xref: /openbmc/linux/fs/btrfs/volumes.c (revision b7cb29e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35 
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 	[BTRFS_RAID_RAID10] = {
38 		.sub_stripes	= 2,
39 		.dev_stripes	= 1,
40 		.devs_max	= 0,	/* 0 == as many as possible */
41 		.devs_min	= 2,
42 		.tolerated_failures = 1,
43 		.devs_increment	= 2,
44 		.ncopies	= 2,
45 		.nparity        = 0,
46 		.raid_name	= "raid10",
47 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
48 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 	},
50 	[BTRFS_RAID_RAID1] = {
51 		.sub_stripes	= 1,
52 		.dev_stripes	= 1,
53 		.devs_max	= 2,
54 		.devs_min	= 2,
55 		.tolerated_failures = 1,
56 		.devs_increment	= 2,
57 		.ncopies	= 2,
58 		.nparity        = 0,
59 		.raid_name	= "raid1",
60 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
61 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 	},
63 	[BTRFS_RAID_RAID1C3] = {
64 		.sub_stripes	= 1,
65 		.dev_stripes	= 1,
66 		.devs_max	= 3,
67 		.devs_min	= 3,
68 		.tolerated_failures = 2,
69 		.devs_increment	= 3,
70 		.ncopies	= 3,
71 		.nparity        = 0,
72 		.raid_name	= "raid1c3",
73 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
74 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 	},
76 	[BTRFS_RAID_RAID1C4] = {
77 		.sub_stripes	= 1,
78 		.dev_stripes	= 1,
79 		.devs_max	= 4,
80 		.devs_min	= 4,
81 		.tolerated_failures = 3,
82 		.devs_increment	= 4,
83 		.ncopies	= 4,
84 		.nparity        = 0,
85 		.raid_name	= "raid1c4",
86 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
87 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 	},
89 	[BTRFS_RAID_DUP] = {
90 		.sub_stripes	= 1,
91 		.dev_stripes	= 2,
92 		.devs_max	= 1,
93 		.devs_min	= 1,
94 		.tolerated_failures = 0,
95 		.devs_increment	= 1,
96 		.ncopies	= 2,
97 		.nparity        = 0,
98 		.raid_name	= "dup",
99 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
100 		.mindev_error	= 0,
101 	},
102 	[BTRFS_RAID_RAID0] = {
103 		.sub_stripes	= 1,
104 		.dev_stripes	= 1,
105 		.devs_max	= 0,
106 		.devs_min	= 1,
107 		.tolerated_failures = 0,
108 		.devs_increment	= 1,
109 		.ncopies	= 1,
110 		.nparity        = 0,
111 		.raid_name	= "raid0",
112 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
113 		.mindev_error	= 0,
114 	},
115 	[BTRFS_RAID_SINGLE] = {
116 		.sub_stripes	= 1,
117 		.dev_stripes	= 1,
118 		.devs_max	= 1,
119 		.devs_min	= 1,
120 		.tolerated_failures = 0,
121 		.devs_increment	= 1,
122 		.ncopies	= 1,
123 		.nparity        = 0,
124 		.raid_name	= "single",
125 		.bg_flag	= 0,
126 		.mindev_error	= 0,
127 	},
128 	[BTRFS_RAID_RAID5] = {
129 		.sub_stripes	= 1,
130 		.dev_stripes	= 1,
131 		.devs_max	= 0,
132 		.devs_min	= 2,
133 		.tolerated_failures = 1,
134 		.devs_increment	= 1,
135 		.ncopies	= 1,
136 		.nparity        = 1,
137 		.raid_name	= "raid5",
138 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
139 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 	},
141 	[BTRFS_RAID_RAID6] = {
142 		.sub_stripes	= 1,
143 		.dev_stripes	= 1,
144 		.devs_max	= 0,
145 		.devs_min	= 3,
146 		.tolerated_failures = 2,
147 		.devs_increment	= 1,
148 		.ncopies	= 1,
149 		.nparity        = 2,
150 		.raid_name	= "raid6",
151 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
152 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 	},
154 };
155 
156 /*
157  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
158  * can be used as index to access btrfs_raid_array[].
159  */
160 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
161 {
162 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
163 		return BTRFS_RAID_RAID10;
164 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
165 		return BTRFS_RAID_RAID1;
166 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
167 		return BTRFS_RAID_RAID1C3;
168 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
169 		return BTRFS_RAID_RAID1C4;
170 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
171 		return BTRFS_RAID_DUP;
172 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
173 		return BTRFS_RAID_RAID0;
174 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
175 		return BTRFS_RAID_RAID5;
176 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
177 		return BTRFS_RAID_RAID6;
178 
179 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
180 }
181 
182 const char *btrfs_bg_type_to_raid_name(u64 flags)
183 {
184 	const int index = btrfs_bg_flags_to_raid_index(flags);
185 
186 	if (index >= BTRFS_NR_RAID_TYPES)
187 		return NULL;
188 
189 	return btrfs_raid_array[index].raid_name;
190 }
191 
192 /*
193  * Fill @buf with textual description of @bg_flags, no more than @size_buf
194  * bytes including terminating null byte.
195  */
196 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
197 {
198 	int i;
199 	int ret;
200 	char *bp = buf;
201 	u64 flags = bg_flags;
202 	u32 size_bp = size_buf;
203 
204 	if (!flags) {
205 		strcpy(bp, "NONE");
206 		return;
207 	}
208 
209 #define DESCRIBE_FLAG(flag, desc)						\
210 	do {								\
211 		if (flags & (flag)) {					\
212 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
213 			if (ret < 0 || ret >= size_bp)			\
214 				goto out_overflow;			\
215 			size_bp -= ret;					\
216 			bp += ret;					\
217 			flags &= ~(flag);				\
218 		}							\
219 	} while (0)
220 
221 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
222 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
223 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
224 
225 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
226 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
227 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
228 			      btrfs_raid_array[i].raid_name);
229 #undef DESCRIBE_FLAG
230 
231 	if (flags) {
232 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
233 		size_bp -= ret;
234 	}
235 
236 	if (size_bp < size_buf)
237 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
238 
239 	/*
240 	 * The text is trimmed, it's up to the caller to provide sufficiently
241 	 * large buffer
242 	 */
243 out_overflow:;
244 }
245 
246 static int init_first_rw_device(struct btrfs_trans_handle *trans);
247 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
249 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
250 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
251 			     enum btrfs_map_op op,
252 			     u64 logical, u64 *length,
253 			     struct btrfs_bio **bbio_ret,
254 			     int mirror_num, int need_raid_map);
255 
256 /*
257  * Device locking
258  * ==============
259  *
260  * There are several mutexes that protect manipulation of devices and low-level
261  * structures like chunks but not block groups, extents or files
262  *
263  * uuid_mutex (global lock)
264  * ------------------------
265  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
266  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
267  * device) or requested by the device= mount option
268  *
269  * the mutex can be very coarse and can cover long-running operations
270  *
271  * protects: updates to fs_devices counters like missing devices, rw devices,
272  * seeding, structure cloning, opening/closing devices at mount/umount time
273  *
274  * global::fs_devs - add, remove, updates to the global list
275  *
276  * does not protect: manipulation of the fs_devices::devices list in general
277  * but in mount context it could be used to exclude list modifications by eg.
278  * scan ioctl
279  *
280  * btrfs_device::name - renames (write side), read is RCU
281  *
282  * fs_devices::device_list_mutex (per-fs, with RCU)
283  * ------------------------------------------------
284  * protects updates to fs_devices::devices, ie. adding and deleting
285  *
286  * simple list traversal with read-only actions can be done with RCU protection
287  *
288  * may be used to exclude some operations from running concurrently without any
289  * modifications to the list (see write_all_supers)
290  *
291  * Is not required at mount and close times, because our device list is
292  * protected by the uuid_mutex at that point.
293  *
294  * balance_mutex
295  * -------------
296  * protects balance structures (status, state) and context accessed from
297  * several places (internally, ioctl)
298  *
299  * chunk_mutex
300  * -----------
301  * protects chunks, adding or removing during allocation, trim or when a new
302  * device is added/removed. Additionally it also protects post_commit_list of
303  * individual devices, since they can be added to the transaction's
304  * post_commit_list only with chunk_mutex held.
305  *
306  * cleaner_mutex
307  * -------------
308  * a big lock that is held by the cleaner thread and prevents running subvolume
309  * cleaning together with relocation or delayed iputs
310  *
311  *
312  * Lock nesting
313  * ============
314  *
315  * uuid_mutex
316  *   device_list_mutex
317  *     chunk_mutex
318  *   balance_mutex
319  *
320  *
321  * Exclusive operations
322  * ====================
323  *
324  * Maintains the exclusivity of the following operations that apply to the
325  * whole filesystem and cannot run in parallel.
326  *
327  * - Balance (*)
328  * - Device add
329  * - Device remove
330  * - Device replace (*)
331  * - Resize
332  *
333  * The device operations (as above) can be in one of the following states:
334  *
335  * - Running state
336  * - Paused state
337  * - Completed state
338  *
339  * Only device operations marked with (*) can go into the Paused state for the
340  * following reasons:
341  *
342  * - ioctl (only Balance can be Paused through ioctl)
343  * - filesystem remounted as read-only
344  * - filesystem unmounted and mounted as read-only
345  * - system power-cycle and filesystem mounted as read-only
346  * - filesystem or device errors leading to forced read-only
347  *
348  * The status of exclusive operation is set and cleared atomically.
349  * During the course of Paused state, fs_info::exclusive_operation remains set.
350  * A device operation in Paused or Running state can be canceled or resumed
351  * either by ioctl (Balance only) or when remounted as read-write.
352  * The exclusive status is cleared when the device operation is canceled or
353  * completed.
354  */
355 
356 DEFINE_MUTEX(uuid_mutex);
357 static LIST_HEAD(fs_uuids);
358 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
359 {
360 	return &fs_uuids;
361 }
362 
363 /*
364  * alloc_fs_devices - allocate struct btrfs_fs_devices
365  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
366  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
367  *
368  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
369  * The returned struct is not linked onto any lists and can be destroyed with
370  * kfree() right away.
371  */
372 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
373 						 const u8 *metadata_fsid)
374 {
375 	struct btrfs_fs_devices *fs_devs;
376 
377 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
378 	if (!fs_devs)
379 		return ERR_PTR(-ENOMEM);
380 
381 	mutex_init(&fs_devs->device_list_mutex);
382 
383 	INIT_LIST_HEAD(&fs_devs->devices);
384 	INIT_LIST_HEAD(&fs_devs->alloc_list);
385 	INIT_LIST_HEAD(&fs_devs->fs_list);
386 	INIT_LIST_HEAD(&fs_devs->seed_list);
387 	if (fsid)
388 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
389 
390 	if (metadata_fsid)
391 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
392 	else if (fsid)
393 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
394 
395 	return fs_devs;
396 }
397 
398 void btrfs_free_device(struct btrfs_device *device)
399 {
400 	WARN_ON(!list_empty(&device->post_commit_list));
401 	rcu_string_free(device->name);
402 	extent_io_tree_release(&device->alloc_state);
403 	bio_put(device->flush_bio);
404 	btrfs_destroy_dev_zone_info(device);
405 	kfree(device);
406 }
407 
408 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
409 {
410 	struct btrfs_device *device;
411 	WARN_ON(fs_devices->opened);
412 	while (!list_empty(&fs_devices->devices)) {
413 		device = list_entry(fs_devices->devices.next,
414 				    struct btrfs_device, dev_list);
415 		list_del(&device->dev_list);
416 		btrfs_free_device(device);
417 	}
418 	kfree(fs_devices);
419 }
420 
421 void __exit btrfs_cleanup_fs_uuids(void)
422 {
423 	struct btrfs_fs_devices *fs_devices;
424 
425 	while (!list_empty(&fs_uuids)) {
426 		fs_devices = list_entry(fs_uuids.next,
427 					struct btrfs_fs_devices, fs_list);
428 		list_del(&fs_devices->fs_list);
429 		free_fs_devices(fs_devices);
430 	}
431 }
432 
433 static noinline struct btrfs_fs_devices *find_fsid(
434 		const u8 *fsid, const u8 *metadata_fsid)
435 {
436 	struct btrfs_fs_devices *fs_devices;
437 
438 	ASSERT(fsid);
439 
440 	/* Handle non-split brain cases */
441 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 		if (metadata_fsid) {
443 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
444 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
445 				      BTRFS_FSID_SIZE) == 0)
446 				return fs_devices;
447 		} else {
448 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
449 				return fs_devices;
450 		}
451 	}
452 	return NULL;
453 }
454 
455 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
456 				struct btrfs_super_block *disk_super)
457 {
458 
459 	struct btrfs_fs_devices *fs_devices;
460 
461 	/*
462 	 * Handle scanned device having completed its fsid change but
463 	 * belonging to a fs_devices that was created by first scanning
464 	 * a device which didn't have its fsid/metadata_uuid changed
465 	 * at all and the CHANGING_FSID_V2 flag set.
466 	 */
467 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
468 		if (fs_devices->fsid_change &&
469 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
470 			   BTRFS_FSID_SIZE) == 0 &&
471 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
472 			   BTRFS_FSID_SIZE) == 0) {
473 			return fs_devices;
474 		}
475 	}
476 	/*
477 	 * Handle scanned device having completed its fsid change but
478 	 * belonging to a fs_devices that was created by a device that
479 	 * has an outdated pair of fsid/metadata_uuid and
480 	 * CHANGING_FSID_V2 flag set.
481 	 */
482 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
483 		if (fs_devices->fsid_change &&
484 		    memcmp(fs_devices->metadata_uuid,
485 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
486 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
487 			   BTRFS_FSID_SIZE) == 0) {
488 			return fs_devices;
489 		}
490 	}
491 
492 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
493 }
494 
495 
496 static int
497 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
498 		      int flush, struct block_device **bdev,
499 		      struct btrfs_super_block **disk_super)
500 {
501 	int ret;
502 
503 	*bdev = blkdev_get_by_path(device_path, flags, holder);
504 
505 	if (IS_ERR(*bdev)) {
506 		ret = PTR_ERR(*bdev);
507 		goto error;
508 	}
509 
510 	if (flush)
511 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
512 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
513 	if (ret) {
514 		blkdev_put(*bdev, flags);
515 		goto error;
516 	}
517 	invalidate_bdev(*bdev);
518 	*disk_super = btrfs_read_dev_super(*bdev);
519 	if (IS_ERR(*disk_super)) {
520 		ret = PTR_ERR(*disk_super);
521 		blkdev_put(*bdev, flags);
522 		goto error;
523 	}
524 
525 	return 0;
526 
527 error:
528 	*bdev = NULL;
529 	return ret;
530 }
531 
532 static bool device_path_matched(const char *path, struct btrfs_device *device)
533 {
534 	int found;
535 
536 	rcu_read_lock();
537 	found = strcmp(rcu_str_deref(device->name), path);
538 	rcu_read_unlock();
539 
540 	return found == 0;
541 }
542 
543 /*
544  *  Search and remove all stale (devices which are not mounted) devices.
545  *  When both inputs are NULL, it will search and release all stale devices.
546  *  path:	Optional. When provided will it release all unmounted devices
547  *		matching this path only.
548  *  skip_dev:	Optional. Will skip this device when searching for the stale
549  *		devices.
550  *  Return:	0 for success or if @path is NULL.
551  * 		-EBUSY if @path is a mounted device.
552  * 		-ENOENT if @path does not match any device in the list.
553  */
554 static int btrfs_free_stale_devices(const char *path,
555 				     struct btrfs_device *skip_device)
556 {
557 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
558 	struct btrfs_device *device, *tmp_device;
559 	int ret = 0;
560 
561 	lockdep_assert_held(&uuid_mutex);
562 
563 	if (path)
564 		ret = -ENOENT;
565 
566 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
567 
568 		mutex_lock(&fs_devices->device_list_mutex);
569 		list_for_each_entry_safe(device, tmp_device,
570 					 &fs_devices->devices, dev_list) {
571 			if (skip_device && skip_device == device)
572 				continue;
573 			if (path && !device->name)
574 				continue;
575 			if (path && !device_path_matched(path, device))
576 				continue;
577 			if (fs_devices->opened) {
578 				/* for an already deleted device return 0 */
579 				if (path && ret != 0)
580 					ret = -EBUSY;
581 				break;
582 			}
583 
584 			/* delete the stale device */
585 			fs_devices->num_devices--;
586 			list_del(&device->dev_list);
587 			btrfs_free_device(device);
588 
589 			ret = 0;
590 		}
591 		mutex_unlock(&fs_devices->device_list_mutex);
592 
593 		if (fs_devices->num_devices == 0) {
594 			btrfs_sysfs_remove_fsid(fs_devices);
595 			list_del(&fs_devices->fs_list);
596 			free_fs_devices(fs_devices);
597 		}
598 	}
599 
600 	return ret;
601 }
602 
603 /*
604  * This is only used on mount, and we are protected from competing things
605  * messing with our fs_devices by the uuid_mutex, thus we do not need the
606  * fs_devices->device_list_mutex here.
607  */
608 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
609 			struct btrfs_device *device, fmode_t flags,
610 			void *holder)
611 {
612 	struct request_queue *q;
613 	struct block_device *bdev;
614 	struct btrfs_super_block *disk_super;
615 	u64 devid;
616 	int ret;
617 
618 	if (device->bdev)
619 		return -EINVAL;
620 	if (!device->name)
621 		return -EINVAL;
622 
623 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
624 				    &bdev, &disk_super);
625 	if (ret)
626 		return ret;
627 
628 	devid = btrfs_stack_device_id(&disk_super->dev_item);
629 	if (devid != device->devid)
630 		goto error_free_page;
631 
632 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
633 		goto error_free_page;
634 
635 	device->generation = btrfs_super_generation(disk_super);
636 
637 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
638 		if (btrfs_super_incompat_flags(disk_super) &
639 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
640 			pr_err(
641 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
642 			goto error_free_page;
643 		}
644 
645 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
646 		fs_devices->seeding = true;
647 	} else {
648 		if (bdev_read_only(bdev))
649 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
650 		else
651 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
652 	}
653 
654 	q = bdev_get_queue(bdev);
655 	if (!blk_queue_nonrot(q))
656 		fs_devices->rotating = true;
657 
658 	device->bdev = bdev;
659 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
660 	device->mode = flags;
661 
662 	fs_devices->open_devices++;
663 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
664 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
665 		fs_devices->rw_devices++;
666 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
667 	}
668 	btrfs_release_disk_super(disk_super);
669 
670 	return 0;
671 
672 error_free_page:
673 	btrfs_release_disk_super(disk_super);
674 	blkdev_put(bdev, flags);
675 
676 	return -EINVAL;
677 }
678 
679 /*
680  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
681  * being created with a disk that has already completed its fsid change. Such
682  * disk can belong to an fs which has its FSID changed or to one which doesn't.
683  * Handle both cases here.
684  */
685 static struct btrfs_fs_devices *find_fsid_inprogress(
686 					struct btrfs_super_block *disk_super)
687 {
688 	struct btrfs_fs_devices *fs_devices;
689 
690 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
691 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
692 			   BTRFS_FSID_SIZE) != 0 &&
693 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
694 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
695 			return fs_devices;
696 		}
697 	}
698 
699 	return find_fsid(disk_super->fsid, NULL);
700 }
701 
702 
703 static struct btrfs_fs_devices *find_fsid_changed(
704 					struct btrfs_super_block *disk_super)
705 {
706 	struct btrfs_fs_devices *fs_devices;
707 
708 	/*
709 	 * Handles the case where scanned device is part of an fs that had
710 	 * multiple successful changes of FSID but currently device didn't
711 	 * observe it. Meaning our fsid will be different than theirs. We need
712 	 * to handle two subcases :
713 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
714 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
715 	 *  are equal).
716 	 */
717 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
718 		/* Changed UUIDs */
719 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720 			   BTRFS_FSID_SIZE) != 0 &&
721 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
722 			   BTRFS_FSID_SIZE) == 0 &&
723 		    memcmp(fs_devices->fsid, disk_super->fsid,
724 			   BTRFS_FSID_SIZE) != 0)
725 			return fs_devices;
726 
727 		/* Unchanged UUIDs */
728 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
729 			   BTRFS_FSID_SIZE) == 0 &&
730 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
731 			   BTRFS_FSID_SIZE) == 0)
732 			return fs_devices;
733 	}
734 
735 	return NULL;
736 }
737 
738 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
739 				struct btrfs_super_block *disk_super)
740 {
741 	struct btrfs_fs_devices *fs_devices;
742 
743 	/*
744 	 * Handle the case where the scanned device is part of an fs whose last
745 	 * metadata UUID change reverted it to the original FSID. At the same
746 	 * time * fs_devices was first created by another constitutent device
747 	 * which didn't fully observe the operation. This results in an
748 	 * btrfs_fs_devices created with metadata/fsid different AND
749 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
750 	 * fs_devices equal to the FSID of the disk.
751 	 */
752 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
753 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
754 			   BTRFS_FSID_SIZE) != 0 &&
755 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
756 			   BTRFS_FSID_SIZE) == 0 &&
757 		    fs_devices->fsid_change)
758 			return fs_devices;
759 	}
760 
761 	return NULL;
762 }
763 /*
764  * Add new device to list of registered devices
765  *
766  * Returns:
767  * device pointer which was just added or updated when successful
768  * error pointer when failed
769  */
770 static noinline struct btrfs_device *device_list_add(const char *path,
771 			   struct btrfs_super_block *disk_super,
772 			   bool *new_device_added)
773 {
774 	struct btrfs_device *device;
775 	struct btrfs_fs_devices *fs_devices = NULL;
776 	struct rcu_string *name;
777 	u64 found_transid = btrfs_super_generation(disk_super);
778 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
779 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
780 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
781 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
782 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
783 
784 	if (fsid_change_in_progress) {
785 		if (!has_metadata_uuid)
786 			fs_devices = find_fsid_inprogress(disk_super);
787 		else
788 			fs_devices = find_fsid_changed(disk_super);
789 	} else if (has_metadata_uuid) {
790 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
791 	} else {
792 		fs_devices = find_fsid_reverted_metadata(disk_super);
793 		if (!fs_devices)
794 			fs_devices = find_fsid(disk_super->fsid, NULL);
795 	}
796 
797 
798 	if (!fs_devices) {
799 		if (has_metadata_uuid)
800 			fs_devices = alloc_fs_devices(disk_super->fsid,
801 						      disk_super->metadata_uuid);
802 		else
803 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
804 
805 		if (IS_ERR(fs_devices))
806 			return ERR_CAST(fs_devices);
807 
808 		fs_devices->fsid_change = fsid_change_in_progress;
809 
810 		mutex_lock(&fs_devices->device_list_mutex);
811 		list_add(&fs_devices->fs_list, &fs_uuids);
812 
813 		device = NULL;
814 	} else {
815 		mutex_lock(&fs_devices->device_list_mutex);
816 		device = btrfs_find_device(fs_devices, devid,
817 				disk_super->dev_item.uuid, NULL);
818 
819 		/*
820 		 * If this disk has been pulled into an fs devices created by
821 		 * a device which had the CHANGING_FSID_V2 flag then replace the
822 		 * metadata_uuid/fsid values of the fs_devices.
823 		 */
824 		if (fs_devices->fsid_change &&
825 		    found_transid > fs_devices->latest_generation) {
826 			memcpy(fs_devices->fsid, disk_super->fsid,
827 					BTRFS_FSID_SIZE);
828 
829 			if (has_metadata_uuid)
830 				memcpy(fs_devices->metadata_uuid,
831 				       disk_super->metadata_uuid,
832 				       BTRFS_FSID_SIZE);
833 			else
834 				memcpy(fs_devices->metadata_uuid,
835 				       disk_super->fsid, BTRFS_FSID_SIZE);
836 
837 			fs_devices->fsid_change = false;
838 		}
839 	}
840 
841 	if (!device) {
842 		if (fs_devices->opened) {
843 			mutex_unlock(&fs_devices->device_list_mutex);
844 			return ERR_PTR(-EBUSY);
845 		}
846 
847 		device = btrfs_alloc_device(NULL, &devid,
848 					    disk_super->dev_item.uuid);
849 		if (IS_ERR(device)) {
850 			mutex_unlock(&fs_devices->device_list_mutex);
851 			/* we can safely leave the fs_devices entry around */
852 			return device;
853 		}
854 
855 		name = rcu_string_strdup(path, GFP_NOFS);
856 		if (!name) {
857 			btrfs_free_device(device);
858 			mutex_unlock(&fs_devices->device_list_mutex);
859 			return ERR_PTR(-ENOMEM);
860 		}
861 		rcu_assign_pointer(device->name, name);
862 
863 		list_add_rcu(&device->dev_list, &fs_devices->devices);
864 		fs_devices->num_devices++;
865 
866 		device->fs_devices = fs_devices;
867 		*new_device_added = true;
868 
869 		if (disk_super->label[0])
870 			pr_info(
871 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
872 				disk_super->label, devid, found_transid, path,
873 				current->comm, task_pid_nr(current));
874 		else
875 			pr_info(
876 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
877 				disk_super->fsid, devid, found_transid, path,
878 				current->comm, task_pid_nr(current));
879 
880 	} else if (!device->name || strcmp(device->name->str, path)) {
881 		/*
882 		 * When FS is already mounted.
883 		 * 1. If you are here and if the device->name is NULL that
884 		 *    means this device was missing at time of FS mount.
885 		 * 2. If you are here and if the device->name is different
886 		 *    from 'path' that means either
887 		 *      a. The same device disappeared and reappeared with
888 		 *         different name. or
889 		 *      b. The missing-disk-which-was-replaced, has
890 		 *         reappeared now.
891 		 *
892 		 * We must allow 1 and 2a above. But 2b would be a spurious
893 		 * and unintentional.
894 		 *
895 		 * Further in case of 1 and 2a above, the disk at 'path'
896 		 * would have missed some transaction when it was away and
897 		 * in case of 2a the stale bdev has to be updated as well.
898 		 * 2b must not be allowed at all time.
899 		 */
900 
901 		/*
902 		 * For now, we do allow update to btrfs_fs_device through the
903 		 * btrfs dev scan cli after FS has been mounted.  We're still
904 		 * tracking a problem where systems fail mount by subvolume id
905 		 * when we reject replacement on a mounted FS.
906 		 */
907 		if (!fs_devices->opened && found_transid < device->generation) {
908 			/*
909 			 * That is if the FS is _not_ mounted and if you
910 			 * are here, that means there is more than one
911 			 * disk with same uuid and devid.We keep the one
912 			 * with larger generation number or the last-in if
913 			 * generation are equal.
914 			 */
915 			mutex_unlock(&fs_devices->device_list_mutex);
916 			return ERR_PTR(-EEXIST);
917 		}
918 
919 		/*
920 		 * We are going to replace the device path for a given devid,
921 		 * make sure it's the same device if the device is mounted
922 		 */
923 		if (device->bdev) {
924 			int error;
925 			dev_t path_dev;
926 
927 			error = lookup_bdev(path, &path_dev);
928 			if (error) {
929 				mutex_unlock(&fs_devices->device_list_mutex);
930 				return ERR_PTR(error);
931 			}
932 
933 			if (device->bdev->bd_dev != path_dev) {
934 				mutex_unlock(&fs_devices->device_list_mutex);
935 				/*
936 				 * device->fs_info may not be reliable here, so
937 				 * pass in a NULL instead. This avoids a
938 				 * possible use-after-free when the fs_info and
939 				 * fs_info->sb are already torn down.
940 				 */
941 				btrfs_warn_in_rcu(NULL,
942 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
943 						  path, devid, found_transid,
944 						  current->comm,
945 						  task_pid_nr(current));
946 				return ERR_PTR(-EEXIST);
947 			}
948 			btrfs_info_in_rcu(device->fs_info,
949 	"devid %llu device path %s changed to %s scanned by %s (%d)",
950 					  devid, rcu_str_deref(device->name),
951 					  path, current->comm,
952 					  task_pid_nr(current));
953 		}
954 
955 		name = rcu_string_strdup(path, GFP_NOFS);
956 		if (!name) {
957 			mutex_unlock(&fs_devices->device_list_mutex);
958 			return ERR_PTR(-ENOMEM);
959 		}
960 		rcu_string_free(device->name);
961 		rcu_assign_pointer(device->name, name);
962 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
963 			fs_devices->missing_devices--;
964 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
965 		}
966 	}
967 
968 	/*
969 	 * Unmount does not free the btrfs_device struct but would zero
970 	 * generation along with most of the other members. So just update
971 	 * it back. We need it to pick the disk with largest generation
972 	 * (as above).
973 	 */
974 	if (!fs_devices->opened) {
975 		device->generation = found_transid;
976 		fs_devices->latest_generation = max_t(u64, found_transid,
977 						fs_devices->latest_generation);
978 	}
979 
980 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
981 
982 	mutex_unlock(&fs_devices->device_list_mutex);
983 	return device;
984 }
985 
986 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
987 {
988 	struct btrfs_fs_devices *fs_devices;
989 	struct btrfs_device *device;
990 	struct btrfs_device *orig_dev;
991 	int ret = 0;
992 
993 	lockdep_assert_held(&uuid_mutex);
994 
995 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
996 	if (IS_ERR(fs_devices))
997 		return fs_devices;
998 
999 	fs_devices->total_devices = orig->total_devices;
1000 
1001 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1002 		struct rcu_string *name;
1003 
1004 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 					    orig_dev->uuid);
1006 		if (IS_ERR(device)) {
1007 			ret = PTR_ERR(device);
1008 			goto error;
1009 		}
1010 
1011 		/*
1012 		 * This is ok to do without rcu read locked because we hold the
1013 		 * uuid mutex so nothing we touch in here is going to disappear.
1014 		 */
1015 		if (orig_dev->name) {
1016 			name = rcu_string_strdup(orig_dev->name->str,
1017 					GFP_KERNEL);
1018 			if (!name) {
1019 				btrfs_free_device(device);
1020 				ret = -ENOMEM;
1021 				goto error;
1022 			}
1023 			rcu_assign_pointer(device->name, name);
1024 		}
1025 
1026 		list_add(&device->dev_list, &fs_devices->devices);
1027 		device->fs_devices = fs_devices;
1028 		fs_devices->num_devices++;
1029 	}
1030 	return fs_devices;
1031 error:
1032 	free_fs_devices(fs_devices);
1033 	return ERR_PTR(ret);
1034 }
1035 
1036 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1037 				      struct btrfs_device **latest_dev)
1038 {
1039 	struct btrfs_device *device, *next;
1040 
1041 	/* This is the initialized path, it is safe to release the devices. */
1042 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1043 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1044 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1045 				      &device->dev_state) &&
1046 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1047 				      &device->dev_state) &&
1048 			    (!*latest_dev ||
1049 			     device->generation > (*latest_dev)->generation)) {
1050 				*latest_dev = device;
1051 			}
1052 			continue;
1053 		}
1054 
1055 		/*
1056 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1057 		 * in btrfs_init_dev_replace() so just continue.
1058 		 */
1059 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1060 			continue;
1061 
1062 		if (device->bdev) {
1063 			blkdev_put(device->bdev, device->mode);
1064 			device->bdev = NULL;
1065 			fs_devices->open_devices--;
1066 		}
1067 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1068 			list_del_init(&device->dev_alloc_list);
1069 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1070 			fs_devices->rw_devices--;
1071 		}
1072 		list_del_init(&device->dev_list);
1073 		fs_devices->num_devices--;
1074 		btrfs_free_device(device);
1075 	}
1076 
1077 }
1078 
1079 /*
1080  * After we have read the system tree and know devids belonging to this
1081  * filesystem, remove the device which does not belong there.
