1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 static int init_first_rw_device(struct btrfs_trans_handle *trans, 122 struct btrfs_root *root, 123 struct btrfs_device *device); 124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 128 static void btrfs_close_one_device(struct btrfs_device *device); 129 130 DEFINE_MUTEX(uuid_mutex); 131 static LIST_HEAD(fs_uuids); 132 struct list_head *btrfs_get_fs_uuids(void) 133 { 134 return &fs_uuids; 135 } 136 137 static struct btrfs_fs_devices *__alloc_fs_devices(void) 138 { 139 struct btrfs_fs_devices *fs_devs; 140 141 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 142 if (!fs_devs) 143 return ERR_PTR(-ENOMEM); 144 145 mutex_init(&fs_devs->device_list_mutex); 146 147 INIT_LIST_HEAD(&fs_devs->devices); 148 INIT_LIST_HEAD(&fs_devs->resized_devices); 149 INIT_LIST_HEAD(&fs_devs->alloc_list); 150 INIT_LIST_HEAD(&fs_devs->list); 151 152 return fs_devs; 153 } 154 155 /** 156 * alloc_fs_devices - allocate struct btrfs_fs_devices 157 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 158 * generated. 159 * 160 * Return: a pointer to a new &struct btrfs_fs_devices on success; 161 * ERR_PTR() on error. Returned struct is not linked onto any lists and 162 * can be destroyed with kfree() right away. 163 */ 164 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 165 { 166 struct btrfs_fs_devices *fs_devs; 167 168 fs_devs = __alloc_fs_devices(); 169 if (IS_ERR(fs_devs)) 170 return fs_devs; 171 172 if (fsid) 173 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 174 else 175 generate_random_uuid(fs_devs->fsid); 176 177 return fs_devs; 178 } 179 180 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 181 { 182 struct btrfs_device *device; 183 WARN_ON(fs_devices->opened); 184 while (!list_empty(&fs_devices->devices)) { 185 device = list_entry(fs_devices->devices.next, 186 struct btrfs_device, dev_list); 187 list_del(&device->dev_list); 188 rcu_string_free(device->name); 189 kfree(device); 190 } 191 kfree(fs_devices); 192 } 193 194 static void btrfs_kobject_uevent(struct block_device *bdev, 195 enum kobject_action action) 196 { 197 int ret; 198 199 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 200 if (ret) 201 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 202 action, 203 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 204 &disk_to_dev(bdev->bd_disk)->kobj); 205 } 206 207 void btrfs_cleanup_fs_uuids(void) 208 { 209 struct btrfs_fs_devices *fs_devices; 210 211 while (!list_empty(&fs_uuids)) { 212 fs_devices = list_entry(fs_uuids.next, 213 struct btrfs_fs_devices, list); 214 list_del(&fs_devices->list); 215 free_fs_devices(fs_devices); 216 } 217 } 218 219 static struct btrfs_device *__alloc_device(void) 220 { 221 struct btrfs_device *dev; 222 223 dev = kzalloc(sizeof(*dev), GFP_NOFS); 224 if (!dev) 225 return ERR_PTR(-ENOMEM); 226 227 INIT_LIST_HEAD(&dev->dev_list); 228 INIT_LIST_HEAD(&dev->dev_alloc_list); 229 INIT_LIST_HEAD(&dev->resized_list); 230 231 spin_lock_init(&dev->io_lock); 232 233 spin_lock_init(&dev->reada_lock); 234 atomic_set(&dev->reada_in_flight, 0); 235 atomic_set(&dev->dev_stats_ccnt, 0); 236 btrfs_device_data_ordered_init(dev); 237 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 238 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 239 240 return dev; 241 } 242 243 static noinline struct btrfs_device *__find_device(struct list_head *head, 244 u64 devid, u8 *uuid) 245 { 246 struct btrfs_device *dev; 247 248 list_for_each_entry(dev, head, dev_list) { 249 if (dev->devid == devid && 250 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 251 return dev; 252 } 253 } 254 return NULL; 255 } 256 257 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 258 { 259 struct btrfs_fs_devices *fs_devices; 260 261 list_for_each_entry(fs_devices, &fs_uuids, list) { 262 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 263 return fs_devices; 264 } 265 return NULL; 266 } 267 268 static int 269 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 270 int flush, struct block_device **bdev, 271 struct buffer_head **bh) 272 { 273 int ret; 274 275 *bdev = blkdev_get_by_path(device_path, flags, holder); 276 277 if (IS_ERR(*bdev)) { 278 ret = PTR_ERR(*bdev); 279 goto error; 280 } 281 282 if (flush) 283 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 284 ret = set_blocksize(*bdev, 4096); 285 if (ret) { 286 blkdev_put(*bdev, flags); 287 goto error; 288 } 289 invalidate_bdev(*bdev); 290 *bh = btrfs_read_dev_super(*bdev); 291 if (IS_ERR(*bh)) { 292 ret = PTR_ERR(*bh); 293 blkdev_put(*bdev, flags); 294 goto error; 295 } 296 297 return 0; 298 299 error: 300 *bdev = NULL; 301 *bh = NULL; 302 return ret; 303 } 304 305 static void requeue_list(struct btrfs_pending_bios *pending_bios, 306 struct bio *head, struct bio *tail) 307 { 308 309 struct bio *old_head; 310 311 old_head = pending_bios->head; 312 pending_bios->head = head; 313 if (pending_bios->tail) 314 tail->bi_next = old_head; 315 else 316 pending_bios->tail = tail; 317 } 318 319 /* 320 * we try to collect pending bios for a device so we don't get a large 321 * number of procs sending bios down to the same device. This greatly 322 * improves the schedulers ability to collect and merge the bios. 323 * 324 * But, it also turns into a long list of bios to process and that is sure 325 * to eventually make the worker thread block. The solution here is to 326 * make some progress and then put this work struct back at the end of 327 * the list if the block device is congested. This way, multiple devices 328 * can make progress from a single worker thread. 329 */ 330 static noinline void run_scheduled_bios(struct btrfs_device *device) 331 { 332 struct bio *pending; 333 struct backing_dev_info *bdi; 334 struct btrfs_fs_info *fs_info; 335 struct btrfs_pending_bios *pending_bios; 336 struct bio *tail; 337 struct bio *cur; 338 int again = 0; 339 unsigned long num_run; 340 unsigned long batch_run = 0; 341 unsigned long limit; 342 unsigned long last_waited = 0; 343 int force_reg = 0; 344 int sync_pending = 0; 345 struct blk_plug plug; 346 347 /* 348 * this function runs all the bios we've collected for 349 * a particular device. We don't want to wander off to 350 * another device without first sending all of these down. 351 * So, setup a plug here and finish it off before we return 352 */ 353 blk_start_plug(&plug); 354 355 bdi = blk_get_backing_dev_info(device->bdev); 356 fs_info = device->dev_root->fs_info; 357 limit = btrfs_async_submit_limit(fs_info); 358 limit = limit * 2 / 3; 359 360 loop: 361 spin_lock(&device->io_lock); 362 363 loop_lock: 364 num_run = 0; 365 366 /* take all the bios off the list at once and process them 367 * later on (without the lock held). But, remember the 368 * tail and other pointers so the bios can be properly reinserted 369 * into the list if we hit congestion 370 */ 371 if (!force_reg && device->pending_sync_bios.head) { 372 pending_bios = &device->pending_sync_bios; 373 force_reg = 1; 374 } else { 375 pending_bios = &device->pending_bios; 376 force_reg = 0; 377 } 378 379 pending = pending_bios->head; 380 tail = pending_bios->tail; 381 WARN_ON(pending && !tail); 382 383 /* 384 * if pending was null this time around, no bios need processing 385 * at all and we can stop. Otherwise it'll loop back up again 386 * and do an additional check so no bios are missed. 387 * 388 * device->running_pending is used to synchronize with the 389 * schedule_bio code. 390 */ 391 if (device->pending_sync_bios.head == NULL && 392 device->pending_bios.head == NULL) { 393 again = 0; 394 device->running_pending = 0; 395 } else { 396 again = 1; 397 device->running_pending = 1; 398 } 399 400 pending_bios->head = NULL; 401 pending_bios->tail = NULL; 402 403 spin_unlock(&device->io_lock); 404 405 while (pending) { 406 407 rmb(); 408 /* we want to work on both lists, but do more bios on the 409 * sync list than the regular list 410 */ 411 if ((num_run > 32 && 412 pending_bios != &device->pending_sync_bios && 413 device->pending_sync_bios.head) || 414 (num_run > 64 && pending_bios == &device->pending_sync_bios && 415 device->pending_bios.head)) { 416 spin_lock(&device->io_lock); 417 requeue_list(pending_bios, pending, tail); 418 goto loop_lock; 419 } 420 421 cur = pending; 422 pending = pending->bi_next; 423 cur->bi_next = NULL; 424 425 /* 426 * atomic_dec_return implies a barrier for waitqueue_active 427 */ 428 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 429 waitqueue_active(&fs_info->async_submit_wait)) 430 wake_up(&fs_info->async_submit_wait); 431 432 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 433 434 /* 435 * if we're doing the sync list, record that our 436 * plug has some sync requests on it 437 * 438 * If we're doing the regular list and there are 439 * sync requests sitting around, unplug before 440 * we add more 441 */ 442 if (pending_bios == &device->pending_sync_bios) { 443 sync_pending = 1; 444 } else if (sync_pending) { 445 blk_finish_plug(&plug); 446 blk_start_plug(&plug); 447 sync_pending = 0; 448 } 449 450 btrfsic_submit_bio(cur->bi_rw, cur); 451 num_run++; 452 batch_run++; 453 454 cond_resched(); 455 456 /* 457 * we made progress, there is more work to do and the bdi 458 * is now congested. Back off and let other work structs 459 * run instead 460 */ 461 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 462 fs_info->fs_devices->open_devices > 1) { 463 struct io_context *ioc; 464 465 ioc = current->io_context; 466 467 /* 468 * the main goal here is that we don't want to 469 * block if we're going to be able to submit 470 * more requests without blocking. 471 * 472 * This code does two great things, it pokes into 473 * the elevator code from a filesystem _and_ 474 * it makes assumptions about how batching works. 475 */ 476 if (ioc && ioc->nr_batch_requests > 0 && 477 time_before(jiffies, ioc->last_waited + HZ/50UL) && 478 (last_waited == 0 || 479 ioc->last_waited == last_waited)) { 480 /* 481 * we want to go through our batch of 482 * requests and stop. So, we copy out 483 * the ioc->last_waited time and test 484 * against it before looping 485 */ 486 last_waited = ioc->last_waited; 487 cond_resched(); 488 continue; 489 } 490 spin_lock(&device->io_lock); 491 requeue_list(pending_bios, pending, tail); 492 device->running_pending = 1; 493 494 spin_unlock(&device->io_lock); 495 btrfs_queue_work(fs_info->submit_workers, 496 &device->work); 497 goto done; 498 } 499 /* unplug every 64 requests just for good measure */ 500 if (batch_run % 64 == 0) { 501 blk_finish_plug(&plug); 502 blk_start_plug(&plug); 503 sync_pending = 0; 504 } 505 } 506 507 cond_resched(); 508 if (again) 509 goto loop; 510 511 spin_lock(&device->io_lock); 512 if (device->pending_bios.head || device->pending_sync_bios.head) 513 goto loop_lock; 514 spin_unlock(&device->io_lock); 515 516 done: 517 blk_finish_plug(&plug); 518 } 519 520 static void pending_bios_fn(struct btrfs_work *work) 521 { 522 struct btrfs_device *device; 523 524 device = container_of(work, struct btrfs_device, work); 525 run_scheduled_bios(device); 526 } 527 528 529 void btrfs_free_stale_device(struct btrfs_device *cur_dev) 530 { 531 struct btrfs_fs_devices *fs_devs; 532 struct btrfs_device *dev; 533 534 if (!cur_dev->name) 535 return; 536 537 list_for_each_entry(fs_devs, &fs_uuids, list) { 538 int del = 1; 539 540 if (fs_devs->opened) 541 continue; 542 if (fs_devs->seeding) 543 continue; 544 545 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 546 547 if (dev == cur_dev) 548 continue; 549 if (!dev->name) 550 continue; 551 552 /* 553 * Todo: This won't be enough. What if the same device 554 * comes back (with new uuid and) with its mapper path? 555 * But for now, this does help as mostly an admin will 556 * either use mapper or non mapper path throughout. 557 */ 558 rcu_read_lock(); 559 del = strcmp(rcu_str_deref(dev->name), 560 rcu_str_deref(cur_dev->name)); 561 rcu_read_unlock(); 562 if (!del) 563 break; 564 } 565 566 if (!del) { 567 /* delete the stale device */ 568 if (fs_devs->num_devices == 1) { 569 btrfs_sysfs_remove_fsid(fs_devs); 570 list_del(&fs_devs->list); 571 free_fs_devices(fs_devs); 572 } else { 573 fs_devs->num_devices--; 574 list_del(&dev->dev_list); 575 rcu_string_free(dev->name); 576 kfree(dev); 577 } 578 break; 579 } 580 } 581 } 582 583 /* 584 * Add new device to list of registered devices 585 * 586 * Returns: 587 * 1 - first time device is seen 588 * 0 - device already known 589 * < 0 - error 590 */ 591 static noinline int device_list_add(const char *path, 592 struct btrfs_super_block *disk_super, 593 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 594 { 595 struct btrfs_device *device; 596 struct btrfs_fs_devices *fs_devices; 597 struct rcu_string *name; 598 int ret = 0; 599 u64 found_transid = btrfs_super_generation(disk_super); 600 601 fs_devices = find_fsid(disk_super->fsid); 602 if (!fs_devices) { 603 fs_devices = alloc_fs_devices(disk_super->fsid); 604 if (IS_ERR(fs_devices)) 605 return PTR_ERR(fs_devices); 606 607 list_add(&fs_devices->list, &fs_uuids); 608 609 device = NULL; 610 } else { 611 device = __find_device(&fs_devices->devices, devid, 612 disk_super->dev_item.uuid); 613 } 614 615 if (!device) { 616 if (fs_devices->opened) 617 return -EBUSY; 618 619 device = btrfs_alloc_device(NULL, &devid, 620 disk_super->dev_item.uuid); 621 if (IS_ERR(device)) { 622 /* we can safely leave the fs_devices entry around */ 623 return PTR_ERR(device); 624 } 625 626 name = rcu_string_strdup(path, GFP_NOFS); 627 if (!name) { 628 kfree(device); 629 return -ENOMEM; 630 } 631 rcu_assign_pointer(device->name, name); 632 633 mutex_lock(&fs_devices->device_list_mutex); 634 list_add_rcu(&device->dev_list, &fs_devices->devices); 635 fs_devices->num_devices++; 636 mutex_unlock(&fs_devices->device_list_mutex); 637 638 ret = 1; 639 device->fs_devices = fs_devices; 640 } else if (!device->name || strcmp(device->name->str, path)) { 641 /* 642 * When FS is already mounted. 643 * 1. If you are here and if the device->name is NULL that 644 * means this device was missing at time of FS mount. 645 * 2. If you are here and if the device->name is different 646 * from 'path' that means either 647 * a. The same device disappeared and reappeared with 648 * different name. or 649 * b. The missing-disk-which-was-replaced, has 650 * reappeared now. 651 * 652 * We must allow 1 and 2a above. But 2b would be a spurious 653 * and unintentional. 654 * 655 * Further in case of 1 and 2a above, the disk at 'path' 656 * would have missed some transaction when it was away and 657 * in case of 2a the stale bdev has to be updated as well. 658 * 2b must not be allowed at all time. 659 */ 660 661 /* 662 * For now, we do allow update to btrfs_fs_device through the 663 * btrfs dev scan cli after FS has been mounted. We're still 664 * tracking a problem where systems fail mount by subvolume id 665 * when we reject replacement on a mounted FS. 666 */ 667 if (!fs_devices->opened && found_transid < device->generation) { 668 /* 669 * That is if the FS is _not_ mounted and if you 670 * are here, that means there is more than one 671 * disk with same uuid and devid.We keep the one 672 * with larger generation number or the last-in if 673 * generation are equal. 674 */ 675 return -EEXIST; 676 } 677 678 name = rcu_string_strdup(path, GFP_NOFS); 679 if (!name) 680 return -ENOMEM; 681 rcu_string_free(device->name); 682 rcu_assign_pointer(device->name, name); 683 if (device->missing) { 684 fs_devices->missing_devices--; 685 device->missing = 0; 686 } 687 } 688 689 /* 690 * Unmount does not free the btrfs_device struct but would zero 691 * generation along with most of the other members. So just update 692 * it back. We need it to pick the disk with largest generation 693 * (as above). 694 */ 695 if (!fs_devices->opened) 696 device->generation = found_transid; 697 698 /* 699 * if there is new btrfs on an already registered device, 700 * then remove the stale device entry. 701 */ 702 btrfs_free_stale_device(device); 703 704 *fs_devices_ret = fs_devices; 705 706 return ret; 707 } 708 709 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 710 { 711 struct btrfs_fs_devices *fs_devices; 712 struct btrfs_device *device; 713 struct btrfs_device *orig_dev; 714 715 fs_devices = alloc_fs_devices(orig->fsid); 716 if (IS_ERR(fs_devices)) 717 return fs_devices; 718 719 mutex_lock(&orig->device_list_mutex); 720 fs_devices->total_devices = orig->total_devices; 721 722 /* We have held the volume lock, it is safe to get the devices. */ 723 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 724 struct rcu_string *name; 725 726 device = btrfs_alloc_device(NULL, &orig_dev->devid, 727 orig_dev->uuid); 728 if (IS_ERR(device)) 729 goto error; 730 731 /* 732 * This is ok to do without rcu read locked because we hold the 733 * uuid mutex so nothing we touch in here is going to disappear. 734 */ 735 if (orig_dev->name) { 736 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 737 if (!name) { 738 kfree(device); 739 goto error; 740 } 741 rcu_assign_pointer(device->name, name); 742 } 743 744 list_add(&device->dev_list, &fs_devices->devices); 745 device->fs_devices = fs_devices; 746 fs_devices->num_devices++; 747 } 748 mutex_unlock(&orig->device_list_mutex); 749 return fs_devices; 750 error: 751 mutex_unlock(&orig->device_list_mutex); 752 free_fs_devices(fs_devices); 753 return ERR_PTR(-ENOMEM); 754 } 755 756 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 757 { 758 struct btrfs_device *device, *next; 759 struct btrfs_device *latest_dev = NULL; 760 761 mutex_lock(&uuid_mutex); 762 again: 763 /* This is the initialized path, it is safe to release the devices. */ 764 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 765 if (device->in_fs_metadata) { 766 if (!device->is_tgtdev_for_dev_replace && 767 (!latest_dev || 768 device->generation > latest_dev->generation)) { 769 latest_dev = device; 770 } 771 continue; 772 } 773 774 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 775 /* 776 * In the first step, keep the device which has 777 * the correct fsid and the devid that is used 778 * for the dev_replace procedure. 779 * In the second step, the dev_replace state is 780 * read from the device tree and it is known 781 * whether the procedure is really active or 782 * not, which means whether this device is 783 * used or whether it should be removed. 784 */ 785 if (step == 0 || device->is_tgtdev_for_dev_replace) { 786 continue; 787 } 788 } 789 if (device->bdev) { 790 blkdev_put(device->bdev, device->mode); 791 device->bdev = NULL; 792 fs_devices->open_devices--; 793 } 794 if (device->writeable) { 795 list_del_init(&device->dev_alloc_list); 796 device->writeable = 0; 797 if (!device->is_tgtdev_for_dev_replace) 798 fs_devices->rw_devices--; 799 } 800 list_del_init(&device->dev_list); 801 fs_devices->num_devices--; 802 rcu_string_free(device->name); 803 kfree(device); 804 } 805 806 if (fs_devices->seed) { 807 fs_devices = fs_devices->seed; 808 goto again; 809 } 810 811 fs_devices->latest_bdev = latest_dev->bdev; 812 813 mutex_unlock(&uuid_mutex); 814 } 815 816 static void __free_device(struct work_struct *work) 817 { 818 struct btrfs_device *device; 819 820 device = container_of(work, struct btrfs_device, rcu_work); 821 822 if (device->bdev) 823 blkdev_put(device->bdev, device->mode); 824 825 rcu_string_free(device->name); 826 kfree(device); 827 } 828 829 static void free_device(struct rcu_head *head) 830 { 831 struct btrfs_device *device; 832 833 device = container_of(head, struct btrfs_device, rcu); 834 835 INIT_WORK(&device->rcu_work, __free_device); 836 schedule_work(&device->rcu_work); 837 } 838 839 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 840 { 841 struct btrfs_device *device, *tmp; 842 843 if (--fs_devices->opened > 0) 844 return 0; 845 846 mutex_lock(&fs_devices->device_list_mutex); 847 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 848 btrfs_close_one_device(device); 849 } 850 mutex_unlock(&fs_devices->device_list_mutex); 851 852 WARN_ON(fs_devices->open_devices); 853 WARN_ON(fs_devices->rw_devices); 854 fs_devices->opened = 0; 855 fs_devices->seeding = 0; 856 857 return 0; 858 } 859 860 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 861 { 862 struct btrfs_fs_devices *seed_devices = NULL; 863 int ret; 864 865 mutex_lock(&uuid_mutex); 866 ret = __btrfs_close_devices(fs_devices); 867 if (!fs_devices->opened) { 868 seed_devices = fs_devices->seed; 869 fs_devices->seed = NULL; 870 } 871 mutex_unlock(&uuid_mutex); 872 873 while (seed_devices) { 874 fs_devices = seed_devices; 875 seed_devices = fs_devices->seed; 876 __btrfs_close_devices(fs_devices); 877 free_fs_devices(fs_devices); 878 } 879 /* 880 * Wait for rcu kworkers under __btrfs_close_devices 881 * to finish all blkdev_puts so device is really 882 * free when umount is done. 883 */ 884 rcu_barrier(); 885 return ret; 886 } 887 888 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 889 fmode_t flags, void *holder) 890 { 891 struct request_queue *q; 892 struct block_device *bdev; 893 struct list_head *head = &fs_devices->devices; 894 struct btrfs_device *device; 895 struct btrfs_device *latest_dev = NULL; 896 struct buffer_head *bh; 897 struct btrfs_super_block *disk_super; 898 u64 devid; 899 int seeding = 1; 900 int ret = 0; 901 902 flags |= FMODE_EXCL; 903 904 list_for_each_entry(device, head, dev_list) { 905 if (device->bdev) 906 continue; 907 if (!device->name) 908 continue; 909 910 /* Just open everything we can; ignore failures here */ 911 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 912 &bdev, &bh)) 913 continue; 914 915 disk_super = (struct btrfs_super_block *)bh->b_data; 916 devid = btrfs_stack_device_id(&disk_super->dev_item); 917 if (devid != device->devid) 918 goto error_brelse; 919 920 if (memcmp(device->uuid, disk_super->dev_item.uuid, 921 BTRFS_UUID_SIZE)) 922 goto error_brelse; 923 924 device->generation = btrfs_super_generation(disk_super); 925 if (!latest_dev || 926 device->generation > latest_dev->generation) 927 latest_dev = device; 928 929 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 930 device->writeable = 0; 931 } else { 932 device->writeable = !bdev_read_only(bdev); 933 seeding = 0; 934 } 935 936 q = bdev_get_queue(bdev); 937 if (blk_queue_discard(q)) 938 device->can_discard = 1; 939 940 device->bdev = bdev; 941 device->in_fs_metadata = 0; 942 device->mode = flags; 943 944 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 945 fs_devices->rotating = 1; 946 947 fs_devices->open_devices++; 948 if (device->writeable && 949 device->devid != BTRFS_DEV_REPLACE_DEVID) { 950 fs_devices->rw_devices++; 951 list_add(&device->dev_alloc_list, 952 &fs_devices->alloc_list); 953 } 954 brelse(bh); 955 continue; 956 957 error_brelse: 958 brelse(bh); 959 blkdev_put(bdev, flags); 960 continue; 961 } 962 if (fs_devices->open_devices == 0) { 963 ret = -EINVAL; 964 goto out; 965 } 966 fs_devices->seeding = seeding; 967 fs_devices->opened = 1; 968 fs_devices->latest_bdev = latest_dev->bdev; 969 fs_devices->total_rw_bytes = 0; 970 out: 971 return ret; 972 } 973 974 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 975 fmode_t flags, void *holder) 976 { 977 int ret; 978 979 mutex_lock(&uuid_mutex); 980 if (fs_devices->opened) { 981 fs_devices->opened++; 982 ret = 0; 983 } else { 984 ret = __btrfs_open_devices(fs_devices, flags, holder); 985 } 986 mutex_unlock(&uuid_mutex); 987 return ret; 988 } 989 990 /* 991 * Look for a btrfs signature on a device. This may be called out of the mount path 992 * and we are not allowed to call set_blocksize during the scan. The superblock 993 * is read via pagecache 994 */ 995 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 996 struct btrfs_fs_devices **fs_devices_ret) 997 { 998 struct btrfs_super_block *disk_super; 999 struct block_device *bdev; 1000 struct page *page; 1001 void *p; 1002 int ret = -EINVAL; 1003 u64 devid; 1004 u64 transid; 1005 u64 total_devices; 1006 u64 bytenr; 1007 pgoff_t index; 1008 1009 /* 1010 * we would like to check all the supers, but that would make 1011 * a btrfs mount succeed after a mkfs from a different FS. 1012 * So, we need to add a special mount option to scan for 1013 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1014 */ 1015 bytenr = btrfs_sb_offset(0); 1016 flags |= FMODE_EXCL; 1017 mutex_lock(&uuid_mutex); 1018 1019 bdev = blkdev_get_by_path(path, flags, holder); 1020 1021 if (IS_ERR(bdev)) { 1022 ret = PTR_ERR(bdev); 1023 goto error; 1024 } 1025 1026 /* make sure our super fits in the device */ 1027 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 1028 goto error_bdev_put; 1029 1030 /* make sure our super fits in the page */ 1031 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 1032 goto error_bdev_put; 1033 1034 /* make sure our super doesn't straddle pages on disk */ 1035 index = bytenr >> PAGE_CACHE_SHIFT; 1036 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 1037 goto error_bdev_put; 1038 1039 /* pull in the page with our super */ 1040 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1041 index, GFP_NOFS); 1042 1043 if (IS_ERR_OR_NULL(page)) 1044 goto error_bdev_put; 1045 1046 p = kmap(page); 1047 1048 /* align our pointer to the offset of the super block */ 1049 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 1050 1051 if (btrfs_super_bytenr(disk_super) != bytenr || 1052 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 1053 goto error_unmap; 1054 1055 devid = btrfs_stack_device_id(&disk_super->dev_item); 1056 transid = btrfs_super_generation(disk_super); 1057 total_devices = btrfs_super_num_devices(disk_super); 1058 1059 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1060 if (ret > 0) { 1061 if (disk_super->label[0]) { 1062 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 1063 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1064 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 1065 } else { 1066 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 1067 } 1068 1069 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 1070 ret = 0; 1071 } 1072 if (!ret && fs_devices_ret) 1073 (*fs_devices_ret)->total_devices = total_devices; 1074 1075 error_unmap: 1076 kunmap(page); 1077 page_cache_release(page); 1078 1079 error_bdev_put: 1080 blkdev_put(bdev, flags); 1081 error: 1082 mutex_unlock(&uuid_mutex); 1083 return ret; 1084 } 1085 1086 /* helper to account the used device space in the range */ 1087 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1088 u64 end, u64 *length) 1089 { 1090 struct btrfs_key key; 1091 struct btrfs_root *root = device->dev_root; 1092 struct btrfs_dev_extent *dev_extent; 1093 struct btrfs_path *path; 1094 u64 extent_end; 1095 int ret; 1096 int slot; 1097 struct extent_buffer *l; 1098 1099 *length = 0; 1100 1101 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1102 return 0; 1103 1104 path = btrfs_alloc_path(); 1105 if (!path) 1106 return -ENOMEM; 1107 path->reada = READA_FORWARD; 1108 1109 key.objectid = device->devid; 1110 key.offset = start; 1111 key.type = BTRFS_DEV_EXTENT_KEY; 1112 1113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1114 if (ret < 0) 1115 goto out; 1116 if (ret > 0) { 1117 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1118 if (ret < 0) 1119 goto out; 1120 } 1121 1122 while (1) { 1123 l = path->nodes[0]; 1124 slot = path->slots[0]; 1125 if (slot >= btrfs_header_nritems(l)) { 1126 ret = btrfs_next_leaf(root, path); 1127 if (ret == 0) 1128 continue; 1129 if (ret < 0) 1130 goto out; 1131 1132 break; 1133 } 1134 btrfs_item_key_to_cpu(l, &key, slot); 1135 1136 if (key.objectid < device->devid) 1137 goto next; 1138 1139 if (key.objectid > device->devid) 1140 break; 1141 1142 if (key.type != BTRFS_DEV_EXTENT_KEY) 1143 goto next; 1144 1145 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1146 extent_end = key.offset + btrfs_dev_extent_length(l, 1147 dev_extent); 1148 if (key.offset <= start && extent_end > end) { 1149 *length = end - start + 1; 1150 break; 1151 } else if (key.offset <= start && extent_end > start) 1152 *length += extent_end - start; 1153 else if (key.offset > start && extent_end <= end) 1154 *length += extent_end - key.offset; 1155 else if (key.offset > start && key.offset <= end) { 1156 *length += end - key.offset + 1; 1157 break; 1158 } else if (key.offset > end) 1159 break; 1160 1161 next: 1162 path->slots[0]++; 1163 } 1164 ret = 0; 1165 out: 1166 btrfs_free_path(path); 1167 return ret; 1168 } 1169 1170 static int contains_pending_extent(struct btrfs_transaction *transaction, 1171 struct btrfs_device *device, 1172 u64 *start, u64 len) 1173 { 1174 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 1175 struct extent_map *em; 1176 struct list_head *search_list = &fs_info->pinned_chunks; 1177 int ret = 0; 1178 u64 physical_start = *start; 1179 1180 if (transaction) 1181 search_list = &transaction->pending_chunks; 1182 again: 1183 list_for_each_entry(em, search_list, list) { 1184 struct map_lookup *map; 1185 int i; 1186 1187 map = em->map_lookup; 1188 for (i = 0; i < map->num_stripes; i++) { 1189 u64 end; 1190 1191 if (map->stripes[i].dev != device) 1192 continue; 1193 if (map->stripes[i].physical >= physical_start + len || 1194 map->stripes[i].physical + em->orig_block_len <= 1195 physical_start) 1196 continue; 1197 /* 1198 * Make sure that while processing the pinned list we do 1199 * not override our *start with a lower value, because 1200 * we can have pinned chunks that fall within this 1201 * device hole and that have lower physical addresses 1202 * than the pending chunks we processed before. If we 1203 * do not take this special care we can end up getting 1204 * 2 pending chunks that start at the same physical 1205 * device offsets because the end offset of a pinned 1206 * chunk can be equal to the start offset of some 1207 * pending chunk. 1208 */ 1209 end = map->stripes[i].physical + em->orig_block_len; 1210 if (end > *start) { 1211 *start = end; 1212 ret = 1; 1213 } 1214 } 1215 } 1216 if (search_list != &fs_info->pinned_chunks) { 1217 search_list = &fs_info->pinned_chunks; 1218 goto again; 1219 } 1220 1221 return ret; 1222 } 1223 1224 1225 /* 1226 * find_free_dev_extent_start - find free space in the specified device 1227 * @device: the device which we search the free space in 1228 * @num_bytes: the size of the free space that we need 1229 * @search_start: the position from which to begin the search 1230 * @start: store the start of the free space. 1231 * @len: the size of the free space. that we find, or the size 1232 * of the max free space if we don't find suitable free space 1233 * 1234 * this uses a pretty simple search, the expectation is that it is 1235 * called very infrequently and that a given device has a small number 1236 * of extents 1237 * 1238 * @start is used to store the start of the free space if we find. But if we 1239 * don't find suitable free space, it will be used to store the start position 1240 * of the max free space. 1241 * 1242 * @len is used to store the size of the free space that we find. 1243 * But if we don't find suitable free space, it is used to store the size of 1244 * the max free space. 1245 */ 1246 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1247 struct btrfs_device *device, u64 num_bytes, 1248 u64 search_start, u64 *start, u64 *len) 1249 { 1250 struct btrfs_key key; 1251 struct btrfs_root *root = device->dev_root; 1252 struct btrfs_dev_extent *dev_extent; 1253 struct btrfs_path *path; 1254 u64 hole_size; 1255 u64 max_hole_start; 1256 u64 max_hole_size; 1257 u64 extent_end; 1258 u64 search_end = device->total_bytes; 1259 int ret; 1260 int slot; 1261 struct extent_buffer *l; 1262 u64 min_search_start; 1263 1264 /* 1265 * We don't want to overwrite the superblock on the drive nor any area 1266 * used by the boot loader (grub for example), so we make sure to start 1267 * at an offset of at least 1MB. 1268 */ 1269 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1270 search_start = max(search_start, min_search_start); 1271 1272 path = btrfs_alloc_path(); 1273 if (!path) 1274 return -ENOMEM; 1275 1276 max_hole_start = search_start; 1277 max_hole_size = 0; 1278 1279 again: 1280 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1281 ret = -ENOSPC; 1282 goto out; 1283 } 1284 1285 path->reada = READA_FORWARD; 1286 path->search_commit_root = 1; 1287 path->skip_locking = 1; 1288 1289 key.objectid = device->devid; 1290 key.offset = search_start; 1291 key.type = BTRFS_DEV_EXTENT_KEY; 1292 1293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1294 if (ret < 0) 1295 goto out; 1296 if (ret > 0) { 1297 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1298 if (ret < 0) 1299 goto out; 1300 } 1301 1302 while (1) { 1303 l = path->nodes[0]; 1304 slot = path->slots[0]; 1305 if (slot >= btrfs_header_nritems(l)) { 1306 ret = btrfs_next_leaf(root, path); 1307 if (ret == 0) 1308 continue; 1309 if (ret < 0) 1310 goto out; 1311 1312 break; 1313 } 1314 btrfs_item_key_to_cpu(l, &key, slot); 1315 1316 if (key.objectid < device->devid) 1317 goto next; 1318 1319 if (key.objectid > device->devid) 1320 break; 1321 1322 if (key.type != BTRFS_DEV_EXTENT_KEY) 1323 goto next; 1324 1325 if (key.offset > search_start) { 1326 hole_size = key.offset - search_start; 1327 1328 /* 1329 * Have to check before we set max_hole_start, otherwise 1330 * we could end up sending back this offset anyway. 1331 */ 1332 if (contains_pending_extent(transaction, device, 1333 &search_start, 1334 hole_size)) { 1335 if (key.offset >= search_start) { 1336 hole_size = key.offset - search_start; 1337 } else { 1338 WARN_ON_ONCE(1); 1339 hole_size = 0; 1340 } 1341 } 1342 1343 if (hole_size > max_hole_size) { 1344 max_hole_start = search_start; 1345 max_hole_size = hole_size; 1346 } 1347 1348 /* 1349 * If this free space is greater than which we need, 1350 * it must be the max free space that we have found 1351 * until now, so max_hole_start must point to the start 1352 * of this free space and the length of this free space 1353 * is stored in max_hole_size. Thus, we return 1354 * max_hole_start and max_hole_size and go back to the 1355 * caller. 1356 */ 1357 if (hole_size >= num_bytes) { 1358 ret = 0; 1359 goto out; 1360 } 1361 } 1362 1363 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1364 extent_end = key.offset + btrfs_dev_extent_length(l, 1365 dev_extent); 1366 if (extent_end > search_start) 1367 search_start = extent_end; 1368 next: 1369 path->slots[0]++; 1370 cond_resched(); 1371 } 1372 1373 /* 1374 * At this point, search_start should be the end of 1375 * allocated dev extents, and when shrinking the device, 1376 * search_end may be smaller than search_start. 1377 */ 1378 if (search_end > search_start) { 1379 hole_size = search_end - search_start; 1380 1381 if (contains_pending_extent(transaction, device, &search_start, 1382 hole_size)) { 1383 btrfs_release_path(path); 1384 goto again; 1385 } 1386 1387 if (hole_size > max_hole_size) { 1388 max_hole_start = search_start; 1389 max_hole_size = hole_size; 1390 } 1391 } 1392 1393 /* See above. */ 1394 if (max_hole_size < num_bytes) 1395 ret = -ENOSPC; 1396 else 1397 ret = 0; 1398 1399 out: 1400 btrfs_free_path(path); 1401 *start = max_hole_start; 1402 if (len) 1403 *len = max_hole_size; 1404 return ret; 1405 } 1406 1407 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1408 struct btrfs_device *device, u64 num_bytes, 1409 u64 *start, u64 *len) 1410 { 1411 /* FIXME use last free of some kind */ 1412 return find_free_dev_extent_start(trans->transaction, device, 1413 num_bytes, 0, start, len); 1414 } 1415 1416 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1417 struct btrfs_device *device, 1418 u64 start, u64 *dev_extent_len) 1419 { 1420 int ret; 1421 struct btrfs_path *path; 1422 struct btrfs_root *root = device->dev_root; 1423 struct btrfs_key key; 1424 struct btrfs_key found_key; 1425 struct extent_buffer *leaf = NULL; 1426 struct btrfs_dev_extent *extent = NULL; 1427 1428 path = btrfs_alloc_path(); 1429 if (!path) 1430 return -ENOMEM; 1431 1432 key.objectid = device->devid; 1433 key.offset = start; 1434 key.type = BTRFS_DEV_EXTENT_KEY; 1435 again: 1436 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1437 if (ret > 0) { 1438 ret = btrfs_previous_item(root, path, key.objectid, 1439 BTRFS_DEV_EXTENT_KEY); 1440 if (ret) 1441 goto out; 1442 leaf = path->nodes[0]; 1443 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1444 extent = btrfs_item_ptr(leaf, path->slots[0], 1445 struct btrfs_dev_extent); 1446 BUG_ON(found_key.offset > start || found_key.offset + 1447 btrfs_dev_extent_length(leaf, extent) < start); 1448 key = found_key; 1449 btrfs_release_path(path); 1450 goto again; 1451 } else if (ret == 0) { 1452 leaf = path->nodes[0]; 1453 extent = btrfs_item_ptr(leaf, path->slots[0], 1454 struct btrfs_dev_extent); 1455 } else { 1456 btrfs_std_error(root->fs_info, ret, "Slot search failed"); 1457 goto out; 1458 } 1459 1460 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1461 1462 ret = btrfs_del_item(trans, root, path); 1463 if (ret) { 1464 btrfs_std_error(root->fs_info, ret, 1465 "Failed to remove dev extent item"); 1466 } else { 1467 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1468 } 1469 out: 1470 btrfs_free_path(path); 1471 return ret; 1472 } 1473 1474 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1475 struct btrfs_device *device, 1476 u64 chunk_tree, u64 chunk_objectid, 1477 u64 chunk_offset, u64 start, u64 num_bytes) 1478 { 1479 int ret; 1480 struct btrfs_path *path; 1481 struct btrfs_root *root = device->dev_root; 1482 struct btrfs_dev_extent *extent; 1483 struct extent_buffer *leaf; 1484 struct btrfs_key key; 1485 1486 WARN_ON(!device->in_fs_metadata); 1487 WARN_ON(device->is_tgtdev_for_dev_replace); 1488 path = btrfs_alloc_path(); 1489 if (!path) 1490 return -ENOMEM; 1491 1492 key.objectid = device->devid; 1493 key.offset = start; 1494 key.type = BTRFS_DEV_EXTENT_KEY; 1495 ret = btrfs_insert_empty_item(trans, root, path, &key, 1496 sizeof(*extent)); 1497 if (ret) 1498 goto out; 1499 1500 leaf = path->nodes[0]; 1501 extent = btrfs_item_ptr(leaf, path->slots[0], 1502 struct btrfs_dev_extent); 1503 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1504 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1505 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1506 1507 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1508 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1509 1510 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1511 btrfs_mark_buffer_dirty(leaf); 1512 out: 1513 btrfs_free_path(path); 1514 return ret; 1515 } 1516 1517 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1518 { 1519 struct extent_map_tree *em_tree; 1520 struct extent_map *em; 1521 struct rb_node *n; 1522 u64 ret = 0; 1523 1524 em_tree = &fs_info->mapping_tree.map_tree; 1525 read_lock(&em_tree->lock); 1526 n = rb_last(&em_tree->map); 1527 if (n) { 1528 em = rb_entry(n, struct extent_map, rb_node); 1529 ret = em->start + em->len; 1530 } 1531 read_unlock(&em_tree->lock); 1532 1533 return ret; 1534 } 1535 1536 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1537 u64 *devid_ret) 1538 { 1539 int ret; 1540 struct btrfs_key key; 1541 struct btrfs_key found_key; 1542 struct btrfs_path *path; 1543 1544 path = btrfs_alloc_path(); 1545 if (!path) 1546 return -ENOMEM; 1547 1548 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1549 key.type = BTRFS_DEV_ITEM_KEY; 1550 key.offset = (u64)-1; 1551 1552 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1553 if (ret < 0) 1554 goto error; 1555 1556 BUG_ON(ret == 0); /* Corruption */ 1557 1558 ret = btrfs_previous_item(fs_info->chunk_root, path, 1559 BTRFS_DEV_ITEMS_OBJECTID, 1560 BTRFS_DEV_ITEM_KEY); 1561 if (ret) { 1562 *devid_ret = 1; 1563 } else { 1564 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1565 path->slots[0]); 1566 *devid_ret = found_key.offset + 1; 1567 } 1568 ret = 0; 1569 error: 1570 btrfs_free_path(path); 1571 return ret; 1572 } 1573 1574 /* 1575 * the device information is stored in the chunk root 1576 * the btrfs_device struct should be fully filled in 1577 */ 1578 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1579 struct btrfs_root *root, 1580 struct btrfs_device *device) 1581 { 1582 int ret; 1583 struct btrfs_path *path; 1584 struct btrfs_dev_item *dev_item; 1585 struct extent_buffer *leaf; 1586 struct btrfs_key key; 1587 unsigned long ptr; 1588 1589 root = root->fs_info->chunk_root; 1590 1591 path = btrfs_alloc_path(); 1592 if (!path) 1593 return -ENOMEM; 1594 1595 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1596 key.type = BTRFS_DEV_ITEM_KEY; 1597 key.offset = device->devid; 1598 1599 ret = btrfs_insert_empty_item(trans, root, path, &key, 1600 sizeof(*dev_item)); 1601 if (ret) 1602 goto out; 1603 1604 leaf = path->nodes[0]; 1605 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1606 1607 btrfs_set_device_id(leaf, dev_item, device->devid); 1608 btrfs_set_device_generation(leaf, dev_item, 0); 1609 btrfs_set_device_type(leaf, dev_item, device->type); 1610 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1611 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1612 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1613 btrfs_set_device_total_bytes(leaf, dev_item, 1614 btrfs_device_get_disk_total_bytes(device)); 1615 btrfs_set_device_bytes_used(leaf, dev_item, 1616 btrfs_device_get_bytes_used(device)); 1617 btrfs_set_device_group(leaf, dev_item, 0); 1618 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1619 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1620 btrfs_set_device_start_offset(leaf, dev_item, 0); 1621 1622 ptr = btrfs_device_uuid(dev_item); 1623 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1624 ptr = btrfs_device_fsid(dev_item); 1625 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1626 btrfs_mark_buffer_dirty(leaf); 1627 1628 ret = 0; 1629 out: 1630 btrfs_free_path(path); 1631 return ret; 1632 } 1633 1634 /* 1635 * Function to update ctime/mtime for a given device path. 1636 * Mainly used for ctime/mtime based probe like libblkid. 1637 */ 1638 static void update_dev_time(char *path_name) 1639 { 1640 struct file *filp; 1641 1642 filp = filp_open(path_name, O_RDWR, 0); 1643 if (IS_ERR(filp)) 1644 return; 1645 file_update_time(filp); 1646 filp_close(filp, NULL); 1647 } 1648 1649 static int btrfs_rm_dev_item(struct btrfs_root *root, 1650 struct btrfs_device *device) 1651 { 1652 int ret; 1653 struct btrfs_path *path; 1654 struct btrfs_key key; 1655 struct btrfs_trans_handle *trans; 1656 1657 root = root->fs_info->chunk_root; 1658 1659 path = btrfs_alloc_path(); 1660 if (!path) 1661 return -ENOMEM; 1662 1663 trans = btrfs_start_transaction(root, 0); 1664 if (IS_ERR(trans)) { 1665 btrfs_free_path(path); 1666 return PTR_ERR(trans); 1667 } 1668 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1669 key.type = BTRFS_DEV_ITEM_KEY; 1670 key.offset = device->devid; 1671 1672 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1673 if (ret < 0) 1674 goto out; 1675 1676 if (ret > 0) { 1677 ret = -ENOENT; 1678 goto out; 1679 } 1680 1681 ret = btrfs_del_item(trans, root, path); 1682 if (ret) 1683 goto out; 1684 out: 1685 btrfs_free_path(path); 1686 btrfs_commit_transaction(trans, root); 1687 return ret; 1688 } 1689 1690 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1691 { 1692 struct btrfs_device *device; 1693 struct btrfs_device *next_device; 1694 struct block_device *bdev; 1695 struct buffer_head *bh = NULL; 1696 struct btrfs_super_block *disk_super; 1697 struct btrfs_fs_devices *cur_devices; 1698 u64 all_avail; 1699 u64 devid; 1700 u64 num_devices; 1701 u8 *dev_uuid; 1702 unsigned seq; 1703 int ret = 0; 1704 bool clear_super = false; 1705 1706 mutex_lock(&uuid_mutex); 1707 1708 do { 1709 seq = read_seqbegin(&root->fs_info->profiles_lock); 1710 1711 all_avail = root->fs_info->avail_data_alloc_bits | 1712 root->fs_info->avail_system_alloc_bits | 1713 root->fs_info->avail_metadata_alloc_bits; 1714 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1715 1716 num_devices = root->fs_info->fs_devices->num_devices; 1717 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1718 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1719 WARN_ON(num_devices < 1); 1720 num_devices--; 1721 } 1722 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1723 1724 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1725 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1726 goto out; 1727 } 1728 1729 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1730 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1731 goto out; 1732 } 1733 1734 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1735 root->fs_info->fs_devices->rw_devices <= 2) { 1736 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1737 goto out; 1738 } 1739 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1740 root->fs_info->fs_devices->rw_devices <= 3) { 1741 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1742 goto out; 1743 } 1744 1745 if (strcmp(device_path, "missing") == 0) { 1746 struct list_head *devices; 1747 struct btrfs_device *tmp; 1748 1749 device = NULL; 1750 devices = &root->fs_info->fs_devices->devices; 1751 /* 1752 * It is safe to read the devices since the volume_mutex 1753 * is held. 1754 */ 1755 list_for_each_entry(tmp, devices, dev_list) { 1756 if (tmp->in_fs_metadata && 1757 !tmp->is_tgtdev_for_dev_replace && 1758 !tmp->bdev) { 1759 device = tmp; 1760 break; 1761 } 1762 } 1763 bdev = NULL; 1764 bh = NULL; 1765 disk_super = NULL; 1766 if (!device) { 1767 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1768 goto out; 1769 } 1770 } else { 1771 ret = btrfs_get_bdev_and_sb(device_path, 1772 FMODE_WRITE | FMODE_EXCL, 1773 root->fs_info->bdev_holder, 0, 1774 &bdev, &bh); 1775 if (ret) 1776 goto out; 1777 disk_super = (struct btrfs_super_block *)bh->b_data; 1778 devid = btrfs_stack_device_id(&disk_super->dev_item); 1779 dev_uuid = disk_super->dev_item.uuid; 1780 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1781 disk_super->fsid); 1782 if (!device) { 1783 ret = -ENOENT; 1784 goto error_brelse; 1785 } 1786 } 1787 1788 if (device->is_tgtdev_for_dev_replace) { 1789 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1790 goto error_brelse; 1791 } 1792 1793 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1794 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1795 goto error_brelse; 1796 } 1797 1798 if (device->writeable) { 1799 lock_chunks(root); 1800 list_del_init(&device->dev_alloc_list); 1801 device->fs_devices->rw_devices--; 1802 unlock_chunks(root); 1803 clear_super = true; 1804 } 1805 1806 mutex_unlock(&uuid_mutex); 1807 ret = btrfs_shrink_device(device, 0); 1808 mutex_lock(&uuid_mutex); 1809 if (ret) 1810 goto error_undo; 1811 1812 /* 1813 * TODO: the superblock still includes this device in its num_devices 1814 * counter although write_all_supers() is not locked out. This 1815 * could give a filesystem state which requires a degraded mount. 1816 */ 1817 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1818 if (ret) 1819 goto error_undo; 1820 1821 device->in_fs_metadata = 0; 1822 btrfs_scrub_cancel_dev(root->fs_info, device); 1823 1824 /* 1825 * the device list mutex makes sure that we don't change 1826 * the device list while someone else is writing out all 1827 * the device supers. Whoever is writing all supers, should 1828 * lock the device list mutex before getting the number of 1829 * devices in the super block (super_copy). Conversely, 1830 * whoever updates the number of devices in the super block 1831 * (super_copy) should hold the device list mutex. 1832 */ 1833 1834 cur_devices = device->fs_devices; 1835 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1836 list_del_rcu(&device->dev_list); 1837 1838 device->fs_devices->num_devices--; 1839 device->fs_devices->total_devices--; 1840 1841 if (device->missing) 1842 device->fs_devices->missing_devices--; 1843 1844 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1845 struct btrfs_device, dev_list); 1846 if (device->bdev == root->fs_info->sb->s_bdev) 1847 root->fs_info->sb->s_bdev = next_device->bdev; 1848 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1849 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1850 1851 if (device->bdev) { 1852 device->fs_devices->open_devices--; 1853 /* remove sysfs entry */ 1854 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device); 1855 } 1856 1857 call_rcu(&device->rcu, free_device); 1858 1859 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1860 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1861 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1862 1863 if (cur_devices->open_devices == 0) { 1864 struct btrfs_fs_devices *fs_devices; 1865 fs_devices = root->fs_info->fs_devices; 1866 while (fs_devices) { 1867 if (fs_devices->seed == cur_devices) { 1868 fs_devices->seed = cur_devices->seed; 1869 break; 1870 } 1871 fs_devices = fs_devices->seed; 1872 } 1873 cur_devices->seed = NULL; 1874 __btrfs_close_devices(cur_devices); 1875 free_fs_devices(cur_devices); 1876 } 1877 1878 root->fs_info->num_tolerated_disk_barrier_failures = 1879 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1880 1881 /* 1882 * at this point, the device is zero sized. We want to 1883 * remove it from the devices list and zero out the old super 1884 */ 1885 if (clear_super && disk_super) { 1886 u64 bytenr; 1887 int i; 1888 1889 /* make sure this device isn't detected as part of 1890 * the FS anymore 1891 */ 1892 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1893 set_buffer_dirty(bh); 1894 sync_dirty_buffer(bh); 1895 1896 /* clear the mirror copies of super block on the disk 1897 * being removed, 0th copy is been taken care above and 1898 * the below would take of the rest 1899 */ 1900 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1901 bytenr = btrfs_sb_offset(i); 1902 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 1903 i_size_read(bdev->bd_inode)) 1904 break; 1905 1906 brelse(bh); 1907 bh = __bread(bdev, bytenr / 4096, 1908 BTRFS_SUPER_INFO_SIZE); 1909 if (!bh) 1910 continue; 1911 1912 disk_super = (struct btrfs_super_block *)bh->b_data; 1913 1914 if (btrfs_super_bytenr(disk_super) != bytenr || 1915 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1916 continue; 1917 } 1918 memset(&disk_super->magic, 0, 1919 sizeof(disk_super->magic)); 1920 set_buffer_dirty(bh); 1921 sync_dirty_buffer(bh); 1922 } 1923 } 1924 1925 ret = 0; 1926 1927 if (bdev) { 1928 /* Notify udev that device has changed */ 1929 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1930 1931 /* Update ctime/mtime for device path for libblkid */ 1932 update_dev_time(device_path); 1933 } 1934 1935 error_brelse: 1936 brelse(bh); 1937 if (bdev) 1938 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1939 out: 1940 mutex_unlock(&uuid_mutex); 1941 return ret; 1942 error_undo: 1943 if (device->writeable) { 1944 lock_chunks(root); 1945 list_add(&device->dev_alloc_list, 1946 &root->fs_info->fs_devices->alloc_list); 1947 device->fs_devices->rw_devices++; 1948 unlock_chunks(root); 1949 } 1950 goto error_brelse; 1951 } 1952 1953 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1954 struct btrfs_device *srcdev) 1955 { 1956 struct btrfs_fs_devices *fs_devices; 1957 1958 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1959 1960 /* 1961 * in case of fs with no seed, srcdev->fs_devices will point 1962 * to fs_devices of fs_info. However when the dev being replaced is 1963 * a seed dev it will point to the seed's local fs_devices. In short 1964 * srcdev will have its correct fs_devices in both the cases. 