xref: /openbmc/linux/fs/btrfs/volumes.c (revision bc5aa3a0)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_root *root,
138 				struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143 
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148 	return &fs_uuids;
149 }
150 
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153 	struct btrfs_fs_devices *fs_devs;
154 
155 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 	if (!fs_devs)
157 		return ERR_PTR(-ENOMEM);
158 
159 	mutex_init(&fs_devs->device_list_mutex);
160 
161 	INIT_LIST_HEAD(&fs_devs->devices);
162 	INIT_LIST_HEAD(&fs_devs->resized_devices);
163 	INIT_LIST_HEAD(&fs_devs->alloc_list);
164 	INIT_LIST_HEAD(&fs_devs->list);
165 
166 	return fs_devs;
167 }
168 
169 /**
170  * alloc_fs_devices - allocate struct btrfs_fs_devices
171  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
172  *		generated.
173  *
174  * Return: a pointer to a new &struct btrfs_fs_devices on success;
175  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
176  * can be destroyed with kfree() right away.
177  */
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180 	struct btrfs_fs_devices *fs_devs;
181 
182 	fs_devs = __alloc_fs_devices();
183 	if (IS_ERR(fs_devs))
184 		return fs_devs;
185 
186 	if (fsid)
187 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 	else
189 		generate_random_uuid(fs_devs->fsid);
190 
191 	return fs_devs;
192 }
193 
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196 	struct btrfs_device *device;
197 	WARN_ON(fs_devices->opened);
198 	while (!list_empty(&fs_devices->devices)) {
199 		device = list_entry(fs_devices->devices.next,
200 				    struct btrfs_device, dev_list);
201 		list_del(&device->dev_list);
202 		rcu_string_free(device->name);
203 		kfree(device);
204 	}
205 	kfree(fs_devices);
206 }
207 
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 				 enum kobject_action action)
210 {
211 	int ret;
212 
213 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 	if (ret)
215 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 			action,
217 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 			&disk_to_dev(bdev->bd_disk)->kobj);
219 }
220 
221 void btrfs_cleanup_fs_uuids(void)
222 {
223 	struct btrfs_fs_devices *fs_devices;
224 
225 	while (!list_empty(&fs_uuids)) {
226 		fs_devices = list_entry(fs_uuids.next,
227 					struct btrfs_fs_devices, list);
228 		list_del(&fs_devices->list);
229 		free_fs_devices(fs_devices);
230 	}
231 }
232 
233 static struct btrfs_device *__alloc_device(void)
234 {
235 	struct btrfs_device *dev;
236 
237 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 	if (!dev)
239 		return ERR_PTR(-ENOMEM);
240 
241 	INIT_LIST_HEAD(&dev->dev_list);
242 	INIT_LIST_HEAD(&dev->dev_alloc_list);
243 	INIT_LIST_HEAD(&dev->resized_list);
244 
245 	spin_lock_init(&dev->io_lock);
246 
247 	spin_lock_init(&dev->reada_lock);
248 	atomic_set(&dev->reada_in_flight, 0);
249 	atomic_set(&dev->dev_stats_ccnt, 0);
250 	btrfs_device_data_ordered_init(dev);
251 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 
254 	return dev;
255 }
256 
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258 						   u64 devid, u8 *uuid)
259 {
260 	struct btrfs_device *dev;
261 
262 	list_for_each_entry(dev, head, dev_list) {
263 		if (dev->devid == devid &&
264 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 			return dev;
266 		}
267 	}
268 	return NULL;
269 }
270 
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273 	struct btrfs_fs_devices *fs_devices;
274 
275 	list_for_each_entry(fs_devices, &fs_uuids, list) {
276 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 			return fs_devices;
278 	}
279 	return NULL;
280 }
281 
282 static int
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 		      int flush, struct block_device **bdev,
285 		      struct buffer_head **bh)
286 {
287 	int ret;
288 
289 	*bdev = blkdev_get_by_path(device_path, flags, holder);
290 
291 	if (IS_ERR(*bdev)) {
292 		ret = PTR_ERR(*bdev);
293 		goto error;
294 	}
295 
296 	if (flush)
297 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 	ret = set_blocksize(*bdev, 4096);
299 	if (ret) {
300 		blkdev_put(*bdev, flags);
301 		goto error;
302 	}
303 	invalidate_bdev(*bdev);
304 	*bh = btrfs_read_dev_super(*bdev);
305 	if (IS_ERR(*bh)) {
306 		ret = PTR_ERR(*bh);
307 		blkdev_put(*bdev, flags);
308 		goto error;
309 	}
310 
311 	return 0;
312 
313 error:
314 	*bdev = NULL;
315 	*bh = NULL;
316 	return ret;
317 }
318 
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 			struct bio *head, struct bio *tail)
321 {
322 
323 	struct bio *old_head;
324 
325 	old_head = pending_bios->head;
326 	pending_bios->head = head;
327 	if (pending_bios->tail)
328 		tail->bi_next = old_head;
329 	else
330 		pending_bios->tail = tail;
331 }
332 
333 /*
334  * we try to collect pending bios for a device so we don't get a large
335  * number of procs sending bios down to the same device.  This greatly
336  * improves the schedulers ability to collect and merge the bios.
337  *
338  * But, it also turns into a long list of bios to process and that is sure
339  * to eventually make the worker thread block.  The solution here is to
340  * make some progress and then put this work struct back at the end of
341  * the list if the block device is congested.  This way, multiple devices
342  * can make progress from a single worker thread.
343  */
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346 	struct bio *pending;
347 	struct backing_dev_info *bdi;
348 	struct btrfs_fs_info *fs_info;
349 	struct btrfs_pending_bios *pending_bios;
350 	struct bio *tail;
351 	struct bio *cur;
352 	int again = 0;
353 	unsigned long num_run;
354 	unsigned long batch_run = 0;
355 	unsigned long limit;
356 	unsigned long last_waited = 0;
357 	int force_reg = 0;
358 	int sync_pending = 0;
359 	struct blk_plug plug;
360 
361 	/*
362 	 * this function runs all the bios we've collected for
363 	 * a particular device.  We don't want to wander off to
364 	 * another device without first sending all of these down.
365 	 * So, setup a plug here and finish it off before we return
366 	 */
367 	blk_start_plug(&plug);
368 
369 	bdi = blk_get_backing_dev_info(device->bdev);
370 	fs_info = device->dev_root->fs_info;
371 	limit = btrfs_async_submit_limit(fs_info);
372 	limit = limit * 2 / 3;
373 
374 loop:
375 	spin_lock(&device->io_lock);
376 
377 loop_lock:
378 	num_run = 0;
379 
380 	/* take all the bios off the list at once and process them
381 	 * later on (without the lock held).  But, remember the
382 	 * tail and other pointers so the bios can be properly reinserted
383 	 * into the list if we hit congestion
384 	 */
385 	if (!force_reg && device->pending_sync_bios.head) {
386 		pending_bios = &device->pending_sync_bios;
387 		force_reg = 1;
388 	} else {
389 		pending_bios = &device->pending_bios;
390 		force_reg = 0;
391 	}
392 
393 	pending = pending_bios->head;
394 	tail = pending_bios->tail;
395 	WARN_ON(pending && !tail);
396 
397 	/*
398 	 * if pending was null this time around, no bios need processing
399 	 * at all and we can stop.  Otherwise it'll loop back up again
400 	 * and do an additional check so no bios are missed.
401 	 *
402 	 * device->running_pending is used to synchronize with the
403 	 * schedule_bio code.
404 	 */
405 	if (device->pending_sync_bios.head == NULL &&
406 	    device->pending_bios.head == NULL) {
407 		again = 0;
408 		device->running_pending = 0;
409 	} else {
410 		again = 1;
411 		device->running_pending = 1;
412 	}
413 
414 	pending_bios->head = NULL;
415 	pending_bios->tail = NULL;
416 
417 	spin_unlock(&device->io_lock);
418 
419 	while (pending) {
420 
421 		rmb();
422 		/* we want to work on both lists, but do more bios on the
423 		 * sync list than the regular list
424 		 */
425 		if ((num_run > 32 &&
426 		    pending_bios != &device->pending_sync_bios &&
427 		    device->pending_sync_bios.head) ||
428 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 		    device->pending_bios.head)) {
430 			spin_lock(&device->io_lock);
431 			requeue_list(pending_bios, pending, tail);
432 			goto loop_lock;
433 		}
434 
435 		cur = pending;
436 		pending = pending->bi_next;
437 		cur->bi_next = NULL;
438 
439 		/*
440 		 * atomic_dec_return implies a barrier for waitqueue_active
441 		 */
442 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443 		    waitqueue_active(&fs_info->async_submit_wait))
444 			wake_up(&fs_info->async_submit_wait);
445 
446 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447 
448 		/*
449 		 * if we're doing the sync list, record that our
450 		 * plug has some sync requests on it
451 		 *
452 		 * If we're doing the regular list and there are
453 		 * sync requests sitting around, unplug before
454 		 * we add more
455 		 */
456 		if (pending_bios == &device->pending_sync_bios) {
457 			sync_pending = 1;
458 		} else if (sync_pending) {
459 			blk_finish_plug(&plug);
460 			blk_start_plug(&plug);
461 			sync_pending = 0;
462 		}
463 
464 		btrfsic_submit_bio(cur);
465 		num_run++;
466 		batch_run++;
467 
468 		cond_resched();
469 
470 		/*
471 		 * we made progress, there is more work to do and the bdi
472 		 * is now congested.  Back off and let other work structs
473 		 * run instead
474 		 */
475 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476 		    fs_info->fs_devices->open_devices > 1) {
477 			struct io_context *ioc;
478 
479 			ioc = current->io_context;
480 
481 			/*
482 			 * the main goal here is that we don't want to
483 			 * block if we're going to be able to submit
484 			 * more requests without blocking.
485 			 *
486 			 * This code does two great things, it pokes into
487 			 * the elevator code from a filesystem _and_
488 			 * it makes assumptions about how batching works.
489 			 */
490 			if (ioc && ioc->nr_batch_requests > 0 &&
491 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 			    (last_waited == 0 ||
493 			     ioc->last_waited == last_waited)) {
494 				/*
495 				 * we want to go through our batch of
496 				 * requests and stop.  So, we copy out
497 				 * the ioc->last_waited time and test
498 				 * against it before looping
499 				 */
500 				last_waited = ioc->last_waited;
501 				cond_resched();
502 				continue;
503 			}
504 			spin_lock(&device->io_lock);
505 			requeue_list(pending_bios, pending, tail);
506 			device->running_pending = 1;
507 
508 			spin_unlock(&device->io_lock);
509 			btrfs_queue_work(fs_info->submit_workers,
510 					 &device->work);
511 			goto done;
512 		}
513 		/* unplug every 64 requests just for good measure */
514 		if (batch_run % 64 == 0) {
515 			blk_finish_plug(&plug);
516 			blk_start_plug(&plug);
517 			sync_pending = 0;
518 		}
519 	}
520 
521 	cond_resched();
522 	if (again)
523 		goto loop;
524 
525 	spin_lock(&device->io_lock);
526 	if (device->pending_bios.head || device->pending_sync_bios.head)
527 		goto loop_lock;
528 	spin_unlock(&device->io_lock);
529 
530 done:
531 	blk_finish_plug(&plug);
532 }
533 
534 static void pending_bios_fn(struct btrfs_work *work)
535 {
536 	struct btrfs_device *device;
537 
538 	device = container_of(work, struct btrfs_device, work);
539 	run_scheduled_bios(device);
540 }
541 
542 
543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544 {
545 	struct btrfs_fs_devices *fs_devs;
546 	struct btrfs_device *dev;
547 
548 	if (!cur_dev->name)
549 		return;
550 
551 	list_for_each_entry(fs_devs, &fs_uuids, list) {
552 		int del = 1;
553 
554 		if (fs_devs->opened)
555 			continue;
556 		if (fs_devs->seeding)
557 			continue;
558 
559 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560 
561 			if (dev == cur_dev)
562 				continue;
563 			if (!dev->name)
564 				continue;
565 
566 			/*
567 			 * Todo: This won't be enough. What if the same device
568 			 * comes back (with new uuid and) with its mapper path?
569 			 * But for now, this does help as mostly an admin will
570 			 * either use mapper or non mapper path throughout.
571 			 */
572 			rcu_read_lock();
573 			del = strcmp(rcu_str_deref(dev->name),
574 						rcu_str_deref(cur_dev->name));
575 			rcu_read_unlock();
576 			if (!del)
577 				break;
578 		}
579 
580 		if (!del) {
581 			/* delete the stale device */
582 			if (fs_devs->num_devices == 1) {
583 				btrfs_sysfs_remove_fsid(fs_devs);
584 				list_del(&fs_devs->list);
585 				free_fs_devices(fs_devs);
586 			} else {
587 				fs_devs->num_devices--;
588 				list_del(&dev->dev_list);
589 				rcu_string_free(dev->name);
590 				kfree(dev);
591 			}
592 			break;
593 		}
594 	}
595 }
596 
597 /*
598  * Add new device to list of registered devices
599  *
600  * Returns:
601  * 1   - first time device is seen
602  * 0   - device already known
603  * < 0 - error
604  */
605 static noinline int device_list_add(const char *path,
606 			   struct btrfs_super_block *disk_super,
607 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608 {
609 	struct btrfs_device *device;
610 	struct btrfs_fs_devices *fs_devices;
611 	struct rcu_string *name;
612 	int ret = 0;
613 	u64 found_transid = btrfs_super_generation(disk_super);
614 
615 	fs_devices = find_fsid(disk_super->fsid);
616 	if (!fs_devices) {
617 		fs_devices = alloc_fs_devices(disk_super->fsid);
618 		if (IS_ERR(fs_devices))
619 			return PTR_ERR(fs_devices);
620 
621 		list_add(&fs_devices->list, &fs_uuids);
622 
623 		device = NULL;
624 	} else {
625 		device = __find_device(&fs_devices->devices, devid,
626 				       disk_super->dev_item.uuid);
627 	}
628 
629 	if (!device) {
630 		if (fs_devices->opened)
631 			return -EBUSY;
632 
633 		device = btrfs_alloc_device(NULL, &devid,
634 					    disk_super->dev_item.uuid);
635 		if (IS_ERR(device)) {
636 			/* we can safely leave the fs_devices entry around */
637 			return PTR_ERR(device);
638 		}
639 
640 		name = rcu_string_strdup(path, GFP_NOFS);
641 		if (!name) {
642 			kfree(device);
643 			return -ENOMEM;
644 		}
645 		rcu_assign_pointer(device->name, name);
646 
647 		mutex_lock(&fs_devices->device_list_mutex);
648 		list_add_rcu(&device->dev_list, &fs_devices->devices);
649 		fs_devices->num_devices++;
650 		mutex_unlock(&fs_devices->device_list_mutex);
651 
652 		ret = 1;
653 		device->fs_devices = fs_devices;
654 	} else if (!device->name || strcmp(device->name->str, path)) {
655 		/*
656 		 * When FS is already mounted.
657 		 * 1. If you are here and if the device->name is NULL that
658 		 *    means this device was missing at time of FS mount.
659 		 * 2. If you are here and if the device->name is different
660 		 *    from 'path' that means either
661 		 *      a. The same device disappeared and reappeared with
662 		 *         different name. or
663 		 *      b. The missing-disk-which-was-replaced, has
664 		 *         reappeared now.
665 		 *
666 		 * We must allow 1 and 2a above. But 2b would be a spurious
667 		 * and unintentional.
668 		 *
669 		 * Further in case of 1 and 2a above, the disk at 'path'
670 		 * would have missed some transaction when it was away and
671 		 * in case of 2a the stale bdev has to be updated as well.
672 		 * 2b must not be allowed at all time.
673 		 */
674 
675 		/*
676 		 * For now, we do allow update to btrfs_fs_device through the
677 		 * btrfs dev scan cli after FS has been mounted.  We're still
678 		 * tracking a problem where systems fail mount by subvolume id
679 		 * when we reject replacement on a mounted FS.
680 		 */
681 		if (!fs_devices->opened && found_transid < device->generation) {
682 			/*
683 			 * That is if the FS is _not_ mounted and if you
684 			 * are here, that means there is more than one
685 			 * disk with same uuid and devid.We keep the one
686 			 * with larger generation number or the last-in if
687 			 * generation are equal.
688 			 */
689 			return -EEXIST;
690 		}
691 
692 		name = rcu_string_strdup(path, GFP_NOFS);
693 		if (!name)
694 			return -ENOMEM;
695 		rcu_string_free(device->name);
696 		rcu_assign_pointer(device->name, name);
697 		if (device->missing) {
698 			fs_devices->missing_devices--;
699 			device->missing = 0;
700 		}
701 	}
702 
703 	/*
704 	 * Unmount does not free the btrfs_device struct but would zero
705 	 * generation along with most of the other members. So just update
706 	 * it back. We need it to pick the disk with largest generation
707 	 * (as above).
708 	 */
709 	if (!fs_devices->opened)
710 		device->generation = found_transid;
711 
712 	/*
713 	 * if there is new btrfs on an already registered device,
714 	 * then remove the stale device entry.
715 	 */
716 	if (ret > 0)
717 		btrfs_free_stale_device(device);
718 
719 	*fs_devices_ret = fs_devices;
720 
721 	return ret;
722 }
723 
724 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725 {
726 	struct btrfs_fs_devices *fs_devices;
727 	struct btrfs_device *device;
728 	struct btrfs_device *orig_dev;
729 
730 	fs_devices = alloc_fs_devices(orig->fsid);
731 	if (IS_ERR(fs_devices))
732 		return fs_devices;
733 
734 	mutex_lock(&orig->device_list_mutex);
735 	fs_devices->total_devices = orig->total_devices;
736 
737 	/* We have held the volume lock, it is safe to get the devices. */
738 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
739 		struct rcu_string *name;
740 
741 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
742 					    orig_dev->uuid);
743 		if (IS_ERR(device))
744 			goto error;
745 
746 		/*
747 		 * This is ok to do without rcu read locked because we hold the
748 		 * uuid mutex so nothing we touch in here is going to disappear.
749 		 */
750 		if (orig_dev->name) {
751 			name = rcu_string_strdup(orig_dev->name->str,
752 					GFP_KERNEL);
753 			if (!name) {
754 				kfree(device);
755 				goto error;
756 			}
757 			rcu_assign_pointer(device->name, name);
758 		}
759 
760 		list_add(&device->dev_list, &fs_devices->devices);
761 		device->fs_devices = fs_devices;
762 		fs_devices->num_devices++;
763 	}
764 	mutex_unlock(&orig->device_list_mutex);
765 	return fs_devices;
766 error:
767 	mutex_unlock(&orig->device_list_mutex);
768 	free_fs_devices(fs_devices);
769 	return ERR_PTR(-ENOMEM);
770 }
771 
772 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
773 {
774 	struct btrfs_device *device, *next;
775 	struct btrfs_device *latest_dev = NULL;
776 
777 	mutex_lock(&uuid_mutex);
778 again:
779 	/* This is the initialized path, it is safe to release the devices. */
780 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
781 		if (device->in_fs_metadata) {
782 			if (!device->is_tgtdev_for_dev_replace &&
783 			    (!latest_dev ||
784 			     device->generation > latest_dev->generation)) {
785 				latest_dev = device;
786 			}
787 			continue;
788 		}
789 
790 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791 			/*
792 			 * In the first step, keep the device which has
793 			 * the correct fsid and the devid that is used
794 			 * for the dev_replace procedure.
795 			 * In the second step, the dev_replace state is
796 			 * read from the device tree and it is known
797 			 * whether the procedure is really active or
798 			 * not, which means whether this device is
799 			 * used or whether it should be removed.
800 			 */
801 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
802 				continue;
803 			}
804 		}
805 		if (device->bdev) {
806 			blkdev_put(device->bdev, device->mode);
807 			device->bdev = NULL;
808 			fs_devices->open_devices--;
809 		}
810 		if (device->writeable) {
811 			list_del_init(&device->dev_alloc_list);
812 			device->writeable = 0;
813 			if (!device->is_tgtdev_for_dev_replace)
814 				fs_devices->rw_devices--;
815 		}
816 		list_del_init(&device->dev_list);
817 		fs_devices->num_devices--;
818 		rcu_string_free(device->name);
819 		kfree(device);
820 	}
821 
822 	if (fs_devices->seed) {
823 		fs_devices = fs_devices->seed;
824 		goto again;
825 	}
826 
827 	fs_devices->latest_bdev = latest_dev->bdev;
828 
829 	mutex_unlock(&uuid_mutex);
830 }
831 
832 static void __free_device(struct work_struct *work)
833 {
834 	struct btrfs_device *device;
835 
836 	device = container_of(work, struct btrfs_device, rcu_work);
837 	rcu_string_free(device->name);
838 	kfree(device);
839 }
840 
841 static void free_device(struct rcu_head *head)
842 {
843 	struct btrfs_device *device;
844 
845 	device = container_of(head, struct btrfs_device, rcu);
846 
847 	INIT_WORK(&device->rcu_work, __free_device);
848 	schedule_work(&device->rcu_work);
849 }
850 
851 static void btrfs_close_bdev(struct btrfs_device *device)
852 {
853 	if (device->bdev && device->writeable) {
854 		sync_blockdev(device->bdev);
855 		invalidate_bdev(device->bdev);
856 	}
857 
858 	if (device->bdev)
859 		blkdev_put(device->bdev, device->mode);
860 }
861 
862 static void btrfs_close_one_device(struct btrfs_device *device)
863 {
864 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
865 	struct btrfs_device *new_device;
866 	struct rcu_string *name;
867 
868 	if (device->bdev)
869 		fs_devices->open_devices--;
870 
871 	if (device->writeable &&
872 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
873 		list_del_init(&device->dev_alloc_list);
874 		fs_devices->rw_devices--;
875 	}
876 
877 	if (device->missing)
878 		fs_devices->missing_devices--;
879 
880 	btrfs_close_bdev(device);
881 
882 	new_device = btrfs_alloc_device(NULL, &device->devid,
883 					device->uuid);
884 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
885 
886 	/* Safe because we are under uuid_mutex */
887 	if (device->name) {
888 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
889 		BUG_ON(!name); /* -ENOMEM */
890 		rcu_assign_pointer(new_device->name, name);
891 	}
892 
893 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
894 	new_device->fs_devices = device->fs_devices;
895 
896 	call_rcu(&device->rcu, free_device);
897 }
898 
899 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
900 {
901 	struct btrfs_device *device, *tmp;
902 
903 	if (--fs_devices->opened > 0)
904 		return 0;
905 
906 	mutex_lock(&fs_devices->device_list_mutex);
907 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
908 		btrfs_close_one_device(device);
909 	}
910 	mutex_unlock(&fs_devices->device_list_mutex);
911 
912 	WARN_ON(fs_devices->open_devices);
913 	WARN_ON(fs_devices->rw_devices);
914 	fs_devices->opened = 0;
915 	fs_devices->seeding = 0;
916 
917 	return 0;
918 }
919 
920 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
921 {
922 	struct btrfs_fs_devices *seed_devices = NULL;
923 	int ret;
924 
925 	mutex_lock(&uuid_mutex);
926 	ret = __btrfs_close_devices(fs_devices);
927 	if (!fs_devices->opened) {
928 		seed_devices = fs_devices->seed;
929 		fs_devices->seed = NULL;
930 	}
931 	mutex_unlock(&uuid_mutex);
932 
933 	while (seed_devices) {
934 		fs_devices = seed_devices;
935 		seed_devices = fs_devices->seed;
936 		__btrfs_close_devices(fs_devices);
937 		free_fs_devices(fs_devices);
938 	}
939 	/*
940 	 * Wait for rcu kworkers under __btrfs_close_devices
941 	 * to finish all blkdev_puts so device is really
942 	 * free when umount is done.
943 	 */
944 	rcu_barrier();
945 	return ret;
946 }
947 
948 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
949 				fmode_t flags, void *holder)
950 {
951 	struct request_queue *q;
952 	struct block_device *bdev;
953 	struct list_head *head = &fs_devices->devices;
954 	struct btrfs_device *device;
955 	struct btrfs_device *latest_dev = NULL;
956 	struct buffer_head *bh;
957 	struct btrfs_super_block *disk_super;
958 	u64 devid;
959 	int seeding = 1;
960 	int ret = 0;
961 
962 	flags |= FMODE_EXCL;
963 
964 	list_for_each_entry(device, head, dev_list) {
965 		if (device->bdev)
966 			continue;
967 		if (!device->name)
968 			continue;
969 
970 		/* Just open everything we can; ignore failures here */
971 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
972 					    &bdev, &bh))
973 			continue;
974 
975 		disk_super = (struct btrfs_super_block *)bh->b_data;
976 		devid = btrfs_stack_device_id(&disk_super->dev_item);
977 		if (devid != device->devid)
978 			goto error_brelse;
979 
980 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
981 			   BTRFS_UUID_SIZE))
982 			goto error_brelse;
983 
984 		device->generation = btrfs_super_generation(disk_super);
985 		if (!latest_dev ||
986 		    device->generation > latest_dev->generation)
987 			latest_dev = device;
988 
989 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
990 			device->writeable = 0;
991 		} else {
992 			device->writeable = !bdev_read_only(bdev);
993 			seeding = 0;
994 		}
995 
996 		q = bdev_get_queue(bdev);
997 		if (blk_queue_discard(q))
998 			device->can_discard = 1;
999 
1000 		device->bdev = bdev;
1001 		device->in_fs_metadata = 0;
1002 		device->mode = flags;
1003 
1004 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1005 			fs_devices->rotating = 1;
1006 
1007 		fs_devices->open_devices++;
1008 		if (device->writeable &&
1009 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1010 			fs_devices->rw_devices++;
1011 			list_add(&device->dev_alloc_list,
1012 				 &fs_devices->alloc_list);
1013 		}
1014 		brelse(bh);
1015 		continue;
1016 
1017 error_brelse:
1018 		brelse(bh);
1019 		blkdev_put(bdev, flags);
1020 		continue;
1021 	}
1022 	if (fs_devices->open_devices == 0) {
1023 		ret = -EINVAL;
1024 		goto out;
1025 	}
1026 	fs_devices->seeding = seeding;
1027 	fs_devices->opened = 1;
1028 	fs_devices->latest_bdev = latest_dev->bdev;
1029 	fs_devices->total_rw_bytes = 0;
1030 out:
1031 	return ret;
1032 }
1033 
1034 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1035 		       fmode_t flags, void *holder)
1036 {
1037 	int ret;
1038 
1039 	mutex_lock(&uuid_mutex);
1040 	if (fs_devices->opened) {
1041 		fs_devices->opened++;
1042 		ret = 0;
1043 	} else {
1044 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1045 	}
1046 	mutex_unlock(&uuid_mutex);
1047 	return ret;
1048 }
1049 
1050 void btrfs_release_disk_super(struct page *page)
1051 {
1052 	kunmap(page);
1053 	put_page(page);
1054 }
1055 
1056 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1057 		struct page **page, struct btrfs_super_block **disk_super)
1058 {
1059 	void *p;
1060 	pgoff_t index;
1061 
1062 	/* make sure our super fits in the device */
1063 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1064 		return 1;
1065 
1066 	/* make sure our super fits in the page */
1067 	if (sizeof(**disk_super) > PAGE_SIZE)
1068 		return 1;
1069 
1070 	/* make sure our super doesn't straddle pages on disk */
1071 	index = bytenr >> PAGE_SHIFT;
1072 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1073 		return 1;
1074 
1075 	/* pull in the page with our super */
1076 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1077 				   index, GFP_KERNEL);
1078 
1079 	if (IS_ERR_OR_NULL(*page))
1080 		return 1;
1081 
1082 	p = kmap(*page);
1083 
1084 	/* align our pointer to the offset of the super block */
1085 	*disk_super = p + (bytenr & ~PAGE_MASK);
1086 
1087 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1088 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1089 		btrfs_release_disk_super(*page);
1090 		return 1;
1091 	}
1092 
1093 	if ((*disk_super)->label[0] &&
1094 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1095 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1096 
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Look for a btrfs signature on a device. This may be called out of the mount path
1102  * and we are not allowed to call set_blocksize during the scan. The superblock
1103  * is read via pagecache
1104  */
1105 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1106 			  struct btrfs_fs_devices **fs_devices_ret)
1107 {
1108 	struct btrfs_super_block *disk_super;
1109 	struct block_device *bdev;
1110 	struct page *page;
1111 	int ret = -EINVAL;
1112 	u64 devid;
1113 	u64 transid;
1114 	u64 total_devices;
1115 	u64 bytenr;
1116 
1117 	/*
1118 	 * we would like to check all the supers, but that would make
1119 	 * a btrfs mount succeed after a mkfs from a different FS.
