1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/bio.h> 8 #include <linux/slab.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "ctree.h" 18 #include "extent_map.h" 19 #include "disk-io.h" 20 #include "transaction.h" 21 #include "print-tree.h" 22 #include "volumes.h" 23 #include "raid56.h" 24 #include "async-thread.h" 25 #include "check-integrity.h" 26 #include "rcu-string.h" 27 #include "math.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 32 [BTRFS_RAID_RAID10] = { 33 .sub_stripes = 2, 34 .dev_stripes = 1, 35 .devs_max = 0, /* 0 == as many as possible */ 36 .devs_min = 4, 37 .tolerated_failures = 1, 38 .devs_increment = 2, 39 .ncopies = 2, 40 .nparity = 0, 41 .raid_name = "raid10", 42 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 43 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 44 }, 45 [BTRFS_RAID_RAID1] = { 46 .sub_stripes = 1, 47 .dev_stripes = 1, 48 .devs_max = 2, 49 .devs_min = 2, 50 .tolerated_failures = 1, 51 .devs_increment = 2, 52 .ncopies = 2, 53 .nparity = 0, 54 .raid_name = "raid1", 55 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 56 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 57 }, 58 [BTRFS_RAID_DUP] = { 59 .sub_stripes = 1, 60 .dev_stripes = 2, 61 .devs_max = 1, 62 .devs_min = 1, 63 .tolerated_failures = 0, 64 .devs_increment = 1, 65 .ncopies = 2, 66 .nparity = 0, 67 .raid_name = "dup", 68 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 69 .mindev_error = 0, 70 }, 71 [BTRFS_RAID_RAID0] = { 72 .sub_stripes = 1, 73 .dev_stripes = 1, 74 .devs_max = 0, 75 .devs_min = 2, 76 .tolerated_failures = 0, 77 .devs_increment = 1, 78 .ncopies = 1, 79 .nparity = 0, 80 .raid_name = "raid0", 81 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 82 .mindev_error = 0, 83 }, 84 [BTRFS_RAID_SINGLE] = { 85 .sub_stripes = 1, 86 .dev_stripes = 1, 87 .devs_max = 1, 88 .devs_min = 1, 89 .tolerated_failures = 0, 90 .devs_increment = 1, 91 .ncopies = 1, 92 .nparity = 0, 93 .raid_name = "single", 94 .bg_flag = 0, 95 .mindev_error = 0, 96 }, 97 [BTRFS_RAID_RAID5] = { 98 .sub_stripes = 1, 99 .dev_stripes = 1, 100 .devs_max = 0, 101 .devs_min = 2, 102 .tolerated_failures = 1, 103 .devs_increment = 1, 104 .ncopies = 1, 105 .nparity = 1, 106 .raid_name = "raid5", 107 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 108 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 109 }, 110 [BTRFS_RAID_RAID6] = { 111 .sub_stripes = 1, 112 .dev_stripes = 1, 113 .devs_max = 0, 114 .devs_min = 3, 115 .tolerated_failures = 2, 116 .devs_increment = 1, 117 .ncopies = 1, 118 .nparity = 2, 119 .raid_name = "raid6", 120 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 121 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 122 }, 123 }; 124 125 const char *get_raid_name(enum btrfs_raid_types type) 126 { 127 if (type >= BTRFS_NR_RAID_TYPES) 128 return NULL; 129 130 return btrfs_raid_array[type].raid_name; 131 } 132 133 /* 134 * Fill @buf with textual description of @bg_flags, no more than @size_buf 135 * bytes including terminating null byte. 136 */ 137 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 138 { 139 int i; 140 int ret; 141 char *bp = buf; 142 u64 flags = bg_flags; 143 u32 size_bp = size_buf; 144 145 if (!flags) { 146 strcpy(bp, "NONE"); 147 return; 148 } 149 150 #define DESCRIBE_FLAG(flag, desc) \ 151 do { \ 152 if (flags & (flag)) { \ 153 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 154 if (ret < 0 || ret >= size_bp) \ 155 goto out_overflow; \ 156 size_bp -= ret; \ 157 bp += ret; \ 158 flags &= ~(flag); \ 159 } \ 160 } while (0) 161 162 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 163 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 164 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 165 166 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 167 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 168 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 169 btrfs_raid_array[i].raid_name); 170 #undef DESCRIBE_FLAG 171 172 if (flags) { 173 ret = snprintf(bp, size_bp, "0x%llx|", flags); 174 size_bp -= ret; 175 } 176 177 if (size_bp < size_buf) 178 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 179 180 /* 181 * The text is trimmed, it's up to the caller to provide sufficiently 182 * large buffer 183 */ 184 out_overflow:; 185 } 186 187 static int init_first_rw_device(struct btrfs_trans_handle *trans, 188 struct btrfs_fs_info *fs_info); 189 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 190 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 192 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 193 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 194 enum btrfs_map_op op, 195 u64 logical, u64 *length, 196 struct btrfs_bio **bbio_ret, 197 int mirror_num, int need_raid_map); 198 199 /* 200 * Device locking 201 * ============== 202 * 203 * There are several mutexes that protect manipulation of devices and low-level 204 * structures like chunks but not block groups, extents or files 205 * 206 * uuid_mutex (global lock) 207 * ------------------------ 208 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 209 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 210 * device) or requested by the device= mount option 211 * 212 * the mutex can be very coarse and can cover long-running operations 213 * 214 * protects: updates to fs_devices counters like missing devices, rw devices, 215 * seeding, structure cloning, opening/closing devices at mount/umount time 216 * 217 * global::fs_devs - add, remove, updates to the global list 218 * 219 * does not protect: manipulation of the fs_devices::devices list! 220 * 221 * btrfs_device::name - renames (write side), read is RCU 222 * 223 * fs_devices::device_list_mutex (per-fs, with RCU) 224 * ------------------------------------------------ 225 * protects updates to fs_devices::devices, ie. adding and deleting 226 * 227 * simple list traversal with read-only actions can be done with RCU protection 228 * 229 * may be used to exclude some operations from running concurrently without any 230 * modifications to the list (see write_all_supers) 231 * 232 * balance_mutex 233 * ------------- 234 * protects balance structures (status, state) and context accessed from 235 * several places (internally, ioctl) 236 * 237 * chunk_mutex 238 * ----------- 239 * protects chunks, adding or removing during allocation, trim or when a new 240 * device is added/removed 241 * 242 * cleaner_mutex 243 * ------------- 244 * a big lock that is held by the cleaner thread and prevents running subvolume 245 * cleaning together with relocation or delayed iputs 246 * 247 * 248 * Lock nesting 249 * ============ 250 * 251 * uuid_mutex 252 * volume_mutex 253 * device_list_mutex 254 * chunk_mutex 255 * balance_mutex 256 * 257 * 258 * Exclusive operations, BTRFS_FS_EXCL_OP 259 * ====================================== 260 * 261 * Maintains the exclusivity of the following operations that apply to the 262 * whole filesystem and cannot run in parallel. 263 * 264 * - Balance (*) 265 * - Device add 266 * - Device remove 267 * - Device replace (*) 268 * - Resize 269 * 270 * The device operations (as above) can be in one of the following states: 271 * 272 * - Running state 273 * - Paused state 274 * - Completed state 275 * 276 * Only device operations marked with (*) can go into the Paused state for the 277 * following reasons: 278 * 279 * - ioctl (only Balance can be Paused through ioctl) 280 * - filesystem remounted as read-only 281 * - filesystem unmounted and mounted as read-only 282 * - system power-cycle and filesystem mounted as read-only 283 * - filesystem or device errors leading to forced read-only 284 * 285 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. 286 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. 287 * A device operation in Paused or Running state can be canceled or resumed 288 * either by ioctl (Balance only) or when remounted as read-write. 289 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or 290 * completed. 291 */ 292 293 DEFINE_MUTEX(uuid_mutex); 294 static LIST_HEAD(fs_uuids); 295 struct list_head *btrfs_get_fs_uuids(void) 296 { 297 return &fs_uuids; 298 } 299 300 /* 301 * alloc_fs_devices - allocate struct btrfs_fs_devices 302 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 303 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 304 * 305 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 306 * The returned struct is not linked onto any lists and can be destroyed with 307 * kfree() right away. 308 */ 309 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 310 const u8 *metadata_fsid) 311 { 312 struct btrfs_fs_devices *fs_devs; 313 314 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 315 if (!fs_devs) 316 return ERR_PTR(-ENOMEM); 317 318 mutex_init(&fs_devs->device_list_mutex); 319 320 INIT_LIST_HEAD(&fs_devs->devices); 321 INIT_LIST_HEAD(&fs_devs->resized_devices); 322 INIT_LIST_HEAD(&fs_devs->alloc_list); 323 INIT_LIST_HEAD(&fs_devs->fs_list); 324 if (fsid) 325 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 326 327 if (metadata_fsid) 328 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 329 else if (fsid) 330 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 331 332 return fs_devs; 333 } 334 335 void btrfs_free_device(struct btrfs_device *device) 336 { 337 rcu_string_free(device->name); 338 bio_put(device->flush_bio); 339 kfree(device); 340 } 341 342 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 343 { 344 struct btrfs_device *device; 345 WARN_ON(fs_devices->opened); 346 while (!list_empty(&fs_devices->devices)) { 347 device = list_entry(fs_devices->devices.next, 348 struct btrfs_device, dev_list); 349 list_del(&device->dev_list); 350 btrfs_free_device(device); 351 } 352 kfree(fs_devices); 353 } 354 355 static void btrfs_kobject_uevent(struct block_device *bdev, 356 enum kobject_action action) 357 { 358 int ret; 359 360 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 361 if (ret) 362 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 363 action, 364 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 365 &disk_to_dev(bdev->bd_disk)->kobj); 366 } 367 368 void __exit btrfs_cleanup_fs_uuids(void) 369 { 370 struct btrfs_fs_devices *fs_devices; 371 372 while (!list_empty(&fs_uuids)) { 373 fs_devices = list_entry(fs_uuids.next, 374 struct btrfs_fs_devices, fs_list); 375 list_del(&fs_devices->fs_list); 376 free_fs_devices(fs_devices); 377 } 378 } 379 380 /* 381 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 382 * Returned struct is not linked onto any lists and must be destroyed using 383 * btrfs_free_device. 384 */ 385 static struct btrfs_device *__alloc_device(void) 386 { 387 struct btrfs_device *dev; 388 389 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 390 if (!dev) 391 return ERR_PTR(-ENOMEM); 392 393 /* 394 * Preallocate a bio that's always going to be used for flushing device 395 * barriers and matches the device lifespan 396 */ 397 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 398 if (!dev->flush_bio) { 399 kfree(dev); 400 return ERR_PTR(-ENOMEM); 401 } 402 403 INIT_LIST_HEAD(&dev->dev_list); 404 INIT_LIST_HEAD(&dev->dev_alloc_list); 405 INIT_LIST_HEAD(&dev->resized_list); 406 407 spin_lock_init(&dev->io_lock); 408 409 atomic_set(&dev->reada_in_flight, 0); 410 atomic_set(&dev->dev_stats_ccnt, 0); 411 btrfs_device_data_ordered_init(dev); 412 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 413 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 414 415 return dev; 416 } 417 418 static noinline struct btrfs_fs_devices *find_fsid( 419 const u8 *fsid, const u8 *metadata_fsid) 420 { 421 struct btrfs_fs_devices *fs_devices; 422 423 ASSERT(fsid); 424 425 if (metadata_fsid) { 426 /* 427 * Handle scanned device having completed its fsid change but 428 * belonging to a fs_devices that was created by first scanning 429 * a device which didn't have its fsid/metadata_uuid changed 430 * at all and the CHANGING_FSID_V2 flag set. 431 */ 432 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 433 if (fs_devices->fsid_change && 434 memcmp(metadata_fsid, fs_devices->fsid, 435 BTRFS_FSID_SIZE) == 0 && 436 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 437 BTRFS_FSID_SIZE) == 0) { 438 return fs_devices; 439 } 440 } 441 /* 442 * Handle scanned device having completed its fsid change but 443 * belonging to a fs_devices that was created by a device that 444 * has an outdated pair of fsid/metadata_uuid and 445 * CHANGING_FSID_V2 flag set. 446 */ 447 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 448 if (fs_devices->fsid_change && 449 memcmp(fs_devices->metadata_uuid, 450 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 451 memcmp(metadata_fsid, fs_devices->metadata_uuid, 452 BTRFS_FSID_SIZE) == 0) { 453 return fs_devices; 454 } 455 } 456 } 457 458 /* Handle non-split brain cases */ 459 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 460 if (metadata_fsid) { 461 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 462 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 463 BTRFS_FSID_SIZE) == 0) 464 return fs_devices; 465 } else { 466 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 467 return fs_devices; 468 } 469 } 470 return NULL; 471 } 472 473 static int 474 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 475 int flush, struct block_device **bdev, 476 struct buffer_head **bh) 477 { 478 int ret; 479 480 *bdev = blkdev_get_by_path(device_path, flags, holder); 481 482 if (IS_ERR(*bdev)) { 483 ret = PTR_ERR(*bdev); 484 goto error; 485 } 486 487 if (flush) 488 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 489 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 490 if (ret) { 491 blkdev_put(*bdev, flags); 492 goto error; 493 } 494 invalidate_bdev(*bdev); 495 *bh = btrfs_read_dev_super(*bdev); 496 if (IS_ERR(*bh)) { 497 ret = PTR_ERR(*bh); 498 blkdev_put(*bdev, flags); 499 goto error; 500 } 501 502 return 0; 503 504 error: 505 *bdev = NULL; 506 *bh = NULL; 507 return ret; 508 } 509 510 static void requeue_list(struct btrfs_pending_bios *pending_bios, 511 struct bio *head, struct bio *tail) 512 { 513 514 struct bio *old_head; 515 516 old_head = pending_bios->head; 517 pending_bios->head = head; 518 if (pending_bios->tail) 519 tail->bi_next = old_head; 520 else 521 pending_bios->tail = tail; 522 } 523 524 /* 525 * we try to collect pending bios for a device so we don't get a large 526 * number of procs sending bios down to the same device. This greatly 527 * improves the schedulers ability to collect and merge the bios. 528 * 529 * But, it also turns into a long list of bios to process and that is sure 530 * to eventually make the worker thread block. The solution here is to 531 * make some progress and then put this work struct back at the end of 532 * the list if the block device is congested. This way, multiple devices 533 * can make progress from a single worker thread. 534 */ 535 static noinline void run_scheduled_bios(struct btrfs_device *device) 536 { 537 struct btrfs_fs_info *fs_info = device->fs_info; 538 struct bio *pending; 539 struct backing_dev_info *bdi; 540 struct btrfs_pending_bios *pending_bios; 541 struct bio *tail; 542 struct bio *cur; 543 int again = 0; 544 unsigned long num_run; 545 unsigned long batch_run = 0; 546 unsigned long last_waited = 0; 547 int force_reg = 0; 548 int sync_pending = 0; 549 struct blk_plug plug; 550 551 /* 552 * this function runs all the bios we've collected for 553 * a particular device. We don't want to wander off to 554 * another device without first sending all of these down. 555 * So, setup a plug here and finish it off before we return 556 */ 557 blk_start_plug(&plug); 558 559 bdi = device->bdev->bd_bdi; 560 561 loop: 562 spin_lock(&device->io_lock); 563 564 loop_lock: 565 num_run = 0; 566 567 /* take all the bios off the list at once and process them 568 * later on (without the lock held). But, remember the 569 * tail and other pointers so the bios can be properly reinserted 570 * into the list if we hit congestion 571 */ 572 if (!force_reg && device->pending_sync_bios.head) { 573 pending_bios = &device->pending_sync_bios; 574 force_reg = 1; 575 } else { 576 pending_bios = &device->pending_bios; 577 force_reg = 0; 578 } 579 580 pending = pending_bios->head; 581 tail = pending_bios->tail; 582 WARN_ON(pending && !tail); 583 584 /* 585 * if pending was null this time around, no bios need processing 586 * at all and we can stop. Otherwise it'll loop back up again 587 * and do an additional check so no bios are missed. 588 * 589 * device->running_pending is used to synchronize with the 590 * schedule_bio code. 591 */ 592 if (device->pending_sync_bios.head == NULL && 593 device->pending_bios.head == NULL) { 594 again = 0; 595 device->running_pending = 0; 596 } else { 597 again = 1; 598 device->running_pending = 1; 599 } 600 601 pending_bios->head = NULL; 602 pending_bios->tail = NULL; 603 604 spin_unlock(&device->io_lock); 605 606 while (pending) { 607 608 rmb(); 609 /* we want to work on both lists, but do more bios on the 610 * sync list than the regular list 611 */ 612 if ((num_run > 32 && 613 pending_bios != &device->pending_sync_bios && 614 device->pending_sync_bios.head) || 615 (num_run > 64 && pending_bios == &device->pending_sync_bios && 616 device->pending_bios.head)) { 617 spin_lock(&device->io_lock); 618 requeue_list(pending_bios, pending, tail); 619 goto loop_lock; 620 } 621 622 cur = pending; 623 pending = pending->bi_next; 624 cur->bi_next = NULL; 625 626 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 627 628 /* 629 * if we're doing the sync list, record that our 630 * plug has some sync requests on it 631 * 632 * If we're doing the regular list and there are 633 * sync requests sitting around, unplug before 634 * we add more 635 */ 636 if (pending_bios == &device->pending_sync_bios) { 637 sync_pending = 1; 638 } else if (sync_pending) { 639 blk_finish_plug(&plug); 640 blk_start_plug(&plug); 641 sync_pending = 0; 642 } 643 644 btrfsic_submit_bio(cur); 645 num_run++; 646 batch_run++; 647 648 cond_resched(); 649 650 /* 651 * we made progress, there is more work to do and the bdi 652 * is now congested. Back off and let other work structs 653 * run instead 654 */ 655 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 656 fs_info->fs_devices->open_devices > 1) { 657 struct io_context *ioc; 658 659 ioc = current->io_context; 660 661 /* 662 * the main goal here is that we don't want to 663 * block if we're going to be able to submit 664 * more requests without blocking. 665 * 666 * This code does two great things, it pokes into 667 * the elevator code from a filesystem _and_ 668 * it makes assumptions about how batching works. 669 */ 670 if (ioc && ioc->nr_batch_requests > 0 && 671 time_before(jiffies, ioc->last_waited + HZ/50UL) && 672 (last_waited == 0 || 673 ioc->last_waited == last_waited)) { 674 /* 675 * we want to go through our batch of 676 * requests and stop. So, we copy out 677 * the ioc->last_waited time and test 678 * against it before looping 679 */ 680 last_waited = ioc->last_waited; 681 cond_resched(); 682 continue; 683 } 684 spin_lock(&device->io_lock); 685 requeue_list(pending_bios, pending, tail); 686 device->running_pending = 1; 687 688 spin_unlock(&device->io_lock); 689 btrfs_queue_work(fs_info->submit_workers, 690 &device->work); 691 goto done; 692 } 693 } 694 695 cond_resched(); 696 if (again) 697 goto loop; 698 699 spin_lock(&device->io_lock); 700 if (device->pending_bios.head || device->pending_sync_bios.head) 701 goto loop_lock; 702 spin_unlock(&device->io_lock); 703 704 done: 705 blk_finish_plug(&plug); 706 } 707 708 static void pending_bios_fn(struct btrfs_work *work) 709 { 710 struct btrfs_device *device; 711 712 device = container_of(work, struct btrfs_device, work); 713 run_scheduled_bios(device); 714 } 715 716 static bool device_path_matched(const char *path, struct btrfs_device *device) 717 { 718 int found; 719 720 rcu_read_lock(); 721 found = strcmp(rcu_str_deref(device->name), path); 722 rcu_read_unlock(); 723 724 return found == 0; 725 } 726 727 /* 728 * Search and remove all stale (devices which are not mounted) devices. 729 * When both inputs are NULL, it will search and release all stale devices. 730 * path: Optional. When provided will it release all unmounted devices 731 * matching this path only. 732 * skip_dev: Optional. Will skip this device when searching for the stale 733 * devices. 734 * Return: 0 for success or if @path is NULL. 735 * -EBUSY if @path is a mounted device. 736 * -ENOENT if @path does not match any device in the list. 737 */ 738 static int btrfs_free_stale_devices(const char *path, 739 struct btrfs_device *skip_device) 740 { 741 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 742 struct btrfs_device *device, *tmp_device; 743 int ret = 0; 744 745 if (path) 746 ret = -ENOENT; 747 748 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 749 750 mutex_lock(&fs_devices->device_list_mutex); 751 list_for_each_entry_safe(device, tmp_device, 752 &fs_devices->devices, dev_list) { 753 if (skip_device && skip_device == device) 754 continue; 755 if (path && !device->name) 756 continue; 757 if (path && !device_path_matched(path, device)) 758 continue; 759 if (fs_devices->opened) { 760 /* for an already deleted device return 0 */ 761 if (path && ret != 0) 762 ret = -EBUSY; 763 break; 764 } 765 766 /* delete the stale device */ 767 fs_devices->num_devices--; 768 list_del(&device->dev_list); 769 btrfs_free_device(device); 770 771 ret = 0; 772 if (fs_devices->num_devices == 0) 773 break; 774 } 775 mutex_unlock(&fs_devices->device_list_mutex); 776 777 if (fs_devices->num_devices == 0) { 778 btrfs_sysfs_remove_fsid(fs_devices); 779 list_del(&fs_devices->fs_list); 780 free_fs_devices(fs_devices); 781 } 782 } 783 784 return ret; 785 } 786 787 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 788 struct btrfs_device *device, fmode_t flags, 789 void *holder) 790 { 791 struct request_queue *q; 792 struct block_device *bdev; 793 struct buffer_head *bh; 794 struct btrfs_super_block *disk_super; 795 u64 devid; 796 int ret; 797 798 if (device->bdev) 799 return -EINVAL; 800 if (!device->name) 801 return -EINVAL; 802 803 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 804 &bdev, &bh); 805 if (ret) 806 return ret; 807 808 disk_super = (struct btrfs_super_block *)bh->b_data; 809 devid = btrfs_stack_device_id(&disk_super->dev_item); 810 if (devid != device->devid) 811 goto error_brelse; 812 813 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 814 goto error_brelse; 815 816 device->generation = btrfs_super_generation(disk_super); 817 818 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 819 if (btrfs_super_incompat_flags(disk_super) & 820 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 821 pr_err( 822 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 823 goto error_brelse; 824 } 825 826 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 827 fs_devices->seeding = 1; 828 } else { 829 if (bdev_read_only(bdev)) 830 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 831 else 832 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 833 } 834 835 q = bdev_get_queue(bdev); 836 if (!blk_queue_nonrot(q)) 837 fs_devices->rotating = 1; 838 839 device->bdev = bdev; 840 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 841 device->mode = flags; 842 843 fs_devices->open_devices++; 844 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 845 device->devid != BTRFS_DEV_REPLACE_DEVID) { 846 fs_devices->rw_devices++; 847 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 848 } 849 brelse(bh); 850 851 return 0; 852 853 error_brelse: 854 brelse(bh); 855 blkdev_put(bdev, flags); 856 857 return -EINVAL; 858 } 859 860 /* 861 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 862 * being created with a disk that has already completed its fsid change. 863 */ 864 static struct btrfs_fs_devices *find_fsid_inprogress( 865 struct btrfs_super_block *disk_super) 866 { 867 struct btrfs_fs_devices *fs_devices; 868 869 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 870 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 871 BTRFS_FSID_SIZE) != 0 && 872 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 873 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 874 return fs_devices; 875 } 876 } 877 878 return NULL; 879 } 880 881 882 static struct btrfs_fs_devices *find_fsid_changed( 883 struct btrfs_super_block *disk_super) 884 { 885 struct btrfs_fs_devices *fs_devices; 886 887 /* 888 * Handles the case where scanned device is part of an fs that had 889 * multiple successful changes of FSID but curently device didn't 890 * observe it. Meaning our fsid will be different than theirs. 891 */ 892 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 893 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 894 BTRFS_FSID_SIZE) != 0 && 895 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 896 BTRFS_FSID_SIZE) == 0 && 897 memcmp(fs_devices->fsid, disk_super->fsid, 898 BTRFS_FSID_SIZE) != 0) { 899 return fs_devices; 900 } 901 } 902 903 return NULL; 904 } 905 /* 906 * Add new device to list of registered devices 907 * 908 * Returns: 909 * device pointer which was just added or updated when successful 910 * error pointer when failed 911 */ 912 static noinline struct btrfs_device *device_list_add(const char *path, 913 struct btrfs_super_block *disk_super, 914 bool *new_device_added) 915 { 916 struct btrfs_device *device; 917 struct btrfs_fs_devices *fs_devices = NULL; 918 struct rcu_string *name; 919 u64 found_transid = btrfs_super_generation(disk_super); 920 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 921 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 922 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 923 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 924 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 925 926 if (fsid_change_in_progress) { 927 if (!has_metadata_uuid) { 928 /* 929 * When we have an image which has CHANGING_FSID_V2 set 930 * it might belong to either a filesystem which has 931 * disks with completed fsid change or it might belong 932 * to fs with no UUID changes in effect, handle both. 933 */ 934 fs_devices = find_fsid_inprogress(disk_super); 935 if (!fs_devices) 936 fs_devices = find_fsid(disk_super->fsid, NULL); 937 } else { 938 fs_devices = find_fsid_changed(disk_super); 939 } 940 } else if (has_metadata_uuid) { 941 fs_devices = find_fsid(disk_super->fsid, 942 disk_super->metadata_uuid); 943 } else { 944 fs_devices = find_fsid(disk_super->fsid, NULL); 945 } 946 947 948 if (!fs_devices) { 949 if (has_metadata_uuid) 950 fs_devices = alloc_fs_devices(disk_super->fsid, 951 disk_super->metadata_uuid); 952 else 953 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 954 955 if (IS_ERR(fs_devices)) 956 return ERR_CAST(fs_devices); 957 958 fs_devices->fsid_change = fsid_change_in_progress; 959 960 mutex_lock(&fs_devices->device_list_mutex); 961 list_add(&fs_devices->fs_list, &fs_uuids); 962 963 device = NULL; 964 } else { 965 mutex_lock(&fs_devices->device_list_mutex); 966 device = btrfs_find_device(fs_devices, devid, 967 disk_super->dev_item.uuid, NULL, false); 968 969 /* 970 * If this disk has been pulled into an fs devices created by 971 * a device which had the CHANGING_FSID_V2 flag then replace the 972 * metadata_uuid/fsid values of the fs_devices. 973 */ 974 if (has_metadata_uuid && fs_devices->fsid_change && 975 found_transid > fs_devices->latest_generation) { 976 memcpy(fs_devices->fsid, disk_super->fsid, 977 BTRFS_FSID_SIZE); 978 memcpy(fs_devices->metadata_uuid, 979 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 980 981 fs_devices->fsid_change = false; 982 } 983 } 984 985 if (!device) { 986 if (fs_devices->opened) { 987 mutex_unlock(&fs_devices->device_list_mutex); 988 return ERR_PTR(-EBUSY); 989 } 990 991 device = btrfs_alloc_device(NULL, &devid, 992 disk_super->dev_item.uuid); 993 if (IS_ERR(device)) { 994 mutex_unlock(&fs_devices->device_list_mutex); 995 /* we can safely leave the fs_devices entry around */ 996 return device; 997 } 998 999 name = rcu_string_strdup(path, GFP_NOFS); 1000 if (!name) { 1001 btrfs_free_device(device); 1002 mutex_unlock(&fs_devices->device_list_mutex); 1003 return ERR_PTR(-ENOMEM); 1004 } 1005 rcu_assign_pointer(device->name, name); 1006 1007 list_add_rcu(&device->dev_list, &fs_devices->devices); 1008 fs_devices->num_devices++; 1009 1010 device->fs_devices = fs_devices; 1011 *new_device_added = true; 1012 1013 if (disk_super->label[0]) 1014 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n", 1015 disk_super->label, devid, found_transid, path); 1016 else 1017 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n", 1018 disk_super->fsid, devid, found_transid, path); 1019 1020 } else if (!device->name || strcmp(device->name->str, path)) { 1021 /* 1022 * When FS is already mounted. 1023 * 1. If you are here and if the device->name is NULL that 1024 * means this device was missing at time of FS mount. 1025 * 2. If you are here and if the device->name is different 1026 * from 'path' that means either 1027 * a. The same device disappeared and reappeared with 1028 * different name. or 1029 * b. The missing-disk-which-was-replaced, has 1030 * reappeared now. 1031 * 1032 * We must allow 1 and 2a above. But 2b would be a spurious 1033 * and unintentional. 