1965 */ 1966 fs_devices = srcdev->fs_devices; 1967 1968 list_del_rcu(&srcdev->dev_list); 1969 list_del_rcu(&srcdev->dev_alloc_list); 1970 fs_devices->num_devices--; 1971 if (srcdev->missing) 1972 fs_devices->missing_devices--; 1973 1974 if (srcdev->writeable) { 1975 fs_devices->rw_devices--; 1976 /* zero out the old super if it is writable */ 1977 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 1978 } 1979 1980 if (srcdev->bdev) 1981 fs_devices->open_devices--; 1982 } 1983 1984 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 1985 struct btrfs_device *srcdev) 1986 { 1987 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 1988 1989 call_rcu(&srcdev->rcu, free_device); 1990 1991 /* 1992 * unless fs_devices is seed fs, num_devices shouldn't go 1993 * zero 1994 */ 1995 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 1996 1997 /* if this is no devs we rather delete the fs_devices */ 1998 if (!fs_devices->num_devices) { 1999 struct btrfs_fs_devices *tmp_fs_devices; 2000 2001 tmp_fs_devices = fs_info->fs_devices; 2002 while (tmp_fs_devices) { 2003 if (tmp_fs_devices->seed == fs_devices) { 2004 tmp_fs_devices->seed = fs_devices->seed; 2005 break; 2006 } 2007 tmp_fs_devices = tmp_fs_devices->seed; 2008 } 2009 fs_devices->seed = NULL; 2010 __btrfs_close_devices(fs_devices); 2011 free_fs_devices(fs_devices); 2012 } 2013 } 2014 2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2016 struct btrfs_device *tgtdev) 2017 { 2018 struct btrfs_device *next_device; 2019 2020 mutex_lock(&uuid_mutex); 2021 WARN_ON(!tgtdev); 2022 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2023 2024 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2025 2026 if (tgtdev->bdev) { 2027 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2028 fs_info->fs_devices->open_devices--; 2029 } 2030 fs_info->fs_devices->num_devices--; 2031 2032 next_device = list_entry(fs_info->fs_devices->devices.next, 2033 struct btrfs_device, dev_list); 2034 if (tgtdev->bdev == fs_info->sb->s_bdev) 2035 fs_info->sb->s_bdev = next_device->bdev; 2036 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 2037 fs_info->fs_devices->latest_bdev = next_device->bdev; 2038 list_del_rcu(&tgtdev->dev_list); 2039 2040 call_rcu(&tgtdev->rcu, free_device); 2041 2042 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2043 mutex_unlock(&uuid_mutex); 2044 } 2045 2046 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 2047 struct btrfs_device **device) 2048 { 2049 int ret = 0; 2050 struct btrfs_super_block *disk_super; 2051 u64 devid; 2052 u8 *dev_uuid; 2053 struct block_device *bdev; 2054 struct buffer_head *bh; 2055 2056 *device = NULL; 2057 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2058 root->fs_info->bdev_holder, 0, &bdev, &bh); 2059 if (ret) 2060 return ret; 2061 disk_super = (struct btrfs_super_block *)bh->b_data; 2062 devid = btrfs_stack_device_id(&disk_super->dev_item); 2063 dev_uuid = disk_super->dev_item.uuid; 2064 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2065 disk_super->fsid); 2066 brelse(bh); 2067 if (!*device) 2068 ret = -ENOENT; 2069 blkdev_put(bdev, FMODE_READ); 2070 return ret; 2071 } 2072 2073 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 2074 char *device_path, 2075 struct btrfs_device **device) 2076 { 2077 *device = NULL; 2078 if (strcmp(device_path, "missing") == 0) { 2079 struct list_head *devices; 2080 struct btrfs_device *tmp; 2081 2082 devices = &root->fs_info->fs_devices->devices; 2083 /* 2084 * It is safe to read the devices since the volume_mutex 2085 * is held by the caller. 2086 */ 2087 list_for_each_entry(tmp, devices, dev_list) { 2088 if (tmp->in_fs_metadata && !tmp->bdev) { 2089 *device = tmp; 2090 break; 2091 } 2092 } 2093 2094 if (!*device) 2095 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2096 2097 return 0; 2098 } else { 2099 return btrfs_find_device_by_path(root, device_path, device); 2100 } 2101 } 2102 2103 /* 2104 * does all the dirty work required for changing file system's UUID. 2105 */ 2106 static int btrfs_prepare_sprout(struct btrfs_root *root) 2107 { 2108 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2109 struct btrfs_fs_devices *old_devices; 2110 struct btrfs_fs_devices *seed_devices; 2111 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 2112 struct btrfs_device *device; 2113 u64 super_flags; 2114 2115 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2116 if (!fs_devices->seeding) 2117 return -EINVAL; 2118 2119 seed_devices = __alloc_fs_devices(); 2120 if (IS_ERR(seed_devices)) 2121 return PTR_ERR(seed_devices); 2122 2123 old_devices = clone_fs_devices(fs_devices); 2124 if (IS_ERR(old_devices)) { 2125 kfree(seed_devices); 2126 return PTR_ERR(old_devices); 2127 } 2128 2129 list_add(&old_devices->list, &fs_uuids); 2130 2131 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2132 seed_devices->opened = 1; 2133 INIT_LIST_HEAD(&seed_devices->devices); 2134 INIT_LIST_HEAD(&seed_devices->alloc_list); 2135 mutex_init(&seed_devices->device_list_mutex); 2136 2137 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2138 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2139 synchronize_rcu); 2140 list_for_each_entry(device, &seed_devices->devices, dev_list) 2141 device->fs_devices = seed_devices; 2142 2143 lock_chunks(root); 2144 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2145 unlock_chunks(root); 2146 2147 fs_devices->seeding = 0; 2148 fs_devices->num_devices = 0; 2149 fs_devices->open_devices = 0; 2150 fs_devices->missing_devices = 0; 2151 fs_devices->rotating = 0; 2152 fs_devices->seed = seed_devices; 2153 2154 generate_random_uuid(fs_devices->fsid); 2155 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2156 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2157 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2158 2159 super_flags = btrfs_super_flags(disk_super) & 2160 ~BTRFS_SUPER_FLAG_SEEDING; 2161 btrfs_set_super_flags(disk_super, super_flags); 2162 2163 return 0; 2164 } 2165 2166 /* 2167 * strore the expected generation for seed devices in device items. 2168 */ 2169 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2170 struct btrfs_root *root) 2171 { 2172 struct btrfs_path *path; 2173 struct extent_buffer *leaf; 2174 struct btrfs_dev_item *dev_item; 2175 struct btrfs_device *device; 2176 struct btrfs_key key; 2177 u8 fs_uuid[BTRFS_UUID_SIZE]; 2178 u8 dev_uuid[BTRFS_UUID_SIZE]; 2179 u64 devid; 2180 int ret; 2181 2182 path = btrfs_alloc_path(); 2183 if (!path) 2184 return -ENOMEM; 2185 2186 root = root->fs_info->chunk_root; 2187 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2188 key.offset = 0; 2189 key.type = BTRFS_DEV_ITEM_KEY; 2190 2191 while (1) { 2192 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2193 if (ret < 0) 2194 goto error; 2195 2196 leaf = path->nodes[0]; 2197 next_slot: 2198 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2199 ret = btrfs_next_leaf(root, path); 2200 if (ret > 0) 2201 break; 2202 if (ret < 0) 2203 goto error; 2204 leaf = path->nodes[0]; 2205 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2206 btrfs_release_path(path); 2207 continue; 2208 } 2209 2210 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2211 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2212 key.type != BTRFS_DEV_ITEM_KEY) 2213 break; 2214 2215 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2216 struct btrfs_dev_item); 2217 devid = btrfs_device_id(leaf, dev_item); 2218 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2219 BTRFS_UUID_SIZE); 2220 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2221 BTRFS_UUID_SIZE); 2222 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2223 fs_uuid); 2224 BUG_ON(!device); /* Logic error */ 2225 2226 if (device->fs_devices->seeding) { 2227 btrfs_set_device_generation(leaf, dev_item, 2228 device->generation); 2229 btrfs_mark_buffer_dirty(leaf); 2230 } 2231 2232 path->slots[0]++; 2233 goto next_slot; 2234 } 2235 ret = 0; 2236 error: 2237 btrfs_free_path(path); 2238 return ret; 2239 } 2240 2241 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2242 { 2243 struct request_queue *q; 2244 struct btrfs_trans_handle *trans; 2245 struct btrfs_device *device; 2246 struct block_device *bdev; 2247 struct list_head *devices; 2248 struct super_block *sb = root->fs_info->sb; 2249 struct rcu_string *name; 2250 u64 tmp; 2251 int seeding_dev = 0; 2252 int ret = 0; 2253 2254 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2255 return -EROFS; 2256 2257 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2258 root->fs_info->bdev_holder); 2259 if (IS_ERR(bdev)) 2260 return PTR_ERR(bdev); 2261 2262 if (root->fs_info->fs_devices->seeding) { 2263 seeding_dev = 1; 2264 down_write(&sb->s_umount); 2265 mutex_lock(&uuid_mutex); 2266 } 2267 2268 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2269 2270 devices = &root->fs_info->fs_devices->devices; 2271 2272 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2273 list_for_each_entry(device, devices, dev_list) { 2274 if (device->bdev == bdev) { 2275 ret = -EEXIST; 2276 mutex_unlock( 2277 &root->fs_info->fs_devices->device_list_mutex); 2278 goto error; 2279 } 2280 } 2281 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2282 2283 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2284 if (IS_ERR(device)) { 2285 /* we can safely leave the fs_devices entry around */ 2286 ret = PTR_ERR(device); 2287 goto error; 2288 } 2289 2290 name = rcu_string_strdup(device_path, GFP_NOFS); 2291 if (!name) { 2292 kfree(device); 2293 ret = -ENOMEM; 2294 goto error; 2295 } 2296 rcu_assign_pointer(device->name, name); 2297 2298 trans = btrfs_start_transaction(root, 0); 2299 if (IS_ERR(trans)) { 2300 rcu_string_free(device->name); 2301 kfree(device); 2302 ret = PTR_ERR(trans); 2303 goto error; 2304 } 2305 2306 q = bdev_get_queue(bdev); 2307 if (blk_queue_discard(q)) 2308 device->can_discard = 1; 2309 device->writeable = 1; 2310 device->generation = trans->transid; 2311 device->io_width = root->sectorsize; 2312 device->io_align = root->sectorsize; 2313 device->sector_size = root->sectorsize; 2314 device->total_bytes = i_size_read(bdev->bd_inode); 2315 device->disk_total_bytes = device->total_bytes; 2316 device->commit_total_bytes = device->total_bytes; 2317 device->dev_root = root->fs_info->dev_root; 2318 device->bdev = bdev; 2319 device->in_fs_metadata = 1; 2320 device->is_tgtdev_for_dev_replace = 0; 2321 device->mode = FMODE_EXCL; 2322 device->dev_stats_valid = 1; 2323 set_blocksize(device->bdev, 4096); 2324 2325 if (seeding_dev) { 2326 sb->s_flags &= ~MS_RDONLY; 2327 ret = btrfs_prepare_sprout(root); 2328 BUG_ON(ret); /* -ENOMEM */ 2329 } 2330 2331 device->fs_devices = root->fs_info->fs_devices; 2332 2333 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2334 lock_chunks(root); 2335 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2336 list_add(&device->dev_alloc_list, 2337 &root->fs_info->fs_devices->alloc_list); 2338 root->fs_info->fs_devices->num_devices++; 2339 root->fs_info->fs_devices->open_devices++; 2340 root->fs_info->fs_devices->rw_devices++; 2341 root->fs_info->fs_devices->total_devices++; 2342 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2343 2344 spin_lock(&root->fs_info->free_chunk_lock); 2345 root->fs_info->free_chunk_space += device->total_bytes; 2346 spin_unlock(&root->fs_info->free_chunk_lock); 2347 2348 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2349 root->fs_info->fs_devices->rotating = 1; 2350 2351 tmp = btrfs_super_total_bytes(root->fs_info->super_copy); 2352 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2353 tmp + device->total_bytes); 2354 2355 tmp = btrfs_super_num_devices(root->fs_info->super_copy); 2356 btrfs_set_super_num_devices(root->fs_info->super_copy, 2357 tmp + 1); 2358 2359 /* add sysfs device entry */ 2360 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device); 2361 2362 /* 2363 * we've got more storage, clear any full flags on the space 2364 * infos 2365 */ 2366 btrfs_clear_space_info_full(root->fs_info); 2367 2368 unlock_chunks(root); 2369 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2370 2371 if (seeding_dev) { 2372 lock_chunks(root); 2373 ret = init_first_rw_device(trans, root, device); 2374 unlock_chunks(root); 2375 if (ret) { 2376 btrfs_abort_transaction(trans, root, ret); 2377 goto error_trans; 2378 } 2379 } 2380 2381 ret = btrfs_add_device(trans, root, device); 2382 if (ret) { 2383 btrfs_abort_transaction(trans, root, ret); 2384 goto error_trans; 2385 } 2386 2387 if (seeding_dev) { 2388 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2389 2390 ret = btrfs_finish_sprout(trans, root); 2391 if (ret) { 2392 btrfs_abort_transaction(trans, root, ret); 2393 goto error_trans; 2394 } 2395 2396 /* Sprouting would change fsid of the mounted root, 2397 * so rename the fsid on the sysfs 2398 */ 2399 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2400 root->fs_info->fsid); 2401 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj, 2402 fsid_buf)) 2403 btrfs_warn(root->fs_info, 2404 "sysfs: failed to create fsid for sprout"); 2405 } 2406 2407 root->fs_info->num_tolerated_disk_barrier_failures = 2408 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2409 ret = btrfs_commit_transaction(trans, root); 2410 2411 if (seeding_dev) { 2412 mutex_unlock(&uuid_mutex); 2413 up_write(&sb->s_umount); 2414 2415 if (ret) /* transaction commit */ 2416 return ret; 2417 2418 ret = btrfs_relocate_sys_chunks(root); 2419 if (ret < 0) 2420 btrfs_std_error(root->fs_info, ret, 2421 "Failed to relocate sys chunks after " 2422 "device initialization. This can be fixed " 2423 "using the \"btrfs balance\" command."); 2424 trans = btrfs_attach_transaction(root); 2425 if (IS_ERR(trans)) { 2426 if (PTR_ERR(trans) == -ENOENT) 2427 return 0; 2428 return PTR_ERR(trans); 2429 } 2430 ret = btrfs_commit_transaction(trans, root); 2431 } 2432 2433 /* Update ctime/mtime for libblkid */ 2434 update_dev_time(device_path); 2435 return ret; 2436 2437 error_trans: 2438 btrfs_end_transaction(trans, root); 2439 rcu_string_free(device->name); 2440 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device); 2441 kfree(device); 2442 error: 2443 blkdev_put(bdev, FMODE_EXCL); 2444 if (seeding_dev) { 2445 mutex_unlock(&uuid_mutex); 2446 up_write(&sb->s_umount); 2447 } 2448 return ret; 2449 } 2450 2451 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2452 struct btrfs_device *srcdev, 2453 struct btrfs_device **device_out) 2454 { 2455 struct request_queue *q; 2456 struct btrfs_device *device; 2457 struct block_device *bdev; 2458 struct btrfs_fs_info *fs_info = root->fs_info; 2459 struct list_head *devices; 2460 struct rcu_string *name; 2461 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2462 int ret = 0; 2463 2464 *device_out = NULL; 2465 if (fs_info->fs_devices->seeding) { 2466 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2467 return -EINVAL; 2468 } 2469 2470 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2471 fs_info->bdev_holder); 2472 if (IS_ERR(bdev)) { 2473 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2474 return PTR_ERR(bdev); 2475 } 2476 2477 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2478 2479 devices = &fs_info->fs_devices->devices; 2480 list_for_each_entry(device, devices, dev_list) { 2481 if (device->bdev == bdev) { 2482 btrfs_err(fs_info, "target device is in the filesystem!"); 2483 ret = -EEXIST; 2484 goto error; 2485 } 2486 } 2487 2488 2489 if (i_size_read(bdev->bd_inode) < 2490 btrfs_device_get_total_bytes(srcdev)) { 2491 btrfs_err(fs_info, "target device is smaller than source device!"); 2492 ret = -EINVAL; 2493 goto error; 2494 } 2495 2496 2497 device = btrfs_alloc_device(NULL, &devid, NULL); 2498 if (IS_ERR(device)) { 2499 ret = PTR_ERR(device); 2500 goto error; 2501 } 2502 2503 name = rcu_string_strdup(device_path, GFP_NOFS); 2504 if (!name) { 2505 kfree(device); 2506 ret = -ENOMEM; 2507 goto error; 2508 } 2509 rcu_assign_pointer(device->name, name); 2510 2511 q = bdev_get_queue(bdev); 2512 if (blk_queue_discard(q)) 2513 device->can_discard = 1; 2514 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2515 device->writeable = 1; 2516 device->generation = 0; 2517 device->io_width = root->sectorsize; 2518 device->io_align = root->sectorsize; 2519 device->sector_size = root->sectorsize; 2520 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2521 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2522 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2523 ASSERT(list_empty(&srcdev->resized_list)); 2524 device->commit_total_bytes = srcdev->commit_total_bytes; 2525 device->commit_bytes_used = device->bytes_used; 2526 device->dev_root = fs_info->dev_root; 2527 device->bdev = bdev; 2528 device->in_fs_metadata = 1; 2529 device->is_tgtdev_for_dev_replace = 1; 2530 device->mode = FMODE_EXCL; 2531 device->dev_stats_valid = 1; 2532 set_blocksize(device->bdev, 4096); 2533 device->fs_devices = fs_info->fs_devices; 2534 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2535 fs_info->fs_devices->num_devices++; 2536 fs_info->fs_devices->open_devices++; 2537 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2538 2539 *device_out = device; 2540 return ret; 2541 2542 error: 2543 blkdev_put(bdev, FMODE_EXCL); 2544 return ret; 2545 } 2546 2547 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2548 struct btrfs_device *tgtdev) 2549 { 2550 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2551 tgtdev->io_width = fs_info->dev_root->sectorsize; 2552 tgtdev->io_align = fs_info->dev_root->sectorsize; 2553 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2554 tgtdev->dev_root = fs_info->dev_root; 2555 tgtdev->in_fs_metadata = 1; 2556 } 2557 2558 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2559 struct btrfs_device *device) 2560 { 2561 int ret; 2562 struct btrfs_path *path; 2563 struct btrfs_root *root; 2564 struct btrfs_dev_item *dev_item; 2565 struct extent_buffer *leaf; 2566 struct btrfs_key key; 2567 2568 root = device->dev_root->fs_info->chunk_root; 2569 2570 path = btrfs_alloc_path(); 2571 if (!path) 2572 return -ENOMEM; 2573 2574 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2575 key.type = BTRFS_DEV_ITEM_KEY; 2576 key.offset = device->devid; 2577 2578 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2579 if (ret < 0) 2580 goto out; 2581 2582 if (ret > 0) { 2583 ret = -ENOENT; 2584 goto out; 2585 } 2586 2587 leaf = path->nodes[0]; 2588 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2589 2590 btrfs_set_device_id(leaf, dev_item, device->devid); 2591 btrfs_set_device_type(leaf, dev_item, device->type); 2592 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2593 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2594 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2595 btrfs_set_device_total_bytes(leaf, dev_item, 2596 btrfs_device_get_disk_total_bytes(device)); 2597 btrfs_set_device_bytes_used(leaf, dev_item, 2598 btrfs_device_get_bytes_used(device)); 2599 btrfs_mark_buffer_dirty(leaf); 2600 2601 out: 2602 btrfs_free_path(path); 2603 return ret; 2604 } 2605 2606 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2607 struct btrfs_device *device, u64 new_size) 2608 { 2609 struct btrfs_super_block *super_copy = 2610 device->dev_root->fs_info->super_copy; 2611 struct btrfs_fs_devices *fs_devices; 2612 u64 old_total; 2613 u64 diff; 2614 2615 if (!device->writeable) 2616 return -EACCES; 2617 2618 lock_chunks(device->dev_root); 2619 old_total = btrfs_super_total_bytes(super_copy); 2620 diff = new_size - device->total_bytes; 2621 2622 if (new_size <= device->total_bytes || 2623 device->is_tgtdev_for_dev_replace) { 2624 unlock_chunks(device->dev_root); 2625 return -EINVAL; 2626 } 2627 2628 fs_devices = device->dev_root->fs_info->fs_devices; 2629 2630 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2631 device->fs_devices->total_rw_bytes += diff; 2632 2633 btrfs_device_set_total_bytes(device, new_size); 2634 btrfs_device_set_disk_total_bytes(device, new_size); 2635 btrfs_clear_space_info_full(device->dev_root->fs_info); 2636 if (list_empty(&device->resized_list)) 2637 list_add_tail(&device->resized_list, 2638 &fs_devices->resized_devices); 2639 unlock_chunks(device->dev_root); 2640 2641 return btrfs_update_device(trans, device); 2642 } 2643 2644 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2645 struct btrfs_root *root, u64 chunk_objectid, 2646 u64 chunk_offset) 2647 { 2648 int ret; 2649 struct btrfs_path *path; 2650 struct btrfs_key key; 2651 2652 root = root->fs_info->chunk_root; 2653 path = btrfs_alloc_path(); 2654 if (!path) 2655 return -ENOMEM; 2656 2657 key.objectid = chunk_objectid; 2658 key.offset = chunk_offset; 2659 key.type = BTRFS_CHUNK_ITEM_KEY; 2660 2661 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2662 if (ret < 0) 2663 goto out; 2664 else if (ret > 0) { /* Logic error or corruption */ 2665 btrfs_std_error(root->fs_info, -ENOENT, 2666 "Failed lookup while freeing chunk."); 2667 ret = -ENOENT; 2668 goto out; 2669 } 2670 2671 ret = btrfs_del_item(trans, root, path); 2672 if (ret < 0) 2673 btrfs_std_error(root->fs_info, ret, 2674 "Failed to delete chunk item."); 2675 out: 2676 btrfs_free_path(path); 2677 return ret; 2678 } 2679 2680 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2681 chunk_offset) 2682 { 2683 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2684 struct btrfs_disk_key *disk_key; 2685 struct btrfs_chunk *chunk; 2686 u8 *ptr; 2687 int ret = 0; 2688 u32 num_stripes; 2689 u32 array_size; 2690 u32 len = 0; 2691 u32 cur; 2692 struct btrfs_key key; 2693 2694 lock_chunks(root); 2695 array_size = btrfs_super_sys_array_size(super_copy); 2696 2697 ptr = super_copy->sys_chunk_array; 2698 cur = 0; 2699 2700 while (cur < array_size) { 2701 disk_key = (struct btrfs_disk_key *)ptr; 2702 btrfs_disk_key_to_cpu(&key, disk_key); 2703 2704 len = sizeof(*disk_key); 2705 2706 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2707 chunk = (struct btrfs_chunk *)(ptr + len); 2708 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2709 len += btrfs_chunk_item_size(num_stripes); 2710 } else { 2711 ret = -EIO; 2712 break; 2713 } 2714 if (key.objectid == chunk_objectid && 2715 key.offset == chunk_offset) { 2716 memmove(ptr, ptr + len, array_size - (cur + len)); 2717 array_size -= len; 2718 btrfs_set_super_sys_array_size(super_copy, array_size); 2719 } else { 2720 ptr += len; 2721 cur += len; 2722 } 2723 } 2724 unlock_chunks(root); 2725 return ret; 2726 } 2727 2728 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2729 struct btrfs_root *root, u64 chunk_offset) 2730 { 2731 struct extent_map_tree *em_tree; 2732 struct extent_map *em; 2733 struct btrfs_root *extent_root = root->fs_info->extent_root; 2734 struct map_lookup *map; 2735 u64 dev_extent_len = 0; 2736 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2737 int i, ret = 0; 2738 2739 /* Just in case */ 2740 root = root->fs_info->chunk_root; 2741 em_tree = &root->fs_info->mapping_tree.map_tree; 2742 2743 read_lock(&em_tree->lock); 2744 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2745 read_unlock(&em_tree->lock); 2746 2747 if (!em || em->start > chunk_offset || 2748 em->start + em->len < chunk_offset) { 2749 /* 2750 * This is a logic error, but we don't want to just rely on the 2751 * user having built with ASSERT enabled, so if ASSERT doens't 2752 * do anything we still error out. 2753 */ 2754 ASSERT(0); 2755 if (em) 2756 free_extent_map(em); 2757 return -EINVAL; 2758 } 2759 map = em->map_lookup; 2760 lock_chunks(root->fs_info->chunk_root); 2761 check_system_chunk(trans, extent_root, map->type); 2762 unlock_chunks(root->fs_info->chunk_root); 2763 2764 for (i = 0; i < map->num_stripes; i++) { 2765 struct btrfs_device *device = map->stripes[i].dev; 2766 ret = btrfs_free_dev_extent(trans, device, 2767 map->stripes[i].physical, 2768 &dev_extent_len); 2769 if (ret) { 2770 btrfs_abort_transaction(trans, root, ret); 2771 goto out; 2772 } 2773 2774 if (device->bytes_used > 0) { 2775 lock_chunks(root); 2776 btrfs_device_set_bytes_used(device, 2777 device->bytes_used - dev_extent_len); 2778 spin_lock(&root->fs_info->free_chunk_lock); 2779 root->fs_info->free_chunk_space += dev_extent_len; 2780 spin_unlock(&root->fs_info->free_chunk_lock); 2781 btrfs_clear_space_info_full(root->fs_info); 2782 unlock_chunks(root); 2783 } 2784 2785 if (map->stripes[i].dev) { 2786 ret = btrfs_update_device(trans, map->stripes[i].dev); 2787 if (ret) { 2788 btrfs_abort_transaction(trans, root, ret); 2789 goto out; 2790 } 2791 } 2792 } 2793 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset); 2794 if (ret) { 2795 btrfs_abort_transaction(trans, root, ret); 2796 goto out; 2797 } 2798 2799 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2800 2801 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2802 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2803 if (ret) { 2804 btrfs_abort_transaction(trans, root, ret); 2805 goto out; 2806 } 2807 } 2808 2809 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em); 2810 if (ret) { 2811 btrfs_abort_transaction(trans, extent_root, ret); 2812 goto out; 2813 } 2814 2815 out: 2816 /* once for us */ 2817 free_extent_map(em); 2818 return ret; 2819 } 2820 2821 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset) 2822 { 2823 struct btrfs_root *extent_root; 2824 struct btrfs_trans_handle *trans; 2825 int ret; 2826 2827 root = root->fs_info->chunk_root; 2828 extent_root = root->fs_info->extent_root; 2829 2830 /* 2831 * Prevent races with automatic removal of unused block groups. 