xref: /openbmc/linux/fs/btrfs/volumes.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 
33 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
34 	[BTRFS_RAID_RAID10] = {
35 		.sub_stripes	= 2,
36 		.dev_stripes	= 1,
37 		.devs_max	= 0,	/* 0 == as many as possible */
38 		.devs_min	= 4,
39 		.tolerated_failures = 1,
40 		.devs_increment	= 2,
41 		.ncopies	= 2,
42 		.nparity        = 0,
43 		.raid_name	= "raid10",
44 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
45 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
46 	},
47 	[BTRFS_RAID_RAID1] = {
48 		.sub_stripes	= 1,
49 		.dev_stripes	= 1,
50 		.devs_max	= 2,
51 		.devs_min	= 2,
52 		.tolerated_failures = 1,
53 		.devs_increment	= 2,
54 		.ncopies	= 2,
55 		.nparity        = 0,
56 		.raid_name	= "raid1",
57 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
58 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
59 	},
60 	[BTRFS_RAID_DUP] = {
61 		.sub_stripes	= 1,
62 		.dev_stripes	= 2,
63 		.devs_max	= 1,
64 		.devs_min	= 1,
65 		.tolerated_failures = 0,
66 		.devs_increment	= 1,
67 		.ncopies	= 2,
68 		.nparity        = 0,
69 		.raid_name	= "dup",
70 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
71 		.mindev_error	= 0,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 		.nparity        = 0,
82 		.raid_name	= "raid0",
83 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
84 		.mindev_error	= 0,
85 	},
86 	[BTRFS_RAID_SINGLE] = {
87 		.sub_stripes	= 1,
88 		.dev_stripes	= 1,
89 		.devs_max	= 1,
90 		.devs_min	= 1,
91 		.tolerated_failures = 0,
92 		.devs_increment	= 1,
93 		.ncopies	= 1,
94 		.nparity        = 0,
95 		.raid_name	= "single",
96 		.bg_flag	= 0,
97 		.mindev_error	= 0,
98 	},
99 	[BTRFS_RAID_RAID5] = {
100 		.sub_stripes	= 1,
101 		.dev_stripes	= 1,
102 		.devs_max	= 0,
103 		.devs_min	= 2,
104 		.tolerated_failures = 1,
105 		.devs_increment	= 1,
106 		.ncopies	= 1,
107 		.nparity        = 1,
108 		.raid_name	= "raid5",
109 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
110 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
111 	},
112 	[BTRFS_RAID_RAID6] = {
113 		.sub_stripes	= 1,
114 		.dev_stripes	= 1,
115 		.devs_max	= 0,
116 		.devs_min	= 3,
117 		.tolerated_failures = 2,
118 		.devs_increment	= 1,
119 		.ncopies	= 1,
120 		.nparity        = 2,
121 		.raid_name	= "raid6",
122 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
123 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
124 	},
125 };
126 
127 const char *btrfs_bg_type_to_raid_name(u64 flags)
128 {
129 	const int index = btrfs_bg_flags_to_raid_index(flags);
130 
131 	if (index >= BTRFS_NR_RAID_TYPES)
132 		return NULL;
133 
134 	return btrfs_raid_array[index].raid_name;
135 }
136 
137 /*
138  * Fill @buf with textual description of @bg_flags, no more than @size_buf
139  * bytes including terminating null byte.
140  */
141 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
142 {
143 	int i;
144 	int ret;
145 	char *bp = buf;
146 	u64 flags = bg_flags;
147 	u32 size_bp = size_buf;
148 
149 	if (!flags) {
150 		strcpy(bp, "NONE");
151 		return;
152 	}
153 
154 #define DESCRIBE_FLAG(flag, desc)						\
155 	do {								\
156 		if (flags & (flag)) {					\
157 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
158 			if (ret < 0 || ret >= size_bp)			\
159 				goto out_overflow;			\
160 			size_bp -= ret;					\
161 			bp += ret;					\
162 			flags &= ~(flag);				\
163 		}							\
164 	} while (0)
165 
166 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
167 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
168 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
169 
170 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
171 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
172 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
173 			      btrfs_raid_array[i].raid_name);
174 #undef DESCRIBE_FLAG
175 
176 	if (flags) {
177 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
178 		size_bp -= ret;
179 	}
180 
181 	if (size_bp < size_buf)
182 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
183 
184 	/*
185 	 * The text is trimmed, it's up to the caller to provide sufficiently
186 	 * large buffer
187 	 */
188 out_overflow:;
189 }
190 
191 static int init_first_rw_device(struct btrfs_trans_handle *trans);
192 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
193 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197 			     enum btrfs_map_op op,
198 			     u64 logical, u64 *length,
199 			     struct btrfs_bio **bbio_ret,
200 			     int mirror_num, int need_raid_map);
201 
202 /*
203  * Device locking
204  * ==============
205  *
206  * There are several mutexes that protect manipulation of devices and low-level
207  * structures like chunks but not block groups, extents or files
208  *
209  * uuid_mutex (global lock)
210  * ------------------------
211  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213  * device) or requested by the device= mount option
214  *
215  * the mutex can be very coarse and can cover long-running operations
216  *
217  * protects: updates to fs_devices counters like missing devices, rw devices,
218  * seeding, structure cloning, opening/closing devices at mount/umount time
219  *
220  * global::fs_devs - add, remove, updates to the global list
221  *
222  * does not protect: manipulation of the fs_devices::devices list!
223  *
224  * btrfs_device::name - renames (write side), read is RCU
225  *
226  * fs_devices::device_list_mutex (per-fs, with RCU)
227  * ------------------------------------------------
228  * protects updates to fs_devices::devices, ie. adding and deleting
229  *
230  * simple list traversal with read-only actions can be done with RCU protection
231  *
232  * may be used to exclude some operations from running concurrently without any
233  * modifications to the list (see write_all_supers)
234  *
235  * balance_mutex
236  * -------------
237  * protects balance structures (status, state) and context accessed from
238  * several places (internally, ioctl)
239  *
240  * chunk_mutex
241  * -----------
242  * protects chunks, adding or removing during allocation, trim or when a new
243  * device is added/removed. Additionally it also protects post_commit_list of
244  * individual devices, since they can be added to the transaction's
245  * post_commit_list only with chunk_mutex held.
246  *
247  * cleaner_mutex
248  * -------------
249  * a big lock that is held by the cleaner thread and prevents running subvolume
250  * cleaning together with relocation or delayed iputs
251  *
252  *
253  * Lock nesting
254  * ============
255  *
256  * uuid_mutex
257  *   volume_mutex
258  *     device_list_mutex
259  *       chunk_mutex
260  *     balance_mutex
261  *
262  *
263  * Exclusive operations, BTRFS_FS_EXCL_OP
264  * ======================================
265  *
266  * Maintains the exclusivity of the following operations that apply to the
267  * whole filesystem and cannot run in parallel.
268  *
269  * - Balance (*)
270  * - Device add
271  * - Device remove
272  * - Device replace (*)
273  * - Resize
274  *
275  * The device operations (as above) can be in one of the following states:
276  *
277  * - Running state
278  * - Paused state
279  * - Completed state
280  *
281  * Only device operations marked with (*) can go into the Paused state for the
282  * following reasons:
283  *
284  * - ioctl (only Balance can be Paused through ioctl)
285  * - filesystem remounted as read-only
286  * - filesystem unmounted and mounted as read-only
287  * - system power-cycle and filesystem mounted as read-only
288  * - filesystem or device errors leading to forced read-only
289  *
290  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292  * A device operation in Paused or Running state can be canceled or resumed
293  * either by ioctl (Balance only) or when remounted as read-write.
294  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295  * completed.
296  */
297 
298 DEFINE_MUTEX(uuid_mutex);
299 static LIST_HEAD(fs_uuids);
300 struct list_head *btrfs_get_fs_uuids(void)
301 {
302 	return &fs_uuids;
303 }
304 
305 /*
306  * alloc_fs_devices - allocate struct btrfs_fs_devices
307  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
308  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
309  *
310  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311  * The returned struct is not linked onto any lists and can be destroyed with
312  * kfree() right away.
313  */
314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315 						 const u8 *metadata_fsid)
316 {
317 	struct btrfs_fs_devices *fs_devs;
318 
319 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
320 	if (!fs_devs)
321 		return ERR_PTR(-ENOMEM);
322 
323 	mutex_init(&fs_devs->device_list_mutex);
324 
325 	INIT_LIST_HEAD(&fs_devs->devices);
326 	INIT_LIST_HEAD(&fs_devs->alloc_list);
327 	INIT_LIST_HEAD(&fs_devs->fs_list);
328 	if (fsid)
329 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
330 
331 	if (metadata_fsid)
332 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333 	else if (fsid)
334 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335 
336 	return fs_devs;
337 }
338 
339 void btrfs_free_device(struct btrfs_device *device)
340 {
341 	WARN_ON(!list_empty(&device->post_commit_list));
342 	rcu_string_free(device->name);
343 	extent_io_tree_release(&device->alloc_state);
344 	bio_put(device->flush_bio);
345 	kfree(device);
346 }
347 
348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349 {
350 	struct btrfs_device *device;
351 	WARN_ON(fs_devices->opened);
352 	while (!list_empty(&fs_devices->devices)) {
353 		device = list_entry(fs_devices->devices.next,
354 				    struct btrfs_device, dev_list);
355 		list_del(&device->dev_list);
356 		btrfs_free_device(device);
357 	}
358 	kfree(fs_devices);
359 }
360 
361 static void btrfs_kobject_uevent(struct block_device *bdev,
362 				 enum kobject_action action)
363 {
364 	int ret;
365 
366 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
367 	if (ret)
368 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
369 			action,
370 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
371 			&disk_to_dev(bdev->bd_disk)->kobj);
372 }
373 
374 void __exit btrfs_cleanup_fs_uuids(void)
375 {
376 	struct btrfs_fs_devices *fs_devices;
377 
378 	while (!list_empty(&fs_uuids)) {
379 		fs_devices = list_entry(fs_uuids.next,
380 					struct btrfs_fs_devices, fs_list);
381 		list_del(&fs_devices->fs_list);
382 		free_fs_devices(fs_devices);
383 	}
384 }
385 
386 /*
387  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
388  * Returned struct is not linked onto any lists and must be destroyed using
389  * btrfs_free_device.
390  */
391 static struct btrfs_device *__alloc_device(void)
392 {
393 	struct btrfs_device *dev;
394 
395 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
396 	if (!dev)
397 		return ERR_PTR(-ENOMEM);
398 
399 	/*
400 	 * Preallocate a bio that's always going to be used for flushing device
401 	 * barriers and matches the device lifespan
402 	 */
403 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
404 	if (!dev->flush_bio) {
405 		kfree(dev);
406 		return ERR_PTR(-ENOMEM);
407 	}
408 
409 	INIT_LIST_HEAD(&dev->dev_list);
410 	INIT_LIST_HEAD(&dev->dev_alloc_list);
411 	INIT_LIST_HEAD(&dev->post_commit_list);
412 
413 	spin_lock_init(&dev->io_lock);
414 
415 	atomic_set(&dev->reada_in_flight, 0);
416 	atomic_set(&dev->dev_stats_ccnt, 0);
417 	btrfs_device_data_ordered_init(dev);
418 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
419 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
420 	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
421 
422 	return dev;
423 }
424 
425 static noinline struct btrfs_fs_devices *find_fsid(
426 		const u8 *fsid, const u8 *metadata_fsid)
427 {
428 	struct btrfs_fs_devices *fs_devices;
429 
430 	ASSERT(fsid);
431 
432 	if (metadata_fsid) {
433 		/*
434 		 * Handle scanned device having completed its fsid change but
435 		 * belonging to a fs_devices that was created by first scanning
436 		 * a device which didn't have its fsid/metadata_uuid changed
437 		 * at all and the CHANGING_FSID_V2 flag set.
438 		 */
439 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
440 			if (fs_devices->fsid_change &&
441 			    memcmp(metadata_fsid, fs_devices->fsid,
442 				   BTRFS_FSID_SIZE) == 0 &&
443 			    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
444 				   BTRFS_FSID_SIZE) == 0) {
445 				return fs_devices;
446 			}
447 		}
448 		/*
449 		 * Handle scanned device having completed its fsid change but
450 		 * belonging to a fs_devices that was created by a device that
451 		 * has an outdated pair of fsid/metadata_uuid and
452 		 * CHANGING_FSID_V2 flag set.
453 		 */
454 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
455 			if (fs_devices->fsid_change &&
456 			    memcmp(fs_devices->metadata_uuid,
457 				   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
458 			    memcmp(metadata_fsid, fs_devices->metadata_uuid,
459 				   BTRFS_FSID_SIZE) == 0) {
460 				return fs_devices;
461 			}
462 		}
463 	}
464 
465 	/* Handle non-split brain cases */
466 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
467 		if (metadata_fsid) {
468 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
469 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
470 				      BTRFS_FSID_SIZE) == 0)
471 				return fs_devices;
472 		} else {
473 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
474 				return fs_devices;
475 		}
476 	}
477 	return NULL;
478 }
479 
480 static int
481 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
482 		      int flush, struct block_device **bdev,
483 		      struct buffer_head **bh)
484 {
485 	int ret;
486 
487 	*bdev = blkdev_get_by_path(device_path, flags, holder);
488 
489 	if (IS_ERR(*bdev)) {
490 		ret = PTR_ERR(*bdev);
491 		goto error;
492 	}
493 
494 	if (flush)
495 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
496 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
497 	if (ret) {
498 		blkdev_put(*bdev, flags);
499 		goto error;
500 	}
501 	invalidate_bdev(*bdev);
502 	*bh = btrfs_read_dev_super(*bdev);
503 	if (IS_ERR(*bh)) {
504 		ret = PTR_ERR(*bh);
505 		blkdev_put(*bdev, flags);
506 		goto error;
507 	}
508 
509 	return 0;
510 
511 error:
512 	*bdev = NULL;
513 	*bh = NULL;
514 	return ret;
515 }
516 
517 static void requeue_list(struct btrfs_pending_bios *pending_bios,
518 			struct bio *head, struct bio *tail)
519 {
520 
521 	struct bio *old_head;
522 
523 	old_head = pending_bios->head;
524 	pending_bios->head = head;
525 	if (pending_bios->tail)
526 		tail->bi_next = old_head;
527 	else
528 		pending_bios->tail = tail;
529 }
530 
531 /*
532  * we try to collect pending bios for a device so we don't get a large
533  * number of procs sending bios down to the same device.  This greatly
534  * improves the schedulers ability to collect and merge the bios.
535  *
536  * But, it also turns into a long list of bios to process and that is sure
537  * to eventually make the worker thread block.  The solution here is to
538  * make some progress and then put this work struct back at the end of
539  * the list if the block device is congested.  This way, multiple devices
540  * can make progress from a single worker thread.
541  */
542 static noinline void run_scheduled_bios(struct btrfs_device *device)
543 {
544 	struct btrfs_fs_info *fs_info = device->fs_info;
545 	struct bio *pending;
546 	struct backing_dev_info *bdi;
547 	struct btrfs_pending_bios *pending_bios;
548 	struct bio *tail;
549 	struct bio *cur;
550 	int again = 0;
551 	unsigned long num_run;
552 	unsigned long batch_run = 0;
553 	unsigned long last_waited = 0;
554 	int force_reg = 0;
555 	int sync_pending = 0;
556 	struct blk_plug plug;
557 
558 	/*
559 	 * this function runs all the bios we've collected for
560 	 * a particular device.  We don't want to wander off to
561 	 * another device without first sending all of these down.
562 	 * So, setup a plug here and finish it off before we return
563 	 */
564 	blk_start_plug(&plug);
565 
566 	bdi = device->bdev->bd_bdi;
567 
568 loop:
569 	spin_lock(&device->io_lock);
570 
571 loop_lock:
572 	num_run = 0;
573 
574 	/* take all the bios off the list at once and process them
575 	 * later on (without the lock held).  But, remember the
576 	 * tail and other pointers so the bios can be properly reinserted
577 	 * into the list if we hit congestion
578 	 */
579 	if (!force_reg && device->pending_sync_bios.head) {
580 		pending_bios = &device->pending_sync_bios;
581 		force_reg = 1;
582 	} else {
583 		pending_bios = &device->pending_bios;
584 		force_reg = 0;
585 	}
586 
587 	pending = pending_bios->head;
588 	tail = pending_bios->tail;
589 	WARN_ON(pending && !tail);
590 
591 	/*
592 	 * if pending was null this time around, no bios need processing
593 	 * at all and we can stop.  Otherwise it'll loop back up again
594 	 * and do an additional check so no bios are missed.
595 	 *
596 	 * device->running_pending is used to synchronize with the
597 	 * schedule_bio code.
598 	 */
599 	if (device->pending_sync_bios.head == NULL &&
600 	    device->pending_bios.head == NULL) {
601 		again = 0;
602 		device->running_pending = 0;
603 	} else {
604 		again = 1;
605 		device->running_pending = 1;
606 	}
607 
608 	pending_bios->head = NULL;
609 	pending_bios->tail = NULL;
610 
611 	spin_unlock(&device->io_lock);
612 
613 	while (pending) {
614 
615 		rmb();
616 		/* we want to work on both lists, but do more bios on the
617 		 * sync list than the regular list
618 		 */
619 		if ((num_run > 32 &&
620 		    pending_bios != &device->pending_sync_bios &&
621 		    device->pending_sync_bios.head) ||
622 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
623 		    device->pending_bios.head)) {
624 			spin_lock(&device->io_lock);
625 			requeue_list(pending_bios, pending, tail);
626 			goto loop_lock;
627 		}
628 
629 		cur = pending;
630 		pending = pending->bi_next;
631 		cur->bi_next = NULL;
632 
633 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
634 
635 		/*
636 		 * if we're doing the sync list, record that our
637 		 * plug has some sync requests on it
638 		 *
639 		 * If we're doing the regular list and there are
640 		 * sync requests sitting around, unplug before
641 		 * we add more
642 		 */
643 		if (pending_bios == &device->pending_sync_bios) {
644 			sync_pending = 1;
645 		} else if (sync_pending) {
646 			blk_finish_plug(&plug);
647 			blk_start_plug(&plug);
648 			sync_pending = 0;
649 		}
650 
651 		btrfsic_submit_bio(cur);
652 		num_run++;
653 		batch_run++;
654 
655 		cond_resched();
656 
657 		/*
658 		 * we made progress, there is more work to do and the bdi
659 		 * is now congested.  Back off and let other work structs
660 		 * run instead
661 		 */
662 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
663 		    fs_info->fs_devices->open_devices > 1) {
664 			struct io_context *ioc;
665 
666 			ioc = current->io_context;
667 
668 			/*
669 			 * the main goal here is that we don't want to
670 			 * block if we're going to be able to submit
671 			 * more requests without blocking.
672 			 *
673 			 * This code does two great things, it pokes into
674 			 * the elevator code from a filesystem _and_
675 			 * it makes assumptions about how batching works.
676 			 */
677 			if (ioc && ioc->nr_batch_requests > 0 &&
678 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
679 			    (last_waited == 0 ||
680 			     ioc->last_waited == last_waited)) {
681 				/*
682 				 * we want to go through our batch of
683 				 * requests and stop.  So, we copy out
684 				 * the ioc->last_waited time and test
685 				 * against it before looping
686 				 */
687 				last_waited = ioc->last_waited;
688 				cond_resched();
689 				continue;
690 			}
691 			spin_lock(&device->io_lock);
692 			requeue_list(pending_bios, pending, tail);
693 			device->running_pending = 1;
694 
695 			spin_unlock(&device->io_lock);
696 			btrfs_queue_work(fs_info->submit_workers,
697 					 &device->work);
698 			goto done;
699 		}
700 	}
701 
702 	cond_resched();
703 	if (again)
704 		goto loop;
705 
706 	spin_lock(&device->io_lock);
707 	if (device->pending_bios.head || device->pending_sync_bios.head)
708 		goto loop_lock;
709 	spin_unlock(&device->io_lock);
710 
711 done:
712 	blk_finish_plug(&plug);
713 }
714 
715 static void pending_bios_fn(struct btrfs_work *work)
716 {
717 	struct btrfs_device *device;
718 
719 	device = container_of(work, struct btrfs_device, work);
720 	run_scheduled_bios(device);
721 }
722 
723 static bool device_path_matched(const char *path, struct btrfs_device *device)
724 {
725 	int found;
726 
727 	rcu_read_lock();
728 	found = strcmp(rcu_str_deref(device->name), path);
729 	rcu_read_unlock();
730 
731 	return found == 0;
732 }
733 
734 /*
735  *  Search and remove all stale (devices which are not mounted) devices.
736  *  When both inputs are NULL, it will search and release all stale devices.
737  *  path:	Optional. When provided will it release all unmounted devices
738  *		matching this path only.
739  *  skip_dev:	Optional. Will skip this device when searching for the stale
740  *		devices.
741  *  Return:	0 for success or if @path is NULL.
742  * 		-EBUSY if @path is a mounted device.
743  * 		-ENOENT if @path does not match any device in the list.
744  */
745 static int btrfs_free_stale_devices(const char *path,
746 				     struct btrfs_device *skip_device)
747 {
748 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
749 	struct btrfs_device *device, *tmp_device;
750 	int ret = 0;
751 
752 	if (path)
753 		ret = -ENOENT;
754 
755 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
756 
757 		mutex_lock(&fs_devices->device_list_mutex);
758 		list_for_each_entry_safe(device, tmp_device,
759 					 &fs_devices->devices, dev_list) {
760 			if (skip_device && skip_device == device)
761 				continue;
762 			if (path && !device->name)
763 				continue;
764 			if (path && !device_path_matched(path, device))
765 				continue;
766 			if (fs_devices->opened) {
767 				/* for an already deleted device return 0 */
768 				if (path && ret != 0)
769 					ret = -EBUSY;
770 				break;
771 			}
772 
773 			/* delete the stale device */
774 			fs_devices->num_devices--;
775 			list_del(&device->dev_list);
776 			btrfs_free_device(device);
777 
778 			ret = 0;
779 			if (fs_devices->num_devices == 0)
780 				break;
781 		}
782 		mutex_unlock(&fs_devices->device_list_mutex);
783 
784 		if (fs_devices->num_devices == 0) {
785 			btrfs_sysfs_remove_fsid(fs_devices);
786 			list_del(&fs_devices->fs_list);
787 			free_fs_devices(fs_devices);
788 		}
789 	}
790 
791 	return ret;
792 }
793 
794 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
795 			struct btrfs_device *device, fmode_t flags,
796 			void *holder)
797 {
798 	struct request_queue *q;
799 	struct block_device *bdev;
800 	struct buffer_head *bh;
801 	struct btrfs_super_block *disk_super;
802 	u64 devid;
803 	int ret;
804 
805 	if (device->bdev)
806 		return -EINVAL;
807 	if (!device->name)
808 		return -EINVAL;
809 
810 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
811 				    &bdev, &bh);
812 	if (ret)
813 		return ret;
814 
815 	disk_super = (struct btrfs_super_block *)bh->b_data;
816 	devid = btrfs_stack_device_id(&disk_super->dev_item);
817 	if (devid != device->devid)
818 		goto error_brelse;
819 
820 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
821 		goto error_brelse;
822 
823 	device->generation = btrfs_super_generation(disk_super);
824 
825 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
826 		if (btrfs_super_incompat_flags(disk_super) &
827 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
828 			pr_err(
829 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
830 			goto error_brelse;
831 		}
832 
833 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
834 		fs_devices->seeding = 1;
835 	} else {
836 		if (bdev_read_only(bdev))
837 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
838 		else
839 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
840 	}
841 
842 	q = bdev_get_queue(bdev);
843 	if (!blk_queue_nonrot(q))
844 		fs_devices->rotating = 1;
845 
846 	device->bdev = bdev;
847 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
848 	device->mode = flags;
849 
850 	fs_devices->open_devices++;
851 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
852 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
853 		fs_devices->rw_devices++;
854 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
855 	}
856 	brelse(bh);
857 
858 	return 0;
859 
860 error_brelse:
861 	brelse(bh);
862 	blkdev_put(bdev, flags);
863 
864 	return -EINVAL;
865 }
866 
867 /*
868  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
869  * being created with a disk that has already completed its fsid change.
870  */
871 static struct btrfs_fs_devices *find_fsid_inprogress(
872 					struct btrfs_super_block *disk_super)
873 {
874 	struct btrfs_fs_devices *fs_devices;
875 
876 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
877 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
878 			   BTRFS_FSID_SIZE) != 0 &&
879 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
880 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
881 			return fs_devices;
882 		}
883 	}
884 
885 	return NULL;
886 }
887 
888 
889 static struct btrfs_fs_devices *find_fsid_changed(
890 					struct btrfs_super_block *disk_super)
891 {
892 	struct btrfs_fs_devices *fs_devices;
893 
894 	/*
895 	 * Handles the case where scanned device is part of an fs that had
896 	 * multiple successful changes of FSID but curently device didn't
897 	 * observe it. Meaning our fsid will be different than theirs.
898 	 */
899 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
900 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
901 			   BTRFS_FSID_SIZE) != 0 &&
902 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
903 			   BTRFS_FSID_SIZE) == 0 &&
904 		    memcmp(fs_devices->fsid, disk_super->fsid,
905 			   BTRFS_FSID_SIZE) != 0) {
906 			return fs_devices;
907 		}
908 	}
909 
910 	return NULL;
911 }
912 /*
913  * Add new device to list of registered devices
914  *
915  * Returns:
916  * device pointer which was just added or updated when successful
917  * error pointer when failed
918  */
919 static noinline struct btrfs_device *device_list_add(const char *path,
920 			   struct btrfs_super_block *disk_super,
921 			   bool *new_device_added)
922 {
923 	struct btrfs_device *device;
924 	struct btrfs_fs_devices *fs_devices = NULL;
925 	struct rcu_string *name;
926 	u64 found_transid = btrfs_super_generation(disk_super);
927 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
928 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
929 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
930 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
931 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
932 
933 	if (fsid_change_in_progress) {
934 		if (!has_metadata_uuid) {
935 			/*
936 			 * When we have an image which has CHANGING_FSID_V2 set
937 			 * it might belong to either a filesystem which has
938 			 * disks with completed fsid change or it might belong
939 			 * to fs with no UUID changes in effect, handle both.
940 			 */
941 			fs_devices = find_fsid_inprogress(disk_super);
942 			if (!fs_devices)
943 				fs_devices = find_fsid(disk_super->fsid, NULL);
944 		} else {
945 			fs_devices = find_fsid_changed(disk_super);
946 		}
947 	} else if (has_metadata_uuid) {
948 		fs_devices = find_fsid(disk_super->fsid,
949 				       disk_super->metadata_uuid);
950 	} else {
951 		fs_devices = find_fsid(disk_super->fsid, NULL);
952 	}
953 
954 
955 	if (!fs_devices) {
956 		if (has_metadata_uuid)
957 			fs_devices = alloc_fs_devices(disk_super->fsid,
958 						      disk_super->metadata_uuid);
959 		else
960 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
961 
962 		if (IS_ERR(fs_devices))
963 			return ERR_CAST(fs_devices);
964 
965 		fs_devices->fsid_change = fsid_change_in_progress;
966 
967 		mutex_lock(&fs_devices->device_list_mutex);
968 		list_add(&fs_devices->fs_list, &fs_uuids);
969 
970 		device = NULL;
971 	} else {
972 		mutex_lock(&fs_devices->device_list_mutex);
973 		device = btrfs_find_device(fs_devices, devid,
974 				disk_super->dev_item.uuid, NULL, false);
975 
976 		/*
977 		 * If this disk has been pulled into an fs devices created by
978 		 * a device which had the CHANGING_FSID_V2 flag then replace the
979 		 * metadata_uuid/fsid values of the fs_devices.
980 		 */
981 		if (has_metadata_uuid && fs_devices->fsid_change &&
982 		    found_transid > fs_devices->latest_generation) {
983 			memcpy(fs_devices->fsid, disk_super->fsid,
984 					BTRFS_FSID_SIZE);
985 			memcpy(fs_devices->metadata_uuid,
986 					disk_super->metadata_uuid, BTRFS_FSID_SIZE);
987 
988 			fs_devices->fsid_change = false;
989 		}
990 	}
991 
992 	if (!device) {
993 		if (fs_devices->opened) {
994 			mutex_unlock(&fs_devices->device_list_mutex);
995 			return ERR_PTR(-EBUSY);
996 		}
997 
998 		device = btrfs_alloc_device(NULL, &devid,
999 					    disk_super->dev_item.uuid);
1000 		if (IS_ERR(device)) {
1001 			mutex_unlock(&fs_devices->device_list_mutex);
1002 			/* we can safely leave the fs_devices entry around */
1003 			return device;
1004 		}
1005 
1006 		name = rcu_string_strdup(path, GFP_NOFS);
1007 		if (!name) {
1008 			btrfs_free_device(device);
1009 			mutex_unlock(&fs_devices->device_list_mutex);
1010 			return ERR_PTR(-ENOMEM);
1011 		}
1012 		rcu_assign_pointer(device->name, name);
1013 
1014 		list_add_rcu(&device->dev_list, &fs_devices->devices);
1015 		fs_devices->num_devices++;
1016 
1017 		device->fs_devices = fs_devices;
1018 		*new_device_added = true;
1019 
1020 		if (disk_super->label[0])
1021 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1022 				disk_super->label, devid, found_transid, path);
1023 		else
1024 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1025 				disk_super->fsid, devid, found_transid, path);
1026 
1027 	} else if (!device->name || strcmp(device->name->str, path)) {
1028 		/*
1029 		 * When FS is already mounted.
1030 		 * 1. If you are here and if the device->name is NULL that
1031 		 *    means this device was missing at time of FS mount.
1032 		 * 2. If you are here and if the device->name is different
1033 		 *    from 'path' that means either
1034 		 *      a. The same device disappeared and reappeared with
1035 		 *         different name. or
1036 		 *      b. The missing-disk-which-was-replaced, has
1037 		 *         reappeared now.
1038 		 *
1039 		 * We must allow 1 and 2a above. But 2b would be a spurious
1040 		 * and unintentional.