1082  */
1083 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1084 {
1085 	struct btrfs_device *latest_dev = NULL;
1086 	struct btrfs_fs_devices *seed_dev;
1087 
1088 	mutex_lock(&uuid_mutex);
1089 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1090 
1091 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1092 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1093 
1094 	fs_devices->latest_dev = latest_dev;
1095 
1096 	mutex_unlock(&uuid_mutex);
1097 }
1098 
1099 static void btrfs_close_bdev(struct btrfs_device *device)
1100 {
1101 	if (!device->bdev)
1102 		return;
1103 
1104 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105 		sync_blockdev(device->bdev);
1106 		invalidate_bdev(device->bdev);
1107 	}
1108 
1109 	blkdev_put(device->bdev, device->mode);
1110 }
1111 
1112 static void btrfs_close_one_device(struct btrfs_device *device)
1113 {
1114 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1115 
1116 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118 		list_del_init(&device->dev_alloc_list);
1119 		fs_devices->rw_devices--;
1120 	}
1121 
1122 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1123 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1124 
1125 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1126 		fs_devices->missing_devices--;
1127 
1128 	btrfs_close_bdev(device);
1129 	if (device->bdev) {
1130 		fs_devices->open_devices--;
1131 		device->bdev = NULL;
1132 	}
1133 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1134 	btrfs_destroy_dev_zone_info(device);
1135 
1136 	device->fs_info = NULL;
1137 	atomic_set(&device->dev_stats_ccnt, 0);
1138 	extent_io_tree_release(&device->alloc_state);
1139 
1140 	/*
1141 	 * Reset the flush error record. We might have a transient flush error
1142 	 * in this mount, and if so we aborted the current transaction and set
1143 	 * the fs to an error state, guaranteeing no super blocks can be further
1144 	 * committed. However that error might be transient and if we unmount the
1145 	 * filesystem and mount it again, we should allow the mount to succeed
1146 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1147 	 * filesystem again we still get flush errors, then we will again abort
1148 	 * any transaction and set the error state, guaranteeing no commits of
1149 	 * unsafe super blocks.
1150 	 */
1151 	device->last_flush_error = 0;
1152 
1153 	/* Verify the device is back in a pristine state  */
1154 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1155 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1156 	ASSERT(list_empty(&device->dev_alloc_list));
1157 	ASSERT(list_empty(&device->post_commit_list));
1158 	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1159 }
1160 
1161 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1162 {
1163 	struct btrfs_device *device, *tmp;
1164 
1165 	lockdep_assert_held(&uuid_mutex);
1166 
1167 	if (--fs_devices->opened > 0)
1168 		return;
1169 
1170 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1171 		btrfs_close_one_device(device);
1172 
1173 	WARN_ON(fs_devices->open_devices);
1174 	WARN_ON(fs_devices->rw_devices);
1175 	fs_devices->opened = 0;
1176 	fs_devices->seeding = false;
1177 	fs_devices->fs_info = NULL;
1178 }
1179 
1180 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1181 {
1182 	LIST_HEAD(list);
1183 	struct btrfs_fs_devices *tmp;
1184 
1185 	mutex_lock(&uuid_mutex);
1186 	close_fs_devices(fs_devices);
1187 	if (!fs_devices->opened)
1188 		list_splice_init(&fs_devices->seed_list, &list);
1189 
1190 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1191 		close_fs_devices(fs_devices);
1192 		list_del(&fs_devices->seed_list);
1193 		free_fs_devices(fs_devices);
1194 	}
1195 	mutex_unlock(&uuid_mutex);
1196 }
1197 
1198 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1199 				fmode_t flags, void *holder)
1200 {
1201 	struct btrfs_device *device;
1202 	struct btrfs_device *latest_dev = NULL;
1203 	struct btrfs_device *tmp_device;
1204 
1205 	flags |= FMODE_EXCL;
1206 
1207 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1208 				 dev_list) {
1209 		int ret;
1210 
1211 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1212 		if (ret == 0 &&
1213 		    (!latest_dev || device->generation > latest_dev->generation)) {
1214 			latest_dev = device;
1215 		} else if (ret == -ENODATA) {
1216 			fs_devices->num_devices--;
1217 			list_del(&device->dev_list);
1218 			btrfs_free_device(device);
1219 		}
1220 	}
1221 	if (fs_devices->open_devices == 0)
1222 		return -EINVAL;
1223 
1224 	fs_devices->opened = 1;
1225 	fs_devices->latest_dev = latest_dev;
1226 	fs_devices->total_rw_bytes = 0;
1227 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1228 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1229 
1230 	return 0;
1231 }
1232 
1233 static int devid_cmp(void *priv, const struct list_head *a,
1234 		     const struct list_head *b)
1235 {
1236 	const struct btrfs_device *dev1, *dev2;
1237 
1238 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1239 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1240 
1241 	if (dev1->devid < dev2->devid)
1242 		return -1;
1243 	else if (dev1->devid > dev2->devid)
1244 		return 1;
1245 	return 0;
1246 }
1247 
1248 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1249 		       fmode_t flags, void *holder)
1250 {
1251 	int ret;
1252 
1253 	lockdep_assert_held(&uuid_mutex);
1254 	/*
1255 	 * The device_list_mutex cannot be taken here in case opening the
1256 	 * underlying device takes further locks like open_mutex.
1257 	 *
1258 	 * We also don't need the lock here as this is called during mount and
1259 	 * exclusion is provided by uuid_mutex
1260 	 */
1261 
1262 	if (fs_devices->opened) {
1263 		fs_devices->opened++;
1264 		ret = 0;
1265 	} else {
1266 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1267 		ret = open_fs_devices(fs_devices, flags, holder);
1268 	}
1269 
1270 	return ret;
1271 }
1272 
1273 void btrfs_release_disk_super(struct btrfs_super_block *super)
1274 {
1275 	struct page *page = virt_to_page(super);
1276 
1277 	put_page(page);
1278 }
1279 
1280 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1281 						       u64 bytenr, u64 bytenr_orig)
1282 {
1283 	struct btrfs_super_block *disk_super;
1284 	struct page *page;
1285 	void *p;
1286 	pgoff_t index;
1287 
1288 	/* make sure our super fits in the device */
1289 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1290 		return ERR_PTR(-EINVAL);
1291 
1292 	/* make sure our super fits in the page */
1293 	if (sizeof(*disk_super) > PAGE_SIZE)
1294 		return ERR_PTR(-EINVAL);
1295 
1296 	/* make sure our super doesn't straddle pages on disk */
1297 	index = bytenr >> PAGE_SHIFT;
1298 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1299 		return ERR_PTR(-EINVAL);
1300 
1301 	/* pull in the page with our super */
1302 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1303 
1304 	if (IS_ERR(page))
1305 		return ERR_CAST(page);
1306 
1307 	p = page_address(page);
1308 
1309 	/* align our pointer to the offset of the super block */
1310 	disk_super = p + offset_in_page(bytenr);
1311 
1312 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1313 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1314 		btrfs_release_disk_super(p);
1315 		return ERR_PTR(-EINVAL);
1316 	}
1317 
1318 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1319 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1320 
1321 	return disk_super;
1322 }
1323 
1324 int btrfs_forget_devices(const char *path)
1325 {
1326 	int ret;
1327 
1328 	mutex_lock(&uuid_mutex);
1329 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1330 	mutex_unlock(&uuid_mutex);
1331 
1332 	return ret;
1333 }
1334 
1335 /*
1336  * Look for a btrfs signature on a device. This may be called out of the mount path
1337  * and we are not allowed to call set_blocksize during the scan. The superblock
1338  * is read via pagecache
1339  */
1340 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1341 					   void *holder)
1342 {
1343 	struct btrfs_super_block *disk_super;
1344 	bool new_device_added = false;
1345 	struct btrfs_device *device = NULL;
1346 	struct block_device *bdev;
1347 	u64 bytenr, bytenr_orig;
1348 	int ret;
1349 
1350 	lockdep_assert_held(&uuid_mutex);
1351 
1352 	/*
1353 	 * we would like to check all the supers, but that would make
1354 	 * a btrfs mount succeed after a mkfs from a different FS.
1355 	 * So, we need to add a special mount option to scan for
1356 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1357 	 */
1358 	flags |= FMODE_EXCL;
1359 
1360 	bdev = blkdev_get_by_path(path, flags, holder);
1361 	if (IS_ERR(bdev))
1362 		return ERR_CAST(bdev);
1363 
1364 	bytenr_orig = btrfs_sb_offset(0);
1365 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1366 	if (ret)
1367 		return ERR_PTR(ret);
1368 
1369 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1370 	if (IS_ERR(disk_super)) {
1371 		device = ERR_CAST(disk_super);
1372 		goto error_bdev_put;
1373 	}
1374 
1375 	device = device_list_add(path, disk_super, &new_device_added);
1376 	if (!IS_ERR(device)) {
1377 		if (new_device_added)
1378 			btrfs_free_stale_devices(path, device);
1379 	}
1380 
1381 	btrfs_release_disk_super(disk_super);
1382 
1383 error_bdev_put:
1384 	blkdev_put(bdev, flags);
1385 
1386 	return device;
1387 }
1388 
1389 /*
1390  * Try to find a chunk that intersects [start, start + len] range and when one
1391  * such is found, record the end of it in *start
1392  */
1393 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394 				    u64 len)
1395 {
1396 	u64 physical_start, physical_end;
1397 
1398 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1399 
1400 	if (!find_first_extent_bit(&device->alloc_state, *start,
1401 				   &physical_start, &physical_end,
1402 				   CHUNK_ALLOCATED, NULL)) {
1403 
1404 		if (in_range(physical_start, *start, len) ||
1405 		    in_range(*start, physical_start,
1406 			     physical_end - physical_start)) {
1407 			*start = physical_end + 1;
1408 			return true;
1409 		}
1410 	}
1411 	return false;
1412 }
1413 
1414 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1415 {
1416 	switch (device->fs_devices->chunk_alloc_policy) {
1417 	case BTRFS_CHUNK_ALLOC_REGULAR:
1418 		/*
1419 		 * We don't want to overwrite the superblock on the drive nor
1420 		 * any area used by the boot loader (grub for example), so we
1421 		 * make sure to start at an offset of at least 1MB.
1422 		 */
1423 		return max_t(u64, start, SZ_1M);
1424 	case BTRFS_CHUNK_ALLOC_ZONED:
1425 		/*
1426 		 * We don't care about the starting region like regular
1427 		 * allocator, because we anyway use/reserve the first two zones
1428 		 * for superblock logging.
1429 		 */
1430 		return ALIGN(start, device->zone_info->zone_size);
1431 	default:
1432 		BUG();
1433 	}
1434 }
1435 
1436 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1437 					u64 *hole_start, u64 *hole_size,
1438 					u64 num_bytes)
1439 {
1440 	u64 zone_size = device->zone_info->zone_size;
1441 	u64 pos;
1442 	int ret;
1443 	bool changed = false;
1444 
1445 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1446 
1447 	while (*hole_size > 0) {
1448 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1449 						   *hole_start + *hole_size,
1450 						   num_bytes);
1451 		if (pos != *hole_start) {
1452 			*hole_size = *hole_start + *hole_size - pos;
1453 			*hole_start = pos;
1454 			changed = true;
1455 			if (*hole_size < num_bytes)
1456 				break;
1457 		}
1458 
1459 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1460 
1461 		/* Range is ensured to be empty */
1462 		if (!ret)
1463 			return changed;
1464 
1465 		/* Given hole range was invalid (outside of device) */
1466 		if (ret == -ERANGE) {
1467 			*hole_start += *hole_size;
1468 			*hole_size = 0;
1469 			return true;
1470 		}
1471 
1472 		*hole_start += zone_size;
1473 		*hole_size -= zone_size;
1474 		changed = true;
1475 	}
1476 
1477 	return changed;
1478 }
1479 
1480 /**
1481  * dev_extent_hole_check - check if specified hole is suitable for allocation
1482  * @device:	the device which we have the hole
1483  * @hole_start: starting position of the hole
1484  * @hole_size:	the size of the hole
1485  * @num_bytes:	the size of the free space that we need
1486  *
1487  * This function may modify @hole_start and @hole_size to reflect the suitable
1488  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1489  */
1490 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1491 				  u64 *hole_size, u64 num_bytes)
1492 {
1493 	bool changed = false;
1494 	u64 hole_end = *hole_start + *hole_size;
1495 
1496 	for (;;) {
1497 		/*
1498 		 * Check before we set max_hole_start, otherwise we could end up
1499 		 * sending back this offset anyway.
1500 		 */
1501 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1502 			if (hole_end >= *hole_start)
1503 				*hole_size = hole_end - *hole_start;
1504 			else
1505 				*hole_size = 0;
1506 			changed = true;
1507 		}
1508 
1509 		switch (device->fs_devices->chunk_alloc_policy) {
1510 		case BTRFS_CHUNK_ALLOC_REGULAR:
1511 			/* No extra check */
1512 			break;
1513 		case BTRFS_CHUNK_ALLOC_ZONED:
1514 			if (dev_extent_hole_check_zoned(device, hole_start,
1515 							hole_size, num_bytes)) {
1516 				changed = true;
1517 				/*
1518 				 * The changed hole can contain pending extent.
1519 				 * Loop again to check that.
1520 				 */
1521 				continue;
1522 			}
1523 			break;
1524 		default:
1525 			BUG();
1526 		}
1527 
1528 		break;
1529 	}
1530 
1531 	return changed;
1532 }
1533 
1534 /*
1535  * find_free_dev_extent_start - find free space in the specified device
1536  * @device:	  the device which we search the free space in
1537  * @num_bytes:	  the size of the free space that we need
1538  * @search_start: the position from which to begin the search
1539  * @start:	  store the start of the free space.
1540  * @len:	  the size of the free space. that we find, or the size
1541  *		  of the max free space if we don't find suitable free space
1542  *
1543  * this uses a pretty simple search, the expectation is that it is
1544  * called very infrequently and that a given device has a small number
1545  * of extents
1546  *
1547  * @start is used to store the start of the free space if we find. But if we
1548  * don't find suitable free space, it will be used to store the start position
1549  * of the max free space.
1550  *
1551  * @len is used to store the size of the free space that we find.
1552  * But if we don't find suitable free space, it is used to store the size of
1553  * the max free space.
1554  *
1555  * NOTE: This function will search *commit* root of device tree, and does extra
1556  * check to ensure dev extents are not double allocated.
1557  * This makes the function safe to allocate dev extents but may not report
1558  * correct usable device space, as device extent freed in current transaction
1559  * is not reported as available.
1560  */
1561 static int find_free_dev_extent_start(struct btrfs_device *device,
1562 				u64 num_bytes, u64 search_start, u64 *start,
1563 				u64 *len)
1564 {
1565 	struct btrfs_fs_info *fs_info = device->fs_info;
1566 	struct btrfs_root *root = fs_info->dev_root;
1567 	struct btrfs_key key;
1568 	struct btrfs_dev_extent *dev_extent;
1569 	struct btrfs_path *path;
1570 	u64 hole_size;
1571 	u64 max_hole_start;
1572 	u64 max_hole_size;
1573 	u64 extent_end;
1574 	u64 search_end = device->total_bytes;
1575 	int ret;
1576 	int slot;
1577 	struct extent_buffer *l;
1578 
1579 	search_start = dev_extent_search_start(device, search_start);
1580 
1581 	WARN_ON(device->zone_info &&
1582 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1583 
1584 	path = btrfs_alloc_path();
1585 	if (!path)
1586 		return -ENOMEM;
1587 
1588 	max_hole_start = search_start;
1589 	max_hole_size = 0;
1590 
1591 again:
1592 	if (search_start >= search_end ||
1593 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1594 		ret = -ENOSPC;
1595 		goto out;
1596 	}
1597 
1598 	path->reada = READA_FORWARD;
1599 	path->search_commit_root = 1;
1600 	path->skip_locking = 1;
1601 
1602 	key.objectid = device->devid;
1603 	key.offset = search_start;
1604 	key.type = BTRFS_DEV_EXTENT_KEY;
1605 
1606 	ret = btrfs_search_backwards(root, &key, path);
1607 	if (ret < 0)
1608 		goto out;
1609 
1610 	while (1) {
1611 		l = path->nodes[0];
1612 		slot = path->slots[0];
1613 		if (slot >= btrfs_header_nritems(l)) {
1614 			ret = btrfs_next_leaf(root, path);
1615 			if (ret == 0)
1616 				continue;
1617 			if (ret < 0)
1618 				goto out;
1619 
1620 			break;
1621 		}
1622 		btrfs_item_key_to_cpu(l, &key, slot);
1623 
1624 		if (key.objectid < device->devid)
1625 			goto next;
1626 
1627 		if (key.objectid > device->devid)
1628 			break;
1629 
1630 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1631 			goto next;
1632 
1633 		if (key.offset > search_start) {
1634 			hole_size = key.offset - search_start;
1635 			dev_extent_hole_check(device, &search_start, &hole_size,
1636 					      num_bytes);
1637 
1638 			if (hole_size > max_hole_size) {
1639 				max_hole_start = search_start;
1640 				max_hole_size = hole_size;
1641 			}
1642 
1643 			/*
1644 			 * If this free space is greater than which we need,
1645 			 * it must be the max free space that we have found
1646 			 * until now, so max_hole_start must point to the start
1647 			 * of this free space and the length of this free space
1648 			 * is stored in max_hole_size. Thus, we return
1649 			 * max_hole_start and max_hole_size and go back to the
1650 			 * caller.
1651 			 */
1652 			if (hole_size >= num_bytes) {
1653 				ret = 0;
1654 				goto out;
1655 			}
1656 		}
1657 
1658 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1659 		extent_end = key.offset + btrfs_dev_extent_length(l,
1660 								  dev_extent);
1661 		if (extent_end > search_start)
1662 			search_start = extent_end;
1663 next:
1664 		path->slots[0]++;
1665 		cond_resched();
1666 	}
1667 
1668 	/*
1669 	 * At this point, search_start should be the end of
1670 	 * allocated dev extents, and when shrinking the device,
1671 	 * search_end may be smaller than search_start.
1672 	 */
1673 	if (search_end > search_start) {
1674 		hole_size = search_end - search_start;
1675 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1676 					  num_bytes)) {
1677 			btrfs_release_path(path);
1678 			goto again;
1679 		}
1680 
1681 		if (hole_size > max_hole_size) {
1682 			max_hole_start = search_start;
1683 			max_hole_size = hole_size;
1684 		}
1685 	}
1686 
1687 	/* See above. */
1688 	if (max_hole_size < num_bytes)
1689 		ret = -ENOSPC;
1690 	else
1691 		ret = 0;
1692 
1693 out:
1694 	btrfs_free_path(path);
1695 	*start = max_hole_start;
1696 	if (len)
1697 		*len = max_hole_size;
1698 	return ret;
1699 }
1700 
1701 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1702 			 u64 *start, u64 *len)
1703 {
1704 	/* FIXME use last free of some kind */
1705 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1706 }
1707 
1708 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1709 			  struct btrfs_device *device,
1710 			  u64 start, u64 *dev_extent_len)
1711 {
1712 	struct btrfs_fs_info *fs_info = device->fs_info;
1713 	struct btrfs_root *root = fs_info->dev_root;
1714 	int ret;
1715 	struct btrfs_path *path;
1716 	struct btrfs_key key;
1717 	struct btrfs_key found_key;
1718 	struct extent_buffer *leaf = NULL;
1719 	struct btrfs_dev_extent *extent = NULL;
1720 
1721 	path = btrfs_alloc_path();
1722 	if (!path)
1723 		return -ENOMEM;
1724 
1725 	key.objectid = device->devid;
1726 	key.offset = start;
1727 	key.type = BTRFS_DEV_EXTENT_KEY;
1728 again:
1729 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1730 	if (ret > 0) {
1731 		ret = btrfs_previous_item(root, path, key.objectid,
1732 					  BTRFS_DEV_EXTENT_KEY);
1733 		if (ret)
1734 			goto out;
1735 		leaf = path->nodes[0];
1736 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1737 		extent = btrfs_item_ptr(leaf, path->slots[0],
1738 					struct btrfs_dev_extent);
1739 		BUG_ON(found_key.offset > start || found_key.offset +
1740 		       btrfs_dev_extent_length(leaf, extent) < start);
1741 		key = found_key;
1742 		btrfs_release_path(path);
1743 		goto again;
1744 	} else if (ret == 0) {
1745 		leaf = path->nodes[0];
1746 		extent = btrfs_item_ptr(leaf, path->slots[0],
1747 					struct btrfs_dev_extent);
1748 	} else {
1749 		goto out;
1750 	}
1751 
1752 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1753 
1754 	ret = btrfs_del_item(trans, root, path);
1755 	if (ret == 0)
1756 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1757 out:
1758 	btrfs_free_path(path);
1759 	return ret;
1760 }
1761 
1762 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1763 {
1764 	struct extent_map_tree *em_tree;
1765 	struct extent_map *em;
1766 	struct rb_node *n;
1767 	u64 ret = 0;
1768 
1769 	em_tree = &fs_info->mapping_tree;
1770 	read_lock(&em_tree->lock);
1771 	n = rb_last(&em_tree->map.rb_root);
1772 	if (n) {
1773 		em = rb_entry(n, struct extent_map, rb_node);
1774 		ret = em->start + em->len;
1775 	}
1776 	read_unlock(&em_tree->lock);
1777 
1778 	return ret;
1779 }
1780 
1781 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1782 				    u64 *devid_ret)
1783 {
1784 	int ret;
1785 	struct btrfs_key key;
1786 	struct btrfs_key found_key;
1787 	struct btrfs_path *path;
1788 
1789 	path = btrfs_alloc_path();
1790 	if (!path)
1791 		return -ENOMEM;
1792 
1793 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1794 	key.type = BTRFS_DEV_ITEM_KEY;
1795 	key.offset = (u64)-1;
1796 
1797 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1798 	if (ret < 0)
1799 		goto error;
1800 
1801 	if (ret == 0) {
1802 		/* Corruption */
1803 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1804 		ret = -EUCLEAN;
1805 		goto error;
1806 	}
1807 
1808 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1809 				  BTRFS_DEV_ITEMS_OBJECTID,
1810 				  BTRFS_DEV_ITEM_KEY);
1811 	if (ret) {
1812 		*devid_ret = 1;
1813 	} else {
1814 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1815 				      path->slots[0]);
1816 		*devid_ret = found_key.offset + 1;
1817 	}
1818 	ret = 0;
1819 error:
1820 	btrfs_free_path(path);
1821 	return ret;
1822 }
1823 
1824 /*
1825  * the device information is stored in the chunk root
1826  * the btrfs_device struct should be fully filled in
1827  */
1828 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1829 			    struct btrfs_device *device)
1830 {
1831 	int ret;
1832 	struct btrfs_path *path;
1833 	struct btrfs_dev_item *dev_item;
1834 	struct extent_buffer *leaf;
1835 	struct btrfs_key key;
1836 	unsigned long ptr;
1837 
1838 	path = btrfs_alloc_path();
1839 	if (!path)
1840 		return -ENOMEM;
1841 
1842 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1843 	key.type = BTRFS_DEV_ITEM_KEY;
1844 	key.offset = device->devid;
1845 
1846 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1847 				      &key, sizeof(*dev_item));
1848 	if (ret)
1849 		goto out;
1850 
1851 	leaf = path->nodes[0];
1852 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1853 
1854 	btrfs_set_device_id(leaf, dev_item, device->devid);
1855 	btrfs_set_device_generation(leaf, dev_item, 0);
1856 	btrfs_set_device_type(leaf, dev_item, device->type);
1857 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1858 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1859 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1860 	btrfs_set_device_total_bytes(leaf, dev_item,
1861 				     btrfs_device_get_disk_total_bytes(device));
1862 	btrfs_set_device_bytes_used(leaf, dev_item,
1863 				    btrfs_device_get_bytes_used(device));
1864 	btrfs_set_device_group(leaf, dev_item, 0);
1865 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1866 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1867 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1868 
1869 	ptr = btrfs_device_uuid(dev_item);
1870 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1871 	ptr = btrfs_device_fsid(dev_item);
1872 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1873 			    ptr, BTRFS_FSID_SIZE);
1874 	btrfs_mark_buffer_dirty(leaf);
1875 
1876 	ret = 0;
1877 out:
1878 	btrfs_free_path(path);
1879 	return ret;
1880 }
1881 
1882 /*
1883  * Function to update ctime/mtime for a given device path.
1884  * Mainly used for ctime/mtime based probe like libblkid.
1885  */
1886 static void update_dev_time(struct block_device *bdev)
1887 {
1888 	struct inode *inode = bdev->bd_inode;
1889 	struct timespec64 now;
1890 
1891 	/* Shouldn't happen but just in case. */
1892 	if (!inode)
1893 		return;
1894 
1895 	now = current_time(inode);
1896 	generic_update_time(inode, &now, S_MTIME | S_CTIME);
1897 }
1898 
1899 static int btrfs_rm_dev_item(struct btrfs_device *device)
1900 {
1901 	struct btrfs_root *root = device->fs_info->chunk_root;
1902 	int ret;
1903 	struct btrfs_path *path;
1904 	struct btrfs_key key;
1905 	struct btrfs_trans_handle *trans;
1906 
1907 	path = btrfs_alloc_path();
1908 	if (!path)
1909 		return -ENOMEM;
1910 
1911 	trans = btrfs_start_transaction(root, 0);
1912 	if (IS_ERR(trans)) {
1913 		btrfs_free_path(path);
1914 		return PTR_ERR(trans);
1915 	}
1916 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1917 	key.type = BTRFS_DEV_ITEM_KEY;
1918 	key.offset = device->devid;
1919 
1920 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1921 	if (ret) {
1922 		if (ret > 0)
1923 			ret = -ENOENT;
1924 		btrfs_abort_transaction(trans, ret);
1925 		btrfs_end_transaction(trans);
1926 		goto out;
1927 	}
1928 
1929 	ret = btrfs_del_item(trans, root, path);
1930 	if (ret) {
1931 		btrfs_abort_transaction(trans, ret);
1932 		btrfs_end_transaction(trans);
1933 	}
1934 
1935 out:
1936 	btrfs_free_path(path);
1937 	if (!ret)
1938 		ret = btrfs_commit_transaction(trans);
1939 	return ret;
1940 }
1941 
1942 /*
1943  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1944  * filesystem. It's up to the caller to adjust that number regarding eg. device
1945  * replace.
1946  */
1947 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1948 		u64 num_devices)
1949 {
1950 	u64 all_avail;
1951 	unsigned seq;
1952 	int i;
1953 
1954 	do {
1955 		seq = read_seqbegin(&fs_info->profiles_lock);
1956 
1957 		all_avail = fs_info->avail_data_alloc_bits |
1958 			    fs_info->avail_system_alloc_bits |
1959 			    fs_info->avail_metadata_alloc_bits;
1960 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1961 
1962 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1963 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1964 			continue;
1965 
1966 		if (num_devices < btrfs_raid_array[i].devs_min)
1967 			return btrfs_raid_array[i].mindev_error;
1968 	}
1969 
1970 	return 0;
1971 }
1972 
1973 static struct btrfs_device * btrfs_find_next_active_device(
1974 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1975 {
1976 	struct btrfs_device *next_device;
1977 
1978 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1979 		if (next_device != device &&
1980 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1981 		    && next_device->bdev)
1982 			return next_device;
1983 	}
1984 
1985 	return NULL;
1986 }
1987 
1988 /*
1989  * Helper function to check if the given device is part of s_bdev / latest_dev
1990  * and replace it with the provided or the next active device, in the context
1991  * where this function called, there should be always be another device (or
1992  * this_dev) which is active.
1993  */
1994 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1995 					    struct btrfs_device *next_device)
1996 {
1997 	struct btrfs_fs_info *fs_info = device->fs_info;
1998 
1999 	if (!next_device)
2000 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2001 							    device);
2002 	ASSERT(next_device);
2003 
2004 	if (fs_info->sb->s_bdev &&
2005 			(fs_info->sb->s_bdev == device->bdev))
2006 		fs_info->sb->s_bdev = next_device->bdev;
2007 
2008 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2009 		fs_info->fs_devices->latest_dev = next_device;
2010 }
2011 
2012 /*
2013  * Return btrfs_fs_devices::num_devices excluding the device that's being
2014  * currently replaced.
2015  */
2016 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2017 {
2018 	u64 num_devices = fs_info->fs_devices->num_devices;
2019 
2020 	down_read(&fs_info->dev_replace.rwsem);
2021 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2022 		ASSERT(num_devices > 1);
2023 		num_devices--;
2024 	}
2025 	up_read(&fs_info->dev_replace.rwsem);
2026 
2027 	return num_devices;
2028 }
2029 
2030 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2031 			       struct block_device *bdev,
2032 			       const char *device_path)
2033 {
2034 	struct btrfs_super_block *disk_super;
2035 	int copy_num;
2036 
2037 	if (!bdev)
2038 		return;
2039 
2040 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2041 		struct page *page;
2042 		int ret;
2043 
2044 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2045 		if (IS_ERR(disk_super))
2046 			continue;
2047 
2048 		if (bdev_is_zoned(bdev)) {
2049 			btrfs_reset_sb_log_zones(bdev, copy_num);
2050 			continue;
2051 		}
2052 
2053 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2054 
2055 		page = virt_to_page(disk_super);
2056 		set_page_dirty(page);
2057 		lock_page(page);
2058 		/* write_on_page() unlocks the page */
2059 		ret = write_one_page(page);
2060 		if (ret)
2061 			btrfs_warn(fs_info,
2062 				"error clearing superblock number %d (%d)",
2063 				copy_num, ret);
2064 		btrfs_release_disk_super(disk_super);
2065 
2066 	}
2067 
2068 	/* Notify udev that device has changed */
2069 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2070 
2071 	/* Update ctime/mtime for device path for libblkid */
2072 	update_dev_time(bdev);
2073 }
2074 
2075 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2076 		    u64 devid, struct block_device **bdev, fmode_t *mode)
2077 {
2078 	struct btrfs_device *device;
2079 	struct btrfs_fs_devices *cur_devices;
2080 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2081 	u64 num_devices;
2082 	int ret = 0;
2083 
2084 	mutex_lock(&uuid_mutex);
2085 
2086 	num_devices = btrfs_num_devices(fs_info);
2087 
2088 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2089 	if (ret)
2090 		goto out;
2091 
2092 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2093 
2094 	if (IS_ERR(device)) {
2095 		if (PTR_ERR(device) == -ENOENT &&
2096 		    device_path && strcmp(device_path, "missing") == 0)
2097 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2098 		else
2099 			ret = PTR_ERR(device);
2100 		goto out;
2101 	}
2102 
2103 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2104 		btrfs_warn_in_rcu(fs_info,
2105 		  "cannot remove device %s (devid %llu) due to active swapfile",
2106 				  rcu_str_deref(device->name), device->devid);
2107 		ret = -ETXTBSY;
2108 		goto out;
2109 	}
2110 
2111 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2112 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2113 		goto out;
2114 	}
2115 
2116 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2117 	    fs_info->fs_devices->rw_devices == 1) {
2118 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2119 		goto out;
2120 	}
2121 
2122 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2123 		mutex_lock(&fs_info->chunk_mutex);
2124 		list_del_init(&device->dev_alloc_list);
2125 		device->fs_devices->rw_devices--;
2126 		mutex_unlock(&fs_info->chunk_mutex);
2127 	}
2128 
2129 	mutex_unlock(&uuid_mutex);
2130 	ret = btrfs_shrink_device(device, 0);
2131 	if (!ret)
2132 		btrfs_reada_remove_dev(device);
2133 	mutex_lock(&uuid_mutex);
2134 	if (ret)
2135 		goto error_undo;
2136 
2137 	/*
2138 	 * TODO: the superblock still includes this device in its num_devices
2139 	 * counter although write_all_supers() is not locked out. This
2140 	 * could give a filesystem state which requires a degraded mount.
