xref: /openbmc/linux/fs/btrfs/volumes.c (revision bec36eca)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/iocontext.h>
24 #include <asm/div64.h>
25 #include "compat.h"
26 #include "ctree.h"
27 #include "extent_map.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
32 #include "async-thread.h"
33 
34 struct map_lookup {
35 	u64 type;
36 	int io_align;
37 	int io_width;
38 	int stripe_len;
39 	int sector_size;
40 	int num_stripes;
41 	int sub_stripes;
42 	struct btrfs_bio_stripe stripes[];
43 };
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 
50 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
51 			    (sizeof(struct btrfs_bio_stripe) * (n)))
52 
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 
56 void btrfs_lock_volumes(void)
57 {
58 	mutex_lock(&uuid_mutex);
59 }
60 
61 void btrfs_unlock_volumes(void)
62 {
63 	mutex_unlock(&uuid_mutex);
64 }
65 
66 static void lock_chunks(struct btrfs_root *root)
67 {
68 	mutex_lock(&root->fs_info->chunk_mutex);
69 }
70 
71 static void unlock_chunks(struct btrfs_root *root)
72 {
73 	mutex_unlock(&root->fs_info->chunk_mutex);
74 }
75 
76 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
77 {
78 	struct btrfs_device *device;
79 	WARN_ON(fs_devices->opened);
80 	while (!list_empty(&fs_devices->devices)) {
81 		device = list_entry(fs_devices->devices.next,
82 				    struct btrfs_device, dev_list);
83 		list_del(&device->dev_list);
84 		kfree(device->name);
85 		kfree(device);
86 	}
87 	kfree(fs_devices);
88 }
89 
90 int btrfs_cleanup_fs_uuids(void)
91 {
92 	struct btrfs_fs_devices *fs_devices;
93 
94 	while (!list_empty(&fs_uuids)) {
95 		fs_devices = list_entry(fs_uuids.next,
96 					struct btrfs_fs_devices, list);
97 		list_del(&fs_devices->list);
98 		free_fs_devices(fs_devices);
99 	}
100 	return 0;
101 }
102 
103 static noinline struct btrfs_device *__find_device(struct list_head *head,
104 						   u64 devid, u8 *uuid)
105 {
106 	struct btrfs_device *dev;
107 
108 	list_for_each_entry(dev, head, dev_list) {
109 		if (dev->devid == devid &&
110 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
111 			return dev;
112 		}
113 	}
114 	return NULL;
115 }
116 
117 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
118 {
119 	struct btrfs_fs_devices *fs_devices;
120 
121 	list_for_each_entry(fs_devices, &fs_uuids, list) {
122 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
123 			return fs_devices;
124 	}
125 	return NULL;
126 }
127 
128 static void requeue_list(struct btrfs_pending_bios *pending_bios,
129 			struct bio *head, struct bio *tail)
130 {
131 
132 	struct bio *old_head;
133 
134 	old_head = pending_bios->head;
135 	pending_bios->head = head;
136 	if (pending_bios->tail)
137 		tail->bi_next = old_head;
138 	else
139 		pending_bios->tail = tail;
140 }
141 
142 /*
143  * we try to collect pending bios for a device so we don't get a large
144  * number of procs sending bios down to the same device.  This greatly
145  * improves the schedulers ability to collect and merge the bios.
146  *
147  * But, it also turns into a long list of bios to process and that is sure
148  * to eventually make the worker thread block.  The solution here is to
149  * make some progress and then put this work struct back at the end of
150  * the list if the block device is congested.  This way, multiple devices
151  * can make progress from a single worker thread.
152  */
153 static noinline int run_scheduled_bios(struct btrfs_device *device)
154 {
155 	struct bio *pending;
156 	struct backing_dev_info *bdi;
157 	struct btrfs_fs_info *fs_info;
158 	struct btrfs_pending_bios *pending_bios;
159 	struct bio *tail;
160 	struct bio *cur;
161 	int again = 0;
162 	unsigned long num_run;
163 	unsigned long num_sync_run;
164 	unsigned long limit;
165 	unsigned long last_waited = 0;
166 
167 	bdi = blk_get_backing_dev_info(device->bdev);
168 	fs_info = device->dev_root->fs_info;
169 	limit = btrfs_async_submit_limit(fs_info);
170 	limit = limit * 2 / 3;
171 
172 	/* we want to make sure that every time we switch from the sync
173 	 * list to the normal list, we unplug
174 	 */
175 	num_sync_run = 0;
176 
177 loop:
178 	spin_lock(&device->io_lock);
179 	num_run = 0;
180 
181 loop_lock:
182 
183 	/* take all the bios off the list at once and process them
184 	 * later on (without the lock held).  But, remember the
185 	 * tail and other pointers so the bios can be properly reinserted
186 	 * into the list if we hit congestion
187 	 */
188 	if (device->pending_sync_bios.head)
189 		pending_bios = &device->pending_sync_bios;
190 	else
191 		pending_bios = &device->pending_bios;
192 
193 	pending = pending_bios->head;
194 	tail = pending_bios->tail;
195 	WARN_ON(pending && !tail);
196 
197 	/*
198 	 * if pending was null this time around, no bios need processing
199 	 * at all and we can stop.  Otherwise it'll loop back up again
200 	 * and do an additional check so no bios are missed.
201 	 *
202 	 * device->running_pending is used to synchronize with the
203 	 * schedule_bio code.
204 	 */
205 	if (device->pending_sync_bios.head == NULL &&
206 	    device->pending_bios.head == NULL) {
207 		again = 0;
208 		device->running_pending = 0;
209 	} else {
210 		again = 1;
211 		device->running_pending = 1;
212 	}
213 
214 	pending_bios->head = NULL;
215 	pending_bios->tail = NULL;
216 
217 	spin_unlock(&device->io_lock);
218 
219 	/*
220 	 * if we're doing the regular priority list, make sure we unplug
221 	 * for any high prio bios we've sent down
222 	 */
223 	if (pending_bios == &device->pending_bios && num_sync_run > 0) {
224 		num_sync_run = 0;
225 		blk_run_backing_dev(bdi, NULL);
226 	}
227 
228 	while (pending) {
229 
230 		rmb();
231 		if (pending_bios != &device->pending_sync_bios &&
232 		    device->pending_sync_bios.head &&
233 		    num_run > 16) {
234 			cond_resched();
235 			spin_lock(&device->io_lock);
236 			requeue_list(pending_bios, pending, tail);
237 			goto loop_lock;
238 		}
239 
240 		cur = pending;
241 		pending = pending->bi_next;
242 		cur->bi_next = NULL;
243 		atomic_dec(&fs_info->nr_async_bios);
244 
245 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
246 		    waitqueue_active(&fs_info->async_submit_wait))
247 			wake_up(&fs_info->async_submit_wait);
248 
249 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
250 		submit_bio(cur->bi_rw, cur);
251 		num_run++;
252 		if (bio_sync(cur))
253 			num_sync_run++;
254 
255 		if (need_resched()) {
256 			if (num_sync_run) {
257 				blk_run_backing_dev(bdi, NULL);
258 				num_sync_run = 0;
259 			}
260 			cond_resched();
261 		}
262 
263 		/*
264 		 * we made progress, there is more work to do and the bdi
265 		 * is now congested.  Back off and let other work structs
266 		 * run instead
267 		 */
268 		if (pending && bdi_write_congested(bdi) && num_run > 16 &&
269 		    fs_info->fs_devices->open_devices > 1) {
270 			struct io_context *ioc;
271 
272 			ioc = current->io_context;
273 
274 			/*
275 			 * the main goal here is that we don't want to
276 			 * block if we're going to be able to submit
277 			 * more requests without blocking.
278 			 *
279 			 * This code does two great things, it pokes into
280 			 * the elevator code from a filesystem _and_
281 			 * it makes assumptions about how batching works.
282 			 */
283 			if (ioc && ioc->nr_batch_requests > 0 &&
284 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
285 			    (last_waited == 0 ||
286 			     ioc->last_waited == last_waited)) {
287 				/*
288 				 * we want to go through our batch of
289 				 * requests and stop.  So, we copy out
290 				 * the ioc->last_waited time and test
291 				 * against it before looping
292 				 */
293 				last_waited = ioc->last_waited;
294 				if (need_resched()) {
295 					if (num_sync_run) {
296 						blk_run_backing_dev(bdi, NULL);
297 						num_sync_run = 0;
298 					}
299 					cond_resched();
300 				}
301 				continue;
302 			}
303 			spin_lock(&device->io_lock);
304 			requeue_list(pending_bios, pending, tail);
305 			device->running_pending = 1;
306 
307 			spin_unlock(&device->io_lock);
308 			btrfs_requeue_work(&device->work);
309 			goto done;
310 		}
311 	}
312 
313 	if (num_sync_run) {
314 		num_sync_run = 0;
315 		blk_run_backing_dev(bdi, NULL);
316 	}
317 
318 	cond_resched();
319 	if (again)
320 		goto loop;
321 
322 	spin_lock(&device->io_lock);
323 	if (device->pending_bios.head || device->pending_sync_bios.head)
324 		goto loop_lock;
325 	spin_unlock(&device->io_lock);
326 
327 	/*
328 	 * IO has already been through a long path to get here.  Checksumming,
329 	 * async helper threads, perhaps compression.  We've done a pretty
330 	 * good job of collecting a batch of IO and should just unplug
331 	 * the device right away.
332 	 *
333 	 * This will help anyone who is waiting on the IO, they might have
334 	 * already unplugged, but managed to do so before the bio they
335 	 * cared about found its way down here.