1041 		 *
1042 		 * Further in case of 1 and 2a above, the disk at 'path'
1043 		 * would have missed some transaction when it was away and
1044 		 * in case of 2a the stale bdev has to be updated as well.
1045 		 * 2b must not be allowed at all time.
1046 		 */
1047 
1048 		/*
1049 		 * For now, we do allow update to btrfs_fs_device through the
1050 		 * btrfs dev scan cli after FS has been mounted.  We're still
1051 		 * tracking a problem where systems fail mount by subvolume id
1052 		 * when we reject replacement on a mounted FS.
1053 		 */
1054 		if (!fs_devices->opened && found_transid < device->generation) {
1055 			/*
1056 			 * That is if the FS is _not_ mounted and if you
1057 			 * are here, that means there is more than one
1058 			 * disk with same uuid and devid.We keep the one
1059 			 * with larger generation number or the last-in if
1060 			 * generation are equal.
1061 			 */
1062 			mutex_unlock(&fs_devices->device_list_mutex);
1063 			return ERR_PTR(-EEXIST);
1064 		}
1065 
1066 		/*
1067 		 * We are going to replace the device path for a given devid,
1068 		 * make sure it's the same device if the device is mounted
1069 		 */
1070 		if (device->bdev) {
1071 			struct block_device *path_bdev;
1072 
1073 			path_bdev = lookup_bdev(path);
1074 			if (IS_ERR(path_bdev)) {
1075 				mutex_unlock(&fs_devices->device_list_mutex);
1076 				return ERR_CAST(path_bdev);
1077 			}
1078 
1079 			if (device->bdev != path_bdev) {
1080 				bdput(path_bdev);
1081 				mutex_unlock(&fs_devices->device_list_mutex);
1082 				btrfs_warn_in_rcu(device->fs_info,
1083 			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1084 					disk_super->fsid, devid,
1085 					rcu_str_deref(device->name), path);
1086 				return ERR_PTR(-EEXIST);
1087 			}
1088 			bdput(path_bdev);
1089 			btrfs_info_in_rcu(device->fs_info,
1090 				"device fsid %pU devid %llu moved old:%s new:%s",
1091 				disk_super->fsid, devid,
1092 				rcu_str_deref(device->name), path);
1093 		}
1094 
1095 		name = rcu_string_strdup(path, GFP_NOFS);
1096 		if (!name) {
1097 			mutex_unlock(&fs_devices->device_list_mutex);
1098 			return ERR_PTR(-ENOMEM);
1099 		}
1100 		rcu_string_free(device->name);
1101 		rcu_assign_pointer(device->name, name);
1102 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1103 			fs_devices->missing_devices--;
1104 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Unmount does not free the btrfs_device struct but would zero
1110 	 * generation along with most of the other members. So just update
1111 	 * it back. We need it to pick the disk with largest generation
1112 	 * (as above).
1113 	 */
1114 	if (!fs_devices->opened) {
1115 		device->generation = found_transid;
1116 		fs_devices->latest_generation = max_t(u64, found_transid,
1117 						fs_devices->latest_generation);
1118 	}
1119 
1120 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1121 
1122 	mutex_unlock(&fs_devices->device_list_mutex);
1123 	return device;
1124 }
1125 
1126 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1127 {
1128 	struct btrfs_fs_devices *fs_devices;
1129 	struct btrfs_device *device;
1130 	struct btrfs_device *orig_dev;
1131 
1132 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1133 	if (IS_ERR(fs_devices))
1134 		return fs_devices;
1135 
1136 	mutex_lock(&orig->device_list_mutex);
1137 	fs_devices->total_devices = orig->total_devices;
1138 
1139 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1140 		struct rcu_string *name;
1141 
1142 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1143 					    orig_dev->uuid);
1144 		if (IS_ERR(device))
1145 			goto error;
1146 
1147 		/*
1148 		 * This is ok to do without rcu read locked because we hold the
1149 		 * uuid mutex so nothing we touch in here is going to disappear.
1150 		 */
1151 		if (orig_dev->name) {
1152 			name = rcu_string_strdup(orig_dev->name->str,
1153 					GFP_KERNEL);
1154 			if (!name) {
1155 				btrfs_free_device(device);
1156 				goto error;
1157 			}
1158 			rcu_assign_pointer(device->name, name);
1159 		}
1160 
1161 		list_add(&device->dev_list, &fs_devices->devices);
1162 		device->fs_devices = fs_devices;
1163 		fs_devices->num_devices++;
1164 	}
1165 	mutex_unlock(&orig->device_list_mutex);
1166 	return fs_devices;
1167 error:
1168 	mutex_unlock(&orig->device_list_mutex);
1169 	free_fs_devices(fs_devices);
1170 	return ERR_PTR(-ENOMEM);
1171 }
1172 
1173 /*
1174  * After we have read the system tree and know devids belonging to
1175  * this filesystem, remove the device which does not belong there.
1176  */
1177 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1178 {
1179 	struct btrfs_device *device, *next;
1180 	struct btrfs_device *latest_dev = NULL;
1181 
1182 	mutex_lock(&uuid_mutex);
1183 again:
1184 	/* This is the initialized path, it is safe to release the devices. */
1185 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1186 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1187 							&device->dev_state)) {
1188 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1189 			     &device->dev_state) &&
1190 			     (!latest_dev ||
1191 			      device->generation > latest_dev->generation)) {
1192 				latest_dev = device;
1193 			}
1194 			continue;
1195 		}
1196 
1197 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1198 			/*
1199 			 * In the first step, keep the device which has
1200 			 * the correct fsid and the devid that is used
1201 			 * for the dev_replace procedure.
1202 			 * In the second step, the dev_replace state is
1203 			 * read from the device tree and it is known
1204 			 * whether the procedure is really active or
1205 			 * not, which means whether this device is
1206 			 * used or whether it should be removed.
1207 			 */
1208 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1209 						  &device->dev_state)) {
1210 				continue;
1211 			}
1212 		}
1213 		if (device->bdev) {
1214 			blkdev_put(device->bdev, device->mode);
1215 			device->bdev = NULL;
1216 			fs_devices->open_devices--;
1217 		}
1218 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1219 			list_del_init(&device->dev_alloc_list);
1220 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1221 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1222 				      &device->dev_state))
1223 				fs_devices->rw_devices--;
1224 		}
1225 		list_del_init(&device->dev_list);
1226 		fs_devices->num_devices--;
1227 		btrfs_free_device(device);
1228 	}
1229 
1230 	if (fs_devices->seed) {
1231 		fs_devices = fs_devices->seed;
1232 		goto again;
1233 	}
1234 
1235 	fs_devices->latest_bdev = latest_dev->bdev;
1236 
1237 	mutex_unlock(&uuid_mutex);
1238 }
1239 
1240 static void btrfs_close_bdev(struct btrfs_device *device)
1241 {
1242 	if (!device->bdev)
1243 		return;
1244 
1245 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1246 		sync_blockdev(device->bdev);
1247 		invalidate_bdev(device->bdev);
1248 	}
1249 
1250 	blkdev_put(device->bdev, device->mode);
1251 }
1252 
1253 static void btrfs_close_one_device(struct btrfs_device *device)
1254 {
1255 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1256 	struct btrfs_device *new_device;
1257 	struct rcu_string *name;
1258 
1259 	if (device->bdev)
1260 		fs_devices->open_devices--;
1261 
1262 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1263 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1264 		list_del_init(&device->dev_alloc_list);
1265 		fs_devices->rw_devices--;
1266 	}
1267 
1268 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1269 		fs_devices->missing_devices--;
1270 
1271 	btrfs_close_bdev(device);
1272 
1273 	new_device = btrfs_alloc_device(NULL, &device->devid,
1274 					device->uuid);
1275 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1276 
1277 	/* Safe because we are under uuid_mutex */
1278 	if (device->name) {
1279 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1280 		BUG_ON(!name); /* -ENOMEM */
1281 		rcu_assign_pointer(new_device->name, name);
1282 	}
1283 
1284 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1285 	new_device->fs_devices = device->fs_devices;
1286 
1287 	synchronize_rcu();
1288 	btrfs_free_device(device);
1289 }
1290 
1291 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1292 {
1293 	struct btrfs_device *device, *tmp;
1294 
1295 	if (--fs_devices->opened > 0)
1296 		return 0;
1297 
1298 	mutex_lock(&fs_devices->device_list_mutex);
1299 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1300 		btrfs_close_one_device(device);
1301 	}
1302 	mutex_unlock(&fs_devices->device_list_mutex);
1303 
1304 	WARN_ON(fs_devices->open_devices);
1305 	WARN_ON(fs_devices->rw_devices);
1306 	fs_devices->opened = 0;
1307 	fs_devices->seeding = 0;
1308 
1309 	return 0;
1310 }
1311 
1312 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1313 {
1314 	struct btrfs_fs_devices *seed_devices = NULL;
1315 	int ret;
1316 
1317 	mutex_lock(&uuid_mutex);
1318 	ret = close_fs_devices(fs_devices);
1319 	if (!fs_devices->opened) {
1320 		seed_devices = fs_devices->seed;
1321 		fs_devices->seed = NULL;
1322 	}
1323 	mutex_unlock(&uuid_mutex);
1324 
1325 	while (seed_devices) {
1326 		fs_devices = seed_devices;
1327 		seed_devices = fs_devices->seed;
1328 		close_fs_devices(fs_devices);
1329 		free_fs_devices(fs_devices);
1330 	}
1331 	return ret;
1332 }
1333 
1334 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1335 				fmode_t flags, void *holder)
1336 {
1337 	struct btrfs_device *device;
1338 	struct btrfs_device *latest_dev = NULL;
1339 	int ret = 0;
1340 
1341 	flags |= FMODE_EXCL;
1342 
1343 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1344 		/* Just open everything we can; ignore failures here */
1345 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1346 			continue;
1347 
1348 		if (!latest_dev ||
1349 		    device->generation > latest_dev->generation)
1350 			latest_dev = device;
1351 	}
1352 	if (fs_devices->open_devices == 0) {
1353 		ret = -EINVAL;
1354 		goto out;
1355 	}
1356 	fs_devices->opened = 1;
1357 	fs_devices->latest_bdev = latest_dev->bdev;
1358 	fs_devices->total_rw_bytes = 0;
1359 out:
1360 	return ret;
1361 }
1362 
1363 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1364 {
1365 	struct btrfs_device *dev1, *dev2;
1366 
1367 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1368 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1369 
1370 	if (dev1->devid < dev2->devid)
1371 		return -1;
1372 	else if (dev1->devid > dev2->devid)
1373 		return 1;
1374 	return 0;
1375 }
1376 
1377 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1378 		       fmode_t flags, void *holder)
1379 {
1380 	int ret;
1381 
1382 	lockdep_assert_held(&uuid_mutex);
1383 
1384 	mutex_lock(&fs_devices->device_list_mutex);
1385 	if (fs_devices->opened) {
1386 		fs_devices->opened++;
1387 		ret = 0;
1388 	} else {
1389 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1390 		ret = open_fs_devices(fs_devices, flags, holder);
1391 	}
1392 	mutex_unlock(&fs_devices->device_list_mutex);
1393 
1394 	return ret;
1395 }
1396 
1397 static void btrfs_release_disk_super(struct page *page)
1398 {
1399 	kunmap(page);
1400 	put_page(page);
1401 }
1402 
1403 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1404 				 struct page **page,
1405 				 struct btrfs_super_block **disk_super)
1406 {
1407 	void *p;
1408 	pgoff_t index;
1409 
1410 	/* make sure our super fits in the device */
1411 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1412 		return 1;
1413 
1414 	/* make sure our super fits in the page */
1415 	if (sizeof(**disk_super) > PAGE_SIZE)
1416 		return 1;
1417 
1418 	/* make sure our super doesn't straddle pages on disk */
1419 	index = bytenr >> PAGE_SHIFT;
1420 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1421 		return 1;
1422 
1423 	/* pull in the page with our super */
1424 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1425 				   index, GFP_KERNEL);
1426 
1427 	if (IS_ERR_OR_NULL(*page))
1428 		return 1;
1429 
1430 	p = kmap(*page);
1431 
1432 	/* align our pointer to the offset of the super block */
1433 	*disk_super = p + offset_in_page(bytenr);
1434 
1435 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1436 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1437 		btrfs_release_disk_super(*page);
1438 		return 1;
1439 	}
1440 
1441 	if ((*disk_super)->label[0] &&
1442 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1443 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1444 
1445 	return 0;
1446 }
1447 
1448 int btrfs_forget_devices(const char *path)
1449 {
1450 	int ret;
1451 
1452 	mutex_lock(&uuid_mutex);
1453 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1454 	mutex_unlock(&uuid_mutex);
1455 
1456 	return ret;
1457 }
1458 
1459 /*
1460  * Look for a btrfs signature on a device. This may be called out of the mount path
1461  * and we are not allowed to call set_blocksize during the scan. The superblock
1462  * is read via pagecache
1463  */
1464 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1465 					   void *holder)
1466 {
1467 	struct btrfs_super_block *disk_super;
1468 	bool new_device_added = false;
1469 	struct btrfs_device *device = NULL;
1470 	struct block_device *bdev;
1471 	struct page *page;
1472 	u64 bytenr;
1473 
1474 	lockdep_assert_held(&uuid_mutex);
1475 
1476 	/*
1477 	 * we would like to check all the supers, but that would make
1478 	 * a btrfs mount succeed after a mkfs from a different FS.
1479 	 * So, we need to add a special mount option to scan for
1480 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1481 	 */
1482 	bytenr = btrfs_sb_offset(0);
1483 	flags |= FMODE_EXCL;
1484 
1485 	bdev = blkdev_get_by_path(path, flags, holder);
1486 	if (IS_ERR(bdev))
1487 		return ERR_CAST(bdev);
1488 
1489 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1490 		device = ERR_PTR(-EINVAL);
1491 		goto error_bdev_put;
1492 	}
1493 
1494 	device = device_list_add(path, disk_super, &new_device_added);
1495 	if (!IS_ERR(device)) {
1496 		if (new_device_added)
1497 			btrfs_free_stale_devices(path, device);
1498 	}
1499 
1500 	btrfs_release_disk_super(page);
1501 
1502 error_bdev_put:
1503 	blkdev_put(bdev, flags);
1504 
1505 	return device;
1506 }
1507 
1508 /*
1509  * Try to find a chunk that intersects [start, start + len] range and when one
1510  * such is found, record the end of it in *start
1511  */
1512 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1513 				    u64 len)
1514 {
1515 	u64 physical_start, physical_end;
1516 
1517 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1518 
1519 	if (!find_first_extent_bit(&device->alloc_state, *start,
1520 				   &physical_start, &physical_end,
1521 				   CHUNK_ALLOCATED, NULL)) {
1522 
1523 		if (in_range(physical_start, *start, len) ||
1524 		    in_range(*start, physical_start,
1525 			     physical_end - physical_start)) {
1526 			*start = physical_end + 1;
1527 			return true;
1528 		}
1529 	}
1530 	return false;
1531 }
1532 
1533 
1534 /*
1535  * find_free_dev_extent_start - find free space in the specified device
1536  * @device:	  the device which we search the free space in
1537  * @num_bytes:	  the size of the free space that we need
1538  * @search_start: the position from which to begin the search
1539  * @start:	  store the start of the free space.
1540  * @len:	  the size of the free space. that we find, or the size
1541  *		  of the max free space if we don't find suitable free space
1542  *
1543  * this uses a pretty simple search, the expectation is that it is
1544  * called very infrequently and that a given device has a small number
1545  * of extents
1546  *
1547  * @start is used to store the start of the free space if we find. But if we
1548  * don't find suitable free space, it will be used to store the start position
1549  * of the max free space.
1550  *
1551  * @len is used to store the size of the free space that we find.
1552  * But if we don't find suitable free space, it is used to store the size of
1553  * the max free space.
1554  */
1555 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1556 			       u64 search_start, u64 *start, u64 *len)
1557 {
1558 	struct btrfs_fs_info *fs_info = device->fs_info;
1559 	struct btrfs_root *root = fs_info->dev_root;
1560 	struct btrfs_key key;
1561 	struct btrfs_dev_extent *dev_extent;
1562 	struct btrfs_path *path;
1563 	u64 hole_size;
1564 	u64 max_hole_start;
1565 	u64 max_hole_size;
1566 	u64 extent_end;
1567 	u64 search_end = device->total_bytes;
1568 	int ret;
1569 	int slot;
1570 	struct extent_buffer *l;
1571 
1572 	/*
1573 	 * We don't want to overwrite the superblock on the drive nor any area
1574 	 * used by the boot loader (grub for example), so we make sure to start
1575 	 * at an offset of at least 1MB.
1576 	 */
1577 	search_start = max_t(u64, search_start, SZ_1M);
1578 
1579 	path = btrfs_alloc_path();
1580 	if (!path)
1581 		return -ENOMEM;
1582 
1583 	max_hole_start = search_start;
1584 	max_hole_size = 0;
1585 
1586 again:
1587 	if (search_start >= search_end ||
1588 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589 		ret = -ENOSPC;
1590 		goto out;
1591 	}
1592 
1593 	path->reada = READA_FORWARD;
1594 	path->search_commit_root = 1;
1595 	path->skip_locking = 1;
1596 
1597 	key.objectid = device->devid;
1598 	key.offset = search_start;
1599 	key.type = BTRFS_DEV_EXTENT_KEY;
1600 
1601 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602 	if (ret < 0)
1603 		goto out;
1604 	if (ret > 0) {
1605 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1606 		if (ret < 0)
1607 			goto out;
1608 	}
1609 
1610 	while (1) {
1611 		l = path->nodes[0];
1612 		slot = path->slots[0];
1613 		if (slot >= btrfs_header_nritems(l)) {
1614 			ret = btrfs_next_leaf(root, path);
1615 			if (ret == 0)
1616 				continue;
1617 			if (ret < 0)
1618 				goto out;
1619 
1620 			break;
1621 		}
1622 		btrfs_item_key_to_cpu(l, &key, slot);
1623 
1624 		if (key.objectid < device->devid)
1625 			goto next;
1626 
1627 		if (key.objectid > device->devid)
1628 			break;
1629 
1630 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1631 			goto next;
1632 
1633 		if (key.offset > search_start) {
1634 			hole_size = key.offset - search_start;
1635 
1636 			/*
1637 			 * Have to check before we set max_hole_start, otherwise
1638 			 * we could end up sending back this offset anyway.
1639 			 */
1640 			if (contains_pending_extent(device, &search_start,
1641 						    hole_size)) {
1642 				if (key.offset >= search_start)
1643 					hole_size = key.offset - search_start;
1644 				else
1645 					hole_size = 0;
1646 			}
1647 
1648 			if (hole_size > max_hole_size) {
1649 				max_hole_start = search_start;
1650 				max_hole_size = hole_size;
1651 			}
1652 
1653 			/*
1654 			 * If this free space is greater than which we need,
1655 			 * it must be the max free space that we have found
1656 			 * until now, so max_hole_start must point to the start
1657 			 * of this free space and the length of this free space
1658 			 * is stored in max_hole_size. Thus, we return
1659 			 * max_hole_start and max_hole_size and go back to the
1660 			 * caller.
1661 			 */
1662 			if (hole_size >= num_bytes) {
1663 				ret = 0;
1664 				goto out;
1665 			}
1666 		}
1667 
1668 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669 		extent_end = key.offset + btrfs_dev_extent_length(l,
1670 								  dev_extent);
1671 		if (extent_end > search_start)
1672 			search_start = extent_end;
1673 next:
1674 		path->slots[0]++;
1675 		cond_resched();
1676 	}
1677 
1678 	/*
1679 	 * At this point, search_start should be the end of
1680 	 * allocated dev extents, and when shrinking the device,
1681 	 * search_end may be smaller than search_start.
1682 	 */
1683 	if (search_end > search_start) {
1684 		hole_size = search_end - search_start;
1685 
1686 		if (contains_pending_extent(device, &search_start, hole_size)) {
1687 			btrfs_release_path(path);
1688 			goto again;
1689 		}
1690 
1691 		if (hole_size > max_hole_size) {
1692 			max_hole_start = search_start;
1693 			max_hole_size = hole_size;
1694 		}
1695 	}
1696 
1697 	/* See above. */
1698 	if (max_hole_size < num_bytes)
1699 		ret = -ENOSPC;
1700 	else
1701 		ret = 0;
1702 
1703 out:
1704 	btrfs_free_path(path);
1705 	*start = max_hole_start;
1706 	if (len)
1707 		*len = max_hole_size;
1708 	return ret;
1709 }
1710 
1711 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1712 			 u64 *start, u64 *len)
1713 {
1714 	/* FIXME use last free of some kind */
1715 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1716 }
1717 
1718 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1719 			  struct btrfs_device *device,
1720 			  u64 start, u64 *dev_extent_len)
1721 {
1722 	struct btrfs_fs_info *fs_info = device->fs_info;
1723 	struct btrfs_root *root = fs_info->dev_root;
1724 	int ret;
1725 	struct btrfs_path *path;
1726 	struct btrfs_key key;
1727 	struct btrfs_key found_key;
1728 	struct extent_buffer *leaf = NULL;
1729 	struct btrfs_dev_extent *extent = NULL;
1730 
1731 	path = btrfs_alloc_path();
1732 	if (!path)
1733 		return -ENOMEM;
1734 
1735 	key.objectid = device->devid;
1736 	key.offset = start;
1737 	key.type = BTRFS_DEV_EXTENT_KEY;
1738 again:
1739 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1740 	if (ret > 0) {
1741 		ret = btrfs_previous_item(root, path, key.objectid,
1742 					  BTRFS_DEV_EXTENT_KEY);
1743 		if (ret)
1744 			goto out;
1745 		leaf = path->nodes[0];
1746 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1747 		extent = btrfs_item_ptr(leaf, path->slots[0],
1748 					struct btrfs_dev_extent);
1749 		BUG_ON(found_key.offset > start || found_key.offset +
1750 		       btrfs_dev_extent_length(leaf, extent) < start);
1751 		key = found_key;
1752 		btrfs_release_path(path);
1753 		goto again;
1754 	} else if (ret == 0) {
1755 		leaf = path->nodes[0];
1756 		extent = btrfs_item_ptr(leaf, path->slots[0],
1757 					struct btrfs_dev_extent);
1758 	} else {
1759 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1760 		goto out;
1761 	}
1762 
1763 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764 
1765 	ret = btrfs_del_item(trans, root, path);
1766 	if (ret) {
1767 		btrfs_handle_fs_error(fs_info, ret,
1768 				      "Failed to remove dev extent item");
1769 	} else {
1770 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1771 	}
1772 out:
1773 	btrfs_free_path(path);
1774 	return ret;
1775 }
1776 
1777 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1778 				  struct btrfs_device *device,
1779 				  u64 chunk_offset, u64 start, u64 num_bytes)
1780 {
1781 	int ret;
1782 	struct btrfs_path *path;
1783 	struct btrfs_fs_info *fs_info = device->fs_info;
1784 	struct btrfs_root *root = fs_info->dev_root;
1785 	struct btrfs_dev_extent *extent;
1786 	struct extent_buffer *leaf;
1787 	struct btrfs_key key;
1788 
1789 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1790 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1791 	path = btrfs_alloc_path();
1792 	if (!path)
1793 		return -ENOMEM;
1794 
1795 	key.objectid = device->devid;
1796 	key.offset = start;
1797 	key.type = BTRFS_DEV_EXTENT_KEY;
1798 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1799 				      sizeof(*extent));
1800 	if (ret)
1801 		goto out;
1802 
1803 	leaf = path->nodes[0];
1804 	extent = btrfs_item_ptr(leaf, path->slots[0],
1805 				struct btrfs_dev_extent);
1806 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1807 					BTRFS_CHUNK_TREE_OBJECTID);
1808 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1809 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1810 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1811 
1812 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1813 	btrfs_mark_buffer_dirty(leaf);
1814 out:
1815 	btrfs_free_path(path);
1816 	return ret;
1817 }
1818 
1819 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1820 {
1821 	struct extent_map_tree *em_tree;
1822 	struct extent_map *em;
1823 	struct rb_node *n;
1824 	u64 ret = 0;
1825 
1826 	em_tree = &fs_info->mapping_tree;
1827 	read_lock(&em_tree->lock);
1828 	n = rb_last(&em_tree->map.rb_root);
1829 	if (n) {
1830 		em = rb_entry(n, struct extent_map, rb_node);
1831 		ret = em->start + em->len;
1832 	}
1833 	read_unlock(&em_tree->lock);
1834 
1835 	return ret;
1836 }
1837 
1838 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1839 				    u64 *devid_ret)
1840 {
1841 	int ret;
1842 	struct btrfs_key key;
1843 	struct btrfs_key found_key;
1844 	struct btrfs_path *path;
1845 
1846 	path = btrfs_alloc_path();
1847 	if (!path)
1848 		return -ENOMEM;
1849 
1850 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1851 	key.type = BTRFS_DEV_ITEM_KEY;
1852 	key.offset = (u64)-1;
1853 
1854 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1855 	if (ret < 0)
1856 		goto error;
1857 
1858 	BUG_ON(ret == 0); /* Corruption */
1859 
1860 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1861 				  BTRFS_DEV_ITEMS_OBJECTID,
1862 				  BTRFS_DEV_ITEM_KEY);
1863 	if (ret) {
1864 		*devid_ret = 1;
1865 	} else {
1866 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1867 				      path->slots[0]);
1868 		*devid_ret = found_key.offset + 1;
1869 	}
1870 	ret = 0;
1871 error:
1872 	btrfs_free_path(path);
1873 	return ret;
1874 }
1875 
1876 /*
1877  * the device information is stored in the chunk root
1878  * the btrfs_device struct should be fully filled in
1879  */
1880 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1881 			    struct btrfs_device *device)
1882 {
1883 	int ret;
1884 	struct btrfs_path *path;
1885 	struct btrfs_dev_item *dev_item;
1886 	struct extent_buffer *leaf;
1887 	struct btrfs_key key;
1888 	unsigned long ptr;
1889 
1890 	path = btrfs_alloc_path();
1891 	if (!path)
1892 		return -ENOMEM;
1893 
1894 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1895 	key.type = BTRFS_DEV_ITEM_KEY;
1896 	key.offset = device->devid;
1897 
1898 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1899 				      &key, sizeof(*dev_item));
1900 	if (ret)
1901 		goto out;
1902 
1903 	leaf = path->nodes[0];
1904 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1905 
1906 	btrfs_set_device_id(leaf, dev_item, device->devid);
1907 	btrfs_set_device_generation(leaf, dev_item, 0);
1908 	btrfs_set_device_type(leaf, dev_item, device->type);
1909 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1910 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1911 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1912 	btrfs_set_device_total_bytes(leaf, dev_item,
1913 				     btrfs_device_get_disk_total_bytes(device));
1914 	btrfs_set_device_bytes_used(leaf, dev_item,
1915 				    btrfs_device_get_bytes_used(device));
1916 	btrfs_set_device_group(leaf, dev_item, 0);
1917 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1918 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1919 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1920 
1921 	ptr = btrfs_device_uuid(dev_item);
1922 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1923 	ptr = btrfs_device_fsid(dev_item);
1924 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1925 			    ptr, BTRFS_FSID_SIZE);
1926 	btrfs_mark_buffer_dirty(leaf);
1927 
1928 	ret = 0;
1929 out:
1930 	btrfs_free_path(path);
1931 	return ret;
1932 }
1933 
1934 /*
1935  * Function to update ctime/mtime for a given device path.
1936  * Mainly used for ctime/mtime based probe like libblkid.
1937  */
1938 static void update_dev_time(const char *path_name)
1939 {
1940 	struct file *filp;
1941 
1942 	filp = filp_open(path_name, O_RDWR, 0);
1943 	if (IS_ERR(filp))
1944 		return;
1945 	file_update_time(filp);
1946 	filp_close(filp, NULL);
1947 }
1948 
1949 static int btrfs_rm_dev_item(struct btrfs_device *device)
1950 {
1951 	struct btrfs_root *root = device->fs_info->chunk_root;
1952 	int ret;
1953 	struct btrfs_path *path;
1954 	struct btrfs_key key;
1955 	struct btrfs_trans_handle *trans;
1956 
1957 	path = btrfs_alloc_path();
1958 	if (!path)
1959 		return -ENOMEM;
1960 
1961 	trans = btrfs_start_transaction(root, 0);
1962 	if (IS_ERR(trans)) {
1963 		btrfs_free_path(path);
1964 		return PTR_ERR(trans);
1965 	}
1966 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1967 	key.type = BTRFS_DEV_ITEM_KEY;
1968 	key.offset = device->devid;
1969 
1970 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1971 	if (ret) {
1972 		if (ret > 0)
1973 			ret = -ENOENT;
1974 		btrfs_abort_transaction(trans, ret);
1975 		btrfs_end_transaction(trans);
1976 		goto out;
1977 	}
1978 
1979 	ret = btrfs_del_item(trans, root, path);
1980 	if (ret) {
1981 		btrfs_abort_transaction(trans, ret);
1982 		btrfs_end_transaction(trans);
1983 	}
1984 
1985 out:
1986 	btrfs_free_path(path);
1987 	if (!ret)
1988 		ret = btrfs_commit_transaction(trans);
1989 	return ret;
1990 }
1991 
1992 /*
1993  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1994  * filesystem. It's up to the caller to adjust that number regarding eg. device
1995  * replace.
1996  */
1997 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1998 		u64 num_devices)
1999 {
2000 	u64 all_avail;
2001 	unsigned seq;
2002 	int i;
2003 
2004 	do {
2005 		seq = read_seqbegin(&fs_info->profiles_lock);
2006 
2007 		all_avail = fs_info->avail_data_alloc_bits |
2008 			    fs_info->avail_system_alloc_bits |
2009 			    fs_info->avail_metadata_alloc_bits;
2010 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2011 
2012 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2013 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2014 			continue;
2015 
2016 		if (num_devices < btrfs_raid_array[i].devs_min) {
2017 			int ret = btrfs_raid_array[i].mindev_error;
2018 
2019 			if (ret)
2020 				return ret;
2021 		}
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 static struct btrfs_device * btrfs_find_next_active_device(
2028 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2029 {
2030 	struct btrfs_device *next_device;
2031 
2032 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2033 		if (next_device != device &&
2034 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2035 		    && next_device->bdev)
2036 			return next_device;
2037 	}
2038 
2039 	return NULL;
2040 }
2041 
2042 /*
2043  * Helper function to check if the given device is part of s_bdev / latest_bdev
2044  * and replace it with the provided or the next active device, in the context
2045  * where this function called, there should be always be another device (or
2046  * this_dev) which is active.