1120 	 * So, we need to add a special mount option to scan for
1121 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1122 	 */
1123 	bytenr = btrfs_sb_offset(0);
1124 	flags |= FMODE_EXCL;
1125 	mutex_lock(&uuid_mutex);
1126 
1127 	bdev = blkdev_get_by_path(path, flags, holder);
1128 	if (IS_ERR(bdev)) {
1129 		ret = PTR_ERR(bdev);
1130 		goto error;
1131 	}
1132 
1133 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1134 		goto error_bdev_put;
1135 
1136 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1137 	transid = btrfs_super_generation(disk_super);
1138 	total_devices = btrfs_super_num_devices(disk_super);
1139 
1140 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1141 	if (ret > 0) {
1142 		if (disk_super->label[0]) {
1143 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1144 		} else {
1145 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1146 		}
1147 
1148 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1149 		ret = 0;
1150 	}
1151 	if (!ret && fs_devices_ret)
1152 		(*fs_devices_ret)->total_devices = total_devices;
1153 
1154 	btrfs_release_disk_super(page);
1155 
1156 error_bdev_put:
1157 	blkdev_put(bdev, flags);
1158 error:
1159 	mutex_unlock(&uuid_mutex);
1160 	return ret;
1161 }
1162 
1163 /* helper to account the used device space in the range */
1164 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1165 				   u64 end, u64 *length)
1166 {
1167 	struct btrfs_key key;
1168 	struct btrfs_root *root = device->dev_root;
1169 	struct btrfs_dev_extent *dev_extent;
1170 	struct btrfs_path *path;
1171 	u64 extent_end;
1172 	int ret;
1173 	int slot;
1174 	struct extent_buffer *l;
1175 
1176 	*length = 0;
1177 
1178 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1179 		return 0;
1180 
1181 	path = btrfs_alloc_path();
1182 	if (!path)
1183 		return -ENOMEM;
1184 	path->reada = READA_FORWARD;
1185 
1186 	key.objectid = device->devid;
1187 	key.offset = start;
1188 	key.type = BTRFS_DEV_EXTENT_KEY;
1189 
1190 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191 	if (ret < 0)
1192 		goto out;
1193 	if (ret > 0) {
1194 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1195 		if (ret < 0)
1196 			goto out;
1197 	}
1198 
1199 	while (1) {
1200 		l = path->nodes[0];
1201 		slot = path->slots[0];
1202 		if (slot >= btrfs_header_nritems(l)) {
1203 			ret = btrfs_next_leaf(root, path);
1204 			if (ret == 0)
1205 				continue;
1206 			if (ret < 0)
1207 				goto out;
1208 
1209 			break;
1210 		}
1211 		btrfs_item_key_to_cpu(l, &key, slot);
1212 
1213 		if (key.objectid < device->devid)
1214 			goto next;
1215 
1216 		if (key.objectid > device->devid)
1217 			break;
1218 
1219 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1220 			goto next;
1221 
1222 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1223 		extent_end = key.offset + btrfs_dev_extent_length(l,
1224 								  dev_extent);
1225 		if (key.offset <= start && extent_end > end) {
1226 			*length = end - start + 1;
1227 			break;
1228 		} else if (key.offset <= start && extent_end > start)
1229 			*length += extent_end - start;
1230 		else if (key.offset > start && extent_end <= end)
1231 			*length += extent_end - key.offset;
1232 		else if (key.offset > start && key.offset <= end) {
1233 			*length += end - key.offset + 1;
1234 			break;
1235 		} else if (key.offset > end)
1236 			break;
1237 
1238 next:
1239 		path->slots[0]++;
1240 	}
1241 	ret = 0;
1242 out:
1243 	btrfs_free_path(path);
1244 	return ret;
1245 }
1246 
1247 static int contains_pending_extent(struct btrfs_transaction *transaction,
1248 				   struct btrfs_device *device,
1249 				   u64 *start, u64 len)
1250 {
1251 	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1252 	struct extent_map *em;
1253 	struct list_head *search_list = &fs_info->pinned_chunks;
1254 	int ret = 0;
1255 	u64 physical_start = *start;
1256 
1257 	if (transaction)
1258 		search_list = &transaction->pending_chunks;
1259 again:
1260 	list_for_each_entry(em, search_list, list) {
1261 		struct map_lookup *map;
1262 		int i;
1263 
1264 		map = em->map_lookup;
1265 		for (i = 0; i < map->num_stripes; i++) {
1266 			u64 end;
1267 
1268 			if (map->stripes[i].dev != device)
1269 				continue;
1270 			if (map->stripes[i].physical >= physical_start + len ||
1271 			    map->stripes[i].physical + em->orig_block_len <=
1272 			    physical_start)
1273 				continue;
1274 			/*
1275 			 * Make sure that while processing the pinned list we do
1276 			 * not override our *start with a lower value, because
1277 			 * we can have pinned chunks that fall within this
1278 			 * device hole and that have lower physical addresses
1279 			 * than the pending chunks we processed before. If we
1280 			 * do not take this special care we can end up getting
1281 			 * 2 pending chunks that start at the same physical
1282 			 * device offsets because the end offset of a pinned
1283 			 * chunk can be equal to the start offset of some
1284 			 * pending chunk.
1285 			 */
1286 			end = map->stripes[i].physical + em->orig_block_len;
1287 			if (end > *start) {
1288 				*start = end;
1289 				ret = 1;
1290 			}
1291 		}
1292 	}
1293 	if (search_list != &fs_info->pinned_chunks) {
1294 		search_list = &fs_info->pinned_chunks;
1295 		goto again;
1296 	}
1297 
1298 	return ret;
1299 }
1300 
1301 
1302 /*
1303  * find_free_dev_extent_start - find free space in the specified device
1304  * @device:	  the device which we search the free space in
1305  * @num_bytes:	  the size of the free space that we need
1306  * @search_start: the position from which to begin the search
1307  * @start:	  store the start of the free space.
1308  * @len:	  the size of the free space. that we find, or the size
1309  *		  of the max free space if we don't find suitable free space
1310  *
1311  * this uses a pretty simple search, the expectation is that it is
1312  * called very infrequently and that a given device has a small number
1313  * of extents
1314  *
1315  * @start is used to store the start of the free space if we find. But if we
1316  * don't find suitable free space, it will be used to store the start position
1317  * of the max free space.
1318  *
1319  * @len is used to store the size of the free space that we find.
1320  * But if we don't find suitable free space, it is used to store the size of
1321  * the max free space.
1322  */
1323 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1324 			       struct btrfs_device *device, u64 num_bytes,
1325 			       u64 search_start, u64 *start, u64 *len)
1326 {
1327 	struct btrfs_key key;
1328 	struct btrfs_root *root = device->dev_root;
1329 	struct btrfs_dev_extent *dev_extent;
1330 	struct btrfs_path *path;
1331 	u64 hole_size;
1332 	u64 max_hole_start;
1333 	u64 max_hole_size;
1334 	u64 extent_end;
1335 	u64 search_end = device->total_bytes;
1336 	int ret;
1337 	int slot;
1338 	struct extent_buffer *l;
1339 	u64 min_search_start;
1340 
1341 	/*
1342 	 * We don't want to overwrite the superblock on the drive nor any area
1343 	 * used by the boot loader (grub for example), so we make sure to start
1344 	 * at an offset of at least 1MB.
1345 	 */
1346 	min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1347 	search_start = max(search_start, min_search_start);
1348 
1349 	path = btrfs_alloc_path();
1350 	if (!path)
1351 		return -ENOMEM;
1352 
1353 	max_hole_start = search_start;
1354 	max_hole_size = 0;
1355 
1356 again:
1357 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1358 		ret = -ENOSPC;
1359 		goto out;
1360 	}
1361 
1362 	path->reada = READA_FORWARD;
1363 	path->search_commit_root = 1;
1364 	path->skip_locking = 1;
1365 
1366 	key.objectid = device->devid;
1367 	key.offset = search_start;
1368 	key.type = BTRFS_DEV_EXTENT_KEY;
1369 
1370 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1371 	if (ret < 0)
1372 		goto out;
1373 	if (ret > 0) {
1374 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1375 		if (ret < 0)
1376 			goto out;
1377 	}
1378 
1379 	while (1) {
1380 		l = path->nodes[0];
1381 		slot = path->slots[0];
1382 		if (slot >= btrfs_header_nritems(l)) {
1383 			ret = btrfs_next_leaf(root, path);
1384 			if (ret == 0)
1385 				continue;
1386 			if (ret < 0)
1387 				goto out;
1388 
1389 			break;
1390 		}
1391 		btrfs_item_key_to_cpu(l, &key, slot);
1392 
1393 		if (key.objectid < device->devid)
1394 			goto next;
1395 
1396 		if (key.objectid > device->devid)
1397 			break;
1398 
1399 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1400 			goto next;
1401 
1402 		if (key.offset > search_start) {
1403 			hole_size = key.offset - search_start;
1404 
1405 			/*
1406 			 * Have to check before we set max_hole_start, otherwise
1407 			 * we could end up sending back this offset anyway.
1408 			 */
1409 			if (contains_pending_extent(transaction, device,
1410 						    &search_start,
1411 						    hole_size)) {
1412 				if (key.offset >= search_start) {
1413 					hole_size = key.offset - search_start;
1414 				} else {
1415 					WARN_ON_ONCE(1);
1416 					hole_size = 0;
1417 				}
1418 			}
1419 
1420 			if (hole_size > max_hole_size) {
1421 				max_hole_start = search_start;
1422 				max_hole_size = hole_size;
1423 			}
1424 
1425 			/*
1426 			 * If this free space is greater than which we need,
1427 			 * it must be the max free space that we have found
1428 			 * until now, so max_hole_start must point to the start
1429 			 * of this free space and the length of this free space
1430 			 * is stored in max_hole_size. Thus, we return
1431 			 * max_hole_start and max_hole_size and go back to the
1432 			 * caller.
1433 			 */
1434 			if (hole_size >= num_bytes) {
1435 				ret = 0;
1436 				goto out;
1437 			}
1438 		}
1439 
1440 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1441 		extent_end = key.offset + btrfs_dev_extent_length(l,
1442 								  dev_extent);
1443 		if (extent_end > search_start)
1444 			search_start = extent_end;
1445 next:
1446 		path->slots[0]++;
1447 		cond_resched();
1448 	}
1449 
1450 	/*
1451 	 * At this point, search_start should be the end of
1452 	 * allocated dev extents, and when shrinking the device,
1453 	 * search_end may be smaller than search_start.
1454 	 */
1455 	if (search_end > search_start) {
1456 		hole_size = search_end - search_start;
1457 
1458 		if (contains_pending_extent(transaction, device, &search_start,
1459 					    hole_size)) {
1460 			btrfs_release_path(path);
1461 			goto again;
1462 		}
1463 
1464 		if (hole_size > max_hole_size) {
1465 			max_hole_start = search_start;
1466 			max_hole_size = hole_size;
1467 		}
1468 	}
1469 
1470 	/* See above. */
1471 	if (max_hole_size < num_bytes)
1472 		ret = -ENOSPC;
1473 	else
1474 		ret = 0;
1475 
1476 out:
1477 	btrfs_free_path(path);
1478 	*start = max_hole_start;
1479 	if (len)
1480 		*len = max_hole_size;
1481 	return ret;
1482 }
1483 
1484 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1485 			 struct btrfs_device *device, u64 num_bytes,
1486 			 u64 *start, u64 *len)
1487 {
1488 	/* FIXME use last free of some kind */
1489 	return find_free_dev_extent_start(trans->transaction, device,
1490 					  num_bytes, 0, start, len);
1491 }
1492 
1493 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1494 			  struct btrfs_device *device,
1495 			  u64 start, u64 *dev_extent_len)
1496 {
1497 	int ret;
1498 	struct btrfs_path *path;
1499 	struct btrfs_root *root = device->dev_root;
1500 	struct btrfs_key key;
1501 	struct btrfs_key found_key;
1502 	struct extent_buffer *leaf = NULL;
1503 	struct btrfs_dev_extent *extent = NULL;
1504 
1505 	path = btrfs_alloc_path();
1506 	if (!path)
1507 		return -ENOMEM;
1508 
1509 	key.objectid = device->devid;
1510 	key.offset = start;
1511 	key.type = BTRFS_DEV_EXTENT_KEY;
1512 again:
1513 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1514 	if (ret > 0) {
1515 		ret = btrfs_previous_item(root, path, key.objectid,
1516 					  BTRFS_DEV_EXTENT_KEY);
1517 		if (ret)
1518 			goto out;
1519 		leaf = path->nodes[0];
1520 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1521 		extent = btrfs_item_ptr(leaf, path->slots[0],
1522 					struct btrfs_dev_extent);
1523 		BUG_ON(found_key.offset > start || found_key.offset +
1524 		       btrfs_dev_extent_length(leaf, extent) < start);
1525 		key = found_key;
1526 		btrfs_release_path(path);
1527 		goto again;
1528 	} else if (ret == 0) {
1529 		leaf = path->nodes[0];
1530 		extent = btrfs_item_ptr(leaf, path->slots[0],
1531 					struct btrfs_dev_extent);
1532 	} else {
1533 		btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1534 		goto out;
1535 	}
1536 
1537 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1538 
1539 	ret = btrfs_del_item(trans, root, path);
1540 	if (ret) {
1541 		btrfs_handle_fs_error(root->fs_info, ret,
1542 			    "Failed to remove dev extent item");
1543 	} else {
1544 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1545 	}
1546 out:
1547 	btrfs_free_path(path);
1548 	return ret;
1549 }
1550 
1551 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1552 				  struct btrfs_device *device,
1553 				  u64 chunk_tree, u64 chunk_objectid,
1554 				  u64 chunk_offset, u64 start, u64 num_bytes)
1555 {
1556 	int ret;
1557 	struct btrfs_path *path;
1558 	struct btrfs_root *root = device->dev_root;
1559 	struct btrfs_dev_extent *extent;
1560 	struct extent_buffer *leaf;
1561 	struct btrfs_key key;
1562 
1563 	WARN_ON(!device->in_fs_metadata);
1564 	WARN_ON(device->is_tgtdev_for_dev_replace);
1565 	path = btrfs_alloc_path();
1566 	if (!path)
1567 		return -ENOMEM;
1568 
1569 	key.objectid = device->devid;
1570 	key.offset = start;
1571 	key.type = BTRFS_DEV_EXTENT_KEY;
1572 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1573 				      sizeof(*extent));
1574 	if (ret)
1575 		goto out;
1576 
1577 	leaf = path->nodes[0];
1578 	extent = btrfs_item_ptr(leaf, path->slots[0],
1579 				struct btrfs_dev_extent);
1580 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1581 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1582 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1583 
1584 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1585 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1586 
1587 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1588 	btrfs_mark_buffer_dirty(leaf);
1589 out:
1590 	btrfs_free_path(path);
1591 	return ret;
1592 }
1593 
1594 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1595 {
1596 	struct extent_map_tree *em_tree;
1597 	struct extent_map *em;
1598 	struct rb_node *n;
1599 	u64 ret = 0;
1600 
1601 	em_tree = &fs_info->mapping_tree.map_tree;
1602 	read_lock(&em_tree->lock);
1603 	n = rb_last(&em_tree->map);
1604 	if (n) {
1605 		em = rb_entry(n, struct extent_map, rb_node);
1606 		ret = em->start + em->len;
1607 	}
1608 	read_unlock(&em_tree->lock);
1609 
1610 	return ret;
1611 }
1612 
1613 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1614 				    u64 *devid_ret)
1615 {
1616 	int ret;
1617 	struct btrfs_key key;
1618 	struct btrfs_key found_key;
1619 	struct btrfs_path *path;
1620 
1621 	path = btrfs_alloc_path();
1622 	if (!path)
1623 		return -ENOMEM;
1624 
1625 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1626 	key.type = BTRFS_DEV_ITEM_KEY;
1627 	key.offset = (u64)-1;
1628 
1629 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1630 	if (ret < 0)
1631 		goto error;
1632 
1633 	BUG_ON(ret == 0); /* Corruption */
1634 
1635 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1636 				  BTRFS_DEV_ITEMS_OBJECTID,
1637 				  BTRFS_DEV_ITEM_KEY);
1638 	if (ret) {
1639 		*devid_ret = 1;
1640 	} else {
1641 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1642 				      path->slots[0]);
1643 		*devid_ret = found_key.offset + 1;
1644 	}
1645 	ret = 0;
1646 error:
1647 	btrfs_free_path(path);
1648 	return ret;
1649 }
1650 
1651 /*
1652  * the device information is stored in the chunk root
1653  * the btrfs_device struct should be fully filled in
1654  */
1655 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1656 			    struct btrfs_root *root,
1657 			    struct btrfs_device *device)
1658 {
1659 	int ret;
1660 	struct btrfs_path *path;
1661 	struct btrfs_dev_item *dev_item;
1662 	struct extent_buffer *leaf;
1663 	struct btrfs_key key;
1664 	unsigned long ptr;
1665 
1666 	root = root->fs_info->chunk_root;
1667 
1668 	path = btrfs_alloc_path();
1669 	if (!path)
1670 		return -ENOMEM;
1671 
1672 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1673 	key.type = BTRFS_DEV_ITEM_KEY;
1674 	key.offset = device->devid;
1675 
1676 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1677 				      sizeof(*dev_item));
1678 	if (ret)
1679 		goto out;
1680 
1681 	leaf = path->nodes[0];
1682 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1683 
1684 	btrfs_set_device_id(leaf, dev_item, device->devid);
1685 	btrfs_set_device_generation(leaf, dev_item, 0);
1686 	btrfs_set_device_type(leaf, dev_item, device->type);
1687 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1688 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1689 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1690 	btrfs_set_device_total_bytes(leaf, dev_item,
1691 				     btrfs_device_get_disk_total_bytes(device));
1692 	btrfs_set_device_bytes_used(leaf, dev_item,
1693 				    btrfs_device_get_bytes_used(device));
1694 	btrfs_set_device_group(leaf, dev_item, 0);
1695 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1696 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1697 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1698 
1699 	ptr = btrfs_device_uuid(dev_item);
1700 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1701 	ptr = btrfs_device_fsid(dev_item);
1702 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1703 	btrfs_mark_buffer_dirty(leaf);
1704 
1705 	ret = 0;
1706 out:
1707 	btrfs_free_path(path);
1708 	return ret;
1709 }
1710 
1711 /*
1712  * Function to update ctime/mtime for a given device path.
1713  * Mainly used for ctime/mtime based probe like libblkid.
1714  */
1715 static void update_dev_time(char *path_name)
1716 {
1717 	struct file *filp;
1718 
1719 	filp = filp_open(path_name, O_RDWR, 0);
1720 	if (IS_ERR(filp))
1721 		return;
1722 	file_update_time(filp);
1723 	filp_close(filp, NULL);
1724 }
1725 
1726 static int btrfs_rm_dev_item(struct btrfs_root *root,
1727 			     struct btrfs_device *device)
1728 {
1729 	int ret;
1730 	struct btrfs_path *path;
1731 	struct btrfs_key key;
1732 	struct btrfs_trans_handle *trans;
1733 
1734 	root = root->fs_info->chunk_root;
1735 
1736 	path = btrfs_alloc_path();
1737 	if (!path)
1738 		return -ENOMEM;
1739 
1740 	trans = btrfs_start_transaction(root, 0);
1741 	if (IS_ERR(trans)) {
1742 		btrfs_free_path(path);
1743 		return PTR_ERR(trans);
1744 	}
1745 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1746 	key.type = BTRFS_DEV_ITEM_KEY;
1747 	key.offset = device->devid;
1748 
1749 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1750 	if (ret < 0)
1751 		goto out;
1752 
1753 	if (ret > 0) {
1754 		ret = -ENOENT;
1755 		goto out;
1756 	}
1757 
1758 	ret = btrfs_del_item(trans, root, path);
1759 	if (ret)
1760 		goto out;
1761 out:
1762 	btrfs_free_path(path);
1763 	btrfs_commit_transaction(trans, root);
1764 	return ret;
1765 }
1766 
1767 /*
1768  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1769  * filesystem. It's up to the caller to adjust that number regarding eg. device
1770  * replace.
1771  */
1772 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1773 		u64 num_devices)
1774 {
1775 	u64 all_avail;
1776 	unsigned seq;
1777 	int i;
1778 
1779 	do {
1780 		seq = read_seqbegin(&fs_info->profiles_lock);
1781 
1782 		all_avail = fs_info->avail_data_alloc_bits |
1783 			    fs_info->avail_system_alloc_bits |
1784 			    fs_info->avail_metadata_alloc_bits;
1785 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1786 
1787 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1788 		if (!(all_avail & btrfs_raid_group[i]))
1789 			continue;
1790 
1791 		if (num_devices < btrfs_raid_array[i].devs_min) {
1792 			int ret = btrfs_raid_mindev_error[i];
1793 
1794 			if (ret)
1795 				return ret;
1796 		}
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1803 					struct btrfs_device *device)
1804 {
1805 	struct btrfs_device *next_device;
1806 
1807 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1808 		if (next_device != device &&
1809 			!next_device->missing && next_device->bdev)
1810 			return next_device;
1811 	}
1812 
1813 	return NULL;
1814 }
1815 
1816 /*
1817  * Helper function to check if the given device is part of s_bdev / latest_bdev
1818  * and replace it with the provided or the next active device, in the context
1819  * where this function called, there should be always be another device (or
1820  * this_dev) which is active.
1821  */
1822 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1823 		struct btrfs_device *device, struct btrfs_device *this_dev)
1824 {
1825 	struct btrfs_device *next_device;
1826 
1827 	if (this_dev)
1828 		next_device = this_dev;
1829 	else
1830 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1831 								device);
1832 	ASSERT(next_device);
1833 
1834 	if (fs_info->sb->s_bdev &&
1835 			(fs_info->sb->s_bdev == device->bdev))
1836 		fs_info->sb->s_bdev = next_device->bdev;
1837 
1838 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1839 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1840 }
1841 
1842 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1843 {
1844 	struct btrfs_device *device;
1845 	struct btrfs_fs_devices *cur_devices;
1846 	u64 num_devices;
1847 	int ret = 0;
1848 	bool clear_super = false;
1849 	char *dev_name = NULL;
1850 
1851 	mutex_lock(&uuid_mutex);
1852 
1853 	num_devices = root->fs_info->fs_devices->num_devices;
1854 	btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1855 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1856 		WARN_ON(num_devices < 1);
1857 		num_devices--;
1858 	}
1859 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1860 
1861 	ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1862 	if (ret)
1863 		goto out;
1864 
1865 	ret = btrfs_find_device_by_devspec(root, devid, device_path,
1866 				&device);
1867 	if (ret)
1868 		goto out;
1869 
1870 	if (device->is_tgtdev_for_dev_replace) {
1871 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1872 		goto out;
1873 	}
1874 
1875 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1876 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1877 		goto out;
1878 	}
1879 
1880 	if (device->writeable) {
1881 		lock_chunks(root);
1882 		list_del_init(&device->dev_alloc_list);
1883 		device->fs_devices->rw_devices--;
1884 		unlock_chunks(root);
1885 		dev_name = kstrdup(device->name->str, GFP_KERNEL);
1886 		if (!dev_name) {
1887 			ret = -ENOMEM;
1888 			goto error_undo;
1889 		}
1890 		clear_super = true;
1891 	}
1892 
1893 	mutex_unlock(&uuid_mutex);
1894 	ret = btrfs_shrink_device(device, 0);
1895 	mutex_lock(&uuid_mutex);
1896 	if (ret)
1897 		goto error_undo;
1898 
1899 	/*
1900 	 * TODO: the superblock still includes this device in its num_devices
1901 	 * counter although write_all_supers() is not locked out. This
1902 	 * could give a filesystem state which requires a degraded mount.
1903 	 */
1904 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1905 	if (ret)
1906 		goto error_undo;
1907 
1908 	device->in_fs_metadata = 0;
1909 	btrfs_scrub_cancel_dev(root->fs_info, device);
1910 
1911 	/*
1912 	 * the device list mutex makes sure that we don't change
1913 	 * the device list while someone else is writing out all
1914 	 * the device supers. Whoever is writing all supers, should
1915 	 * lock the device list mutex before getting the number of
1916 	 * devices in the super block (super_copy). Conversely,
1917 	 * whoever updates the number of devices in the super block
1918 	 * (super_copy) should hold the device list mutex.