336 	 */
337 	blk_run_backing_dev(bdi, NULL);
338 done:
339 	return 0;
340 }
341 
342 static void pending_bios_fn(struct btrfs_work *work)
343 {
344 	struct btrfs_device *device;
345 
346 	device = container_of(work, struct btrfs_device, work);
347 	run_scheduled_bios(device);
348 }
349 
350 static noinline int device_list_add(const char *path,
351 			   struct btrfs_super_block *disk_super,
352 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
353 {
354 	struct btrfs_device *device;
355 	struct btrfs_fs_devices *fs_devices;
356 	u64 found_transid = btrfs_super_generation(disk_super);
357 
358 	fs_devices = find_fsid(disk_super->fsid);
359 	if (!fs_devices) {
360 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
361 		if (!fs_devices)
362 			return -ENOMEM;
363 		INIT_LIST_HEAD(&fs_devices->devices);
364 		INIT_LIST_HEAD(&fs_devices->alloc_list);
365 		list_add(&fs_devices->list, &fs_uuids);
366 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
367 		fs_devices->latest_devid = devid;
368 		fs_devices->latest_trans = found_transid;
369 		device = NULL;
370 	} else {
371 		device = __find_device(&fs_devices->devices, devid,
372 				       disk_super->dev_item.uuid);
373 	}
374 	if (!device) {
375 		if (fs_devices->opened)
376 			return -EBUSY;
377 
378 		device = kzalloc(sizeof(*device), GFP_NOFS);
379 		if (!device) {
380 			/* we can safely leave the fs_devices entry around */
381 			return -ENOMEM;
382 		}
383 		device->devid = devid;
384 		device->work.func = pending_bios_fn;
385 		memcpy(device->uuid, disk_super->dev_item.uuid,
386 		       BTRFS_UUID_SIZE);
387 		device->barriers = 1;
388 		spin_lock_init(&device->io_lock);
389 		device->name = kstrdup(path, GFP_NOFS);
390 		if (!device->name) {
391 			kfree(device);
392 			return -ENOMEM;
393 		}
394 		INIT_LIST_HEAD(&device->dev_alloc_list);
395 		list_add(&device->dev_list, &fs_devices->devices);
396 		device->fs_devices = fs_devices;
397 		fs_devices->num_devices++;
398 	}
399 
400 	if (found_transid > fs_devices->latest_trans) {
401 		fs_devices->latest_devid = devid;
402 		fs_devices->latest_trans = found_transid;
403 	}
404 	*fs_devices_ret = fs_devices;
405 	return 0;
406 }
407 
408 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
409 {
410 	struct btrfs_fs_devices *fs_devices;
411 	struct btrfs_device *device;
412 	struct btrfs_device *orig_dev;
413 
414 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
415 	if (!fs_devices)
416 		return ERR_PTR(-ENOMEM);
417 
418 	INIT_LIST_HEAD(&fs_devices->devices);
419 	INIT_LIST_HEAD(&fs_devices->alloc_list);
420 	INIT_LIST_HEAD(&fs_devices->list);
421 	fs_devices->latest_devid = orig->latest_devid;
422 	fs_devices->latest_trans = orig->latest_trans;
423 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
424 
425 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
426 		device = kzalloc(sizeof(*device), GFP_NOFS);
427 		if (!device)
428 			goto error;
429 
430 		device->name = kstrdup(orig_dev->name, GFP_NOFS);
431 		if (!device->name)
432 			goto error;
433 
434 		device->devid = orig_dev->devid;
435 		device->work.func = pending_bios_fn;
436 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
437 		device->barriers = 1;
438 		spin_lock_init(&device->io_lock);
439 		INIT_LIST_HEAD(&device->dev_list);
440 		INIT_LIST_HEAD(&device->dev_alloc_list);
441 
442 		list_add(&device->dev_list, &fs_devices->devices);
443 		device->fs_devices = fs_devices;
444 		fs_devices->num_devices++;
445 	}
446 	return fs_devices;
447 error:
448 	free_fs_devices(fs_devices);
449 	return ERR_PTR(-ENOMEM);
450 }
451 
452 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
453 {
454 	struct btrfs_device *device, *next;
455 
456 	mutex_lock(&uuid_mutex);
457 again:
458 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
459 		if (device->in_fs_metadata)
460 			continue;
461 
462 		if (device->bdev) {
463 			close_bdev_exclusive(device->bdev, device->mode);
464 			device->bdev = NULL;
465 			fs_devices->open_devices--;
466 		}
467 		if (device->writeable) {
468 			list_del_init(&device->dev_alloc_list);
469 			device->writeable = 0;
470 			fs_devices->rw_devices--;
471 		}
472 		list_del_init(&device->dev_list);
473 		fs_devices->num_devices--;
474 		kfree(device->name);
475 		kfree(device);
476 	}
477 
478 	if (fs_devices->seed) {
479 		fs_devices = fs_devices->seed;
480 		goto again;
481 	}
482 
483 	mutex_unlock(&uuid_mutex);
484 	return 0;
485 }
486 
487 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
488 {
489 	struct btrfs_device *device;
490 
491 	if (--fs_devices->opened > 0)
492 		return 0;
493 
494 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
495 		if (device->bdev) {
496 			close_bdev_exclusive(device->bdev, device->mode);
497 			fs_devices->open_devices--;
498 		}
499 		if (device->writeable) {
500 			list_del_init(&device->dev_alloc_list);
501 			fs_devices->rw_devices--;
502 		}
503 
504 		device->bdev = NULL;
505 		device->writeable = 0;
506 		device->in_fs_metadata = 0;
507 	}
508 	WARN_ON(fs_devices->open_devices);
509 	WARN_ON(fs_devices->rw_devices);
510 	fs_devices->opened = 0;
511 	fs_devices->seeding = 0;
512 
513 	return 0;
514 }
515 
516 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
517 {
518 	struct btrfs_fs_devices *seed_devices = NULL;
519 	int ret;
520 
521 	mutex_lock(&uuid_mutex);
522 	ret = __btrfs_close_devices(fs_devices);
523 	if (!fs_devices->opened) {
524 		seed_devices = fs_devices->seed;
525 		fs_devices->seed = NULL;
526 	}
527 	mutex_unlock(&uuid_mutex);
528 
529 	while (seed_devices) {
530 		fs_devices = seed_devices;
531 		seed_devices = fs_devices->seed;
532 		__btrfs_close_devices(fs_devices);
533 		free_fs_devices(fs_devices);
534 	}
535 	return ret;
536 }
537 
538 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
539 				fmode_t flags, void *holder)
540 {
541 	struct block_device *bdev;
542 	struct list_head *head = &fs_devices->devices;
543 	struct btrfs_device *device;
544 	struct block_device *latest_bdev = NULL;
545 	struct buffer_head *bh;
546 	struct btrfs_super_block *disk_super;
547 	u64 latest_devid = 0;
548 	u64 latest_transid = 0;
549 	u64 devid;
550 	int seeding = 1;
551 	int ret = 0;
552 
553 	list_for_each_entry(device, head, dev_list) {
554 		if (device->bdev)
555 			continue;
556 		if (!device->name)
557 			continue;
558 
559 		bdev = open_bdev_exclusive(device->name, flags, holder);
560 		if (IS_ERR(bdev)) {
561 			printk(KERN_INFO "open %s failed\n", device->name);
562 			goto error;
563 		}
564 		set_blocksize(bdev, 4096);
565 
566 		bh = btrfs_read_dev_super(bdev);
567 		if (!bh)
568 			goto error_close;
569 
570 		disk_super = (struct btrfs_super_block *)bh->b_data;
571 		devid = le64_to_cpu(disk_super->dev_item.devid);
572 		if (devid != device->devid)
573 			goto error_brelse;
574 
575 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
576 			   BTRFS_UUID_SIZE))
577 			goto error_brelse;
578 
579 		device->generation = btrfs_super_generation(disk_super);
580 		if (!latest_transid || device->generation > latest_transid) {
581 			latest_devid = devid;
582 			latest_transid = device->generation;
583 			latest_bdev = bdev;
584 		}
585 
586 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
587 			device->writeable = 0;
588 		} else {
589 			device->writeable = !bdev_read_only(bdev);
590 			seeding = 0;
591 		}
592 
593 		device->bdev = bdev;
594 		device->in_fs_metadata = 0;
595 		device->mode = flags;
596 
597 		fs_devices->open_devices++;
598 		if (device->writeable) {
599 			fs_devices->rw_devices++;
600 			list_add(&device->dev_alloc_list,
601 				 &fs_devices->alloc_list);
602 		}
603 		continue;
604 
605 error_brelse:
606 		brelse(bh);
607 error_close:
608 		close_bdev_exclusive(bdev, FMODE_READ);
609 error:
610 		continue;
611 	}
612 	if (fs_devices->open_devices == 0) {
613 		ret = -EIO;
614 		goto out;
615 	}
616 	fs_devices->seeding = seeding;
617 	fs_devices->opened = 1;
618 	fs_devices->latest_bdev = latest_bdev;
619 	fs_devices->latest_devid = latest_devid;
620 	fs_devices->latest_trans = latest_transid;
621 	fs_devices->total_rw_bytes = 0;
622 out:
623 	return ret;
624 }
625 
626 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
627 		       fmode_t flags, void *holder)
628 {
629 	int ret;
630 
631 	mutex_lock(&uuid_mutex);
632 	if (fs_devices->opened) {
633 		fs_devices->opened++;
634 		ret = 0;
635 	} else {
636 		ret = __btrfs_open_devices(fs_devices, flags, holder);
637 	}
638 	mutex_unlock(&uuid_mutex);
639 	return ret;
640 }
641 
642 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
643 			  struct btrfs_fs_devices **fs_devices_ret)
644 {
645 	struct btrfs_super_block *disk_super;
646 	struct block_device *bdev;
647 	struct buffer_head *bh;
648 	int ret;
649 	u64 devid;
650 	u64 transid;
651 
652 	mutex_lock(&uuid_mutex);
653 
654 	bdev = open_bdev_exclusive(path, flags, holder);
655 
656 	if (IS_ERR(bdev)) {
657 		ret = PTR_ERR(bdev);
658 		goto error;
659 	}
660 
661 	ret = set_blocksize(bdev, 4096);
662 	if (ret)
663 		goto error_close;
664 	bh = btrfs_read_dev_super(bdev);
665 	if (!bh) {
666 		ret = -EIO;
667 		goto error_close;
668 	}
669 	disk_super = (struct btrfs_super_block *)bh->b_data;
670 	devid = le64_to_cpu(disk_super->dev_item.devid);
671 	transid = btrfs_super_generation(disk_super);
672 	if (disk_super->label[0])
673 		printk(KERN_INFO "device label %s ", disk_super->label);
674 	else {
675 		/* FIXME, make a readl uuid parser */
676 		printk(KERN_INFO "device fsid %llx-%llx ",
677 		       *(unsigned long long *)disk_super->fsid,
678 		       *(unsigned long long *)(disk_super->fsid + 8));
679 	}
680 	printk(KERN_CONT "devid %llu transid %llu %s\n",
681 	       (unsigned long long)devid, (unsigned long long)transid, path);
682 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
683 
684 	brelse(bh);
685 error_close:
686 	close_bdev_exclusive(bdev, flags);
687 error:
688 	mutex_unlock(&uuid_mutex);
689 	return ret;
690 }
691 
692 /*
693  * this uses a pretty simple search, the expectation is that it is
694  * called very infrequently and that a given device has a small number
695  * of extents
696  */
697 static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
698 					 struct btrfs_device *device,
699 					 u64 num_bytes, u64 *start)
700 {
701 	struct btrfs_key key;
702 	struct btrfs_root *root = device->dev_root;
703 	struct btrfs_dev_extent *dev_extent = NULL;
704 	struct btrfs_path *path;
705 	u64 hole_size = 0;
706 	u64 last_byte = 0;
707 	u64 search_start = 0;
708 	u64 search_end = device->total_bytes;
709 	int ret;
710 	int slot = 0;
711 	int start_found;
712 	struct extent_buffer *l;
713 
714 	path = btrfs_alloc_path();
715 	if (!path)
716 		return -ENOMEM;
717 	path->reada = 2;
718 	start_found = 0;
719 
720 	/* FIXME use last free of some kind */
721 
722 	/* we don't want to overwrite the superblock on the drive,
723 	 * so we make sure to start at an offset of at least 1MB
724 	 */
725 	search_start = max((u64)1024 * 1024, search_start);
726 
727 	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
728 		search_start = max(root->fs_info->alloc_start, search_start);
729 
730 	key.objectid = device->devid;
731 	key.offset = search_start;
732 	key.type = BTRFS_DEV_EXTENT_KEY;
733 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
734 	if (ret < 0)
735 		goto error;
736 	ret = btrfs_previous_item(root, path, 0, key.type);
737 	if (ret < 0)
738 		goto error;
739 	l = path->nodes[0];
740 	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
741 	while (1) {
742 		l = path->nodes[0];
743 		slot = path->slots[0];
744 		if (slot >= btrfs_header_nritems(l)) {
745 			ret = btrfs_next_leaf(root, path);
746 			if (ret == 0)
747 				continue;
748 			if (ret < 0)
749 				goto error;
750 no_more_items:
751 			if (!start_found) {
752 				if (search_start >= search_end) {
753 					ret = -ENOSPC;
754 					goto error;
755 				}
756 				*start = search_start;
757 				start_found = 1;
758 				goto check_pending;
759 			}
760 			*start = last_byte > search_start ?