2141 	 */
2142 	ret = btrfs_rm_dev_item(device);
2143 	if (ret)
2144 		goto error_undo;
2145 
2146 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2147 	btrfs_scrub_cancel_dev(device);
2148 
2149 	/*
2150 	 * the device list mutex makes sure that we don't change
2151 	 * the device list while someone else is writing out all
2152 	 * the device supers. Whoever is writing all supers, should
2153 	 * lock the device list mutex before getting the number of
2154 	 * devices in the super block (super_copy). Conversely,
2155 	 * whoever updates the number of devices in the super block
2156 	 * (super_copy) should hold the device list mutex.
2157 	 */
2158 
2159 	/*
2160 	 * In normal cases the cur_devices == fs_devices. But in case
2161 	 * of deleting a seed device, the cur_devices should point to
2162 	 * its own fs_devices listed under the fs_devices->seed_list.
2163 	 */
2164 	cur_devices = device->fs_devices;
2165 	mutex_lock(&fs_devices->device_list_mutex);
2166 	list_del_rcu(&device->dev_list);
2167 
2168 	cur_devices->num_devices--;
2169 	cur_devices->total_devices--;
2170 	/* Update total_devices of the parent fs_devices if it's seed */
2171 	if (cur_devices != fs_devices)
2172 		fs_devices->total_devices--;
2173 
2174 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2175 		cur_devices->missing_devices--;
2176 
2177 	btrfs_assign_next_active_device(device, NULL);
2178 
2179 	if (device->bdev) {
2180 		cur_devices->open_devices--;
2181 		/* remove sysfs entry */
2182 		btrfs_sysfs_remove_device(device);
2183 	}
2184 
2185 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2186 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2187 	mutex_unlock(&fs_devices->device_list_mutex);
2188 
2189 	/*
2190 	 * At this point, the device is zero sized and detached from the
2191 	 * devices list.  All that's left is to zero out the old supers and
2192 	 * free the device.
2193 	 *
2194 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2195 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2196 	 * block device and it's dependencies.  Instead just flush the device
2197 	 * and let the caller do the final blkdev_put.
2198 	 */
2199 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2200 		btrfs_scratch_superblocks(fs_info, device->bdev,
2201 					  device->name->str);
2202 		if (device->bdev) {
2203 			sync_blockdev(device->bdev);
2204 			invalidate_bdev(device->bdev);
2205 		}
2206 	}
2207 
2208 	*bdev = device->bdev;
2209 	*mode = device->mode;
2210 	synchronize_rcu();
2211 	btrfs_free_device(device);
2212 
2213 	if (cur_devices->open_devices == 0) {
2214 		list_del_init(&cur_devices->seed_list);
2215 		close_fs_devices(cur_devices);
2216 		free_fs_devices(cur_devices);
2217 	}
2218 
2219 out:
2220 	mutex_unlock(&uuid_mutex);
2221 	return ret;
2222 
2223 error_undo:
2224 	btrfs_reada_undo_remove_dev(device);
2225 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2226 		mutex_lock(&fs_info->chunk_mutex);
2227 		list_add(&device->dev_alloc_list,
2228 			 &fs_devices->alloc_list);
2229 		device->fs_devices->rw_devices++;
2230 		mutex_unlock(&fs_info->chunk_mutex);
2231 	}
2232 	goto out;
2233 }
2234 
2235 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2236 {
2237 	struct btrfs_fs_devices *fs_devices;
2238 
2239 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2240 
2241 	/*
2242 	 * in case of fs with no seed, srcdev->fs_devices will point
2243 	 * to fs_devices of fs_info. However when the dev being replaced is
2244 	 * a seed dev it will point to the seed's local fs_devices. In short
2245 	 * srcdev will have its correct fs_devices in both the cases.
2246 	 */
2247 	fs_devices = srcdev->fs_devices;
2248 
2249 	list_del_rcu(&srcdev->dev_list);
2250 	list_del(&srcdev->dev_alloc_list);
2251 	fs_devices->num_devices--;
2252 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2253 		fs_devices->missing_devices--;
2254 
2255 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2256 		fs_devices->rw_devices--;
2257 
2258 	if (srcdev->bdev)
2259 		fs_devices->open_devices--;
2260 }
2261 
2262 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2263 {
2264 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2265 
2266 	mutex_lock(&uuid_mutex);
2267 
2268 	btrfs_close_bdev(srcdev);
2269 	synchronize_rcu();
2270 	btrfs_free_device(srcdev);
2271 
2272 	/* if this is no devs we rather delete the fs_devices */
2273 	if (!fs_devices->num_devices) {
2274 		/*
2275 		 * On a mounted FS, num_devices can't be zero unless it's a
2276 		 * seed. In case of a seed device being replaced, the replace
2277 		 * target added to the sprout FS, so there will be no more
2278 		 * device left under the seed FS.
2279 		 */
2280 		ASSERT(fs_devices->seeding);
2281 
2282 		list_del_init(&fs_devices->seed_list);
2283 		close_fs_devices(fs_devices);
2284 		free_fs_devices(fs_devices);
2285 	}
2286 	mutex_unlock(&uuid_mutex);
2287 }
2288 
2289 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2290 {
2291 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2292 
2293 	mutex_lock(&fs_devices->device_list_mutex);
2294 
2295 	btrfs_sysfs_remove_device(tgtdev);
2296 
2297 	if (tgtdev->bdev)
2298 		fs_devices->open_devices--;
2299 
2300 	fs_devices->num_devices--;
2301 
2302 	btrfs_assign_next_active_device(tgtdev, NULL);
2303 
2304 	list_del_rcu(&tgtdev->dev_list);
2305 
2306 	mutex_unlock(&fs_devices->device_list_mutex);
2307 
2308 	/*
2309 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2310 	 * may lead to a call to btrfs_show_devname() which will try
2311 	 * to hold device_list_mutex. And here this device
2312 	 * is already out of device list, so we don't have to hold
2313 	 * the device_list_mutex lock.
2314 	 */
2315 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2316 				  tgtdev->name->str);
2317 
2318 	btrfs_close_bdev(tgtdev);
2319 	synchronize_rcu();
2320 	btrfs_free_device(tgtdev);
2321 }
2322 
2323 static struct btrfs_device *btrfs_find_device_by_path(
2324 		struct btrfs_fs_info *fs_info, const char *device_path)
2325 {
2326 	int ret = 0;
2327 	struct btrfs_super_block *disk_super;
2328 	u64 devid;
2329 	u8 *dev_uuid;
2330 	struct block_device *bdev;
2331 	struct btrfs_device *device;
2332 
2333 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2334 				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2335 	if (ret)
2336 		return ERR_PTR(ret);
2337 
2338 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2339 	dev_uuid = disk_super->dev_item.uuid;
2340 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2341 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2342 					   disk_super->metadata_uuid);
2343 	else
2344 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2345 					   disk_super->fsid);
2346 
2347 	btrfs_release_disk_super(disk_super);
2348 	if (!device)
2349 		device = ERR_PTR(-ENOENT);
2350 	blkdev_put(bdev, FMODE_READ);
2351 	return device;
2352 }
2353 
2354 /*
2355  * Lookup a device given by device id, or the path if the id is 0.
2356  */
2357 struct btrfs_device *btrfs_find_device_by_devspec(
2358 		struct btrfs_fs_info *fs_info, u64 devid,
2359 		const char *device_path)
2360 {
2361 	struct btrfs_device *device;
2362 
2363 	if (devid) {
2364 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2365 					   NULL);
2366 		if (!device)
2367 			return ERR_PTR(-ENOENT);
2368 		return device;
2369 	}
2370 
2371 	if (!device_path || !device_path[0])
2372 		return ERR_PTR(-EINVAL);
2373 
2374 	if (strcmp(device_path, "missing") == 0) {
2375 		/* Find first missing device */
2376 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2377 				    dev_list) {
2378 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2379 				     &device->dev_state) && !device->bdev)
2380 				return device;
2381 		}
2382 		return ERR_PTR(-ENOENT);
2383 	}
2384 
2385 	return btrfs_find_device_by_path(fs_info, device_path);
2386 }
2387 
2388 /*
2389  * does all the dirty work required for changing file system's UUID.
2390  */
2391 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2392 {
2393 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2394 	struct btrfs_fs_devices *old_devices;
2395 	struct btrfs_fs_devices *seed_devices;
2396 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2397 	struct btrfs_device *device;
2398 	u64 super_flags;
2399 
2400 	lockdep_assert_held(&uuid_mutex);
2401 	if (!fs_devices->seeding)
2402 		return -EINVAL;
2403 
2404 	/*
2405 	 * Private copy of the seed devices, anchored at
2406 	 * fs_info->fs_devices->seed_list
2407 	 */
2408 	seed_devices = alloc_fs_devices(NULL, NULL);
2409 	if (IS_ERR(seed_devices))
2410 		return PTR_ERR(seed_devices);
2411 
2412 	/*
2413 	 * It's necessary to retain a copy of the original seed fs_devices in
2414 	 * fs_uuids so that filesystems which have been seeded can successfully
2415 	 * reference the seed device from open_seed_devices. This also supports
2416 	 * multiple fs seed.
2417 	 */
2418 	old_devices = clone_fs_devices(fs_devices);
2419 	if (IS_ERR(old_devices)) {
2420 		kfree(seed_devices);
2421 		return PTR_ERR(old_devices);
2422 	}
2423 
2424 	list_add(&old_devices->fs_list, &fs_uuids);
2425 
2426 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2427 	seed_devices->opened = 1;
2428 	INIT_LIST_HEAD(&seed_devices->devices);
2429 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2430 	mutex_init(&seed_devices->device_list_mutex);
2431 
2432 	mutex_lock(&fs_devices->device_list_mutex);
2433 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2434 			      synchronize_rcu);
2435 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2436 		device->fs_devices = seed_devices;
2437 
2438 	fs_devices->seeding = false;
2439 	fs_devices->num_devices = 0;
2440 	fs_devices->open_devices = 0;
2441 	fs_devices->missing_devices = 0;
2442 	fs_devices->rotating = false;
2443 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2444 
2445 	generate_random_uuid(fs_devices->fsid);
2446 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2447 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2448 	mutex_unlock(&fs_devices->device_list_mutex);
2449 
2450 	super_flags = btrfs_super_flags(disk_super) &
2451 		      ~BTRFS_SUPER_FLAG_SEEDING;
2452 	btrfs_set_super_flags(disk_super, super_flags);
2453 
2454 	return 0;
2455 }
2456 
2457 /*
2458  * Store the expected generation for seed devices in device items.
2459  */
2460 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2461 {
2462 	struct btrfs_fs_info *fs_info = trans->fs_info;
2463 	struct btrfs_root *root = fs_info->chunk_root;
2464 	struct btrfs_path *path;
2465 	struct extent_buffer *leaf;
2466 	struct btrfs_dev_item *dev_item;
2467 	struct btrfs_device *device;
2468 	struct btrfs_key key;
2469 	u8 fs_uuid[BTRFS_FSID_SIZE];
2470 	u8 dev_uuid[BTRFS_UUID_SIZE];
2471 	u64 devid;
2472 	int ret;
2473 
2474 	path = btrfs_alloc_path();
2475 	if (!path)
2476 		return -ENOMEM;
2477 
2478 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2479 	key.offset = 0;
2480 	key.type = BTRFS_DEV_ITEM_KEY;
2481 
2482 	while (1) {
2483 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2484 		if (ret < 0)
2485 			goto error;
2486 
2487 		leaf = path->nodes[0];
2488 next_slot:
2489 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2490 			ret = btrfs_next_leaf(root, path);
2491 			if (ret > 0)
2492 				break;
2493 			if (ret < 0)
2494 				goto error;
2495 			leaf = path->nodes[0];
2496 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2497 			btrfs_release_path(path);
2498 			continue;
2499 		}
2500 
2501 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2502 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2503 		    key.type != BTRFS_DEV_ITEM_KEY)
2504 			break;
2505 
2506 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2507 					  struct btrfs_dev_item);
2508 		devid = btrfs_device_id(leaf, dev_item);
2509 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2510 				   BTRFS_UUID_SIZE);
2511 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2512 				   BTRFS_FSID_SIZE);
2513 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2514 					   fs_uuid);
2515 		BUG_ON(!device); /* Logic error */
2516 
2517 		if (device->fs_devices->seeding) {
2518 			btrfs_set_device_generation(leaf, dev_item,
2519 						    device->generation);
2520 			btrfs_mark_buffer_dirty(leaf);
2521 		}
2522 
2523 		path->slots[0]++;
2524 		goto next_slot;
2525 	}
2526 	ret = 0;
2527 error:
2528 	btrfs_free_path(path);
2529 	return ret;
2530 }
2531 
2532 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2533 {
2534 	struct btrfs_root *root = fs_info->dev_root;
2535 	struct request_queue *q;
2536 	struct btrfs_trans_handle *trans;
2537 	struct btrfs_device *device;
2538 	struct block_device *bdev;
2539 	struct super_block *sb = fs_info->sb;
2540 	struct rcu_string *name;
2541 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2542 	u64 orig_super_total_bytes;
2543 	u64 orig_super_num_devices;
2544 	int seeding_dev = 0;
2545 	int ret = 0;
2546 	bool locked = false;
2547 
2548 	if (sb_rdonly(sb) && !fs_devices->seeding)
2549 		return -EROFS;
2550 
2551 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2552 				  fs_info->bdev_holder);
2553 	if (IS_ERR(bdev))
2554 		return PTR_ERR(bdev);
2555 
2556 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2557 		ret = -EINVAL;
2558 		goto error;
2559 	}
2560 
2561 	if (fs_devices->seeding) {
2562 		seeding_dev = 1;
2563 		down_write(&sb->s_umount);
2564 		mutex_lock(&uuid_mutex);
2565 		locked = true;
2566 	}
2567 
2568 	sync_blockdev(bdev);
2569 
2570 	rcu_read_lock();
2571 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2572 		if (device->bdev == bdev) {
2573 			ret = -EEXIST;
2574 			rcu_read_unlock();
2575 			goto error;
2576 		}
2577 	}
2578 	rcu_read_unlock();
2579 
2580 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2581 	if (IS_ERR(device)) {
2582 		/* we can safely leave the fs_devices entry around */
2583 		ret = PTR_ERR(device);
2584 		goto error;
2585 	}
2586 
2587 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2588 	if (!name) {
2589 		ret = -ENOMEM;
2590 		goto error_free_device;
2591 	}
2592 	rcu_assign_pointer(device->name, name);
2593 
2594 	device->fs_info = fs_info;
2595 	device->bdev = bdev;
2596 
2597 	ret = btrfs_get_dev_zone_info(device);
2598 	if (ret)
2599 		goto error_free_device;
2600 
2601 	trans = btrfs_start_transaction(root, 0);
2602 	if (IS_ERR(trans)) {
2603 		ret = PTR_ERR(trans);
2604 		goto error_free_zone;
2605 	}
2606 
2607 	q = bdev_get_queue(bdev);
2608 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2609 	device->generation = trans->transid;
2610 	device->io_width = fs_info->sectorsize;
2611 	device->io_align = fs_info->sectorsize;
2612 	device->sector_size = fs_info->sectorsize;
2613 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2614 					 fs_info->sectorsize);
2615 	device->disk_total_bytes = device->total_bytes;
2616 	device->commit_total_bytes = device->total_bytes;
2617 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2618 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2619 	device->mode = FMODE_EXCL;
2620 	device->dev_stats_valid = 1;
2621 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2622 
2623 	if (seeding_dev) {
2624 		btrfs_clear_sb_rdonly(sb);
2625 		ret = btrfs_prepare_sprout(fs_info);
2626 		if (ret) {
2627 			btrfs_abort_transaction(trans, ret);
2628 			goto error_trans;
2629 		}
2630 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2631 						device);
2632 	}
2633 
2634 	device->fs_devices = fs_devices;
2635 
2636 	mutex_lock(&fs_devices->device_list_mutex);
2637 	mutex_lock(&fs_info->chunk_mutex);
2638 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2639 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2640 	fs_devices->num_devices++;
2641 	fs_devices->open_devices++;
2642 	fs_devices->rw_devices++;
2643 	fs_devices->total_devices++;
2644 	fs_devices->total_rw_bytes += device->total_bytes;
2645 
2646 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2647 
2648 	if (!blk_queue_nonrot(q))
2649 		fs_devices->rotating = true;
2650 
2651 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2652 	btrfs_set_super_total_bytes(fs_info->super_copy,
2653 		round_down(orig_super_total_bytes + device->total_bytes,
2654 			   fs_info->sectorsize));
2655 
2656 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2657 	btrfs_set_super_num_devices(fs_info->super_copy,
2658 				    orig_super_num_devices + 1);
2659 
2660 	/*
2661 	 * we've got more storage, clear any full flags on the space
2662 	 * infos
2663 	 */
2664 	btrfs_clear_space_info_full(fs_info);
2665 
2666 	mutex_unlock(&fs_info->chunk_mutex);
2667 
2668 	/* Add sysfs device entry */
2669 	btrfs_sysfs_add_device(device);
2670 
2671 	mutex_unlock(&fs_devices->device_list_mutex);
2672 
2673 	if (seeding_dev) {
2674 		mutex_lock(&fs_info->chunk_mutex);
2675 		ret = init_first_rw_device(trans);
2676 		mutex_unlock(&fs_info->chunk_mutex);
2677 		if (ret) {
2678 			btrfs_abort_transaction(trans, ret);
2679 			goto error_sysfs;
2680 		}
2681 	}
2682 
2683 	ret = btrfs_add_dev_item(trans, device);
2684 	if (ret) {
2685 		btrfs_abort_transaction(trans, ret);
2686 		goto error_sysfs;
2687 	}
2688 
2689 	if (seeding_dev) {
2690 		ret = btrfs_finish_sprout(trans);
2691 		if (ret) {
2692 			btrfs_abort_transaction(trans, ret);
2693 			goto error_sysfs;
2694 		}
2695 
2696 		/*
2697 		 * fs_devices now represents the newly sprouted filesystem and
2698 		 * its fsid has been changed by btrfs_prepare_sprout
2699 		 */
2700 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2701 	}
2702 
2703 	ret = btrfs_commit_transaction(trans);
2704 
2705 	if (seeding_dev) {
2706 		mutex_unlock(&uuid_mutex);
2707 		up_write(&sb->s_umount);
2708 		locked = false;
2709 
2710 		if (ret) /* transaction commit */
2711 			return ret;
2712 
2713 		ret = btrfs_relocate_sys_chunks(fs_info);
2714 		if (ret < 0)
2715 			btrfs_handle_fs_error(fs_info, ret,
2716 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2717 		trans = btrfs_attach_transaction(root);
2718 		if (IS_ERR(trans)) {
2719 			if (PTR_ERR(trans) == -ENOENT)
2720 				return 0;
2721 			ret = PTR_ERR(trans);
2722 			trans = NULL;
2723 			goto error_sysfs;
2724 		}
2725 		ret = btrfs_commit_transaction(trans);
2726 	}
2727 
2728 	/*
2729 	 * Now that we have written a new super block to this device, check all
2730 	 * other fs_devices list if device_path alienates any other scanned
2731 	 * device.
2732 	 * We can ignore the return value as it typically returns -EINVAL and
2733 	 * only succeeds if the device was an alien.
2734 	 */
2735 	btrfs_forget_devices(device_path);
2736 
2737 	/* Update ctime/mtime for blkid or udev */
2738 	update_dev_time(bdev);
2739 
2740 	return ret;
2741 
2742 error_sysfs:
2743 	btrfs_sysfs_remove_device(device);
2744 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2745 	mutex_lock(&fs_info->chunk_mutex);
2746 	list_del_rcu(&device->dev_list);
2747 	list_del(&device->dev_alloc_list);
2748 	fs_info->fs_devices->num_devices--;
2749 	fs_info->fs_devices->open_devices--;
2750 	fs_info->fs_devices->rw_devices--;
2751 	fs_info->fs_devices->total_devices--;
2752 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2753 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2754 	btrfs_set_super_total_bytes(fs_info->super_copy,
2755 				    orig_super_total_bytes);
2756 	btrfs_set_super_num_devices(fs_info->super_copy,
2757 				    orig_super_num_devices);
2758 	mutex_unlock(&fs_info->chunk_mutex);
2759 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2760 error_trans:
2761 	if (seeding_dev)
2762 		btrfs_set_sb_rdonly(sb);
2763 	if (trans)
2764 		btrfs_end_transaction(trans);
2765 error_free_zone:
2766 	btrfs_destroy_dev_zone_info(device);
2767 error_free_device:
2768 	btrfs_free_device(device);
2769 error:
2770 	blkdev_put(bdev, FMODE_EXCL);
2771 	if (locked) {
2772 		mutex_unlock(&uuid_mutex);
2773 		up_write(&sb->s_umount);
2774 	}
2775 	return ret;
2776 }
2777 
2778 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2779 					struct btrfs_device *device)
2780 {
2781 	int ret;
2782 	struct btrfs_path *path;
2783 	struct btrfs_root *root = device->fs_info->chunk_root;
2784 	struct btrfs_dev_item *dev_item;
2785 	struct extent_buffer *leaf;
2786 	struct btrfs_key key;
2787 
2788 	path = btrfs_alloc_path();
2789 	if (!path)
2790 		return -ENOMEM;
2791 
2792 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2793 	key.type = BTRFS_DEV_ITEM_KEY;
2794 	key.offset = device->devid;
2795 
2796 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2797 	if (ret < 0)
2798 		goto out;
2799 
2800 	if (ret > 0) {
2801 		ret = -ENOENT;
2802 		goto out;
2803 	}
2804 
2805 	leaf = path->nodes[0];
2806 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2807 
2808 	btrfs_set_device_id(leaf, dev_item, device->devid);
2809 	btrfs_set_device_type(leaf, dev_item, device->type);
2810 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2811 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2812 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2813 	btrfs_set_device_total_bytes(leaf, dev_item,
2814 				     btrfs_device_get_disk_total_bytes(device));
2815 	btrfs_set_device_bytes_used(leaf, dev_item,
2816 				    btrfs_device_get_bytes_used(device));
2817 	btrfs_mark_buffer_dirty(leaf);
2818 
2819 out:
2820 	btrfs_free_path(path);
2821 	return ret;
2822 }
2823 
2824 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2825 		      struct btrfs_device *device, u64 new_size)
2826 {
2827 	struct btrfs_fs_info *fs_info = device->fs_info;
2828 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2829 	u64 old_total;
2830 	u64 diff;
2831 
2832 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2833 		return -EACCES;
2834 
2835 	new_size = round_down(new_size, fs_info->sectorsize);
2836 
2837 	mutex_lock(&fs_info->chunk_mutex);
2838 	old_total = btrfs_super_total_bytes(super_copy);
2839 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2840 
2841 	if (new_size <= device->total_bytes ||
2842 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2843 		mutex_unlock(&fs_info->chunk_mutex);
2844 		return -EINVAL;
2845 	}
2846 
2847 	btrfs_set_super_total_bytes(super_copy,
2848 			round_down(old_total + diff, fs_info->sectorsize));
2849 	device->fs_devices->total_rw_bytes += diff;
2850 
2851 	btrfs_device_set_total_bytes(device, new_size);
2852 	btrfs_device_set_disk_total_bytes(device, new_size);
2853 	btrfs_clear_space_info_full(device->fs_info);
2854 	if (list_empty(&device->post_commit_list))
2855 		list_add_tail(&device->post_commit_list,
2856 			      &trans->transaction->dev_update_list);
2857 	mutex_unlock(&fs_info->chunk_mutex);
2858 
2859 	return btrfs_update_device(trans, device);
2860 }
2861 
2862 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2863 {
2864 	struct btrfs_fs_info *fs_info = trans->fs_info;
2865 	struct btrfs_root *root = fs_info->chunk_root;
2866 	int ret;
2867 	struct btrfs_path *path;
2868 	struct btrfs_key key;
2869 
2870 	path = btrfs_alloc_path();
2871 	if (!path)
2872 		return -ENOMEM;
2873 
2874 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2875 	key.offset = chunk_offset;
2876 	key.type = BTRFS_CHUNK_ITEM_KEY;
2877 
2878 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2879 	if (ret < 0)
2880 		goto out;
2881 	else if (ret > 0) { /* Logic error or corruption */
2882 		btrfs_handle_fs_error(fs_info, -ENOENT,
2883 				      "Failed lookup while freeing chunk.");
2884 		ret = -ENOENT;
2885 		goto out;
2886 	}
2887 
2888 	ret = btrfs_del_item(trans, root, path);
2889 	if (ret < 0)
2890 		btrfs_handle_fs_error(fs_info, ret,
2891 				      "Failed to delete chunk item.");
2892 out:
2893 	btrfs_free_path(path);
2894 	return ret;
2895 }
2896 
2897 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2898 {
2899 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2900 	struct btrfs_disk_key *disk_key;
2901 	struct btrfs_chunk *chunk;
2902 	u8 *ptr;
2903 	int ret = 0;
2904 	u32 num_stripes;
2905 	u32 array_size;
2906 	u32 len = 0;
2907 	u32 cur;
2908 	struct btrfs_key key;
2909 
2910 	lockdep_assert_held(&fs_info->chunk_mutex);
2911 	array_size = btrfs_super_sys_array_size(super_copy);
2912 
2913 	ptr = super_copy->sys_chunk_array;
2914 	cur = 0;
2915 
2916 	while (cur < array_size) {
2917 		disk_key = (struct btrfs_disk_key *)ptr;
2918 		btrfs_disk_key_to_cpu(&key, disk_key);
2919 
2920 		len = sizeof(*disk_key);
2921 
2922 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2923 			chunk = (struct btrfs_chunk *)(ptr + len);
2924 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2925 			len += btrfs_chunk_item_size(num_stripes);
2926 		} else {
2927 			ret = -EIO;
2928 			break;
2929 		}
2930 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2931 		    key.offset == chunk_offset) {
2932 			memmove(ptr, ptr + len, array_size - (cur + len));
2933 			array_size -= len;
2934 			btrfs_set_super_sys_array_size(super_copy, array_size);
2935 		} else {
2936 			ptr += len;
2937 			cur += len;
2938 		}
2939 	}
2940 	return ret;
2941 }
2942 
2943 /*
2944  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2945  * @logical: Logical block offset in bytes.
2946  * @length: Length of extent in bytes.
2947  *
2948  * Return: Chunk mapping or ERR_PTR.
2949  */
2950 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2951 				       u64 logical, u64 length)
2952 {
2953 	struct extent_map_tree *em_tree;
2954 	struct extent_map *em;
2955 
2956 	em_tree = &fs_info->mapping_tree;
2957 	read_lock(&em_tree->lock);
2958 	em = lookup_extent_mapping(em_tree, logical, length);
2959 	read_unlock(&em_tree->lock);
2960 
2961 	if (!em) {
2962 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2963 			   logical, length);
2964 		return ERR_PTR(-EINVAL);
2965 	}
2966 
2967 	if (em->start > logical || em->start + em->len < logical) {
2968 		btrfs_crit(fs_info,
2969 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2970 			   logical, length, em->start, em->start + em->len);
2971 		free_extent_map(em);
2972 		return ERR_PTR(-EINVAL);
2973 	}
2974 
2975 	/* callers are responsible for dropping em's ref. */
2976 	return em;
2977 }
2978 
2979 static int remove_chunk_item(struct btrfs_trans_handle *trans,
2980 			     struct map_lookup *map, u64 chunk_offset)
2981 {
2982 	int i;
2983 
2984 	/*
2985 	 * Removing chunk items and updating the device items in the chunks btree
2986 	 * requires holding the chunk_mutex.
2987 	 * See the comment at btrfs_chunk_alloc() for the details.
2988 	 */
2989 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
2990 
2991 	for (i = 0; i < map->num_stripes; i++) {
2992 		int ret;
2993 
2994 		ret = btrfs_update_device(trans, map->stripes[i].dev);
2995 		if (ret)
2996 			return ret;
2997 	}
2998 
2999 	return btrfs_free_chunk(trans, chunk_offset);
3000 }
3001 
3002 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3003 {
3004 	struct btrfs_fs_info *fs_info = trans->fs_info;
3005 	struct extent_map *em;
3006 	struct map_lookup *map;
3007 	u64 dev_extent_len = 0;
3008 	int i, ret = 0;
3009 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3010 
3011 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3012 	if (IS_ERR(em)) {
3013 		/*
3014 		 * This is a logic error, but we don't want to just rely on the
3015 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3016 		 * do anything we still error out.
3017 		 */
3018 		ASSERT(0);
3019 		return PTR_ERR(em);
3020 	}
3021 	map = em->map_lookup;
3022 
3023 	/*
3024 	 * First delete the device extent items from the devices btree.
3025 	 * We take the device_list_mutex to avoid racing with the finishing phase
3026 	 * of a device replace operation. See the comment below before acquiring
3027 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3028 	 * because that can result in a deadlock when deleting the device extent
3029 	 * items from the devices btree - COWing an extent buffer from the btree
3030 	 * may result in allocating a new metadata chunk, which would attempt to
3031 	 * lock again fs_info->chunk_mutex.
3032 	 */
3033 	mutex_lock(&fs_devices->device_list_mutex);
3034 	for (i = 0; i < map->num_stripes; i++) {
3035 		struct btrfs_device *device = map->stripes[i].dev;
3036 		ret = btrfs_free_dev_extent(trans, device,
3037 					    map->stripes[i].physical,
3038 					    &dev_extent_len);
3039 		if (ret) {
3040 			mutex_unlock(&fs_devices->device_list_mutex);
3041 			btrfs_abort_transaction(trans, ret);
3042 			goto out;
3043 		}
3044 
3045 		if (device->bytes_used > 0) {
3046 			mutex_lock(&fs_info->chunk_mutex);
3047 			btrfs_device_set_bytes_used(device,
3048 					device->bytes_used - dev_extent_len);
3049 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3050 			btrfs_clear_space_info_full(fs_info);
3051 			mutex_unlock(&fs_info->chunk_mutex);
3052 		}
3053 	}
3054 	mutex_unlock(&fs_devices->device_list_mutex);
3055 
3056 	/*
3057 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3058 	 *
3059 	 * 1) Just like with the first phase of the chunk allocation, we must
3060 	 *    reserve system space, do all chunk btree updates and deletions, and
3061 	 *    update the system chunk array in the superblock while holding this
3062 	 *    mutex. This is for similar reasons as explained on the comment at
3063 	 *    the top of btrfs_chunk_alloc();
3064 	 *
3065 	 * 2) Prevent races with the final phase of a device replace operation
3066 	 *    that replaces the device object associated with the map's stripes,
3067 	 *    because the device object's id can change at any time during that
3068 	 *    final phase of the device replace operation
3069 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3070 	 *    replaced device and then see it with an ID of
3071 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3072 	 *    the device item, which does not exists on the chunk btree.
3073 	 *    The finishing phase of device replace acquires both the
3074 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3075 	 *    safe by just acquiring the chunk_mutex.