1919 	 */
1920 
1921 	cur_devices = device->fs_devices;
1922 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1923 	list_del_rcu(&device->dev_list);
1924 
1925 	device->fs_devices->num_devices--;
1926 	device->fs_devices->total_devices--;
1927 
1928 	if (device->missing)
1929 		device->fs_devices->missing_devices--;
1930 
1931 	btrfs_assign_next_active_device(root->fs_info, device, NULL);
1932 
1933 	if (device->bdev) {
1934 		device->fs_devices->open_devices--;
1935 		/* remove sysfs entry */
1936 		btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1937 	}
1938 
1939 	btrfs_close_bdev(device);
1940 
1941 	call_rcu(&device->rcu, free_device);
1942 
1943 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1944 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1945 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1946 
1947 	if (cur_devices->open_devices == 0) {
1948 		struct btrfs_fs_devices *fs_devices;
1949 		fs_devices = root->fs_info->fs_devices;
1950 		while (fs_devices) {
1951 			if (fs_devices->seed == cur_devices) {
1952 				fs_devices->seed = cur_devices->seed;
1953 				break;
1954 			}
1955 			fs_devices = fs_devices->seed;
1956 		}
1957 		cur_devices->seed = NULL;
1958 		__btrfs_close_devices(cur_devices);
1959 		free_fs_devices(cur_devices);
1960 	}
1961 
1962 	root->fs_info->num_tolerated_disk_barrier_failures =
1963 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1964 
1965 	/*
1966 	 * at this point, the device is zero sized.  We want to
1967 	 * remove it from the devices list and zero out the old super
1968 	 */
1969 	if (clear_super) {
1970 		struct block_device *bdev;
1971 
1972 		bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1973 						root->fs_info->bdev_holder);
1974 		if (!IS_ERR(bdev)) {
1975 			btrfs_scratch_superblocks(bdev, dev_name);
1976 			blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1977 		}
1978 	}
1979 
1980 out:
1981 	kfree(dev_name);
1982 
1983 	mutex_unlock(&uuid_mutex);
1984 	return ret;
1985 
1986 error_undo:
1987 	if (device->writeable) {
1988 		lock_chunks(root);
1989 		list_add(&device->dev_alloc_list,
1990 			 &root->fs_info->fs_devices->alloc_list);
1991 		device->fs_devices->rw_devices++;
1992 		unlock_chunks(root);
1993 	}
1994 	goto out;
1995 }
1996 
1997 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1998 					struct btrfs_device *srcdev)
1999 {
2000 	struct btrfs_fs_devices *fs_devices;
2001 
2002 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2003 
2004 	/*
2005 	 * in case of fs with no seed, srcdev->fs_devices will point
2006 	 * to fs_devices of fs_info. However when the dev being replaced is
2007 	 * a seed dev it will point to the seed's local fs_devices. In short
2008 	 * srcdev will have its correct fs_devices in both the cases.
2009 	 */
2010 	fs_devices = srcdev->fs_devices;
2011 
2012 	list_del_rcu(&srcdev->dev_list);
2013 	list_del_rcu(&srcdev->dev_alloc_list);
2014 	fs_devices->num_devices--;
2015 	if (srcdev->missing)
2016 		fs_devices->missing_devices--;
2017 
2018 	if (srcdev->writeable)
2019 		fs_devices->rw_devices--;
2020 
2021 	if (srcdev->bdev)
2022 		fs_devices->open_devices--;
2023 }
2024 
2025 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2026 				      struct btrfs_device *srcdev)
2027 {
2028 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2029 
2030 	if (srcdev->writeable) {
2031 		/* zero out the old super if it is writable */
2032 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2033 	}
2034 
2035 	btrfs_close_bdev(srcdev);
2036 
2037 	call_rcu(&srcdev->rcu, free_device);
2038 
2039 	/*
2040 	 * unless fs_devices is seed fs, num_devices shouldn't go
2041 	 * zero
2042 	 */
2043 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2044 
2045 	/* if this is no devs we rather delete the fs_devices */
2046 	if (!fs_devices->num_devices) {
2047 		struct btrfs_fs_devices *tmp_fs_devices;
2048 
2049 		tmp_fs_devices = fs_info->fs_devices;
2050 		while (tmp_fs_devices) {
2051 			if (tmp_fs_devices->seed == fs_devices) {
2052 				tmp_fs_devices->seed = fs_devices->seed;
2053 				break;
2054 			}
2055 			tmp_fs_devices = tmp_fs_devices->seed;
2056 		}
2057 		fs_devices->seed = NULL;
2058 		__btrfs_close_devices(fs_devices);
2059 		free_fs_devices(fs_devices);
2060 	}
2061 }
2062 
2063 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2064 				      struct btrfs_device *tgtdev)
2065 {
2066 	mutex_lock(&uuid_mutex);
2067 	WARN_ON(!tgtdev);
2068 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2069 
2070 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2071 
2072 	if (tgtdev->bdev)
2073 		fs_info->fs_devices->open_devices--;
2074 
2075 	fs_info->fs_devices->num_devices--;
2076 
2077 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2078 
2079 	list_del_rcu(&tgtdev->dev_list);
2080 
2081 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2082 	mutex_unlock(&uuid_mutex);
2083 
2084 	/*
2085 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2086 	 * may lead to a call to btrfs_show_devname() which will try
2087 	 * to hold device_list_mutex. And here this device
2088 	 * is already out of device list, so we don't have to hold
2089 	 * the device_list_mutex lock.
2090 	 */
2091 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2092 
2093 	btrfs_close_bdev(tgtdev);
2094 	call_rcu(&tgtdev->rcu, free_device);
2095 }
2096 
2097 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2098 				     struct btrfs_device **device)
2099 {
2100 	int ret = 0;
2101 	struct btrfs_super_block *disk_super;
2102 	u64 devid;
2103 	u8 *dev_uuid;
2104 	struct block_device *bdev;
2105 	struct buffer_head *bh;
2106 
2107 	*device = NULL;
2108 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2109 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
2110 	if (ret)
2111 		return ret;
2112 	disk_super = (struct btrfs_super_block *)bh->b_data;
2113 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2114 	dev_uuid = disk_super->dev_item.uuid;
2115 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2116 				    disk_super->fsid);
2117 	brelse(bh);
2118 	if (!*device)
2119 		ret = -ENOENT;
2120 	blkdev_put(bdev, FMODE_READ);
2121 	return ret;
2122 }
2123 
2124 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2125 					 char *device_path,
2126 					 struct btrfs_device **device)
2127 {
2128 	*device = NULL;
2129 	if (strcmp(device_path, "missing") == 0) {
2130 		struct list_head *devices;
2131 		struct btrfs_device *tmp;
2132 
2133 		devices = &root->fs_info->fs_devices->devices;
2134 		/*
2135 		 * It is safe to read the devices since the volume_mutex
2136 		 * is held by the caller.
2137 		 */
2138 		list_for_each_entry(tmp, devices, dev_list) {
2139 			if (tmp->in_fs_metadata && !tmp->bdev) {
2140 				*device = tmp;
2141 				break;
2142 			}
2143 		}
2144 
2145 		if (!*device)
2146 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2147 
2148 		return 0;
2149 	} else {
2150 		return btrfs_find_device_by_path(root, device_path, device);
2151 	}
2152 }
2153 
2154 /*
2155  * Lookup a device given by device id, or the path if the id is 0.
2156  */
2157 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2158 					 char *devpath,
2159 					 struct btrfs_device **device)
2160 {
2161 	int ret;
2162 
2163 	if (devid) {
2164 		ret = 0;
2165 		*device = btrfs_find_device(root->fs_info, devid, NULL,
2166 					    NULL);
2167 		if (!*device)
2168 			ret = -ENOENT;
2169 	} else {
2170 		if (!devpath || !devpath[0])
2171 			return -EINVAL;
2172 
2173 		ret = btrfs_find_device_missing_or_by_path(root, devpath,
2174 							   device);
2175 	}
2176 	return ret;
2177 }
2178 
2179 /*
2180  * does all the dirty work required for changing file system's UUID.
2181  */
2182 static int btrfs_prepare_sprout(struct btrfs_root *root)
2183 {
2184 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2185 	struct btrfs_fs_devices *old_devices;
2186 	struct btrfs_fs_devices *seed_devices;
2187 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2188 	struct btrfs_device *device;
2189 	u64 super_flags;
2190 
2191 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2192 	if (!fs_devices->seeding)
2193 		return -EINVAL;
2194 
2195 	seed_devices = __alloc_fs_devices();
2196 	if (IS_ERR(seed_devices))
2197 		return PTR_ERR(seed_devices);
2198 
2199 	old_devices = clone_fs_devices(fs_devices);
2200 	if (IS_ERR(old_devices)) {
2201 		kfree(seed_devices);
2202 		return PTR_ERR(old_devices);
2203 	}
2204 
2205 	list_add(&old_devices->list, &fs_uuids);
2206 
2207 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2208 	seed_devices->opened = 1;
2209 	INIT_LIST_HEAD(&seed_devices->devices);
2210 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2211 	mutex_init(&seed_devices->device_list_mutex);
2212 
2213 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2214 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2215 			      synchronize_rcu);
2216 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2217 		device->fs_devices = seed_devices;
2218 
2219 	lock_chunks(root);
2220 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2221 	unlock_chunks(root);
2222 
2223 	fs_devices->seeding = 0;
2224 	fs_devices->num_devices = 0;
2225 	fs_devices->open_devices = 0;
2226 	fs_devices->missing_devices = 0;
2227 	fs_devices->rotating = 0;
2228 	fs_devices->seed = seed_devices;
2229 
2230 	generate_random_uuid(fs_devices->fsid);
2231 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2232 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2233 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2234 
2235 	super_flags = btrfs_super_flags(disk_super) &
2236 		      ~BTRFS_SUPER_FLAG_SEEDING;
2237 	btrfs_set_super_flags(disk_super, super_flags);
2238 
2239 	return 0;
2240 }
2241 
2242 /*
2243  * Store the expected generation for seed devices in device items.
2244  */
2245 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2246 			       struct btrfs_root *root)
2247 {
2248 	struct btrfs_path *path;
2249 	struct extent_buffer *leaf;
2250 	struct btrfs_dev_item *dev_item;
2251 	struct btrfs_device *device;
2252 	struct btrfs_key key;
2253 	u8 fs_uuid[BTRFS_UUID_SIZE];
2254 	u8 dev_uuid[BTRFS_UUID_SIZE];
2255 	u64 devid;
2256 	int ret;
2257 
2258 	path = btrfs_alloc_path();
2259 	if (!path)
2260 		return -ENOMEM;
2261 
2262 	root = root->fs_info->chunk_root;
2263 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2264 	key.offset = 0;
2265 	key.type = BTRFS_DEV_ITEM_KEY;
2266 
2267 	while (1) {
2268 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2269 		if (ret < 0)
2270 			goto error;
2271 
2272 		leaf = path->nodes[0];
2273 next_slot:
2274 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2275 			ret = btrfs_next_leaf(root, path);
2276 			if (ret > 0)
2277 				break;
2278 			if (ret < 0)
2279 				goto error;
2280 			leaf = path->nodes[0];
2281 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2282 			btrfs_release_path(path);
2283 			continue;
2284 		}
2285 
2286 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2287 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2288 		    key.type != BTRFS_DEV_ITEM_KEY)
2289 			break;
2290 
2291 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2292 					  struct btrfs_dev_item);
2293 		devid = btrfs_device_id(leaf, dev_item);
2294 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2295 				   BTRFS_UUID_SIZE);
2296 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2297 				   BTRFS_UUID_SIZE);
2298 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2299 					   fs_uuid);
2300 		BUG_ON(!device); /* Logic error */
2301 
2302 		if (device->fs_devices->seeding) {
2303 			btrfs_set_device_generation(leaf, dev_item,
2304 						    device->generation);
2305 			btrfs_mark_buffer_dirty(leaf);
2306 		}
2307 
2308 		path->slots[0]++;
2309 		goto next_slot;
2310 	}
2311 	ret = 0;
2312 error:
2313 	btrfs_free_path(path);
2314 	return ret;
2315 }
2316 
2317 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2318 {
2319 	struct request_queue *q;
2320 	struct btrfs_trans_handle *trans;
2321 	struct btrfs_device *device;
2322 	struct block_device *bdev;
2323 	struct list_head *devices;
2324 	struct super_block *sb = root->fs_info->sb;
2325 	struct rcu_string *name;
2326 	u64 tmp;
2327 	int seeding_dev = 0;
2328 	int ret = 0;
2329 
2330 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2331 		return -EROFS;
2332 
2333 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2334 				  root->fs_info->bdev_holder);
2335 	if (IS_ERR(bdev))
2336 		return PTR_ERR(bdev);
2337 
2338 	if (root->fs_info->fs_devices->seeding) {
2339 		seeding_dev = 1;
2340 		down_write(&sb->s_umount);
2341 		mutex_lock(&uuid_mutex);
2342 	}
2343 
2344 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2345 
2346 	devices = &root->fs_info->fs_devices->devices;
2347 
2348 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2349 	list_for_each_entry(device, devices, dev_list) {
2350 		if (device->bdev == bdev) {
2351 			ret = -EEXIST;
2352 			mutex_unlock(
2353 				&root->fs_info->fs_devices->device_list_mutex);
2354 			goto error;
2355 		}
2356 	}
2357 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2358 
2359 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2360 	if (IS_ERR(device)) {
2361 		/* we can safely leave the fs_devices entry around */
2362 		ret = PTR_ERR(device);
2363 		goto error;
2364 	}
2365 
2366 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2367 	if (!name) {
2368 		kfree(device);
2369 		ret = -ENOMEM;
2370 		goto error;
2371 	}
2372 	rcu_assign_pointer(device->name, name);
2373 
2374 	trans = btrfs_start_transaction(root, 0);
2375 	if (IS_ERR(trans)) {
2376 		rcu_string_free(device->name);
2377 		kfree(device);
2378 		ret = PTR_ERR(trans);
2379 		goto error;
2380 	}
2381 
2382 	q = bdev_get_queue(bdev);
2383 	if (blk_queue_discard(q))
2384 		device->can_discard = 1;
2385 	device->writeable = 1;
2386 	device->generation = trans->transid;
2387 	device->io_width = root->sectorsize;
2388 	device->io_align = root->sectorsize;
2389 	device->sector_size = root->sectorsize;
2390 	device->total_bytes = i_size_read(bdev->bd_inode);
2391 	device->disk_total_bytes = device->total_bytes;
2392 	device->commit_total_bytes = device->total_bytes;
2393 	device->dev_root = root->fs_info->dev_root;
2394 	device->bdev = bdev;
2395 	device->in_fs_metadata = 1;
2396 	device->is_tgtdev_for_dev_replace = 0;
2397 	device->mode = FMODE_EXCL;
2398 	device->dev_stats_valid = 1;
2399 	set_blocksize(device->bdev, 4096);
2400 
2401 	if (seeding_dev) {
2402 		sb->s_flags &= ~MS_RDONLY;
2403 		ret = btrfs_prepare_sprout(root);
2404 		BUG_ON(ret); /* -ENOMEM */
2405 	}
2406 
2407 	device->fs_devices = root->fs_info->fs_devices;
2408 
2409 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2410 	lock_chunks(root);
2411 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2412 	list_add(&device->dev_alloc_list,
2413 		 &root->fs_info->fs_devices->alloc_list);
2414 	root->fs_info->fs_devices->num_devices++;
2415 	root->fs_info->fs_devices->open_devices++;
2416 	root->fs_info->fs_devices->rw_devices++;
2417 	root->fs_info->fs_devices->total_devices++;
2418 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2419 
2420 	spin_lock(&root->fs_info->free_chunk_lock);
2421 	root->fs_info->free_chunk_space += device->total_bytes;
2422 	spin_unlock(&root->fs_info->free_chunk_lock);
2423 
2424 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2425 		root->fs_info->fs_devices->rotating = 1;
2426 
2427 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2428 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2429 				    tmp + device->total_bytes);
2430 
2431 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2432 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2433 				    tmp + 1);
2434 
2435 	/* add sysfs device entry */
2436 	btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2437 
2438 	/*
2439 	 * we've got more storage, clear any full flags on the space
2440 	 * infos
2441 	 */
2442 	btrfs_clear_space_info_full(root->fs_info);
2443 
2444 	unlock_chunks(root);
2445 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2446 
2447 	if (seeding_dev) {
2448 		lock_chunks(root);
2449 		ret = init_first_rw_device(trans, root, device);
2450 		unlock_chunks(root);
2451 		if (ret) {
2452 			btrfs_abort_transaction(trans, ret);
2453 			goto error_trans;
2454 		}
2455 	}
2456 
2457 	ret = btrfs_add_device(trans, root, device);
2458 	if (ret) {
2459 		btrfs_abort_transaction(trans, ret);
2460 		goto error_trans;
2461 	}
2462 
2463 	if (seeding_dev) {
2464 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2465 
2466 		ret = btrfs_finish_sprout(trans, root);
2467 		if (ret) {
2468 			btrfs_abort_transaction(trans, ret);
2469 			goto error_trans;
2470 		}
2471 
2472 		/* Sprouting would change fsid of the mounted root,
2473 		 * so rename the fsid on the sysfs
2474 		 */
2475 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2476 						root->fs_info->fsid);
2477 		if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2478 								fsid_buf))
2479 			btrfs_warn(root->fs_info,
2480 				"sysfs: failed to create fsid for sprout");
2481 	}
2482 
2483 	root->fs_info->num_tolerated_disk_barrier_failures =
2484 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2485 	ret = btrfs_commit_transaction(trans, root);
2486 
2487 	if (seeding_dev) {
2488 		mutex_unlock(&uuid_mutex);
2489 		up_write(&sb->s_umount);
2490 
2491 		if (ret) /* transaction commit */
2492 			return ret;
2493 
2494 		ret = btrfs_relocate_sys_chunks(root);
2495 		if (ret < 0)
2496 			btrfs_handle_fs_error(root->fs_info, ret,
2497 				    "Failed to relocate sys chunks after "
2498 				    "device initialization. This can be fixed "
2499 				    "using the \"btrfs balance\" command.");
2500 		trans = btrfs_attach_transaction(root);
2501 		if (IS_ERR(trans)) {
2502 			if (PTR_ERR(trans) == -ENOENT)
2503 				return 0;
2504 			return PTR_ERR(trans);
2505 		}
2506 		ret = btrfs_commit_transaction(trans, root);
2507 	}
2508 
2509 	/* Update ctime/mtime for libblkid */
2510 	update_dev_time(device_path);
2511 	return ret;
2512 
2513 error_trans:
2514 	btrfs_end_transaction(trans, root);
2515 	rcu_string_free(device->name);
2516 	btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2517 	kfree(device);
2518 error:
2519 	blkdev_put(bdev, FMODE_EXCL);
2520 	if (seeding_dev) {
2521 		mutex_unlock(&uuid_mutex);
2522 		up_write(&sb->s_umount);
2523 	}
2524 	return ret;
2525 }
2526 
2527 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2528 				  struct btrfs_device *srcdev,
2529 				  struct btrfs_device **device_out)
2530 {
2531 	struct request_queue *q;
2532 	struct btrfs_device *device;
2533 	struct block_device *bdev;
2534 	struct btrfs_fs_info *fs_info = root->fs_info;
2535 	struct list_head *devices;
2536 	struct rcu_string *name;
2537 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2538 	int ret = 0;
2539 
2540 	*device_out = NULL;
2541 	if (fs_info->fs_devices->seeding) {
2542 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2543 		return -EINVAL;
2544 	}
2545 
2546 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2547 				  fs_info->bdev_holder);
2548 	if (IS_ERR(bdev)) {
2549 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2550 		return PTR_ERR(bdev);
2551 	}
2552 
2553 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2554 
2555 	devices = &fs_info->fs_devices->devices;
2556 	list_for_each_entry(device, devices, dev_list) {
2557 		if (device->bdev == bdev) {
2558 			btrfs_err(fs_info, "target device is in the filesystem!");
2559 			ret = -EEXIST;
2560 			goto error;
2561 		}
2562 	}
2563 
2564 
2565 	if (i_size_read(bdev->bd_inode) <
2566 	    btrfs_device_get_total_bytes(srcdev)) {
2567 		btrfs_err(fs_info, "target device is smaller than source device!");
2568 		ret = -EINVAL;
2569 		goto error;
2570 	}
2571 
2572 
2573 	device = btrfs_alloc_device(NULL, &devid, NULL);
2574 	if (IS_ERR(device)) {
2575 		ret = PTR_ERR(device);
2576 		goto error;
2577 	}
2578 
2579 	name = rcu_string_strdup(device_path, GFP_NOFS);
2580 	if (!name) {
2581 		kfree(device);
2582 		ret = -ENOMEM;
2583 		goto error;
2584 	}
2585 	rcu_assign_pointer(device->name, name);
2586 
2587 	q = bdev_get_queue(bdev);
2588 	if (blk_queue_discard(q))
2589 		device->can_discard = 1;
2590 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2591 	device->writeable = 1;
2592 	device->generation = 0;
2593 	device->io_width = root->sectorsize;
2594 	device->io_align = root->sectorsize;
2595 	device->sector_size = root->sectorsize;
2596 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2597 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2598 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2599 	ASSERT(list_empty(&srcdev->resized_list));
2600 	device->commit_total_bytes = srcdev->commit_total_bytes;
2601 	device->commit_bytes_used = device->bytes_used;
2602 	device->dev_root = fs_info->dev_root;
2603 	device->bdev = bdev;
2604 	device->in_fs_metadata = 1;
2605 	device->is_tgtdev_for_dev_replace = 1;
2606 	device->mode = FMODE_EXCL;
2607 	device->dev_stats_valid = 1;
2608 	set_blocksize(device->bdev, 4096);
2609 	device->fs_devices = fs_info->fs_devices;
2610 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2611 	fs_info->fs_devices->num_devices++;
2612 	fs_info->fs_devices->open_devices++;
2613 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2614 
2615 	*device_out = device;
2616 	return ret;
2617 
2618 error:
2619 	blkdev_put(bdev, FMODE_EXCL);
2620 	return ret;
2621 }
2622 
2623 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2624 					      struct btrfs_device *tgtdev)
2625 {
2626 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2627 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2628 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2629 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2630 	tgtdev->dev_root = fs_info->dev_root;
2631 	tgtdev->in_fs_metadata = 1;
2632 }
2633 
2634 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2635 					struct btrfs_device *device)
2636 {
2637 	int ret;
2638 	struct btrfs_path *path;
2639 	struct btrfs_root *root;
2640 	struct btrfs_dev_item *dev_item;
2641 	struct extent_buffer *leaf;
2642 	struct btrfs_key key;
2643 
2644 	root = device->dev_root->fs_info->chunk_root;
2645 
2646 	path = btrfs_alloc_path();
2647 	if (!path)
2648 		return -ENOMEM;
2649 
2650 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2651 	key.type = BTRFS_DEV_ITEM_KEY;
2652 	key.offset = device->devid;
2653 
2654 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2655 	if (ret < 0)
2656 		goto out;
2657 
2658 	if (ret > 0) {
2659 		ret = -ENOENT;
2660 		goto out;
2661 	}
2662 
2663 	leaf = path->nodes[0];
2664 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2665 
2666 	btrfs_set_device_id(leaf, dev_item, device->devid);
2667 	btrfs_set_device_type(leaf, dev_item, device->type);
2668 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2669 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2670 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2671 	btrfs_set_device_total_bytes(leaf, dev_item,
2672 				     btrfs_device_get_disk_total_bytes(device));
2673 	btrfs_set_device_bytes_used(leaf, dev_item,
2674 				    btrfs_device_get_bytes_used(device));
2675 	btrfs_mark_buffer_dirty(leaf);
2676 
2677 out:
2678 	btrfs_free_path(path);
2679 	return ret;
2680 }
2681 
2682 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2683 		      struct btrfs_device *device, u64 new_size)
2684 {
2685 	struct btrfs_super_block *super_copy =
2686 		device->dev_root->fs_info->super_copy;
2687 	struct btrfs_fs_devices *fs_devices;
2688 	u64 old_total;
2689 	u64 diff;
2690 
2691 	if (!device->writeable)
2692 		return -EACCES;
2693 
2694 	lock_chunks(device->dev_root);
2695 	old_total = btrfs_super_total_bytes(super_copy);
2696 	diff = new_size - device->total_bytes;
2697 
2698 	if (new_size <= device->total_bytes ||
2699 	    device->is_tgtdev_for_dev_replace) {
2700 		unlock_chunks(device->dev_root);
2701 		return -EINVAL;
2702 	}
2703 
2704 	fs_devices = device->dev_root->fs_info->fs_devices;
2705 
2706 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2707 	device->fs_devices->total_rw_bytes += diff;
2708 
2709 	btrfs_device_set_total_bytes(device, new_size);
2710 	btrfs_device_set_disk_total_bytes(device, new_size);
2711 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2712 	if (list_empty(&device->resized_list))
2713 		list_add_tail(&device->resized_list,
2714 			      &fs_devices->resized_devices);
2715 	unlock_chunks(device->dev_root);
2716 
2717 	return btrfs_update_device(trans, device);
2718 }
2719 
2720 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2721 			    struct btrfs_root *root, u64 chunk_objectid,
2722 			    u64 chunk_offset)
2723 {
2724 	int ret;
2725 	struct btrfs_path *path;
2726 	struct btrfs_key key;
2727 
2728 	root = root->fs_info->chunk_root;
2729 	path = btrfs_alloc_path();
2730 	if (!path)
2731 		return -ENOMEM;
2732 
2733 	key.objectid = chunk_objectid;
2734 	key.offset = chunk_offset;
2735 	key.type = BTRFS_CHUNK_ITEM_KEY;
2736 
2737 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2738 	if (ret < 0)
2739 		goto out;
2740 	else if (ret > 0) { /* Logic error or corruption */
2741 		btrfs_handle_fs_error(root->fs_info, -ENOENT,
2742 			    "Failed lookup while freeing chunk.");
2743 		ret = -ENOENT;
2744 		goto out;
2745 	}
2746 
2747 	ret = btrfs_del_item(trans, root, path);
2748 	if (ret < 0)
2749 		btrfs_handle_fs_error(root->fs_info, ret,
2750 			    "Failed to delete chunk item.");
2751 out:
2752 	btrfs_free_path(path);
2753 	return ret;
2754 }
2755 
2756 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2757 			chunk_offset)
2758 {
2759 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2760 	struct btrfs_disk_key *disk_key;
2761 	struct btrfs_chunk *chunk;
2762 	u8 *ptr;
2763 	int ret = 0;
2764 	u32 num_stripes;
2765 	u32 array_size;
2766 	u32 len = 0;
2767 	u32 cur;
2768 	struct btrfs_key key;
2769 
2770 	lock_chunks(root);
2771 	array_size = btrfs_super_sys_array_size(super_copy);
2772 
2773 	ptr = super_copy->sys_chunk_array;
2774 	cur = 0;
2775 
2776 	while (cur < array_size) {
2777 		disk_key = (struct btrfs_disk_key *)ptr;
2778 		btrfs_disk_key_to_cpu(&key, disk_key);
2779 
2780 		len = sizeof(*disk_key);
2781 
2782 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2783 			chunk = (struct btrfs_chunk *)(ptr + len);
2784 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2785 			len += btrfs_chunk_item_size(num_stripes);
2786 		} else {
2787 			ret = -EIO;
2788 			break;
2789 		}
2790 		if (key.objectid == chunk_objectid &&
2791 		    key.offset == chunk_offset) {
2792 			memmove(ptr, ptr + len, array_size - (cur + len));
2793 			array_size -= len;
2794 			btrfs_set_super_sys_array_size(super_copy, array_size);
2795 		} else {
2796 			ptr += len;
2797 			cur += len;
2798 		}
2799 	}
2800 	unlock_chunks(root);
2801 	return ret;
2802 }
2803 
2804 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2805 		       struct btrfs_root *root, u64 chunk_offset)
2806 {
2807 	struct extent_map_tree *em_tree;
2808 	struct extent_map *em;
2809 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2810 	struct map_lookup *map;
2811 	u64 dev_extent_len = 0;
2812 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2813 	int i, ret = 0;
2814 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2815 
2816 	/* Just in case */
2817 	root = root->fs_info->chunk_root;
2818 	em_tree = &root->fs_info->mapping_tree.map_tree;
2819 
2820 	read_lock(&em_tree->lock);
2821 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2822 	read_unlock(&em_tree->lock);
2823 
2824 	if (!em || em->start > chunk_offset ||
2825 	    em->start + em->len < chunk_offset) {
2826 		/*
2827 		 * This is a logic error, but we don't want to just rely on the
2828 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2829 		 * do anything we still error out.