2047  */
2048 void btrfs_assign_next_active_device(struct btrfs_device *device,
2049 				     struct btrfs_device *this_dev)
2050 {
2051 	struct btrfs_fs_info *fs_info = device->fs_info;
2052 	struct btrfs_device *next_device;
2053 
2054 	if (this_dev)
2055 		next_device = this_dev;
2056 	else
2057 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2058 								device);
2059 	ASSERT(next_device);
2060 
2061 	if (fs_info->sb->s_bdev &&
2062 			(fs_info->sb->s_bdev == device->bdev))
2063 		fs_info->sb->s_bdev = next_device->bdev;
2064 
2065 	if (fs_info->fs_devices->latest_bdev == device->bdev)
2066 		fs_info->fs_devices->latest_bdev = next_device->bdev;
2067 }
2068 
2069 /*
2070  * Return btrfs_fs_devices::num_devices excluding the device that's being
2071  * currently replaced.
2072  */
2073 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2074 {
2075 	u64 num_devices = fs_info->fs_devices->num_devices;
2076 
2077 	down_read(&fs_info->dev_replace.rwsem);
2078 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2079 		ASSERT(num_devices > 1);
2080 		num_devices--;
2081 	}
2082 	up_read(&fs_info->dev_replace.rwsem);
2083 
2084 	return num_devices;
2085 }
2086 
2087 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2088 		u64 devid)
2089 {
2090 	struct btrfs_device *device;
2091 	struct btrfs_fs_devices *cur_devices;
2092 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2093 	u64 num_devices;
2094 	int ret = 0;
2095 
2096 	mutex_lock(&uuid_mutex);
2097 
2098 	num_devices = btrfs_num_devices(fs_info);
2099 
2100 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2101 	if (ret)
2102 		goto out;
2103 
2104 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2105 
2106 	if (IS_ERR(device)) {
2107 		if (PTR_ERR(device) == -ENOENT &&
2108 		    strcmp(device_path, "missing") == 0)
2109 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2110 		else
2111 			ret = PTR_ERR(device);
2112 		goto out;
2113 	}
2114 
2115 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2116 		btrfs_warn_in_rcu(fs_info,
2117 		  "cannot remove device %s (devid %llu) due to active swapfile",
2118 				  rcu_str_deref(device->name), device->devid);
2119 		ret = -ETXTBSY;
2120 		goto out;
2121 	}
2122 
2123 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2124 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2125 		goto out;
2126 	}
2127 
2128 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2129 	    fs_info->fs_devices->rw_devices == 1) {
2130 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2131 		goto out;
2132 	}
2133 
2134 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2135 		mutex_lock(&fs_info->chunk_mutex);
2136 		list_del_init(&device->dev_alloc_list);
2137 		device->fs_devices->rw_devices--;
2138 		mutex_unlock(&fs_info->chunk_mutex);
2139 	}
2140 
2141 	mutex_unlock(&uuid_mutex);
2142 	ret = btrfs_shrink_device(device, 0);
2143 	mutex_lock(&uuid_mutex);
2144 	if (ret)
2145 		goto error_undo;
2146 
2147 	/*
2148 	 * TODO: the superblock still includes this device in its num_devices
2149 	 * counter although write_all_supers() is not locked out. This
2150 	 * could give a filesystem state which requires a degraded mount.
2151 	 */
2152 	ret = btrfs_rm_dev_item(device);
2153 	if (ret)
2154 		goto error_undo;
2155 
2156 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2157 	btrfs_scrub_cancel_dev(device);
2158 
2159 	/*
2160 	 * the device list mutex makes sure that we don't change
2161 	 * the device list while someone else is writing out all
2162 	 * the device supers. Whoever is writing all supers, should
2163 	 * lock the device list mutex before getting the number of
2164 	 * devices in the super block (super_copy). Conversely,
2165 	 * whoever updates the number of devices in the super block
2166 	 * (super_copy) should hold the device list mutex.
2167 	 */
2168 
2169 	/*
2170 	 * In normal cases the cur_devices == fs_devices. But in case
2171 	 * of deleting a seed device, the cur_devices should point to
2172 	 * its own fs_devices listed under the fs_devices->seed.
2173 	 */
2174 	cur_devices = device->fs_devices;
2175 	mutex_lock(&fs_devices->device_list_mutex);
2176 	list_del_rcu(&device->dev_list);
2177 
2178 	cur_devices->num_devices--;
2179 	cur_devices->total_devices--;
2180 	/* Update total_devices of the parent fs_devices if it's seed */
2181 	if (cur_devices != fs_devices)
2182 		fs_devices->total_devices--;
2183 
2184 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2185 		cur_devices->missing_devices--;
2186 
2187 	btrfs_assign_next_active_device(device, NULL);
2188 
2189 	if (device->bdev) {
2190 		cur_devices->open_devices--;
2191 		/* remove sysfs entry */
2192 		btrfs_sysfs_rm_device_link(fs_devices, device);
2193 	}
2194 
2195 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2196 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2197 	mutex_unlock(&fs_devices->device_list_mutex);
2198 
2199 	/*
2200 	 * at this point, the device is zero sized and detached from
2201 	 * the devices list.  All that's left is to zero out the old
2202 	 * supers and free the device.
2203 	 */
2204 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2205 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2206 
2207 	btrfs_close_bdev(device);
2208 	synchronize_rcu();
2209 	btrfs_free_device(device);
2210 
2211 	if (cur_devices->open_devices == 0) {
2212 		while (fs_devices) {
2213 			if (fs_devices->seed == cur_devices) {
2214 				fs_devices->seed = cur_devices->seed;
2215 				break;
2216 			}
2217 			fs_devices = fs_devices->seed;
2218 		}
2219 		cur_devices->seed = NULL;
2220 		close_fs_devices(cur_devices);
2221 		free_fs_devices(cur_devices);
2222 	}
2223 
2224 out:
2225 	mutex_unlock(&uuid_mutex);
2226 	return ret;
2227 
2228 error_undo:
2229 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2230 		mutex_lock(&fs_info->chunk_mutex);
2231 		list_add(&device->dev_alloc_list,
2232 			 &fs_devices->alloc_list);
2233 		device->fs_devices->rw_devices++;
2234 		mutex_unlock(&fs_info->chunk_mutex);
2235 	}
2236 	goto out;
2237 }
2238 
2239 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2240 {
2241 	struct btrfs_fs_devices *fs_devices;
2242 
2243 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2244 
2245 	/*
2246 	 * in case of fs with no seed, srcdev->fs_devices will point
2247 	 * to fs_devices of fs_info. However when the dev being replaced is
2248 	 * a seed dev it will point to the seed's local fs_devices. In short
2249 	 * srcdev will have its correct fs_devices in both the cases.
2250 	 */
2251 	fs_devices = srcdev->fs_devices;
2252 
2253 	list_del_rcu(&srcdev->dev_list);
2254 	list_del(&srcdev->dev_alloc_list);
2255 	fs_devices->num_devices--;
2256 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2257 		fs_devices->missing_devices--;
2258 
2259 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2260 		fs_devices->rw_devices--;
2261 
2262 	if (srcdev->bdev)
2263 		fs_devices->open_devices--;
2264 }
2265 
2266 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2267 {
2268 	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2269 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2270 
2271 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2272 		/* zero out the old super if it is writable */
2273 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2274 	}
2275 
2276 	btrfs_close_bdev(srcdev);
2277 	synchronize_rcu();
2278 	btrfs_free_device(srcdev);
2279 
2280 	/* if this is no devs we rather delete the fs_devices */
2281 	if (!fs_devices->num_devices) {
2282 		struct btrfs_fs_devices *tmp_fs_devices;
2283 
2284 		/*
2285 		 * On a mounted FS, num_devices can't be zero unless it's a
2286 		 * seed. In case of a seed device being replaced, the replace
2287 		 * target added to the sprout FS, so there will be no more
2288 		 * device left under the seed FS.
2289 		 */
2290 		ASSERT(fs_devices->seeding);
2291 
2292 		tmp_fs_devices = fs_info->fs_devices;
2293 		while (tmp_fs_devices) {
2294 			if (tmp_fs_devices->seed == fs_devices) {
2295 				tmp_fs_devices->seed = fs_devices->seed;
2296 				break;
2297 			}
2298 			tmp_fs_devices = tmp_fs_devices->seed;
2299 		}
2300 		fs_devices->seed = NULL;
2301 		close_fs_devices(fs_devices);
2302 		free_fs_devices(fs_devices);
2303 	}
2304 }
2305 
2306 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2307 {
2308 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2309 
2310 	WARN_ON(!tgtdev);
2311 	mutex_lock(&fs_devices->device_list_mutex);
2312 
2313 	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2314 
2315 	if (tgtdev->bdev)
2316 		fs_devices->open_devices--;
2317 
2318 	fs_devices->num_devices--;
2319 
2320 	btrfs_assign_next_active_device(tgtdev, NULL);
2321 
2322 	list_del_rcu(&tgtdev->dev_list);
2323 
2324 	mutex_unlock(&fs_devices->device_list_mutex);
2325 
2326 	/*
2327 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2328 	 * may lead to a call to btrfs_show_devname() which will try
2329 	 * to hold device_list_mutex. And here this device
2330 	 * is already out of device list, so we don't have to hold
2331 	 * the device_list_mutex lock.
2332 	 */
2333 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2334 
2335 	btrfs_close_bdev(tgtdev);
2336 	synchronize_rcu();
2337 	btrfs_free_device(tgtdev);
2338 }
2339 
2340 static struct btrfs_device *btrfs_find_device_by_path(
2341 		struct btrfs_fs_info *fs_info, const char *device_path)
2342 {
2343 	int ret = 0;
2344 	struct btrfs_super_block *disk_super;
2345 	u64 devid;
2346 	u8 *dev_uuid;
2347 	struct block_device *bdev;
2348 	struct buffer_head *bh;
2349 	struct btrfs_device *device;
2350 
2351 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2352 				    fs_info->bdev_holder, 0, &bdev, &bh);
2353 	if (ret)
2354 		return ERR_PTR(ret);
2355 	disk_super = (struct btrfs_super_block *)bh->b_data;
2356 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2357 	dev_uuid = disk_super->dev_item.uuid;
2358 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2359 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2360 					   disk_super->metadata_uuid, true);
2361 	else
2362 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363 					   disk_super->fsid, true);
2364 
2365 	brelse(bh);
2366 	if (!device)
2367 		device = ERR_PTR(-ENOENT);
2368 	blkdev_put(bdev, FMODE_READ);
2369 	return device;
2370 }
2371 
2372 /*
2373  * Lookup a device given by device id, or the path if the id is 0.
2374  */
2375 struct btrfs_device *btrfs_find_device_by_devspec(
2376 		struct btrfs_fs_info *fs_info, u64 devid,
2377 		const char *device_path)
2378 {
2379 	struct btrfs_device *device;
2380 
2381 	if (devid) {
2382 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2383 					   NULL, true);
2384 		if (!device)
2385 			return ERR_PTR(-ENOENT);
2386 		return device;
2387 	}
2388 
2389 	if (!device_path || !device_path[0])
2390 		return ERR_PTR(-EINVAL);
2391 
2392 	if (strcmp(device_path, "missing") == 0) {
2393 		/* Find first missing device */
2394 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2395 				    dev_list) {
2396 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2397 				     &device->dev_state) && !device->bdev)
2398 				return device;
2399 		}
2400 		return ERR_PTR(-ENOENT);
2401 	}
2402 
2403 	return btrfs_find_device_by_path(fs_info, device_path);
2404 }
2405 
2406 /*
2407  * does all the dirty work required for changing file system's UUID.
2408  */
2409 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2410 {
2411 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412 	struct btrfs_fs_devices *old_devices;
2413 	struct btrfs_fs_devices *seed_devices;
2414 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2415 	struct btrfs_device *device;
2416 	u64 super_flags;
2417 
2418 	lockdep_assert_held(&uuid_mutex);
2419 	if (!fs_devices->seeding)
2420 		return -EINVAL;
2421 
2422 	seed_devices = alloc_fs_devices(NULL, NULL);
2423 	if (IS_ERR(seed_devices))
2424 		return PTR_ERR(seed_devices);
2425 
2426 	old_devices = clone_fs_devices(fs_devices);
2427 	if (IS_ERR(old_devices)) {
2428 		kfree(seed_devices);
2429 		return PTR_ERR(old_devices);
2430 	}
2431 
2432 	list_add(&old_devices->fs_list, &fs_uuids);
2433 
2434 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2435 	seed_devices->opened = 1;
2436 	INIT_LIST_HEAD(&seed_devices->devices);
2437 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2438 	mutex_init(&seed_devices->device_list_mutex);
2439 
2440 	mutex_lock(&fs_devices->device_list_mutex);
2441 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2442 			      synchronize_rcu);
2443 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2444 		device->fs_devices = seed_devices;
2445 
2446 	mutex_lock(&fs_info->chunk_mutex);
2447 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2448 	mutex_unlock(&fs_info->chunk_mutex);
2449 
2450 	fs_devices->seeding = 0;
2451 	fs_devices->num_devices = 0;
2452 	fs_devices->open_devices = 0;
2453 	fs_devices->missing_devices = 0;
2454 	fs_devices->rotating = 0;
2455 	fs_devices->seed = seed_devices;
2456 
2457 	generate_random_uuid(fs_devices->fsid);
2458 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2459 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2460 	mutex_unlock(&fs_devices->device_list_mutex);
2461 
2462 	super_flags = btrfs_super_flags(disk_super) &
2463 		      ~BTRFS_SUPER_FLAG_SEEDING;
2464 	btrfs_set_super_flags(disk_super, super_flags);
2465 
2466 	return 0;
2467 }
2468 
2469 /*
2470  * Store the expected generation for seed devices in device items.
2471  */
2472 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2473 {
2474 	struct btrfs_fs_info *fs_info = trans->fs_info;
2475 	struct btrfs_root *root = fs_info->chunk_root;
2476 	struct btrfs_path *path;
2477 	struct extent_buffer *leaf;
2478 	struct btrfs_dev_item *dev_item;
2479 	struct btrfs_device *device;
2480 	struct btrfs_key key;
2481 	u8 fs_uuid[BTRFS_FSID_SIZE];
2482 	u8 dev_uuid[BTRFS_UUID_SIZE];
2483 	u64 devid;
2484 	int ret;
2485 
2486 	path = btrfs_alloc_path();
2487 	if (!path)
2488 		return -ENOMEM;
2489 
2490 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2491 	key.offset = 0;
2492 	key.type = BTRFS_DEV_ITEM_KEY;
2493 
2494 	while (1) {
2495 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2496 		if (ret < 0)
2497 			goto error;
2498 
2499 		leaf = path->nodes[0];
2500 next_slot:
2501 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2502 			ret = btrfs_next_leaf(root, path);
2503 			if (ret > 0)
2504 				break;
2505 			if (ret < 0)
2506 				goto error;
2507 			leaf = path->nodes[0];
2508 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509 			btrfs_release_path(path);
2510 			continue;
2511 		}
2512 
2513 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2514 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2515 		    key.type != BTRFS_DEV_ITEM_KEY)
2516 			break;
2517 
2518 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2519 					  struct btrfs_dev_item);
2520 		devid = btrfs_device_id(leaf, dev_item);
2521 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2522 				   BTRFS_UUID_SIZE);
2523 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2524 				   BTRFS_FSID_SIZE);
2525 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2526 					   fs_uuid, true);
2527 		BUG_ON(!device); /* Logic error */
2528 
2529 		if (device->fs_devices->seeding) {
2530 			btrfs_set_device_generation(leaf, dev_item,
2531 						    device->generation);
2532 			btrfs_mark_buffer_dirty(leaf);
2533 		}
2534 
2535 		path->slots[0]++;
2536 		goto next_slot;
2537 	}
2538 	ret = 0;
2539 error:
2540 	btrfs_free_path(path);
2541 	return ret;
2542 }
2543 
2544 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2545 {
2546 	struct btrfs_root *root = fs_info->dev_root;
2547 	struct request_queue *q;
2548 	struct btrfs_trans_handle *trans;
2549 	struct btrfs_device *device;
2550 	struct block_device *bdev;
2551 	struct super_block *sb = fs_info->sb;
2552 	struct rcu_string *name;
2553 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2554 	u64 orig_super_total_bytes;
2555 	u64 orig_super_num_devices;
2556 	int seeding_dev = 0;
2557 	int ret = 0;
2558 	bool unlocked = false;
2559 
2560 	if (sb_rdonly(sb) && !fs_devices->seeding)
2561 		return -EROFS;
2562 
2563 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2564 				  fs_info->bdev_holder);
2565 	if (IS_ERR(bdev))
2566 		return PTR_ERR(bdev);
2567 
2568 	if (fs_devices->seeding) {
2569 		seeding_dev = 1;
2570 		down_write(&sb->s_umount);
2571 		mutex_lock(&uuid_mutex);
2572 	}
2573 
2574 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2575 
2576 	mutex_lock(&fs_devices->device_list_mutex);
2577 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2578 		if (device->bdev == bdev) {
2579 			ret = -EEXIST;
2580 			mutex_unlock(
2581 				&fs_devices->device_list_mutex);
2582 			goto error;
2583 		}
2584 	}
2585 	mutex_unlock(&fs_devices->device_list_mutex);
2586 
2587 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2588 	if (IS_ERR(device)) {
2589 		/* we can safely leave the fs_devices entry around */
2590 		ret = PTR_ERR(device);
2591 		goto error;
2592 	}
2593 
2594 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2595 	if (!name) {
2596 		ret = -ENOMEM;
2597 		goto error_free_device;
2598 	}
2599 	rcu_assign_pointer(device->name, name);
2600 
2601 	trans = btrfs_start_transaction(root, 0);
2602 	if (IS_ERR(trans)) {
2603 		ret = PTR_ERR(trans);
2604 		goto error_free_device;
2605 	}
2606 
2607 	q = bdev_get_queue(bdev);
2608 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2609 	device->generation = trans->transid;
2610 	device->io_width = fs_info->sectorsize;
2611 	device->io_align = fs_info->sectorsize;
2612 	device->sector_size = fs_info->sectorsize;
2613 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2614 					 fs_info->sectorsize);
2615 	device->disk_total_bytes = device->total_bytes;
2616 	device->commit_total_bytes = device->total_bytes;
2617 	device->fs_info = fs_info;
2618 	device->bdev = bdev;
2619 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2620 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2621 	device->mode = FMODE_EXCL;
2622 	device->dev_stats_valid = 1;
2623 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2624 
2625 	if (seeding_dev) {
2626 		sb->s_flags &= ~SB_RDONLY;
2627 		ret = btrfs_prepare_sprout(fs_info);
2628 		if (ret) {
2629 			btrfs_abort_transaction(trans, ret);
2630 			goto error_trans;
2631 		}
2632 	}
2633 
2634 	device->fs_devices = fs_devices;
2635 
2636 	mutex_lock(&fs_devices->device_list_mutex);
2637 	mutex_lock(&fs_info->chunk_mutex);
2638 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2639 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2640 	fs_devices->num_devices++;
2641 	fs_devices->open_devices++;
2642 	fs_devices->rw_devices++;
2643 	fs_devices->total_devices++;
2644 	fs_devices->total_rw_bytes += device->total_bytes;
2645 
2646 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2647 
2648 	if (!blk_queue_nonrot(q))
2649 		fs_devices->rotating = 1;
2650 
2651 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2652 	btrfs_set_super_total_bytes(fs_info->super_copy,
2653 		round_down(orig_super_total_bytes + device->total_bytes,
2654 			   fs_info->sectorsize));
2655 
2656 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2657 	btrfs_set_super_num_devices(fs_info->super_copy,
2658 				    orig_super_num_devices + 1);
2659 
2660 	/* add sysfs device entry */
2661 	btrfs_sysfs_add_device_link(fs_devices, device);
2662 
2663 	/*
2664 	 * we've got more storage, clear any full flags on the space
2665 	 * infos
2666 	 */
2667 	btrfs_clear_space_info_full(fs_info);
2668 
2669 	mutex_unlock(&fs_info->chunk_mutex);
2670 	mutex_unlock(&fs_devices->device_list_mutex);
2671 
2672 	if (seeding_dev) {
2673 		mutex_lock(&fs_info->chunk_mutex);
2674 		ret = init_first_rw_device(trans);
2675 		mutex_unlock(&fs_info->chunk_mutex);
2676 		if (ret) {
2677 			btrfs_abort_transaction(trans, ret);
2678 			goto error_sysfs;
2679 		}
2680 	}
2681 
2682 	ret = btrfs_add_dev_item(trans, device);
2683 	if (ret) {
2684 		btrfs_abort_transaction(trans, ret);
2685 		goto error_sysfs;
2686 	}
2687 
2688 	if (seeding_dev) {
2689 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2690 
2691 		ret = btrfs_finish_sprout(trans);
2692 		if (ret) {
2693 			btrfs_abort_transaction(trans, ret);
2694 			goto error_sysfs;
2695 		}
2696 
2697 		/* Sprouting would change fsid of the mounted root,
2698 		 * so rename the fsid on the sysfs
2699 		 */
2700 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2701 						fs_info->fs_devices->fsid);
2702 		if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2703 			btrfs_warn(fs_info,
2704 				   "sysfs: failed to create fsid for sprout");
2705 	}
2706 
2707 	ret = btrfs_commit_transaction(trans);
2708 
2709 	if (seeding_dev) {
2710 		mutex_unlock(&uuid_mutex);
2711 		up_write(&sb->s_umount);
2712 		unlocked = true;
2713 
2714 		if (ret) /* transaction commit */
2715 			return ret;
2716 
2717 		ret = btrfs_relocate_sys_chunks(fs_info);
2718 		if (ret < 0)
2719 			btrfs_handle_fs_error(fs_info, ret,
2720 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2721 		trans = btrfs_attach_transaction(root);
2722 		if (IS_ERR(trans)) {
2723 			if (PTR_ERR(trans) == -ENOENT)
2724 				return 0;
2725 			ret = PTR_ERR(trans);
2726 			trans = NULL;
2727 			goto error_sysfs;
2728 		}
2729 		ret = btrfs_commit_transaction(trans);
2730 	}
2731 
2732 	/* Update ctime/mtime for libblkid */
2733 	update_dev_time(device_path);
2734 	return ret;
2735 
2736 error_sysfs:
2737 	btrfs_sysfs_rm_device_link(fs_devices, device);
2738 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2739 	mutex_lock(&fs_info->chunk_mutex);
2740 	list_del_rcu(&device->dev_list);
2741 	list_del(&device->dev_alloc_list);
2742 	fs_info->fs_devices->num_devices--;
2743 	fs_info->fs_devices->open_devices--;
2744 	fs_info->fs_devices->rw_devices--;
2745 	fs_info->fs_devices->total_devices--;
2746 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2747 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2748 	btrfs_set_super_total_bytes(fs_info->super_copy,
2749 				    orig_super_total_bytes);
2750 	btrfs_set_super_num_devices(fs_info->super_copy,
2751 				    orig_super_num_devices);
2752 	mutex_unlock(&fs_info->chunk_mutex);
2753 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2754 error_trans:
2755 	if (seeding_dev)
2756 		sb->s_flags |= SB_RDONLY;
2757 	if (trans)
2758 		btrfs_end_transaction(trans);
2759 error_free_device:
2760 	btrfs_free_device(device);
2761 error:
2762 	blkdev_put(bdev, FMODE_EXCL);
2763 	if (seeding_dev && !unlocked) {
2764 		mutex_unlock(&uuid_mutex);
2765 		up_write(&sb->s_umount);
2766 	}
2767 	return ret;
2768 }
2769 
2770 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2771 					struct btrfs_device *device)
2772 {
2773 	int ret;
2774 	struct btrfs_path *path;
2775 	struct btrfs_root *root = device->fs_info->chunk_root;
2776 	struct btrfs_dev_item *dev_item;
2777 	struct extent_buffer *leaf;
2778 	struct btrfs_key key;
2779 
2780 	path = btrfs_alloc_path();
2781 	if (!path)
2782 		return -ENOMEM;
2783 
2784 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2785 	key.type = BTRFS_DEV_ITEM_KEY;
2786 	key.offset = device->devid;
2787 
2788 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2789 	if (ret < 0)
2790 		goto out;
2791 
2792 	if (ret > 0) {
2793 		ret = -ENOENT;
2794 		goto out;
2795 	}
2796 
2797 	leaf = path->nodes[0];
2798 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2799 
2800 	btrfs_set_device_id(leaf, dev_item, device->devid);
2801 	btrfs_set_device_type(leaf, dev_item, device->type);
2802 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2803 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2804 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2805 	btrfs_set_device_total_bytes(leaf, dev_item,
2806 				     btrfs_device_get_disk_total_bytes(device));
2807 	btrfs_set_device_bytes_used(leaf, dev_item,
2808 				    btrfs_device_get_bytes_used(device));
2809 	btrfs_mark_buffer_dirty(leaf);
2810 
2811 out:
2812 	btrfs_free_path(path);
2813 	return ret;
2814 }
2815 
2816 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2817 		      struct btrfs_device *device, u64 new_size)
2818 {
2819 	struct btrfs_fs_info *fs_info = device->fs_info;
2820 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2821 	u64 old_total;
2822 	u64 diff;
2823 
2824 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2825 		return -EACCES;
2826 
2827 	new_size = round_down(new_size, fs_info->sectorsize);
2828 
2829 	mutex_lock(&fs_info->chunk_mutex);
2830 	old_total = btrfs_super_total_bytes(super_copy);
2831 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2832 
2833 	if (new_size <= device->total_bytes ||
2834 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2835 		mutex_unlock(&fs_info->chunk_mutex);
2836 		return -EINVAL;
2837 	}
2838 
2839 	btrfs_set_super_total_bytes(super_copy,
2840 			round_down(old_total + diff, fs_info->sectorsize));
2841 	device->fs_devices->total_rw_bytes += diff;
2842 
2843 	btrfs_device_set_total_bytes(device, new_size);
2844 	btrfs_device_set_disk_total_bytes(device, new_size);
2845 	btrfs_clear_space_info_full(device->fs_info);
2846 	if (list_empty(&device->post_commit_list))
2847 		list_add_tail(&device->post_commit_list,
2848 			      &trans->transaction->dev_update_list);
2849 	mutex_unlock(&fs_info->chunk_mutex);
2850 
2851 	return btrfs_update_device(trans, device);
2852 }
2853 
2854 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2855 {
2856 	struct btrfs_fs_info *fs_info = trans->fs_info;
2857 	struct btrfs_root *root = fs_info->chunk_root;
2858 	int ret;
2859 	struct btrfs_path *path;
2860 	struct btrfs_key key;
2861 
2862 	path = btrfs_alloc_path();
2863 	if (!path)
2864 		return -ENOMEM;
2865 
2866 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2867 	key.offset = chunk_offset;
2868 	key.type = BTRFS_CHUNK_ITEM_KEY;
2869 
2870 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2871 	if (ret < 0)
2872 		goto out;
2873 	else if (ret > 0) { /* Logic error or corruption */
2874 		btrfs_handle_fs_error(fs_info, -ENOENT,
2875 				      "Failed lookup while freeing chunk.");
2876 		ret = -ENOENT;
2877 		goto out;
2878 	}
2879 
2880 	ret = btrfs_del_item(trans, root, path);
2881 	if (ret < 0)
2882 		btrfs_handle_fs_error(fs_info, ret,
2883 				      "Failed to delete chunk item.");
2884 out:
2885 	btrfs_free_path(path);
2886 	return ret;
2887 }
2888 
2889 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2890 {
2891 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2892 	struct btrfs_disk_key *disk_key;
2893 	struct btrfs_chunk *chunk;
2894 	u8 *ptr;
2895 	int ret = 0;
2896 	u32 num_stripes;
2897 	u32 array_size;
2898 	u32 len = 0;
2899 	u32 cur;
2900 	struct btrfs_key key;
2901 
2902 	mutex_lock(&fs_info->chunk_mutex);
2903 	array_size = btrfs_super_sys_array_size(super_copy);
2904 
2905 	ptr = super_copy->sys_chunk_array;
2906 	cur = 0;
2907 
2908 	while (cur < array_size) {
2909 		disk_key = (struct btrfs_disk_key *)ptr;
2910 		btrfs_disk_key_to_cpu(&key, disk_key);
2911 
2912 		len = sizeof(*disk_key);
2913 
2914 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2915 			chunk = (struct btrfs_chunk *)(ptr + len);
2916 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2917 			len += btrfs_chunk_item_size(num_stripes);
2918 		} else {
2919 			ret = -EIO;
2920 			break;
2921 		}
2922 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2923 		    key.offset == chunk_offset) {
2924 			memmove(ptr, ptr + len, array_size - (cur + len));
2925 			array_size -= len;
2926 			btrfs_set_super_sys_array_size(super_copy, array_size);
2927 		} else {
2928 			ptr += len;
2929 			cur += len;
2930 		}
2931 	}
2932 	mutex_unlock(&fs_info->chunk_mutex);
2933 	return ret;
2934 }
2935 
2936 /*
2937  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2938  * @logical: Logical block offset in bytes.
2939  * @length: Length of extent in bytes.
2940  *
2941  * Return: Chunk mapping or ERR_PTR.