2832 * After we relocate and before we remove the chunk with offset 2833 * chunk_offset, automatic removal of the block group can kick in, 2834 * resulting in a failure when calling btrfs_remove_chunk() below. 2835 * 2836 * Make sure to acquire this mutex before doing a tree search (dev 2837 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2838 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2839 * we release the path used to search the chunk/dev tree and before 2840 * the current task acquires this mutex and calls us. 2841 */ 2842 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex)); 2843 2844 ret = btrfs_can_relocate(extent_root, chunk_offset); 2845 if (ret) 2846 return -ENOSPC; 2847 2848 /* step one, relocate all the extents inside this chunk */ 2849 btrfs_scrub_pause(root); 2850 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2851 btrfs_scrub_continue(root); 2852 if (ret) 2853 return ret; 2854 2855 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2856 chunk_offset); 2857 if (IS_ERR(trans)) { 2858 ret = PTR_ERR(trans); 2859 btrfs_std_error(root->fs_info, ret, NULL); 2860 return ret; 2861 } 2862 2863 /* 2864 * step two, delete the device extents and the 2865 * chunk tree entries 2866 */ 2867 ret = btrfs_remove_chunk(trans, root, chunk_offset); 2868 btrfs_end_transaction(trans, root); 2869 return ret; 2870 } 2871 2872 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2873 { 2874 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2875 struct btrfs_path *path; 2876 struct extent_buffer *leaf; 2877 struct btrfs_chunk *chunk; 2878 struct btrfs_key key; 2879 struct btrfs_key found_key; 2880 u64 chunk_type; 2881 bool retried = false; 2882 int failed = 0; 2883 int ret; 2884 2885 path = btrfs_alloc_path(); 2886 if (!path) 2887 return -ENOMEM; 2888 2889 again: 2890 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2891 key.offset = (u64)-1; 2892 key.type = BTRFS_CHUNK_ITEM_KEY; 2893 2894 while (1) { 2895 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 2896 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2897 if (ret < 0) { 2898 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2899 goto error; 2900 } 2901 BUG_ON(ret == 0); /* Corruption */ 2902 2903 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2904 key.type); 2905 if (ret) 2906 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2907 if (ret < 0) 2908 goto error; 2909 if (ret > 0) 2910 break; 2911 2912 leaf = path->nodes[0]; 2913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2914 2915 chunk = btrfs_item_ptr(leaf, path->slots[0], 2916 struct btrfs_chunk); 2917 chunk_type = btrfs_chunk_type(leaf, chunk); 2918 btrfs_release_path(path); 2919 2920 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2921 ret = btrfs_relocate_chunk(chunk_root, 2922 found_key.offset); 2923 if (ret == -ENOSPC) 2924 failed++; 2925 else 2926 BUG_ON(ret); 2927 } 2928 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2929 2930 if (found_key.offset == 0) 2931 break; 2932 key.offset = found_key.offset - 1; 2933 } 2934 ret = 0; 2935 if (failed && !retried) { 2936 failed = 0; 2937 retried = true; 2938 goto again; 2939 } else if (WARN_ON(failed && retried)) { 2940 ret = -ENOSPC; 2941 } 2942 error: 2943 btrfs_free_path(path); 2944 return ret; 2945 } 2946 2947 static int insert_balance_item(struct btrfs_root *root, 2948 struct btrfs_balance_control *bctl) 2949 { 2950 struct btrfs_trans_handle *trans; 2951 struct btrfs_balance_item *item; 2952 struct btrfs_disk_balance_args disk_bargs; 2953 struct btrfs_path *path; 2954 struct extent_buffer *leaf; 2955 struct btrfs_key key; 2956 int ret, err; 2957 2958 path = btrfs_alloc_path(); 2959 if (!path) 2960 return -ENOMEM; 2961 2962 trans = btrfs_start_transaction(root, 0); 2963 if (IS_ERR(trans)) { 2964 btrfs_free_path(path); 2965 return PTR_ERR(trans); 2966 } 2967 2968 key.objectid = BTRFS_BALANCE_OBJECTID; 2969 key.type = BTRFS_BALANCE_ITEM_KEY; 2970 key.offset = 0; 2971 2972 ret = btrfs_insert_empty_item(trans, root, path, &key, 2973 sizeof(*item)); 2974 if (ret) 2975 goto out; 2976 2977 leaf = path->nodes[0]; 2978 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2979 2980 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2981 2982 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2983 btrfs_set_balance_data(leaf, item, &disk_bargs); 2984 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2985 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2986 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2987 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2988 2989 btrfs_set_balance_flags(leaf, item, bctl->flags); 2990 2991 btrfs_mark_buffer_dirty(leaf); 2992 out: 2993 btrfs_free_path(path); 2994 err = btrfs_commit_transaction(trans, root); 2995 if (err && !ret) 2996 ret = err; 2997 return ret; 2998 } 2999 3000 static int del_balance_item(struct btrfs_root *root) 3001 { 3002 struct btrfs_trans_handle *trans; 3003 struct btrfs_path *path; 3004 struct btrfs_key key; 3005 int ret, err; 3006 3007 path = btrfs_alloc_path(); 3008 if (!path) 3009 return -ENOMEM; 3010 3011 trans = btrfs_start_transaction(root, 0); 3012 if (IS_ERR(trans)) { 3013 btrfs_free_path(path); 3014 return PTR_ERR(trans); 3015 } 3016 3017 key.objectid = BTRFS_BALANCE_OBJECTID; 3018 key.type = BTRFS_BALANCE_ITEM_KEY; 3019 key.offset = 0; 3020 3021 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3022 if (ret < 0) 3023 goto out; 3024 if (ret > 0) { 3025 ret = -ENOENT; 3026 goto out; 3027 } 3028 3029 ret = btrfs_del_item(trans, root, path); 3030 out: 3031 btrfs_free_path(path); 3032 err = btrfs_commit_transaction(trans, root); 3033 if (err && !ret) 3034 ret = err; 3035 return ret; 3036 } 3037 3038 /* 3039 * This is a heuristic used to reduce the number of chunks balanced on 3040 * resume after balance was interrupted. 3041 */ 3042 static void update_balance_args(struct btrfs_balance_control *bctl) 3043 { 3044 /* 3045 * Turn on soft mode for chunk types that were being converted. 3046 */ 3047 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3048 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3049 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3050 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3051 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3052 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3053 3054 /* 3055 * Turn on usage filter if is not already used. The idea is 3056 * that chunks that we have already balanced should be 3057 * reasonably full. Don't do it for chunks that are being 3058 * converted - that will keep us from relocating unconverted 3059 * (albeit full) chunks. 3060 */ 3061 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3062 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3063 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3064 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3065 bctl->data.usage = 90; 3066 } 3067 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3068 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3069 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3070 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3071 bctl->sys.usage = 90; 3072 } 3073 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3074 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3075 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3076 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3077 bctl->meta.usage = 90; 3078 } 3079 } 3080 3081 /* 3082 * Should be called with both balance and volume mutexes held to 3083 * serialize other volume operations (add_dev/rm_dev/resize) with 3084 * restriper. Same goes for unset_balance_control. 3085 */ 3086 static void set_balance_control(struct btrfs_balance_control *bctl) 3087 { 3088 struct btrfs_fs_info *fs_info = bctl->fs_info; 3089 3090 BUG_ON(fs_info->balance_ctl); 3091 3092 spin_lock(&fs_info->balance_lock); 3093 fs_info->balance_ctl = bctl; 3094 spin_unlock(&fs_info->balance_lock); 3095 } 3096 3097 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3098 { 3099 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3100 3101 BUG_ON(!fs_info->balance_ctl); 3102 3103 spin_lock(&fs_info->balance_lock); 3104 fs_info->balance_ctl = NULL; 3105 spin_unlock(&fs_info->balance_lock); 3106 3107 kfree(bctl); 3108 } 3109 3110 /* 3111 * Balance filters. Return 1 if chunk should be filtered out 3112 * (should not be balanced). 3113 */ 3114 static int chunk_profiles_filter(u64 chunk_type, 3115 struct btrfs_balance_args *bargs) 3116 { 3117 chunk_type = chunk_to_extended(chunk_type) & 3118 BTRFS_EXTENDED_PROFILE_MASK; 3119 3120 if (bargs->profiles & chunk_type) 3121 return 0; 3122 3123 return 1; 3124 } 3125 3126 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3127 struct btrfs_balance_args *bargs) 3128 { 3129 struct btrfs_block_group_cache *cache; 3130 u64 chunk_used; 3131 u64 user_thresh_min; 3132 u64 user_thresh_max; 3133 int ret = 1; 3134 3135 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3136 chunk_used = btrfs_block_group_used(&cache->item); 3137 3138 if (bargs->usage_min == 0) 3139 user_thresh_min = 0; 3140 else 3141 user_thresh_min = div_factor_fine(cache->key.offset, 3142 bargs->usage_min); 3143 3144 if (bargs->usage_max == 0) 3145 user_thresh_max = 1; 3146 else if (bargs->usage_max > 100) 3147 user_thresh_max = cache->key.offset; 3148 else 3149 user_thresh_max = div_factor_fine(cache->key.offset, 3150 bargs->usage_max); 3151 3152 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3153 ret = 0; 3154 3155 btrfs_put_block_group(cache); 3156 return ret; 3157 } 3158 3159 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3160 u64 chunk_offset, struct btrfs_balance_args *bargs) 3161 { 3162 struct btrfs_block_group_cache *cache; 3163 u64 chunk_used, user_thresh; 3164 int ret = 1; 3165 3166 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3167 chunk_used = btrfs_block_group_used(&cache->item); 3168 3169 if (bargs->usage_min == 0) 3170 user_thresh = 1; 3171 else if (bargs->usage > 100) 3172 user_thresh = cache->key.offset; 3173 else 3174 user_thresh = div_factor_fine(cache->key.offset, 3175 bargs->usage); 3176 3177 if (chunk_used < user_thresh) 3178 ret = 0; 3179 3180 btrfs_put_block_group(cache); 3181 return ret; 3182 } 3183 3184 static int chunk_devid_filter(struct extent_buffer *leaf, 3185 struct btrfs_chunk *chunk, 3186 struct btrfs_balance_args *bargs) 3187 { 3188 struct btrfs_stripe *stripe; 3189 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3190 int i; 3191 3192 for (i = 0; i < num_stripes; i++) { 3193 stripe = btrfs_stripe_nr(chunk, i); 3194 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3195 return 0; 3196 } 3197 3198 return 1; 3199 } 3200 3201 /* [pstart, pend) */ 3202 static int chunk_drange_filter(struct extent_buffer *leaf, 3203 struct btrfs_chunk *chunk, 3204 u64 chunk_offset, 3205 struct btrfs_balance_args *bargs) 3206 { 3207 struct btrfs_stripe *stripe; 3208 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3209 u64 stripe_offset; 3210 u64 stripe_length; 3211 int factor; 3212 int i; 3213 3214 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3215 return 0; 3216 3217 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3218 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3219 factor = num_stripes / 2; 3220 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3221 factor = num_stripes - 1; 3222 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3223 factor = num_stripes - 2; 3224 } else { 3225 factor = num_stripes; 3226 } 3227 3228 for (i = 0; i < num_stripes; i++) { 3229 stripe = btrfs_stripe_nr(chunk, i); 3230 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3231 continue; 3232 3233 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3234 stripe_length = btrfs_chunk_length(leaf, chunk); 3235 stripe_length = div_u64(stripe_length, factor); 3236 3237 if (stripe_offset < bargs->pend && 3238 stripe_offset + stripe_length > bargs->pstart) 3239 return 0; 3240 } 3241 3242 return 1; 3243 } 3244 3245 /* [vstart, vend) */ 3246 static int chunk_vrange_filter(struct extent_buffer *leaf, 3247 struct btrfs_chunk *chunk, 3248 u64 chunk_offset, 3249 struct btrfs_balance_args *bargs) 3250 { 3251 if (chunk_offset < bargs->vend && 3252 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3253 /* at least part of the chunk is inside this vrange */ 3254 return 0; 3255 3256 return 1; 3257 } 3258 3259 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3260 struct btrfs_chunk *chunk, 3261 struct btrfs_balance_args *bargs) 3262 { 3263 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3264 3265 if (bargs->stripes_min <= num_stripes 3266 && num_stripes <= bargs->stripes_max) 3267 return 0; 3268 3269 return 1; 3270 } 3271 3272 static int chunk_soft_convert_filter(u64 chunk_type, 3273 struct btrfs_balance_args *bargs) 3274 { 3275 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3276 return 0; 3277 3278 chunk_type = chunk_to_extended(chunk_type) & 3279 BTRFS_EXTENDED_PROFILE_MASK; 3280 3281 if (bargs->target == chunk_type) 3282 return 1; 3283 3284 return 0; 3285 } 3286 3287 static int should_balance_chunk(struct btrfs_root *root, 3288 struct extent_buffer *leaf, 3289 struct btrfs_chunk *chunk, u64 chunk_offset) 3290 { 3291 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3292 struct btrfs_balance_args *bargs = NULL; 3293 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3294 3295 /* type filter */ 3296 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3297 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3298 return 0; 3299 } 3300 3301 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3302 bargs = &bctl->data; 3303 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3304 bargs = &bctl->sys; 3305 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3306 bargs = &bctl->meta; 3307 3308 /* profiles filter */ 3309 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3310 chunk_profiles_filter(chunk_type, bargs)) { 3311 return 0; 3312 } 3313 3314 /* usage filter */ 3315 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3316 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3317 return 0; 3318 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3319 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) { 3320 return 0; 3321 } 3322 3323 /* devid filter */ 3324 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3325 chunk_devid_filter(leaf, chunk, bargs)) { 3326 return 0; 3327 } 3328 3329 /* drange filter, makes sense only with devid filter */ 3330 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3331 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3332 return 0; 3333 } 3334 3335 /* vrange filter */ 3336 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3337 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3338 return 0; 3339 } 3340 3341 /* stripes filter */ 3342 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3343 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3344 return 0; 3345 } 3346 3347 /* soft profile changing mode */ 3348 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3349 chunk_soft_convert_filter(chunk_type, bargs)) { 3350 return 0; 3351 } 3352 3353 /* 3354 * limited by count, must be the last filter 3355 */ 3356 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3357 if (bargs->limit == 0) 3358 return 0; 3359 else 3360 bargs->limit--; 3361 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3362 /* 3363 * Same logic as the 'limit' filter; the minimum cannot be 3364 * determined here because we do not have the global informatoin 3365 * about the count of all chunks that satisfy the filters. 3366 */ 3367 if (bargs->limit_max == 0) 3368 return 0; 3369 else 3370 bargs->limit_max--; 3371 } 3372 3373 return 1; 3374 } 3375 3376 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3377 { 3378 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3379 struct btrfs_root *chunk_root = fs_info->chunk_root; 3380 struct btrfs_root *dev_root = fs_info->dev_root; 3381 struct list_head *devices; 3382 struct btrfs_device *device; 3383 u64 old_size; 3384 u64 size_to_free; 3385 u64 chunk_type; 3386 struct btrfs_chunk *chunk; 3387 struct btrfs_path *path; 3388 struct btrfs_key key; 3389 struct btrfs_key found_key; 3390 struct btrfs_trans_handle *trans; 3391 struct extent_buffer *leaf; 3392 int slot; 3393 int ret; 3394 int enospc_errors = 0; 3395 bool counting = true; 3396 /* The single value limit and min/max limits use the same bytes in the */ 3397 u64 limit_data = bctl->data.limit; 3398 u64 limit_meta = bctl->meta.limit; 3399 u64 limit_sys = bctl->sys.limit; 3400 u32 count_data = 0; 3401 u32 count_meta = 0; 3402 u32 count_sys = 0; 3403 int chunk_reserved = 0; 3404 3405 /* step one make some room on all the devices */ 3406 devices = &fs_info->fs_devices->devices; 3407 list_for_each_entry(device, devices, dev_list) { 3408 old_size = btrfs_device_get_total_bytes(device); 3409 size_to_free = div_factor(old_size, 1); 3410 size_to_free = min_t(u64, size_to_free, SZ_1M); 3411 if (!device->writeable || 3412 btrfs_device_get_total_bytes(device) - 3413 btrfs_device_get_bytes_used(device) > size_to_free || 3414 device->is_tgtdev_for_dev_replace) 3415 continue; 3416 3417 ret = btrfs_shrink_device(device, old_size - size_to_free); 3418 if (ret == -ENOSPC) 3419 break; 3420 BUG_ON(ret); 3421 3422 trans = btrfs_start_transaction(dev_root, 0); 3423 BUG_ON(IS_ERR(trans)); 3424 3425 ret = btrfs_grow_device(trans, device, old_size); 3426 BUG_ON(ret); 3427 3428 btrfs_end_transaction(trans, dev_root); 3429 } 3430 3431 /* step two, relocate all the chunks */ 3432 path = btrfs_alloc_path(); 3433 if (!path) { 3434 ret = -ENOMEM; 3435 goto error; 3436 } 3437 3438 /* zero out stat counters */ 3439 spin_lock(&fs_info->balance_lock); 3440 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3441 spin_unlock(&fs_info->balance_lock); 3442 again: 3443 if (!counting) { 3444 /* 3445 * The single value limit and min/max limits use the same bytes 3446 * in the 3447 */ 3448 bctl->data.limit = limit_data; 3449 bctl->meta.limit = limit_meta; 3450 bctl->sys.limit = limit_sys; 3451 } 3452 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3453 key.offset = (u64)-1; 3454 key.type = BTRFS_CHUNK_ITEM_KEY; 3455 3456 while (1) { 3457 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3458 atomic_read(&fs_info->balance_cancel_req)) { 3459 ret = -ECANCELED; 3460 goto error; 3461 } 3462 3463 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3464 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3465 if (ret < 0) { 3466 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3467 goto error; 3468 } 3469 3470 /* 3471 * this shouldn't happen, it means the last relocate 3472 * failed 3473 */ 3474 if (ret == 0) 3475 BUG(); /* FIXME break ? */ 3476 3477 ret = btrfs_previous_item(chunk_root, path, 0, 3478 BTRFS_CHUNK_ITEM_KEY); 3479 if (ret) { 3480 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3481 ret = 0; 3482 break; 3483 } 3484 3485 leaf = path->nodes[0]; 3486 slot = path->slots[0]; 3487 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3488 3489 if (found_key.objectid != key.objectid) { 3490 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3491 break; 3492 } 3493 3494 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3495 chunk_type = btrfs_chunk_type(leaf, chunk); 3496 3497 if (!counting) { 3498 spin_lock(&fs_info->balance_lock); 3499 bctl->stat.considered++; 3500 spin_unlock(&fs_info->balance_lock); 3501 } 3502 3503 ret = should_balance_chunk(chunk_root, leaf, chunk, 3504 found_key.offset); 3505 3506 btrfs_release_path(path); 3507 if (!ret) { 3508 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3509 goto loop; 3510 } 3511 3512 if (counting) { 3513 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3514 spin_lock(&fs_info->balance_lock); 3515 bctl->stat.expected++; 3516 spin_unlock(&fs_info->balance_lock); 3517 3518 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3519 count_data++; 3520 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3521 count_sys++; 3522 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3523 count_meta++; 3524 3525 goto loop; 3526 } 3527 3528 /* 3529 * Apply limit_min filter, no need to check if the LIMITS 3530 * filter is used, limit_min is 0 by default 3531 */ 3532 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3533 count_data < bctl->data.limit_min) 3534 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3535 count_meta < bctl->meta.limit_min) 3536 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3537 count_sys < bctl->sys.limit_min)) { 3538 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3539 goto loop; 3540 } 3541 3542 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) { 3543 trans = btrfs_start_transaction(chunk_root, 0); 3544 if (IS_ERR(trans)) { 3545 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3546 ret = PTR_ERR(trans); 3547 goto error; 3548 } 3549 3550 ret = btrfs_force_chunk_alloc(trans, chunk_root, 3551 BTRFS_BLOCK_GROUP_DATA); 3552 btrfs_end_transaction(trans, chunk_root); 3553 if (ret < 0) { 3554 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3555 goto error; 3556 } 3557 chunk_reserved = 1; 3558 } 3559 3560 ret = btrfs_relocate_chunk(chunk_root, 3561 found_key.offset); 3562 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3563 if (ret && ret != -ENOSPC) 3564 goto error; 3565 if (ret == -ENOSPC) { 3566 enospc_errors++; 3567 } else { 3568 spin_lock(&fs_info->balance_lock); 3569 bctl->stat.completed++; 3570 spin_unlock(&fs_info->balance_lock); 3571 } 3572 loop: 3573 if (found_key.offset == 0) 3574 break; 3575 key.offset = found_key.offset - 1; 3576 } 3577 3578 if (counting) { 3579 btrfs_release_path(path); 3580 counting = false; 3581 goto again; 3582 } 3583 error: 3584 btrfs_free_path(path); 3585 if (enospc_errors) { 3586 btrfs_info(fs_info, "%d enospc errors during balance", 3587 enospc_errors); 3588 if (!ret) 3589 ret = -ENOSPC; 3590 } 3591 3592 return ret; 3593 } 3594 3595 /** 3596 * alloc_profile_is_valid - see if a given profile is valid and reduced 3597 * @flags: profile to validate 3598 * @extended: if true @flags is treated as an extended profile 3599 */ 3600 static int alloc_profile_is_valid(u64 flags, int extended) 3601 { 3602 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3603 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3604 3605 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3606 3607 /* 1) check that all other bits are zeroed */ 3608 if (flags & ~mask) 3609 return 0; 3610 3611 /* 2) see if profile is reduced */ 3612 if (flags == 0) 3613 return !extended; /* "0" is valid for usual profiles */ 3614 3615 /* true if exactly one bit set */ 3616 return (flags & (flags - 1)) == 0; 3617 } 3618 3619 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3620 { 3621 /* cancel requested || normal exit path */ 3622 return atomic_read(&fs_info->balance_cancel_req) || 3623 (atomic_read(&fs_info->balance_pause_req) == 0 && 3624 atomic_read(&fs_info->balance_cancel_req) == 0); 3625 } 3626 3627 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3628 { 3629 int ret; 3630 3631 unset_balance_control(fs_info); 3632 ret = del_balance_item(fs_info->tree_root); 3633 if (ret) 3634 btrfs_std_error(fs_info, ret, NULL); 3635 3636 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3637 } 3638 3639 /* Non-zero return value signifies invalidity */ 3640 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3641 u64 allowed) 3642 { 3643 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3644 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3645 (bctl_arg->target & ~allowed))); 3646 } 3647 3648 /* 3649 * Should be called with both balance and volume mutexes held 3650 */ 3651 int btrfs_balance(struct btrfs_balance_control *bctl, 3652 struct btrfs_ioctl_balance_args *bargs) 3653 { 3654 struct btrfs_fs_info *fs_info = bctl->fs_info; 3655 u64 allowed; 3656 int mixed = 0; 3657 int ret; 3658 u64 num_devices; 3659 unsigned seq; 3660 3661 if (btrfs_fs_closing(fs_info) || 3662 atomic_read(&fs_info->balance_pause_req) || 3663 atomic_read(&fs_info->balance_cancel_req)) { 3664 ret = -EINVAL; 3665 goto out; 3666 } 3667 3668 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3669 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3670 mixed = 1; 3671 3672 /* 3673 * In case of mixed groups both data and meta should be picked, 3674 * and identical options should be given for both of them. 3675 */ 3676 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3677 if (mixed && (bctl->flags & allowed)) { 3678 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3679 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3680 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3681 btrfs_err(fs_info, "with mixed groups data and " 3682 "metadata balance options must be the same"); 3683 ret = -EINVAL; 3684 goto out; 3685 } 3686 } 3687 3688 num_devices = fs_info->fs_devices->num_devices; 3689 btrfs_dev_replace_lock(&fs_info->dev_replace); 3690 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3691 BUG_ON(num_devices < 1); 3692 num_devices--; 3693 } 3694 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3695 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3696 if (num_devices == 1) 3697 allowed |= BTRFS_BLOCK_GROUP_DUP; 3698 else if (num_devices > 1) 3699 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3700 if (num_devices > 2) 3701 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3702 if (num_devices > 3) 3703 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3704 BTRFS_BLOCK_GROUP_RAID6); 3705 if (validate_convert_profile(&bctl->data, allowed)) { 3706 btrfs_err(fs_info, "unable to start balance with target " 3707 "data profile %llu", 3708 bctl->data.target); 3709 ret = -EINVAL; 3710 goto out; 3711 } 3712 if (validate_convert_profile(&bctl->meta, allowed)) { 3713 btrfs_err(fs_info, 3714 "unable to start balance with target metadata profile %llu", 3715 bctl->meta.target); 3716 ret = -EINVAL; 3717 goto out; 3718 } 3719 if (validate_convert_profile(&bctl->sys, allowed)) { 3720 btrfs_err(fs_info, 3721 "unable to start balance with target system profile %llu", 3722 bctl->sys.target); 3723 ret = -EINVAL; 3724 goto out; 3725 } 3726 3727 /* allow to reduce meta or sys integrity only if force set */ 3728 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3729 BTRFS_BLOCK_GROUP_RAID10 | 3730 BTRFS_BLOCK_GROUP_RAID5 | 3731 BTRFS_BLOCK_GROUP_RAID6; 3732 do { 3733 seq = read_seqbegin(&fs_info->profiles_lock); 3734 3735 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3736 (fs_info->avail_system_alloc_bits & allowed) && 3737 !