2830 		 */
2831 		ASSERT(0);
2832 		if (em)
2833 			free_extent_map(em);
2834 		return -EINVAL;
2835 	}
2836 	map = em->map_lookup;
2837 	lock_chunks(root->fs_info->chunk_root);
2838 	check_system_chunk(trans, extent_root, map->type);
2839 	unlock_chunks(root->fs_info->chunk_root);
2840 
2841 	/*
2842 	 * Take the device list mutex to prevent races with the final phase of
2843 	 * a device replace operation that replaces the device object associated
2844 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2845 	 */
2846 	mutex_lock(&fs_devices->device_list_mutex);
2847 	for (i = 0; i < map->num_stripes; i++) {
2848 		struct btrfs_device *device = map->stripes[i].dev;
2849 		ret = btrfs_free_dev_extent(trans, device,
2850 					    map->stripes[i].physical,
2851 					    &dev_extent_len);
2852 		if (ret) {
2853 			mutex_unlock(&fs_devices->device_list_mutex);
2854 			btrfs_abort_transaction(trans, ret);
2855 			goto out;
2856 		}
2857 
2858 		if (device->bytes_used > 0) {
2859 			lock_chunks(root);
2860 			btrfs_device_set_bytes_used(device,
2861 					device->bytes_used - dev_extent_len);
2862 			spin_lock(&root->fs_info->free_chunk_lock);
2863 			root->fs_info->free_chunk_space += dev_extent_len;
2864 			spin_unlock(&root->fs_info->free_chunk_lock);
2865 			btrfs_clear_space_info_full(root->fs_info);
2866 			unlock_chunks(root);
2867 		}
2868 
2869 		if (map->stripes[i].dev) {
2870 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2871 			if (ret) {
2872 				mutex_unlock(&fs_devices->device_list_mutex);
2873 				btrfs_abort_transaction(trans, ret);
2874 				goto out;
2875 			}
2876 		}
2877 	}
2878 	mutex_unlock(&fs_devices->device_list_mutex);
2879 
2880 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2881 	if (ret) {
2882 		btrfs_abort_transaction(trans, ret);
2883 		goto out;
2884 	}
2885 
2886 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2887 
2888 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2889 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2890 		if (ret) {
2891 			btrfs_abort_transaction(trans, ret);
2892 			goto out;
2893 		}
2894 	}
2895 
2896 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2897 	if (ret) {
2898 		btrfs_abort_transaction(trans, ret);
2899 		goto out;
2900 	}
2901 
2902 out:
2903 	/* once for us */
2904 	free_extent_map(em);
2905 	return ret;
2906 }
2907 
2908 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2909 {
2910 	struct btrfs_root *extent_root;
2911 	struct btrfs_trans_handle *trans;
2912 	int ret;
2913 
2914 	root = root->fs_info->chunk_root;
2915 	extent_root = root->fs_info->extent_root;
2916 
2917 	/*
2918 	 * Prevent races with automatic removal of unused block groups.
2919 	 * After we relocate and before we remove the chunk with offset
2920 	 * chunk_offset, automatic removal of the block group can kick in,
2921 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2922 	 *
2923 	 * Make sure to acquire this mutex before doing a tree search (dev
2924 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2925 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2926 	 * we release the path used to search the chunk/dev tree and before
2927 	 * the current task acquires this mutex and calls us.
2928 	 */
2929 	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2930 
2931 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2932 	if (ret)
2933 		return -ENOSPC;
2934 
2935 	/* step one, relocate all the extents inside this chunk */
2936 	btrfs_scrub_pause(root);
2937 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2938 	btrfs_scrub_continue(root);
2939 	if (ret)
2940 		return ret;
2941 
2942 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2943 						     chunk_offset);
2944 	if (IS_ERR(trans)) {
2945 		ret = PTR_ERR(trans);
2946 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2947 		return ret;
2948 	}
2949 
2950 	/*
2951 	 * step two, delete the device extents and the
2952 	 * chunk tree entries
2953 	 */
2954 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2955 	btrfs_end_transaction(trans, extent_root);
2956 	return ret;
2957 }
2958 
2959 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2960 {
2961 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2962 	struct btrfs_path *path;
2963 	struct extent_buffer *leaf;
2964 	struct btrfs_chunk *chunk;
2965 	struct btrfs_key key;
2966 	struct btrfs_key found_key;
2967 	u64 chunk_type;
2968 	bool retried = false;
2969 	int failed = 0;
2970 	int ret;
2971 
2972 	path = btrfs_alloc_path();
2973 	if (!path)
2974 		return -ENOMEM;
2975 
2976 again:
2977 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2978 	key.offset = (u64)-1;
2979 	key.type = BTRFS_CHUNK_ITEM_KEY;
2980 
2981 	while (1) {
2982 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2983 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2984 		if (ret < 0) {
2985 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2986 			goto error;
2987 		}
2988 		BUG_ON(ret == 0); /* Corruption */
2989 
2990 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2991 					  key.type);
2992 		if (ret)
2993 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2994 		if (ret < 0)
2995 			goto error;
2996 		if (ret > 0)
2997 			break;
2998 
2999 		leaf = path->nodes[0];
3000 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3001 
3002 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3003 				       struct btrfs_chunk);
3004 		chunk_type = btrfs_chunk_type(leaf, chunk);
3005 		btrfs_release_path(path);
3006 
3007 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3008 			ret = btrfs_relocate_chunk(chunk_root,
3009 						   found_key.offset);
3010 			if (ret == -ENOSPC)
3011 				failed++;
3012 			else
3013 				BUG_ON(ret);
3014 		}
3015 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3016 
3017 		if (found_key.offset == 0)
3018 			break;
3019 		key.offset = found_key.offset - 1;
3020 	}
3021 	ret = 0;
3022 	if (failed && !retried) {
3023 		failed = 0;
3024 		retried = true;
3025 		goto again;
3026 	} else if (WARN_ON(failed && retried)) {
3027 		ret = -ENOSPC;
3028 	}
3029 error:
3030 	btrfs_free_path(path);
3031 	return ret;
3032 }
3033 
3034 static int insert_balance_item(struct btrfs_root *root,
3035 			       struct btrfs_balance_control *bctl)
3036 {
3037 	struct btrfs_trans_handle *trans;
3038 	struct btrfs_balance_item *item;
3039 	struct btrfs_disk_balance_args disk_bargs;
3040 	struct btrfs_path *path;
3041 	struct extent_buffer *leaf;
3042 	struct btrfs_key key;
3043 	int ret, err;
3044 
3045 	path = btrfs_alloc_path();
3046 	if (!path)
3047 		return -ENOMEM;
3048 
3049 	trans = btrfs_start_transaction(root, 0);
3050 	if (IS_ERR(trans)) {
3051 		btrfs_free_path(path);
3052 		return PTR_ERR(trans);
3053 	}
3054 
3055 	key.objectid = BTRFS_BALANCE_OBJECTID;
3056 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3057 	key.offset = 0;
3058 
3059 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3060 				      sizeof(*item));
3061 	if (ret)
3062 		goto out;
3063 
3064 	leaf = path->nodes[0];
3065 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3066 
3067 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3068 
3069 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3070 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3071 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3072 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3073 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3074 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3075 
3076 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3077 
3078 	btrfs_mark_buffer_dirty(leaf);
3079 out:
3080 	btrfs_free_path(path);
3081 	err = btrfs_commit_transaction(trans, root);
3082 	if (err && !ret)
3083 		ret = err;
3084 	return ret;
3085 }
3086 
3087 static int del_balance_item(struct btrfs_root *root)
3088 {
3089 	struct btrfs_trans_handle *trans;
3090 	struct btrfs_path *path;
3091 	struct btrfs_key key;
3092 	int ret, err;
3093 
3094 	path = btrfs_alloc_path();
3095 	if (!path)
3096 		return -ENOMEM;
3097 
3098 	trans = btrfs_start_transaction(root, 0);
3099 	if (IS_ERR(trans)) {
3100 		btrfs_free_path(path);
3101 		return PTR_ERR(trans);
3102 	}
3103 
3104 	key.objectid = BTRFS_BALANCE_OBJECTID;
3105 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3106 	key.offset = 0;
3107 
3108 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3109 	if (ret < 0)
3110 		goto out;
3111 	if (ret > 0) {
3112 		ret = -ENOENT;
3113 		goto out;
3114 	}
3115 
3116 	ret = btrfs_del_item(trans, root, path);
3117 out:
3118 	btrfs_free_path(path);
3119 	err = btrfs_commit_transaction(trans, root);
3120 	if (err && !ret)
3121 		ret = err;
3122 	return ret;
3123 }
3124 
3125 /*
3126  * This is a heuristic used to reduce the number of chunks balanced on
3127  * resume after balance was interrupted.
3128  */
3129 static void update_balance_args(struct btrfs_balance_control *bctl)
3130 {
3131 	/*
3132 	 * Turn on soft mode for chunk types that were being converted.
3133 	 */
3134 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140 
3141 	/*
3142 	 * Turn on usage filter if is not already used.  The idea is
3143 	 * that chunks that we have already balanced should be
3144 	 * reasonably full.  Don't do it for chunks that are being
3145 	 * converted - that will keep us from relocating unconverted
3146 	 * (albeit full) chunks.
3147 	 */
3148 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3149 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3150 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3151 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3152 		bctl->data.usage = 90;
3153 	}
3154 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3155 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3156 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3157 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3158 		bctl->sys.usage = 90;
3159 	}
3160 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3161 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3162 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3163 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3164 		bctl->meta.usage = 90;
3165 	}
3166 }
3167 
3168 /*
3169  * Should be called with both balance and volume mutexes held to
3170  * serialize other volume operations (add_dev/rm_dev/resize) with
3171  * restriper.  Same goes for unset_balance_control.
3172  */
3173 static void set_balance_control(struct btrfs_balance_control *bctl)
3174 {
3175 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3176 
3177 	BUG_ON(fs_info->balance_ctl);
3178 
3179 	spin_lock(&fs_info->balance_lock);
3180 	fs_info->balance_ctl = bctl;
3181 	spin_unlock(&fs_info->balance_lock);
3182 }
3183 
3184 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3185 {
3186 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3187 
3188 	BUG_ON(!fs_info->balance_ctl);
3189 
3190 	spin_lock(&fs_info->balance_lock);
3191 	fs_info->balance_ctl = NULL;
3192 	spin_unlock(&fs_info->balance_lock);
3193 
3194 	kfree(bctl);
3195 }
3196 
3197 /*
3198  * Balance filters.  Return 1 if chunk should be filtered out
3199  * (should not be balanced).
3200  */
3201 static int chunk_profiles_filter(u64 chunk_type,
3202 				 struct btrfs_balance_args *bargs)
3203 {
3204 	chunk_type = chunk_to_extended(chunk_type) &
3205 				BTRFS_EXTENDED_PROFILE_MASK;
3206 
3207 	if (bargs->profiles & chunk_type)
3208 		return 0;
3209 
3210 	return 1;
3211 }
3212 
3213 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3214 			      struct btrfs_balance_args *bargs)
3215 {
3216 	struct btrfs_block_group_cache *cache;
3217 	u64 chunk_used;
3218 	u64 user_thresh_min;
3219 	u64 user_thresh_max;
3220 	int ret = 1;
3221 
3222 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3223 	chunk_used = btrfs_block_group_used(&cache->item);
3224 
3225 	if (bargs->usage_min == 0)
3226 		user_thresh_min = 0;
3227 	else
3228 		user_thresh_min = div_factor_fine(cache->key.offset,
3229 					bargs->usage_min);
3230 
3231 	if (bargs->usage_max == 0)
3232 		user_thresh_max = 1;
3233 	else if (bargs->usage_max > 100)
3234 		user_thresh_max = cache->key.offset;
3235 	else
3236 		user_thresh_max = div_factor_fine(cache->key.offset,
3237 					bargs->usage_max);
3238 
3239 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3240 		ret = 0;
3241 
3242 	btrfs_put_block_group(cache);
3243 	return ret;
3244 }
3245 
3246 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3247 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3248 {
3249 	struct btrfs_block_group_cache *cache;
3250 	u64 chunk_used, user_thresh;
3251 	int ret = 1;
3252 
3253 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3254 	chunk_used = btrfs_block_group_used(&cache->item);
3255 
3256 	if (bargs->usage_min == 0)
3257 		user_thresh = 1;
3258 	else if (bargs->usage > 100)
3259 		user_thresh = cache->key.offset;
3260 	else
3261 		user_thresh = div_factor_fine(cache->key.offset,
3262 					      bargs->usage);
3263 
3264 	if (chunk_used < user_thresh)
3265 		ret = 0;
3266 
3267 	btrfs_put_block_group(cache);
3268 	return ret;
3269 }
3270 
3271 static int chunk_devid_filter(struct extent_buffer *leaf,
3272 			      struct btrfs_chunk *chunk,
3273 			      struct btrfs_balance_args *bargs)
3274 {
3275 	struct btrfs_stripe *stripe;
3276 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3277 	int i;
3278 
3279 	for (i = 0; i < num_stripes; i++) {
3280 		stripe = btrfs_stripe_nr(chunk, i);
3281 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3282 			return 0;
3283 	}
3284 
3285 	return 1;
3286 }
3287 
3288 /* [pstart, pend) */
3289 static int chunk_drange_filter(struct extent_buffer *leaf,
3290 			       struct btrfs_chunk *chunk,
3291 			       u64 chunk_offset,
3292 			       struct btrfs_balance_args *bargs)
3293 {
3294 	struct btrfs_stripe *stripe;
3295 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3296 	u64 stripe_offset;
3297 	u64 stripe_length;
3298 	int factor;
3299 	int i;
3300 
3301 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3302 		return 0;
3303 
3304 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3305 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3306 		factor = num_stripes / 2;
3307 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3308 		factor = num_stripes - 1;
3309 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3310 		factor = num_stripes - 2;
3311 	} else {
3312 		factor = num_stripes;
3313 	}
3314 
3315 	for (i = 0; i < num_stripes; i++) {
3316 		stripe = btrfs_stripe_nr(chunk, i);
3317 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3318 			continue;
3319 
3320 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3321 		stripe_length = btrfs_chunk_length(leaf, chunk);
3322 		stripe_length = div_u64(stripe_length, factor);
3323 
3324 		if (stripe_offset < bargs->pend &&
3325 		    stripe_offset + stripe_length > bargs->pstart)
3326 			return 0;
3327 	}
3328 
3329 	return 1;
3330 }
3331 
3332 /* [vstart, vend) */
3333 static int chunk_vrange_filter(struct extent_buffer *leaf,
3334 			       struct btrfs_chunk *chunk,
3335 			       u64 chunk_offset,
3336 			       struct btrfs_balance_args *bargs)
3337 {
3338 	if (chunk_offset < bargs->vend &&
3339 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3340 		/* at least part of the chunk is inside this vrange */
3341 		return 0;
3342 
3343 	return 1;
3344 }
3345 
3346 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3347 			       struct btrfs_chunk *chunk,
3348 			       struct btrfs_balance_args *bargs)
3349 {
3350 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3351 
3352 	if (bargs->stripes_min <= num_stripes
3353 			&& num_stripes <= bargs->stripes_max)
3354 		return 0;
3355 
3356 	return 1;
3357 }
3358 
3359 static int chunk_soft_convert_filter(u64 chunk_type,
3360 				     struct btrfs_balance_args *bargs)
3361 {
3362 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3363 		return 0;
3364 
3365 	chunk_type = chunk_to_extended(chunk_type) &
3366 				BTRFS_EXTENDED_PROFILE_MASK;
3367 
3368 	if (bargs->target == chunk_type)
3369 		return 1;
3370 
3371 	return 0;
3372 }
3373 
3374 static int should_balance_chunk(struct btrfs_root *root,
3375 				struct extent_buffer *leaf,
3376 				struct btrfs_chunk *chunk, u64 chunk_offset)
3377 {
3378 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3379 	struct btrfs_balance_args *bargs = NULL;
3380 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3381 
3382 	/* type filter */
3383 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3384 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3385 		return 0;
3386 	}
3387 
3388 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3389 		bargs = &bctl->data;
3390 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3391 		bargs = &bctl->sys;
3392 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3393 		bargs = &bctl->meta;
3394 
3395 	/* profiles filter */
3396 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3397 	    chunk_profiles_filter(chunk_type, bargs)) {
3398 		return 0;
3399 	}
3400 
3401 	/* usage filter */
3402 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3403 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3404 		return 0;
3405 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3406 	    chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3407 		return 0;
3408 	}
3409 
3410 	/* devid filter */
3411 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3412 	    chunk_devid_filter(leaf, chunk, bargs)) {
3413 		return 0;
3414 	}
3415 
3416 	/* drange filter, makes sense only with devid filter */
3417 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3418 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3419 		return 0;
3420 	}
3421 
3422 	/* vrange filter */
3423 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3424 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3425 		return 0;
3426 	}
3427 
3428 	/* stripes filter */
3429 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3430 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3431 		return 0;
3432 	}
3433 
3434 	/* soft profile changing mode */
3435 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3436 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3437 		return 0;
3438 	}
3439 
3440 	/*
3441 	 * limited by count, must be the last filter
3442 	 */
3443 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3444 		if (bargs->limit == 0)
3445 			return 0;
3446 		else
3447 			bargs->limit--;
3448 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3449 		/*
3450 		 * Same logic as the 'limit' filter; the minimum cannot be
3451 		 * determined here because we do not have the global information
3452 		 * about the count of all chunks that satisfy the filters.
3453 		 */
3454 		if (bargs->limit_max == 0)
3455 			return 0;
3456 		else
3457 			bargs->limit_max--;
3458 	}
3459 
3460 	return 1;
3461 }
3462 
3463 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3464 {
3465 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3466 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3467 	struct btrfs_root *dev_root = fs_info->dev_root;
3468 	struct list_head *devices;
3469 	struct btrfs_device *device;
3470 	u64 old_size;
3471 	u64 size_to_free;
3472 	u64 chunk_type;
3473 	struct btrfs_chunk *chunk;
3474 	struct btrfs_path *path = NULL;
3475 	struct btrfs_key key;
3476 	struct btrfs_key found_key;
3477 	struct btrfs_trans_handle *trans;
3478 	struct extent_buffer *leaf;
3479 	int slot;
3480 	int ret;
3481 	int enospc_errors = 0;
3482 	bool counting = true;
3483 	/* The single value limit and min/max limits use the same bytes in the */
3484 	u64 limit_data = bctl->data.limit;
3485 	u64 limit_meta = bctl->meta.limit;
3486 	u64 limit_sys = bctl->sys.limit;
3487 	u32 count_data = 0;
3488 	u32 count_meta = 0;
3489 	u32 count_sys = 0;
3490 	int chunk_reserved = 0;
3491 	u64 bytes_used = 0;
3492 
3493 	/* step one make some room on all the devices */
3494 	devices = &fs_info->fs_devices->devices;
3495 	list_for_each_entry(device, devices, dev_list) {
3496 		old_size = btrfs_device_get_total_bytes(device);
3497 		size_to_free = div_factor(old_size, 1);
3498 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3499 		if (!device->writeable ||
3500 		    btrfs_device_get_total_bytes(device) -
3501 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3502 		    device->is_tgtdev_for_dev_replace)
3503 			continue;
3504 
3505 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3506 		if (ret == -ENOSPC)
3507 			break;
3508 		if (ret) {
3509 			/* btrfs_shrink_device never returns ret > 0 */
3510 			WARN_ON(ret > 0);
3511 			goto error;
3512 		}
3513 
3514 		trans = btrfs_start_transaction(dev_root, 0);
3515 		if (IS_ERR(trans)) {
3516 			ret = PTR_ERR(trans);
3517 			btrfs_info_in_rcu(fs_info,
3518 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3519 					  rcu_str_deref(device->name), ret,
3520 					  old_size, old_size - size_to_free);
3521 			goto error;
3522 		}
3523 
3524 		ret = btrfs_grow_device(trans, device, old_size);
3525 		if (ret) {
3526 			btrfs_end_transaction(trans, dev_root);
3527 			/* btrfs_grow_device never returns ret > 0 */
3528 			WARN_ON(ret > 0);
3529 			btrfs_info_in_rcu(fs_info,
3530 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3531 					  rcu_str_deref(device->name), ret,
3532 					  old_size, old_size - size_to_free);
3533 			goto error;
3534 		}
3535 
3536 		btrfs_end_transaction(trans, dev_root);
3537 	}
3538 
3539 	/* step two, relocate all the chunks */
3540 	path = btrfs_alloc_path();
3541 	if (!path) {
3542 		ret = -ENOMEM;
3543 		goto error;
3544 	}
3545 
3546 	/* zero out stat counters */
3547 	spin_lock(&fs_info->balance_lock);
3548 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3549 	spin_unlock(&fs_info->balance_lock);
3550 again:
3551 	if (!counting) {
3552 		/*
3553 		 * The single value limit and min/max limits use the same bytes
3554 		 * in the
3555 		 */
3556 		bctl->data.limit = limit_data;
3557 		bctl->meta.limit = limit_meta;
3558 		bctl->sys.limit = limit_sys;
3559 	}
3560 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3561 	key.offset = (u64)-1;
3562 	key.type = BTRFS_CHUNK_ITEM_KEY;
3563 
3564 	while (1) {
3565 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3566 		    atomic_read(&fs_info->balance_cancel_req)) {
3567 			ret = -ECANCELED;
3568 			goto error;
3569 		}
3570 
3571 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3572 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3573 		if (ret < 0) {
3574 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3575 			goto error;
3576 		}
3577 
3578 		/*
3579 		 * this shouldn't happen, it means the last relocate
3580 		 * failed
3581 		 */
3582 		if (ret == 0)
3583 			BUG(); /* FIXME break ? */
3584 
3585 		ret = btrfs_previous_item(chunk_root, path, 0,
3586 					  BTRFS_CHUNK_ITEM_KEY);
3587 		if (ret) {
3588 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589 			ret = 0;
3590 			break;
3591 		}
3592 
3593 		leaf = path->nodes[0];
3594 		slot = path->slots[0];
3595 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3596 
3597 		if (found_key.objectid != key.objectid) {
3598 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3599 			break;
3600 		}
3601 
3602 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3603 		chunk_type = btrfs_chunk_type(leaf, chunk);
3604 
3605 		if (!counting) {
3606 			spin_lock(&fs_info->balance_lock);
3607 			bctl->stat.considered++;
3608 			spin_unlock(&fs_info->balance_lock);
3609 		}
3610 
3611 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3612 					   found_key.offset);
3613 
3614 		btrfs_release_path(path);
3615 		if (!ret) {
3616 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3617 			goto loop;
3618 		}
3619 
3620 		if (counting) {
3621 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3622 			spin_lock(&fs_info->balance_lock);
3623 			bctl->stat.expected++;
3624 			spin_unlock(&fs_info->balance_lock);
3625 
3626 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3627 				count_data++;
3628 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3629 				count_sys++;
3630 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3631 				count_meta++;
3632 
3633 			goto loop;
3634 		}
3635 
3636 		/*
3637 		 * Apply limit_min filter, no need to check if the LIMITS
3638 		 * filter is used, limit_min is 0 by default
3639 		 */
3640 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3641 					count_data < bctl->data.limit_min)
3642 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3643 					count_meta < bctl->meta.limit_min)
3644 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3645 					count_sys < bctl->sys.limit_min)) {
3646 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3647 			goto loop;
3648 		}
3649 
3650 		ASSERT(fs_info->data_sinfo);
3651 		spin_lock(&fs_info->data_sinfo->lock);
3652 		bytes_used = fs_info->data_sinfo->bytes_used;
3653 		spin_unlock(&fs_info->data_sinfo->lock);
3654 
3655 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3656 		    !chunk_reserved && !bytes_used) {
3657 			trans = btrfs_start_transaction(chunk_root, 0);
3658 			if (IS_ERR(trans)) {
3659 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3660 				ret = PTR_ERR(trans);
3661 				goto error;
3662 			}
3663 
3664 			ret = btrfs_force_chunk_alloc(trans, chunk_root,
3665 						      BTRFS_BLOCK_GROUP_DATA);
3666 			btrfs_end_transaction(trans, chunk_root);
3667 			if (ret < 0) {
3668 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3669 				goto error;
3670 			}
3671 			chunk_reserved = 1;
3672 		}
3673 
3674 		ret = btrfs_relocate_chunk(chunk_root,
3675 					   found_key.offset);
3676 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3677 		if (ret && ret != -ENOSPC)
3678 			goto error;
3679 		if (ret == -ENOSPC) {
3680 			enospc_errors++;
3681 		} else {
3682 			spin_lock(&fs_info->balance_lock);
3683 			bctl->stat.completed++;
3684 			spin_unlock(&fs_info->balance_lock);
3685 		}
3686 loop:
3687 		if (found_key.offset == 0)
3688 			break;
3689 		key.offset = found_key.offset - 1;
3690 	}
3691 
3692 	if (counting) {
3693 		btrfs_release_path(path);
3694 		counting = false;
3695 		goto again;
3696 	}
3697 error:
3698 	btrfs_free_path(path);
3699 	if (enospc_errors) {
3700 		btrfs_info(fs_info, "%d enospc errors during balance",
3701 		       enospc_errors);
3702 		if (!ret)
3703 			ret = -ENOSPC;
3704 	}
3705 
3706 	return ret;
3707 }
3708 
3709 /**
3710  * alloc_profile_is_valid - see if a given profile is valid and reduced
3711  * @flags: profile to validate
3712  * @extended: if true @flags is treated as an extended profile
3713  */
3714 static int alloc_profile_is_valid(u64 flags, int extended)
3715 {
3716 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3717 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3718 
3719 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3720 
3721 	/* 1) check that all other bits are zeroed */
3722 	if (flags & ~mask)
3723 		return 0;
3724 
3725 	/* 2) see if profile is reduced */
3726 	if (flags == 0)
3727 		return !extended; /* "0" is valid for usual profiles */
3728 
3729 	/* true if exactly one bit set */
3730 	return (flags & (flags - 1)) == 0;
3731 }
3732 
3733 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3734 {
3735 	/* cancel requested || normal exit path */
3736 	return atomic_read(&fs_info->balance_cancel_req) ||
3737 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3738 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3739 }
3740 
3741 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3742 {
3743 	int ret;
3744 
3745 	unset_balance_control(fs_info);
3746 	ret = del_balance_item(fs_info->tree_root);
3747 	if (ret)
3748 		btrfs_handle_fs_error(fs_info, ret, NULL);
3749 
3750 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3751 }
3752 
3753 /* Non-zero return value signifies invalidity */
3754 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3755 		u64 allowed)
3756 {
3757 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3758 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3759 		 (bctl_arg->target & ~allowed)));
3760 }
3761 
3762 /*
3763  * Should be called with both balance and volume mutexes held
3764  */
3765 int btrfs_balance(struct btrfs_balance_control *bctl,
3766 		  struct btrfs_ioctl_balance_args *bargs)
3767 {
3768 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3769 	u64 allowed;
3770 	int mixed = 0;
3771 	int ret;
3772 	u64 num_devices;
3773 	unsigned seq;
3774 
3775 	if (btrfs_fs_closing(fs_info) ||
3776 	    atomic_read(&fs_info->balance_pause_req) ||
3777 	    atomic_read(&fs_info->balance_cancel_req)) {
3778 		ret = -EINVAL;
3779 		goto out;
3780 	}
3781 
3782 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3783 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3784 		mixed = 1;
3785 
3786 	/*
3787 	 * In case of mixed groups both data and meta should be picked,
3788 	 * and identical options should be given for both of them.
