hold the device list mutex.
2172 	 */
2173 
2174 	/*
2175 	 * In normal cases the cur_devices == fs_devices. But in case
2176 	 * of deleting a seed device, the cur_devices should point to
2177 	 * its own fs_devices listed under the fs_devices->seed_list.
2178 	 */
2179 	cur_devices = device->fs_devices;
2180 	mutex_lock(&fs_devices->device_list_mutex);
2181 	list_del_rcu(&device->dev_list);
2182 
2183 	cur_devices->num_devices--;
2184 	cur_devices->total_devices--;
2185 	/* Update total_devices of the parent fs_devices if it's seed */
2186 	if (cur_devices != fs_devices)
2187 		fs_devices->total_devices--;
2188 
2189 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2190 		cur_devices->missing_devices--;
2191 
2192 	btrfs_assign_next_active_device(device, NULL);
2193 
2194 	if (device->bdev) {
2195 		cur_devices->open_devices--;
2196 		/* remove sysfs entry */
2197 		btrfs_sysfs_remove_device(device);
2198 	}
2199 
2200 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2201 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2202 	mutex_unlock(&fs_devices->device_list_mutex);
2203 
2204 	/*
2205 	 * At this point, the device is zero sized and detached from the
2206 	 * devices list.  All that's left is to zero out the old supers and
2207 	 * free the device.
2208 	 *
2209 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2210 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2211 	 * block device and it's dependencies.  Instead just flush the device
2212 	 * and let the caller do the final blkdev_put.
2213 	 */
2214 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2215 		btrfs_scratch_superblocks(fs_info, device->bdev,
2216 					  device->name->str);
2217 		if (device->bdev) {
2218 			sync_blockdev(device->bdev);
2219 			invalidate_bdev(device->bdev);
2220 		}
2221 	}
2222 
2223 	*bdev = device->bdev;
2224 	*mode = device->mode;
2225 	synchronize_rcu();
2226 	btrfs_free_device(device);
2227 
2228 	/*
2229 	 * This can happen if cur_devices is the private seed devices list.  We
2230 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2231 	 * to be held, but in fact we don't need that for the private
2232 	 * seed_devices, we can simply decrement cur_devices->opened and then
2233 	 * remove it from our list and free the fs_devices.
2234 	 */
2235 	if (cur_devices->num_devices == 0) {
2236 		list_del_init(&cur_devices->seed_list);
2237 		ASSERT(cur_devices->opened == 1);
2238 		cur_devices->opened--;
2239 		free_fs_devices(cur_devices);
2240 	}
2241 
2242 out:
2243 	return ret;
2244 
2245 error_undo:
2246 	btrfs_reada_undo_remove_dev(device);
2247 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2248 		mutex_lock(&fs_info->chunk_mutex);
2249 		list_add(&device->dev_alloc_list,
2250 			 &fs_devices->alloc_list);
2251 		device->fs_devices->rw_devices++;
2252 		mutex_unlock(&fs_info->chunk_mutex);
2253 	}
2254 	goto out;
2255 }
2256 
2257 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2258 {
2259 	struct btrfs_fs_devices *fs_devices;
2260 
2261 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2262 
2263 	/*
2264 	 * in case of fs with no seed, srcdev->fs_devices will point
2265 	 * to fs_devices of fs_info. However when the dev being replaced is
2266 	 * a seed dev it will point to the seed's local fs_devices. In short
2267 	 * srcdev will have its correct fs_devices in both the cases.
2268 	 */
2269 	fs_devices = srcdev->fs_devices;
2270 
2271 	list_del_rcu(&srcdev->dev_list);
2272 	list_del(&srcdev->dev_alloc_list);
2273 	fs_devices->num_devices--;
2274 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2275 		fs_devices->missing_devices--;
2276 
2277 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2278 		fs_devices->rw_devices--;
2279 
2280 	if (srcdev->bdev)
2281 		fs_devices->open_devices--;
2282 }
2283 
2284 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2285 {
2286 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2287 
2288 	mutex_lock(&uuid_mutex);
2289 
2290 	btrfs_close_bdev(srcdev);
2291 	synchronize_rcu();
2292 	btrfs_free_device(srcdev);
2293 
2294 	/* if this is no devs we rather delete the fs_devices */
2295 	if (!fs_devices->num_devices) {
2296 		/*
2297 		 * On a mounted FS, num_devices can't be zero unless it's a
2298 		 * seed. In case of a seed device being replaced, the replace
2299 		 * target added to the sprout FS, so there will be no more
2300 		 * device left under the seed FS.
2301 		 */
2302 		ASSERT(fs_devices->seeding);
2303 
2304 		list_del_init(&fs_devices->seed_list);
2305 		close_fs_devices(fs_devices);
2306 		free_fs_devices(fs_devices);
2307 	}
2308 	mutex_unlock(&uuid_mutex);
2309 }
2310 
2311 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2312 {
2313 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2314 
2315 	mutex_lock(&fs_devices->device_list_mutex);
2316 
2317 	btrfs_sysfs_remove_device(tgtdev);
2318 
2319 	if (tgtdev->bdev)
2320 		fs_devices->open_devices--;
2321 
2322 	fs_devices->num_devices--;
2323 
2324 	btrfs_assign_next_active_device(tgtdev, NULL);
2325 
2326 	list_del_rcu(&tgtdev->dev_list);
2327 
2328 	mutex_unlock(&fs_devices->device_list_mutex);
2329 
2330 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2331 				  tgtdev->name->str);
2332 
2333 	btrfs_close_bdev(tgtdev);
2334 	synchronize_rcu();
2335 	btrfs_free_device(tgtdev);
2336 }
2337 
2338 /**
2339  * Populate args from device at path
2340  *
2341  * @fs_info:	the filesystem
2342  * @args:	the args to populate
2343  * @path:	the path to the device
2344  *
2345  * This will read the super block of the device at @path and populate @args with
2346  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2347  * lookup a device to operate on, but need to do it before we take any locks.
2348  * This properly handles the special case of "missing" that a user may pass in,
2349  * and does some basic sanity checks.  The caller must make sure that @path is
2350  * properly NUL terminated before calling in, and must call
2351  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2352  * uuid buffers.
2353  *
2354  * Return: 0 for success, -errno for failure
2355  */
2356 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2357 				 struct btrfs_dev_lookup_args *args,
2358 				 const char *path)
2359 {
2360 	struct btrfs_super_block *disk_super;
2361 	struct block_device *bdev;
2362 	int ret;
2363 
2364 	if (!path || !path[0])
2365 		return -EINVAL;
2366 	if (!strcmp(path, "missing")) {
2367 		args->missing = true;
2368 		return 0;
2369 	}
2370 
2371 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2372 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2373 	if (!args->uuid || !args->fsid) {
2374 		btrfs_put_dev_args_from_path(args);
2375 		return -ENOMEM;
2376 	}
2377 
2378 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2379 				    &bdev, &disk_super);
2380 	if (ret)
2381 		return ret;
2382 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2386 	else
2387 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388 	btrfs_release_disk_super(disk_super);
2389 	blkdev_put(bdev, FMODE_READ);
2390 	return 0;
2391 }
2392 
2393 /*
2394  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396  * that don't need to be freed.
2397  */
2398 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399 {
2400 	kfree(args->uuid);
2401 	kfree(args->fsid);
2402 	args->uuid = NULL;
2403 	args->fsid = NULL;
2404 }
2405 
2406 struct btrfs_device *btrfs_find_device_by_devspec(
2407 		struct btrfs_fs_info *fs_info, u64 devid,
2408 		const char *device_path)
2409 {
2410 	BTRFS_DEV_LOOKUP_ARGS(args);
2411 	struct btrfs_device *device;
2412 	int ret;
2413 
2414 	if (devid) {
2415 		args.devid = devid;
2416 		device = btrfs_find_device(fs_info->fs_devices, &args);
2417 		if (!device)
2418 			return ERR_PTR(-ENOENT);
2419 		return device;
2420 	}
2421 
2422 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423 	if (ret)
2424 		return ERR_PTR(ret);
2425 	device = btrfs_find_device(fs_info->fs_devices, &args);
2426 	btrfs_put_dev_args_from_path(&args);
2427 	if (!device)
2428 		return ERR_PTR(-ENOENT);
2429 	return device;
2430 }
2431 
2432 /*
2433  * does all the dirty work required for changing file system's UUID.
2434  */
2435 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2436 {
2437 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2438 	struct btrfs_fs_devices *old_devices;
2439 	struct btrfs_fs_devices *seed_devices;
2440 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2441 	struct btrfs_device *device;
2442 	u64 super_flags;
2443 
2444 	lockdep_assert_held(&uuid_mutex);
2445 	if (!fs_devices->seeding)
2446 		return -EINVAL;
2447 
2448 	/*
2449 	 * Private copy of the seed devices, anchored at
2450 	 * fs_info->fs_devices->seed_list
2451 	 */
2452 	seed_devices = alloc_fs_devices(NULL, NULL);
2453 	if (IS_ERR(seed_devices))
2454 		return PTR_ERR(seed_devices);
2455 
2456 	/*
2457 	 * It's necessary to retain a copy of the original seed fs_devices in
2458 	 * fs_uuids so that filesystems which have been seeded can successfully
2459 	 * reference the seed device from open_seed_devices. This also supports
2460 	 * multiple fs seed.
2461 	 */
2462 	old_devices = clone_fs_devices(fs_devices);
2463 	if (IS_ERR(old_devices)) {
2464 		kfree(seed_devices);
2465 		return PTR_ERR(old_devices);
2466 	}
2467 
2468 	list_add(&old_devices->fs_list, &fs_uuids);
2469 
2470 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2471 	seed_devices->opened = 1;
2472 	INIT_LIST_HEAD(&seed_devices->devices);
2473 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2474 	mutex_init(&seed_devices->device_list_mutex);
2475 
2476 	mutex_lock(&fs_devices->device_list_mutex);
2477 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2478 			      synchronize_rcu);
2479 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2480 		device->fs_devices = seed_devices;
2481 
2482 	fs_devices->seeding = false;
2483 	fs_devices->num_devices = 0;
2484 	fs_devices->open_devices = 0;
2485 	fs_devices->missing_devices = 0;
2486 	fs_devices->rotating = false;
2487 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2488 
2489 	generate_random_uuid(fs_devices->fsid);
2490 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2491 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2492 	mutex_unlock(&fs_devices->device_list_mutex);
2493 
2494 	super_flags = btrfs_super_flags(disk_super) &
2495 		      ~BTRFS_SUPER_FLAG_SEEDING;
2496 	btrfs_set_super_flags(disk_super, super_flags);
2497 
2498 	return 0;
2499 }
2500 
2501 /*
2502  * Store the expected generation for seed devices in device items.
2503  */
2504 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2505 {
2506 	BTRFS_DEV_LOOKUP_ARGS(args);
2507 	struct btrfs_fs_info *fs_info = trans->fs_info;
2508 	struct btrfs_root *root = fs_info->chunk_root;
2509 	struct btrfs_path *path;
2510 	struct extent_buffer *leaf;
2511 	struct btrfs_dev_item *dev_item;
2512 	struct btrfs_device *device;
2513 	struct btrfs_key key;
2514 	u8 fs_uuid[BTRFS_FSID_SIZE];
2515 	u8 dev_uuid[BTRFS_UUID_SIZE];
2516 	int ret;
2517 
2518 	path = btrfs_alloc_path();
2519 	if (!path)
2520 		return -ENOMEM;
2521 
2522 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2523 	key.offset = 0;
2524 	key.type = BTRFS_DEV_ITEM_KEY;
2525 
2526 	while (1) {
2527 		btrfs_reserve_chunk_metadata(trans, false);
2528 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2529 		btrfs_trans_release_chunk_metadata(trans);
2530 		if (ret < 0)
2531 			goto error;
2532 
2533 		leaf = path->nodes[0];
2534 next_slot:
2535 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2536 			ret = btrfs_next_leaf(root, path);
2537 			if (ret > 0)
2538 				break;
2539 			if (ret < 0)
2540 				goto error;
2541 			leaf = path->nodes[0];
2542 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2543 			btrfs_release_path(path);
2544 			continue;
2545 		}
2546 
2547 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2548 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2549 		    key.type != BTRFS_DEV_ITEM_KEY)
2550 			break;
2551 
2552 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2553 					  struct btrfs_dev_item);
2554 		args.devid = btrfs_device_id(leaf, dev_item);
2555 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2556 				   BTRFS_UUID_SIZE);
2557 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2558 				   BTRFS_FSID_SIZE);
2559 		args.uuid = dev_uuid;
2560 		args.fsid = fs_uuid;
2561 		device = btrfs_find_device(fs_info->fs_devices, &args);
2562 		BUG_ON(!device); /* Logic error */
2563 
2564 		if (device->fs_devices->seeding) {
2565 			btrfs_set_device_generation(leaf, dev_item,
2566 						    device->generation);
2567 			btrfs_mark_buffer_dirty(leaf);
2568 		}
2569 
2570 		path->slots[0]++;
2571 		goto next_slot;
2572 	}
2573 	ret = 0;
2574 error:
2575 	btrfs_free_path(path);
2576 	return ret;
2577 }
2578 
2579 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2580 {
2581 	struct btrfs_root *root = fs_info->dev_root;
2582 	struct request_queue *q;
2583 	struct btrfs_trans_handle *trans;
2584 	struct btrfs_device *device;
2585 	struct block_device *bdev;
2586 	struct super_block *sb = fs_info->sb;
2587 	struct rcu_string *name;
2588 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589 	u64 orig_super_total_bytes;
2590 	u64 orig_super_num_devices;
2591 	int seeding_dev = 0;
2592 	int ret = 0;
2593 	bool locked = false;
2594 
2595 	if (sb_rdonly(sb) && !fs_devices->seeding)
2596 		return -EROFS;
2597 
2598 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2599 				  fs_info->bdev_holder);
2600 	if (IS_ERR(bdev))
2601 		return PTR_ERR(bdev);
2602 
2603 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2604 		ret = -EINVAL;
2605 		goto error;
2606 	}
2607 
2608 	if (fs_devices->seeding) {
2609 		seeding_dev = 1;
2610 		down_write(&sb->s_umount);
2611 		mutex_lock(&uuid_mutex);
2612 		locked = true;
2613 	}
2614 
2615 	sync_blockdev(bdev);
2616 
2617 	rcu_read_lock();
2618 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2619 		if (device->bdev == bdev) {
2620 			ret = -EEXIST;
2621 			rcu_read_unlock();
2622 			goto error;
2623 		}
2624 	}
2625 	rcu_read_unlock();
2626 
2627 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2628 	if (IS_ERR(device)) {
2629 		/* we can safely leave the fs_devices entry around */
2630 		ret = PTR_ERR(device);
2631 		goto error;
2632 	}
2633 
2634 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2635 	if (!name) {
2636 		ret = -ENOMEM;
2637 		goto error_free_device;
2638 	}
2639 	rcu_assign_pointer(device->name, name);
2640 
2641 	device->fs_info = fs_info;
2642 	device->bdev = bdev;
2643 
2644 	ret = btrfs_get_dev_zone_info(device);
2645 	if (ret)
2646 		goto error_free_device;
2647 
2648 	trans = btrfs_start_transaction(root, 0);
2649 	if (IS_ERR(trans)) {
2650 		ret = PTR_ERR(trans);
2651 		goto error_free_zone;
2652 	}
2653 
2654 	q = bdev_get_queue(bdev);
2655 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2656 	device->generation = trans->transid;
2657 	device->io_width = fs_info->sectorsize;
2658 	device->io_align = fs_info->sectorsize;
2659 	device->sector_size = fs_info->sectorsize;
2660 	device->total_bytes =
2661 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2662 	device->disk_total_bytes = device->total_bytes;
2663 	device->commit_total_bytes = device->total_bytes;
2664 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2665 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2666 	device->mode = FMODE_EXCL;
2667 	device->dev_stats_valid = 1;
2668 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2669 
2670 	if (seeding_dev) {
2671 		btrfs_clear_sb_rdonly(sb);
2672 		ret = btrfs_prepare_sprout(fs_info);
2673 		if (ret) {
2674 			btrfs_abort_transaction(trans, ret);
2675 			goto error_trans;
2676 		}
2677 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2678 						device);
2679 	}
2680 
2681 	device->fs_devices = fs_devices;
2682 
2683 	mutex_lock(&fs_devices->device_list_mutex);
2684 	mutex_lock(&fs_info->chunk_mutex);
2685 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2686 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2687 	fs_devices->num_devices++;
2688 	fs_devices->open_devices++;
2689 	fs_devices->rw_devices++;
2690 	fs_devices->total_devices++;
2691 	fs_devices->total_rw_bytes += device->total_bytes;
2692 
2693 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2694 
2695 	if (!blk_queue_nonrot(q))
2696 		fs_devices->rotating = true;
2697 
2698 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2699 	btrfs_set_super_total_bytes(fs_info->super_copy,
2700 		round_down(orig_super_total_bytes + device->total_bytes,
2701 			   fs_info->sectorsize));
2702 
2703 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2704 	btrfs_set_super_num_devices(fs_info->super_copy,
2705 				    orig_super_num_devices + 1);
2706 
2707 	/*
2708 	 * we've got more storage, clear any full flags on the space
2709 	 * infos
2710 	 */
2711 	btrfs_clear_space_info_full(fs_info);
2712 
2713 	mutex_unlock(&fs_info->chunk_mutex);
2714 
2715 	/* Add sysfs device entry */
2716 	btrfs_sysfs_add_device(device);
2717 
2718 	mutex_unlock(&fs_devices->device_list_mutex);
2719 
2720 	if (seeding_dev) {
2721 		mutex_lock(&fs_info->chunk_mutex);
2722 		ret = init_first_rw_device(trans);
2723 		mutex_unlock(&fs_info->chunk_mutex);
2724 		if (ret) {
2725 			btrfs_abort_transaction(trans, ret);
2726 			goto error_sysfs;
2727 		}
2728 	}
2729 
2730 	ret = btrfs_add_dev_item(trans, device);
2731 	if (ret) {
2732 		btrfs_abort_transaction(trans, ret);
2733 		goto error_sysfs;
2734 	}
2735 
2736 	if (seeding_dev) {
2737 		ret = btrfs_finish_sprout(trans);
2738 		if (ret) {
2739 			btrfs_abort_transaction(trans, ret);
2740 			goto error_sysfs;
2741 		}
2742 
2743 		/*
2744 		 * fs_devices now represents the newly sprouted filesystem and
2745 		 * its fsid has been changed by btrfs_prepare_sprout
2746 		 */
2747 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2748 	}
2749 
2750 	ret = btrfs_commit_transaction(trans);
2751 
2752 	if (seeding_dev) {
2753 		mutex_unlock(&uuid_mutex);
2754 		up_write(&sb->s_umount);
2755 		locked = false;
2756 
2757 		if (ret) /* transaction commit */
2758 			return ret;
2759 
2760 		ret = btrfs_relocate_sys_chunks(fs_info);
2761 		if (ret < 0)
2762 			btrfs_handle_fs_error(fs_info, ret,
2763 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2764 		trans = btrfs_attach_transaction(root);
2765 		if (IS_ERR(trans)) {
2766 			if (PTR_ERR(trans) == -ENOENT)
2767 				return 0;
2768 			ret = PTR_ERR(trans);
2769 			trans = NULL;
2770 			goto error_sysfs;
2771 		}
2772 		ret = btrfs_commit_transaction(trans);
2773 	}
2774 
2775 	/*
2776 	 * Now that we have written a new super block to this device, check all
2777 	 * other fs_devices list if device_path alienates any other scanned
2778 	 * device.
2779 	 * We can ignore the return value as it typically returns -EINVAL and
2780 	 * only succeeds if the device was an alien.
2781 	 */
2782 	btrfs_forget_devices(device_path);
2783 
2784 	/* Update ctime/mtime for blkid or udev */
2785 	update_dev_time(device_path);
2786 
2787 	return ret;
2788 
2789 error_sysfs:
2790 	btrfs_sysfs_remove_device(device);
2791 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2792 	mutex_lock(&fs_info->chunk_mutex);
2793 	list_del_rcu(&device->dev_list);
2794 	list_del(&device->dev_alloc_list);
2795 	fs_info->fs_devices->num_devices--;
2796 	fs_info->fs_devices->open_devices--;
2797 	fs_info->fs_devices->rw_devices--;
2798 	fs_info->fs_devices->total_devices--;
2799 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2800 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2801 	btrfs_set_super_total_bytes(fs_info->super_copy,
2802 				    orig_super_total_bytes);
2803 	btrfs_set_super_num_devices(fs_info->super_copy,
2804 				    orig_super_num_devices);
2805 	mutex_unlock(&fs_info->chunk_mutex);
2806 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2807 error_trans:
2808 	if (seeding_dev)
2809 		btrfs_set_sb_rdonly(sb);
2810 	if (trans)
2811 		btrfs_end_transaction(trans);
2812 error_free_zone:
2813 	btrfs_destroy_dev_zone_info(device);
2814 error_free_device:
2815 	btrfs_free_device(device);
2816 error:
2817 	blkdev_put(bdev, FMODE_EXCL);
2818 	if (locked) {
2819 		mutex_unlock(&uuid_mutex);
2820 		up_write(&sb->s_umount);
2821 	}
2822 	return ret;
2823 }
2824 
2825 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2826 					struct btrfs_device *device)
2827 {
2828 	int ret;
2829 	struct btrfs_path *path;
2830 	struct btrfs_root *root = device->fs_info->chunk_root;
2831 	struct btrfs_dev_item *dev_item;
2832 	struct extent_buffer *leaf;
2833 	struct btrfs_key key;
2834 
2835 	path = btrfs_alloc_path();
2836 	if (!path)
2837 		return -ENOMEM;
2838 
2839 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2840 	key.type = BTRFS_DEV_ITEM_KEY;
2841 	key.offset = device->devid;
2842 
2843 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2844 	if (ret < 0)
2845 		goto out;
2846 
2847 	if (ret > 0) {
2848 		ret = -ENOENT;
2849 		goto out;
2850 	}
2851 
2852 	leaf = path->nodes[0];
2853 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2854 
2855 	btrfs_set_device_id(leaf, dev_item, device->devid);
2856 	btrfs_set_device_type(leaf, dev_item, device->type);
2857 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2858 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2859 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2860 	btrfs_set_device_total_bytes(leaf, dev_item,
2861 				     btrfs_device_get_disk_total_bytes(device));
2862 	btrfs_set_device_bytes_used(leaf, dev_item,
2863 				    btrfs_device_get_bytes_used(device));
2864 	btrfs_mark_buffer_dirty(leaf);
2865 
2866 out:
2867 	btrfs_free_path(path);
2868 	return ret;
2869 }
2870 
2871 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2872 		      struct btrfs_device *device, u64 new_size)
2873 {
2874 	struct btrfs_fs_info *fs_info = device->fs_info;
2875 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2876 	u64 old_total;
2877 	u64 diff;
2878 	int ret;
2879 
2880 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2881 		return -EACCES;
2882 
2883 	new_size = round_down(new_size, fs_info->sectorsize);
2884 
2885 	mutex_lock(&fs_info->chunk_mutex);
2886 	old_total = btrfs_super_total_bytes(super_copy);
2887 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2888 
2889 	if (new_size <= device->total_bytes ||
2890 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2891 		mutex_unlock(&fs_info->chunk_mutex);
2892 		return -EINVAL;
2893 	}
2894 
2895 	btrfs_set_super_total_bytes(super_copy,
2896 			round_down(old_total + diff, fs_info->sectorsize));
2897 	device->fs_devices->total_rw_bytes += diff;
2898 
2899 	btrfs_device_set_total_bytes(device, new_size);
2900 	btrfs_device_set_disk_total_bytes(device, new_size);
2901 	btrfs_clear_space_info_full(device->fs_info);
2902 	if (list_empty(&device->post_commit_list))
2903 		list_add_tail(&device->post_commit_list,
2904 			      &trans->transaction->dev_update_list);
2905 	mutex_unlock(&fs_info->chunk_mutex);
2906 
2907 	btrfs_reserve_chunk_metadata(trans, false);
2908 	ret = btrfs_update_device(trans, device);
2909 	btrfs_trans_release_chunk_metadata(trans);
2910 
2911 	return ret;
2912 }
2913 
2914 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2915 {
2916 	struct btrfs_fs_info *fs_info = trans->fs_info;
2917 	struct btrfs_root *root = fs_info->chunk_root;
2918 	int ret;
2919 	struct btrfs_path *path;
2920 	struct btrfs_key key;
2921 
2922 	path = btrfs_alloc_path();
2923 	if (!path)
2924 		return -ENOMEM;
2925 
2926 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2927 	key.offset = chunk_offset;
2928 	key.type = BTRFS_CHUNK_ITEM_KEY;
2929 
2930 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2931 	if (ret < 0)
2932 		goto out;
2933 	else if (ret > 0) { /* Logic error or corruption */
2934 		btrfs_handle_fs_error(fs_info, -ENOENT,
2935 				      "Failed lookup while freeing chunk.");
2936 		ret = -ENOENT;
2937 		goto out;
2938 	}
2939 
2940 	ret = btrfs_del_item(trans, root, path);
2941 	if (ret < 0)
2942 		btrfs_handle_fs_error(fs_info, ret,
2943 				      "Failed to delete chunk item.");
2944 out:
2945 	btrfs_free_path(path);
2946 	return ret;
2947 }
2948 
2949 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2950 {
2951 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2952 	struct btrfs_disk_key *disk_key;
2953 	struct btrfs_chunk *chunk;
2954 	u8 *ptr;
2955 	int ret = 0;
2956 	u32 num_stripes;
2957 	u32 array_size;
2958 	u32 len = 0;
2959 	u32 cur;
2960 	struct btrfs_key key;
2961 
2962 	lockdep_assert_held(&fs_info->chunk_mutex);
2963 	array_size = btrfs_super_sys_array_size(super_copy);
2964 
2965 	ptr = super_copy->sys_chunk_array;
2966 	cur = 0;
2967 
2968 	while (cur < array_size) {
2969 		disk_key = (struct btrfs_disk_key *)ptr;
2970 		btrfs_disk_key_to_cpu(&key, disk_key);
2971 
2972 		len = sizeof(*disk_key);
2973 
2974 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2975 			chunk = (struct btrfs_chunk *)(ptr + len);
2976 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2977 			len += btrfs_chunk_item_size(num_stripes);
2978 		} else {
2979 			ret = -EIO;
2980 			break;
2981 		}
2982 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2983 		    key.offset == chunk_offset) {
2984 			memmove(ptr, ptr + len, array_size - (cur + len));
2985 			array_size -= len;
2986 			btrfs_set_super_sys_array_size(super_copy, array_size);
2987 		} else {
2988 			ptr += len;
2989 			cur += len;
2990 		}
2991 	}
2992 	return ret;
2993 }
2994 
2995 /*
2996  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2997  * @logical: Logical block offset in bytes.