3076 	 */
3077 	trans->removing_chunk = true;
3078 	mutex_lock(&fs_info->chunk_mutex);
3079 
3080 	check_system_chunk(trans, map->type);
3081 
3082 	ret = remove_chunk_item(trans, map, chunk_offset);
3083 	/*
3084 	 * Normally we should not get -ENOSPC since we reserved space before
3085 	 * through the call to check_system_chunk().
3086 	 *
3087 	 * Despite our system space_info having enough free space, we may not
3088 	 * be able to allocate extents from its block groups, because all have
3089 	 * an incompatible profile, which will force us to allocate a new system
3090 	 * block group with the right profile, or right after we called
3091 	 * check_system_space() above, a scrub turned the only system block group
3092 	 * with enough free space into RO mode.
3093 	 * This is explained with more detail at do_chunk_alloc().
3094 	 *
3095 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3096 	 */
3097 	if (ret == -ENOSPC) {
3098 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3099 		struct btrfs_block_group *sys_bg;
3100 
3101 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3102 		if (IS_ERR(sys_bg)) {
3103 			ret = PTR_ERR(sys_bg);
3104 			btrfs_abort_transaction(trans, ret);
3105 			goto out;
3106 		}
3107 
3108 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3109 		if (ret) {
3110 			btrfs_abort_transaction(trans, ret);
3111 			goto out;
3112 		}
3113 
3114 		ret = remove_chunk_item(trans, map, chunk_offset);
3115 		if (ret) {
3116 			btrfs_abort_transaction(trans, ret);
3117 			goto out;
3118 		}
3119 	} else if (ret) {
3120 		btrfs_abort_transaction(trans, ret);
3121 		goto out;
3122 	}
3123 
3124 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3125 
3126 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3127 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3128 		if (ret) {
3129 			btrfs_abort_transaction(trans, ret);
3130 			goto out;
3131 		}
3132 	}
3133 
3134 	mutex_unlock(&fs_info->chunk_mutex);
3135 	trans->removing_chunk = false;
3136 
3137 	/*
3138 	 * We are done with chunk btree updates and deletions, so release the
3139 	 * system space we previously reserved (with check_system_chunk()).
3140 	 */
3141 	btrfs_trans_release_chunk_metadata(trans);
3142 
3143 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3144 	if (ret) {
3145 		btrfs_abort_transaction(trans, ret);
3146 		goto out;
3147 	}
3148 
3149 out:
3150 	if (trans->removing_chunk) {
3151 		mutex_unlock(&fs_info->chunk_mutex);
3152 		trans->removing_chunk = false;
3153 	}
3154 	/* once for us */
3155 	free_extent_map(em);
3156 	return ret;
3157 }
3158 
3159 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3160 {
3161 	struct btrfs_root *root = fs_info->chunk_root;
3162 	struct btrfs_trans_handle *trans;
3163 	struct btrfs_block_group *block_group;
3164 	u64 length;
3165 	int ret;
3166 
3167 	/*
3168 	 * Prevent races with automatic removal of unused block groups.
3169 	 * After we relocate and before we remove the chunk with offset
3170 	 * chunk_offset, automatic removal of the block group can kick in,
3171 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3172 	 *
3173 	 * Make sure to acquire this mutex before doing a tree search (dev
3174 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3175 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3176 	 * we release the path used to search the chunk/dev tree and before
3177 	 * the current task acquires this mutex and calls us.
3178 	 */
3179 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3180 
3181 	/* step one, relocate all the extents inside this chunk */
3182 	btrfs_scrub_pause(fs_info);
3183 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3184 	btrfs_scrub_continue(fs_info);
3185 	if (ret)
3186 		return ret;
3187 
3188 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3189 	if (!block_group)
3190 		return -ENOENT;
3191 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3192 	length = block_group->length;
3193 	btrfs_put_block_group(block_group);
3194 
3195 	/*
3196 	 * On a zoned file system, discard the whole block group, this will
3197 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3198 	 * resetting the zone fails, don't treat it as a fatal problem from the
3199 	 * filesystem's point of view.
3200 	 */
3201 	if (btrfs_is_zoned(fs_info)) {
3202 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3203 		if (ret)
3204 			btrfs_info(fs_info,
3205 				"failed to reset zone %llu after relocation",
3206 				chunk_offset);
3207 	}
3208 
3209 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3210 						     chunk_offset);
3211 	if (IS_ERR(trans)) {
3212 		ret = PTR_ERR(trans);
3213 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3214 		return ret;
3215 	}
3216 
3217 	/*
3218 	 * step two, delete the device extents and the
3219 	 * chunk tree entries
3220 	 */
3221 	ret = btrfs_remove_chunk(trans, chunk_offset);
3222 	btrfs_end_transaction(trans);
3223 	return ret;
3224 }
3225 
3226 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3227 {
3228 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3229 	struct btrfs_path *path;
3230 	struct extent_buffer *leaf;
3231 	struct btrfs_chunk *chunk;
3232 	struct btrfs_key key;
3233 	struct btrfs_key found_key;
3234 	u64 chunk_type;
3235 	bool retried = false;
3236 	int failed = 0;
3237 	int ret;
3238 
3239 	path = btrfs_alloc_path();
3240 	if (!path)
3241 		return -ENOMEM;
3242 
3243 again:
3244 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3245 	key.offset = (u64)-1;
3246 	key.type = BTRFS_CHUNK_ITEM_KEY;
3247 
3248 	while (1) {
3249 		mutex_lock(&fs_info->reclaim_bgs_lock);
3250 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3251 		if (ret < 0) {
3252 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3253 			goto error;
3254 		}
3255 		BUG_ON(ret == 0); /* Corruption */
3256 
3257 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3258 					  key.type);
3259 		if (ret)
3260 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3261 		if (ret < 0)
3262 			goto error;
3263 		if (ret > 0)
3264 			break;
3265 
3266 		leaf = path->nodes[0];
3267 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3268 
3269 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3270 				       struct btrfs_chunk);
3271 		chunk_type = btrfs_chunk_type(leaf, chunk);
3272 		btrfs_release_path(path);
3273 
3274 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3275 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3276 			if (ret == -ENOSPC)
3277 				failed++;
3278 			else
3279 				BUG_ON(ret);
3280 		}
3281 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3282 
3283 		if (found_key.offset == 0)
3284 			break;
3285 		key.offset = found_key.offset - 1;
3286 	}
3287 	ret = 0;
3288 	if (failed && !retried) {
3289 		failed = 0;
3290 		retried = true;
3291 		goto again;
3292 	} else if (WARN_ON(failed && retried)) {
3293 		ret = -ENOSPC;
3294 	}
3295 error:
3296 	btrfs_free_path(path);
3297 	return ret;
3298 }
3299 
3300 /*
3301  * return 1 : allocate a data chunk successfully,
3302  * return <0: errors during allocating a data chunk,
3303  * return 0 : no need to allocate a data chunk.
3304  */
3305 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3306 				      u64 chunk_offset)
3307 {
3308 	struct btrfs_block_group *cache;
3309 	u64 bytes_used;
3310 	u64 chunk_type;
3311 
3312 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3313 	ASSERT(cache);
3314 	chunk_type = cache->flags;
3315 	btrfs_put_block_group(cache);
3316 
3317 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3318 		return 0;
3319 
3320 	spin_lock(&fs_info->data_sinfo->lock);
3321 	bytes_used = fs_info->data_sinfo->bytes_used;
3322 	spin_unlock(&fs_info->data_sinfo->lock);
3323 
3324 	if (!bytes_used) {
3325 		struct btrfs_trans_handle *trans;
3326 		int ret;
3327 
3328 		trans =	btrfs_join_transaction(fs_info->tree_root);
3329 		if (IS_ERR(trans))
3330 			return PTR_ERR(trans);
3331 
3332 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3333 		btrfs_end_transaction(trans);
3334 		if (ret < 0)
3335 			return ret;
3336 		return 1;
3337 	}
3338 
3339 	return 0;
3340 }
3341 
3342 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3343 			       struct btrfs_balance_control *bctl)
3344 {
3345 	struct btrfs_root *root = fs_info->tree_root;
3346 	struct btrfs_trans_handle *trans;
3347 	struct btrfs_balance_item *item;
3348 	struct btrfs_disk_balance_args disk_bargs;
3349 	struct btrfs_path *path;
3350 	struct extent_buffer *leaf;
3351 	struct btrfs_key key;
3352 	int ret, err;
3353 
3354 	path = btrfs_alloc_path();
3355 	if (!path)
3356 		return -ENOMEM;
3357 
3358 	trans = btrfs_start_transaction(root, 0);
3359 	if (IS_ERR(trans)) {
3360 		btrfs_free_path(path);
3361 		return PTR_ERR(trans);
3362 	}
3363 
3364 	key.objectid = BTRFS_BALANCE_OBJECTID;
3365 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3366 	key.offset = 0;
3367 
3368 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3369 				      sizeof(*item));
3370 	if (ret)
3371 		goto out;
3372 
3373 	leaf = path->nodes[0];
3374 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3375 
3376 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3377 
3378 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3379 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3380 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3381 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3382 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3383 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3384 
3385 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3386 
3387 	btrfs_mark_buffer_dirty(leaf);
3388 out:
3389 	btrfs_free_path(path);
3390 	err = btrfs_commit_transaction(trans);
3391 	if (err && !ret)
3392 		ret = err;
3393 	return ret;
3394 }
3395 
3396 static int del_balance_item(struct btrfs_fs_info *fs_info)
3397 {
3398 	struct btrfs_root *root = fs_info->tree_root;
3399 	struct btrfs_trans_handle *trans;
3400 	struct btrfs_path *path;
3401 	struct btrfs_key key;
3402 	int ret, err;
3403 
3404 	path = btrfs_alloc_path();
3405 	if (!path)
3406 		return -ENOMEM;
3407 
3408 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3409 	if (IS_ERR(trans)) {
3410 		btrfs_free_path(path);
3411 		return PTR_ERR(trans);
3412 	}
3413 
3414 	key.objectid = BTRFS_BALANCE_OBJECTID;
3415 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3416 	key.offset = 0;
3417 
3418 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3419 	if (ret < 0)
3420 		goto out;
3421 	if (ret > 0) {
3422 		ret = -ENOENT;
3423 		goto out;
3424 	}
3425 
3426 	ret = btrfs_del_item(trans, root, path);
3427 out:
3428 	btrfs_free_path(path);
3429 	err = btrfs_commit_transaction(trans);
3430 	if (err && !ret)
3431 		ret = err;
3432 	return ret;
3433 }
3434 
3435 /*
3436  * This is a heuristic used to reduce the number of chunks balanced on
3437  * resume after balance was interrupted.
3438  */
3439 static void update_balance_args(struct btrfs_balance_control *bctl)
3440 {
3441 	/*
3442 	 * Turn on soft mode for chunk types that were being converted.
3443 	 */
3444 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3445 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3446 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3447 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3448 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3449 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3450 
3451 	/*
3452 	 * Turn on usage filter if is not already used.  The idea is
3453 	 * that chunks that we have already balanced should be
3454 	 * reasonably full.  Don't do it for chunks that are being
3455 	 * converted - that will keep us from relocating unconverted
3456 	 * (albeit full) chunks.
3457 	 */
3458 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3459 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3460 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3461 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3462 		bctl->data.usage = 90;
3463 	}
3464 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3465 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3466 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3467 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3468 		bctl->sys.usage = 90;
3469 	}
3470 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3471 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3472 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3473 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3474 		bctl->meta.usage = 90;
3475 	}
3476 }
3477 
3478 /*
3479  * Clear the balance status in fs_info and delete the balance item from disk.
3480  */
3481 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3482 {
3483 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3484 	int ret;
3485 
3486 	BUG_ON(!fs_info->balance_ctl);
3487 
3488 	spin_lock(&fs_info->balance_lock);
3489 	fs_info->balance_ctl = NULL;
3490 	spin_unlock(&fs_info->balance_lock);
3491 
3492 	kfree(bctl);
3493 	ret = del_balance_item(fs_info);
3494 	if (ret)
3495 		btrfs_handle_fs_error(fs_info, ret, NULL);
3496 }
3497 
3498 /*
3499  * Balance filters.  Return 1 if chunk should be filtered out
3500  * (should not be balanced).
3501  */
3502 static int chunk_profiles_filter(u64 chunk_type,
3503 				 struct btrfs_balance_args *bargs)
3504 {
3505 	chunk_type = chunk_to_extended(chunk_type) &
3506 				BTRFS_EXTENDED_PROFILE_MASK;
3507 
3508 	if (bargs->profiles & chunk_type)
3509 		return 0;
3510 
3511 	return 1;
3512 }
3513 
3514 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3515 			      struct btrfs_balance_args *bargs)
3516 {
3517 	struct btrfs_block_group *cache;
3518 	u64 chunk_used;
3519 	u64 user_thresh_min;
3520 	u64 user_thresh_max;
3521 	int ret = 1;
3522 
3523 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3524 	chunk_used = cache->used;
3525 
3526 	if (bargs->usage_min == 0)
3527 		user_thresh_min = 0;
3528 	else
3529 		user_thresh_min = div_factor_fine(cache->length,
3530 						  bargs->usage_min);
3531 
3532 	if (bargs->usage_max == 0)
3533 		user_thresh_max = 1;
3534 	else if (bargs->usage_max > 100)
3535 		user_thresh_max = cache->length;
3536 	else
3537 		user_thresh_max = div_factor_fine(cache->length,
3538 						  bargs->usage_max);
3539 
3540 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3541 		ret = 0;
3542 
3543 	btrfs_put_block_group(cache);
3544 	return ret;
3545 }
3546 
3547 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3548 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3549 {
3550 	struct btrfs_block_group *cache;
3551 	u64 chunk_used, user_thresh;
3552 	int ret = 1;
3553 
3554 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3555 	chunk_used = cache->used;
3556 
3557 	if (bargs->usage_min == 0)
3558 		user_thresh = 1;
3559 	else if (bargs->usage > 100)
3560 		user_thresh = cache->length;
3561 	else
3562 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3563 
3564 	if (chunk_used < user_thresh)
3565 		ret = 0;
3566 
3567 	btrfs_put_block_group(cache);
3568 	return ret;
3569 }
3570 
3571 static int chunk_devid_filter(struct extent_buffer *leaf,
3572 			      struct btrfs_chunk *chunk,
3573 			      struct btrfs_balance_args *bargs)
3574 {
3575 	struct btrfs_stripe *stripe;
3576 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3577 	int i;
3578 
3579 	for (i = 0; i < num_stripes; i++) {
3580 		stripe = btrfs_stripe_nr(chunk, i);
3581 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3582 			return 0;
3583 	}
3584 
3585 	return 1;
3586 }
3587 
3588 static u64 calc_data_stripes(u64 type, int num_stripes)
3589 {
3590 	const int index = btrfs_bg_flags_to_raid_index(type);
3591 	const int ncopies = btrfs_raid_array[index].ncopies;
3592 	const int nparity = btrfs_raid_array[index].nparity;
3593 
3594 	return (num_stripes - nparity) / ncopies;
3595 }
3596 
3597 /* [pstart, pend) */
3598 static int chunk_drange_filter(struct extent_buffer *leaf,
3599 			       struct btrfs_chunk *chunk,
3600 			       struct btrfs_balance_args *bargs)
3601 {
3602 	struct btrfs_stripe *stripe;
3603 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3604 	u64 stripe_offset;
3605 	u64 stripe_length;
3606 	u64 type;
3607 	int factor;
3608 	int i;
3609 
3610 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3611 		return 0;
3612 
3613 	type = btrfs_chunk_type(leaf, chunk);
3614 	factor = calc_data_stripes(type, num_stripes);
3615 
3616 	for (i = 0; i < num_stripes; i++) {
3617 		stripe = btrfs_stripe_nr(chunk, i);
3618 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3619 			continue;
3620 
3621 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3622 		stripe_length = btrfs_chunk_length(leaf, chunk);
3623 		stripe_length = div_u64(stripe_length, factor);
3624 
3625 		if (stripe_offset < bargs->pend &&
3626 		    stripe_offset + stripe_length > bargs->pstart)
3627 			return 0;
3628 	}
3629 
3630 	return 1;
3631 }
3632 
3633 /* [vstart, vend) */
3634 static int chunk_vrange_filter(struct extent_buffer *leaf,
3635 			       struct btrfs_chunk *chunk,
3636 			       u64 chunk_offset,
3637 			       struct btrfs_balance_args *bargs)
3638 {
3639 	if (chunk_offset < bargs->vend &&
3640 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3641 		/* at least part of the chunk is inside this vrange */
3642 		return 0;
3643 
3644 	return 1;
3645 }
3646 
3647 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3648 			       struct btrfs_chunk *chunk,
3649 			       struct btrfs_balance_args *bargs)
3650 {
3651 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3652 
3653 	if (bargs->stripes_min <= num_stripes
3654 			&& num_stripes <= bargs->stripes_max)
3655 		return 0;
3656 
3657 	return 1;
3658 }
3659 
3660 static int chunk_soft_convert_filter(u64 chunk_type,
3661 				     struct btrfs_balance_args *bargs)
3662 {
3663 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3664 		return 0;
3665 
3666 	chunk_type = chunk_to_extended(chunk_type) &
3667 				BTRFS_EXTENDED_PROFILE_MASK;
3668 
3669 	if (bargs->target == chunk_type)
3670 		return 1;
3671 
3672 	return 0;
3673 }
3674 
3675 static int should_balance_chunk(struct extent_buffer *leaf,
3676 				struct btrfs_chunk *chunk, u64 chunk_offset)
3677 {
3678 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3679 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3680 	struct btrfs_balance_args *bargs = NULL;
3681 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3682 
3683 	/* type filter */
3684 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3685 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3686 		return 0;
3687 	}
3688 
3689 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3690 		bargs = &bctl->data;
3691 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3692 		bargs = &bctl->sys;
3693 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3694 		bargs = &bctl->meta;
3695 
3696 	/* profiles filter */
3697 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3698 	    chunk_profiles_filter(chunk_type, bargs)) {
3699 		return 0;
3700 	}
3701 
3702 	/* usage filter */
3703 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3704 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3705 		return 0;
3706 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3707 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3708 		return 0;
3709 	}
3710 
3711 	/* devid filter */
3712 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3713 	    chunk_devid_filter(leaf, chunk, bargs)) {
3714 		return 0;
3715 	}
3716 
3717 	/* drange filter, makes sense only with devid filter */
3718 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3719 	    chunk_drange_filter(leaf, chunk, bargs)) {
3720 		return 0;
3721 	}
3722 
3723 	/* vrange filter */
3724 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3725 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3726 		return 0;
3727 	}
3728 
3729 	/* stripes filter */
3730 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3731 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3732 		return 0;
3733 	}
3734 
3735 	/* soft profile changing mode */
3736 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3737 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3738 		return 0;
3739 	}
3740 
3741 	/*
3742 	 * limited by count, must be the last filter
3743 	 */
3744 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3745 		if (bargs->limit == 0)
3746 			return 0;
3747 		else
3748 			bargs->limit--;
3749 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3750 		/*
3751 		 * Same logic as the 'limit' filter; the minimum cannot be
3752 		 * determined here because we do not have the global information
3753 		 * about the count of all chunks that satisfy the filters.
3754 		 */
3755 		if (bargs->limit_max == 0)
3756 			return 0;
3757 		else
3758 			bargs->limit_max--;
3759 	}
3760 
3761 	return 1;
3762 }
3763 
3764 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3765 {
3766 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3767 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3768 	u64 chunk_type;
3769 	struct btrfs_chunk *chunk;
3770 	struct btrfs_path *path = NULL;
3771 	struct btrfs_key key;
3772 	struct btrfs_key found_key;
3773 	struct extent_buffer *leaf;
3774 	int slot;
3775 	int ret;
3776 	int enospc_errors = 0;
3777 	bool counting = true;
3778 	/* The single value limit and min/max limits use the same bytes in the */
3779 	u64 limit_data = bctl->data.limit;
3780 	u64 limit_meta = bctl->meta.limit;
3781 	u64 limit_sys = bctl->sys.limit;
3782 	u32 count_data = 0;
3783 	u32 count_meta = 0;
3784 	u32 count_sys = 0;
3785 	int chunk_reserved = 0;
3786 
3787 	path = btrfs_alloc_path();
3788 	if (!path) {
3789 		ret = -ENOMEM;
3790 		goto error;
3791 	}
3792 
3793 	/* zero out stat counters */
3794 	spin_lock(&fs_info->balance_lock);
3795 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3796 	spin_unlock(&fs_info->balance_lock);
3797 again:
3798 	if (!counting) {
3799 		/*
3800 		 * The single value limit and min/max limits use the same bytes
3801 		 * in the
3802 		 */
3803 		bctl->data.limit = limit_data;
3804 		bctl->meta.limit = limit_meta;
3805 		bctl->sys.limit = limit_sys;
3806 	}
3807 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3808 	key.offset = (u64)-1;
3809 	key.type = BTRFS_CHUNK_ITEM_KEY;
3810 
3811 	while (1) {
3812 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3813 		    atomic_read(&fs_info->balance_cancel_req)) {
3814 			ret = -ECANCELED;
3815 			goto error;
3816 		}
3817 
3818 		mutex_lock(&fs_info->reclaim_bgs_lock);
3819 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3820 		if (ret < 0) {
3821 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3822 			goto error;
3823 		}
3824 
3825 		/*
3826 		 * this shouldn't happen, it means the last relocate
3827 		 * failed
3828 		 */
3829 		if (ret == 0)
3830 			BUG(); /* FIXME break ? */
3831 
3832 		ret = btrfs_previous_item(chunk_root, path, 0,
3833 					  BTRFS_CHUNK_ITEM_KEY);
3834 		if (ret) {
3835 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3836 			ret = 0;
3837 			break;
3838 		}
3839 
3840 		leaf = path->nodes[0];
3841 		slot = path->slots[0];
3842 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3843 
3844 		if (found_key.objectid != key.objectid) {
3845 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3846 			break;
3847 		}
3848 
3849 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3850 		chunk_type = btrfs_chunk_type(leaf, chunk);
3851 
3852 		if (!counting) {
3853 			spin_lock(&fs_info->balance_lock);
3854 			bctl->stat.considered++;
3855 			spin_unlock(&fs_info->balance_lock);
3856 		}
3857 
3858 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3859 
3860 		btrfs_release_path(path);
3861 		if (!ret) {
3862 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3863 			goto loop;
3864 		}
3865 
3866 		if (counting) {
3867 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3868 			spin_lock(&fs_info->balance_lock);
3869 			bctl->stat.expected++;
3870 			spin_unlock(&fs_info->balance_lock);
3871 
3872 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3873 				count_data++;
3874 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3875 				count_sys++;
3876 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3877 				count_meta++;
3878 
3879 			goto loop;
3880 		}
3881 
3882 		/*
3883 		 * Apply limit_min filter, no need to check if the LIMITS
3884 		 * filter is used, limit_min is 0 by default
3885 		 */
3886 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3887 					count_data < bctl->data.limit_min)
3888 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3889 					count_meta < bctl->meta.limit_min)
3890 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3891 					count_sys < bctl->sys.limit_min)) {
3892 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3893 			goto loop;
3894 		}
3895 
3896 		if (!chunk_reserved) {
3897 			/*
3898 			 * We may be relocating the only data chunk we have,
3899 			 * which could potentially end up with losing data's
3900 			 * raid profile, so lets allocate an empty one in
3901 			 * advance.
3902 			 */
3903 			ret = btrfs_may_alloc_data_chunk(fs_info,
3904 							 found_key.offset);
3905 			if (ret < 0) {
3906 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3907 				goto error;
3908 			} else if (ret == 1) {
3909 				chunk_reserved = 1;
3910 			}
3911 		}
3912 
3913 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3914 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3915 		if (ret == -ENOSPC) {
3916 			enospc_errors++;
3917 		} else if (ret == -ETXTBSY) {
3918 			btrfs_info(fs_info,
3919 	   "skipping relocation of block group %llu due to active swapfile",
3920 				   found_key.offset);
3921 			ret = 0;
3922 		} else if (ret) {
3923 			goto error;
3924 		} else {
3925 			spin_lock(&fs_info->balance_lock);
3926 			bctl->stat.completed++;
3927 			spin_unlock(&fs_info->balance_lock);
3928 		}
3929 loop:
3930 		if (found_key.offset == 0)
3931 			break;
3932 		key.offset = found_key.offset - 1;
3933 	}
3934 
3935 	if (counting) {
3936 		btrfs_release_path(path);
3937 		counting = false;
3938 		goto again;
3939 	}
3940 error:
3941 	btrfs_free_path(path);
3942 	if (enospc_errors) {
3943 		btrfs_info(fs_info, "%d enospc errors during balance",
3944 			   enospc_errors);
3945 		if (!ret)
3946 			ret = -ENOSPC;
3947 	}
3948 
3949 	return ret;
3950 }
3951 
3952 /**
3953  * alloc_profile_is_valid - see if a given profile is valid and reduced
3954  * @flags: profile to validate
3955  * @extended: if true @flags is treated as an extended profile
3956  */
3957 static int alloc_profile_is_valid(u64 flags, int extended)
3958 {
3959 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3960 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3961 
3962 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3963 
3964 	/* 1) check that all other bits are zeroed */
3965 	if (flags & ~mask)
3966 		return 0;
3967 
3968 	/* 2) see if profile is reduced */
3969 	if (flags == 0)
3970 		return !extended; /* "0" is valid for usual profiles */
3971 
3972 	return has_single_bit_set(flags);
3973 }
3974 
3975 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3976 {
3977 	/* cancel requested || normal exit path */
3978 	return atomic_read(&fs_info->balance_cancel_req) ||
3979 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3980 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3981 }
3982 
3983 /*
3984  * Validate target profile against allowed profiles and return true if it's OK.
3985  * Otherwise print the error message and return false.
3986  */
3987 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3988 		const struct btrfs_balance_args *bargs,
3989 		u64 allowed, const char *type)
3990 {
3991 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3992 		return true;
3993 
3994 	if (fs_info->sectorsize < PAGE_SIZE &&
3995 		bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3996 		btrfs_err(fs_info,
3997 		"RAID56 is not yet supported for sectorsize %u with page size %lu",
3998 			  fs_info->sectorsize, PAGE_SIZE);
3999 		return false;
4000 	}
4001 	/* Profile is valid and does not have bits outside of the allowed set */
4002 	if (alloc_profile_is_valid(bargs->target, 1) &&
4003 	    (bargs->target & ~allowed) == 0)
4004 		return true;
4005 
4006 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4007 			type, btrfs_bg_type_to_raid_name(bargs->target));
4008 	return false;
4009 }
4010 
4011 /*
4012  * Fill @buf with textual description of balance filter flags @bargs, up to
4013  * @size_buf including the terminating null. The output may be trimmed if it
4014  * does not fit into the provided buffer.
4015  */
4016 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4017 				 u32 size_buf)
4018 {
4019 	int ret;
4020 	u32 size_bp = size_buf;
4021 	char *bp = buf;
4022 	u64 flags = bargs->flags;
4023 	char tmp_buf[128] = {'\0'};
4024 
4025 	if (!flags)
4026 		return;
4027 
4028 #define CHECK_APPEND_NOARG(a)						\
4029 	do {								\
4030 		ret = snprintf(bp, size_bp, (a));			\
4031 		if (ret < 0 || ret >= size_bp)				\
4032 			goto out_overflow;				\
4033 		size_bp -= ret;						\
4034 		bp += ret;						\
4035 	} while (0)
4036 
4037 #define CHECK_APPEND_1ARG(a, v1)					\
4038 	do {								\
4039 		ret = snprintf(bp, size_bp, (a), (v1));			\
4040 		if (ret < 0 || ret >= size_bp)				\
4041 			goto out_overflow;				\
4042 		size_bp -= ret;						\
4043 		bp += ret;						\
4044 	} while (0)
4045 
4046 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4047 	do {								\
4048 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4049 		if (ret < 0 || ret >= size_bp)				\
4050 			goto out_overflow;				\
4051 		size_bp -= ret;						\
4052 		bp += ret;						\
4053 	} while (0)
4054 
4055 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4056 		CHECK_APPEND_1ARG("convert=%s,",
4057 				  btrfs_bg_type_to_raid_name(bargs->target));
4058 
4059 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4060 		CHECK_APPEND_NOARG("soft,");
4061 
4062 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4063 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4064 					    sizeof(tmp_buf));
4065 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4066 	}
4067 
4068 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4069 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4070 
4071 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4072 		CHECK_APPEND_2ARG("usage=%u..%u,",
4073 				  bargs->usage_min, bargs->usage_max);
4074 
4075 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4076 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4077 
4078 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4079 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4080 				  bargs->pstart, bargs->pend);
4081 
4082 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4083 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4084 				  bargs->vstart, bargs->vend);
4085 
4086 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4087 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4088 
4089 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4090 		CHECK_APPEND_2ARG("limit=%u..%u,",
4091 				bargs->limit_min, bargs->limit_max);
4092 
4093 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4094 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4095 				  bargs->stripes_min, bargs->stripes_max);
4096 
4097 #undef CHECK_APPEND_2ARG
4098 #undef CHECK_APPEND_1ARG
4099 #undef CHECK_APPEND_NOARG
4100 
4101 out_overflow:
4102 
4103 	if (size_bp < size_buf)
4104 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4105 	else
4106 		buf[0] = '\0';
4107 }
4108 
4109 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4110 {
4111 	u32 size_buf = 1024;
4112 	char tmp_buf[192] = {'\0'};
4113 	char *buf;
4114 	char *bp;
4115 	u32 size_bp = size_buf;
4116 	int ret;
4117 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4118 
4119 	buf = kzalloc(size_buf, GFP_KERNEL);
4120 	if (!buf)
4121 		return;
4122 
4123 	bp = buf;
4124 
4125 #define CHECK_APPEND_1ARG(a, v1)					\
4126 	do {								\
4127 		ret = snprintf(bp, size_bp, (a), (v1));			\
4128 		if (ret < 0 || ret >= size_bp)				\
4129 			goto out_overflow;				\
4130 		size_bp -= ret;						\
4131 		bp += ret;						\
4132 	} while (0)
4133 
4134 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4135 		CHECK_APPEND_1ARG("%s", "-f ");
4136 
4137 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4138 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4139 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4140 	}
4141 
4142 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4143 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4144 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4145 	}
4146 
4147 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4148 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4149 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4150 	}
4151 
4152 #undef CHECK_APPEND_1ARG
4153 
4154 out_overflow:
4155 
4156 	if (size_bp < size_buf)
4157 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4158 	btrfs_info(fs_info, "balance: %s %s",
4159 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4160 		   "resume" : "start", buf);
4161 
4162 	kfree(buf);
4163 }
4164 
4165 /*
4166  * Should be called with balance mutexe held
4167  */
4168 int btrfs_balance(struct btrfs_fs_info *fs_info,
4169 		  struct btrfs_balance_control *bctl,
4170 		  struct btrfs_ioctl_balance_args *bargs)
4171 {
4172 	u64 meta_target, data_target;
4173 	u64 allowed;
4174 	int mixed = 0;
4175 	int ret;
4176 	u64 num_devices;
4177 	unsigned seq;
4178 	bool reducing_redundancy;
4179 	int i;
4180 
4181 	if (btrfs_fs_closing(fs_info) ||
4182 	    atomic_read(&fs_info->balance_pause_req) ||
4183 	    btrfs_should_cancel_balance(fs_info)) {
4184 		ret = -EINVAL;
4185 		goto out;
4186 	}
4187 
4188 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4189 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4190 		mixed = 1;
4191 
4192 	/*
4193 	 * In case of mixed groups both data and meta should be picked,
4194 	 * and identical options should be given for both of them.