3789 	 */
3790 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3791 	if (mixed && (bctl->flags & allowed)) {
3792 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3793 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3794 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3795 			btrfs_err(fs_info, "with mixed groups data and "
3796 				   "metadata balance options must be the same");
3797 			ret = -EINVAL;
3798 			goto out;
3799 		}
3800 	}
3801 
3802 	num_devices = fs_info->fs_devices->num_devices;
3803 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3804 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3805 		BUG_ON(num_devices < 1);
3806 		num_devices--;
3807 	}
3808 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3809 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3810 	if (num_devices > 1)
3811 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3812 	if (num_devices > 2)
3813 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3814 	if (num_devices > 3)
3815 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3816 			    BTRFS_BLOCK_GROUP_RAID6);
3817 	if (validate_convert_profile(&bctl->data, allowed)) {
3818 		btrfs_err(fs_info, "unable to start balance with target "
3819 			   "data profile %llu",
3820 		       bctl->data.target);
3821 		ret = -EINVAL;
3822 		goto out;
3823 	}
3824 	if (validate_convert_profile(&bctl->meta, allowed)) {
3825 		btrfs_err(fs_info,
3826 			   "unable to start balance with target metadata profile %llu",
3827 		       bctl->meta.target);
3828 		ret = -EINVAL;
3829 		goto out;
3830 	}
3831 	if (validate_convert_profile(&bctl->sys, allowed)) {
3832 		btrfs_err(fs_info,
3833 			   "unable to start balance with target system profile %llu",
3834 		       bctl->sys.target);
3835 		ret = -EINVAL;
3836 		goto out;
3837 	}
3838 
3839 	/* allow to reduce meta or sys integrity only if force set */
3840 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3841 			BTRFS_BLOCK_GROUP_RAID10 |
3842 			BTRFS_BLOCK_GROUP_RAID5 |
3843 			BTRFS_BLOCK_GROUP_RAID6;
3844 	do {
3845 		seq = read_seqbegin(&fs_info->profiles_lock);
3846 
3847 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3848 		     (fs_info->avail_system_alloc_bits & allowed) &&
3849 		     !(bctl->sys.target & allowed)) ||
3850 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3851 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3852 		     !(bctl->meta.target & allowed))) {
3853 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3854 				btrfs_info(fs_info, "force reducing metadata integrity");
3855 			} else {
3856 				btrfs_err(fs_info, "balance will reduce metadata "
3857 					   "integrity, use force if you want this");
3858 				ret = -EINVAL;
3859 				goto out;
3860 			}
3861 		}
3862 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3863 
3864 	if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3865 		btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3866 		btrfs_warn(fs_info,
3867 	"metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3868 			bctl->meta.target, bctl->data.target);
3869 	}
3870 
3871 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3872 		fs_info->num_tolerated_disk_barrier_failures = min(
3873 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3874 			btrfs_get_num_tolerated_disk_barrier_failures(
3875 				bctl->sys.target));
3876 	}
3877 
3878 	ret = insert_balance_item(fs_info->tree_root, bctl);
3879 	if (ret && ret != -EEXIST)
3880 		goto out;
3881 
3882 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3883 		BUG_ON(ret == -EEXIST);
3884 		set_balance_control(bctl);
3885 	} else {
3886 		BUG_ON(ret != -EEXIST);
3887 		spin_lock(&fs_info->balance_lock);
3888 		update_balance_args(bctl);
3889 		spin_unlock(&fs_info->balance_lock);
3890 	}
3891 
3892 	atomic_inc(&fs_info->balance_running);
3893 	mutex_unlock(&fs_info->balance_mutex);
3894 
3895 	ret = __btrfs_balance(fs_info);
3896 
3897 	mutex_lock(&fs_info->balance_mutex);
3898 	atomic_dec(&fs_info->balance_running);
3899 
3900 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3901 		fs_info->num_tolerated_disk_barrier_failures =
3902 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3903 	}
3904 
3905 	if (bargs) {
3906 		memset(bargs, 0, sizeof(*bargs));
3907 		update_ioctl_balance_args(fs_info, 0, bargs);
3908 	}
3909 
3910 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3911 	    balance_need_close(fs_info)) {
3912 		__cancel_balance(fs_info);
3913 	}
3914 
3915 	wake_up(&fs_info->balance_wait_q);
3916 
3917 	return ret;
3918 out:
3919 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3920 		__cancel_balance(fs_info);
3921 	else {
3922 		kfree(bctl);
3923 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3924 	}
3925 	return ret;
3926 }
3927 
3928 static int balance_kthread(void *data)
3929 {
3930 	struct btrfs_fs_info *fs_info = data;
3931 	int ret = 0;
3932 
3933 	mutex_lock(&fs_info->volume_mutex);
3934 	mutex_lock(&fs_info->balance_mutex);
3935 
3936 	if (fs_info->balance_ctl) {
3937 		btrfs_info(fs_info, "continuing balance");
3938 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3939 	}
3940 
3941 	mutex_unlock(&fs_info->balance_mutex);
3942 	mutex_unlock(&fs_info->volume_mutex);
3943 
3944 	return ret;
3945 }
3946 
3947 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3948 {
3949 	struct task_struct *tsk;
3950 
3951 	spin_lock(&fs_info->balance_lock);
3952 	if (!fs_info->balance_ctl) {
3953 		spin_unlock(&fs_info->balance_lock);
3954 		return 0;
3955 	}
3956 	spin_unlock(&fs_info->balance_lock);
3957 
3958 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3959 		btrfs_info(fs_info, "force skipping balance");
3960 		return 0;
3961 	}
3962 
3963 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3964 	return PTR_ERR_OR_ZERO(tsk);
3965 }
3966 
3967 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3968 {
3969 	struct btrfs_balance_control *bctl;
3970 	struct btrfs_balance_item *item;
3971 	struct btrfs_disk_balance_args disk_bargs;
3972 	struct btrfs_path *path;
3973 	struct extent_buffer *leaf;
3974 	struct btrfs_key key;
3975 	int ret;
3976 
3977 	path = btrfs_alloc_path();
3978 	if (!path)
3979 		return -ENOMEM;
3980 
3981 	key.objectid = BTRFS_BALANCE_OBJECTID;
3982 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3983 	key.offset = 0;
3984 
3985 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3986 	if (ret < 0)
3987 		goto out;
3988 	if (ret > 0) { /* ret = -ENOENT; */
3989 		ret = 0;
3990 		goto out;
3991 	}
3992 
3993 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3994 	if (!bctl) {
3995 		ret = -ENOMEM;
3996 		goto out;
3997 	}
3998 
3999 	leaf = path->nodes[0];
4000 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4001 
4002 	bctl->fs_info = fs_info;
4003 	bctl->flags = btrfs_balance_flags(leaf, item);
4004 	bctl->flags |= BTRFS_BALANCE_RESUME;
4005 
4006 	btrfs_balance_data(leaf, item, &disk_bargs);
4007 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4008 	btrfs_balance_meta(leaf, item, &disk_bargs);
4009 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4010 	btrfs_balance_sys(leaf, item, &disk_bargs);
4011 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4012 
4013 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4014 
4015 	mutex_lock(&fs_info->volume_mutex);
4016 	mutex_lock(&fs_info->balance_mutex);
4017 
4018 	set_balance_control(bctl);
4019 
4020 	mutex_unlock(&fs_info->balance_mutex);
4021 	mutex_unlock(&fs_info->volume_mutex);
4022 out:
4023 	btrfs_free_path(path);
4024 	return ret;
4025 }
4026 
4027 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4028 {
4029 	int ret = 0;
4030 
4031 	mutex_lock(&fs_info->balance_mutex);
4032 	if (!fs_info->balance_ctl) {
4033 		mutex_unlock(&fs_info->balance_mutex);
4034 		return -ENOTCONN;
4035 	}
4036 
4037 	if (atomic_read(&fs_info->balance_running)) {
4038 		atomic_inc(&fs_info->balance_pause_req);
4039 		mutex_unlock(&fs_info->balance_mutex);
4040 
4041 		wait_event(fs_info->balance_wait_q,
4042 			   atomic_read(&fs_info->balance_running) == 0);
4043 
4044 		mutex_lock(&fs_info->balance_mutex);
4045 		/* we are good with balance_ctl ripped off from under us */
4046 		BUG_ON(atomic_read(&fs_info->balance_running));
4047 		atomic_dec(&fs_info->balance_pause_req);
4048 	} else {
4049 		ret = -ENOTCONN;
4050 	}
4051 
4052 	mutex_unlock(&fs_info->balance_mutex);
4053 	return ret;
4054 }
4055 
4056 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4057 {
4058 	if (fs_info->sb->s_flags & MS_RDONLY)
4059 		return -EROFS;
4060 
4061 	mutex_lock(&fs_info->balance_mutex);
4062 	if (!fs_info->balance_ctl) {
4063 		mutex_unlock(&fs_info->balance_mutex);
4064 		return -ENOTCONN;
4065 	}
4066 
4067 	atomic_inc(&fs_info->balance_cancel_req);
4068 	/*
4069 	 * if we are running just wait and return, balance item is
4070 	 * deleted in btrfs_balance in this case
4071 	 */
4072 	if (atomic_read(&fs_info->balance_running)) {
4073 		mutex_unlock(&fs_info->balance_mutex);
4074 		wait_event(fs_info->balance_wait_q,
4075 			   atomic_read(&fs_info->balance_running) == 0);
4076 		mutex_lock(&fs_info->balance_mutex);
4077 	} else {
4078 		/* __cancel_balance needs volume_mutex */
4079 		mutex_unlock(&fs_info->balance_mutex);
4080 		mutex_lock(&fs_info->volume_mutex);
4081 		mutex_lock(&fs_info->balance_mutex);
4082 
4083 		if (fs_info->balance_ctl)
4084 			__cancel_balance(fs_info);
4085 
4086 		mutex_unlock(&fs_info->volume_mutex);
4087 	}
4088 
4089 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4090 	atomic_dec(&fs_info->balance_cancel_req);
4091 	mutex_unlock(&fs_info->balance_mutex);
4092 	return 0;
4093 }
4094 
4095 static int btrfs_uuid_scan_kthread(void *data)
4096 {
4097 	struct btrfs_fs_info *fs_info = data;
4098 	struct btrfs_root *root = fs_info->tree_root;
4099 	struct btrfs_key key;
4100 	struct btrfs_key max_key;
4101 	struct btrfs_path *path = NULL;
4102 	int ret = 0;
4103 	struct extent_buffer *eb;
4104 	int slot;
4105 	struct btrfs_root_item root_item;
4106 	u32 item_size;
4107 	struct btrfs_trans_handle *trans = NULL;
4108 
4109 	path = btrfs_alloc_path();
4110 	if (!path) {
4111 		ret = -ENOMEM;
4112 		goto out;
4113 	}
4114 
4115 	key.objectid = 0;
4116 	key.type = BTRFS_ROOT_ITEM_KEY;
4117 	key.offset = 0;
4118 
4119 	max_key.objectid = (u64)-1;
4120 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4121 	max_key.offset = (u64)-1;
4122 
4123 	while (1) {
4124 		ret = btrfs_search_forward(root, &key, path, 0);
4125 		if (ret) {
4126 			if (ret > 0)
4127 				ret = 0;
4128 			break;
4129 		}
4130 
4131 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4132 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4133 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4134 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4135 			goto skip;
4136 
4137 		eb = path->nodes[0];
4138 		slot = path->slots[0];
4139 		item_size = btrfs_item_size_nr(eb, slot);
4140 		if (item_size < sizeof(root_item))
4141 			goto skip;
4142 
4143 		read_extent_buffer(eb, &root_item,
4144 				   btrfs_item_ptr_offset(eb, slot),
4145 				   (int)sizeof(root_item));
4146 		if (btrfs_root_refs(&root_item) == 0)
4147 			goto skip;
4148 
4149 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4150 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4151 			if (trans)
4152 				goto update_tree;
4153 
4154 			btrfs_release_path(path);
4155 			/*
4156 			 * 1 - subvol uuid item
4157 			 * 1 - received_subvol uuid item
4158 			 */
4159 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4160 			if (IS_ERR(trans)) {
4161 				ret = PTR_ERR(trans);
4162 				break;
4163 			}
4164 			continue;
4165 		} else {
4166 			goto skip;
4167 		}
4168 update_tree:
4169 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4170 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4171 						  root_item.uuid,
4172 						  BTRFS_UUID_KEY_SUBVOL,
4173 						  key.objectid);
4174 			if (ret < 0) {
4175 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4176 					ret);
4177 				break;
4178 			}
4179 		}
4180 
4181 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4182 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4183 						  root_item.received_uuid,
4184 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4185 						  key.objectid);
4186 			if (ret < 0) {
4187 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4188 					ret);
4189 				break;
4190 			}
4191 		}
4192 
4193 skip:
4194 		if (trans) {
4195 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4196 			trans = NULL;
4197 			if (ret)
4198 				break;
4199 		}
4200 
4201 		btrfs_release_path(path);
4202 		if (key.offset < (u64)-1) {
4203 			key.offset++;
4204 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4205 			key.offset = 0;
4206 			key.type = BTRFS_ROOT_ITEM_KEY;
4207 		} else if (key.objectid < (u64)-1) {
4208 			key.offset = 0;
4209 			key.type = BTRFS_ROOT_ITEM_KEY;
4210 			key.objectid++;
4211 		} else {
4212 			break;
4213 		}
4214 		cond_resched();
4215 	}
4216 
4217 out:
4218 	btrfs_free_path(path);
4219 	if (trans && !IS_ERR(trans))
4220 		btrfs_end_transaction(trans, fs_info->uuid_root);
4221 	if (ret)
4222 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4223 	else
4224 		fs_info->update_uuid_tree_gen = 1;
4225 	up(&fs_info->uuid_tree_rescan_sem);
4226 	return 0;
4227 }
4228 
4229 /*
4230  * Callback for btrfs_uuid_tree_iterate().
4231  * returns:
4232  * 0	check succeeded, the entry is not outdated.
4233  * < 0	if an error occurred.
4234  * > 0	if the check failed, which means the caller shall remove the entry.
4235  */
4236 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4237 				       u8 *uuid, u8 type, u64 subid)
4238 {
4239 	struct btrfs_key key;
4240 	int ret = 0;
4241 	struct btrfs_root *subvol_root;
4242 
4243 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4244 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4245 		goto out;
4246 
4247 	key.objectid = subid;
4248 	key.type = BTRFS_ROOT_ITEM_KEY;
4249 	key.offset = (u64)-1;
4250 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4251 	if (IS_ERR(subvol_root)) {
4252 		ret = PTR_ERR(subvol_root);
4253 		if (ret == -ENOENT)
4254 			ret = 1;
4255 		goto out;
4256 	}
4257 
4258 	switch (type) {
4259 	case BTRFS_UUID_KEY_SUBVOL:
4260 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4261 			ret = 1;
4262 		break;
4263 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4264 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4265 			   BTRFS_UUID_SIZE))
4266 			ret = 1;
4267 		break;
4268 	}
4269 
4270 out:
4271 	return ret;
4272 }
4273 
4274 static int btrfs_uuid_rescan_kthread(void *data)
4275 {
4276 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4277 	int ret;
4278 
4279 	/*
4280 	 * 1st step is to iterate through the existing UUID tree and
4281 	 * to delete all entries that contain outdated data.
4282 	 * 2nd step is to add all missing entries to the UUID tree.
4283 	 */
4284 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4285 	if (ret < 0) {
4286 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4287 		up(&fs_info->uuid_tree_rescan_sem);
4288 		return ret;
4289 	}
4290 	return btrfs_uuid_scan_kthread(data);
4291 }
4292 
4293 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4294 {
4295 	struct btrfs_trans_handle *trans;
4296 	struct btrfs_root *tree_root = fs_info->tree_root;
4297 	struct btrfs_root *uuid_root;
4298 	struct task_struct *task;
4299 	int ret;
4300 
4301 	/*
4302 	 * 1 - root node
4303 	 * 1 - root item
4304 	 */
4305 	trans = btrfs_start_transaction(tree_root, 2);
4306 	if (IS_ERR(trans))
4307 		return PTR_ERR(trans);
4308 
4309 	uuid_root = btrfs_create_tree(trans, fs_info,
4310 				      BTRFS_UUID_TREE_OBJECTID);
4311 	if (IS_ERR(uuid_root)) {
4312 		ret = PTR_ERR(uuid_root);
4313 		btrfs_abort_transaction(trans, ret);
4314 		btrfs_end_transaction(trans, tree_root);
4315 		return ret;
4316 	}
4317 
4318 	fs_info->uuid_root = uuid_root;
4319 
4320 	ret = btrfs_commit_transaction(trans, tree_root);
4321 	if (ret)
4322 		return ret;
4323 
4324 	down(&fs_info->uuid_tree_rescan_sem);
4325 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4326 	if (IS_ERR(task)) {
4327 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4328 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4329 		up(&fs_info->uuid_tree_rescan_sem);
4330 		return PTR_ERR(task);
4331 	}
4332 
4333 	return 0;
4334 }
4335 
4336 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4337 {
4338 	struct task_struct *task;
4339 
4340 	down(&fs_info->uuid_tree_rescan_sem);
4341 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4342 	if (IS_ERR(task)) {
4343 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4344 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4345 		up(&fs_info->uuid_tree_rescan_sem);
4346 		return PTR_ERR(task);
4347 	}
4348 
4349 	return 0;
4350 }
4351 
4352 /*
4353  * shrinking a device means finding all of the device extents past
4354  * the new size, and then following the back refs to the chunks.
4355  * The chunk relocation code actually frees the device extent
4356  */
4357 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4358 {
4359 	struct btrfs_trans_handle *trans;
4360 	struct btrfs_root *root = device->dev_root;
4361 	struct btrfs_dev_extent *dev_extent = NULL;
4362 	struct btrfs_path *path;
4363 	u64 length;
4364 	u64 chunk_offset;
4365 	int ret;
4366 	int slot;
4367 	int failed = 0;
4368 	bool retried = false;
4369 	bool checked_pending_chunks = false;
4370 	struct extent_buffer *l;
4371 	struct btrfs_key key;
4372 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4373 	u64 old_total = btrfs_super_total_bytes(super_copy);
4374 	u64 old_size = btrfs_device_get_total_bytes(device);
4375 	u64 diff = old_size - new_size;
4376 
4377 	if (device->is_tgtdev_for_dev_replace)
4378 		return -EINVAL;
4379 
4380 	path = btrfs_alloc_path();
4381 	if (!path)
4382 		return -ENOMEM;
4383 
4384 	path->reada = READA_FORWARD;
4385 
4386 	lock_chunks(root);
4387 
4388 	btrfs_device_set_total_bytes(device, new_size);
4389 	if (device->writeable) {
4390 		device->fs_devices->total_rw_bytes -= diff;
4391 		spin_lock(&root->fs_info->free_chunk_lock);
4392 		root->fs_info->free_chunk_space -= diff;
4393 		spin_unlock(&root->fs_info->free_chunk_lock);
4394 	}
4395 	unlock_chunks(root);
4396 
4397 again:
4398 	key.objectid = device->devid;
4399 	key.offset = (u64)-1;
4400 	key.type = BTRFS_DEV_EXTENT_KEY;
4401 
4402 	do {
4403 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4404 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4405 		if (ret < 0) {
4406 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4407 			goto done;
4408 		}
4409 
4410 		ret = btrfs_previous_item(root, path, 0, key.type);
4411 		if (ret)
4412 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4413 		if (ret < 0)
4414 			goto done;
4415 		if (ret) {
4416 			ret = 0;
4417 			btrfs_release_path(path);
4418 			break;
4419 		}
4420 
4421 		l = path->nodes[0];
4422 		slot = path->slots[0];
4423 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4424 
4425 		if (key.objectid != device->devid) {
4426 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4427 			btrfs_release_path(path);
4428 			break;
4429 		}
4430 
4431 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4432 		length = btrfs_dev_extent_length(l, dev_extent);
4433 
4434 		if (key.offset + length <= new_size) {
4435 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4436 			btrfs_release_path(path);
4437 			break;
4438 		}
4439 
4440 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4441 		btrfs_release_path(path);
4442 
4443 		ret = btrfs_relocate_chunk(root, chunk_offset);
4444 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4445 		if (ret && ret != -ENOSPC)
4446 			goto done;
4447 		if (ret == -ENOSPC)
4448 			failed++;
4449 	} while (key.offset-- > 0);
4450 
4451 	if (failed && !retried) {
4452 		failed = 0;
4453 		retried = true;
4454 		goto again;
4455 	} else if (failed && retried) {
4456 		ret = -ENOSPC;
4457 		goto done;
4458 	}
4459 
4460 	/* Shrinking succeeded, else we would be at "done". */
4461 	trans = btrfs_start_transaction(root, 0);
4462 	if (IS_ERR(trans)) {
4463 		ret = PTR_ERR(trans);
4464 		goto done;
4465 	}
4466 
4467 	lock_chunks(root);
4468 
4469 	/*
4470 	 * We checked in the above loop all device extents that were already in
4471 	 * the device tree. However before we have updated the device's
4472 	 * total_bytes to the new size, we might have had chunk allocations that
4473 	 * have not complete yet (new block groups attached to transaction
4474 	 * handles), and therefore their device extents were not yet in the
4475 	 * device tree and we missed them in the loop above. So if we have any
4476 	 * pending chunk using a device extent that overlaps the device range
4477 	 * that we can not use anymore, commit the current transaction and
4478 	 * repeat the search on the device tree - this way we guarantee we will
4479 	 * not have chunks using device extents that end beyond 'new_size'.
4480 	 */
4481 	if (!checked_pending_chunks) {
4482 		u64 start = new_size;
4483 		u64 len = old_size - new_size;
4484 
4485 		if (contains_pending_extent(trans->transaction, device,
4486 					    &start, len)) {
4487 			unlock_chunks(root);
4488 			checked_pending_chunks = true;
4489 			failed = 0;
4490 			retried = false;
4491 			ret = btrfs_commit_transaction(trans, root);
4492 			if (ret)
4493 				goto done;
4494 			goto again;
4495 		}
4496 	}
4497 
4498 	btrfs_device_set_disk_total_bytes(device, new_size);
4499 	if (list_empty(&device->resized_list))
4500 		list_add_tail(&device->resized_list,
4501 			      &root->fs_info->fs_devices->resized_devices);
4502 
4503 	WARN_ON(diff > old_total);
4504 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4505 	unlock_chunks(root);
4506 
4507 	/* Now btrfs_update_device() will change the on-disk size. */
4508 	ret = btrfs_update_device(trans, device);
4509 	btrfs_end_transaction(trans, root);
4510 done:
4511 	btrfs_free_path(path);
4512 	if (ret) {
4513 		lock_chunks(root);
4514 		btrfs_device_set_total_bytes(device, old_size);
4515 		if (device->writeable)
4516 			device->fs_devices->total_rw_bytes += diff;
4517 		spin_lock(&root->fs_info->free_chunk_lock);
4518 		root->fs_info->free_chunk_space += diff;
4519 		spin_unlock(&root->fs_info->free_chunk_lock);
4520 		unlock_chunks(root);
4521 	}
4522 	return ret;
4523 }
4524 
4525 static int btrfs_add_system_chunk(struct btrfs_root *root,
4526 			   struct btrfs_key *key,
4527 			   struct btrfs_chunk *chunk, int item_size)
4528 {
4529 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4530 	struct btrfs_disk_key disk_key;
4531 	u32 array_size;
4532 	u8 *ptr;
4533 
4534 	lock_chunks(root);
4535 	array_size = btrfs_super_sys_array_size(super_copy);
4536 	if (array_size + item_size + sizeof(disk_key)
4537 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4538 		unlock_chunks(root);
4539 		return -EFBIG;
4540 	}
4541 
4542 	ptr = super_copy->sys_chunk_array + array_size;
4543 	btrfs_cpu_key_to_disk(&disk_key, key);
4544 	memcpy(ptr, &disk_key, sizeof(disk_key));
4545 	ptr += sizeof(disk_key);
4546 	memcpy(ptr, chunk, item_size);
4547 	item_size += sizeof(disk_key);
4548 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4549 	unlock_chunks(root);
4550 
4551 	return 0;
4552 }
4553 
4554 /*
4555  * sort the devices in descending order by max_avail, total_avail
4556  */
4557 static int btrfs_cmp_device_info(const void *a, const void *b)
4558 {
4559 	const struct btrfs_device_info *di_a = a;
4560 	const struct btrfs_device_info *di_b = b;
4561 
4562 	if (di_a->max_avail > di_b->max_avail)
4563 		return -1;
4564 	if (di_a->max_avail < di_b->max_avail)
4565 		return 1;
4566 	if (di_a->total_avail > di_b->total_avail)
4567 		return -1;
4568 	if (di_a->total_avail < di_b->total_avail)
4569 		return 1;
4570 	return 0;
4571 }
4572 
4573 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4574 {
4575 	/* TODO allow them to set a preferred stripe size */
4576 	return SZ_64K;
4577 }
4578 
4579 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4580 {
4581 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4582 		return;
4583 
4584 	btrfs_set_fs_incompat(info, RAID56);
4585 }
4586 
4587 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r)		\
4588 			- sizeof(struct btrfs_chunk))		\
4589 			/ sizeof(struct btrfs_stripe) + 1)
4590 
4591 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4592 				- 2 * sizeof(struct btrfs_disk_key)	\
4593 				- 2 * sizeof(struct btrfs_chunk))	\
4594 				/ sizeof(struct btrfs_stripe) + 1)
4595 
4596 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4597 			       struct btrfs_root *extent_root, u64 start,
4598 			       u64 type)
4599 {
4600 	struct btrfs_fs_info *info = extent_root->fs_info;
4601 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4602 	struct list_head *cur;
4603 	struct map_lookup *map = NULL;
4604 	struct extent_map_tree *em_tree;
4605 	struct extent_map *em;
4606 	struct btrfs_device_info *devices_info = NULL;
4607 	u64 total_avail;
4608 	int num_stripes;	/* total number of stripes to allocate */
4609 	int data_stripes;	/* number of stripes that count for
4610 				   block group size */
4611 	int sub_stripes;	/* sub_stripes info for map */
4612 	int dev_stripes;	/* stripes per dev */
4613 	int devs_max;		/* max devs to use */
4614 	int devs_min;		/* min devs needed */
4615 	int devs_increment;	/* ndevs has to be a multiple of this */
4616 	int ncopies;		/* how many copies to data has */
4617 	int ret;
4618 	u64 max_stripe_size;
4619 	u64 max_chunk_size;
4620 	u64 stripe_size;
4621 	u64 num_bytes;
4622 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4623 	int ndevs;
4624 	int i;
4625 	int j;
4626 	int index;
4627 
4628 	BUG_ON(!alloc_profile_is_valid(type, 0));
4629 
4630 	if (list_empty(&fs_devices->alloc_list))
4631 		return -ENOSPC;
4632 
4633 	index = __get_raid_index(type);
4634 
4635 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4636 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4637 	devs_max = btrfs_raid_array[index].devs_max;
4638 	devs_min = btrfs_raid_array[index].devs_min;
4639 	devs_increment = btrfs_raid_array[index].devs_increment;
4640 	ncopies = btrfs_raid_array[index].ncopies;
4641 
4642 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4643 		max_stripe_size = SZ_1G;
4644 		max_chunk_size = 10 * max_stripe_size;
4645 		if (!devs_max)
4646 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4647 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4648 		/* for larger filesystems, use larger metadata chunks */
4649 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4650 			max_stripe_size = SZ_1G;
4651 		else
4652 			max_stripe_size = SZ_256M;
4653 		max_chunk_size = max_stripe_size;
4654 		if (!devs_max)
4655 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4656 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4657 		max_stripe_size = SZ_32M;
4658 		max_chunk_size = 2 * max_stripe_size;
4659 		if (!devs_max)
4660 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4661 	} else {
4662 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4663 		       type);
4664 		BUG_ON(1);
4665 	}
4666 
4667 	/* we don't want a chunk larger than 10% of writeable space */
4668 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4669 			     max_chunk_size);
4670 
4671 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4672 			       GFP_NOFS);
4673 	if (!devices_info)
4674 		return -ENOMEM;
4675 
4676 	cur = fs_devices->alloc_list.next;
4677 
4678 	/*
4679 	 * in the first pass through the devices list, we gather information
4680 	 * about the available holes on each device.