2942  */
2943 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2944 				       u64 logical, u64 length)
2945 {
2946 	struct extent_map_tree *em_tree;
2947 	struct extent_map *em;
2948 
2949 	em_tree = &fs_info->mapping_tree;
2950 	read_lock(&em_tree->lock);
2951 	em = lookup_extent_mapping(em_tree, logical, length);
2952 	read_unlock(&em_tree->lock);
2953 
2954 	if (!em) {
2955 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2956 			   logical, length);
2957 		return ERR_PTR(-EINVAL);
2958 	}
2959 
2960 	if (em->start > logical || em->start + em->len < logical) {
2961 		btrfs_crit(fs_info,
2962 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2963 			   logical, length, em->start, em->start + em->len);
2964 		free_extent_map(em);
2965 		return ERR_PTR(-EINVAL);
2966 	}
2967 
2968 	/* callers are responsible for dropping em's ref. */
2969 	return em;
2970 }
2971 
2972 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2973 {
2974 	struct btrfs_fs_info *fs_info = trans->fs_info;
2975 	struct extent_map *em;
2976 	struct map_lookup *map;
2977 	u64 dev_extent_len = 0;
2978 	int i, ret = 0;
2979 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2980 
2981 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2982 	if (IS_ERR(em)) {
2983 		/*
2984 		 * This is a logic error, but we don't want to just rely on the
2985 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2986 		 * do anything we still error out.
2987 		 */
2988 		ASSERT(0);
2989 		return PTR_ERR(em);
2990 	}
2991 	map = em->map_lookup;
2992 	mutex_lock(&fs_info->chunk_mutex);
2993 	check_system_chunk(trans, map->type);
2994 	mutex_unlock(&fs_info->chunk_mutex);
2995 
2996 	/*
2997 	 * Take the device list mutex to prevent races with the final phase of
2998 	 * a device replace operation that replaces the device object associated
2999 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3000 	 */
3001 	mutex_lock(&fs_devices->device_list_mutex);
3002 	for (i = 0; i < map->num_stripes; i++) {
3003 		struct btrfs_device *device = map->stripes[i].dev;
3004 		ret = btrfs_free_dev_extent(trans, device,
3005 					    map->stripes[i].physical,
3006 					    &dev_extent_len);
3007 		if (ret) {
3008 			mutex_unlock(&fs_devices->device_list_mutex);
3009 			btrfs_abort_transaction(trans, ret);
3010 			goto out;
3011 		}
3012 
3013 		if (device->bytes_used > 0) {
3014 			mutex_lock(&fs_info->chunk_mutex);
3015 			btrfs_device_set_bytes_used(device,
3016 					device->bytes_used - dev_extent_len);
3017 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3018 			btrfs_clear_space_info_full(fs_info);
3019 			mutex_unlock(&fs_info->chunk_mutex);
3020 		}
3021 
3022 		ret = btrfs_update_device(trans, device);
3023 		if (ret) {
3024 			mutex_unlock(&fs_devices->device_list_mutex);
3025 			btrfs_abort_transaction(trans, ret);
3026 			goto out;
3027 		}
3028 	}
3029 	mutex_unlock(&fs_devices->device_list_mutex);
3030 
3031 	ret = btrfs_free_chunk(trans, chunk_offset);
3032 	if (ret) {
3033 		btrfs_abort_transaction(trans, ret);
3034 		goto out;
3035 	}
3036 
3037 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3038 
3039 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3040 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3041 		if (ret) {
3042 			btrfs_abort_transaction(trans, ret);
3043 			goto out;
3044 		}
3045 	}
3046 
3047 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3048 	if (ret) {
3049 		btrfs_abort_transaction(trans, ret);
3050 		goto out;
3051 	}
3052 
3053 out:
3054 	/* once for us */
3055 	free_extent_map(em);
3056 	return ret;
3057 }
3058 
3059 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3060 {
3061 	struct btrfs_root *root = fs_info->chunk_root;
3062 	struct btrfs_trans_handle *trans;
3063 	int ret;
3064 
3065 	/*
3066 	 * Prevent races with automatic removal of unused block groups.
3067 	 * After we relocate and before we remove the chunk with offset
3068 	 * chunk_offset, automatic removal of the block group can kick in,
3069 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3070 	 *
3071 	 * Make sure to acquire this mutex before doing a tree search (dev
3072 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3073 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3074 	 * we release the path used to search the chunk/dev tree and before
3075 	 * the current task acquires this mutex and calls us.
3076 	 */
3077 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3078 
3079 	ret = btrfs_can_relocate(fs_info, chunk_offset);
3080 	if (ret)
3081 		return -ENOSPC;
3082 
3083 	/* step one, relocate all the extents inside this chunk */
3084 	btrfs_scrub_pause(fs_info);
3085 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3086 	btrfs_scrub_continue(fs_info);
3087 	if (ret)
3088 		return ret;
3089 
3090 	/*
3091 	 * We add the kobjects here (and after forcing data chunk creation)
3092 	 * since relocation is the only place we'll create chunks of a new
3093 	 * type at runtime.  The only place where we'll remove the last
3094 	 * chunk of a type is the call immediately below this one.  Even
3095 	 * so, we're protected against races with the cleaner thread since
3096 	 * we're covered by the delete_unused_bgs_mutex.
3097 	 */
3098 	btrfs_add_raid_kobjects(fs_info);
3099 
3100 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3101 						     chunk_offset);
3102 	if (IS_ERR(trans)) {
3103 		ret = PTR_ERR(trans);
3104 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3105 		return ret;
3106 	}
3107 
3108 	/*
3109 	 * step two, delete the device extents and the
3110 	 * chunk tree entries
3111 	 */
3112 	ret = btrfs_remove_chunk(trans, chunk_offset);
3113 	btrfs_end_transaction(trans);
3114 	return ret;
3115 }
3116 
3117 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3118 {
3119 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3120 	struct btrfs_path *path;
3121 	struct extent_buffer *leaf;
3122 	struct btrfs_chunk *chunk;
3123 	struct btrfs_key key;
3124 	struct btrfs_key found_key;
3125 	u64 chunk_type;
3126 	bool retried = false;
3127 	int failed = 0;
3128 	int ret;
3129 
3130 	path = btrfs_alloc_path();
3131 	if (!path)
3132 		return -ENOMEM;
3133 
3134 again:
3135 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3136 	key.offset = (u64)-1;
3137 	key.type = BTRFS_CHUNK_ITEM_KEY;
3138 
3139 	while (1) {
3140 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3141 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3142 		if (ret < 0) {
3143 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3144 			goto error;
3145 		}
3146 		BUG_ON(ret == 0); /* Corruption */
3147 
3148 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3149 					  key.type);
3150 		if (ret)
3151 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3152 		if (ret < 0)
3153 			goto error;
3154 		if (ret > 0)
3155 			break;
3156 
3157 		leaf = path->nodes[0];
3158 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3159 
3160 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3161 				       struct btrfs_chunk);
3162 		chunk_type = btrfs_chunk_type(leaf, chunk);
3163 		btrfs_release_path(path);
3164 
3165 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3166 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3167 			if (ret == -ENOSPC)
3168 				failed++;
3169 			else
3170 				BUG_ON(ret);
3171 		}
3172 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3173 
3174 		if (found_key.offset == 0)
3175 			break;
3176 		key.offset = found_key.offset - 1;
3177 	}
3178 	ret = 0;
3179 	if (failed && !retried) {
3180 		failed = 0;
3181 		retried = true;
3182 		goto again;
3183 	} else if (WARN_ON(failed && retried)) {
3184 		ret = -ENOSPC;
3185 	}
3186 error:
3187 	btrfs_free_path(path);
3188 	return ret;
3189 }
3190 
3191 /*
3192  * return 1 : allocate a data chunk successfully,
3193  * return <0: errors during allocating a data chunk,
3194  * return 0 : no need to allocate a data chunk.
3195  */
3196 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3197 				      u64 chunk_offset)
3198 {
3199 	struct btrfs_block_group_cache *cache;
3200 	u64 bytes_used;
3201 	u64 chunk_type;
3202 
3203 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3204 	ASSERT(cache);
3205 	chunk_type = cache->flags;
3206 	btrfs_put_block_group(cache);
3207 
3208 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3209 		spin_lock(&fs_info->data_sinfo->lock);
3210 		bytes_used = fs_info->data_sinfo->bytes_used;
3211 		spin_unlock(&fs_info->data_sinfo->lock);
3212 
3213 		if (!bytes_used) {
3214 			struct btrfs_trans_handle *trans;
3215 			int ret;
3216 
3217 			trans =	btrfs_join_transaction(fs_info->tree_root);
3218 			if (IS_ERR(trans))
3219 				return PTR_ERR(trans);
3220 
3221 			ret = btrfs_force_chunk_alloc(trans,
3222 						      BTRFS_BLOCK_GROUP_DATA);
3223 			btrfs_end_transaction(trans);
3224 			if (ret < 0)
3225 				return ret;
3226 
3227 			btrfs_add_raid_kobjects(fs_info);
3228 
3229 			return 1;
3230 		}
3231 	}
3232 	return 0;
3233 }
3234 
3235 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3236 			       struct btrfs_balance_control *bctl)
3237 {
3238 	struct btrfs_root *root = fs_info->tree_root;
3239 	struct btrfs_trans_handle *trans;
3240 	struct btrfs_balance_item *item;
3241 	struct btrfs_disk_balance_args disk_bargs;
3242 	struct btrfs_path *path;
3243 	struct extent_buffer *leaf;
3244 	struct btrfs_key key;
3245 	int ret, err;
3246 
3247 	path = btrfs_alloc_path();
3248 	if (!path)
3249 		return -ENOMEM;
3250 
3251 	trans = btrfs_start_transaction(root, 0);
3252 	if (IS_ERR(trans)) {
3253 		btrfs_free_path(path);
3254 		return PTR_ERR(trans);
3255 	}
3256 
3257 	key.objectid = BTRFS_BALANCE_OBJECTID;
3258 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3259 	key.offset = 0;
3260 
3261 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3262 				      sizeof(*item));
3263 	if (ret)
3264 		goto out;
3265 
3266 	leaf = path->nodes[0];
3267 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3268 
3269 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3270 
3271 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3272 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3273 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3274 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3275 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3276 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3277 
3278 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3279 
3280 	btrfs_mark_buffer_dirty(leaf);
3281 out:
3282 	btrfs_free_path(path);
3283 	err = btrfs_commit_transaction(trans);
3284 	if (err && !ret)
3285 		ret = err;
3286 	return ret;
3287 }
3288 
3289 static int del_balance_item(struct btrfs_fs_info *fs_info)
3290 {
3291 	struct btrfs_root *root = fs_info->tree_root;
3292 	struct btrfs_trans_handle *trans;
3293 	struct btrfs_path *path;
3294 	struct btrfs_key key;
3295 	int ret, err;
3296 
3297 	path = btrfs_alloc_path();
3298 	if (!path)
3299 		return -ENOMEM;
3300 
3301 	trans = btrfs_start_transaction(root, 0);
3302 	if (IS_ERR(trans)) {
3303 		btrfs_free_path(path);
3304 		return PTR_ERR(trans);
3305 	}
3306 
3307 	key.objectid = BTRFS_BALANCE_OBJECTID;
3308 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3309 	key.offset = 0;
3310 
3311 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3312 	if (ret < 0)
3313 		goto out;
3314 	if (ret > 0) {
3315 		ret = -ENOENT;
3316 		goto out;
3317 	}
3318 
3319 	ret = btrfs_del_item(trans, root, path);
3320 out:
3321 	btrfs_free_path(path);
3322 	err = btrfs_commit_transaction(trans);
3323 	if (err && !ret)
3324 		ret = err;
3325 	return ret;
3326 }
3327 
3328 /*
3329  * This is a heuristic used to reduce the number of chunks balanced on
3330  * resume after balance was interrupted.
3331  */
3332 static void update_balance_args(struct btrfs_balance_control *bctl)
3333 {
3334 	/*
3335 	 * Turn on soft mode for chunk types that were being converted.
3336 	 */
3337 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3338 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3339 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3340 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3341 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3342 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3343 
3344 	/*
3345 	 * Turn on usage filter if is not already used.  The idea is
3346 	 * that chunks that we have already balanced should be
3347 	 * reasonably full.  Don't do it for chunks that are being
3348 	 * converted - that will keep us from relocating unconverted
3349 	 * (albeit full) chunks.
3350 	 */
3351 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3352 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3353 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3354 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3355 		bctl->data.usage = 90;
3356 	}
3357 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3358 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3359 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3360 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3361 		bctl->sys.usage = 90;
3362 	}
3363 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3364 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3365 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3366 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3367 		bctl->meta.usage = 90;
3368 	}
3369 }
3370 
3371 /*
3372  * Clear the balance status in fs_info and delete the balance item from disk.
3373  */
3374 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3375 {
3376 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3377 	int ret;
3378 
3379 	BUG_ON(!fs_info->balance_ctl);
3380 
3381 	spin_lock(&fs_info->balance_lock);
3382 	fs_info->balance_ctl = NULL;
3383 	spin_unlock(&fs_info->balance_lock);
3384 
3385 	kfree(bctl);
3386 	ret = del_balance_item(fs_info);
3387 	if (ret)
3388 		btrfs_handle_fs_error(fs_info, ret, NULL);
3389 }
3390 
3391 /*
3392  * Balance filters.  Return 1 if chunk should be filtered out
3393  * (should not be balanced).
3394  */
3395 static int chunk_profiles_filter(u64 chunk_type,
3396 				 struct btrfs_balance_args *bargs)
3397 {
3398 	chunk_type = chunk_to_extended(chunk_type) &
3399 				BTRFS_EXTENDED_PROFILE_MASK;
3400 
3401 	if (bargs->profiles & chunk_type)
3402 		return 0;
3403 
3404 	return 1;
3405 }
3406 
3407 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3408 			      struct btrfs_balance_args *bargs)
3409 {
3410 	struct btrfs_block_group_cache *cache;
3411 	u64 chunk_used;
3412 	u64 user_thresh_min;
3413 	u64 user_thresh_max;
3414 	int ret = 1;
3415 
3416 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3417 	chunk_used = btrfs_block_group_used(&cache->item);
3418 
3419 	if (bargs->usage_min == 0)
3420 		user_thresh_min = 0;
3421 	else
3422 		user_thresh_min = div_factor_fine(cache->key.offset,
3423 					bargs->usage_min);
3424 
3425 	if (bargs->usage_max == 0)
3426 		user_thresh_max = 1;
3427 	else if (bargs->usage_max > 100)
3428 		user_thresh_max = cache->key.offset;
3429 	else
3430 		user_thresh_max = div_factor_fine(cache->key.offset,
3431 					bargs->usage_max);
3432 
3433 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3434 		ret = 0;
3435 
3436 	btrfs_put_block_group(cache);
3437 	return ret;
3438 }
3439 
3440 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3441 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3442 {
3443 	struct btrfs_block_group_cache *cache;
3444 	u64 chunk_used, user_thresh;
3445 	int ret = 1;
3446 
3447 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3448 	chunk_used = btrfs_block_group_used(&cache->item);
3449 
3450 	if (bargs->usage_min == 0)
3451 		user_thresh = 1;
3452 	else if (bargs->usage > 100)
3453 		user_thresh = cache->key.offset;
3454 	else
3455 		user_thresh = div_factor_fine(cache->key.offset,
3456 					      bargs->usage);
3457 
3458 	if (chunk_used < user_thresh)
3459 		ret = 0;
3460 
3461 	btrfs_put_block_group(cache);
3462 	return ret;
3463 }
3464 
3465 static int chunk_devid_filter(struct extent_buffer *leaf,
3466 			      struct btrfs_chunk *chunk,
3467 			      struct btrfs_balance_args *bargs)
3468 {
3469 	struct btrfs_stripe *stripe;
3470 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3471 	int i;
3472 
3473 	for (i = 0; i < num_stripes; i++) {
3474 		stripe = btrfs_stripe_nr(chunk, i);
3475 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3476 			return 0;
3477 	}
3478 
3479 	return 1;
3480 }
3481 
3482 static u64 calc_data_stripes(u64 type, int num_stripes)
3483 {
3484 	const int index = btrfs_bg_flags_to_raid_index(type);
3485 	const int ncopies = btrfs_raid_array[index].ncopies;
3486 	const int nparity = btrfs_raid_array[index].nparity;
3487 
3488 	if (nparity)
3489 		return num_stripes - nparity;
3490 	else
3491 		return num_stripes / ncopies;
3492 }
3493 
3494 /* [pstart, pend) */
3495 static int chunk_drange_filter(struct extent_buffer *leaf,
3496 			       struct btrfs_chunk *chunk,
3497 			       struct btrfs_balance_args *bargs)
3498 {
3499 	struct btrfs_stripe *stripe;
3500 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3501 	u64 stripe_offset;
3502 	u64 stripe_length;
3503 	u64 type;
3504 	int factor;
3505 	int i;
3506 
3507 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3508 		return 0;
3509 
3510 	type = btrfs_chunk_type(leaf, chunk);
3511 	factor = calc_data_stripes(type, num_stripes);
3512 
3513 	for (i = 0; i < num_stripes; i++) {
3514 		stripe = btrfs_stripe_nr(chunk, i);
3515 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3516 			continue;
3517 
3518 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3519 		stripe_length = btrfs_chunk_length(leaf, chunk);
3520 		stripe_length = div_u64(stripe_length, factor);
3521 
3522 		if (stripe_offset < bargs->pend &&
3523 		    stripe_offset + stripe_length > bargs->pstart)
3524 			return 0;
3525 	}
3526 
3527 	return 1;
3528 }
3529 
3530 /* [vstart, vend) */
3531 static int chunk_vrange_filter(struct extent_buffer *leaf,
3532 			       struct btrfs_chunk *chunk,
3533 			       u64 chunk_offset,
3534 			       struct btrfs_balance_args *bargs)
3535 {
3536 	if (chunk_offset < bargs->vend &&
3537 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3538 		/* at least part of the chunk is inside this vrange */
3539 		return 0;
3540 
3541 	return 1;
3542 }
3543 
3544 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3545 			       struct btrfs_chunk *chunk,
3546 			       struct btrfs_balance_args *bargs)
3547 {
3548 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3549 
3550 	if (bargs->stripes_min <= num_stripes
3551 			&& num_stripes <= bargs->stripes_max)
3552 		return 0;
3553 
3554 	return 1;
3555 }
3556 
3557 static int chunk_soft_convert_filter(u64 chunk_type,
3558 				     struct btrfs_balance_args *bargs)
3559 {
3560 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3561 		return 0;
3562 
3563 	chunk_type = chunk_to_extended(chunk_type) &
3564 				BTRFS_EXTENDED_PROFILE_MASK;
3565 
3566 	if (bargs->target == chunk_type)
3567 		return 1;
3568 
3569 	return 0;
3570 }
3571 
3572 static int should_balance_chunk(struct extent_buffer *leaf,
3573 				struct btrfs_chunk *chunk, u64 chunk_offset)
3574 {
3575 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3576 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3577 	struct btrfs_balance_args *bargs = NULL;
3578 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3579 
3580 	/* type filter */
3581 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3582 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3583 		return 0;
3584 	}
3585 
3586 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3587 		bargs = &bctl->data;
3588 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3589 		bargs = &bctl->sys;
3590 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3591 		bargs = &bctl->meta;
3592 
3593 	/* profiles filter */
3594 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3595 	    chunk_profiles_filter(chunk_type, bargs)) {
3596 		return 0;
3597 	}
3598 
3599 	/* usage filter */
3600 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3601 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3602 		return 0;
3603 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3604 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3605 		return 0;
3606 	}
3607 
3608 	/* devid filter */
3609 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3610 	    chunk_devid_filter(leaf, chunk, bargs)) {
3611 		return 0;
3612 	}
3613 
3614 	/* drange filter, makes sense only with devid filter */
3615 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3616 	    chunk_drange_filter(leaf, chunk, bargs)) {
3617 		return 0;
3618 	}
3619 
3620 	/* vrange filter */
3621 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3622 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3623 		return 0;
3624 	}
3625 
3626 	/* stripes filter */
3627 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3628 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3629 		return 0;
3630 	}
3631 
3632 	/* soft profile changing mode */
3633 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3634 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3635 		return 0;
3636 	}
3637 
3638 	/*
3639 	 * limited by count, must be the last filter
3640 	 */
3641 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3642 		if (bargs->limit == 0)
3643 			return 0;
3644 		else
3645 			bargs->limit--;
3646 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3647 		/*
3648 		 * Same logic as the 'limit' filter; the minimum cannot be
3649 		 * determined here because we do not have the global information
3650 		 * about the count of all chunks that satisfy the filters.
3651 		 */
3652 		if (bargs->limit_max == 0)
3653 			return 0;
3654 		else
3655 			bargs->limit_max--;
3656 	}
3657 
3658 	return 1;
3659 }
3660 
3661 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3662 {
3663 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3664 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3665 	u64 chunk_type;
3666 	struct btrfs_chunk *chunk;
3667 	struct btrfs_path *path = NULL;
3668 	struct btrfs_key key;
3669 	struct btrfs_key found_key;
3670 	struct extent_buffer *leaf;
3671 	int slot;
3672 	int ret;
3673 	int enospc_errors = 0;
3674 	bool counting = true;
3675 	/* The single value limit and min/max limits use the same bytes in the */
3676 	u64 limit_data = bctl->data.limit;
3677 	u64 limit_meta = bctl->meta.limit;
3678 	u64 limit_sys = bctl->sys.limit;
3679 	u32 count_data = 0;
3680 	u32 count_meta = 0;
3681 	u32 count_sys = 0;
3682 	int chunk_reserved = 0;
3683 
3684 	path = btrfs_alloc_path();
3685 	if (!path) {
3686 		ret = -ENOMEM;
3687 		goto error;
3688 	}
3689 
3690 	/* zero out stat counters */
3691 	spin_lock(&fs_info->balance_lock);
3692 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3693 	spin_unlock(&fs_info->balance_lock);
3694 again:
3695 	if (!counting) {
3696 		/*
3697 		 * The single value limit and min/max limits use the same bytes
3698 		 * in the
3699 		 */
3700 		bctl->data.limit = limit_data;
3701 		bctl->meta.limit = limit_meta;
3702 		bctl->sys.limit = limit_sys;
3703 	}
3704 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3705 	key.offset = (u64)-1;
3706 	key.type = BTRFS_CHUNK_ITEM_KEY;
3707 
3708 	while (1) {
3709 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3710 		    atomic_read(&fs_info->balance_cancel_req)) {
3711 			ret = -ECANCELED;
3712 			goto error;
3713 		}
3714 
3715 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3716 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3717 		if (ret < 0) {
3718 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3719 			goto error;
3720 		}
3721 
3722 		/*
3723 		 * this shouldn't happen, it means the last relocate
3724 		 * failed
3725 		 */
3726 		if (ret == 0)
3727 			BUG(); /* FIXME break ? */
3728 
3729 		ret = btrfs_previous_item(chunk_root, path, 0,
3730 					  BTRFS_CHUNK_ITEM_KEY);
3731 		if (ret) {
3732 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3733 			ret = 0;
3734 			break;
3735 		}
3736 
3737 		leaf = path->nodes[0];
3738 		slot = path->slots[0];
3739 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3740 
3741 		if (found_key.objectid != key.objectid) {
3742 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3743 			break;
3744 		}
3745 
3746 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3747 		chunk_type = btrfs_chunk_type(leaf, chunk);
3748 
3749 		if (!counting) {
3750 			spin_lock(&fs_info->balance_lock);
3751 			bctl->stat.considered++;
3752 			spin_unlock(&fs_info->balance_lock);
3753 		}
3754 
3755 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3756 
3757 		btrfs_release_path(path);
3758 		if (!ret) {
3759 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760 			goto loop;
3761 		}
3762 
3763 		if (counting) {
3764 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3765 			spin_lock(&fs_info->balance_lock);
3766 			bctl->stat.expected++;
3767 			spin_unlock(&fs_info->balance_lock);
3768 
3769 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3770 				count_data++;
3771 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3772 				count_sys++;
3773 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3774 				count_meta++;
3775 
3776 			goto loop;
3777 		}
3778 
3779 		/*
3780 		 * Apply limit_min filter, no need to check if the LIMITS
3781 		 * filter is used, limit_min is 0 by default
3782 		 */
3783 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3784 					count_data < bctl->data.limit_min)
3785 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3786 					count_meta < bctl->meta.limit_min)
3787 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3788 					count_sys < bctl->sys.limit_min)) {
3789 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3790 			goto loop;
3791 		}
3792 
3793 		if (!chunk_reserved) {
3794 			/*
3795 			 * We may be relocating the only data chunk we have,
3796 			 * which could potentially end up with losing data's
3797 			 * raid profile, so lets allocate an empty one in
3798 			 * advance.
3799 			 */
3800 			ret = btrfs_may_alloc_data_chunk(fs_info,
3801 							 found_key.offset);
3802 			if (ret < 0) {
3803 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3804 				goto error;
3805 			} else if (ret == 1) {
3806 				chunk_reserved = 1;
3807 			}
3808 		}
3809 
3810 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3811 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3812 		if (ret == -ENOSPC) {
3813 			enospc_errors++;
3814 		} else if (ret == -ETXTBSY) {
3815 			btrfs_info(fs_info,
3816 	   "skipping relocation of block group %llu due to active swapfile",
3817 				   found_key.offset);
3818 			ret = 0;
3819 		} else if (ret) {
3820 			goto error;
3821 		} else {
3822 			spin_lock(&fs_info->balance_lock);
3823 			bctl->stat.completed++;
3824 			spin_unlock(&fs_info->balance_lock);
3825 		}
3826 loop:
3827 		if (found_key.offset == 0)
3828 			break;
3829 		key.offset = found_key.offset - 1;
3830 	}
3831 
3832 	if (counting) {
3833 		btrfs_release_path(path);
3834 		counting = false;
3835 		goto again;
3836 	}
3837 error:
3838 	btrfs_free_path(path);
3839 	if (enospc_errors) {
3840 		btrfs_info(fs_info, "%d enospc errors during balance",
3841 			   enospc_errors);
3842 		if (!ret)
3843 			ret = -ENOSPC;
3844 	}
3845 
3846 	return ret;
3847 }
3848 
3849 /**
3850  * alloc_profile_is_valid - see if a given profile is valid and reduced
3851  * @flags: profile to validate
3852  * @extended: if true @flags is treated as an extended profile
3853  */
3854 static int alloc_profile_is_valid(u64 flags, int extended)
3855 {
3856 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3857 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3858 
3859 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3860 
3861 	/* 1) check that all other bits are zeroed */
3862 	if (flags & ~mask)
3863 		return 0;
3864 
3865 	/* 2) see if profile is reduced */
3866 	if (flags == 0)
3867 		return !extended; /* "0" is valid for usual profiles */
3868 
3869 	/* true if exactly one bit set */
3870 	return is_power_of_2(flags);
3871 }
3872 
3873 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3874 {
3875 	/* cancel requested || normal exit path */
3876 	return atomic_read(&fs_info->balance_cancel_req) ||
3877 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3878 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3879 }
3880 
3881 /* Non-zero return value signifies invalidity */
3882 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3883 		u64 allowed)
3884 {
3885 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3886 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3887 		 (bctl_arg->target & ~allowed)));
3888 }
3889 
3890 /*
3891  * Fill @buf with textual description of balance filter flags @bargs, up to
3892  * @size_buf including the terminating null. The output may be trimmed if it
3893  * does not fit into the provided buffer.
3894  */
3895 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3896 				 u32 size_buf)
3897 {
3898 	int ret;
3899 	u32 size_bp = size_buf;
3900 	char *bp = buf;
3901 	u64 flags = bargs->flags;
3902 	char tmp_buf[128] = {'\0'};
3903 
3904 	if (!flags)
3905 		return;
3906 
3907 #define CHECK_APPEND_NOARG(a)						\
3908 	do {								\
3909 		ret = snprintf(bp, size_bp, (a));			\
3910 		if (ret < 0 || ret >= size_bp)				\
3911 			goto out_overflow;				\
3912 		size_bp -= ret;						\
3913 		bp += ret;						\
3914 	} while (0)
3915 
3916 #define CHECK_APPEND_1ARG(a, v1)					\
3917 	do {								\
3918 		ret = snprintf(bp, size_bp, (a), (v1));			\
3919 		if (ret < 0 || ret >= size_bp)				\
3920 			goto out_overflow;				\
3921 		size_bp -= ret;						\
3922 		bp += ret;						\
3923 	} while (0)
3924 
3925 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3926 	do {								\
3927 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3928 		if (ret < 0 || ret >= size_bp)				\
3929 			goto out_overflow;				\
3930 		size_bp -= ret;						\
3931 		bp += ret;						\
3932 	} while (0)
3933 
3934 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3935 		CHECK_APPEND_1ARG("convert=%s,",
3936 				  btrfs_bg_type_to_raid_name(bargs->target));
3937 
3938 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3939 		CHECK_APPEND_NOARG("soft,");
3940 
3941 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3942 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3943 					    sizeof(tmp_buf));
3944 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3945 	}
3946 
3947 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3948 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3949 
3950 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3951 		CHECK_APPEND_2ARG("usage=%u..%u,",
3952 				  bargs->usage_min, bargs->usage_max);
3953 
3954 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3955 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3956 
3957 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3958 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3959 				  bargs->pstart, bargs->pend);
3960 
3961 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3962 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3963 				  bargs->vstart, bargs->vend);
3964 
3965 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3966 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3967 
3968 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3969 		CHECK_APPEND_2ARG("limit=%u..%u,",
3970 				bargs->limit_min, bargs->limit_max);
3971 
3972 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3973 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3974 				  bargs->stripes_min, bargs->stripes_max);
3975 
3976 #undef CHECK_APPEND_2ARG
3977 #undef CHECK_APPEND_1ARG
3978 #undef CHECK_APPEND_NOARG
3979 
3980 out_overflow:
3981 
3982 	if (size_bp < size_buf)
3983 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3984 	else
3985 		buf[0] = '\0';
3986 }
3987 
3988 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3989 {
3990 	u32 size_buf = 1024;
3991 	char tmp_buf[192] = {'\0'};
3992 	char *buf;
3993 	char *bp;
3994 	u32 size_bp = size_buf;
3995 	int ret;
3996 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3997 
3998 	buf = kzalloc(size_buf, GFP_KERNEL);
3999 	if (!buf)
4000 		return;
4001 
4002 	bp = buf;
4003 
4004 #define CHECK_APPEND_1ARG(a, v1)					\
4005 	do {								\
4006 		ret = snprintf(bp, size_bp, (a), (v1));			\
4007 		if (ret < 0 || ret >= size_bp)				\
4008 			goto out_overflow;				\
4009 		size_bp -= ret;						\
4010 		bp += ret;						\
4011 	} while (0)
4012 
4013 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4014 		CHECK_APPEND_1ARG("%s", "-f ");
4015 
4016 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4017 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4018 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4019 	}
4020 
4021 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4022 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4023 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4024 	}
4025 
4026 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4027 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4028 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4029 	}
4030 
4031 #undef CHECK_APPEND_1ARG
4032 
4033 out_overflow:
4034 
4035 	if (size_bp < size_buf)
4036 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4037 	btrfs_info(fs_info, "balance: %s %s",
4038 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4039 		   "resume" : "start", buf);
4040 
4041 	kfree(buf);
4042 }
4043 
4044 /*
4045  * Should be called with balance mutexe held
4046  */
4047 int btrfs_balance(struct btrfs_fs_info *fs_info,
4048 		  struct btrfs_balance_control *bctl,
4049 		  struct btrfs_ioctl_balance_args *bargs)
4050 {
4051 	u64 meta_target, data_target;
4052 	u64 allowed;
4053 	int mixed = 0;
4054 	int ret;
4055 	u64 num_devices;
4056 	unsigned seq;
4057 	bool reducing_integrity;
4058 	int i;
4059 
4060 	if (btrfs_fs_closing(fs_info) ||
4061 	    atomic_read(&fs_info->balance_pause_req) ||
4062 	    atomic_read(&fs_info->balance_cancel_req)) {
4063 		ret = -EINVAL;
4064 		goto out;
4065 	}
4066 
4067 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4068 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4069 		mixed = 1;
4070 
4071 	/*
4072 	 * In case of mixed groups both data and meta should be picked,
4073 	 * and identical options should be given for both of them.