2998  * @length: Length of extent in bytes.
2999  *
3000  * Return: Chunk mapping or ERR_PTR.
3001  */
3002 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3003 				       u64 logical, u64 length)
3004 {
3005 	struct extent_map_tree *em_tree;
3006 	struct extent_map *em;
3007 
3008 	em_tree = &fs_info->mapping_tree;
3009 	read_lock(&em_tree->lock);
3010 	em = lookup_extent_mapping(em_tree, logical, length);
3011 	read_unlock(&em_tree->lock);
3012 
3013 	if (!em) {
3014 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3015 			   logical, length);
3016 		return ERR_PTR(-EINVAL);
3017 	}
3018 
3019 	if (em->start > logical || em->start + em->len < logical) {
3020 		btrfs_crit(fs_info,
3021 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3022 			   logical, length, em->start, em->start + em->len);
3023 		free_extent_map(em);
3024 		return ERR_PTR(-EINVAL);
3025 	}
3026 
3027 	/* callers are responsible for dropping em's ref. */
3028 	return em;
3029 }
3030 
3031 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3032 			     struct map_lookup *map, u64 chunk_offset)
3033 {
3034 	int i;
3035 
3036 	/*
3037 	 * Removing chunk items and updating the device items in the chunks btree
3038 	 * requires holding the chunk_mutex.
3039 	 * See the comment at btrfs_chunk_alloc() for the details.
3040 	 */
3041 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3042 
3043 	for (i = 0; i < map->num_stripes; i++) {
3044 		int ret;
3045 
3046 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3047 		if (ret)
3048 			return ret;
3049 	}
3050 
3051 	return btrfs_free_chunk(trans, chunk_offset);
3052 }
3053 
3054 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3055 {
3056 	struct btrfs_fs_info *fs_info = trans->fs_info;
3057 	struct extent_map *em;
3058 	struct map_lookup *map;
3059 	u64 dev_extent_len = 0;
3060 	int i, ret = 0;
3061 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3062 
3063 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3064 	if (IS_ERR(em)) {
3065 		/*
3066 		 * This is a logic error, but we don't want to just rely on the
3067 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3068 		 * do anything we still error out.
3069 		 */
3070 		ASSERT(0);
3071 		return PTR_ERR(em);
3072 	}
3073 	map = em->map_lookup;
3074 
3075 	/*
3076 	 * First delete the device extent items from the devices btree.
3077 	 * We take the device_list_mutex to avoid racing with the finishing phase
3078 	 * of a device replace operation. See the comment below before acquiring
3079 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3080 	 * because that can result in a deadlock when deleting the device extent
3081 	 * items from the devices btree - COWing an extent buffer from the btree
3082 	 * may result in allocating a new metadata chunk, which would attempt to
3083 	 * lock again fs_info->chunk_mutex.
3084 	 */
3085 	mutex_lock(&fs_devices->device_list_mutex);
3086 	for (i = 0; i < map->num_stripes; i++) {
3087 		struct btrfs_device *device = map->stripes[i].dev;
3088 		ret = btrfs_free_dev_extent(trans, device,
3089 					    map->stripes[i].physical,
3090 					    &dev_extent_len);
3091 		if (ret) {
3092 			mutex_unlock(&fs_devices->device_list_mutex);
3093 			btrfs_abort_transaction(trans, ret);
3094 			goto out;
3095 		}
3096 
3097 		if (device->bytes_used > 0) {
3098 			mutex_lock(&fs_info->chunk_mutex);
3099 			btrfs_device_set_bytes_used(device,
3100 					device->bytes_used - dev_extent_len);
3101 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3102 			btrfs_clear_space_info_full(fs_info);
3103 			mutex_unlock(&fs_info->chunk_mutex);
3104 		}
3105 	}
3106 	mutex_unlock(&fs_devices->device_list_mutex);
3107 
3108 	/*
3109 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3110 	 *
3111 	 * 1) Just like with the first phase of the chunk allocation, we must
3112 	 *    reserve system space, do all chunk btree updates and deletions, and
3113 	 *    update the system chunk array in the superblock while holding this
3114 	 *    mutex. This is for similar reasons as explained on the comment at
3115 	 *    the top of btrfs_chunk_alloc();
3116 	 *
3117 	 * 2) Prevent races with the final phase of a device replace operation
3118 	 *    that replaces the device object associated with the map's stripes,
3119 	 *    because the device object's id can change at any time during that
3120 	 *    final phase of the device replace operation
3121 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3122 	 *    replaced device and then see it with an ID of
3123 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3124 	 *    the device item, which does not exists on the chunk btree.
3125 	 *    The finishing phase of device replace acquires both the
3126 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3127 	 *    safe by just acquiring the chunk_mutex.
3128 	 */
3129 	trans->removing_chunk = true;
3130 	mutex_lock(&fs_info->chunk_mutex);
3131 
3132 	check_system_chunk(trans, map->type);
3133 
3134 	ret = remove_chunk_item(trans, map, chunk_offset);
3135 	/*
3136 	 * Normally we should not get -ENOSPC since we reserved space before
3137 	 * through the call to check_system_chunk().
3138 	 *
3139 	 * Despite our system space_info having enough free space, we may not
3140 	 * be able to allocate extents from its block groups, because all have
3141 	 * an incompatible profile, which will force us to allocate a new system
3142 	 * block group with the right profile, or right after we called
3143 	 * check_system_space() above, a scrub turned the only system block group
3144 	 * with enough free space into RO mode.
3145 	 * This is explained with more detail at do_chunk_alloc().
3146 	 *
3147 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3148 	 */
3149 	if (ret == -ENOSPC) {
3150 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3151 		struct btrfs_block_group *sys_bg;
3152 
3153 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3154 		if (IS_ERR(sys_bg)) {
3155 			ret = PTR_ERR(sys_bg);
3156 			btrfs_abort_transaction(trans, ret);
3157 			goto out;
3158 		}
3159 
3160 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3161 		if (ret) {
3162 			btrfs_abort_transaction(trans, ret);
3163 			goto out;
3164 		}
3165 
3166 		ret = remove_chunk_item(trans, map, chunk_offset);
3167 		if (ret) {
3168 			btrfs_abort_transaction(trans, ret);
3169 			goto out;
3170 		}
3171 	} else if (ret) {
3172 		btrfs_abort_transaction(trans, ret);
3173 		goto out;
3174 	}
3175 
3176 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3177 
3178 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3179 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3180 		if (ret) {
3181 			btrfs_abort_transaction(trans, ret);
3182 			goto out;
3183 		}
3184 	}
3185 
3186 	mutex_unlock(&fs_info->chunk_mutex);
3187 	trans->removing_chunk = false;
3188 
3189 	/*
3190 	 * We are done with chunk btree updates and deletions, so release the
3191 	 * system space we previously reserved (with check_system_chunk()).
3192 	 */
3193 	btrfs_trans_release_chunk_metadata(trans);
3194 
3195 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3196 	if (ret) {
3197 		btrfs_abort_transaction(trans, ret);
3198 		goto out;
3199 	}
3200 
3201 out:
3202 	if (trans->removing_chunk) {
3203 		mutex_unlock(&fs_info->chunk_mutex);
3204 		trans->removing_chunk = false;
3205 	}
3206 	/* once for us */
3207 	free_extent_map(em);
3208 	return ret;
3209 }
3210 
3211 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3212 {
3213 	struct btrfs_root *root = fs_info->chunk_root;
3214 	struct btrfs_trans_handle *trans;
3215 	struct btrfs_block_group *block_group;
3216 	u64 length;
3217 	int ret;
3218 
3219 	/*
3220 	 * Prevent races with automatic removal of unused block groups.
3221 	 * After we relocate and before we remove the chunk with offset
3222 	 * chunk_offset, automatic removal of the block group can kick in,
3223 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3224 	 *
3225 	 * Make sure to acquire this mutex before doing a tree search (dev
3226 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3227 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3228 	 * we release the path used to search the chunk/dev tree and before
3229 	 * the current task acquires this mutex and calls us.
3230 	 */
3231 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3232 
3233 	/* step one, relocate all the extents inside this chunk */
3234 	btrfs_scrub_pause(fs_info);
3235 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3236 	btrfs_scrub_continue(fs_info);
3237 	if (ret)
3238 		return ret;
3239 
3240 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3241 	if (!block_group)
3242 		return -ENOENT;
3243 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3244 	length = block_group->length;
3245 	btrfs_put_block_group(block_group);
3246 
3247 	/*
3248 	 * On a zoned file system, discard the whole block group, this will
3249 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3250 	 * resetting the zone fails, don't treat it as a fatal problem from the
3251 	 * filesystem's point of view.
3252 	 */
3253 	if (btrfs_is_zoned(fs_info)) {
3254 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3255 		if (ret)
3256 			btrfs_info(fs_info,
3257 				"failed to reset zone %llu after relocation",
3258 				chunk_offset);
3259 	}
3260 
3261 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3262 						     chunk_offset);
3263 	if (IS_ERR(trans)) {
3264 		ret = PTR_ERR(trans);
3265 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3266 		return ret;
3267 	}
3268 
3269 	/*
3270 	 * step two, delete the device extents and the
3271 	 * chunk tree entries
3272 	 */
3273 	ret = btrfs_remove_chunk(trans, chunk_offset);
3274 	btrfs_end_transaction(trans);
3275 	return ret;
3276 }
3277 
3278 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3279 {
3280 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3281 	struct btrfs_path *path;
3282 	struct extent_buffer *leaf;
3283 	struct btrfs_chunk *chunk;
3284 	struct btrfs_key key;
3285 	struct btrfs_key found_key;
3286 	u64 chunk_type;
3287 	bool retried = false;
3288 	int failed = 0;
3289 	int ret;
3290 
3291 	path = btrfs_alloc_path();
3292 	if (!path)
3293 		return -ENOMEM;
3294 
3295 again:
3296 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3297 	key.offset = (u64)-1;
3298 	key.type = BTRFS_CHUNK_ITEM_KEY;
3299 
3300 	while (1) {
3301 		mutex_lock(&fs_info->reclaim_bgs_lock);
3302 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3303 		if (ret < 0) {
3304 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3305 			goto error;
3306 		}
3307 		BUG_ON(ret == 0); /* Corruption */
3308 
3309 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3310 					  key.type);
3311 		if (ret)
3312 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3313 		if (ret < 0)
3314 			goto error;
3315 		if (ret > 0)
3316 			break;
3317 
3318 		leaf = path->nodes[0];
3319 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3320 
3321 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3322 				       struct btrfs_chunk);
3323 		chunk_type = btrfs_chunk_type(leaf, chunk);
3324 		btrfs_release_path(path);
3325 
3326 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3327 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3328 			if (ret == -ENOSPC)
3329 				failed++;
3330 			else
3331 				BUG_ON(ret);
3332 		}
3333 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3334 
3335 		if (found_key.offset == 0)
3336 			break;
3337 		key.offset = found_key.offset - 1;
3338 	}
3339 	ret = 0;
3340 	if (failed && !retried) {
3341 		failed = 0;
3342 		retried = true;
3343 		goto again;
3344 	} else if (WARN_ON(failed && retried)) {
3345 		ret = -ENOSPC;
3346 	}
3347 error:
3348 	btrfs_free_path(path);
3349 	return ret;
3350 }
3351 
3352 /*
3353  * return 1 : allocate a data chunk successfully,
3354  * return <0: errors during allocating a data chunk,
3355  * return 0 : no need to allocate a data chunk.
3356  */
3357 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3358 				      u64 chunk_offset)
3359 {
3360 	struct btrfs_block_group *cache;
3361 	u64 bytes_used;
3362 	u64 chunk_type;
3363 
3364 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3365 	ASSERT(cache);
3366 	chunk_type = cache->flags;
3367 	btrfs_put_block_group(cache);
3368 
3369 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3370 		return 0;
3371 
3372 	spin_lock(&fs_info->data_sinfo->lock);
3373 	bytes_used = fs_info->data_sinfo->bytes_used;
3374 	spin_unlock(&fs_info->data_sinfo->lock);
3375 
3376 	if (!bytes_used) {
3377 		struct btrfs_trans_handle *trans;
3378 		int ret;
3379 
3380 		trans =	btrfs_join_transaction(fs_info->tree_root);
3381 		if (IS_ERR(trans))
3382 			return PTR_ERR(trans);
3383 
3384 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3385 		btrfs_end_transaction(trans);
3386 		if (ret < 0)
3387 			return ret;
3388 		return 1;
3389 	}
3390 
3391 	return 0;
3392 }
3393 
3394 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3395 			       struct btrfs_balance_control *bctl)
3396 {
3397 	struct btrfs_root *root = fs_info->tree_root;
3398 	struct btrfs_trans_handle *trans;
3399 	struct btrfs_balance_item *item;
3400 	struct btrfs_disk_balance_args disk_bargs;
3401 	struct btrfs_path *path;
3402 	struct extent_buffer *leaf;
3403 	struct btrfs_key key;
3404 	int ret, err;
3405 
3406 	path = btrfs_alloc_path();
3407 	if (!path)
3408 		return -ENOMEM;
3409 
3410 	trans = btrfs_start_transaction(root, 0);
3411 	if (IS_ERR(trans)) {
3412 		btrfs_free_path(path);
3413 		return PTR_ERR(trans);
3414 	}
3415 
3416 	key.objectid = BTRFS_BALANCE_OBJECTID;
3417 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3418 	key.offset = 0;
3419 
3420 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3421 				      sizeof(*item));
3422 	if (ret)
3423 		goto out;
3424 
3425 	leaf = path->nodes[0];
3426 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3427 
3428 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3429 
3430 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3431 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3432 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3433 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3434 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3435 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3436 
3437 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3438 
3439 	btrfs_mark_buffer_dirty(leaf);
3440 out:
3441 	btrfs_free_path(path);
3442 	err = btrfs_commit_transaction(trans);
3443 	if (err && !ret)
3444 		ret = err;
3445 	return ret;
3446 }
3447 
3448 static int del_balance_item(struct btrfs_fs_info *fs_info)
3449 {
3450 	struct btrfs_root *root = fs_info->tree_root;
3451 	struct btrfs_trans_handle *trans;
3452 	struct btrfs_path *path;
3453 	struct btrfs_key key;
3454 	int ret, err;
3455 
3456 	path = btrfs_alloc_path();
3457 	if (!path)
3458 		return -ENOMEM;
3459 
3460 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3461 	if (IS_ERR(trans)) {
3462 		btrfs_free_path(path);
3463 		return PTR_ERR(trans);
3464 	}
3465 
3466 	key.objectid = BTRFS_BALANCE_OBJECTID;
3467 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3468 	key.offset = 0;
3469 
3470 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3471 	if (ret < 0)
3472 		goto out;
3473 	if (ret > 0) {
3474 		ret = -ENOENT;
3475 		goto out;
3476 	}
3477 
3478 	ret = btrfs_del_item(trans, root, path);
3479 out:
3480 	btrfs_free_path(path);
3481 	err = btrfs_commit_transaction(trans);
3482 	if (err && !ret)
3483 		ret = err;
3484 	return ret;
3485 }
3486 
3487 /*
3488  * This is a heuristic used to reduce the number of chunks balanced on
3489  * resume after balance was interrupted.
3490  */
3491 static void update_balance_args(struct btrfs_balance_control *bctl)
3492 {
3493 	/*
3494 	 * Turn on soft mode for chunk types that were being converted.
3495 	 */
3496 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3497 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3498 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3499 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3500 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3501 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3502 
3503 	/*
3504 	 * Turn on usage filter if is not already used.  The idea is
3505 	 * that chunks that we have already balanced should be
3506 	 * reasonably full.  Don't do it for chunks that are being
3507 	 * converted - that will keep us from relocating unconverted
3508 	 * (albeit full) chunks.
3509 	 */
3510 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3511 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3512 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3513 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3514 		bctl->data.usage = 90;
3515 	}
3516 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3517 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3518 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3519 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3520 		bctl->sys.usage = 90;
3521 	}
3522 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3523 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3524 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3525 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3526 		bctl->meta.usage = 90;
3527 	}
3528 }
3529 
3530 /*
3531  * Clear the balance status in fs_info and delete the balance item from disk.
3532  */
3533 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3534 {
3535 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3536 	int ret;
3537 
3538 	BUG_ON(!fs_info->balance_ctl);
3539 
3540 	spin_lock(&fs_info->balance_lock);
3541 	fs_info->balance_ctl = NULL;
3542 	spin_unlock(&fs_info->balance_lock);
3543 
3544 	kfree(bctl);
3545 	ret = del_balance_item(fs_info);
3546 	if (ret)
3547 		btrfs_handle_fs_error(fs_info, ret, NULL);
3548 }
3549 
3550 /*
3551  * Balance filters.  Return 1 if chunk should be filtered out
3552  * (should not be balanced).
3553  */
3554 static int chunk_profiles_filter(u64 chunk_type,
3555 				 struct btrfs_balance_args *bargs)
3556 {
3557 	chunk_type = chunk_to_extended(chunk_type) &
3558 				BTRFS_EXTENDED_PROFILE_MASK;
3559 
3560 	if (bargs->profiles & chunk_type)
3561 		return 0;
3562 
3563 	return 1;
3564 }
3565 
3566 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3567 			      struct btrfs_balance_args *bargs)
3568 {
3569 	struct btrfs_block_group *cache;
3570 	u64 chunk_used;
3571 	u64 user_thresh_min;
3572 	u64 user_thresh_max;
3573 	int ret = 1;
3574 
3575 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3576 	chunk_used = cache->used;
3577 
3578 	if (bargs->usage_min == 0)
3579 		user_thresh_min = 0;
3580 	else
3581 		user_thresh_min = div_factor_fine(cache->length,
3582 						  bargs->usage_min);
3583 
3584 	if (bargs->usage_max == 0)
3585 		user_thresh_max = 1;
3586 	else if (bargs->usage_max > 100)
3587 		user_thresh_max = cache->length;
3588 	else
3589 		user_thresh_max = div_factor_fine(cache->length,
3590 						  bargs->usage_max);
3591 
3592 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3593 		ret = 0;
3594 
3595 	btrfs_put_block_group(cache);
3596 	return ret;
3597 }
3598 
3599 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3600 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3601 {
3602 	struct btrfs_block_group *cache;
3603 	u64 chunk_used, user_thresh;
3604 	int ret = 1;
3605 
3606 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3607 	chunk_used = cache->used;
3608 
3609 	if (bargs->usage_min == 0)
3610 		user_thresh = 1;
3611 	else if (bargs->usage > 100)
3612 		user_thresh = cache->length;
3613 	else
3614 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3615 
3616 	if (chunk_used < user_thresh)
3617 		ret = 0;
3618 
3619 	btrfs_put_block_group(cache);
3620 	return ret;
3621 }
3622 
3623 static int chunk_devid_filter(struct extent_buffer *leaf,
3624 			      struct btrfs_chunk *chunk,
3625 			      struct btrfs_balance_args *bargs)
3626 {
3627 	struct btrfs_stripe *stripe;
3628 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3629 	int i;
3630 
3631 	for (i = 0; i < num_stripes; i++) {
3632 		stripe = btrfs_stripe_nr(chunk, i);
3633 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3634 			return 0;
3635 	}
3636 
3637 	return 1;
3638 }
3639 
3640 static u64 calc_data_stripes(u64 type, int num_stripes)
3641 {
3642 	const int index = btrfs_bg_flags_to_raid_index(type);
3643 	const int ncopies = btrfs_raid_array[index].ncopies;
3644 	const int nparity = btrfs_raid_array[index].nparity;
3645 
3646 	return (num_stripes - nparity) / ncopies;
3647 }
3648 
3649 /* [pstart, pend) */
3650 static int chunk_drange_filter(struct extent_buffer *leaf,
3651 			       struct btrfs_chunk *chunk,
3652 			       struct btrfs_balance_args *bargs)
3653 {
3654 	struct btrfs_stripe *stripe;
3655 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3656 	u64 stripe_offset;
3657 	u64 stripe_length;
3658 	u64 type;
3659 	int factor;
3660 	int i;
3661 
3662 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3663 		return 0;
3664 
3665 	type = btrfs_chunk_type(leaf, chunk);
3666 	factor = calc_data_stripes(type, num_stripes);
3667 
3668 	for (i = 0; i < num_stripes; i++) {
3669 		stripe = btrfs_stripe_nr(chunk, i);
3670 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3671 			continue;
3672 
3673 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3674 		stripe_length = btrfs_chunk_length(leaf, chunk);
3675 		stripe_length = div_u64(stripe_length, factor);
3676 
3677 		if (stripe_offset < bargs->pend &&
3678 		    stripe_offset + stripe_length > bargs->pstart)
3679 			return 0;
3680 	}
3681 
3682 	return 1;
3683 }
3684 
3685 /* [vstart, vend) */
3686 static int chunk_vrange_filter(struct extent_buffer *leaf,
3687 			       struct btrfs_chunk *chunk,
3688 			       u64 chunk_offset,
3689 			       struct btrfs_balance_args *bargs)
3690 {
3691 	if (chunk_offset < bargs->vend &&
3692 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3693 		/* at least part of the chunk is inside this vrange */
3694 		return 0;
3695 
3696 	return 1;
3697 }
3698 
3699 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3700 			       struct btrfs_chunk *chunk,
3701 			       struct btrfs_balance_args *bargs)
3702 {
3703 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3704 
3705 	if (bargs->stripes_min <= num_stripes
3706 			&& num_stripes <= bargs->stripes_max)
3707 		return 0;
3708 
3709 	return 1;
3710 }
3711 
3712 static int chunk_soft_convert_filter(u64 chunk_type,
3713 				     struct btrfs_balance_args *bargs)
3714 {
3715 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3716 		return 0;
3717 
3718 	chunk_type = chunk_to_extended(chunk_type) &
3719 				BTRFS_EXTENDED_PROFILE_MASK;
3720 
3721 	if (bargs->target == chunk_type)
3722 		return 1;
3723 
3724 	return 0;
3725 }
3726 
3727 static int should_balance_chunk(struct extent_buffer *leaf,
3728 				struct btrfs_chunk *chunk, u64 chunk_offset)
3729 {
3730 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3731 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3732 	struct btrfs_balance_args *bargs = NULL;
3733 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3734 
3735 	/* type filter */
3736 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3737 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3738 		return 0;
3739 	}
3740 
3741 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3742 		bargs = &bctl->data;
3743 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3744 		bargs = &bctl->sys;
3745 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3746 		bargs = &bctl->meta;
3747 
3748 	/* profiles filter */
3749 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3750 	    chunk_profiles_filter(chunk_type, bargs)) {
3751 		return 0;
3752 	}
3753 
3754 	/* usage filter */
3755 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3756 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3757 		return 0;
3758 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3759 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3760 		return 0;
3761 	}
3762 
3763 	/* devid filter */
3764 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3765 	    chunk_devid_filter(leaf, chunk, bargs)) {
3766 		return 0;
3767 	}
3768 
3769 	/* drange filter, makes sense only with devid filter */
3770 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3771 	    chunk_drange_filter(leaf, chunk, bargs)) {
3772 		return 0;
3773 	}
3774 
3775 	/* vrange filter */
3776 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3777 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3778 		return 0;
3779 	}
3780 
3781 	/* stripes filter */
3782 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3783 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3784 		return 0;
3785 	}
3786 
3787 	/* soft profile changing mode */
3788 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3789 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3790 		return 0;
3791 	}
3792 
3793 	/*
3794 	 * limited by count, must be the last filter
3795 	 */
3796 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3797 		if (bargs->limit == 0)
3798 			return 0;
3799 		else
3800 			bargs->limit--;
3801 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3802 		/*
3803 		 * Same logic as the 'limit' filter; the minimum cannot be
3804 		 * determined here because we do not have the global information
3805 		 * about the count of all chunks that satisfy the filters.