(bctl->sys.target & allowed)) || 3738 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3739 (fs_info->avail_metadata_alloc_bits & allowed) && 3740 !(bctl->meta.target & allowed))) { 3741 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3742 btrfs_info(fs_info, "force reducing metadata integrity"); 3743 } else { 3744 btrfs_err(fs_info, "balance will reduce metadata " 3745 "integrity, use force if you want this"); 3746 ret = -EINVAL; 3747 goto out; 3748 } 3749 } 3750 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3751 3752 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) < 3753 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) { 3754 btrfs_warn(fs_info, 3755 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx", 3756 bctl->meta.target, bctl->data.target); 3757 } 3758 3759 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3760 fs_info->num_tolerated_disk_barrier_failures = min( 3761 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info), 3762 btrfs_get_num_tolerated_disk_barrier_failures( 3763 bctl->sys.target)); 3764 } 3765 3766 ret = insert_balance_item(fs_info->tree_root, bctl); 3767 if (ret && ret != -EEXIST) 3768 goto out; 3769 3770 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3771 BUG_ON(ret == -EEXIST); 3772 set_balance_control(bctl); 3773 } else { 3774 BUG_ON(ret != -EEXIST); 3775 spin_lock(&fs_info->balance_lock); 3776 update_balance_args(bctl); 3777 spin_unlock(&fs_info->balance_lock); 3778 } 3779 3780 atomic_inc(&fs_info->balance_running); 3781 mutex_unlock(&fs_info->balance_mutex); 3782 3783 ret = __btrfs_balance(fs_info); 3784 3785 mutex_lock(&fs_info->balance_mutex); 3786 atomic_dec(&fs_info->balance_running); 3787 3788 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3789 fs_info->num_tolerated_disk_barrier_failures = 3790 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3791 } 3792 3793 if (bargs) { 3794 memset(bargs, 0, sizeof(*bargs)); 3795 update_ioctl_balance_args(fs_info, 0, bargs); 3796 } 3797 3798 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3799 balance_need_close(fs_info)) { 3800 __cancel_balance(fs_info); 3801 } 3802 3803 wake_up(&fs_info->balance_wait_q); 3804 3805 return ret; 3806 out: 3807 if (bctl->flags & BTRFS_BALANCE_RESUME) 3808 __cancel_balance(fs_info); 3809 else { 3810 kfree(bctl); 3811 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3812 } 3813 return ret; 3814 } 3815 3816 static int balance_kthread(void *data) 3817 { 3818 struct btrfs_fs_info *fs_info = data; 3819 int ret = 0; 3820 3821 mutex_lock(&fs_info->volume_mutex); 3822 mutex_lock(&fs_info->balance_mutex); 3823 3824 if (fs_info->balance_ctl) { 3825 btrfs_info(fs_info, "continuing balance"); 3826 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3827 } 3828 3829 mutex_unlock(&fs_info->balance_mutex); 3830 mutex_unlock(&fs_info->volume_mutex); 3831 3832 return ret; 3833 } 3834 3835 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3836 { 3837 struct task_struct *tsk; 3838 3839 spin_lock(&fs_info->balance_lock); 3840 if (!fs_info->balance_ctl) { 3841 spin_unlock(&fs_info->balance_lock); 3842 return 0; 3843 } 3844 spin_unlock(&fs_info->balance_lock); 3845 3846 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3847 btrfs_info(fs_info, "force skipping balance"); 3848 return 0; 3849 } 3850 3851 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3852 return PTR_ERR_OR_ZERO(tsk); 3853 } 3854 3855 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3856 { 3857 struct btrfs_balance_control *bctl; 3858 struct btrfs_balance_item *item; 3859 struct btrfs_disk_balance_args disk_bargs; 3860 struct btrfs_path *path; 3861 struct extent_buffer *leaf; 3862 struct btrfs_key key; 3863 int ret; 3864 3865 path = btrfs_alloc_path(); 3866 if (!path) 3867 return -ENOMEM; 3868 3869 key.objectid = BTRFS_BALANCE_OBJECTID; 3870 key.type = BTRFS_BALANCE_ITEM_KEY; 3871 key.offset = 0; 3872 3873 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3874 if (ret < 0) 3875 goto out; 3876 if (ret > 0) { /* ret = -ENOENT; */ 3877 ret = 0; 3878 goto out; 3879 } 3880 3881 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3882 if (!bctl) { 3883 ret = -ENOMEM; 3884 goto out; 3885 } 3886 3887 leaf = path->nodes[0]; 3888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3889 3890 bctl->fs_info = fs_info; 3891 bctl->flags = btrfs_balance_flags(leaf, item); 3892 bctl->flags |= BTRFS_BALANCE_RESUME; 3893 3894 btrfs_balance_data(leaf, item, &disk_bargs); 3895 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3896 btrfs_balance_meta(leaf, item, &disk_bargs); 3897 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3898 btrfs_balance_sys(leaf, item, &disk_bargs); 3899 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3900 3901 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3902 3903 mutex_lock(&fs_info->volume_mutex); 3904 mutex_lock(&fs_info->balance_mutex); 3905 3906 set_balance_control(bctl); 3907 3908 mutex_unlock(&fs_info->balance_mutex); 3909 mutex_unlock(&fs_info->volume_mutex); 3910 out: 3911 btrfs_free_path(path); 3912 return ret; 3913 } 3914 3915 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3916 { 3917 int ret = 0; 3918 3919 mutex_lock(&fs_info->balance_mutex); 3920 if (!fs_info->balance_ctl) { 3921 mutex_unlock(&fs_info->balance_mutex); 3922 return -ENOTCONN; 3923 } 3924 3925 if (atomic_read(&fs_info->balance_running)) { 3926 atomic_inc(&fs_info->balance_pause_req); 3927 mutex_unlock(&fs_info->balance_mutex); 3928 3929 wait_event(fs_info->balance_wait_q, 3930 atomic_read(&fs_info->balance_running) == 0); 3931 3932 mutex_lock(&fs_info->balance_mutex); 3933 /* we are good with balance_ctl ripped off from under us */ 3934 BUG_ON(atomic_read(&fs_info->balance_running)); 3935 atomic_dec(&fs_info->balance_pause_req); 3936 } else { 3937 ret = -ENOTCONN; 3938 } 3939 3940 mutex_unlock(&fs_info->balance_mutex); 3941 return ret; 3942 } 3943 3944 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3945 { 3946 if (fs_info->sb->s_flags & MS_RDONLY) 3947 return -EROFS; 3948 3949 mutex_lock(&fs_info->balance_mutex); 3950 if (!fs_info->balance_ctl) { 3951 mutex_unlock(&fs_info->balance_mutex); 3952 return -ENOTCONN; 3953 } 3954 3955 atomic_inc(&fs_info->balance_cancel_req); 3956 /* 3957 * if we are running just wait and return, balance item is 3958 * deleted in btrfs_balance in this case 3959 */ 3960 if (atomic_read(&fs_info->balance_running)) { 3961 mutex_unlock(&fs_info->balance_mutex); 3962 wait_event(fs_info->balance_wait_q, 3963 atomic_read(&fs_info->balance_running) == 0); 3964 mutex_lock(&fs_info->balance_mutex); 3965 } else { 3966 /* __cancel_balance needs volume_mutex */ 3967 mutex_unlock(&fs_info->balance_mutex); 3968 mutex_lock(&fs_info->volume_mutex); 3969 mutex_lock(&fs_info->balance_mutex); 3970 3971 if (fs_info->balance_ctl) 3972 __cancel_balance(fs_info); 3973 3974 mutex_unlock(&fs_info->volume_mutex); 3975 } 3976 3977 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3978 atomic_dec(&fs_info->balance_cancel_req); 3979 mutex_unlock(&fs_info->balance_mutex); 3980 return 0; 3981 } 3982 3983 static int btrfs_uuid_scan_kthread(void *data) 3984 { 3985 struct btrfs_fs_info *fs_info = data; 3986 struct btrfs_root *root = fs_info->tree_root; 3987 struct btrfs_key key; 3988 struct btrfs_key max_key; 3989 struct btrfs_path *path = NULL; 3990 int ret = 0; 3991 struct extent_buffer *eb; 3992 int slot; 3993 struct btrfs_root_item root_item; 3994 u32 item_size; 3995 struct btrfs_trans_handle *trans = NULL; 3996 3997 path = btrfs_alloc_path(); 3998 if (!path) { 3999 ret = -ENOMEM; 4000 goto out; 4001 } 4002 4003 key.objectid = 0; 4004 key.type = BTRFS_ROOT_ITEM_KEY; 4005 key.offset = 0; 4006 4007 max_key.objectid = (u64)-1; 4008 max_key.type = BTRFS_ROOT_ITEM_KEY; 4009 max_key.offset = (u64)-1; 4010 4011 while (1) { 4012 ret = btrfs_search_forward(root, &key, path, 0); 4013 if (ret) { 4014 if (ret > 0) 4015 ret = 0; 4016 break; 4017 } 4018 4019 if (key.type != BTRFS_ROOT_ITEM_KEY || 4020 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4021 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4022 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4023 goto skip; 4024 4025 eb = path->nodes[0]; 4026 slot = path->slots[0]; 4027 item_size = btrfs_item_size_nr(eb, slot); 4028 if (item_size < sizeof(root_item)) 4029 goto skip; 4030 4031 read_extent_buffer(eb, &root_item, 4032 btrfs_item_ptr_offset(eb, slot), 4033 (int)sizeof(root_item)); 4034 if (btrfs_root_refs(&root_item) == 0) 4035 goto skip; 4036 4037 if (!btrfs_is_empty_uuid(root_item.uuid) || 4038 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4039 if (trans) 4040 goto update_tree; 4041 4042 btrfs_release_path(path); 4043 /* 4044 * 1 - subvol uuid item 4045 * 1 - received_subvol uuid item 4046 */ 4047 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4048 if (IS_ERR(trans)) { 4049 ret = PTR_ERR(trans); 4050 break; 4051 } 4052 continue; 4053 } else { 4054 goto skip; 4055 } 4056 update_tree: 4057 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4058 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 4059 root_item.uuid, 4060 BTRFS_UUID_KEY_SUBVOL, 4061 key.objectid); 4062 if (ret < 0) { 4063 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4064 ret); 4065 break; 4066 } 4067 } 4068 4069 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4070 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 4071 root_item.received_uuid, 4072 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4073 key.objectid); 4074 if (ret < 0) { 4075 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4076 ret); 4077 break; 4078 } 4079 } 4080 4081 skip: 4082 if (trans) { 4083 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 4084 trans = NULL; 4085 if (ret) 4086 break; 4087 } 4088 4089 btrfs_release_path(path); 4090 if (key.offset < (u64)-1) { 4091 key.offset++; 4092 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4093 key.offset = 0; 4094 key.type = BTRFS_ROOT_ITEM_KEY; 4095 } else if (key.objectid < (u64)-1) { 4096 key.offset = 0; 4097 key.type = BTRFS_ROOT_ITEM_KEY; 4098 key.objectid++; 4099 } else { 4100 break; 4101 } 4102 cond_resched(); 4103 } 4104 4105 out: 4106 btrfs_free_path(path); 4107 if (trans && !IS_ERR(trans)) 4108 btrfs_end_transaction(trans, fs_info->uuid_root); 4109 if (ret) 4110 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4111 else 4112 fs_info->update_uuid_tree_gen = 1; 4113 up(&fs_info->uuid_tree_rescan_sem); 4114 return 0; 4115 } 4116 4117 /* 4118 * Callback for btrfs_uuid_tree_iterate(). 4119 * returns: 4120 * 0 check succeeded, the entry is not outdated. 4121 * < 0 if an error occured. 4122 * > 0 if the check failed, which means the caller shall remove the entry. 4123 */ 4124 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4125 u8 *uuid, u8 type, u64 subid) 4126 { 4127 struct btrfs_key key; 4128 int ret = 0; 4129 struct btrfs_root *subvol_root; 4130 4131 if (type != BTRFS_UUID_KEY_SUBVOL && 4132 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4133 goto out; 4134 4135 key.objectid = subid; 4136 key.type = BTRFS_ROOT_ITEM_KEY; 4137 key.offset = (u64)-1; 4138 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4139 if (IS_ERR(subvol_root)) { 4140 ret = PTR_ERR(subvol_root); 4141 if (ret == -ENOENT) 4142 ret = 1; 4143 goto out; 4144 } 4145 4146 switch (type) { 4147 case BTRFS_UUID_KEY_SUBVOL: 4148 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4149 ret = 1; 4150 break; 4151 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4152 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4153 BTRFS_UUID_SIZE)) 4154 ret = 1; 4155 break; 4156 } 4157 4158 out: 4159 return ret; 4160 } 4161 4162 static int btrfs_uuid_rescan_kthread(void *data) 4163 { 4164 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4165 int ret; 4166 4167 /* 4168 * 1st step is to iterate through the existing UUID tree and 4169 * to delete all entries that contain outdated data. 4170 * 2nd step is to add all missing entries to the UUID tree. 4171 */ 4172 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4173 if (ret < 0) { 4174 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4175 up(&fs_info->uuid_tree_rescan_sem); 4176 return ret; 4177 } 4178 return btrfs_uuid_scan_kthread(data); 4179 } 4180 4181 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4182 { 4183 struct btrfs_trans_handle *trans; 4184 struct btrfs_root *tree_root = fs_info->tree_root; 4185 struct btrfs_root *uuid_root; 4186 struct task_struct *task; 4187 int ret; 4188 4189 /* 4190 * 1 - root node 4191 * 1 - root item 4192 */ 4193 trans = btrfs_start_transaction(tree_root, 2); 4194 if (IS_ERR(trans)) 4195 return PTR_ERR(trans); 4196 4197 uuid_root = btrfs_create_tree(trans, fs_info, 4198 BTRFS_UUID_TREE_OBJECTID); 4199 if (IS_ERR(uuid_root)) { 4200 ret = PTR_ERR(uuid_root); 4201 btrfs_abort_transaction(trans, tree_root, ret); 4202 return ret; 4203 } 4204 4205 fs_info->uuid_root = uuid_root; 4206 4207 ret = btrfs_commit_transaction(trans, tree_root); 4208 if (ret) 4209 return ret; 4210 4211 down(&fs_info->uuid_tree_rescan_sem); 4212 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4213 if (IS_ERR(task)) { 4214 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4215 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4216 up(&fs_info->uuid_tree_rescan_sem); 4217 return PTR_ERR(task); 4218 } 4219 4220 return 0; 4221 } 4222 4223 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4224 { 4225 struct task_struct *task; 4226 4227 down(&fs_info->uuid_tree_rescan_sem); 4228 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4229 if (IS_ERR(task)) { 4230 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4231 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4232 up(&fs_info->uuid_tree_rescan_sem); 4233 return PTR_ERR(task); 4234 } 4235 4236 return 0; 4237 } 4238 4239 /* 4240 * shrinking a device means finding all of the device extents past 4241 * the new size, and then following the back refs to the chunks. 4242 * The chunk relocation code actually frees the device extent 4243 */ 4244 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4245 { 4246 struct btrfs_trans_handle *trans; 4247 struct btrfs_root *root = device->dev_root; 4248 struct btrfs_dev_extent *dev_extent = NULL; 4249 struct btrfs_path *path; 4250 u64 length; 4251 u64 chunk_offset; 4252 int ret; 4253 int slot; 4254 int failed = 0; 4255 bool retried = false; 4256 bool checked_pending_chunks = false; 4257 struct extent_buffer *l; 4258 struct btrfs_key key; 4259 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4260 u64 old_total = btrfs_super_total_bytes(super_copy); 4261 u64 old_size = btrfs_device_get_total_bytes(device); 4262 u64 diff = old_size - new_size; 4263 4264 if (device->is_tgtdev_for_dev_replace) 4265 return -EINVAL; 4266 4267 path = btrfs_alloc_path(); 4268 if (!path) 4269 return -ENOMEM; 4270 4271 path->reada = READA_FORWARD; 4272 4273 lock_chunks(root); 4274 4275 btrfs_device_set_total_bytes(device, new_size); 4276 if (device->writeable) { 4277 device->fs_devices->total_rw_bytes -= diff; 4278 spin_lock(&root->fs_info->free_chunk_lock); 4279 root->fs_info->free_chunk_space -= diff; 4280 spin_unlock(&root->fs_info->free_chunk_lock); 4281 } 4282 unlock_chunks(root); 4283 4284 again: 4285 key.objectid = device->devid; 4286 key.offset = (u64)-1; 4287 key.type = BTRFS_DEV_EXTENT_KEY; 4288 4289 do { 4290 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 4291 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4292 if (ret < 0) { 4293 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4294 goto done; 4295 } 4296 4297 ret = btrfs_previous_item(root, path, 0, key.type); 4298 if (ret) 4299 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4300 if (ret < 0) 4301 goto done; 4302 if (ret) { 4303 ret = 0; 4304 btrfs_release_path(path); 4305 break; 4306 } 4307 4308 l = path->nodes[0]; 4309 slot = path->slots[0]; 4310 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4311 4312 if (key.objectid != device->devid) { 4313 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4314 btrfs_release_path(path); 4315 break; 4316 } 4317 4318 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4319 length = btrfs_dev_extent_length(l, dev_extent); 4320 4321 if (key.offset + length <= new_size) { 4322 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4323 btrfs_release_path(path); 4324 break; 4325 } 4326 4327 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4328 btrfs_release_path(path); 4329 4330 ret = btrfs_relocate_chunk(root, chunk_offset); 4331 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4332 if (ret && ret != -ENOSPC) 4333 goto done; 4334 if (ret == -ENOSPC) 4335 failed++; 4336 } while (key.offset-- > 0); 4337 4338 if (failed && !retried) { 4339 failed = 0; 4340 retried = true; 4341 goto again; 4342 } else if (failed && retried) { 4343 ret = -ENOSPC; 4344 goto done; 4345 } 4346 4347 /* Shrinking succeeded, else we would be at "done". */ 4348 trans = btrfs_start_transaction(root, 0); 4349 if (IS_ERR(trans)) { 4350 ret = PTR_ERR(trans); 4351 goto done; 4352 } 4353 4354 lock_chunks(root); 4355 4356 /* 4357 * We checked in the above loop all device extents that were already in 4358 * the device tree. However before we have updated the device's 4359 * total_bytes to the new size, we might have had chunk allocations that 4360 * have not complete yet (new block groups attached to transaction 4361 * handles), and therefore their device extents were not yet in the 4362 * device tree and we missed them in the loop above. So if we have any 4363 * pending chunk using a device extent that overlaps the device range 4364 * that we can not use anymore, commit the current transaction and 4365 * repeat the search on the device tree - this way we guarantee we will 4366 * not have chunks using device extents that end beyond 'new_size'. 4367 */ 4368 if (!checked_pending_chunks) { 4369 u64 start = new_size; 4370 u64 len = old_size - new_size; 4371 4372 if (contains_pending_extent(trans->transaction, device, 4373 &start, len)) { 4374 unlock_chunks(root); 4375 checked_pending_chunks = true; 4376 failed = 0; 4377 retried = false; 4378 ret = btrfs_commit_transaction(trans, root); 4379 if (ret) 4380 goto done; 4381 goto again; 4382 } 4383 } 4384 4385 btrfs_device_set_disk_total_bytes(device, new_size); 4386 if (list_empty(&device->resized_list)) 4387 list_add_tail(&device->resized_list, 4388 &root->fs_info->fs_devices->resized_devices); 4389 4390 WARN_ON(diff > old_total); 4391 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4392 unlock_chunks(root); 4393 4394 /* Now btrfs_update_device() will change the on-disk size. */ 4395 ret = btrfs_update_device(trans, device); 4396 btrfs_end_transaction(trans, root); 4397 done: 4398 btrfs_free_path(path); 4399 if (ret) { 4400 lock_chunks(root); 4401 btrfs_device_set_total_bytes(device, old_size); 4402 if (device->writeable) 4403 device->fs_devices->total_rw_bytes += diff; 4404 spin_lock(&root->fs_info->free_chunk_lock); 4405 root->fs_info->free_chunk_space += diff; 4406 spin_unlock(&root->fs_info->free_chunk_lock); 4407 unlock_chunks(root); 4408 } 4409 return ret; 4410 } 4411 4412 static int btrfs_add_system_chunk(struct btrfs_root *root, 4413 struct btrfs_key *key, 4414 struct btrfs_chunk *chunk, int item_size) 4415 { 4416 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4417 struct btrfs_disk_key disk_key; 4418 u32 array_size; 4419 u8 *ptr; 4420 4421 lock_chunks(root); 4422 array_size = btrfs_super_sys_array_size(super_copy); 4423 if (array_size + item_size + sizeof(disk_key) 4424 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4425 unlock_chunks(root); 4426 return -EFBIG; 4427 } 4428 4429 ptr = super_copy->sys_chunk_array + array_size; 4430 btrfs_cpu_key_to_disk(&disk_key, key); 4431 memcpy(ptr, &disk_key, sizeof(disk_key)); 4432 ptr += sizeof(disk_key); 4433 memcpy(ptr, chunk, item_size); 4434 item_size += sizeof(disk_key); 4435 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4436 unlock_chunks(root); 4437 4438 return 0; 4439 } 4440 4441 /* 4442 * sort the devices in descending order by max_avail, total_avail 4443 */ 4444 static int btrfs_cmp_device_info(const void *a, const void *b) 4445 { 4446 const struct btrfs_device_info *di_a = a; 4447 const struct btrfs_device_info *di_b = b; 4448 4449 if (di_a->max_avail > di_b->max_avail) 4450 return -1; 4451 if (di_a->max_avail < di_b->max_avail) 4452 return 1; 4453 if (di_a->total_avail > di_b->total_avail) 4454 return -1; 4455 if (di_a->total_avail < di_b->total_avail) 4456 return 1; 4457 return 0; 4458 } 4459 4460 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4461 { 4462 /* TODO allow them to set a preferred stripe size */ 4463 return SZ_64K; 4464 } 4465 4466 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4467 { 4468 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4469 return; 4470 4471 btrfs_set_fs_incompat(info, RAID56); 4472 } 4473 4474 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ 4475 - sizeof(struct btrfs_item) \ 4476 - sizeof(struct btrfs_chunk)) \ 4477 / sizeof(struct btrfs_stripe) + 1) 4478 4479 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4480 - 2 * sizeof(struct btrfs_disk_key) \ 4481 - 2 * sizeof(struct btrfs_chunk)) \ 4482 / sizeof(struct btrfs_stripe) + 1) 4483 4484 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4485 struct btrfs_root *extent_root, u64 start, 4486 u64 type) 4487 { 4488 struct btrfs_fs_info *info = extent_root->fs_info; 4489 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4490 struct list_head *cur; 4491 struct map_lookup *map = NULL; 4492 struct extent_map_tree *em_tree; 4493 struct extent_map *em; 4494 struct btrfs_device_info *devices_info = NULL; 4495 u64 total_avail; 4496 int num_stripes; /* total number of stripes to allocate */ 4497 int data_stripes; /* number of stripes that count for 4498 block group size */ 4499 int sub_stripes; /* sub_stripes info for map */ 4500 int dev_stripes; /* stripes per dev */ 4501 int devs_max; /* max devs to use */ 4502 int devs_min; /* min devs needed */ 4503 int devs_increment; /* ndevs has to be a multiple of this */ 4504 int ncopies; /* how many copies to data has */ 4505 int ret; 4506 u64 max_stripe_size; 4507 u64 max_chunk_size; 4508 u64 stripe_size; 4509 u64 num_bytes; 4510 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4511 int ndevs; 4512 int i; 4513 int j; 4514 int index; 4515 4516 BUG_ON(!alloc_profile_is_valid(type, 0)); 4517 4518 if (list_empty(&fs_devices->alloc_list)) 4519 return -ENOSPC; 4520 4521 index = __get_raid_index(type); 4522 4523 sub_stripes = btrfs_raid_array[index].sub_stripes; 4524 dev_stripes = btrfs_raid_array[index].dev_stripes; 4525 devs_max = btrfs_raid_array[index].devs_max; 4526 devs_min = btrfs_raid_array[index].devs_min; 4527 devs_increment = btrfs_raid_array[index].devs_increment; 4528 ncopies = btrfs_raid_array[index].ncopies; 4529 4530 if (type & BTRFS_BLOCK_GROUP_DATA) { 4531 max_stripe_size = SZ_1G; 4532 max_chunk_size = 10 * max_stripe_size; 4533 if (!devs_max) 4534 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4535 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4536 /* for larger filesystems, use larger metadata chunks */ 4537 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4538 max_stripe_size = SZ_1G; 4539 else 4540 max_stripe_size = SZ_256M; 4541 max_chunk_size = max_stripe_size; 4542 if (!devs_max) 4543 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4544 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4545 max_stripe_size = SZ_32M; 4546 max_chunk_size = 2 * max_stripe_size; 4547 if (!devs_max) 4548 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4549 } else { 4550 btrfs_err(info, "invalid chunk type 0x%llx requested", 4551 type); 4552 BUG_ON(1); 4553 } 4554 4555 /* we don't want a chunk larger than 10% of writeable space */ 4556 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4557 max_chunk_size); 4558 4559 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4560 GFP_NOFS); 4561 if (!devices_info) 4562 return -ENOMEM; 4563 4564 cur = fs_devices->alloc_list.next; 4565 4566 /* 4567 * in the first pass through the devices list, we gather information 4568 * about the available holes on each device. 