xref: /openbmc/linux/fs/btrfs/volumes.c (revision b627b4ed)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/iocontext.h>
24 #include <asm/div64.h>
25 #include "compat.h"
26 #include "ctree.h"
27 #include "extent_map.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
32 #include "async-thread.h"
33 
34 struct map_lookup {
35 	u64 type;
36 	int io_align;
37 	int io_width;
38 	int stripe_len;
39 	int sector_size;
40 	int num_stripes;
41 	int sub_stripes;
42 	struct btrfs_bio_stripe stripes[];
43 };
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 
50 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
51 			    (sizeof(struct btrfs_bio_stripe) * (n)))
52 
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 
56 void btrfs_lock_volumes(void)
57 {
58 	mutex_lock(&uuid_mutex);
59 }
60 
61 void btrfs_unlock_volumes(void)
62 {
63 	mutex_unlock(&uuid_mutex);
64 }
65 
66 static void lock_chunks(struct btrfs_root *root)
67 {
68 	mutex_lock(&root->fs_info->chunk_mutex);
69 }
70 
71 static void unlock_chunks(struct btrfs_root *root)
72 {
73 	mutex_unlock(&root->fs_info->chunk_mutex);
74 }
75 
76 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
77 {
78 	struct btrfs_device *device;
79 	WARN_ON(fs_devices->opened);
80 	while (!list_empty(&fs_devices->devices)) {
81 		device = list_entry(fs_devices->devices.next,
82 				    struct btrfs_device, dev_list);
83 		list_del(&device->dev_list);
84 		kfree(device->name);
85 		kfree(device);
86 	}
87 	kfree(fs_devices);
88 }
89 
90 int btrfs_cleanup_fs_uuids(void)
91 {
92 	struct btrfs_fs_devices *fs_devices;
93 
94 	while (!list_empty(&fs_uuids)) {
95 		fs_devices = list_entry(fs_uuids.next,
96 					struct btrfs_fs_devices, list);
97 		list_del(&fs_devices->list);
98 		free_fs_devices(fs_devices);
99 	}
100 	return 0;
101 }
102 
103 static noinline struct btrfs_device *__find_device(struct list_head *head,
104 						   u64 devid, u8 *uuid)
105 {
106 	struct btrfs_device *dev;
107 
108 	list_for_each_entry(dev, head, dev_list) {
109 		if (dev->devid == devid &&
110 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
111 			return dev;
112 		}
113 	}
114 	return NULL;
115 }
116 
117 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
118 {
119 	struct btrfs_fs_devices *fs_devices;
120 
121 	list_for_each_entry(fs_devices, &fs_uuids, list) {
122 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
123 			return fs_devices;
124 	}
125 	return NULL;
126 }
127 
128 /*
129  * we try to collect pending bios for a device so we don't get a large
130  * number of procs sending bios down to the same device.  This greatly
131  * improves the schedulers ability to collect and merge the bios.
132  *
133  * But, it also turns into a long list of bios to process and that is sure
134  * to eventually make the worker thread block.  The solution here is to
135  * make some progress and then put this work struct back at the end of
136  * the list if the block device is congested.  This way, multiple devices
137  * can make progress from a single worker thread.
138  */
139 static noinline int run_scheduled_bios(struct btrfs_device *device)
140 {
141 	struct bio *pending;
142 	struct backing_dev_info *bdi;
143 	struct btrfs_fs_info *fs_info;
144 	struct bio *tail;
145 	struct bio *cur;
146 	int again = 0;
147 	unsigned long num_run = 0;
148 	unsigned long limit;
149 	unsigned long last_waited = 0;
150 
151 	bdi = blk_get_backing_dev_info(device->bdev);
152 	fs_info = device->dev_root->fs_info;
153 	limit = btrfs_async_submit_limit(fs_info);
154 	limit = limit * 2 / 3;
155 
156 loop:
157 	spin_lock(&device->io_lock);
158 
159 loop_lock:
160 	/* take all the bios off the list at once and process them
161 	 * later on (without the lock held).  But, remember the
162 	 * tail and other pointers so the bios can be properly reinserted
163 	 * into the list if we hit congestion
164 	 */
165 	pending = device->pending_bios;
166 	tail = device->pending_bio_tail;
167 	WARN_ON(pending && !tail);
168 	device->pending_bios = NULL;
169 	device->pending_bio_tail = NULL;
170 
171 	/*
172 	 * if pending was null this time around, no bios need processing
173 	 * at all and we can stop.  Otherwise it'll loop back up again
174 	 * and do an additional check so no bios are missed.