1034 * 1035 * Further in case of 1 and 2a above, the disk at 'path' 1036 * would have missed some transaction when it was away and 1037 * in case of 2a the stale bdev has to be updated as well. 1038 * 2b must not be allowed at all time. 1039 */ 1040 1041 /* 1042 * For now, we do allow update to btrfs_fs_device through the 1043 * btrfs dev scan cli after FS has been mounted. We're still 1044 * tracking a problem where systems fail mount by subvolume id 1045 * when we reject replacement on a mounted FS. 1046 */ 1047 if (!fs_devices->opened && found_transid < device->generation) { 1048 /* 1049 * That is if the FS is _not_ mounted and if you 1050 * are here, that means there is more than one 1051 * disk with same uuid and devid.We keep the one 1052 * with larger generation number or the last-in if 1053 * generation are equal. 1054 */ 1055 mutex_unlock(&fs_devices->device_list_mutex); 1056 return ERR_PTR(-EEXIST); 1057 } 1058 1059 /* 1060 * We are going to replace the device path for a given devid, 1061 * make sure it's the same device if the device is mounted 1062 */ 1063 if (device->bdev) { 1064 struct block_device *path_bdev; 1065 1066 path_bdev = lookup_bdev(path); 1067 if (IS_ERR(path_bdev)) { 1068 mutex_unlock(&fs_devices->device_list_mutex); 1069 return ERR_CAST(path_bdev); 1070 } 1071 1072 if (device->bdev != path_bdev) { 1073 bdput(path_bdev); 1074 mutex_unlock(&fs_devices->device_list_mutex); 1075 btrfs_warn_in_rcu(device->fs_info, 1076 "duplicate device fsid:devid for %pU:%llu old:%s new:%s", 1077 disk_super->fsid, devid, 1078 rcu_str_deref(device->name), path); 1079 return ERR_PTR(-EEXIST); 1080 } 1081 bdput(path_bdev); 1082 btrfs_info_in_rcu(device->fs_info, 1083 "device fsid %pU devid %llu moved old:%s new:%s", 1084 disk_super->fsid, devid, 1085 rcu_str_deref(device->name), path); 1086 } 1087 1088 name = rcu_string_strdup(path, GFP_NOFS); 1089 if (!name) { 1090 mutex_unlock(&fs_devices->device_list_mutex); 1091 return ERR_PTR(-ENOMEM); 1092 } 1093 rcu_string_free(device->name); 1094 rcu_assign_pointer(device->name, name); 1095 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1096 fs_devices->missing_devices--; 1097 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1098 } 1099 } 1100 1101 /* 1102 * Unmount does not free the btrfs_device struct but would zero 1103 * generation along with most of the other members. So just update 1104 * it back. We need it to pick the disk with largest generation 1105 * (as above). 1106 */ 1107 if (!fs_devices->opened) { 1108 device->generation = found_transid; 1109 fs_devices->latest_generation = max_t(u64, found_transid, 1110 fs_devices->latest_generation); 1111 } 1112 1113 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 1114 1115 mutex_unlock(&fs_devices->device_list_mutex); 1116 return device; 1117 } 1118 1119 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1120 { 1121 struct btrfs_fs_devices *fs_devices; 1122 struct btrfs_device *device; 1123 struct btrfs_device *orig_dev; 1124 1125 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1126 if (IS_ERR(fs_devices)) 1127 return fs_devices; 1128 1129 mutex_lock(&orig->device_list_mutex); 1130 fs_devices->total_devices = orig->total_devices; 1131 1132 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1133 struct rcu_string *name; 1134 1135 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1136 orig_dev->uuid); 1137 if (IS_ERR(device)) 1138 goto error; 1139 1140 /* 1141 * This is ok to do without rcu read locked because we hold the 1142 * uuid mutex so nothing we touch in here is going to disappear. 1143 */ 1144 if (orig_dev->name) { 1145 name = rcu_string_strdup(orig_dev->name->str, 1146 GFP_KERNEL); 1147 if (!name) { 1148 btrfs_free_device(device); 1149 goto error; 1150 } 1151 rcu_assign_pointer(device->name, name); 1152 } 1153 1154 list_add(&device->dev_list, &fs_devices->devices); 1155 device->fs_devices = fs_devices; 1156 fs_devices->num_devices++; 1157 } 1158 mutex_unlock(&orig->device_list_mutex); 1159 return fs_devices; 1160 error: 1161 mutex_unlock(&orig->device_list_mutex); 1162 free_fs_devices(fs_devices); 1163 return ERR_PTR(-ENOMEM); 1164 } 1165 1166 /* 1167 * After we have read the system tree and know devids belonging to 1168 * this filesystem, remove the device which does not belong there. 1169 */ 1170 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1171 { 1172 struct btrfs_device *device, *next; 1173 struct btrfs_device *latest_dev = NULL; 1174 1175 mutex_lock(&uuid_mutex); 1176 again: 1177 /* This is the initialized path, it is safe to release the devices. */ 1178 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1179 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1180 &device->dev_state)) { 1181 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1182 &device->dev_state) && 1183 (!latest_dev || 1184 device->generation > latest_dev->generation)) { 1185 latest_dev = device; 1186 } 1187 continue; 1188 } 1189 1190 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 1191 /* 1192 * In the first step, keep the device which has 1193 * the correct fsid and the devid that is used 1194 * for the dev_replace procedure. 1195 * In the second step, the dev_replace state is 1196 * read from the device tree and it is known 1197 * whether the procedure is really active or 1198 * not, which means whether this device is 1199 * used or whether it should be removed. 1200 */ 1201 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1202 &device->dev_state)) { 1203 continue; 1204 } 1205 } 1206 if (device->bdev) { 1207 blkdev_put(device->bdev, device->mode); 1208 device->bdev = NULL; 1209 fs_devices->open_devices--; 1210 } 1211 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1212 list_del_init(&device->dev_alloc_list); 1213 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1214 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1215 &device->dev_state)) 1216 fs_devices->rw_devices--; 1217 } 1218 list_del_init(&device->dev_list); 1219 fs_devices->num_devices--; 1220 btrfs_free_device(device); 1221 } 1222 1223 if (fs_devices->seed) { 1224 fs_devices = fs_devices->seed; 1225 goto again; 1226 } 1227 1228 fs_devices->latest_bdev = latest_dev->bdev; 1229 1230 mutex_unlock(&uuid_mutex); 1231 } 1232 1233 static void free_device_rcu(struct rcu_head *head) 1234 { 1235 struct btrfs_device *device; 1236 1237 device = container_of(head, struct btrfs_device, rcu); 1238 btrfs_free_device(device); 1239 } 1240 1241 static void btrfs_close_bdev(struct btrfs_device *device) 1242 { 1243 if (!device->bdev) 1244 return; 1245 1246 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1247 sync_blockdev(device->bdev); 1248 invalidate_bdev(device->bdev); 1249 } 1250 1251 blkdev_put(device->bdev, device->mode); 1252 } 1253 1254 static void btrfs_close_one_device(struct btrfs_device *device) 1255 { 1256 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1257 struct btrfs_device *new_device; 1258 struct rcu_string *name; 1259 1260 if (device->bdev) 1261 fs_devices->open_devices--; 1262 1263 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1264 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1265 list_del_init(&device->dev_alloc_list); 1266 fs_devices->rw_devices--; 1267 } 1268 1269 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1270 fs_devices->missing_devices--; 1271 1272 btrfs_close_bdev(device); 1273 1274 new_device = btrfs_alloc_device(NULL, &device->devid, 1275 device->uuid); 1276 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 1277 1278 /* Safe because we are under uuid_mutex */ 1279 if (device->name) { 1280 name = rcu_string_strdup(device->name->str, GFP_NOFS); 1281 BUG_ON(!name); /* -ENOMEM */ 1282 rcu_assign_pointer(new_device->name, name); 1283 } 1284 1285 list_replace_rcu(&device->dev_list, &new_device->dev_list); 1286 new_device->fs_devices = device->fs_devices; 1287 1288 call_rcu(&device->rcu, free_device_rcu); 1289 } 1290 1291 static int close_fs_devices(struct btrfs_fs_devices *fs_devices) 1292 { 1293 struct btrfs_device *device, *tmp; 1294 1295 if (--fs_devices->opened > 0) 1296 return 0; 1297 1298 mutex_lock(&fs_devices->device_list_mutex); 1299 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 1300 btrfs_close_one_device(device); 1301 } 1302 mutex_unlock(&fs_devices->device_list_mutex); 1303 1304 WARN_ON(fs_devices->open_devices); 1305 WARN_ON(fs_devices->rw_devices); 1306 fs_devices->opened = 0; 1307 fs_devices->seeding = 0; 1308 1309 return 0; 1310 } 1311 1312 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1313 { 1314 struct btrfs_fs_devices *seed_devices = NULL; 1315 int ret; 1316 1317 mutex_lock(&uuid_mutex); 1318 ret = close_fs_devices(fs_devices); 1319 if (!fs_devices->opened) { 1320 seed_devices = fs_devices->seed; 1321 fs_devices->seed = NULL; 1322 } 1323 mutex_unlock(&uuid_mutex); 1324 1325 while (seed_devices) { 1326 fs_devices = seed_devices; 1327 seed_devices = fs_devices->seed; 1328 close_fs_devices(fs_devices); 1329 free_fs_devices(fs_devices); 1330 } 1331 return ret; 1332 } 1333 1334 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1335 fmode_t flags, void *holder) 1336 { 1337 struct btrfs_device *device; 1338 struct btrfs_device *latest_dev = NULL; 1339 int ret = 0; 1340 1341 flags |= FMODE_EXCL; 1342 1343 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1344 /* Just open everything we can; ignore failures here */ 1345 if (btrfs_open_one_device(fs_devices, device, flags, holder)) 1346 continue; 1347 1348 if (!latest_dev || 1349 device->generation > latest_dev->generation) 1350 latest_dev = device; 1351 } 1352 if (fs_devices->open_devices == 0) { 1353 ret = -EINVAL; 1354 goto out; 1355 } 1356 fs_devices->opened = 1; 1357 fs_devices->latest_bdev = latest_dev->bdev; 1358 fs_devices->total_rw_bytes = 0; 1359 out: 1360 return ret; 1361 } 1362 1363 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1364 { 1365 struct btrfs_device *dev1, *dev2; 1366 1367 dev1 = list_entry(a, struct btrfs_device, dev_list); 1368 dev2 = list_entry(b, struct btrfs_device, dev_list); 1369 1370 if (dev1->devid < dev2->devid) 1371 return -1; 1372 else if (dev1->devid > dev2->devid) 1373 return 1; 1374 return 0; 1375 } 1376 1377 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1378 fmode_t flags, void *holder) 1379 { 1380 int ret; 1381 1382 lockdep_assert_held(&uuid_mutex); 1383 1384 mutex_lock(&fs_devices->device_list_mutex); 1385 if (fs_devices->opened) { 1386 fs_devices->opened++; 1387 ret = 0; 1388 } else { 1389 list_sort(NULL, &fs_devices->devices, devid_cmp); 1390 ret = open_fs_devices(fs_devices, flags, holder); 1391 } 1392 mutex_unlock(&fs_devices->device_list_mutex); 1393 1394 return ret; 1395 } 1396 1397 static void btrfs_release_disk_super(struct page *page) 1398 { 1399 kunmap(page); 1400 put_page(page); 1401 } 1402 1403 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1404 struct page **page, 1405 struct btrfs_super_block **disk_super) 1406 { 1407 void *p; 1408 pgoff_t index; 1409 1410 /* make sure our super fits in the device */ 1411 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1412 return 1; 1413 1414 /* make sure our super fits in the page */ 1415 if (sizeof(**disk_super) > PAGE_SIZE) 1416 return 1; 1417 1418 /* make sure our super doesn't straddle pages on disk */ 1419 index = bytenr >> PAGE_SHIFT; 1420 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1421 return 1; 1422 1423 /* pull in the page with our super */ 1424 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1425 index, GFP_KERNEL); 1426 1427 if (IS_ERR_OR_NULL(*page)) 1428 return 1; 1429 1430 p = kmap(*page); 1431 1432 /* align our pointer to the offset of the super block */ 1433 *disk_super = p + offset_in_page(bytenr); 1434 1435 if (btrfs_super_bytenr(*disk_super) != bytenr || 1436 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1437 btrfs_release_disk_super(*page); 1438 return 1; 1439 } 1440 1441 if ((*disk_super)->label[0] && 1442 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1443 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1444 1445 return 0; 1446 } 1447 1448 int btrfs_forget_devices(const char *path) 1449 { 1450 int ret; 1451 1452 mutex_lock(&uuid_mutex); 1453 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1454 mutex_unlock(&uuid_mutex); 1455 1456 return ret; 1457 } 1458 1459 /* 1460 * Look for a btrfs signature on a device. This may be called out of the mount path 1461 * and we are not allowed to call set_blocksize during the scan. The superblock 1462 * is read via pagecache 1463 */ 1464 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1465 void *holder) 1466 { 1467 struct btrfs_super_block *disk_super; 1468 bool new_device_added = false; 1469 struct btrfs_device *device = NULL; 1470 struct block_device *bdev; 1471 struct page *page; 1472 u64 bytenr; 1473 1474 lockdep_assert_held(&uuid_mutex); 1475 1476 /* 1477 * we would like to check all the supers, but that would make 1478 * a btrfs mount succeed after a mkfs from a different FS. 1479 * So, we need to add a special mount option to scan for 1480 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1481 */ 1482 bytenr = btrfs_sb_offset(0); 1483 flags |= FMODE_EXCL; 1484 1485 bdev = blkdev_get_by_path(path, flags, holder); 1486 if (IS_ERR(bdev)) 1487 return ERR_CAST(bdev); 1488 1489 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { 1490 device = ERR_PTR(-EINVAL); 1491 goto error_bdev_put; 1492 } 1493 1494 device = device_list_add(path, disk_super, &new_device_added); 1495 if (!IS_ERR(device)) { 1496 if (new_device_added) 1497 btrfs_free_stale_devices(path, device); 1498 } 1499 1500 btrfs_release_disk_super(page); 1501 1502 error_bdev_put: 1503 blkdev_put(bdev, flags); 1504 1505 return device; 1506 } 1507 1508 static int contains_pending_extent(struct btrfs_transaction *transaction, 1509 struct btrfs_device *device, 1510 u64 *start, u64 len) 1511 { 1512 struct btrfs_fs_info *fs_info = device->fs_info; 1513 struct extent_map *em; 1514 struct list_head *search_list = &fs_info->pinned_chunks; 1515 int ret = 0; 1516 u64 physical_start = *start; 1517 1518 if (transaction) 1519 search_list = &transaction->pending_chunks; 1520 again: 1521 list_for_each_entry(em, search_list, list) { 1522 struct map_lookup *map; 1523 int i; 1524 1525 map = em->map_lookup; 1526 for (i = 0; i < map->num_stripes; i++) { 1527 u64 end; 1528 1529 if (map->stripes[i].dev != device) 1530 continue; 1531 if (map->stripes[i].physical >= physical_start + len || 1532 map->stripes[i].physical + em->orig_block_len <= 1533 physical_start) 1534 continue; 1535 /* 1536 * Make sure that while processing the pinned list we do 1537 * not override our *start with a lower value, because 1538 * we can have pinned chunks that fall within this 1539 * device hole and that have lower physical addresses 1540 * than the pending chunks we processed before. If we 1541 * do not take this special care we can end up getting 1542 * 2 pending chunks that start at the same physical 1543 * device offsets because the end offset of a pinned 1544 * chunk can be equal to the start offset of some 1545 * pending chunk. 1546 */ 1547 end = map->stripes[i].physical + em->orig_block_len; 1548 if (end > *start) { 1549 *start = end; 1550 ret = 1; 1551 } 1552 } 1553 } 1554 if (search_list != &fs_info->pinned_chunks) { 1555 search_list = &fs_info->pinned_chunks; 1556 goto again; 1557 } 1558 1559 return ret; 1560 } 1561 1562 1563 /* 1564 * find_free_dev_extent_start - find free space in the specified device 1565 * @device: the device which we search the free space in 1566 * @num_bytes: the size of the free space that we need 1567 * @search_start: the position from which to begin the search 1568 * @start: store the start of the free space. 1569 * @len: the size of the free space. that we find, or the size 1570 * of the max free space if we don't find suitable free space 1571 * 1572 * this uses a pretty simple search, the expectation is that it is 1573 * called very infrequently and that a given device has a small number 1574 * of extents 1575 * 1576 * @start is used to store the start of the free space if we find. But if we 1577 * don't find suitable free space, it will be used to store the start position 1578 * of the max free space. 1579 * 1580 * @len is used to store the size of the free space that we find. 1581 * But if we don't find suitable free space, it is used to store the size of 1582 * the max free space. 1583 */ 1584 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1585 struct btrfs_device *device, u64 num_bytes, 1586 u64 search_start, u64 *start, u64 *len) 1587 { 1588 struct btrfs_fs_info *fs_info = device->fs_info; 1589 struct btrfs_root *root = fs_info->dev_root; 1590 struct btrfs_key key; 1591 struct btrfs_dev_extent *dev_extent; 1592 struct btrfs_path *path; 1593 u64 hole_size; 1594 u64 max_hole_start; 1595 u64 max_hole_size; 1596 u64 extent_end; 1597 u64 search_end = device->total_bytes; 1598 int ret; 1599 int slot; 1600 struct extent_buffer *l; 1601 1602 /* 1603 * We don't want to overwrite the superblock on the drive nor any area 1604 * used by the boot loader (grub for example), so we make sure to start 1605 * at an offset of at least 1MB. 1606 */ 1607 search_start = max_t(u64, search_start, SZ_1M); 1608 1609 path = btrfs_alloc_path(); 1610 if (!path) 1611 return -ENOMEM; 1612 1613 max_hole_start = search_start; 1614 max_hole_size = 0; 1615 1616 again: 1617 if (search_start >= search_end || 1618 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1619 ret = -ENOSPC; 1620 goto out; 1621 } 1622 1623 path->reada = READA_FORWARD; 1624 path->search_commit_root = 1; 1625 path->skip_locking = 1; 1626 1627 key.objectid = device->devid; 1628 key.offset = search_start; 1629 key.type = BTRFS_DEV_EXTENT_KEY; 1630 1631 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1632 if (ret < 0) 1633 goto out; 1634 if (ret > 0) { 1635 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1636 if (ret < 0) 1637 goto out; 1638 } 1639 1640 while (1) { 1641 l = path->nodes[0]; 1642 slot = path->slots[0]; 1643 if (slot >= btrfs_header_nritems(l)) { 1644 ret = btrfs_next_leaf(root, path); 1645 if (ret == 0) 1646 continue; 1647 if (ret < 0) 1648 goto out; 1649 1650 break; 1651 } 1652 btrfs_item_key_to_cpu(l, &key, slot); 1653 1654 if (key.objectid < device->devid) 1655 goto next; 1656 1657 if (key.objectid > device->devid) 1658 break; 1659 1660 if (key.type != BTRFS_DEV_EXTENT_KEY) 1661 goto next; 1662 1663 if (key.offset > search_start) { 1664 hole_size = key.offset - search_start; 1665 1666 /* 1667 * Have to check before we set max_hole_start, otherwise 1668 * we could end up sending back this offset anyway. 1669 */ 1670 if (contains_pending_extent(transaction, device, 1671 &search_start, 1672 hole_size)) { 1673 if (key.offset >= search_start) { 1674 hole_size = key.offset - search_start; 1675 } else { 1676 WARN_ON_ONCE(1); 1677 hole_size = 0; 1678 } 1679 } 1680 1681 if (hole_size > max_hole_size) { 1682 max_hole_start = search_start; 1683 max_hole_size = hole_size; 1684 } 1685 1686 /* 1687 * If this free space is greater than which we need, 1688 * it must be the max free space that we have found 1689 * until now, so max_hole_start must point to the start 1690 * of this free space and the length of this free space 1691 * is stored in max_hole_size. Thus, we return 1692 * max_hole_start and max_hole_size and go back to the 1693 * caller. 1694 */ 1695 if (hole_size >= num_bytes) { 1696 ret = 0; 1697 goto out; 1698 } 1699 } 1700 1701 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1702 extent_end = key.offset + btrfs_dev_extent_length(l, 1703 dev_extent); 1704 if (extent_end > search_start) 1705 search_start = extent_end; 1706 next: 1707 path->slots[0]++; 1708 cond_resched(); 1709 } 1710 1711 /* 1712 * At this point, search_start should be the end of 1713 * allocated dev extents, and when shrinking the device, 1714 * search_end may be smaller than search_start. 1715 */ 1716 if (search_end > search_start) { 1717 hole_size = search_end - search_start; 1718 1719 if (contains_pending_extent(transaction, device, &search_start, 1720 hole_size)) { 1721 btrfs_release_path(path); 1722 goto again; 1723 } 1724 1725 if (hole_size > max_hole_size) { 1726 max_hole_start = search_start; 1727 max_hole_size = hole_size; 1728 } 1729 } 1730 1731 /* See above. */ 1732 if (max_hole_size < num_bytes) 1733 ret = -ENOSPC; 1734 else 1735 ret = 0; 1736 1737 out: 1738 btrfs_free_path(path); 1739 *start = max_hole_start; 1740 if (len) 1741 *len = max_hole_size; 1742 return ret; 1743 } 1744 1745 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1746 struct btrfs_device *device, u64 num_bytes, 1747 u64 *start, u64 *len) 1748 { 1749 /* FIXME use last free of some kind */ 1750 return find_free_dev_extent_start(trans->transaction, device, 1751 num_bytes, 0, start, len); 1752 } 1753 1754 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1755 struct btrfs_device *device, 1756 u64 start, u64 *dev_extent_len) 1757 { 1758 struct btrfs_fs_info *fs_info = device->fs_info; 1759 struct btrfs_root *root = fs_info->dev_root; 1760 int ret; 1761 struct btrfs_path *path; 1762 struct btrfs_key key; 1763 struct btrfs_key found_key; 1764 struct extent_buffer *leaf = NULL; 1765 struct btrfs_dev_extent *extent = NULL; 1766 1767 path = btrfs_alloc_path(); 1768 if (!path) 1769 return -ENOMEM; 1770 1771 key.objectid = device->devid; 1772 key.offset = start; 1773 key.type = BTRFS_DEV_EXTENT_KEY; 1774 again: 1775 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1776 if (ret > 0) { 1777 ret = btrfs_previous_item(root, path, key.objectid, 1778 BTRFS_DEV_EXTENT_KEY); 1779 if (ret) 1780 goto out; 1781 leaf = path->nodes[0]; 1782 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1783 extent = btrfs_item_ptr(leaf, path->slots[0], 1784 struct btrfs_dev_extent); 1785 BUG_ON(found_key.offset > start || found_key.offset + 1786 btrfs_dev_extent_length(leaf, extent) < start); 1787 key = found_key; 1788 btrfs_release_path(path); 1789 goto again; 1790 } else if (ret == 0) { 1791 leaf = path->nodes[0]; 1792 extent = btrfs_item_ptr(leaf, path->slots[0], 1793 struct btrfs_dev_extent); 1794 } else { 1795 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1796 goto out; 1797 } 1798 1799 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1800 1801 ret = btrfs_del_item(trans, root, path); 1802 if (ret) { 1803 btrfs_handle_fs_error(fs_info, ret, 1804 "Failed to remove dev extent item"); 1805 } else { 1806 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1807 } 1808 out: 1809 btrfs_free_path(path); 1810 return ret; 1811 } 1812 1813 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1814 struct btrfs_device *device, 1815 u64 chunk_offset, u64 start, u64 num_bytes) 1816 { 1817 int ret; 1818 struct btrfs_path *path; 1819 struct btrfs_fs_info *fs_info = device->fs_info; 1820 struct btrfs_root *root = fs_info->dev_root; 1821 struct btrfs_dev_extent *extent; 1822 struct extent_buffer *leaf; 1823 struct btrfs_key key; 1824 1825 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1826 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1827 path = btrfs_alloc_path(); 1828 if (!path) 1829 return -ENOMEM; 1830 1831 key.objectid = device->devid; 1832 key.offset = start; 1833 key.type = BTRFS_DEV_EXTENT_KEY; 1834 ret = btrfs_insert_empty_item(trans, root, path, &key, 1835 sizeof(*extent)); 1836 if (ret) 1837 goto out; 1838 1839 leaf = path->nodes[0]; 1840 extent = btrfs_item_ptr(leaf, path->slots[0], 1841 struct btrfs_dev_extent); 1842 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1843 BTRFS_CHUNK_TREE_OBJECTID); 1844 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1845 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1846 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1847 1848 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1849 btrfs_mark_buffer_dirty(leaf); 1850 out: 1851 btrfs_free_path(path); 1852 return ret; 1853 } 1854 1855 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1856 { 1857 struct extent_map_tree *em_tree; 1858 struct extent_map *em; 1859 struct rb_node *n; 1860 u64 ret = 0; 1861 1862 em_tree = &fs_info->mapping_tree.map_tree; 1863 read_lock(&em_tree->lock); 1864 n = rb_last(&em_tree->map.rb_root); 1865 if (n) { 1866 em = rb_entry(n, struct extent_map, rb_node); 1867 ret = em->start + em->len; 1868 } 1869 read_unlock(&em_tree->lock); 1870 1871 return ret; 1872 } 1873 1874 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1875 u64 *devid_ret) 1876 { 1877 int ret; 1878 struct btrfs_key key; 1879 struct btrfs_key found_key; 1880 struct btrfs_path *path; 1881 1882 path = btrfs_alloc_path(); 1883 if (!path) 1884 return -ENOMEM; 1885 1886 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1887 key.type = BTRFS_DEV_ITEM_KEY; 1888 key.offset = (u64)-1; 1889 1890 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1891 if (ret < 0) 1892 goto error; 1893 1894 BUG_ON(ret == 0); /* Corruption */ 1895 1896 ret = btrfs_previous_item(fs_info->chunk_root, path, 1897 BTRFS_DEV_ITEMS_OBJECTID, 1898 BTRFS_DEV_ITEM_KEY); 1899 if (ret) { 1900 *devid_ret = 1; 1901 } else { 1902 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1903 path->slots[0]); 1904 *devid_ret = found_key.offset + 1; 1905 } 1906 ret = 0; 1907 error: 1908 btrfs_free_path(path); 1909 return ret; 1910 } 1911 1912 /* 1913 * the device information is stored in the chunk root 1914 * the btrfs_device struct should be fully filled in 1915 */ 1916 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1917 struct btrfs_device *device) 1918 { 1919 int ret; 1920 struct btrfs_path *path; 1921 struct btrfs_dev_item *dev_item; 1922 struct extent_buffer *leaf; 1923 struct btrfs_key key; 1924 unsigned long ptr; 1925 1926 path = btrfs_alloc_path(); 1927 if (!path) 1928 return -ENOMEM; 1929 1930 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1931 key.type = BTRFS_DEV_ITEM_KEY; 1932 key.offset = device->devid; 1933 1934 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1935 &key, sizeof(*dev_item)); 1936 if (ret) 1937 goto out; 1938 1939 leaf = path->nodes[0]; 1940 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1941 1942 btrfs_set_device_id(leaf, dev_item, device->devid); 1943 btrfs_set_device_generation(leaf, dev_item, 0); 1944 btrfs_set_device_type(leaf, dev_item, device->type); 1945 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1946 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1947 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1948 btrfs_set_device_total_bytes(leaf, dev_item, 1949 btrfs_device_get_disk_total_bytes(device)); 1950 btrfs_set_device_bytes_used(leaf, dev_item, 1951 btrfs_device_get_bytes_used(device)); 1952 btrfs_set_device_group(leaf, dev_item, 0); 1953 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1954 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1955 btrfs_set_device_start_offset(leaf, dev_item, 0); 1956 1957 ptr = btrfs_device_uuid(dev_item); 1958 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1959 ptr = btrfs_device_fsid(dev_item); 1960 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1961 ptr, BTRFS_FSID_SIZE); 1962 btrfs_mark_buffer_dirty(leaf); 1963 1964 ret = 0; 1965 out: 1966 btrfs_free_path(path); 1967 return ret; 1968 } 1969 1970 /* 1971 * Function to update ctime/mtime for a given device path. 1972 * Mainly used for ctime/mtime based probe like libblkid. 1973 */ 1974 static void update_dev_time(const char *path_name) 1975 { 1976 struct file *filp; 1977 1978 filp = filp_open(path_name, O_RDWR, 0); 1979 if (IS_ERR(filp)) 1980 return; 1981 file_update_time(filp); 1982 filp_close(filp, NULL); 1983 } 1984 1985 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info, 1986 struct btrfs_device *device) 1987 { 1988 struct btrfs_root *root = fs_info->chunk_root; 1989 int ret; 1990 struct btrfs_path *path; 1991 struct btrfs_key key; 1992 struct btrfs_trans_handle *trans; 1993 1994 path = btrfs_alloc_path(); 1995 if (!path) 1996 return -ENOMEM; 1997 1998 trans = btrfs_start_transaction(root, 0); 1999 if (IS_ERR(trans)) { 2000 btrfs_free_path(path); 2001 return PTR_ERR(trans); 2002 } 2003 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2004 key.type = BTRFS_DEV_ITEM_KEY; 2005 key.offset = device->devid; 2006 2007 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2008 if (ret) { 2009 if (ret > 0) 2010 ret = -ENOENT; 2011 btrfs_abort_transaction(trans, ret); 2012 btrfs_end_transaction(trans); 2013 goto out; 2014 } 2015 2016 ret = btrfs_del_item(trans, root, path); 2017 if (ret) { 2018 btrfs_abort_transaction(trans, ret); 2019 btrfs_end_transaction(trans); 2020 } 2021 2022 out: 2023 btrfs_free_path(path); 2024 if (!ret) 2025 ret = btrfs_commit_transaction(trans); 2026 return ret; 2027 } 2028 2029 /* 2030 * Verify that @num_devices satisfies the RAID profile constraints in the whole 2031 * filesystem. It's up to the caller to adjust that number regarding eg. device 2032 * replace. 