4074 	 */
4075 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4076 	if (mixed && (bctl->flags & allowed)) {
4077 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4078 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4079 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4080 			btrfs_err(fs_info,
4081 	  "balance: mixed groups data and metadata options must be the same");
4082 			ret = -EINVAL;
4083 			goto out;
4084 		}
4085 	}
4086 
4087 	num_devices = btrfs_num_devices(fs_info);
4088 	allowed = 0;
4089 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4090 		if (num_devices >= btrfs_raid_array[i].devs_min)
4091 			allowed |= btrfs_raid_array[i].bg_flag;
4092 
4093 	if (validate_convert_profile(&bctl->data, allowed)) {
4094 		btrfs_err(fs_info,
4095 			  "balance: invalid convert data profile %s",
4096 			  btrfs_bg_type_to_raid_name(bctl->data.target));
4097 		ret = -EINVAL;
4098 		goto out;
4099 	}
4100 	if (validate_convert_profile(&bctl->meta, allowed)) {
4101 		btrfs_err(fs_info,
4102 			  "balance: invalid convert metadata profile %s",
4103 			  btrfs_bg_type_to_raid_name(bctl->meta.target));
4104 		ret = -EINVAL;
4105 		goto out;
4106 	}
4107 	if (validate_convert_profile(&bctl->sys, allowed)) {
4108 		btrfs_err(fs_info,
4109 			  "balance: invalid convert system profile %s",
4110 			  btrfs_bg_type_to_raid_name(bctl->sys.target));
4111 		ret = -EINVAL;
4112 		goto out;
4113 	}
4114 
4115 	/*
4116 	 * Allow to reduce metadata or system integrity only if force set for
4117 	 * profiles with redundancy (copies, parity)
4118 	 */
4119 	allowed = 0;
4120 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4121 		if (btrfs_raid_array[i].ncopies >= 2 ||
4122 		    btrfs_raid_array[i].tolerated_failures >= 1)
4123 			allowed |= btrfs_raid_array[i].bg_flag;
4124 	}
4125 	do {
4126 		seq = read_seqbegin(&fs_info->profiles_lock);
4127 
4128 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4129 		     (fs_info->avail_system_alloc_bits & allowed) &&
4130 		     !(bctl->sys.target & allowed)) ||
4131 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4132 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4133 		     !(bctl->meta.target & allowed)))
4134 			reducing_integrity = true;
4135 		else
4136 			reducing_integrity = false;
4137 
4138 		/* if we're not converting, the target field is uninitialized */
4139 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4140 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4141 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4142 			bctl->data.target : fs_info->avail_data_alloc_bits;
4143 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4144 
4145 	if (reducing_integrity) {
4146 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4147 			btrfs_info(fs_info,
4148 				   "balance: force reducing metadata integrity");
4149 		} else {
4150 			btrfs_err(fs_info,
4151 	  "balance: reduces metadata integrity, use --force if you want this");
4152 			ret = -EINVAL;
4153 			goto out;
4154 		}
4155 	}
4156 
4157 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4158 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4159 		btrfs_warn(fs_info,
4160 	"balance: metadata profile %s has lower redundancy than data profile %s",
4161 				btrfs_bg_type_to_raid_name(meta_target),
4162 				btrfs_bg_type_to_raid_name(data_target));
4163 	}
4164 
4165 	if (fs_info->send_in_progress) {
4166 		btrfs_warn_rl(fs_info,
4167 "cannot run balance while send operations are in progress (%d in progress)",
4168 			      fs_info->send_in_progress);
4169 		ret = -EAGAIN;
4170 		goto out;
4171 	}
4172 
4173 	ret = insert_balance_item(fs_info, bctl);
4174 	if (ret && ret != -EEXIST)
4175 		goto out;
4176 
4177 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4178 		BUG_ON(ret == -EEXIST);
4179 		BUG_ON(fs_info->balance_ctl);
4180 		spin_lock(&fs_info->balance_lock);
4181 		fs_info->balance_ctl = bctl;
4182 		spin_unlock(&fs_info->balance_lock);
4183 	} else {
4184 		BUG_ON(ret != -EEXIST);
4185 		spin_lock(&fs_info->balance_lock);
4186 		update_balance_args(bctl);
4187 		spin_unlock(&fs_info->balance_lock);
4188 	}
4189 
4190 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4191 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4192 	describe_balance_start_or_resume(fs_info);
4193 	mutex_unlock(&fs_info->balance_mutex);
4194 
4195 	ret = __btrfs_balance(fs_info);
4196 
4197 	mutex_lock(&fs_info->balance_mutex);
4198 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4199 		btrfs_info(fs_info, "balance: paused");
4200 	else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4201 		btrfs_info(fs_info, "balance: canceled");
4202 	else
4203 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4204 
4205 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4206 
4207 	if (bargs) {
4208 		memset(bargs, 0, sizeof(*bargs));
4209 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4210 	}
4211 
4212 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4213 	    balance_need_close(fs_info)) {
4214 		reset_balance_state(fs_info);
4215 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4216 	}
4217 
4218 	wake_up(&fs_info->balance_wait_q);
4219 
4220 	return ret;
4221 out:
4222 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4223 		reset_balance_state(fs_info);
4224 	else
4225 		kfree(bctl);
4226 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4227 
4228 	return ret;
4229 }
4230 
4231 static int balance_kthread(void *data)
4232 {
4233 	struct btrfs_fs_info *fs_info = data;
4234 	int ret = 0;
4235 
4236 	mutex_lock(&fs_info->balance_mutex);
4237 	if (fs_info->balance_ctl)
4238 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4239 	mutex_unlock(&fs_info->balance_mutex);
4240 
4241 	return ret;
4242 }
4243 
4244 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4245 {
4246 	struct task_struct *tsk;
4247 
4248 	mutex_lock(&fs_info->balance_mutex);
4249 	if (!fs_info->balance_ctl) {
4250 		mutex_unlock(&fs_info->balance_mutex);
4251 		return 0;
4252 	}
4253 	mutex_unlock(&fs_info->balance_mutex);
4254 
4255 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4256 		btrfs_info(fs_info, "balance: resume skipped");
4257 		return 0;
4258 	}
4259 
4260 	/*
4261 	 * A ro->rw remount sequence should continue with the paused balance
4262 	 * regardless of who pauses it, system or the user as of now, so set
4263 	 * the resume flag.
4264 	 */
4265 	spin_lock(&fs_info->balance_lock);
4266 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4267 	spin_unlock(&fs_info->balance_lock);
4268 
4269 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4270 	return PTR_ERR_OR_ZERO(tsk);
4271 }
4272 
4273 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4274 {
4275 	struct btrfs_balance_control *bctl;
4276 	struct btrfs_balance_item *item;
4277 	struct btrfs_disk_balance_args disk_bargs;
4278 	struct btrfs_path *path;
4279 	struct extent_buffer *leaf;
4280 	struct btrfs_key key;
4281 	int ret;
4282 
4283 	path = btrfs_alloc_path();
4284 	if (!path)
4285 		return -ENOMEM;
4286 
4287 	key.objectid = BTRFS_BALANCE_OBJECTID;
4288 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4289 	key.offset = 0;
4290 
4291 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4292 	if (ret < 0)
4293 		goto out;
4294 	if (ret > 0) { /* ret = -ENOENT; */
4295 		ret = 0;
4296 		goto out;
4297 	}
4298 
4299 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4300 	if (!bctl) {
4301 		ret = -ENOMEM;
4302 		goto out;
4303 	}
4304 
4305 	leaf = path->nodes[0];
4306 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4307 
4308 	bctl->flags = btrfs_balance_flags(leaf, item);
4309 	bctl->flags |= BTRFS_BALANCE_RESUME;
4310 
4311 	btrfs_balance_data(leaf, item, &disk_bargs);
4312 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4313 	btrfs_balance_meta(leaf, item, &disk_bargs);
4314 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4315 	btrfs_balance_sys(leaf, item, &disk_bargs);
4316 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4317 
4318 	/*
4319 	 * This should never happen, as the paused balance state is recovered
4320 	 * during mount without any chance of other exclusive ops to collide.
4321 	 *
4322 	 * This gives the exclusive op status to balance and keeps in paused
4323 	 * state until user intervention (cancel or umount). If the ownership
4324 	 * cannot be assigned, show a message but do not fail. The balance
4325 	 * is in a paused state and must have fs_info::balance_ctl properly
4326 	 * set up.
4327 	 */
4328 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4329 		btrfs_warn(fs_info,
4330 	"balance: cannot set exclusive op status, resume manually");
4331 
4332 	mutex_lock(&fs_info->balance_mutex);
4333 	BUG_ON(fs_info->balance_ctl);
4334 	spin_lock(&fs_info->balance_lock);
4335 	fs_info->balance_ctl = bctl;
4336 	spin_unlock(&fs_info->balance_lock);
4337 	mutex_unlock(&fs_info->balance_mutex);
4338 out:
4339 	btrfs_free_path(path);
4340 	return ret;
4341 }
4342 
4343 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4344 {
4345 	int ret = 0;
4346 
4347 	mutex_lock(&fs_info->balance_mutex);
4348 	if (!fs_info->balance_ctl) {
4349 		mutex_unlock(&fs_info->balance_mutex);
4350 		return -ENOTCONN;
4351 	}
4352 
4353 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4354 		atomic_inc(&fs_info->balance_pause_req);
4355 		mutex_unlock(&fs_info->balance_mutex);
4356 
4357 		wait_event(fs_info->balance_wait_q,
4358 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4359 
4360 		mutex_lock(&fs_info->balance_mutex);
4361 		/* we are good with balance_ctl ripped off from under us */
4362 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4363 		atomic_dec(&fs_info->balance_pause_req);
4364 	} else {
4365 		ret = -ENOTCONN;
4366 	}
4367 
4368 	mutex_unlock(&fs_info->balance_mutex);
4369 	return ret;
4370 }
4371 
4372 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4373 {
4374 	mutex_lock(&fs_info->balance_mutex);
4375 	if (!fs_info->balance_ctl) {
4376 		mutex_unlock(&fs_info->balance_mutex);
4377 		return -ENOTCONN;
4378 	}
4379 
4380 	/*
4381 	 * A paused balance with the item stored on disk can be resumed at
4382 	 * mount time if the mount is read-write. Otherwise it's still paused
4383 	 * and we must not allow cancelling as it deletes the item.
4384 	 */
4385 	if (sb_rdonly(fs_info->sb)) {
4386 		mutex_unlock(&fs_info->balance_mutex);
4387 		return -EROFS;
4388 	}
4389 
4390 	atomic_inc(&fs_info->balance_cancel_req);
4391 	/*
4392 	 * if we are running just wait and return, balance item is
4393 	 * deleted in btrfs_balance in this case
4394 	 */
4395 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4396 		mutex_unlock(&fs_info->balance_mutex);
4397 		wait_event(fs_info->balance_wait_q,
4398 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4399 		mutex_lock(&fs_info->balance_mutex);
4400 	} else {
4401 		mutex_unlock(&fs_info->balance_mutex);
4402 		/*
4403 		 * Lock released to allow other waiters to continue, we'll
4404 		 * reexamine the status again.
4405 		 */
4406 		mutex_lock(&fs_info->balance_mutex);
4407 
4408 		if (fs_info->balance_ctl) {
4409 			reset_balance_state(fs_info);
4410 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4411 			btrfs_info(fs_info, "balance: canceled");
4412 		}
4413 	}
4414 
4415 	BUG_ON(fs_info->balance_ctl ||
4416 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4417 	atomic_dec(&fs_info->balance_cancel_req);
4418 	mutex_unlock(&fs_info->balance_mutex);
4419 	return 0;
4420 }
4421 
4422 static int btrfs_uuid_scan_kthread(void *data)
4423 {
4424 	struct btrfs_fs_info *fs_info = data;
4425 	struct btrfs_root *root = fs_info->tree_root;
4426 	struct btrfs_key key;
4427 	struct btrfs_path *path = NULL;
4428 	int ret = 0;
4429 	struct extent_buffer *eb;
4430 	int slot;
4431 	struct btrfs_root_item root_item;
4432 	u32 item_size;
4433 	struct btrfs_trans_handle *trans = NULL;
4434 
4435 	path = btrfs_alloc_path();
4436 	if (!path) {
4437 		ret = -ENOMEM;
4438 		goto out;
4439 	}
4440 
4441 	key.objectid = 0;
4442 	key.type = BTRFS_ROOT_ITEM_KEY;
4443 	key.offset = 0;
4444 
4445 	while (1) {
4446 		ret = btrfs_search_forward(root, &key, path,
4447 				BTRFS_OLDEST_GENERATION);
4448 		if (ret) {
4449 			if (ret > 0)
4450 				ret = 0;
4451 			break;
4452 		}
4453 
4454 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4455 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4456 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4457 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4458 			goto skip;
4459 
4460 		eb = path->nodes[0];
4461 		slot = path->slots[0];
4462 		item_size = btrfs_item_size_nr(eb, slot);
4463 		if (item_size < sizeof(root_item))
4464 			goto skip;
4465 
4466 		read_extent_buffer(eb, &root_item,
4467 				   btrfs_item_ptr_offset(eb, slot),
4468 				   (int)sizeof(root_item));
4469 		if (btrfs_root_refs(&root_item) == 0)
4470 			goto skip;
4471 
4472 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4473 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4474 			if (trans)
4475 				goto update_tree;
4476 
4477 			btrfs_release_path(path);
4478 			/*
4479 			 * 1 - subvol uuid item
4480 			 * 1 - received_subvol uuid item
4481 			 */
4482 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4483 			if (IS_ERR(trans)) {
4484 				ret = PTR_ERR(trans);
4485 				break;
4486 			}
4487 			continue;
4488 		} else {
4489 			goto skip;
4490 		}
4491 update_tree:
4492 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4493 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4494 						  BTRFS_UUID_KEY_SUBVOL,
4495 						  key.objectid);
4496 			if (ret < 0) {
4497 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4498 					ret);
4499 				break;
4500 			}
4501 		}
4502 
4503 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4504 			ret = btrfs_uuid_tree_add(trans,
4505 						  root_item.received_uuid,
4506 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4507 						  key.objectid);
4508 			if (ret < 0) {
4509 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4510 					ret);
4511 				break;
4512 			}
4513 		}
4514 
4515 skip:
4516 		if (trans) {
4517 			ret = btrfs_end_transaction(trans);
4518 			trans = NULL;
4519 			if (ret)
4520 				break;
4521 		}
4522 
4523 		btrfs_release_path(path);
4524 		if (key.offset < (u64)-1) {
4525 			key.offset++;
4526 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4527 			key.offset = 0;
4528 			key.type = BTRFS_ROOT_ITEM_KEY;
4529 		} else if (key.objectid < (u64)-1) {
4530 			key.offset = 0;
4531 			key.type = BTRFS_ROOT_ITEM_KEY;
4532 			key.objectid++;
4533 		} else {
4534 			break;
4535 		}
4536 		cond_resched();
4537 	}
4538 
4539 out:
4540 	btrfs_free_path(path);
4541 	if (trans && !IS_ERR(trans))
4542 		btrfs_end_transaction(trans);
4543 	if (ret)
4544 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4545 	else
4546 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4547 	up(&fs_info->uuid_tree_rescan_sem);
4548 	return 0;
4549 }
4550 
4551 /*
4552  * Callback for btrfs_uuid_tree_iterate().
4553  * returns:
4554  * 0	check succeeded, the entry is not outdated.
4555  * < 0	if an error occurred.
4556  * > 0	if the check failed, which means the caller shall remove the entry.
4557  */
4558 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4559 				       u8 *uuid, u8 type, u64 subid)
4560 {
4561 	struct btrfs_key key;
4562 	int ret = 0;
4563 	struct btrfs_root *subvol_root;
4564 
4565 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4566 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4567 		goto out;
4568 
4569 	key.objectid = subid;
4570 	key.type = BTRFS_ROOT_ITEM_KEY;
4571 	key.offset = (u64)-1;
4572 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4573 	if (IS_ERR(subvol_root)) {
4574 		ret = PTR_ERR(subvol_root);
4575 		if (ret == -ENOENT)
4576 			ret = 1;
4577 		goto out;
4578 	}
4579 
4580 	switch (type) {
4581 	case BTRFS_UUID_KEY_SUBVOL:
4582 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4583 			ret = 1;
4584 		break;
4585 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4586 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4587 			   BTRFS_UUID_SIZE))
4588 			ret = 1;
4589 		break;
4590 	}
4591 
4592 out:
4593 	return ret;
4594 }
4595 
4596 static int btrfs_uuid_rescan_kthread(void *data)
4597 {
4598 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4599 	int ret;
4600 
4601 	/*
4602 	 * 1st step is to iterate through the existing UUID tree and
4603 	 * to delete all entries that contain outdated data.
4604 	 * 2nd step is to add all missing entries to the UUID tree.
4605 	 */
4606 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4607 	if (ret < 0) {
4608 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4609 		up(&fs_info->uuid_tree_rescan_sem);
4610 		return ret;
4611 	}
4612 	return btrfs_uuid_scan_kthread(data);
4613 }
4614 
4615 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4616 {
4617 	struct btrfs_trans_handle *trans;
4618 	struct btrfs_root *tree_root = fs_info->tree_root;
4619 	struct btrfs_root *uuid_root;
4620 	struct task_struct *task;
4621 	int ret;
4622 
4623 	/*
4624 	 * 1 - root node
4625 	 * 1 - root item
4626 	 */
4627 	trans = btrfs_start_transaction(tree_root, 2);
4628 	if (IS_ERR(trans))
4629 		return PTR_ERR(trans);
4630 
4631 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4632 	if (IS_ERR(uuid_root)) {
4633 		ret = PTR_ERR(uuid_root);
4634 		btrfs_abort_transaction(trans, ret);
4635 		btrfs_end_transaction(trans);
4636 		return ret;
4637 	}
4638 
4639 	fs_info->uuid_root = uuid_root;
4640 
4641 	ret = btrfs_commit_transaction(trans);
4642 	if (ret)
4643 		return ret;
4644 
4645 	down(&fs_info->uuid_tree_rescan_sem);
4646 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4647 	if (IS_ERR(task)) {
4648 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4649 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4650 		up(&fs_info->uuid_tree_rescan_sem);
4651 		return PTR_ERR(task);
4652 	}
4653 
4654 	return 0;
4655 }
4656 
4657 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4658 {
4659 	struct task_struct *task;
4660 
4661 	down(&fs_info->uuid_tree_rescan_sem);
4662 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4663 	if (IS_ERR(task)) {
4664 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4665 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4666 		up(&fs_info->uuid_tree_rescan_sem);
4667 		return PTR_ERR(task);
4668 	}
4669 
4670 	return 0;
4671 }
4672 
4673 /*
4674  * shrinking a device means finding all of the device extents past
4675  * the new size, and then following the back refs to the chunks.
4676  * The chunk relocation code actually frees the device extent
4677  */
4678 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4679 {
4680 	struct btrfs_fs_info *fs_info = device->fs_info;
4681 	struct btrfs_root *root = fs_info->dev_root;
4682 	struct btrfs_trans_handle *trans;
4683 	struct btrfs_dev_extent *dev_extent = NULL;
4684 	struct btrfs_path *path;
4685 	u64 length;
4686 	u64 chunk_offset;
4687 	int ret;
4688 	int slot;
4689 	int failed = 0;
4690 	bool retried = false;
4691 	struct extent_buffer *l;
4692 	struct btrfs_key key;
4693 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4694 	u64 old_total = btrfs_super_total_bytes(super_copy);
4695 	u64 old_size = btrfs_device_get_total_bytes(device);
4696 	u64 diff;
4697 	u64 start;
4698 
4699 	new_size = round_down(new_size, fs_info->sectorsize);
4700 	start = new_size;
4701 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4702 
4703 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4704 		return -EINVAL;
4705 
4706 	path = btrfs_alloc_path();
4707 	if (!path)
4708 		return -ENOMEM;
4709 
4710 	path->reada = READA_BACK;
4711 
4712 	trans = btrfs_start_transaction(root, 0);
4713 	if (IS_ERR(trans)) {
4714 		btrfs_free_path(path);
4715 		return PTR_ERR(trans);
4716 	}
4717 
4718 	mutex_lock(&fs_info->chunk_mutex);
4719 
4720 	btrfs_device_set_total_bytes(device, new_size);
4721 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4722 		device->fs_devices->total_rw_bytes -= diff;
4723 		atomic64_sub(diff, &fs_info->free_chunk_space);
4724 	}
4725 
4726 	/*
4727 	 * Once the device's size has been set to the new size, ensure all
4728 	 * in-memory chunks are synced to disk so that the loop below sees them
4729 	 * and relocates them accordingly.
4730 	 */
4731 	if (contains_pending_extent(device, &start, diff)) {
4732 		mutex_unlock(&fs_info->chunk_mutex);
4733 		ret = btrfs_commit_transaction(trans);
4734 		if (ret)
4735 			goto done;
4736 	} else {
4737 		mutex_unlock(&fs_info->chunk_mutex);
4738 		btrfs_end_transaction(trans);
4739 	}
4740 
4741 again:
4742 	key.objectid = device->devid;
4743 	key.offset = (u64)-1;
4744 	key.type = BTRFS_DEV_EXTENT_KEY;
4745 
4746 	do {
4747 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4748 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4749 		if (ret < 0) {
4750 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4751 			goto done;
4752 		}
4753 
4754 		ret = btrfs_previous_item(root, path, 0, key.type);
4755 		if (ret)
4756 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4757 		if (ret < 0)
4758 			goto done;
4759 		if (ret) {
4760 			ret = 0;
4761 			btrfs_release_path(path);
4762 			break;
4763 		}
4764 
4765 		l = path->nodes[0];
4766 		slot = path->slots[0];
4767 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4768 
4769 		if (key.objectid != device->devid) {
4770 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4771 			btrfs_release_path(path);
4772 			break;
4773 		}
4774 
4775 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4776 		length = btrfs_dev_extent_length(l, dev_extent);
4777 
4778 		if (key.offset + length <= new_size) {
4779 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4780 			btrfs_release_path(path);
4781 			break;
4782 		}
4783 
4784 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4785 		btrfs_release_path(path);
4786 
4787 		/*
4788 		 * We may be relocating the only data chunk we have,
4789 		 * which could potentially end up with losing data's
4790 		 * raid profile, so lets allocate an empty one in
4791 		 * advance.
4792 		 */
4793 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4794 		if (ret < 0) {
4795 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4796 			goto done;
4797 		}
4798 
4799 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4800 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4801 		if (ret == -ENOSPC) {
4802 			failed++;
4803 		} else if (ret) {
4804 			if (ret == -ETXTBSY) {
4805 				btrfs_warn(fs_info,
4806 		   "could not shrink block group %llu due to active swapfile",
4807 					   chunk_offset);
4808 			}
4809 			goto done;
4810 		}
4811 	} while (key.offset-- > 0);
4812 
4813 	if (failed && !retried) {
4814 		failed = 0;
4815 		retried = true;
4816 		goto again;
4817 	} else if (failed && retried) {
4818 		ret = -ENOSPC;
4819 		goto done;
4820 	}
4821 
4822 	/* Shrinking succeeded, else we would be at "done". */
4823 	trans = btrfs_start_transaction(root, 0);
4824 	if (IS_ERR(trans)) {
4825 		ret = PTR_ERR(trans);
4826 		goto done;
4827 	}
4828 
4829 	mutex_lock(&fs_info->chunk_mutex);
4830 	btrfs_device_set_disk_total_bytes(device, new_size);
4831 	if (list_empty(&device->post_commit_list))
4832 		list_add_tail(&device->post_commit_list,
4833 			      &trans->transaction->dev_update_list);
4834 
4835 	WARN_ON(diff > old_total);
4836 	btrfs_set_super_total_bytes(super_copy,
4837 			round_down(old_total - diff, fs_info->sectorsize));
4838 	mutex_unlock(&fs_info->chunk_mutex);
4839 
4840 	/* Now btrfs_update_device() will change the on-disk size. */
4841 	ret = btrfs_update_device(trans, device);
4842 	if (ret < 0) {
4843 		btrfs_abort_transaction(trans, ret);
4844 		btrfs_end_transaction(trans);
4845 	} else {
4846 		ret = btrfs_commit_transaction(trans);
4847 	}
4848 done:
4849 	btrfs_free_path(path);
4850 	if (ret) {
4851 		mutex_lock(&fs_info->chunk_mutex);
4852 		btrfs_device_set_total_bytes(device, old_size);
4853 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4854 			device->fs_devices->total_rw_bytes += diff;
4855 		atomic64_add(diff, &fs_info->free_chunk_space);
4856 		mutex_unlock(&fs_info->chunk_mutex);
4857 	}
4858 	return ret;
4859 }
4860 
4861 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4862 			   struct btrfs_key *key,
4863 			   struct btrfs_chunk *chunk, int item_size)
4864 {
4865 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4866 	struct btrfs_disk_key disk_key;
4867 	u32 array_size;
4868 	u8 *ptr;
4869 
4870 	mutex_lock(&fs_info->chunk_mutex);
4871 	array_size = btrfs_super_sys_array_size(super_copy);
4872 	if (array_size + item_size + sizeof(disk_key)
4873 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4874 		mutex_unlock(&fs_info->chunk_mutex);
4875 		return -EFBIG;
4876 	}
4877 
4878 	ptr = super_copy->sys_chunk_array + array_size;
4879 	btrfs_cpu_key_to_disk(&disk_key, key);
4880 	memcpy(ptr, &disk_key, sizeof(disk_key));
4881 	ptr += sizeof(disk_key);
4882 	memcpy(ptr, chunk, item_size);
4883 	item_size += sizeof(disk_key);
4884 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4885 	mutex_unlock(&fs_info->chunk_mutex);
4886 
4887 	return 0;
4888 }
4889 
4890 /*
4891  * sort the devices in descending order by max_avail, total_avail
4892  */
4893 static int btrfs_cmp_device_info(const void *a, const void *b)
4894 {
4895 	const struct btrfs_device_info *di_a = a;
4896 	const struct btrfs_device_info *di_b = b;
4897 
4898 	if (di_a->max_avail > di_b->max_avail)
4899 		return -1;
4900 	if (di_a->max_avail < di_b->max_avail)
4901 		return 1;
4902 	if (di_a->total_avail > di_b->total_avail)
4903 		return -1;
4904 	if (di_a->total_avail < di_b->total_avail)
4905 		return 1;
4906 	return 0;
4907 }
4908 
4909 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4910 {
4911 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4912 		return;
4913 
4914 	btrfs_set_fs_incompat(info, RAID56);
4915 }
4916 
4917 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4918 			       u64 start, u64 type)
4919 {
4920 	struct btrfs_fs_info *info = trans->fs_info;
4921 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4922 	struct btrfs_device *device;
4923 	struct map_lookup *map = NULL;
4924 	struct extent_map_tree *em_tree;
4925 	struct extent_map *em;
4926 	struct btrfs_device_info *devices_info = NULL;
4927 	u64 total_avail;
4928 	int num_stripes;	/* total number of stripes to allocate */
4929 	int data_stripes;	/* number of stripes that count for
4930 				   block group size */
4931 	int sub_stripes;	/* sub_stripes info for map */
4932 	int dev_stripes;	/* stripes per dev */
4933 	int devs_max;		/* max devs to use */
4934 	int devs_min;		/* min devs needed */
4935 	int devs_increment;	/* ndevs has to be a multiple of this */
4936 	int ncopies;		/* how many copies to data has */
4937 	int nparity;		/* number of stripes worth of bytes to
4938 				   store parity information */
4939 	int ret;
4940 	u64 max_stripe_size;
4941 	u64 max_chunk_size;
4942 	u64 stripe_size;
4943 	u64 chunk_size;
4944 	int ndevs;
4945 	int i;
4946 	int j;
4947 	int index;
4948 
4949 	BUG_ON(!alloc_profile_is_valid(type, 0));
4950 
4951 	if (list_empty(&fs_devices->alloc_list)) {
4952 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4953 			btrfs_debug(info, "%s: no writable device", __func__);
4954 		return -ENOSPC;
4955 	}
4956 
4957 	index = btrfs_bg_flags_to_raid_index(type);
4958 
4959 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4960 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4961 	devs_max = btrfs_raid_array[index].devs_max;
4962 	if (!devs_max)
4963 		devs_max = BTRFS_MAX_DEVS(info);
4964 	devs_min = btrfs_raid_array[index].devs_min;
4965 	devs_increment = btrfs_raid_array[index].devs_increment;
4966 	ncopies = btrfs_raid_array[index].ncopies;
4967 	nparity = btrfs_raid_array[index].nparity;
4968 
4969 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4970 		max_stripe_size = SZ_1G;
4971 		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4972 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4973 		/* for larger filesystems, use larger metadata chunks */
4974 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4975 			max_stripe_size = SZ_1G;
4976 		else
4977 			max_stripe_size = SZ_256M;
4978 		max_chunk_size = max_stripe_size;
4979 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4980 		max_stripe_size = SZ_32M;
4981 		max_chunk_size = 2 * max_stripe_size;
4982 	} else {
4983 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4984 		       type);
4985 		BUG();
4986 	}
4987 
4988 	/* We don't want a chunk larger than 10% of writable space */
4989 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4990 			     max_chunk_size);
4991 
4992 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4993 			       GFP_NOFS);
4994 	if (!devices_info)
4995 		return -ENOMEM;
4996 
4997 	/*
4998 	 * in the first pass through the devices list, we gather information
4999 	 * about the available holes on each device.