4569 */ 4570 ndevs = 0; 4571 while (cur != &fs_devices->alloc_list) { 4572 struct btrfs_device *device; 4573 u64 max_avail; 4574 u64 dev_offset; 4575 4576 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4577 4578 cur = cur->next; 4579 4580 if (!device->writeable) { 4581 WARN(1, KERN_ERR 4582 "BTRFS: read-only device in alloc_list\n"); 4583 continue; 4584 } 4585 4586 if (!device->in_fs_metadata || 4587 device->is_tgtdev_for_dev_replace) 4588 continue; 4589 4590 if (device->total_bytes > device->bytes_used) 4591 total_avail = device->total_bytes - device->bytes_used; 4592 else 4593 total_avail = 0; 4594 4595 /* If there is no space on this device, skip it. */ 4596 if (total_avail == 0) 4597 continue; 4598 4599 ret = find_free_dev_extent(trans, device, 4600 max_stripe_size * dev_stripes, 4601 &dev_offset, &max_avail); 4602 if (ret && ret != -ENOSPC) 4603 goto error; 4604 4605 if (ret == 0) 4606 max_avail = max_stripe_size * dev_stripes; 4607 4608 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4609 continue; 4610 4611 if (ndevs == fs_devices->rw_devices) { 4612 WARN(1, "%s: found more than %llu devices\n", 4613 __func__, fs_devices->rw_devices); 4614 break; 4615 } 4616 devices_info[ndevs].dev_offset = dev_offset; 4617 devices_info[ndevs].max_avail = max_avail; 4618 devices_info[ndevs].total_avail = total_avail; 4619 devices_info[ndevs].dev = device; 4620 ++ndevs; 4621 } 4622 4623 /* 4624 * now sort the devices by hole size / available space 4625 */ 4626 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4627 btrfs_cmp_device_info, NULL); 4628 4629 /* round down to number of usable stripes */ 4630 ndevs -= ndevs % devs_increment; 4631 4632 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4633 ret = -ENOSPC; 4634 goto error; 4635 } 4636 4637 if (devs_max && ndevs > devs_max) 4638 ndevs = devs_max; 4639 /* 4640 * the primary goal is to maximize the number of stripes, so use as many 4641 * devices as possible, even if the stripes are not maximum sized. 4642 */ 4643 stripe_size = devices_info[ndevs-1].max_avail; 4644 num_stripes = ndevs * dev_stripes; 4645 4646 /* 4647 * this will have to be fixed for RAID1 and RAID10 over 4648 * more drives 4649 */ 4650 data_stripes = num_stripes / ncopies; 4651 4652 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4653 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4654 btrfs_super_stripesize(info->super_copy)); 4655 data_stripes = num_stripes - 1; 4656 } 4657 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4658 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4659 btrfs_super_stripesize(info->super_copy)); 4660 data_stripes = num_stripes - 2; 4661 } 4662 4663 /* 4664 * Use the number of data stripes to figure out how big this chunk 4665 * is really going to be in terms of logical address space, 4666 * and compare that answer with the max chunk size 4667 */ 4668 if (stripe_size * data_stripes > max_chunk_size) { 4669 u64 mask = (1ULL << 24) - 1; 4670 4671 stripe_size = div_u64(max_chunk_size, data_stripes); 4672 4673 /* bump the answer up to a 16MB boundary */ 4674 stripe_size = (stripe_size + mask) & ~mask; 4675 4676 /* but don't go higher than the limits we found 4677 * while searching for free extents 4678 */ 4679 if (stripe_size > devices_info[ndevs-1].max_avail) 4680 stripe_size = devices_info[ndevs-1].max_avail; 4681 } 4682 4683 stripe_size = div_u64(stripe_size, dev_stripes); 4684 4685 /* align to BTRFS_STRIPE_LEN */ 4686 stripe_size = div_u64(stripe_size, raid_stripe_len); 4687 stripe_size *= raid_stripe_len; 4688 4689 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4690 if (!map) { 4691 ret = -ENOMEM; 4692 goto error; 4693 } 4694 map->num_stripes = num_stripes; 4695 4696 for (i = 0; i < ndevs; ++i) { 4697 for (j = 0; j < dev_stripes; ++j) { 4698 int s = i * dev_stripes + j; 4699 map->stripes[s].dev = devices_info[i].dev; 4700 map->stripes[s].physical = devices_info[i].dev_offset + 4701 j * stripe_size; 4702 } 4703 } 4704 map->sector_size = extent_root->sectorsize; 4705 map->stripe_len = raid_stripe_len; 4706 map->io_align = raid_stripe_len; 4707 map->io_width = raid_stripe_len; 4708 map->type = type; 4709 map->sub_stripes = sub_stripes; 4710 4711 num_bytes = stripe_size * data_stripes; 4712 4713 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4714 4715 em = alloc_extent_map(); 4716 if (!em) { 4717 kfree(map); 4718 ret = -ENOMEM; 4719 goto error; 4720 } 4721 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4722 em->map_lookup = map; 4723 em->start = start; 4724 em->len = num_bytes; 4725 em->block_start = 0; 4726 em->block_len = em->len; 4727 em->orig_block_len = stripe_size; 4728 4729 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4730 write_lock(&em_tree->lock); 4731 ret = add_extent_mapping(em_tree, em, 0); 4732 if (!ret) { 4733 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4734 atomic_inc(&em->refs); 4735 } 4736 write_unlock(&em_tree->lock); 4737 if (ret) { 4738 free_extent_map(em); 4739 goto error; 4740 } 4741 4742 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4743 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4744 start, num_bytes); 4745 if (ret) 4746 goto error_del_extent; 4747 4748 for (i = 0; i < map->num_stripes; i++) { 4749 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4750 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4751 } 4752 4753 spin_lock(&extent_root->fs_info->free_chunk_lock); 4754 extent_root->fs_info->free_chunk_space -= (stripe_size * 4755 map->num_stripes); 4756 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4757 4758 free_extent_map(em); 4759 check_raid56_incompat_flag(extent_root->fs_info, type); 4760 4761 kfree(devices_info); 4762 return 0; 4763 4764 error_del_extent: 4765 write_lock(&em_tree->lock); 4766 remove_extent_mapping(em_tree, em); 4767 write_unlock(&em_tree->lock); 4768 4769 /* One for our allocation */ 4770 free_extent_map(em); 4771 /* One for the tree reference */ 4772 free_extent_map(em); 4773 /* One for the pending_chunks list reference */ 4774 free_extent_map(em); 4775 error: 4776 kfree(devices_info); 4777 return ret; 4778 } 4779 4780 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4781 struct btrfs_root *extent_root, 4782 u64 chunk_offset, u64 chunk_size) 4783 { 4784 struct btrfs_key key; 4785 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4786 struct btrfs_device *device; 4787 struct btrfs_chunk *chunk; 4788 struct btrfs_stripe *stripe; 4789 struct extent_map_tree *em_tree; 4790 struct extent_map *em; 4791 struct map_lookup *map; 4792 size_t item_size; 4793 u64 dev_offset; 4794 u64 stripe_size; 4795 int i = 0; 4796 int ret = 0; 4797 4798 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4799 read_lock(&em_tree->lock); 4800 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4801 read_unlock(&em_tree->lock); 4802 4803 if (!em) { 4804 btrfs_crit(extent_root->fs_info, "unable to find logical " 4805 "%Lu len %Lu", chunk_offset, chunk_size); 4806 return -EINVAL; 4807 } 4808 4809 if (em->start != chunk_offset || em->len != chunk_size) { 4810 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4811 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4812 chunk_size, em->start, em->len); 4813 free_extent_map(em); 4814 return -EINVAL; 4815 } 4816 4817 map = em->map_lookup; 4818 item_size = btrfs_chunk_item_size(map->num_stripes); 4819 stripe_size = em->orig_block_len; 4820 4821 chunk = kzalloc(item_size, GFP_NOFS); 4822 if (!chunk) { 4823 ret = -ENOMEM; 4824 goto out; 4825 } 4826 4827 /* 4828 * Take the device list mutex to prevent races with the final phase of 4829 * a device replace operation that replaces the device object associated 4830 * with the map's stripes, because the device object's id can change 4831 * at any time during that final phase of the device replace operation 4832 * (dev-replace.c:btrfs_dev_replace_finishing()). 4833 */ 4834 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex); 4835 for (i = 0; i < map->num_stripes; i++) { 4836 device = map->stripes[i].dev; 4837 dev_offset = map->stripes[i].physical; 4838 4839 ret = btrfs_update_device(trans, device); 4840 if (ret) 4841 break; 4842 ret = btrfs_alloc_dev_extent(trans, device, 4843 chunk_root->root_key.objectid, 4844 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4845 chunk_offset, dev_offset, 4846 stripe_size); 4847 if (ret) 4848 break; 4849 } 4850 if (ret) { 4851 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex); 4852 goto out; 4853 } 4854 4855 stripe = &chunk->stripe; 4856 for (i = 0; i < map->num_stripes; i++) { 4857 device = map->stripes[i].dev; 4858 dev_offset = map->stripes[i].physical; 4859 4860 btrfs_set_stack_stripe_devid(stripe, device->devid); 4861 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4862 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4863 stripe++; 4864 } 4865 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex); 4866 4867 btrfs_set_stack_chunk_length(chunk, chunk_size); 4868 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4869 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4870 btrfs_set_stack_chunk_type(chunk, map->type); 4871 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4872 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4873 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4874 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4875 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4876 4877 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4878 key.type = BTRFS_CHUNK_ITEM_KEY; 4879 key.offset = chunk_offset; 4880 4881 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4882 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4883 /* 4884 * TODO: Cleanup of inserted chunk root in case of 4885 * failure. 4886 */ 4887 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4888 item_size); 4889 } 4890 4891 out: 4892 kfree(chunk); 4893 free_extent_map(em); 4894 return ret; 4895 } 4896 4897 /* 4898 * Chunk allocation falls into two parts. The first part does works 4899 * that make the new allocated chunk useable, but not do any operation 4900 * that modifies the chunk tree. The second part does the works that 4901 * require modifying the chunk tree. This division is important for the 4902 * bootstrap process of adding storage to a seed btrfs. 4903 */ 4904 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4905 struct btrfs_root *extent_root, u64 type) 4906 { 4907 u64 chunk_offset; 4908 4909 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex)); 4910 chunk_offset = find_next_chunk(extent_root->fs_info); 4911 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4912 } 4913 4914 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4915 struct btrfs_root *root, 4916 struct btrfs_device *device) 4917 { 4918 u64 chunk_offset; 4919 u64 sys_chunk_offset; 4920 u64 alloc_profile; 4921 struct btrfs_fs_info *fs_info = root->fs_info; 4922 struct btrfs_root *extent_root = fs_info->extent_root; 4923 int ret; 4924 4925 chunk_offset = find_next_chunk(fs_info); 4926 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4927 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4928 alloc_profile); 4929 if (ret) 4930 return ret; 4931 4932 sys_chunk_offset = find_next_chunk(root->fs_info); 4933 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4934 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4935 alloc_profile); 4936 return ret; 4937 } 4938 4939 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4940 { 4941 int max_errors; 4942 4943 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4944 BTRFS_BLOCK_GROUP_RAID10 | 4945 BTRFS_BLOCK_GROUP_RAID5 | 4946 BTRFS_BLOCK_GROUP_DUP)) { 4947 max_errors = 1; 4948 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 4949 max_errors = 2; 4950 } else { 4951 max_errors = 0; 4952 } 4953 4954 return max_errors; 4955 } 4956 4957 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4958 { 4959 struct extent_map *em; 4960 struct map_lookup *map; 4961 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4962 int readonly = 0; 4963 int miss_ndevs = 0; 4964 int i; 4965 4966 read_lock(&map_tree->map_tree.lock); 4967 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4968 read_unlock(&map_tree->map_tree.lock); 4969 if (!em) 4970 return 1; 4971 4972 map = em->map_lookup; 4973 for (i = 0; i < map->num_stripes; i++) { 4974 if (map->stripes[i].dev->missing) { 4975 miss_ndevs++; 4976 continue; 4977 } 4978 4979 if (!map->stripes[i].dev->writeable) { 4980 readonly = 1; 4981 goto end; 4982 } 4983 } 4984 4985 /* 4986 * If the number of missing devices is larger than max errors, 4987 * we can not write the data into that chunk successfully, so 4988 * set it readonly. 4989 */ 4990 if (miss_ndevs > btrfs_chunk_max_errors(map)) 4991 readonly = 1; 4992 end: 4993 free_extent_map(em); 4994 return readonly; 4995 } 4996 4997 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4998 { 4999 extent_map_tree_init(&tree->map_tree); 5000 } 5001 5002 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5003 { 5004 struct extent_map *em; 5005 5006 while (1) { 5007 write_lock(&tree->map_tree.lock); 5008 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5009 if (em) 5010 remove_extent_mapping(&tree->map_tree, em); 5011 write_unlock(&tree->map_tree.lock); 5012 if (!em) 5013 break; 5014 /* once for us */ 5015 free_extent_map(em); 5016 /* once for the tree */ 5017 free_extent_map(em); 5018 } 5019 } 5020 5021 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5022 { 5023 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5024 struct extent_map *em; 5025 struct map_lookup *map; 5026 struct extent_map_tree *em_tree = &map_tree->map_tree; 5027 int ret; 5028 5029 read_lock(&em_tree->lock); 5030 em = lookup_extent_mapping(em_tree, logical, len); 5031 read_unlock(&em_tree->lock); 5032 5033 /* 5034 * We could return errors for these cases, but that could get ugly and 5035 * we'd probably do the same thing which is just not do anything else 5036 * and exit, so return 1 so the callers don't try to use other copies. 5037 */ 5038 if (!em) { 5039 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 5040 logical+len); 5041 return 1; 5042 } 5043 5044 if (em->start > logical || em->start + em->len < logical) { 5045 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 5046 "%Lu-%Lu", logical, logical+len, em->start, 5047 em->start + em->len); 5048 free_extent_map(em); 5049 return 1; 5050 } 5051 5052 map = em->map_lookup; 5053 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5054 ret = map->num_stripes; 5055 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5056 ret = map->sub_stripes; 5057 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5058 ret = 2; 5059 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5060 ret = 3; 5061 else 5062 ret = 1; 5063 free_extent_map(em); 5064 5065 btrfs_dev_replace_lock(&fs_info->dev_replace); 5066 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 5067 ret++; 5068 btrfs_dev_replace_unlock(&fs_info->dev_replace); 5069 5070 return ret; 5071 } 5072 5073 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 5074 struct btrfs_mapping_tree *map_tree, 5075 u64 logical) 5076 { 5077 struct extent_map *em; 5078 struct map_lookup *map; 5079 struct extent_map_tree *em_tree = &map_tree->map_tree; 5080 unsigned long len = root->sectorsize; 5081 5082 read_lock(&em_tree->lock); 5083 em = lookup_extent_mapping(em_tree, logical, len); 5084 read_unlock(&em_tree->lock); 5085 BUG_ON(!em); 5086 5087 BUG_ON(em->start > logical || em->start + em->len < logical); 5088 map = em->map_lookup; 5089 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5090 len = map->stripe_len * nr_data_stripes(map); 5091 free_extent_map(em); 5092 return len; 5093 } 5094 5095 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 5096 u64 logical, u64 len, int mirror_num) 5097 { 5098 struct extent_map *em; 5099 struct map_lookup *map; 5100 struct extent_map_tree *em_tree = &map_tree->map_tree; 5101 int ret = 0; 5102 5103 read_lock(&em_tree->lock); 5104 em = lookup_extent_mapping(em_tree, logical, len); 5105 read_unlock(&em_tree->lock); 5106 BUG_ON(!em); 5107 5108 BUG_ON(em->start > logical || em->start + em->len < logical); 5109 map = em->map_lookup; 5110 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5111 ret = 1; 5112 free_extent_map(em); 5113 return ret; 5114 } 5115 5116 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5117 struct map_lookup *map, int first, int num, 5118 int optimal, int dev_replace_is_ongoing) 5119 { 5120 int i; 5121 int tolerance; 5122 struct btrfs_device *srcdev; 5123 5124 if (dev_replace_is_ongoing && 5125 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5126 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5127 srcdev = fs_info->dev_replace.srcdev; 5128 else 5129 srcdev = NULL; 5130 5131 /* 5132 * try to avoid the drive that is the source drive for a 5133 * dev-replace procedure, only choose it if no other non-missing 5134 * mirror is available 5135 */ 5136 for (tolerance = 0; tolerance < 2; tolerance++) { 5137 if (map->stripes[optimal].dev->bdev && 5138 (tolerance || map->stripes[optimal].dev != srcdev)) 5139 return optimal; 5140 for (i = first; i < first + num; i++) { 5141 if (map->stripes[i].dev->bdev && 5142 (tolerance || map->stripes[i].dev != srcdev)) 5143 return i; 5144 } 5145 } 5146 5147 /* we couldn't find one that doesn't fail. Just return something 5148 * and the io error handling code will clean up eventually 5149 */ 5150 return optimal; 5151 } 5152 5153 static inline int parity_smaller(u64 a, u64 b) 5154 { 5155 return a > b; 5156 } 5157 5158 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5159 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5160 { 5161 struct btrfs_bio_stripe s; 5162 int i; 5163 u64 l; 5164 int again = 1; 5165 5166 while (again) { 5167 again = 0; 5168 for (i = 0; i < num_stripes - 1; i++) { 5169 if (parity_smaller(bbio->raid_map[i], 5170 bbio->raid_map[i+1])) { 5171 s = bbio->stripes[i]; 5172 l = bbio->raid_map[i]; 5173 bbio->stripes[i] = bbio->stripes[i+1]; 5174 bbio->raid_map[i] = bbio->raid_map[i+1]; 5175 bbio->stripes[i+1] = s; 5176 bbio->raid_map[i+1] = l; 5177 5178 again = 1; 5179 } 5180 } 5181 } 5182 } 5183 5184 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5185 { 5186 struct btrfs_bio *bbio = kzalloc( 5187 /* the size of the btrfs_bio */ 5188 sizeof(struct btrfs_bio) + 5189 /* plus the variable array for the stripes */ 5190 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5191 /* plus the variable array for the tgt dev */ 5192 sizeof(int) * (real_stripes) + 5193 /* 5194 * plus the raid_map, which includes both the tgt dev 5195 * and the stripes 5196 */ 5197 sizeof(u64) * (total_stripes), 5198 GFP_NOFS|__GFP_NOFAIL); 5199 5200 atomic_set(&bbio->error, 0); 5201 atomic_set(&bbio->refs, 1); 5202 5203 return bbio; 5204 } 5205 5206 void btrfs_get_bbio(struct btrfs_bio *bbio) 5207 { 5208 WARN_ON(!atomic_read(&bbio->refs)); 5209 atomic_inc(&bbio->refs); 5210 } 5211 5212 void btrfs_put_bbio(struct btrfs_bio *bbio) 5213 { 5214 if (!bbio) 5215 return; 5216 if (atomic_dec_and_test(&bbio->refs)) 5217 kfree(bbio); 5218 } 5219 5220 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5221 u64 logical, u64 *length, 5222 struct btrfs_bio **bbio_ret, 5223 int mirror_num, int need_raid_map) 5224 { 5225 struct extent_map *em; 5226 struct map_lookup *map; 5227 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5228 struct extent_map_tree *em_tree = &map_tree->map_tree; 5229 u64 offset; 5230 u64 stripe_offset; 5231 u64 stripe_end_offset; 5232 u64 stripe_nr; 5233 u64 stripe_nr_orig; 5234 u64 stripe_nr_end; 5235 u64 stripe_len; 5236 u32 stripe_index; 5237 int i; 5238 int ret = 0; 5239 int num_stripes; 5240 int max_errors = 0; 5241 int tgtdev_indexes = 0; 5242 struct btrfs_bio *bbio = NULL; 5243 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5244 int dev_replace_is_ongoing = 0; 5245 int num_alloc_stripes; 5246 int patch_the_first_stripe_for_dev_replace = 0; 5247 u64 physical_to_patch_in_first_stripe = 0; 5248 u64 raid56_full_stripe_start = (u64)-1; 5249 5250 read_lock(&em_tree->lock); 5251 em = lookup_extent_mapping(em_tree, logical, *length); 5252 read_unlock(&em_tree->lock); 5253 5254 if (!em) { 5255 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 5256 logical, *length); 5257 return -EINVAL; 5258 } 5259 5260 if (em->start > logical || em->start + em->len < logical) { 5261 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 5262 "found %Lu-%Lu", logical, em->start, 5263 em->start + em->len); 5264 free_extent_map(em); 5265 return -EINVAL; 5266 } 5267 5268 map = em->map_lookup; 5269 offset = logical - em->start; 5270 5271 stripe_len = map->stripe_len; 5272 stripe_nr = offset; 5273 /* 5274 * stripe_nr counts the total number of stripes we have to stride 5275 * to get to this block 5276 */ 5277 stripe_nr = div64_u64(stripe_nr, stripe_len); 5278 5279 stripe_offset = stripe_nr * stripe_len; 5280 BUG_ON(offset < stripe_offset); 5281 5282 /* stripe_offset is the offset of this block in its stripe*/ 5283 stripe_offset = offset - stripe_offset; 5284 5285 /* if we're here for raid56, we need to know the stripe aligned start */ 5286 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5287 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5288 raid56_full_stripe_start = offset; 5289 5290 /* allow a write of a full stripe, but make sure we don't 5291 * allow straddling of stripes 5292 */ 5293 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5294 full_stripe_len); 5295 raid56_full_stripe_start *= full_stripe_len; 5296 } 5297 5298 if (rw & REQ_DISCARD) { 5299 /* we don't discard raid56 yet */ 5300 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5301 ret = -EOPNOTSUPP; 5302 goto out; 5303 } 5304 *length = min_t(u64, em->len - offset, *length); 5305 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5306 u64 max_len; 5307 /* For writes to RAID[56], allow a full stripeset across all disks. 5308 For other RAID types and for RAID[56] reads, just allow a single 5309 stripe (on a single disk). */ 5310 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5311 (rw & REQ_WRITE)) { 5312 max_len = stripe_len * nr_data_stripes(map) - 5313 (offset - raid56_full_stripe_start); 5314 } else { 5315 /* we limit the length of each bio to what fits in a stripe */ 5316 max_len = stripe_len - stripe_offset; 5317 } 5318 *length = min_t(u64, em->len - offset, max_len); 5319 } else { 5320 *length = em->len - offset; 5321 } 5322 5323 /* This is for when we're called from btrfs_merge_bio_hook() and all 5324 it cares about is the length */ 5325 if (!bbio_ret) 5326 goto out; 5327 5328 btrfs_dev_replace_lock(dev_replace); 5329 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5330 if (!dev_replace_is_ongoing) 5331 btrfs_dev_replace_unlock(dev_replace); 5332 5333 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5334 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 5335 dev_replace->tgtdev != NULL) { 5336 /* 5337 * in dev-replace case, for repair case (that's the only 5338 * case where the mirror is selected explicitly when 5339 * calling btrfs_map_block), blocks left of the left cursor 5340 * can also be read from the target drive. 5341 * For REQ_GET_READ_MIRRORS, the target drive is added as 5342 * the last one to the array of stripes. For READ, it also 5343 * needs to be supported using the same mirror number. 