2033 */ 2034 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 2035 u64 num_devices) 2036 { 2037 u64 all_avail; 2038 unsigned seq; 2039 int i; 2040 2041 do { 2042 seq = read_seqbegin(&fs_info->profiles_lock); 2043 2044 all_avail = fs_info->avail_data_alloc_bits | 2045 fs_info->avail_system_alloc_bits | 2046 fs_info->avail_metadata_alloc_bits; 2047 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2048 2049 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2050 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2051 continue; 2052 2053 if (num_devices < btrfs_raid_array[i].devs_min) { 2054 int ret = btrfs_raid_array[i].mindev_error; 2055 2056 if (ret) 2057 return ret; 2058 } 2059 } 2060 2061 return 0; 2062 } 2063 2064 static struct btrfs_device * btrfs_find_next_active_device( 2065 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2066 { 2067 struct btrfs_device *next_device; 2068 2069 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2070 if (next_device != device && 2071 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2072 && next_device->bdev) 2073 return next_device; 2074 } 2075 2076 return NULL; 2077 } 2078 2079 /* 2080 * Helper function to check if the given device is part of s_bdev / latest_bdev 2081 * and replace it with the provided or the next active device, in the context 2082 * where this function called, there should be always be another device (or 2083 * this_dev) which is active. 2084 */ 2085 void btrfs_assign_next_active_device(struct btrfs_device *device, 2086 struct btrfs_device *this_dev) 2087 { 2088 struct btrfs_fs_info *fs_info = device->fs_info; 2089 struct btrfs_device *next_device; 2090 2091 if (this_dev) 2092 next_device = this_dev; 2093 else 2094 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2095 device); 2096 ASSERT(next_device); 2097 2098 if (fs_info->sb->s_bdev && 2099 (fs_info->sb->s_bdev == device->bdev)) 2100 fs_info->sb->s_bdev = next_device->bdev; 2101 2102 if (fs_info->fs_devices->latest_bdev == device->bdev) 2103 fs_info->fs_devices->latest_bdev = next_device->bdev; 2104 } 2105 2106 /* 2107 * Return btrfs_fs_devices::num_devices excluding the device that's being 2108 * currently replaced. 2109 */ 2110 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2111 { 2112 u64 num_devices = fs_info->fs_devices->num_devices; 2113 2114 down_read(&fs_info->dev_replace.rwsem); 2115 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2116 ASSERT(num_devices > 1); 2117 num_devices--; 2118 } 2119 up_read(&fs_info->dev_replace.rwsem); 2120 2121 return num_devices; 2122 } 2123 2124 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2125 u64 devid) 2126 { 2127 struct btrfs_device *device; 2128 struct btrfs_fs_devices *cur_devices; 2129 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2130 u64 num_devices; 2131 int ret = 0; 2132 2133 mutex_lock(&uuid_mutex); 2134 2135 num_devices = btrfs_num_devices(fs_info); 2136 2137 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2138 if (ret) 2139 goto out; 2140 2141 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2142 2143 if (IS_ERR(device)) { 2144 if (PTR_ERR(device) == -ENOENT && 2145 strcmp(device_path, "missing") == 0) 2146 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2147 else 2148 ret = PTR_ERR(device); 2149 goto out; 2150 } 2151 2152 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2153 btrfs_warn_in_rcu(fs_info, 2154 "cannot remove device %s (devid %llu) due to active swapfile", 2155 rcu_str_deref(device->name), device->devid); 2156 ret = -ETXTBSY; 2157 goto out; 2158 } 2159 2160 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2161 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2162 goto out; 2163 } 2164 2165 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2166 fs_info->fs_devices->rw_devices == 1) { 2167 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2168 goto out; 2169 } 2170 2171 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2172 mutex_lock(&fs_info->chunk_mutex); 2173 list_del_init(&device->dev_alloc_list); 2174 device->fs_devices->rw_devices--; 2175 mutex_unlock(&fs_info->chunk_mutex); 2176 } 2177 2178 mutex_unlock(&uuid_mutex); 2179 ret = btrfs_shrink_device(device, 0); 2180 mutex_lock(&uuid_mutex); 2181 if (ret) 2182 goto error_undo; 2183 2184 /* 2185 * TODO: the superblock still includes this device in its num_devices 2186 * counter although write_all_supers() is not locked out. This 2187 * could give a filesystem state which requires a degraded mount. 2188 */ 2189 ret = btrfs_rm_dev_item(fs_info, device); 2190 if (ret) 2191 goto error_undo; 2192 2193 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2194 btrfs_scrub_cancel_dev(fs_info, device); 2195 2196 /* 2197 * the device list mutex makes sure that we don't change 2198 * the device list while someone else is writing out all 2199 * the device supers. Whoever is writing all supers, should 2200 * lock the device list mutex before getting the number of 2201 * devices in the super block (super_copy). Conversely, 2202 * whoever updates the number of devices in the super block 2203 * (super_copy) should hold the device list mutex. 2204 */ 2205 2206 /* 2207 * In normal cases the cur_devices == fs_devices. But in case 2208 * of deleting a seed device, the cur_devices should point to 2209 * its own fs_devices listed under the fs_devices->seed. 2210 */ 2211 cur_devices = device->fs_devices; 2212 mutex_lock(&fs_devices->device_list_mutex); 2213 list_del_rcu(&device->dev_list); 2214 2215 cur_devices->num_devices--; 2216 cur_devices->total_devices--; 2217 /* Update total_devices of the parent fs_devices if it's seed */ 2218 if (cur_devices != fs_devices) 2219 fs_devices->total_devices--; 2220 2221 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2222 cur_devices->missing_devices--; 2223 2224 btrfs_assign_next_active_device(device, NULL); 2225 2226 if (device->bdev) { 2227 cur_devices->open_devices--; 2228 /* remove sysfs entry */ 2229 btrfs_sysfs_rm_device_link(fs_devices, device); 2230 } 2231 2232 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2233 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2234 mutex_unlock(&fs_devices->device_list_mutex); 2235 2236 /* 2237 * at this point, the device is zero sized and detached from 2238 * the devices list. All that's left is to zero out the old 2239 * supers and free the device. 2240 */ 2241 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2242 btrfs_scratch_superblocks(device->bdev, device->name->str); 2243 2244 btrfs_close_bdev(device); 2245 call_rcu(&device->rcu, free_device_rcu); 2246 2247 if (cur_devices->open_devices == 0) { 2248 while (fs_devices) { 2249 if (fs_devices->seed == cur_devices) { 2250 fs_devices->seed = cur_devices->seed; 2251 break; 2252 } 2253 fs_devices = fs_devices->seed; 2254 } 2255 cur_devices->seed = NULL; 2256 close_fs_devices(cur_devices); 2257 free_fs_devices(cur_devices); 2258 } 2259 2260 out: 2261 mutex_unlock(&uuid_mutex); 2262 return ret; 2263 2264 error_undo: 2265 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2266 mutex_lock(&fs_info->chunk_mutex); 2267 list_add(&device->dev_alloc_list, 2268 &fs_devices->alloc_list); 2269 device->fs_devices->rw_devices++; 2270 mutex_unlock(&fs_info->chunk_mutex); 2271 } 2272 goto out; 2273 } 2274 2275 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2276 { 2277 struct btrfs_fs_devices *fs_devices; 2278 2279 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2280 2281 /* 2282 * in case of fs with no seed, srcdev->fs_devices will point 2283 * to fs_devices of fs_info. However when the dev being replaced is 2284 * a seed dev it will point to the seed's local fs_devices. In short 2285 * srcdev will have its correct fs_devices in both the cases. 2286 */ 2287 fs_devices = srcdev->fs_devices; 2288 2289 list_del_rcu(&srcdev->dev_list); 2290 list_del(&srcdev->dev_alloc_list); 2291 fs_devices->num_devices--; 2292 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2293 fs_devices->missing_devices--; 2294 2295 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2296 fs_devices->rw_devices--; 2297 2298 if (srcdev->bdev) 2299 fs_devices->open_devices--; 2300 } 2301 2302 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 2303 struct btrfs_device *srcdev) 2304 { 2305 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2306 2307 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { 2308 /* zero out the old super if it is writable */ 2309 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2310 } 2311 2312 btrfs_close_bdev(srcdev); 2313 call_rcu(&srcdev->rcu, free_device_rcu); 2314 2315 /* if this is no devs we rather delete the fs_devices */ 2316 if (!fs_devices->num_devices) { 2317 struct btrfs_fs_devices *tmp_fs_devices; 2318 2319 /* 2320 * On a mounted FS, num_devices can't be zero unless it's a 2321 * seed. In case of a seed device being replaced, the replace 2322 * target added to the sprout FS, so there will be no more 2323 * device left under the seed FS. 2324 */ 2325 ASSERT(fs_devices->seeding); 2326 2327 tmp_fs_devices = fs_info->fs_devices; 2328 while (tmp_fs_devices) { 2329 if (tmp_fs_devices->seed == fs_devices) { 2330 tmp_fs_devices->seed = fs_devices->seed; 2331 break; 2332 } 2333 tmp_fs_devices = tmp_fs_devices->seed; 2334 } 2335 fs_devices->seed = NULL; 2336 close_fs_devices(fs_devices); 2337 free_fs_devices(fs_devices); 2338 } 2339 } 2340 2341 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2342 { 2343 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2344 2345 WARN_ON(!tgtdev); 2346 mutex_lock(&fs_devices->device_list_mutex); 2347 2348 btrfs_sysfs_rm_device_link(fs_devices, tgtdev); 2349 2350 if (tgtdev->bdev) 2351 fs_devices->open_devices--; 2352 2353 fs_devices->num_devices--; 2354 2355 btrfs_assign_next_active_device(tgtdev, NULL); 2356 2357 list_del_rcu(&tgtdev->dev_list); 2358 2359 mutex_unlock(&fs_devices->device_list_mutex); 2360 2361 /* 2362 * The update_dev_time() with in btrfs_scratch_superblocks() 2363 * may lead to a call to btrfs_show_devname() which will try 2364 * to hold device_list_mutex. And here this device 2365 * is already out of device list, so we don't have to hold 2366 * the device_list_mutex lock. 2367 */ 2368 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2369 2370 btrfs_close_bdev(tgtdev); 2371 call_rcu(&tgtdev->rcu, free_device_rcu); 2372 } 2373 2374 static struct btrfs_device *btrfs_find_device_by_path( 2375 struct btrfs_fs_info *fs_info, const char *device_path) 2376 { 2377 int ret = 0; 2378 struct btrfs_super_block *disk_super; 2379 u64 devid; 2380 u8 *dev_uuid; 2381 struct block_device *bdev; 2382 struct buffer_head *bh; 2383 struct btrfs_device *device; 2384 2385 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2386 fs_info->bdev_holder, 0, &bdev, &bh); 2387 if (ret) 2388 return ERR_PTR(ret); 2389 disk_super = (struct btrfs_super_block *)bh->b_data; 2390 devid = btrfs_stack_device_id(&disk_super->dev_item); 2391 dev_uuid = disk_super->dev_item.uuid; 2392 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2393 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2394 disk_super->metadata_uuid, true); 2395 else 2396 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2397 disk_super->fsid, true); 2398 2399 brelse(bh); 2400 if (!device) 2401 device = ERR_PTR(-ENOENT); 2402 blkdev_put(bdev, FMODE_READ); 2403 return device; 2404 } 2405 2406 /* 2407 * Lookup a device given by device id, or the path if the id is 0. 2408 */ 2409 struct btrfs_device *btrfs_find_device_by_devspec( 2410 struct btrfs_fs_info *fs_info, u64 devid, 2411 const char *device_path) 2412 { 2413 struct btrfs_device *device; 2414 2415 if (devid) { 2416 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2417 NULL, true); 2418 if (!device) 2419 return ERR_PTR(-ENOENT); 2420 return device; 2421 } 2422 2423 if (!device_path || !device_path[0]) 2424 return ERR_PTR(-EINVAL); 2425 2426 if (strcmp(device_path, "missing") == 0) { 2427 /* Find first missing device */ 2428 list_for_each_entry(device, &fs_info->fs_devices->devices, 2429 dev_list) { 2430 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2431 &device->dev_state) && !device->bdev) 2432 return device; 2433 } 2434 return ERR_PTR(-ENOENT); 2435 } 2436 2437 return btrfs_find_device_by_path(fs_info, device_path); 2438 } 2439 2440 /* 2441 * does all the dirty work required for changing file system's UUID. 2442 */ 2443 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2444 { 2445 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2446 struct btrfs_fs_devices *old_devices; 2447 struct btrfs_fs_devices *seed_devices; 2448 struct btrfs_super_block *disk_super = fs_info->super_copy; 2449 struct btrfs_device *device; 2450 u64 super_flags; 2451 2452 lockdep_assert_held(&uuid_mutex); 2453 if (!fs_devices->seeding) 2454 return -EINVAL; 2455 2456 seed_devices = alloc_fs_devices(NULL, NULL); 2457 if (IS_ERR(seed_devices)) 2458 return PTR_ERR(seed_devices); 2459 2460 old_devices = clone_fs_devices(fs_devices); 2461 if (IS_ERR(old_devices)) { 2462 kfree(seed_devices); 2463 return PTR_ERR(old_devices); 2464 } 2465 2466 list_add(&old_devices->fs_list, &fs_uuids); 2467 2468 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2469 seed_devices->opened = 1; 2470 INIT_LIST_HEAD(&seed_devices->devices); 2471 INIT_LIST_HEAD(&seed_devices->alloc_list); 2472 mutex_init(&seed_devices->device_list_mutex); 2473 2474 mutex_lock(&fs_devices->device_list_mutex); 2475 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2476 synchronize_rcu); 2477 list_for_each_entry(device, &seed_devices->devices, dev_list) 2478 device->fs_devices = seed_devices; 2479 2480 mutex_lock(&fs_info->chunk_mutex); 2481 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2482 mutex_unlock(&fs_info->chunk_mutex); 2483 2484 fs_devices->seeding = 0; 2485 fs_devices->num_devices = 0; 2486 fs_devices->open_devices = 0; 2487 fs_devices->missing_devices = 0; 2488 fs_devices->rotating = 0; 2489 fs_devices->seed = seed_devices; 2490 2491 generate_random_uuid(fs_devices->fsid); 2492 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2493 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2494 mutex_unlock(&fs_devices->device_list_mutex); 2495 2496 super_flags = btrfs_super_flags(disk_super) & 2497 ~BTRFS_SUPER_FLAG_SEEDING; 2498 btrfs_set_super_flags(disk_super, super_flags); 2499 2500 return 0; 2501 } 2502 2503 /* 2504 * Store the expected generation for seed devices in device items. 2505 */ 2506 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2507 struct btrfs_fs_info *fs_info) 2508 { 2509 struct btrfs_root *root = fs_info->chunk_root; 2510 struct btrfs_path *path; 2511 struct extent_buffer *leaf; 2512 struct btrfs_dev_item *dev_item; 2513 struct btrfs_device *device; 2514 struct btrfs_key key; 2515 u8 fs_uuid[BTRFS_FSID_SIZE]; 2516 u8 dev_uuid[BTRFS_UUID_SIZE]; 2517 u64 devid; 2518 int ret; 2519 2520 path = btrfs_alloc_path(); 2521 if (!path) 2522 return -ENOMEM; 2523 2524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2525 key.offset = 0; 2526 key.type = BTRFS_DEV_ITEM_KEY; 2527 2528 while (1) { 2529 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2530 if (ret < 0) 2531 goto error; 2532 2533 leaf = path->nodes[0]; 2534 next_slot: 2535 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2536 ret = btrfs_next_leaf(root, path); 2537 if (ret > 0) 2538 break; 2539 if (ret < 0) 2540 goto error; 2541 leaf = path->nodes[0]; 2542 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2543 btrfs_release_path(path); 2544 continue; 2545 } 2546 2547 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2548 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2549 key.type != BTRFS_DEV_ITEM_KEY) 2550 break; 2551 2552 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2553 struct btrfs_dev_item); 2554 devid = btrfs_device_id(leaf, dev_item); 2555 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2556 BTRFS_UUID_SIZE); 2557 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2558 BTRFS_FSID_SIZE); 2559 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2560 fs_uuid, true); 2561 BUG_ON(!device); /* Logic error */ 2562 2563 if (device->fs_devices->seeding) { 2564 btrfs_set_device_generation(leaf, dev_item, 2565 device->generation); 2566 btrfs_mark_buffer_dirty(leaf); 2567 } 2568 2569 path->slots[0]++; 2570 goto next_slot; 2571 } 2572 ret = 0; 2573 error: 2574 btrfs_free_path(path); 2575 return ret; 2576 } 2577 2578 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2579 { 2580 struct btrfs_root *root = fs_info->dev_root; 2581 struct request_queue *q; 2582 struct btrfs_trans_handle *trans; 2583 struct btrfs_device *device; 2584 struct block_device *bdev; 2585 struct super_block *sb = fs_info->sb; 2586 struct rcu_string *name; 2587 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2588 u64 orig_super_total_bytes; 2589 u64 orig_super_num_devices; 2590 int seeding_dev = 0; 2591 int ret = 0; 2592 bool unlocked = false; 2593 2594 if (sb_rdonly(sb) && !fs_devices->seeding) 2595 return -EROFS; 2596 2597 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2598 fs_info->bdev_holder); 2599 if (IS_ERR(bdev)) 2600 return PTR_ERR(bdev); 2601 2602 if (fs_devices->seeding) { 2603 seeding_dev = 1; 2604 down_write(&sb->s_umount); 2605 mutex_lock(&uuid_mutex); 2606 } 2607 2608 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2609 2610 mutex_lock(&fs_devices->device_list_mutex); 2611 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2612 if (device->bdev == bdev) { 2613 ret = -EEXIST; 2614 mutex_unlock( 2615 &fs_devices->device_list_mutex); 2616 goto error; 2617 } 2618 } 2619 mutex_unlock(&fs_devices->device_list_mutex); 2620 2621 device = btrfs_alloc_device(fs_info, NULL, NULL); 2622 if (IS_ERR(device)) { 2623 /* we can safely leave the fs_devices entry around */ 2624 ret = PTR_ERR(device); 2625 goto error; 2626 } 2627 2628 name = rcu_string_strdup(device_path, GFP_KERNEL); 2629 if (!name) { 2630 ret = -ENOMEM; 2631 goto error_free_device; 2632 } 2633 rcu_assign_pointer(device->name, name); 2634 2635 trans = btrfs_start_transaction(root, 0); 2636 if (IS_ERR(trans)) { 2637 ret = PTR_ERR(trans); 2638 goto error_free_device; 2639 } 2640 2641 q = bdev_get_queue(bdev); 2642 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2643 device->generation = trans->transid; 2644 device->io_width = fs_info->sectorsize; 2645 device->io_align = fs_info->sectorsize; 2646 device->sector_size = fs_info->sectorsize; 2647 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2648 fs_info->sectorsize); 2649 device->disk_total_bytes = device->total_bytes; 2650 device->commit_total_bytes = device->total_bytes; 2651 device->fs_info = fs_info; 2652 device->bdev = bdev; 2653 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2654 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2655 device->mode = FMODE_EXCL; 2656 device->dev_stats_valid = 1; 2657 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2658 2659 if (seeding_dev) { 2660 sb->s_flags &= ~SB_RDONLY; 2661 ret = btrfs_prepare_sprout(fs_info); 2662 if (ret) { 2663 btrfs_abort_transaction(trans, ret); 2664 goto error_trans; 2665 } 2666 } 2667 2668 device->fs_devices = fs_devices; 2669 2670 mutex_lock(&fs_devices->device_list_mutex); 2671 mutex_lock(&fs_info->chunk_mutex); 2672 list_add_rcu(&device->dev_list, &fs_devices->devices); 2673 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2674 fs_devices->num_devices++; 2675 fs_devices->open_devices++; 2676 fs_devices->rw_devices++; 2677 fs_devices->total_devices++; 2678 fs_devices->total_rw_bytes += device->total_bytes; 2679 2680 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2681 2682 if (!blk_queue_nonrot(q)) 2683 fs_devices->rotating = 1; 2684 2685 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2686 btrfs_set_super_total_bytes(fs_info->super_copy, 2687 round_down(orig_super_total_bytes + device->total_bytes, 2688 fs_info->sectorsize)); 2689 2690 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2691 btrfs_set_super_num_devices(fs_info->super_copy, 2692 orig_super_num_devices + 1); 2693 2694 /* add sysfs device entry */ 2695 btrfs_sysfs_add_device_link(fs_devices, device); 2696 2697 /* 2698 * we've got more storage, clear any full flags on the space 2699 * infos 2700 */ 2701 btrfs_clear_space_info_full(fs_info); 2702 2703 mutex_unlock(&fs_info->chunk_mutex); 2704 mutex_unlock(&fs_devices->device_list_mutex); 2705 2706 if (seeding_dev) { 2707 mutex_lock(&fs_info->chunk_mutex); 2708 ret = init_first_rw_device(trans, fs_info); 2709 mutex_unlock(&fs_info->chunk_mutex); 2710 if (ret) { 2711 btrfs_abort_transaction(trans, ret); 2712 goto error_sysfs; 2713 } 2714 } 2715 2716 ret = btrfs_add_dev_item(trans, device); 2717 if (ret) { 2718 btrfs_abort_transaction(trans, ret); 2719 goto error_sysfs; 2720 } 2721 2722 if (seeding_dev) { 2723 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2724 2725 ret = btrfs_finish_sprout(trans, fs_info); 2726 if (ret) { 2727 btrfs_abort_transaction(trans, ret); 2728 goto error_sysfs; 2729 } 2730 2731 /* Sprouting would change fsid of the mounted root, 2732 * so rename the fsid on the sysfs 2733 */ 2734 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2735 fs_info->fs_devices->fsid); 2736 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf)) 2737 btrfs_warn(fs_info, 2738 "sysfs: failed to create fsid for sprout"); 2739 } 2740 2741 ret = btrfs_commit_transaction(trans); 2742 2743 if (seeding_dev) { 2744 mutex_unlock(&uuid_mutex); 2745 up_write(&sb->s_umount); 2746 unlocked = true; 2747 2748 if (ret) /* transaction commit */ 2749 return ret; 2750 2751 ret = btrfs_relocate_sys_chunks(fs_info); 2752 if (ret < 0) 2753 btrfs_handle_fs_error(fs_info, ret, 2754 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2755 trans = btrfs_attach_transaction(root); 2756 if (IS_ERR(trans)) { 2757 if (PTR_ERR(trans) == -ENOENT) 2758 return 0; 2759 ret = PTR_ERR(trans); 2760 trans = NULL; 2761 goto error_sysfs; 2762 } 2763 ret = btrfs_commit_transaction(trans); 2764 } 2765 2766 /* Update ctime/mtime for libblkid */ 2767 update_dev_time(device_path); 2768 return ret; 2769 2770 error_sysfs: 2771 btrfs_sysfs_rm_device_link(fs_devices, device); 2772 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2773 mutex_lock(&fs_info->chunk_mutex); 2774 list_del_rcu(&device->dev_list); 2775 list_del(&device->dev_alloc_list); 2776 fs_info->fs_devices->num_devices--; 2777 fs_info->fs_devices->open_devices--; 2778 fs_info->fs_devices->rw_devices--; 2779 fs_info->fs_devices->total_devices--; 2780 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2781 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2782 btrfs_set_super_total_bytes(fs_info->super_copy, 2783 orig_super_total_bytes); 2784 btrfs_set_super_num_devices(fs_info->super_copy, 2785 orig_super_num_devices); 2786 mutex_unlock(&fs_info->chunk_mutex); 2787 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2788 error_trans: 2789 if (seeding_dev) 2790 sb->s_flags |= SB_RDONLY; 2791 if (trans) 2792 btrfs_end_transaction(trans); 2793 error_free_device: 2794 btrfs_free_device(device); 2795 error: 2796 blkdev_put(bdev, FMODE_EXCL); 2797 if (seeding_dev && !unlocked) { 2798 mutex_unlock(&uuid_mutex); 2799 up_write(&sb->s_umount); 2800 } 2801 return ret; 2802 } 2803 2804 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2805 struct btrfs_device *device) 2806 { 2807 int ret; 2808 struct btrfs_path *path; 2809 struct btrfs_root *root = device->fs_info->chunk_root; 2810 struct btrfs_dev_item *dev_item; 2811 struct extent_buffer *leaf; 2812 struct btrfs_key key; 2813 2814 path = btrfs_alloc_path(); 2815 if (!path) 2816 return -ENOMEM; 2817 2818 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2819 key.type = BTRFS_DEV_ITEM_KEY; 2820 key.offset = device->devid; 2821 2822 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2823 if (ret < 0) 2824 goto out; 2825 2826 if (ret > 0) { 2827 ret = -ENOENT; 2828 goto out; 2829 } 2830 2831 leaf = path->nodes[0]; 2832 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2833 2834 btrfs_set_device_id(leaf, dev_item, device->devid); 2835 btrfs_set_device_type(leaf, dev_item, device->type); 2836 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2837 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2838 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2839 btrfs_set_device_total_bytes(leaf, dev_item, 2840 btrfs_device_get_disk_total_bytes(device)); 2841 btrfs_set_device_bytes_used(leaf, dev_item, 2842 btrfs_device_get_bytes_used(device)); 2843 btrfs_mark_buffer_dirty(leaf); 2844 2845 out: 2846 btrfs_free_path(path); 2847 return ret; 2848 } 2849 2850 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2851 struct btrfs_device *device, u64 new_size) 2852 { 2853 struct btrfs_fs_info *fs_info = device->fs_info; 2854 struct btrfs_super_block *super_copy = fs_info->super_copy; 2855 struct btrfs_fs_devices *fs_devices; 2856 u64 old_total; 2857 u64 diff; 2858 2859 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2860 return -EACCES; 2861 2862 new_size = round_down(new_size, fs_info->sectorsize); 2863 2864 mutex_lock(&fs_info->chunk_mutex); 2865 old_total = btrfs_super_total_bytes(super_copy); 2866 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2867 2868 if (new_size <= device->total_bytes || 2869 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2870 mutex_unlock(&fs_info->chunk_mutex); 2871 return -EINVAL; 2872 } 2873 2874 fs_devices = fs_info->fs_devices; 2875 2876 btrfs_set_super_total_bytes(super_copy, 2877 round_down(old_total + diff, fs_info->sectorsize)); 2878 device->fs_devices->total_rw_bytes += diff; 2879 2880 btrfs_device_set_total_bytes(device, new_size); 2881 btrfs_device_set_disk_total_bytes(device, new_size); 2882 btrfs_clear_space_info_full(device->fs_info); 2883 if (list_empty(&device->resized_list)) 2884 list_add_tail(&device->resized_list, 2885 &fs_devices->resized_devices); 2886 mutex_unlock(&fs_info->chunk_mutex); 2887 2888 return btrfs_update_device(trans, device); 2889 } 2890 2891 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2892 { 2893 struct btrfs_fs_info *fs_info = trans->fs_info; 2894 struct btrfs_root *root = fs_info->chunk_root; 2895 int ret; 2896 struct btrfs_path *path; 2897 struct btrfs_key key; 2898 2899 path = btrfs_alloc_path(); 2900 if (!path) 2901 return -ENOMEM; 2902 2903 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2904 key.offset = chunk_offset; 2905 key.type = BTRFS_CHUNK_ITEM_KEY; 2906 2907 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2908 if (ret < 0) 2909 goto out; 2910 else if (ret > 0) { /* Logic error or corruption */ 2911 btrfs_handle_fs_error(fs_info, -ENOENT, 2912 "Failed lookup while freeing chunk."); 2913 ret = -ENOENT; 2914 goto out; 2915 } 2916 2917 ret = btrfs_del_item(trans, root, path); 2918 if (ret < 0) 2919 btrfs_handle_fs_error(fs_info, ret, 2920 "Failed to delete chunk item."); 2921 out: 2922 btrfs_free_path(path); 2923 return ret; 2924 } 2925 2926 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2927 { 2928 struct btrfs_super_block *super_copy = fs_info->super_copy; 2929 struct btrfs_disk_key *disk_key; 2930 struct btrfs_chunk *chunk; 2931 u8 *ptr; 2932 int ret = 0; 2933 u32 num_stripes; 2934 u32 array_size; 2935 u32 len = 0; 2936 u32 cur; 2937 struct btrfs_key key; 2938 2939 mutex_lock(&fs_info->chunk_mutex); 2940 array_size = btrfs_super_sys_array_size(super_copy); 2941 2942 ptr = super_copy->sys_chunk_array; 2943 cur = 0; 2944 2945 while (cur < array_size) { 2946 disk_key = (struct btrfs_disk_key *)ptr; 2947 btrfs_disk_key_to_cpu(&key, disk_key); 2948 2949 len = sizeof(*disk_key); 2950 2951 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2952 chunk = (struct btrfs_chunk *)(ptr + len); 2953 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2954 len += btrfs_chunk_item_size(num_stripes); 2955 } else { 2956 ret = -EIO; 2957 break; 2958 } 2959 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2960 key.offset == chunk_offset) { 2961 memmove(ptr, ptr + len, array_size - (cur + len)); 2962 array_size -= len; 2963 btrfs_set_super_sys_array_size(super_copy, array_size); 2964 } else { 2965 ptr += len; 2966 cur += len; 2967 } 2968 } 2969 mutex_unlock(&fs_info->chunk_mutex); 2970 return ret; 2971 } 2972 2973 /* 2974 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2975 * @logical: Logical block offset in bytes. 2976 * @length: Length of extent in bytes. 