761 				last_byte : search_start;
762 			if (search_end <= *start) {
763 				ret = -ENOSPC;
764 				goto error;
765 			}
766 			goto check_pending;
767 		}
768 		btrfs_item_key_to_cpu(l, &key, slot);
769 
770 		if (key.objectid < device->devid)
771 			goto next;
772 
773 		if (key.objectid > device->devid)
774 			goto no_more_items;
775 
776 		if (key.offset >= search_start && key.offset > last_byte &&
777 		    start_found) {
778 			if (last_byte < search_start)
779 				last_byte = search_start;
780 			hole_size = key.offset - last_byte;
781 			if (key.offset > last_byte &&
782 			    hole_size >= num_bytes) {
783 				*start = last_byte;
784 				goto check_pending;
785 			}
786 		}
787 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
788 			goto next;
789 
790 		start_found = 1;
791 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
792 		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
793 next:
794 		path->slots[0]++;
795 		cond_resched();
796 	}
797 check_pending:
798 	/* we have to make sure we didn't find an extent that has already
799 	 * been allocated by the map tree or the original allocation
800 	 */
801 	BUG_ON(*start < search_start);
802 
803 	if (*start + num_bytes > search_end) {
804 		ret = -ENOSPC;
805 		goto error;
806 	}
807 	/* check for pending inserts here */
808 	ret = 0;
809 
810 error:
811 	btrfs_free_path(path);
812 	return ret;
813 }
814 
815 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
816 			  struct btrfs_device *device,
817 			  u64 start)
818 {
819 	int ret;
820 	struct btrfs_path *path;
821 	struct btrfs_root *root = device->dev_root;
822 	struct btrfs_key key;
823 	struct btrfs_key found_key;
824 	struct extent_buffer *leaf = NULL;
825 	struct btrfs_dev_extent *extent = NULL;
826 
827 	path = btrfs_alloc_path();
828 	if (!path)
829 		return -ENOMEM;
830 
831 	key.objectid = device->devid;
832 	key.offset = start;
833 	key.type = BTRFS_DEV_EXTENT_KEY;
834 
835 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
836 	if (ret > 0) {
837 		ret = btrfs_previous_item(root, path, key.objectid,
838 					  BTRFS_DEV_EXTENT_KEY);
839 		BUG_ON(ret);
840 		leaf = path->nodes[0];
841 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
842 		extent = btrfs_item_ptr(leaf, path->slots[0],
843 					struct btrfs_dev_extent);
844 		BUG_ON(found_key.offset > start || found_key.offset +
845 		       btrfs_dev_extent_length(leaf, extent) < start);
846 		ret = 0;
847 	} else if (ret == 0) {
848 		leaf = path->nodes[0];
849 		extent = btrfs_item_ptr(leaf, path->slots[0],
850 					struct btrfs_dev_extent);
851 	}
852 	BUG_ON(ret);
853 
854 	if (device->bytes_used > 0)
855 		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
856 	ret = btrfs_del_item(trans, root, path);
857 	BUG_ON(ret);
858 
859 	btrfs_free_path(path);
860 	return ret;
861 }
862 
863 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
864 			   struct btrfs_device *device,
865 			   u64 chunk_tree, u64 chunk_objectid,
866 			   u64 chunk_offset, u64 start, u64 num_bytes)
867 {
868 	int ret;
869 	struct btrfs_path *path;
870 	struct btrfs_root *root = device->dev_root;
871 	struct btrfs_dev_extent *extent;
872 	struct extent_buffer *leaf;
873 	struct btrfs_key key;
874 
875 	WARN_ON(!device->in_fs_metadata);
876 	path = btrfs_alloc_path();
877 	if (!path)
878 		return -ENOMEM;
879 
880 	key.objectid = device->devid;
881 	key.offset = start;
882 	key.type = BTRFS_DEV_EXTENT_KEY;
883 	ret = btrfs_insert_empty_item(trans, root, path, &key,
884 				      sizeof(*extent));
885 	BUG_ON(ret);
886 
887 	leaf = path->nodes[0];
888 	extent = btrfs_item_ptr(leaf, path->slots[0],
889 				struct btrfs_dev_extent);
890 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
891 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
892 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
893 
894 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
895 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
896 		    BTRFS_UUID_SIZE);
897 
898 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
899 	btrfs_mark_buffer_dirty(leaf);
900 	btrfs_free_path(path);
901 	return ret;
902 }
903 
904 static noinline int find_next_chunk(struct btrfs_root *root,
905 				    u64 objectid, u64 *offset)
906 {
907 	struct btrfs_path *path;
908 	int ret;
909 	struct btrfs_key key;
910 	struct btrfs_chunk *chunk;
911 	struct btrfs_key found_key;
912 
913 	path = btrfs_alloc_path();
914 	BUG_ON(!path);
915 
916 	key.objectid = objectid;
917 	key.offset = (u64)-1;
918 	key.type = BTRFS_CHUNK_ITEM_KEY;
919 
920 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
921 	if (ret < 0)
922 		goto error;
923 
924 	BUG_ON(ret == 0);
925 
926 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
927 	if (ret) {
928 		*offset = 0;
929 	} else {
930 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
931 				      path->slots[0]);
932 		if (found_key.objectid != objectid)
933 			*offset = 0;
934 		else {
935 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
936 					       struct btrfs_chunk);
937 			*offset = found_key.offset +
938 				btrfs_chunk_length(path->nodes[0], chunk);
939 		}
940 	}
941 	ret = 0;
942 error:
943 	btrfs_free_path(path);
944 	return ret;
945 }
946 
947 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
948 {
949 	int ret;
950 	struct btrfs_key key;
951 	struct btrfs_key found_key;
952 	struct btrfs_path *path;
953 
954 	root = root->fs_info->chunk_root;
955 
956 	path = btrfs_alloc_path();
957 	if (!path)
958 		return -ENOMEM;
959 
960 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
961 	key.type = BTRFS_DEV_ITEM_KEY;
962 	key.offset = (u64)-1;
963 
964 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
965 	if (ret < 0)
966 		goto error;
967 
968 	BUG_ON(ret == 0);
969 
970 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
971 				  BTRFS_DEV_ITEM_KEY);
972 	if (ret) {
973 		*objectid = 1;
974 	} else {
975 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
976 				      path->slots[0]);
977 		*objectid = found_key.offset + 1;
978 	}
979 	ret = 0;
980 error:
981 	btrfs_free_path(path);
982 	return ret;
983 }
984 
985 /*
986  * the device information is stored in the chunk root
987  * the btrfs_device struct should be fully filled in
988  */
989 int btrfs_add_device(struct btrfs_trans_handle *trans,
990 		     struct btrfs_root *root,
991 		     struct btrfs_device *device)
992 {
993 	int ret;
994 	struct btrfs_path *path;
995 	struct btrfs_dev_item *dev_item;
996 	struct extent_buffer *leaf;
997 	struct btrfs_key key;
998 	unsigned long ptr;
999 
1000 	root = root->fs_info->chunk_root;
1001 
1002 	path = btrfs_alloc_path();
1003 	if (!path)
1004 		return -ENOMEM;
1005 
1006 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1007 	key.type = BTRFS_DEV_ITEM_KEY;
1008 	key.offset = device->devid;
1009 
1010 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1011 				      sizeof(*dev_item));
1012 	if (ret)
1013 		goto out;
1014 
1015 	leaf = path->nodes[0];
1016 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1017 
1018 	btrfs_set_device_id(leaf, dev_item, device->devid);
1019 	btrfs_set_device_generation(leaf, dev_item, 0);
1020 	btrfs_set_device_type(leaf, dev_item, device->type);
1021 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1022 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1023 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1024 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1025 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1026 	btrfs_set_device_group(leaf, dev_item, 0);
1027 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1028 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1029 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1030 
1031 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1032 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1033 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1034 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1035 	btrfs_mark_buffer_dirty(leaf);
1036 
1037 	ret = 0;
1038 out:
1039 	btrfs_free_path(path);
1040 	return ret;
1041 }
1042 
1043 static int btrfs_rm_dev_item(struct btrfs_root *root,
1044 			     struct btrfs_device *device)
1045 {
1046 	int ret;
1047 	struct btrfs_path *path;
1048 	struct btrfs_key key;
1049 	struct btrfs_trans_handle *trans;
1050 
1051 	root = root->fs_info->chunk_root;
1052 
1053 	path = btrfs_alloc_path();
1054 	if (!path)
1055 		return -ENOMEM;
1056 
1057 	trans = btrfs_start_transaction(root, 1);
1058 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1059 	key.type = BTRFS_DEV_ITEM_KEY;
1060 	key.offset = device->devid;
1061 	lock_chunks(root);
1062 
1063 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1064 	if (ret < 0)
1065 		goto out;
1066 
1067 	if (ret > 0) {
1068 		ret = -ENOENT;
1069 		goto out;
1070 	}
1071 
1072 	ret = btrfs_del_item(trans, root, path);
1073 	if (ret)
1074 		goto out;
1075 out:
1076 	btrfs_free_path(path);
1077 	unlock_chunks(root);
1078 	btrfs_commit_transaction(trans, root);
1079 	return ret;
1080 }
1081 
1082 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1083 {
1084 	struct btrfs_device *device;
1085 	struct btrfs_device *next_device;
1086 	struct block_device *bdev;
1087 	struct buffer_head *bh = NULL;
1088 	struct btrfs_super_block *disk_super;
1089 	u64 all_avail;
1090 	u64 devid;
1091 	u64 num_devices;
1092 	u8 *dev_uuid;
1093 	int ret = 0;
1094 
1095 	mutex_lock(&uuid_mutex);
1096 	mutex_lock(&root->fs_info->volume_mutex);
1097 
1098 	all_avail = root->fs_info->avail_data_alloc_bits |
1099 		root->fs_info->avail_system_alloc_bits |
1100 		root->fs_info->avail_metadata_alloc_bits;
1101 
1102 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1103 	    root->fs_info->fs_devices->rw_devices <= 4) {
1104 		printk(KERN_ERR "btrfs: unable to go below four devices "
1105 		       "on raid10\n");
1106 		ret = -EINVAL;
1107 		goto out;
1108 	}
1109 
1110 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1111 	    root->fs_info->fs_devices->rw_devices <= 2) {
1112 		printk(KERN_ERR "btrfs: unable to go below two "
1113 		       "devices on raid1\n");
1114 		ret = -EINVAL;
1115 		goto out;
1116 	}
1117 
1118 	if (strcmp(device_path, "missing") == 0) {
1119 		struct list_head *devices;
1120 		struct btrfs_device *tmp;
1121 
1122 		device = NULL;
1123 		devices = &root->fs_info->fs_devices->devices;
1124 		list_for_each_entry(tmp, devices, dev_list) {
1125 			if (tmp->in_fs_metadata && !tmp->bdev) {
1126 				device = tmp;
1127 				break;
1128 			}
1129 		}
1130 		bdev = NULL;
1131 		bh = NULL;
1132 		disk_super = NULL;
1133 		if (!device) {
1134 			printk(KERN_ERR "btrfs: no missing devices found to "
1135 			       "remove\n");
1136 			goto out;
1137 		}
1138 	} else {
1139 		bdev = open_bdev_exclusive(device_path, FMODE_READ,
1140 				      root->fs_info->bdev_holder);
1141 		if (IS_ERR(bdev)) {
1142 			ret = PTR_ERR(bdev);
1143 			goto out;
1144 		}
1145 
1146 		set_blocksize(bdev, 4096);
1147 		bh = btrfs_read_dev_super(bdev);
1148 		if (!bh) {
1149 			ret = -EIO;
1150 			goto error_close;
1151 		}
1152 		disk_super = (struct btrfs_super_block *)bh->b_data;
1153 		devid = le64_to_cpu(disk_super->dev_item.devid);
1154 		dev_uuid = disk_super->dev_item.uuid;
1155 		device = btrfs_find_device(root, devid, dev_uuid,
1156 					   disk_super->fsid);
1157 		if (!device) {
1158 			ret = -ENOENT;
1159 			goto error_brelse;
1160 		}
1161 	}
1162 
1163 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1164 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1165 		       "device\n");
1166 		ret = -EINVAL;
1167 		goto error_brelse;
1168 	}
1169 
1170 	if (device->writeable) {
1171 		list_del_init(&device->dev_alloc_list);
1172 		root->fs_info->fs_devices->rw_devices--;
1173 	}
1174 
1175 	ret = btrfs_shrink_device(device, 0);
1176 	if (ret)
1177 		goto error_brelse;
1178 
1179 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1180 	if (ret)
1181 		goto error_brelse;
1182 
1183 	device->in_fs_metadata = 0;
1184 	list_del_init(&device->dev_list);
1185 	device->fs_devices->num_devices--;
1186 
1187 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1188 				 struct btrfs_device, dev_list);
1189 	if (device->bdev == root->fs_info->sb->s_bdev)
1190 		root->fs_info->sb->s_bdev = next_device->bdev;
1191 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1192 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1193 
1194 	if (device->bdev) {
1195 		close_bdev_exclusive(device->bdev, device->mode);
1196 		device->bdev = NULL;
1197 		device->fs_devices->open_devices--;
1198 	}
1199 
1200 	num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1201 	btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1202 
1203 	if (device->fs_devices->open_devices == 0) {
1204 		struct btrfs_fs_devices *fs_devices;
1205 		fs_devices = root->fs_info->fs_devices;
1206 		while (fs_devices) {
1207 			if (fs_devices->seed == device->fs_devices)
1208 				break;
1209 			fs_devices = fs_devices->seed;
1210 		}
1211 		fs_devices->seed = device->fs_devices->seed;
1212 		device->fs_devices->seed = NULL;
1213 		__btrfs_close_devices(device->fs_devices);
1214 		free_fs_devices(device->fs_devices);
1215 	}
1216 
1217 	/*
1218 	 * at this point, the device is zero sized.  We want to
1219 	 * remove it from the devices list and zero out the old super
1220 	 */
1221 	if (device->writeable) {
1222 		/* make sure this device isn't detected as part of
1223 		 * the FS anymore
1224 		 */
1225 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1226 		set_buffer_dirty(bh);
1227 		sync_dirty_buffer(bh);
1228 	}
1229 
1230 	kfree(device->name);
1231 	kfree(device);
1232 	ret = 0;
1233 
1234 error_brelse:
1235 	brelse(bh);
1236 error_close:
1237 	if (bdev)
1238 		close_bdev_exclusive(bdev, FMODE_READ);
1239 out:
1240 	mutex_unlock(&root->fs_info->volume_mutex);
1241 	mutex_unlock(&uuid_mutex);
1242 	return ret;
1243 }
1244 
1245 /*
1246  * does all the dirty work required for changing file system's UUID.
1247  */
1248 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1249 				struct btrfs_root *root)
1250 {
1251 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1252 	struct btrfs_fs_devices *old_devices;
1253 	struct btrfs_fs_devices *seed_devices;
1254 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1255 	struct btrfs_device *device;
1256 	u64 super_flags;
1257 
1258 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1259 	if (!fs_devices->seeding)
1260 		return -EINVAL;
1261 
1262 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1263 	if (!seed_devices)
1264 		return -ENOMEM;
1265 
1266 	old_devices = clone_fs_devices(fs_devices);
1267 	if (IS_ERR(old_devices)) {
1268 		kfree(seed_devices);
1269 		return PTR_ERR(old_devices);
1270 	}
1271 
1272 	list_add(&old_devices->list, &fs_uuids);
1273 
1274 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1275 	seed_devices->opened = 1;
1276 	INIT_LIST_HEAD(&seed_devices->devices);
1277 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1278 	list_splice_init(&fs_devices->devices, &seed_devices->devices);
1279 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1280 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1281 		device->fs_devices = seed_devices;
1282 	}
1283 
1284 	fs_devices->seeding = 0;
1285 	fs_devices->num_devices = 0;
1286 	fs_devices->open_devices = 0;
1287 	fs_devices->seed = seed_devices;
1288 
1289 	generate_random_uuid(fs_devices->fsid);
1290 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1291 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1292 	super_flags = btrfs_super_flags(disk_super) &
1293 		      ~BTRFS_SUPER_FLAG_SEEDING;
1294 	btrfs_set_super_flags(disk_super, super_flags);
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  * strore the expected generation for seed devices in device items.