5344 * If the requested block is not left of the left cursor, 5345 * EIO is returned. This can happen because btrfs_num_copies() 5346 * returns one more in the dev-replace case. 5347 */ 5348 u64 tmp_length = *length; 5349 struct btrfs_bio *tmp_bbio = NULL; 5350 int tmp_num_stripes; 5351 u64 srcdev_devid = dev_replace->srcdev->devid; 5352 int index_srcdev = 0; 5353 int found = 0; 5354 u64 physical_of_found = 0; 5355 5356 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 5357 logical, &tmp_length, &tmp_bbio, 0, 0); 5358 if (ret) { 5359 WARN_ON(tmp_bbio != NULL); 5360 goto out; 5361 } 5362 5363 tmp_num_stripes = tmp_bbio->num_stripes; 5364 if (mirror_num > tmp_num_stripes) { 5365 /* 5366 * REQ_GET_READ_MIRRORS does not contain this 5367 * mirror, that means that the requested area 5368 * is not left of the left cursor 5369 */ 5370 ret = -EIO; 5371 btrfs_put_bbio(tmp_bbio); 5372 goto out; 5373 } 5374 5375 /* 5376 * process the rest of the function using the mirror_num 5377 * of the source drive. Therefore look it up first. 5378 * At the end, patch the device pointer to the one of the 5379 * target drive. 5380 */ 5381 for (i = 0; i < tmp_num_stripes; i++) { 5382 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid) 5383 continue; 5384 5385 /* 5386 * In case of DUP, in order to keep it simple, only add 5387 * the mirror with the lowest physical address 5388 */ 5389 if (found && 5390 physical_of_found <= tmp_bbio->stripes[i].physical) 5391 continue; 5392 5393 index_srcdev = i; 5394 found = 1; 5395 physical_of_found = tmp_bbio->stripes[i].physical; 5396 } 5397 5398 btrfs_put_bbio(tmp_bbio); 5399 5400 if (!found) { 5401 WARN_ON(1); 5402 ret = -EIO; 5403 goto out; 5404 } 5405 5406 mirror_num = index_srcdev + 1; 5407 patch_the_first_stripe_for_dev_replace = 1; 5408 physical_to_patch_in_first_stripe = physical_of_found; 5409 } else if (mirror_num > map->num_stripes) { 5410 mirror_num = 0; 5411 } 5412 5413 num_stripes = 1; 5414 stripe_index = 0; 5415 stripe_nr_orig = stripe_nr; 5416 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5417 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5418 stripe_end_offset = stripe_nr_end * map->stripe_len - 5419 (offset + *length); 5420 5421 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5422 if (rw & REQ_DISCARD) 5423 num_stripes = min_t(u64, map->num_stripes, 5424 stripe_nr_end - stripe_nr_orig); 5425 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5426 &stripe_index); 5427 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))) 5428 mirror_num = 1; 5429 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5430 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 5431 num_stripes = map->num_stripes; 5432 else if (mirror_num) 5433 stripe_index = mirror_num - 1; 5434 else { 5435 stripe_index = find_live_mirror(fs_info, map, 0, 5436 map->num_stripes, 5437 current->pid % map->num_stripes, 5438 dev_replace_is_ongoing); 5439 mirror_num = stripe_index + 1; 5440 } 5441 5442 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5443 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 5444 num_stripes = map->num_stripes; 5445 } else if (mirror_num) { 5446 stripe_index = mirror_num - 1; 5447 } else { 5448 mirror_num = 1; 5449 } 5450 5451 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5452 u32 factor = map->num_stripes / map->sub_stripes; 5453 5454 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5455 stripe_index *= map->sub_stripes; 5456 5457 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5458 num_stripes = map->sub_stripes; 5459 else if (rw & REQ_DISCARD) 5460 num_stripes = min_t(u64, map->sub_stripes * 5461 (stripe_nr_end - stripe_nr_orig), 5462 map->num_stripes); 5463 else if (mirror_num) 5464 stripe_index += mirror_num - 1; 5465 else { 5466 int old_stripe_index = stripe_index; 5467 stripe_index = find_live_mirror(fs_info, map, 5468 stripe_index, 5469 map->sub_stripes, stripe_index + 5470 current->pid % map->sub_stripes, 5471 dev_replace_is_ongoing); 5472 mirror_num = stripe_index - old_stripe_index + 1; 5473 } 5474 5475 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5476 if (need_raid_map && 5477 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5478 mirror_num > 1)) { 5479 /* push stripe_nr back to the start of the full stripe */ 5480 stripe_nr = div_u64(raid56_full_stripe_start, 5481 stripe_len * nr_data_stripes(map)); 5482 5483 /* RAID[56] write or recovery. Return all stripes */ 5484 num_stripes = map->num_stripes; 5485 max_errors = nr_parity_stripes(map); 5486 5487 *length = map->stripe_len; 5488 stripe_index = 0; 5489 stripe_offset = 0; 5490 } else { 5491 /* 5492 * Mirror #0 or #1 means the original data block. 5493 * Mirror #2 is RAID5 parity block. 5494 * Mirror #3 is RAID6 Q block. 5495 */ 5496 stripe_nr = div_u64_rem(stripe_nr, 5497 nr_data_stripes(map), &stripe_index); 5498 if (mirror_num > 1) 5499 stripe_index = nr_data_stripes(map) + 5500 mirror_num - 2; 5501 5502 /* We distribute the parity blocks across stripes */ 5503 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5504 &stripe_index); 5505 if (!(rw & (REQ_WRITE | REQ_DISCARD | 5506 REQ_GET_READ_MIRRORS)) && mirror_num <= 1) 5507 mirror_num = 1; 5508 } 5509 } else { 5510 /* 5511 * after this, stripe_nr is the number of stripes on this 5512 * device we have to walk to find the data, and stripe_index is 5513 * the number of our device in the stripe array 5514 */ 5515 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5516 &stripe_index); 5517 mirror_num = stripe_index + 1; 5518 } 5519 BUG_ON(stripe_index >= map->num_stripes); 5520 5521 num_alloc_stripes = num_stripes; 5522 if (dev_replace_is_ongoing) { 5523 if (rw & (REQ_WRITE | REQ_DISCARD)) 5524 num_alloc_stripes <<= 1; 5525 if (rw & REQ_GET_READ_MIRRORS) 5526 num_alloc_stripes++; 5527 tgtdev_indexes = num_stripes; 5528 } 5529 5530 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5531 if (!bbio) { 5532 ret = -ENOMEM; 5533 goto out; 5534 } 5535 if (dev_replace_is_ongoing) 5536 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5537 5538 /* build raid_map */ 5539 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5540 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5541 mirror_num > 1)) { 5542 u64 tmp; 5543 unsigned rot; 5544 5545 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5546 sizeof(struct btrfs_bio_stripe) * 5547 num_alloc_stripes + 5548 sizeof(int) * tgtdev_indexes); 5549 5550 /* Work out the disk rotation on this stripe-set */ 5551 div_u64_rem(stripe_nr, num_stripes, &rot); 5552 5553 /* Fill in the logical address of each stripe */ 5554 tmp = stripe_nr * nr_data_stripes(map); 5555 for (i = 0; i < nr_data_stripes(map); i++) 5556 bbio->raid_map[(i+rot) % num_stripes] = 5557 em->start + (tmp + i) * map->stripe_len; 5558 5559 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5560 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5561 bbio->raid_map[(i+rot+1) % num_stripes] = 5562 RAID6_Q_STRIPE; 5563 } 5564 5565 if (rw & REQ_DISCARD) { 5566 u32 factor = 0; 5567 u32 sub_stripes = 0; 5568 u64 stripes_per_dev = 0; 5569 u32 remaining_stripes = 0; 5570 u32 last_stripe = 0; 5571 5572 if (map->type & 5573 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5574 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5575 sub_stripes = 1; 5576 else 5577 sub_stripes = map->sub_stripes; 5578 5579 factor = map->num_stripes / sub_stripes; 5580 stripes_per_dev = div_u64_rem(stripe_nr_end - 5581 stripe_nr_orig, 5582 factor, 5583 &remaining_stripes); 5584 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5585 last_stripe *= sub_stripes; 5586 } 5587 5588 for (i = 0; i < num_stripes; i++) { 5589 bbio->stripes[i].physical = 5590 map->stripes[stripe_index].physical + 5591 stripe_offset + stripe_nr * map->stripe_len; 5592 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5593 5594 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5595 BTRFS_BLOCK_GROUP_RAID10)) { 5596 bbio->stripes[i].length = stripes_per_dev * 5597 map->stripe_len; 5598 5599 if (i / sub_stripes < remaining_stripes) 5600 bbio->stripes[i].length += 5601 map->stripe_len; 5602 5603 /* 5604 * Special for the first stripe and 5605 * the last stripe: 5606 * 5607 * |-------|...|-------| 5608 * |----------| 5609 * off end_off 5610 */ 5611 if (i < sub_stripes) 5612 bbio->stripes[i].length -= 5613 stripe_offset; 5614 5615 if (stripe_index >= last_stripe && 5616 stripe_index <= (last_stripe + 5617 sub_stripes - 1)) 5618 bbio->stripes[i].length -= 5619 stripe_end_offset; 5620 5621 if (i == sub_stripes - 1) 5622 stripe_offset = 0; 5623 } else 5624 bbio->stripes[i].length = *length; 5625 5626 stripe_index++; 5627 if (stripe_index == map->num_stripes) { 5628 /* This could only happen for RAID0/10 */ 5629 stripe_index = 0; 5630 stripe_nr++; 5631 } 5632 } 5633 } else { 5634 for (i = 0; i < num_stripes; i++) { 5635 bbio->stripes[i].physical = 5636 map->stripes[stripe_index].physical + 5637 stripe_offset + 5638 stripe_nr * map->stripe_len; 5639 bbio->stripes[i].dev = 5640 map->stripes[stripe_index].dev; 5641 stripe_index++; 5642 } 5643 } 5644 5645 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5646 max_errors = btrfs_chunk_max_errors(map); 5647 5648 if (bbio->raid_map) 5649 sort_parity_stripes(bbio, num_stripes); 5650 5651 tgtdev_indexes = 0; 5652 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5653 dev_replace->tgtdev != NULL) { 5654 int index_where_to_add; 5655 u64 srcdev_devid = dev_replace->srcdev->devid; 5656 5657 /* 5658 * duplicate the write operations while the dev replace 5659 * procedure is running. Since the copying of the old disk 5660 * to the new disk takes place at run time while the 5661 * filesystem is mounted writable, the regular write 5662 * operations to the old disk have to be duplicated to go 5663 * to the new disk as well. 5664 * Note that device->missing is handled by the caller, and 5665 * that the write to the old disk is already set up in the 5666 * stripes array. 5667 */ 5668 index_where_to_add = num_stripes; 5669 for (i = 0; i < num_stripes; i++) { 5670 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5671 /* write to new disk, too */ 5672 struct btrfs_bio_stripe *new = 5673 bbio->stripes + index_where_to_add; 5674 struct btrfs_bio_stripe *old = 5675 bbio->stripes + i; 5676 5677 new->physical = old->physical; 5678 new->length = old->length; 5679 new->dev = dev_replace->tgtdev; 5680 bbio->tgtdev_map[i] = index_where_to_add; 5681 index_where_to_add++; 5682 max_errors++; 5683 tgtdev_indexes++; 5684 } 5685 } 5686 num_stripes = index_where_to_add; 5687 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5688 dev_replace->tgtdev != NULL) { 5689 u64 srcdev_devid = dev_replace->srcdev->devid; 5690 int index_srcdev = 0; 5691 int found = 0; 5692 u64 physical_of_found = 0; 5693 5694 /* 5695 * During the dev-replace procedure, the target drive can 5696 * also be used to read data in case it is needed to repair 5697 * a corrupt block elsewhere. This is possible if the 5698 * requested area is left of the left cursor. In this area, 5699 * the target drive is a full copy of the source drive. 5700 */ 5701 for (i = 0; i < num_stripes; i++) { 5702 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5703 /* 5704 * In case of DUP, in order to keep it 5705 * simple, only add the mirror with the 5706 * lowest physical address 5707 */ 5708 if (found && 5709 physical_of_found <= 5710 bbio->stripes[i].physical) 5711 continue; 5712 index_srcdev = i; 5713 found = 1; 5714 physical_of_found = bbio->stripes[i].physical; 5715 } 5716 } 5717 if (found) { 5718 if (physical_of_found + map->stripe_len <= 5719 dev_replace->cursor_left) { 5720 struct btrfs_bio_stripe *tgtdev_stripe = 5721 bbio->stripes + num_stripes; 5722 5723 tgtdev_stripe->physical = physical_of_found; 5724 tgtdev_stripe->length = 5725 bbio->stripes[index_srcdev].length; 5726 tgtdev_stripe->dev = dev_replace->tgtdev; 5727 bbio->tgtdev_map[index_srcdev] = num_stripes; 5728 5729 tgtdev_indexes++; 5730 num_stripes++; 5731 } 5732 } 5733 } 5734 5735 *bbio_ret = bbio; 5736 bbio->map_type = map->type; 5737 bbio->num_stripes = num_stripes; 5738 bbio->max_errors = max_errors; 5739 bbio->mirror_num = mirror_num; 5740 bbio->num_tgtdevs = tgtdev_indexes; 5741 5742 /* 5743 * this is the case that REQ_READ && dev_replace_is_ongoing && 5744 * mirror_num == num_stripes + 1 && dev_replace target drive is 5745 * available as a mirror 5746 */ 5747 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5748 WARN_ON(num_stripes > 1); 5749 bbio->stripes[0].dev = dev_replace->tgtdev; 5750 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5751 bbio->mirror_num = map->num_stripes + 1; 5752 } 5753 out: 5754 if (dev_replace_is_ongoing) 5755 btrfs_dev_replace_unlock(dev_replace); 5756 free_extent_map(em); 5757 return ret; 5758 } 5759 5760 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5761 u64 logical, u64 *length, 5762 struct btrfs_bio **bbio_ret, int mirror_num) 5763 { 5764 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5765 mirror_num, 0); 5766 } 5767 5768 /* For Scrub/replace */ 5769 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw, 5770 u64 logical, u64 *length, 5771 struct btrfs_bio **bbio_ret, int mirror_num, 5772 int need_raid_map) 5773 { 5774 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5775 mirror_num, need_raid_map); 5776 } 5777 5778 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5779 u64 chunk_start, u64 physical, u64 devid, 5780 u64 **logical, int *naddrs, int *stripe_len) 5781 { 5782 struct extent_map_tree *em_tree = &map_tree->map_tree; 5783 struct extent_map *em; 5784 struct map_lookup *map; 5785 u64 *buf; 5786 u64 bytenr; 5787 u64 length; 5788 u64 stripe_nr; 5789 u64 rmap_len; 5790 int i, j, nr = 0; 5791 5792 read_lock(&em_tree->lock); 5793 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5794 read_unlock(&em_tree->lock); 5795 5796 if (!em) { 5797 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5798 chunk_start); 5799 return -EIO; 5800 } 5801 5802 if (em->start != chunk_start) { 5803 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5804 em->start, chunk_start); 5805 free_extent_map(em); 5806 return -EIO; 5807 } 5808 map = em->map_lookup; 5809 5810 length = em->len; 5811 rmap_len = map->stripe_len; 5812 5813 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5814 length = div_u64(length, map->num_stripes / map->sub_stripes); 5815 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5816 length = div_u64(length, map->num_stripes); 5817 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5818 length = div_u64(length, nr_data_stripes(map)); 5819 rmap_len = map->stripe_len * nr_data_stripes(map); 5820 } 5821 5822 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5823 BUG_ON(!buf); /* -ENOMEM */ 5824 5825 for (i = 0; i < map->num_stripes; i++) { 5826 if (devid && map->stripes[i].dev->devid != devid) 5827 continue; 5828 if (map->stripes[i].physical > physical || 5829 map->stripes[i].physical + length <= physical) 5830 continue; 5831 5832 stripe_nr = physical - map->stripes[i].physical; 5833 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5834 5835 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5836 stripe_nr = stripe_nr * map->num_stripes + i; 5837 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5838 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5839 stripe_nr = stripe_nr * map->num_stripes + i; 5840 } /* else if RAID[56], multiply by nr_data_stripes(). 5841 * Alternatively, just use rmap_len below instead of 5842 * map->stripe_len */ 5843 5844 bytenr = chunk_start + stripe_nr * rmap_len; 5845 WARN_ON(nr >= map->num_stripes); 5846 for (j = 0; j < nr; j++) { 5847 if (buf[j] == bytenr) 5848 break; 5849 } 5850 if (j == nr) { 5851 WARN_ON(nr >= map->num_stripes); 5852 buf[nr++] = bytenr; 5853 } 5854 } 5855 5856 *logical = buf; 5857 *naddrs = nr; 5858 *stripe_len = rmap_len; 5859 5860 free_extent_map(em); 5861 return 0; 5862 } 5863 5864 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5865 { 5866 bio->bi_private = bbio->private; 5867 bio->bi_end_io = bbio->end_io; 5868 bio_endio(bio); 5869 5870 btrfs_put_bbio(bbio); 5871 } 5872 5873 static void btrfs_end_bio(struct bio *bio) 5874 { 5875 struct btrfs_bio *bbio = bio->bi_private; 5876 int is_orig_bio = 0; 5877 5878 if (bio->bi_error) { 5879 atomic_inc(&bbio->error); 5880 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) { 5881 unsigned int stripe_index = 5882 btrfs_io_bio(bio)->stripe_index; 5883 struct btrfs_device *dev; 5884 5885 BUG_ON(stripe_index >= bbio->num_stripes); 5886 dev = bbio->stripes[stripe_index].dev; 5887 if (dev->bdev) { 5888 if (bio->bi_rw & WRITE) 5889 btrfs_dev_stat_inc(dev, 5890 BTRFS_DEV_STAT_WRITE_ERRS); 5891 else 5892 btrfs_dev_stat_inc(dev, 5893 BTRFS_DEV_STAT_READ_ERRS); 5894 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5895 btrfs_dev_stat_inc(dev, 5896 BTRFS_DEV_STAT_FLUSH_ERRS); 5897 btrfs_dev_stat_print_on_error(dev); 5898 } 5899 } 5900 } 5901 5902 if (bio == bbio->orig_bio) 5903 is_orig_bio = 1; 5904 5905 btrfs_bio_counter_dec(bbio->fs_info); 5906 5907 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5908 if (!is_orig_bio) { 5909 bio_put(bio); 5910 bio = bbio->orig_bio; 5911 } 5912 5913 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5914 /* only send an error to the higher layers if it is 5915 * beyond the tolerance of the btrfs bio 5916 */ 5917 if (atomic_read(&bbio->error) > bbio->max_errors) { 5918 bio->bi_error = -EIO; 5919 } else { 5920 /* 5921 * this bio is actually up to date, we didn't 5922 * go over the max number of errors 5923 */ 5924 bio->bi_error = 0; 5925 } 5926 5927 btrfs_end_bbio(bbio, bio); 5928 } else if (!is_orig_bio) { 5929 bio_put(bio); 5930 } 5931 } 5932 5933 /* 5934 * see run_scheduled_bios for a description of why bios are collected for 5935 * async submit. 5936 * 5937 * This will add one bio to the pending list for a device and make sure 5938 * the work struct is scheduled. 5939 */ 5940 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5941 struct btrfs_device *device, 5942 int rw, struct bio *bio) 5943 { 5944 int should_queue = 1; 5945 struct btrfs_pending_bios *pending_bios; 5946 5947 if (device->missing || !device->bdev) { 5948 bio_io_error(bio); 5949 return; 5950 } 5951 5952 /* don't bother with additional async steps for reads, right now */ 5953 if (!(rw & REQ_WRITE)) { 5954 bio_get(bio); 5955 btrfsic_submit_bio(rw, bio); 5956 bio_put(bio); 5957 return; 5958 } 5959 5960 /* 5961 * nr_async_bios allows us to reliably return congestion to the 5962 * higher layers. Otherwise, the async bio makes it appear we have 5963 * made progress against dirty pages when we've really just put it 5964 * on a queue for later 5965 */ 5966 atomic_inc(&root->fs_info->nr_async_bios); 5967 WARN_ON(bio->bi_next); 5968 bio->bi_next = NULL; 5969 bio->bi_rw |= rw; 5970 5971 spin_lock(&device->io_lock); 5972 if (bio->bi_rw & REQ_SYNC) 5973 pending_bios = &device->pending_sync_bios; 5974 else 5975 pending_bios = &device->pending_bios; 5976 5977 if (pending_bios->tail) 5978 pending_bios->tail->bi_next = bio; 5979 5980 pending_bios->tail = bio; 5981 if (!pending_bios->head) 5982 pending_bios->head = bio; 5983 if (device->running_pending) 5984 should_queue = 0; 5985 5986 spin_unlock(&device->io_lock); 5987 5988 if (should_queue) 5989 btrfs_queue_work(root->fs_info->submit_workers, 5990 &device->work); 5991 } 5992 5993 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5994 struct bio *bio, u64 physical, int dev_nr, 5995 int rw, int async) 5996 { 5997 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5998 5999 bio->bi_private = bbio; 6000 btrfs_io_bio(bio)->stripe_index = dev_nr; 6001 bio->bi_end_io = btrfs_end_bio; 6002 bio->bi_iter.bi_sector = physical >> 9; 6003 #ifdef DEBUG 6004 { 6005 struct rcu_string *name; 6006 6007 rcu_read_lock(); 6008 name = rcu_dereference(dev->name); 6009 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 6010 "(%s id %llu), size=%u\n", rw, 6011 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, 6012 name->str, dev->devid, bio->bi_iter.bi_size); 6013 rcu_read_unlock(); 6014 } 6015 #endif 6016 bio->bi_bdev = dev->bdev; 6017 6018 btrfs_bio_counter_inc_noblocked(root->fs_info); 6019 6020 if (async) 6021 btrfs_schedule_bio(root, dev, rw, bio); 6022 else 6023 btrfsic_submit_bio(rw, bio); 6024 } 6025 6026 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6027 { 6028 atomic_inc(&bbio->error); 6029 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6030 /* Shoud be the original bio. */ 6031 WARN_ON(bio != bbio->orig_bio); 6032 6033 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6034 bio->bi_iter.bi_sector = logical >> 9; 6035 bio->bi_error = -EIO; 6036 btrfs_end_bbio(bbio, bio); 6037 } 6038 } 6039 6040 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 6041 int mirror_num, int async_submit) 6042 { 6043 struct btrfs_device *dev; 6044 struct bio *first_bio = bio; 6045 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6046 u64 length = 0; 6047 u64 map_length; 6048 int ret; 6049 int dev_nr; 6050 int total_devs; 6051 struct btrfs_bio *bbio = NULL; 6052 6053 length = bio->bi_iter.bi_size; 6054 map_length = length; 6055 6056 btrfs_bio_counter_inc_blocked(root->fs_info); 6057 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 6058 mirror_num, 1); 6059 if (ret) { 6060 btrfs_bio_counter_dec(root->fs_info); 6061 return ret; 6062 } 6063 6064 total_devs = bbio->num_stripes; 6065 bbio->orig_bio = first_bio; 6066 bbio->private = first_bio->bi_private; 6067 bbio->end_io = first_bio->bi_end_io; 6068 bbio->fs_info = root->fs_info; 6069 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6070 6071 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6072 ((rw & WRITE) || (mirror_num > 1))) { 6073 /* In this case, map_length has been set to the length of 6074 a single stripe; not the whole write */ 6075 if (rw & WRITE) { 6076 ret = raid56_parity_write(root, bio, bbio, map_length); 6077 } else { 6078 ret = raid56_parity_recover(root, bio, bbio, map_length, 6079 mirror_num, 1); 6080 } 6081 6082 btrfs_bio_counter_dec(root->fs_info); 6083 return ret; 6084 } 6085 6086 if (map_length < length) { 6087 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 6088 logical, length, map_length); 6089 BUG(); 6090 } 6091 6092 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6093 dev = bbio->stripes[dev_nr].dev; 6094 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 6095 bbio_error(bbio, first_bio, logical); 6096 continue; 6097 } 6098 6099 if (dev_nr < total_devs - 1) { 6100 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 6101 BUG_ON(!bio); /* -ENOMEM */ 6102 } else 6103 bio = first_bio; 6104 6105 submit_stripe_bio(root, bbio, bio, 6106 bbio->stripes[dev_nr].physical, dev_nr, rw, 6107 async_submit); 6108 } 6109 btrfs_bio_counter_dec(root->fs_info); 6110 return 0; 6111 } 6112 6113 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6114 u8 *uuid, u8 *fsid) 6115 { 6116 struct btrfs_device *device; 6117 struct btrfs_fs_devices *cur_devices; 6118 6119 cur_devices = fs_info->fs_devices; 6120 while (cur_devices) { 6121 if (!fsid || 6122 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 6123 device = __find_device(&cur_devices->devices, 6124 devid, uuid); 6125 if (device) 6126 return device; 6127 } 6128 cur_devices = cur_devices->seed; 6129 } 6130 return NULL; 6131 } 6132 6133 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 6134 struct btrfs_fs_devices *fs_devices, 6135 u64 devid, u8 *dev_uuid) 6136 { 6137 struct btrfs_device *device; 6138 6139 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6140 if (IS_ERR(device)) 6141 return NULL; 6142 6143 list_add(&device->dev_list, &fs_devices->devices); 6144 device->fs_devices = fs_devices; 6145 fs_devices->num_devices++; 6146 6147 device->missing = 1; 6148 fs_devices->missing_devices++; 6149 6150 return device; 6151 } 6152 6153 /** 6154 * btrfs_alloc_device - allocate struct btrfs_device 6155 * @fs_info: used only for generating a new devid, can be NULL if 6156 * devid is provided (i.e. @devid != NULL). 6157 * @devid: a pointer to devid for this device. If NULL a new devid 6158 * is generated. 6159 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6160 * is generated. 