2977 * 2978 * Return: Chunk mapping or ERR_PTR. 2979 */ 2980 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2981 u64 logical, u64 length) 2982 { 2983 struct extent_map_tree *em_tree; 2984 struct extent_map *em; 2985 2986 em_tree = &fs_info->mapping_tree.map_tree; 2987 read_lock(&em_tree->lock); 2988 em = lookup_extent_mapping(em_tree, logical, length); 2989 read_unlock(&em_tree->lock); 2990 2991 if (!em) { 2992 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2993 logical, length); 2994 return ERR_PTR(-EINVAL); 2995 } 2996 2997 if (em->start > logical || em->start + em->len < logical) { 2998 btrfs_crit(fs_info, 2999 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3000 logical, length, em->start, em->start + em->len); 3001 free_extent_map(em); 3002 return ERR_PTR(-EINVAL); 3003 } 3004 3005 /* callers are responsible for dropping em's ref. */ 3006 return em; 3007 } 3008 3009 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3010 { 3011 struct btrfs_fs_info *fs_info = trans->fs_info; 3012 struct extent_map *em; 3013 struct map_lookup *map; 3014 u64 dev_extent_len = 0; 3015 int i, ret = 0; 3016 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3017 3018 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3019 if (IS_ERR(em)) { 3020 /* 3021 * This is a logic error, but we don't want to just rely on the 3022 * user having built with ASSERT enabled, so if ASSERT doesn't 3023 * do anything we still error out. 3024 */ 3025 ASSERT(0); 3026 return PTR_ERR(em); 3027 } 3028 map = em->map_lookup; 3029 mutex_lock(&fs_info->chunk_mutex); 3030 check_system_chunk(trans, map->type); 3031 mutex_unlock(&fs_info->chunk_mutex); 3032 3033 /* 3034 * Take the device list mutex to prevent races with the final phase of 3035 * a device replace operation that replaces the device object associated 3036 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 3037 */ 3038 mutex_lock(&fs_devices->device_list_mutex); 3039 for (i = 0; i < map->num_stripes; i++) { 3040 struct btrfs_device *device = map->stripes[i].dev; 3041 ret = btrfs_free_dev_extent(trans, device, 3042 map->stripes[i].physical, 3043 &dev_extent_len); 3044 if (ret) { 3045 mutex_unlock(&fs_devices->device_list_mutex); 3046 btrfs_abort_transaction(trans, ret); 3047 goto out; 3048 } 3049 3050 if (device->bytes_used > 0) { 3051 mutex_lock(&fs_info->chunk_mutex); 3052 btrfs_device_set_bytes_used(device, 3053 device->bytes_used - dev_extent_len); 3054 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3055 btrfs_clear_space_info_full(fs_info); 3056 mutex_unlock(&fs_info->chunk_mutex); 3057 } 3058 3059 ret = btrfs_update_device(trans, device); 3060 if (ret) { 3061 mutex_unlock(&fs_devices->device_list_mutex); 3062 btrfs_abort_transaction(trans, ret); 3063 goto out; 3064 } 3065 } 3066 mutex_unlock(&fs_devices->device_list_mutex); 3067 3068 ret = btrfs_free_chunk(trans, chunk_offset); 3069 if (ret) { 3070 btrfs_abort_transaction(trans, ret); 3071 goto out; 3072 } 3073 3074 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3075 3076 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3077 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3078 if (ret) { 3079 btrfs_abort_transaction(trans, ret); 3080 goto out; 3081 } 3082 } 3083 3084 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3085 if (ret) { 3086 btrfs_abort_transaction(trans, ret); 3087 goto out; 3088 } 3089 3090 out: 3091 /* once for us */ 3092 free_extent_map(em); 3093 return ret; 3094 } 3095 3096 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3097 { 3098 struct btrfs_root *root = fs_info->chunk_root; 3099 struct btrfs_trans_handle *trans; 3100 int ret; 3101 3102 /* 3103 * Prevent races with automatic removal of unused block groups. 3104 * After we relocate and before we remove the chunk with offset 3105 * chunk_offset, automatic removal of the block group can kick in, 3106 * resulting in a failure when calling btrfs_remove_chunk() below. 3107 * 3108 * Make sure to acquire this mutex before doing a tree search (dev 3109 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3110 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3111 * we release the path used to search the chunk/dev tree and before 3112 * the current task acquires this mutex and calls us. 3113 */ 3114 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3115 3116 ret = btrfs_can_relocate(fs_info, chunk_offset); 3117 if (ret) 3118 return -ENOSPC; 3119 3120 /* step one, relocate all the extents inside this chunk */ 3121 btrfs_scrub_pause(fs_info); 3122 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3123 btrfs_scrub_continue(fs_info); 3124 if (ret) 3125 return ret; 3126 3127 /* 3128 * We add the kobjects here (and after forcing data chunk creation) 3129 * since relocation is the only place we'll create chunks of a new 3130 * type at runtime. The only place where we'll remove the last 3131 * chunk of a type is the call immediately below this one. Even 3132 * so, we're protected against races with the cleaner thread since 3133 * we're covered by the delete_unused_bgs_mutex. 3134 */ 3135 btrfs_add_raid_kobjects(fs_info); 3136 3137 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3138 chunk_offset); 3139 if (IS_ERR(trans)) { 3140 ret = PTR_ERR(trans); 3141 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3142 return ret; 3143 } 3144 3145 /* 3146 * step two, delete the device extents and the 3147 * chunk tree entries 3148 */ 3149 ret = btrfs_remove_chunk(trans, chunk_offset); 3150 btrfs_end_transaction(trans); 3151 return ret; 3152 } 3153 3154 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3155 { 3156 struct btrfs_root *chunk_root = fs_info->chunk_root; 3157 struct btrfs_path *path; 3158 struct extent_buffer *leaf; 3159 struct btrfs_chunk *chunk; 3160 struct btrfs_key key; 3161 struct btrfs_key found_key; 3162 u64 chunk_type; 3163 bool retried = false; 3164 int failed = 0; 3165 int ret; 3166 3167 path = btrfs_alloc_path(); 3168 if (!path) 3169 return -ENOMEM; 3170 3171 again: 3172 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3173 key.offset = (u64)-1; 3174 key.type = BTRFS_CHUNK_ITEM_KEY; 3175 3176 while (1) { 3177 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3178 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3179 if (ret < 0) { 3180 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3181 goto error; 3182 } 3183 BUG_ON(ret == 0); /* Corruption */ 3184 3185 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3186 key.type); 3187 if (ret) 3188 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3189 if (ret < 0) 3190 goto error; 3191 if (ret > 0) 3192 break; 3193 3194 leaf = path->nodes[0]; 3195 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3196 3197 chunk = btrfs_item_ptr(leaf, path->slots[0], 3198 struct btrfs_chunk); 3199 chunk_type = btrfs_chunk_type(leaf, chunk); 3200 btrfs_release_path(path); 3201 3202 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3203 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3204 if (ret == -ENOSPC) 3205 failed++; 3206 else 3207 BUG_ON(ret); 3208 } 3209 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3210 3211 if (found_key.offset == 0) 3212 break; 3213 key.offset = found_key.offset - 1; 3214 } 3215 ret = 0; 3216 if (failed && !retried) { 3217 failed = 0; 3218 retried = true; 3219 goto again; 3220 } else if (WARN_ON(failed && retried)) { 3221 ret = -ENOSPC; 3222 } 3223 error: 3224 btrfs_free_path(path); 3225 return ret; 3226 } 3227 3228 /* 3229 * return 1 : allocate a data chunk successfully, 3230 * return <0: errors during allocating a data chunk, 3231 * return 0 : no need to allocate a data chunk. 3232 */ 3233 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3234 u64 chunk_offset) 3235 { 3236 struct btrfs_block_group_cache *cache; 3237 u64 bytes_used; 3238 u64 chunk_type; 3239 3240 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3241 ASSERT(cache); 3242 chunk_type = cache->flags; 3243 btrfs_put_block_group(cache); 3244 3245 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) { 3246 spin_lock(&fs_info->data_sinfo->lock); 3247 bytes_used = fs_info->data_sinfo->bytes_used; 3248 spin_unlock(&fs_info->data_sinfo->lock); 3249 3250 if (!bytes_used) { 3251 struct btrfs_trans_handle *trans; 3252 int ret; 3253 3254 trans = btrfs_join_transaction(fs_info->tree_root); 3255 if (IS_ERR(trans)) 3256 return PTR_ERR(trans); 3257 3258 ret = btrfs_force_chunk_alloc(trans, 3259 BTRFS_BLOCK_GROUP_DATA); 3260 btrfs_end_transaction(trans); 3261 if (ret < 0) 3262 return ret; 3263 3264 btrfs_add_raid_kobjects(fs_info); 3265 3266 return 1; 3267 } 3268 } 3269 return 0; 3270 } 3271 3272 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3273 struct btrfs_balance_control *bctl) 3274 { 3275 struct btrfs_root *root = fs_info->tree_root; 3276 struct btrfs_trans_handle *trans; 3277 struct btrfs_balance_item *item; 3278 struct btrfs_disk_balance_args disk_bargs; 3279 struct btrfs_path *path; 3280 struct extent_buffer *leaf; 3281 struct btrfs_key key; 3282 int ret, err; 3283 3284 path = btrfs_alloc_path(); 3285 if (!path) 3286 return -ENOMEM; 3287 3288 trans = btrfs_start_transaction(root, 0); 3289 if (IS_ERR(trans)) { 3290 btrfs_free_path(path); 3291 return PTR_ERR(trans); 3292 } 3293 3294 key.objectid = BTRFS_BALANCE_OBJECTID; 3295 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3296 key.offset = 0; 3297 3298 ret = btrfs_insert_empty_item(trans, root, path, &key, 3299 sizeof(*item)); 3300 if (ret) 3301 goto out; 3302 3303 leaf = path->nodes[0]; 3304 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3305 3306 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3307 3308 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3309 btrfs_set_balance_data(leaf, item, &disk_bargs); 3310 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3311 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3312 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3313 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3314 3315 btrfs_set_balance_flags(leaf, item, bctl->flags); 3316 3317 btrfs_mark_buffer_dirty(leaf); 3318 out: 3319 btrfs_free_path(path); 3320 err = btrfs_commit_transaction(trans); 3321 if (err && !ret) 3322 ret = err; 3323 return ret; 3324 } 3325 3326 static int del_balance_item(struct btrfs_fs_info *fs_info) 3327 { 3328 struct btrfs_root *root = fs_info->tree_root; 3329 struct btrfs_trans_handle *trans; 3330 struct btrfs_path *path; 3331 struct btrfs_key key; 3332 int ret, err; 3333 3334 path = btrfs_alloc_path(); 3335 if (!path) 3336 return -ENOMEM; 3337 3338 trans = btrfs_start_transaction(root, 0); 3339 if (IS_ERR(trans)) { 3340 btrfs_free_path(path); 3341 return PTR_ERR(trans); 3342 } 3343 3344 key.objectid = BTRFS_BALANCE_OBJECTID; 3345 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3346 key.offset = 0; 3347 3348 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3349 if (ret < 0) 3350 goto out; 3351 if (ret > 0) { 3352 ret = -ENOENT; 3353 goto out; 3354 } 3355 3356 ret = btrfs_del_item(trans, root, path); 3357 out: 3358 btrfs_free_path(path); 3359 err = btrfs_commit_transaction(trans); 3360 if (err && !ret) 3361 ret = err; 3362 return ret; 3363 } 3364 3365 /* 3366 * This is a heuristic used to reduce the number of chunks balanced on 3367 * resume after balance was interrupted. 3368 */ 3369 static void update_balance_args(struct btrfs_balance_control *bctl) 3370 { 3371 /* 3372 * Turn on soft mode for chunk types that were being converted. 3373 */ 3374 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3375 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3376 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3377 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3378 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3379 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3380 3381 /* 3382 * Turn on usage filter if is not already used. The idea is 3383 * that chunks that we have already balanced should be 3384 * reasonably full. Don't do it for chunks that are being 3385 * converted - that will keep us from relocating unconverted 3386 * (albeit full) chunks. 3387 */ 3388 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3389 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3390 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3391 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3392 bctl->data.usage = 90; 3393 } 3394 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3395 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3396 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3397 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3398 bctl->sys.usage = 90; 3399 } 3400 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3401 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3402 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3403 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3404 bctl->meta.usage = 90; 3405 } 3406 } 3407 3408 /* 3409 * Clear the balance status in fs_info and delete the balance item from disk. 3410 */ 3411 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3412 { 3413 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3414 int ret; 3415 3416 BUG_ON(!fs_info->balance_ctl); 3417 3418 spin_lock(&fs_info->balance_lock); 3419 fs_info->balance_ctl = NULL; 3420 spin_unlock(&fs_info->balance_lock); 3421 3422 kfree(bctl); 3423 ret = del_balance_item(fs_info); 3424 if (ret) 3425 btrfs_handle_fs_error(fs_info, ret, NULL); 3426 } 3427 3428 /* 3429 * Balance filters. Return 1 if chunk should be filtered out 3430 * (should not be balanced). 3431 */ 3432 static int chunk_profiles_filter(u64 chunk_type, 3433 struct btrfs_balance_args *bargs) 3434 { 3435 chunk_type = chunk_to_extended(chunk_type) & 3436 BTRFS_EXTENDED_PROFILE_MASK; 3437 3438 if (bargs->profiles & chunk_type) 3439 return 0; 3440 3441 return 1; 3442 } 3443 3444 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3445 struct btrfs_balance_args *bargs) 3446 { 3447 struct btrfs_block_group_cache *cache; 3448 u64 chunk_used; 3449 u64 user_thresh_min; 3450 u64 user_thresh_max; 3451 int ret = 1; 3452 3453 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3454 chunk_used = btrfs_block_group_used(&cache->item); 3455 3456 if (bargs->usage_min == 0) 3457 user_thresh_min = 0; 3458 else 3459 user_thresh_min = div_factor_fine(cache->key.offset, 3460 bargs->usage_min); 3461 3462 if (bargs->usage_max == 0) 3463 user_thresh_max = 1; 3464 else if (bargs->usage_max > 100) 3465 user_thresh_max = cache->key.offset; 3466 else 3467 user_thresh_max = div_factor_fine(cache->key.offset, 3468 bargs->usage_max); 3469 3470 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3471 ret = 0; 3472 3473 btrfs_put_block_group(cache); 3474 return ret; 3475 } 3476 3477 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3478 u64 chunk_offset, struct btrfs_balance_args *bargs) 3479 { 3480 struct btrfs_block_group_cache *cache; 3481 u64 chunk_used, user_thresh; 3482 int ret = 1; 3483 3484 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3485 chunk_used = btrfs_block_group_used(&cache->item); 3486 3487 if (bargs->usage_min == 0) 3488 user_thresh = 1; 3489 else if (bargs->usage > 100) 3490 user_thresh = cache->key.offset; 3491 else 3492 user_thresh = div_factor_fine(cache->key.offset, 3493 bargs->usage); 3494 3495 if (chunk_used < user_thresh) 3496 ret = 0; 3497 3498 btrfs_put_block_group(cache); 3499 return ret; 3500 } 3501 3502 static int chunk_devid_filter(struct extent_buffer *leaf, 3503 struct btrfs_chunk *chunk, 3504 struct btrfs_balance_args *bargs) 3505 { 3506 struct btrfs_stripe *stripe; 3507 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3508 int i; 3509 3510 for (i = 0; i < num_stripes; i++) { 3511 stripe = btrfs_stripe_nr(chunk, i); 3512 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3513 return 0; 3514 } 3515 3516 return 1; 3517 } 3518 3519 /* [pstart, pend) */ 3520 static int chunk_drange_filter(struct extent_buffer *leaf, 3521 struct btrfs_chunk *chunk, 3522 struct btrfs_balance_args *bargs) 3523 { 3524 struct btrfs_stripe *stripe; 3525 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3526 u64 stripe_offset; 3527 u64 stripe_length; 3528 int factor; 3529 int i; 3530 3531 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3532 return 0; 3533 3534 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3535 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3536 factor = num_stripes / 2; 3537 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3538 factor = num_stripes - 1; 3539 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3540 factor = num_stripes - 2; 3541 } else { 3542 factor = num_stripes; 3543 } 3544 3545 for (i = 0; i < num_stripes; i++) { 3546 stripe = btrfs_stripe_nr(chunk, i); 3547 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3548 continue; 3549 3550 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3551 stripe_length = btrfs_chunk_length(leaf, chunk); 3552 stripe_length = div_u64(stripe_length, factor); 3553 3554 if (stripe_offset < bargs->pend && 3555 stripe_offset + stripe_length > bargs->pstart) 3556 return 0; 3557 } 3558 3559 return 1; 3560 } 3561 3562 /* [vstart, vend) */ 3563 static int chunk_vrange_filter(struct extent_buffer *leaf, 3564 struct btrfs_chunk *chunk, 3565 u64 chunk_offset, 3566 struct btrfs_balance_args *bargs) 3567 { 3568 if (chunk_offset < bargs->vend && 3569 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3570 /* at least part of the chunk is inside this vrange */ 3571 return 0; 3572 3573 return 1; 3574 } 3575 3576 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3577 struct btrfs_chunk *chunk, 3578 struct btrfs_balance_args *bargs) 3579 { 3580 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3581 3582 if (bargs->stripes_min <= num_stripes 3583 && num_stripes <= bargs->stripes_max) 3584 return 0; 3585 3586 return 1; 3587 } 3588 3589 static int chunk_soft_convert_filter(u64 chunk_type, 3590 struct btrfs_balance_args *bargs) 3591 { 3592 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3593 return 0; 3594 3595 chunk_type = chunk_to_extended(chunk_type) & 3596 BTRFS_EXTENDED_PROFILE_MASK; 3597 3598 if (bargs->target == chunk_type) 3599 return 1; 3600 3601 return 0; 3602 } 3603 3604 static int should_balance_chunk(struct btrfs_fs_info *fs_info, 3605 struct extent_buffer *leaf, 3606 struct btrfs_chunk *chunk, u64 chunk_offset) 3607 { 3608 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3609 struct btrfs_balance_args *bargs = NULL; 3610 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3611 3612 /* type filter */ 3613 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3614 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3615 return 0; 3616 } 3617 3618 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3619 bargs = &bctl->data; 3620 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3621 bargs = &bctl->sys; 3622 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3623 bargs = &bctl->meta; 3624 3625 /* profiles filter */ 3626 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3627 chunk_profiles_filter(chunk_type, bargs)) { 3628 return 0; 3629 } 3630 3631 /* usage filter */ 3632 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3633 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3634 return 0; 3635 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3636 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3637 return 0; 3638 } 3639 3640 /* devid filter */ 3641 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3642 chunk_devid_filter(leaf, chunk, bargs)) { 3643 return 0; 3644 } 3645 3646 /* drange filter, makes sense only with devid filter */ 3647 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3648 chunk_drange_filter(leaf, chunk, bargs)) { 3649 return 0; 3650 } 3651 3652 /* vrange filter */ 3653 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3654 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3655 return 0; 3656 } 3657 3658 /* stripes filter */ 3659 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3660 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3661 return 0; 3662 } 3663 3664 /* soft profile changing mode */ 3665 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3666 chunk_soft_convert_filter(chunk_type, bargs)) { 3667 return 0; 3668 } 3669 3670 /* 3671 * limited by count, must be the last filter 3672 */ 3673 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3674 if (bargs->limit == 0) 3675 return 0; 3676 else 3677 bargs->limit--; 3678 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3679 /* 3680 * Same logic as the 'limit' filter; the minimum cannot be 3681 * determined here because we do not have the global information 3682 * about the count of all chunks that satisfy the filters. 3683 */ 3684 if (bargs->limit_max == 0) 3685 return 0; 3686 else 3687 bargs->limit_max--; 3688 } 3689 3690 return 1; 3691 } 3692 3693 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3694 { 3695 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3696 struct btrfs_root *chunk_root = fs_info->chunk_root; 3697 u64 chunk_type; 3698 struct btrfs_chunk *chunk; 3699 struct btrfs_path *path = NULL; 3700 struct btrfs_key key; 3701 struct btrfs_key found_key; 3702 struct extent_buffer *leaf; 3703 int slot; 3704 int ret; 3705 int enospc_errors = 0; 3706 bool counting = true; 3707 /* The single value limit and min/max limits use the same bytes in the */ 3708 u64 limit_data = bctl->data.limit; 3709 u64 limit_meta = bctl->meta.limit; 3710 u64 limit_sys = bctl->sys.limit; 3711 u32 count_data = 0; 3712 u32 count_meta = 0; 3713 u32 count_sys = 0; 3714 int chunk_reserved = 0; 3715 3716 path = btrfs_alloc_path(); 3717 if (!path) { 3718 ret = -ENOMEM; 3719 goto error; 3720 } 3721 3722 /* zero out stat counters */ 3723 spin_lock(&fs_info->balance_lock); 3724 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3725 spin_unlock(&fs_info->balance_lock); 3726 again: 3727 if (!counting) { 3728 /* 3729 * The single value limit and min/max limits use the same bytes 3730 * in the 3731 */ 3732 bctl->data.limit = limit_data; 3733 bctl->meta.limit = limit_meta; 3734 bctl->sys.limit = limit_sys; 3735 } 3736 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3737 key.offset = (u64)-1; 3738 key.type = BTRFS_CHUNK_ITEM_KEY; 3739 3740 while (1) { 3741 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3742 atomic_read(&fs_info->balance_cancel_req)) { 3743 ret = -ECANCELED; 3744 goto error; 3745 } 3746 3747 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3748 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3749 if (ret < 0) { 3750 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3751 goto error; 3752 } 3753 3754 /* 3755 * this shouldn't happen, it means the last relocate 3756 * failed 3757 */ 3758 if (ret == 0) 3759 BUG(); /* FIXME break ? */ 3760 3761 ret = btrfs_previous_item(chunk_root, path, 0, 3762 BTRFS_CHUNK_ITEM_KEY); 3763 if (ret) { 3764 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3765 ret = 0; 3766 break; 3767 } 3768 3769 leaf = path->nodes[0]; 3770 slot = path->slots[0]; 3771 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3772 3773 if (found_key.objectid != key.objectid) { 3774 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3775 break; 3776 } 3777 3778 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3779 chunk_type = btrfs_chunk_type(leaf, chunk); 3780 3781 if (!counting) { 3782 spin_lock(&fs_info->balance_lock); 3783 bctl->stat.considered++; 3784 spin_unlock(&fs_info->balance_lock); 3785 } 3786 3787 ret = should_balance_chunk(fs_info, leaf, chunk, 3788 found_key.offset); 3789 3790 btrfs_release_path(path); 3791 if (!ret) { 3792 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3793 goto loop; 3794 } 3795 3796 if (counting) { 3797 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3798 spin_lock(&fs_info->balance_lock); 3799 bctl->stat.expected++; 3800 spin_unlock(&fs_info->balance_lock); 3801 3802 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3803 count_data++; 3804 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3805 count_sys++; 3806 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3807 count_meta++; 3808 3809 goto loop; 3810 } 3811 3812 /* 3813 * Apply limit_min filter, no need to check if the LIMITS 3814 * filter is used, limit_min is 0 by default 3815 */ 3816 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3817 count_data < bctl->data.limit_min) 3818 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3819 count_meta < bctl->meta.limit_min) 3820 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3821 count_sys < bctl->sys.limit_min)) { 3822 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3823 goto loop; 3824 } 3825 3826 if (!chunk_reserved) { 3827 /* 3828 * We may be relocating the only data chunk we have, 3829 * which could potentially end up with losing data's 3830 * raid profile, so lets allocate an empty one in 3831 * advance. 3832 */ 3833 ret = btrfs_may_alloc_data_chunk(fs_info, 3834 found_key.offset); 3835 if (ret < 0) { 3836 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3837 goto error; 3838 } else if (ret == 1) { 3839 chunk_reserved = 1; 3840 } 3841 } 3842 3843 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3844 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3845 if (ret == -ENOSPC) { 3846 enospc_errors++; 3847 } else if (ret == -ETXTBSY) { 3848 btrfs_info(fs_info, 3849 "skipping relocation of block group %llu due to active swapfile", 3850 found_key.offset); 3851 ret = 0; 3852 } else if (ret) { 3853 goto error; 3854 } else { 3855 spin_lock(&fs_info->balance_lock); 3856 bctl->stat.completed++; 3857 spin_unlock(&fs_info->balance_lock); 3858 } 3859 loop: 3860 if (found_key.offset == 0) 3861 break; 3862 key.offset = found_key.offset - 1; 3863 } 3864 3865 if (counting) { 3866 btrfs_release_path(path); 3867 counting = false; 3868 goto again; 3869 } 3870 error: 3871 btrfs_free_path(path); 3872 if (enospc_errors) { 3873 btrfs_info(fs_info, "%d enospc errors during balance", 3874 enospc_errors); 3875 if (!ret) 3876 ret = -ENOSPC; 3877 } 3878 3879 return ret; 3880 } 3881 3882 /** 3883 * alloc_profile_is_valid - see if a given profile is valid and reduced 3884 * @flags: profile to validate 3885 * @extended: if true @flags is treated as an extended profile 3886 */ 3887 static int alloc_profile_is_valid(u64 flags, int extended) 3888 { 3889 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3890 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3891 3892 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3893 3894 /* 1) check that all other bits are zeroed */ 3895 if (flags & ~mask) 3896 return 0; 3897 3898 /* 2) see if profile is reduced */ 3899 if (flags == 0) 3900 return !extended; /* "0" is valid for usual profiles */ 3901 3902 /* true if exactly one bit set */ 3903 return is_power_of_2(flags); 3904 } 3905 3906 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3907 { 3908 /* cancel requested || normal exit path */ 3909 return atomic_read(&fs_info->balance_cancel_req) || 3910 (atomic_read(&fs_info->balance_pause_req) == 0 && 3911 atomic_read(&fs_info->balance_cancel_req) == 0); 3912 } 3913 3914 /* Non-zero return value signifies invalidity */ 3915 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3916 u64 allowed) 3917 { 3918 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3919 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3920 (bctl_arg->target & ~allowed))); 3921 } 3922 3923 /* 3924 * Fill @buf with textual description of balance filter flags @bargs, up to 3925 * @size_buf including the terminating null. The output may be trimmed if it 3926 * does not fit into the provided buffer. 3927 */ 3928 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3929 u32 size_buf) 3930 { 3931 int ret; 3932 u32 size_bp = size_buf; 3933 char *bp = buf; 3934 u64 flags = bargs->flags; 3935 char tmp_buf[128] = {'\0'}; 3936 3937 if (!flags) 3938 return; 3939 3940 #define CHECK_APPEND_NOARG(a) \ 3941 do { \ 3942 ret = snprintf(bp, size_bp, (a)); \ 3943 if (ret < 0 || ret >= size_bp) \ 3944 goto out_overflow; \ 3945 size_bp -= ret; \ 3946 bp += ret; \ 3947 } while (0) 3948 3949 #define CHECK_APPEND_1ARG(a, v1) \ 3950 do { \ 3951 ret = snprintf(bp, size_bp, (a), (v1)); \ 3952 if (ret < 0 || ret >= size_bp) \ 3953 goto out_overflow; \ 3954 size_bp -= ret; \ 3955 bp += ret; \ 3956 } while (0) 3957 3958 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3959 do { \ 3960 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3961 if (ret < 0 || ret >= size_bp) \ 3962 goto out_overflow; \ 3963 size_bp -= ret; \ 3964 bp += ret; \ 3965 } while (0) 3966 3967 if (flags & BTRFS_BALANCE_ARGS_CONVERT) { 3968 int index = btrfs_bg_flags_to_raid_index(bargs->target); 3969 3970 CHECK_APPEND_1ARG("convert=%s,", get_raid_name(index)); 3971 } 3972 3973 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3974 CHECK_APPEND_NOARG("soft,"); 3975 3976 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3977 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3978 sizeof(tmp_buf)); 3979 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3980 } 3981 3982 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3983 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3984 3985 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3986 CHECK_APPEND_2ARG("usage=%u..%u,", 3987 bargs->usage_min, bargs->usage_max); 3988 3989 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3990 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3991 3992 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3993 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3994 bargs->pstart, bargs->pend); 3995 3996 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3997 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3998 bargs->vstart, bargs->vend); 3999 4000 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4001 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4002 4003 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4004 CHECK_APPEND_2ARG("limit=%u..%u,", 4005 bargs->limit_min, bargs->limit_max); 4006 4007 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4008 CHECK_APPEND_2ARG("stripes=%u..