3806 		 */
3807 		if (bargs->limit_max == 0)
3808 			return 0;
3809 		else
3810 			bargs->limit_max--;
3811 	}
3812 
3813 	return 1;
3814 }
3815 
3816 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3817 {
3818 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3819 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3820 	u64 chunk_type;
3821 	struct btrfs_chunk *chunk;
3822 	struct btrfs_path *path = NULL;
3823 	struct btrfs_key key;
3824 	struct btrfs_key found_key;
3825 	struct extent_buffer *leaf;
3826 	int slot;
3827 	int ret;
3828 	int enospc_errors = 0;
3829 	bool counting = true;
3830 	/* The single value limit and min/max limits use the same bytes in the */
3831 	u64 limit_data = bctl->data.limit;
3832 	u64 limit_meta = bctl->meta.limit;
3833 	u64 limit_sys = bctl->sys.limit;
3834 	u32 count_data = 0;
3835 	u32 count_meta = 0;
3836 	u32 count_sys = 0;
3837 	int chunk_reserved = 0;
3838 
3839 	path = btrfs_alloc_path();
3840 	if (!path) {
3841 		ret = -ENOMEM;
3842 		goto error;
3843 	}
3844 
3845 	/* zero out stat counters */
3846 	spin_lock(&fs_info->balance_lock);
3847 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3848 	spin_unlock(&fs_info->balance_lock);
3849 again:
3850 	if (!counting) {
3851 		/*
3852 		 * The single value limit and min/max limits use the same bytes
3853 		 * in the
3854 		 */
3855 		bctl->data.limit = limit_data;
3856 		bctl->meta.limit = limit_meta;
3857 		bctl->sys.limit = limit_sys;
3858 	}
3859 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3860 	key.offset = (u64)-1;
3861 	key.type = BTRFS_CHUNK_ITEM_KEY;
3862 
3863 	while (1) {
3864 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3865 		    atomic_read(&fs_info->balance_cancel_req)) {
3866 			ret = -ECANCELED;
3867 			goto error;
3868 		}
3869 
3870 		mutex_lock(&fs_info->reclaim_bgs_lock);
3871 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3872 		if (ret < 0) {
3873 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3874 			goto error;
3875 		}
3876 
3877 		/*
3878 		 * this shouldn't happen, it means the last relocate
3879 		 * failed
3880 		 */
3881 		if (ret == 0)
3882 			BUG(); /* FIXME break ? */
3883 
3884 		ret = btrfs_previous_item(chunk_root, path, 0,
3885 					  BTRFS_CHUNK_ITEM_KEY);
3886 		if (ret) {
3887 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3888 			ret = 0;
3889 			break;
3890 		}
3891 
3892 		leaf = path->nodes[0];
3893 		slot = path->slots[0];
3894 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3895 
3896 		if (found_key.objectid != key.objectid) {
3897 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3898 			break;
3899 		}
3900 
3901 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3902 		chunk_type = btrfs_chunk_type(leaf, chunk);
3903 
3904 		if (!counting) {
3905 			spin_lock(&fs_info->balance_lock);
3906 			bctl->stat.considered++;
3907 			spin_unlock(&fs_info->balance_lock);
3908 		}
3909 
3910 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3911 
3912 		btrfs_release_path(path);
3913 		if (!ret) {
3914 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3915 			goto loop;
3916 		}
3917 
3918 		if (counting) {
3919 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3920 			spin_lock(&fs_info->balance_lock);
3921 			bctl->stat.expected++;
3922 			spin_unlock(&fs_info->balance_lock);
3923 
3924 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3925 				count_data++;
3926 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3927 				count_sys++;
3928 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3929 				count_meta++;
3930 
3931 			goto loop;
3932 		}
3933 
3934 		/*
3935 		 * Apply limit_min filter, no need to check if the LIMITS
3936 		 * filter is used, limit_min is 0 by default
3937 		 */
3938 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3939 					count_data < bctl->data.limit_min)
3940 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3941 					count_meta < bctl->meta.limit_min)
3942 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3943 					count_sys < bctl->sys.limit_min)) {
3944 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3945 			goto loop;
3946 		}
3947 
3948 		if (!chunk_reserved) {
3949 			/*
3950 			 * We may be relocating the only data chunk we have,
3951 			 * which could potentially end up with losing data's
3952 			 * raid profile, so lets allocate an empty one in
3953 			 * advance.
3954 			 */
3955 			ret = btrfs_may_alloc_data_chunk(fs_info,
3956 							 found_key.offset);
3957 			if (ret < 0) {
3958 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3959 				goto error;
3960 			} else if (ret == 1) {
3961 				chunk_reserved = 1;
3962 			}
3963 		}
3964 
3965 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3966 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3967 		if (ret == -ENOSPC) {
3968 			enospc_errors++;
3969 		} else if (ret == -ETXTBSY) {
3970 			btrfs_info(fs_info,
3971 	   "skipping relocation of block group %llu due to active swapfile",
3972 				   found_key.offset);
3973 			ret = 0;
3974 		} else if (ret) {
3975 			goto error;
3976 		} else {
3977 			spin_lock(&fs_info->balance_lock);
3978 			bctl->stat.completed++;
3979 			spin_unlock(&fs_info->balance_lock);
3980 		}
3981 loop:
3982 		if (found_key.offset == 0)
3983 			break;
3984 		key.offset = found_key.offset - 1;
3985 	}
3986 
3987 	if (counting) {
3988 		btrfs_release_path(path);
3989 		counting = false;
3990 		goto again;
3991 	}
3992 error:
3993 	btrfs_free_path(path);
3994 	if (enospc_errors) {
3995 		btrfs_info(fs_info, "%d enospc errors during balance",
3996 			   enospc_errors);
3997 		if (!ret)
3998 			ret = -ENOSPC;
3999 	}
4000 
4001 	return ret;
4002 }
4003 
4004 /**
4005  * alloc_profile_is_valid - see if a given profile is valid and reduced
4006  * @flags: profile to validate
4007  * @extended: if true @flags is treated as an extended profile
4008  */
4009 static int alloc_profile_is_valid(u64 flags, int extended)
4010 {
4011 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4012 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4013 
4014 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4015 
4016 	/* 1) check that all other bits are zeroed */
4017 	if (flags & ~mask)
4018 		return 0;
4019 
4020 	/* 2) see if profile is reduced */
4021 	if (flags == 0)
4022 		return !extended; /* "0" is valid for usual profiles */
4023 
4024 	return has_single_bit_set(flags);
4025 }
4026 
4027 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4028 {
4029 	/* cancel requested || normal exit path */
4030 	return atomic_read(&fs_info->balance_cancel_req) ||
4031 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4032 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4033 }
4034 
4035 /*
4036  * Validate target profile against allowed profiles and return true if it's OK.
4037  * Otherwise print the error message and return false.
4038  */
4039 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4040 		const struct btrfs_balance_args *bargs,
4041 		u64 allowed, const char *type)
4042 {
4043 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4044 		return true;
4045 
4046 	if (fs_info->sectorsize < PAGE_SIZE &&
4047 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
4048 		btrfs_err(fs_info,
4049 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
4050 			  fs_info->sectorsize, PAGE_SIZE);
4051 		return false;
4052 	}
4053 	/* Profile is valid and does not have bits outside of the allowed set */
4054 	if (alloc_profile_is_valid(bargs->target, 1) &&
4055 	    (bargs->target & ~allowed) == 0)
4056 		return true;
4057 
4058 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4059 			type, btrfs_bg_type_to_raid_name(bargs->target));
4060 	return false;
4061 }
4062 
4063 /*
4064  * Fill @buf with textual description of balance filter flags @bargs, up to
4065  * @size_buf including the terminating null. The output may be trimmed if it
4066  * does not fit into the provided buffer.
4067  */
4068 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4069 				 u32 size_buf)
4070 {
4071 	int ret;
4072 	u32 size_bp = size_buf;
4073 	char *bp = buf;
4074 	u64 flags = bargs->flags;
4075 	char tmp_buf[128] = {'\0'};
4076 
4077 	if (!flags)
4078 		return;
4079 
4080 #define CHECK_APPEND_NOARG(a)						\
4081 	do {								\
4082 		ret = snprintf(bp, size_bp, (a));			\
4083 		if (ret < 0 || ret >= size_bp)				\
4084 			goto out_overflow;				\
4085 		size_bp -= ret;						\
4086 		bp += ret;						\
4087 	} while (0)
4088 
4089 #define CHECK_APPEND_1ARG(a, v1)					\
4090 	do {								\
4091 		ret = snprintf(bp, size_bp, (a), (v1));			\
4092 		if (ret < 0 || ret >= size_bp)				\
4093 			goto out_overflow;				\
4094 		size_bp -= ret;						\
4095 		bp += ret;						\
4096 	} while (0)
4097 
4098 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4099 	do {								\
4100 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4101 		if (ret < 0 || ret >= size_bp)				\
4102 			goto out_overflow;				\
4103 		size_bp -= ret;						\
4104 		bp += ret;						\
4105 	} while (0)
4106 
4107 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4108 		CHECK_APPEND_1ARG("convert=%s,",
4109 				  btrfs_bg_type_to_raid_name(bargs->target));
4110 
4111 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4112 		CHECK_APPEND_NOARG("soft,");
4113 
4114 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4115 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4116 					    sizeof(tmp_buf));
4117 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4118 	}
4119 
4120 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4121 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4122 
4123 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4124 		CHECK_APPEND_2ARG("usage=%u..%u,",
4125 				  bargs->usage_min, bargs->usage_max);
4126 
4127 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4128 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4129 
4130 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4131 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4132 				  bargs->pstart, bargs->pend);
4133 
4134 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4135 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4136 				  bargs->vstart, bargs->vend);
4137 
4138 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4139 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4140 
4141 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4142 		CHECK_APPEND_2ARG("limit=%u..%u,",
4143 				bargs->limit_min, bargs->limit_max);
4144 
4145 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4146 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4147 				  bargs->stripes_min, bargs->stripes_max);
4148 
4149 #undef CHECK_APPEND_2ARG
4150 #undef CHECK_APPEND_1ARG
4151 #undef CHECK_APPEND_NOARG
4152 
4153 out_overflow:
4154 
4155 	if (size_bp < size_buf)
4156 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4157 	else
4158 		buf[0] = '\0';
4159 }
4160 
4161 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4162 {
4163 	u32 size_buf = 1024;
4164 	char tmp_buf[192] = {'\0'};
4165 	char *buf;
4166 	char *bp;
4167 	u32 size_bp = size_buf;
4168 	int ret;
4169 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4170 
4171 	buf = kzalloc(size_buf, GFP_KERNEL);
4172 	if (!buf)
4173 		return;
4174 
4175 	bp = buf;
4176 
4177 #define CHECK_APPEND_1ARG(a, v1)					\
4178 	do {								\
4179 		ret = snprintf(bp, size_bp, (a), (v1));			\
4180 		if (ret < 0 || ret >= size_bp)				\
4181 			goto out_overflow;				\
4182 		size_bp -= ret;						\
4183 		bp += ret;						\
4184 	} while (0)
4185 
4186 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4187 		CHECK_APPEND_1ARG("%s", "-f ");
4188 
4189 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4190 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4191 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4192 	}
4193 
4194 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4195 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4196 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4197 	}
4198 
4199 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4200 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4201 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4202 	}
4203 
4204 #undef CHECK_APPEND_1ARG
4205 
4206 out_overflow:
4207 
4208 	if (size_bp < size_buf)
4209 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4210 	btrfs_info(fs_info, "balance: %s %s",
4211 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4212 		   "resume" : "start", buf);
4213 
4214 	kfree(buf);
4215 }
4216 
4217 /*
4218  * Should be called with balance mutexe held
4219  */
4220 int btrfs_balance(struct btrfs_fs_info *fs_info,
4221 		  struct btrfs_balance_control *bctl,
4222 		  struct btrfs_ioctl_balance_args *bargs)
4223 {
4224 	u64 meta_target, data_target;
4225 	u64 allowed;
4226 	int mixed = 0;
4227 	int ret;
4228 	u64 num_devices;
4229 	unsigned seq;
4230 	bool reducing_redundancy;
4231 	int i;
4232 
4233 	if (btrfs_fs_closing(fs_info) ||
4234 	    atomic_read(&fs_info->balance_pause_req) ||
4235 	    btrfs_should_cancel_balance(fs_info)) {
4236 		ret = -EINVAL;
4237 		goto out;
4238 	}
4239 
4240 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4241 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4242 		mixed = 1;
4243 
4244 	/*
4245 	 * In case of mixed groups both data and meta should be picked,
4246 	 * and identical options should be given for both of them.
4247 	 */
4248 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4249 	if (mixed && (bctl->flags & allowed)) {
4250 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4251 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4252 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4253 			btrfs_err(fs_info,
4254 	  "balance: mixed groups data and metadata options must be the same");
4255 			ret = -EINVAL;
4256 			goto out;
4257 		}
4258 	}
4259 
4260 	/*
4261 	 * rw_devices will not change at the moment, device add/delete/replace
4262 	 * are exclusive
4263 	 */
4264 	num_devices = fs_info->fs_devices->rw_devices;
4265 
4266 	/*
4267 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4268 	 * special bit for it, to make it easier to distinguish.  Thus we need
4269 	 * to set it manually, or balance would refuse the profile.
4270 	 */
4271 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4272 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4273 		if (num_devices >= btrfs_raid_array[i].devs_min)
4274 			allowed |= btrfs_raid_array[i].bg_flag;
4275 
4276 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4277 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4278 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4279 		ret = -EINVAL;
4280 		goto out;
4281 	}
4282 
4283 	/*
4284 	 * Allow to reduce metadata or system integrity only if force set for
4285 	 * profiles with redundancy (copies, parity)
4286 	 */
4287 	allowed = 0;
4288 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4289 		if (btrfs_raid_array[i].ncopies >= 2 ||
4290 		    btrfs_raid_array[i].tolerated_failures >= 1)
4291 			allowed |= btrfs_raid_array[i].bg_flag;
4292 	}
4293 	do {
4294 		seq = read_seqbegin(&fs_info->profiles_lock);
4295 
4296 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4297 		     (fs_info->avail_system_alloc_bits & allowed) &&
4298 		     !(bctl->sys.target & allowed)) ||
4299 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4300 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4301 		     !(bctl->meta.target & allowed)))
4302 			reducing_redundancy = true;
4303 		else
4304 			reducing_redundancy = false;
4305 
4306 		/* if we're not converting, the target field is uninitialized */
4307 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4308 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4309 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4310 			bctl->data.target : fs_info->avail_data_alloc_bits;
4311 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4312 
4313 	if (reducing_redundancy) {
4314 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4315 			btrfs_info(fs_info,
4316 			   "balance: force reducing metadata redundancy");
4317 		} else {
4318 			btrfs_err(fs_info,
4319 	"balance: reduces metadata redundancy, use --force if you want this");
4320 			ret = -EINVAL;
4321 			goto out;
4322 		}
4323 	}
4324 
4325 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4326 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4327 		btrfs_warn(fs_info,
4328 	"balance: metadata profile %s has lower redundancy than data profile %s",
4329 				btrfs_bg_type_to_raid_name(meta_target),
4330 				btrfs_bg_type_to_raid_name(data_target));
4331 	}
4332 
4333 	ret = insert_balance_item(fs_info, bctl);
4334 	if (ret && ret != -EEXIST)
4335 		goto out;
4336 
4337 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4338 		BUG_ON(ret == -EEXIST);
4339 		BUG_ON(fs_info->balance_ctl);
4340 		spin_lock(&fs_info->balance_lock);
4341 		fs_info->balance_ctl = bctl;
4342 		spin_unlock(&fs_info->balance_lock);
4343 	} else {
4344 		BUG_ON(ret != -EEXIST);
4345 		spin_lock(&fs_info->balance_lock);
4346 		update_balance_args(bctl);
4347 		spin_unlock(&fs_info->balance_lock);
4348 	}
4349 
4350 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4351 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4352 	describe_balance_start_or_resume(fs_info);
4353 	mutex_unlock(&fs_info->balance_mutex);
4354 
4355 	ret = __btrfs_balance(fs_info);
4356 
4357 	mutex_lock(&fs_info->balance_mutex);
4358 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4359 		btrfs_info(fs_info, "balance: paused");
4360 	/*
4361 	 * Balance can be canceled by:
4362 	 *
4363 	 * - Regular cancel request
4364 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4365 	 *
4366 	 * - Fatal signal to "btrfs" process
4367 	 *   Either the signal caught by wait_reserve_ticket() and callers
4368 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4369 	 *   got -ECANCELED.
4370 	 *   Either way, in this case balance_cancel_req = 0, and
4371 	 *   ret == -EINTR or ret == -ECANCELED.
4372 	 *
4373 	 * So here we only check the return value to catch canceled balance.
4374 	 */
4375 	else if (ret == -ECANCELED || ret == -EINTR)
4376 		btrfs_info(fs_info, "balance: canceled");
4377 	else
4378 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4379 
4380 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4381 
4382 	if (bargs) {
4383 		memset(bargs, 0, sizeof(*bargs));
4384 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4385 	}
4386 
4387 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4388 	    balance_need_close(fs_info)) {
4389 		reset_balance_state(fs_info);
4390 		btrfs_exclop_finish(fs_info);
4391 	}
4392 
4393 	wake_up(&fs_info->balance_wait_q);
4394 
4395 	return ret;
4396 out:
4397 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4398 		reset_balance_state(fs_info);
4399 	else
4400 		kfree(bctl);
4401 	btrfs_exclop_finish(fs_info);
4402 
4403 	return ret;
4404 }
4405 
4406 static int balance_kthread(void *data)
4407 {
4408 	struct btrfs_fs_info *fs_info = data;
4409 	int ret = 0;
4410 
4411 	mutex_lock(&fs_info->balance_mutex);
4412 	if (fs_info->balance_ctl)
4413 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4414 	mutex_unlock(&fs_info->balance_mutex);
4415 
4416 	return ret;
4417 }
4418 
4419 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4420 {
4421 	struct task_struct *tsk;
4422 
4423 	mutex_lock(&fs_info->balance_mutex);
4424 	if (!fs_info->balance_ctl) {
4425 		mutex_unlock(&fs_info->balance_mutex);
4426 		return 0;
4427 	}
4428 	mutex_unlock(&fs_info->balance_mutex);
4429 
4430 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4431 		btrfs_info(fs_info, "balance: resume skipped");
4432 		return 0;
4433 	}
4434 
4435 	/*
4436 	 * A ro->rw remount sequence should continue with the paused balance
4437 	 * regardless of who pauses it, system or the user as of now, so set
4438 	 * the resume flag.
4439 	 */
4440 	spin_lock(&fs_info->balance_lock);
4441 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4442 	spin_unlock(&fs_info->balance_lock);
4443 
4444 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4445 	return PTR_ERR_OR_ZERO(tsk);
4446 }
4447 
4448 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4449 {
4450 	struct btrfs_balance_control *bctl;
4451 	struct btrfs_balance_item *item;
4452 	struct btrfs_disk_balance_args disk_bargs;
4453 	struct btrfs_path *path;
4454 	struct extent_buffer *leaf;
4455 	struct btrfs_key key;
4456 	int ret;
4457 
4458 	path = btrfs_alloc_path();
4459 	if (!path)
4460 		return -ENOMEM;
4461 
4462 	key.objectid = BTRFS_BALANCE_OBJECTID;
4463 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4464 	key.offset = 0;
4465 
4466 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4467 	if (ret < 0)
4468 		goto out;
4469 	if (ret > 0) { /* ret = -ENOENT; */
4470 		ret = 0;
4471 		goto out;
4472 	}
4473 
4474 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4475 	if (!bctl) {
4476 		ret = -ENOMEM;
4477 		goto out;
4478 	}
4479 
4480 	leaf = path->nodes[0];
4481 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4482 
4483 	bctl->flags = btrfs_balance_flags(leaf, item);
4484 	bctl->flags |= BTRFS_BALANCE_RESUME;
4485 
4486 	btrfs_balance_data(leaf, item, &disk_bargs);
4487 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4488 	btrfs_balance_meta(leaf, item, &disk_bargs);
4489 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4490 	btrfs_balance_sys(leaf, item, &disk_bargs);
4491 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4492 
4493 	/*
4494 	 * This should never happen, as the paused balance state is recovered
4495 	 * during mount without any chance of other exclusive ops to collide.
4496 	 *
4497 	 * This gives the exclusive op status to balance and keeps in paused
4498 	 * state until user intervention (cancel or umount). If the ownership
4499 	 * cannot be assigned, show a message but do not fail. The balance
4500 	 * is in a paused state and must have fs_info::balance_ctl properly
4501 	 * set up.