175 	 *
176 	 * device->running_pending is used to synchronize with the
177 	 * schedule_bio code.
178 	 */
179 	if (pending) {
180 		again = 1;
181 		device->running_pending = 1;
182 	} else {
183 		again = 0;
184 		device->running_pending = 0;
185 	}
186 	spin_unlock(&device->io_lock);
187 
188 	while (pending) {
189 		cur = pending;
190 		pending = pending->bi_next;
191 		cur->bi_next = NULL;
192 		atomic_dec(&fs_info->nr_async_bios);
193 
194 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
195 		    waitqueue_active(&fs_info->async_submit_wait))
196 			wake_up(&fs_info->async_submit_wait);
197 
198 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
199 		bio_get(cur);
200 		submit_bio(cur->bi_rw, cur);
201 		bio_put(cur);
202 		num_run++;
203 
204 		/*
205 		 * we made progress, there is more work to do and the bdi
206 		 * is now congested.  Back off and let other work structs
207 		 * run instead
208 		 */
209 		if (pending && bdi_write_congested(bdi) && num_run > 16 &&
210 		    fs_info->fs_devices->open_devices > 1) {
211 			struct bio *old_head;
212 			struct io_context *ioc;
213 
214 			ioc = current->io_context;
215 
216 			/*
217 			 * the main goal here is that we don't want to
218 			 * block if we're going to be able to submit
219 			 * more requests without blocking.
220 			 *
221 			 * This code does two great things, it pokes into
222 			 * the elevator code from a filesystem _and_
223 			 * it makes assumptions about how batching works.
224 			 */
225 			if (ioc && ioc->nr_batch_requests > 0 &&
226 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
227 			    (last_waited == 0 ||
228 			     ioc->last_waited == last_waited)) {
229 				/*
230 				 * we want to go through our batch of
231 				 * requests and stop.  So, we copy out
232 				 * the ioc->last_waited time and test
233 				 * against it before looping
234 				 */
235 				last_waited = ioc->last_waited;
236 				continue;
237 			}
238 			spin_lock(&device->io_lock);
239 
240 			old_head = device->pending_bios;
241 			device->pending_bios = pending;
242 			if (device->pending_bio_tail)
243 				tail->bi_next = old_head;
244 			else
245 				device->pending_bio_tail = tail;
246 
247 			device->running_pending = 1;
248 
249 			spin_unlock(&device->io_lock);
250 			btrfs_requeue_work(&device->work);
251 			goto done;
252 		}
253 	}
254 	if (again)
255 		goto loop;
256 
257 	spin_lock(&device->io_lock);
258 	if (device->pending_bios)
259 		goto loop_lock;
260 	spin_unlock(&device->io_lock);
261 
262 	/*
263 	 * IO has already been through a long path to get here.  Checksumming,
264 	 * async helper threads, perhaps compression.  We've done a pretty
265 	 * good job of collecting a batch of IO and should just unplug
266 	 * the device right away.
267 	 *
268 	 * This will help anyone who is waiting on the IO, they might have
269 	 * already unplugged, but managed to do so before the bio they
270 	 * cared about found its way down here.