4681 	 */
4682 	ndevs = 0;
4683 	while (cur != &fs_devices->alloc_list) {
4684 		struct btrfs_device *device;
4685 		u64 max_avail;
4686 		u64 dev_offset;
4687 
4688 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4689 
4690 		cur = cur->next;
4691 
4692 		if (!device->writeable) {
4693 			WARN(1, KERN_ERR
4694 			       "BTRFS: read-only device in alloc_list\n");
4695 			continue;
4696 		}
4697 
4698 		if (!device->in_fs_metadata ||
4699 		    device->is_tgtdev_for_dev_replace)
4700 			continue;
4701 
4702 		if (device->total_bytes > device->bytes_used)
4703 			total_avail = device->total_bytes - device->bytes_used;
4704 		else
4705 			total_avail = 0;
4706 
4707 		/* If there is no space on this device, skip it. */
4708 		if (total_avail == 0)
4709 			continue;
4710 
4711 		ret = find_free_dev_extent(trans, device,
4712 					   max_stripe_size * dev_stripes,
4713 					   &dev_offset, &max_avail);
4714 		if (ret && ret != -ENOSPC)
4715 			goto error;
4716 
4717 		if (ret == 0)
4718 			max_avail = max_stripe_size * dev_stripes;
4719 
4720 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4721 			continue;
4722 
4723 		if (ndevs == fs_devices->rw_devices) {
4724 			WARN(1, "%s: found more than %llu devices\n",
4725 			     __func__, fs_devices->rw_devices);
4726 			break;
4727 		}
4728 		devices_info[ndevs].dev_offset = dev_offset;
4729 		devices_info[ndevs].max_avail = max_avail;
4730 		devices_info[ndevs].total_avail = total_avail;
4731 		devices_info[ndevs].dev = device;
4732 		++ndevs;
4733 	}
4734 
4735 	/*
4736 	 * now sort the devices by hole size / available space
4737 	 */
4738 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4739 	     btrfs_cmp_device_info, NULL);
4740 
4741 	/* round down to number of usable stripes */
4742 	ndevs -= ndevs % devs_increment;
4743 
4744 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4745 		ret = -ENOSPC;
4746 		goto error;
4747 	}
4748 
4749 	if (devs_max && ndevs > devs_max)
4750 		ndevs = devs_max;
4751 	/*
4752 	 * the primary goal is to maximize the number of stripes, so use as many
4753 	 * devices as possible, even if the stripes are not maximum sized.
4754 	 */
4755 	stripe_size = devices_info[ndevs-1].max_avail;
4756 	num_stripes = ndevs * dev_stripes;
4757 
4758 	/*
4759 	 * this will have to be fixed for RAID1 and RAID10 over
4760 	 * more drives
4761 	 */
4762 	data_stripes = num_stripes / ncopies;
4763 
4764 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4765 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4766 						extent_root->stripesize);
4767 		data_stripes = num_stripes - 1;
4768 	}
4769 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4770 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4771 						extent_root->stripesize);
4772 		data_stripes = num_stripes - 2;
4773 	}
4774 
4775 	/*
4776 	 * Use the number of data stripes to figure out how big this chunk
4777 	 * is really going to be in terms of logical address space,
4778 	 * and compare that answer with the max chunk size
4779 	 */
4780 	if (stripe_size * data_stripes > max_chunk_size) {
4781 		u64 mask = (1ULL << 24) - 1;
4782 
4783 		stripe_size = div_u64(max_chunk_size, data_stripes);
4784 
4785 		/* bump the answer up to a 16MB boundary */
4786 		stripe_size = (stripe_size + mask) & ~mask;
4787 
4788 		/* but don't go higher than the limits we found
4789 		 * while searching for free extents
4790 		 */
4791 		if (stripe_size > devices_info[ndevs-1].max_avail)
4792 			stripe_size = devices_info[ndevs-1].max_avail;
4793 	}
4794 
4795 	stripe_size = div_u64(stripe_size, dev_stripes);
4796 
4797 	/* align to BTRFS_STRIPE_LEN */
4798 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4799 	stripe_size *= raid_stripe_len;
4800 
4801 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4802 	if (!map) {
4803 		ret = -ENOMEM;
4804 		goto error;
4805 	}
4806 	map->num_stripes = num_stripes;
4807 
4808 	for (i = 0; i < ndevs; ++i) {
4809 		for (j = 0; j < dev_stripes; ++j) {
4810 			int s = i * dev_stripes + j;
4811 			map->stripes[s].dev = devices_info[i].dev;
4812 			map->stripes[s].physical = devices_info[i].dev_offset +
4813 						   j * stripe_size;
4814 		}
4815 	}
4816 	map->sector_size = extent_root->sectorsize;
4817 	map->stripe_len = raid_stripe_len;
4818 	map->io_align = raid_stripe_len;
4819 	map->io_width = raid_stripe_len;
4820 	map->type = type;
4821 	map->sub_stripes = sub_stripes;
4822 
4823 	num_bytes = stripe_size * data_stripes;
4824 
4825 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4826 
4827 	em = alloc_extent_map();
4828 	if (!em) {
4829 		kfree(map);
4830 		ret = -ENOMEM;
4831 		goto error;
4832 	}
4833 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4834 	em->map_lookup = map;
4835 	em->start = start;
4836 	em->len = num_bytes;
4837 	em->block_start = 0;
4838 	em->block_len = em->len;
4839 	em->orig_block_len = stripe_size;
4840 
4841 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4842 	write_lock(&em_tree->lock);
4843 	ret = add_extent_mapping(em_tree, em, 0);
4844 	if (!ret) {
4845 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4846 		atomic_inc(&em->refs);
4847 	}
4848 	write_unlock(&em_tree->lock);
4849 	if (ret) {
4850 		free_extent_map(em);
4851 		goto error;
4852 	}
4853 
4854 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4855 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4856 				     start, num_bytes);
4857 	if (ret)
4858 		goto error_del_extent;
4859 
4860 	for (i = 0; i < map->num_stripes; i++) {
4861 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4862 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4863 	}
4864 
4865 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4866 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4867 						   map->num_stripes);
4868 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4869 
4870 	free_extent_map(em);
4871 	check_raid56_incompat_flag(extent_root->fs_info, type);
4872 
4873 	kfree(devices_info);
4874 	return 0;
4875 
4876 error_del_extent:
4877 	write_lock(&em_tree->lock);
4878 	remove_extent_mapping(em_tree, em);
4879 	write_unlock(&em_tree->lock);
4880 
4881 	/* One for our allocation */
4882 	free_extent_map(em);
4883 	/* One for the tree reference */
4884 	free_extent_map(em);
4885 	/* One for the pending_chunks list reference */
4886 	free_extent_map(em);
4887 error:
4888 	kfree(devices_info);
4889 	return ret;
4890 }
4891 
4892 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4893 				struct btrfs_root *extent_root,
4894 				u64 chunk_offset, u64 chunk_size)
4895 {
4896 	struct btrfs_key key;
4897 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4898 	struct btrfs_device *device;
4899 	struct btrfs_chunk *chunk;
4900 	struct btrfs_stripe *stripe;
4901 	struct extent_map_tree *em_tree;
4902 	struct extent_map *em;
4903 	struct map_lookup *map;
4904 	size_t item_size;
4905 	u64 dev_offset;
4906 	u64 stripe_size;
4907 	int i = 0;
4908 	int ret = 0;
4909 
4910 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4911 	read_lock(&em_tree->lock);
4912 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4913 	read_unlock(&em_tree->lock);
4914 
4915 	if (!em) {
4916 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4917 			   "%Lu len %Lu", chunk_offset, chunk_size);
4918 		return -EINVAL;
4919 	}
4920 
4921 	if (em->start != chunk_offset || em->len != chunk_size) {
4922 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4923 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4924 			  chunk_size, em->start, em->len);
4925 		free_extent_map(em);
4926 		return -EINVAL;
4927 	}
4928 
4929 	map = em->map_lookup;
4930 	item_size = btrfs_chunk_item_size(map->num_stripes);
4931 	stripe_size = em->orig_block_len;
4932 
4933 	chunk = kzalloc(item_size, GFP_NOFS);
4934 	if (!chunk) {
4935 		ret = -ENOMEM;
4936 		goto out;
4937 	}
4938 
4939 	/*
4940 	 * Take the device list mutex to prevent races with the final phase of
4941 	 * a device replace operation that replaces the device object associated
4942 	 * with the map's stripes, because the device object's id can change
4943 	 * at any time during that final phase of the device replace operation
4944 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4945 	 */
4946 	mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4947 	for (i = 0; i < map->num_stripes; i++) {
4948 		device = map->stripes[i].dev;
4949 		dev_offset = map->stripes[i].physical;
4950 
4951 		ret = btrfs_update_device(trans, device);
4952 		if (ret)
4953 			break;
4954 		ret = btrfs_alloc_dev_extent(trans, device,
4955 					     chunk_root->root_key.objectid,
4956 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4957 					     chunk_offset, dev_offset,
4958 					     stripe_size);
4959 		if (ret)
4960 			break;
4961 	}
4962 	if (ret) {
4963 		mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4964 		goto out;
4965 	}
4966 
4967 	stripe = &chunk->stripe;
4968 	for (i = 0; i < map->num_stripes; i++) {
4969 		device = map->stripes[i].dev;
4970 		dev_offset = map->stripes[i].physical;
4971 
4972 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4973 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4974 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4975 		stripe++;
4976 	}
4977 	mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4978 
4979 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4980 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4981 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4982 	btrfs_set_stack_chunk_type(chunk, map->type);
4983 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4984 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4985 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4986 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4987 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4988 
4989 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4990 	key.type = BTRFS_CHUNK_ITEM_KEY;
4991 	key.offset = chunk_offset;
4992 
4993 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4994 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4995 		/*
4996 		 * TODO: Cleanup of inserted chunk root in case of
4997 		 * failure.
4998 		 */
4999 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
5000 					     item_size);
5001 	}
5002 
5003 out:
5004 	kfree(chunk);
5005 	free_extent_map(em);
5006 	return ret;
5007 }
5008 
5009 /*
5010  * Chunk allocation falls into two parts. The first part does works
5011  * that make the new allocated chunk useable, but not do any operation
5012  * that modifies the chunk tree. The second part does the works that
5013  * require modifying the chunk tree. This division is important for the
5014  * bootstrap process of adding storage to a seed btrfs.
5015  */
5016 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5017 		      struct btrfs_root *extent_root, u64 type)
5018 {
5019 	u64 chunk_offset;
5020 
5021 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5022 	chunk_offset = find_next_chunk(extent_root->fs_info);
5023 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5024 }
5025 
5026 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5027 					 struct btrfs_root *root,
5028 					 struct btrfs_device *device)
5029 {
5030 	u64 chunk_offset;
5031 	u64 sys_chunk_offset;
5032 	u64 alloc_profile;
5033 	struct btrfs_fs_info *fs_info = root->fs_info;
5034 	struct btrfs_root *extent_root = fs_info->extent_root;
5035 	int ret;
5036 
5037 	chunk_offset = find_next_chunk(fs_info);
5038 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5039 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5040 				  alloc_profile);
5041 	if (ret)
5042 		return ret;
5043 
5044 	sys_chunk_offset = find_next_chunk(root->fs_info);
5045 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5046 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5047 				  alloc_profile);
5048 	return ret;
5049 }
5050 
5051 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5052 {
5053 	int max_errors;
5054 
5055 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5056 			 BTRFS_BLOCK_GROUP_RAID10 |
5057 			 BTRFS_BLOCK_GROUP_RAID5 |
5058 			 BTRFS_BLOCK_GROUP_DUP)) {
5059 		max_errors = 1;
5060 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5061 		max_errors = 2;
5062 	} else {
5063 		max_errors = 0;
5064 	}
5065 
5066 	return max_errors;
5067 }
5068 
5069 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5070 {
5071 	struct extent_map *em;
5072 	struct map_lookup *map;
5073 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5074 	int readonly = 0;
5075 	int miss_ndevs = 0;
5076 	int i;
5077 
5078 	read_lock(&map_tree->map_tree.lock);
5079 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5080 	read_unlock(&map_tree->map_tree.lock);
5081 	if (!em)
5082 		return 1;
5083 
5084 	map = em->map_lookup;
5085 	for (i = 0; i < map->num_stripes; i++) {
5086 		if (map->stripes[i].dev->missing) {
5087 			miss_ndevs++;
5088 			continue;
5089 		}
5090 
5091 		if (!map->stripes[i].dev->writeable) {
5092 			readonly = 1;
5093 			goto end;
5094 		}
5095 	}
5096 
5097 	/*
5098 	 * If the number of missing devices is larger than max errors,
5099 	 * we can not write the data into that chunk successfully, so
5100 	 * set it readonly.
5101 	 */
5102 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5103 		readonly = 1;
5104 end:
5105 	free_extent_map(em);
5106 	return readonly;
5107 }
5108 
5109 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5110 {
5111 	extent_map_tree_init(&tree->map_tree);
5112 }
5113 
5114 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5115 {
5116 	struct extent_map *em;
5117 
5118 	while (1) {
5119 		write_lock(&tree->map_tree.lock);
5120 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5121 		if (em)
5122 			remove_extent_mapping(&tree->map_tree, em);
5123 		write_unlock(&tree->map_tree.lock);
5124 		if (!em)
5125 			break;
5126 		/* once for us */
5127 		free_extent_map(em);
5128 		/* once for the tree */
5129 		free_extent_map(em);
5130 	}
5131 }
5132 
5133 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5134 {
5135 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5136 	struct extent_map *em;
5137 	struct map_lookup *map;
5138 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5139 	int ret;
5140 
5141 	read_lock(&em_tree->lock);
5142 	em = lookup_extent_mapping(em_tree, logical, len);
5143 	read_unlock(&em_tree->lock);
5144 
5145 	/*
5146 	 * We could return errors for these cases, but that could get ugly and
5147 	 * we'd probably do the same thing which is just not do anything else
5148 	 * and exit, so return 1 so the callers don't try to use other copies.
5149 	 */
5150 	if (!em) {
5151 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5152 			    logical+len);
5153 		return 1;
5154 	}
5155 
5156 	if (em->start > logical || em->start + em->len < logical) {
5157 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5158 			    "%Lu-%Lu", logical, logical+len, em->start,
5159 			    em->start + em->len);
5160 		free_extent_map(em);
5161 		return 1;
5162 	}
5163 
5164 	map = em->map_lookup;
5165 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5166 		ret = map->num_stripes;
5167 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5168 		ret = map->sub_stripes;
5169 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5170 		ret = 2;
5171 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5172 		ret = 3;
5173 	else
5174 		ret = 1;
5175 	free_extent_map(em);
5176 
5177 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5178 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5179 		ret++;
5180 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5181 
5182 	return ret;
5183 }
5184 
5185 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5186 				    struct btrfs_mapping_tree *map_tree,
5187 				    u64 logical)
5188 {
5189 	struct extent_map *em;
5190 	struct map_lookup *map;
5191 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5192 	unsigned long len = root->sectorsize;
5193 
5194 	read_lock(&em_tree->lock);
5195 	em = lookup_extent_mapping(em_tree, logical, len);
5196 	read_unlock(&em_tree->lock);
5197 	BUG_ON(!em);
5198 
5199 	BUG_ON(em->start > logical || em->start + em->len < logical);
5200 	map = em->map_lookup;
5201 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5202 		len = map->stripe_len * nr_data_stripes(map);
5203 	free_extent_map(em);
5204 	return len;
5205 }
5206 
5207 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5208 			   u64 logical, u64 len, int mirror_num)
5209 {
5210 	struct extent_map *em;
5211 	struct map_lookup *map;
5212 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5213 	int ret = 0;
5214 
5215 	read_lock(&em_tree->lock);
5216 	em = lookup_extent_mapping(em_tree, logical, len);
5217 	read_unlock(&em_tree->lock);
5218 	BUG_ON(!em);
5219 
5220 	BUG_ON(em->start > logical || em->start + em->len < logical);
5221 	map = em->map_lookup;
5222 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5223 		ret = 1;
5224 	free_extent_map(em);
5225 	return ret;
5226 }
5227 
5228 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5229 			    struct map_lookup *map, int first, int num,
5230 			    int optimal, int dev_replace_is_ongoing)
5231 {
5232 	int i;
5233 	int tolerance;
5234 	struct btrfs_device *srcdev;
5235 
5236 	if (dev_replace_is_ongoing &&
5237 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5238 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5239 		srcdev = fs_info->dev_replace.srcdev;
5240 	else
5241 		srcdev = NULL;
5242 
5243 	/*
5244 	 * try to avoid the drive that is the source drive for a
5245 	 * dev-replace procedure, only choose it if no other non-missing
5246 	 * mirror is available
5247 	 */
5248 	for (tolerance = 0; tolerance < 2; tolerance++) {
5249 		if (map->stripes[optimal].dev->bdev &&
5250 		    (tolerance || map->stripes[optimal].dev != srcdev))
5251 			return optimal;
5252 		for (i = first; i < first + num; i++) {
5253 			if (map->stripes[i].dev->bdev &&
5254 			    (tolerance || map->stripes[i].dev != srcdev))
5255 				return i;
5256 		}
5257 	}
5258 
5259 	/* we couldn't find one that doesn't fail.  Just return something
5260 	 * and the io error handling code will clean up eventually
5261 	 */
5262 	return optimal;
5263 }
5264 
5265 static inline int parity_smaller(u64 a, u64 b)
5266 {
5267 	return a > b;
5268 }
5269 
5270 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5271 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5272 {
5273 	struct btrfs_bio_stripe s;
5274 	int i;
5275 	u64 l;
5276 	int again = 1;
5277 
5278 	while (again) {
5279 		again = 0;
5280 		for (i = 0; i < num_stripes - 1; i++) {
5281 			if (parity_smaller(bbio->raid_map[i],
5282 					   bbio->raid_map[i+1])) {
5283 				s = bbio->stripes[i];
5284 				l = bbio->raid_map[i];
5285 				bbio->stripes[i] = bbio->stripes[i+1];
5286 				bbio->raid_map[i] = bbio->raid_map[i+1];
5287 				bbio->stripes[i+1] = s;
5288 				bbio->raid_map[i+1] = l;
5289 
5290 				again = 1;
5291 			}
5292 		}
5293 	}
5294 }
5295 
5296 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5297 {
5298 	struct btrfs_bio *bbio = kzalloc(
5299 		 /* the size of the btrfs_bio */
5300 		sizeof(struct btrfs_bio) +
5301 		/* plus the variable array for the stripes */
5302 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5303 		/* plus the variable array for the tgt dev */
5304 		sizeof(int) * (real_stripes) +
5305 		/*
5306 		 * plus the raid_map, which includes both the tgt dev
5307 		 * and the stripes
5308 		 */
5309 		sizeof(u64) * (total_stripes),
5310 		GFP_NOFS|__GFP_NOFAIL);
5311 
5312 	atomic_set(&bbio->error, 0);
5313 	atomic_set(&bbio->refs, 1);
5314 
5315 	return bbio;
5316 }
5317 
5318 void btrfs_get_bbio(struct btrfs_bio *bbio)
5319 {
5320 	WARN_ON(!atomic_read(&bbio->refs));
5321 	atomic_inc(&bbio->refs);
5322 }
5323 
5324 void btrfs_put_bbio(struct btrfs_bio *bbio)
5325 {
5326 	if (!bbio)
5327 		return;
5328 	if (atomic_dec_and_test(&bbio->refs))
5329 		kfree(bbio);
5330 }
5331 
5332 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5333 			     u64 logical, u64 *length,
5334 			     struct btrfs_bio **bbio_ret,
5335 			     int mirror_num, int need_raid_map)
5336 {
5337 	struct extent_map *em;
5338 	struct map_lookup *map;
5339 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5340 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5341 	u64 offset;
5342 	u64 stripe_offset;
5343 	u64 stripe_end_offset;
5344 	u64 stripe_nr;
5345 	u64 stripe_nr_orig;
5346 	u64 stripe_nr_end;
5347 	u64 stripe_len;
5348 	u32 stripe_index;
5349 	int i;
5350 	int ret = 0;
5351 	int num_stripes;
5352 	int max_errors = 0;
5353 	int tgtdev_indexes = 0;
5354 	struct btrfs_bio *bbio = NULL;
5355 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5356 	int dev_replace_is_ongoing = 0;
5357 	int num_alloc_stripes;
5358 	int patch_the_first_stripe_for_dev_replace = 0;
5359 	u64 physical_to_patch_in_first_stripe = 0;
5360 	u64 raid56_full_stripe_start = (u64)-1;
5361 
5362 	read_lock(&em_tree->lock);
5363 	em = lookup_extent_mapping(em_tree, logical, *length);
5364 	read_unlock(&em_tree->lock);
5365 
5366 	if (!em) {
5367 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5368 			logical, *length);
5369 		return -EINVAL;
5370 	}
5371 
5372 	if (em->start > logical || em->start + em->len < logical) {
5373 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5374 			   "found %Lu-%Lu", logical, em->start,
5375 			   em->start + em->len);
5376 		free_extent_map(em);
5377 		return -EINVAL;
5378 	}
5379 
5380 	map = em->map_lookup;
5381 	offset = logical - em->start;
5382 
5383 	stripe_len = map->stripe_len;
5384 	stripe_nr = offset;
5385 	/*
5386 	 * stripe_nr counts the total number of stripes we have to stride
5387 	 * to get to this block
5388 	 */
5389 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5390 
5391 	stripe_offset = stripe_nr * stripe_len;
5392 	if (offset < stripe_offset) {
5393 		btrfs_crit(fs_info, "stripe math has gone wrong, "
5394 			   "stripe_offset=%llu, offset=%llu, start=%llu, "
5395 			   "logical=%llu, stripe_len=%llu",
5396 			   stripe_offset, offset, em->start, logical,
5397 			   stripe_len);
5398 		free_extent_map(em);
5399 		return -EINVAL;
5400 	}
5401 
5402 	/* stripe_offset is the offset of this block in its stripe*/
5403 	stripe_offset = offset - stripe_offset;
5404 
5405 	/* if we're here for raid56, we need to know the stripe aligned start */
5406 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5407 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5408 		raid56_full_stripe_start = offset;
5409 
5410 		/* allow a write of a full stripe, but make sure we don't
5411 		 * allow straddling of stripes
5412 		 */
5413 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5414 				full_stripe_len);
5415 		raid56_full_stripe_start *= full_stripe_len;
5416 	}
5417 
5418 	if (op == REQ_OP_DISCARD) {
5419 		/* we don't discard raid56 yet */
5420 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5421 			ret = -EOPNOTSUPP;
5422 			goto out;
5423 		}
5424 		*length = min_t(u64, em->len - offset, *length);
5425 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5426 		u64 max_len;
5427 		/* For writes to RAID[56], allow a full stripeset across all disks.
5428 		   For other RAID types and for RAID[56] reads, just allow a single
5429 		   stripe (on a single disk). */
5430 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5431 		    (op == REQ_OP_WRITE)) {
5432 			max_len = stripe_len * nr_data_stripes(map) -
5433 				(offset - raid56_full_stripe_start);
5434 		} else {
5435 			/* we limit the length of each bio to what fits in a stripe */
5436 			max_len = stripe_len - stripe_offset;
5437 		}
5438 		*length = min_t(u64, em->len - offset, max_len);
5439 	} else {
5440 		*length = em->len - offset;
5441 	}
5442 
5443 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5444 	   it cares about is the length */
5445 	if (!bbio_ret)
5446 		goto out;
5447 
5448 	btrfs_dev_replace_lock(dev_replace, 0);
5449 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5450 	if (!dev_replace_is_ongoing)
5451 		btrfs_dev_replace_unlock(dev_replace, 0);
5452 	else
5453 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5454 
5455 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5456 	    op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5457 	    op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5458 		/*
5459 		 * in dev-replace case, for repair case (that's the only
5460 		 * case where the mirror is selected explicitly when
5461 		 * calling btrfs_map_block), blocks left of the left cursor
5462 		 * can also be read from the target drive.
5463 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5464 		 * the last one to the array of stripes. For READ, it also
5465 		 * needs to be supported using the same mirror number.
5466 		 * If the requested block is not left of the left cursor,
5467 		 * EIO is returned. This can happen because btrfs_num_copies()
5468 		 * returns one more in the dev-replace case.