4502 	 */
4503 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4504 		btrfs_warn(fs_info,
4505 	"balance: cannot set exclusive op status, resume manually");
4506 
4507 	btrfs_release_path(path);
4508 
4509 	mutex_lock(&fs_info->balance_mutex);
4510 	BUG_ON(fs_info->balance_ctl);
4511 	spin_lock(&fs_info->balance_lock);
4512 	fs_info->balance_ctl = bctl;
4513 	spin_unlock(&fs_info->balance_lock);
4514 	mutex_unlock(&fs_info->balance_mutex);
4515 out:
4516 	btrfs_free_path(path);
4517 	return ret;
4518 }
4519 
4520 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4521 {
4522 	int ret = 0;
4523 
4524 	mutex_lock(&fs_info->balance_mutex);
4525 	if (!fs_info->balance_ctl) {
4526 		mutex_unlock(&fs_info->balance_mutex);
4527 		return -ENOTCONN;
4528 	}
4529 
4530 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4531 		atomic_inc(&fs_info->balance_pause_req);
4532 		mutex_unlock(&fs_info->balance_mutex);
4533 
4534 		wait_event(fs_info->balance_wait_q,
4535 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4536 
4537 		mutex_lock(&fs_info->balance_mutex);
4538 		/* we are good with balance_ctl ripped off from under us */
4539 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4540 		atomic_dec(&fs_info->balance_pause_req);
4541 	} else {
4542 		ret = -ENOTCONN;
4543 	}
4544 
4545 	mutex_unlock(&fs_info->balance_mutex);
4546 	return ret;
4547 }
4548 
4549 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4550 {
4551 	mutex_lock(&fs_info->balance_mutex);
4552 	if (!fs_info->balance_ctl) {
4553 		mutex_unlock(&fs_info->balance_mutex);
4554 		return -ENOTCONN;
4555 	}
4556 
4557 	/*
4558 	 * A paused balance with the item stored on disk can be resumed at
4559 	 * mount time if the mount is read-write. Otherwise it's still paused
4560 	 * and we must not allow cancelling as it deletes the item.
4561 	 */
4562 	if (sb_rdonly(fs_info->sb)) {
4563 		mutex_unlock(&fs_info->balance_mutex);
4564 		return -EROFS;
4565 	}
4566 
4567 	atomic_inc(&fs_info->balance_cancel_req);
4568 	/*
4569 	 * if we are running just wait and return, balance item is
4570 	 * deleted in btrfs_balance in this case
4571 	 */
4572 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4573 		mutex_unlock(&fs_info->balance_mutex);
4574 		wait_event(fs_info->balance_wait_q,
4575 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4576 		mutex_lock(&fs_info->balance_mutex);
4577 	} else {
4578 		mutex_unlock(&fs_info->balance_mutex);
4579 		/*
4580 		 * Lock released to allow other waiters to continue, we'll
4581 		 * reexamine the status again.
4582 		 */
4583 		mutex_lock(&fs_info->balance_mutex);
4584 
4585 		if (fs_info->balance_ctl) {
4586 			reset_balance_state(fs_info);
4587 			btrfs_exclop_finish(fs_info);
4588 			btrfs_info(fs_info, "balance: canceled");
4589 		}
4590 	}
4591 
4592 	BUG_ON(fs_info->balance_ctl ||
4593 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4594 	atomic_dec(&fs_info->balance_cancel_req);
4595 	mutex_unlock(&fs_info->balance_mutex);
4596 	return 0;
4597 }
4598 
4599 int btrfs_uuid_scan_kthread(void *data)
4600 {
4601 	struct btrfs_fs_info *fs_info = data;
4602 	struct btrfs_root *root = fs_info->tree_root;
4603 	struct btrfs_key key;
4604 	struct btrfs_path *path = NULL;
4605 	int ret = 0;
4606 	struct extent_buffer *eb;
4607 	int slot;
4608 	struct btrfs_root_item root_item;
4609 	u32 item_size;
4610 	struct btrfs_trans_handle *trans = NULL;
4611 	bool closing = false;
4612 
4613 	path = btrfs_alloc_path();
4614 	if (!path) {
4615 		ret = -ENOMEM;
4616 		goto out;
4617 	}
4618 
4619 	key.objectid = 0;
4620 	key.type = BTRFS_ROOT_ITEM_KEY;
4621 	key.offset = 0;
4622 
4623 	while (1) {
4624 		if (btrfs_fs_closing(fs_info)) {
4625 			closing = true;
4626 			break;
4627 		}
4628 		ret = btrfs_search_forward(root, &key, path,
4629 				BTRFS_OLDEST_GENERATION);
4630 		if (ret) {
4631 			if (ret > 0)
4632 				ret = 0;
4633 			break;
4634 		}
4635 
4636 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4637 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4638 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4639 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4640 			goto skip;
4641 
4642 		eb = path->nodes[0];
4643 		slot = path->slots[0];
4644 		item_size = btrfs_item_size_nr(eb, slot);
4645 		if (item_size < sizeof(root_item))
4646 			goto skip;
4647 
4648 		read_extent_buffer(eb, &root_item,
4649 				   btrfs_item_ptr_offset(eb, slot),
4650 				   (int)sizeof(root_item));
4651 		if (btrfs_root_refs(&root_item) == 0)
4652 			goto skip;
4653 
4654 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4655 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4656 			if (trans)
4657 				goto update_tree;
4658 
4659 			btrfs_release_path(path);
4660 			/*
4661 			 * 1 - subvol uuid item
4662 			 * 1 - received_subvol uuid item
4663 			 */
4664 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4665 			if (IS_ERR(trans)) {
4666 				ret = PTR_ERR(trans);
4667 				break;
4668 			}
4669 			continue;
4670 		} else {
4671 			goto skip;
4672 		}
4673 update_tree:
4674 		btrfs_release_path(path);
4675 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4676 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4677 						  BTRFS_UUID_KEY_SUBVOL,
4678 						  key.objectid);
4679 			if (ret < 0) {
4680 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4681 					ret);
4682 				break;
4683 			}
4684 		}
4685 
4686 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4687 			ret = btrfs_uuid_tree_add(trans,
4688 						  root_item.received_uuid,
4689 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4690 						  key.objectid);
4691 			if (ret < 0) {
4692 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4693 					ret);
4694 				break;
4695 			}
4696 		}
4697 
4698 skip:
4699 		btrfs_release_path(path);
4700 		if (trans) {
4701 			ret = btrfs_end_transaction(trans);
4702 			trans = NULL;
4703 			if (ret)
4704 				break;
4705 		}
4706 
4707 		if (key.offset < (u64)-1) {
4708 			key.offset++;
4709 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4710 			key.offset = 0;
4711 			key.type = BTRFS_ROOT_ITEM_KEY;
4712 		} else if (key.objectid < (u64)-1) {
4713 			key.offset = 0;
4714 			key.type = BTRFS_ROOT_ITEM_KEY;
4715 			key.objectid++;
4716 		} else {
4717 			break;
4718 		}
4719 		cond_resched();
4720 	}
4721 
4722 out:
4723 	btrfs_free_path(path);
4724 	if (trans && !IS_ERR(trans))
4725 		btrfs_end_transaction(trans);
4726 	if (ret)
4727 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4728 	else if (!closing)
4729 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4730 	up(&fs_info->uuid_tree_rescan_sem);
4731 	return 0;
4732 }
4733 
4734 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4735 {
4736 	struct btrfs_trans_handle *trans;
4737 	struct btrfs_root *tree_root = fs_info->tree_root;
4738 	struct btrfs_root *uuid_root;
4739 	struct task_struct *task;
4740 	int ret;
4741 
4742 	/*
4743 	 * 1 - root node
4744 	 * 1 - root item
4745 	 */
4746 	trans = btrfs_start_transaction(tree_root, 2);
4747 	if (IS_ERR(trans))
4748 		return PTR_ERR(trans);
4749 
4750 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4751 	if (IS_ERR(uuid_root)) {
4752 		ret = PTR_ERR(uuid_root);
4753 		btrfs_abort_transaction(trans, ret);
4754 		btrfs_end_transaction(trans);
4755 		return ret;
4756 	}
4757 
4758 	fs_info->uuid_root = uuid_root;
4759 
4760 	ret = btrfs_commit_transaction(trans);
4761 	if (ret)
4762 		return ret;
4763 
4764 	down(&fs_info->uuid_tree_rescan_sem);
4765 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4766 	if (IS_ERR(task)) {
4767 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4768 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4769 		up(&fs_info->uuid_tree_rescan_sem);
4770 		return PTR_ERR(task);
4771 	}
4772 
4773 	return 0;
4774 }
4775 
4776 /*
4777  * shrinking a device means finding all of the device extents past
4778  * the new size, and then following the back refs to the chunks.
4779  * The chunk relocation code actually frees the device extent
4780  */
4781 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4782 {
4783 	struct btrfs_fs_info *fs_info = device->fs_info;
4784 	struct btrfs_root *root = fs_info->dev_root;
4785 	struct btrfs_trans_handle *trans;
4786 	struct btrfs_dev_extent *dev_extent = NULL;
4787 	struct btrfs_path *path;
4788 	u64 length;
4789 	u64 chunk_offset;
4790 	int ret;
4791 	int slot;
4792 	int failed = 0;
4793 	bool retried = false;
4794 	struct extent_buffer *l;
4795 	struct btrfs_key key;
4796 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4797 	u64 old_total = btrfs_super_total_bytes(super_copy);
4798 	u64 old_size = btrfs_device_get_total_bytes(device);
4799 	u64 diff;
4800 	u64 start;
4801 
4802 	new_size = round_down(new_size, fs_info->sectorsize);
4803 	start = new_size;
4804 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4805 
4806 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4807 		return -EINVAL;
4808 
4809 	path = btrfs_alloc_path();
4810 	if (!path)
4811 		return -ENOMEM;
4812 
4813 	path->reada = READA_BACK;
4814 
4815 	trans = btrfs_start_transaction(root, 0);
4816 	if (IS_ERR(trans)) {
4817 		btrfs_free_path(path);
4818 		return PTR_ERR(trans);
4819 	}
4820 
4821 	mutex_lock(&fs_info->chunk_mutex);
4822 
4823 	btrfs_device_set_total_bytes(device, new_size);
4824 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4825 		device->fs_devices->total_rw_bytes -= diff;
4826 		atomic64_sub(diff, &fs_info->free_chunk_space);
4827 	}
4828 
4829 	/*
4830 	 * Once the device's size has been set to the new size, ensure all
4831 	 * in-memory chunks are synced to disk so that the loop below sees them
4832 	 * and relocates them accordingly.
4833 	 */
4834 	if (contains_pending_extent(device, &start, diff)) {
4835 		mutex_unlock(&fs_info->chunk_mutex);
4836 		ret = btrfs_commit_transaction(trans);
4837 		if (ret)
4838 			goto done;
4839 	} else {
4840 		mutex_unlock(&fs_info->chunk_mutex);
4841 		btrfs_end_transaction(trans);
4842 	}
4843 
4844 again:
4845 	key.objectid = device->devid;
4846 	key.offset = (u64)-1;
4847 	key.type = BTRFS_DEV_EXTENT_KEY;
4848 
4849 	do {
4850 		mutex_lock(&fs_info->reclaim_bgs_lock);
4851 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4852 		if (ret < 0) {
4853 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4854 			goto done;
4855 		}
4856 
4857 		ret = btrfs_previous_item(root, path, 0, key.type);
4858 		if (ret) {
4859 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4860 			if (ret < 0)
4861 				goto done;
4862 			ret = 0;
4863 			btrfs_release_path(path);
4864 			break;
4865 		}
4866 
4867 		l = path->nodes[0];
4868 		slot = path->slots[0];
4869 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4870 
4871 		if (key.objectid != device->devid) {
4872 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4873 			btrfs_release_path(path);
4874 			break;
4875 		}
4876 
4877 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4878 		length = btrfs_dev_extent_length(l, dev_extent);
4879 
4880 		if (key.offset + length <= new_size) {
4881 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4882 			btrfs_release_path(path);
4883 			break;
4884 		}
4885 
4886 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4887 		btrfs_release_path(path);
4888 
4889 		/*
4890 		 * We may be relocating the only data chunk we have,
4891 		 * which could potentially end up with losing data's
4892 		 * raid profile, so lets allocate an empty one in
4893 		 * advance.
4894 		 */
4895 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4896 		if (ret < 0) {
4897 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4898 			goto done;
4899 		}
4900 
4901 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4902 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4903 		if (ret == -ENOSPC) {
4904 			failed++;
4905 		} else if (ret) {
4906 			if (ret == -ETXTBSY) {
4907 				btrfs_warn(fs_info,
4908 		   "could not shrink block group %llu due to active swapfile",
4909 					   chunk_offset);
4910 			}
4911 			goto done;
4912 		}
4913 	} while (key.offset-- > 0);
4914 
4915 	if (failed && !retried) {
4916 		failed = 0;
4917 		retried = true;
4918 		goto again;
4919 	} else if (failed && retried) {
4920 		ret = -ENOSPC;
4921 		goto done;
4922 	}
4923 
4924 	/* Shrinking succeeded, else we would be at "done". */
4925 	trans = btrfs_start_transaction(root, 0);
4926 	if (IS_ERR(trans)) {
4927 		ret = PTR_ERR(trans);
4928 		goto done;
4929 	}
4930 
4931 	mutex_lock(&fs_info->chunk_mutex);
4932 	/* Clear all state bits beyond the shrunk device size */
4933 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4934 			  CHUNK_STATE_MASK);
4935 
4936 	btrfs_device_set_disk_total_bytes(device, new_size);
4937 	if (list_empty(&device->post_commit_list))
4938 		list_add_tail(&device->post_commit_list,
4939 			      &trans->transaction->dev_update_list);
4940 
4941 	WARN_ON(diff > old_total);
4942 	btrfs_set_super_total_bytes(super_copy,
4943 			round_down(old_total - diff, fs_info->sectorsize));
4944 	mutex_unlock(&fs_info->chunk_mutex);
4945 
4946 	btrfs_reserve_chunk_metadata(trans, false);
4947 	/* Now btrfs_update_device() will change the on-disk size. */
4948 	ret = btrfs_update_device(trans, device);
4949 	btrfs_trans_release_chunk_metadata(trans);
4950 	if (ret < 0) {
4951 		btrfs_abort_transaction(trans, ret);
4952 		btrfs_end_transaction(trans);
4953 	} else {
4954 		ret = btrfs_commit_transaction(trans);
4955 	}
4956 done:
4957 	btrfs_free_path(path);
4958 	if (ret) {
4959 		mutex_lock(&fs_info->chunk_mutex);
4960 		btrfs_device_set_total_bytes(device, old_size);
4961 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4962 			device->fs_devices->total_rw_bytes += diff;
4963 		atomic64_add(diff, &fs_info->free_chunk_space);
4964 		mutex_unlock(&fs_info->chunk_mutex);
4965 	}
4966 	return ret;
4967 }
4968 
4969 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4970 			   struct btrfs_key *key,
4971 			   struct btrfs_chunk *chunk, int item_size)
4972 {
4973 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4974 	struct btrfs_disk_key disk_key;
4975 	u32 array_size;
4976 	u8 *ptr;
4977 
4978 	lockdep_assert_held(&fs_info->chunk_mutex);
4979 
4980 	array_size = btrfs_super_sys_array_size(super_copy);
4981 	if (array_size + item_size + sizeof(disk_key)
4982 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4983 		return -EFBIG;
4984 
4985 	ptr = super_copy->sys_chunk_array + array_size;
4986 	btrfs_cpu_key_to_disk(&disk_key, key);
4987 	memcpy(ptr, &disk_key, sizeof(disk_key));
4988 	ptr += sizeof(disk_key);
4989 	memcpy(ptr, chunk, item_size);
4990 	item_size += sizeof(disk_key);
4991 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4992 
4993 	return 0;
4994 }
4995 
4996 /*
4997  * sort the devices in descending order by max_avail, total_avail
4998  */
4999 static int btrfs_cmp_device_info(const void *a, const void *b)
5000 {
5001 	const struct btrfs_device_info *di_a = a;
5002 	const struct btrfs_device_info *di_b = b;
5003 
5004 	if (di_a->max_avail > di_b->max_avail)
5005 		return -1;
5006 	if (di_a->max_avail < di_b->max_avail)
5007 		return 1;
5008 	if (di_a->total_avail > di_b->total_avail)
5009 		return -1;
5010 	if (di_a->total_avail < di_b->total_avail)
5011 		return 1;
5012 	return 0;
5013 }
5014 
5015 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5016 {
5017 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5018 		return;
5019 
5020 	btrfs_set_fs_incompat(info, RAID56);
5021 }
5022 
5023 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5024 {
5025 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5026 		return;
5027 
5028 	btrfs_set_fs_incompat(info, RAID1C34);
5029 }
5030 
5031 /*
5032  * Structure used internally for btrfs_create_chunk() function.
5033  * Wraps needed parameters.
5034  */
5035 struct alloc_chunk_ctl {
5036 	u64 start;
5037 	u64 type;
5038 	/* Total number of stripes to allocate */
5039 	int num_stripes;
5040 	/* sub_stripes info for map */
5041 	int sub_stripes;
5042 	/* Stripes per device */
5043 	int dev_stripes;
5044 	/* Maximum number of devices to use */
5045 	int devs_max;
5046 	/* Minimum number of devices to use */
5047 	int devs_min;
5048 	/* ndevs has to be a multiple of this */
5049 	int devs_increment;
5050 	/* Number of copies */
5051 	int ncopies;
5052 	/* Number of stripes worth of bytes to store parity information */
5053 	int nparity;
5054 	u64 max_stripe_size;
5055 	u64 max_chunk_size;
5056 	u64 dev_extent_min;
5057 	u64 stripe_size;
5058 	u64 chunk_size;
5059 	int ndevs;
5060 };
5061 
5062 static void init_alloc_chunk_ctl_policy_regular(
5063 				struct btrfs_fs_devices *fs_devices,
5064 				struct alloc_chunk_ctl *ctl)
5065 {
5066 	u64 type = ctl->type;
5067 
5068 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5069 		ctl->max_stripe_size = SZ_1G;
5070 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5071 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5072 		/* For larger filesystems, use larger metadata chunks */
5073 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5074 			ctl->max_stripe_size = SZ_1G;
5075 		else
5076 			ctl->max_stripe_size = SZ_256M;
5077 		ctl->max_chunk_size = ctl->max_stripe_size;
5078 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5079 		ctl->max_stripe_size = SZ_32M;
5080 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5081 		ctl->devs_max = min_t(int, ctl->devs_max,
5082 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5083 	} else {
5084 		BUG();
5085 	}
5086 
5087 	/* We don't want a chunk larger than 10% of writable space */
5088 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5089 				  ctl->max_chunk_size);
5090 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5091 }
5092 
5093 static void init_alloc_chunk_ctl_policy_zoned(
5094 				      struct btrfs_fs_devices *fs_devices,
5095 				      struct alloc_chunk_ctl *ctl)
5096 {
5097 	u64 zone_size = fs_devices->fs_info->zone_size;
5098 	u64 limit;
5099 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5100 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5101 	u64 min_chunk_size = min_data_stripes * zone_size;
5102 	u64 type = ctl->type;
5103 
5104 	ctl->max_stripe_size = zone_size;
5105 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5106 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5107 						 zone_size);
5108 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5109 		ctl->max_chunk_size = ctl->max_stripe_size;
5110 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5111 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5112 		ctl->devs_max = min_t(int, ctl->devs_max,
5113 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5114 	} else {
5115 		BUG();
5116 	}
5117 
5118 	/* We don't want a chunk larger than 10% of writable space */
5119 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5120 			       zone_size),
5121 		    min_chunk_size);
5122 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5123 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5124 }
5125 
5126 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5127 				 struct alloc_chunk_ctl *ctl)
5128 {
5129 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5130 
5131 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5132 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5133 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5134 	if (!ctl->devs_max)
5135 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5136 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5137 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5138 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5139 	ctl->nparity = btrfs_raid_array[index].nparity;
5140 	ctl->ndevs = 0;
5141 
5142 	switch (fs_devices->chunk_alloc_policy) {
5143 	case BTRFS_CHUNK_ALLOC_REGULAR:
5144 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5145 		break;
5146 	case BTRFS_CHUNK_ALLOC_ZONED:
5147 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5148 		break;
5149 	default:
5150 		BUG();
5151 	}
5152 }
5153 
5154 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5155 			      struct alloc_chunk_ctl *ctl,
5156 			      struct btrfs_device_info *devices_info)
5157 {
5158 	struct btrfs_fs_info *info = fs_devices->fs_info;
5159 	struct btrfs_device *device;
5160 	u64 total_avail;
5161 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5162 	int ret;
5163 	int ndevs = 0;
5164 	u64 max_avail;
5165 	u64 dev_offset;
5166 
5167 	/*
5168 	 * in the first pass through the devices list, we gather information
5169 	 * about the available holes on each device.
5170 	 */
5171 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5172 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5173 			WARN(1, KERN_ERR
5174 			       "BTRFS: read-only device in alloc_list\n");
5175 			continue;
5176 		}
5177 
5178 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5179 					&device->dev_state) ||
5180 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5181 			continue;
5182 
5183 		if (device->total_bytes > device->bytes_used)
5184 			total_avail = device->total_bytes - device->bytes_used;
5185 		else
5186 			total_avail = 0;
5187 
5188 		/* If there is no space on this device, skip it. */
5189 		if (total_avail < ctl->dev_extent_min)
5190 			continue;
5191 
5192 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5193 					   &max_avail);
5194 		if (ret && ret != -ENOSPC)
5195 			return ret;
5196 
5197 		if (ret == 0)
5198 			max_avail = dev_extent_want;
5199 
5200 		if (max_avail < ctl->dev_extent_min) {
5201 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5202 				btrfs_debug(info,
5203 			"%s: devid %llu has no free space, have=%llu want=%llu",
5204 					    __func__, device->devid, max_avail,
5205 					    ctl->dev_extent_min);
5206 			continue;
5207 		}
5208 
5209 		if (ndevs == fs_devices->rw_devices) {
5210 			WARN(1, "%s: found more than %llu devices\n",
5211 			     __func__, fs_devices->rw_devices);
5212 			break;
5213 		}
5214 		devices_info[ndevs].dev_offset = dev_offset;
5215 		devices_info[ndevs].max_avail = max_avail;
5216 		devices_info[ndevs].total_avail = total_avail;
5217 		devices_info[ndevs].dev = device;
5218 		++ndevs;
5219 	}
5220 	ctl->ndevs = ndevs;
5221 
5222 	/*
5223 	 * now sort the devices by hole size / available space
5224 	 */
5225 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5226 	     btrfs_cmp_device_info, NULL);
5227 
5228 	return 0;
5229 }
5230 
5231 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5232 				      struct btrfs_device_info *devices_info)
5233 {
5234 	/* Number of stripes that count for block group size */
5235 	int data_stripes;
5236 
5237 	/*
5238 	 * The primary goal is to maximize the number of stripes, so use as
5239 	 * many devices as possible, even if the stripes are not maximum sized.
5240 	 *
5241 	 * The DUP profile stores more than one stripe per device, the
5242 	 * max_avail is the total size so we have to adjust.
5243 	 */
5244 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5245 				   ctl->dev_stripes);
5246 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5247 
5248 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5249 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5250 
5251 	/*
5252 	 * Use the number of data stripes to figure out how big this chunk is
5253 	 * really going to be in terms of logical address space, and compare
5254 	 * that answer with the max chunk size. If it's higher, we try to
5255 	 * reduce stripe_size.