%u,", 4009 bargs->stripes_min, bargs->stripes_max); 4010 4011 #undef CHECK_APPEND_2ARG 4012 #undef CHECK_APPEND_1ARG 4013 #undef CHECK_APPEND_NOARG 4014 4015 out_overflow: 4016 4017 if (size_bp < size_buf) 4018 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4019 else 4020 buf[0] = '\0'; 4021 } 4022 4023 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4024 { 4025 u32 size_buf = 1024; 4026 char tmp_buf[192] = {'\0'}; 4027 char *buf; 4028 char *bp; 4029 u32 size_bp = size_buf; 4030 int ret; 4031 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4032 4033 buf = kzalloc(size_buf, GFP_KERNEL); 4034 if (!buf) 4035 return; 4036 4037 bp = buf; 4038 4039 #define CHECK_APPEND_1ARG(a, v1) \ 4040 do { \ 4041 ret = snprintf(bp, size_bp, (a), (v1)); \ 4042 if (ret < 0 || ret >= size_bp) \ 4043 goto out_overflow; \ 4044 size_bp -= ret; \ 4045 bp += ret; \ 4046 } while (0) 4047 4048 if (bctl->flags & BTRFS_BALANCE_FORCE) 4049 CHECK_APPEND_1ARG("%s", "-f "); 4050 4051 if (bctl->flags & BTRFS_BALANCE_DATA) { 4052 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4053 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4054 } 4055 4056 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4057 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4058 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4059 } 4060 4061 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4062 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4063 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4064 } 4065 4066 #undef CHECK_APPEND_1ARG 4067 4068 out_overflow: 4069 4070 if (size_bp < size_buf) 4071 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4072 btrfs_info(fs_info, "balance: %s %s", 4073 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4074 "resume" : "start", buf); 4075 4076 kfree(buf); 4077 } 4078 4079 /* 4080 * Should be called with balance mutexe held 4081 */ 4082 int btrfs_balance(struct btrfs_fs_info *fs_info, 4083 struct btrfs_balance_control *bctl, 4084 struct btrfs_ioctl_balance_args *bargs) 4085 { 4086 u64 meta_target, data_target; 4087 u64 allowed; 4088 int mixed = 0; 4089 int ret; 4090 u64 num_devices; 4091 unsigned seq; 4092 bool reducing_integrity; 4093 4094 if (btrfs_fs_closing(fs_info) || 4095 atomic_read(&fs_info->balance_pause_req) || 4096 atomic_read(&fs_info->balance_cancel_req)) { 4097 ret = -EINVAL; 4098 goto out; 4099 } 4100 4101 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4102 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4103 mixed = 1; 4104 4105 /* 4106 * In case of mixed groups both data and meta should be picked, 4107 * and identical options should be given for both of them. 4108 */ 4109 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4110 if (mixed && (bctl->flags & allowed)) { 4111 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4112 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4113 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4114 btrfs_err(fs_info, 4115 "balance: mixed groups data and metadata options must be the same"); 4116 ret = -EINVAL; 4117 goto out; 4118 } 4119 } 4120 4121 num_devices = btrfs_num_devices(fs_info); 4122 4123 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; 4124 if (num_devices > 1) 4125 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 4126 if (num_devices > 2) 4127 allowed |= BTRFS_BLOCK_GROUP_RAID5; 4128 if (num_devices > 3) 4129 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 4130 BTRFS_BLOCK_GROUP_RAID6); 4131 if (validate_convert_profile(&bctl->data, allowed)) { 4132 int index = btrfs_bg_flags_to_raid_index(bctl->data.target); 4133 4134 btrfs_err(fs_info, 4135 "balance: invalid convert data profile %s", 4136 get_raid_name(index)); 4137 ret = -EINVAL; 4138 goto out; 4139 } 4140 if (validate_convert_profile(&bctl->meta, allowed)) { 4141 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target); 4142 4143 btrfs_err(fs_info, 4144 "balance: invalid convert metadata profile %s", 4145 get_raid_name(index)); 4146 ret = -EINVAL; 4147 goto out; 4148 } 4149 if (validate_convert_profile(&bctl->sys, allowed)) { 4150 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target); 4151 4152 btrfs_err(fs_info, 4153 "balance: invalid convert system profile %s", 4154 get_raid_name(index)); 4155 ret = -EINVAL; 4156 goto out; 4157 } 4158 4159 /* allow to reduce meta or sys integrity only if force set */ 4160 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4161 BTRFS_BLOCK_GROUP_RAID10 | 4162 BTRFS_BLOCK_GROUP_RAID5 | 4163 BTRFS_BLOCK_GROUP_RAID6; 4164 do { 4165 seq = read_seqbegin(&fs_info->profiles_lock); 4166 4167 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4168 (fs_info->avail_system_alloc_bits & allowed) && 4169 !(bctl->sys.target & allowed)) || 4170 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4171 (fs_info->avail_metadata_alloc_bits & allowed) && 4172 !(bctl->meta.target & allowed))) 4173 reducing_integrity = true; 4174 else 4175 reducing_integrity = false; 4176 4177 /* if we're not converting, the target field is uninitialized */ 4178 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4179 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4180 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4181 bctl->data.target : fs_info->avail_data_alloc_bits; 4182 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4183 4184 if (reducing_integrity) { 4185 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4186 btrfs_info(fs_info, 4187 "balance: force reducing metadata integrity"); 4188 } else { 4189 btrfs_err(fs_info, 4190 "balance: reduces metadata integrity, use --force if you want this"); 4191 ret = -EINVAL; 4192 goto out; 4193 } 4194 } 4195 4196 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4197 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4198 int meta_index = btrfs_bg_flags_to_raid_index(meta_target); 4199 int data_index = btrfs_bg_flags_to_raid_index(data_target); 4200 4201 btrfs_warn(fs_info, 4202 "balance: metadata profile %s has lower redundancy than data profile %s", 4203 get_raid_name(meta_index), get_raid_name(data_index)); 4204 } 4205 4206 ret = insert_balance_item(fs_info, bctl); 4207 if (ret && ret != -EEXIST) 4208 goto out; 4209 4210 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4211 BUG_ON(ret == -EEXIST); 4212 BUG_ON(fs_info->balance_ctl); 4213 spin_lock(&fs_info->balance_lock); 4214 fs_info->balance_ctl = bctl; 4215 spin_unlock(&fs_info->balance_lock); 4216 } else { 4217 BUG_ON(ret != -EEXIST); 4218 spin_lock(&fs_info->balance_lock); 4219 update_balance_args(bctl); 4220 spin_unlock(&fs_info->balance_lock); 4221 } 4222 4223 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4224 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4225 describe_balance_start_or_resume(fs_info); 4226 mutex_unlock(&fs_info->balance_mutex); 4227 4228 ret = __btrfs_balance(fs_info); 4229 4230 mutex_lock(&fs_info->balance_mutex); 4231 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4232 btrfs_info(fs_info, "balance: paused"); 4233 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req)) 4234 btrfs_info(fs_info, "balance: canceled"); 4235 else 4236 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4237 4238 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4239 4240 if (bargs) { 4241 memset(bargs, 0, sizeof(*bargs)); 4242 btrfs_update_ioctl_balance_args(fs_info, bargs); 4243 } 4244 4245 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4246 balance_need_close(fs_info)) { 4247 reset_balance_state(fs_info); 4248 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4249 } 4250 4251 wake_up(&fs_info->balance_wait_q); 4252 4253 return ret; 4254 out: 4255 if (bctl->flags & BTRFS_BALANCE_RESUME) 4256 reset_balance_state(fs_info); 4257 else 4258 kfree(bctl); 4259 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4260 4261 return ret; 4262 } 4263 4264 static int balance_kthread(void *data) 4265 { 4266 struct btrfs_fs_info *fs_info = data; 4267 int ret = 0; 4268 4269 mutex_lock(&fs_info->balance_mutex); 4270 if (fs_info->balance_ctl) 4271 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4272 mutex_unlock(&fs_info->balance_mutex); 4273 4274 return ret; 4275 } 4276 4277 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4278 { 4279 struct task_struct *tsk; 4280 4281 mutex_lock(&fs_info->balance_mutex); 4282 if (!fs_info->balance_ctl) { 4283 mutex_unlock(&fs_info->balance_mutex); 4284 return 0; 4285 } 4286 mutex_unlock(&fs_info->balance_mutex); 4287 4288 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4289 btrfs_info(fs_info, "balance: resume skipped"); 4290 return 0; 4291 } 4292 4293 /* 4294 * A ro->rw remount sequence should continue with the paused balance 4295 * regardless of who pauses it, system or the user as of now, so set 4296 * the resume flag. 4297 */ 4298 spin_lock(&fs_info->balance_lock); 4299 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4300 spin_unlock(&fs_info->balance_lock); 4301 4302 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4303 return PTR_ERR_OR_ZERO(tsk); 4304 } 4305 4306 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4307 { 4308 struct btrfs_balance_control *bctl; 4309 struct btrfs_balance_item *item; 4310 struct btrfs_disk_balance_args disk_bargs; 4311 struct btrfs_path *path; 4312 struct extent_buffer *leaf; 4313 struct btrfs_key key; 4314 int ret; 4315 4316 path = btrfs_alloc_path(); 4317 if (!path) 4318 return -ENOMEM; 4319 4320 key.objectid = BTRFS_BALANCE_OBJECTID; 4321 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4322 key.offset = 0; 4323 4324 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4325 if (ret < 0) 4326 goto out; 4327 if (ret > 0) { /* ret = -ENOENT; */ 4328 ret = 0; 4329 goto out; 4330 } 4331 4332 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4333 if (!bctl) { 4334 ret = -ENOMEM; 4335 goto out; 4336 } 4337 4338 leaf = path->nodes[0]; 4339 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4340 4341 bctl->flags = btrfs_balance_flags(leaf, item); 4342 bctl->flags |= BTRFS_BALANCE_RESUME; 4343 4344 btrfs_balance_data(leaf, item, &disk_bargs); 4345 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4346 btrfs_balance_meta(leaf, item, &disk_bargs); 4347 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4348 btrfs_balance_sys(leaf, item, &disk_bargs); 4349 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4350 4351 /* 4352 * This should never happen, as the paused balance state is recovered 4353 * during mount without any chance of other exclusive ops to collide. 4354 * 4355 * This gives the exclusive op status to balance and keeps in paused 4356 * state until user intervention (cancel or umount). If the ownership 4357 * cannot be assigned, show a message but do not fail. The balance 4358 * is in a paused state and must have fs_info::balance_ctl properly 4359 * set up. 4360 */ 4361 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 4362 btrfs_warn(fs_info, 4363 "balance: cannot set exclusive op status, resume manually"); 4364 4365 mutex_lock(&fs_info->balance_mutex); 4366 BUG_ON(fs_info->balance_ctl); 4367 spin_lock(&fs_info->balance_lock); 4368 fs_info->balance_ctl = bctl; 4369 spin_unlock(&fs_info->balance_lock); 4370 mutex_unlock(&fs_info->balance_mutex); 4371 out: 4372 btrfs_free_path(path); 4373 return ret; 4374 } 4375 4376 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4377 { 4378 int ret = 0; 4379 4380 mutex_lock(&fs_info->balance_mutex); 4381 if (!fs_info->balance_ctl) { 4382 mutex_unlock(&fs_info->balance_mutex); 4383 return -ENOTCONN; 4384 } 4385 4386 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4387 atomic_inc(&fs_info->balance_pause_req); 4388 mutex_unlock(&fs_info->balance_mutex); 4389 4390 wait_event(fs_info->balance_wait_q, 4391 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4392 4393 mutex_lock(&fs_info->balance_mutex); 4394 /* we are good with balance_ctl ripped off from under us */ 4395 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4396 atomic_dec(&fs_info->balance_pause_req); 4397 } else { 4398 ret = -ENOTCONN; 4399 } 4400 4401 mutex_unlock(&fs_info->balance_mutex); 4402 return ret; 4403 } 4404 4405 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4406 { 4407 mutex_lock(&fs_info->balance_mutex); 4408 if (!fs_info->balance_ctl) { 4409 mutex_unlock(&fs_info->balance_mutex); 4410 return -ENOTCONN; 4411 } 4412 4413 /* 4414 * A paused balance with the item stored on disk can be resumed at 4415 * mount time if the mount is read-write. Otherwise it's still paused 4416 * and we must not allow cancelling as it deletes the item. 4417 */ 4418 if (sb_rdonly(fs_info->sb)) { 4419 mutex_unlock(&fs_info->balance_mutex); 4420 return -EROFS; 4421 } 4422 4423 atomic_inc(&fs_info->balance_cancel_req); 4424 /* 4425 * if we are running just wait and return, balance item is 4426 * deleted in btrfs_balance in this case 4427 */ 4428 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4429 mutex_unlock(&fs_info->balance_mutex); 4430 wait_event(fs_info->balance_wait_q, 4431 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4432 mutex_lock(&fs_info->balance_mutex); 4433 } else { 4434 mutex_unlock(&fs_info->balance_mutex); 4435 /* 4436 * Lock released to allow other waiters to continue, we'll 4437 * reexamine the status again. 4438 */ 4439 mutex_lock(&fs_info->balance_mutex); 4440 4441 if (fs_info->balance_ctl) { 4442 reset_balance_state(fs_info); 4443 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4444 btrfs_info(fs_info, "balance: canceled"); 4445 } 4446 } 4447 4448 BUG_ON(fs_info->balance_ctl || 4449 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4450 atomic_dec(&fs_info->balance_cancel_req); 4451 mutex_unlock(&fs_info->balance_mutex); 4452 return 0; 4453 } 4454 4455 static int btrfs_uuid_scan_kthread(void *data) 4456 { 4457 struct btrfs_fs_info *fs_info = data; 4458 struct btrfs_root *root = fs_info->tree_root; 4459 struct btrfs_key key; 4460 struct btrfs_path *path = NULL; 4461 int ret = 0; 4462 struct extent_buffer *eb; 4463 int slot; 4464 struct btrfs_root_item root_item; 4465 u32 item_size; 4466 struct btrfs_trans_handle *trans = NULL; 4467 4468 path = btrfs_alloc_path(); 4469 if (!path) { 4470 ret = -ENOMEM; 4471 goto out; 4472 } 4473 4474 key.objectid = 0; 4475 key.type = BTRFS_ROOT_ITEM_KEY; 4476 key.offset = 0; 4477 4478 while (1) { 4479 ret = btrfs_search_forward(root, &key, path, 4480 BTRFS_OLDEST_GENERATION); 4481 if (ret) { 4482 if (ret > 0) 4483 ret = 0; 4484 break; 4485 } 4486 4487 if (key.type != BTRFS_ROOT_ITEM_KEY || 4488 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4489 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4490 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4491 goto skip; 4492 4493 eb = path->nodes[0]; 4494 slot = path->slots[0]; 4495 item_size = btrfs_item_size_nr(eb, slot); 4496 if (item_size < sizeof(root_item)) 4497 goto skip; 4498 4499 read_extent_buffer(eb, &root_item, 4500 btrfs_item_ptr_offset(eb, slot), 4501 (int)sizeof(root_item)); 4502 if (btrfs_root_refs(&root_item) == 0) 4503 goto skip; 4504 4505 if (!btrfs_is_empty_uuid(root_item.uuid) || 4506 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4507 if (trans) 4508 goto update_tree; 4509 4510 btrfs_release_path(path); 4511 /* 4512 * 1 - subvol uuid item 4513 * 1 - received_subvol uuid item 4514 */ 4515 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4516 if (IS_ERR(trans)) { 4517 ret = PTR_ERR(trans); 4518 break; 4519 } 4520 continue; 4521 } else { 4522 goto skip; 4523 } 4524 update_tree: 4525 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4526 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4527 BTRFS_UUID_KEY_SUBVOL, 4528 key.objectid); 4529 if (ret < 0) { 4530 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4531 ret); 4532 break; 4533 } 4534 } 4535 4536 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4537 ret = btrfs_uuid_tree_add(trans, 4538 root_item.received_uuid, 4539 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4540 key.objectid); 4541 if (ret < 0) { 4542 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4543 ret); 4544 break; 4545 } 4546 } 4547 4548 skip: 4549 if (trans) { 4550 ret = btrfs_end_transaction(trans); 4551 trans = NULL; 4552 if (ret) 4553 break; 4554 } 4555 4556 btrfs_release_path(path); 4557 if (key.offset < (u64)-1) { 4558 key.offset++; 4559 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4560 key.offset = 0; 4561 key.type = BTRFS_ROOT_ITEM_KEY; 4562 } else if (key.objectid < (u64)-1) { 4563 key.offset = 0; 4564 key.type = BTRFS_ROOT_ITEM_KEY; 4565 key.objectid++; 4566 } else { 4567 break; 4568 } 4569 cond_resched(); 4570 } 4571 4572 out: 4573 btrfs_free_path(path); 4574 if (trans && !IS_ERR(trans)) 4575 btrfs_end_transaction(trans); 4576 if (ret) 4577 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4578 else 4579 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4580 up(&fs_info->uuid_tree_rescan_sem); 4581 return 0; 4582 } 4583 4584 /* 4585 * Callback for btrfs_uuid_tree_iterate(). 4586 * returns: 4587 * 0 check succeeded, the entry is not outdated. 4588 * < 0 if an error occurred. 4589 * > 0 if the check failed, which means the caller shall remove the entry. 4590 */ 4591 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4592 u8 *uuid, u8 type, u64 subid) 4593 { 4594 struct btrfs_key key; 4595 int ret = 0; 4596 struct btrfs_root *subvol_root; 4597 4598 if (type != BTRFS_UUID_KEY_SUBVOL && 4599 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4600 goto out; 4601 4602 key.objectid = subid; 4603 key.type = BTRFS_ROOT_ITEM_KEY; 4604 key.offset = (u64)-1; 4605 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4606 if (IS_ERR(subvol_root)) { 4607 ret = PTR_ERR(subvol_root); 4608 if (ret == -ENOENT) 4609 ret = 1; 4610 goto out; 4611 } 4612 4613 switch (type) { 4614 case BTRFS_UUID_KEY_SUBVOL: 4615 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4616 ret = 1; 4617 break; 4618 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4619 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4620 BTRFS_UUID_SIZE)) 4621 ret = 1; 4622 break; 4623 } 4624 4625 out: 4626 return ret; 4627 } 4628 4629 static int btrfs_uuid_rescan_kthread(void *data) 4630 { 4631 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4632 int ret; 4633 4634 /* 4635 * 1st step is to iterate through the existing UUID tree and 4636 * to delete all entries that contain outdated data. 4637 * 2nd step is to add all missing entries to the UUID tree. 4638 */ 4639 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4640 if (ret < 0) { 4641 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4642 up(&fs_info->uuid_tree_rescan_sem); 4643 return ret; 4644 } 4645 return btrfs_uuid_scan_kthread(data); 4646 } 4647 4648 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4649 { 4650 struct btrfs_trans_handle *trans; 4651 struct btrfs_root *tree_root = fs_info->tree_root; 4652 struct btrfs_root *uuid_root; 4653 struct task_struct *task; 4654 int ret; 4655 4656 /* 4657 * 1 - root node 4658 * 1 - root item 4659 */ 4660 trans = btrfs_start_transaction(tree_root, 2); 4661 if (IS_ERR(trans)) 4662 return PTR_ERR(trans); 4663 4664 uuid_root = btrfs_create_tree(trans, fs_info, 4665 BTRFS_UUID_TREE_OBJECTID); 4666 if (IS_ERR(uuid_root)) { 4667 ret = PTR_ERR(uuid_root); 4668 btrfs_abort_transaction(trans, ret); 4669 btrfs_end_transaction(trans); 4670 return ret; 4671 } 4672 4673 fs_info->uuid_root = uuid_root; 4674 4675 ret = btrfs_commit_transaction(trans); 4676 if (ret) 4677 return ret; 4678 4679 down(&fs_info->uuid_tree_rescan_sem); 4680 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4681 if (IS_ERR(task)) { 4682 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4683 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4684 up(&fs_info->uuid_tree_rescan_sem); 4685 return PTR_ERR(task); 4686 } 4687 4688 return 0; 4689 } 4690 4691 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4692 { 4693 struct task_struct *task; 4694 4695 down(&fs_info->uuid_tree_rescan_sem); 4696 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4697 if (IS_ERR(task)) { 4698 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4699 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4700 up(&fs_info->uuid_tree_rescan_sem); 4701 return PTR_ERR(task); 4702 } 4703 4704 return 0; 4705 } 4706 4707 /* 4708 * shrinking a device means finding all of the device extents past 4709 * the new size, and then following the back refs to the chunks. 4710 * The chunk relocation code actually frees the device extent 4711 */ 4712 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4713 { 4714 struct btrfs_fs_info *fs_info = device->fs_info; 4715 struct btrfs_root *root = fs_info->dev_root; 4716 struct btrfs_trans_handle *trans; 4717 struct btrfs_dev_extent *dev_extent = NULL; 4718 struct btrfs_path *path; 4719 u64 length; 4720 u64 chunk_offset; 4721 int ret; 4722 int slot; 4723 int failed = 0; 4724 bool retried = false; 4725 bool checked_pending_chunks = false; 4726 struct extent_buffer *l; 4727 struct btrfs_key key; 4728 struct btrfs_super_block *super_copy = fs_info->super_copy; 4729 u64 old_total = btrfs_super_total_bytes(super_copy); 4730 u64 old_size = btrfs_device_get_total_bytes(device); 4731 u64 diff; 4732 4733 new_size = round_down(new_size, fs_info->sectorsize); 4734 diff = round_down(old_size - new_size, fs_info->sectorsize); 4735 4736 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4737 return -EINVAL; 4738 4739 path = btrfs_alloc_path(); 4740 if (!path) 4741 return -ENOMEM; 4742 4743 path->reada = READA_BACK; 4744 4745 mutex_lock(&fs_info->chunk_mutex); 4746 4747 btrfs_device_set_total_bytes(device, new_size); 4748 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4749 device->fs_devices->total_rw_bytes -= diff; 4750 atomic64_sub(diff, &fs_info->free_chunk_space); 4751 } 4752 mutex_unlock(&fs_info->chunk_mutex); 4753 4754 again: 4755 key.objectid = device->devid; 4756 key.offset = (u64)-1; 4757 key.type = BTRFS_DEV_EXTENT_KEY; 4758 4759 do { 4760 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4761 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4762 if (ret < 0) { 4763 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4764 goto done; 4765 } 4766 4767 ret = btrfs_previous_item(root, path, 0, key.type); 4768 if (ret) 4769 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4770 if (ret < 0) 4771 goto done; 4772 if (ret) { 4773 ret = 0; 4774 btrfs_release_path(path); 4775 break; 4776 } 4777 4778 l = path->nodes[0]; 4779 slot = path->slots[0]; 4780 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4781 4782 if (key.objectid != device->devid) { 4783 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4784 btrfs_release_path(path); 4785 break; 4786 } 4787 4788 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4789 length = btrfs_dev_extent_length(l, dev_extent); 4790 4791 if (key.offset + length <= new_size) { 4792 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4793 btrfs_release_path(path); 4794 break; 4795 } 4796 4797 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4798 btrfs_release_path(path); 4799 4800 /* 4801 * We may be relocating the only data chunk we have, 4802 * which could potentially end up with losing data's 4803 * raid profile, so lets allocate an empty one in 4804 * advance. 4805 */ 4806 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4807 if (ret < 0) { 4808 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4809 goto done; 4810 } 4811 4812 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4813 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4814 if (ret == -ENOSPC) { 4815 failed++; 4816 } else if (ret) { 4817 if (ret == -ETXTBSY) { 4818 btrfs_warn(fs_info, 4819 "could not shrink block group %llu due to active swapfile", 4820 chunk_offset); 4821 } 4822 goto done; 4823 } 4824 } while (key.offset-- > 0); 4825 4826 if (failed && !retried) { 4827 failed = 0; 4828 retried = true; 4829 goto again; 4830 } else if (failed && retried) { 4831 ret = -ENOSPC; 4832 goto done; 4833 } 4834 4835 /* Shrinking succeeded, else we would be at "done". */ 4836 trans = btrfs_start_transaction(root, 0); 4837 if (IS_ERR(trans)) { 4838 ret = PTR_ERR(trans); 4839 goto done; 4840 } 4841 4842 mutex_lock(&fs_info->chunk_mutex); 4843 4844 /* 4845 * We checked in the above loop all device extents that were already in 4846 * the device tree. However before we have updated the device's 4847 * total_bytes to the new size, we might have had chunk allocations that 4848 * have not complete yet (new block groups attached to transaction 4849 * handles), and therefore their device extents were not yet in the 4850 * device tree and we missed them in the loop above. So if we have any 4851 * pending chunk using a device extent that overlaps the device range 4852 * that we can not use anymore, commit the current transaction and 4853 * repeat the search on the device tree - this way we guarantee we will 4854 * not have chunks using device extents that end beyond 'new_size'. 4855 */ 4856 if (!checked_pending_chunks) { 4857 u64 start = new_size; 4858 u64 len = old_size - new_size; 4859 4860 if (contains_pending_extent(trans->transaction, device, 4861 &start, len)) { 4862 mutex_unlock(&fs_info->chunk_mutex); 4863 checked_pending_chunks = true; 4864 failed = 0; 4865 retried = false; 4866 ret = btrfs_commit_transaction(trans); 4867 if (ret) 4868 goto done; 4869 goto again; 4870 } 4871 } 4872 4873 btrfs_device_set_disk_total_bytes(device, new_size); 4874 if (list_empty(&device->resized_list)) 4875 list_add_tail(&device->resized_list, 4876 &fs_info->fs_devices->resized_devices); 4877 4878 WARN_ON(diff > old_total); 4879 btrfs_set_super_total_bytes(super_copy, 4880 round_down(old_total - diff, fs_info->sectorsize)); 4881 mutex_unlock(&fs_info->chunk_mutex); 4882 4883 /* Now btrfs_update_device() will change the on-disk size. */ 4884 ret = btrfs_update_device(trans, device); 4885 if (ret < 0) { 4886 btrfs_abort_transaction(trans, ret); 4887 btrfs_end_transaction(trans); 4888 } else { 4889 ret = btrfs_commit_transaction(trans); 4890 } 4891 done: 4892 btrfs_free_path(path); 4893 if (ret) { 4894 mutex_lock(&fs_info->chunk_mutex); 4895 btrfs_device_set_total_bytes(device, old_size); 4896 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4897 device->fs_devices->total_rw_bytes += diff; 4898 atomic64_add(diff, &fs_info->free_chunk_space); 4899 mutex_unlock(&fs_info->chunk_mutex); 4900 } 4901 return ret; 4902 } 4903 4904 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4905 struct btrfs_key *key, 4906 struct btrfs_chunk *chunk, int item_size) 4907 { 4908 struct btrfs_super_block *super_copy = fs_info->super_copy; 4909 struct btrfs_disk_key disk_key; 4910 u32 array_size; 4911 u8 *ptr; 4912 4913 mutex_lock(&fs_info->chunk_mutex); 4914 array_size = btrfs_super_sys_array_size(super_copy); 4915 if (array_size + item_size + sizeof(disk_key) 4916 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4917 mutex_unlock(&fs_info->chunk_mutex); 4918 return -EFBIG; 4919 } 4920 4921 ptr = super_copy->sys_chunk_array + array_size; 4922 btrfs_cpu_key_to_disk(&disk_key, key); 4923 memcpy(ptr, &disk_key, sizeof(disk_key)); 4924 ptr += sizeof(disk_key); 4925 memcpy(ptr, chunk, item_size); 4926 item_size += sizeof(disk_key); 4927 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4928 mutex_unlock(&fs_info->chunk_mutex); 4929 4930 return 0; 4931 } 4932 4933 /* 4934 * sort the devices in descending order by max_avail, total_avail 4935 */ 4936 static int btrfs_cmp_device_info(const void *a, const void *b) 4937 { 4938 const struct btrfs_device_info *di_a = a; 4939 const struct btrfs_device_info *di_b = b; 4940 4941 if (di_a->max_avail > di_b->max_avail) 4942 return -1; 4943 if (di_a->max_avail < di_b->max_avail) 4944 return 1; 4945 if (di_a->total_avail > di_b->total_avail) 4946 return -1; 4947 if (di_a->total_avail < di_b->total_avail) 4948 return 1; 4949 return 0; 4950 } 4951 4952 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4953 { 4954 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4955 return; 4956 4957 btrfs_set_fs_incompat(info, RAID56); 4958 } 4959 4960 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ 4961 - sizeof(struct btrfs_chunk)) \ 4962 / sizeof(struct btrfs_stripe) + 1) 4963 4964 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4965 - 2 * sizeof(struct btrfs_disk_key) \ 4966 - 2 * sizeof(struct btrfs_chunk)) \ 4967 / sizeof(struct btrfs_stripe) + 1) 4968 4969 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4970 u64 start, u64 type) 4971 { 4972 struct btrfs_fs_info *info = trans->fs_info; 4973 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4974 struct btrfs_device *device; 4975 struct map_lookup *map = NULL; 4976 struct extent_map_tree *em_tree; 4977 struct extent_map *em; 4978 struct btrfs_device_info *devices_info = NULL; 4979 u64 total_avail; 4980 int num_stripes; /* total number of stripes to allocate */ 4981 int data_stripes; /* number of stripes that count for 4982 block group size */ 4983 int sub_stripes; /* sub_stripes info for map */ 4984 int dev_stripes; /* stripes per dev */ 4985 int devs_max; /* max devs to use */ 4986 int devs_min; /* min devs needed */ 4987 int devs_increment; /* ndevs has to be a multiple of this */ 4988 int ncopies; /* how many copies to data has */ 4989 int nparity; /* number of stripes worth of bytes to 4990 store parity information */ 4991 int ret; 4992 u64 max_stripe_size; 4993 u64 max_chunk_size; 4994 u64 stripe_size; 4995 u64 chunk_size; 4996 int ndevs; 4997 int i; 4998 int j; 4999 int index; 5000 5001 BUG_ON(!alloc_profile_is_valid(type, 0)); 5002 5003 if (list_empty(&fs_devices->alloc_list)) { 5004 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5005 btrfs_debug(info, "%s: no writable device", __func__); 5006 return -ENOSPC; 5007 } 5008 5009 index = btrfs_bg_flags_to_raid_index(type); 5010 5011 sub_stripes = btrfs_raid_array[index].sub_stripes; 5012 dev_stripes = btrfs_raid_array[index].dev_stripes; 5013 devs_max = btrfs_raid_array[index].devs_max; 5014 devs_min = btrfs_raid_array[index].devs_min; 5015 devs_increment = btrfs_raid_array[index].devs_increment; 5016 ncopies = btrfs_raid_array[index].ncopies; 5017 nparity = btrfs_raid_array[index].nparity; 5018 5019 if (type & BTRFS_BLOCK_GROUP_DATA) { 5020 max_stripe_size = SZ_1G; 5021 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 5022 if (!devs_max) 5023 devs_max = BTRFS_MAX_DEVS(info); 5024 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5025 /* for larger filesystems, use larger metadata chunks */ 5026 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 5027 max_stripe_size = SZ_1G; 5028 else 5029 max_stripe_size = SZ_256M; 5030 max_chunk_size = max_stripe_size; 5031 if (!devs_max) 5032 devs_max = BTRFS_MAX_DEVS(info); 5033 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5034 max_stripe_size = SZ_32M; 5035 max_chunk_size = 2 * max_stripe_size; 5036 if (!devs_max) 5037 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 5038 } else { 5039 btrfs_err(info, "invalid chunk type 0x%llx requested", 5040 type); 5041 BUG_ON(1); 5042 } 5043 5044 /* We don't want a chunk larger than 10% of writable space */ 5045 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 5046 max_chunk_size); 5047 5048 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5049 GFP_NOFS); 5050 if (!devices_info) 5051 return -ENOMEM; 5052 5053 /* 5054 * in the first pass through the devices list, we gather information 5055 * about the available holes on each device. 