1301  */
1302 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1303 			       struct btrfs_root *root)
1304 {
1305 	struct btrfs_path *path;
1306 	struct extent_buffer *leaf;
1307 	struct btrfs_dev_item *dev_item;
1308 	struct btrfs_device *device;
1309 	struct btrfs_key key;
1310 	u8 fs_uuid[BTRFS_UUID_SIZE];
1311 	u8 dev_uuid[BTRFS_UUID_SIZE];
1312 	u64 devid;
1313 	int ret;
1314 
1315 	path = btrfs_alloc_path();
1316 	if (!path)
1317 		return -ENOMEM;
1318 
1319 	root = root->fs_info->chunk_root;
1320 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1321 	key.offset = 0;
1322 	key.type = BTRFS_DEV_ITEM_KEY;
1323 
1324 	while (1) {
1325 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1326 		if (ret < 0)
1327 			goto error;
1328 
1329 		leaf = path->nodes[0];
1330 next_slot:
1331 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1332 			ret = btrfs_next_leaf(root, path);
1333 			if (ret > 0)
1334 				break;
1335 			if (ret < 0)
1336 				goto error;
1337 			leaf = path->nodes[0];
1338 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339 			btrfs_release_path(root, path);
1340 			continue;
1341 		}
1342 
1343 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1345 		    key.type != BTRFS_DEV_ITEM_KEY)
1346 			break;
1347 
1348 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1349 					  struct btrfs_dev_item);
1350 		devid = btrfs_device_id(leaf, dev_item);
1351 		read_extent_buffer(leaf, dev_uuid,
1352 				   (unsigned long)btrfs_device_uuid(dev_item),
1353 				   BTRFS_UUID_SIZE);
1354 		read_extent_buffer(leaf, fs_uuid,
1355 				   (unsigned long)btrfs_device_fsid(dev_item),
1356 				   BTRFS_UUID_SIZE);
1357 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1358 		BUG_ON(!device);
1359 
1360 		if (device->fs_devices->seeding) {
1361 			btrfs_set_device_generation(leaf, dev_item,
1362 						    device->generation);
1363 			btrfs_mark_buffer_dirty(leaf);
1364 		}
1365 
1366 		path->slots[0]++;
1367 		goto next_slot;
1368 	}
1369 	ret = 0;
1370 error:
1371 	btrfs_free_path(path);
1372 	return ret;
1373 }
1374 
1375 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1376 {
1377 	struct btrfs_trans_handle *trans;
1378 	struct btrfs_device *device;
1379 	struct block_device *bdev;
1380 	struct list_head *devices;
1381 	struct super_block *sb = root->fs_info->sb;
1382 	u64 total_bytes;
1383 	int seeding_dev = 0;
1384 	int ret = 0;
1385 
1386 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1387 		return -EINVAL;
1388 
1389 	bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1390 	if (!bdev)
1391 		return -EIO;
1392 
1393 	if (root->fs_info->fs_devices->seeding) {
1394 		seeding_dev = 1;
1395 		down_write(&sb->s_umount);
1396 		mutex_lock(&uuid_mutex);
1397 	}
1398 
1399 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1400 	mutex_lock(&root->fs_info->volume_mutex);
1401 
1402 	devices = &root->fs_info->fs_devices->devices;
1403 	list_for_each_entry(device, devices, dev_list) {
1404 		if (device->bdev == bdev) {
1405 			ret = -EEXIST;
1406 			goto error;
1407 		}
1408 	}
1409 
1410 	device = kzalloc(sizeof(*device), GFP_NOFS);
1411 	if (!device) {
1412 		/* we can safely leave the fs_devices entry around */
1413 		ret = -ENOMEM;
1414 		goto error;
1415 	}
1416 
1417 	device->name = kstrdup(device_path, GFP_NOFS);
1418 	if (!device->name) {
1419 		kfree(device);
1420 		ret = -ENOMEM;
1421 		goto error;
1422 	}
1423 
1424 	ret = find_next_devid(root, &device->devid);
1425 	if (ret) {
1426 		kfree(device);
1427 		goto error;
1428 	}
1429 
1430 	trans = btrfs_start_transaction(root, 1);
1431 	lock_chunks(root);
1432 
1433 	device->barriers = 1;
1434 	device->writeable = 1;
1435 	device->work.func = pending_bios_fn;
1436 	generate_random_uuid(device->uuid);
1437 	spin_lock_init(&device->io_lock);
1438 	device->generation = trans->transid;
1439 	device->io_width = root->sectorsize;
1440 	device->io_align = root->sectorsize;
1441 	device->sector_size = root->sectorsize;
1442 	device->total_bytes = i_size_read(bdev->bd_inode);
1443 	device->dev_root = root->fs_info->dev_root;
1444 	device->bdev = bdev;
1445 	device->in_fs_metadata = 1;
1446 	device->mode = 0;
1447 	set_blocksize(device->bdev, 4096);
1448 
1449 	if (seeding_dev) {
1450 		sb->s_flags &= ~MS_RDONLY;
1451 		ret = btrfs_prepare_sprout(trans, root);
1452 		BUG_ON(ret);
1453 	}
1454 
1455 	device->fs_devices = root->fs_info->fs_devices;
1456 	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1457 	list_add(&device->dev_alloc_list,
1458 		 &root->fs_info->fs_devices->alloc_list);
1459 	root->fs_info->fs_devices->num_devices++;
1460 	root->fs_info->fs_devices->open_devices++;
1461 	root->fs_info->fs_devices->rw_devices++;
1462 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1463 
1464 	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1465 	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1466 				    total_bytes + device->total_bytes);
1467 
1468 	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1469 	btrfs_set_super_num_devices(&root->fs_info->super_copy,
1470 				    total_bytes + 1);
1471 
1472 	if (seeding_dev) {
1473 		ret = init_first_rw_device(trans, root, device);
1474 		BUG_ON(ret);
1475 		ret = btrfs_finish_sprout(trans, root);
1476 		BUG_ON(ret);
1477 	} else {
1478 		ret = btrfs_add_device(trans, root, device);
1479 	}
1480 
1481 	/*
1482 	 * we've got more storage, clear any full flags on the space
1483 	 * infos
1484 	 */
1485 	btrfs_clear_space_info_full(root->fs_info);
1486 
1487 	unlock_chunks(root);
1488 	btrfs_commit_transaction(trans, root);
1489 
1490 	if (seeding_dev) {
1491 		mutex_unlock(&uuid_mutex);
1492 		up_write(&sb->s_umount);
1493 
1494 		ret = btrfs_relocate_sys_chunks(root);
1495 		BUG_ON(ret);
1496 	}
1497 out:
1498 	mutex_unlock(&root->fs_info->volume_mutex);
1499 	return ret;
1500 error:
1501 	close_bdev_exclusive(bdev, 0);
1502 	if (seeding_dev) {
1503 		mutex_unlock(&uuid_mutex);
1504 		up_write(&sb->s_umount);
1505 	}
1506 	goto out;
1507 }
1508 
1509 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1510 					struct btrfs_device *device)
1511 {
1512 	int ret;
1513 	struct btrfs_path *path;
1514 	struct btrfs_root *root;
1515 	struct btrfs_dev_item *dev_item;
1516 	struct extent_buffer *leaf;
1517 	struct btrfs_key key;
1518 
1519 	root = device->dev_root->fs_info->chunk_root;
1520 
1521 	path = btrfs_alloc_path();
1522 	if (!path)
1523 		return -ENOMEM;
1524 
1525 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1526 	key.type = BTRFS_DEV_ITEM_KEY;
1527 	key.offset = device->devid;
1528 
1529 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1530 	if (ret < 0)
1531 		goto out;
1532 
1533 	if (ret > 0) {
1534 		ret = -ENOENT;
1535 		goto out;
1536 	}
1537 
1538 	leaf = path->nodes[0];
1539 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1540 
1541 	btrfs_set_device_id(leaf, dev_item, device->devid);
1542 	btrfs_set_device_type(leaf, dev_item, device->type);
1543 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1544 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1545 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1546 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1547 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1548 	btrfs_mark_buffer_dirty(leaf);
1549 
1550 out:
1551 	btrfs_free_path(path);
1552 	return ret;
1553 }
1554 
1555 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1556 		      struct btrfs_device *device, u64 new_size)
1557 {
1558 	struct btrfs_super_block *super_copy =
1559 		&device->dev_root->fs_info->super_copy;
1560 	u64 old_total = btrfs_super_total_bytes(super_copy);
1561 	u64 diff = new_size - device->total_bytes;
1562 
1563 	if (!device->writeable)
1564 		return -EACCES;
1565 	if (new_size <= device->total_bytes)
1566 		return -EINVAL;
1567 
1568 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1569 	device->fs_devices->total_rw_bytes += diff;
1570 
1571 	device->total_bytes = new_size;
1572 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1573 
1574 	return btrfs_update_device(trans, device);
1575 }
1576 
1577 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1578 		      struct btrfs_device *device, u64 new_size)
1579 {
1580 	int ret;
1581 	lock_chunks(device->dev_root);
1582 	ret = __btrfs_grow_device(trans, device, new_size);
1583 	unlock_chunks(device->dev_root);
1584 	return ret;
1585 }
1586 
1587 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1588 			    struct btrfs_root *root,
1589 			    u64 chunk_tree, u64 chunk_objectid,
1590 			    u64 chunk_offset)
1591 {
1592 	int ret;
1593 	struct btrfs_path *path;
1594 	struct btrfs_key key;
1595 
1596 	root = root->fs_info->chunk_root;
1597 	path = btrfs_alloc_path();
1598 	if (!path)
1599 		return -ENOMEM;
1600 
1601 	key.objectid = chunk_objectid;
1602 	key.offset = chunk_offset;
1603 	key.type = BTRFS_CHUNK_ITEM_KEY;
1604 
1605 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1606 	BUG_ON(ret);
1607 
1608 	ret = btrfs_del_item(trans, root, path);
1609 	BUG_ON(ret);
1610 
1611 	btrfs_free_path(path);
1612 	return 0;
1613 }
1614 
1615 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1616 			chunk_offset)
1617 {
1618 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1619 	struct btrfs_disk_key *disk_key;
1620 	struct btrfs_chunk *chunk;
1621 	u8 *ptr;
1622 	int ret = 0;
1623 	u32 num_stripes;
1624 	u32 array_size;
1625 	u32 len = 0;
1626 	u32 cur;
1627 	struct btrfs_key key;
1628 
1629 	array_size = btrfs_super_sys_array_size(super_copy);
1630 
1631 	ptr = super_copy->sys_chunk_array;
1632 	cur = 0;
1633 
1634 	while (cur < array_size) {
1635 		disk_key = (struct btrfs_disk_key *)ptr;
1636 		btrfs_disk_key_to_cpu(&key, disk_key);
1637 
1638 		len = sizeof(*disk_key);
1639 
1640 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1641 			chunk = (struct btrfs_chunk *)(ptr + len);
1642 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1643 			len += btrfs_chunk_item_size(num_stripes);
1644 		} else {
1645 			ret = -EIO;
1646 			break;
1647 		}
1648 		if (key.objectid == chunk_objectid &&
1649 		    key.offset == chunk_offset) {
1650 			memmove(ptr, ptr + len, array_size - (cur + len));
1651 			array_size -= len;
1652 			btrfs_set_super_sys_array_size(super_copy, array_size);
1653 		} else {
1654 			ptr += len;
1655 			cur += len;
1656 		}
1657 	}
1658 	return ret;
1659 }
1660 
1661 static int btrfs_relocate_chunk(struct btrfs_root *root,
1662 			 u64 chunk_tree, u64 chunk_objectid,
1663 			 u64 chunk_offset)
1664 {
1665 	struct extent_map_tree *em_tree;
1666 	struct btrfs_root *extent_root;
1667 	struct btrfs_trans_handle *trans;
1668 	struct extent_map *em;
1669 	struct map_lookup *map;
1670 	int ret;
1671 	int i;
1672 
1673 	printk(KERN_INFO "btrfs relocating chunk %llu\n",
1674 	       (unsigned long long)chunk_offset);
1675 	root = root->fs_info->chunk_root;
1676 	extent_root = root->fs_info->extent_root;
1677 	em_tree = &root->fs_info->mapping_tree.map_tree;
1678 
1679 	/* step one, relocate all the extents inside this chunk */
1680 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1681 	BUG_ON(ret);
1682 
1683 	trans = btrfs_start_transaction(root, 1);
1684 	BUG_ON(!trans);
1685 
1686 	lock_chunks(root);
1687 
1688 	/*
1689 	 * step two, delete the device extents and the
1690 	 * chunk tree entries
1691 	 */
1692 	spin_lock(&em_tree->lock);
1693 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1694 	spin_unlock(&em_tree->lock);
1695 