5256 	 */
5257 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5258 		/*
5259 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5260 		 * then use it, unless it ends up being even bigger than the
5261 		 * previous value we had already.
5262 		 */
5263 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5264 							data_stripes), SZ_16M),
5265 				       ctl->stripe_size);
5266 	}
5267 
5268 	/* Align to BTRFS_STRIPE_LEN */
5269 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5270 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5271 
5272 	return 0;
5273 }
5274 
5275 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5276 				    struct btrfs_device_info *devices_info)
5277 {
5278 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5279 	/* Number of stripes that count for block group size */
5280 	int data_stripes;
5281 
5282 	/*
5283 	 * It should hold because:
5284 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5285 	 */
5286 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5287 
5288 	ctl->stripe_size = zone_size;
5289 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5290 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5291 
5292 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5293 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5294 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5295 					     ctl->stripe_size) + ctl->nparity,
5296 				     ctl->dev_stripes);
5297 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5298 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5299 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5300 	}
5301 
5302 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5303 
5304 	return 0;
5305 }
5306 
5307 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5308 			      struct alloc_chunk_ctl *ctl,
5309 			      struct btrfs_device_info *devices_info)
5310 {
5311 	struct btrfs_fs_info *info = fs_devices->fs_info;
5312 
5313 	/*
5314 	 * Round down to number of usable stripes, devs_increment can be any
5315 	 * number so we can't use round_down() that requires power of 2, while
5316 	 * rounddown is safe.
5317 	 */
5318 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5319 
5320 	if (ctl->ndevs < ctl->devs_min) {
5321 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5322 			btrfs_debug(info,
5323 	"%s: not enough devices with free space: have=%d minimum required=%d",
5324 				    __func__, ctl->ndevs, ctl->devs_min);
5325 		}
5326 		return -ENOSPC;
5327 	}
5328 
5329 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5330 
5331 	switch (fs_devices->chunk_alloc_policy) {
5332 	case BTRFS_CHUNK_ALLOC_REGULAR:
5333 		return decide_stripe_size_regular(ctl, devices_info);
5334 	case BTRFS_CHUNK_ALLOC_ZONED:
5335 		return decide_stripe_size_zoned(ctl, devices_info);
5336 	default:
5337 		BUG();
5338 	}
5339 }
5340 
5341 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5342 			struct alloc_chunk_ctl *ctl,
5343 			struct btrfs_device_info *devices_info)
5344 {
5345 	struct btrfs_fs_info *info = trans->fs_info;
5346 	struct map_lookup *map = NULL;
5347 	struct extent_map_tree *em_tree;
5348 	struct btrfs_block_group *block_group;
5349 	struct extent_map *em;
5350 	u64 start = ctl->start;
5351 	u64 type = ctl->type;
5352 	int ret;
5353 	int i;
5354 	int j;
5355 
5356 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5357 	if (!map)
5358 		return ERR_PTR(-ENOMEM);
5359 	map->num_stripes = ctl->num_stripes;
5360 
5361 	for (i = 0; i < ctl->ndevs; ++i) {
5362 		for (j = 0; j < ctl->dev_stripes; ++j) {
5363 			int s = i * ctl->dev_stripes + j;
5364 			map->stripes[s].dev = devices_info[i].dev;
5365 			map->stripes[s].physical = devices_info[i].dev_offset +
5366 						   j * ctl->stripe_size;
5367 		}
5368 	}
5369 	map->stripe_len = BTRFS_STRIPE_LEN;
5370 	map->io_align = BTRFS_STRIPE_LEN;
5371 	map->io_width = BTRFS_STRIPE_LEN;
5372 	map->type = type;
5373 	map->sub_stripes = ctl->sub_stripes;
5374 
5375 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5376 
5377 	em = alloc_extent_map();
5378 	if (!em) {
5379 		kfree(map);
5380 		return ERR_PTR(-ENOMEM);
5381 	}
5382 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5383 	em->map_lookup = map;
5384 	em->start = start;
5385 	em->len = ctl->chunk_size;
5386 	em->block_start = 0;
5387 	em->block_len = em->len;
5388 	em->orig_block_len = ctl->stripe_size;
5389 
5390 	em_tree = &info->mapping_tree;
5391 	write_lock(&em_tree->lock);
5392 	ret = add_extent_mapping(em_tree, em, 0);
5393 	if (ret) {
5394 		write_unlock(&em_tree->lock);
5395 		free_extent_map(em);
5396 		return ERR_PTR(ret);
5397 	}
5398 	write_unlock(&em_tree->lock);
5399 
5400 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5401 	if (IS_ERR(block_group))
5402 		goto error_del_extent;
5403 
5404 	for (i = 0; i < map->num_stripes; i++) {
5405 		struct btrfs_device *dev = map->stripes[i].dev;
5406 
5407 		btrfs_device_set_bytes_used(dev,
5408 					    dev->bytes_used + ctl->stripe_size);
5409 		if (list_empty(&dev->post_commit_list))
5410 			list_add_tail(&dev->post_commit_list,
5411 				      &trans->transaction->dev_update_list);
5412 	}
5413 
5414 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5415 		     &info->free_chunk_space);
5416 
5417 	free_extent_map(em);
5418 	check_raid56_incompat_flag(info, type);
5419 	check_raid1c34_incompat_flag(info, type);
5420 
5421 	return block_group;
5422 
5423 error_del_extent:
5424 	write_lock(&em_tree->lock);
5425 	remove_extent_mapping(em_tree, em);
5426 	write_unlock(&em_tree->lock);
5427 
5428 	/* One for our allocation */
5429 	free_extent_map(em);
5430 	/* One for the tree reference */
5431 	free_extent_map(em);
5432 
5433 	return block_group;
5434 }
5435 
5436 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5437 					    u64 type)
5438 {
5439 	struct btrfs_fs_info *info = trans->fs_info;
5440 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5441 	struct btrfs_device_info *devices_info = NULL;
5442 	struct alloc_chunk_ctl ctl;
5443 	struct btrfs_block_group *block_group;
5444 	int ret;
5445 
5446 	lockdep_assert_held(&info->chunk_mutex);
5447 
5448 	if (!alloc_profile_is_valid(type, 0)) {
5449 		ASSERT(0);
5450 		return ERR_PTR(-EINVAL);
5451 	}
5452 
5453 	if (list_empty(&fs_devices->alloc_list)) {
5454 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5455 			btrfs_debug(info, "%s: no writable device", __func__);
5456 		return ERR_PTR(-ENOSPC);
5457 	}
5458 
5459 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5460 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5461 		ASSERT(0);
5462 		return ERR_PTR(-EINVAL);
5463 	}
5464 
5465 	ctl.start = find_next_chunk(info);
5466 	ctl.type = type;
5467 	init_alloc_chunk_ctl(fs_devices, &ctl);
5468 
5469 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5470 			       GFP_NOFS);
5471 	if (!devices_info)
5472 		return ERR_PTR(-ENOMEM);
5473 
5474 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5475 	if (ret < 0) {
5476 		block_group = ERR_PTR(ret);
5477 		goto out;
5478 	}
5479 
5480 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5481 	if (ret < 0) {
5482 		block_group = ERR_PTR(ret);
5483 		goto out;
5484 	}
5485 
5486 	block_group = create_chunk(trans, &ctl, devices_info);
5487 
5488 out:
5489 	kfree(devices_info);
5490 	return block_group;
5491 }
5492 
5493 /*
5494  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5495  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5496  * chunks.
5497  *
5498  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5499  * phases.
5500  */
5501 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5502 				     struct btrfs_block_group *bg)
5503 {
5504 	struct btrfs_fs_info *fs_info = trans->fs_info;
5505 	struct btrfs_root *extent_root = fs_info->extent_root;
5506 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5507 	struct btrfs_key key;
5508 	struct btrfs_chunk *chunk;
5509 	struct btrfs_stripe *stripe;
5510 	struct extent_map *em;
5511 	struct map_lookup *map;
5512 	size_t item_size;
5513 	int i;
5514 	int ret;
5515 
5516 	/*
5517 	 * We take the chunk_mutex for 2 reasons:
5518 	 *
5519 	 * 1) Updates and insertions in the chunk btree must be done while holding
5520 	 *    the chunk_mutex, as well as updating the system chunk array in the
5521 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5522 	 *    details;
5523 	 *
5524 	 * 2) To prevent races with the final phase of a device replace operation
5525 	 *    that replaces the device object associated with the map's stripes,
5526 	 *    because the device object's id can change at any time during that
5527 	 *    final phase of the device replace operation
5528 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5529 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5530 	 *    which would cause a failure when updating the device item, which does
5531 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5532 	 *    Here we can't use the device_list_mutex because our caller already
5533 	 *    has locked the chunk_mutex, and the final phase of device replace
5534 	 *    acquires both mutexes - first the device_list_mutex and then the
5535 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5536 	 *    concurrent device replace.
5537 	 */
5538 	lockdep_assert_held(&fs_info->chunk_mutex);
5539 
5540 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5541 	if (IS_ERR(em)) {
5542 		ret = PTR_ERR(em);
5543 		btrfs_abort_transaction(trans, ret);
5544 		return ret;
5545 	}
5546 
5547 	map = em->map_lookup;
5548 	item_size = btrfs_chunk_item_size(map->num_stripes);
5549 
5550 	chunk = kzalloc(item_size, GFP_NOFS);
5551 	if (!chunk) {
5552 		ret = -ENOMEM;
5553 		btrfs_abort_transaction(trans, ret);
5554 		goto out;
5555 	}
5556 
5557 	for (i = 0; i < map->num_stripes; i++) {
5558 		struct btrfs_device *device = map->stripes[i].dev;
5559 
5560 		ret = btrfs_update_device(trans, device);
5561 		if (ret)
5562 			goto out;
5563 	}
5564 
5565 	stripe = &chunk->stripe;
5566 	for (i = 0; i < map->num_stripes; i++) {
5567 		struct btrfs_device *device = map->stripes[i].dev;
5568 		const u64 dev_offset = map->stripes[i].physical;
5569 
5570 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5571 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5572 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5573 		stripe++;
5574 	}
5575 
5576 	btrfs_set_stack_chunk_length(chunk, bg->length);
5577 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5578 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5579 	btrfs_set_stack_chunk_type(chunk, map->type);
5580 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5581 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5582 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5583 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5584 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5585 
5586 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5587 	key.type = BTRFS_CHUNK_ITEM_KEY;
5588 	key.offset = bg->start;
5589 
5590 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5591 	if (ret)
5592 		goto out;
5593 
5594 	bg->chunk_item_inserted = 1;
5595 
5596 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5597 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5598 		if (ret)
5599 			goto out;
5600 	}
5601 
5602 out:
5603 	kfree(chunk);
5604 	free_extent_map(em);
5605 	return ret;
5606 }
5607 
5608 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5609 {
5610 	struct btrfs_fs_info *fs_info = trans->fs_info;
5611 	u64 alloc_profile;
5612 	struct btrfs_block_group *meta_bg;
5613 	struct btrfs_block_group *sys_bg;
5614 
5615 	/*
5616 	 * When adding a new device for sprouting, the seed device is read-only
5617 	 * so we must first allocate a metadata and a system chunk. But before
5618 	 * adding the block group items to the extent, device and chunk btrees,
5619 	 * we must first:
5620 	 *
5621 	 * 1) Create both chunks without doing any changes to the btrees, as
5622 	 *    otherwise we would get -ENOSPC since the block groups from the
5623 	 *    seed device are read-only;
5624 	 *
5625 	 * 2) Add the device item for the new sprout device - finishing the setup
5626 	 *    of a new block group requires updating the device item in the chunk
5627 	 *    btree, so it must exist when we attempt to do it. The previous step
5628 	 *    ensures this does not fail with -ENOSPC.
5629 	 *
5630 	 * After that we can add the block group items to their btrees:
5631 	 * update existing device item in the chunk btree, add a new block group
5632 	 * item to the extent btree, add a new chunk item to the chunk btree and
5633 	 * finally add the new device extent items to the devices btree.
5634 	 */
5635 
5636 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5637 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5638 	if (IS_ERR(meta_bg))
5639 		return PTR_ERR(meta_bg);
5640 
5641 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5642 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5643 	if (IS_ERR(sys_bg))
5644 		return PTR_ERR(sys_bg);
5645 
5646 	return 0;
5647 }
5648 
5649 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5650 {
5651 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5652 
5653 	return btrfs_raid_array[index].tolerated_failures;
5654 }
5655 
5656 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5657 {
5658 	struct extent_map *em;
5659 	struct map_lookup *map;
5660 	int miss_ndevs = 0;
5661 	int i;
5662 	bool ret = true;
5663 
5664 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5665 	if (IS_ERR(em))
5666 		return false;
5667 
5668 	map = em->map_lookup;
5669 	for (i = 0; i < map->num_stripes; i++) {
5670 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5671 					&map->stripes[i].dev->dev_state)) {
5672 			miss_ndevs++;
5673 			continue;
5674 		}
5675 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5676 					&map->stripes[i].dev->dev_state)) {
5677 			ret = false;
5678 			goto end;
5679 		}
5680 	}
5681 
5682 	/*
5683 	 * If the number of missing devices is larger than max errors, we can
5684 	 * not write the data into that chunk successfully.
5685 	 */
5686 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5687 		ret = false;
5688 end:
5689 	free_extent_map(em);
5690 	return ret;
5691 }
5692 
5693 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5694 {
5695 	struct extent_map *em;
5696 
5697 	while (1) {
5698 		write_lock(&tree->lock);
5699 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5700 		if (em)
5701 			remove_extent_mapping(tree, em);
5702 		write_unlock(&tree->lock);
5703 		if (!em)
5704 			break;
5705 		/* once for us */
5706 		free_extent_map(em);
5707 		/* once for the tree */
5708 		free_extent_map(em);
5709 	}
5710 }
5711 
5712 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5713 {
5714 	struct extent_map *em;
5715 	struct map_lookup *map;
5716 	int ret;
5717 
5718 	em = btrfs_get_chunk_map(fs_info, logical, len);
5719 	if (IS_ERR(em))
5720 		/*
5721 		 * We could return errors for these cases, but that could get
5722 		 * ugly and we'd probably do the same thing which is just not do
5723 		 * anything else and exit, so return 1 so the callers don't try
5724 		 * to use other copies.
5725 		 */
5726 		return 1;
5727 
5728 	map = em->map_lookup;
5729 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5730 		ret = map->num_stripes;
5731 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5732 		ret = map->sub_stripes;
5733 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5734 		ret = 2;
5735 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5736 		/*
5737 		 * There could be two corrupted data stripes, we need
5738 		 * to loop retry in order to rebuild the correct data.
5739 		 *
5740 		 * Fail a stripe at a time on every retry except the
5741 		 * stripe under reconstruction.
5742 		 */
5743 		ret = map->num_stripes;
5744 	else
5745 		ret = 1;
5746 	free_extent_map(em);
5747 
5748 	down_read(&fs_info->dev_replace.rwsem);
5749 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5750 	    fs_info->dev_replace.tgtdev)
5751 		ret++;
5752 	up_read(&fs_info->dev_replace.rwsem);
5753 
5754 	return ret;
5755 }
5756 
5757 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5758 				    u64 logical)
5759 {
5760 	struct extent_map *em;
5761 	struct map_lookup *map;
5762 	unsigned long len = fs_info->sectorsize;
5763 
5764 	em = btrfs_get_chunk_map(fs_info, logical, len);
5765 
5766 	if (!WARN_ON(IS_ERR(em))) {
5767 		map = em->map_lookup;
5768 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5769 			len = map->stripe_len * nr_data_stripes(map);
5770 		free_extent_map(em);
5771 	}
5772 	return len;
5773 }
5774 
5775 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5776 {
5777 	struct extent_map *em;
5778 	struct map_lookup *map;
5779 	int ret = 0;
5780 
5781 	em = btrfs_get_chunk_map(fs_info, logical, len);
5782 
5783 	if(!WARN_ON(IS_ERR(em))) {
5784 		map = em->map_lookup;
5785 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5786 			ret = 1;
5787 		free_extent_map(em);
5788 	}
5789 	return ret;
5790 }
5791 
5792 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5793 			    struct map_lookup *map, int first,
5794 			    int dev_replace_is_ongoing)
5795 {
5796 	int i;
5797 	int num_stripes;
5798 	int preferred_mirror;
5799 	int tolerance;
5800 	struct btrfs_device *srcdev;
5801 
5802 	ASSERT((map->type &
5803 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5804 
5805 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5806 		num_stripes = map->sub_stripes;
5807 	else
5808 		num_stripes = map->num_stripes;
5809 
5810 	switch (fs_info->fs_devices->read_policy) {
5811 	default:
5812 		/* Shouldn't happen, just warn and use pid instead of failing */
5813 		btrfs_warn_rl(fs_info,
5814 			      "unknown read_policy type %u, reset to pid",
5815 			      fs_info->fs_devices->read_policy);
5816 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5817 		fallthrough;
5818 	case BTRFS_READ_POLICY_PID:
5819 		preferred_mirror = first + (current->pid % num_stripes);
5820 		break;
5821 	}
5822 
5823 	if (dev_replace_is_ongoing &&
5824 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5825 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5826 		srcdev = fs_info->dev_replace.srcdev;
5827 	else
5828 		srcdev = NULL;
5829 
5830 	/*
5831 	 * try to avoid the drive that is the source drive for a
5832 	 * dev-replace procedure, only choose it if no other non-missing
5833 	 * mirror is available
5834 	 */
5835 	for (tolerance = 0; tolerance < 2; tolerance++) {
5836 		if (map->stripes[preferred_mirror].dev->bdev &&
5837 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5838 			return preferred_mirror;
5839 		for (i = first; i < first + num_stripes; i++) {
5840 			if (map->stripes[i].dev->bdev &&
5841 			    (tolerance || map->stripes[i].dev != srcdev))
5842 				return i;
5843 		}
5844 	}
5845 
5846 	/* we couldn't find one that doesn't fail.  Just return something
5847 	 * and the io error handling code will clean up eventually
5848 	 */
5849 	return preferred_mirror;
5850 }
5851 
5852 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5853 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5854 {
5855 	int i;
5856 	int again = 1;
5857 
5858 	while (again) {
5859 		again = 0;
5860 		for (i = 0; i < num_stripes - 1; i++) {
5861 			/* Swap if parity is on a smaller index */
5862 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5863 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5864 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5865 				again = 1;
5866 			}
5867 		}
5868 	}
5869 }
5870 
5871 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5872 						       int total_stripes,
5873 						       int real_stripes)
5874 {
5875 	struct btrfs_io_context *bioc = kzalloc(
5876 		 /* The size of btrfs_io_context */
5877 		sizeof(struct btrfs_io_context) +
5878 		/* Plus the variable array for the stripes */
5879 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5880 		/* Plus the variable array for the tgt dev */
5881 		sizeof(int) * (real_stripes) +
5882 		/*
5883 		 * Plus the raid_map, which includes both the tgt dev
5884 		 * and the stripes.
5885 		 */
5886 		sizeof(u64) * (total_stripes),
5887 		GFP_NOFS|__GFP_NOFAIL);
5888 
5889 	atomic_set(&bioc->error, 0);
5890 	refcount_set(&bioc->refs, 1);
5891 
5892 	bioc->fs_info = fs_info;
5893 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5894 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5895 
5896 	return bioc;
5897 }
5898 
5899 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5900 {
5901 	WARN_ON(!refcount_read(&bioc->refs));
5902 	refcount_inc(&bioc->refs);
5903 }
5904 
5905 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5906 {
5907 	if (!bioc)
5908 		return;
5909 	if (refcount_dec_and_test(&bioc->refs))
5910 		kfree(bioc);
5911 }
5912 
5913 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5914 /*
5915  * Please note that, discard won't be sent to target device of device
5916  * replace.
5917  */
5918 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5919 					 u64 logical, u64 *length_ret,
5920 					 struct btrfs_io_context **bioc_ret)
5921 {
5922 	struct extent_map *em;
5923 	struct map_lookup *map;
5924 	struct btrfs_io_context *bioc;
5925 	u64 length = *length_ret;
5926 	u64 offset;
5927 	u64 stripe_nr;
5928 	u64 stripe_nr_end;
5929 	u64 stripe_end_offset;
5930 	u64 stripe_cnt;
5931 	u64 stripe_len;
5932 	u64 stripe_offset;
5933 	u64 num_stripes;
5934 	u32 stripe_index;
5935 	u32 factor = 0;
5936 	u32 sub_stripes = 0;
5937 	u64 stripes_per_dev = 0;
5938 	u32 remaining_stripes = 0;
5939 	u32 last_stripe = 0;
5940 	int ret = 0;
5941 	int i;
5942 
5943 	/* Discard always returns a bioc. */
5944 	ASSERT(bioc_ret);
5945 
5946 	em = btrfs_get_chunk_map(fs_info, logical, length);
5947 	if (IS_ERR(em))
5948 		return PTR_ERR(em);
5949 
5950 	map = em->map_lookup;
5951 	/* we don't discard raid56 yet */
5952 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5953 		ret = -EOPNOTSUPP;
5954 		goto out;
5955 	}
5956 
5957 	offset = logical - em->start;
5958 	length = min_t(u64, em->start + em->len - logical, length);
5959 	*length_ret = length;
5960 
5961 	stripe_len = map->stripe_len;
5962 	/*
5963 	 * stripe_nr counts the total number of stripes we have to stride
5964 	 * to get to this block
5965 	 */
5966 	stripe_nr = div64_u64(offset, stripe_len);
5967 
5968 	/* stripe_offset is the offset of this block in its stripe */
5969 	stripe_offset = offset - stripe_nr * stripe_len;
5970 
5971 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5972 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5973 	stripe_cnt = stripe_nr_end - stripe_nr;
5974 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5975 			    (offset + length);
5976 	/*
5977 	 * after this, stripe_nr is the number of stripes on this
5978 	 * device we have to walk to find the data, and stripe_index is
5979 	 * the number of our device in the stripe array
5980 	 */
5981 	num_stripes = 1;
5982 	stripe_index = 0;
5983 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5984 			 BTRFS_BLOCK_GROUP_RAID10)) {
5985 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5986 			sub_stripes = 1;
5987 		else
5988 			sub_stripes = map->sub_stripes;
5989 
5990 		factor = map->num_stripes / sub_stripes;
5991 		num_stripes = min_t(u64, map->num_stripes,
5992 				    sub_stripes * stripe_cnt);
5993 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5994 		stripe_index *= sub_stripes;
5995 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5996 					      &remaining_stripes);
5997 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5998 		last_stripe *= sub_stripes;
5999 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6000 				BTRFS_BLOCK_GROUP_DUP)) {
6001 		num_stripes = map->num_stripes;
6002 	} else {
6003 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6004 					&stripe_index);
6005 	}
6006 
6007 	bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6008 	if (!bioc) {
6009 		ret = -ENOMEM;
6010 		goto out;
6011 	}
6012 
6013 	for (i = 0; i < num_stripes; i++) {
6014 		bioc->stripes[i].physical =
6015 			map->stripes[stripe_index].physical +
6016 			stripe_offset + stripe_nr * map->stripe_len;
6017 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6018 
6019 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6020 				 BTRFS_BLOCK_GROUP_RAID10)) {
6021 			bioc->stripes[i].length = stripes_per_dev *
6022 				map->stripe_len;
6023 
6024 			if (i / sub_stripes < remaining_stripes)
6025 				bioc->stripes[i].length += map->stripe_len;
6026 
6027 			/*
6028 			 * Special for the first stripe and
6029 			 * the last stripe:
6030 			 *
6031 			 * |-------|...|-------|
6032 			 *     |----------|
6033 			 *    off     end_off
6034 			 */
6035 			if (i < sub_stripes)
6036 				bioc->stripes[i].length -= stripe_offset;
6037 
6038 			if (stripe_index >= last_stripe &&
6039 			    stripe_index <= (last_stripe +
6040 					     sub_stripes - 1))
6041 				bioc->stripes[i].length -= stripe_end_offset;
6042 
6043 			if (i == sub_stripes - 1)
6044 				stripe_offset = 0;
6045 		} else {
6046 			bioc->stripes[i].length = length;
6047 		}
6048 
6049 		stripe_index++;
6050 		if (stripe_index == map->num_stripes) {
6051 			stripe_index = 0;
6052 			stripe_nr++;
6053 		}
6054 	}
6055 
6056 	*bioc_ret = bioc;
6057 	bioc->map_type = map->type;
6058 	bioc->num_stripes = num_stripes;
6059 out:
6060 	free_extent_map(em);
6061 	return ret;
6062 }
6063 
6064 /*
6065  * In dev-replace case, for repair case (that's the only case where the mirror
6066  * is selected explicitly when calling btrfs_map_block), blocks left of the
6067  * left cursor can also be read from the target drive.