5056 */ 5057 ndevs = 0; 5058 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5059 u64 max_avail; 5060 u64 dev_offset; 5061 5062 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5063 WARN(1, KERN_ERR 5064 "BTRFS: read-only device in alloc_list\n"); 5065 continue; 5066 } 5067 5068 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5069 &device->dev_state) || 5070 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5071 continue; 5072 5073 if (device->total_bytes > device->bytes_used) 5074 total_avail = device->total_bytes - device->bytes_used; 5075 else 5076 total_avail = 0; 5077 5078 /* If there is no space on this device, skip it. */ 5079 if (total_avail == 0) 5080 continue; 5081 5082 ret = find_free_dev_extent(trans, device, 5083 max_stripe_size * dev_stripes, 5084 &dev_offset, &max_avail); 5085 if (ret && ret != -ENOSPC) 5086 goto error; 5087 5088 if (ret == 0) 5089 max_avail = max_stripe_size * dev_stripes; 5090 5091 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) { 5092 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5093 btrfs_debug(info, 5094 "%s: devid %llu has no free space, have=%llu want=%u", 5095 __func__, device->devid, max_avail, 5096 BTRFS_STRIPE_LEN * dev_stripes); 5097 continue; 5098 } 5099 5100 if (ndevs == fs_devices->rw_devices) { 5101 WARN(1, "%s: found more than %llu devices\n", 5102 __func__, fs_devices->rw_devices); 5103 break; 5104 } 5105 devices_info[ndevs].dev_offset = dev_offset; 5106 devices_info[ndevs].max_avail = max_avail; 5107 devices_info[ndevs].total_avail = total_avail; 5108 devices_info[ndevs].dev = device; 5109 ++ndevs; 5110 } 5111 5112 /* 5113 * now sort the devices by hole size / available space 5114 */ 5115 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5116 btrfs_cmp_device_info, NULL); 5117 5118 /* round down to number of usable stripes */ 5119 ndevs = round_down(ndevs, devs_increment); 5120 5121 if (ndevs < devs_min) { 5122 ret = -ENOSPC; 5123 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5124 btrfs_debug(info, 5125 "%s: not enough devices with free space: have=%d minimum required=%d", 5126 __func__, ndevs, devs_min); 5127 } 5128 goto error; 5129 } 5130 5131 ndevs = min(ndevs, devs_max); 5132 5133 /* 5134 * The primary goal is to maximize the number of stripes, so use as 5135 * many devices as possible, even if the stripes are not maximum sized. 5136 * 5137 * The DUP profile stores more than one stripe per device, the 5138 * max_avail is the total size so we have to adjust. 5139 */ 5140 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); 5141 num_stripes = ndevs * dev_stripes; 5142 5143 /* 5144 * this will have to be fixed for RAID1 and RAID10 over 5145 * more drives 5146 */ 5147 data_stripes = (num_stripes - nparity) / ncopies; 5148 5149 /* 5150 * Use the number of data stripes to figure out how big this chunk 5151 * is really going to be in terms of logical address space, 5152 * and compare that answer with the max chunk size. If it's higher, 5153 * we try to reduce stripe_size. 5154 */ 5155 if (stripe_size * data_stripes > max_chunk_size) { 5156 /* 5157 * Reduce stripe_size, round it up to a 16MB boundary again and 5158 * then use it, unless it ends up being even bigger than the 5159 * previous value we had already. 5160 */ 5161 stripe_size = min(round_up(div_u64(max_chunk_size, 5162 data_stripes), SZ_16M), 5163 stripe_size); 5164 } 5165 5166 /* align to BTRFS_STRIPE_LEN */ 5167 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 5168 5169 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 5170 if (!map) { 5171 ret = -ENOMEM; 5172 goto error; 5173 } 5174 map->num_stripes = num_stripes; 5175 5176 for (i = 0; i < ndevs; ++i) { 5177 for (j = 0; j < dev_stripes; ++j) { 5178 int s = i * dev_stripes + j; 5179 map->stripes[s].dev = devices_info[i].dev; 5180 map->stripes[s].physical = devices_info[i].dev_offset + 5181 j * stripe_size; 5182 } 5183 } 5184 map->stripe_len = BTRFS_STRIPE_LEN; 5185 map->io_align = BTRFS_STRIPE_LEN; 5186 map->io_width = BTRFS_STRIPE_LEN; 5187 map->type = type; 5188 map->sub_stripes = sub_stripes; 5189 5190 chunk_size = stripe_size * data_stripes; 5191 5192 trace_btrfs_chunk_alloc(info, map, start, chunk_size); 5193 5194 em = alloc_extent_map(); 5195 if (!em) { 5196 kfree(map); 5197 ret = -ENOMEM; 5198 goto error; 5199 } 5200 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5201 em->map_lookup = map; 5202 em->start = start; 5203 em->len = chunk_size; 5204 em->block_start = 0; 5205 em->block_len = em->len; 5206 em->orig_block_len = stripe_size; 5207 5208 em_tree = &info->mapping_tree.map_tree; 5209 write_lock(&em_tree->lock); 5210 ret = add_extent_mapping(em_tree, em, 0); 5211 if (ret) { 5212 write_unlock(&em_tree->lock); 5213 free_extent_map(em); 5214 goto error; 5215 } 5216 5217 list_add_tail(&em->list, &trans->transaction->pending_chunks); 5218 refcount_inc(&em->refs); 5219 write_unlock(&em_tree->lock); 5220 5221 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size); 5222 if (ret) 5223 goto error_del_extent; 5224 5225 for (i = 0; i < map->num_stripes; i++) 5226 btrfs_device_set_bytes_used(map->stripes[i].dev, 5227 map->stripes[i].dev->bytes_used + stripe_size); 5228 5229 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 5230 5231 free_extent_map(em); 5232 check_raid56_incompat_flag(info, type); 5233 5234 kfree(devices_info); 5235 return 0; 5236 5237 error_del_extent: 5238 write_lock(&em_tree->lock); 5239 remove_extent_mapping(em_tree, em); 5240 write_unlock(&em_tree->lock); 5241 5242 /* One for our allocation */ 5243 free_extent_map(em); 5244 /* One for the tree reference */ 5245 free_extent_map(em); 5246 /* One for the pending_chunks list reference */ 5247 free_extent_map(em); 5248 error: 5249 kfree(devices_info); 5250 return ret; 5251 } 5252 5253 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5254 u64 chunk_offset, u64 chunk_size) 5255 { 5256 struct btrfs_fs_info *fs_info = trans->fs_info; 5257 struct btrfs_root *extent_root = fs_info->extent_root; 5258 struct btrfs_root *chunk_root = fs_info->chunk_root; 5259 struct btrfs_key key; 5260 struct btrfs_device *device; 5261 struct btrfs_chunk *chunk; 5262 struct btrfs_stripe *stripe; 5263 struct extent_map *em; 5264 struct map_lookup *map; 5265 size_t item_size; 5266 u64 dev_offset; 5267 u64 stripe_size; 5268 int i = 0; 5269 int ret = 0; 5270 5271 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5272 if (IS_ERR(em)) 5273 return PTR_ERR(em); 5274 5275 map = em->map_lookup; 5276 item_size = btrfs_chunk_item_size(map->num_stripes); 5277 stripe_size = em->orig_block_len; 5278 5279 chunk = kzalloc(item_size, GFP_NOFS); 5280 if (!chunk) { 5281 ret = -ENOMEM; 5282 goto out; 5283 } 5284 5285 /* 5286 * Take the device list mutex to prevent races with the final phase of 5287 * a device replace operation that replaces the device object associated 5288 * with the map's stripes, because the device object's id can change 5289 * at any time during that final phase of the device replace operation 5290 * (dev-replace.c:btrfs_dev_replace_finishing()). 5291 */ 5292 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5293 for (i = 0; i < map->num_stripes; i++) { 5294 device = map->stripes[i].dev; 5295 dev_offset = map->stripes[i].physical; 5296 5297 ret = btrfs_update_device(trans, device); 5298 if (ret) 5299 break; 5300 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5301 dev_offset, stripe_size); 5302 if (ret) 5303 break; 5304 } 5305 if (ret) { 5306 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5307 goto out; 5308 } 5309 5310 stripe = &chunk->stripe; 5311 for (i = 0; i < map->num_stripes; i++) { 5312 device = map->stripes[i].dev; 5313 dev_offset = map->stripes[i].physical; 5314 5315 btrfs_set_stack_stripe_devid(stripe, device->devid); 5316 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5317 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5318 stripe++; 5319 } 5320 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5321 5322 btrfs_set_stack_chunk_length(chunk, chunk_size); 5323 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5324 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5325 btrfs_set_stack_chunk_type(chunk, map->type); 5326 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5327 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5328 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5329 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5330 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5331 5332 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5333 key.type = BTRFS_CHUNK_ITEM_KEY; 5334 key.offset = chunk_offset; 5335 5336 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5337 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5338 /* 5339 * TODO: Cleanup of inserted chunk root in case of 5340 * failure. 5341 */ 5342 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5343 } 5344 5345 out: 5346 kfree(chunk); 5347 free_extent_map(em); 5348 return ret; 5349 } 5350 5351 /* 5352 * Chunk allocation falls into two parts. The first part does work 5353 * that makes the new allocated chunk usable, but does not do any operation 5354 * that modifies the chunk tree. The second part does the work that 5355 * requires modifying the chunk tree. This division is important for the 5356 * bootstrap process of adding storage to a seed btrfs. 5357 */ 5358 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5359 { 5360 u64 chunk_offset; 5361 5362 lockdep_assert_held(&trans->fs_info->chunk_mutex); 5363 chunk_offset = find_next_chunk(trans->fs_info); 5364 return __btrfs_alloc_chunk(trans, chunk_offset, type); 5365 } 5366 5367 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 5368 struct btrfs_fs_info *fs_info) 5369 { 5370 u64 chunk_offset; 5371 u64 sys_chunk_offset; 5372 u64 alloc_profile; 5373 int ret; 5374 5375 chunk_offset = find_next_chunk(fs_info); 5376 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5377 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 5378 if (ret) 5379 return ret; 5380 5381 sys_chunk_offset = find_next_chunk(fs_info); 5382 alloc_profile = btrfs_system_alloc_profile(fs_info); 5383 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5384 return ret; 5385 } 5386 5387 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5388 { 5389 int max_errors; 5390 5391 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5392 BTRFS_BLOCK_GROUP_RAID10 | 5393 BTRFS_BLOCK_GROUP_RAID5 | 5394 BTRFS_BLOCK_GROUP_DUP)) { 5395 max_errors = 1; 5396 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5397 max_errors = 2; 5398 } else { 5399 max_errors = 0; 5400 } 5401 5402 return max_errors; 5403 } 5404 5405 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5406 { 5407 struct extent_map *em; 5408 struct map_lookup *map; 5409 int readonly = 0; 5410 int miss_ndevs = 0; 5411 int i; 5412 5413 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5414 if (IS_ERR(em)) 5415 return 1; 5416 5417 map = em->map_lookup; 5418 for (i = 0; i < map->num_stripes; i++) { 5419 if (test_bit(BTRFS_DEV_STATE_MISSING, 5420 &map->stripes[i].dev->dev_state)) { 5421 miss_ndevs++; 5422 continue; 5423 } 5424 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5425 &map->stripes[i].dev->dev_state)) { 5426 readonly = 1; 5427 goto end; 5428 } 5429 } 5430 5431 /* 5432 * If the number of missing devices is larger than max errors, 5433 * we can not write the data into that chunk successfully, so 5434 * set it readonly. 5435 */ 5436 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5437 readonly = 1; 5438 end: 5439 free_extent_map(em); 5440 return readonly; 5441 } 5442 5443 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 5444 { 5445 extent_map_tree_init(&tree->map_tree); 5446 } 5447 5448 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5449 { 5450 struct extent_map *em; 5451 5452 while (1) { 5453 write_lock(&tree->map_tree.lock); 5454 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5455 if (em) 5456 remove_extent_mapping(&tree->map_tree, em); 5457 write_unlock(&tree->map_tree.lock); 5458 if (!em) 5459 break; 5460 /* once for us */ 5461 free_extent_map(em); 5462 /* once for the tree */ 5463 free_extent_map(em); 5464 } 5465 } 5466 5467 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5468 { 5469 struct extent_map *em; 5470 struct map_lookup *map; 5471 int ret; 5472 5473 em = btrfs_get_chunk_map(fs_info, logical, len); 5474 if (IS_ERR(em)) 5475 /* 5476 * We could return errors for these cases, but that could get 5477 * ugly and we'd probably do the same thing which is just not do 5478 * anything else and exit, so return 1 so the callers don't try 5479 * to use other copies. 5480 */ 5481 return 1; 5482 5483 map = em->map_lookup; 5484 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5485 ret = map->num_stripes; 5486 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5487 ret = map->sub_stripes; 5488 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5489 ret = 2; 5490 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5491 /* 5492 * There could be two corrupted data stripes, we need 5493 * to loop retry in order to rebuild the correct data. 5494 * 5495 * Fail a stripe at a time on every retry except the 5496 * stripe under reconstruction. 5497 */ 5498 ret = map->num_stripes; 5499 else 5500 ret = 1; 5501 free_extent_map(em); 5502 5503 down_read(&fs_info->dev_replace.rwsem); 5504 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5505 fs_info->dev_replace.tgtdev) 5506 ret++; 5507 up_read(&fs_info->dev_replace.rwsem); 5508 5509 return ret; 5510 } 5511 5512 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5513 u64 logical) 5514 { 5515 struct extent_map *em; 5516 struct map_lookup *map; 5517 unsigned long len = fs_info->sectorsize; 5518 5519 em = btrfs_get_chunk_map(fs_info, logical, len); 5520 5521 if (!WARN_ON(IS_ERR(em))) { 5522 map = em->map_lookup; 5523 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5524 len = map->stripe_len * nr_data_stripes(map); 5525 free_extent_map(em); 5526 } 5527 return len; 5528 } 5529 5530 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5531 { 5532 struct extent_map *em; 5533 struct map_lookup *map; 5534 int ret = 0; 5535 5536 em = btrfs_get_chunk_map(fs_info, logical, len); 5537 5538 if(!WARN_ON(IS_ERR(em))) { 5539 map = em->map_lookup; 5540 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5541 ret = 1; 5542 free_extent_map(em); 5543 } 5544 return ret; 5545 } 5546 5547 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5548 struct map_lookup *map, int first, 5549 int dev_replace_is_ongoing) 5550 { 5551 int i; 5552 int num_stripes; 5553 int preferred_mirror; 5554 int tolerance; 5555 struct btrfs_device *srcdev; 5556 5557 ASSERT((map->type & 5558 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))); 5559 5560 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5561 num_stripes = map->sub_stripes; 5562 else 5563 num_stripes = map->num_stripes; 5564 5565 preferred_mirror = first + current->pid % num_stripes; 5566 5567 if (dev_replace_is_ongoing && 5568 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5569 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5570 srcdev = fs_info->dev_replace.srcdev; 5571 else 5572 srcdev = NULL; 5573 5574 /* 5575 * try to avoid the drive that is the source drive for a 5576 * dev-replace procedure, only choose it if no other non-missing 5577 * mirror is available 5578 */ 5579 for (tolerance = 0; tolerance < 2; tolerance++) { 5580 if (map->stripes[preferred_mirror].dev->bdev && 5581 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5582 return preferred_mirror; 5583 for (i = first; i < first + num_stripes; i++) { 5584 if (map->stripes[i].dev->bdev && 5585 (tolerance || map->stripes[i].dev != srcdev)) 5586 return i; 5587 } 5588 } 5589 5590 /* we couldn't find one that doesn't fail. Just return something 5591 * and the io error handling code will clean up eventually 5592 */ 5593 return preferred_mirror; 5594 } 5595 5596 static inline int parity_smaller(u64 a, u64 b) 5597 { 5598 return a > b; 5599 } 5600 5601 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5602 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5603 { 5604 struct btrfs_bio_stripe s; 5605 int i; 5606 u64 l; 5607 int again = 1; 5608 5609 while (again) { 5610 again = 0; 5611 for (i = 0; i < num_stripes - 1; i++) { 5612 if (parity_smaller(bbio->raid_map[i], 5613 bbio->raid_map[i+1])) { 5614 s = bbio->stripes[i]; 5615 l = bbio->raid_map[i]; 5616 bbio->stripes[i] = bbio->stripes[i+1]; 5617 bbio->raid_map[i] = bbio->raid_map[i+1]; 5618 bbio->stripes[i+1] = s; 5619 bbio->raid_map[i+1] = l; 5620 5621 again = 1; 5622 } 5623 } 5624 } 5625 } 5626 5627 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5628 { 5629 struct btrfs_bio *bbio = kzalloc( 5630 /* the size of the btrfs_bio */ 5631 sizeof(struct btrfs_bio) + 5632 /* plus the variable array for the stripes */ 5633 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5634 /* plus the variable array for the tgt dev */ 5635 sizeof(int) * (real_stripes) + 5636 /* 5637 * plus the raid_map, which includes both the tgt dev 5638 * and the stripes 5639 */ 5640 sizeof(u64) * (total_stripes), 5641 GFP_NOFS|__GFP_NOFAIL); 5642 5643 atomic_set(&bbio->error, 0); 5644 refcount_set(&bbio->refs, 1); 5645 5646 return bbio; 5647 } 5648 5649 void btrfs_get_bbio(struct btrfs_bio *bbio) 5650 { 5651 WARN_ON(!refcount_read(&bbio->refs)); 5652 refcount_inc(&bbio->refs); 5653 } 5654 5655 void btrfs_put_bbio(struct btrfs_bio *bbio) 5656 { 5657 if (!bbio) 5658 return; 5659 if (refcount_dec_and_test(&bbio->refs)) 5660 kfree(bbio); 5661 } 5662 5663 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5664 /* 5665 * Please note that, discard won't be sent to target device of device 5666 * replace. 5667 */ 5668 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5669 u64 logical, u64 length, 5670 struct btrfs_bio **bbio_ret) 5671 { 5672 struct extent_map *em; 5673 struct map_lookup *map; 5674 struct btrfs_bio *bbio; 5675 u64 offset; 5676 u64 stripe_nr; 5677 u64 stripe_nr_end; 5678 u64 stripe_end_offset; 5679 u64 stripe_cnt; 5680 u64 stripe_len; 5681 u64 stripe_offset; 5682 u64 num_stripes; 5683 u32 stripe_index; 5684 u32 factor = 0; 5685 u32 sub_stripes = 0; 5686 u64 stripes_per_dev = 0; 5687 u32 remaining_stripes = 0; 5688 u32 last_stripe = 0; 5689 int ret = 0; 5690 int i; 5691 5692 /* discard always return a bbio */ 5693 ASSERT(bbio_ret); 5694 5695 em = btrfs_get_chunk_map(fs_info, logical, length); 5696 if (IS_ERR(em)) 5697 return PTR_ERR(em); 5698 5699 map = em->map_lookup; 5700 /* we don't discard raid56 yet */ 5701 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5702 ret = -EOPNOTSUPP; 5703 goto out; 5704 } 5705 5706 offset = logical - em->start; 5707 length = min_t(u64, em->len - offset, length); 5708 5709 stripe_len = map->stripe_len; 5710 /* 5711 * stripe_nr counts the total number of stripes we have to stride 5712 * to get to this block 5713 */ 5714 stripe_nr = div64_u64(offset, stripe_len); 5715 5716 /* stripe_offset is the offset of this block in its stripe */ 5717 stripe_offset = offset - stripe_nr * stripe_len; 5718 5719 stripe_nr_end = round_up(offset + length, map->stripe_len); 5720 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5721 stripe_cnt = stripe_nr_end - stripe_nr; 5722 stripe_end_offset = stripe_nr_end * map->stripe_len - 5723 (offset + length); 5724 /* 5725 * after this, stripe_nr is the number of stripes on this 5726 * device we have to walk to find the data, and stripe_index is 5727 * the number of our device in the stripe array 5728 */ 5729 num_stripes = 1; 5730 stripe_index = 0; 5731 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5732 BTRFS_BLOCK_GROUP_RAID10)) { 5733 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5734 sub_stripes = 1; 5735 else 5736 sub_stripes = map->sub_stripes; 5737 5738 factor = map->num_stripes / sub_stripes; 5739 num_stripes = min_t(u64, map->num_stripes, 5740 sub_stripes * stripe_cnt); 5741 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5742 stripe_index *= sub_stripes; 5743 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5744 &remaining_stripes); 5745 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5746 last_stripe *= sub_stripes; 5747 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5748 BTRFS_BLOCK_GROUP_DUP)) { 5749 num_stripes = map->num_stripes; 5750 } else { 5751 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5752 &stripe_index); 5753 } 5754 5755 bbio = alloc_btrfs_bio(num_stripes, 0); 5756 if (!bbio) { 5757 ret = -ENOMEM; 5758 goto out; 5759 } 5760 5761 for (i = 0; i < num_stripes; i++) { 5762 bbio->stripes[i].physical = 5763 map->stripes[stripe_index].physical + 5764 stripe_offset + stripe_nr * map->stripe_len; 5765 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5766 5767 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5768 BTRFS_BLOCK_GROUP_RAID10)) { 5769 bbio->stripes[i].length = stripes_per_dev * 5770 map->stripe_len; 5771 5772 if (i / sub_stripes < remaining_stripes) 5773 bbio->stripes[i].length += 5774 map->stripe_len; 5775 5776 /* 5777 * Special for the first stripe and 5778 * the last stripe: 5779 * 5780 * |-------|...|-------| 5781 * |----------| 5782 * off end_off 5783 */ 5784 if (i < sub_stripes) 5785 bbio->stripes[i].length -= 5786 stripe_offset; 5787 5788 if (stripe_index >= last_stripe && 5789 stripe_index <= (last_stripe + 5790 sub_stripes - 1)) 5791 bbio->stripes[i].length -= 5792 stripe_end_offset; 5793 5794 if (i == sub_stripes - 1) 5795 stripe_offset = 0; 5796 } else { 5797 bbio->stripes[i].length = length; 5798 } 5799 5800 stripe_index++; 5801 if (stripe_index == map->num_stripes) { 5802 stripe_index = 0; 5803 stripe_nr++; 5804 } 5805 } 5806 5807 *bbio_ret = bbio; 5808 bbio->map_type = map->type; 5809 bbio->num_stripes = num_stripes; 5810 out: 5811 free_extent_map(em); 5812 return ret; 5813 } 5814 5815 /* 5816 * In dev-replace case, for repair case (that's the only case where the mirror 5817 * is selected explicitly when calling btrfs_map_block), blocks left of the 5818 * left cursor can also be read from the target drive. 5819 * 5820 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5821 * array of stripes. 5822 * For READ, it also needs to be supported using the same mirror number. 5823 * 5824 * If the requested block is not left of the left cursor, EIO is returned. This 5825 * can happen because btrfs_num_copies() returns one more in the dev-replace 5826 * case. 5827 */ 5828 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5829 u64 logical, u64 length, 5830 u64 srcdev_devid, int *mirror_num, 5831 u64 *physical) 5832 { 5833 struct btrfs_bio *bbio = NULL; 5834 int num_stripes; 5835 int index_srcdev = 0; 5836 int found = 0; 5837 u64 physical_of_found = 0; 5838 int i; 5839 int ret = 0; 5840 5841 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5842 logical, &length, &bbio, 0, 0); 5843 if (ret) { 5844 ASSERT(bbio == NULL); 5845 return ret; 5846 } 5847 5848 num_stripes = bbio->num_stripes; 5849 if (*mirror_num > num_stripes) { 5850 /* 5851 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5852 * that means that the requested area is not left of the left 5853 * cursor 5854 */ 5855 btrfs_put_bbio(bbio); 5856 return -EIO; 5857 } 5858 5859 /* 5860 * process the rest of the function using the mirror_num of the source 5861 * drive. Therefore look it up first. At the end, patch the device 5862 * pointer to the one of the target drive. 5863 */ 5864 for (i = 0; i < num_stripes; i++) { 5865 if (bbio->stripes[i].dev->devid != srcdev_devid) 5866 continue; 5867 5868 /* 5869 * In case of DUP, in order to keep it simple, only add the 5870 * mirror with the lowest physical address 5871 */ 5872 if (found && 5873 physical_of_found <= bbio->stripes[i].physical) 5874 continue; 5875 5876 index_srcdev = i; 5877 found = 1; 5878 physical_of_found = bbio->stripes[i].physical; 5879 } 5880 5881 btrfs_put_bbio(bbio); 5882 5883 ASSERT(found); 5884 if (!found) 5885 return -EIO; 5886 5887 *mirror_num = index_srcdev + 1; 5888 *physical = physical_of_found; 5889 return ret; 5890 } 5891 5892 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5893 struct btrfs_bio **bbio_ret, 5894 struct btrfs_dev_replace *dev_replace, 5895 int *num_stripes_ret, int *max_errors_ret) 5896 { 5897 struct btrfs_bio *bbio = *bbio_ret; 5898 u64 srcdev_devid = dev_replace->srcdev->devid; 5899 int tgtdev_indexes = 0; 5900 int num_stripes = *num_stripes_ret; 5901 int max_errors = *max_errors_ret; 5902 int i; 5903 5904 if (op == BTRFS_MAP_WRITE) { 5905 int index_where_to_add; 5906 5907 /* 5908 * duplicate the write operations while the dev replace 5909 * procedure is running. Since the copying of the old disk to 5910 * the new disk takes place at run time while the filesystem is 5911 * mounted writable, the regular write operations to the old 5912 * disk have to be duplicated to go to the new disk as well. 5913 * 5914 * Note that device->missing is handled by the caller, and that 5915 * the write to the old disk is already set up in the stripes 5916 * array. 5917 */ 5918 index_where_to_add = num_stripes; 5919 for (i = 0; i < num_stripes; i++) { 5920 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5921 /* write to new disk, too */ 5922 struct btrfs_bio_stripe *new = 5923 bbio->stripes + index_where_to_add; 5924 struct btrfs_bio_stripe *old = 5925 bbio->stripes + i; 5926 5927 new->physical = old->physical; 5928 new->length = old->length; 5929 new->dev = dev_replace->tgtdev; 5930 bbio->tgtdev_map[i] = index_where_to_add; 5931 index_where_to_add++; 5932 max_errors++; 5933 tgtdev_indexes++; 5934 } 5935 } 5936 num_stripes = index_where_to_add; 5937 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5938 int index_srcdev = 0; 5939 int found = 0; 5940 u64 physical_of_found = 0; 5941 5942 /* 5943 * During the dev-replace procedure, the target drive can also 5944 * be used to read data in case it is needed to repair a corrupt 5945 * block elsewhere. This is possible if the requested area is 5946 * left of the left cursor. In this area, the target drive is a 5947 * full copy of the source drive. 5948 */ 5949 for (i = 0; i < num_stripes; i++) { 5950 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5951 /* 5952 * In case of DUP, in order to keep it simple, 5953 * only add the mirror with the lowest physical 5954 * address 5955 */ 5956 if (found && 5957 physical_of_found <= 5958 bbio->stripes[i].physical) 5959 continue; 5960 index_srcdev = i; 5961 found = 1; 5962 physical_of_found = bbio->stripes[i].physical; 5963 } 5964 } 5965 if (found) { 5966 struct btrfs_bio_stripe *tgtdev_stripe = 5967 bbio->stripes + num_stripes; 5968 5969 tgtdev_stripe->physical = physical_of_found; 5970 tgtdev_stripe->length = 5971 bbio->stripes[index_srcdev].length; 5972 tgtdev_stripe->dev = dev_replace->tgtdev; 5973 bbio->tgtdev_map[index_srcdev] = num_stripes; 5974 5975 tgtdev_indexes++; 5976 num_stripes++; 5977 } 5978 } 5979 5980 *num_stripes_ret = num_stripes; 5981 *max_errors_ret = max_errors; 5982 bbio->num_tgtdevs = tgtdev_indexes; 5983 *bbio_ret = bbio; 5984 } 5985 5986 static bool need_full_stripe(enum btrfs_map_op op) 5987 { 5988 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5989 } 5990 5991 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5992 enum btrfs_map_op op, 5993 u64 logical, u64 *length, 5994 struct btrfs_bio **bbio_ret, 5995 int mirror_num, int need_raid_map) 5996 { 5997 struct extent_map *em; 5998 struct map_lookup *map; 5999 u64 offset; 6000 u64 stripe_offset; 6001 u64 stripe_nr; 6002 u64 stripe_len; 6003 u32 stripe_index; 6004 int i; 6005 int ret = 0; 6006 int num_stripes; 6007 int max_errors = 0; 6008 int tgtdev_indexes = 0; 6009 struct btrfs_bio *bbio = NULL; 6010 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6011 int dev_replace_is_ongoing = 0; 6012 int num_alloc_stripes; 6013 int patch_the_first_stripe_for_dev_replace = 0; 6014 u64 physical_to_patch_in_first_stripe = 0; 6015 u64 raid56_full_stripe_start = (u64)-1; 6016 6017 if (op == BTRFS_MAP_DISCARD) 6018 return __btrfs_map_block_for_discard(fs_info, logical, 6019 *length, bbio_ret); 6020 6021 em = btrfs_get_chunk_map(fs_info, logical, *length); 6022 if (IS_ERR(em)) 6023 return PTR_ERR(em); 6024 6025 map = em->map_lookup; 6026 offset = logical - em->start; 6027 6028 stripe_len = map->stripe_len; 6029 stripe_nr = offset; 6030 /* 6031 * stripe_nr counts the total number of stripes we have to stride 6032 * to get to this block 6033 */ 6034 stripe_nr = div64_u64(stripe_nr, stripe_len); 6035 6036 stripe_offset = stripe_nr * stripe_len; 6037 if (offset < stripe_offset) { 6038 btrfs_crit(fs_info, 6039 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu", 6040 stripe_offset, offset, em->start, logical, 6041 stripe_len); 6042 free_extent_map(em); 6043 return -EINVAL; 6044 } 6045 6046 /* stripe_offset is the offset of this block in its stripe*/ 6047 stripe_offset = offset - stripe_offset; 6048 6049 /* if we're here for raid56, we need to know the stripe aligned start */ 6050 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6051 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 6052 raid56_full_stripe_start = offset; 6053 6054 /* allow a write of a full stripe, but make sure we don't 6055 * allow straddling of stripes 6056 */ 6057 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6058 full_stripe_len); 6059 raid56_full_stripe_start *= full_stripe_len; 6060 } 6061 6062 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6063 u64 max_len; 6064 /* For writes to RAID[56], allow a full stripeset across all disks. 