5000 	 */
5001 	ndevs = 0;
5002 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5003 		u64 max_avail;
5004 		u64 dev_offset;
5005 
5006 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5007 			WARN(1, KERN_ERR
5008 			       "BTRFS: read-only device in alloc_list\n");
5009 			continue;
5010 		}
5011 
5012 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5013 					&device->dev_state) ||
5014 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5015 			continue;
5016 
5017 		if (device->total_bytes > device->bytes_used)
5018 			total_avail = device->total_bytes - device->bytes_used;
5019 		else
5020 			total_avail = 0;
5021 
5022 		/* If there is no space on this device, skip it. */
5023 		if (total_avail == 0)
5024 			continue;
5025 
5026 		ret = find_free_dev_extent(device,
5027 					   max_stripe_size * dev_stripes,
5028 					   &dev_offset, &max_avail);
5029 		if (ret && ret != -ENOSPC)
5030 			goto error;
5031 
5032 		if (ret == 0)
5033 			max_avail = max_stripe_size * dev_stripes;
5034 
5035 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5036 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5037 				btrfs_debug(info,
5038 			"%s: devid %llu has no free space, have=%llu want=%u",
5039 					    __func__, device->devid, max_avail,
5040 					    BTRFS_STRIPE_LEN * dev_stripes);
5041 			continue;
5042 		}
5043 
5044 		if (ndevs == fs_devices->rw_devices) {
5045 			WARN(1, "%s: found more than %llu devices\n",
5046 			     __func__, fs_devices->rw_devices);
5047 			break;
5048 		}
5049 		devices_info[ndevs].dev_offset = dev_offset;
5050 		devices_info[ndevs].max_avail = max_avail;
5051 		devices_info[ndevs].total_avail = total_avail;
5052 		devices_info[ndevs].dev = device;
5053 		++ndevs;
5054 	}
5055 
5056 	/*
5057 	 * now sort the devices by hole size / available space
5058 	 */
5059 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5060 	     btrfs_cmp_device_info, NULL);
5061 
5062 	/* round down to number of usable stripes */
5063 	ndevs = round_down(ndevs, devs_increment);
5064 
5065 	if (ndevs < devs_min) {
5066 		ret = -ENOSPC;
5067 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5068 			btrfs_debug(info,
5069 	"%s: not enough devices with free space: have=%d minimum required=%d",
5070 				    __func__, ndevs, devs_min);
5071 		}
5072 		goto error;
5073 	}
5074 
5075 	ndevs = min(ndevs, devs_max);
5076 
5077 	/*
5078 	 * The primary goal is to maximize the number of stripes, so use as
5079 	 * many devices as possible, even if the stripes are not maximum sized.
5080 	 *
5081 	 * The DUP profile stores more than one stripe per device, the
5082 	 * max_avail is the total size so we have to adjust.
5083 	 */
5084 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5085 	num_stripes = ndevs * dev_stripes;
5086 
5087 	/*
5088 	 * this will have to be fixed for RAID1 and RAID10 over
5089 	 * more drives
5090 	 */
5091 	data_stripes = (num_stripes - nparity) / ncopies;
5092 
5093 	/*
5094 	 * Use the number of data stripes to figure out how big this chunk
5095 	 * is really going to be in terms of logical address space,
5096 	 * and compare that answer with the max chunk size. If it's higher,
5097 	 * we try to reduce stripe_size.
5098 	 */
5099 	if (stripe_size * data_stripes > max_chunk_size) {
5100 		/*
5101 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5102 		 * then use it, unless it ends up being even bigger than the
5103 		 * previous value we had already.
5104 		 */
5105 		stripe_size = min(round_up(div_u64(max_chunk_size,
5106 						   data_stripes), SZ_16M),
5107 				  stripe_size);
5108 	}
5109 
5110 	/* align to BTRFS_STRIPE_LEN */
5111 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5112 
5113 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5114 	if (!map) {
5115 		ret = -ENOMEM;
5116 		goto error;
5117 	}
5118 	map->num_stripes = num_stripes;
5119 
5120 	for (i = 0; i < ndevs; ++i) {
5121 		for (j = 0; j < dev_stripes; ++j) {
5122 			int s = i * dev_stripes + j;
5123 			map->stripes[s].dev = devices_info[i].dev;
5124 			map->stripes[s].physical = devices_info[i].dev_offset +
5125 						   j * stripe_size;
5126 		}
5127 	}
5128 	map->stripe_len = BTRFS_STRIPE_LEN;
5129 	map->io_align = BTRFS_STRIPE_LEN;
5130 	map->io_width = BTRFS_STRIPE_LEN;
5131 	map->type = type;
5132 	map->sub_stripes = sub_stripes;
5133 
5134 	chunk_size = stripe_size * data_stripes;
5135 
5136 	trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5137 
5138 	em = alloc_extent_map();
5139 	if (!em) {
5140 		kfree(map);
5141 		ret = -ENOMEM;
5142 		goto error;
5143 	}
5144 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5145 	em->map_lookup = map;
5146 	em->start = start;
5147 	em->len = chunk_size;
5148 	em->block_start = 0;
5149 	em->block_len = em->len;
5150 	em->orig_block_len = stripe_size;
5151 
5152 	em_tree = &info->mapping_tree;
5153 	write_lock(&em_tree->lock);
5154 	ret = add_extent_mapping(em_tree, em, 0);
5155 	if (ret) {
5156 		write_unlock(&em_tree->lock);
5157 		free_extent_map(em);
5158 		goto error;
5159 	}
5160 	write_unlock(&em_tree->lock);
5161 
5162 	ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5163 	if (ret)
5164 		goto error_del_extent;
5165 
5166 	for (i = 0; i < map->num_stripes; i++) {
5167 		struct btrfs_device *dev = map->stripes[i].dev;
5168 
5169 		btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5170 		if (list_empty(&dev->post_commit_list))
5171 			list_add_tail(&dev->post_commit_list,
5172 				      &trans->transaction->dev_update_list);
5173 	}
5174 
5175 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5176 
5177 	free_extent_map(em);
5178 	check_raid56_incompat_flag(info, type);
5179 
5180 	kfree(devices_info);
5181 	return 0;
5182 
5183 error_del_extent:
5184 	write_lock(&em_tree->lock);
5185 	remove_extent_mapping(em_tree, em);
5186 	write_unlock(&em_tree->lock);
5187 
5188 	/* One for our allocation */
5189 	free_extent_map(em);
5190 	/* One for the tree reference */
5191 	free_extent_map(em);
5192 error:
5193 	kfree(devices_info);
5194 	return ret;
5195 }
5196 
5197 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5198 			     u64 chunk_offset, u64 chunk_size)
5199 {
5200 	struct btrfs_fs_info *fs_info = trans->fs_info;
5201 	struct btrfs_root *extent_root = fs_info->extent_root;
5202 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5203 	struct btrfs_key key;
5204 	struct btrfs_device *device;
5205 	struct btrfs_chunk *chunk;
5206 	struct btrfs_stripe *stripe;
5207 	struct extent_map *em;
5208 	struct map_lookup *map;
5209 	size_t item_size;
5210 	u64 dev_offset;
5211 	u64 stripe_size;
5212 	int i = 0;
5213 	int ret = 0;
5214 
5215 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5216 	if (IS_ERR(em))
5217 		return PTR_ERR(em);
5218 
5219 	map = em->map_lookup;
5220 	item_size = btrfs_chunk_item_size(map->num_stripes);
5221 	stripe_size = em->orig_block_len;
5222 
5223 	chunk = kzalloc(item_size, GFP_NOFS);
5224 	if (!chunk) {
5225 		ret = -ENOMEM;
5226 		goto out;
5227 	}
5228 
5229 	/*
5230 	 * Take the device list mutex to prevent races with the final phase of
5231 	 * a device replace operation that replaces the device object associated
5232 	 * with the map's stripes, because the device object's id can change
5233 	 * at any time during that final phase of the device replace operation
5234 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5235 	 */
5236 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5237 	for (i = 0; i < map->num_stripes; i++) {
5238 		device = map->stripes[i].dev;
5239 		dev_offset = map->stripes[i].physical;
5240 
5241 		ret = btrfs_update_device(trans, device);
5242 		if (ret)
5243 			break;
5244 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5245 					     dev_offset, stripe_size);
5246 		if (ret)
5247 			break;
5248 	}
5249 	if (ret) {
5250 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5251 		goto out;
5252 	}
5253 
5254 	stripe = &chunk->stripe;
5255 	for (i = 0; i < map->num_stripes; i++) {
5256 		device = map->stripes[i].dev;
5257 		dev_offset = map->stripes[i].physical;
5258 
5259 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5260 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5261 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5262 		stripe++;
5263 	}
5264 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5265 
5266 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5267 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5268 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5269 	btrfs_set_stack_chunk_type(chunk, map->type);
5270 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5271 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5272 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5273 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5274 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5275 
5276 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5277 	key.type = BTRFS_CHUNK_ITEM_KEY;
5278 	key.offset = chunk_offset;
5279 
5280 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5281 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5282 		/*
5283 		 * TODO: Cleanup of inserted chunk root in case of
5284 		 * failure.
5285 		 */
5286 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5287 	}
5288 
5289 out:
5290 	kfree(chunk);
5291 	free_extent_map(em);
5292 	return ret;
5293 }
5294 
5295 /*
5296  * Chunk allocation falls into two parts. The first part does work
5297  * that makes the new allocated chunk usable, but does not do any operation
5298  * that modifies the chunk tree. The second part does the work that
5299  * requires modifying the chunk tree. This division is important for the
5300  * bootstrap process of adding storage to a seed btrfs.
5301  */
5302 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5303 {
5304 	u64 chunk_offset;
5305 
5306 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
5307 	chunk_offset = find_next_chunk(trans->fs_info);
5308 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5309 }
5310 
5311 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5312 {
5313 	struct btrfs_fs_info *fs_info = trans->fs_info;
5314 	u64 chunk_offset;
5315 	u64 sys_chunk_offset;
5316 	u64 alloc_profile;
5317 	int ret;
5318 
5319 	chunk_offset = find_next_chunk(fs_info);
5320 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5321 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5322 	if (ret)
5323 		return ret;
5324 
5325 	sys_chunk_offset = find_next_chunk(fs_info);
5326 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5327 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5328 	return ret;
5329 }
5330 
5331 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5332 {
5333 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5334 
5335 	return btrfs_raid_array[index].tolerated_failures;
5336 }
5337 
5338 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5339 {
5340 	struct extent_map *em;
5341 	struct map_lookup *map;
5342 	int readonly = 0;
5343 	int miss_ndevs = 0;
5344 	int i;
5345 
5346 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5347 	if (IS_ERR(em))
5348 		return 1;
5349 
5350 	map = em->map_lookup;
5351 	for (i = 0; i < map->num_stripes; i++) {
5352 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5353 					&map->stripes[i].dev->dev_state)) {
5354 			miss_ndevs++;
5355 			continue;
5356 		}
5357 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5358 					&map->stripes[i].dev->dev_state)) {
5359 			readonly = 1;
5360 			goto end;
5361 		}
5362 	}
5363 
5364 	/*
5365 	 * If the number of missing devices is larger than max errors,
5366 	 * we can not write the data into that chunk successfully, so
5367 	 * set it readonly.
5368 	 */
5369 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5370 		readonly = 1;
5371 end:
5372 	free_extent_map(em);
5373 	return readonly;
5374 }
5375 
5376 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5377 {
5378 	struct extent_map *em;
5379 
5380 	while (1) {
5381 		write_lock(&tree->lock);
5382 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5383 		if (em)
5384 			remove_extent_mapping(tree, em);
5385 		write_unlock(&tree->lock);
5386 		if (!em)
5387 			break;
5388 		/* once for us */
5389 		free_extent_map(em);
5390 		/* once for the tree */
5391 		free_extent_map(em);
5392 	}
5393 }
5394 
5395 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5396 {
5397 	struct extent_map *em;
5398 	struct map_lookup *map;
5399 	int ret;
5400 
5401 	em = btrfs_get_chunk_map(fs_info, logical, len);
5402 	if (IS_ERR(em))
5403 		/*
5404 		 * We could return errors for these cases, but that could get
5405 		 * ugly and we'd probably do the same thing which is just not do
5406 		 * anything else and exit, so return 1 so the callers don't try
5407 		 * to use other copies.
5408 		 */
5409 		return 1;
5410 
5411 	map = em->map_lookup;
5412 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5413 		ret = map->num_stripes;
5414 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5415 		ret = map->sub_stripes;
5416 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5417 		ret = 2;
5418 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5419 		/*
5420 		 * There could be two corrupted data stripes, we need
5421 		 * to loop retry in order to rebuild the correct data.
5422 		 *
5423 		 * Fail a stripe at a time on every retry except the
5424 		 * stripe under reconstruction.
5425 		 */
5426 		ret = map->num_stripes;
5427 	else
5428 		ret = 1;
5429 	free_extent_map(em);
5430 
5431 	down_read(&fs_info->dev_replace.rwsem);
5432 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5433 	    fs_info->dev_replace.tgtdev)
5434 		ret++;
5435 	up_read(&fs_info->dev_replace.rwsem);
5436 
5437 	return ret;
5438 }
5439 
5440 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5441 				    u64 logical)
5442 {
5443 	struct extent_map *em;
5444 	struct map_lookup *map;
5445 	unsigned long len = fs_info->sectorsize;
5446 
5447 	em = btrfs_get_chunk_map(fs_info, logical, len);
5448 
5449 	if (!WARN_ON(IS_ERR(em))) {
5450 		map = em->map_lookup;
5451 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5452 			len = map->stripe_len * nr_data_stripes(map);
5453 		free_extent_map(em);
5454 	}
5455 	return len;
5456 }
5457 
5458 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5459 {
5460 	struct extent_map *em;
5461 	struct map_lookup *map;
5462 	int ret = 0;
5463 
5464 	em = btrfs_get_chunk_map(fs_info, logical, len);
5465 
5466 	if(!WARN_ON(IS_ERR(em))) {
5467 		map = em->map_lookup;
5468 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5469 			ret = 1;
5470 		free_extent_map(em);
5471 	}
5472 	return ret;
5473 }
5474 
5475 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5476 			    struct map_lookup *map, int first,
5477 			    int dev_replace_is_ongoing)
5478 {
5479 	int i;
5480 	int num_stripes;
5481 	int preferred_mirror;
5482 	int tolerance;
5483 	struct btrfs_device *srcdev;
5484 
5485 	ASSERT((map->type &
5486 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5487 
5488 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5489 		num_stripes = map->sub_stripes;
5490 	else
5491 		num_stripes = map->num_stripes;
5492 
5493 	preferred_mirror = first + current->pid % num_stripes;
5494 
5495 	if (dev_replace_is_ongoing &&
5496 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5497 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5498 		srcdev = fs_info->dev_replace.srcdev;
5499 	else
5500 		srcdev = NULL;
5501 
5502 	/*
5503 	 * try to avoid the drive that is the source drive for a
5504 	 * dev-replace procedure, only choose it if no other non-missing
5505 	 * mirror is available
5506 	 */
5507 	for (tolerance = 0; tolerance < 2; tolerance++) {
5508 		if (map->stripes[preferred_mirror].dev->bdev &&
5509 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5510 			return preferred_mirror;
5511 		for (i = first; i < first + num_stripes; i++) {
5512 			if (map->stripes[i].dev->bdev &&
5513 			    (tolerance || map->stripes[i].dev != srcdev))
5514 				return i;
5515 		}
5516 	}
5517 
5518 	/* we couldn't find one that doesn't fail.  Just return something
5519 	 * and the io error handling code will clean up eventually
5520 	 */
5521 	return preferred_mirror;
5522 }
5523 
5524 static inline int parity_smaller(u64 a, u64 b)
5525 {
5526 	return a > b;
5527 }
5528 
5529 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5530 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5531 {
5532 	struct btrfs_bio_stripe s;
5533 	int i;
5534 	u64 l;
5535 	int again = 1;
5536 
5537 	while (again) {
5538 		again = 0;
5539 		for (i = 0; i < num_stripes - 1; i++) {
5540 			if (parity_smaller(bbio->raid_map[i],
5541 					   bbio->raid_map[i+1])) {
5542 				s = bbio->stripes[i];
5543 				l = bbio->raid_map[i];
5544 				bbio->stripes[i] = bbio->stripes[i+1];
5545 				bbio->raid_map[i] = bbio->raid_map[i+1];
5546 				bbio->stripes[i+1] = s;
5547 				bbio->raid_map[i+1] = l;
5548 
5549 				again = 1;
5550 			}
5551 		}
5552 	}
5553 }
5554 
5555 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5556 {
5557 	struct btrfs_bio *bbio = kzalloc(
5558 		 /* the size of the btrfs_bio */
5559 		sizeof(struct btrfs_bio) +
5560 		/* plus the variable array for the stripes */
5561 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5562 		/* plus the variable array for the tgt dev */
5563 		sizeof(int) * (real_stripes) +
5564 		/*
5565 		 * plus the raid_map, which includes both the tgt dev
5566 		 * and the stripes
5567 		 */
5568 		sizeof(u64) * (total_stripes),
5569 		GFP_NOFS|__GFP_NOFAIL);
5570 
5571 	atomic_set(&bbio->error, 0);
5572 	refcount_set(&bbio->refs, 1);
5573 
5574 	return bbio;
5575 }
5576 
5577 void btrfs_get_bbio(struct btrfs_bio *bbio)
5578 {
5579 	WARN_ON(!refcount_read(&bbio->refs));
5580 	refcount_inc(&bbio->refs);
5581 }
5582 
5583 void btrfs_put_bbio(struct btrfs_bio *bbio)
5584 {
5585 	if (!bbio)
5586 		return;
5587 	if (refcount_dec_and_test(&bbio->refs))
5588 		kfree(bbio);
5589 }
5590 
5591 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5592 /*
5593  * Please note that, discard won't be sent to target device of device
5594  * replace.
5595  */
5596 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5597 					 u64 logical, u64 length,
5598 					 struct btrfs_bio **bbio_ret)
5599 {
5600 	struct extent_map *em;
5601 	struct map_lookup *map;
5602 	struct btrfs_bio *bbio;
5603 	u64 offset;
5604 	u64 stripe_nr;
5605 	u64 stripe_nr_end;
5606 	u64 stripe_end_offset;
5607 	u64 stripe_cnt;
5608 	u64 stripe_len;
5609 	u64 stripe_offset;
5610 	u64 num_stripes;
5611 	u32 stripe_index;
5612 	u32 factor = 0;
5613 	u32 sub_stripes = 0;
5614 	u64 stripes_per_dev = 0;
5615 	u32 remaining_stripes = 0;
5616 	u32 last_stripe = 0;
5617 	int ret = 0;
5618 	int i;
5619 
5620 	/* discard always return a bbio */
5621 	ASSERT(bbio_ret);
5622 
5623 	em = btrfs_get_chunk_map(fs_info, logical, length);
5624 	if (IS_ERR(em))
5625 		return PTR_ERR(em);
5626 
5627 	map = em->map_lookup;
5628 	/* we don't discard raid56 yet */
5629 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5630 		ret = -EOPNOTSUPP;
5631 		goto out;
5632 	}
5633 
5634 	offset = logical - em->start;
5635 	length = min_t(u64, em->len - offset, length);
5636 
5637 	stripe_len = map->stripe_len;
5638 	/*
5639 	 * stripe_nr counts the total number of stripes we have to stride
5640 	 * to get to this block
5641 	 */
5642 	stripe_nr = div64_u64(offset, stripe_len);
5643 
5644 	/* stripe_offset is the offset of this block in its stripe */
5645 	stripe_offset = offset - stripe_nr * stripe_len;
5646 
5647 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5648 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5649 	stripe_cnt = stripe_nr_end - stripe_nr;
5650 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5651 			    (offset + length);
5652 	/*
5653 	 * after this, stripe_nr is the number of stripes on this
5654 	 * device we have to walk to find the data, and stripe_index is
5655 	 * the number of our device in the stripe array
5656 	 */
5657 	num_stripes = 1;
5658 	stripe_index = 0;
5659 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5660 			 BTRFS_BLOCK_GROUP_RAID10)) {
5661 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5662 			sub_stripes = 1;
5663 		else
5664 			sub_stripes = map->sub_stripes;
5665 
5666 		factor = map->num_stripes / sub_stripes;
5667 		num_stripes = min_t(u64, map->num_stripes,
5668 				    sub_stripes * stripe_cnt);
5669 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5670 		stripe_index *= sub_stripes;
5671 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5672 					      &remaining_stripes);
5673 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5674 		last_stripe *= sub_stripes;
5675 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5676 				BTRFS_BLOCK_GROUP_DUP)) {
5677 		num_stripes = map->num_stripes;
5678 	} else {
5679 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5680 					&stripe_index);
5681 	}
5682 
5683 	bbio = alloc_btrfs_bio(num_stripes, 0);
5684 	if (!bbio) {
5685 		ret = -ENOMEM;
5686 		goto out;
5687 	}
5688 
5689 	for (i = 0; i < num_stripes; i++) {
5690 		bbio->stripes[i].physical =
5691 			map->stripes[stripe_index].physical +
5692 			stripe_offset + stripe_nr * map->stripe_len;
5693 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5694 
5695 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5696 				 BTRFS_BLOCK_GROUP_RAID10)) {
5697 			bbio->stripes[i].length = stripes_per_dev *
5698 				map->stripe_len;
5699 
5700 			if (i / sub_stripes < remaining_stripes)
5701 				bbio->stripes[i].length +=
5702 					map->stripe_len;
5703 
5704 			/*
5705 			 * Special for the first stripe and
5706 			 * the last stripe:
5707 			 *
5708 			 * |-------|...|-------|
5709 			 *     |----------|
5710 			 *    off     end_off
5711 			 */
5712 			if (i < sub_stripes)
5713 				bbio->stripes[i].length -=
5714 					stripe_offset;
5715 
5716 			if (stripe_index >= last_stripe &&
5717 			    stripe_index <= (last_stripe +
5718 					     sub_stripes - 1))
5719 				bbio->stripes[i].length -=
5720 					stripe_end_offset;
5721 
5722 			if (i == sub_stripes - 1)
5723 				stripe_offset = 0;
5724 		} else {
5725 			bbio->stripes[i].length = length;
5726 		}
5727 
5728 		stripe_index++;
5729 		if (stripe_index == map->num_stripes) {
5730 			stripe_index = 0;
5731 			stripe_nr++;
5732 		}
5733 	}
5734 
5735 	*bbio_ret = bbio;
5736 	bbio->map_type = map->type;
5737 	bbio->num_stripes = num_stripes;
5738 out:
5739 	free_extent_map(em);
5740 	return ret;
5741 }
5742 
5743 /*
5744  * In dev-replace case, for repair case (that's the only case where the mirror
5745  * is selected explicitly when calling btrfs_map_block), blocks left of the
5746  * left cursor can also be read from the target drive.
5747  *
5748  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5749  * array of stripes.
5750  * For READ, it also needs to be supported using the same mirror number.
5751  *
5752  * If the requested block is not left of the left cursor, EIO is returned. This
5753  * can happen because btrfs_num_copies() returns one more in the dev-replace
5754  * case.
5755  */
5756 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5757 					 u64 logical, u64 length,
5758 					 u64 srcdev_devid, int *mirror_num,
5759 					 u64 *physical)
5760 {
5761 	struct btrfs_bio *bbio = NULL;
5762 	int num_stripes;
5763 	int index_srcdev = 0;
5764 	int found = 0;
5765 	u64 physical_of_found = 0;
5766 	int i;
5767 	int ret = 0;
5768 
5769 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5770 				logical, &length, &bbio, 0, 0);
5771 	if (ret) {
5772 		ASSERT(bbio == NULL);
5773 		return ret;
5774 	}
5775 
5776 	num_stripes = bbio->num_stripes;
5777 	if (*mirror_num > num_stripes) {
5778 		/*
5779 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5780 		 * that means that the requested area is not left of the left
5781 		 * cursor
5782 		 */
5783 		btrfs_put_bbio(bbio);
5784 		return -EIO;
5785 	}
5786 
5787 	/*
5788 	 * process the rest of the function using the mirror_num of the source
5789 	 * drive. Therefore look it up first.  At the end, patch the device
5790 	 * pointer to the one of the target drive.
5791 	 */
5792 	for (i = 0; i < num_stripes; i++) {
5793 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5794 			continue;
5795 
5796 		/*
5797 		 * In case of DUP, in order to keep it simple, only add the
5798 		 * mirror with the lowest physical address
5799 		 */
5800 		if (found &&
5801 		    physical_of_found <= bbio->stripes[i].physical)
5802 			continue;
5803 
5804 		index_srcdev = i;
5805 		found = 1;
5806 		physical_of_found = bbio->stripes[i].physical;
5807 	}
5808 
5809 	btrfs_put_bbio(bbio);
5810 
5811 	ASSERT(found);
5812 	if (!found)
5813 		return -EIO;
5814 
5815 	*mirror_num = index_srcdev + 1;
5816 	*physical = physical_of_found;
5817 	return ret;
5818 }
5819 
5820 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5821 				      struct btrfs_bio **bbio_ret,
5822 				      struct btrfs_dev_replace *dev_replace,
5823 				      int *num_stripes_ret, int *max_errors_ret)
5824 {
5825 	struct btrfs_bio *bbio = *bbio_ret;
5826 	u64 srcdev_devid = dev_replace->srcdev->devid;
5827 	int tgtdev_indexes = 0;
5828 	int num_stripes = *num_stripes_ret;
5829 	int max_errors = *max_errors_ret;
5830 	int i;
5831 
5832 	if (op == BTRFS_MAP_WRITE) {
5833 		int index_where_to_add;
5834 
5835 		/*
5836 		 * duplicate the write operations while the dev replace
5837 		 * procedure is running. Since the copying of the old disk to
5838 		 * the new disk takes place at run time while the filesystem is
5839 		 * mounted writable, the regular write operations to the old
5840 		 * disk have to be duplicated to go to the new disk as well.
5841 		 *
5842 		 * Note that device->missing is handled by the caller, and that
5843 		 * the write to the old disk is already set up in the stripes
5844 		 * array.
5845 		 */
5846 		index_where_to_add = num_stripes;
5847 		for (i = 0; i < num_stripes; i++) {
5848 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5849 				/* write to new disk, too */
5850 				struct btrfs_bio_stripe *new =
5851 					bbio->stripes + index_where_to_add;
5852 				struct btrfs_bio_stripe *old =
5853 					bbio->stripes + i;
5854 
5855 				new->physical = old->physical;
5856 				new->length = old->length;
5857 				new->dev = dev_replace->tgtdev;
5858 				bbio->tgtdev_map[i] = index_where_to_add;
5859 				index_where_to_add++;
5860 				max_errors++;
5861 				tgtdev_indexes++;
5862 			}
5863 		}
5864 		num_stripes = index_where_to_add;
5865 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5866 		int index_srcdev = 0;
5867 		int found = 0;
5868 		u64 physical_of_found = 0;
5869 
5870 		/*
5871 		 * During the dev-replace procedure, the target drive can also
5872 		 * be used to read data in case it is needed to repair a corrupt
5873 		 * block elsewhere. This is possible if the requested area is
5874 		 * left of the left cursor. In this area, the target drive is a
5875 		 * full copy of the source drive.
5876 		 */
5877 		for (i = 0; i < num_stripes; i++) {
5878 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5879 				/*
5880 				 * In case of DUP, in order to keep it simple,
5881 				 * only add the mirror with the lowest physical
5882 				 * address
5883 				 */
5884 				if (found &&
5885 				    physical_of_found <=
5886 				     bbio->stripes[i].physical)
5887 					continue;
5888 				index_srcdev = i;
5889 				found = 1;
5890 				physical_of_found = bbio->stripes[i].physical;
5891 			}
5892 		}
5893 		if (found) {
5894 			struct btrfs_bio_stripe *tgtdev_stripe =
5895 				bbio->stripes + num_stripes;
5896 
5897 			tgtdev_stripe->physical = physical_of_found;
5898 			tgtdev_stripe->length =
5899 				bbio->stripes[index_srcdev].length;
5900 			tgtdev_stripe->dev = dev_replace->tgtdev;
5901 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5902 
5903 			tgtdev_indexes++;
5904 			num_stripes++;
5905 		}
5906 	}
5907 
5908 	*num_stripes_ret = num_stripes;
5909 	*max_errors_ret = max_errors;
5910 	bbio->num_tgtdevs = tgtdev_indexes;
5911 	*bbio_ret = bbio;
5912 }
5913 
5914 static bool need_full_stripe(enum btrfs_map_op op)
5915 {
5916 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5917 }
5918 
5919 /*
5920  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5921  *		       tuple. This information is used to calculate how big a
5922  *		       particular bio can get before it straddles a stripe.