6068  *
6069  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6070  * array of stripes.
6071  * For READ, it also needs to be supported using the same mirror number.
6072  *
6073  * If the requested block is not left of the left cursor, EIO is returned. This
6074  * can happen because btrfs_num_copies() returns one more in the dev-replace
6075  * case.
6076  */
6077 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6078 					 u64 logical, u64 length,
6079 					 u64 srcdev_devid, int *mirror_num,
6080 					 u64 *physical)
6081 {
6082 	struct btrfs_io_context *bioc = NULL;
6083 	int num_stripes;
6084 	int index_srcdev = 0;
6085 	int found = 0;
6086 	u64 physical_of_found = 0;
6087 	int i;
6088 	int ret = 0;
6089 
6090 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6091 				logical, &length, &bioc, 0, 0);
6092 	if (ret) {
6093 		ASSERT(bioc == NULL);
6094 		return ret;
6095 	}
6096 
6097 	num_stripes = bioc->num_stripes;
6098 	if (*mirror_num > num_stripes) {
6099 		/*
6100 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6101 		 * that means that the requested area is not left of the left
6102 		 * cursor
6103 		 */
6104 		btrfs_put_bioc(bioc);
6105 		return -EIO;
6106 	}
6107 
6108 	/*
6109 	 * process the rest of the function using the mirror_num of the source
6110 	 * drive. Therefore look it up first.  At the end, patch the device
6111 	 * pointer to the one of the target drive.
6112 	 */
6113 	for (i = 0; i < num_stripes; i++) {
6114 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6115 			continue;
6116 
6117 		/*
6118 		 * In case of DUP, in order to keep it simple, only add the
6119 		 * mirror with the lowest physical address
6120 		 */
6121 		if (found &&
6122 		    physical_of_found <= bioc->stripes[i].physical)
6123 			continue;
6124 
6125 		index_srcdev = i;
6126 		found = 1;
6127 		physical_of_found = bioc->stripes[i].physical;
6128 	}
6129 
6130 	btrfs_put_bioc(bioc);
6131 
6132 	ASSERT(found);
6133 	if (!found)
6134 		return -EIO;
6135 
6136 	*mirror_num = index_srcdev + 1;
6137 	*physical = physical_of_found;
6138 	return ret;
6139 }
6140 
6141 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6142 {
6143 	struct btrfs_block_group *cache;
6144 	bool ret;
6145 
6146 	/* Non zoned filesystem does not use "to_copy" flag */
6147 	if (!btrfs_is_zoned(fs_info))
6148 		return false;
6149 
6150 	cache = btrfs_lookup_block_group(fs_info, logical);
6151 
6152 	spin_lock(&cache->lock);
6153 	ret = cache->to_copy;
6154 	spin_unlock(&cache->lock);
6155 
6156 	btrfs_put_block_group(cache);
6157 	return ret;
6158 }
6159 
6160 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6161 				      struct btrfs_io_context **bioc_ret,
6162 				      struct btrfs_dev_replace *dev_replace,
6163 				      u64 logical,
6164 				      int *num_stripes_ret, int *max_errors_ret)
6165 {
6166 	struct btrfs_io_context *bioc = *bioc_ret;
6167 	u64 srcdev_devid = dev_replace->srcdev->devid;
6168 	int tgtdev_indexes = 0;
6169 	int num_stripes = *num_stripes_ret;
6170 	int max_errors = *max_errors_ret;
6171 	int i;
6172 
6173 	if (op == BTRFS_MAP_WRITE) {
6174 		int index_where_to_add;
6175 
6176 		/*
6177 		 * A block group which have "to_copy" set will eventually
6178 		 * copied by dev-replace process. We can avoid cloning IO here.
6179 		 */
6180 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6181 			return;
6182 
6183 		/*
6184 		 * duplicate the write operations while the dev replace
6185 		 * procedure is running. Since the copying of the old disk to
6186 		 * the new disk takes place at run time while the filesystem is
6187 		 * mounted writable, the regular write operations to the old
6188 		 * disk have to be duplicated to go to the new disk as well.
6189 		 *
6190 		 * Note that device->missing is handled by the caller, and that
6191 		 * the write to the old disk is already set up in the stripes
6192 		 * array.
6193 		 */
6194 		index_where_to_add = num_stripes;
6195 		for (i = 0; i < num_stripes; i++) {
6196 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6197 				/* write to new disk, too */
6198 				struct btrfs_io_stripe *new =
6199 					bioc->stripes + index_where_to_add;
6200 				struct btrfs_io_stripe *old =
6201 					bioc->stripes + i;
6202 
6203 				new->physical = old->physical;
6204 				new->length = old->length;
6205 				new->dev = dev_replace->tgtdev;
6206 				bioc->tgtdev_map[i] = index_where_to_add;
6207 				index_where_to_add++;
6208 				max_errors++;
6209 				tgtdev_indexes++;
6210 			}
6211 		}
6212 		num_stripes = index_where_to_add;
6213 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6214 		int index_srcdev = 0;
6215 		int found = 0;
6216 		u64 physical_of_found = 0;
6217 
6218 		/*
6219 		 * During the dev-replace procedure, the target drive can also
6220 		 * be used to read data in case it is needed to repair a corrupt
6221 		 * block elsewhere. This is possible if the requested area is
6222 		 * left of the left cursor. In this area, the target drive is a
6223 		 * full copy of the source drive.
6224 		 */
6225 		for (i = 0; i < num_stripes; i++) {
6226 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6227 				/*
6228 				 * In case of DUP, in order to keep it simple,
6229 				 * only add the mirror with the lowest physical
6230 				 * address
6231 				 */
6232 				if (found &&
6233 				    physical_of_found <= bioc->stripes[i].physical)
6234 					continue;
6235 				index_srcdev = i;
6236 				found = 1;
6237 				physical_of_found = bioc->stripes[i].physical;
6238 			}
6239 		}
6240 		if (found) {
6241 			struct btrfs_io_stripe *tgtdev_stripe =
6242 				bioc->stripes + num_stripes;
6243 
6244 			tgtdev_stripe->physical = physical_of_found;
6245 			tgtdev_stripe->length =
6246 				bioc->stripes[index_srcdev].length;
6247 			tgtdev_stripe->dev = dev_replace->tgtdev;
6248 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6249 
6250 			tgtdev_indexes++;
6251 			num_stripes++;
6252 		}
6253 	}
6254 
6255 	*num_stripes_ret = num_stripes;
6256 	*max_errors_ret = max_errors;
6257 	bioc->num_tgtdevs = tgtdev_indexes;
6258 	*bioc_ret = bioc;
6259 }
6260 
6261 static bool need_full_stripe(enum btrfs_map_op op)
6262 {
6263 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6264 }
6265 
6266 /*
6267  * Calculate the geometry of a particular (address, len) tuple. This
6268  * information is used to calculate how big a particular bio can get before it
6269  * straddles a stripe.
6270  *
6271  * @fs_info: the filesystem
6272  * @em:      mapping containing the logical extent
6273  * @op:      type of operation - write or read
6274  * @logical: address that we want to figure out the geometry of
6275  * @io_geom: pointer used to return values
6276  *
6277  * Returns < 0 in case a chunk for the given logical address cannot be found,
6278  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6279  */
6280 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6281 			  enum btrfs_map_op op, u64 logical,
6282 			  struct btrfs_io_geometry *io_geom)
6283 {
6284 	struct map_lookup *map;
6285 	u64 len;
6286 	u64 offset;
6287 	u64 stripe_offset;
6288 	u64 stripe_nr;
6289 	u64 stripe_len;
6290 	u64 raid56_full_stripe_start = (u64)-1;
6291 	int data_stripes;
6292 
6293 	ASSERT(op != BTRFS_MAP_DISCARD);
6294 
6295 	map = em->map_lookup;
6296 	/* Offset of this logical address in the chunk */
6297 	offset = logical - em->start;
6298 	/* Len of a stripe in a chunk */
6299 	stripe_len = map->stripe_len;
6300 	/* Stripe where this block falls in */
6301 	stripe_nr = div64_u64(offset, stripe_len);
6302 	/* Offset of stripe in the chunk */
6303 	stripe_offset = stripe_nr * stripe_len;
6304 	if (offset < stripe_offset) {
6305 		btrfs_crit(fs_info,
6306 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6307 			stripe_offset, offset, em->start, logical, stripe_len);
6308 		return -EINVAL;
6309 	}
6310 
6311 	/* stripe_offset is the offset of this block in its stripe */
6312 	stripe_offset = offset - stripe_offset;
6313 	data_stripes = nr_data_stripes(map);
6314 
6315 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6316 		u64 max_len = stripe_len - stripe_offset;
6317 
6318 		/*
6319 		 * In case of raid56, we need to know the stripe aligned start
6320 		 */
6321 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6322 			unsigned long full_stripe_len = stripe_len * data_stripes;
6323 			raid56_full_stripe_start = offset;
6324 
6325 			/*
6326 			 * Allow a write of a full stripe, but make sure we
6327 			 * don't allow straddling of stripes
6328 			 */
6329 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6330 					full_stripe_len);
6331 			raid56_full_stripe_start *= full_stripe_len;
6332 
6333 			/*
6334 			 * For writes to RAID[56], allow a full stripeset across
6335 			 * all disks. For other RAID types and for RAID[56]
6336 			 * reads, just allow a single stripe (on a single disk).
6337 			 */
6338 			if (op == BTRFS_MAP_WRITE) {
6339 				max_len = stripe_len * data_stripes -
6340 					  (offset - raid56_full_stripe_start);
6341 			}
6342 		}
6343 		len = min_t(u64, em->len - offset, max_len);
6344 	} else {
6345 		len = em->len - offset;
6346 	}
6347 
6348 	io_geom->len = len;
6349 	io_geom->offset = offset;
6350 	io_geom->stripe_len = stripe_len;
6351 	io_geom->stripe_nr = stripe_nr;
6352 	io_geom->stripe_offset = stripe_offset;
6353 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6354 
6355 	return 0;
6356 }
6357 
6358 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6359 			     enum btrfs_map_op op,
6360 			     u64 logical, u64 *length,
6361 			     struct btrfs_io_context **bioc_ret,
6362 			     int mirror_num, int need_raid_map)
6363 {
6364 	struct extent_map *em;
6365 	struct map_lookup *map;
6366 	u64 stripe_offset;
6367 	u64 stripe_nr;
6368 	u64 stripe_len;
6369 	u32 stripe_index;
6370 	int data_stripes;
6371 	int i;
6372 	int ret = 0;
6373 	int num_stripes;
6374 	int max_errors = 0;
6375 	int tgtdev_indexes = 0;
6376 	struct btrfs_io_context *bioc = NULL;
6377 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6378 	int dev_replace_is_ongoing = 0;
6379 	int num_alloc_stripes;
6380 	int patch_the_first_stripe_for_dev_replace = 0;
6381 	u64 physical_to_patch_in_first_stripe = 0;
6382 	u64 raid56_full_stripe_start = (u64)-1;
6383 	struct btrfs_io_geometry geom;
6384 
6385 	ASSERT(bioc_ret);
6386 	ASSERT(op != BTRFS_MAP_DISCARD);
6387 
6388 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6389 	ASSERT(!IS_ERR(em));
6390 
6391 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6392 	if (ret < 0)
6393 		return ret;
6394 
6395 	map = em->map_lookup;
6396 
6397 	*length = geom.len;
6398 	stripe_len = geom.stripe_len;
6399 	stripe_nr = geom.stripe_nr;
6400 	stripe_offset = geom.stripe_offset;
6401 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6402 	data_stripes = nr_data_stripes(map);
6403 
6404 	down_read(&dev_replace->rwsem);
6405 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6406 	/*
6407 	 * Hold the semaphore for read during the whole operation, write is
6408 	 * requested at commit time but must wait.
6409 	 */
6410 	if (!dev_replace_is_ongoing)
6411 		up_read(&dev_replace->rwsem);
6412 
6413 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6414 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6415 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6416 						    dev_replace->srcdev->devid,
6417 						    &mirror_num,
6418 					    &physical_to_patch_in_first_stripe);
6419 		if (ret)
6420 			goto out;
6421 		else
6422 			patch_the_first_stripe_for_dev_replace = 1;
6423 	} else if (mirror_num > map->num_stripes) {
6424 		mirror_num = 0;
6425 	}
6426 
6427 	num_stripes = 1;
6428 	stripe_index = 0;
6429 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6430 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6431 				&stripe_index);
6432 		if (!need_full_stripe(op))
6433 			mirror_num = 1;
6434 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6435 		if (need_full_stripe(op))
6436 			num_stripes = map->num_stripes;
6437 		else if (mirror_num)
6438 			stripe_index = mirror_num - 1;
6439 		else {
6440 			stripe_index = find_live_mirror(fs_info, map, 0,
6441 					    dev_replace_is_ongoing);
6442 			mirror_num = stripe_index + 1;
6443 		}
6444 
6445 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6446 		if (need_full_stripe(op)) {
6447 			num_stripes = map->num_stripes;
6448 		} else if (mirror_num) {
6449 			stripe_index = mirror_num - 1;
6450 		} else {
6451 			mirror_num = 1;
6452 		}
6453 
6454 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6455 		u32 factor = map->num_stripes / map->sub_stripes;
6456 
6457 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6458 		stripe_index *= map->sub_stripes;
6459 
6460 		if (need_full_stripe(op))
6461 			num_stripes = map->sub_stripes;
6462 		else if (mirror_num)
6463 			stripe_index += mirror_num - 1;
6464 		else {
6465 			int old_stripe_index = stripe_index;
6466 			stripe_index = find_live_mirror(fs_info, map,
6467 					      stripe_index,
6468 					      dev_replace_is_ongoing);
6469 			mirror_num = stripe_index - old_stripe_index + 1;
6470 		}
6471 
6472 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6473 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6474 			/* push stripe_nr back to the start of the full stripe */
6475 			stripe_nr = div64_u64(raid56_full_stripe_start,
6476 					stripe_len * data_stripes);
6477 
6478 			/* RAID[56] write or recovery. Return all stripes */
6479 			num_stripes = map->num_stripes;
6480 			max_errors = nr_parity_stripes(map);
6481 
6482 			*length = map->stripe_len;
6483 			stripe_index = 0;
6484 			stripe_offset = 0;
6485 		} else {
6486 			/*
6487 			 * Mirror #0 or #1 means the original data block.
6488 			 * Mirror #2 is RAID5 parity block.
6489 			 * Mirror #3 is RAID6 Q block.
6490 			 */
6491 			stripe_nr = div_u64_rem(stripe_nr,
6492 					data_stripes, &stripe_index);
6493 			if (mirror_num > 1)
6494 				stripe_index = data_stripes + mirror_num - 2;
6495 
6496 			/* We distribute the parity blocks across stripes */
6497 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6498 					&stripe_index);
6499 			if (!need_full_stripe(op) && mirror_num <= 1)
6500 				mirror_num = 1;
6501 		}
6502 	} else {
6503 		/*
6504 		 * after this, stripe_nr is the number of stripes on this
6505 		 * device we have to walk to find the data, and stripe_index is
6506 		 * the number of our device in the stripe array
6507 		 */
6508 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6509 				&stripe_index);
6510 		mirror_num = stripe_index + 1;
6511 	}
6512 	if (stripe_index >= map->num_stripes) {
6513 		btrfs_crit(fs_info,
6514 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6515 			   stripe_index, map->num_stripes);
6516 		ret = -EINVAL;
6517 		goto out;
6518 	}
6519 
6520 	num_alloc_stripes = num_stripes;
6521 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6522 		if (op == BTRFS_MAP_WRITE)
6523 			num_alloc_stripes <<= 1;
6524 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6525 			num_alloc_stripes++;
6526 		tgtdev_indexes = num_stripes;
6527 	}
6528 
6529 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6530 	if (!bioc) {
6531 		ret = -ENOMEM;
6532 		goto out;
6533 	}
6534 
6535 	for (i = 0; i < num_stripes; i++) {
6536 		bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6537 			stripe_offset + stripe_nr * map->stripe_len;
6538 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6539 		stripe_index++;
6540 	}
6541 
6542 	/* Build raid_map */
6543 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6544 	    (need_full_stripe(op) || mirror_num > 1)) {
6545 		u64 tmp;
6546 		unsigned rot;
6547 
6548 		/* Work out the disk rotation on this stripe-set */
6549 		div_u64_rem(stripe_nr, num_stripes, &rot);
6550 
6551 		/* Fill in the logical address of each stripe */
6552 		tmp = stripe_nr * data_stripes;
6553 		for (i = 0; i < data_stripes; i++)
6554 			bioc->raid_map[(i + rot) % num_stripes] =
6555 				em->start + (tmp + i) * map->stripe_len;
6556 
6557 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6558 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6559 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6560 				RAID6_Q_STRIPE;
6561 
6562 		sort_parity_stripes(bioc, num_stripes);
6563 	}
6564 
6565 	if (need_full_stripe(op))
6566 		max_errors = btrfs_chunk_max_errors(map);
6567 
6568 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6569 	    need_full_stripe(op)) {
6570 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6571 					  &num_stripes, &max_errors);
6572 	}
6573 
6574 	*bioc_ret = bioc;
6575 	bioc->map_type = map->type;
6576 	bioc->num_stripes = num_stripes;
6577 	bioc->max_errors = max_errors;
6578 	bioc->mirror_num = mirror_num;
6579 
6580 	/*
6581 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6582 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6583 	 * available as a mirror
6584 	 */
6585 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6586 		WARN_ON(num_stripes > 1);
6587 		bioc->stripes[0].dev = dev_replace->tgtdev;
6588 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6589 		bioc->mirror_num = map->num_stripes + 1;
6590 	}
6591 out:
6592 	if (dev_replace_is_ongoing) {
6593 		lockdep_assert_held(&dev_replace->rwsem);
6594 		/* Unlock and let waiting writers proceed */
6595 		up_read(&dev_replace->rwsem);
6596 	}
6597 	free_extent_map(em);
6598 	return ret;
6599 }
6600 
6601 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6602 		      u64 logical, u64 *length,
6603 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6604 {
6605 	if (op == BTRFS_MAP_DISCARD)
6606 		return __btrfs_map_block_for_discard(fs_info, logical,
6607 						     length, bioc_ret);
6608 
6609 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6610 				 mirror_num, 0);
6611 }
6612 
6613 /* For Scrub/replace */
6614 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6615 		     u64 logical, u64 *length,
6616 		     struct btrfs_io_context **bioc_ret)
6617 {
6618 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6619 }
6620 
6621 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6622 {
6623 	bio->bi_private = bioc->private;
6624 	bio->bi_end_io = bioc->end_io;
6625 	bio_endio(bio);
6626 
6627 	btrfs_put_bioc(bioc);
6628 }
6629 
6630 static void btrfs_end_bio(struct bio *bio)
6631 {
6632 	struct btrfs_io_context *bioc = bio->bi_private;
6633 	int is_orig_bio = 0;
6634 
6635 	if (bio->bi_status) {
6636 		atomic_inc(&bioc->error);
6637 		if (bio->bi_status == BLK_STS_IOERR ||
6638 		    bio->bi_status == BLK_STS_TARGET) {
6639 			struct btrfs_device *dev = btrfs_bio(bio)->device;
6640 
6641 			ASSERT(dev->bdev);
6642 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6643 				btrfs_dev_stat_inc_and_print(dev,
6644 						BTRFS_DEV_STAT_WRITE_ERRS);
6645 			else if (!(bio->bi_opf & REQ_RAHEAD))
6646 				btrfs_dev_stat_inc_and_print(dev,
6647 						BTRFS_DEV_STAT_READ_ERRS);
6648 			if (bio->bi_opf & REQ_PREFLUSH)
6649 				btrfs_dev_stat_inc_and_print(dev,
6650 						BTRFS_DEV_STAT_FLUSH_ERRS);
6651 		}
6652 	}
6653 
6654 	if (bio == bioc->orig_bio)
6655 		is_orig_bio = 1;
6656 
6657 	btrfs_bio_counter_dec(bioc->fs_info);
6658 
6659 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6660 		if (!is_orig_bio) {
6661 			bio_put(bio);
6662 			bio = bioc->orig_bio;
6663 		}
6664 
6665 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6666 		/* only send an error to the higher layers if it is
6667 		 * beyond the tolerance of the btrfs bio
6668 		 */
6669 		if (atomic_read(&bioc->error) > bioc->max_errors) {
6670 			bio->bi_status = BLK_STS_IOERR;
6671 		} else {
6672 			/*
6673 			 * this bio is actually up to date, we didn't
6674 			 * go over the max number of errors
6675 			 */
6676 			bio->bi_status = BLK_STS_OK;
6677 		}
6678 
6679 		btrfs_end_bioc(bioc, bio);
6680 	} else if (!is_orig_bio) {
6681 		bio_put(bio);
6682 	}
6683 }
6684 
6685 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6686 			      u64 physical, struct btrfs_device *dev)
6687 {
6688 	struct btrfs_fs_info *fs_info = bioc->fs_info;
6689 
6690 	bio->bi_private = bioc;
6691 	btrfs_bio(bio)->device = dev;
6692 	bio->bi_end_io = btrfs_end_bio;
6693 	bio->bi_iter.bi_sector = physical >> 9;
6694 	/*
6695 	 * For zone append writing, bi_sector must point the beginning of the
6696 	 * zone
6697 	 */
6698 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6699 		if (btrfs_dev_is_sequential(dev, physical)) {
6700 			u64 zone_start = round_down(physical, fs_info->zone_size);
6701 
6702 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6703 		} else {
6704 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6705 			bio->bi_opf |= REQ_OP_WRITE;
6706 		}
6707 	}
6708 	btrfs_debug_in_rcu(fs_info,
6709 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6710 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6711 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6712 		dev->devid, bio->bi_iter.bi_size);
6713 	bio_set_dev(bio, dev->bdev);
6714 
6715 	btrfs_bio_counter_inc_noblocked(fs_info);
6716 
6717 	btrfsic_submit_bio(bio);
6718 }
6719 
6720 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6721 {
6722 	atomic_inc(&bioc->error);
6723 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6724 		/* Should be the original bio. */
6725 		WARN_ON(bio != bioc->orig_bio);
6726 
6727 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6728 		bio->bi_iter.bi_sector = logical >> 9;
6729 		if (atomic_read(&bioc->error) > bioc->max_errors)
6730 			bio->bi_status = BLK_STS_IOERR;
6731 		else
6732 			bio->bi_status = BLK_STS_OK;
6733 		btrfs_end_bioc(bioc, bio);
6734 	}
6735 }
6736 
6737 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6738 			   int mirror_num)
6739 {
6740 	struct btrfs_device *dev;
6741 	struct bio *first_bio = bio;
6742 	u64 logical = bio->bi_iter.bi_sector << 9;
6743 	u64 length = 0;
6744 	u64 map_length;
6745 	int ret;
6746 	int dev_nr;
6747 	int total_devs;
6748 	struct btrfs_io_context *bioc = NULL;
6749 
6750 	length = bio->bi_iter.bi_size;
6751 	map_length = length;
6752 
6753 	btrfs_bio_counter_inc_blocked(fs_info);
6754 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6755 				&map_length, &bioc, mirror_num, 1);
6756 	if (ret) {
6757 		btrfs_bio_counter_dec(fs_info);
6758 		return errno_to_blk_status(ret);
6759 	}
6760 
6761 	total_devs = bioc->num_stripes;
6762 	bioc->orig_bio = first_bio;
6763 	bioc->private = first_bio->bi_private;
6764 	bioc->end_io = first_bio->bi_end_io;
6765 	atomic_set(&bioc->stripes_pending, bioc->num_stripes);
6766 
6767 	if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6768 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6769 		/* In this case, map_length has been set to the length of
6770 		   a single stripe; not the whole write */
6771 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6772 			ret = raid56_parity_write(bio, bioc, map_length);
6773 		} else {
6774 			ret = raid56_parity_recover(bio, bioc, map_length,
6775 						    mirror_num, 1);
6776 		}
6777 
6778 		btrfs_bio_counter_dec(fs_info);
6779 		return errno_to_blk_status(ret);
6780 	}
6781 
6782 	if (map_length < length) {
6783 		btrfs_crit(fs_info,
6784 			   "mapping failed logical %llu bio len %llu len %llu",
6785 			   logical, length, map_length);
6786 		BUG();
6787 	}
6788 
6789 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6790 		dev = bioc->stripes[dev_nr].dev;
6791 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6792 						   &dev->dev_state) ||
6793 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6794 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6795 			bioc_error(bioc, first_bio, logical);
6796 			continue;
6797 		}
6798 
6799 		if (dev_nr < total_devs - 1)
6800 			bio = btrfs_bio_clone(first_bio);
6801 		else
6802 			bio = first_bio;
6803 
6804 		submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6805 	}
6806 	btrfs_bio_counter_dec(fs_info);
6807 	return BLK_STS_OK;
6808 }
6809 
6810 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6811 				      const struct btrfs_fs_devices *fs_devices)
6812 {
6813 	if (args->fsid == NULL)
6814 		return true;
6815 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6816 		return true;
6817 	return false;
6818 }
6819 
6820 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6821 				  const struct btrfs_device *device)
6822 {
6823 	ASSERT((args->devid != (u64)-1) || args->missing);
6824 
6825 	if ((args->devid != (u64)-1) && device->devid != args->devid)
6826 		return false;
6827 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6828 		return false;
6829 	if (!args->missing)
6830 		return true;
6831 	if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6832 	    !device->bdev)
6833 		return true;
6834 	return false;
6835 }
6836 
6837 /*
6838  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6839  * return NULL.