4195 	 */
4196 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4197 	if (mixed && (bctl->flags & allowed)) {
4198 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4199 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4200 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4201 			btrfs_err(fs_info,
4202 	  "balance: mixed groups data and metadata options must be the same");
4203 			ret = -EINVAL;
4204 			goto out;
4205 		}
4206 	}
4207 
4208 	/*
4209 	 * rw_devices will not change at the moment, device add/delete/replace
4210 	 * are exclusive
4211 	 */
4212 	num_devices = fs_info->fs_devices->rw_devices;
4213 
4214 	/*
4215 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4216 	 * special bit for it, to make it easier to distinguish.  Thus we need
4217 	 * to set it manually, or balance would refuse the profile.
4218 	 */
4219 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4220 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4221 		if (num_devices >= btrfs_raid_array[i].devs_min)
4222 			allowed |= btrfs_raid_array[i].bg_flag;
4223 
4224 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4225 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4226 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4227 		ret = -EINVAL;
4228 		goto out;
4229 	}
4230 
4231 	/*
4232 	 * Allow to reduce metadata or system integrity only if force set for
4233 	 * profiles with redundancy (copies, parity)
4234 	 */
4235 	allowed = 0;
4236 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4237 		if (btrfs_raid_array[i].ncopies >= 2 ||
4238 		    btrfs_raid_array[i].tolerated_failures >= 1)
4239 			allowed |= btrfs_raid_array[i].bg_flag;
4240 	}
4241 	do {
4242 		seq = read_seqbegin(&fs_info->profiles_lock);
4243 
4244 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4245 		     (fs_info->avail_system_alloc_bits & allowed) &&
4246 		     !(bctl->sys.target & allowed)) ||
4247 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4248 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4249 		     !(bctl->meta.target & allowed)))
4250 			reducing_redundancy = true;
4251 		else
4252 			reducing_redundancy = false;
4253 
4254 		/* if we're not converting, the target field is uninitialized */
4255 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4256 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4257 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4258 			bctl->data.target : fs_info->avail_data_alloc_bits;
4259 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4260 
4261 	if (reducing_redundancy) {
4262 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4263 			btrfs_info(fs_info,
4264 			   "balance: force reducing metadata redundancy");
4265 		} else {
4266 			btrfs_err(fs_info,
4267 	"balance: reduces metadata redundancy, use --force if you want this");
4268 			ret = -EINVAL;
4269 			goto out;
4270 		}
4271 	}
4272 
4273 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4274 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4275 		btrfs_warn(fs_info,
4276 	"balance: metadata profile %s has lower redundancy than data profile %s",
4277 				btrfs_bg_type_to_raid_name(meta_target),
4278 				btrfs_bg_type_to_raid_name(data_target));
4279 	}
4280 
4281 	ret = insert_balance_item(fs_info, bctl);
4282 	if (ret && ret != -EEXIST)
4283 		goto out;
4284 
4285 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4286 		BUG_ON(ret == -EEXIST);
4287 		BUG_ON(fs_info->balance_ctl);
4288 		spin_lock(&fs_info->balance_lock);
4289 		fs_info->balance_ctl = bctl;
4290 		spin_unlock(&fs_info->balance_lock);
4291 	} else {
4292 		BUG_ON(ret != -EEXIST);
4293 		spin_lock(&fs_info->balance_lock);
4294 		update_balance_args(bctl);
4295 		spin_unlock(&fs_info->balance_lock);
4296 	}
4297 
4298 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4299 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4300 	describe_balance_start_or_resume(fs_info);
4301 	mutex_unlock(&fs_info->balance_mutex);
4302 
4303 	ret = __btrfs_balance(fs_info);
4304 
4305 	mutex_lock(&fs_info->balance_mutex);
4306 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4307 		btrfs_info(fs_info, "balance: paused");
4308 	/*
4309 	 * Balance can be canceled by:
4310 	 *
4311 	 * - Regular cancel request
4312 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4313 	 *
4314 	 * - Fatal signal to "btrfs" process
4315 	 *   Either the signal caught by wait_reserve_ticket() and callers
4316 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4317 	 *   got -ECANCELED.
4318 	 *   Either way, in this case balance_cancel_req = 0, and
4319 	 *   ret == -EINTR or ret == -ECANCELED.
4320 	 *
4321 	 * So here we only check the return value to catch canceled balance.
4322 	 */
4323 	else if (ret == -ECANCELED || ret == -EINTR)
4324 		btrfs_info(fs_info, "balance: canceled");
4325 	else
4326 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4327 
4328 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4329 
4330 	if (bargs) {
4331 		memset(bargs, 0, sizeof(*bargs));
4332 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4333 	}
4334 
4335 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4336 	    balance_need_close(fs_info)) {
4337 		reset_balance_state(fs_info);
4338 		btrfs_exclop_finish(fs_info);
4339 	}
4340 
4341 	wake_up(&fs_info->balance_wait_q);
4342 
4343 	return ret;
4344 out:
4345 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4346 		reset_balance_state(fs_info);
4347 	else
4348 		kfree(bctl);
4349 	btrfs_exclop_finish(fs_info);
4350 
4351 	return ret;
4352 }
4353 
4354 static int balance_kthread(void *data)
4355 {
4356 	struct btrfs_fs_info *fs_info = data;
4357 	int ret = 0;
4358 
4359 	mutex_lock(&fs_info->balance_mutex);
4360 	if (fs_info->balance_ctl)
4361 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4362 	mutex_unlock(&fs_info->balance_mutex);
4363 
4364 	return ret;
4365 }
4366 
4367 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4368 {
4369 	struct task_struct *tsk;
4370 
4371 	mutex_lock(&fs_info->balance_mutex);
4372 	if (!fs_info->balance_ctl) {
4373 		mutex_unlock(&fs_info->balance_mutex);
4374 		return 0;
4375 	}
4376 	mutex_unlock(&fs_info->balance_mutex);
4377 
4378 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4379 		btrfs_info(fs_info, "balance: resume skipped");
4380 		return 0;
4381 	}
4382 
4383 	/*
4384 	 * A ro->rw remount sequence should continue with the paused balance
4385 	 * regardless of who pauses it, system or the user as of now, so set
4386 	 * the resume flag.
4387 	 */
4388 	spin_lock(&fs_info->balance_lock);
4389 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4390 	spin_unlock(&fs_info->balance_lock);
4391 
4392 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4393 	return PTR_ERR_OR_ZERO(tsk);
4394 }
4395 
4396 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4397 {
4398 	struct btrfs_balance_control *bctl;
4399 	struct btrfs_balance_item *item;
4400 	struct btrfs_disk_balance_args disk_bargs;
4401 	struct btrfs_path *path;
4402 	struct extent_buffer *leaf;
4403 	struct btrfs_key key;
4404 	int ret;
4405 
4406 	path = btrfs_alloc_path();
4407 	if (!path)
4408 		return -ENOMEM;
4409 
4410 	key.objectid = BTRFS_BALANCE_OBJECTID;
4411 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4412 	key.offset = 0;
4413 
4414 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4415 	if (ret < 0)
4416 		goto out;
4417 	if (ret > 0) { /* ret = -ENOENT; */
4418 		ret = 0;
4419 		goto out;
4420 	}
4421 
4422 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4423 	if (!bctl) {
4424 		ret = -ENOMEM;
4425 		goto out;
4426 	}
4427 
4428 	leaf = path->nodes[0];
4429 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4430 
4431 	bctl->flags = btrfs_balance_flags(leaf, item);
4432 	bctl->flags |= BTRFS_BALANCE_RESUME;
4433 
4434 	btrfs_balance_data(leaf, item, &disk_bargs);
4435 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4436 	btrfs_balance_meta(leaf, item, &disk_bargs);
4437 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4438 	btrfs_balance_sys(leaf, item, &disk_bargs);
4439 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4440 
4441 	/*
4442 	 * This should never happen, as the paused balance state is recovered
4443 	 * during mount without any chance of other exclusive ops to collide.
4444 	 *
4445 	 * This gives the exclusive op status to balance and keeps in paused
4446 	 * state until user intervention (cancel or umount). If the ownership
4447 	 * cannot be assigned, show a message but do not fail. The balance
4448 	 * is in a paused state and must have fs_info::balance_ctl properly
4449 	 * set up.
4450 	 */
4451 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4452 		btrfs_warn(fs_info,
4453 	"balance: cannot set exclusive op status, resume manually");
4454 
4455 	btrfs_release_path(path);
4456 
4457 	mutex_lock(&fs_info->balance_mutex);
4458 	BUG_ON(fs_info->balance_ctl);
4459 	spin_lock(&fs_info->balance_lock);
4460 	fs_info->balance_ctl = bctl;
4461 	spin_unlock(&fs_info->balance_lock);
4462 	mutex_unlock(&fs_info->balance_mutex);
4463 out:
4464 	btrfs_free_path(path);
4465 	return ret;
4466 }
4467 
4468 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4469 {
4470 	int ret = 0;
4471 
4472 	mutex_lock(&fs_info->balance_mutex);
4473 	if (!fs_info->balance_ctl) {
4474 		mutex_unlock(&fs_info->balance_mutex);
4475 		return -ENOTCONN;
4476 	}
4477 
4478 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4479 		atomic_inc(&fs_info->balance_pause_req);
4480 		mutex_unlock(&fs_info->balance_mutex);
4481 
4482 		wait_event(fs_info->balance_wait_q,
4483 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4484 
4485 		mutex_lock(&fs_info->balance_mutex);
4486 		/* we are good with balance_ctl ripped off from under us */
4487 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4488 		atomic_dec(&fs_info->balance_pause_req);
4489 	} else {
4490 		ret = -ENOTCONN;
4491 	}
4492 
4493 	mutex_unlock(&fs_info->balance_mutex);
4494 	return ret;
4495 }
4496 
4497 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4498 {
4499 	mutex_lock(&fs_info->balance_mutex);
4500 	if (!fs_info->balance_ctl) {
4501 		mutex_unlock(&fs_info->balance_mutex);
4502 		return -ENOTCONN;
4503 	}
4504 
4505 	/*
4506 	 * A paused balance with the item stored on disk can be resumed at
4507 	 * mount time if the mount is read-write. Otherwise it's still paused
4508 	 * and we must not allow cancelling as it deletes the item.
4509 	 */
4510 	if (sb_rdonly(fs_info->sb)) {
4511 		mutex_unlock(&fs_info->balance_mutex);
4512 		return -EROFS;
4513 	}
4514 
4515 	atomic_inc(&fs_info->balance_cancel_req);
4516 	/*
4517 	 * if we are running just wait and return, balance item is
4518 	 * deleted in btrfs_balance in this case
4519 	 */
4520 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4521 		mutex_unlock(&fs_info->balance_mutex);
4522 		wait_event(fs_info->balance_wait_q,
4523 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4524 		mutex_lock(&fs_info->balance_mutex);
4525 	} else {
4526 		mutex_unlock(&fs_info->balance_mutex);
4527 		/*
4528 		 * Lock released to allow other waiters to continue, we'll
4529 		 * reexamine the status again.
4530 		 */
4531 		mutex_lock(&fs_info->balance_mutex);
4532 
4533 		if (fs_info->balance_ctl) {
4534 			reset_balance_state(fs_info);
4535 			btrfs_exclop_finish(fs_info);
4536 			btrfs_info(fs_info, "balance: canceled");
4537 		}
4538 	}
4539 
4540 	BUG_ON(fs_info->balance_ctl ||
4541 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4542 	atomic_dec(&fs_info->balance_cancel_req);
4543 	mutex_unlock(&fs_info->balance_mutex);
4544 	return 0;
4545 }
4546 
4547 int btrfs_uuid_scan_kthread(void *data)
4548 {
4549 	struct btrfs_fs_info *fs_info = data;
4550 	struct btrfs_root *root = fs_info->tree_root;
4551 	struct btrfs_key key;
4552 	struct btrfs_path *path = NULL;
4553 	int ret = 0;
4554 	struct extent_buffer *eb;
4555 	int slot;
4556 	struct btrfs_root_item root_item;
4557 	u32 item_size;
4558 	struct btrfs_trans_handle *trans = NULL;
4559 	bool closing = false;
4560 
4561 	path = btrfs_alloc_path();
4562 	if (!path) {
4563 		ret = -ENOMEM;
4564 		goto out;
4565 	}
4566 
4567 	key.objectid = 0;
4568 	key.type = BTRFS_ROOT_ITEM_KEY;
4569 	key.offset = 0;
4570 
4571 	while (1) {
4572 		if (btrfs_fs_closing(fs_info)) {
4573 			closing = true;
4574 			break;
4575 		}
4576 		ret = btrfs_search_forward(root, &key, path,
4577 				BTRFS_OLDEST_GENERATION);
4578 		if (ret) {
4579 			if (ret > 0)
4580 				ret = 0;
4581 			break;
4582 		}
4583 
4584 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4585 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4586 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4587 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4588 			goto skip;
4589 
4590 		eb = path->nodes[0];
4591 		slot = path->slots[0];
4592 		item_size = btrfs_item_size_nr(eb, slot);
4593 		if (item_size < sizeof(root_item))
4594 			goto skip;
4595 
4596 		read_extent_buffer(eb, &root_item,
4597 				   btrfs_item_ptr_offset(eb, slot),
4598 				   (int)sizeof(root_item));
4599 		if (btrfs_root_refs(&root_item) == 0)
4600 			goto skip;
4601 
4602 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4603 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4604 			if (trans)
4605 				goto update_tree;
4606 
4607 			btrfs_release_path(path);
4608 			/*
4609 			 * 1 - subvol uuid item
4610 			 * 1 - received_subvol uuid item
4611 			 */
4612 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4613 			if (IS_ERR(trans)) {
4614 				ret = PTR_ERR(trans);
4615 				break;
4616 			}
4617 			continue;
4618 		} else {
4619 			goto skip;
4620 		}
4621 update_tree:
4622 		btrfs_release_path(path);
4623 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4624 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4625 						  BTRFS_UUID_KEY_SUBVOL,
4626 						  key.objectid);
4627 			if (ret < 0) {
4628 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4629 					ret);
4630 				break;
4631 			}
4632 		}
4633 
4634 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4635 			ret = btrfs_uuid_tree_add(trans,
4636 						  root_item.received_uuid,
4637 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4638 						  key.objectid);
4639 			if (ret < 0) {
4640 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4641 					ret);
4642 				break;
4643 			}
4644 		}
4645 
4646 skip:
4647 		btrfs_release_path(path);
4648 		if (trans) {
4649 			ret = btrfs_end_transaction(trans);
4650 			trans = NULL;
4651 			if (ret)
4652 				break;
4653 		}
4654 
4655 		if (key.offset < (u64)-1) {
4656 			key.offset++;
4657 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4658 			key.offset = 0;
4659 			key.type = BTRFS_ROOT_ITEM_KEY;
4660 		} else if (key.objectid < (u64)-1) {
4661 			key.offset = 0;
4662 			key.type = BTRFS_ROOT_ITEM_KEY;
4663 			key.objectid++;
4664 		} else {
4665 			break;
4666 		}
4667 		cond_resched();
4668 	}
4669 
4670 out:
4671 	btrfs_free_path(path);
4672 	if (trans && !IS_ERR(trans))
4673 		btrfs_end_transaction(trans);
4674 	if (ret)
4675 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4676 	else if (!closing)
4677 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4678 	up(&fs_info->uuid_tree_rescan_sem);
4679 	return 0;
4680 }
4681 
4682 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4683 {
4684 	struct btrfs_trans_handle *trans;
4685 	struct btrfs_root *tree_root = fs_info->tree_root;
4686 	struct btrfs_root *uuid_root;
4687 	struct task_struct *task;
4688 	int ret;
4689 
4690 	/*
4691 	 * 1 - root node
4692 	 * 1 - root item
4693 	 */
4694 	trans = btrfs_start_transaction(tree_root, 2);
4695 	if (IS_ERR(trans))
4696 		return PTR_ERR(trans);
4697 
4698 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4699 	if (IS_ERR(uuid_root)) {
4700 		ret = PTR_ERR(uuid_root);
4701 		btrfs_abort_transaction(trans, ret);
4702 		btrfs_end_transaction(trans);
4703 		return ret;
4704 	}
4705 
4706 	fs_info->uuid_root = uuid_root;
4707 
4708 	ret = btrfs_commit_transaction(trans);
4709 	if (ret)
4710 		return ret;
4711 
4712 	down(&fs_info->uuid_tree_rescan_sem);
4713 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4714 	if (IS_ERR(task)) {
4715 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4716 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4717 		up(&fs_info->uuid_tree_rescan_sem);
4718 		return PTR_ERR(task);
4719 	}
4720 
4721 	return 0;
4722 }
4723 
4724 /*
4725  * shrinking a device means finding all of the device extents past
4726  * the new size, and then following the back refs to the chunks.
4727  * The chunk relocation code actually frees the device extent
4728  */
4729 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4730 {
4731 	struct btrfs_fs_info *fs_info = device->fs_info;
4732 	struct btrfs_root *root = fs_info->dev_root;
4733 	struct btrfs_trans_handle *trans;
4734 	struct btrfs_dev_extent *dev_extent = NULL;
4735 	struct btrfs_path *path;
4736 	u64 length;
4737 	u64 chunk_offset;
4738 	int ret;
4739 	int slot;
4740 	int failed = 0;
4741 	bool retried = false;
4742 	struct extent_buffer *l;
4743 	struct btrfs_key key;
4744 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4745 	u64 old_total = btrfs_super_total_bytes(super_copy);
4746 	u64 old_size = btrfs_device_get_total_bytes(device);
4747 	u64 diff;
4748 	u64 start;
4749 
4750 	new_size = round_down(new_size, fs_info->sectorsize);
4751 	start = new_size;
4752 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4753 
4754 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4755 		return -EINVAL;
4756 
4757 	path = btrfs_alloc_path();
4758 	if (!path)
4759 		return -ENOMEM;
4760 
4761 	path->reada = READA_BACK;
4762 
4763 	trans = btrfs_start_transaction(root, 0);
4764 	if (IS_ERR(trans)) {
4765 		btrfs_free_path(path);
4766 		return PTR_ERR(trans);
4767 	}
4768 
4769 	mutex_lock(&fs_info->chunk_mutex);
4770 
4771 	btrfs_device_set_total_bytes(device, new_size);
4772 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4773 		device->fs_devices->total_rw_bytes -= diff;
4774 		atomic64_sub(diff, &fs_info->free_chunk_space);
4775 	}
4776 
4777 	/*
4778 	 * Once the device's size has been set to the new size, ensure all
4779 	 * in-memory chunks are synced to disk so that the loop below sees them
4780 	 * and relocates them accordingly.
4781 	 */
4782 	if (contains_pending_extent(device, &start, diff)) {
4783 		mutex_unlock(&fs_info->chunk_mutex);
4784 		ret = btrfs_commit_transaction(trans);
4785 		if (ret)
4786 			goto done;
4787 	} else {
4788 		mutex_unlock(&fs_info->chunk_mutex);
4789 		btrfs_end_transaction(trans);
4790 	}
4791 
4792 again:
4793 	key.objectid = device->devid;
4794 	key.offset = (u64)-1;
4795 	key.type = BTRFS_DEV_EXTENT_KEY;
4796 
4797 	do {
4798 		mutex_lock(&fs_info->reclaim_bgs_lock);
4799 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4800 		if (ret < 0) {
4801 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4802 			goto done;
4803 		}
4804 
4805 		ret = btrfs_previous_item(root, path, 0, key.type);
4806 		if (ret) {
4807 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4808 			if (ret < 0)
4809 				goto done;
4810 			ret = 0;
4811 			btrfs_release_path(path);
4812 			break;
4813 		}
4814 
4815 		l = path->nodes[0];
4816 		slot = path->slots[0];
4817 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4818 
4819 		if (key.objectid != device->devid) {
4820 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4821 			btrfs_release_path(path);
4822 			break;
4823 		}
4824 
4825 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4826 		length = btrfs_dev_extent_length(l, dev_extent);
4827 
4828 		if (key.offset + length <= new_size) {
4829 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4830 			btrfs_release_path(path);
4831 			break;
4832 		}
4833 
4834 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4835 		btrfs_release_path(path);
4836 
4837 		/*
4838 		 * We may be relocating the only data chunk we have,
4839 		 * which could potentially end up with losing data's
4840 		 * raid profile, so lets allocate an empty one in
4841 		 * advance.
4842 		 */
4843 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4844 		if (ret < 0) {
4845 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4846 			goto done;
4847 		}
4848 
4849 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4850 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4851 		if (ret == -ENOSPC) {
4852 			failed++;
4853 		} else if (ret) {
4854 			if (ret == -ETXTBSY) {
4855 				btrfs_warn(fs_info,
4856 		   "could not shrink block group %llu due to active swapfile",
4857 					   chunk_offset);
4858 			}
4859 			goto done;
4860 		}
4861 	} while (key.offset-- > 0);
4862 
4863 	if (failed && !retried) {
4864 		failed = 0;
4865 		retried = true;
4866 		goto again;
4867 	} else if (failed && retried) {
4868 		ret = -ENOSPC;
4869 		goto done;
4870 	}
4871 
4872 	/* Shrinking succeeded, else we would be at "done". */
4873 	trans = btrfs_start_transaction(root, 0);
4874 	if (IS_ERR(trans)) {
4875 		ret = PTR_ERR(trans);
4876 		goto done;
4877 	}
4878 
4879 	mutex_lock(&fs_info->chunk_mutex);
4880 	/* Clear all state bits beyond the shrunk device size */
4881 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4882 			  CHUNK_STATE_MASK);
4883 
4884 	btrfs_device_set_disk_total_bytes(device, new_size);
4885 	if (list_empty(&device->post_commit_list))
4886 		list_add_tail(&device->post_commit_list,
4887 			      &trans->transaction->dev_update_list);
4888 
4889 	WARN_ON(diff > old_total);
4890 	btrfs_set_super_total_bytes(super_copy,
4891 			round_down(old_total - diff, fs_info->sectorsize));
4892 	mutex_unlock(&fs_info->chunk_mutex);
4893 
4894 	/* Now btrfs_update_device() will change the on-disk size. */
4895 	ret = btrfs_update_device(trans, device);
4896 	if (ret < 0) {
4897 		btrfs_abort_transaction(trans, ret);
4898 		btrfs_end_transaction(trans);
4899 	} else {
4900 		ret = btrfs_commit_transaction(trans);
4901 	}
4902 done:
4903 	btrfs_free_path(path);
4904 	if (ret) {
4905 		mutex_lock(&fs_info->chunk_mutex);
4906 		btrfs_device_set_total_bytes(device, old_size);
4907 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4908 			device->fs_devices->total_rw_bytes += diff;
4909 		atomic64_add(diff, &fs_info->free_chunk_space);
4910 		mutex_unlock(&fs_info->chunk_mutex);
4911 	}
4912 	return ret;
4913 }
4914 
4915 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4916 			   struct btrfs_key *key,
4917 			   struct btrfs_chunk *chunk, int item_size)
4918 {
4919 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4920 	struct btrfs_disk_key disk_key;
4921 	u32 array_size;
4922 	u8 *ptr;
4923 
4924 	lockdep_assert_held(&fs_info->chunk_mutex);
4925 
4926 	array_size = btrfs_super_sys_array_size(super_copy);
4927 	if (array_size + item_size + sizeof(disk_key)
4928 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4929 		return -EFBIG;
4930 
4931 	ptr = super_copy->sys_chunk_array + array_size;
4932 	btrfs_cpu_key_to_disk(&disk_key, key);
4933 	memcpy(ptr, &disk_key, sizeof(disk_key));
4934 	ptr += sizeof(disk_key);
4935 	memcpy(ptr, chunk, item_size);
4936 	item_size += sizeof(disk_key);
4937 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4938 
4939 	return 0;
4940 }
4941 
4942 /*
4943  * sort the devices in descending order by max_avail, total_avail
4944  */
4945 static int btrfs_cmp_device_info(const void *a, const void *b)
4946 {
4947 	const struct btrfs_device_info *di_a = a;
4948 	const struct btrfs_device_info *di_b = b;
4949 
4950 	if (di_a->max_avail > di_b->max_avail)
4951 		return -1;
4952 	if (di_a->max_avail < di_b->max_avail)
4953 		return 1;
4954 	if (di_a->total_avail > di_b->total_avail)
4955 		return -1;
4956 	if (di_a->total_avail < di_b->total_avail)
4957 		return 1;
4958 	return 0;
4959 }
4960 
4961 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4962 {
4963 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4964 		return;
4965 
4966 	btrfs_set_fs_incompat(info, RAID56);
4967 }
4968 
4969 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4970 {
4971 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4972 		return;
4973 
4974 	btrfs_set_fs_incompat(info, RAID1C34);
4975 }
4976 
4977 /*
4978  * Structure used internally for btrfs_create_chunk() function.
4979  * Wraps needed parameters.
4980  */
4981 struct alloc_chunk_ctl {
4982 	u64 start;
4983 	u64 type;
4984 	/* Total number of stripes to allocate */
4985 	int num_stripes;
4986 	/* sub_stripes info for map */
4987 	int sub_stripes;
4988 	/* Stripes per device */
4989 	int dev_stripes;
4990 	/* Maximum number of devices to use */
4991 	int devs_max;
4992 	/* Minimum number of devices to use */
4993 	int devs_min;
4994 	/* ndevs has to be a multiple of this */
4995 	int devs_increment;
4996 	/* Number of copies */
4997 	int ncopies;
4998 	/* Number of stripes worth of bytes to store parity information */
4999 	int nparity;
5000 	u64 max_stripe_size;
5001 	u64 max_chunk_size;
5002 	u64 dev_extent_min;
5003 	u64 stripe_size;
5004 	u64 chunk_size;
5005 	int ndevs;
5006 };
5007 
5008 static void init_alloc_chunk_ctl_policy_regular(
5009 				struct btrfs_fs_devices *fs_devices,
5010 				struct alloc_chunk_ctl *ctl)
5011 {
5012 	u64 type = ctl->type;
5013 
5014 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5015 		ctl->max_stripe_size = SZ_1G;
5016 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5017 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5018 		/* For larger filesystems, use larger metadata chunks */
5019 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5020 			ctl->max_stripe_size = SZ_1G;
5021 		else
5022 			ctl->max_stripe_size = SZ_256M;
5023 		ctl->max_chunk_size = ctl->max_stripe_size;
5024 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5025 		ctl->max_stripe_size = SZ_32M;
5026 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5027 		ctl->devs_max = min_t(int, ctl->devs_max,
5028 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5029 	} else {
5030 		BUG();
5031 	}
5032 
5033 	/* We don't want a chunk larger than 10% of writable space */
5034 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5035 				  ctl->max_chunk_size);
5036 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5037 }
5038 
5039 static void init_alloc_chunk_ctl_policy_zoned(
5040 				      struct btrfs_fs_devices *fs_devices,
5041 				      struct alloc_chunk_ctl *ctl)
5042 {
5043 	u64 zone_size = fs_devices->fs_info->zone_size;
5044 	u64 limit;
5045 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5046 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5047 	u64 min_chunk_size = min_data_stripes * zone_size;
5048 	u64 type = ctl->type;
5049 
5050 	ctl->max_stripe_size = zone_size;
5051 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5052 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5053 						 zone_size);
5054 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5055 		ctl->max_chunk_size = ctl->max_stripe_size;
5056 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5057 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5058 		ctl->devs_max = min_t(int, ctl->devs_max,
5059 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5060 	} else {
5061 		BUG();
5062 	}
5063 
5064 	/* We don't want a chunk larger than 10% of writable space */
5065 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5066 			       zone_size),
5067 		    min_chunk_size);
5068 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5069 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5070 }
5071 
5072 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5073 				 struct alloc_chunk_ctl *ctl)
5074 {
5075 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5076 
5077 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5078 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5079 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5080 	if (!ctl->devs_max)
5081 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5082 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5083 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5084 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5085 	ctl->nparity = btrfs_raid_array[index].nparity;
5086 	ctl->ndevs = 0;
5087 
5088 	switch (fs_devices->chunk_alloc_policy) {
5089 	case BTRFS_CHUNK_ALLOC_REGULAR:
5090 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5091 		break;
5092 	case BTRFS_CHUNK_ALLOC_ZONED:
5093 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5094 		break;
5095 	default:
5096 		BUG();
5097 	}
5098 }
5099 
5100 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5101 			      struct alloc_chunk_ctl *ctl,
5102 			      struct btrfs_device_info *devices_info)
5103 {
5104 	struct btrfs_fs_info *info = fs_devices->fs_info;
5105 	struct btrfs_device *device;
5106 	u64 total_avail;
5107 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5108 	int ret;
5109 	int ndevs = 0;
5110 	u64 max_avail;
5111 	u64 dev_offset;
5112 
5113 	/*
5114 	 * in the first pass through the devices list, we gather information
5115 	 * about the available holes on each device.
5116 	 */
5117 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5118 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5119 			WARN(1, KERN_ERR
5120 			       "BTRFS: read-only device in alloc_list\n");
5121 			continue;
5122 		}
5123 
5124 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5125 					&device->dev_state) ||
5126 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5127 			continue;
5128 
5129 		if (device->total_bytes > device->bytes_used)
5130 			total_avail = device->total_bytes - device->bytes_used;
5131 		else
5132 			total_avail = 0;
5133 
5134 		/* If there is no space on this device, skip it. */
5135 		if (total_avail < ctl->dev_extent_min)
5136 			continue;
5137 
5138 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5139 					   &max_avail);
5140 		if (ret && ret != -ENOSPC)
5141 			return ret;
5142 
5143 		if (ret == 0)
5144 			max_avail = dev_extent_want;
5145 
5146 		if (max_avail < ctl->dev_extent_min) {
5147 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5148 				btrfs_debug(info,
5149 			"%s: devid %llu has no free space, have=%llu want=%llu",
5150 					    __func__, device->devid, max_avail,
5151 					    ctl->dev_extent_min);
5152 			continue;
5153 		}
5154 
5155 		if (ndevs == fs_devices->rw_devices) {
5156 			WARN(1, "%s: found more than %llu devices\n",
5157 			     __func__, fs_devices->rw_devices);
5158 			break;
5159 		}
5160 		devices_info[ndevs].dev_offset = dev_offset;
5161 		devices_info[ndevs].max_avail = max_avail;
5162 		devices_info[ndevs].total_avail = total_avail;
5163 		devices_info[ndevs].dev = device;
5164 		++ndevs;
5165 	}
5166 	ctl->ndevs = ndevs;
5167 
5168 	/*
5169 	 * now sort the devices by hole size / available space
5170 	 */
5171 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5172 	     btrfs_cmp_device_info, NULL);
5173 
5174 	return 0;
5175 }
5176 
5177 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5178 				      struct btrfs_device_info *devices_info)
5179 {
5180 	/* Number of stripes that count for block group size */
5181 	int data_stripes;
5182 
5183 	/*
5184 	 * The primary goal is to maximize the number of stripes, so use as
5185 	 * many devices as possible, even if the stripes are not maximum sized.
5186 	 *
5187 	 * The DUP profile stores more than one stripe per device, the
5188 	 * max_avail is the total size so we have to adjust.