1696 	BUG_ON(em->start > chunk_offset ||
1697 	       em->start + em->len < chunk_offset);
1698 	map = (struct map_lookup *)em->bdev;
1699 
1700 	for (i = 0; i < map->num_stripes; i++) {
1701 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1702 					    map->stripes[i].physical);
1703 		BUG_ON(ret);
1704 
1705 		if (map->stripes[i].dev) {
1706 			ret = btrfs_update_device(trans, map->stripes[i].dev);
1707 			BUG_ON(ret);
1708 		}
1709 	}
1710 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1711 			       chunk_offset);
1712 
1713 	BUG_ON(ret);
1714 
1715 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1716 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1717 		BUG_ON(ret);
1718 	}
1719 
1720 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1721 	BUG_ON(ret);
1722 
1723 	spin_lock(&em_tree->lock);
1724 	remove_extent_mapping(em_tree, em);
1725 	spin_unlock(&em_tree->lock);
1726 
1727 	kfree(map);
1728 	em->bdev = NULL;
1729 
1730 	/* once for the tree */
1731 	free_extent_map(em);
1732 	/* once for us */
1733 	free_extent_map(em);
1734 
1735 	unlock_chunks(root);
1736 	btrfs_end_transaction(trans, root);
1737 	return 0;
1738 }
1739 
1740 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1741 {
1742 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1743 	struct btrfs_path *path;
1744 	struct extent_buffer *leaf;
1745 	struct btrfs_chunk *chunk;
1746 	struct btrfs_key key;
1747 	struct btrfs_key found_key;
1748 	u64 chunk_tree = chunk_root->root_key.objectid;
1749 	u64 chunk_type;
1750 	int ret;
1751 
1752 	path = btrfs_alloc_path();
1753 	if (!path)
1754 		return -ENOMEM;
1755 
1756 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1757 	key.offset = (u64)-1;
1758 	key.type = BTRFS_CHUNK_ITEM_KEY;
1759 
1760 	while (1) {
1761 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1762 		if (ret < 0)
1763 			goto error;
1764 		BUG_ON(ret == 0);
1765 
1766 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
1767 					  key.type);
1768 		if (ret < 0)
1769 			goto error;
1770 		if (ret > 0)
1771 			break;
1772 
1773 		leaf = path->nodes[0];
1774 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1775 
1776 		chunk = btrfs_item_ptr(leaf, path->slots[0],
1777 				       struct btrfs_chunk);
1778 		chunk_type = btrfs_chunk_type(leaf, chunk);
1779 		btrfs_release_path(chunk_root, path);
1780 
1781 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1782 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1783 						   found_key.objectid,
1784 						   found_key.offset);
1785 			BUG_ON(ret);
1786 		}
1787 
1788 		if (found_key.offset == 0)
1789 			break;
1790 		key.offset = found_key.offset - 1;
1791 	}
1792 	ret = 0;
1793 error:
1794 	btrfs_free_path(path);
1795 	return ret;
1796 }
1797 
1798 static u64 div_factor(u64 num, int factor)
1799 {
1800 	if (factor == 10)
1801 		return num;
1802 	num *= factor;
1803 	do_div(num, 10);
1804 	return num;
1805 }
1806 
1807 int btrfs_balance(struct btrfs_root *dev_root)
1808 {
1809 	int ret;
1810 	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1811 	struct btrfs_device *device;
1812 	u64 old_size;
1813 	u64 size_to_free;
1814 	struct btrfs_path *path;
1815 	struct btrfs_key key;
1816 	struct btrfs_chunk *chunk;
1817 	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1818 	struct btrfs_trans_handle *trans;
1819 	struct btrfs_key found_key;
1820 
1821 	if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1822 		return -EROFS;
1823 
1824 	mutex_lock(&dev_root->fs_info->volume_mutex);
1825 	dev_root = dev_root->fs_info->dev_root;
1826 
1827 	/* step one make some room on all the devices */
1828 	list_for_each_entry(device, devices, dev_list) {
1829 		old_size = device->total_bytes;
1830 		size_to_free = div_factor(old_size, 1);
1831 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1832 		if (!device->writeable ||
1833 		    device->total_bytes - device->bytes_used > size_to_free)
1834 			continue;
1835 
1836 		ret = btrfs_shrink_device(device, old_size - size_to_free);
1837 		BUG_ON(ret);
1838 
1839 		trans = btrfs_start_transaction(dev_root, 1);
1840 		BUG_ON(!trans);
1841 
1842 		ret = btrfs_grow_device(trans, device, old_size);
1843 		BUG_ON(ret);
1844 
1845 		btrfs_end_transaction(trans, dev_root);
1846 	}
1847 
1848 	/* step two, relocate all the chunks */
1849 	path = btrfs_alloc_path();
1850 	BUG_ON(!path);
1851 
1852 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1853 	key.offset = (u64)-1;
1854 	key.type = BTRFS_CHUNK_ITEM_KEY;
1855 
1856 	while (1) {
1857 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1858 		if (ret < 0)
1859 			goto error;
1860 
1861 		/*
1862 		 * this shouldn't happen, it means the last relocate
1863 		 * failed
1864 		 */
1865 		if (ret == 0)
1866 			break;
1867 
1868 		ret = btrfs_previous_item(chunk_root, path, 0,
1869 					  BTRFS_CHUNK_ITEM_KEY);
1870 		if (ret)
1871 			break;
1872 
1873 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1874 				      path->slots[0]);
1875 		if (found_key.objectid != key.objectid)
1876 			break;
1877 
1878 		chunk = btrfs_item_ptr(path->nodes[0],
1879 				       path->slots[0],
1880 				       struct btrfs_chunk);
1881 		key.offset = found_key.offset;
1882 		/* chunk zero is special */
1883 		if (key.offset == 0)
1884 			break;
1885 
1886 		btrfs_release_path(chunk_root, path);
1887 		ret = btrfs_relocate_chunk(chunk_root,
1888 					   chunk_root->root_key.objectid,
1889 					   found_key.objectid,
1890 					   found_key.offset);
1891 		BUG_ON(ret);
1892 	}
1893 	ret = 0;
1894 error:
1895 	btrfs_free_path(path);
1896 	mutex_unlock(&dev_root->fs_info->volume_mutex);
1897 	return ret;
1898 }
1899 
1900 /*
1901  * shrinking a device means finding all of the device extents past
1902  * the new size, and then following the back refs to the chunks.
1903  * The chunk relocation code actually frees the device extent
1904  */
1905 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1906 {
1907 	struct btrfs_trans_handle *trans;
1908 	struct btrfs_root *root = device->dev_root;
1909 	struct btrfs_dev_extent *dev_extent = NULL;
1910 	struct btrfs_path *path;
1911 	u64 length;
1912 	u64 chunk_tree;
1913 	u64 chunk_objectid;
1914 	u64 chunk_offset;
1915 	int ret;
1916 	int slot;
1917 	struct extent_buffer *l;
1918 	struct btrfs_key key;
1919 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1920 	u64 old_total = btrfs_super_total_bytes(super_copy);
1921 	u64 diff = device->total_bytes - new_size;
1922 
1923 	if (new_size >= device->total_bytes)
1924 		return -EINVAL;
1925 
1926 	path = btrfs_alloc_path();
1927 	if (!path)
1928 		return -ENOMEM;
1929 
1930 	trans = btrfs_start_transaction(root, 1);
1931 	if (!trans) {
1932 		ret = -ENOMEM;
1933 		goto done;
1934 	}
1935 
1936 	path->reada = 2;
1937 
1938 	lock_chunks(root);
1939 
1940 	device->total_bytes = new_size;
1941 	if (device->writeable)
1942 		device->fs_devices->total_rw_bytes -= diff;
1943 	unlock_chunks(root);
1944 	btrfs_end_transaction(trans, root);
1945 
1946 	key.objectid = device->devid;
1947 	key.offset = (u64)-1;
1948 	key.type = BTRFS_DEV_EXTENT_KEY;
1949 
1950 	while (1) {
1951 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1952 		if (ret < 0)
1953 			goto done;
1954 
1955 		ret = btrfs_previous_item(root, path, 0, key.type);
1956 		if (ret < 0)
1957 			goto done;
1958 		if (ret) {
1959 			ret = 0;
1960 			goto done;
1961 		}
1962 
1963 		l = path->nodes[0];
1964 		slot = path->slots[0];
1965 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1966 
1967 		if (key.objectid != device->devid)
1968 			goto done;
1969 
1970 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1971 		length = btrfs_dev_extent_length(l, dev_extent);
1972 
1973 		if (key.offset + length <= new_size)
1974 			break;
1975 
1976 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1977 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1978 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1979 		btrfs_release_path(root, path);
1980 
1981 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1982 					   chunk_offset);
1983 		if (ret)
1984 			goto done;
1985 	}
1986 
1987 	/* Shrinking succeeded, else we would be at "done". */
1988 	trans = btrfs_start_transaction(root, 1);
1989 	if (!trans) {
1990 		ret = -ENOMEM;
1991 		goto done;
1992 	}
1993 	lock_chunks(root);
1994 
1995 	device->disk_total_bytes = new_size;
1996 	/* Now btrfs_update_device() will change the on-disk size. */
1997 	ret = btrfs_update_device(trans, device);
1998 	if (ret) {
1999 		unlock_chunks(root);
2000 		btrfs_end_transaction(trans, root);
2001 		goto done;
2002 	}
2003 	WARN_ON(diff > old_total);
2004 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
2005 	unlock_chunks(root);
2006 	btrfs_end_transaction(trans, root);
2007 done:
2008 	btrfs_free_path(path);
2009 	return ret;
2010 }
2011 
2012 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2013 			   struct btrfs_root *root,
2014 			   struct btrfs_key *key,
2015 			   struct btrfs_chunk *chunk, int item_size)
2016 {
2017 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2018 	struct btrfs_disk_key disk_key;
2019 	u32 array_size;
2020 	u8 *ptr;
2021 
2022 	array_size = btrfs_super_sys_array_size(super_copy);
2023 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2024 		return -EFBIG;
2025 
2026 	ptr = super_copy->sys_chunk_array + array_size;
2027 	btrfs_cpu_key_to_disk(&disk_key, key);
2028 	memcpy(ptr, &disk_key, sizeof(disk_key));
2029 	ptr += sizeof(disk_key);
2030 	memcpy(ptr, chunk, item_size);
2031 	item_size += sizeof(disk_key);
2032 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2033 	return 0;
2034 }
2035 
2036 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2037 					int num_stripes, int sub_stripes)
2038 {
2039 	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2040 		return calc_size;
2041 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2042 		return calc_size * (num_stripes / sub_stripes);
2043 	else
2044 		return calc_size * num_stripes;
2045 }
2046 
2047 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2048 			       struct btrfs_root *extent_root,
2049 			       struct map_lookup **map_ret,
2050 			       u64 *num_bytes, u64 *stripe_size,
2051 			       u64 start, u64 type)
2052 {
2053 	struct btrfs_fs_info *info = extent_root->fs_info;
2054 	struct btrfs_device *device = NULL;
2055 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
2056 	struct list_head *cur;
2057 	struct map_lookup *map = NULL;
2058 	struct extent_map_tree *em_tree;
2059 	struct extent_map *em;
2060 	struct list_head private_devs;
2061 	int min_stripe_size = 1 * 1024 * 1024;
2062 	u64 calc_size = 1024 * 1024 * 1024;
2063 	u64 max_chunk_size = calc_size;
2064 	u64 min_free;
2065 	u64 avail;
2066 	u64 max_avail = 0;
2067 	u64 dev_offset;
2068 	int num_stripes = 1;
2069 	int min_stripes = 1;
2070 	int sub_stripes = 0;
2071 	int looped = 0;
2072 	int ret;
2073 	int index;
2074 	int stripe_len = 64 * 1024;
2075 
2076 	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2077 	    (type & BTRFS_BLOCK_GROUP_DUP)) {
2078 		WARN_ON(1);
2079 		type &= ~BTRFS_BLOCK_GROUP_DUP;
2080 	}
2081 	if (list_empty(&fs_devices->alloc_list))
2082 		return -ENOSPC;
2083 
2084 	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2085 		num_stripes = fs_devices->rw_devices;
2086 		min_stripes = 2;
2087 	}
2088 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2089 		num_stripes = 2;
2090 		min_stripes = 2;