6840  *
6841  * If devid and uuid are both specified, the match must be exact, otherwise
6842  * only devid is used.
6843  */
6844 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6845 				       const struct btrfs_dev_lookup_args *args)
6846 {
6847 	struct btrfs_device *device;
6848 	struct btrfs_fs_devices *seed_devs;
6849 
6850 	if (dev_args_match_fs_devices(args, fs_devices)) {
6851 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6852 			if (dev_args_match_device(args, device))
6853 				return device;
6854 		}
6855 	}
6856 
6857 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6858 		if (!dev_args_match_fs_devices(args, seed_devs))
6859 			continue;
6860 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6861 			if (dev_args_match_device(args, device))
6862 				return device;
6863 		}
6864 	}
6865 
6866 	return NULL;
6867 }
6868 
6869 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6870 					    u64 devid, u8 *dev_uuid)
6871 {
6872 	struct btrfs_device *device;
6873 	unsigned int nofs_flag;
6874 
6875 	/*
6876 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6877 	 * allocation, however we don't want to change btrfs_alloc_device() to
6878 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6879 	 * places.
6880 	 */
6881 	nofs_flag = memalloc_nofs_save();
6882 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6883 	memalloc_nofs_restore(nofs_flag);
6884 	if (IS_ERR(device))
6885 		return device;
6886 
6887 	list_add(&device->dev_list, &fs_devices->devices);
6888 	device->fs_devices = fs_devices;
6889 	fs_devices->num_devices++;
6890 
6891 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6892 	fs_devices->missing_devices++;
6893 
6894 	return device;
6895 }
6896 
6897 /**
6898  * btrfs_alloc_device - allocate struct btrfs_device
6899  * @fs_info:	used only for generating a new devid, can be NULL if
6900  *		devid is provided (i.e. @devid != NULL).
6901  * @devid:	a pointer to devid for this device.  If NULL a new devid
6902  *		is generated.
6903  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6904  *		is generated.
6905  *
6906  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6907  * on error.  Returned struct is not linked onto any lists and must be
6908  * destroyed with btrfs_free_device.
6909  */
6910 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6911 					const u64 *devid,
6912 					const u8 *uuid)
6913 {
6914 	struct btrfs_device *dev;
6915 	u64 tmp;
6916 
6917 	if (WARN_ON(!devid && !fs_info))
6918 		return ERR_PTR(-EINVAL);
6919 
6920 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6921 	if (!dev)
6922 		return ERR_PTR(-ENOMEM);
6923 
6924 	/*
6925 	 * Preallocate a bio that's always going to be used for flushing device
6926 	 * barriers and matches the device lifespan
6927 	 */
6928 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6929 	if (!dev->flush_bio) {
6930 		kfree(dev);
6931 		return ERR_PTR(-ENOMEM);
6932 	}
6933 
6934 	INIT_LIST_HEAD(&dev->dev_list);
6935 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6936 	INIT_LIST_HEAD(&dev->post_commit_list);
6937 
6938 	atomic_set(&dev->reada_in_flight, 0);
6939 	atomic_set(&dev->dev_stats_ccnt, 0);
6940 	btrfs_device_data_ordered_init(dev);
6941 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6942 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6943 	extent_io_tree_init(fs_info, &dev->alloc_state,
6944 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6945 
6946 	if (devid)
6947 		tmp = *devid;
6948 	else {
6949 		int ret;
6950 
6951 		ret = find_next_devid(fs_info, &tmp);
6952 		if (ret) {
6953 			btrfs_free_device(dev);
6954 			return ERR_PTR(ret);
6955 		}
6956 	}
6957 	dev->devid = tmp;
6958 
6959 	if (uuid)
6960 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6961 	else
6962 		generate_random_uuid(dev->uuid);
6963 
6964 	return dev;
6965 }
6966 
6967 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6968 					u64 devid, u8 *uuid, bool error)
6969 {
6970 	if (error)
6971 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6972 			      devid, uuid);
6973 	else
6974 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6975 			      devid, uuid);
6976 }
6977 
6978 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6979 {
6980 	const int data_stripes = calc_data_stripes(type, num_stripes);
6981 
6982 	return div_u64(chunk_len, data_stripes);
6983 }
6984 
6985 #if BITS_PER_LONG == 32
6986 /*
6987  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6988  * can't be accessed on 32bit systems.
6989  *
6990  * This function do mount time check to reject the fs if it already has
6991  * metadata chunk beyond that limit.
6992  */
6993 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6994 				  u64 logical, u64 length, u64 type)
6995 {
6996 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6997 		return 0;
6998 
6999 	if (logical + length < MAX_LFS_FILESIZE)
7000 		return 0;
7001 
7002 	btrfs_err_32bit_limit(fs_info);
7003 	return -EOVERFLOW;
7004 }
7005 
7006 /*
7007  * This is to give early warning for any metadata chunk reaching
7008  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7009  * Although we can still access the metadata, it's not going to be possible
7010  * once the limit is reached.
7011  */
7012 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7013 				  u64 logical, u64 length, u64 type)
7014 {
7015 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7016 		return;
7017 
7018 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7019 		return;
7020 
7021 	btrfs_warn_32bit_limit(fs_info);
7022 }
7023 #endif
7024 
7025 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7026 			  struct btrfs_chunk *chunk)
7027 {
7028 	BTRFS_DEV_LOOKUP_ARGS(args);
7029 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7030 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7031 	struct map_lookup *map;
7032 	struct extent_map *em;
7033 	u64 logical;
7034 	u64 length;
7035 	u64 devid;
7036 	u64 type;
7037 	u8 uuid[BTRFS_UUID_SIZE];
7038 	int num_stripes;
7039 	int ret;
7040 	int i;
7041 
7042 	logical = key->offset;
7043 	length = btrfs_chunk_length(leaf, chunk);
7044 	type = btrfs_chunk_type(leaf, chunk);
7045 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7046 
7047 #if BITS_PER_LONG == 32
7048 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7049 	if (ret < 0)
7050 		return ret;
7051 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7052 #endif
7053 
7054 	/*
7055 	 * Only need to verify chunk item if we're reading from sys chunk array,
7056 	 * as chunk item in tree block is already verified by tree-checker.
7057 	 */
7058 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7059 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7060 		if (ret)
7061 			return ret;
7062 	}
7063 
7064 	read_lock(&map_tree->lock);
7065 	em = lookup_extent_mapping(map_tree, logical, 1);
7066 	read_unlock(&map_tree->lock);
7067 
7068 	/* already mapped? */
7069 	if (em && em->start <= logical && em->start + em->len > logical) {
7070 		free_extent_map(em);
7071 		return 0;
7072 	} else if (em) {
7073 		free_extent_map(em);
7074 	}
7075 
7076 	em = alloc_extent_map();
7077 	if (!em)
7078 		return -ENOMEM;
7079 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7080 	if (!map) {
7081 		free_extent_map(em);
7082 		return -ENOMEM;
7083 	}
7084 
7085 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7086 	em->map_lookup = map;
7087 	em->start = logical;
7088 	em->len = length;
7089 	em->orig_start = 0;
7090 	em->block_start = 0;
7091 	em->block_len = em->len;
7092 
7093 	map->num_stripes = num_stripes;
7094 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7095 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7096 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7097 	map->type = type;
7098 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7099 	map->verified_stripes = 0;
7100 	em->orig_block_len = calc_stripe_length(type, em->len,
7101 						map->num_stripes);
7102 	for (i = 0; i < num_stripes; i++) {
7103 		map->stripes[i].physical =
7104 			btrfs_stripe_offset_nr(leaf, chunk, i);
7105 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7106 		args.devid = devid;
7107 		read_extent_buffer(leaf, uuid, (unsigned long)
7108 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7109 				   BTRFS_UUID_SIZE);
7110 		args.uuid = uuid;
7111 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7112 		if (!map->stripes[i].dev &&
7113 		    !btrfs_test_opt(fs_info, DEGRADED)) {
7114 			free_extent_map(em);
7115 			btrfs_report_missing_device(fs_info, devid, uuid, true);
7116 			return -ENOENT;
7117 		}
7118 		if (!map->stripes[i].dev) {
7119 			map->stripes[i].dev =
7120 				add_missing_dev(fs_info->fs_devices, devid,
7121 						uuid);
7122 			if (IS_ERR(map->stripes[i].dev)) {
7123 				free_extent_map(em);
7124 				btrfs_err(fs_info,
7125 					"failed to init missing dev %llu: %ld",
7126 					devid, PTR_ERR(map->stripes[i].dev));
7127 				return PTR_ERR(map->stripes[i].dev);
7128 			}
7129 			btrfs_report_missing_device(fs_info, devid, uuid, false);
7130 		}
7131 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7132 				&(map->stripes[i].dev->dev_state));
7133 
7134 	}
7135 
7136 	write_lock(&map_tree->lock);
7137 	ret = add_extent_mapping(map_tree, em, 0);
7138 	write_unlock(&map_tree->lock);
7139 	if (ret < 0) {
7140 		btrfs_err(fs_info,
7141 			  "failed to add chunk map, start=%llu len=%llu: %d",
7142 			  em->start, em->len, ret);
7143 	}
7144 	free_extent_map(em);
7145 
7146 	return ret;
7147 }
7148 
7149 static void fill_device_from_item(struct extent_buffer *leaf,
7150 				 struct btrfs_dev_item *dev_item,
7151 				 struct btrfs_device *device)
7152 {
7153 	unsigned long ptr;
7154 
7155 	device->devid = btrfs_device_id(leaf, dev_item);
7156 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7157 	device->total_bytes = device->disk_total_bytes;
7158 	device->commit_total_bytes = device->disk_total_bytes;
7159 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7160 	device->commit_bytes_used = device->bytes_used;
7161 	device->type = btrfs_device_type(leaf, dev_item);
7162 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7163 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7164 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7165 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7166 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7167 
7168 	ptr = btrfs_device_uuid(dev_item);
7169 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7170 }
7171 
7172 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7173 						  u8 *fsid)
7174 {
7175 	struct btrfs_fs_devices *fs_devices;
7176 	int ret;
7177 
7178 	lockdep_assert_held(&uuid_mutex);
7179 	ASSERT(fsid);
7180 
7181 	/* This will match only for multi-device seed fs */
7182 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7183 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7184 			return fs_devices;
7185 
7186 
7187 	fs_devices = find_fsid(fsid, NULL);
7188 	if (!fs_devices) {
7189 		if (!btrfs_test_opt(fs_info, DEGRADED))
7190 			return ERR_PTR(-ENOENT);
7191 
7192 		fs_devices = alloc_fs_devices(fsid, NULL);
7193 		if (IS_ERR(fs_devices))
7194 			return fs_devices;
7195 
7196 		fs_devices->seeding = true;
7197 		fs_devices->opened = 1;
7198 		return fs_devices;
7199 	}
7200 
7201 	/*
7202 	 * Upon first call for a seed fs fsid, just create a private copy of the
7203 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7204 	 */
7205 	fs_devices = clone_fs_devices(fs_devices);
7206 	if (IS_ERR(fs_devices))
7207 		return fs_devices;
7208 
7209 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7210 	if (ret) {
7211 		free_fs_devices(fs_devices);
7212 		return ERR_PTR(ret);
7213 	}
7214 
7215 	if (!fs_devices->seeding) {
7216 		close_fs_devices(fs_devices);
7217 		free_fs_devices(fs_devices);
7218 		return ERR_PTR(-EINVAL);
7219 	}
7220 
7221 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7222 
7223 	return fs_devices;
7224 }
7225 
7226 static int read_one_dev(struct extent_buffer *leaf,
7227 			struct btrfs_dev_item *dev_item)
7228 {
7229 	BTRFS_DEV_LOOKUP_ARGS(args);
7230 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7231 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7232 	struct btrfs_device *device;
7233 	u64 devid;
7234 	int ret;
7235 	u8 fs_uuid[BTRFS_FSID_SIZE];
7236 	u8 dev_uuid[BTRFS_UUID_SIZE];
7237 
7238 	devid = args.devid = btrfs_device_id(leaf, dev_item);
7239 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7240 			   BTRFS_UUID_SIZE);
7241 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7242 			   BTRFS_FSID_SIZE);
7243 	args.uuid = dev_uuid;
7244 	args.fsid = fs_uuid;
7245 
7246 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7247 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7248 		if (IS_ERR(fs_devices))
7249 			return PTR_ERR(fs_devices);
7250 	}
7251 
7252 	device = btrfs_find_device(fs_info->fs_devices, &args);
7253 	if (!device) {
7254 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7255 			btrfs_report_missing_device(fs_info, devid,
7256 							dev_uuid, true);
7257 			return -ENOENT;
7258 		}
7259 
7260 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7261 		if (IS_ERR(device)) {
7262 			btrfs_err(fs_info,
7263 				"failed to add missing dev %llu: %ld",
7264 				devid, PTR_ERR(device));
7265 			return PTR_ERR(device);
7266 		}
7267 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7268 	} else {
7269 		if (!device->bdev) {
7270 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7271 				btrfs_report_missing_device(fs_info,
7272 						devid, dev_uuid, true);
7273 				return -ENOENT;
7274 			}
7275 			btrfs_report_missing_device(fs_info, devid,
7276 							dev_uuid, false);
7277 		}
7278 
7279 		if (!device->bdev &&
7280 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7281 			/*
7282 			 * this happens when a device that was properly setup
7283 			 * in the device info lists suddenly goes bad.
7284 			 * device->bdev is NULL, and so we have to set
7285 			 * device->missing to one here
7286 			 */
7287 			device->fs_devices->missing_devices++;
7288 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7289 		}
7290 
7291 		/* Move the device to its own fs_devices */
7292 		if (device->fs_devices != fs_devices) {
7293 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7294 							&device->dev_state));
7295 
7296 			list_move(&device->dev_list, &fs_devices->devices);
7297 			device->fs_devices->num_devices--;
7298 			fs_devices->num_devices++;
7299 
7300 			device->fs_devices->missing_devices--;
7301 			fs_devices->missing_devices++;
7302 
7303 			device->fs_devices = fs_devices;
7304 		}
7305 	}
7306 
7307 	if (device->fs_devices != fs_info->fs_devices) {
7308 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7309 		if (device->generation !=
7310 		    btrfs_device_generation(leaf, dev_item))
7311 			return -EINVAL;
7312 	}
7313 
7314 	fill_device_from_item(leaf, dev_item, device);
7315 	if (device->bdev) {
7316 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7317 
7318 		if (device->total_bytes > max_total_bytes) {
7319 			btrfs_err(fs_info,
7320 			"device total_bytes should be at most %llu but found %llu",
7321 				  max_total_bytes, device->total_bytes);
7322 			return -EINVAL;
7323 		}
7324 	}
7325 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7326 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7327 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7328 		device->fs_devices->total_rw_bytes += device->total_bytes;
7329 		atomic64_add(device->total_bytes - device->bytes_used,
7330 				&fs_info->free_chunk_space);
7331 	}
7332 	ret = 0;
7333 	return ret;
7334 }
7335 
7336 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7337 {
7338 	struct btrfs_root *root = fs_info->tree_root;
7339 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7340 	struct extent_buffer *sb;
7341 	struct btrfs_disk_key *disk_key;
7342 	struct btrfs_chunk *chunk;
7343 	u8 *array_ptr;
7344 	unsigned long sb_array_offset;
7345 	int ret = 0;
7346 	u32 num_stripes;
7347 	u32 array_size;
7348 	u32 len = 0;
7349 	u32 cur_offset;
7350 	u64 type;
7351 	struct btrfs_key key;
7352 
7353 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7354 	/*
7355 	 * This will create extent buffer of nodesize, superblock size is
7356 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7357 	 * overallocate but we can keep it as-is, only the first page is used.
7358 	 */
7359 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7360 					  root->root_key.objectid, 0);
7361 	if (IS_ERR(sb))
7362 		return PTR_ERR(sb);
7363 	set_extent_buffer_uptodate(sb);
7364 	/*
7365 	 * The sb extent buffer is artificial and just used to read the system array.
7366 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7367 	 * pages up-to-date when the page is larger: extent does not cover the
7368 	 * whole page and consequently check_page_uptodate does not find all
7369 	 * the page's extents up-to-date (the hole beyond sb),
7370 	 * write_extent_buffer then triggers a WARN_ON.
7371 	 *
7372 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7373 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7374 	 * to silence the warning eg. on PowerPC 64.
7375 	 */
7376 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7377 		SetPageUptodate(sb->pages[0]);
7378 
7379 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7380 	array_size = btrfs_super_sys_array_size(super_copy);
7381 
7382 	array_ptr = super_copy->sys_chunk_array;
7383 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7384 	cur_offset = 0;
7385 
7386 	while (cur_offset < array_size) {
7387 		disk_key = (struct btrfs_disk_key *)array_ptr;
7388 		len = sizeof(*disk_key);
7389 		if (cur_offset + len > array_size)
7390 			goto out_short_read;
7391 
7392 		btrfs_disk_key_to_cpu(&key, disk_key);
7393 
7394 		array_ptr += len;
7395 		sb_array_offset += len;
7396 		cur_offset += len;
7397 
7398 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7399 			btrfs_err(fs_info,
7400 			    "unexpected item type %u in sys_array at offset %u",
7401 				  (u32)key.type, cur_offset);
7402 			ret = -EIO;
7403 			break;
7404 		}
7405 
7406 		chunk = (struct btrfs_chunk *)sb_array_offset;
7407 		/*
7408 		 * At least one btrfs_chunk with one stripe must be present,
7409 		 * exact stripe count check comes afterwards
7410 		 */
7411 		len = btrfs_chunk_item_size(1);
7412 		if (cur_offset + len > array_size)
7413 			goto out_short_read;
7414 
7415 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7416 		if (!num_stripes) {
7417 			btrfs_err(fs_info,
7418 			"invalid number of stripes %u in sys_array at offset %u",
7419 				  num_stripes, cur_offset);
7420 			ret = -EIO;
7421 			break;
7422 		}
7423 
7424 		type = btrfs_chunk_type(sb, chunk);
7425 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7426 			btrfs_err(fs_info,
7427 			"invalid chunk type %llu in sys_array at offset %u",
7428 				  type, cur_offset);
7429 			ret = -EIO;
7430 			break;
7431 		}
7432 
7433 		len = btrfs_chunk_item_size(num_stripes);
7434 		if (cur_offset + len > array_size)
7435 			goto out_short_read;
7436 
7437 		ret = read_one_chunk(&key, sb, chunk);
7438 		if (ret)
7439 			break;
7440 
7441 		array_ptr += len;
7442 		sb_array_offset += len;
7443 		cur_offset += len;
7444 	}
7445 	clear_extent_buffer_uptodate(sb);
7446 	free_extent_buffer_stale(sb);
7447 	return ret;
7448 
7449 out_short_read:
7450 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7451 			len, cur_offset);
7452 	clear_extent_buffer_uptodate(sb);
7453 	free_extent_buffer_stale(sb);
7454 	return -EIO;
7455 }
7456 
7457 /*
7458  * Check if all chunks in the fs are OK for read-write degraded mount
7459  *
7460  * If the @failing_dev is specified, it's accounted as missing.
7461  *
7462  * Return true if all chunks meet the minimal RW mount requirements.
7463  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7464  */
7465 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7466 					struct btrfs_device *failing_dev)
7467 {
7468 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7469 	struct extent_map *em;
7470 	u64 next_start = 0;
7471 	bool ret = true;
7472 
7473 	read_lock(&map_tree->lock);
7474 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7475 	read_unlock(&map_tree->lock);
7476 	/* No chunk at all? Return false anyway */
7477 	if (!em) {
7478 		ret = false;
7479 		goto out;
7480 	}
7481 	while (em) {
7482 		struct map_lookup *map;
7483 		int missing = 0;
7484 		int max_tolerated;
7485 		int i;
7486 
7487 		map = em->map_lookup;
7488 		max_tolerated =
7489 			btrfs_get_num_tolerated_disk_barrier_failures(
7490 					map->type);
7491 		for (i = 0; i < map->num_stripes; i++) {
7492 			struct btrfs_device *dev = map->stripes[i].dev;
7493 
7494 			if (!dev || !dev->bdev ||
7495 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7496 			    dev->last_flush_error)
7497 				missing++;
7498 			else if (failing_dev && failing_dev == dev)
7499 				missing++;
7500 		}
7501 		if (missing > max_tolerated) {
7502 			if (!failing_dev)
7503 				btrfs_warn(fs_info,
7504 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7505 				   em->start, missing, max_tolerated);
7506 			free_extent_map(em);
7507 			ret = false;
7508 			goto out;
7509 		}
7510 		next_start = extent_map_end(em);
7511 		free_extent_map(em);
7512 
7513 		read_lock(&map_tree->lock);
7514 		em = lookup_extent_mapping(map_tree, next_start,
7515 					   (u64)(-1) - next_start);
7516 		read_unlock(&map_tree->lock);
7517 	}
7518 out:
7519 	return ret;
7520 }
7521 
7522 static void readahead_tree_node_children(struct extent_buffer *node)
7523 {
7524 	int i;
7525 	const int nr_items = btrfs_header_nritems(node);
7526 
7527 	for (i = 0; i < nr_items; i++)
7528 		btrfs_readahead_node_child(node, i);
7529 }
7530 
7531 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7532 {
7533 	struct btrfs_root *root = fs_info->chunk_root;
7534 	struct btrfs_path *path;
7535 	struct extent_buffer *leaf;
7536 	struct btrfs_key key;
7537 	struct btrfs_key found_key;
7538 	int ret;
7539 	int slot;
7540 	u64 total_dev = 0;
7541 	u64 last_ra_node = 0;
7542 
7543 	path = btrfs_alloc_path();
7544 	if (!path)
7545 		return -ENOMEM;
7546 
7547 	/*
7548 	 * uuid_mutex is needed only if we are mounting a sprout FS
7549 	 * otherwise we don't need it.