5189 	 */
5190 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5191 				   ctl->dev_stripes);
5192 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5193 
5194 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5195 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5196 
5197 	/*
5198 	 * Use the number of data stripes to figure out how big this chunk is
5199 	 * really going to be in terms of logical address space, and compare
5200 	 * that answer with the max chunk size. If it's higher, we try to
5201 	 * reduce stripe_size.
5202 	 */
5203 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5204 		/*
5205 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5206 		 * then use it, unless it ends up being even bigger than the
5207 		 * previous value we had already.
5208 		 */
5209 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5210 							data_stripes), SZ_16M),
5211 				       ctl->stripe_size);
5212 	}
5213 
5214 	/* Align to BTRFS_STRIPE_LEN */
5215 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5216 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5217 
5218 	return 0;
5219 }
5220 
5221 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5222 				    struct btrfs_device_info *devices_info)
5223 {
5224 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5225 	/* Number of stripes that count for block group size */
5226 	int data_stripes;
5227 
5228 	/*
5229 	 * It should hold because:
5230 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5231 	 */
5232 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5233 
5234 	ctl->stripe_size = zone_size;
5235 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5236 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5237 
5238 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5239 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5240 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5241 					     ctl->stripe_size) + ctl->nparity,
5242 				     ctl->dev_stripes);
5243 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5244 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5245 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5246 	}
5247 
5248 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5249 
5250 	return 0;
5251 }
5252 
5253 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5254 			      struct alloc_chunk_ctl *ctl,
5255 			      struct btrfs_device_info *devices_info)
5256 {
5257 	struct btrfs_fs_info *info = fs_devices->fs_info;
5258 
5259 	/*
5260 	 * Round down to number of usable stripes, devs_increment can be any
5261 	 * number so we can't use round_down() that requires power of 2, while
5262 	 * rounddown is safe.
5263 	 */
5264 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5265 
5266 	if (ctl->ndevs < ctl->devs_min) {
5267 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5268 			btrfs_debug(info,
5269 	"%s: not enough devices with free space: have=%d minimum required=%d",
5270 				    __func__, ctl->ndevs, ctl->devs_min);
5271 		}
5272 		return -ENOSPC;
5273 	}
5274 
5275 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5276 
5277 	switch (fs_devices->chunk_alloc_policy) {
5278 	case BTRFS_CHUNK_ALLOC_REGULAR:
5279 		return decide_stripe_size_regular(ctl, devices_info);
5280 	case BTRFS_CHUNK_ALLOC_ZONED:
5281 		return decide_stripe_size_zoned(ctl, devices_info);
5282 	default:
5283 		BUG();
5284 	}
5285 }
5286 
5287 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5288 			struct alloc_chunk_ctl *ctl,
5289 			struct btrfs_device_info *devices_info)
5290 {
5291 	struct btrfs_fs_info *info = trans->fs_info;
5292 	struct map_lookup *map = NULL;
5293 	struct extent_map_tree *em_tree;
5294 	struct btrfs_block_group *block_group;
5295 	struct extent_map *em;
5296 	u64 start = ctl->start;
5297 	u64 type = ctl->type;
5298 	int ret;
5299 	int i;
5300 	int j;
5301 
5302 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5303 	if (!map)
5304 		return ERR_PTR(-ENOMEM);
5305 	map->num_stripes = ctl->num_stripes;
5306 
5307 	for (i = 0; i < ctl->ndevs; ++i) {
5308 		for (j = 0; j < ctl->dev_stripes; ++j) {
5309 			int s = i * ctl->dev_stripes + j;
5310 			map->stripes[s].dev = devices_info[i].dev;
5311 			map->stripes[s].physical = devices_info[i].dev_offset +
5312 						   j * ctl->stripe_size;
5313 		}
5314 	}
5315 	map->stripe_len = BTRFS_STRIPE_LEN;
5316 	map->io_align = BTRFS_STRIPE_LEN;
5317 	map->io_width = BTRFS_STRIPE_LEN;
5318 	map->type = type;
5319 	map->sub_stripes = ctl->sub_stripes;
5320 
5321 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5322 
5323 	em = alloc_extent_map();
5324 	if (!em) {
5325 		kfree(map);
5326 		return ERR_PTR(-ENOMEM);
5327 	}
5328 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5329 	em->map_lookup = map;
5330 	em->start = start;
5331 	em->len = ctl->chunk_size;
5332 	em->block_start = 0;
5333 	em->block_len = em->len;
5334 	em->orig_block_len = ctl->stripe_size;
5335 
5336 	em_tree = &info->mapping_tree;
5337 	write_lock(&em_tree->lock);
5338 	ret = add_extent_mapping(em_tree, em, 0);
5339 	if (ret) {
5340 		write_unlock(&em_tree->lock);
5341 		free_extent_map(em);
5342 		return ERR_PTR(ret);
5343 	}
5344 	write_unlock(&em_tree->lock);
5345 
5346 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5347 	if (IS_ERR(block_group))
5348 		goto error_del_extent;
5349 
5350 	for (i = 0; i < map->num_stripes; i++) {
5351 		struct btrfs_device *dev = map->stripes[i].dev;
5352 
5353 		btrfs_device_set_bytes_used(dev,
5354 					    dev->bytes_used + ctl->stripe_size);
5355 		if (list_empty(&dev->post_commit_list))
5356 			list_add_tail(&dev->post_commit_list,
5357 				      &trans->transaction->dev_update_list);
5358 	}
5359 
5360 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5361 		     &info->free_chunk_space);
5362 
5363 	free_extent_map(em);
5364 	check_raid56_incompat_flag(info, type);
5365 	check_raid1c34_incompat_flag(info, type);
5366 
5367 	return block_group;
5368 
5369 error_del_extent:
5370 	write_lock(&em_tree->lock);
5371 	remove_extent_mapping(em_tree, em);
5372 	write_unlock(&em_tree->lock);
5373 
5374 	/* One for our allocation */
5375 	free_extent_map(em);
5376 	/* One for the tree reference */
5377 	free_extent_map(em);
5378 
5379 	return block_group;
5380 }
5381 
5382 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5383 					    u64 type)
5384 {
5385 	struct btrfs_fs_info *info = trans->fs_info;
5386 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5387 	struct btrfs_device_info *devices_info = NULL;
5388 	struct alloc_chunk_ctl ctl;
5389 	struct btrfs_block_group *block_group;
5390 	int ret;
5391 
5392 	lockdep_assert_held(&info->chunk_mutex);
5393 
5394 	if (!alloc_profile_is_valid(type, 0)) {
5395 		ASSERT(0);
5396 		return ERR_PTR(-EINVAL);
5397 	}
5398 
5399 	if (list_empty(&fs_devices->alloc_list)) {
5400 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5401 			btrfs_debug(info, "%s: no writable device", __func__);
5402 		return ERR_PTR(-ENOSPC);
5403 	}
5404 
5405 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5406 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5407 		ASSERT(0);
5408 		return ERR_PTR(-EINVAL);
5409 	}
5410 
5411 	ctl.start = find_next_chunk(info);
5412 	ctl.type = type;
5413 	init_alloc_chunk_ctl(fs_devices, &ctl);
5414 
5415 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5416 			       GFP_NOFS);
5417 	if (!devices_info)
5418 		return ERR_PTR(-ENOMEM);
5419 
5420 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5421 	if (ret < 0) {
5422 		block_group = ERR_PTR(ret);
5423 		goto out;
5424 	}
5425 
5426 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5427 	if (ret < 0) {
5428 		block_group = ERR_PTR(ret);
5429 		goto out;
5430 	}
5431 
5432 	block_group = create_chunk(trans, &ctl, devices_info);
5433 
5434 out:
5435 	kfree(devices_info);
5436 	return block_group;
5437 }
5438 
5439 /*
5440  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5441  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5442  * chunks.
5443  *
5444  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5445  * phases.
5446  */
5447 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5448 				     struct btrfs_block_group *bg)
5449 {
5450 	struct btrfs_fs_info *fs_info = trans->fs_info;
5451 	struct btrfs_root *extent_root = fs_info->extent_root;
5452 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5453 	struct btrfs_key key;
5454 	struct btrfs_chunk *chunk;
5455 	struct btrfs_stripe *stripe;
5456 	struct extent_map *em;
5457 	struct map_lookup *map;
5458 	size_t item_size;
5459 	int i;
5460 	int ret;
5461 
5462 	/*
5463 	 * We take the chunk_mutex for 2 reasons:
5464 	 *
5465 	 * 1) Updates and insertions in the chunk btree must be done while holding
5466 	 *    the chunk_mutex, as well as updating the system chunk array in the
5467 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5468 	 *    details;
5469 	 *
5470 	 * 2) To prevent races with the final phase of a device replace operation
5471 	 *    that replaces the device object associated with the map's stripes,
5472 	 *    because the device object's id can change at any time during that
5473 	 *    final phase of the device replace operation
5474 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5475 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5476 	 *    which would cause a failure when updating the device item, which does
5477 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5478 	 *    Here we can't use the device_list_mutex because our caller already
5479 	 *    has locked the chunk_mutex, and the final phase of device replace
5480 	 *    acquires both mutexes - first the device_list_mutex and then the
5481 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5482 	 *    concurrent device replace.
5483 	 */
5484 	lockdep_assert_held(&fs_info->chunk_mutex);
5485 
5486 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5487 	if (IS_ERR(em)) {
5488 		ret = PTR_ERR(em);
5489 		btrfs_abort_transaction(trans, ret);
5490 		return ret;
5491 	}
5492 
5493 	map = em->map_lookup;
5494 	item_size = btrfs_chunk_item_size(map->num_stripes);
5495 
5496 	chunk = kzalloc(item_size, GFP_NOFS);
5497 	if (!chunk) {
5498 		ret = -ENOMEM;
5499 		btrfs_abort_transaction(trans, ret);
5500 		goto out;
5501 	}
5502 
5503 	for (i = 0; i < map->num_stripes; i++) {
5504 		struct btrfs_device *device = map->stripes[i].dev;
5505 
5506 		ret = btrfs_update_device(trans, device);
5507 		if (ret)
5508 			goto out;
5509 	}
5510 
5511 	stripe = &chunk->stripe;
5512 	for (i = 0; i < map->num_stripes; i++) {
5513 		struct btrfs_device *device = map->stripes[i].dev;
5514 		const u64 dev_offset = map->stripes[i].physical;
5515 
5516 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5517 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5518 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5519 		stripe++;
5520 	}
5521 
5522 	btrfs_set_stack_chunk_length(chunk, bg->length);
5523 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5524 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5525 	btrfs_set_stack_chunk_type(chunk, map->type);
5526 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5527 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5528 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5529 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5530 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5531 
5532 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5533 	key.type = BTRFS_CHUNK_ITEM_KEY;
5534 	key.offset = bg->start;
5535 
5536 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5537 	if (ret)
5538 		goto out;
5539 
5540 	bg->chunk_item_inserted = 1;
5541 
5542 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5543 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5544 		if (ret)
5545 			goto out;
5546 	}
5547 
5548 out:
5549 	kfree(chunk);
5550 	free_extent_map(em);
5551 	return ret;
5552 }
5553 
5554 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5555 {
5556 	struct btrfs_fs_info *fs_info = trans->fs_info;
5557 	u64 alloc_profile;
5558 	struct btrfs_block_group *meta_bg;
5559 	struct btrfs_block_group *sys_bg;
5560 
5561 	/*
5562 	 * When adding a new device for sprouting, the seed device is read-only
5563 	 * so we must first allocate a metadata and a system chunk. But before
5564 	 * adding the block group items to the extent, device and chunk btrees,
5565 	 * we must first:
5566 	 *
5567 	 * 1) Create both chunks without doing any changes to the btrees, as
5568 	 *    otherwise we would get -ENOSPC since the block groups from the
5569 	 *    seed device are read-only;
5570 	 *
5571 	 * 2) Add the device item for the new sprout device - finishing the setup
5572 	 *    of a new block group requires updating the device item in the chunk
5573 	 *    btree, so it must exist when we attempt to do it. The previous step
5574 	 *    ensures this does not fail with -ENOSPC.
5575 	 *
5576 	 * After that we can add the block group items to their btrees:
5577 	 * update existing device item in the chunk btree, add a new block group
5578 	 * item to the extent btree, add a new chunk item to the chunk btree and
5579 	 * finally add the new device extent items to the devices btree.
5580 	 */
5581 
5582 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5583 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5584 	if (IS_ERR(meta_bg))
5585 		return PTR_ERR(meta_bg);
5586 
5587 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5588 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5589 	if (IS_ERR(sys_bg))
5590 		return PTR_ERR(sys_bg);
5591 
5592 	return 0;
5593 }
5594 
5595 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5596 {
5597 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5598 
5599 	return btrfs_raid_array[index].tolerated_failures;
5600 }
5601 
5602 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5603 {
5604 	struct extent_map *em;
5605 	struct map_lookup *map;
5606 	int miss_ndevs = 0;
5607 	int i;
5608 	bool ret = true;
5609 
5610 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5611 	if (IS_ERR(em))
5612 		return false;
5613 
5614 	map = em->map_lookup;
5615 	for (i = 0; i < map->num_stripes; i++) {
5616 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5617 					&map->stripes[i].dev->dev_state)) {
5618 			miss_ndevs++;
5619 			continue;
5620 		}
5621 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5622 					&map->stripes[i].dev->dev_state)) {
5623 			ret = false;
5624 			goto end;
5625 		}
5626 	}
5627 
5628 	/*
5629 	 * If the number of missing devices is larger than max errors, we can
5630 	 * not write the data into that chunk successfully.
5631 	 */
5632 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5633 		ret = false;
5634 end:
5635 	free_extent_map(em);
5636 	return ret;
5637 }
5638 
5639 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5640 {
5641 	struct extent_map *em;
5642 
5643 	while (1) {
5644 		write_lock(&tree->lock);
5645 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5646 		if (em)
5647 			remove_extent_mapping(tree, em);
5648 		write_unlock(&tree->lock);
5649 		if (!em)
5650 			break;
5651 		/* once for us */
5652 		free_extent_map(em);
5653 		/* once for the tree */
5654 		free_extent_map(em);
5655 	}
5656 }
5657 
5658 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5659 {
5660 	struct extent_map *em;
5661 	struct map_lookup *map;
5662 	int ret;
5663 
5664 	em = btrfs_get_chunk_map(fs_info, logical, len);
5665 	if (IS_ERR(em))
5666 		/*
5667 		 * We could return errors for these cases, but that could get
5668 		 * ugly and we'd probably do the same thing which is just not do
5669 		 * anything else and exit, so return 1 so the callers don't try
5670 		 * to use other copies.
5671 		 */
5672 		return 1;
5673 
5674 	map = em->map_lookup;
5675 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5676 		ret = map->num_stripes;
5677 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5678 		ret = map->sub_stripes;
5679 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5680 		ret = 2;
5681 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5682 		/*
5683 		 * There could be two corrupted data stripes, we need
5684 		 * to loop retry in order to rebuild the correct data.
5685 		 *
5686 		 * Fail a stripe at a time on every retry except the
5687 		 * stripe under reconstruction.
5688 		 */
5689 		ret = map->num_stripes;
5690 	else
5691 		ret = 1;
5692 	free_extent_map(em);
5693 
5694 	down_read(&fs_info->dev_replace.rwsem);
5695 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5696 	    fs_info->dev_replace.tgtdev)
5697 		ret++;
5698 	up_read(&fs_info->dev_replace.rwsem);
5699 
5700 	return ret;
5701 }
5702 
5703 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5704 				    u64 logical)
5705 {
5706 	struct extent_map *em;
5707 	struct map_lookup *map;
5708 	unsigned long len = fs_info->sectorsize;
5709 
5710 	em = btrfs_get_chunk_map(fs_info, logical, len);
5711 
5712 	if (!WARN_ON(IS_ERR(em))) {
5713 		map = em->map_lookup;
5714 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5715 			len = map->stripe_len * nr_data_stripes(map);
5716 		free_extent_map(em);
5717 	}
5718 	return len;
5719 }
5720 
5721 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5722 {
5723 	struct extent_map *em;
5724 	struct map_lookup *map;
5725 	int ret = 0;
5726 
5727 	em = btrfs_get_chunk_map(fs_info, logical, len);
5728 
5729 	if(!WARN_ON(IS_ERR(em))) {
5730 		map = em->map_lookup;
5731 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5732 			ret = 1;
5733 		free_extent_map(em);
5734 	}
5735 	return ret;
5736 }
5737 
5738 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5739 			    struct map_lookup *map, int first,
5740 			    int dev_replace_is_ongoing)
5741 {
5742 	int i;
5743 	int num_stripes;
5744 	int preferred_mirror;
5745 	int tolerance;
5746 	struct btrfs_device *srcdev;
5747 
5748 	ASSERT((map->type &
5749 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5750 
5751 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5752 		num_stripes = map->sub_stripes;
5753 	else
5754 		num_stripes = map->num_stripes;
5755 
5756 	switch (fs_info->fs_devices->read_policy) {
5757 	default:
5758 		/* Shouldn't happen, just warn and use pid instead of failing */
5759 		btrfs_warn_rl(fs_info,
5760 			      "unknown read_policy type %u, reset to pid",
5761 			      fs_info->fs_devices->read_policy);
5762 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5763 		fallthrough;
5764 	case BTRFS_READ_POLICY_PID:
5765 		preferred_mirror = first + (current->pid % num_stripes);
5766 		break;
5767 	}
5768 
5769 	if (dev_replace_is_ongoing &&
5770 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5771 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5772 		srcdev = fs_info->dev_replace.srcdev;
5773 	else
5774 		srcdev = NULL;
5775 
5776 	/*
5777 	 * try to avoid the drive that is the source drive for a
5778 	 * dev-replace procedure, only choose it if no other non-missing
5779 	 * mirror is available
5780 	 */
5781 	for (tolerance = 0; tolerance < 2; tolerance++) {
5782 		if (map->stripes[preferred_mirror].dev->bdev &&
5783 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5784 			return preferred_mirror;
5785 		for (i = first; i < first + num_stripes; i++) {
5786 			if (map->stripes[i].dev->bdev &&
5787 			    (tolerance || map->stripes[i].dev != srcdev))
5788 				return i;
5789 		}
5790 	}
5791 
5792 	/* we couldn't find one that doesn't fail.  Just return something
5793 	 * and the io error handling code will clean up eventually
5794 	 */
5795 	return preferred_mirror;
5796 }
5797 
5798 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5799 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5800 {
5801 	int i;
5802 	int again = 1;
5803 
5804 	while (again) {
5805 		again = 0;
5806 		for (i = 0; i < num_stripes - 1; i++) {
5807 			/* Swap if parity is on a smaller index */
5808 			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5809 				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5810 				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5811 				again = 1;
5812 			}
5813 		}
5814 	}
5815 }
5816 
5817 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5818 {
5819 	struct btrfs_bio *bbio = kzalloc(
5820 		 /* the size of the btrfs_bio */
5821 		sizeof(struct btrfs_bio) +
5822 		/* plus the variable array for the stripes */
5823 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5824 		/* plus the variable array for the tgt dev */
5825 		sizeof(int) * (real_stripes) +
5826 		/*
5827 		 * plus the raid_map, which includes both the tgt dev
5828 		 * and the stripes
5829 		 */
5830 		sizeof(u64) * (total_stripes),
5831 		GFP_NOFS|__GFP_NOFAIL);
5832 
5833 	atomic_set(&bbio->error, 0);
5834 	refcount_set(&bbio->refs, 1);
5835 
5836 	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5837 	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5838 
5839 	return bbio;
5840 }
5841 
5842 void btrfs_get_bbio(struct btrfs_bio *bbio)
5843 {
5844 	WARN_ON(!refcount_read(&bbio->refs));
5845 	refcount_inc(&bbio->refs);
5846 }
5847 
5848 void btrfs_put_bbio(struct btrfs_bio *bbio)
5849 {
5850 	if (!bbio)
5851 		return;
5852 	if (refcount_dec_and_test(&bbio->refs))
5853 		kfree(bbio);
5854 }
5855 
5856 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5857 /*
5858  * Please note that, discard won't be sent to target device of device
5859  * replace.
5860  */
5861 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5862 					 u64 logical, u64 *length_ret,
5863 					 struct btrfs_bio **bbio_ret)
5864 {
5865 	struct extent_map *em;
5866 	struct map_lookup *map;
5867 	struct btrfs_bio *bbio;
5868 	u64 length = *length_ret;
5869 	u64 offset;
5870 	u64 stripe_nr;
5871 	u64 stripe_nr_end;
5872 	u64 stripe_end_offset;
5873 	u64 stripe_cnt;
5874 	u64 stripe_len;
5875 	u64 stripe_offset;
5876 	u64 num_stripes;
5877 	u32 stripe_index;
5878 	u32 factor = 0;
5879 	u32 sub_stripes = 0;
5880 	u64 stripes_per_dev = 0;
5881 	u32 remaining_stripes = 0;
5882 	u32 last_stripe = 0;
5883 	int ret = 0;
5884 	int i;
5885 
5886 	/* discard always return a bbio */
5887 	ASSERT(bbio_ret);
5888 
5889 	em = btrfs_get_chunk_map(fs_info, logical, length);
5890 	if (IS_ERR(em))
5891 		return PTR_ERR(em);
5892 
5893 	map = em->map_lookup;
5894 	/* we don't discard raid56 yet */
5895 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5896 		ret = -EOPNOTSUPP;
5897 		goto out;
5898 	}
5899 
5900 	offset = logical - em->start;
5901 	length = min_t(u64, em->start + em->len - logical, length);
5902 	*length_ret = length;
5903 
5904 	stripe_len = map->stripe_len;
5905 	/*
5906 	 * stripe_nr counts the total number of stripes we have to stride
5907 	 * to get to this block
5908 	 */
5909 	stripe_nr = div64_u64(offset, stripe_len);
5910 
5911 	/* stripe_offset is the offset of this block in its stripe */
5912 	stripe_offset = offset - stripe_nr * stripe_len;
5913 
5914 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5915 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5916 	stripe_cnt = stripe_nr_end - stripe_nr;
5917 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5918 			    (offset + length);
5919 	/*
5920 	 * after this, stripe_nr is the number of stripes on this
5921 	 * device we have to walk to find the data, and stripe_index is
5922 	 * the number of our device in the stripe array
5923 	 */
5924 	num_stripes = 1;
5925 	stripe_index = 0;
5926 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5927 			 BTRFS_BLOCK_GROUP_RAID10)) {
5928 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5929 			sub_stripes = 1;
5930 		else
5931 			sub_stripes = map->sub_stripes;
5932 
5933 		factor = map->num_stripes / sub_stripes;
5934 		num_stripes = min_t(u64, map->num_stripes,
5935 				    sub_stripes * stripe_cnt);
5936 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5937 		stripe_index *= sub_stripes;
5938 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5939 					      &remaining_stripes);
5940 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5941 		last_stripe *= sub_stripes;
5942 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5943 				BTRFS_BLOCK_GROUP_DUP)) {
5944 		num_stripes = map->num_stripes;
5945 	} else {
5946 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5947 					&stripe_index);
5948 	}
5949 
5950 	bbio = alloc_btrfs_bio(num_stripes, 0);
5951 	if (!bbio) {
5952 		ret = -ENOMEM;
5953 		goto out;
5954 	}
5955 
5956 	for (i = 0; i < num_stripes; i++) {
5957 		bbio->stripes[i].physical =
5958 			map->stripes[stripe_index].physical +
5959 			stripe_offset + stripe_nr * map->stripe_len;
5960 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5961 
5962 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5963 				 BTRFS_BLOCK_GROUP_RAID10)) {
5964 			bbio->stripes[i].length = stripes_per_dev *
5965 				map->stripe_len;
5966 
5967 			if (i / sub_stripes < remaining_stripes)
5968 				bbio->stripes[i].length +=
5969 					map->stripe_len;
5970 
5971 			/*
5972 			 * Special for the first stripe and
5973 			 * the last stripe:
5974 			 *
5975 			 * |-------|...|-------|
5976 			 *     |----------|
5977 			 *    off     end_off
5978 			 */
5979 			if (i < sub_stripes)
5980 				bbio->stripes[i].length -=
5981 					stripe_offset;
5982 
5983 			if (stripe_index >= last_stripe &&
5984 			    stripe_index <= (last_stripe +
5985 					     sub_stripes - 1))
5986 				bbio->stripes[i].length -=
5987 					stripe_end_offset;
5988 
5989 			if (i == sub_stripes - 1)
5990 				stripe_offset = 0;
5991 		} else {
5992 			bbio->stripes[i].length = length;
5993 		}
5994 
5995 		stripe_index++;
5996 		if (stripe_index == map->num_stripes) {
5997 			stripe_index = 0;
5998 			stripe_nr++;
5999 		}
6000 	}
6001 
6002 	*bbio_ret = bbio;
6003 	bbio->map_type = map->type;
6004 	bbio->num_stripes = num_stripes;
6005 out:
6006 	free_extent_map(em);
6007 	return ret;
6008 }
6009 
6010 /*
6011  * In dev-replace case, for repair case (that's the only case where the mirror
6012  * is selected explicitly when calling btrfs_map_block), blocks left of the
6013  * left cursor can also be read from the target drive.
6014  *
6015  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6016  * array of stripes.
6017  * For READ, it also needs to be supported using the same mirror number.
6018  *
6019  * If the requested block is not left of the left cursor, EIO is returned. This
6020  * can happen because btrfs_num_copies() returns one more in the dev-replace
6021  * case.
6022  */
6023 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6024 					 u64 logical, u64 length,
6025 					 u64 srcdev_devid, int *mirror_num,
6026 					 u64 *physical)
6027 {
6028 	struct btrfs_bio *bbio = NULL;
6029 	int num_stripes;
6030 	int index_srcdev = 0;
6031 	int found = 0;
6032 	u64 physical_of_found = 0;
6033 	int i;
6034 	int ret = 0;
6035 
6036 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6037 				logical, &length, &bbio, 0, 0);
6038 	if (ret) {
6039 		ASSERT(bbio == NULL);
6040 		return ret;
6041 	}
6042 
6043 	num_stripes = bbio->num_stripes;
6044 	if (*mirror_num > num_stripes) {
6045 		/*
6046 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6047 		 * that means that the requested area is not left of the left
6048 		 * cursor
6049 		 */
6050 		btrfs_put_bbio(bbio);
6051 		return -EIO;
6052 	}
6053 
6054 	/*
6055 	 * process the rest of the function using the mirror_num of the source
6056 	 * drive. Therefore look it up first.  At the end, patch the device
6057 	 * pointer to the one of the target drive.
6058 	 */
6059 	for (i = 0; i < num_stripes; i++) {
6060 		if (bbio->stripes[i].dev->devid != srcdev_devid)
6061 			continue;
6062 
6063 		/*
6064 		 * In case of DUP, in order to keep it simple, only add the
6065 		 * mirror with the lowest physical address
6066 		 */
6067 		if (found &&
6068 		    physical_of_found <= bbio->stripes[i].physical)
6069 			continue;
6070 
6071 		index_srcdev = i;
6072 		found = 1;
6073 		physical_of_found = bbio->stripes[i].physical;
6074 	}
6075 
6076 	btrfs_put_bbio(bbio);
6077 
6078 	ASSERT(found);
6079 	if (!found)
6080 		return -EIO;
6081 
6082 	*mirror_num = index_srcdev + 1;
6083 	*physical = physical_of_found;
6084 	return ret;
6085 }
6086 
6087 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6088 {
6089 	struct btrfs_block_group *cache;
6090 	bool ret;
6091 
6092 	/* Non zoned filesystem does not use "to_copy" flag */
6093 	if (!btrfs_is_zoned(fs_info))
6094 		return false;
6095 
6096 	cache = btrfs_lookup_block_group(fs_info, logical);
6097 
6098 	spin_lock(&cache->lock);
6099 	ret = cache->to_copy;
6100 	spin_unlock(&cache->lock);
6101 
6102 	btrfs_put_block_group(cache);
6103 	return ret;
6104 }
6105 
6106 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6107 				      struct btrfs_bio **bbio_ret,
6108 				      struct btrfs_dev_replace *dev_replace,
6109 				      u64 logical,
6110 				      int *num_stripes_ret, int *max_errors_ret)
6111 {
6112 	struct btrfs_bio *bbio = *bbio_ret;
6113 	u64 srcdev_devid = dev_replace->srcdev->devid;
6114 	int tgtdev_indexes = 0;
6115 	int num_stripes = *num_stripes_ret;
6116 	int max_errors = *max_errors_ret;
6117 	int i;
6118 
6119 	if (op == BTRFS_MAP_WRITE) {
6120 		int index_where_to_add;
6121 
6122 		/*
6123 		 * A block group which have "to_copy" set will eventually
6124 		 * copied by dev-replace process. We can avoid cloning IO here.
6125 		 */
6126 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6127 			return;
6128 
6129 		/*
6130 		 * duplicate the write operations while the dev replace
6131 		 * procedure is running. Since the copying of the old disk to
6132 		 * the new disk takes place at run time while the filesystem is
6133 		 * mounted writable, the regular write operations to the old
6134 		 * disk have to be duplicated to go to the new disk as well.
6135 		 *
6136 		 * Note that device->missing is handled by the caller, and that
6137 		 * the write to the old disk is already set up in the stripes
6138 		 * array.
6139 		 */
6140 		index_where_to_add = num_stripes;
6141 		for (i = 0; i < num_stripes; i++) {
6142 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6143 				/* write to new disk, too */
6144 				struct btrfs_bio_stripe *new =
6145 					bbio->stripes + index_where_to_add;
6146 				struct btrfs_bio_stripe *old =
6147 					bbio->stripes + i;
6148 
6149 				new->physical = old->physical;
6150 				new->length = old->length;
6151 				new->dev = dev_replace->tgtdev;
6152 				bbio->tgtdev_map[i] = index_where_to_add;
6153 				index_where_to_add++;
6154 				max_errors++;
6155 				tgtdev_indexes++;
6156 			}
6157 		}
6158 		num_stripes = index_where_to_add;
6159 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6160 		int index_srcdev = 0;
6161 		int found = 0;
6162 		u64 physical_of_found = 0;
6163 
6164 		/*
6165 		 * During the dev-replace procedure, the target drive can also
6166 		 * be used to read data in case it is needed to repair a corrupt
6167 		 * block elsewhere. This is possible if the requested area is
6168 		 * left of the left cursor. In this area, the target drive is a
6169 		 * full copy of the source drive.
6170 		 */
6171 		for (i = 0; i < num_stripes; i++) {
6172 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6173 				/*
6174 				 * In case of DUP, in order to keep it simple,
6175 				 * only add the mirror with the lowest physical
6176 				 * address
6177 				 */
6178 				if (found &&
6179 				    physical_of_found <=
6180 				     bbio->stripes[i].physical)
6181 					continue;
6182 				index_srcdev = i;
6183 				found = 1;
6184 				physical_of_found = bbio->stripes[i].physical;
6185 			}
6186 		}
6187 		if (found) {
6188 			struct btrfs_bio_stripe *tgtdev_stripe =
6189 				bbio->stripes + num_stripes;
6190 
6191 			tgtdev_stripe->physical = physical_of_found;
6192 			tgtdev_stripe->length =
6193 				bbio->stripes[index_srcdev].length;
6194 			tgtdev_stripe->dev = dev_replace->tgtdev;
6195 			bbio->tgtdev_map[index_srcdev] = num_stripes;
6196 
6197 			tgtdev_indexes++;
6198 			num_stripes++;
6199 		}
6200 	}
6201 
6202 	*num_stripes_ret = num_stripes;
6203 	*max_errors_ret = max_errors;
6204 	bbio->num_tgtdevs = tgtdev_indexes;
6205 	*bbio_ret = bbio;
6206 }
6207 
6208 static bool need_full_stripe(enum btrfs_map_op op)
6209 {
6210 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6211 }
6212 
6213 /*
6214  * Calculate the geometry of a particular (address, len) tuple. This
6215  * information is used to calculate how big a particular bio can get before it
6216  * straddles a stripe.