6065 For other RAID types and for RAID[56] reads, just allow a single 6066 stripe (on a single disk). */ 6067 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6068 (op == BTRFS_MAP_WRITE)) { 6069 max_len = stripe_len * nr_data_stripes(map) - 6070 (offset - raid56_full_stripe_start); 6071 } else { 6072 /* we limit the length of each bio to what fits in a stripe */ 6073 max_len = stripe_len - stripe_offset; 6074 } 6075 *length = min_t(u64, em->len - offset, max_len); 6076 } else { 6077 *length = em->len - offset; 6078 } 6079 6080 /* 6081 * This is for when we're called from btrfs_bio_fits_in_stripe and all 6082 * it cares about is the length 6083 */ 6084 if (!bbio_ret) 6085 goto out; 6086 6087 down_read(&dev_replace->rwsem); 6088 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6089 /* 6090 * Hold the semaphore for read during the whole operation, write is 6091 * requested at commit time but must wait. 6092 */ 6093 if (!dev_replace_is_ongoing) 6094 up_read(&dev_replace->rwsem); 6095 6096 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6097 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6098 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6099 dev_replace->srcdev->devid, 6100 &mirror_num, 6101 &physical_to_patch_in_first_stripe); 6102 if (ret) 6103 goto out; 6104 else 6105 patch_the_first_stripe_for_dev_replace = 1; 6106 } else if (mirror_num > map->num_stripes) { 6107 mirror_num = 0; 6108 } 6109 6110 num_stripes = 1; 6111 stripe_index = 0; 6112 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6113 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6114 &stripe_index); 6115 if (!need_full_stripe(op)) 6116 mirror_num = 1; 6117 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 6118 if (need_full_stripe(op)) 6119 num_stripes = map->num_stripes; 6120 else if (mirror_num) 6121 stripe_index = mirror_num - 1; 6122 else { 6123 stripe_index = find_live_mirror(fs_info, map, 0, 6124 dev_replace_is_ongoing); 6125 mirror_num = stripe_index + 1; 6126 } 6127 6128 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6129 if (need_full_stripe(op)) { 6130 num_stripes = map->num_stripes; 6131 } else if (mirror_num) { 6132 stripe_index = mirror_num - 1; 6133 } else { 6134 mirror_num = 1; 6135 } 6136 6137 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6138 u32 factor = map->num_stripes / map->sub_stripes; 6139 6140 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6141 stripe_index *= map->sub_stripes; 6142 6143 if (need_full_stripe(op)) 6144 num_stripes = map->sub_stripes; 6145 else if (mirror_num) 6146 stripe_index += mirror_num - 1; 6147 else { 6148 int old_stripe_index = stripe_index; 6149 stripe_index = find_live_mirror(fs_info, map, 6150 stripe_index, 6151 dev_replace_is_ongoing); 6152 mirror_num = stripe_index - old_stripe_index + 1; 6153 } 6154 6155 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6156 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6157 /* push stripe_nr back to the start of the full stripe */ 6158 stripe_nr = div64_u64(raid56_full_stripe_start, 6159 stripe_len * nr_data_stripes(map)); 6160 6161 /* RAID[56] write or recovery. Return all stripes */ 6162 num_stripes = map->num_stripes; 6163 max_errors = nr_parity_stripes(map); 6164 6165 *length = map->stripe_len; 6166 stripe_index = 0; 6167 stripe_offset = 0; 6168 } else { 6169 /* 6170 * Mirror #0 or #1 means the original data block. 6171 * Mirror #2 is RAID5 parity block. 6172 * Mirror #3 is RAID6 Q block. 6173 */ 6174 stripe_nr = div_u64_rem(stripe_nr, 6175 nr_data_stripes(map), &stripe_index); 6176 if (mirror_num > 1) 6177 stripe_index = nr_data_stripes(map) + 6178 mirror_num - 2; 6179 6180 /* We distribute the parity blocks across stripes */ 6181 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6182 &stripe_index); 6183 if (!need_full_stripe(op) && mirror_num <= 1) 6184 mirror_num = 1; 6185 } 6186 } else { 6187 /* 6188 * after this, stripe_nr is the number of stripes on this 6189 * device we have to walk to find the data, and stripe_index is 6190 * the number of our device in the stripe array 6191 */ 6192 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6193 &stripe_index); 6194 mirror_num = stripe_index + 1; 6195 } 6196 if (stripe_index >= map->num_stripes) { 6197 btrfs_crit(fs_info, 6198 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6199 stripe_index, map->num_stripes); 6200 ret = -EINVAL; 6201 goto out; 6202 } 6203 6204 num_alloc_stripes = num_stripes; 6205 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6206 if (op == BTRFS_MAP_WRITE) 6207 num_alloc_stripes <<= 1; 6208 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6209 num_alloc_stripes++; 6210 tgtdev_indexes = num_stripes; 6211 } 6212 6213 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6214 if (!bbio) { 6215 ret = -ENOMEM; 6216 goto out; 6217 } 6218 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 6219 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 6220 6221 /* build raid_map */ 6222 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6223 (need_full_stripe(op) || mirror_num > 1)) { 6224 u64 tmp; 6225 unsigned rot; 6226 6227 bbio->raid_map = (u64 *)((void *)bbio->stripes + 6228 sizeof(struct btrfs_bio_stripe) * 6229 num_alloc_stripes + 6230 sizeof(int) * tgtdev_indexes); 6231 6232 /* Work out the disk rotation on this stripe-set */ 6233 div_u64_rem(stripe_nr, num_stripes, &rot); 6234 6235 /* Fill in the logical address of each stripe */ 6236 tmp = stripe_nr * nr_data_stripes(map); 6237 for (i = 0; i < nr_data_stripes(map); i++) 6238 bbio->raid_map[(i+rot) % num_stripes] = 6239 em->start + (tmp + i) * map->stripe_len; 6240 6241 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6242 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6243 bbio->raid_map[(i+rot+1) % num_stripes] = 6244 RAID6_Q_STRIPE; 6245 } 6246 6247 6248 for (i = 0; i < num_stripes; i++) { 6249 bbio->stripes[i].physical = 6250 map->stripes[stripe_index].physical + 6251 stripe_offset + 6252 stripe_nr * map->stripe_len; 6253 bbio->stripes[i].dev = 6254 map->stripes[stripe_index].dev; 6255 stripe_index++; 6256 } 6257 6258 if (need_full_stripe(op)) 6259 max_errors = btrfs_chunk_max_errors(map); 6260 6261 if (bbio->raid_map) 6262 sort_parity_stripes(bbio, num_stripes); 6263 6264 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6265 need_full_stripe(op)) { 6266 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6267 &max_errors); 6268 } 6269 6270 *bbio_ret = bbio; 6271 bbio->map_type = map->type; 6272 bbio->num_stripes = num_stripes; 6273 bbio->max_errors = max_errors; 6274 bbio->mirror_num = mirror_num; 6275 6276 /* 6277 * this is the case that REQ_READ && dev_replace_is_ongoing && 6278 * mirror_num == num_stripes + 1 && dev_replace target drive is 6279 * available as a mirror 6280 */ 6281 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6282 WARN_ON(num_stripes > 1); 6283 bbio->stripes[0].dev = dev_replace->tgtdev; 6284 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6285 bbio->mirror_num = map->num_stripes + 1; 6286 } 6287 out: 6288 if (dev_replace_is_ongoing) { 6289 lockdep_assert_held(&dev_replace->rwsem); 6290 /* Unlock and let waiting writers proceed */ 6291 up_read(&dev_replace->rwsem); 6292 } 6293 free_extent_map(em); 6294 return ret; 6295 } 6296 6297 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6298 u64 logical, u64 *length, 6299 struct btrfs_bio **bbio_ret, int mirror_num) 6300 { 6301 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6302 mirror_num, 0); 6303 } 6304 6305 /* For Scrub/replace */ 6306 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6307 u64 logical, u64 *length, 6308 struct btrfs_bio **bbio_ret) 6309 { 6310 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6311 } 6312 6313 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 6314 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 6315 { 6316 struct extent_map *em; 6317 struct map_lookup *map; 6318 u64 *buf; 6319 u64 bytenr; 6320 u64 length; 6321 u64 stripe_nr; 6322 u64 rmap_len; 6323 int i, j, nr = 0; 6324 6325 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 6326 if (IS_ERR(em)) 6327 return -EIO; 6328 6329 map = em->map_lookup; 6330 length = em->len; 6331 rmap_len = map->stripe_len; 6332 6333 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6334 length = div_u64(length, map->num_stripes / map->sub_stripes); 6335 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6336 length = div_u64(length, map->num_stripes); 6337 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6338 length = div_u64(length, nr_data_stripes(map)); 6339 rmap_len = map->stripe_len * nr_data_stripes(map); 6340 } 6341 6342 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 6343 BUG_ON(!buf); /* -ENOMEM */ 6344 6345 for (i = 0; i < map->num_stripes; i++) { 6346 if (map->stripes[i].physical > physical || 6347 map->stripes[i].physical + length <= physical) 6348 continue; 6349 6350 stripe_nr = physical - map->stripes[i].physical; 6351 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 6352 6353 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6354 stripe_nr = stripe_nr * map->num_stripes + i; 6355 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 6356 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6357 stripe_nr = stripe_nr * map->num_stripes + i; 6358 } /* else if RAID[56], multiply by nr_data_stripes(). 6359 * Alternatively, just use rmap_len below instead of 6360 * map->stripe_len */ 6361 6362 bytenr = chunk_start + stripe_nr * rmap_len; 6363 WARN_ON(nr >= map->num_stripes); 6364 for (j = 0; j < nr; j++) { 6365 if (buf[j] == bytenr) 6366 break; 6367 } 6368 if (j == nr) { 6369 WARN_ON(nr >= map->num_stripes); 6370 buf[nr++] = bytenr; 6371 } 6372 } 6373 6374 *logical = buf; 6375 *naddrs = nr; 6376 *stripe_len = rmap_len; 6377 6378 free_extent_map(em); 6379 return 0; 6380 } 6381 6382 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6383 { 6384 bio->bi_private = bbio->private; 6385 bio->bi_end_io = bbio->end_io; 6386 bio_endio(bio); 6387 6388 btrfs_put_bbio(bbio); 6389 } 6390 6391 static void btrfs_end_bio(struct bio *bio) 6392 { 6393 struct btrfs_bio *bbio = bio->bi_private; 6394 int is_orig_bio = 0; 6395 6396 if (bio->bi_status) { 6397 atomic_inc(&bbio->error); 6398 if (bio->bi_status == BLK_STS_IOERR || 6399 bio->bi_status == BLK_STS_TARGET) { 6400 unsigned int stripe_index = 6401 btrfs_io_bio(bio)->stripe_index; 6402 struct btrfs_device *dev; 6403 6404 BUG_ON(stripe_index >= bbio->num_stripes); 6405 dev = bbio->stripes[stripe_index].dev; 6406 if (dev->bdev) { 6407 if (bio_op(bio) == REQ_OP_WRITE) 6408 btrfs_dev_stat_inc_and_print(dev, 6409 BTRFS_DEV_STAT_WRITE_ERRS); 6410 else if (!(bio->bi_opf & REQ_RAHEAD)) 6411 btrfs_dev_stat_inc_and_print(dev, 6412 BTRFS_DEV_STAT_READ_ERRS); 6413 if (bio->bi_opf & REQ_PREFLUSH) 6414 btrfs_dev_stat_inc_and_print(dev, 6415 BTRFS_DEV_STAT_FLUSH_ERRS); 6416 } 6417 } 6418 } 6419 6420 if (bio == bbio->orig_bio) 6421 is_orig_bio = 1; 6422 6423 btrfs_bio_counter_dec(bbio->fs_info); 6424 6425 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6426 if (!is_orig_bio) { 6427 bio_put(bio); 6428 bio = bbio->orig_bio; 6429 } 6430 6431 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6432 /* only send an error to the higher layers if it is 6433 * beyond the tolerance of the btrfs bio 6434 */ 6435 if (atomic_read(&bbio->error) > bbio->max_errors) { 6436 bio->bi_status = BLK_STS_IOERR; 6437 } else { 6438 /* 6439 * this bio is actually up to date, we didn't 6440 * go over the max number of errors 6441 */ 6442 bio->bi_status = BLK_STS_OK; 6443 } 6444 6445 btrfs_end_bbio(bbio, bio); 6446 } else if (!is_orig_bio) { 6447 bio_put(bio); 6448 } 6449 } 6450 6451 /* 6452 * see run_scheduled_bios for a description of why bios are collected for 6453 * async submit. 6454 * 6455 * This will add one bio to the pending list for a device and make sure 6456 * the work struct is scheduled. 6457 */ 6458 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6459 struct bio *bio) 6460 { 6461 struct btrfs_fs_info *fs_info = device->fs_info; 6462 int should_queue = 1; 6463 struct btrfs_pending_bios *pending_bios; 6464 6465 /* don't bother with additional async steps for reads, right now */ 6466 if (bio_op(bio) == REQ_OP_READ) { 6467 btrfsic_submit_bio(bio); 6468 return; 6469 } 6470 6471 WARN_ON(bio->bi_next); 6472 bio->bi_next = NULL; 6473 6474 spin_lock(&device->io_lock); 6475 if (op_is_sync(bio->bi_opf)) 6476 pending_bios = &device->pending_sync_bios; 6477 else 6478 pending_bios = &device->pending_bios; 6479 6480 if (pending_bios->tail) 6481 pending_bios->tail->bi_next = bio; 6482 6483 pending_bios->tail = bio; 6484 if (!pending_bios->head) 6485 pending_bios->head = bio; 6486 if (device->running_pending) 6487 should_queue = 0; 6488 6489 spin_unlock(&device->io_lock); 6490 6491 if (should_queue) 6492 btrfs_queue_work(fs_info->submit_workers, &device->work); 6493 } 6494 6495 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6496 u64 physical, int dev_nr, int async) 6497 { 6498 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6499 struct btrfs_fs_info *fs_info = bbio->fs_info; 6500 6501 bio->bi_private = bbio; 6502 btrfs_io_bio(bio)->stripe_index = dev_nr; 6503 bio->bi_end_io = btrfs_end_bio; 6504 bio->bi_iter.bi_sector = physical >> 9; 6505 btrfs_debug_in_rcu(fs_info, 6506 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6507 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6508 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid, 6509 bio->bi_iter.bi_size); 6510 bio_set_dev(bio, dev->bdev); 6511 6512 btrfs_bio_counter_inc_noblocked(fs_info); 6513 6514 if (async) 6515 btrfs_schedule_bio(dev, bio); 6516 else 6517 btrfsic_submit_bio(bio); 6518 } 6519 6520 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6521 { 6522 atomic_inc(&bbio->error); 6523 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6524 /* Should be the original bio. */ 6525 WARN_ON(bio != bbio->orig_bio); 6526 6527 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6528 bio->bi_iter.bi_sector = logical >> 9; 6529 if (atomic_read(&bbio->error) > bbio->max_errors) 6530 bio->bi_status = BLK_STS_IOERR; 6531 else 6532 bio->bi_status = BLK_STS_OK; 6533 btrfs_end_bbio(bbio, bio); 6534 } 6535 } 6536 6537 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6538 int mirror_num, int async_submit) 6539 { 6540 struct btrfs_device *dev; 6541 struct bio *first_bio = bio; 6542 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6543 u64 length = 0; 6544 u64 map_length; 6545 int ret; 6546 int dev_nr; 6547 int total_devs; 6548 struct btrfs_bio *bbio = NULL; 6549 6550 length = bio->bi_iter.bi_size; 6551 map_length = length; 6552 6553 btrfs_bio_counter_inc_blocked(fs_info); 6554 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6555 &map_length, &bbio, mirror_num, 1); 6556 if (ret) { 6557 btrfs_bio_counter_dec(fs_info); 6558 return errno_to_blk_status(ret); 6559 } 6560 6561 total_devs = bbio->num_stripes; 6562 bbio->orig_bio = first_bio; 6563 bbio->private = first_bio->bi_private; 6564 bbio->end_io = first_bio->bi_end_io; 6565 bbio->fs_info = fs_info; 6566 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6567 6568 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6569 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6570 /* In this case, map_length has been set to the length of 6571 a single stripe; not the whole write */ 6572 if (bio_op(bio) == REQ_OP_WRITE) { 6573 ret = raid56_parity_write(fs_info, bio, bbio, 6574 map_length); 6575 } else { 6576 ret = raid56_parity_recover(fs_info, bio, bbio, 6577 map_length, mirror_num, 1); 6578 } 6579 6580 btrfs_bio_counter_dec(fs_info); 6581 return errno_to_blk_status(ret); 6582 } 6583 6584 if (map_length < length) { 6585 btrfs_crit(fs_info, 6586 "mapping failed logical %llu bio len %llu len %llu", 6587 logical, length, map_length); 6588 BUG(); 6589 } 6590 6591 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6592 dev = bbio->stripes[dev_nr].dev; 6593 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6594 &dev->dev_state) || 6595 (bio_op(first_bio) == REQ_OP_WRITE && 6596 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6597 bbio_error(bbio, first_bio, logical); 6598 continue; 6599 } 6600 6601 if (dev_nr < total_devs - 1) 6602 bio = btrfs_bio_clone(first_bio); 6603 else 6604 bio = first_bio; 6605 6606 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6607 dev_nr, async_submit); 6608 } 6609 btrfs_bio_counter_dec(fs_info); 6610 return BLK_STS_OK; 6611 } 6612 6613 /* 6614 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6615 * return NULL. 6616 * 6617 * If devid and uuid are both specified, the match must be exact, otherwise 6618 * only devid is used. 6619 * 6620 * If @seed is true, traverse through the seed devices. 6621 */ 6622 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6623 u64 devid, u8 *uuid, u8 *fsid, 6624 bool seed) 6625 { 6626 struct btrfs_device *device; 6627 6628 while (fs_devices) { 6629 if (!fsid || 6630 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6631 list_for_each_entry(device, &fs_devices->devices, 6632 dev_list) { 6633 if (device->devid == devid && 6634 (!uuid || memcmp(device->uuid, uuid, 6635 BTRFS_UUID_SIZE) == 0)) 6636 return device; 6637 } 6638 } 6639 if (seed) 6640 fs_devices = fs_devices->seed; 6641 else 6642 return NULL; 6643 } 6644 return NULL; 6645 } 6646 6647 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6648 u64 devid, u8 *dev_uuid) 6649 { 6650 struct btrfs_device *device; 6651 6652 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6653 if (IS_ERR(device)) 6654 return device; 6655 6656 list_add(&device->dev_list, &fs_devices->devices); 6657 device->fs_devices = fs_devices; 6658 fs_devices->num_devices++; 6659 6660 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6661 fs_devices->missing_devices++; 6662 6663 return device; 6664 } 6665 6666 /** 6667 * btrfs_alloc_device - allocate struct btrfs_device 6668 * @fs_info: used only for generating a new devid, can be NULL if 6669 * devid is provided (i.e. @devid != NULL). 6670 * @devid: a pointer to devid for this device. If NULL a new devid 6671 * is generated. 6672 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6673 * is generated. 6674 * 6675 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6676 * on error. Returned struct is not linked onto any lists and must be 6677 * destroyed with btrfs_free_device. 6678 */ 6679 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6680 const u64 *devid, 6681 const u8 *uuid) 6682 { 6683 struct btrfs_device *dev; 6684 u64 tmp; 6685 6686 if (WARN_ON(!devid && !fs_info)) 6687 return ERR_PTR(-EINVAL); 6688 6689 dev = __alloc_device(); 6690 if (IS_ERR(dev)) 6691 return dev; 6692 6693 if (devid) 6694 tmp = *devid; 6695 else { 6696 int ret; 6697 6698 ret = find_next_devid(fs_info, &tmp); 6699 if (ret) { 6700 btrfs_free_device(dev); 6701 return ERR_PTR(ret); 6702 } 6703 } 6704 dev->devid = tmp; 6705 6706 if (uuid) 6707 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6708 else 6709 generate_random_uuid(dev->uuid); 6710 6711 btrfs_init_work(&dev->work, btrfs_submit_helper, 6712 pending_bios_fn, NULL, NULL); 6713 6714 return dev; 6715 } 6716 6717 /* Return -EIO if any error, otherwise return 0. */ 6718 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info, 6719 struct extent_buffer *leaf, 6720 struct btrfs_chunk *chunk, u64 logical) 6721 { 6722 u64 length; 6723 u64 stripe_len; 6724 u16 num_stripes; 6725 u16 sub_stripes; 6726 u64 type; 6727 u64 features; 6728 bool mixed = false; 6729 6730 length = btrfs_chunk_length(leaf, chunk); 6731 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6732 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6733 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6734 type = btrfs_chunk_type(leaf, chunk); 6735 6736 if (!num_stripes) { 6737 btrfs_err(fs_info, "invalid chunk num_stripes: %u", 6738 num_stripes); 6739 return -EIO; 6740 } 6741 if (!IS_ALIGNED(logical, fs_info->sectorsize)) { 6742 btrfs_err(fs_info, "invalid chunk logical %llu", logical); 6743 return -EIO; 6744 } 6745 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) { 6746 btrfs_err(fs_info, "invalid chunk sectorsize %u", 6747 btrfs_chunk_sector_size(leaf, chunk)); 6748 return -EIO; 6749 } 6750 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) { 6751 btrfs_err(fs_info, "invalid chunk length %llu", length); 6752 return -EIO; 6753 } 6754 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) { 6755 btrfs_err(fs_info, "invalid chunk stripe length: %llu", 6756 stripe_len); 6757 return -EIO; 6758 } 6759 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6760 type) { 6761 btrfs_err(fs_info, "unrecognized chunk type: %llu", 6762 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 6763 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6764 btrfs_chunk_type(leaf, chunk)); 6765 return -EIO; 6766 } 6767 6768 if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) { 6769 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type); 6770 return -EIO; 6771 } 6772 6773 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) && 6774 (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) { 6775 btrfs_err(fs_info, 6776 "system chunk with data or metadata type: 0x%llx", type); 6777 return -EIO; 6778 } 6779 6780 features = btrfs_super_incompat_flags(fs_info->super_copy); 6781 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 6782 mixed = true; 6783 6784 if (!mixed) { 6785 if ((type & BTRFS_BLOCK_GROUP_METADATA) && 6786 (type & BTRFS_BLOCK_GROUP_DATA)) { 6787 btrfs_err(fs_info, 6788 "mixed chunk type in non-mixed mode: 0x%llx", type); 6789 return -EIO; 6790 } 6791 } 6792 6793 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) || 6794 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes != 2) || 6795 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) || 6796 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) || 6797 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes != 2) || 6798 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 6799 num_stripes != 1)) { 6800 btrfs_err(fs_info, 6801 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 6802 num_stripes, sub_stripes, 6803 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 6804 return -EIO; 6805 } 6806 6807 return 0; 6808 } 6809 6810 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6811 u64 devid, u8 *uuid, bool error) 6812 { 6813 if (error) 6814 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6815 devid, uuid); 6816 else 6817 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6818 devid, uuid); 6819 } 6820 6821 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, 6822 struct extent_buffer *leaf, 6823 struct btrfs_chunk *chunk) 6824 { 6825 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6826 struct map_lookup *map; 6827 struct extent_map *em; 6828 u64 logical; 6829 u64 length; 6830 u64 devid; 6831 u8 uuid[BTRFS_UUID_SIZE]; 6832 int num_stripes; 6833 int ret; 6834 int i; 6835 6836 logical = key->offset; 6837 length = btrfs_chunk_length(leaf, chunk); 6838 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6839 6840 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical); 6841 if (ret) 6842 return ret; 6843 6844 read_lock(&map_tree->map_tree.lock); 6845 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6846 read_unlock(&map_tree->map_tree.lock); 6847 6848 /* already mapped? */ 6849 if (em && em->start <= logical && em->start + em->len > logical) { 6850 free_extent_map(em); 6851 return 0; 6852 } else if (em) { 6853 free_extent_map(em); 6854 } 6855 6856 em = alloc_extent_map(); 6857 if (!em) 6858 return -ENOMEM; 6859 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6860 if (!map) { 6861 free_extent_map(em); 6862 return -ENOMEM; 6863 } 6864 6865 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6866 em->map_lookup = map; 6867 em->start = logical; 6868 em->len = length; 6869 em->orig_start = 0; 6870 em->block_start = 0; 6871 em->block_len = em->len; 6872 6873 map->num_stripes = num_stripes; 6874 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6875 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6876 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6877 map->type = btrfs_chunk_type(leaf, chunk); 6878 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6879 map->verified_stripes = 0; 6880 for (i = 0; i < num_stripes; i++) { 6881 map->stripes[i].physical = 6882 btrfs_stripe_offset_nr(leaf, chunk, i); 6883 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6884 read_extent_buffer(leaf, uuid, (unsigned long) 6885 btrfs_stripe_dev_uuid_nr(chunk, i), 6886 BTRFS_UUID_SIZE); 6887 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6888 devid, uuid, NULL, true); 6889 if (!map->stripes[i].dev && 6890 !btrfs_test_opt(fs_info, DEGRADED)) { 6891 free_extent_map(em); 6892 btrfs_report_missing_device(fs_info, devid, uuid, true); 6893 return -ENOENT; 6894 } 6895 if (!map->stripes[i].dev) { 6896 map->stripes[i].dev = 6897 add_missing_dev(fs_info->fs_devices, devid, 6898 uuid); 6899 if (IS_ERR(map->stripes[i].dev)) { 6900 free_extent_map(em); 6901 btrfs_err(fs_info, 6902 "failed to init missing dev %llu: %ld", 6903 devid, PTR_ERR(map->stripes[i].dev)); 6904 return PTR_ERR(map->stripes[i].dev); 6905 } 6906 btrfs_report_missing_device(fs_info, devid, uuid, false); 6907 } 6908 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6909 &(map->stripes[i].dev->dev_state)); 6910 6911 } 6912 6913 write_lock(&map_tree->map_tree.lock); 6914 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6915 write_unlock(&map_tree->map_tree.lock); 6916 if (ret < 0) { 6917 btrfs_err(fs_info, 6918 "failed to add chunk map, start=%llu len=%llu: %d", 6919 em->start, em->len, ret); 6920 } 6921 free_extent_map(em); 6922 6923 return ret; 6924 } 6925 6926 static void fill_device_from_item(struct extent_buffer *leaf, 6927 struct btrfs_dev_item *dev_item, 6928 struct btrfs_device *device) 6929 { 6930 unsigned long ptr; 6931 6932 device->devid = btrfs_device_id(leaf, dev_item); 6933 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6934 device->total_bytes = device->disk_total_bytes; 6935 device->commit_total_bytes = device->disk_total_bytes; 6936 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6937 device->commit_bytes_used = device->bytes_used; 6938 device->type = btrfs_device_type(leaf, dev_item); 6939 device->io_align = btrfs_device_io_align(leaf, dev_item); 6940 device->io_width = btrfs_device_io_width(leaf, dev_item); 6941 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6942 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6943 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6944 6945 ptr = btrfs_device_uuid(dev_item); 6946 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6947 } 6948 6949 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6950 u8 *fsid) 6951 { 6952 struct btrfs_fs_devices *fs_devices; 6953 int ret; 6954 6955 lockdep_assert_held(&uuid_mutex); 6956 ASSERT(fsid); 6957 6958 fs_devices = fs_info->fs_devices->seed; 6959 while (fs_devices) { 6960 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6961 return fs_devices; 6962 6963 fs_devices = fs_devices->seed; 6964 } 6965 6966 fs_devices = find_fsid(fsid, NULL); 6967 if (!fs_devices) { 6968 if (!btrfs_test_opt(fs_info, DEGRADED)) 6969 return ERR_PTR(-ENOENT); 6970 6971 fs_devices = alloc_fs_devices(fsid, NULL); 6972 if (IS_ERR(fs_devices)) 6973 return fs_devices; 6974 6975 fs_devices->seeding = 1; 6976 fs_devices->opened = 1; 6977 return fs_devices; 6978 } 6979 6980 fs_devices = clone_fs_devices(fs_devices); 6981 if (IS_ERR(fs_devices)) 6982 return fs_devices; 6983 6984 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6985 if (ret) { 6986 free_fs_devices(fs_devices); 6987 fs_devices = ERR_PTR(ret); 6988 goto out; 6989 } 6990 6991 if (!fs_devices->seeding) { 6992 close_fs_devices(fs_devices); 6993 free_fs_devices(fs_devices); 6994 fs_devices = ERR_PTR(-EINVAL); 6995 goto out; 6996 } 6997 6998 fs_devices->seed = fs_info->fs_devices->seed; 6999 fs_info->fs_devices->seed = fs_devices; 7000 out: 7001 return fs_devices; 7002 } 7003 7004 static int read_one_dev(struct btrfs_fs_info *fs_info, 7005 struct extent_buffer *leaf, 7006 struct btrfs_dev_item *dev_item) 7007 { 7008 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7009 struct btrfs_device *device; 7010 u64 devid; 7011 int ret; 7012 u8 fs_uuid[BTRFS_FSID_SIZE]; 7013 u8 dev_uuid[BTRFS_UUID_SIZE]; 7014 7015 devid = btrfs_device_id(leaf, dev_item); 7016 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7017 BTRFS_UUID_SIZE); 7018 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7019 BTRFS_FSID_SIZE); 7020 7021 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7022 fs_devices = open_seed_devices(fs_info, fs_uuid); 7023 if (IS_ERR(fs_devices)) 7024 return PTR_ERR(fs_devices); 7025 } 7026 7027 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 7028 fs_uuid, true); 7029 if (!device) { 7030 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7031 btrfs_report_missing_device(fs_info, devid, 7032 dev_uuid, true); 7033 return -ENOENT; 7034 } 7035 7036 device = add_missing_dev(fs_devices, devid, dev_uuid); 7037 if (IS_ERR(device)) { 7038 btrfs_err(fs_info, 7039 "failed to add missing dev %llu: %ld", 7040 devid, PTR_ERR(device)); 7041 return PTR_ERR(device); 7042 } 7043 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7044 } else { 7045 if (!device->bdev) { 7046 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7047 btrfs_report_missing_device(fs_info, 7048 devid, dev_uuid, true); 7049 return -ENOENT; 7050 } 7051 btrfs_report_missing_device(fs_info, devid, 7052 dev_uuid, false); 7053 } 7054 7055 if (!device->bdev && 7056 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7057 /* 7058 * this happens when a device that was properly setup 7059 * in the device info lists suddenly goes bad. 7060 * device->bdev is NULL, and so we have to set 7061 * device->missing to one here 7062 */ 7063 device->fs_devices->missing_devices++; 7064 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7065 } 7066 7067 /* Move the device to its own fs_devices */ 7068 if (device->fs_devices != fs_devices) { 7069 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7070 &device->dev_state)); 7071 7072 list_move(&device->dev_list, &fs_devices->devices); 7073 device->fs_devices->num_devices--; 7074 fs_devices->num_devices++; 7075 7076 device->fs_devices->missing_devices--; 7077 fs_devices->missing_devices++; 7078 7079 device->fs_devices = fs_devices; 7080 } 7081 } 7082 7083 if (device->fs_devices != fs_info->fs_devices) { 7084 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7085 if (device->generation != 7086 btrfs_device_generation(leaf, dev_item)) 7087 return -EINVAL; 7088 } 7089 7090 fill_device_from_item(leaf, dev_item, device); 7091 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7092 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7093 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7094 device->fs_devices->total_rw_bytes += device->total_bytes; 7095 atomic64_add(device->total_bytes - device->bytes_used, 7096 &fs_info->free_chunk_space); 7097 } 7098 ret = 0; 7099 return ret; 7100 } 7101 7102 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7103 { 7104 struct btrfs_root *root = fs_info->tree_root; 7105 struct btrfs_super_block *super_copy = fs_info->super_copy; 7106 struct extent_buffer *sb; 7107 struct btrfs_disk_key *disk_key; 7108 struct btrfs_chunk *chunk; 7109 u8 *array_ptr; 7110 unsigned long sb_array_offset; 7111 int ret = 0; 7112 u32 num_stripes; 7113 u32 array_size; 7114 u32 len = 0; 7115 u32 cur_offset; 7116 u64 type; 7117 struct btrfs_key key; 7118 7119 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7120 /* 7121 * This will create extent buffer of nodesize, superblock size is 7122 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 7123 * overallocate but we can keep it as-is, only the first page is used. 7124 */ 7125 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 7126 if (IS_ERR(sb)) 7127 return PTR_ERR(sb); 7128 set_extent_buffer_uptodate(sb); 7129 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 7130 /* 7131 * The sb extent buffer is artificial and just used to read the system array. 