7550 	 */
7551 	mutex_lock(&uuid_mutex);
7552 
7553 	/*
7554 	 * It is possible for mount and umount to race in such a way that
7555 	 * we execute this code path, but open_fs_devices failed to clear
7556 	 * total_rw_bytes. We certainly want it cleared before reading the
7557 	 * device items, so clear it here.
7558 	 */
7559 	fs_info->fs_devices->total_rw_bytes = 0;
7560 
7561 	/*
7562 	 * Read all device items, and then all the chunk items. All
7563 	 * device items are found before any chunk item (their object id
7564 	 * is smaller than the lowest possible object id for a chunk
7565 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7566 	 */
7567 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7568 	key.offset = 0;
7569 	key.type = 0;
7570 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7571 	if (ret < 0)
7572 		goto error;
7573 	while (1) {
7574 		struct extent_buffer *node;
7575 
7576 		leaf = path->nodes[0];
7577 		slot = path->slots[0];
7578 		if (slot >= btrfs_header_nritems(leaf)) {
7579 			ret = btrfs_next_leaf(root, path);
7580 			if (ret == 0)
7581 				continue;
7582 			if (ret < 0)
7583 				goto error;
7584 			break;
7585 		}
7586 		/*
7587 		 * The nodes on level 1 are not locked but we don't need to do
7588 		 * that during mount time as nothing else can access the tree
7589 		 */
7590 		node = path->nodes[1];
7591 		if (node) {
7592 			if (last_ra_node != node->start) {
7593 				readahead_tree_node_children(node);
7594 				last_ra_node = node->start;
7595 			}
7596 		}
7597 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7598 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7599 			struct btrfs_dev_item *dev_item;
7600 			dev_item = btrfs_item_ptr(leaf, slot,
7601 						  struct btrfs_dev_item);
7602 			ret = read_one_dev(leaf, dev_item);
7603 			if (ret)
7604 				goto error;
7605 			total_dev++;
7606 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7607 			struct btrfs_chunk *chunk;
7608 
7609 			/*
7610 			 * We are only called at mount time, so no need to take
7611 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7612 			 * we always lock first fs_info->chunk_mutex before
7613 			 * acquiring any locks on the chunk tree. This is a
7614 			 * requirement for chunk allocation, see the comment on
7615 			 * top of btrfs_chunk_alloc() for details.
7616 			 */
7617 			ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7618 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7619 			ret = read_one_chunk(&found_key, leaf, chunk);
7620 			if (ret)
7621 				goto error;
7622 		}
7623 		path->slots[0]++;
7624 	}
7625 
7626 	/*
7627 	 * After loading chunk tree, we've got all device information,
7628 	 * do another round of validation checks.
7629 	 */
7630 	if (total_dev != fs_info->fs_devices->total_devices) {
7631 		btrfs_err(fs_info,
7632 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7633 			  btrfs_super_num_devices(fs_info->super_copy),
7634 			  total_dev);
7635 		ret = -EINVAL;
7636 		goto error;
7637 	}
7638 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7639 	    fs_info->fs_devices->total_rw_bytes) {
7640 		btrfs_err(fs_info,
7641 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7642 			  btrfs_super_total_bytes(fs_info->super_copy),
7643 			  fs_info->fs_devices->total_rw_bytes);
7644 		ret = -EINVAL;
7645 		goto error;
7646 	}
7647 	ret = 0;
7648 error:
7649 	mutex_unlock(&uuid_mutex);
7650 
7651 	btrfs_free_path(path);
7652 	return ret;
7653 }
7654 
7655 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7656 {
7657 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7658 	struct btrfs_device *device;
7659 
7660 	fs_devices->fs_info = fs_info;
7661 
7662 	mutex_lock(&fs_devices->device_list_mutex);
7663 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7664 		device->fs_info = fs_info;
7665 
7666 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7667 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7668 			device->fs_info = fs_info;
7669 
7670 		seed_devs->fs_info = fs_info;
7671 	}
7672 	mutex_unlock(&fs_devices->device_list_mutex);
7673 }
7674 
7675 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7676 				 const struct btrfs_dev_stats_item *ptr,
7677 				 int index)
7678 {
7679 	u64 val;
7680 
7681 	read_extent_buffer(eb, &val,
7682 			   offsetof(struct btrfs_dev_stats_item, values) +
7683 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7684 			   sizeof(val));
7685 	return val;
7686 }
7687 
7688 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7689 				      struct btrfs_dev_stats_item *ptr,
7690 				      int index, u64 val)
7691 {
7692 	write_extent_buffer(eb, &val,
7693 			    offsetof(struct btrfs_dev_stats_item, values) +
7694 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7695 			    sizeof(val));
7696 }
7697 
7698 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7699 				       struct btrfs_path *path)
7700 {
7701 	struct btrfs_dev_stats_item *ptr;
7702 	struct extent_buffer *eb;
7703 	struct btrfs_key key;
7704 	int item_size;
7705 	int i, ret, slot;
7706 
7707 	if (!device->fs_info->dev_root)
7708 		return 0;
7709 
7710 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7711 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7712 	key.offset = device->devid;
7713 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7714 	if (ret) {
7715 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7716 			btrfs_dev_stat_set(device, i, 0);
7717 		device->dev_stats_valid = 1;
7718 		btrfs_release_path(path);
7719 		return ret < 0 ? ret : 0;
7720 	}
7721 	slot = path->slots[0];
7722 	eb = path->nodes[0];
7723 	item_size = btrfs_item_size_nr(eb, slot);
7724 
7725 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7726 
7727 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7728 		if (item_size >= (1 + i) * sizeof(__le64))
7729 			btrfs_dev_stat_set(device, i,
7730 					   btrfs_dev_stats_value(eb, ptr, i));
7731 		else
7732 			btrfs_dev_stat_set(device, i, 0);
7733 	}
7734 
7735 	device->dev_stats_valid = 1;
7736 	btrfs_dev_stat_print_on_load(device);
7737 	btrfs_release_path(path);
7738 
7739 	return 0;
7740 }
7741 
7742 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7743 {
7744 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7745 	struct btrfs_device *device;
7746 	struct btrfs_path *path = NULL;
7747 	int ret = 0;
7748 
7749 	path = btrfs_alloc_path();
7750 	if (!path)
7751 		return -ENOMEM;
7752 
7753 	mutex_lock(&fs_devices->device_list_mutex);
7754 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7755 		ret = btrfs_device_init_dev_stats(device, path);
7756 		if (ret)
7757 			goto out;
7758 	}
7759 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7760 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7761 			ret = btrfs_device_init_dev_stats(device, path);
7762 			if (ret)
7763 				goto out;
7764 		}
7765 	}
7766 out:
7767 	mutex_unlock(&fs_devices->device_list_mutex);
7768 
7769 	btrfs_free_path(path);
7770 	return ret;
7771 }
7772 
7773 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7774 				struct btrfs_device *device)
7775 {
7776 	struct btrfs_fs_info *fs_info = trans->fs_info;
7777 	struct btrfs_root *dev_root = fs_info->dev_root;
7778 	struct btrfs_path *path;
7779 	struct btrfs_key key;
7780 	struct extent_buffer *eb;
7781 	struct btrfs_dev_stats_item *ptr;
7782 	int ret;
7783 	int i;
7784 
7785 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7786 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7787 	key.offset = device->devid;
7788 
7789 	path = btrfs_alloc_path();
7790 	if (!path)
7791 		return -ENOMEM;
7792 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7793 	if (ret < 0) {
7794 		btrfs_warn_in_rcu(fs_info,
7795 			"error %d while searching for dev_stats item for device %s",
7796 			      ret, rcu_str_deref(device->name));
7797 		goto out;
7798 	}
7799 
7800 	if (ret == 0 &&
7801 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7802 		/* need to delete old one and insert a new one */
7803 		ret = btrfs_del_item(trans, dev_root, path);
7804 		if (ret != 0) {
7805 			btrfs_warn_in_rcu(fs_info,
7806 				"delete too small dev_stats item for device %s failed %d",
7807 				      rcu_str_deref(device->name), ret);
7808 			goto out;
7809 		}
7810 		ret = 1;
7811 	}
7812 
7813 	if (ret == 1) {
7814 		/* need to insert a new item */
7815 		btrfs_release_path(path);
7816 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7817 					      &key, sizeof(*ptr));
7818 		if (ret < 0) {
7819 			btrfs_warn_in_rcu(fs_info,
7820 				"insert dev_stats item for device %s failed %d",
7821 				rcu_str_deref(device->name), ret);
7822 			goto out;
7823 		}
7824 	}
7825 
7826 	eb = path->nodes[0];
7827 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7828 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7829 		btrfs_set_dev_stats_value(eb, ptr, i,
7830 					  btrfs_dev_stat_read(device, i));
7831 	btrfs_mark_buffer_dirty(eb);
7832 
7833 out:
7834 	btrfs_free_path(path);
7835 	return ret;
7836 }
7837 
7838 /*
7839  * called from commit_transaction. Writes all changed device stats to disk.
7840  */
7841 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7842 {
7843 	struct btrfs_fs_info *fs_info = trans->fs_info;
7844 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7845 	struct btrfs_device *device;
7846 	int stats_cnt;
7847 	int ret = 0;
7848 
7849 	mutex_lock(&fs_devices->device_list_mutex);
7850 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7851 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7852 		if (!device->dev_stats_valid || stats_cnt == 0)
7853 			continue;
7854 
7855 
7856 		/*
7857 		 * There is a LOAD-LOAD control dependency between the value of
7858 		 * dev_stats_ccnt and updating the on-disk values which requires
7859 		 * reading the in-memory counters. Such control dependencies
7860 		 * require explicit read memory barriers.
7861 		 *
7862 		 * This memory barriers pairs with smp_mb__before_atomic in
7863 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7864 		 * barrier implied by atomic_xchg in
7865 		 * btrfs_dev_stats_read_and_reset
7866 		 */
7867 		smp_rmb();
7868 
7869 		ret = update_dev_stat_item(trans, device);
7870 		if (!ret)
7871 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7872 	}
7873 	mutex_unlock(&fs_devices->device_list_mutex);
7874 
7875 	return ret;
7876 }
7877 
7878 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7879 {
7880 	btrfs_dev_stat_inc(dev, index);
7881 	btrfs_dev_stat_print_on_error(dev);
7882 }
7883 
7884 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7885 {
7886 	if (!dev->dev_stats_valid)
7887 		return;
7888 	btrfs_err_rl_in_rcu(dev->fs_info,
7889 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7890 			   rcu_str_deref(dev->name),
7891 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7892 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7893 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7894 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7895 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7896 }
7897 
7898 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7899 {
7900 	int i;
7901 
7902 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7903 		if (btrfs_dev_stat_read(dev, i) != 0)
7904 			break;
7905 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7906 		return; /* all values == 0, suppress message */
7907 
7908 	btrfs_info_in_rcu(dev->fs_info,
7909 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7910 	       rcu_str_deref(dev->name),
7911 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7912 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7913 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7914 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7915 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7916 }
7917 
7918 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7919 			struct btrfs_ioctl_get_dev_stats *stats)
7920 {
7921 	BTRFS_DEV_LOOKUP_ARGS(args);
7922 	struct btrfs_device *dev;
7923 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7924 	int i;
7925 
7926 	mutex_lock(&fs_devices->device_list_mutex);
7927 	args.devid = stats->devid;
7928 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7929 	mutex_unlock(&fs_devices->device_list_mutex);
7930 
7931 	if (!dev) {
7932 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7933 		return -ENODEV;
7934 	} else if (!dev->dev_stats_valid) {
7935 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7936 		return -ENODEV;
7937 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7938 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7939 			if (stats->nr_items > i)
7940 				stats->values[i] =
7941 					btrfs_dev_stat_read_and_reset(dev, i);
7942 			else
7943 				btrfs_dev_stat_set(dev, i, 0);
7944 		}
7945 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7946 			   current->comm, task_pid_nr(current));
7947 	} else {
7948 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7949 			if (stats->nr_items > i)
7950 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7951 	}
7952 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7953 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7954 	return 0;
7955 }
7956 
7957 /*
7958  * Update the size and bytes used for each device where it changed.  This is
7959  * delayed since we would otherwise get errors while writing out the
7960  * superblocks.
7961  *
7962  * Must be invoked during transaction commit.
7963  */
7964 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7965 {
7966 	struct btrfs_device *curr, *next;
7967 
7968 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7969 
7970 	if (list_empty(&trans->dev_update_list))
7971 		return;
7972 
7973 	/*
7974 	 * We don't need the device_list_mutex here.  This list is owned by the
7975 	 * transaction and the transaction must complete before the device is
7976 	 * released.
7977 	 */
7978 	mutex_lock(&trans->fs_info->chunk_mutex);
7979 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7980 				 post_commit_list) {
7981 		list_del_init(&curr->post_commit_list);
7982 		curr->commit_total_bytes = curr->disk_total_bytes;
7983 		curr->commit_bytes_used = curr->bytes_used;
7984 	}
7985 	mutex_unlock(&trans->fs_info->chunk_mutex);
7986 }
7987 
7988 /*
7989  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7990  */
7991 int btrfs_bg_type_to_factor(u64 flags)
7992 {
7993 	const int index = btrfs_bg_flags_to_raid_index(flags);
7994 
7995 	return btrfs_raid_array[index].ncopies;
7996 }
7997 
7998 
7999 
8000 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8001 				 u64 chunk_offset, u64 devid,
8002 				 u64 physical_offset, u64 physical_len)
8003 {
8004 	struct btrfs_dev_lookup_args args = { .devid = devid };
8005 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8006 	struct extent_map *em;
8007 	struct map_lookup *map;
8008 	struct btrfs_device *dev;
8009 	u64 stripe_len;
8010 	bool found = false;
8011 	int ret = 0;
8012 	int i;
8013 
8014 	read_lock(&em_tree->lock);
8015 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8016 	read_unlock(&em_tree->lock);
8017 
8018 	if (!em) {
8019 		btrfs_err(fs_info,
8020 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8021 			  physical_offset, devid);
8022 		ret = -EUCLEAN;
8023 		goto out;
8024 	}
8025 
8026 	map = em->map_lookup;
8027 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8028 	if (physical_len != stripe_len) {
8029 		btrfs_err(fs_info,
8030 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8031 			  physical_offset, devid, em->start, physical_len,
8032 			  stripe_len);
8033 		ret = -EUCLEAN;
8034 		goto out;
8035 	}
8036 
8037 	for (i = 0; i < map->num_stripes; i++) {
8038 		if (map->stripes[i].dev->devid == devid &&
8039 		    map->stripes[i].physical == physical_offset) {
8040 			found = true;
8041 			if (map->verified_stripes >= map->num_stripes) {
8042 				btrfs_err(fs_info,
8043 				"too many dev extents for chunk %llu found",
8044 					  em->start);
8045 				ret = -EUCLEAN;
8046 				goto out;
8047 			}
8048 			map->verified_stripes++;
8049 			break;
8050 		}
8051 	}
8052 	if (!found) {
8053 		btrfs_err(fs_info,
8054 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8055 			physical_offset, devid);
8056 		ret = -EUCLEAN;
8057 	}
8058 
8059 	/* Make sure no dev extent is beyond device boundary */
8060 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8061 	if (!dev) {
8062 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8063 		ret = -EUCLEAN;
8064 		goto out;
8065 	}
8066 
8067 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8068 		btrfs_err(fs_info,
8069 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8070 			  devid, physical_offset, physical_len,
8071 			  dev->disk_total_bytes);
8072 		ret = -EUCLEAN;
8073 		goto out;
8074 	}
8075 
8076 	if (dev->zone_info) {
8077 		u64 zone_size = dev->zone_info->zone_size;
8078 
8079 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8080 		    !IS_ALIGNED(physical_len, zone_size)) {
8081 			btrfs_err(fs_info,
8082 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8083 				  devid, physical_offset, physical_len);
8084 			ret = -EUCLEAN;
8085 			goto out;
8086 		}
8087 	}
8088 
8089 out:
8090 	free_extent_map(em);
8091 	return ret;
8092 }
8093 
8094 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8095 {
8096 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8097 	struct extent_map *em;
8098 	struct rb_node *node;
8099 	int ret = 0;
8100 
8101 	read_lock(&em_tree->lock);
8102 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8103 		em = rb_entry(node, struct extent_map, rb_node);
8104 		if (em->map_lookup->num_stripes !=
8105 		    em->map_lookup->verified_stripes) {
8106 			btrfs_err(fs_info,
8107 			"chunk %llu has missing dev extent, have %d expect %d",
8108 				  em->start, em->map_lookup->verified_stripes,
8109 				  em->map_lookup->num_stripes);
8110 			ret = -EUCLEAN;
8111 			goto out;
8112 		}
8113 	}
8114 out:
8115 	read_unlock(&em_tree->lock);
8116 	return ret;
8117 }
8118 
8119 /*
8120  * Ensure that all dev extents are mapped to correct chunk, otherwise
8121  * later chunk allocation/free would cause unexpected behavior.
8122  *
8123  * NOTE: This will iterate through the whole device tree, which should be of
8124  * the same size level as the chunk tree.  This slightly increases mount time.
8125  */
8126 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8127 {
8128 	struct btrfs_path *path;
8129 	struct btrfs_root *root = fs_info->dev_root;
8130 	struct btrfs_key key;
8131 	u64 prev_devid = 0;
8132 	u64 prev_dev_ext_end = 0;
8133 	int ret = 0;
8134 
8135 	/*
8136 	 * We don't have a dev_root because we mounted with ignorebadroots and
8137 	 * failed to load the root, so we want to skip the verification in this
8138 	 * case for sure.
8139 	 *
8140 	 * However if the dev root is fine, but the tree itself is corrupted
8141 	 * we'd still fail to mount.  This verification is only to make sure
8142 	 * writes can happen safely, so instead just bypass this check
8143 	 * completely in the case of IGNOREBADROOTS.
8144 	 */
8145 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8146 		return 0;
8147 
8148 	key.objectid = 1;
8149 	key.type = BTRFS_DEV_EXTENT_KEY;
8150 	key.offset = 0;
8151 
8152 	path = btrfs_alloc_path();
8153 	if (!path)
8154 		return -ENOMEM;
8155 
8156 	path->reada = READA_FORWARD;
8157 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8158 	if (ret < 0)
8159 		goto out;
8160 
8161 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8162 		ret = btrfs_next_leaf(root, path);
8163 		if (ret < 0)
8164 			goto out;
8165 		/* No dev extents at all? Not good */
8166 		if (ret > 0) {
8167 			ret = -EUCLEAN;
8168 			goto out;
8169 		}
8170 	}
8171 	while (1) {
8172 		struct extent_buffer *leaf = path->nodes[0];
8173 		struct btrfs_dev_extent *dext;
8174 		int slot = path->slots[0];
8175 		u64 chunk_offset;
8176 		u64 physical_offset;
8177 		u64 physical_len;
8178 		u64 devid;
8179 
8180 		btrfs_item_key_to_cpu(leaf, &key, slot);
8181 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8182 			break;
8183 		devid = key.objectid;
8184 		physical_offset = key.offset;
8185 
8186 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8187 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8188 		physical_len = btrfs_dev_extent_length(leaf, dext);
8189 
8190 		/* Check if this dev extent overlaps with the previous one */
8191 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8192 			btrfs_err(fs_info,
8193 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8194 				  devid, physical_offset, prev_dev_ext_end);
8195 			ret = -EUCLEAN;
8196 			goto out;
8197 		}
8198 
8199 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8200 					    physical_offset, physical_len);
8201 		if (ret < 0)
8202 			goto out;
8203 		prev_devid = devid;
8204 		prev_dev_ext_end = physical_offset + physical_len;
8205 
8206 		ret = btrfs_next_item(root, path);
8207 		if (ret < 0)
8208 			goto out;
8209 		if (ret > 0) {
8210 			ret = 0;
8211 			break;
8212 		}
8213 	}
8214 
8215 	/* Ensure all chunks have corresponding dev extents */
8216 	ret = verify_chunk_dev_extent_mapping(fs_info);
8217 out:
8218 	btrfs_free_path(path);
8219 	return ret;
8220 }
8221 
8222 /*
8223  * Check whether the given block group or device is pinned by any inode being
8224  * used as a swapfile.
8225  */
8226 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8227 {
8228 	struct btrfs_swapfile_pin *sp;
8229 	struct rb_node *node;
8230 
8231 	spin_lock(&fs_info->swapfile_pins_lock);
8232 	node = fs_info->swapfile_pins.rb_node;
8233 	while (node) {
8234 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8235 		if (ptr < sp->ptr)
8236 			node = node->rb_left;
8237 		else if (ptr > sp->ptr)
8238 			node = node->rb_right;
8239 		else
8240 			break;
8241 	}
8242 	spin_unlock(&fs_info->swapfile_pins_lock);
8243 	return node != NULL;
8244 }
8245 
8246 static int relocating_repair_kthread(void *data)
8247 {
8248 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8249 	struct btrfs_fs_info *fs_info = cache->fs_info;
8250 	u64 target;
8251 	int ret = 0;
8252 
8253 	target = cache->start;
8254 	btrfs_put_block_group(cache);
8255 
8256 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8257 		btrfs_info(fs_info,
8258 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8259 			   target);
8260 		return -EBUSY;
8261 	}
8262 
8263 	mutex_lock(&fs_info->reclaim_bgs_lock);
8264 
8265 	/* Ensure block group still exists */
8266 	cache = btrfs_lookup_block_group(fs_info, target);
8267 	if (!cache)
8268 		goto out;
8269 
8270 	if (!cache->relocating_repair)
8271 		goto out;
8272 
8273 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8274 	if (ret < 0)
8275 		goto out;
8276 
8277 	btrfs_info(fs_info,
8278 		   "zoned: relocating block group %llu to repair IO failure",
8279 		   target);
8280 	ret = btrfs_relocate_chunk(fs_info, target);
8281 
8282 out:
8283 	if (cache)
8284 		btrfs_put_block_group(cache);
8285 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8286 	btrfs_exclop_finish(fs_info);
8287 
8288 	return ret;
8289 }
8290 
8291 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8292 {
8293 	struct btrfs_block_group *cache;
8294 
8295 	/* Do not attempt to repair in degraded state */
8296 	if (btrfs_test_opt(fs_info, DEGRADED))
8297 		return 0;
8298 
8299 	cache = btrfs_lookup_block_group(fs_info, logical);
8300 	if (!cache)
8301 		return 0;
8302 
8303 	spin_lock(&cache->lock);
8304 	if (cache->relocating_repair) {
8305 		spin_unlock(&cache->lock);
8306 		btrfs_put_block_group(cache);
8307 		return 0;
8308 	}
8309 	cache->relocating_repair = 1;
8310 	spin_unlock(&cache->lock);
8311 
8312 	kthread_run(relocating_repair_kthread, cache,
8313 		    "btrfs-relocating-repair");
8314 
8315 	return 0;
8316 }
8317