6217  *
6218  * @fs_info: the filesystem
6219  * @em:      mapping containing the logical extent
6220  * @op:      type of operation - write or read
6221  * @logical: address that we want to figure out the geometry of
6222  * @io_geom: pointer used to return values
6223  *
6224  * Returns < 0 in case a chunk for the given logical address cannot be found,
6225  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6226  */
6227 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6228 			  enum btrfs_map_op op, u64 logical,
6229 			  struct btrfs_io_geometry *io_geom)
6230 {
6231 	struct map_lookup *map;
6232 	u64 len;
6233 	u64 offset;
6234 	u64 stripe_offset;
6235 	u64 stripe_nr;
6236 	u64 stripe_len;
6237 	u64 raid56_full_stripe_start = (u64)-1;
6238 	int data_stripes;
6239 
6240 	ASSERT(op != BTRFS_MAP_DISCARD);
6241 
6242 	map = em->map_lookup;
6243 	/* Offset of this logical address in the chunk */
6244 	offset = logical - em->start;
6245 	/* Len of a stripe in a chunk */
6246 	stripe_len = map->stripe_len;
6247 	/* Stripe where this block falls in */
6248 	stripe_nr = div64_u64(offset, stripe_len);
6249 	/* Offset of stripe in the chunk */
6250 	stripe_offset = stripe_nr * stripe_len;
6251 	if (offset < stripe_offset) {
6252 		btrfs_crit(fs_info,
6253 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6254 			stripe_offset, offset, em->start, logical, stripe_len);
6255 		return -EINVAL;
6256 	}
6257 
6258 	/* stripe_offset is the offset of this block in its stripe */
6259 	stripe_offset = offset - stripe_offset;
6260 	data_stripes = nr_data_stripes(map);
6261 
6262 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6263 		u64 max_len = stripe_len - stripe_offset;
6264 
6265 		/*
6266 		 * In case of raid56, we need to know the stripe aligned start
6267 		 */
6268 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6269 			unsigned long full_stripe_len = stripe_len * data_stripes;
6270 			raid56_full_stripe_start = offset;
6271 
6272 			/*
6273 			 * Allow a write of a full stripe, but make sure we
6274 			 * don't allow straddling of stripes
6275 			 */
6276 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6277 					full_stripe_len);
6278 			raid56_full_stripe_start *= full_stripe_len;
6279 
6280 			/*
6281 			 * For writes to RAID[56], allow a full stripeset across
6282 			 * all disks. For other RAID types and for RAID[56]
6283 			 * reads, just allow a single stripe (on a single disk).
6284 			 */
6285 			if (op == BTRFS_MAP_WRITE) {
6286 				max_len = stripe_len * data_stripes -
6287 					  (offset - raid56_full_stripe_start);
6288 			}
6289 		}
6290 		len = min_t(u64, em->len - offset, max_len);
6291 	} else {
6292 		len = em->len - offset;
6293 	}
6294 
6295 	io_geom->len = len;
6296 	io_geom->offset = offset;
6297 	io_geom->stripe_len = stripe_len;
6298 	io_geom->stripe_nr = stripe_nr;
6299 	io_geom->stripe_offset = stripe_offset;
6300 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6301 
6302 	return 0;
6303 }
6304 
6305 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6306 			     enum btrfs_map_op op,
6307 			     u64 logical, u64 *length,
6308 			     struct btrfs_bio **bbio_ret,
6309 			     int mirror_num, int need_raid_map)
6310 {
6311 	struct extent_map *em;
6312 	struct map_lookup *map;
6313 	u64 stripe_offset;
6314 	u64 stripe_nr;
6315 	u64 stripe_len;
6316 	u32 stripe_index;
6317 	int data_stripes;
6318 	int i;
6319 	int ret = 0;
6320 	int num_stripes;
6321 	int max_errors = 0;
6322 	int tgtdev_indexes = 0;
6323 	struct btrfs_bio *bbio = NULL;
6324 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6325 	int dev_replace_is_ongoing = 0;
6326 	int num_alloc_stripes;
6327 	int patch_the_first_stripe_for_dev_replace = 0;
6328 	u64 physical_to_patch_in_first_stripe = 0;
6329 	u64 raid56_full_stripe_start = (u64)-1;
6330 	struct btrfs_io_geometry geom;
6331 
6332 	ASSERT(bbio_ret);
6333 	ASSERT(op != BTRFS_MAP_DISCARD);
6334 
6335 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6336 	ASSERT(!IS_ERR(em));
6337 
6338 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6339 	if (ret < 0)
6340 		return ret;
6341 
6342 	map = em->map_lookup;
6343 
6344 	*length = geom.len;
6345 	stripe_len = geom.stripe_len;
6346 	stripe_nr = geom.stripe_nr;
6347 	stripe_offset = geom.stripe_offset;
6348 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6349 	data_stripes = nr_data_stripes(map);
6350 
6351 	down_read(&dev_replace->rwsem);
6352 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6353 	/*
6354 	 * Hold the semaphore for read during the whole operation, write is
6355 	 * requested at commit time but must wait.
6356 	 */
6357 	if (!dev_replace_is_ongoing)
6358 		up_read(&dev_replace->rwsem);
6359 
6360 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6361 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6362 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6363 						    dev_replace->srcdev->devid,
6364 						    &mirror_num,
6365 					    &physical_to_patch_in_first_stripe);
6366 		if (ret)
6367 			goto out;
6368 		else
6369 			patch_the_first_stripe_for_dev_replace = 1;
6370 	} else if (mirror_num > map->num_stripes) {
6371 		mirror_num = 0;
6372 	}
6373 
6374 	num_stripes = 1;
6375 	stripe_index = 0;
6376 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6377 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6378 				&stripe_index);
6379 		if (!need_full_stripe(op))
6380 			mirror_num = 1;
6381 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6382 		if (need_full_stripe(op))
6383 			num_stripes = map->num_stripes;
6384 		else if (mirror_num)
6385 			stripe_index = mirror_num - 1;
6386 		else {
6387 			stripe_index = find_live_mirror(fs_info, map, 0,
6388 					    dev_replace_is_ongoing);
6389 			mirror_num = stripe_index + 1;
6390 		}
6391 
6392 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6393 		if (need_full_stripe(op)) {
6394 			num_stripes = map->num_stripes;
6395 		} else if (mirror_num) {
6396 			stripe_index = mirror_num - 1;
6397 		} else {
6398 			mirror_num = 1;
6399 		}
6400 
6401 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6402 		u32 factor = map->num_stripes / map->sub_stripes;
6403 
6404 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6405 		stripe_index *= map->sub_stripes;
6406 
6407 		if (need_full_stripe(op))
6408 			num_stripes = map->sub_stripes;
6409 		else if (mirror_num)
6410 			stripe_index += mirror_num - 1;
6411 		else {
6412 			int old_stripe_index = stripe_index;
6413 			stripe_index = find_live_mirror(fs_info, map,
6414 					      stripe_index,
6415 					      dev_replace_is_ongoing);
6416 			mirror_num = stripe_index - old_stripe_index + 1;
6417 		}
6418 
6419 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6420 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6421 			/* push stripe_nr back to the start of the full stripe */
6422 			stripe_nr = div64_u64(raid56_full_stripe_start,
6423 					stripe_len * data_stripes);
6424 
6425 			/* RAID[56] write or recovery. Return all stripes */
6426 			num_stripes = map->num_stripes;
6427 			max_errors = nr_parity_stripes(map);
6428 
6429 			*length = map->stripe_len;
6430 			stripe_index = 0;
6431 			stripe_offset = 0;
6432 		} else {
6433 			/*
6434 			 * Mirror #0 or #1 means the original data block.
6435 			 * Mirror #2 is RAID5 parity block.
6436 			 * Mirror #3 is RAID6 Q block.
6437 			 */
6438 			stripe_nr = div_u64_rem(stripe_nr,
6439 					data_stripes, &stripe_index);
6440 			if (mirror_num > 1)
6441 				stripe_index = data_stripes + mirror_num - 2;
6442 
6443 			/* We distribute the parity blocks across stripes */
6444 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6445 					&stripe_index);
6446 			if (!need_full_stripe(op) && mirror_num <= 1)
6447 				mirror_num = 1;
6448 		}
6449 	} else {
6450 		/*
6451 		 * after this, stripe_nr is the number of stripes on this
6452 		 * device we have to walk to find the data, and stripe_index is
6453 		 * the number of our device in the stripe array
6454 		 */
6455 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456 				&stripe_index);
6457 		mirror_num = stripe_index + 1;
6458 	}
6459 	if (stripe_index >= map->num_stripes) {
6460 		btrfs_crit(fs_info,
6461 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6462 			   stripe_index, map->num_stripes);
6463 		ret = -EINVAL;
6464 		goto out;
6465 	}
6466 
6467 	num_alloc_stripes = num_stripes;
6468 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6469 		if (op == BTRFS_MAP_WRITE)
6470 			num_alloc_stripes <<= 1;
6471 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6472 			num_alloc_stripes++;
6473 		tgtdev_indexes = num_stripes;
6474 	}
6475 
6476 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6477 	if (!bbio) {
6478 		ret = -ENOMEM;
6479 		goto out;
6480 	}
6481 
6482 	for (i = 0; i < num_stripes; i++) {
6483 		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6484 			stripe_offset + stripe_nr * map->stripe_len;
6485 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6486 		stripe_index++;
6487 	}
6488 
6489 	/* build raid_map */
6490 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6491 	    (need_full_stripe(op) || mirror_num > 1)) {
6492 		u64 tmp;
6493 		unsigned rot;
6494 
6495 		/* Work out the disk rotation on this stripe-set */
6496 		div_u64_rem(stripe_nr, num_stripes, &rot);
6497 
6498 		/* Fill in the logical address of each stripe */
6499 		tmp = stripe_nr * data_stripes;
6500 		for (i = 0; i < data_stripes; i++)
6501 			bbio->raid_map[(i+rot) % num_stripes] =
6502 				em->start + (tmp + i) * map->stripe_len;
6503 
6504 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6505 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6506 			bbio->raid_map[(i+rot+1) % num_stripes] =
6507 				RAID6_Q_STRIPE;
6508 
6509 		sort_parity_stripes(bbio, num_stripes);
6510 	}
6511 
6512 	if (need_full_stripe(op))
6513 		max_errors = btrfs_chunk_max_errors(map);
6514 
6515 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6516 	    need_full_stripe(op)) {
6517 		handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6518 					  &num_stripes, &max_errors);
6519 	}
6520 
6521 	*bbio_ret = bbio;
6522 	bbio->map_type = map->type;
6523 	bbio->num_stripes = num_stripes;
6524 	bbio->max_errors = max_errors;
6525 	bbio->mirror_num = mirror_num;
6526 
6527 	/*
6528 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6529 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6530 	 * available as a mirror
6531 	 */
6532 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6533 		WARN_ON(num_stripes > 1);
6534 		bbio->stripes[0].dev = dev_replace->tgtdev;
6535 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6536 		bbio->mirror_num = map->num_stripes + 1;
6537 	}
6538 out:
6539 	if (dev_replace_is_ongoing) {
6540 		lockdep_assert_held(&dev_replace->rwsem);
6541 		/* Unlock and let waiting writers proceed */
6542 		up_read(&dev_replace->rwsem);
6543 	}
6544 	free_extent_map(em);
6545 	return ret;
6546 }
6547 
6548 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6549 		      u64 logical, u64 *length,
6550 		      struct btrfs_bio **bbio_ret, int mirror_num)
6551 {
6552 	if (op == BTRFS_MAP_DISCARD)
6553 		return __btrfs_map_block_for_discard(fs_info, logical,
6554 						     length, bbio_ret);
6555 
6556 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6557 				 mirror_num, 0);
6558 }
6559 
6560 /* For Scrub/replace */
6561 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6562 		     u64 logical, u64 *length,
6563 		     struct btrfs_bio **bbio_ret)
6564 {
6565 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6566 }
6567 
6568 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6569 {
6570 	bio->bi_private = bbio->private;
6571 	bio->bi_end_io = bbio->end_io;
6572 	bio_endio(bio);
6573 
6574 	btrfs_put_bbio(bbio);
6575 }
6576 
6577 static void btrfs_end_bio(struct bio *bio)
6578 {
6579 	struct btrfs_bio *bbio = bio->bi_private;
6580 	int is_orig_bio = 0;
6581 
6582 	if (bio->bi_status) {
6583 		atomic_inc(&bbio->error);
6584 		if (bio->bi_status == BLK_STS_IOERR ||
6585 		    bio->bi_status == BLK_STS_TARGET) {
6586 			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6587 
6588 			ASSERT(dev->bdev);
6589 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6590 				btrfs_dev_stat_inc_and_print(dev,
6591 						BTRFS_DEV_STAT_WRITE_ERRS);
6592 			else if (!(bio->bi_opf & REQ_RAHEAD))
6593 				btrfs_dev_stat_inc_and_print(dev,
6594 						BTRFS_DEV_STAT_READ_ERRS);
6595 			if (bio->bi_opf & REQ_PREFLUSH)
6596 				btrfs_dev_stat_inc_and_print(dev,
6597 						BTRFS_DEV_STAT_FLUSH_ERRS);
6598 		}
6599 	}
6600 
6601 	if (bio == bbio->orig_bio)
6602 		is_orig_bio = 1;
6603 
6604 	btrfs_bio_counter_dec(bbio->fs_info);
6605 
6606 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6607 		if (!is_orig_bio) {
6608 			bio_put(bio);
6609 			bio = bbio->orig_bio;
6610 		}
6611 
6612 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6613 		/* only send an error to the higher layers if it is
6614 		 * beyond the tolerance of the btrfs bio
6615 		 */
6616 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6617 			bio->bi_status = BLK_STS_IOERR;
6618 		} else {
6619 			/*
6620 			 * this bio is actually up to date, we didn't
6621 			 * go over the max number of errors
6622 			 */
6623 			bio->bi_status = BLK_STS_OK;
6624 		}
6625 
6626 		btrfs_end_bbio(bbio, bio);
6627 	} else if (!is_orig_bio) {
6628 		bio_put(bio);
6629 	}
6630 }
6631 
6632 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6633 			      u64 physical, struct btrfs_device *dev)
6634 {
6635 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6636 
6637 	bio->bi_private = bbio;
6638 	btrfs_io_bio(bio)->device = dev;
6639 	bio->bi_end_io = btrfs_end_bio;
6640 	bio->bi_iter.bi_sector = physical >> 9;
6641 	/*
6642 	 * For zone append writing, bi_sector must point the beginning of the
6643 	 * zone
6644 	 */
6645 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6646 		if (btrfs_dev_is_sequential(dev, physical)) {
6647 			u64 zone_start = round_down(physical, fs_info->zone_size);
6648 
6649 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6650 		} else {
6651 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6652 			bio->bi_opf |= REQ_OP_WRITE;
6653 		}
6654 	}
6655 	btrfs_debug_in_rcu(fs_info,
6656 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6657 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6658 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6659 		dev->devid, bio->bi_iter.bi_size);
6660 	bio_set_dev(bio, dev->bdev);
6661 
6662 	btrfs_bio_counter_inc_noblocked(fs_info);
6663 
6664 	btrfsic_submit_bio(bio);
6665 }
6666 
6667 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6668 {
6669 	atomic_inc(&bbio->error);
6670 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6671 		/* Should be the original bio. */
6672 		WARN_ON(bio != bbio->orig_bio);
6673 
6674 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6675 		bio->bi_iter.bi_sector = logical >> 9;
6676 		if (atomic_read(&bbio->error) > bbio->max_errors)
6677 			bio->bi_status = BLK_STS_IOERR;
6678 		else
6679 			bio->bi_status = BLK_STS_OK;
6680 		btrfs_end_bbio(bbio, bio);
6681 	}
6682 }
6683 
6684 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6685 			   int mirror_num)
6686 {
6687 	struct btrfs_device *dev;
6688 	struct bio *first_bio = bio;
6689 	u64 logical = bio->bi_iter.bi_sector << 9;
6690 	u64 length = 0;
6691 	u64 map_length;
6692 	int ret;
6693 	int dev_nr;
6694 	int total_devs;
6695 	struct btrfs_bio *bbio = NULL;
6696 
6697 	length = bio->bi_iter.bi_size;
6698 	map_length = length;
6699 
6700 	btrfs_bio_counter_inc_blocked(fs_info);
6701 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6702 				&map_length, &bbio, mirror_num, 1);
6703 	if (ret) {
6704 		btrfs_bio_counter_dec(fs_info);
6705 		return errno_to_blk_status(ret);
6706 	}
6707 
6708 	total_devs = bbio->num_stripes;
6709 	bbio->orig_bio = first_bio;
6710 	bbio->private = first_bio->bi_private;
6711 	bbio->end_io = first_bio->bi_end_io;
6712 	bbio->fs_info = fs_info;
6713 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6714 
6715 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6716 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6717 		/* In this case, map_length has been set to the length of
6718 		   a single stripe; not the whole write */
6719 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6720 			ret = raid56_parity_write(fs_info, bio, bbio,
6721 						  map_length);
6722 		} else {
6723 			ret = raid56_parity_recover(fs_info, bio, bbio,
6724 						    map_length, mirror_num, 1);
6725 		}
6726 
6727 		btrfs_bio_counter_dec(fs_info);
6728 		return errno_to_blk_status(ret);
6729 	}
6730 
6731 	if (map_length < length) {
6732 		btrfs_crit(fs_info,
6733 			   "mapping failed logical %llu bio len %llu len %llu",
6734 			   logical, length, map_length);
6735 		BUG();
6736 	}
6737 
6738 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6739 		dev = bbio->stripes[dev_nr].dev;
6740 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6741 						   &dev->dev_state) ||
6742 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6743 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6744 			bbio_error(bbio, first_bio, logical);
6745 			continue;
6746 		}
6747 
6748 		if (dev_nr < total_devs - 1)
6749 			bio = btrfs_bio_clone(first_bio);
6750 		else
6751 			bio = first_bio;
6752 
6753 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6754 	}
6755 	btrfs_bio_counter_dec(fs_info);
6756 	return BLK_STS_OK;
6757 }
6758 
6759 /*
6760  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6761  * return NULL.
6762  *
6763  * If devid and uuid are both specified, the match must be exact, otherwise
6764  * only devid is used.
6765  */
6766 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6767 				       u64 devid, u8 *uuid, u8 *fsid)
6768 {
6769 	struct btrfs_device *device;
6770 	struct btrfs_fs_devices *seed_devs;
6771 
6772 	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6773 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6774 			if (device->devid == devid &&
6775 			    (!uuid || memcmp(device->uuid, uuid,
6776 					     BTRFS_UUID_SIZE) == 0))
6777 				return device;
6778 		}
6779 	}
6780 
6781 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6782 		if (!fsid ||
6783 		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6784 			list_for_each_entry(device, &seed_devs->devices,
6785 					    dev_list) {
6786 				if (device->devid == devid &&
6787 				    (!uuid || memcmp(device->uuid, uuid,
6788 						     BTRFS_UUID_SIZE) == 0))
6789 					return device;
6790 			}
6791 		}
6792 	}
6793 
6794 	return NULL;
6795 }
6796 
6797 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6798 					    u64 devid, u8 *dev_uuid)
6799 {
6800 	struct btrfs_device *device;
6801 	unsigned int nofs_flag;
6802 
6803 	/*
6804 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6805 	 * allocation, however we don't want to change btrfs_alloc_device() to
6806 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6807 	 * places.
6808 	 */
6809 	nofs_flag = memalloc_nofs_save();
6810 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6811 	memalloc_nofs_restore(nofs_flag);
6812 	if (IS_ERR(device))
6813 		return device;
6814 
6815 	list_add(&device->dev_list, &fs_devices->devices);
6816 	device->fs_devices = fs_devices;
6817 	fs_devices->num_devices++;
6818 
6819 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6820 	fs_devices->missing_devices++;
6821 
6822 	return device;
6823 }
6824 
6825 /**
6826  * btrfs_alloc_device - allocate struct btrfs_device
6827  * @fs_info:	used only for generating a new devid, can be NULL if
6828  *		devid is provided (i.e. @devid != NULL).
6829  * @devid:	a pointer to devid for this device.  If NULL a new devid
6830  *		is generated.
6831  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6832  *		is generated.
6833  *
6834  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6835  * on error.  Returned struct is not linked onto any lists and must be
6836  * destroyed with btrfs_free_device.
6837  */
6838 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6839 					const u64 *devid,
6840 					const u8 *uuid)
6841 {
6842 	struct btrfs_device *dev;
6843 	u64 tmp;
6844 
6845 	if (WARN_ON(!devid && !fs_info))
6846 		return ERR_PTR(-EINVAL);
6847 
6848 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6849 	if (!dev)
6850 		return ERR_PTR(-ENOMEM);
6851 
6852 	/*
6853 	 * Preallocate a bio that's always going to be used for flushing device
6854 	 * barriers and matches the device lifespan
6855 	 */
6856 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6857 	if (!dev->flush_bio) {
6858 		kfree(dev);
6859 		return ERR_PTR(-ENOMEM);
6860 	}
6861 
6862 	INIT_LIST_HEAD(&dev->dev_list);
6863 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6864 	INIT_LIST_HEAD(&dev->post_commit_list);
6865 
6866 	atomic_set(&dev->reada_in_flight, 0);
6867 	atomic_set(&dev->dev_stats_ccnt, 0);
6868 	btrfs_device_data_ordered_init(dev);
6869 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6870 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
6871 	extent_io_tree_init(fs_info, &dev->alloc_state,
6872 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6873 
6874 	if (devid)
6875 		tmp = *devid;
6876 	else {
6877 		int ret;
6878 
6879 		ret = find_next_devid(fs_info, &tmp);
6880 		if (ret) {
6881 			btrfs_free_device(dev);
6882 			return ERR_PTR(ret);
6883 		}
6884 	}
6885 	dev->devid = tmp;
6886 
6887 	if (uuid)
6888 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6889 	else
6890 		generate_random_uuid(dev->uuid);
6891 
6892 	return dev;
6893 }
6894 
6895 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6896 					u64 devid, u8 *uuid, bool error)
6897 {
6898 	if (error)
6899 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6900 			      devid, uuid);
6901 	else
6902 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6903 			      devid, uuid);
6904 }
6905 
6906 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6907 {
6908 	const int data_stripes = calc_data_stripes(type, num_stripes);
6909 
6910 	return div_u64(chunk_len, data_stripes);
6911 }
6912 
6913 #if BITS_PER_LONG == 32
6914 /*
6915  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6916  * can't be accessed on 32bit systems.
6917  *
6918  * This function do mount time check to reject the fs if it already has
6919  * metadata chunk beyond that limit.
6920  */
6921 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6922 				  u64 logical, u64 length, u64 type)
6923 {
6924 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6925 		return 0;
6926 
6927 	if (logical + length < MAX_LFS_FILESIZE)
6928 		return 0;
6929 
6930 	btrfs_err_32bit_limit(fs_info);
6931 	return -EOVERFLOW;
6932 }
6933 
6934 /*
6935  * This is to give early warning for any metadata chunk reaching
6936  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6937  * Although we can still access the metadata, it's not going to be possible
6938  * once the limit is reached.
6939  */
6940 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6941 				  u64 logical, u64 length, u64 type)
6942 {
6943 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6944 		return;
6945 
6946 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6947 		return;
6948 
6949 	btrfs_warn_32bit_limit(fs_info);
6950 }
6951 #endif
6952 
6953 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6954 			  struct btrfs_chunk *chunk)
6955 {
6956 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6957 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6958 	struct map_lookup *map;
6959 	struct extent_map *em;
6960 	u64 logical;
6961 	u64 length;
6962 	u64 devid;
6963 	u64 type;
6964 	u8 uuid[BTRFS_UUID_SIZE];
6965 	int num_stripes;
6966 	int ret;
6967 	int i;
6968 
6969 	logical = key->offset;
6970 	length = btrfs_chunk_length(leaf, chunk);
6971 	type = btrfs_chunk_type(leaf, chunk);
6972 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6973 
6974 #if BITS_PER_LONG == 32
6975 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6976 	if (ret < 0)
6977 		return ret;
6978 	warn_32bit_meta_chunk(fs_info, logical, length, type);
6979 #endif
6980 
6981 	/*
6982 	 * Only need to verify chunk item if we're reading from sys chunk array,
6983 	 * as chunk item in tree block is already verified by tree-checker.
6984 	 */
6985 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6986 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6987 		if (ret)
6988 			return ret;
6989 	}
6990 
6991 	read_lock(&map_tree->lock);
6992 	em = lookup_extent_mapping(map_tree, logical, 1);
6993 	read_unlock(&map_tree->lock);
6994 
6995 	/* already mapped? */
6996 	if (em && em->start <= logical && em->start + em->len > logical) {
6997 		free_extent_map(em);
6998 		return 0;
6999 	} else if (em) {
7000 		free_extent_map(em);
7001 	}
7002 
7003 	em = alloc_extent_map();
7004 	if (!em)
7005 		return -ENOMEM;
7006 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7007 	if (!map) {
7008 		free_extent_map(em);
7009 		return -ENOMEM;
7010 	}
7011 
7012 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7013 	em->map_lookup = map;
7014 	em->start = logical;
7015 	em->len = length;
7016 	em->orig_start = 0;
7017 	em->block_start = 0;
7018 	em->block_len = em->len;
7019 
7020 	map->num_stripes = num_stripes;
7021 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7022 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7023 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7024 	map->type = type;
7025 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7026 	map->verified_stripes = 0;
7027 	em->orig_block_len = calc_stripe_length(type, em->len,
7028 						map->num_stripes);
7029 	for (i = 0; i < num_stripes; i++) {
7030 		map->stripes[i].physical =
7031 			btrfs_stripe_offset_nr(leaf, chunk, i);
7032 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7033 		read_extent_buffer(leaf, uuid, (unsigned long)
7034 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7035 				   BTRFS_UUID_SIZE);
7036 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7037 							devid, uuid, NULL);
7038 		if (!map->stripes[i].dev &&
7039 		    !btrfs_test_opt(fs_info, DEGRADED)) {
7040 			free_extent_map(em);
7041 			btrfs_report_missing_device(fs_info, devid, uuid, true);
7042 			return -ENOENT;
7043 		}
7044 		if (!map->stripes[i].dev) {
7045 			map->stripes[i].dev =
7046 				add_missing_dev(fs_info->fs_devices, devid,
7047 						uuid);
7048 			if (IS_ERR(map->stripes[i].dev)) {
7049 				free_extent_map(em);
7050 				btrfs_err(fs_info,
7051 					"failed to init missing dev %llu: %ld",
7052 					devid, PTR_ERR(map->stripes[i].dev));
7053 				return PTR_ERR(map->stripes[i].dev);
7054 			}
7055 			btrfs_report_missing_device(fs_info, devid, uuid, false);
7056 		}
7057 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7058 				&(map->stripes[i].dev->dev_state));
7059 
7060 	}
7061 
7062 	write_lock(&map_tree->lock);
7063 	ret = add_extent_mapping(map_tree, em, 0);
7064 	write_unlock(&map_tree->lock);
7065 	if (ret < 0) {
7066 		btrfs_err(fs_info,
7067 			  "failed to add chunk map, start=%llu len=%llu: %d",
7068 			  em->start, em->len, ret);
7069 	}
7070 	free_extent_map(em);
7071 
7072 	return ret;
7073 }
7074 
7075 static void fill_device_from_item(struct extent_buffer *leaf,
7076 				 struct btrfs_dev_item *dev_item,
7077 				 struct btrfs_device *device)
7078 {
7079 	unsigned long ptr;
7080 
7081 	device->devid = btrfs_device_id(leaf, dev_item);
7082 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7083 	device->total_bytes = device->disk_total_bytes;
7084 	device->commit_total_bytes = device->disk_total_bytes;
7085 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7086 	device->commit_bytes_used = device->bytes_used;
7087 	device->type = btrfs_device_type(leaf, dev_item);
7088 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7089 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7090 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7091 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7092 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7093 
7094 	ptr = btrfs_device_uuid(dev_item);
7095 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7096 }
7097 
7098 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7099 						  u8 *fsid)
7100 {
7101 	struct btrfs_fs_devices *fs_devices;
7102 	int ret;
7103 
7104 	lockdep_assert_held(&uuid_mutex);
7105 	ASSERT(fsid);
7106 
7107 	/* This will match only for multi-device seed fs */
7108 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7109 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7110 			return fs_devices;
7111 
7112 
7113 	fs_devices = find_fsid(fsid, NULL);
7114 	if (!fs_devices) {
7115 		if (!btrfs_test_opt(fs_info, DEGRADED))
7116 			return ERR_PTR(-ENOENT);
7117 
7118 		fs_devices = alloc_fs_devices(fsid, NULL);
7119 		if (IS_ERR(fs_devices))
7120 			return fs_devices;
7121 
7122 		fs_devices->seeding = true;
7123 		fs_devices->opened = 1;
7124 		return fs_devices;
7125 	}
7126 
7127 	/*
7128 	 * Upon first call for a seed fs fsid, just create a private copy of the
7129 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7130 	 */
7131 	fs_devices = clone_fs_devices(fs_devices);
7132 	if (IS_ERR(fs_devices))
7133 		return fs_devices;
7134 
7135 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7136 	if (ret) {
7137 		free_fs_devices(fs_devices);
7138 		return ERR_PTR(ret);
7139 	}
7140 
7141 	if (!fs_devices->seeding) {
7142 		close_fs_devices(fs_devices);
7143 		free_fs_devices(fs_devices);
7144 		return ERR_PTR(-EINVAL);
7145 	}
7146 
7147 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7148 
7149 	return fs_devices;
7150 }
7151 
7152 static int read_one_dev(struct extent_buffer *leaf,
7153 			struct btrfs_dev_item *dev_item)
7154 {
7155 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7156 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7157 	struct btrfs_device *device;
7158 	u64 devid;
7159 	int ret;
7160 	u8 fs_uuid[BTRFS_FSID_SIZE];
7161 	u8 dev_uuid[BTRFS_UUID_SIZE];
7162 
7163 	devid = btrfs_device_id(leaf, dev_item);
7164 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7165 			   BTRFS_UUID_SIZE);
7166 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7167 			   BTRFS_FSID_SIZE);
7168 
7169 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7170 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7171 		if (IS_ERR(fs_devices))
7172 			return PTR_ERR(fs_devices);
7173 	}
7174 
7175 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7176 				   fs_uuid);
7177 	if (!device) {
7178 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7179 			btrfs_report_missing_device(fs_info, devid,
7180 							dev_uuid, true);
7181 			return -ENOENT;
7182 		}
7183 
7184 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7185 		if (IS_ERR(device)) {
7186 			btrfs_err(fs_info,
7187 				"failed to add missing dev %llu: %ld",
7188 				devid, PTR_ERR(device));
7189 			return PTR_ERR(device);
7190 		}
7191 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7192 	} else {
7193 		if (!device->bdev) {
7194 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7195 				btrfs_report_missing_device(fs_info,
7196 						devid, dev_uuid, true);
7197 				return -ENOENT;
7198 			}
7199 			btrfs_report_missing_device(fs_info, devid,
7200 							dev_uuid, false);
7201 		}
7202 
7203 		if (!device->bdev &&
7204 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7205 			/*
7206 			 * this happens when a device that was properly setup
7207 			 * in the device info lists suddenly goes bad.