2091 	}
2092 	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2093 		num_stripes = min_t(u64, 2, fs_devices->rw_devices);
2094 		if (num_stripes < 2)
2095 			return -ENOSPC;
2096 		min_stripes = 2;
2097 	}
2098 	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2099 		num_stripes = fs_devices->rw_devices;
2100 		if (num_stripes < 4)
2101 			return -ENOSPC;
2102 		num_stripes &= ~(u32)1;
2103 		sub_stripes = 2;
2104 		min_stripes = 4;
2105 	}
2106 
2107 	if (type & BTRFS_BLOCK_GROUP_DATA) {
2108 		max_chunk_size = 10 * calc_size;
2109 		min_stripe_size = 64 * 1024 * 1024;
2110 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2111 		max_chunk_size = 4 * calc_size;
2112 		min_stripe_size = 32 * 1024 * 1024;
2113 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2114 		calc_size = 8 * 1024 * 1024;
2115 		max_chunk_size = calc_size * 2;
2116 		min_stripe_size = 1 * 1024 * 1024;
2117 	}
2118 
2119 	/* we don't want a chunk larger than 10% of writeable space */
2120 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2121 			     max_chunk_size);
2122 
2123 again:
2124 	if (!map || map->num_stripes != num_stripes) {
2125 		kfree(map);
2126 		map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2127 		if (!map)
2128 			return -ENOMEM;
2129 		map->num_stripes = num_stripes;
2130 	}
2131 
2132 	if (calc_size * num_stripes > max_chunk_size) {
2133 		calc_size = max_chunk_size;
2134 		do_div(calc_size, num_stripes);
2135 		do_div(calc_size, stripe_len);
2136 		calc_size *= stripe_len;
2137 	}
2138 	/* we don't want tiny stripes */
2139 	calc_size = max_t(u64, min_stripe_size, calc_size);
2140 
2141 	do_div(calc_size, stripe_len);
2142 	calc_size *= stripe_len;
2143 
2144 	cur = fs_devices->alloc_list.next;
2145 	index = 0;
2146 
2147 	if (type & BTRFS_BLOCK_GROUP_DUP)
2148 		min_free = calc_size * 2;
2149 	else
2150 		min_free = calc_size;
2151 
2152 	/*
2153 	 * we add 1MB because we never use the first 1MB of the device, unless
2154 	 * we've looped, then we are likely allocating the maximum amount of
2155 	 * space left already
2156 	 */
2157 	if (!looped)
2158 		min_free += 1024 * 1024;
2159 
2160 	INIT_LIST_HEAD(&private_devs);
2161 	while (index < num_stripes) {
2162 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2163 		BUG_ON(!device->writeable);
2164 		if (device->total_bytes > device->bytes_used)
2165 			avail = device->total_bytes - device->bytes_used;
2166 		else
2167 			avail = 0;
2168 		cur = cur->next;
2169 
2170 		if (device->in_fs_metadata && avail >= min_free) {
2171 			ret = find_free_dev_extent(trans, device,
2172 						   min_free, &dev_offset);
2173 			if (ret == 0) {
2174 				list_move_tail(&device->dev_alloc_list,
2175 					       &private_devs);
2176 				map->stripes[index].dev = device;
2177 				map->stripes[index].physical = dev_offset;
2178 				index++;
2179 				if (type & BTRFS_BLOCK_GROUP_DUP) {
2180 					map->stripes[index].dev = device;
2181 					map->stripes[index].physical =
2182 						dev_offset + calc_size;
2183 					index++;
2184 				}
2185 			}
2186 		} else if (device->in_fs_metadata && avail > max_avail)
2187 			max_avail = avail;
2188 		if (cur == &fs_devices->alloc_list)
2189 			break;
2190 	}
2191 	list_splice(&private_devs, &fs_devices->alloc_list);
2192 	if (index < num_stripes) {
2193 		if (index >= min_stripes) {
2194 			num_stripes = index;
2195 			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2196 				num_stripes /= sub_stripes;
2197 				num_stripes *= sub_stripes;
2198 			}
2199 			looped = 1;
2200 			goto again;
2201 		}
2202 		if (!looped && max_avail > 0) {
2203 			looped = 1;
2204 			calc_size = max_avail;
2205 			goto again;
2206 		}
2207 		kfree(map);
2208 		return -ENOSPC;
2209 	}
2210 	map->sector_size = extent_root->sectorsize;
2211 	map->stripe_len = stripe_len;
2212 	map->io_align = stripe_len;
2213 	map->io_width = stripe_len;
2214 	map->type = type;
2215 	map->num_stripes = num_stripes;
2216 	map->sub_stripes = sub_stripes;
2217 
2218 	*map_ret = map;
2219 	*stripe_size = calc_size;
2220 	*num_bytes = chunk_bytes_by_type(type, calc_size,
2221 					 num_stripes, sub_stripes);
2222 
2223 	em = alloc_extent_map(GFP_NOFS);
2224 	if (!em) {
2225 		kfree(map);
2226 		return -ENOMEM;
2227 	}
2228 	em->bdev = (struct block_device *)map;
2229 	em->start = start;
2230 	em->len = *num_bytes;
2231 	em->block_start = 0;
2232 	em->block_len = em->len;
2233 
2234 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2235 	spin_lock(&em_tree->lock);
2236 	ret = add_extent_mapping(em_tree, em);
2237 	spin_unlock(&em_tree->lock);
2238 	BUG_ON(ret);
2239 	free_extent_map(em);
2240 
2241 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
2242 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2243 				     start, *num_bytes);
2244 	BUG_ON(ret);
2245 
2246 	index = 0;
2247 	while (index < map->num_stripes) {
2248 		device = map->stripes[index].dev;
2249 		dev_offset = map->stripes[index].physical;
2250 
2251 		ret = btrfs_alloc_dev_extent(trans, device,
2252 				info->chunk_root->root_key.objectid,
2253 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2254 				start, dev_offset, calc_size);
2255 		BUG_ON(ret);
2256 		index++;
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2263 				struct btrfs_root *extent_root,
2264 				struct map_lookup *map, u64 chunk_offset,
2265 				u64 chunk_size, u64 stripe_size)
2266 {
2267 	u64 dev_offset;
2268 	struct btrfs_key key;
2269 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2270 	struct btrfs_device *device;
2271 	struct btrfs_chunk *chunk;
2272 	struct btrfs_stripe *stripe;
2273 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2274 	int index = 0;
2275 	int ret;
2276 
2277 	chunk = kzalloc(item_size, GFP_NOFS);
2278 	if (!chunk)
2279 		return -ENOMEM;
2280 
2281 	index = 0;
2282 	while (index < map->num_stripes) {
2283 		device = map->stripes[index].dev;
2284 		device->bytes_used += stripe_size;
2285 		ret = btrfs_update_device(trans, device);
2286 		BUG_ON(ret);
2287 		index++;
2288 	}
2289 
2290 	index = 0;
2291 	stripe = &chunk->stripe;
2292 	while (index < map->num_stripes) {
2293 		device = map->stripes[index].dev;
2294 		dev_offset = map->stripes[index].physical;
2295 
2296 		btrfs_set_stack_stripe_devid(stripe, device->devid);
2297 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
2298 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2299 		stripe++;
2300 		index++;
2301 	}
2302 
2303 	btrfs_set_stack_chunk_length(chunk, chunk_size);
2304 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2305 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2306 	btrfs_set_stack_chunk_type(chunk, map->type);
2307 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2308 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2309 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2310 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2311 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2312 
2313 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2314 	key.type = BTRFS_CHUNK_ITEM_KEY;
2315 	key.offset = chunk_offset;
2316 
2317 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2318 	BUG_ON(ret);
2319 
2320 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2321 		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2322 					     item_size);
2323 		BUG_ON(ret);
2324 	}
2325 	kfree(chunk);
2326 	return 0;
2327 }
2328 
2329 /*
2330  * Chunk allocation falls into two parts. The first part does works
2331  * that make the new allocated chunk useable, but not do any operation
2332  * that modifies the chunk tree. The second part does the works that
2333  * require modifying the chunk tree. This division is important for the
2334  * bootstrap process of adding storage to a seed btrfs.
2335  */
2336 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2337 		      struct btrfs_root *extent_root, u64 type)
2338 {
2339 	u64 chunk_offset;
2340 	u64 chunk_size;
2341 	u64 stripe_size;
2342 	struct map_lookup *map;
2343 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2344 	int ret;
2345 
2346 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2347 			      &chunk_offset);
2348 	if (ret)
2349 		return ret;
2350 
2351 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2352 				  &stripe_size, chunk_offset, type);
2353 	if (ret)
2354 		return ret;
2355 
2356 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2357 				   chunk_size, stripe_size);
2358 	BUG_ON(ret);
2359 	return 0;
2360 }
2361 
2362 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2363 					 struct btrfs_root *root,
2364 					 struct btrfs_device *device)
2365 {
2366 	u64 chunk_offset;
2367 	u64 sys_chunk_offset;
2368 	u64 chunk_size;
2369 	u64 sys_chunk_size;
2370 	u64 stripe_size;
2371 	u64 sys_stripe_size;
2372 	u64 alloc_profile;
2373 	struct map_lookup *map;
2374 	struct map_lookup *sys_map;
2375 	struct btrfs_fs_info *fs_info = root->fs_info;
2376 	struct btrfs_root *extent_root = fs_info->extent_root;
2377 	int ret;
2378 
2379 	ret = find_next_chunk(fs_info->chunk_root,
2380 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2381 	BUG_ON(ret);
2382 
2383 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2384 			(fs_info->metadata_alloc_profile &
2385 			 fs_info->avail_metadata_alloc_bits);
2386 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2387 
2388 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2389 				  &stripe_size, chunk_offset, alloc_profile);
2390 	BUG_ON(ret);
2391 
2392 	sys_chunk_offset = chunk_offset + chunk_size;
2393 
2394 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2395 			(fs_info->system_alloc_profile &
2396 			 fs_info->avail_system_alloc_bits);
2397 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2398 
2399 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2400 				  &sys_chunk_size, &sys_stripe_size,
2401 				  sys_chunk_offset, alloc_profile);
2402 	BUG_ON(ret);
2403 
2404 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2405 	BUG_ON(ret);
2406 
2407 	/*
2408 	 * Modifying chunk tree needs allocating new blocks from both
2409 	 * system block group and metadata block group. So we only can
2410 	 * do operations require modifying the chunk tree after both
2411 	 * block groups were created.
2412 	 */
2413 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2414 				   chunk_size, stripe_size);
2415 	BUG_ON(ret);
2416 
2417 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2418 				   sys_chunk_offset, sys_chunk_size,
2419 				   sys_stripe_size);
2420 	BUG_ON(ret);
2421 	return 0;
2422 }
2423 
2424 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2425 {
2426 	struct extent_map *em;
2427 	struct map_lookup *map;
2428 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2429 	int readonly = 0;
2430 	int i;
2431 
2432 	spin_lock(&map_tree->map_tree.lock);
2433 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2434 	spin_unlock(&map_tree->map_tree.lock);
2435 	if (!em)
2436 		return 1;
2437 
2438 	map = (struct map_lookup *)em->bdev;
2439 	for (i = 0; i < map->num_stripes; i++) {
2440 		if (!map->stripes[i].dev->writeable) {
2441 			readonly = 1;
2442 			break;
2443 		}
2444 	}
2445 	free_extent_map(em);
2446 	return readonly;
2447 }
2448 
2449 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2450 {
2451 	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2452 }
2453 
2454 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2455 {
2456 	struct extent_map *em;