271 	 */
272 	blk_run_backing_dev(bdi, NULL);
273 done:
274 	return 0;
275 }
276 
277 static void pending_bios_fn(struct btrfs_work *work)
278 {
279 	struct btrfs_device *device;
280 
281 	device = container_of(work, struct btrfs_device, work);
282 	run_scheduled_bios(device);
283 }
284 
285 static noinline int device_list_add(const char *path,
286 			   struct btrfs_super_block *disk_super,
287 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
288 {
289 	struct btrfs_device *device;
290 	struct btrfs_fs_devices *fs_devices;
291 	u64 found_transid = btrfs_super_generation(disk_super);
292 
293 	fs_devices = find_fsid(disk_super->fsid);
294 	if (!fs_devices) {
295 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
296 		if (!fs_devices)
297 			return -ENOMEM;
298 		INIT_LIST_HEAD(&fs_devices->devices);
299 		INIT_LIST_HEAD(&fs_devices->alloc_list);
300 		list_add(&fs_devices->list, &fs_uuids);
301 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
302 		fs_devices->latest_devid = devid;
303 		fs_devices->latest_trans = found_transid;
304 		device = NULL;
305 	} else {
306 		device = __find_device(&fs_devices->devices, devid,
307 				       disk_super->dev_item.uuid);
308 	}
309 	if (!device) {
310 		if (fs_devices->opened)
311 			return -EBUSY;
312 
313 		device = kzalloc(sizeof(*device), GFP_NOFS);
314 		if (!device) {
315 			/* we can safely leave the fs_devices entry around */
316 			return -ENOMEM;
317 		}
318 		device->devid = devid;
319 		device->work.func = pending_bios_fn;
320 		memcpy(device->uuid, disk_super->dev_item.uuid,
321 		       BTRFS_UUID_SIZE);
322 		device->barriers = 1;
323 		spin_lock_init(&device->io_lock);
324 		device->name = kstrdup(path, GFP_NOFS);
325 		if (!device->name) {
326 			kfree(device);
327 			return -ENOMEM;
328 		}
329 		INIT_LIST_HEAD(&device->dev_alloc_list);
330 		list_add(&device->dev_list, &fs_devices->devices);
331 		device->fs_devices = fs_devices;
332 		fs_devices->num_devices++;
333 	}
334 
335 	if (found_transid > fs_devices->latest_trans) {
336 		fs_devices->latest_devid = devid;
337 		fs_devices->latest_trans = found_transid;
338 	}
339 	*fs_devices_ret = fs_devices;
340 	return 0;
341 }
342 
343 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
344 {
345 	struct btrfs_fs_devices *fs_devices;
346 	struct btrfs_device *device;
347 	struct btrfs_device *orig_dev;
348 
349 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
350 	if (!fs_devices)
351 		return ERR_PTR(-ENOMEM);
352 
353 	INIT_LIST_HEAD(&fs_devices->devices);
354 	INIT_LIST_HEAD(&fs_devices->alloc_list);
355 	INIT_LIST_HEAD(&fs_devices->list);
356 	fs_devices->latest_devid = orig->latest_devid;
357 	fs_devices->latest_trans = orig->latest_trans;
358 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
359 
360 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
361 		device = kzalloc(sizeof(*device), GFP_NOFS);
362 		if (!device)
363 			goto error;
364 
365 		device->name = kstrdup(orig_dev->name, GFP_NOFS);
366 		if (!device->name)
367 			goto error;
368 
369 		device->devid = orig_dev->devid;
370 		device->work.func = pending_bios_fn;
371 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
372 		device->barriers = 1;
373 		spin_lock_init(&device->io_lock);
374 		INIT_LIST_HEAD(&device->dev_list);
375 		INIT_LIST_HEAD(&device->dev_alloc_list);
376 
377 		list_add(&device->dev_list, &fs_devices->devices);
378 		device->fs_devices = fs_devices;
379 		fs_devices->num_devices++;
380 	}
381 	return fs_devices;
382 error:
383 	free_fs_devices(fs_devices);
384 	return ERR_PTR(-ENOMEM);
385 }
386 
387 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
388 {