7208 			 * device->bdev is NULL, and so we have to set
7209 			 * device->missing to one here
7210 			 */
7211 			device->fs_devices->missing_devices++;
7212 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7213 		}
7214 
7215 		/* Move the device to its own fs_devices */
7216 		if (device->fs_devices != fs_devices) {
7217 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7218 							&device->dev_state));
7219 
7220 			list_move(&device->dev_list, &fs_devices->devices);
7221 			device->fs_devices->num_devices--;
7222 			fs_devices->num_devices++;
7223 
7224 			device->fs_devices->missing_devices--;
7225 			fs_devices->missing_devices++;
7226 
7227 			device->fs_devices = fs_devices;
7228 		}
7229 	}
7230 
7231 	if (device->fs_devices != fs_info->fs_devices) {
7232 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7233 		if (device->generation !=
7234 		    btrfs_device_generation(leaf, dev_item))
7235 			return -EINVAL;
7236 	}
7237 
7238 	fill_device_from_item(leaf, dev_item, device);
7239 	if (device->bdev) {
7240 		u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7241 
7242 		if (device->total_bytes > max_total_bytes) {
7243 			btrfs_err(fs_info,
7244 			"device total_bytes should be at most %llu but found %llu",
7245 				  max_total_bytes, device->total_bytes);
7246 			return -EINVAL;
7247 		}
7248 	}
7249 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7250 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7251 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7252 		device->fs_devices->total_rw_bytes += device->total_bytes;
7253 		atomic64_add(device->total_bytes - device->bytes_used,
7254 				&fs_info->free_chunk_space);
7255 	}
7256 	ret = 0;
7257 	return ret;
7258 }
7259 
7260 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7261 {
7262 	struct btrfs_root *root = fs_info->tree_root;
7263 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7264 	struct extent_buffer *sb;
7265 	struct btrfs_disk_key *disk_key;
7266 	struct btrfs_chunk *chunk;
7267 	u8 *array_ptr;
7268 	unsigned long sb_array_offset;
7269 	int ret = 0;
7270 	u32 num_stripes;
7271 	u32 array_size;
7272 	u32 len = 0;
7273 	u32 cur_offset;
7274 	u64 type;
7275 	struct btrfs_key key;
7276 
7277 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7278 	/*
7279 	 * This will create extent buffer of nodesize, superblock size is
7280 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7281 	 * overallocate but we can keep it as-is, only the first page is used.
7282 	 */
7283 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7284 					  root->root_key.objectid, 0);
7285 	if (IS_ERR(sb))
7286 		return PTR_ERR(sb);
7287 	set_extent_buffer_uptodate(sb);
7288 	/*
7289 	 * The sb extent buffer is artificial and just used to read the system array.
7290 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7291 	 * pages up-to-date when the page is larger: extent does not cover the
7292 	 * whole page and consequently check_page_uptodate does not find all
7293 	 * the page's extents up-to-date (the hole beyond sb),
7294 	 * write_extent_buffer then triggers a WARN_ON.
7295 	 *
7296 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7297 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7298 	 * to silence the warning eg. on PowerPC 64.
7299 	 */
7300 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7301 		SetPageUptodate(sb->pages[0]);
7302 
7303 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7304 	array_size = btrfs_super_sys_array_size(super_copy);
7305 
7306 	array_ptr = super_copy->sys_chunk_array;
7307 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7308 	cur_offset = 0;
7309 
7310 	while (cur_offset < array_size) {
7311 		disk_key = (struct btrfs_disk_key *)array_ptr;
7312 		len = sizeof(*disk_key);
7313 		if (cur_offset + len > array_size)
7314 			goto out_short_read;
7315 
7316 		btrfs_disk_key_to_cpu(&key, disk_key);
7317 
7318 		array_ptr += len;
7319 		sb_array_offset += len;
7320 		cur_offset += len;
7321 
7322 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7323 			btrfs_err(fs_info,
7324 			    "unexpected item type %u in sys_array at offset %u",
7325 				  (u32)key.type, cur_offset);
7326 			ret = -EIO;
7327 			break;
7328 		}
7329 
7330 		chunk = (struct btrfs_chunk *)sb_array_offset;
7331 		/*
7332 		 * At least one btrfs_chunk with one stripe must be present,
7333 		 * exact stripe count check comes afterwards
7334 		 */
7335 		len = btrfs_chunk_item_size(1);
7336 		if (cur_offset + len > array_size)
7337 			goto out_short_read;
7338 
7339 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7340 		if (!num_stripes) {
7341 			btrfs_err(fs_info,
7342 			"invalid number of stripes %u in sys_array at offset %u",
7343 				  num_stripes, cur_offset);
7344 			ret = -EIO;
7345 			break;
7346 		}
7347 
7348 		type = btrfs_chunk_type(sb, chunk);
7349 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7350 			btrfs_err(fs_info,
7351 			"invalid chunk type %llu in sys_array at offset %u",
7352 				  type, cur_offset);
7353 			ret = -EIO;
7354 			break;
7355 		}
7356 
7357 		len = btrfs_chunk_item_size(num_stripes);
7358 		if (cur_offset + len > array_size)
7359 			goto out_short_read;
7360 
7361 		ret = read_one_chunk(&key, sb, chunk);
7362 		if (ret)
7363 			break;
7364 
7365 		array_ptr += len;
7366 		sb_array_offset += len;
7367 		cur_offset += len;
7368 	}
7369 	clear_extent_buffer_uptodate(sb);
7370 	free_extent_buffer_stale(sb);
7371 	return ret;
7372 
7373 out_short_read:
7374 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7375 			len, cur_offset);
7376 	clear_extent_buffer_uptodate(sb);
7377 	free_extent_buffer_stale(sb);
7378 	return -EIO;
7379 }
7380 
7381 /*
7382  * Check if all chunks in the fs are OK for read-write degraded mount
7383  *
7384  * If the @failing_dev is specified, it's accounted as missing.
7385  *
7386  * Return true if all chunks meet the minimal RW mount requirements.
7387  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7388  */
7389 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7390 					struct btrfs_device *failing_dev)
7391 {
7392 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7393 	struct extent_map *em;
7394 	u64 next_start = 0;
7395 	bool ret = true;
7396 
7397 	read_lock(&map_tree->lock);
7398 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7399 	read_unlock(&map_tree->lock);
7400 	/* No chunk at all? Return false anyway */
7401 	if (!em) {
7402 		ret = false;
7403 		goto out;
7404 	}
7405 	while (em) {
7406 		struct map_lookup *map;
7407 		int missing = 0;
7408 		int max_tolerated;
7409 		int i;
7410 
7411 		map = em->map_lookup;
7412 		max_tolerated =
7413 			btrfs_get_num_tolerated_disk_barrier_failures(
7414 					map->type);
7415 		for (i = 0; i < map->num_stripes; i++) {
7416 			struct btrfs_device *dev = map->stripes[i].dev;
7417 
7418 			if (!dev || !dev->bdev ||
7419 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7420 			    dev->last_flush_error)
7421 				missing++;
7422 			else if (failing_dev && failing_dev == dev)
7423 				missing++;
7424 		}
7425 		if (missing > max_tolerated) {
7426 			if (!failing_dev)
7427 				btrfs_warn(fs_info,
7428 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7429 				   em->start, missing, max_tolerated);
7430 			free_extent_map(em);
7431 			ret = false;
7432 			goto out;
7433 		}
7434 		next_start = extent_map_end(em);
7435 		free_extent_map(em);
7436 
7437 		read_lock(&map_tree->lock);
7438 		em = lookup_extent_mapping(map_tree, next_start,
7439 					   (u64)(-1) - next_start);
7440 		read_unlock(&map_tree->lock);
7441 	}
7442 out:
7443 	return ret;
7444 }
7445 
7446 static void readahead_tree_node_children(struct extent_buffer *node)
7447 {
7448 	int i;
7449 	const int nr_items = btrfs_header_nritems(node);
7450 
7451 	for (i = 0; i < nr_items; i++)
7452 		btrfs_readahead_node_child(node, i);
7453 }
7454 
7455 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7456 {
7457 	struct btrfs_root *root = fs_info->chunk_root;
7458 	struct btrfs_path *path;
7459 	struct extent_buffer *leaf;
7460 	struct btrfs_key key;
7461 	struct btrfs_key found_key;
7462 	int ret;
7463 	int slot;
7464 	u64 total_dev = 0;
7465 	u64 last_ra_node = 0;
7466 
7467 	path = btrfs_alloc_path();
7468 	if (!path)
7469 		return -ENOMEM;
7470 
7471 	/*
7472 	 * uuid_mutex is needed only if we are mounting a sprout FS
7473 	 * otherwise we don't need it.
7474 	 */
7475 	mutex_lock(&uuid_mutex);
7476 
7477 	/*
7478 	 * It is possible for mount and umount to race in such a way that
7479 	 * we execute this code path, but open_fs_devices failed to clear
7480 	 * total_rw_bytes. We certainly want it cleared before reading the
7481 	 * device items, so clear it here.
7482 	 */
7483 	fs_info->fs_devices->total_rw_bytes = 0;
7484 
7485 	/*
7486 	 * Read all device items, and then all the chunk items. All
7487 	 * device items are found before any chunk item (their object id
7488 	 * is smaller than the lowest possible object id for a chunk
7489 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7490 	 */
7491 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7492 	key.offset = 0;
7493 	key.type = 0;
7494 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7495 	if (ret < 0)
7496 		goto error;
7497 	while (1) {
7498 		struct extent_buffer *node;
7499 
7500 		leaf = path->nodes[0];
7501 		slot = path->slots[0];
7502 		if (slot >= btrfs_header_nritems(leaf)) {
7503 			ret = btrfs_next_leaf(root, path);
7504 			if (ret == 0)
7505 				continue;
7506 			if (ret < 0)
7507 				goto error;
7508 			break;
7509 		}
7510 		/*
7511 		 * The nodes on level 1 are not locked but we don't need to do
7512 		 * that during mount time as nothing else can access the tree
7513 		 */
7514 		node = path->nodes[1];
7515 		if (node) {
7516 			if (last_ra_node != node->start) {
7517 				readahead_tree_node_children(node);
7518 				last_ra_node = node->start;
7519 			}
7520 		}
7521 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7522 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7523 			struct btrfs_dev_item *dev_item;
7524 			dev_item = btrfs_item_ptr(leaf, slot,
7525 						  struct btrfs_dev_item);
7526 			ret = read_one_dev(leaf, dev_item);
7527 			if (ret)
7528 				goto error;
7529 			total_dev++;
7530 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7531 			struct btrfs_chunk *chunk;
7532 
7533 			/*
7534 			 * We are only called at mount time, so no need to take
7535 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7536 			 * we always lock first fs_info->chunk_mutex before
7537 			 * acquiring any locks on the chunk tree. This is a
7538 			 * requirement for chunk allocation, see the comment on
7539 			 * top of btrfs_chunk_alloc() for details.
7540 			 */
7541 			ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7542 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7543 			ret = read_one_chunk(&found_key, leaf, chunk);
7544 			if (ret)
7545 				goto error;
7546 		}
7547 		path->slots[0]++;
7548 	}
7549 
7550 	/*
7551 	 * After loading chunk tree, we've got all device information,
7552 	 * do another round of validation checks.
7553 	 */
7554 	if (total_dev != fs_info->fs_devices->total_devices) {
7555 		btrfs_err(fs_info,
7556 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7557 			  btrfs_super_num_devices(fs_info->super_copy),
7558 			  total_dev);
7559 		ret = -EINVAL;
7560 		goto error;
7561 	}
7562 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7563 	    fs_info->fs_devices->total_rw_bytes) {
7564 		btrfs_err(fs_info,
7565 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7566 			  btrfs_super_total_bytes(fs_info->super_copy),
7567 			  fs_info->fs_devices->total_rw_bytes);
7568 		ret = -EINVAL;
7569 		goto error;
7570 	}
7571 	ret = 0;
7572 error:
7573 	mutex_unlock(&uuid_mutex);
7574 
7575 	btrfs_free_path(path);
7576 	return ret;
7577 }
7578 
7579 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7580 {
7581 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7582 	struct btrfs_device *device;
7583 
7584 	fs_devices->fs_info = fs_info;
7585 
7586 	mutex_lock(&fs_devices->device_list_mutex);
7587 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7588 		device->fs_info = fs_info;
7589 
7590 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7591 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7592 			device->fs_info = fs_info;
7593 
7594 		seed_devs->fs_info = fs_info;
7595 	}
7596 	mutex_unlock(&fs_devices->device_list_mutex);
7597 }
7598 
7599 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7600 				 const struct btrfs_dev_stats_item *ptr,
7601 				 int index)
7602 {
7603 	u64 val;
7604 
7605 	read_extent_buffer(eb, &val,
7606 			   offsetof(struct btrfs_dev_stats_item, values) +
7607 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7608 			   sizeof(val));
7609 	return val;
7610 }
7611 
7612 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7613 				      struct btrfs_dev_stats_item *ptr,
7614 				      int index, u64 val)
7615 {
7616 	write_extent_buffer(eb, &val,
7617 			    offsetof(struct btrfs_dev_stats_item, values) +
7618 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7619 			    sizeof(val));
7620 }
7621 
7622 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7623 				       struct btrfs_path *path)
7624 {
7625 	struct btrfs_dev_stats_item *ptr;
7626 	struct extent_buffer *eb;
7627 	struct btrfs_key key;
7628 	int item_size;
7629 	int i, ret, slot;
7630 
7631 	if (!device->fs_info->dev_root)
7632 		return 0;
7633 
7634 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7635 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7636 	key.offset = device->devid;
7637 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7638 	if (ret) {
7639 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7640 			btrfs_dev_stat_set(device, i, 0);
7641 		device->dev_stats_valid = 1;
7642 		btrfs_release_path(path);
7643 		return ret < 0 ? ret : 0;
7644 	}
7645 	slot = path->slots[0];
7646 	eb = path->nodes[0];
7647 	item_size = btrfs_item_size_nr(eb, slot);
7648 
7649 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7650 
7651 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7652 		if (item_size >= (1 + i) * sizeof(__le64))
7653 			btrfs_dev_stat_set(device, i,
7654 					   btrfs_dev_stats_value(eb, ptr, i));
7655 		else
7656 			btrfs_dev_stat_set(device, i, 0);
7657 	}
7658 
7659 	device->dev_stats_valid = 1;
7660 	btrfs_dev_stat_print_on_load(device);
7661 	btrfs_release_path(path);
7662 
7663 	return 0;
7664 }
7665 
7666 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7667 {
7668 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7669 	struct btrfs_device *device;
7670 	struct btrfs_path *path = NULL;
7671 	int ret = 0;
7672 
7673 	path = btrfs_alloc_path();
7674 	if (!path)
7675 		return -ENOMEM;
7676 
7677 	mutex_lock(&fs_devices->device_list_mutex);
7678 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7679 		ret = btrfs_device_init_dev_stats(device, path);
7680 		if (ret)
7681 			goto out;
7682 	}
7683 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7684 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7685 			ret = btrfs_device_init_dev_stats(device, path);
7686 			if (ret)
7687 				goto out;
7688 		}
7689 	}
7690 out:
7691 	mutex_unlock(&fs_devices->device_list_mutex);
7692 
7693 	btrfs_free_path(path);
7694 	return ret;
7695 }
7696 
7697 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7698 				struct btrfs_device *device)
7699 {
7700 	struct btrfs_fs_info *fs_info = trans->fs_info;
7701 	struct btrfs_root *dev_root = fs_info->dev_root;
7702 	struct btrfs_path *path;
7703 	struct btrfs_key key;
7704 	struct extent_buffer *eb;
7705 	struct btrfs_dev_stats_item *ptr;
7706 	int ret;
7707 	int i;
7708 
7709 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7710 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7711 	key.offset = device->devid;
7712 
7713 	path = btrfs_alloc_path();
7714 	if (!path)
7715 		return -ENOMEM;
7716 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7717 	if (ret < 0) {
7718 		btrfs_warn_in_rcu(fs_info,
7719 			"error %d while searching for dev_stats item for device %s",
7720 			      ret, rcu_str_deref(device->name));
7721 		goto out;
7722 	}
7723 
7724 	if (ret == 0 &&
7725 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7726 		/* need to delete old one and insert a new one */
7727 		ret = btrfs_del_item(trans, dev_root, path);
7728 		if (ret != 0) {
7729 			btrfs_warn_in_rcu(fs_info,
7730 				"delete too small dev_stats item for device %s failed %d",
7731 				      rcu_str_deref(device->name), ret);
7732 			goto out;
7733 		}
7734 		ret = 1;
7735 	}
7736 
7737 	if (ret == 1) {
7738 		/* need to insert a new item */
7739 		btrfs_release_path(path);
7740 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7741 					      &key, sizeof(*ptr));
7742 		if (ret < 0) {
7743 			btrfs_warn_in_rcu(fs_info,
7744 				"insert dev_stats item for device %s failed %d",
7745 				rcu_str_deref(device->name), ret);
7746 			goto out;
7747 		}
7748 	}
7749 
7750 	eb = path->nodes[0];
7751 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7752 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7753 		btrfs_set_dev_stats_value(eb, ptr, i,
7754 					  btrfs_dev_stat_read(device, i));
7755 	btrfs_mark_buffer_dirty(eb);
7756 
7757 out:
7758 	btrfs_free_path(path);
7759 	return ret;
7760 }
7761 
7762 /*
7763  * called from commit_transaction. Writes all changed device stats to disk.
7764  */
7765 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7766 {
7767 	struct btrfs_fs_info *fs_info = trans->fs_info;
7768 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7769 	struct btrfs_device *device;
7770 	int stats_cnt;
7771 	int ret = 0;
7772 
7773 	mutex_lock(&fs_devices->device_list_mutex);
7774 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7775 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7776 		if (!device->dev_stats_valid || stats_cnt == 0)
7777 			continue;
7778 
7779 
7780 		/*
7781 		 * There is a LOAD-LOAD control dependency between the value of
7782 		 * dev_stats_ccnt and updating the on-disk values which requires
7783 		 * reading the in-memory counters. Such control dependencies
7784 		 * require explicit read memory barriers.
7785 		 *
7786 		 * This memory barriers pairs with smp_mb__before_atomic in
7787 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7788 		 * barrier implied by atomic_xchg in
7789 		 * btrfs_dev_stats_read_and_reset
7790 		 */
7791 		smp_rmb();
7792 
7793 		ret = update_dev_stat_item(trans, device);
7794 		if (!ret)
7795 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7796 	}
7797 	mutex_unlock(&fs_devices->device_list_mutex);
7798 
7799 	return ret;
7800 }
7801 
7802 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7803 {
7804 	btrfs_dev_stat_inc(dev, index);
7805 	btrfs_dev_stat_print_on_error(dev);
7806 }
7807 
7808 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7809 {
7810 	if (!dev->dev_stats_valid)
7811 		return;
7812 	btrfs_err_rl_in_rcu(dev->fs_info,
7813 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7814 			   rcu_str_deref(dev->name),
7815 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7816 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7817 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7818 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7819 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7820 }
7821 
7822 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7823 {
7824 	int i;
7825 
7826 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7827 		if (btrfs_dev_stat_read(dev, i) != 0)
7828 			break;
7829 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7830 		return; /* all values == 0, suppress message */
7831 
7832 	btrfs_info_in_rcu(dev->fs_info,
7833 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7834 	       rcu_str_deref(dev->name),
7835 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7836 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7837 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7838 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7839 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7840 }
7841 
7842 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7843 			struct btrfs_ioctl_get_dev_stats *stats)
7844 {
7845 	struct btrfs_device *dev;
7846 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7847 	int i;
7848 
7849 	mutex_lock(&fs_devices->device_list_mutex);
7850 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7851 	mutex_unlock(&fs_devices->device_list_mutex);
7852 
7853 	if (!dev) {
7854 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7855 		return -ENODEV;
7856 	} else if (!dev->dev_stats_valid) {
7857 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7858 		return -ENODEV;
7859 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7860 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7861 			if (stats->nr_items > i)
7862 				stats->values[i] =
7863 					btrfs_dev_stat_read_and_reset(dev, i);
7864 			else
7865 				btrfs_dev_stat_set(dev, i, 0);
7866 		}
7867 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7868 			   current->comm, task_pid_nr(current));
7869 	} else {
7870 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7871 			if (stats->nr_items > i)
7872 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7873 	}
7874 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7875 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7876 	return 0;
7877 }
7878 
7879 /*
7880  * Update the size and bytes used for each device where it changed.  This is
7881  * delayed since we would otherwise get errors while writing out the
7882  * superblocks.
7883  *
7884  * Must be invoked during transaction commit.
7885  */
7886 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7887 {
7888 	struct btrfs_device *curr, *next;
7889 
7890 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7891 
7892 	if (list_empty(&trans->dev_update_list))
7893 		return;
7894 
7895 	/*
7896 	 * We don't need the device_list_mutex here.  This list is owned by the
7897 	 * transaction and the transaction must complete before the device is
7898 	 * released.
7899 	 */
7900 	mutex_lock(&trans->fs_info->chunk_mutex);
7901 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7902 				 post_commit_list) {
7903 		list_del_init(&curr->post_commit_list);
7904 		curr->commit_total_bytes = curr->disk_total_bytes;
7905 		curr->commit_bytes_used = curr->bytes_used;
7906 	}
7907 	mutex_unlock(&trans->fs_info->chunk_mutex);
7908 }
7909 
7910 /*
7911  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7912  */
7913 int btrfs_bg_type_to_factor(u64 flags)
7914 {
7915 	const int index = btrfs_bg_flags_to_raid_index(flags);
7916 
7917 	return btrfs_raid_array[index].ncopies;
7918 }
7919 
7920 
7921 
7922 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7923 				 u64 chunk_offset, u64 devid,
7924 				 u64 physical_offset, u64 physical_len)
7925 {
7926 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7927 	struct extent_map *em;
7928 	struct map_lookup *map;
7929 	struct btrfs_device *dev;
7930 	u64 stripe_len;
7931 	bool found = false;
7932 	int ret = 0;
7933 	int i;
7934 
7935 	read_lock(&em_tree->lock);
7936 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7937 	read_unlock(&em_tree->lock);
7938 
7939 	if (!em) {
7940 		btrfs_err(fs_info,
7941 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7942 			  physical_offset, devid);
7943 		ret = -EUCLEAN;
7944 		goto out;
7945 	}
7946 
7947 	map = em->map_lookup;
7948 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7949 	if (physical_len != stripe_len) {
7950 		btrfs_err(fs_info,
7951 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7952 			  physical_offset, devid, em->start, physical_len,
7953 			  stripe_len);
7954 		ret = -EUCLEAN;
7955 		goto out;
7956 	}
7957 
7958 	for (i = 0; i < map->num_stripes; i++) {
7959 		if (map->stripes[i].dev->devid == devid &&
7960 		    map->stripes[i].physical == physical_offset) {
7961 			found = true;
7962 			if (map->verified_stripes >= map->num_stripes) {
7963 				btrfs_err(fs_info,
7964 				"too many dev extents for chunk %llu found",
7965 					  em->start);
7966 				ret = -EUCLEAN;
7967 				goto out;
7968 			}
7969 			map->verified_stripes++;
7970 			break;
7971 		}
7972 	}
7973 	if (!found) {
7974 		btrfs_err(fs_info,
7975 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7976 			physical_offset, devid);
7977 		ret = -EUCLEAN;
7978 	}
7979 
7980 	/* Make sure no dev extent is beyond device boundary */
7981 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7982 	if (!dev) {
7983 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7984 		ret = -EUCLEAN;
7985 		goto out;
7986 	}
7987 
7988 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7989 		btrfs_err(fs_info,
7990 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7991 			  devid, physical_offset, physical_len,
7992 			  dev->disk_total_bytes);
7993 		ret = -EUCLEAN;
7994 		goto out;
7995 	}
7996 
7997 	if (dev->zone_info) {
7998 		u64 zone_size = dev->zone_info->zone_size;
7999 
8000 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8001 		    !IS_ALIGNED(physical_len, zone_size)) {
8002 			btrfs_err(fs_info,
8003 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8004 				  devid, physical_offset, physical_len);
8005 			ret = -EUCLEAN;
8006 			goto out;
8007 		}
8008 	}
8009 
8010 out:
8011 	free_extent_map(em);
8012 	return ret;
8013 }
8014 
8015 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8016 {
8017 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8018 	struct extent_map *em;
8019 	struct rb_node *node;
8020 	int ret = 0;
8021 
8022 	read_lock(&em_tree->lock);
8023 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8024 		em = rb_entry(node, struct extent_map, rb_node);
8025 		if (em->map_lookup->num_stripes !=
8026 		    em->map_lookup->verified_stripes) {
8027 			btrfs_err(fs_info,
8028 			"chunk %llu has missing dev extent, have %d expect %d",
8029 				  em->start, em->map_lookup->verified_stripes,
8030 				  em->map_lookup->num_stripes);
8031 			ret = -EUCLEAN;
8032 			goto out;
8033 		}
8034 	}
8035 out:
8036 	read_unlock(&em_tree->lock);
8037 	return ret;
8038 }
8039 
8040 /*
8041  * Ensure that all dev extents are mapped to correct chunk, otherwise
8042  * later chunk allocation/free would cause unexpected behavior.
8043  *
8044  * NOTE: This will iterate through the whole device tree, which should be of
8045  * the same size level as the chunk tree.  This slightly increases mount time.
8046  */
8047 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8048 {
8049 	struct btrfs_path *path;
8050 	struct btrfs_root *root = fs_info->dev_root;
8051 	struct btrfs_key key;
8052 	u64 prev_devid = 0;
8053 	u64 prev_dev_ext_end = 0;
8054 	int ret = 0;
8055 
8056 	/*
8057 	 * We don't have a dev_root because we mounted with ignorebadroots and
8058 	 * failed to load the root, so we want to skip the verification in this
8059 	 * case for sure.
8060 	 *
8061 	 * However if the dev root is fine, but the tree itself is corrupted
8062 	 * we'd still fail to mount.  This verification is only to make sure
8063 	 * writes can happen safely, so instead just bypass this check
8064 	 * completely in the case of IGNOREBADROOTS.
8065 	 */
8066 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8067 		return 0;
8068 
8069 	key.objectid = 1;
8070 	key.type = BTRFS_DEV_EXTENT_KEY;
8071 	key.offset = 0;
8072 
8073 	path = btrfs_alloc_path();
8074 	if (!path)
8075 		return -ENOMEM;
8076 
8077 	path->reada = READA_FORWARD;
8078 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8079 	if (ret < 0)
8080 		goto out;
8081 
8082 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8083 		ret = btrfs_next_leaf(root, path);
8084 		if (ret < 0)
8085 			goto out;
8086 		/* No dev extents at all? Not good */
8087 		if (ret > 0) {
8088 			ret = -EUCLEAN;
8089 			goto out;
8090 		}
8091 	}
8092 	while (1) {
8093 		struct extent_buffer *leaf = path->nodes[0];
8094 		struct btrfs_dev_extent *dext;
8095 		int slot = path->slots[0];
8096 		u64 chunk_offset;
8097 		u64 physical_offset;
8098 		u64 physical_len;
8099 		u64 devid;
8100 
8101 		btrfs_item_key_to_cpu(leaf, &key, slot);
8102 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8103 			break;
8104 		devid = key.objectid;
8105 		physical_offset = key.offset;
8106 
8107 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8108 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8109 		physical_len = btrfs_dev_extent_length(leaf, dext);
8110 
8111 		/* Check if this dev extent overlaps with the previous one */
8112 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8113 			btrfs_err(fs_info,
8114 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8115 				  devid, physical_offset, prev_dev_ext_end);
8116 			ret = -EUCLEAN;
8117 			goto out;
8118 		}
8119 
8120 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8121 					    physical_offset, physical_len);
8122 		if (ret < 0)
8123 			goto out;
8124 		prev_devid = devid;
8125 		prev_dev_ext_end = physical_offset + physical_len;
8126 
8127 		ret = btrfs_next_item(root, path);
8128 		if (ret < 0)
8129 			goto out;
8130 		if (ret > 0) {
8131 			ret = 0;
8132 			break;
8133 		}
8134 	}
8135 
8136 	/* Ensure all chunks have corresponding dev extents */
8137 	ret = verify_chunk_dev_extent_mapping(fs_info);
8138 out:
8139 	btrfs_free_path(path);
8140 	return ret;
8141 }
8142 
8143 /*
8144  * Check whether the given block group or device is pinned by any inode being
8145  * used as a swapfile.
8146  */
8147 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8148 {
8149 	struct btrfs_swapfile_pin *sp;
8150 	struct rb_node *node;
8151 
8152 	spin_lock(&fs_info->swapfile_pins_lock);
8153 	node = fs_info->swapfile_pins.rb_node;
8154 	while (node) {
8155 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8156 		if (ptr < sp->ptr)
8157 			node = node->rb_left;
8158 		else if (ptr > sp->ptr)
8159 			node = node->rb_right;
8160 		else
8161 			break;
8162 	}
8163 	spin_unlock(&fs_info->swapfile_pins_lock);
8164 	return node != NULL;
8165 }
8166 
8167 static int relocating_repair_kthread(void *data)
8168 {
8169 	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8170 	struct btrfs_fs_info *fs_info = cache->fs_info;
8171 	u64 target;
8172 	int ret = 0;
8173 
8174 	target = cache->start;
8175 	btrfs_put_block_group(cache);
8176 
8177 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8178 		btrfs_info(fs_info,
8179 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8180 			   target);
8181 		return -EBUSY;
8182 	}
8183 
8184 	mutex_lock(&fs_info->reclaim_bgs_lock);
8185 
8186 	/* Ensure block group still exists */
8187 	cache = btrfs_lookup_block_group(fs_info, target);
8188 	if (!cache)
8189 		goto out;
8190 
8191 	if (!cache->relocating_repair)
8192 		goto out;
8193 
8194 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8195 	if (ret < 0)
8196 		goto out;
8197 
8198 	btrfs_info(fs_info,
8199 		   "zoned: relocating block group %llu to repair IO failure",
8200 		   target);
8201 	ret = btrfs_relocate_chunk(fs_info, target);
8202 
8203 out:
8204 	if (cache)
8205 		btrfs_put_block_group(cache);
8206 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8207 	btrfs_exclop_finish(fs_info);
8208 
8209 	return ret;
8210 }
8211 
8212 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8213 {
8214 	struct btrfs_block_group *cache;
8215 
8216 	/* Do not attempt to repair in degraded state */
8217 	if (btrfs_test_opt(fs_info, DEGRADED))
8218 		return 0;
8219 
8220 	cache = btrfs_lookup_block_group(fs_info, logical);
8221 	if (!cache)
8222 		return 0;
8223 
8224 	spin_lock(&cache->lock);
8225 	if (cache->relocating_repair) {
8226 		spin_unlock(&cache->lock);
8227 		btrfs_put_block_group(cache);
8228 		return 0;
8229 	}
8230 	cache->relocating_repair = 1;
8231 	spin_unlock(&cache->lock);
8232 
8233 	kthread_run(relocating_repair_kthread, cache,
8234 		    "btrfs-relocating-repair");
8235 
8236 	return 0;
8237 }
8238