2457 
2458 	while (1) {
2459 		spin_lock(&tree->map_tree.lock);
2460 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2461 		if (em)
2462 			remove_extent_mapping(&tree->map_tree, em);
2463 		spin_unlock(&tree->map_tree.lock);
2464 		if (!em)
2465 			break;
2466 		kfree(em->bdev);
2467 		/* once for us */
2468 		free_extent_map(em);
2469 		/* once for the tree */
2470 		free_extent_map(em);
2471 	}
2472 }
2473 
2474 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2475 {
2476 	struct extent_map *em;
2477 	struct map_lookup *map;
2478 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2479 	int ret;
2480 
2481 	spin_lock(&em_tree->lock);
2482 	em = lookup_extent_mapping(em_tree, logical, len);
2483 	spin_unlock(&em_tree->lock);
2484 	BUG_ON(!em);
2485 
2486 	BUG_ON(em->start > logical || em->start + em->len < logical);
2487 	map = (struct map_lookup *)em->bdev;
2488 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2489 		ret = map->num_stripes;
2490 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2491 		ret = map->sub_stripes;
2492 	else
2493 		ret = 1;
2494 	free_extent_map(em);
2495 	return ret;
2496 }
2497 
2498 static int find_live_mirror(struct map_lookup *map, int first, int num,
2499 			    int optimal)
2500 {
2501 	int i;
2502 	if (map->stripes[optimal].dev->bdev)
2503 		return optimal;
2504 	for (i = first; i < first + num; i++) {
2505 		if (map->stripes[i].dev->bdev)
2506 			return i;
2507 	}
2508 	/* we couldn't find one that doesn't fail.  Just return something
2509 	 * and the io error handling code will clean up eventually
2510 	 */
2511 	return optimal;
2512 }
2513 
2514 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2515 			     u64 logical, u64 *length,
2516 			     struct btrfs_multi_bio **multi_ret,
2517 			     int mirror_num, struct page *unplug_page)
2518 {
2519 	struct extent_map *em;
2520 	struct map_lookup *map;
2521 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2522 	u64 offset;
2523 	u64 stripe_offset;
2524 	u64 stripe_nr;
2525 	int stripes_allocated = 8;
2526 	int stripes_required = 1;
2527 	int stripe_index;
2528 	int i;
2529 	int num_stripes;
2530 	int max_errors = 0;
2531 	struct btrfs_multi_bio *multi = NULL;
2532 
2533 	if (multi_ret && !(rw & (1 << BIO_RW)))
2534 		stripes_allocated = 1;
2535 again:
2536 	if (multi_ret) {
2537 		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2538 				GFP_NOFS);
2539 		if (!multi)
2540 			return -ENOMEM;
2541 
2542 		atomic_set(&multi->error, 0);
2543 	}
2544 
2545 	spin_lock(&em_tree->lock);
2546 	em = lookup_extent_mapping(em_tree, logical, *length);
2547 	spin_unlock(&em_tree->lock);
2548 
2549 	if (!em && unplug_page)
2550 		return 0;
2551 
2552 	if (!em) {
2553 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2554 		       (unsigned long long)logical,
2555 		       (unsigned long long)*length);
2556 		BUG();
2557 	}
2558 
2559 	BUG_ON(em->start > logical || em->start + em->len < logical);
2560 	map = (struct map_lookup *)em->bdev;
2561 	offset = logical - em->start;
2562 
2563 	if (mirror_num > map->num_stripes)
2564 		mirror_num = 0;
2565 
2566 	/* if our multi bio struct is too small, back off and try again */
2567 	if (rw & (1 << BIO_RW)) {
2568 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2569 				 BTRFS_BLOCK_GROUP_DUP)) {
2570 			stripes_required = map->num_stripes;
2571 			max_errors = 1;
2572 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2573 			stripes_required = map->sub_stripes;
2574 			max_errors = 1;
2575 		}
2576 	}
2577 	if (multi_ret && (rw & (1 << BIO_RW)) &&
2578 	    stripes_allocated < stripes_required) {
2579 		stripes_allocated = map->num_stripes;
2580 		free_extent_map(em);
2581 		kfree(multi);
2582 		goto again;
2583 	}
2584 	stripe_nr = offset;
2585 	/*
2586 	 * stripe_nr counts the total number of stripes we have to stride
2587 	 * to get to this block
2588 	 */
2589 	do_div(stripe_nr, map->stripe_len);
2590 
2591 	stripe_offset = stripe_nr * map->stripe_len;
2592 	BUG_ON(offset < stripe_offset);
2593 
2594 	/* stripe_offset is the offset of this block in its stripe*/
2595 	stripe_offset = offset - stripe_offset;
2596 
2597 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2598 			 BTRFS_BLOCK_GROUP_RAID10 |
2599 			 BTRFS_BLOCK_GROUP_DUP)) {
2600 		/* we limit the length of each bio to what fits in a stripe */
2601 		*length = min_t(u64, em->len - offset,
2602 			      map->stripe_len - stripe_offset);
2603 	} else {
2604 		*length = em->len - offset;
2605 	}
2606 
2607 	if (!multi_ret && !unplug_page)
2608 		goto out;
2609 
2610 	num_stripes = 1;
2611 	stripe_index = 0;
2612 	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2613 		if (unplug_page || (rw & (1 << BIO_RW)))
2614 			num_stripes = map->num_stripes;
2615 		else if (mirror_num)
2616 			stripe_index = mirror_num - 1;
2617 		else {
2618 			stripe_index = find_live_mirror(map, 0,
2619 					    map->num_stripes,
2620 					    current->pid % map->num_stripes);
2621 		}
2622 
2623 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2624 		if (rw & (1 << BIO_RW))
2625 			num_stripes = map->num_stripes;
2626 		else if (mirror_num)
2627 			stripe_index = mirror_num - 1;
2628 
2629 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2630 		int factor = map->num_stripes / map->sub_stripes;
2631 
2632 		stripe_index = do_div(stripe_nr, factor);
2633 		stripe_index *= map->sub_stripes;
2634 
2635 		if (unplug_page || (rw & (1 << BIO_RW)))
2636 			num_stripes = map->sub_stripes;
2637 		else if (mirror_num)
2638 			stripe_index += mirror_num - 1;
2639 		else {
2640 			stripe_index = find_live_mirror(map, stripe_index,
2641 					      map->sub_stripes, stripe_index +
2642 					      current->pid % map->sub_stripes);
2643 		}
2644 	} else {
2645 		/*
2646 		 * after this do_div call, stripe_nr is the number of stripes
2647 		 * on this device we have to walk to find the data, and
2648 		 * stripe_index is the number of our device in the stripe array
2649 		 */
2650 		stripe_index = do_div(stripe_nr, map->num_stripes);
2651 	}
2652 	BUG_ON(stripe_index >= map->num_stripes);
2653 
2654 	for (i = 0; i < num_stripes; i++) {
2655 		if (unplug_page) {
2656 			struct btrfs_device *device;
2657 			struct backing_dev_info *bdi;
2658 
2659 			device = map->stripes[stripe_index].dev;
2660 			if (device->bdev) {
2661 				bdi = blk_get_backing_dev_info(device->bdev);
2662 				if (bdi->unplug_io_fn)
2663 					bdi->unplug_io_fn(bdi, unplug_page);
2664 			}
2665 		} else {
2666 			multi->stripes[i].physical =
2667 				map->stripes[stripe_index].physical +
2668 				stripe_offset + stripe_nr * map->stripe_len;
2669 			multi->stripes[i].dev = map->stripes[stripe_index].dev;
2670 		}
2671 		stripe_index++;
2672 	}
2673 	if (multi_ret) {
2674 		*multi_ret = multi;
2675 		multi->num_stripes = num_stripes;
2676 		multi->max_errors = max_errors;
2677 	}
2678 out:
2679 	free_extent_map(em);
2680 	return 0;
2681 }
2682 
2683 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2684 		      u64 logical, u64 *length,
2685 		      struct btrfs_multi_bio **multi_ret, int mirror_num)
2686 {
2687 	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2688 				 mirror_num, NULL);
2689 }
2690 
2691 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2692 		     u64 chunk_start, u64 physical, u64 devid,
2693 		     u64 **logical, int *naddrs, int *stripe_len)
2694 {
2695 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2696 	struct extent_map *em;
2697 	struct map_lookup *map;
2698 	u64 *buf;
2699 	u64 bytenr;
2700 	u64 length;
2701 	u64 stripe_nr;
2702 	int i, j, nr = 0;
2703 
2704 	spin_lock(&em_tree->lock);
2705 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
2706 	spin_unlock(&em_tree->lock);
2707 
2708 	BUG_ON(!em || em->start != chunk_start);
2709 	map = (struct map_lookup *)em->bdev;
2710 
2711 	length = em->len;
2712 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2713 		do_div(length, map->num_stripes / map->sub_stripes);
2714 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2715 		do_div(length, map->num_stripes);
2716 
2717 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2718 	BUG_ON(!buf);
2719 
2720 	for (i = 0; i < map->num_stripes; i++) {
2721 		if (devid && map->stripes[i].dev->devid != devid)
2722 			continue;
2723 		if (map->stripes[i].physical > physical ||
2724 		    map->stripes[i].physical + length <= physical)
2725 			continue;
2726 
2727 		stripe_nr = physical - map->stripes[i].physical;
2728 		do_div(stripe_nr, map->stripe_len);
2729 
2730 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2731 			stripe_nr = stripe_nr * map->num_stripes + i;
2732 			do_div(stripe_nr, map->sub_stripes);
2733 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2734 			stripe_nr = stripe_nr * map->num_stripes + i;
2735 		}
2736 		bytenr = chunk_start + stripe_nr * map->stripe_len;
2737 		WARN_ON(nr >= map->num_stripes);
2738 		for (j = 0; j < nr; j++) {
2739 			if (buf[j] == bytenr)
2740 				break;
2741 		}
2742 		if (j == nr) {
2743 			WARN_ON(nr >= map->num_stripes);
2744 			buf[nr++] = bytenr;
2745 		}
2746 	}
2747 
2748 	for (i = 0; i > nr; i++) {
2749 		struct btrfs_multi_bio *multi;
2750 		struct btrfs_bio_stripe *stripe;
2751 		int ret;
2752 
2753 		length = 1;
2754 		ret = btrfs_map_block(map_tree, WRITE, buf[i],
2755 				      &length, &multi, 0);
2756 		BUG_ON(ret);
2757 
2758 		stripe = multi->stripes;
2759 		for (j = 0; j < multi->num_stripes; j++) {
2760 			if (stripe->physical >= physical &&
2761 			    physical < stripe->physical + length)
2762 				break;
2763 		}
2764 		BUG_ON(j >= multi->num_stripes);
2765 		kfree(multi);
2766 	}
2767 
2768 	*logical = buf;
2769 	*naddrs = nr;
2770 	*stripe_len = map->stripe_len;
2771 
2772 	free_extent_map(em);
2773 	return 0;
2774 }
2775 
2776 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2777 		      u64 logical, struct page *page)
2778 {
2779 	u64 length = PAGE_CACHE_SIZE;
2780 	return __btrfs_map_block(map_tree, READ, logical, &length,
2781 				 NULL, 0, page);
2782 }
2783 
2784 static void end_bio_multi_stripe(struct bio *bio, int err)
2785 {
2786 	struct btrfs_multi_bio *multi = bio->bi_private;
2787 	int is_orig_bio = 0;
2788 
2789 	if (err)
2790 		atomic_inc(&multi->error);
2791 
2792 	if (bio == multi->orig_bio)
2793 		is_orig_bio = 1;
2794 
2795 	if (atomic_dec_and_test(&multi->stripes_pending)) {
2796 		if (!is_orig_bio) {
2797 			bio_put(bio);
2798 			bio = multi->orig_bio;
2799 		}
2800 		bio->bi_private = multi->private;
2801 		bio->bi_end_io = multi->end_io;
2802 		/* only send an error to the higher layers if it is
2803 		 * beyond the tolerance of the multi-bio
2804 		 */
2805 		if (atomic_read(&multi->error) > multi->max_errors) {
2806 			err = -EIO;
2807 		} else if (err) {
2808 			/*
2809 			 * this bio is actually up to date, we didn't
2810 			 * go over the max number of errors
2811 			 */
2812 			set_bit(BIO_UPTODATE, &bio->bi_flags);
2813 			err = 0;
2814 		}
2815 		kfree(multi);
2816 
2817 		bio_endio(bio, err);
2818 	} else if (!is_orig_bio) {
2819 		bio_put(bio);
2820 	}
2821 }
2822 
2823 struct async_sched {
2824 	struct bio *bio;
2825 	int rw;
2826 	struct btrfs_fs_info *info;
2827 	struct btrfs_work work;
2828 };
2829 
2830 /*
2831  * see run_scheduled_bios for a description of why bios are collected for
2832  * async submit.
2833  *
2834  * This will add one bio to the pending list for a device and make sure
2835  * the work struct is scheduled.