7132 * set_extent_buffer_uptodate() call does not properly mark all it's 7133 * pages up-to-date when the page is larger: extent does not cover the 7134 * whole page and consequently check_page_uptodate does not find all 7135 * the page's extents up-to-date (the hole beyond sb), 7136 * write_extent_buffer then triggers a WARN_ON. 7137 * 7138 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7139 * but sb spans only this function. Add an explicit SetPageUptodate call 7140 * to silence the warning eg. on PowerPC 64. 7141 */ 7142 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7143 SetPageUptodate(sb->pages[0]); 7144 7145 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7146 array_size = btrfs_super_sys_array_size(super_copy); 7147 7148 array_ptr = super_copy->sys_chunk_array; 7149 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7150 cur_offset = 0; 7151 7152 while (cur_offset < array_size) { 7153 disk_key = (struct btrfs_disk_key *)array_ptr; 7154 len = sizeof(*disk_key); 7155 if (cur_offset + len > array_size) 7156 goto out_short_read; 7157 7158 btrfs_disk_key_to_cpu(&key, disk_key); 7159 7160 array_ptr += len; 7161 sb_array_offset += len; 7162 cur_offset += len; 7163 7164 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 7165 chunk = (struct btrfs_chunk *)sb_array_offset; 7166 /* 7167 * At least one btrfs_chunk with one stripe must be 7168 * present, exact stripe count check comes afterwards 7169 */ 7170 len = btrfs_chunk_item_size(1); 7171 if (cur_offset + len > array_size) 7172 goto out_short_read; 7173 7174 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7175 if (!num_stripes) { 7176 btrfs_err(fs_info, 7177 "invalid number of stripes %u in sys_array at offset %u", 7178 num_stripes, cur_offset); 7179 ret = -EIO; 7180 break; 7181 } 7182 7183 type = btrfs_chunk_type(sb, chunk); 7184 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7185 btrfs_err(fs_info, 7186 "invalid chunk type %llu in sys_array at offset %u", 7187 type, cur_offset); 7188 ret = -EIO; 7189 break; 7190 } 7191 7192 len = btrfs_chunk_item_size(num_stripes); 7193 if (cur_offset + len > array_size) 7194 goto out_short_read; 7195 7196 ret = read_one_chunk(fs_info, &key, sb, chunk); 7197 if (ret) 7198 break; 7199 } else { 7200 btrfs_err(fs_info, 7201 "unexpected item type %u in sys_array at offset %u", 7202 (u32)key.type, cur_offset); 7203 ret = -EIO; 7204 break; 7205 } 7206 array_ptr += len; 7207 sb_array_offset += len; 7208 cur_offset += len; 7209 } 7210 clear_extent_buffer_uptodate(sb); 7211 free_extent_buffer_stale(sb); 7212 return ret; 7213 7214 out_short_read: 7215 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7216 len, cur_offset); 7217 clear_extent_buffer_uptodate(sb); 7218 free_extent_buffer_stale(sb); 7219 return -EIO; 7220 } 7221 7222 /* 7223 * Check if all chunks in the fs are OK for read-write degraded mount 7224 * 7225 * If the @failing_dev is specified, it's accounted as missing. 7226 * 7227 * Return true if all chunks meet the minimal RW mount requirements. 7228 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7229 */ 7230 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7231 struct btrfs_device *failing_dev) 7232 { 7233 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 7234 struct extent_map *em; 7235 u64 next_start = 0; 7236 bool ret = true; 7237 7238 read_lock(&map_tree->map_tree.lock); 7239 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1); 7240 read_unlock(&map_tree->map_tree.lock); 7241 /* No chunk at all? Return false anyway */ 7242 if (!em) { 7243 ret = false; 7244 goto out; 7245 } 7246 while (em) { 7247 struct map_lookup *map; 7248 int missing = 0; 7249 int max_tolerated; 7250 int i; 7251 7252 map = em->map_lookup; 7253 max_tolerated = 7254 btrfs_get_num_tolerated_disk_barrier_failures( 7255 map->type); 7256 for (i = 0; i < map->num_stripes; i++) { 7257 struct btrfs_device *dev = map->stripes[i].dev; 7258 7259 if (!dev || !dev->bdev || 7260 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7261 dev->last_flush_error) 7262 missing++; 7263 else if (failing_dev && failing_dev == dev) 7264 missing++; 7265 } 7266 if (missing > max_tolerated) { 7267 if (!failing_dev) 7268 btrfs_warn(fs_info, 7269 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7270 em->start, missing, max_tolerated); 7271 free_extent_map(em); 7272 ret = false; 7273 goto out; 7274 } 7275 next_start = extent_map_end(em); 7276 free_extent_map(em); 7277 7278 read_lock(&map_tree->map_tree.lock); 7279 em = lookup_extent_mapping(&map_tree->map_tree, next_start, 7280 (u64)(-1) - next_start); 7281 read_unlock(&map_tree->map_tree.lock); 7282 } 7283 out: 7284 return ret; 7285 } 7286 7287 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7288 { 7289 struct btrfs_root *root = fs_info->chunk_root; 7290 struct btrfs_path *path; 7291 struct extent_buffer *leaf; 7292 struct btrfs_key key; 7293 struct btrfs_key found_key; 7294 int ret; 7295 int slot; 7296 u64 total_dev = 0; 7297 7298 path = btrfs_alloc_path(); 7299 if (!path) 7300 return -ENOMEM; 7301 7302 /* 7303 * uuid_mutex is needed only if we are mounting a sprout FS 7304 * otherwise we don't need it. 7305 */ 7306 mutex_lock(&uuid_mutex); 7307 mutex_lock(&fs_info->chunk_mutex); 7308 7309 /* 7310 * Read all device items, and then all the chunk items. All 7311 * device items are found before any chunk item (their object id 7312 * is smaller than the lowest possible object id for a chunk 7313 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7314 */ 7315 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7316 key.offset = 0; 7317 key.type = 0; 7318 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7319 if (ret < 0) 7320 goto error; 7321 while (1) { 7322 leaf = path->nodes[0]; 7323 slot = path->slots[0]; 7324 if (slot >= btrfs_header_nritems(leaf)) { 7325 ret = btrfs_next_leaf(root, path); 7326 if (ret == 0) 7327 continue; 7328 if (ret < 0) 7329 goto error; 7330 break; 7331 } 7332 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7333 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7334 struct btrfs_dev_item *dev_item; 7335 dev_item = btrfs_item_ptr(leaf, slot, 7336 struct btrfs_dev_item); 7337 ret = read_one_dev(fs_info, leaf, dev_item); 7338 if (ret) 7339 goto error; 7340 total_dev++; 7341 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7342 struct btrfs_chunk *chunk; 7343 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7344 ret = read_one_chunk(fs_info, &found_key, leaf, chunk); 7345 if (ret) 7346 goto error; 7347 } 7348 path->slots[0]++; 7349 } 7350 7351 /* 7352 * After loading chunk tree, we've got all device information, 7353 * do another round of validation checks. 7354 */ 7355 if (total_dev != fs_info->fs_devices->total_devices) { 7356 btrfs_err(fs_info, 7357 "super_num_devices %llu mismatch with num_devices %llu found here", 7358 btrfs_super_num_devices(fs_info->super_copy), 7359 total_dev); 7360 ret = -EINVAL; 7361 goto error; 7362 } 7363 if (btrfs_super_total_bytes(fs_info->super_copy) < 7364 fs_info->fs_devices->total_rw_bytes) { 7365 btrfs_err(fs_info, 7366 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7367 btrfs_super_total_bytes(fs_info->super_copy), 7368 fs_info->fs_devices->total_rw_bytes); 7369 ret = -EINVAL; 7370 goto error; 7371 } 7372 ret = 0; 7373 error: 7374 mutex_unlock(&fs_info->chunk_mutex); 7375 mutex_unlock(&uuid_mutex); 7376 7377 btrfs_free_path(path); 7378 return ret; 7379 } 7380 7381 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7382 { 7383 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7384 struct btrfs_device *device; 7385 7386 while (fs_devices) { 7387 mutex_lock(&fs_devices->device_list_mutex); 7388 list_for_each_entry(device, &fs_devices->devices, dev_list) 7389 device->fs_info = fs_info; 7390 mutex_unlock(&fs_devices->device_list_mutex); 7391 7392 fs_devices = fs_devices->seed; 7393 } 7394 } 7395 7396 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 7397 { 7398 int i; 7399 7400 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7401 btrfs_dev_stat_reset(dev, i); 7402 } 7403 7404 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7405 { 7406 struct btrfs_key key; 7407 struct btrfs_key found_key; 7408 struct btrfs_root *dev_root = fs_info->dev_root; 7409 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7410 struct extent_buffer *eb; 7411 int slot; 7412 int ret = 0; 7413 struct btrfs_device *device; 7414 struct btrfs_path *path = NULL; 7415 int i; 7416 7417 path = btrfs_alloc_path(); 7418 if (!path) { 7419 ret = -ENOMEM; 7420 goto out; 7421 } 7422 7423 mutex_lock(&fs_devices->device_list_mutex); 7424 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7425 int item_size; 7426 struct btrfs_dev_stats_item *ptr; 7427 7428 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7429 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7430 key.offset = device->devid; 7431 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 7432 if (ret) { 7433 __btrfs_reset_dev_stats(device); 7434 device->dev_stats_valid = 1; 7435 btrfs_release_path(path); 7436 continue; 7437 } 7438 slot = path->slots[0]; 7439 eb = path->nodes[0]; 7440 btrfs_item_key_to_cpu(eb, &found_key, slot); 7441 item_size = btrfs_item_size_nr(eb, slot); 7442 7443 ptr = btrfs_item_ptr(eb, slot, 7444 struct btrfs_dev_stats_item); 7445 7446 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7447 if (item_size >= (1 + i) * sizeof(__le64)) 7448 btrfs_dev_stat_set(device, i, 7449 btrfs_dev_stats_value(eb, ptr, i)); 7450 else 7451 btrfs_dev_stat_reset(device, i); 7452 } 7453 7454 device->dev_stats_valid = 1; 7455 btrfs_dev_stat_print_on_load(device); 7456 btrfs_release_path(path); 7457 } 7458 mutex_unlock(&fs_devices->device_list_mutex); 7459 7460 out: 7461 btrfs_free_path(path); 7462 return ret < 0 ? ret : 0; 7463 } 7464 7465 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7466 struct btrfs_device *device) 7467 { 7468 struct btrfs_fs_info *fs_info = trans->fs_info; 7469 struct btrfs_root *dev_root = fs_info->dev_root; 7470 struct btrfs_path *path; 7471 struct btrfs_key key; 7472 struct extent_buffer *eb; 7473 struct btrfs_dev_stats_item *ptr; 7474 int ret; 7475 int i; 7476 7477 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7478 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7479 key.offset = device->devid; 7480 7481 path = btrfs_alloc_path(); 7482 if (!path) 7483 return -ENOMEM; 7484 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7485 if (ret < 0) { 7486 btrfs_warn_in_rcu(fs_info, 7487 "error %d while searching for dev_stats item for device %s", 7488 ret, rcu_str_deref(device->name)); 7489 goto out; 7490 } 7491 7492 if (ret == 0 && 7493 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7494 /* need to delete old one and insert a new one */ 7495 ret = btrfs_del_item(trans, dev_root, path); 7496 if (ret != 0) { 7497 btrfs_warn_in_rcu(fs_info, 7498 "delete too small dev_stats item for device %s failed %d", 7499 rcu_str_deref(device->name), ret); 7500 goto out; 7501 } 7502 ret = 1; 7503 } 7504 7505 if (ret == 1) { 7506 /* need to insert a new item */ 7507 btrfs_release_path(path); 7508 ret = btrfs_insert_empty_item(trans, dev_root, path, 7509 &key, sizeof(*ptr)); 7510 if (ret < 0) { 7511 btrfs_warn_in_rcu(fs_info, 7512 "insert dev_stats item for device %s failed %d", 7513 rcu_str_deref(device->name), ret); 7514 goto out; 7515 } 7516 } 7517 7518 eb = path->nodes[0]; 7519 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7520 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7521 btrfs_set_dev_stats_value(eb, ptr, i, 7522 btrfs_dev_stat_read(device, i)); 7523 btrfs_mark_buffer_dirty(eb); 7524 7525 out: 7526 btrfs_free_path(path); 7527 return ret; 7528 } 7529 7530 /* 7531 * called from commit_transaction. Writes all changed device stats to disk. 7532 */ 7533 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 7534 struct btrfs_fs_info *fs_info) 7535 { 7536 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7537 struct btrfs_device *device; 7538 int stats_cnt; 7539 int ret = 0; 7540 7541 mutex_lock(&fs_devices->device_list_mutex); 7542 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7543 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7544 if (!device->dev_stats_valid || stats_cnt == 0) 7545 continue; 7546 7547 7548 /* 7549 * There is a LOAD-LOAD control dependency between the value of 7550 * dev_stats_ccnt and updating the on-disk values which requires 7551 * reading the in-memory counters. Such control dependencies 7552 * require explicit read memory barriers. 7553 * 7554 * This memory barriers pairs with smp_mb__before_atomic in 7555 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7556 * barrier implied by atomic_xchg in 7557 * btrfs_dev_stats_read_and_reset 7558 */ 7559 smp_rmb(); 7560 7561 ret = update_dev_stat_item(trans, device); 7562 if (!ret) 7563 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7564 } 7565 mutex_unlock(&fs_devices->device_list_mutex); 7566 7567 return ret; 7568 } 7569 7570 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7571 { 7572 btrfs_dev_stat_inc(dev, index); 7573 btrfs_dev_stat_print_on_error(dev); 7574 } 7575 7576 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7577 { 7578 if (!dev->dev_stats_valid) 7579 return; 7580 btrfs_err_rl_in_rcu(dev->fs_info, 7581 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7582 rcu_str_deref(dev->name), 7583 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7584 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7585 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7586 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7587 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7588 } 7589 7590 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7591 { 7592 int i; 7593 7594 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7595 if (btrfs_dev_stat_read(dev, i) != 0) 7596 break; 7597 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7598 return; /* all values == 0, suppress message */ 7599 7600 btrfs_info_in_rcu(dev->fs_info, 7601 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7602 rcu_str_deref(dev->name), 7603 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7604 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7605 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7606 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7607 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7608 } 7609 7610 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7611 struct btrfs_ioctl_get_dev_stats *stats) 7612 { 7613 struct btrfs_device *dev; 7614 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7615 int i; 7616 7617 mutex_lock(&fs_devices->device_list_mutex); 7618 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7619 true); 7620 mutex_unlock(&fs_devices->device_list_mutex); 7621 7622 if (!dev) { 7623 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7624 return -ENODEV; 7625 } else if (!dev->dev_stats_valid) { 7626 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7627 return -ENODEV; 7628 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7629 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7630 if (stats->nr_items > i) 7631 stats->values[i] = 7632 btrfs_dev_stat_read_and_reset(dev, i); 7633 else 7634 btrfs_dev_stat_reset(dev, i); 7635 } 7636 } else { 7637 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7638 if (stats->nr_items > i) 7639 stats->values[i] = btrfs_dev_stat_read(dev, i); 7640 } 7641 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7642 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7643 return 0; 7644 } 7645 7646 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7647 { 7648 struct buffer_head *bh; 7649 struct btrfs_super_block *disk_super; 7650 int copy_num; 7651 7652 if (!bdev) 7653 return; 7654 7655 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7656 copy_num++) { 7657 7658 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7659 continue; 7660 7661 disk_super = (struct btrfs_super_block *)bh->b_data; 7662 7663 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7664 set_buffer_dirty(bh); 7665 sync_dirty_buffer(bh); 7666 brelse(bh); 7667 } 7668 7669 /* Notify udev that device has changed */ 7670 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7671 7672 /* Update ctime/mtime for device path for libblkid */ 7673 update_dev_time(device_path); 7674 } 7675 7676 /* 7677 * Update the size of all devices, which is used for writing out the 7678 * super blocks. 7679 */ 7680 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 7681 { 7682 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7683 struct btrfs_device *curr, *next; 7684 7685 if (list_empty(&fs_devices->resized_devices)) 7686 return; 7687 7688 mutex_lock(&fs_devices->device_list_mutex); 7689 mutex_lock(&fs_info->chunk_mutex); 7690 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 7691 resized_list) { 7692 list_del_init(&curr->resized_list); 7693 curr->commit_total_bytes = curr->disk_total_bytes; 7694 } 7695 mutex_unlock(&fs_info->chunk_mutex); 7696 mutex_unlock(&fs_devices->device_list_mutex); 7697 } 7698 7699 /* Must be invoked during the transaction commit */ 7700 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans) 7701 { 7702 struct btrfs_fs_info *fs_info = trans->fs_info; 7703 struct extent_map *em; 7704 struct map_lookup *map; 7705 struct btrfs_device *dev; 7706 int i; 7707 7708 if (list_empty(&trans->pending_chunks)) 7709 return; 7710 7711 /* In order to kick the device replace finish process */ 7712 mutex_lock(&fs_info->chunk_mutex); 7713 list_for_each_entry(em, &trans->pending_chunks, list) { 7714 map = em->map_lookup; 7715 7716 for (i = 0; i < map->num_stripes; i++) { 7717 dev = map->stripes[i].dev; 7718 dev->commit_bytes_used = dev->bytes_used; 7719 } 7720 } 7721 mutex_unlock(&fs_info->chunk_mutex); 7722 } 7723 7724 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7725 { 7726 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7727 while (fs_devices) { 7728 fs_devices->fs_info = fs_info; 7729 fs_devices = fs_devices->seed; 7730 } 7731 } 7732 7733 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7734 { 7735 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7736 while (fs_devices) { 7737 fs_devices->fs_info = NULL; 7738 fs_devices = fs_devices->seed; 7739 } 7740 } 7741 7742 /* 7743 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7744 */ 7745 int btrfs_bg_type_to_factor(u64 flags) 7746 { 7747 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 7748 BTRFS_BLOCK_GROUP_RAID10)) 7749 return 2; 7750 return 1; 7751 } 7752 7753 7754 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 7755 { 7756 int index = btrfs_bg_flags_to_raid_index(type); 7757 int ncopies = btrfs_raid_array[index].ncopies; 7758 int data_stripes; 7759 7760 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 7761 case BTRFS_BLOCK_GROUP_RAID5: 7762 data_stripes = num_stripes - 1; 7763 break; 7764 case BTRFS_BLOCK_GROUP_RAID6: 7765 data_stripes = num_stripes - 2; 7766 break; 7767 default: 7768 data_stripes = num_stripes / ncopies; 7769 break; 7770 } 7771 return div_u64(chunk_len, data_stripes); 7772 } 7773 7774 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7775 u64 chunk_offset, u64 devid, 7776 u64 physical_offset, u64 physical_len) 7777 { 7778 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 7779 struct extent_map *em; 7780 struct map_lookup *map; 7781 struct btrfs_device *dev; 7782 u64 stripe_len; 7783 bool found = false; 7784 int ret = 0; 7785 int i; 7786 7787 read_lock(&em_tree->lock); 7788 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7789 read_unlock(&em_tree->lock); 7790 7791 if (!em) { 7792 btrfs_err(fs_info, 7793 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7794 physical_offset, devid); 7795 ret = -EUCLEAN; 7796 goto out; 7797 } 7798 7799 map = em->map_lookup; 7800 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7801 if (physical_len != stripe_len) { 7802 btrfs_err(fs_info, 7803 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7804 physical_offset, devid, em->start, physical_len, 7805 stripe_len); 7806 ret = -EUCLEAN; 7807 goto out; 7808 } 7809 7810 for (i = 0; i < map->num_stripes; i++) { 7811 if (map->stripes[i].dev->devid == devid && 7812 map->stripes[i].physical == physical_offset) { 7813 found = true; 7814 if (map->verified_stripes >= map->num_stripes) { 7815 btrfs_err(fs_info, 7816 "too many dev extents for chunk %llu found", 7817 em->start); 7818 ret = -EUCLEAN; 7819 goto out; 7820 } 7821 map->verified_stripes++; 7822 break; 7823 } 7824 } 7825 if (!found) { 7826 btrfs_err(fs_info, 7827 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7828 physical_offset, devid); 7829 ret = -EUCLEAN; 7830 } 7831 7832 /* Make sure no dev extent is beyond device bondary */ 7833 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7834 if (!dev) { 7835 btrfs_err(fs_info, "failed to find devid %llu", devid); 7836 ret = -EUCLEAN; 7837 goto out; 7838 } 7839 7840 /* It's possible this device is a dummy for seed device */ 7841 if (dev->disk_total_bytes == 0) { 7842 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL, 7843 NULL, false); 7844 if (!dev) { 7845 btrfs_err(fs_info, "failed to find seed devid %llu", 7846 devid); 7847 ret = -EUCLEAN; 7848 goto out; 7849 } 7850 } 7851 7852 if (physical_offset + physical_len > dev->disk_total_bytes) { 7853 btrfs_err(fs_info, 7854 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7855 devid, physical_offset, physical_len, 7856 dev->disk_total_bytes); 7857 ret = -EUCLEAN; 7858 goto out; 7859 } 7860 out: 7861 free_extent_map(em); 7862 return ret; 7863 } 7864 7865 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7866 { 7867 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 7868 struct extent_map *em; 7869 struct rb_node *node; 7870 int ret = 0; 7871 7872 read_lock(&em_tree->lock); 7873 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7874 em = rb_entry(node, struct extent_map, rb_node); 7875 if (em->map_lookup->num_stripes != 7876 em->map_lookup->verified_stripes) { 7877 btrfs_err(fs_info, 7878 "chunk %llu has missing dev extent, have %d expect %d", 7879 em->start, em->map_lookup->verified_stripes, 7880 em->map_lookup->num_stripes); 7881 ret = -EUCLEAN; 7882 goto out; 7883 } 7884 } 7885 out: 7886 read_unlock(&em_tree->lock); 7887 return ret; 7888 } 7889 7890 /* 7891 * Ensure that all dev extents are mapped to correct chunk, otherwise 7892 * later chunk allocation/free would cause unexpected behavior. 7893 * 7894 * NOTE: This will iterate through the whole device tree, which should be of 7895 * the same size level as the chunk tree. This slightly increases mount time. 7896 */ 7897 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7898 { 7899 struct btrfs_path *path; 7900 struct btrfs_root *root = fs_info->dev_root; 7901 struct btrfs_key key; 7902 u64 prev_devid = 0; 7903 u64 prev_dev_ext_end = 0; 7904 int ret = 0; 7905 7906 key.objectid = 1; 7907 key.type = BTRFS_DEV_EXTENT_KEY; 7908 key.offset = 0; 7909 7910 path = btrfs_alloc_path(); 7911 if (!path) 7912 return -ENOMEM; 7913 7914 path->reada = READA_FORWARD; 7915 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7916 if (ret < 0) 7917 goto out; 7918 7919 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7920 ret = btrfs_next_item(root, path); 7921 if (ret < 0) 7922 goto out; 7923 /* No dev extents at all? Not good */ 7924 if (ret > 0) { 7925 ret = -EUCLEAN; 7926 goto out; 7927 } 7928 } 7929 while (1) { 7930 struct extent_buffer *leaf = path->nodes[0]; 7931 struct btrfs_dev_extent *dext; 7932 int slot = path->slots[0]; 7933 u64 chunk_offset; 7934 u64 physical_offset; 7935 u64 physical_len; 7936 u64 devid; 7937 7938 btrfs_item_key_to_cpu(leaf, &key, slot); 7939 if (key.type != BTRFS_DEV_EXTENT_KEY) 7940 break; 7941 devid = key.objectid; 7942 physical_offset = key.offset; 7943 7944 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7945 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7946 physical_len = btrfs_dev_extent_length(leaf, dext); 7947 7948 /* Check if this dev extent overlaps with the previous one */ 7949 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7950 btrfs_err(fs_info, 7951 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7952 devid, physical_offset, prev_dev_ext_end); 7953 ret = -EUCLEAN; 7954 goto out; 7955 } 7956 7957 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7958 physical_offset, physical_len); 7959 if (ret < 0) 7960 goto out; 7961 prev_devid = devid; 7962 prev_dev_ext_end = physical_offset + physical_len; 7963 7964 ret = btrfs_next_item(root, path); 7965 if (ret < 0) 7966 goto out; 7967 if (ret > 0) { 7968 ret = 0; 7969 break; 7970 } 7971 } 7972 7973 /* Ensure all chunks have corresponding dev extents */ 7974 ret = verify_chunk_dev_extent_mapping(fs_info); 7975 out: 7976 btrfs_free_path(path); 7977 return ret; 7978 } 7979 7980 /* 7981 * Check whether the given block group or device is pinned by any inode being 7982 * used as a swapfile. 7983 */ 7984 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7985 { 7986 struct btrfs_swapfile_pin *sp; 7987 struct rb_node *node; 7988 7989 spin_lock(&fs_info->swapfile_pins_lock); 7990 node = fs_info->swapfile_pins.rb_node; 7991 while (node) { 7992 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7993 if (ptr < sp->ptr) 7994 node = node->rb_left; 7995 else if (ptr > sp->ptr) 7996 node = node->rb_right; 7997 else 7998 break; 7999 } 8000 spin_unlock(&fs_info->swapfile_pins_lock); 8001 return node != NULL; 8002 } 8003