389 	struct btrfs_device *device, *next;
390 
391 	mutex_lock(&uuid_mutex);
392 again:
393 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
394 		if (device->in_fs_metadata)
395 			continue;
396 
397 		if (device->bdev) {
398 			close_bdev_exclusive(device->bdev, device->mode);
399 			device->bdev = NULL;
400 			fs_devices->open_devices--;
401 		}
402 		if (device->writeable) {
403 			list_del_init(&device->dev_alloc_list);
404 			device->writeable = 0;
405 			fs_devices->rw_devices--;
406 		}
407 		list_del_init(&device->dev_list);
408 		fs_devices->num_devices--;
409 		kfree(device->name);
410 		kfree(device);
411 	}
412 
413 	if (fs_devices->seed) {
414 		fs_devices = fs_devices->seed;
415 		goto again;
416 	}
417 
418 	mutex_unlock(&uuid_mutex);
419 	return 0;
420 }
421 
422 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
423 {
424 	struct btrfs_device *device;
425 
426 	if (--fs_devices->opened > 0)
427 		return 0;
428 
429 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
430 		if (device->bdev) {
431 			close_bdev_exclusive(device->bdev, device->mode);
432 			fs_devices->open_devices--;
433 		}
434 		if (device->writeable) {
435 			list_del_init(&device->dev_alloc_list);
436 			fs_devices->rw_devices--;
437 		}
438 
439 		device->bdev = NULL;
440 		device->writeable = 0;
441 		device->in_fs_metadata = 0;
442 	}
443 	WARN_ON(fs_devices->open_devices);
444 	WARN_ON(fs_devices->rw_devices);
445 	fs_devices->opened = 0;
446 	fs_devices->seeding = 0;
447 
448 	return 0;
449 }
450 
451 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
452 {
453 	struct btrfs_fs_devices *seed_devices = NULL;
454 	int ret;
455 
456 	mutex_lock(&uuid_mutex);
457 	ret = __btrfs_close_devices(fs_devices);
458 	if (!fs_devices->opened) {
459 		seed_devices = fs_devices->seed;
460 		fs_devices->seed = NULL;
461 	}
462 	mutex_unlock(&uuid_mutex);
463 
464 	while (seed_devices) {
465 		fs_devices = seed_devices;
466 		seed_devices = fs_devices->seed;
467 		__btrfs_close_devices(fs_devices);
468 		free_fs_devices(fs_devices);
469 	}
470 	return ret;
471 }
472 
473 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
474 				fmode_t flags, void *holder)
475 {
476 	struct block_device *bdev;
477 	struct list_head *head = &fs_devices->devices;
478 	struct btrfs_device *device;
479 	struct block_device *latest_bdev = NULL;
480 	struct buffer_head *bh;
481 	struct btrfs_super_block *disk_super;
482 	u64 latest_devid = 0;
483 	u64 latest_transid = 0;
484 	u64 devid;
485 	int seeding = 1;
486 	int ret = 0;
487 
488 	list_for_each_entry(device, head, dev_list) {
489 		if (device->bdev)
490 			continue;
491 		if (!device->name)
492 			continue;
493 
494 		bdev = open_bdev_exclusive(device->name, flags, holder);
495 		if (IS_ERR(bdev)) {
496 			printk(KERN_INFO "open %s failed\n", device->name);
497 			goto error;
498 		}
499 		set_blocksize(bdev, 4096);
500 
501 		bh = btrfs_read_dev_super(bdev);
502 		if (!bh)
503 			goto error_close;
504 
505 		disk_super = (struct btrfs_super_block *)bh->b_data;
506 		devid = le64_to_cpu(disk_super->dev_item.devid);
507 		if (devid != device->devid)
508 			goto error_brelse;
509 
510 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
511 			   BTRFS_UUID_SIZE))
512 			goto error_brelse;
513 
514 		device->generation = btrfs_super_generation(disk_super);
515 		if (!latest_transid || device->generation > latest_transid) {
516 			latest_devid = devid;
517 			latest_transid = device->generation;
518 			latest_bdev = bdev;
519 		}
520 
521 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
522 			device->writeable = 0;
523 		} else {
524 			device->writeable = !bdev_read_only(bdev);