2836  */
2837 static noinline int schedule_bio(struct btrfs_root *root,
2838 				 struct btrfs_device *device,
2839 				 int rw, struct bio *bio)
2840 {
2841 	int should_queue = 1;
2842 	struct btrfs_pending_bios *pending_bios;
2843 
2844 	/* don't bother with additional async steps for reads, right now */
2845 	if (!(rw & (1 << BIO_RW))) {
2846 		bio_get(bio);
2847 		submit_bio(rw, bio);
2848 		bio_put(bio);
2849 		return 0;
2850 	}
2851 
2852 	/*
2853 	 * nr_async_bios allows us to reliably return congestion to the
2854 	 * higher layers.  Otherwise, the async bio makes it appear we have
2855 	 * made progress against dirty pages when we've really just put it
2856 	 * on a queue for later
2857 	 */
2858 	atomic_inc(&root->fs_info->nr_async_bios);
2859 	WARN_ON(bio->bi_next);
2860 	bio->bi_next = NULL;
2861 	bio->bi_rw |= rw;
2862 
2863 	spin_lock(&device->io_lock);
2864 	if (bio_sync(bio))
2865 		pending_bios = &device->pending_sync_bios;
2866 	else
2867 		pending_bios = &device->pending_bios;
2868 
2869 	if (pending_bios->tail)
2870 		pending_bios->tail->bi_next = bio;
2871 
2872 	pending_bios->tail = bio;
2873 	if (!pending_bios->head)
2874 		pending_bios->head = bio;
2875 	if (device->running_pending)
2876 		should_queue = 0;
2877 
2878 	spin_unlock(&device->io_lock);
2879 
2880 	if (should_queue)
2881 		btrfs_queue_worker(&root->fs_info->submit_workers,
2882 				   &device->work);
2883 	return 0;
2884 }
2885 
2886 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2887 		  int mirror_num, int async_submit)
2888 {
2889 	struct btrfs_mapping_tree *map_tree;
2890 	struct btrfs_device *dev;
2891 	struct bio *first_bio = bio;
2892 	u64 logical = (u64)bio->bi_sector << 9;
2893 	u64 length = 0;
2894 	u64 map_length;
2895 	struct btrfs_multi_bio *multi = NULL;
2896 	int ret;
2897 	int dev_nr = 0;
2898 	int total_devs = 1;
2899 
2900 	length = bio->bi_size;
2901 	map_tree = &root->fs_info->mapping_tree;
2902 	map_length = length;
2903 
2904 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2905 			      mirror_num);
2906 	BUG_ON(ret);
2907 
2908 	total_devs = multi->num_stripes;
2909 	if (map_length < length) {
2910 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
2911 		       "len %llu\n", (unsigned long long)logical,
2912 		       (unsigned long long)length,
2913 		       (unsigned long long)map_length);
2914 		BUG();
2915 	}
2916 	multi->end_io = first_bio->bi_end_io;
2917 	multi->private = first_bio->bi_private;
2918 	multi->orig_bio = first_bio;
2919 	atomic_set(&multi->stripes_pending, multi->num_stripes);
2920 
2921 	while (dev_nr < total_devs) {
2922 		if (total_devs > 1) {
2923 			if (dev_nr < total_devs - 1) {
2924 				bio = bio_clone(first_bio, GFP_NOFS);
2925 				BUG_ON(!bio);
2926 			} else {
2927 				bio = first_bio;
2928 			}
2929 			bio->bi_private = multi;
2930 			bio->bi_end_io = end_bio_multi_stripe;
2931 		}
2932 		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2933 		dev = multi->stripes[dev_nr].dev;
2934 		BUG_ON(rw == WRITE && !dev->writeable);
2935 		if (dev && dev->bdev) {
2936 			bio->bi_bdev = dev->bdev;
2937 			if (async_submit)
2938 				schedule_bio(root, dev, rw, bio);
2939 			else
2940 				submit_bio(rw, bio);
2941 		} else {
2942 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2943 			bio->bi_sector = logical >> 9;
2944 			bio_endio(bio, -EIO);
2945 		}
2946 		dev_nr++;
2947 	}
2948 	if (total_devs == 1)
2949 		kfree(multi);
2950 	return 0;
2951 }
2952 
2953 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2954 				       u8 *uuid, u8 *fsid)
2955 {
2956 	struct btrfs_device *device;
2957 	struct btrfs_fs_devices *cur_devices;
2958 
2959 	cur_devices = root->fs_info->fs_devices;
2960 	while (cur_devices) {
2961 		if (!fsid ||
2962 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
2963 			device = __find_device(&cur_devices->devices,
2964 					       devid, uuid);
2965 			if (device)
2966 				return device;
2967 		}
2968 		cur_devices = cur_devices->seed;
2969 	}
2970 	return NULL;
2971 }
2972 
2973 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2974 					    u64 devid, u8 *dev_uuid)
2975 {
2976 	struct btrfs_device *device;
2977 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2978 
2979 	device = kzalloc(sizeof(*device), GFP_NOFS);
2980 	if (!device)
2981 		return NULL;
2982 	list_add(&device->dev_list,
2983 		 &fs_devices->devices);
2984 	device->barriers = 1;
2985 	device->dev_root = root->fs_info->dev_root;
2986 	device->devid = devid;
2987 	device->work.func = pending_bios_fn;
2988 	device->fs_devices = fs_devices;
2989 	fs_devices->num_devices++;
2990 	spin_lock_init(&device->io_lock);
2991 	INIT_LIST_HEAD(&device->dev_alloc_list);
2992 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2993 	return device;
2994 }
2995 
2996 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2997 			  struct extent_buffer *leaf,
2998 			  struct btrfs_chunk *chunk)
2999 {
3000 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3001 	struct map_lookup *map;
3002 	struct extent_map *em;
3003 	u64 logical;
3004 	u64 length;
3005 	u64 devid;
3006 	u8 uuid[BTRFS_UUID_SIZE];
3007 	int num_stripes;
3008 	int ret;
3009 	int i;
3010 
3011 	logical = key->offset;
3012 	length = btrfs_chunk_length(leaf, chunk);
3013 
3014 	spin_lock(&map_tree->map_tree.lock);
3015 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3016 	spin_unlock(&map_tree->map_tree.lock);
3017 
3018 	/* already mapped? */
3019 	if (em && em->start <= logical && em->start + em->len > logical) {
3020 		free_extent_map(em);
3021 		return 0;
3022 	} else if (em) {
3023 		free_extent_map(em);
3024 	}
3025 
3026 	em = alloc_extent_map(GFP_NOFS);
3027 	if (!em)
3028 		return -ENOMEM;
3029 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3030 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3031 	if (!map) {
3032 		free_extent_map(em);
3033 		return -ENOMEM;
3034 	}
3035 
3036 	em->bdev = (struct block_device *)map;
3037 	em->start = logical;
3038 	em->len = length;
3039 	em->block_start = 0;
3040 	em->block_len = em->len;
3041 
3042 	map->num_stripes = num_stripes;
3043 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
3044 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
3045 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3046 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3047 	map->type = btrfs_chunk_type(leaf, chunk);
3048 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3049 	for (i = 0; i < num_stripes; i++) {
3050 		map->stripes[i].physical =
3051 			btrfs_stripe_offset_nr(leaf, chunk, i);
3052 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3053 		read_extent_buffer(leaf, uuid, (unsigned long)
3054 				   btrfs_stripe_dev_uuid_nr(chunk, i),
3055 				   BTRFS_UUID_SIZE);
3056 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3057 							NULL);
3058 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3059 			kfree(map);
3060 			free_extent_map(em);
3061 			return -EIO;
3062 		}
3063 		if (!map->stripes[i].dev) {
3064 			map->stripes[i].dev =
3065 				add_missing_dev(root, devid, uuid);
3066 			if (!map->stripes[i].dev) {
3067 				kfree(map);
3068 				free_extent_map(em);
3069 				return -EIO;
3070 			}
3071 		}
3072 		map->stripes[i].dev->in_fs_metadata = 1;
3073 	}
3074 
3075 	spin_lock(&map_tree->map_tree.lock);
3076 	ret = add_extent_mapping(&map_tree->map_tree, em);
3077 	spin_unlock(&map_tree->map_tree.lock);
3078 	BUG_ON(ret);
3079 	free_extent_map(em);
3080 
3081 	return 0;
3082 }
3083 
3084 static int fill_device_from_item(struct extent_buffer *leaf,
3085 				 struct btrfs_dev_item *dev_item,
3086 				 struct btrfs_device *device)
3087 {
3088 	unsigned long ptr;
3089 
3090 	device->devid = btrfs_device_id(leaf, dev_item);
3091 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3092 	device->total_bytes = device->disk_total_bytes;
3093 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3094 	device->type = btrfs_device_type(leaf, dev_item);
3095 	device->io_align = btrfs_device_io_align(leaf, dev_item);
3096 	device->io_width = btrfs_device_io_width(leaf, dev_item);
3097 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3098 
3099 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
3100 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3101 
3102 	return 0;
3103 }
3104 
3105 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3106 {
3107 	struct btrfs_fs_devices *fs_devices;
3108 	int ret;
3109 
3110 	mutex_lock(&uuid_mutex);
3111 
3112 	fs_devices = root->fs_info->fs_devices->seed;
3113 	while (fs_devices) {
3114 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3115 			ret = 0;
3116 			goto out;
3117 		}
3118 		fs_devices = fs_devices->seed;
3119 	}
3120 
3121 	fs_devices = find_fsid(fsid);
3122 	if (!fs_devices) {
3123 		ret = -ENOENT;
3124 		goto out;
3125 	}
3126 
3127 	fs_devices = clone_fs_devices(fs_devices);
3128 	if (IS_ERR(fs_devices)) {
3129 		ret = PTR_ERR(fs_devices);
3130 		goto out;
3131 	}
3132 
3133 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3134 				   root->fs_info->bdev_holder);
3135 	if (ret)
3136 		goto out;
3137 
3138 	if (!fs_devices->seeding) {
3139 		__btrfs_close_devices(fs_devices);
3140 		free_fs_devices(fs_devices);
3141 		ret = -EINVAL;
3142 		goto out;
3143 	}
3144 
3145 	fs_devices->seed = root->fs_info->fs_devices->seed;
3146 	root->fs_info->fs_devices->seed = fs_devices;
3147 out:
3148 	mutex_unlock(&uuid_mutex);
3149 	return ret;
3150 }
3151 
3152 static int read_one_dev(struct btrfs_root *root,
3153 			struct extent_buffer *leaf,
3154 			struct btrfs_dev_item *dev_item)
3155 {
3156 	struct btrfs_device *device;
3157 	u64 devid;
3158 	int ret;
3159 	u8 fs_uuid[BTRFS_UUID_SIZE];
3160 	u8 dev_uuid[BTRFS_UUID_SIZE];
3161 
3162 	devid = btrfs_device_id(leaf, dev_item);
3163 	read_extent_buffer(leaf, dev_uuid,
3164 			   (unsigned long)btrfs_device_uuid(dev_item),
3165 			   BTRFS_UUID_SIZE);
3166 	read_extent_buffer(leaf, fs_uuid,
3167 			   (unsigned long)btrfs_device_fsid(dev_item),
3168 			   BTRFS_UUID_SIZE);
3169 
3170 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3171 		ret = open_seed_devices(root, fs_uuid);
3172 		if (ret && !btrfs_test_opt(root, DEGRADED))
3173 			return ret;
3174 	}
3175 
3176 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3177 	if (!device || !device->bdev) {
3178 		if (!btrfs_test_opt(root, DEGRADED))
3179 			return -EIO;
3180 
3181 		if (!device) {
3182 			printk(KERN_WARNING "warning devid %llu missing\n",
3183 			       (unsigned long long)devid);
3184 			device = add_missing_dev(root, devid, dev_uuid);
3185 			if (!device)
3186 				return -ENOMEM;
3187 		}
3188 	}
3189 
3190 	if (device->fs_devices != root->fs_info->fs_devices) {
3191 		BUG_ON(device->writeable);
3192 		if (device->generation !=
3193 		    btrfs_device_generation(leaf, dev_item))
3194 			return -EINVAL;
3195 	}
3196 
3197 	fill_device_from_item(leaf, dev_item, device);
3198 	device->dev_root = root->fs_info->dev_root;
3199 	device->in_fs_metadata = 1;
3200 	if (device->writeable)
3201 		device->fs_devices->total_rw_bytes += device->total_bytes;
3202 	ret = 0;
3203 	return ret;
3204 }
3205 
3206 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3207 {
3208 	struct btrfs_dev_item *dev_item;
3209 
3210 	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3211 						     dev_item);
3212 	return read_one_dev(root, buf, dev_item);
3213 }
3214 
3215 int btrfs_read_sys_array(struct btrfs_root *root)
3216 {
3217 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3218 	struct extent_buffer *sb;
3219 	struct btrfs_disk_key *disk_key;
3220 	struct btrfs_chunk *chunk;
3221 	u8 *ptr;
3222 	unsigned long sb_ptr;
3223 	int ret = 0;
3224 	u32 num_stripes;
3225 	u32 array_size;
3226 	u32 len = 0;
3227 	u32 cur;
3228 	struct btrfs_key key;
3229 
3230 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3231 					  BTRFS_SUPER_INFO_SIZE);
3232 	if (!sb)
3233 		return -ENOMEM;
3234 	btrfs_set_buffer_uptodate(sb);
3235 	btrfs_set_buffer_lockdep_class(sb, 0);
3236 
3237 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3238 	array_size = btrfs_super_sys_array_size(super_copy);
3239 
3240 	ptr = super_copy->sys_chunk_array;
3241 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3242 	cur = 0;
3243 
3244 	while (cur < array_size) {
3245 		disk_key = (struct btrfs_disk_key *)ptr;
3246 		btrfs_disk_key_to_cpu(&key, disk_key);
3247 
3248 		len = sizeof(*disk_key); ptr += len;
3249 		sb_ptr += len;
3250 		cur += len;
3251 
3252 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3253 			chunk = (struct btrfs_chunk *)sb_ptr;
3254 			ret = read_one_chunk(root, &key, sb, chunk);
3255 			if (ret)
3256 				break;
3257 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3258 			len = btrfs_chunk_item_size(num_stripes);
3259 		} else {
3260 			ret = -EIO;
3261 			break;
3262 		}
3263 		ptr += len;
3264 		sb_ptr += len;
3265 		cur += len;
3266 	}
3267 	free_extent_buffer(sb);
3268 	return ret;
3269 }
3270 
3271 int btrfs_read_chunk_tree(struct btrfs_root *root)
3272 {
3273 	struct btrfs_path *path;
3274 	struct extent_buffer *leaf;
3275 	struct btrfs_key key;
3276 	struct btrfs_key found_key;
3277 	int ret;
3278 	int slot;
3279 
3280 	root = root->fs_info->chunk_root;
3281 
3282 	path = btrfs_alloc_path();
3283 	if (!path)
3284 		return -ENOMEM;
3285 
3286 	/* first we search for all of the device items, and then we
3287 	 * read in all of the chunk items.  This way we can create chunk
3288 	 * mappings that reference all of the devices that are afound
3289 	 */
3290 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3291 	key.offset = 0;
3292 	key.type = 0;
3293 again:
3294 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3295 	while (1) {
3296 		leaf = path->nodes[0];
3297 		slot = path->slots[0];
3298 		if (slot >= btrfs_header_nritems(leaf)) {
3299 			ret = btrfs_next_leaf(root, path);
3300 			if (ret == 0)
3301 				continue;
3302 			if (ret < 0)
3303 				goto error;
3304 			break;
3305 		}
3306 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3307 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3308 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3309 				break;
3310 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3311 				struct btrfs_dev_item *dev_item;
3312 				dev_item = btrfs_item_ptr(leaf, slot,
3313 						  struct btrfs_dev_item);
3314 				ret = read_one_dev(root, leaf, dev_item);
3315 				if (ret)
3316 					goto error;
3317 			}
3318 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3319 			struct btrfs_chunk *chunk;
3320 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3321 			ret = read_one_chunk(root, &found_key, leaf, chunk);
3322 			if (ret)
3323 				goto error;
3324 		}
3325 		path->slots[0]++;
3326 	}
3327 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3328 		key.objectid = 0;
3329 		btrfs_release_path(root, path);
3330 		goto again;
3331 	}
3332 	ret = 0;
3333 error:
3334 	btrfs_free_path(path);
3335 	return ret;
3336 }
3337