5469 		 */
5470 		u64 tmp_length = *length;
5471 		struct btrfs_bio *tmp_bbio = NULL;
5472 		int tmp_num_stripes;
5473 		u64 srcdev_devid = dev_replace->srcdev->devid;
5474 		int index_srcdev = 0;
5475 		int found = 0;
5476 		u64 physical_of_found = 0;
5477 
5478 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5479 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5480 		if (ret) {
5481 			WARN_ON(tmp_bbio != NULL);
5482 			goto out;
5483 		}
5484 
5485 		tmp_num_stripes = tmp_bbio->num_stripes;
5486 		if (mirror_num > tmp_num_stripes) {
5487 			/*
5488 			 * REQ_GET_READ_MIRRORS does not contain this
5489 			 * mirror, that means that the requested area
5490 			 * is not left of the left cursor
5491 			 */
5492 			ret = -EIO;
5493 			btrfs_put_bbio(tmp_bbio);
5494 			goto out;
5495 		}
5496 
5497 		/*
5498 		 * process the rest of the function using the mirror_num
5499 		 * of the source drive. Therefore look it up first.
5500 		 * At the end, patch the device pointer to the one of the
5501 		 * target drive.
5502 		 */
5503 		for (i = 0; i < tmp_num_stripes; i++) {
5504 			if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5505 				continue;
5506 
5507 			/*
5508 			 * In case of DUP, in order to keep it simple, only add
5509 			 * the mirror with the lowest physical address
5510 			 */
5511 			if (found &&
5512 			    physical_of_found <= tmp_bbio->stripes[i].physical)
5513 				continue;
5514 
5515 			index_srcdev = i;
5516 			found = 1;
5517 			physical_of_found = tmp_bbio->stripes[i].physical;
5518 		}
5519 
5520 		btrfs_put_bbio(tmp_bbio);
5521 
5522 		if (!found) {
5523 			WARN_ON(1);
5524 			ret = -EIO;
5525 			goto out;
5526 		}
5527 
5528 		mirror_num = index_srcdev + 1;
5529 		patch_the_first_stripe_for_dev_replace = 1;
5530 		physical_to_patch_in_first_stripe = physical_of_found;
5531 	} else if (mirror_num > map->num_stripes) {
5532 		mirror_num = 0;
5533 	}
5534 
5535 	num_stripes = 1;
5536 	stripe_index = 0;
5537 	stripe_nr_orig = stripe_nr;
5538 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5539 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5540 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5541 			    (offset + *length);
5542 
5543 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5544 		if (op == REQ_OP_DISCARD)
5545 			num_stripes = min_t(u64, map->num_stripes,
5546 					    stripe_nr_end - stripe_nr_orig);
5547 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5548 				&stripe_index);
5549 		if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5550 		    op != REQ_GET_READ_MIRRORS)
5551 			mirror_num = 1;
5552 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5553 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5554 		    op == REQ_GET_READ_MIRRORS)
5555 			num_stripes = map->num_stripes;
5556 		else if (mirror_num)
5557 			stripe_index = mirror_num - 1;
5558 		else {
5559 			stripe_index = find_live_mirror(fs_info, map, 0,
5560 					    map->num_stripes,
5561 					    current->pid % map->num_stripes,
5562 					    dev_replace_is_ongoing);
5563 			mirror_num = stripe_index + 1;
5564 		}
5565 
5566 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5567 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5568 		    op == REQ_GET_READ_MIRRORS) {
5569 			num_stripes = map->num_stripes;
5570 		} else if (mirror_num) {
5571 			stripe_index = mirror_num - 1;
5572 		} else {
5573 			mirror_num = 1;
5574 		}
5575 
5576 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5577 		u32 factor = map->num_stripes / map->sub_stripes;
5578 
5579 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5580 		stripe_index *= map->sub_stripes;
5581 
5582 		if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5583 			num_stripes = map->sub_stripes;
5584 		else if (op == REQ_OP_DISCARD)
5585 			num_stripes = min_t(u64, map->sub_stripes *
5586 					    (stripe_nr_end - stripe_nr_orig),
5587 					    map->num_stripes);
5588 		else if (mirror_num)
5589 			stripe_index += mirror_num - 1;
5590 		else {
5591 			int old_stripe_index = stripe_index;
5592 			stripe_index = find_live_mirror(fs_info, map,
5593 					      stripe_index,
5594 					      map->sub_stripes, stripe_index +
5595 					      current->pid % map->sub_stripes,
5596 					      dev_replace_is_ongoing);
5597 			mirror_num = stripe_index - old_stripe_index + 1;
5598 		}
5599 
5600 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5601 		if (need_raid_map &&
5602 		    (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5603 		     mirror_num > 1)) {
5604 			/* push stripe_nr back to the start of the full stripe */
5605 			stripe_nr = div_u64(raid56_full_stripe_start,
5606 					stripe_len * nr_data_stripes(map));
5607 
5608 			/* RAID[56] write or recovery. Return all stripes */
5609 			num_stripes = map->num_stripes;
5610 			max_errors = nr_parity_stripes(map);
5611 
5612 			*length = map->stripe_len;
5613 			stripe_index = 0;
5614 			stripe_offset = 0;
5615 		} else {
5616 			/*
5617 			 * Mirror #0 or #1 means the original data block.
5618 			 * Mirror #2 is RAID5 parity block.
5619 			 * Mirror #3 is RAID6 Q block.
5620 			 */
5621 			stripe_nr = div_u64_rem(stripe_nr,
5622 					nr_data_stripes(map), &stripe_index);
5623 			if (mirror_num > 1)
5624 				stripe_index = nr_data_stripes(map) +
5625 						mirror_num - 2;
5626 
5627 			/* We distribute the parity blocks across stripes */
5628 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5629 					&stripe_index);
5630 			if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5631 			    op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5632 				mirror_num = 1;
5633 		}
5634 	} else {
5635 		/*
5636 		 * after this, stripe_nr is the number of stripes on this
5637 		 * device we have to walk to find the data, and stripe_index is
5638 		 * the number of our device in the stripe array
5639 		 */
5640 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5641 				&stripe_index);
5642 		mirror_num = stripe_index + 1;
5643 	}
5644 	if (stripe_index >= map->num_stripes) {
5645 		btrfs_crit(fs_info, "stripe index math went horribly wrong, "
5646 			   "got stripe_index=%u, num_stripes=%u",
5647 			   stripe_index, map->num_stripes);
5648 		ret = -EINVAL;
5649 		goto out;
5650 	}
5651 
5652 	num_alloc_stripes = num_stripes;
5653 	if (dev_replace_is_ongoing) {
5654 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5655 			num_alloc_stripes <<= 1;
5656 		if (op == REQ_GET_READ_MIRRORS)
5657 			num_alloc_stripes++;
5658 		tgtdev_indexes = num_stripes;
5659 	}
5660 
5661 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5662 	if (!bbio) {
5663 		ret = -ENOMEM;
5664 		goto out;
5665 	}
5666 	if (dev_replace_is_ongoing)
5667 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5668 
5669 	/* build raid_map */
5670 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5671 	    need_raid_map &&
5672 	    ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5673 	    mirror_num > 1)) {
5674 		u64 tmp;
5675 		unsigned rot;
5676 
5677 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5678 				 sizeof(struct btrfs_bio_stripe) *
5679 				 num_alloc_stripes +
5680 				 sizeof(int) * tgtdev_indexes);
5681 
5682 		/* Work out the disk rotation on this stripe-set */
5683 		div_u64_rem(stripe_nr, num_stripes, &rot);
5684 
5685 		/* Fill in the logical address of each stripe */
5686 		tmp = stripe_nr * nr_data_stripes(map);
5687 		for (i = 0; i < nr_data_stripes(map); i++)
5688 			bbio->raid_map[(i+rot) % num_stripes] =
5689 				em->start + (tmp + i) * map->stripe_len;
5690 
5691 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5692 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5693 			bbio->raid_map[(i+rot+1) % num_stripes] =
5694 				RAID6_Q_STRIPE;
5695 	}
5696 
5697 	if (op == REQ_OP_DISCARD) {
5698 		u32 factor = 0;
5699 		u32 sub_stripes = 0;
5700 		u64 stripes_per_dev = 0;
5701 		u32 remaining_stripes = 0;
5702 		u32 last_stripe = 0;
5703 
5704 		if (map->type &
5705 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5706 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5707 				sub_stripes = 1;
5708 			else
5709 				sub_stripes = map->sub_stripes;
5710 
5711 			factor = map->num_stripes / sub_stripes;
5712 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5713 						      stripe_nr_orig,
5714 						      factor,
5715 						      &remaining_stripes);
5716 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5717 			last_stripe *= sub_stripes;
5718 		}
5719 
5720 		for (i = 0; i < num_stripes; i++) {
5721 			bbio->stripes[i].physical =
5722 				map->stripes[stripe_index].physical +
5723 				stripe_offset + stripe_nr * map->stripe_len;
5724 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5725 
5726 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5727 					 BTRFS_BLOCK_GROUP_RAID10)) {
5728 				bbio->stripes[i].length = stripes_per_dev *
5729 							  map->stripe_len;
5730 
5731 				if (i / sub_stripes < remaining_stripes)
5732 					bbio->stripes[i].length +=
5733 						map->stripe_len;
5734 
5735 				/*
5736 				 * Special for the first stripe and
5737 				 * the last stripe:
5738 				 *
5739 				 * |-------|...|-------|
5740 				 *     |----------|
5741 				 *    off     end_off
5742 				 */
5743 				if (i < sub_stripes)
5744 					bbio->stripes[i].length -=
5745 						stripe_offset;
5746 
5747 				if (stripe_index >= last_stripe &&
5748 				    stripe_index <= (last_stripe +
5749 						     sub_stripes - 1))
5750 					bbio->stripes[i].length -=
5751 						stripe_end_offset;
5752 
5753 				if (i == sub_stripes - 1)
5754 					stripe_offset = 0;
5755 			} else
5756 				bbio->stripes[i].length = *length;
5757 
5758 			stripe_index++;
5759 			if (stripe_index == map->num_stripes) {
5760 				/* This could only happen for RAID0/10 */
5761 				stripe_index = 0;
5762 				stripe_nr++;
5763 			}
5764 		}
5765 	} else {
5766 		for (i = 0; i < num_stripes; i++) {
5767 			bbio->stripes[i].physical =
5768 				map->stripes[stripe_index].physical +
5769 				stripe_offset +
5770 				stripe_nr * map->stripe_len;
5771 			bbio->stripes[i].dev =
5772 				map->stripes[stripe_index].dev;
5773 			stripe_index++;
5774 		}
5775 	}
5776 
5777 	if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5778 		max_errors = btrfs_chunk_max_errors(map);
5779 
5780 	if (bbio->raid_map)
5781 		sort_parity_stripes(bbio, num_stripes);
5782 
5783 	tgtdev_indexes = 0;
5784 	if (dev_replace_is_ongoing &&
5785 	   (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5786 	    dev_replace->tgtdev != NULL) {
5787 		int index_where_to_add;
5788 		u64 srcdev_devid = dev_replace->srcdev->devid;
5789 
5790 		/*
5791 		 * duplicate the write operations while the dev replace
5792 		 * procedure is running. Since the copying of the old disk
5793 		 * to the new disk takes place at run time while the
5794 		 * filesystem is mounted writable, the regular write
5795 		 * operations to the old disk have to be duplicated to go
5796 		 * to the new disk as well.
5797 		 * Note that device->missing is handled by the caller, and
5798 		 * that the write to the old disk is already set up in the
5799 		 * stripes array.
5800 		 */
5801 		index_where_to_add = num_stripes;
5802 		for (i = 0; i < num_stripes; i++) {
5803 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5804 				/* write to new disk, too */
5805 				struct btrfs_bio_stripe *new =
5806 					bbio->stripes + index_where_to_add;
5807 				struct btrfs_bio_stripe *old =
5808 					bbio->stripes + i;
5809 
5810 				new->physical = old->physical;
5811 				new->length = old->length;
5812 				new->dev = dev_replace->tgtdev;
5813 				bbio->tgtdev_map[i] = index_where_to_add;
5814 				index_where_to_add++;
5815 				max_errors++;
5816 				tgtdev_indexes++;
5817 			}
5818 		}
5819 		num_stripes = index_where_to_add;
5820 	} else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5821 		   dev_replace->tgtdev != NULL) {
5822 		u64 srcdev_devid = dev_replace->srcdev->devid;
5823 		int index_srcdev = 0;
5824 		int found = 0;
5825 		u64 physical_of_found = 0;
5826 
5827 		/*
5828 		 * During the dev-replace procedure, the target drive can
5829 		 * also be used to read data in case it is needed to repair
5830 		 * a corrupt block elsewhere. This is possible if the
5831 		 * requested area is left of the left cursor. In this area,
5832 		 * the target drive is a full copy of the source drive.
5833 		 */
5834 		for (i = 0; i < num_stripes; i++) {
5835 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5836 				/*
5837 				 * In case of DUP, in order to keep it
5838 				 * simple, only add the mirror with the
5839 				 * lowest physical address
5840 				 */
5841 				if (found &&
5842 				    physical_of_found <=
5843 				     bbio->stripes[i].physical)
5844 					continue;
5845 				index_srcdev = i;
5846 				found = 1;
5847 				physical_of_found = bbio->stripes[i].physical;
5848 			}
5849 		}
5850 		if (found) {
5851 			struct btrfs_bio_stripe *tgtdev_stripe =
5852 				bbio->stripes + num_stripes;
5853 
5854 			tgtdev_stripe->physical = physical_of_found;
5855 			tgtdev_stripe->length =
5856 				bbio->stripes[index_srcdev].length;
5857 			tgtdev_stripe->dev = dev_replace->tgtdev;
5858 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5859 
5860 			tgtdev_indexes++;
5861 			num_stripes++;
5862 		}
5863 	}
5864 
5865 	*bbio_ret = bbio;
5866 	bbio->map_type = map->type;
5867 	bbio->num_stripes = num_stripes;
5868 	bbio->max_errors = max_errors;
5869 	bbio->mirror_num = mirror_num;
5870 	bbio->num_tgtdevs = tgtdev_indexes;
5871 
5872 	/*
5873 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5874 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5875 	 * available as a mirror
5876 	 */
5877 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5878 		WARN_ON(num_stripes > 1);
5879 		bbio->stripes[0].dev = dev_replace->tgtdev;
5880 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5881 		bbio->mirror_num = map->num_stripes + 1;
5882 	}
5883 out:
5884 	if (dev_replace_is_ongoing) {
5885 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5886 		btrfs_dev_replace_unlock(dev_replace, 0);
5887 	}
5888 	free_extent_map(em);
5889 	return ret;
5890 }
5891 
5892 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5893 		      u64 logical, u64 *length,
5894 		      struct btrfs_bio **bbio_ret, int mirror_num)
5895 {
5896 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5897 				 mirror_num, 0);
5898 }
5899 
5900 /* For Scrub/replace */
5901 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5902 		     u64 logical, u64 *length,
5903 		     struct btrfs_bio **bbio_ret, int mirror_num,
5904 		     int need_raid_map)
5905 {
5906 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5907 				 mirror_num, need_raid_map);
5908 }
5909 
5910 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5911 		     u64 chunk_start, u64 physical, u64 devid,
5912 		     u64 **logical, int *naddrs, int *stripe_len)
5913 {
5914 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5915 	struct extent_map *em;
5916 	struct map_lookup *map;
5917 	u64 *buf;
5918 	u64 bytenr;
5919 	u64 length;
5920 	u64 stripe_nr;
5921 	u64 rmap_len;
5922 	int i, j, nr = 0;
5923 
5924 	read_lock(&em_tree->lock);
5925 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5926 	read_unlock(&em_tree->lock);
5927 
5928 	if (!em) {
5929 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5930 		       chunk_start);
5931 		return -EIO;
5932 	}
5933 
5934 	if (em->start != chunk_start) {
5935 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5936 		       em->start, chunk_start);
5937 		free_extent_map(em);
5938 		return -EIO;
5939 	}
5940 	map = em->map_lookup;
5941 
5942 	length = em->len;
5943 	rmap_len = map->stripe_len;
5944 
5945 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5946 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5947 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5948 		length = div_u64(length, map->num_stripes);
5949 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5950 		length = div_u64(length, nr_data_stripes(map));
5951 		rmap_len = map->stripe_len * nr_data_stripes(map);
5952 	}
5953 
5954 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5955 	BUG_ON(!buf); /* -ENOMEM */
5956 
5957 	for (i = 0; i < map->num_stripes; i++) {
5958 		if (devid && map->stripes[i].dev->devid != devid)
5959 			continue;
5960 		if (map->stripes[i].physical > physical ||
5961 		    map->stripes[i].physical + length <= physical)
5962 			continue;
5963 
5964 		stripe_nr = physical - map->stripes[i].physical;
5965 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5966 
5967 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5968 			stripe_nr = stripe_nr * map->num_stripes + i;
5969 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5970 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5971 			stripe_nr = stripe_nr * map->num_stripes + i;
5972 		} /* else if RAID[56], multiply by nr_data_stripes().
5973 		   * Alternatively, just use rmap_len below instead of
5974 		   * map->stripe_len */
5975 
5976 		bytenr = chunk_start + stripe_nr * rmap_len;
5977 		WARN_ON(nr >= map->num_stripes);
5978 		for (j = 0; j < nr; j++) {
5979 			if (buf[j] == bytenr)
5980 				break;
5981 		}
5982 		if (j == nr) {
5983 			WARN_ON(nr >= map->num_stripes);
5984 			buf[nr++] = bytenr;
5985 		}
5986 	}
5987 
5988 	*logical = buf;
5989 	*naddrs = nr;
5990 	*stripe_len = rmap_len;
5991 
5992 	free_extent_map(em);
5993 	return 0;
5994 }
5995 
5996 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5997 {
5998 	bio->bi_private = bbio->private;
5999 	bio->bi_end_io = bbio->end_io;
6000 	bio_endio(bio);
6001 
6002 	btrfs_put_bbio(bbio);
6003 }
6004 
6005 static void btrfs_end_bio(struct bio *bio)
6006 {
6007 	struct btrfs_bio *bbio = bio->bi_private;
6008 	int is_orig_bio = 0;
6009 
6010 	if (bio->bi_error) {
6011 		atomic_inc(&bbio->error);
6012 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6013 			unsigned int stripe_index =
6014 				btrfs_io_bio(bio)->stripe_index;
6015 			struct btrfs_device *dev;
6016 
6017 			BUG_ON(stripe_index >= bbio->num_stripes);
6018 			dev = bbio->stripes[stripe_index].dev;
6019 			if (dev->bdev) {
6020 				if (bio_op(bio) == REQ_OP_WRITE)
6021 					btrfs_dev_stat_inc(dev,
6022 						BTRFS_DEV_STAT_WRITE_ERRS);
6023 				else
6024 					btrfs_dev_stat_inc(dev,
6025 						BTRFS_DEV_STAT_READ_ERRS);
6026 				if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6027 					btrfs_dev_stat_inc(dev,
6028 						BTRFS_DEV_STAT_FLUSH_ERRS);
6029 				btrfs_dev_stat_print_on_error(dev);
6030 			}
6031 		}
6032 	}
6033 
6034 	if (bio == bbio->orig_bio)
6035 		is_orig_bio = 1;
6036 
6037 	btrfs_bio_counter_dec(bbio->fs_info);
6038 
6039 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6040 		if (!is_orig_bio) {
6041 			bio_put(bio);
6042 			bio = bbio->orig_bio;
6043 		}
6044 
6045 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6046 		/* only send an error to the higher layers if it is
6047 		 * beyond the tolerance of the btrfs bio
6048 		 */
6049 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6050 			bio->bi_error = -EIO;
6051 		} else {
6052 			/*
6053 			 * this bio is actually up to date, we didn't
6054 			 * go over the max number of errors
6055 			 */
6056 			bio->bi_error = 0;
6057 		}
6058 
6059 		btrfs_end_bbio(bbio, bio);
6060 	} else if (!is_orig_bio) {
6061 		bio_put(bio);
6062 	}
6063 }
6064 
6065 /*
6066  * see run_scheduled_bios for a description of why bios are collected for
6067  * async submit.
6068  *
6069  * This will add one bio to the pending list for a device and make sure
6070  * the work struct is scheduled.
6071  */
6072 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6073 					struct btrfs_device *device,
6074 					struct bio *bio)
6075 {
6076 	int should_queue = 1;
6077 	struct btrfs_pending_bios *pending_bios;
6078 
6079 	if (device->missing || !device->bdev) {
6080 		bio_io_error(bio);
6081 		return;
6082 	}
6083 
6084 	/* don't bother with additional async steps for reads, right now */
6085 	if (bio_op(bio) == REQ_OP_READ) {
6086 		bio_get(bio);
6087 		btrfsic_submit_bio(bio);
6088 		bio_put(bio);
6089 		return;
6090 	}
6091 
6092 	/*
6093 	 * nr_async_bios allows us to reliably return congestion to the
6094 	 * higher layers.  Otherwise, the async bio makes it appear we have
6095 	 * made progress against dirty pages when we've really just put it
6096 	 * on a queue for later
6097 	 */
6098 	atomic_inc(&root->fs_info->nr_async_bios);
6099 	WARN_ON(bio->bi_next);
6100 	bio->bi_next = NULL;
6101 
6102 	spin_lock(&device->io_lock);
6103 	if (bio->bi_opf & REQ_SYNC)
6104 		pending_bios = &device->pending_sync_bios;
6105 	else
6106 		pending_bios = &device->pending_bios;
6107 
6108 	if (pending_bios->tail)
6109 		pending_bios->tail->bi_next = bio;
6110 
6111 	pending_bios->tail = bio;
6112 	if (!pending_bios->head)
6113 		pending_bios->head = bio;
6114 	if (device->running_pending)
6115 		should_queue = 0;
6116 
6117 	spin_unlock(&device->io_lock);
6118 
6119 	if (should_queue)
6120 		btrfs_queue_work(root->fs_info->submit_workers,
6121 				 &device->work);
6122 }
6123 
6124 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6125 			      struct bio *bio, u64 physical, int dev_nr,
6126 			      int async)
6127 {
6128 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6129 
6130 	bio->bi_private = bbio;
6131 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6132 	bio->bi_end_io = btrfs_end_bio;
6133 	bio->bi_iter.bi_sector = physical >> 9;
6134 #ifdef DEBUG
6135 	{
6136 		struct rcu_string *name;
6137 
6138 		rcu_read_lock();
6139 		name = rcu_dereference(dev->name);
6140 		pr_debug("btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu "
6141 			 "(%s id %llu), size=%u\n", bio_op(bio), bio->bi_opf,
6142 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6143 			 name->str, dev->devid, bio->bi_iter.bi_size);
6144 		rcu_read_unlock();
6145 	}
6146 #endif
6147 	bio->bi_bdev = dev->bdev;
6148 
6149 	btrfs_bio_counter_inc_noblocked(root->fs_info);
6150 
6151 	if (async)
6152 		btrfs_schedule_bio(root, dev, bio);
6153 	else
6154 		btrfsic_submit_bio(bio);
6155 }
6156 
6157 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6158 {
6159 	atomic_inc(&bbio->error);
6160 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6161 		/* Should be the original bio. */
6162 		WARN_ON(bio != bbio->orig_bio);
6163 
6164 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6165 		bio->bi_iter.bi_sector = logical >> 9;
6166 		bio->bi_error = -EIO;
6167 		btrfs_end_bbio(bbio, bio);
6168 	}
6169 }
6170 
6171 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6172 		  int mirror_num, int async_submit)
6173 {
6174 	struct btrfs_device *dev;
6175 	struct bio *first_bio = bio;
6176 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6177 	u64 length = 0;
6178 	u64 map_length;
6179 	int ret;
6180 	int dev_nr;
6181 	int total_devs;
6182 	struct btrfs_bio *bbio = NULL;
6183 
6184 	length = bio->bi_iter.bi_size;
6185 	map_length = length;
6186 
6187 	btrfs_bio_counter_inc_blocked(root->fs_info);
6188 	ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6189 				&map_length, &bbio, mirror_num, 1);
6190 	if (ret) {
6191 		btrfs_bio_counter_dec(root->fs_info);
6192 		return ret;
6193 	}
6194 
6195 	total_devs = bbio->num_stripes;
6196 	bbio->orig_bio = first_bio;
6197 	bbio->private = first_bio->bi_private;
6198 	bbio->end_io = first_bio->bi_end_io;
6199 	bbio->fs_info = root->fs_info;
6200 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6201 
6202 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6203 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6204 		/* In this case, map_length has been set to the length of
6205 		   a single stripe; not the whole write */
6206 		if (bio_op(bio) == REQ_OP_WRITE) {
6207 			ret = raid56_parity_write(root, bio, bbio, map_length);
6208 		} else {
6209 			ret = raid56_parity_recover(root, bio, bbio, map_length,
6210 						    mirror_num, 1);
6211 		}
6212 
6213 		btrfs_bio_counter_dec(root->fs_info);
6214 		return ret;
6215 	}
6216 
6217 	if (map_length < length) {
6218 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6219 			logical, length, map_length);
6220 		BUG();
6221 	}
6222 
6223 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6224 		dev = bbio->stripes[dev_nr].dev;
6225 		if (!dev || !dev->bdev ||
6226 		    (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6227 			bbio_error(bbio, first_bio, logical);
6228 			continue;
6229 		}
6230 
6231 		if (dev_nr < total_devs - 1) {
6232 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6233 			BUG_ON(!bio); /* -ENOMEM */
6234 		} else
6235 			bio = first_bio;
6236 
6237 		submit_stripe_bio(root, bbio, bio,
6238 				  bbio->stripes[dev_nr].physical, dev_nr,
6239 				  async_submit);
6240 	}
6241 	btrfs_bio_counter_dec(root->fs_info);
6242 	return 0;
6243 }
6244 
6245 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6246 				       u8 *uuid, u8 *fsid)
6247 {
6248 	struct btrfs_device *device;
6249 	struct btrfs_fs_devices *cur_devices;
6250 
6251 	cur_devices = fs_info->fs_devices;
6252 	while (cur_devices) {
6253 		if (!fsid ||
6254 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6255 			device = __find_device(&cur_devices->devices,
6256 					       devid, uuid);
6257 			if (device)
6258 				return device;
6259 		}
6260 		cur_devices = cur_devices->seed;
6261 	}
6262 	return NULL;
6263 }
6264 
6265 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6266 					    struct btrfs_fs_devices *fs_devices,
6267 					    u64 devid, u8 *dev_uuid)
6268 {
6269 	struct btrfs_device *device;
6270 
6271 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6272 	if (IS_ERR(device))
6273 		return NULL;
6274 
6275 	list_add(&device->dev_list, &fs_devices->devices);
6276 	device->fs_devices = fs_devices;
6277 	fs_devices->num_devices++;
6278 
6279 	device->missing = 1;
6280 	fs_devices->missing_devices++;
6281 
6282 	return device;
6283 }
6284 
6285 /**
6286  * btrfs_alloc_device - allocate struct btrfs_device
6287  * @fs_info:	used only for generating a new devid, can be NULL if
6288  *		devid is provided (i.e. @devid != NULL).
6289  * @devid:	a pointer to devid for this device.  If NULL a new devid
6290  *		is generated.
6291  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6292  *		is generated.
6293  *
6294  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6295  * on error.  Returned struct is not linked onto any lists and can be
6296  * destroyed with kfree() right away.