5923  *
5924  * @fs_info - the filesystem
5925  * @logical - address that we want to figure out the geometry of
5926  * @len	    - the length of IO we are going to perform, starting at @logical
5927  * @op      - type of operation - write or read
5928  * @io_geom - pointer used to return values
5929  *
5930  * Returns < 0 in case a chunk for the given logical address cannot be found,
5931  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5932  */
5933 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5934 			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5935 {
5936 	struct extent_map *em;
5937 	struct map_lookup *map;
5938 	u64 offset;
5939 	u64 stripe_offset;
5940 	u64 stripe_nr;
5941 	u64 stripe_len;
5942 	u64 raid56_full_stripe_start = (u64)-1;
5943 	int data_stripes;
5944 	int ret = 0;
5945 
5946 	ASSERT(op != BTRFS_MAP_DISCARD);
5947 
5948 	em = btrfs_get_chunk_map(fs_info, logical, len);
5949 	if (IS_ERR(em))
5950 		return PTR_ERR(em);
5951 
5952 	map = em->map_lookup;
5953 	/* Offset of this logical address in the chunk */
5954 	offset = logical - em->start;
5955 	/* Len of a stripe in a chunk */
5956 	stripe_len = map->stripe_len;
5957 	/* Stripe wher this block falls in */
5958 	stripe_nr = div64_u64(offset, stripe_len);
5959 	/* Offset of stripe in the chunk */
5960 	stripe_offset = stripe_nr * stripe_len;
5961 	if (offset < stripe_offset) {
5962 		btrfs_crit(fs_info,
5963 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5964 			stripe_offset, offset, em->start, logical, stripe_len);
5965 		ret = -EINVAL;
5966 		goto out;
5967 	}
5968 
5969 	/* stripe_offset is the offset of this block in its stripe */
5970 	stripe_offset = offset - stripe_offset;
5971 	data_stripes = nr_data_stripes(map);
5972 
5973 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5974 		u64 max_len = stripe_len - stripe_offset;
5975 
5976 		/*
5977 		 * In case of raid56, we need to know the stripe aligned start
5978 		 */
5979 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5980 			unsigned long full_stripe_len = stripe_len * data_stripes;
5981 			raid56_full_stripe_start = offset;
5982 
5983 			/*
5984 			 * Allow a write of a full stripe, but make sure we
5985 			 * don't allow straddling of stripes
5986 			 */
5987 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5988 					full_stripe_len);
5989 			raid56_full_stripe_start *= full_stripe_len;
5990 
5991 			/*
5992 			 * For writes to RAID[56], allow a full stripeset across
5993 			 * all disks. For other RAID types and for RAID[56]
5994 			 * reads, just allow a single stripe (on a single disk).
5995 			 */
5996 			if (op == BTRFS_MAP_WRITE) {
5997 				max_len = stripe_len * data_stripes -
5998 					  (offset - raid56_full_stripe_start);
5999 			}
6000 		}
6001 		len = min_t(u64, em->len - offset, max_len);
6002 	} else {
6003 		len = em->len - offset;
6004 	}
6005 
6006 	io_geom->len = len;
6007 	io_geom->offset = offset;
6008 	io_geom->stripe_len = stripe_len;
6009 	io_geom->stripe_nr = stripe_nr;
6010 	io_geom->stripe_offset = stripe_offset;
6011 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6012 
6013 out:
6014 	/* once for us */
6015 	free_extent_map(em);
6016 	return ret;
6017 }
6018 
6019 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6020 			     enum btrfs_map_op op,
6021 			     u64 logical, u64 *length,
6022 			     struct btrfs_bio **bbio_ret,
6023 			     int mirror_num, int need_raid_map)
6024 {
6025 	struct extent_map *em;
6026 	struct map_lookup *map;
6027 	u64 offset;
6028 	u64 stripe_offset;
6029 	u64 stripe_nr;
6030 	u64 stripe_len;
6031 	u32 stripe_index;
6032 	int data_stripes;
6033 	int i;
6034 	int ret = 0;
6035 	int num_stripes;
6036 	int max_errors = 0;
6037 	int tgtdev_indexes = 0;
6038 	struct btrfs_bio *bbio = NULL;
6039 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6040 	int dev_replace_is_ongoing = 0;
6041 	int num_alloc_stripes;
6042 	int patch_the_first_stripe_for_dev_replace = 0;
6043 	u64 physical_to_patch_in_first_stripe = 0;
6044 	u64 raid56_full_stripe_start = (u64)-1;
6045 	struct btrfs_io_geometry geom;
6046 
6047 	ASSERT(bbio_ret);
6048 
6049 	if (op == BTRFS_MAP_DISCARD)
6050 		return __btrfs_map_block_for_discard(fs_info, logical,
6051 						     *length, bbio_ret);
6052 
6053 	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6054 	if (ret < 0)
6055 		return ret;
6056 
6057 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6058 	ASSERT(em);
6059 	map = em->map_lookup;
6060 
6061 	*length = geom.len;
6062 	offset = geom.offset;
6063 	stripe_len = geom.stripe_len;
6064 	stripe_nr = geom.stripe_nr;
6065 	stripe_offset = geom.stripe_offset;
6066 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6067 	data_stripes = nr_data_stripes(map);
6068 
6069 	down_read(&dev_replace->rwsem);
6070 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6071 	/*
6072 	 * Hold the semaphore for read during the whole operation, write is
6073 	 * requested at commit time but must wait.
6074 	 */
6075 	if (!dev_replace_is_ongoing)
6076 		up_read(&dev_replace->rwsem);
6077 
6078 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6079 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6080 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6081 						    dev_replace->srcdev->devid,
6082 						    &mirror_num,
6083 					    &physical_to_patch_in_first_stripe);
6084 		if (ret)
6085 			goto out;
6086 		else
6087 			patch_the_first_stripe_for_dev_replace = 1;
6088 	} else if (mirror_num > map->num_stripes) {
6089 		mirror_num = 0;
6090 	}
6091 
6092 	num_stripes = 1;
6093 	stripe_index = 0;
6094 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6095 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6096 				&stripe_index);
6097 		if (!need_full_stripe(op))
6098 			mirror_num = 1;
6099 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6100 		if (need_full_stripe(op))
6101 			num_stripes = map->num_stripes;
6102 		else if (mirror_num)
6103 			stripe_index = mirror_num - 1;
6104 		else {
6105 			stripe_index = find_live_mirror(fs_info, map, 0,
6106 					    dev_replace_is_ongoing);
6107 			mirror_num = stripe_index + 1;
6108 		}
6109 
6110 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6111 		if (need_full_stripe(op)) {
6112 			num_stripes = map->num_stripes;
6113 		} else if (mirror_num) {
6114 			stripe_index = mirror_num - 1;
6115 		} else {
6116 			mirror_num = 1;
6117 		}
6118 
6119 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6120 		u32 factor = map->num_stripes / map->sub_stripes;
6121 
6122 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6123 		stripe_index *= map->sub_stripes;
6124 
6125 		if (need_full_stripe(op))
6126 			num_stripes = map->sub_stripes;
6127 		else if (mirror_num)
6128 			stripe_index += mirror_num - 1;
6129 		else {
6130 			int old_stripe_index = stripe_index;
6131 			stripe_index = find_live_mirror(fs_info, map,
6132 					      stripe_index,
6133 					      dev_replace_is_ongoing);
6134 			mirror_num = stripe_index - old_stripe_index + 1;
6135 		}
6136 
6137 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6138 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6139 			/* push stripe_nr back to the start of the full stripe */
6140 			stripe_nr = div64_u64(raid56_full_stripe_start,
6141 					stripe_len * data_stripes);
6142 
6143 			/* RAID[56] write or recovery. Return all stripes */
6144 			num_stripes = map->num_stripes;
6145 			max_errors = nr_parity_stripes(map);
6146 
6147 			*length = map->stripe_len;
6148 			stripe_index = 0;
6149 			stripe_offset = 0;
6150 		} else {
6151 			/*
6152 			 * Mirror #0 or #1 means the original data block.
6153 			 * Mirror #2 is RAID5 parity block.
6154 			 * Mirror #3 is RAID6 Q block.
6155 			 */
6156 			stripe_nr = div_u64_rem(stripe_nr,
6157 					data_stripes, &stripe_index);
6158 			if (mirror_num > 1)
6159 				stripe_index = data_stripes + mirror_num - 2;
6160 
6161 			/* We distribute the parity blocks across stripes */
6162 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6163 					&stripe_index);
6164 			if (!need_full_stripe(op) && mirror_num <= 1)
6165 				mirror_num = 1;
6166 		}
6167 	} else {
6168 		/*
6169 		 * after this, stripe_nr is the number of stripes on this
6170 		 * device we have to walk to find the data, and stripe_index is
6171 		 * the number of our device in the stripe array
6172 		 */
6173 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6174 				&stripe_index);
6175 		mirror_num = stripe_index + 1;
6176 	}
6177 	if (stripe_index >= map->num_stripes) {
6178 		btrfs_crit(fs_info,
6179 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6180 			   stripe_index, map->num_stripes);
6181 		ret = -EINVAL;
6182 		goto out;
6183 	}
6184 
6185 	num_alloc_stripes = num_stripes;
6186 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6187 		if (op == BTRFS_MAP_WRITE)
6188 			num_alloc_stripes <<= 1;
6189 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6190 			num_alloc_stripes++;
6191 		tgtdev_indexes = num_stripes;
6192 	}
6193 
6194 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6195 	if (!bbio) {
6196 		ret = -ENOMEM;
6197 		goto out;
6198 	}
6199 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6200 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6201 
6202 	/* build raid_map */
6203 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6204 	    (need_full_stripe(op) || mirror_num > 1)) {
6205 		u64 tmp;
6206 		unsigned rot;
6207 
6208 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
6209 				 sizeof(struct btrfs_bio_stripe) *
6210 				 num_alloc_stripes +
6211 				 sizeof(int) * tgtdev_indexes);
6212 
6213 		/* Work out the disk rotation on this stripe-set */
6214 		div_u64_rem(stripe_nr, num_stripes, &rot);
6215 
6216 		/* Fill in the logical address of each stripe */
6217 		tmp = stripe_nr * data_stripes;
6218 		for (i = 0; i < data_stripes; i++)
6219 			bbio->raid_map[(i+rot) % num_stripes] =
6220 				em->start + (tmp + i) * map->stripe_len;
6221 
6222 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6223 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6224 			bbio->raid_map[(i+rot+1) % num_stripes] =
6225 				RAID6_Q_STRIPE;
6226 	}
6227 
6228 
6229 	for (i = 0; i < num_stripes; i++) {
6230 		bbio->stripes[i].physical =
6231 			map->stripes[stripe_index].physical +
6232 			stripe_offset +
6233 			stripe_nr * map->stripe_len;
6234 		bbio->stripes[i].dev =
6235 			map->stripes[stripe_index].dev;
6236 		stripe_index++;
6237 	}
6238 
6239 	if (need_full_stripe(op))
6240 		max_errors = btrfs_chunk_max_errors(map);
6241 
6242 	if (bbio->raid_map)
6243 		sort_parity_stripes(bbio, num_stripes);
6244 
6245 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6246 	    need_full_stripe(op)) {
6247 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6248 					  &max_errors);
6249 	}
6250 
6251 	*bbio_ret = bbio;
6252 	bbio->map_type = map->type;
6253 	bbio->num_stripes = num_stripes;
6254 	bbio->max_errors = max_errors;
6255 	bbio->mirror_num = mirror_num;
6256 
6257 	/*
6258 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6259 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6260 	 * available as a mirror
6261 	 */
6262 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6263 		WARN_ON(num_stripes > 1);
6264 		bbio->stripes[0].dev = dev_replace->tgtdev;
6265 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6266 		bbio->mirror_num = map->num_stripes + 1;
6267 	}
6268 out:
6269 	if (dev_replace_is_ongoing) {
6270 		lockdep_assert_held(&dev_replace->rwsem);
6271 		/* Unlock and let waiting writers proceed */
6272 		up_read(&dev_replace->rwsem);
6273 	}
6274 	free_extent_map(em);
6275 	return ret;
6276 }
6277 
6278 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6279 		      u64 logical, u64 *length,
6280 		      struct btrfs_bio **bbio_ret, int mirror_num)
6281 {
6282 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6283 				 mirror_num, 0);
6284 }
6285 
6286 /* For Scrub/replace */
6287 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6288 		     u64 logical, u64 *length,
6289 		     struct btrfs_bio **bbio_ret)
6290 {
6291 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6292 }
6293 
6294 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6295 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6296 {
6297 	struct extent_map *em;
6298 	struct map_lookup *map;
6299 	u64 *buf;
6300 	u64 bytenr;
6301 	u64 length;
6302 	u64 stripe_nr;
6303 	u64 rmap_len;
6304 	int i, j, nr = 0;
6305 
6306 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6307 	if (IS_ERR(em))
6308 		return -EIO;
6309 
6310 	map = em->map_lookup;
6311 	length = em->len;
6312 	rmap_len = map->stripe_len;
6313 
6314 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6315 		length = div_u64(length, map->num_stripes / map->sub_stripes);
6316 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6317 		length = div_u64(length, map->num_stripes);
6318 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6319 		length = div_u64(length, nr_data_stripes(map));
6320 		rmap_len = map->stripe_len * nr_data_stripes(map);
6321 	}
6322 
6323 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6324 	BUG_ON(!buf); /* -ENOMEM */
6325 
6326 	for (i = 0; i < map->num_stripes; i++) {
6327 		if (map->stripes[i].physical > physical ||
6328 		    map->stripes[i].physical + length <= physical)
6329 			continue;
6330 
6331 		stripe_nr = physical - map->stripes[i].physical;
6332 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6333 
6334 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6335 			stripe_nr = stripe_nr * map->num_stripes + i;
6336 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6337 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6338 			stripe_nr = stripe_nr * map->num_stripes + i;
6339 		} /* else if RAID[56], multiply by nr_data_stripes().
6340 		   * Alternatively, just use rmap_len below instead of
6341 		   * map->stripe_len */
6342 
6343 		bytenr = chunk_start + stripe_nr * rmap_len;
6344 		WARN_ON(nr >= map->num_stripes);
6345 		for (j = 0; j < nr; j++) {
6346 			if (buf[j] == bytenr)
6347 				break;
6348 		}
6349 		if (j == nr) {
6350 			WARN_ON(nr >= map->num_stripes);
6351 			buf[nr++] = bytenr;
6352 		}
6353 	}
6354 
6355 	*logical = buf;
6356 	*naddrs = nr;
6357 	*stripe_len = rmap_len;
6358 
6359 	free_extent_map(em);
6360 	return 0;
6361 }
6362 
6363 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6364 {
6365 	bio->bi_private = bbio->private;
6366 	bio->bi_end_io = bbio->end_io;
6367 	bio_endio(bio);
6368 
6369 	btrfs_put_bbio(bbio);
6370 }
6371 
6372 static void btrfs_end_bio(struct bio *bio)
6373 {
6374 	struct btrfs_bio *bbio = bio->bi_private;
6375 	int is_orig_bio = 0;
6376 
6377 	if (bio->bi_status) {
6378 		atomic_inc(&bbio->error);
6379 		if (bio->bi_status == BLK_STS_IOERR ||
6380 		    bio->bi_status == BLK_STS_TARGET) {
6381 			unsigned int stripe_index =
6382 				btrfs_io_bio(bio)->stripe_index;
6383 			struct btrfs_device *dev;
6384 
6385 			BUG_ON(stripe_index >= bbio->num_stripes);
6386 			dev = bbio->stripes[stripe_index].dev;
6387 			if (dev->bdev) {
6388 				if (bio_op(bio) == REQ_OP_WRITE)
6389 					btrfs_dev_stat_inc_and_print(dev,
6390 						BTRFS_DEV_STAT_WRITE_ERRS);
6391 				else if (!(bio->bi_opf & REQ_RAHEAD))
6392 					btrfs_dev_stat_inc_and_print(dev,
6393 						BTRFS_DEV_STAT_READ_ERRS);
6394 				if (bio->bi_opf & REQ_PREFLUSH)
6395 					btrfs_dev_stat_inc_and_print(dev,
6396 						BTRFS_DEV_STAT_FLUSH_ERRS);
6397 			}
6398 		}
6399 	}
6400 
6401 	if (bio == bbio->orig_bio)
6402 		is_orig_bio = 1;
6403 
6404 	btrfs_bio_counter_dec(bbio->fs_info);
6405 
6406 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6407 		if (!is_orig_bio) {
6408 			bio_put(bio);
6409 			bio = bbio->orig_bio;
6410 		}
6411 
6412 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6413 		/* only send an error to the higher layers if it is
6414 		 * beyond the tolerance of the btrfs bio
6415 		 */
6416 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6417 			bio->bi_status = BLK_STS_IOERR;
6418 		} else {
6419 			/*
6420 			 * this bio is actually up to date, we didn't
6421 			 * go over the max number of errors
6422 			 */
6423 			bio->bi_status = BLK_STS_OK;
6424 		}
6425 
6426 		btrfs_end_bbio(bbio, bio);
6427 	} else if (!is_orig_bio) {
6428 		bio_put(bio);
6429 	}
6430 }
6431 
6432 /*
6433  * see run_scheduled_bios for a description of why bios are collected for
6434  * async submit.
6435  *
6436  * This will add one bio to the pending list for a device and make sure
6437  * the work struct is scheduled.
6438  */
6439 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6440 					struct bio *bio)
6441 {
6442 	struct btrfs_fs_info *fs_info = device->fs_info;
6443 	int should_queue = 1;
6444 	struct btrfs_pending_bios *pending_bios;
6445 
6446 	/* don't bother with additional async steps for reads, right now */
6447 	if (bio_op(bio) == REQ_OP_READ) {
6448 		btrfsic_submit_bio(bio);
6449 		return;
6450 	}
6451 
6452 	WARN_ON(bio->bi_next);
6453 	bio->bi_next = NULL;
6454 
6455 	spin_lock(&device->io_lock);
6456 	if (op_is_sync(bio->bi_opf))
6457 		pending_bios = &device->pending_sync_bios;
6458 	else
6459 		pending_bios = &device->pending_bios;
6460 
6461 	if (pending_bios->tail)
6462 		pending_bios->tail->bi_next = bio;
6463 
6464 	pending_bios->tail = bio;
6465 	if (!pending_bios->head)
6466 		pending_bios->head = bio;
6467 	if (device->running_pending)
6468 		should_queue = 0;
6469 
6470 	spin_unlock(&device->io_lock);
6471 
6472 	if (should_queue)
6473 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6474 }
6475 
6476 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6477 			      u64 physical, int dev_nr, int async)
6478 {
6479 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6480 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6481 
6482 	bio->bi_private = bbio;
6483 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6484 	bio->bi_end_io = btrfs_end_bio;
6485 	bio->bi_iter.bi_sector = physical >> 9;
6486 	btrfs_debug_in_rcu(fs_info,
6487 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6488 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6489 		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6490 		bio->bi_iter.bi_size);
6491 	bio_set_dev(bio, dev->bdev);
6492 
6493 	btrfs_bio_counter_inc_noblocked(fs_info);
6494 
6495 	if (async)
6496 		btrfs_schedule_bio(dev, bio);
6497 	else
6498 		btrfsic_submit_bio(bio);
6499 }
6500 
6501 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6502 {
6503 	atomic_inc(&bbio->error);
6504 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6505 		/* Should be the original bio. */
6506 		WARN_ON(bio != bbio->orig_bio);
6507 
6508 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6509 		bio->bi_iter.bi_sector = logical >> 9;
6510 		if (atomic_read(&bbio->error) > bbio->max_errors)
6511 			bio->bi_status = BLK_STS_IOERR;
6512 		else
6513 			bio->bi_status = BLK_STS_OK;
6514 		btrfs_end_bbio(bbio, bio);
6515 	}
6516 }
6517 
6518 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6519 			   int mirror_num, int async_submit)
6520 {
6521 	struct btrfs_device *dev;
6522 	struct bio *first_bio = bio;
6523 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6524 	u64 length = 0;
6525 	u64 map_length;
6526 	int ret;
6527 	int dev_nr;
6528 	int total_devs;
6529 	struct btrfs_bio *bbio = NULL;
6530 
6531 	length = bio->bi_iter.bi_size;
6532 	map_length = length;
6533 
6534 	btrfs_bio_counter_inc_blocked(fs_info);
6535 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6536 				&map_length, &bbio, mirror_num, 1);
6537 	if (ret) {
6538 		btrfs_bio_counter_dec(fs_info);
6539 		return errno_to_blk_status(ret);
6540 	}
6541 
6542 	total_devs = bbio->num_stripes;
6543 	bbio->orig_bio = first_bio;
6544 	bbio->private = first_bio->bi_private;
6545 	bbio->end_io = first_bio->bi_end_io;
6546 	bbio->fs_info = fs_info;
6547 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6548 
6549 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6550 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6551 		/* In this case, map_length has been set to the length of
6552 		   a single stripe; not the whole write */
6553 		if (bio_op(bio) == REQ_OP_WRITE) {
6554 			ret = raid56_parity_write(fs_info, bio, bbio,
6555 						  map_length);
6556 		} else {
6557 			ret = raid56_parity_recover(fs_info, bio, bbio,
6558 						    map_length, mirror_num, 1);
6559 		}
6560 
6561 		btrfs_bio_counter_dec(fs_info);
6562 		return errno_to_blk_status(ret);
6563 	}
6564 
6565 	if (map_length < length) {
6566 		btrfs_crit(fs_info,
6567 			   "mapping failed logical %llu bio len %llu len %llu",
6568 			   logical, length, map_length);
6569 		BUG();
6570 	}
6571 
6572 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6573 		dev = bbio->stripes[dev_nr].dev;
6574 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6575 						   &dev->dev_state) ||
6576 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6577 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6578 			bbio_error(bbio, first_bio, logical);
6579 			continue;
6580 		}
6581 
6582 		if (dev_nr < total_devs - 1)
6583 			bio = btrfs_bio_clone(first_bio);
6584 		else
6585 			bio = first_bio;
6586 
6587 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6588 				  dev_nr, async_submit);
6589 	}
6590 	btrfs_bio_counter_dec(fs_info);
6591 	return BLK_STS_OK;
6592 }
6593 
6594 /*
6595  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6596  * return NULL.
6597  *
6598  * If devid and uuid are both specified, the match must be exact, otherwise
6599  * only devid is used.
6600  *
6601  * If @seed is true, traverse through the seed devices.
6602  */
6603 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6604 				       u64 devid, u8 *uuid, u8 *fsid,
6605 				       bool seed)
6606 {
6607 	struct btrfs_device *device;
6608 
6609 	while (fs_devices) {
6610 		if (!fsid ||
6611 		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6612 			list_for_each_entry(device, &fs_devices->devices,
6613 					    dev_list) {
6614 				if (device->devid == devid &&
6615 				    (!uuid || memcmp(device->uuid, uuid,
6616 						     BTRFS_UUID_SIZE) == 0))
6617 					return device;
6618 			}
6619 		}
6620 		if (seed)
6621 			fs_devices = fs_devices->seed;
6622 		else
6623 			return NULL;
6624 	}
6625 	return NULL;
6626 }
6627 
6628 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6629 					    u64 devid, u8 *dev_uuid)
6630 {
6631 	struct btrfs_device *device;
6632 
6633 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6634 	if (IS_ERR(device))
6635 		return device;
6636 
6637 	list_add(&device->dev_list, &fs_devices->devices);
6638 	device->fs_devices = fs_devices;
6639 	fs_devices->num_devices++;
6640 
6641 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6642 	fs_devices->missing_devices++;
6643 
6644 	return device;
6645 }
6646 
6647 /**
6648  * btrfs_alloc_device - allocate struct btrfs_device
6649  * @fs_info:	used only for generating a new devid, can be NULL if
6650  *		devid is provided (i.e. @devid != NULL).
6651  * @devid:	a pointer to devid for this device.  If NULL a new devid
6652  *		is generated.
6653  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6654  *		is generated.
6655  *
6656  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6657  * on error.  Returned struct is not linked onto any lists and must be
6658  * destroyed with btrfs_free_device.
6659  */
6660 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6661 					const u64 *devid,
6662 					const u8 *uuid)
6663 {
6664 	struct btrfs_device *dev;
6665 	u64 tmp;
6666 
6667 	if (WARN_ON(!devid && !fs_info))
6668 		return ERR_PTR(-EINVAL);
6669 
6670 	dev = __alloc_device();
6671 	if (IS_ERR(dev))
6672 		return dev;
6673 
6674 	if (devid)
6675 		tmp = *devid;
6676 	else {
6677 		int ret;
6678 
6679 		ret = find_next_devid(fs_info, &tmp);
6680 		if (ret) {
6681 			btrfs_free_device(dev);
6682 			return ERR_PTR(ret);
6683 		}
6684 	}
6685 	dev->devid = tmp;
6686 
6687 	if (uuid)
6688 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6689 	else
6690 		generate_random_uuid(dev->uuid);
6691 
6692 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6693 			pending_bios_fn, NULL, NULL);
6694 
6695 	return dev;
6696 }
6697 
6698 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6699 					u64 devid, u8 *uuid, bool error)
6700 {
6701 	if (error)
6702 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6703 			      devid, uuid);
6704 	else
6705 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6706 			      devid, uuid);
6707 }
6708 
6709 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6710 {
6711 	int index = btrfs_bg_flags_to_raid_index(type);
6712 	int ncopies = btrfs_raid_array[index].ncopies;
6713 	int data_stripes;
6714 
6715 	switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6716 	case BTRFS_BLOCK_GROUP_RAID5:
6717 		data_stripes = num_stripes - 1;
6718 		break;
6719 	case BTRFS_BLOCK_GROUP_RAID6:
6720 		data_stripes = num_stripes - 2;
6721 		break;
6722 	default:
6723 		data_stripes = num_stripes / ncopies;
6724 		break;
6725 	}
6726 	return div_u64(chunk_len, data_stripes);
6727 }
6728 
6729 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6730 			  struct btrfs_chunk *chunk)
6731 {
6732 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6733 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6734 	struct map_lookup *map;
6735 	struct extent_map *em;
6736 	u64 logical;
6737 	u64 length;
6738 	u64 devid;
6739 	u8 uuid[BTRFS_UUID_SIZE];
6740 	int num_stripes;
6741 	int ret;
6742 	int i;
6743 
6744 	logical = key->offset;
6745 	length = btrfs_chunk_length(leaf, chunk);
6746 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6747 
6748 	/*
6749 	 * Only need to verify chunk item if we're reading from sys chunk array,
6750 	 * as chunk item in tree block is already verified by tree-checker.
6751 	 */
6752 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6753 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6754 		if (ret)
6755 			return ret;
6756 	}
6757 
6758 	read_lock(&map_tree->lock);
6759 	em = lookup_extent_mapping(map_tree, logical, 1);
6760 	read_unlock(&map_tree->lock);
6761 
6762 	/* already mapped? */
6763 	if (em && em->start <= logical && em->start + em->len > logical) {
6764 		free_extent_map(em);
6765 		return 0;
6766 	} else if (em) {
6767 		free_extent_map(em);
6768 	}
6769 
6770 	em = alloc_extent_map();
6771 	if (!em)
6772 		return -ENOMEM;
6773 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6774 	if (!map) {
6775 		free_extent_map(em);
6776 		return -ENOMEM;
6777 	}
6778 
6779 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6780 	em->map_lookup = map;
6781 	em->start = logical;
6782 	em->len = length;
6783 	em->orig_start = 0;
6784 	em->block_start = 0;
6785 	em->block_len = em->len;
6786 
6787 	map->num_stripes = num_stripes;
6788 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6789 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6790 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6791 	map->type = btrfs_chunk_type(leaf, chunk);
6792 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6793 	map->verified_stripes = 0;
6794 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6795 						map->num_stripes);
6796 	for (i = 0; i < num_stripes; i++) {
6797 		map->stripes[i].physical =
6798 			btrfs_stripe_offset_nr(leaf, chunk, i);
6799 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6800 		read_extent_buffer(leaf, uuid, (unsigned long)
6801 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6802 				   BTRFS_UUID_SIZE);
6803 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6804 							devid, uuid, NULL, true);
6805 		if (!map->stripes[i].dev &&
6806 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6807 			free_extent_map(em);
6808 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6809 			return -ENOENT;
6810 		}
6811 		if (!map->stripes[i].dev) {
6812 			map->stripes[i].dev =
6813 				add_missing_dev(fs_info->fs_devices, devid,
6814 						uuid);
6815 			if (IS_ERR(map->stripes[i].dev)) {
6816 				free_extent_map(em);
6817 				btrfs_err(fs_info,
6818 					"failed to init missing dev %llu: %ld",
6819 					devid, PTR_ERR(map->stripes[i].dev));
6820 				return PTR_ERR(map->stripes[i].dev);
6821 			}
6822 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6823 		}
6824 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6825 				&(map->stripes[i].dev->dev_state));
6826 
6827 	}
6828 
6829 	write_lock(&map_tree->lock);
6830 	ret = add_extent_mapping(map_tree, em, 0);
6831 	write_unlock(&map_tree->lock);
6832 	if (ret < 0) {
6833 		btrfs_err(fs_info,
6834 			  "failed to add chunk map, start=%llu len=%llu: %d",
6835 			  em->start, em->len, ret);
6836 	}
6837 	free_extent_map(em);
6838 
6839 	return ret;
6840 }
6841 
6842 static void fill_device_from_item(struct extent_buffer *leaf,
6843 				 struct btrfs_dev_item *dev_item,
6844 				 struct btrfs_device *device)
6845 {
6846 	unsigned long ptr;
6847 
6848 	device->devid = btrfs_device_id(leaf, dev_item);
6849 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6850 	device->total_bytes = device->disk_total_bytes;
6851 	device->commit_total_bytes = device->disk_total_bytes;
6852 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6853 	device->commit_bytes_used = device->bytes_used;
6854 	device->type = btrfs_device_type(leaf, dev_item);
6855 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6856 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6857 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6858 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6859 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6860 
6861 	ptr = btrfs_device_uuid(dev_item);
6862 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6863 }
6864 
6865 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6866 						  u8 *fsid)
6867 {
6868 	struct btrfs_fs_devices *fs_devices;
6869 	int ret;
6870 
6871 	lockdep_assert_held(&uuid_mutex);
6872 	ASSERT(fsid);
6873 
6874 	fs_devices = fs_info->fs_devices->seed;
6875 	while (fs_devices) {
6876 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6877 			return fs_devices;
6878 
6879 		fs_devices = fs_devices->seed;
6880 	}
6881 
6882 	fs_devices = find_fsid(fsid, NULL);
6883 	if (!fs_devices) {
6884 		if (!btrfs_test_opt(fs_info, DEGRADED))
6885 			return ERR_PTR(-ENOENT);
6886 
6887 		fs_devices = alloc_fs_devices(fsid, NULL);
6888 		if (IS_ERR(fs_devices))
6889 			return fs_devices;
6890 
6891 		fs_devices->seeding = 1;
6892 		fs_devices->opened = 1;
6893 		return fs_devices;
6894 	}
6895 
6896 	fs_devices = clone_fs_devices(fs_devices);
6897 	if (IS_ERR(fs_devices))
6898 		return fs_devices;
6899 
6900 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6901 	if (ret) {
6902 		free_fs_devices(fs_devices);
6903 		fs_devices = ERR_PTR(ret);
6904 		goto out;
6905 	}
6906 
6907 	if (!fs_devices->seeding) {
6908 		close_fs_devices(fs_devices);
6909 		free_fs_devices(fs_devices);
6910 		fs_devices = ERR_PTR(-EINVAL);
6911 		goto out;
6912 	}
6913 
6914 	fs_devices->seed = fs_info->fs_devices->seed;
6915 	fs_info->fs_devices->seed = fs_devices;
6916 out:
6917 	return fs_devices;
6918 }
6919 
6920 static int read_one_dev(struct extent_buffer *leaf,
6921 			struct btrfs_dev_item *dev_item)
6922 {
6923 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6924 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6925 	struct btrfs_device *device;
6926 	u64 devid;
6927 	int ret;
6928 	u8 fs_uuid[BTRFS_FSID_SIZE];
6929 	u8 dev_uuid[BTRFS_UUID_SIZE];
6930 
6931 	devid = btrfs_device_id(leaf, dev_item);
6932 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6933 			   BTRFS_UUID_SIZE);
6934 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6935 			   BTRFS_FSID_SIZE);
6936 
6937 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6938 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6939 		if (IS_ERR(fs_devices))
6940 			return PTR_ERR(fs_devices);
6941 	}
6942 
6943 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6944 				   fs_uuid, true);
6945 	if (!device) {
6946 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6947 			btrfs_report_missing_device(fs_info, devid,
6948 							dev_uuid, true);
6949 			return -ENOENT;
6950 		}
6951 
6952 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6953 		if (IS_ERR(device)) {
6954 			btrfs_err(fs_info,
6955 				"failed to add missing dev %llu: %ld",
6956 				devid, PTR_ERR(device));
6957 			return PTR_ERR(device);
6958 		}
6959 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6960 	} else {
6961 		if (!device->bdev) {
6962 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6963 				btrfs_report_missing_device(fs_info,
6964 						devid, dev_uuid, true);
6965 				return -ENOENT;
6966 			}
6967 			btrfs_report_missing_device(fs_info, devid,
6968 							dev_uuid, false);
6969 		}
6970 
6971 		if (!device->bdev &&
6972 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6973 			/*
6974 			 * this happens when a device that was properly setup
6975 			 * in the device info lists suddenly goes bad.