6161 * 6162 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6163 * on error. Returned struct is not linked onto any lists and can be 6164 * destroyed with kfree() right away. 6165 */ 6166 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6167 const u64 *devid, 6168 const u8 *uuid) 6169 { 6170 struct btrfs_device *dev; 6171 u64 tmp; 6172 6173 if (WARN_ON(!devid && !fs_info)) 6174 return ERR_PTR(-EINVAL); 6175 6176 dev = __alloc_device(); 6177 if (IS_ERR(dev)) 6178 return dev; 6179 6180 if (devid) 6181 tmp = *devid; 6182 else { 6183 int ret; 6184 6185 ret = find_next_devid(fs_info, &tmp); 6186 if (ret) { 6187 kfree(dev); 6188 return ERR_PTR(ret); 6189 } 6190 } 6191 dev->devid = tmp; 6192 6193 if (uuid) 6194 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6195 else 6196 generate_random_uuid(dev->uuid); 6197 6198 btrfs_init_work(&dev->work, btrfs_submit_helper, 6199 pending_bios_fn, NULL, NULL); 6200 6201 return dev; 6202 } 6203 6204 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 6205 struct extent_buffer *leaf, 6206 struct btrfs_chunk *chunk) 6207 { 6208 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6209 struct map_lookup *map; 6210 struct extent_map *em; 6211 u64 logical; 6212 u64 length; 6213 u64 stripe_len; 6214 u64 devid; 6215 u8 uuid[BTRFS_UUID_SIZE]; 6216 int num_stripes; 6217 int ret; 6218 int i; 6219 6220 logical = key->offset; 6221 length = btrfs_chunk_length(leaf, chunk); 6222 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6223 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6224 /* Validation check */ 6225 if (!num_stripes) { 6226 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u", 6227 num_stripes); 6228 return -EIO; 6229 } 6230 if (!IS_ALIGNED(logical, root->sectorsize)) { 6231 btrfs_err(root->fs_info, 6232 "invalid chunk logical %llu", logical); 6233 return -EIO; 6234 } 6235 if (!length || !IS_ALIGNED(length, root->sectorsize)) { 6236 btrfs_err(root->fs_info, 6237 "invalid chunk length %llu", length); 6238 return -EIO; 6239 } 6240 if (!is_power_of_2(stripe_len)) { 6241 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu", 6242 stripe_len); 6243 return -EIO; 6244 } 6245 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6246 btrfs_chunk_type(leaf, chunk)) { 6247 btrfs_err(root->fs_info, "unrecognized chunk type: %llu", 6248 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 6249 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 6250 btrfs_chunk_type(leaf, chunk)); 6251 return -EIO; 6252 } 6253 6254 read_lock(&map_tree->map_tree.lock); 6255 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6256 read_unlock(&map_tree->map_tree.lock); 6257 6258 /* already mapped? */ 6259 if (em && em->start <= logical && em->start + em->len > logical) { 6260 free_extent_map(em); 6261 return 0; 6262 } else if (em) { 6263 free_extent_map(em); 6264 } 6265 6266 em = alloc_extent_map(); 6267 if (!em) 6268 return -ENOMEM; 6269 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6270 if (!map) { 6271 free_extent_map(em); 6272 return -ENOMEM; 6273 } 6274 6275 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6276 em->map_lookup = map; 6277 em->start = logical; 6278 em->len = length; 6279 em->orig_start = 0; 6280 em->block_start = 0; 6281 em->block_len = em->len; 6282 6283 map->num_stripes = num_stripes; 6284 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6285 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6286 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6287 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6288 map->type = btrfs_chunk_type(leaf, chunk); 6289 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6290 for (i = 0; i < num_stripes; i++) { 6291 map->stripes[i].physical = 6292 btrfs_stripe_offset_nr(leaf, chunk, i); 6293 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6294 read_extent_buffer(leaf, uuid, (unsigned long) 6295 btrfs_stripe_dev_uuid_nr(chunk, i), 6296 BTRFS_UUID_SIZE); 6297 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 6298 uuid, NULL); 6299 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 6300 free_extent_map(em); 6301 return -EIO; 6302 } 6303 if (!map->stripes[i].dev) { 6304 map->stripes[i].dev = 6305 add_missing_dev(root, root->fs_info->fs_devices, 6306 devid, uuid); 6307 if (!map->stripes[i].dev) { 6308 free_extent_map(em); 6309 return -EIO; 6310 } 6311 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing", 6312 devid, uuid); 6313 } 6314 map->stripes[i].dev->in_fs_metadata = 1; 6315 } 6316 6317 write_lock(&map_tree->map_tree.lock); 6318 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6319 write_unlock(&map_tree->map_tree.lock); 6320 BUG_ON(ret); /* Tree corruption */ 6321 free_extent_map(em); 6322 6323 return 0; 6324 } 6325 6326 static void fill_device_from_item(struct extent_buffer *leaf, 6327 struct btrfs_dev_item *dev_item, 6328 struct btrfs_device *device) 6329 { 6330 unsigned long ptr; 6331 6332 device->devid = btrfs_device_id(leaf, dev_item); 6333 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6334 device->total_bytes = device->disk_total_bytes; 6335 device->commit_total_bytes = device->disk_total_bytes; 6336 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6337 device->commit_bytes_used = device->bytes_used; 6338 device->type = btrfs_device_type(leaf, dev_item); 6339 device->io_align = btrfs_device_io_align(leaf, dev_item); 6340 device->io_width = btrfs_device_io_width(leaf, dev_item); 6341 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6342 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6343 device->is_tgtdev_for_dev_replace = 0; 6344 6345 ptr = btrfs_device_uuid(dev_item); 6346 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6347 } 6348 6349 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root, 6350 u8 *fsid) 6351 { 6352 struct btrfs_fs_devices *fs_devices; 6353 int ret; 6354 6355 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6356 6357 fs_devices = root->fs_info->fs_devices->seed; 6358 while (fs_devices) { 6359 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6360 return fs_devices; 6361 6362 fs_devices = fs_devices->seed; 6363 } 6364 6365 fs_devices = find_fsid(fsid); 6366 if (!fs_devices) { 6367 if (!btrfs_test_opt(root, DEGRADED)) 6368 return ERR_PTR(-ENOENT); 6369 6370 fs_devices = alloc_fs_devices(fsid); 6371 if (IS_ERR(fs_devices)) 6372 return fs_devices; 6373 6374 fs_devices->seeding = 1; 6375 fs_devices->opened = 1; 6376 return fs_devices; 6377 } 6378 6379 fs_devices = clone_fs_devices(fs_devices); 6380 if (IS_ERR(fs_devices)) 6381 return fs_devices; 6382 6383 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6384 root->fs_info->bdev_holder); 6385 if (ret) { 6386 free_fs_devices(fs_devices); 6387 fs_devices = ERR_PTR(ret); 6388 goto out; 6389 } 6390 6391 if (!fs_devices->seeding) { 6392 __btrfs_close_devices(fs_devices); 6393 free_fs_devices(fs_devices); 6394 fs_devices = ERR_PTR(-EINVAL); 6395 goto out; 6396 } 6397 6398 fs_devices->seed = root->fs_info->fs_devices->seed; 6399 root->fs_info->fs_devices->seed = fs_devices; 6400 out: 6401 return fs_devices; 6402 } 6403 6404 static int read_one_dev(struct btrfs_root *root, 6405 struct extent_buffer *leaf, 6406 struct btrfs_dev_item *dev_item) 6407 { 6408 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6409 struct btrfs_device *device; 6410 u64 devid; 6411 int ret; 6412 u8 fs_uuid[BTRFS_UUID_SIZE]; 6413 u8 dev_uuid[BTRFS_UUID_SIZE]; 6414 6415 devid = btrfs_device_id(leaf, dev_item); 6416 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6417 BTRFS_UUID_SIZE); 6418 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6419 BTRFS_UUID_SIZE); 6420 6421 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6422 fs_devices = open_seed_devices(root, fs_uuid); 6423 if (IS_ERR(fs_devices)) 6424 return PTR_ERR(fs_devices); 6425 } 6426 6427 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6428 if (!device) { 6429 if (!btrfs_test_opt(root, DEGRADED)) 6430 return -EIO; 6431 6432 device = add_missing_dev(root, fs_devices, devid, dev_uuid); 6433 if (!device) 6434 return -ENOMEM; 6435 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing", 6436 devid, dev_uuid); 6437 } else { 6438 if (!device->bdev && !btrfs_test_opt(root, DEGRADED)) 6439 return -EIO; 6440 6441 if(!device->bdev && !device->missing) { 6442 /* 6443 * this happens when a device that was properly setup 6444 * in the device info lists suddenly goes bad. 6445 * device->bdev is NULL, and so we have to set 6446 * device->missing to one here 6447 */ 6448 device->fs_devices->missing_devices++; 6449 device->missing = 1; 6450 } 6451 6452 /* Move the device to its own fs_devices */ 6453 if (device->fs_devices != fs_devices) { 6454 ASSERT(device->missing); 6455 6456 list_move(&device->dev_list, &fs_devices->devices); 6457 device->fs_devices->num_devices--; 6458 fs_devices->num_devices++; 6459 6460 device->fs_devices->missing_devices--; 6461 fs_devices->missing_devices++; 6462 6463 device->fs_devices = fs_devices; 6464 } 6465 } 6466 6467 if (device->fs_devices != root->fs_info->fs_devices) { 6468 BUG_ON(device->writeable); 6469 if (device->generation != 6470 btrfs_device_generation(leaf, dev_item)) 6471 return -EINVAL; 6472 } 6473 6474 fill_device_from_item(leaf, dev_item, device); 6475 device->in_fs_metadata = 1; 6476 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6477 device->fs_devices->total_rw_bytes += device->total_bytes; 6478 spin_lock(&root->fs_info->free_chunk_lock); 6479 root->fs_info->free_chunk_space += device->total_bytes - 6480 device->bytes_used; 6481 spin_unlock(&root->fs_info->free_chunk_lock); 6482 } 6483 ret = 0; 6484 return ret; 6485 } 6486 6487 int btrfs_read_sys_array(struct btrfs_root *root) 6488 { 6489 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6490 struct extent_buffer *sb; 6491 struct btrfs_disk_key *disk_key; 6492 struct btrfs_chunk *chunk; 6493 u8 *array_ptr; 6494 unsigned long sb_array_offset; 6495 int ret = 0; 6496 u32 num_stripes; 6497 u32 array_size; 6498 u32 len = 0; 6499 u32 cur_offset; 6500 struct btrfs_key key; 6501 6502 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize); 6503 /* 6504 * This will create extent buffer of nodesize, superblock size is 6505 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6506 * overallocate but we can keep it as-is, only the first page is used. 6507 */ 6508 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET); 6509 if (!sb) 6510 return -ENOMEM; 6511 set_extent_buffer_uptodate(sb); 6512 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6513 /* 6514 * The sb extent buffer is artifical and just used to read the system array. 6515 * set_extent_buffer_uptodate() call does not properly mark all it's 6516 * pages up-to-date when the page is larger: extent does not cover the 6517 * whole page and consequently check_page_uptodate does not find all 6518 * the page's extents up-to-date (the hole beyond sb), 6519 * write_extent_buffer then triggers a WARN_ON. 6520 * 6521 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6522 * but sb spans only this function. Add an explicit SetPageUptodate call 6523 * to silence the warning eg. on PowerPC 64. 6524 */ 6525 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 6526 SetPageUptodate(sb->pages[0]); 6527 6528 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6529 array_size = btrfs_super_sys_array_size(super_copy); 6530 6531 array_ptr = super_copy->sys_chunk_array; 6532 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6533 cur_offset = 0; 6534 6535 while (cur_offset < array_size) { 6536 disk_key = (struct btrfs_disk_key *)array_ptr; 6537 len = sizeof(*disk_key); 6538 if (cur_offset + len > array_size) 6539 goto out_short_read; 6540 6541 btrfs_disk_key_to_cpu(&key, disk_key); 6542 6543 array_ptr += len; 6544 sb_array_offset += len; 6545 cur_offset += len; 6546 6547 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6548 chunk = (struct btrfs_chunk *)sb_array_offset; 6549 /* 6550 * At least one btrfs_chunk with one stripe must be 6551 * present, exact stripe count check comes afterwards 6552 */ 6553 len = btrfs_chunk_item_size(1); 6554 if (cur_offset + len > array_size) 6555 goto out_short_read; 6556 6557 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6558 if (!num_stripes) { 6559 printk(KERN_ERR 6560 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n", 6561 num_stripes, cur_offset); 6562 ret = -EIO; 6563 break; 6564 } 6565 6566 len = btrfs_chunk_item_size(num_stripes); 6567 if (cur_offset + len > array_size) 6568 goto out_short_read; 6569 6570 ret = read_one_chunk(root, &key, sb, chunk); 6571 if (ret) 6572 break; 6573 } else { 6574 printk(KERN_ERR 6575 "BTRFS: unexpected item type %u in sys_array at offset %u\n", 6576 (u32)key.type, cur_offset); 6577 ret = -EIO; 6578 break; 6579 } 6580 array_ptr += len; 6581 sb_array_offset += len; 6582 cur_offset += len; 6583 } 6584 free_extent_buffer(sb); 6585 return ret; 6586 6587 out_short_read: 6588 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n", 6589 len, cur_offset); 6590 free_extent_buffer(sb); 6591 return -EIO; 6592 } 6593 6594 int btrfs_read_chunk_tree(struct btrfs_root *root) 6595 { 6596 struct btrfs_path *path; 6597 struct extent_buffer *leaf; 6598 struct btrfs_key key; 6599 struct btrfs_key found_key; 6600 int ret; 6601 int slot; 6602 6603 root = root->fs_info->chunk_root; 6604 6605 path = btrfs_alloc_path(); 6606 if (!path) 6607 return -ENOMEM; 6608 6609 mutex_lock(&uuid_mutex); 6610 lock_chunks(root); 6611 6612 /* 6613 * Read all device items, and then all the chunk items. All 6614 * device items are found before any chunk item (their object id 6615 * is smaller than the lowest possible object id for a chunk 6616 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6617 */ 6618 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6619 key.offset = 0; 6620 key.type = 0; 6621 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6622 if (ret < 0) 6623 goto error; 6624 while (1) { 6625 leaf = path->nodes[0]; 6626 slot = path->slots[0]; 6627 if (slot >= btrfs_header_nritems(leaf)) { 6628 ret = btrfs_next_leaf(root, path); 6629 if (ret == 0) 6630 continue; 6631 if (ret < 0) 6632 goto error; 6633 break; 6634 } 6635 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6636 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6637 struct btrfs_dev_item *dev_item; 6638 dev_item = btrfs_item_ptr(leaf, slot, 6639 struct btrfs_dev_item); 6640 ret = read_one_dev(root, leaf, dev_item); 6641 if (ret) 6642 goto error; 6643 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6644 struct btrfs_chunk *chunk; 6645 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6646 ret = read_one_chunk(root, &found_key, leaf, chunk); 6647 if (ret) 6648 goto error; 6649 } 6650 path->slots[0]++; 6651 } 6652 ret = 0; 6653 error: 6654 unlock_chunks(root); 6655 mutex_unlock(&uuid_mutex); 6656 6657 btrfs_free_path(path); 6658 return ret; 6659 } 6660 6661 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6662 { 6663 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6664 struct btrfs_device *device; 6665 6666 while (fs_devices) { 6667 mutex_lock(&fs_devices->device_list_mutex); 6668 list_for_each_entry(device, &fs_devices->devices, dev_list) 6669 device->dev_root = fs_info->dev_root; 6670 mutex_unlock(&fs_devices->device_list_mutex); 6671 6672 fs_devices = fs_devices->seed; 6673 } 6674 } 6675 6676 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6677 { 6678 int i; 6679 6680 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6681 btrfs_dev_stat_reset(dev, i); 6682 } 6683 6684 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6685 { 6686 struct btrfs_key key; 6687 struct btrfs_key found_key; 6688 struct btrfs_root *dev_root = fs_info->dev_root; 6689 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6690 struct extent_buffer *eb; 6691 int slot; 6692 int ret = 0; 6693 struct btrfs_device *device; 6694 struct btrfs_path *path = NULL; 6695 int i; 6696 6697 path = btrfs_alloc_path(); 6698 if (!path) { 6699 ret = -ENOMEM; 6700 goto out; 6701 } 6702 6703 mutex_lock(&fs_devices->device_list_mutex); 6704 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6705 int item_size; 6706 struct btrfs_dev_stats_item *ptr; 6707 6708 key.objectid = 0; 6709 key.type = BTRFS_DEV_STATS_KEY; 6710 key.offset = device->devid; 6711 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6712 if (ret) { 6713 __btrfs_reset_dev_stats(device); 6714 device->dev_stats_valid = 1; 6715 btrfs_release_path(path); 6716 continue; 6717 } 6718 slot = path->slots[0]; 6719 eb = path->nodes[0]; 6720 btrfs_item_key_to_cpu(eb, &found_key, slot); 6721 item_size = btrfs_item_size_nr(eb, slot); 6722 6723 ptr = btrfs_item_ptr(eb, slot, 6724 struct btrfs_dev_stats_item); 6725 6726 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6727 if (item_size >= (1 + i) * sizeof(__le64)) 6728 btrfs_dev_stat_set(device, i, 6729 btrfs_dev_stats_value(eb, ptr, i)); 6730 else 6731 btrfs_dev_stat_reset(device, i); 6732 } 6733 6734 device->dev_stats_valid = 1; 6735 btrfs_dev_stat_print_on_load(device); 6736 btrfs_release_path(path); 6737 } 6738 mutex_unlock(&fs_devices->device_list_mutex); 6739 6740 out: 6741 btrfs_free_path(path); 6742 return ret < 0 ? ret : 0; 6743 } 6744 6745 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6746 struct btrfs_root *dev_root, 6747 struct btrfs_device *device) 6748 { 6749 struct btrfs_path *path; 6750 struct btrfs_key key; 6751 struct extent_buffer *eb; 6752 struct btrfs_dev_stats_item *ptr; 6753 int ret; 6754 int i; 6755 6756 key.objectid = 0; 6757 key.type = BTRFS_DEV_STATS_KEY; 6758 key.offset = device->devid; 6759 6760 path = btrfs_alloc_path(); 6761 BUG_ON(!path); 6762 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6763 if (ret < 0) { 6764 btrfs_warn_in_rcu(dev_root->fs_info, 6765 "error %d while searching for dev_stats item for device %s", 6766 ret, rcu_str_deref(device->name)); 6767 goto out; 6768 } 6769 6770 if (ret == 0 && 6771 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6772 /* need to delete old one and insert a new one */ 6773 ret = btrfs_del_item(trans, dev_root, path); 6774 if (ret != 0) { 6775 btrfs_warn_in_rcu(dev_root->fs_info, 6776 "delete too small dev_stats item for device %s failed %d", 6777 rcu_str_deref(device->name), ret); 6778 goto out; 6779 } 6780 ret = 1; 6781 } 6782 6783 if (ret == 1) { 6784 /* need to insert a new item */ 6785 btrfs_release_path(path); 6786 ret = btrfs_insert_empty_item(trans, dev_root, path, 6787 &key, sizeof(*ptr)); 6788 if (ret < 0) { 6789 btrfs_warn_in_rcu(dev_root->fs_info, 6790 "insert dev_stats item for device %s failed %d", 6791 rcu_str_deref(device->name), ret); 6792 goto out; 6793 } 6794 } 6795 6796 eb = path->nodes[0]; 6797 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6798 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6799 btrfs_set_dev_stats_value(eb, ptr, i, 6800 btrfs_dev_stat_read(device, i)); 6801 btrfs_mark_buffer_dirty(eb); 6802 6803 out: 6804 btrfs_free_path(path); 6805 return ret; 6806 } 6807 6808 /* 6809 * called from commit_transaction. Writes all changed device stats to disk. 6810 */ 6811 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6812 struct btrfs_fs_info *fs_info) 6813 { 6814 struct btrfs_root *dev_root = fs_info->dev_root; 6815 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6816 struct btrfs_device *device; 6817 int stats_cnt; 6818 int ret = 0; 6819 6820 mutex_lock(&fs_devices->device_list_mutex); 6821 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6822 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 6823 continue; 6824 6825 stats_cnt = atomic_read(&device->dev_stats_ccnt); 6826 ret = update_dev_stat_item(trans, dev_root, device); 6827 if (!ret) 6828 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 6829 } 6830 mutex_unlock(&fs_devices->device_list_mutex); 6831 6832 return ret; 6833 } 6834 6835 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6836 { 6837 btrfs_dev_stat_inc(dev, index); 6838 btrfs_dev_stat_print_on_error(dev); 6839 } 6840 6841 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6842 { 6843 if (!dev->dev_stats_valid) 6844 return; 6845 btrfs_err_rl_in_rcu(dev->dev_root->fs_info, 6846 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 6847 rcu_str_deref(dev->name), 6848 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6849 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6850 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6851 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6852 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6853 } 6854 6855 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6856 { 6857 int i; 6858 6859 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6860 if (btrfs_dev_stat_read(dev, i) != 0) 6861 break; 6862 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6863 return; /* all values == 0, suppress message */ 6864 6865 btrfs_info_in_rcu(dev->dev_root->fs_info, 6866 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 6867 rcu_str_deref(dev->name), 6868 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6869 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6870 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6871 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6872 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6873 } 6874 6875 int btrfs_get_dev_stats(struct btrfs_root *root, 6876 struct btrfs_ioctl_get_dev_stats *stats) 6877 { 6878 struct btrfs_device *dev; 6879 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6880 int i; 6881 6882 mutex_lock(&fs_devices->device_list_mutex); 6883 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6884 mutex_unlock(&fs_devices->device_list_mutex); 6885 6886 if (!dev) { 6887 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 6888 return -ENODEV; 6889 } else if (!dev->dev_stats_valid) { 6890 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 6891 return -ENODEV; 6892 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6893 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6894 if (stats->nr_items > i) 6895 stats->values[i] = 6896 btrfs_dev_stat_read_and_reset(dev, i); 6897 else 6898 btrfs_dev_stat_reset(dev, i); 6899 } 6900 } else { 6901 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6902 if (stats->nr_items > i) 6903 stats->values[i] = btrfs_dev_stat_read(dev, i); 6904 } 6905 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6906 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6907 return 0; 6908 } 6909 6910 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path) 6911 { 6912 struct buffer_head *bh; 6913 struct btrfs_super_block *disk_super; 6914 int copy_num; 6915 6916 if (!bdev) 6917 return; 6918 6919 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 6920 copy_num++) { 6921 6922 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 6923 continue; 6924 6925 disk_super = (struct btrfs_super_block *)bh->b_data; 6926 6927 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6928 set_buffer_dirty(bh); 6929 sync_dirty_buffer(bh); 6930 brelse(bh); 6931 } 6932 6933 /* Notify udev that device has changed */ 6934 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 6935 6936 /* Update ctime/mtime for device path for libblkid */ 6937 update_dev_time(device_path); 6938 } 6939 6940 /* 6941 * Update the size of all devices, which is used for writing out the 6942 * super blocks. 6943 */ 6944 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 6945 { 6946 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6947 struct btrfs_device *curr, *next; 6948 6949 if (list_empty(&fs_devices->resized_devices)) 6950 return; 6951 6952 mutex_lock(&fs_devices->device_list_mutex); 6953 lock_chunks(fs_info->dev_root); 6954 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 6955 resized_list) { 6956 list_del_init(&curr->resized_list); 6957 curr->commit_total_bytes = curr->disk_total_bytes; 6958 } 6959 unlock_chunks(fs_info->dev_root); 6960 mutex_unlock(&fs_devices->device_list_mutex); 6961 } 6962 6963 /* Must be invoked during the transaction commit */ 6964 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root, 6965 struct btrfs_transaction *transaction) 6966 { 6967 struct extent_map *em; 6968 struct map_lookup *map; 6969 struct btrfs_device *dev; 6970 int i; 6971 6972 if (list_empty(&transaction->pending_chunks)) 6973 return; 6974 6975 /* In order to kick the device replace finish process */ 6976 lock_chunks(root); 6977 list_for_each_entry(em, &transaction->pending_chunks, list) { 6978 map = em->map_lookup; 6979 6980 for (i = 0; i < map->num_stripes; i++) { 6981 dev = map->stripes[i].dev; 6982 dev->commit_bytes_used = dev->bytes_used; 6983 } 6984 } 6985 unlock_chunks(root); 6986 } 6987 6988 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 6989 { 6990 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6991 while (fs_devices) { 6992 fs_devices->fs_info = fs_info; 6993 fs_devices = fs_devices->seed; 6994 } 6995 } 6996 6997 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 6998 { 6999 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7000 while (fs_devices) { 7001 fs_devices->fs_info = NULL; 7002 fs_devices = fs_devices->seed; 7003 } 7004 } 7005 7006 static void btrfs_close_one_device(struct btrfs_device *device) 7007 { 7008 struct btrfs_fs_devices *fs_devices = device->fs_devices; 7009 struct btrfs_device *new_device; 7010 struct rcu_string *name; 7011 7012 if (device->bdev) 7013 fs_devices->open_devices--; 7014 7015 if (device->writeable && 7016 device->devid != BTRFS_DEV_REPLACE_DEVID) { 7017 list_del_init(&device->dev_alloc_list); 7018 fs_devices->rw_devices--; 7019 } 7020 7021 if (device->missing) 7022 fs_devices->missing_devices--; 7023 7024 new_device = btrfs_alloc_device(NULL, &device->devid, 7025 device->uuid); 7026 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 7027 7028 /* Safe because we are under uuid_mutex */ 7029 if (device->name) { 7030 name = rcu_string_strdup(device->name->str, GFP_NOFS); 7031 BUG_ON(!name); /* -ENOMEM */ 7032 rcu_assign_pointer(new_device->name, name); 7033 } 7034 7035 list_replace_rcu(&device->dev_list, &new_device->dev_list); 7036 new_device->fs_devices = device->fs_devices; 7037 7038 call_rcu(&device->rcu, free_device); 7039 } 7040