6297  */
6298 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6299 					const u64 *devid,
6300 					const u8 *uuid)
6301 {
6302 	struct btrfs_device *dev;
6303 	u64 tmp;
6304 
6305 	if (WARN_ON(!devid && !fs_info))
6306 		return ERR_PTR(-EINVAL);
6307 
6308 	dev = __alloc_device();
6309 	if (IS_ERR(dev))
6310 		return dev;
6311 
6312 	if (devid)
6313 		tmp = *devid;
6314 	else {
6315 		int ret;
6316 
6317 		ret = find_next_devid(fs_info, &tmp);
6318 		if (ret) {
6319 			kfree(dev);
6320 			return ERR_PTR(ret);
6321 		}
6322 	}
6323 	dev->devid = tmp;
6324 
6325 	if (uuid)
6326 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6327 	else
6328 		generate_random_uuid(dev->uuid);
6329 
6330 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6331 			pending_bios_fn, NULL, NULL);
6332 
6333 	return dev;
6334 }
6335 
6336 /* Return -EIO if any error, otherwise return 0. */
6337 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6338 				   struct extent_buffer *leaf,
6339 				   struct btrfs_chunk *chunk, u64 logical)
6340 {
6341 	u64 length;
6342 	u64 stripe_len;
6343 	u16 num_stripes;
6344 	u16 sub_stripes;
6345 	u64 type;
6346 
6347 	length = btrfs_chunk_length(leaf, chunk);
6348 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6349 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6350 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6351 	type = btrfs_chunk_type(leaf, chunk);
6352 
6353 	if (!num_stripes) {
6354 		btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6355 			  num_stripes);
6356 		return -EIO;
6357 	}
6358 	if (!IS_ALIGNED(logical, root->sectorsize)) {
6359 		btrfs_err(root->fs_info,
6360 			  "invalid chunk logical %llu", logical);
6361 		return -EIO;
6362 	}
6363 	if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6364 		btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6365 			  btrfs_chunk_sector_size(leaf, chunk));
6366 		return -EIO;
6367 	}
6368 	if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6369 		btrfs_err(root->fs_info,
6370 			"invalid chunk length %llu", length);
6371 		return -EIO;
6372 	}
6373 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6374 		btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6375 			  stripe_len);
6376 		return -EIO;
6377 	}
6378 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6379 	    type) {
6380 		btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6381 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6382 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6383 			  btrfs_chunk_type(leaf, chunk));
6384 		return -EIO;
6385 	}
6386 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6387 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6388 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6389 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6390 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6391 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6392 	     num_stripes != 1)) {
6393 		btrfs_err(root->fs_info,
6394 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6395 			num_stripes, sub_stripes,
6396 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6397 		return -EIO;
6398 	}
6399 
6400 	return 0;
6401 }
6402 
6403 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6404 			  struct extent_buffer *leaf,
6405 			  struct btrfs_chunk *chunk)
6406 {
6407 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6408 	struct map_lookup *map;
6409 	struct extent_map *em;
6410 	u64 logical;
6411 	u64 length;
6412 	u64 stripe_len;
6413 	u64 devid;
6414 	u8 uuid[BTRFS_UUID_SIZE];
6415 	int num_stripes;
6416 	int ret;
6417 	int i;
6418 
6419 	logical = key->offset;
6420 	length = btrfs_chunk_length(leaf, chunk);
6421 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6422 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6423 
6424 	ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6425 	if (ret)
6426 		return ret;
6427 
6428 	read_lock(&map_tree->map_tree.lock);
6429 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6430 	read_unlock(&map_tree->map_tree.lock);
6431 
6432 	/* already mapped? */
6433 	if (em && em->start <= logical && em->start + em->len > logical) {
6434 		free_extent_map(em);
6435 		return 0;
6436 	} else if (em) {
6437 		free_extent_map(em);
6438 	}
6439 
6440 	em = alloc_extent_map();
6441 	if (!em)
6442 		return -ENOMEM;
6443 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6444 	if (!map) {
6445 		free_extent_map(em);
6446 		return -ENOMEM;
6447 	}
6448 
6449 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6450 	em->map_lookup = map;
6451 	em->start = logical;
6452 	em->len = length;
6453 	em->orig_start = 0;
6454 	em->block_start = 0;
6455 	em->block_len = em->len;
6456 
6457 	map->num_stripes = num_stripes;
6458 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6459 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6460 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6461 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6462 	map->type = btrfs_chunk_type(leaf, chunk);
6463 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6464 	for (i = 0; i < num_stripes; i++) {
6465 		map->stripes[i].physical =
6466 			btrfs_stripe_offset_nr(leaf, chunk, i);
6467 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6468 		read_extent_buffer(leaf, uuid, (unsigned long)
6469 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6470 				   BTRFS_UUID_SIZE);
6471 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6472 							uuid, NULL);
6473 		if (!map->stripes[i].dev &&
6474 		    !btrfs_test_opt(root->fs_info, DEGRADED)) {
6475 			free_extent_map(em);
6476 			return -EIO;
6477 		}
6478 		if (!map->stripes[i].dev) {
6479 			map->stripes[i].dev =
6480 				add_missing_dev(root, root->fs_info->fs_devices,
6481 						devid, uuid);
6482 			if (!map->stripes[i].dev) {
6483 				free_extent_map(em);
6484 				return -EIO;
6485 			}
6486 			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6487 						devid, uuid);
6488 		}
6489 		map->stripes[i].dev->in_fs_metadata = 1;
6490 	}
6491 
6492 	write_lock(&map_tree->map_tree.lock);
6493 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6494 	write_unlock(&map_tree->map_tree.lock);
6495 	BUG_ON(ret); /* Tree corruption */
6496 	free_extent_map(em);
6497 
6498 	return 0;
6499 }
6500 
6501 static void fill_device_from_item(struct extent_buffer *leaf,
6502 				 struct btrfs_dev_item *dev_item,
6503 				 struct btrfs_device *device)
6504 {
6505 	unsigned long ptr;
6506 
6507 	device->devid = btrfs_device_id(leaf, dev_item);
6508 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6509 	device->total_bytes = device->disk_total_bytes;
6510 	device->commit_total_bytes = device->disk_total_bytes;
6511 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6512 	device->commit_bytes_used = device->bytes_used;
6513 	device->type = btrfs_device_type(leaf, dev_item);
6514 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6515 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6516 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6517 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6518 	device->is_tgtdev_for_dev_replace = 0;
6519 
6520 	ptr = btrfs_device_uuid(dev_item);
6521 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6522 }
6523 
6524 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6525 						  u8 *fsid)
6526 {
6527 	struct btrfs_fs_devices *fs_devices;
6528 	int ret;
6529 
6530 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6531 
6532 	fs_devices = root->fs_info->fs_devices->seed;
6533 	while (fs_devices) {
6534 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6535 			return fs_devices;
6536 
6537 		fs_devices = fs_devices->seed;
6538 	}
6539 
6540 	fs_devices = find_fsid(fsid);
6541 	if (!fs_devices) {
6542 		if (!btrfs_test_opt(root->fs_info, DEGRADED))
6543 			return ERR_PTR(-ENOENT);
6544 
6545 		fs_devices = alloc_fs_devices(fsid);
6546 		if (IS_ERR(fs_devices))
6547 			return fs_devices;
6548 
6549 		fs_devices->seeding = 1;
6550 		fs_devices->opened = 1;
6551 		return fs_devices;
6552 	}
6553 
6554 	fs_devices = clone_fs_devices(fs_devices);
6555 	if (IS_ERR(fs_devices))
6556 		return fs_devices;
6557 
6558 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6559 				   root->fs_info->bdev_holder);
6560 	if (ret) {
6561 		free_fs_devices(fs_devices);
6562 		fs_devices = ERR_PTR(ret);
6563 		goto out;
6564 	}
6565 
6566 	if (!fs_devices->seeding) {
6567 		__btrfs_close_devices(fs_devices);
6568 		free_fs_devices(fs_devices);
6569 		fs_devices = ERR_PTR(-EINVAL);
6570 		goto out;
6571 	}
6572 
6573 	fs_devices->seed = root->fs_info->fs_devices->seed;
6574 	root->fs_info->fs_devices->seed = fs_devices;
6575 out:
6576 	return fs_devices;
6577 }
6578 
6579 static int read_one_dev(struct btrfs_root *root,
6580 			struct extent_buffer *leaf,
6581 			struct btrfs_dev_item *dev_item)
6582 {
6583 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6584 	struct btrfs_device *device;
6585 	u64 devid;
6586 	int ret;
6587 	u8 fs_uuid[BTRFS_UUID_SIZE];
6588 	u8 dev_uuid[BTRFS_UUID_SIZE];
6589 
6590 	devid = btrfs_device_id(leaf, dev_item);
6591 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6592 			   BTRFS_UUID_SIZE);
6593 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6594 			   BTRFS_UUID_SIZE);
6595 
6596 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6597 		fs_devices = open_seed_devices(root, fs_uuid);
6598 		if (IS_ERR(fs_devices))
6599 			return PTR_ERR(fs_devices);
6600 	}
6601 
6602 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6603 	if (!device) {
6604 		if (!btrfs_test_opt(root->fs_info, DEGRADED))
6605 			return -EIO;
6606 
6607 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6608 		if (!device)
6609 			return -ENOMEM;
6610 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6611 				devid, dev_uuid);
6612 	} else {
6613 		if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6614 			return -EIO;
6615 
6616 		if(!device->bdev && !device->missing) {
6617 			/*
6618 			 * this happens when a device that was properly setup
6619 			 * in the device info lists suddenly goes bad.
6620 			 * device->bdev is NULL, and so we have to set
6621 			 * device->missing to one here
6622 			 */
6623 			device->fs_devices->missing_devices++;
6624 			device->missing = 1;
6625 		}
6626 
6627 		/* Move the device to its own fs_devices */
6628 		if (device->fs_devices != fs_devices) {
6629 			ASSERT(device->missing);
6630 
6631 			list_move(&device->dev_list, &fs_devices->devices);
6632 			device->fs_devices->num_devices--;
6633 			fs_devices->num_devices++;
6634 
6635 			device->fs_devices->missing_devices--;
6636 			fs_devices->missing_devices++;
6637 
6638 			device->fs_devices = fs_devices;
6639 		}
6640 	}
6641 
6642 	if (device->fs_devices != root->fs_info->fs_devices) {
6643 		BUG_ON(device->writeable);
6644 		if (device->generation !=
6645 		    btrfs_device_generation(leaf, dev_item))
6646 			return -EINVAL;
6647 	}
6648 
6649 	fill_device_from_item(leaf, dev_item, device);
6650 	device->in_fs_metadata = 1;
6651 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6652 		device->fs_devices->total_rw_bytes += device->total_bytes;
6653 		spin_lock(&root->fs_info->free_chunk_lock);
6654 		root->fs_info->free_chunk_space += device->total_bytes -
6655 			device->bytes_used;
6656 		spin_unlock(&root->fs_info->free_chunk_lock);
6657 	}
6658 	ret = 0;
6659 	return ret;
6660 }
6661 
6662 int btrfs_read_sys_array(struct btrfs_root *root)
6663 {
6664 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6665 	struct extent_buffer *sb;
6666 	struct btrfs_disk_key *disk_key;
6667 	struct btrfs_chunk *chunk;
6668 	u8 *array_ptr;
6669 	unsigned long sb_array_offset;
6670 	int ret = 0;
6671 	u32 num_stripes;
6672 	u32 array_size;
6673 	u32 len = 0;
6674 	u32 cur_offset;
6675 	u64 type;
6676 	struct btrfs_key key;
6677 
6678 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6679 	/*
6680 	 * This will create extent buffer of nodesize, superblock size is
6681 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6682 	 * overallocate but we can keep it as-is, only the first page is used.
6683 	 */
6684 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6685 	if (IS_ERR(sb))
6686 		return PTR_ERR(sb);
6687 	set_extent_buffer_uptodate(sb);
6688 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6689 	/*
6690 	 * The sb extent buffer is artificial and just used to read the system array.
6691 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6692 	 * pages up-to-date when the page is larger: extent does not cover the
6693 	 * whole page and consequently check_page_uptodate does not find all
6694 	 * the page's extents up-to-date (the hole beyond sb),
6695 	 * write_extent_buffer then triggers a WARN_ON.
6696 	 *
6697 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6698 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6699 	 * to silence the warning eg. on PowerPC 64.
6700 	 */
6701 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6702 		SetPageUptodate(sb->pages[0]);
6703 
6704 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6705 	array_size = btrfs_super_sys_array_size(super_copy);
6706 
6707 	array_ptr = super_copy->sys_chunk_array;
6708 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6709 	cur_offset = 0;
6710 
6711 	while (cur_offset < array_size) {
6712 		disk_key = (struct btrfs_disk_key *)array_ptr;
6713 		len = sizeof(*disk_key);
6714 		if (cur_offset + len > array_size)
6715 			goto out_short_read;
6716 
6717 		btrfs_disk_key_to_cpu(&key, disk_key);
6718 
6719 		array_ptr += len;
6720 		sb_array_offset += len;
6721 		cur_offset += len;
6722 
6723 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6724 			chunk = (struct btrfs_chunk *)sb_array_offset;
6725 			/*
6726 			 * At least one btrfs_chunk with one stripe must be
6727 			 * present, exact stripe count check comes afterwards
6728 			 */
6729 			len = btrfs_chunk_item_size(1);
6730 			if (cur_offset + len > array_size)
6731 				goto out_short_read;
6732 
6733 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6734 			if (!num_stripes) {
6735 				printk(KERN_ERR
6736 	    "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6737 					num_stripes, cur_offset);
6738 				ret = -EIO;
6739 				break;
6740 			}
6741 
6742 			type = btrfs_chunk_type(sb, chunk);
6743 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6744 				btrfs_err(root->fs_info,
6745 			    "invalid chunk type %llu in sys_array at offset %u",
6746 					type, cur_offset);
6747 				ret = -EIO;
6748 				break;
6749 			}
6750 
6751 			len = btrfs_chunk_item_size(num_stripes);
6752 			if (cur_offset + len > array_size)
6753 				goto out_short_read;
6754 
6755 			ret = read_one_chunk(root, &key, sb, chunk);
6756 			if (ret)
6757 				break;
6758 		} else {
6759 			printk(KERN_ERR
6760 		"BTRFS: unexpected item type %u in sys_array at offset %u\n",
6761 				(u32)key.type, cur_offset);
6762 			ret = -EIO;
6763 			break;
6764 		}
6765 		array_ptr += len;
6766 		sb_array_offset += len;
6767 		cur_offset += len;
6768 	}
6769 	clear_extent_buffer_uptodate(sb);
6770 	free_extent_buffer_stale(sb);
6771 	return ret;
6772 
6773 out_short_read:
6774 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6775 			len, cur_offset);
6776 	clear_extent_buffer_uptodate(sb);
6777 	free_extent_buffer_stale(sb);
6778 	return -EIO;
6779 }
6780 
6781 int btrfs_read_chunk_tree(struct btrfs_root *root)
6782 {
6783 	struct btrfs_path *path;
6784 	struct extent_buffer *leaf;
6785 	struct btrfs_key key;
6786 	struct btrfs_key found_key;
6787 	int ret;
6788 	int slot;
6789 	u64 total_dev = 0;
6790 
6791 	root = root->fs_info->chunk_root;
6792 
6793 	path = btrfs_alloc_path();
6794 	if (!path)
6795 		return -ENOMEM;
6796 
6797 	mutex_lock(&uuid_mutex);
6798 	lock_chunks(root);
6799 
6800 	/*
6801 	 * Read all device items, and then all the chunk items. All
6802 	 * device items are found before any chunk item (their object id
6803 	 * is smaller than the lowest possible object id for a chunk
6804 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6805 	 */
6806 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6807 	key.offset = 0;
6808 	key.type = 0;
6809 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6810 	if (ret < 0)
6811 		goto error;
6812 	while (1) {
6813 		leaf = path->nodes[0];
6814 		slot = path->slots[0];
6815 		if (slot >= btrfs_header_nritems(leaf)) {
6816 			ret = btrfs_next_leaf(root, path);
6817 			if (ret == 0)
6818 				continue;
6819 			if (ret < 0)
6820 				goto error;
6821 			break;
6822 		}
6823 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6824 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6825 			struct btrfs_dev_item *dev_item;
6826 			dev_item = btrfs_item_ptr(leaf, slot,
6827 						  struct btrfs_dev_item);
6828 			ret = read_one_dev(root, leaf, dev_item);
6829 			if (ret)
6830 				goto error;
6831 			total_dev++;
6832 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6833 			struct btrfs_chunk *chunk;
6834 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6835 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6836 			if (ret)
6837 				goto error;
6838 		}
6839 		path->slots[0]++;
6840 	}
6841 
6842 	/*
6843 	 * After loading chunk tree, we've got all device information,
6844 	 * do another round of validation checks.
6845 	 */
6846 	if (total_dev != root->fs_info->fs_devices->total_devices) {
6847 		btrfs_err(root->fs_info,
6848 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6849 			  btrfs_super_num_devices(root->fs_info->super_copy),
6850 			  total_dev);
6851 		ret = -EINVAL;
6852 		goto error;
6853 	}
6854 	if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6855 	    root->fs_info->fs_devices->total_rw_bytes) {
6856 		btrfs_err(root->fs_info,
6857 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6858 			  btrfs_super_total_bytes(root->fs_info->super_copy),
6859 			  root->fs_info->fs_devices->total_rw_bytes);
6860 		ret = -EINVAL;
6861 		goto error;
6862 	}
6863 	ret = 0;
6864 error:
6865 	unlock_chunks(root);
6866 	mutex_unlock(&uuid_mutex);
6867 
6868 	btrfs_free_path(path);
6869 	return ret;
6870 }
6871 
6872 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6873 {
6874 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6875 	struct btrfs_device *device;
6876 
6877 	while (fs_devices) {
6878 		mutex_lock(&fs_devices->device_list_mutex);
6879 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6880 			device->dev_root = fs_info->dev_root;
6881 		mutex_unlock(&fs_devices->device_list_mutex);
6882 
6883 		fs_devices = fs_devices->seed;
6884 	}
6885 }
6886 
6887 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6888 {
6889 	int i;
6890 
6891 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6892 		btrfs_dev_stat_reset(dev, i);
6893 }
6894 
6895 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6896 {
6897 	struct btrfs_key key;
6898 	struct btrfs_key found_key;
6899 	struct btrfs_root *dev_root = fs_info->dev_root;
6900 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6901 	struct extent_buffer *eb;
6902 	int slot;
6903 	int ret = 0;
6904 	struct btrfs_device *device;
6905 	struct btrfs_path *path = NULL;
6906 	int i;
6907 
6908 	path = btrfs_alloc_path();
6909 	if (!path) {
6910 		ret = -ENOMEM;
6911 		goto out;
6912 	}
6913 
6914 	mutex_lock(&fs_devices->device_list_mutex);
6915 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6916 		int item_size;
6917 		struct btrfs_dev_stats_item *ptr;
6918 
6919 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6920 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6921 		key.offset = device->devid;
6922 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6923 		if (ret) {
6924 			__btrfs_reset_dev_stats(device);
6925 			device->dev_stats_valid = 1;
6926 			btrfs_release_path(path);
6927 			continue;
6928 		}
6929 		slot = path->slots[0];
6930 		eb = path->nodes[0];
6931 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6932 		item_size = btrfs_item_size_nr(eb, slot);
6933 
6934 		ptr = btrfs_item_ptr(eb, slot,
6935 				     struct btrfs_dev_stats_item);
6936 
6937 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6938 			if (item_size >= (1 + i) * sizeof(__le64))
6939 				btrfs_dev_stat_set(device, i,
6940 					btrfs_dev_stats_value(eb, ptr, i));
6941 			else
6942 				btrfs_dev_stat_reset(device, i);
6943 		}
6944 
6945 		device->dev_stats_valid = 1;
6946 		btrfs_dev_stat_print_on_load(device);
6947 		btrfs_release_path(path);
6948 	}
6949 	mutex_unlock(&fs_devices->device_list_mutex);
6950 
6951 out:
6952 	btrfs_free_path(path);
6953 	return ret < 0 ? ret : 0;
6954 }
6955 
6956 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6957 				struct btrfs_root *dev_root,
6958 				struct btrfs_device *device)
6959 {
6960 	struct btrfs_path *path;
6961 	struct btrfs_key key;
6962 	struct extent_buffer *eb;
6963 	struct btrfs_dev_stats_item *ptr;
6964 	int ret;
6965 	int i;
6966 
6967 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
6968 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
6969 	key.offset = device->devid;
6970 
6971 	path = btrfs_alloc_path();
6972 	BUG_ON(!path);
6973 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6974 	if (ret < 0) {
6975 		btrfs_warn_in_rcu(dev_root->fs_info,
6976 			"error %d while searching for dev_stats item for device %s",
6977 			      ret, rcu_str_deref(device->name));
6978 		goto out;
6979 	}
6980 
6981 	if (ret == 0 &&
6982 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6983 		/* need to delete old one and insert a new one */
6984 		ret = btrfs_del_item(trans, dev_root, path);
6985 		if (ret != 0) {
6986 			btrfs_warn_in_rcu(dev_root->fs_info,
6987 				"delete too small dev_stats item for device %s failed %d",
6988 				      rcu_str_deref(device->name), ret);
6989 			goto out;
6990 		}
6991 		ret = 1;
6992 	}
6993 
6994 	if (ret == 1) {
6995 		/* need to insert a new item */
6996 		btrfs_release_path(path);
6997 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6998 					      &key, sizeof(*ptr));
6999 		if (ret < 0) {
7000 			btrfs_warn_in_rcu(dev_root->fs_info,
7001 				"insert dev_stats item for device %s failed %d",
7002 				rcu_str_deref(device->name), ret);
7003 			goto out;
7004 		}
7005 	}
7006 
7007 	eb = path->nodes[0];
7008 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7009 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7010 		btrfs_set_dev_stats_value(eb, ptr, i,
7011 					  btrfs_dev_stat_read(device, i));
7012 	btrfs_mark_buffer_dirty(eb);
7013 
7014 out:
7015 	btrfs_free_path(path);
7016 	return ret;
7017 }
7018 
7019 /*
7020  * called from commit_transaction. Writes all changed device stats to disk.
7021  */
7022 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7023 			struct btrfs_fs_info *fs_info)
7024 {
7025 	struct btrfs_root *dev_root = fs_info->dev_root;
7026 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7027 	struct btrfs_device *device;
7028 	int stats_cnt;
7029 	int ret = 0;
7030 
7031 	mutex_lock(&fs_devices->device_list_mutex);
7032 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7033 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7034 			continue;
7035 
7036 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7037 		ret = update_dev_stat_item(trans, dev_root, device);
7038 		if (!ret)
7039 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7040 	}
7041 	mutex_unlock(&fs_devices->device_list_mutex);
7042 
7043 	return ret;
7044 }
7045 
7046 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7047 {
7048 	btrfs_dev_stat_inc(dev, index);
7049 	btrfs_dev_stat_print_on_error(dev);
7050 }
7051 
7052 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7053 {
7054 	if (!dev->dev_stats_valid)
7055 		return;
7056 	btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7057 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7058 			   rcu_str_deref(dev->name),
7059 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7060 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7061 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7062 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7063 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7064 }
7065 
7066 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7067 {
7068 	int i;
7069 
7070 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7071 		if (btrfs_dev_stat_read(dev, i) != 0)
7072 			break;
7073 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7074 		return; /* all values == 0, suppress message */
7075 
7076 	btrfs_info_in_rcu(dev->dev_root->fs_info,
7077 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7078 	       rcu_str_deref(dev->name),
7079 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7080 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7081 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7082 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7083 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7084 }
7085 
7086 int btrfs_get_dev_stats(struct btrfs_root *root,
7087 			struct btrfs_ioctl_get_dev_stats *stats)
7088 {
7089 	struct btrfs_device *dev;
7090 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7091 	int i;
7092 
7093 	mutex_lock(&fs_devices->device_list_mutex);
7094 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7095 	mutex_unlock(&fs_devices->device_list_mutex);
7096 
7097 	if (!dev) {
7098 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
7099 		return -ENODEV;
7100 	} else if (!dev->dev_stats_valid) {
7101 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
7102 		return -ENODEV;
7103 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7104 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7105 			if (stats->nr_items > i)
7106 				stats->values[i] =
7107 					btrfs_dev_stat_read_and_reset(dev, i);
7108 			else
7109 				btrfs_dev_stat_reset(dev, i);
7110 		}
7111 	} else {
7112 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7113 			if (stats->nr_items > i)
7114 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7115 	}
7116 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7117 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7118 	return 0;
7119 }
7120 
7121 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7122 {
7123 	struct buffer_head *bh;
7124 	struct btrfs_super_block *disk_super;
7125 	int copy_num;
7126 
7127 	if (!bdev)
7128 		return;
7129 
7130 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7131 		copy_num++) {
7132 
7133 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7134 			continue;
7135 
7136 		disk_super = (struct btrfs_super_block *)bh->b_data;
7137 
7138 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7139 		set_buffer_dirty(bh);
7140 		sync_dirty_buffer(bh);
7141 		brelse(bh);
7142 	}
7143 
7144 	/* Notify udev that device has changed */
7145 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7146 
7147 	/* Update ctime/mtime for device path for libblkid */
7148 	update_dev_time(device_path);
7149 }
7150 
7151 /*
7152  * Update the size of all devices, which is used for writing out the
7153  * super blocks.
7154  */
7155 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7156 {
7157 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7158 	struct btrfs_device *curr, *next;
7159 
7160 	if (list_empty(&fs_devices->resized_devices))
7161 		return;
7162 
7163 	mutex_lock(&fs_devices->device_list_mutex);
7164 	lock_chunks(fs_info->dev_root);
7165 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7166 				 resized_list) {
7167 		list_del_init(&curr->resized_list);
7168 		curr->commit_total_bytes = curr->disk_total_bytes;
7169 	}
7170 	unlock_chunks(fs_info->dev_root);
7171 	mutex_unlock(&fs_devices->device_list_mutex);
7172 }
7173 
7174 /* Must be invoked during the transaction commit */
7175 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7176 					struct btrfs_transaction *transaction)
7177 {
7178 	struct extent_map *em;
7179 	struct map_lookup *map;
7180 	struct btrfs_device *dev;
7181 	int i;
7182 
7183 	if (list_empty(&transaction->pending_chunks))
7184 		return;
7185 
7186 	/* In order to kick the device replace finish process */
7187 	lock_chunks(root);
7188 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7189 		map = em->map_lookup;
7190 
7191 		for (i = 0; i < map->num_stripes; i++) {
7192 			dev = map->stripes[i].dev;
7193 			dev->commit_bytes_used = dev->bytes_used;
7194 		}
7195 	}
7196 	unlock_chunks(root);
7197 }
7198 
7199 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7200 {
7201 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7202 	while (fs_devices) {
7203 		fs_devices->fs_info = fs_info;
7204 		fs_devices = fs_devices->seed;
7205 	}
7206 }
7207 
7208 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7209 {
7210 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7211 	while (fs_devices) {
7212 		fs_devices->fs_info = NULL;
7213 		fs_devices = fs_devices->seed;
7214 	}
7215 }
7216