525 			seeding = 0;
526 		}
527 
528 		device->bdev = bdev;
529 		device->in_fs_metadata = 0;
530 		device->mode = flags;
531 
532 		fs_devices->open_devices++;
533 		if (device->writeable) {
534 			fs_devices->rw_devices++;
535 			list_add(&device->dev_alloc_list,
536 				 &fs_devices->alloc_list);
537 		}
538 		continue;
539 
540 error_brelse:
541 		brelse(bh);
542 error_close:
543 		close_bdev_exclusive(bdev, FMODE_READ);
544 error:
545 		continue;
546 	}
547 	if (fs_devices->open_devices == 0) {
548 		ret = -EIO;
549 		goto out;
550 	}
551 	fs_devices->seeding = seeding;
552 	fs_devices->opened = 1;
553 	fs_devices->latest_bdev = latest_bdev;
554 	fs_devices->latest_devid = latest_devid;
555 	fs_devices->latest_trans = latest_transid;
556 	fs_devices->total_rw_bytes = 0;
557 out:
558 	return ret;
559 }
560 
561 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
562 		       fmode_t flags, void *holder)
563 {
564 	int ret;
565 
566 	mutex_lock(&uuid_mutex);
567 	if (fs_devices->opened) {
568 		fs_devices->opened++;
569 		ret = 0;
570 	} else {
571 		ret = __btrfs_open_devices(fs_devices, flags, holder);
572 	}
573 	mutex_unlock(&uuid_mutex);
574 	return ret;
575 }
576 
577 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
578 			  struct btrfs_fs_devices **fs_devices_ret)
579 {
580 	struct btrfs_super_block *disk_super;
581 	struct block_device *bdev;
582 	struct buffer_head *bh;
583 	int ret;
584 	u64 devid;
585 	u64 transid;
586 
587 	mutex_lock(&uuid_mutex);
588 
589 	bdev = open_bdev_exclusive(path, flags, holder);
590 
591 	if (IS_ERR(bdev)) {
592 		ret = PTR_ERR(bdev);
593 		goto error;
594 	}
595 
596 	ret = set_blocksize(bdev, 4096);
597 	if (ret)
598 		goto error_close;
599 	bh = btrfs_read_dev_super(bdev);
600 	if (!bh) {
601 		ret = -EIO;
602 		goto error_close;
603 	}
604 	disk_super = (struct btrfs_super_block *)bh->b_data;
605 	devid = le64_to_cpu(disk_super->dev_item.devid);
606 	transid = btrfs_super_generation(disk_super);
607 	if (disk_super->label[0])
608 		printk(KERN_INFO "device label %s ", disk_super->label);
609 	else {
610 		/* FIXME, make a readl uuid parser */
611 		printk(KERN_INFO "device fsid %llx-%llx ",
612 		       *(unsigned long long *)disk_super->fsid,
613 		       *(unsigned long long *)(disk_super->fsid + 8));
614 	}
615 	printk(KERN_CONT "devid %llu transid %llu %s\n",
616 	       (unsigned long long)devid, (unsigned long long)transid, path);
617 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
618 
619 	brelse(bh);
620 error_close:
621 	close_bdev_exclusive(bdev, flags);
622 error:
623 	mutex_unlock(&uuid_mutex);
624 	return ret;
625 }
626 
627 /*
628  * this uses a pretty simple search, the expectation is that it is
629  * called very infrequently and that a given device has a small number
630  * of extents
631  */
632 static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
633 					 struct btrfs_device *device,
634 					 u64 num_bytes, u64 *start)
635 {
636 	struct btrfs_key key;
637 	struct btrfs_root *root = device->dev_root;
638 	struct btrfs_dev_extent *dev_extent = NULL;
639 	struct btrfs_path *path;
640 	u64 hole_size = 0;
641 	u64 last_byte = 0;
642 	u64 search_start = 0;
643 	u64 search_end = device->total_bytes;
644 	int ret;
645 	int slot = 0;
646 	int start_found;
647 	struct extent_buffer *l;
648 
649 	path = btrfs_alloc_path();
650 	if (!path)
651 		return -ENOMEM;
652 	path->reada = 2;
653 	start_found = 0;
654 
655 	/* FIXME use last free of some kind */
656 
657 	/* we don't want to overwrite the superblock on the drive,
658 	 * so we make sure to start at an offset of at least 1MB
659 	 */