6976 			 * device->bdev is NULL, and so we have to set
6977 			 * device->missing to one here
6978 			 */
6979 			device->fs_devices->missing_devices++;
6980 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6981 		}
6982 
6983 		/* Move the device to its own fs_devices */
6984 		if (device->fs_devices != fs_devices) {
6985 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6986 							&device->dev_state));
6987 
6988 			list_move(&device->dev_list, &fs_devices->devices);
6989 			device->fs_devices->num_devices--;
6990 			fs_devices->num_devices++;
6991 
6992 			device->fs_devices->missing_devices--;
6993 			fs_devices->missing_devices++;
6994 
6995 			device->fs_devices = fs_devices;
6996 		}
6997 	}
6998 
6999 	if (device->fs_devices != fs_info->fs_devices) {
7000 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7001 		if (device->generation !=
7002 		    btrfs_device_generation(leaf, dev_item))
7003 			return -EINVAL;
7004 	}
7005 
7006 	fill_device_from_item(leaf, dev_item, device);
7007 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7008 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7009 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7010 		device->fs_devices->total_rw_bytes += device->total_bytes;
7011 		atomic64_add(device->total_bytes - device->bytes_used,
7012 				&fs_info->free_chunk_space);
7013 	}
7014 	ret = 0;
7015 	return ret;
7016 }
7017 
7018 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7019 {
7020 	struct btrfs_root *root = fs_info->tree_root;
7021 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7022 	struct extent_buffer *sb;
7023 	struct btrfs_disk_key *disk_key;
7024 	struct btrfs_chunk *chunk;
7025 	u8 *array_ptr;
7026 	unsigned long sb_array_offset;
7027 	int ret = 0;
7028 	u32 num_stripes;
7029 	u32 array_size;
7030 	u32 len = 0;
7031 	u32 cur_offset;
7032 	u64 type;
7033 	struct btrfs_key key;
7034 
7035 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7036 	/*
7037 	 * This will create extent buffer of nodesize, superblock size is
7038 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7039 	 * overallocate but we can keep it as-is, only the first page is used.
7040 	 */
7041 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7042 	if (IS_ERR(sb))
7043 		return PTR_ERR(sb);
7044 	set_extent_buffer_uptodate(sb);
7045 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7046 	/*
7047 	 * The sb extent buffer is artificial and just used to read the system array.
7048 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7049 	 * pages up-to-date when the page is larger: extent does not cover the
7050 	 * whole page and consequently check_page_uptodate does not find all
7051 	 * the page's extents up-to-date (the hole beyond sb),
7052 	 * write_extent_buffer then triggers a WARN_ON.
7053 	 *
7054 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7055 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7056 	 * to silence the warning eg. on PowerPC 64.
7057 	 */
7058 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7059 		SetPageUptodate(sb->pages[0]);
7060 
7061 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7062 	array_size = btrfs_super_sys_array_size(super_copy);
7063 
7064 	array_ptr = super_copy->sys_chunk_array;
7065 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7066 	cur_offset = 0;
7067 
7068 	while (cur_offset < array_size) {
7069 		disk_key = (struct btrfs_disk_key *)array_ptr;
7070 		len = sizeof(*disk_key);
7071 		if (cur_offset + len > array_size)
7072 			goto out_short_read;
7073 
7074 		btrfs_disk_key_to_cpu(&key, disk_key);
7075 
7076 		array_ptr += len;
7077 		sb_array_offset += len;
7078 		cur_offset += len;
7079 
7080 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7081 			chunk = (struct btrfs_chunk *)sb_array_offset;
7082 			/*
7083 			 * At least one btrfs_chunk with one stripe must be
7084 			 * present, exact stripe count check comes afterwards
7085 			 */
7086 			len = btrfs_chunk_item_size(1);
7087 			if (cur_offset + len > array_size)
7088 				goto out_short_read;
7089 
7090 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7091 			if (!num_stripes) {
7092 				btrfs_err(fs_info,
7093 					"invalid number of stripes %u in sys_array at offset %u",
7094 					num_stripes, cur_offset);
7095 				ret = -EIO;
7096 				break;
7097 			}
7098 
7099 			type = btrfs_chunk_type(sb, chunk);
7100 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7101 				btrfs_err(fs_info,
7102 			    "invalid chunk type %llu in sys_array at offset %u",
7103 					type, cur_offset);
7104 				ret = -EIO;
7105 				break;
7106 			}
7107 
7108 			len = btrfs_chunk_item_size(num_stripes);
7109 			if (cur_offset + len > array_size)
7110 				goto out_short_read;
7111 
7112 			ret = read_one_chunk(&key, sb, chunk);
7113 			if (ret)
7114 				break;
7115 		} else {
7116 			btrfs_err(fs_info,
7117 			    "unexpected item type %u in sys_array at offset %u",
7118 				  (u32)key.type, cur_offset);
7119 			ret = -EIO;
7120 			break;
7121 		}
7122 		array_ptr += len;
7123 		sb_array_offset += len;
7124 		cur_offset += len;
7125 	}
7126 	clear_extent_buffer_uptodate(sb);
7127 	free_extent_buffer_stale(sb);
7128 	return ret;
7129 
7130 out_short_read:
7131 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7132 			len, cur_offset);
7133 	clear_extent_buffer_uptodate(sb);
7134 	free_extent_buffer_stale(sb);
7135 	return -EIO;
7136 }
7137 
7138 /*
7139  * Check if all chunks in the fs are OK for read-write degraded mount
7140  *
7141  * If the @failing_dev is specified, it's accounted as missing.
7142  *
7143  * Return true if all chunks meet the minimal RW mount requirements.
7144  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7145  */
7146 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7147 					struct btrfs_device *failing_dev)
7148 {
7149 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7150 	struct extent_map *em;
7151 	u64 next_start = 0;
7152 	bool ret = true;
7153 
7154 	read_lock(&map_tree->lock);
7155 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7156 	read_unlock(&map_tree->lock);
7157 	/* No chunk at all? Return false anyway */
7158 	if (!em) {
7159 		ret = false;
7160 		goto out;
7161 	}
7162 	while (em) {
7163 		struct map_lookup *map;
7164 		int missing = 0;
7165 		int max_tolerated;
7166 		int i;
7167 
7168 		map = em->map_lookup;
7169 		max_tolerated =
7170 			btrfs_get_num_tolerated_disk_barrier_failures(
7171 					map->type);
7172 		for (i = 0; i < map->num_stripes; i++) {
7173 			struct btrfs_device *dev = map->stripes[i].dev;
7174 
7175 			if (!dev || !dev->bdev ||
7176 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7177 			    dev->last_flush_error)
7178 				missing++;
7179 			else if (failing_dev && failing_dev == dev)
7180 				missing++;
7181 		}
7182 		if (missing > max_tolerated) {
7183 			if (!failing_dev)
7184 				btrfs_warn(fs_info,
7185 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7186 				   em->start, missing, max_tolerated);
7187 			free_extent_map(em);
7188 			ret = false;
7189 			goto out;
7190 		}
7191 		next_start = extent_map_end(em);
7192 		free_extent_map(em);
7193 
7194 		read_lock(&map_tree->lock);
7195 		em = lookup_extent_mapping(map_tree, next_start,
7196 					   (u64)(-1) - next_start);
7197 		read_unlock(&map_tree->lock);
7198 	}
7199 out:
7200 	return ret;
7201 }
7202 
7203 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7204 {
7205 	struct btrfs_root *root = fs_info->chunk_root;
7206 	struct btrfs_path *path;
7207 	struct extent_buffer *leaf;
7208 	struct btrfs_key key;
7209 	struct btrfs_key found_key;
7210 	int ret;
7211 	int slot;
7212 	u64 total_dev = 0;
7213 
7214 	path = btrfs_alloc_path();
7215 	if (!path)
7216 		return -ENOMEM;
7217 
7218 	/*
7219 	 * uuid_mutex is needed only if we are mounting a sprout FS
7220 	 * otherwise we don't need it.
7221 	 */
7222 	mutex_lock(&uuid_mutex);
7223 	mutex_lock(&fs_info->chunk_mutex);
7224 
7225 	/*
7226 	 * Read all device items, and then all the chunk items. All
7227 	 * device items are found before any chunk item (their object id
7228 	 * is smaller than the lowest possible object id for a chunk
7229 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7230 	 */
7231 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7232 	key.offset = 0;
7233 	key.type = 0;
7234 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7235 	if (ret < 0)
7236 		goto error;
7237 	while (1) {
7238 		leaf = path->nodes[0];
7239 		slot = path->slots[0];
7240 		if (slot >= btrfs_header_nritems(leaf)) {
7241 			ret = btrfs_next_leaf(root, path);
7242 			if (ret == 0)
7243 				continue;
7244 			if (ret < 0)
7245 				goto error;
7246 			break;
7247 		}
7248 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7249 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7250 			struct btrfs_dev_item *dev_item;
7251 			dev_item = btrfs_item_ptr(leaf, slot,
7252 						  struct btrfs_dev_item);
7253 			ret = read_one_dev(leaf, dev_item);
7254 			if (ret)
7255 				goto error;
7256 			total_dev++;
7257 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7258 			struct btrfs_chunk *chunk;
7259 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7260 			ret = read_one_chunk(&found_key, leaf, chunk);
7261 			if (ret)
7262 				goto error;
7263 		}
7264 		path->slots[0]++;
7265 	}
7266 
7267 	/*
7268 	 * After loading chunk tree, we've got all device information,
7269 	 * do another round of validation checks.
7270 	 */
7271 	if (total_dev != fs_info->fs_devices->total_devices) {
7272 		btrfs_err(fs_info,
7273 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7274 			  btrfs_super_num_devices(fs_info->super_copy),
7275 			  total_dev);
7276 		ret = -EINVAL;
7277 		goto error;
7278 	}
7279 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7280 	    fs_info->fs_devices->total_rw_bytes) {
7281 		btrfs_err(fs_info,
7282 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7283 			  btrfs_super_total_bytes(fs_info->super_copy),
7284 			  fs_info->fs_devices->total_rw_bytes);
7285 		ret = -EINVAL;
7286 		goto error;
7287 	}
7288 	ret = 0;
7289 error:
7290 	mutex_unlock(&fs_info->chunk_mutex);
7291 	mutex_unlock(&uuid_mutex);
7292 
7293 	btrfs_free_path(path);
7294 	return ret;
7295 }
7296 
7297 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7298 {
7299 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7300 	struct btrfs_device *device;
7301 
7302 	while (fs_devices) {
7303 		mutex_lock(&fs_devices->device_list_mutex);
7304 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7305 			device->fs_info = fs_info;
7306 		mutex_unlock(&fs_devices->device_list_mutex);
7307 
7308 		fs_devices = fs_devices->seed;
7309 	}
7310 }
7311 
7312 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7313 {
7314 	int i;
7315 
7316 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7317 		btrfs_dev_stat_reset(dev, i);
7318 }
7319 
7320 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7321 {
7322 	struct btrfs_key key;
7323 	struct btrfs_key found_key;
7324 	struct btrfs_root *dev_root = fs_info->dev_root;
7325 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7326 	struct extent_buffer *eb;
7327 	int slot;
7328 	int ret = 0;
7329 	struct btrfs_device *device;
7330 	struct btrfs_path *path = NULL;
7331 	int i;
7332 
7333 	path = btrfs_alloc_path();
7334 	if (!path) {
7335 		ret = -ENOMEM;
7336 		goto out;
7337 	}
7338 
7339 	mutex_lock(&fs_devices->device_list_mutex);
7340 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7341 		int item_size;
7342 		struct btrfs_dev_stats_item *ptr;
7343 
7344 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7345 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7346 		key.offset = device->devid;
7347 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7348 		if (ret) {
7349 			__btrfs_reset_dev_stats(device);
7350 			device->dev_stats_valid = 1;
7351 			btrfs_release_path(path);
7352 			continue;
7353 		}
7354 		slot = path->slots[0];
7355 		eb = path->nodes[0];
7356 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7357 		item_size = btrfs_item_size_nr(eb, slot);
7358 
7359 		ptr = btrfs_item_ptr(eb, slot,
7360 				     struct btrfs_dev_stats_item);
7361 
7362 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7363 			if (item_size >= (1 + i) * sizeof(__le64))
7364 				btrfs_dev_stat_set(device, i,
7365 					btrfs_dev_stats_value(eb, ptr, i));
7366 			else
7367 				btrfs_dev_stat_reset(device, i);
7368 		}
7369 
7370 		device->dev_stats_valid = 1;
7371 		btrfs_dev_stat_print_on_load(device);
7372 		btrfs_release_path(path);
7373 	}
7374 	mutex_unlock(&fs_devices->device_list_mutex);
7375 
7376 out:
7377 	btrfs_free_path(path);
7378 	return ret < 0 ? ret : 0;
7379 }
7380 
7381 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7382 				struct btrfs_device *device)
7383 {
7384 	struct btrfs_fs_info *fs_info = trans->fs_info;
7385 	struct btrfs_root *dev_root = fs_info->dev_root;
7386 	struct btrfs_path *path;
7387 	struct btrfs_key key;
7388 	struct extent_buffer *eb;
7389 	struct btrfs_dev_stats_item *ptr;
7390 	int ret;
7391 	int i;
7392 
7393 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7394 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7395 	key.offset = device->devid;
7396 
7397 	path = btrfs_alloc_path();
7398 	if (!path)
7399 		return -ENOMEM;
7400 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7401 	if (ret < 0) {
7402 		btrfs_warn_in_rcu(fs_info,
7403 			"error %d while searching for dev_stats item for device %s",
7404 			      ret, rcu_str_deref(device->name));
7405 		goto out;
7406 	}
7407 
7408 	if (ret == 0 &&
7409 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7410 		/* need to delete old one and insert a new one */
7411 		ret = btrfs_del_item(trans, dev_root, path);
7412 		if (ret != 0) {
7413 			btrfs_warn_in_rcu(fs_info,
7414 				"delete too small dev_stats item for device %s failed %d",
7415 				      rcu_str_deref(device->name), ret);
7416 			goto out;
7417 		}
7418 		ret = 1;
7419 	}
7420 
7421 	if (ret == 1) {
7422 		/* need to insert a new item */
7423 		btrfs_release_path(path);
7424 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7425 					      &key, sizeof(*ptr));
7426 		if (ret < 0) {
7427 			btrfs_warn_in_rcu(fs_info,
7428 				"insert dev_stats item for device %s failed %d",
7429 				rcu_str_deref(device->name), ret);
7430 			goto out;
7431 		}
7432 	}
7433 
7434 	eb = path->nodes[0];
7435 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7436 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7437 		btrfs_set_dev_stats_value(eb, ptr, i,
7438 					  btrfs_dev_stat_read(device, i));
7439 	btrfs_mark_buffer_dirty(eb);
7440 
7441 out:
7442 	btrfs_free_path(path);
7443 	return ret;
7444 }
7445 
7446 /*
7447  * called from commit_transaction. Writes all changed device stats to disk.
7448  */
7449 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7450 {
7451 	struct btrfs_fs_info *fs_info = trans->fs_info;
7452 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7453 	struct btrfs_device *device;
7454 	int stats_cnt;
7455 	int ret = 0;
7456 
7457 	mutex_lock(&fs_devices->device_list_mutex);
7458 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7459 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7460 		if (!device->dev_stats_valid || stats_cnt == 0)
7461 			continue;
7462 
7463 
7464 		/*
7465 		 * There is a LOAD-LOAD control dependency between the value of
7466 		 * dev_stats_ccnt and updating the on-disk values which requires
7467 		 * reading the in-memory counters. Such control dependencies
7468 		 * require explicit read memory barriers.
7469 		 *
7470 		 * This memory barriers pairs with smp_mb__before_atomic in
7471 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7472 		 * barrier implied by atomic_xchg in
7473 		 * btrfs_dev_stats_read_and_reset
7474 		 */
7475 		smp_rmb();
7476 
7477 		ret = update_dev_stat_item(trans, device);
7478 		if (!ret)
7479 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7480 	}
7481 	mutex_unlock(&fs_devices->device_list_mutex);
7482 
7483 	return ret;
7484 }
7485 
7486 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7487 {
7488 	btrfs_dev_stat_inc(dev, index);
7489 	btrfs_dev_stat_print_on_error(dev);
7490 }
7491 
7492 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7493 {
7494 	if (!dev->dev_stats_valid)
7495 		return;
7496 	btrfs_err_rl_in_rcu(dev->fs_info,
7497 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7498 			   rcu_str_deref(dev->name),
7499 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7500 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7501 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7502 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7503 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7504 }
7505 
7506 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7507 {
7508 	int i;
7509 
7510 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7511 		if (btrfs_dev_stat_read(dev, i) != 0)
7512 			break;
7513 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7514 		return; /* all values == 0, suppress message */
7515 
7516 	btrfs_info_in_rcu(dev->fs_info,
7517 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7518 	       rcu_str_deref(dev->name),
7519 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7520 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7521 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7522 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7523 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7524 }
7525 
7526 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7527 			struct btrfs_ioctl_get_dev_stats *stats)
7528 {
7529 	struct btrfs_device *dev;
7530 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7531 	int i;
7532 
7533 	mutex_lock(&fs_devices->device_list_mutex);
7534 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7535 				true);
7536 	mutex_unlock(&fs_devices->device_list_mutex);
7537 
7538 	if (!dev) {
7539 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7540 		return -ENODEV;
7541 	} else if (!dev->dev_stats_valid) {
7542 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7543 		return -ENODEV;
7544 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7545 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7546 			if (stats->nr_items > i)
7547 				stats->values[i] =
7548 					btrfs_dev_stat_read_and_reset(dev, i);
7549 			else
7550 				btrfs_dev_stat_reset(dev, i);
7551 		}
7552 	} else {
7553 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7554 			if (stats->nr_items > i)
7555 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7556 	}
7557 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7558 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7559 	return 0;
7560 }
7561 
7562 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7563 {
7564 	struct buffer_head *bh;
7565 	struct btrfs_super_block *disk_super;
7566 	int copy_num;
7567 
7568 	if (!bdev)
7569 		return;
7570 
7571 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7572 		copy_num++) {
7573 
7574 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7575 			continue;
7576 
7577 		disk_super = (struct btrfs_super_block *)bh->b_data;
7578 
7579 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7580 		set_buffer_dirty(bh);
7581 		sync_dirty_buffer(bh);
7582 		brelse(bh);
7583 	}
7584 
7585 	/* Notify udev that device has changed */
7586 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7587 
7588 	/* Update ctime/mtime for device path for libblkid */
7589 	update_dev_time(device_path);
7590 }
7591 
7592 /*
7593  * Update the size and bytes used for each device where it changed.  This is
7594  * delayed since we would otherwise get errors while writing out the
7595  * superblocks.
7596  *
7597  * Must be invoked during transaction commit.
7598  */
7599 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7600 {
7601 	struct btrfs_device *curr, *next;
7602 
7603 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7604 
7605 	if (list_empty(&trans->dev_update_list))
7606 		return;
7607 
7608 	/*
7609 	 * We don't need the device_list_mutex here.  This list is owned by the
7610 	 * transaction and the transaction must complete before the device is
7611 	 * released.
7612 	 */
7613 	mutex_lock(&trans->fs_info->chunk_mutex);
7614 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7615 				 post_commit_list) {
7616 		list_del_init(&curr->post_commit_list);
7617 		curr->commit_total_bytes = curr->disk_total_bytes;
7618 		curr->commit_bytes_used = curr->bytes_used;
7619 	}
7620 	mutex_unlock(&trans->fs_info->chunk_mutex);
7621 }
7622 
7623 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7624 {
7625 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7626 	while (fs_devices) {
7627 		fs_devices->fs_info = fs_info;
7628 		fs_devices = fs_devices->seed;
7629 	}
7630 }
7631 
7632 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7633 {
7634 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7635 	while (fs_devices) {
7636 		fs_devices->fs_info = NULL;
7637 		fs_devices = fs_devices->seed;
7638 	}
7639 }
7640 
7641 /*
7642  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7643  */
7644 int btrfs_bg_type_to_factor(u64 flags)
7645 {
7646 	const int index = btrfs_bg_flags_to_raid_index(flags);
7647 
7648 	return btrfs_raid_array[index].ncopies;
7649 }
7650 
7651 
7652 
7653 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7654 				 u64 chunk_offset, u64 devid,
7655 				 u64 physical_offset, u64 physical_len)
7656 {
7657 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7658 	struct extent_map *em;
7659 	struct map_lookup *map;
7660 	struct btrfs_device *dev;
7661 	u64 stripe_len;
7662 	bool found = false;
7663 	int ret = 0;
7664 	int i;
7665 
7666 	read_lock(&em_tree->lock);
7667 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7668 	read_unlock(&em_tree->lock);
7669 
7670 	if (!em) {
7671 		btrfs_err(fs_info,
7672 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7673 			  physical_offset, devid);
7674 		ret = -EUCLEAN;
7675 		goto out;
7676 	}
7677 
7678 	map = em->map_lookup;
7679 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7680 	if (physical_len != stripe_len) {
7681 		btrfs_err(fs_info,
7682 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7683 			  physical_offset, devid, em->start, physical_len,
7684 			  stripe_len);
7685 		ret = -EUCLEAN;
7686 		goto out;
7687 	}
7688 
7689 	for (i = 0; i < map->num_stripes; i++) {
7690 		if (map->stripes[i].dev->devid == devid &&
7691 		    map->stripes[i].physical == physical_offset) {
7692 			found = true;
7693 			if (map->verified_stripes >= map->num_stripes) {
7694 				btrfs_err(fs_info,
7695 				"too many dev extents for chunk %llu found",
7696 					  em->start);
7697 				ret = -EUCLEAN;
7698 				goto out;
7699 			}
7700 			map->verified_stripes++;
7701 			break;
7702 		}
7703 	}
7704 	if (!found) {
7705 		btrfs_err(fs_info,
7706 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7707 			physical_offset, devid);
7708 		ret = -EUCLEAN;
7709 	}
7710 
7711 	/* Make sure no dev extent is beyond device bondary */
7712 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7713 	if (!dev) {
7714 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7715 		ret = -EUCLEAN;
7716 		goto out;
7717 	}
7718 
7719 	/* It's possible this device is a dummy for seed device */
7720 	if (dev->disk_total_bytes == 0) {
7721 		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7722 					NULL, false);
7723 		if (!dev) {
7724 			btrfs_err(fs_info, "failed to find seed devid %llu",
7725 				  devid);
7726 			ret = -EUCLEAN;
7727 			goto out;
7728 		}
7729 	}
7730 
7731 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7732 		btrfs_err(fs_info,
7733 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7734 			  devid, physical_offset, physical_len,
7735 			  dev->disk_total_bytes);
7736 		ret = -EUCLEAN;
7737 		goto out;
7738 	}
7739 out:
7740 	free_extent_map(em);
7741 	return ret;
7742 }
7743 
7744 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7745 {
7746 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7747 	struct extent_map *em;
7748 	struct rb_node *node;
7749 	int ret = 0;
7750 
7751 	read_lock(&em_tree->lock);
7752 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7753 		em = rb_entry(node, struct extent_map, rb_node);
7754 		if (em->map_lookup->num_stripes !=
7755 		    em->map_lookup->verified_stripes) {
7756 			btrfs_err(fs_info,
7757 			"chunk %llu has missing dev extent, have %d expect %d",
7758 				  em->start, em->map_lookup->verified_stripes,
7759 				  em->map_lookup->num_stripes);
7760 			ret = -EUCLEAN;
7761 			goto out;
7762 		}
7763 	}
7764 out:
7765 	read_unlock(&em_tree->lock);
7766 	return ret;
7767 }
7768 
7769 /*
7770  * Ensure that all dev extents are mapped to correct chunk, otherwise
7771  * later chunk allocation/free would cause unexpected behavior.
7772  *
7773  * NOTE: This will iterate through the whole device tree, which should be of
7774  * the same size level as the chunk tree.  This slightly increases mount time.
7775  */
7776 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7777 {
7778 	struct btrfs_path *path;
7779 	struct btrfs_root *root = fs_info->dev_root;
7780 	struct btrfs_key key;
7781 	u64 prev_devid = 0;
7782 	u64 prev_dev_ext_end = 0;
7783 	int ret = 0;
7784 
7785 	key.objectid = 1;
7786 	key.type = BTRFS_DEV_EXTENT_KEY;
7787 	key.offset = 0;
7788 
7789 	path = btrfs_alloc_path();
7790 	if (!path)
7791 		return -ENOMEM;
7792 
7793 	path->reada = READA_FORWARD;
7794 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7795 	if (ret < 0)
7796 		goto out;
7797 
7798 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7799 		ret = btrfs_next_item(root, path);
7800 		if (ret < 0)
7801 			goto out;
7802 		/* No dev extents at all? Not good */
7803 		if (ret > 0) {
7804 			ret = -EUCLEAN;
7805 			goto out;
7806 		}
7807 	}
7808 	while (1) {
7809 		struct extent_buffer *leaf = path->nodes[0];
7810 		struct btrfs_dev_extent *dext;
7811 		int slot = path->slots[0];
7812 		u64 chunk_offset;
7813 		u64 physical_offset;
7814 		u64 physical_len;
7815 		u64 devid;
7816 
7817 		btrfs_item_key_to_cpu(leaf, &key, slot);
7818 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7819 			break;
7820 		devid = key.objectid;
7821 		physical_offset = key.offset;
7822 
7823 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7824 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7825 		physical_len = btrfs_dev_extent_length(leaf, dext);
7826 
7827 		/* Check if this dev extent overlaps with the previous one */
7828 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7829 			btrfs_err(fs_info,
7830 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7831 				  devid, physical_offset, prev_dev_ext_end);
7832 			ret = -EUCLEAN;
7833 			goto out;
7834 		}
7835 
7836 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7837 					    physical_offset, physical_len);
7838 		if (ret < 0)
7839 			goto out;
7840 		prev_devid = devid;
7841 		prev_dev_ext_end = physical_offset + physical_len;
7842 
7843 		ret = btrfs_next_item(root, path);
7844 		if (ret < 0)
7845 			goto out;
7846 		if (ret > 0) {
7847 			ret = 0;
7848 			break;
7849 		}
7850 	}
7851 
7852 	/* Ensure all chunks have corresponding dev extents */
7853 	ret = verify_chunk_dev_extent_mapping(fs_info);
7854 out:
7855 	btrfs_free_path(path);
7856 	return ret;
7857 }
7858 
7859 /*
7860  * Check whether the given block group or device is pinned by any inode being
7861  * used as a swapfile.
7862  */
7863 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7864 {
7865 	struct btrfs_swapfile_pin *sp;
7866 	struct rb_node *node;
7867 
7868 	spin_lock(&fs_info->swapfile_pins_lock);
7869 	node = fs_info->swapfile_pins.rb_node;
7870 	while (node) {
7871 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7872 		if (ptr < sp->ptr)
7873 			node = node->rb_left;
7874 		else if (ptr > sp->ptr)
7875 			node = node->rb_right;
7876 		else
7877 			break;
7878 	}
7879 	spin_unlock(&fs_info->swapfile_pins_lock);
7880 	return node != NULL;
7881 }
7882