660 	search_start = max((u64)1024 * 1024, search_start);
661 
662 	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
663 		search_start = max(root->fs_info->alloc_start, search_start);
664 
665 	key.objectid = device->devid;
666 	key.offset = search_start;
667 	key.type = BTRFS_DEV_EXTENT_KEY;
668 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
669 	if (ret < 0)
670 		goto error;
671 	ret = btrfs_previous_item(root, path, 0, key.type);
672 	if (ret < 0)
673 		goto error;
674 	l = path->nodes[0];
675 	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
676 	while (1) {
677 		l = path->nodes[0];
678 		slot = path->slots[0];
679 		if (slot >= btrfs_header_nritems(l)) {
680 			ret = btrfs_next_leaf(root, path);
681 			if (ret == 0)
682 				continue;
683 			if (ret < 0)
684 				goto error;
685 no_more_items:
686 			if (!start_found) {
687 				if (search_start >= search_end) {
688 					ret = -ENOSPC;
689 					goto error;
690 				}
691 				*start = search_start;
692 				start_found = 1;
693 				goto check_pending;
694 			}
695 			*start = last_byte > search_start ?
696 				last_byte : search_start;
697 			if (search_end <= *start) {
698 				ret = -ENOSPC;
699 				goto error;
700 			}
701 			goto check_pending;
702 		}
703 		btrfs_item_key_to_cpu(l, &key, slot);
704 
705 		if (key.objectid < device->devid)
706 			goto next;
707 
708 		if (key.objectid > device->devid)
709 			goto no_more_items;
710 
711 		if (key.offset >= search_start && key.offset > last_byte &&
712 		    start_found) {
713 			if (last_byte < search_start)
714 				last_byte = search_start;
715 			hole_size = key.offset - last_byte;
716 			if (key.offset > last_byte &&
717 			    hole_size >= num_bytes) {
718 				*start = last_byte;
719 				goto check_pending;
720 			}
721 		}
722 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
723 			goto next;
724 
725 		start_found = 1;
726 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
727 		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
728 next:
729 		path->slots[0]++;
730 		cond_resched();
731 	}
732 check_pending:
733 	/* we have to make sure we didn't find an extent that has already
734 	 * been allocated by the map tree or the original allocation
735 	 */
736 	BUG_ON(*start < search_start);
737 
738 	if (*start + num_bytes > search_end) {
739 		ret = -ENOSPC;
740 		goto error;
741 	}
742 	/* check for pending inserts here */
743 	ret = 0;
744 
745 error:
746 	btrfs_free_path(path);
747 	return ret;
748 }
749 
750 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
751 			  struct btrfs_device *device,
752 			  u64 start)
753 {
754 	int ret;
755 	struct btrfs_path *path;
756 	struct btrfs_root *root = device->dev_root;
757 	struct btrfs_key key;
758 	struct btrfs_key found_key;
759 	struct extent_buffer *leaf = NULL;
760 	struct btrfs_dev_extent *extent = NULL;
761 
762 	path = btrfs_alloc_path();
763 	if (!path)
764 		return -ENOMEM;
765 
766 	key.objectid = device->devid;
767 	key.offset = start;
768 	key.type = BTRFS_DEV_EXTENT_KEY;
769 
770 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
771 	if (ret > 0) {
772 		ret = btrfs_previous_item(root, path, key.objectid,
773 					  BTRFS_DEV_EXTENT_KEY);
774 		BUG_ON(ret);
775 		leaf = path->nodes[0];
776 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
777 		extent = btrfs_item_ptr(leaf, path->slots[0],
778 					struct btrfs_dev_extent);
779 		BUG_ON(found_key.offset > start || found_key.offset +
780 		       btrfs_dev_extent_length(leaf, extent) < start);
781 		ret = 0;
782 	} else if (ret == 0) {
783 		leaf = path->nodes[0];
784 		extent = btrfs_item_ptr(leaf, path->slots[0],
785 					struct btrfs_dev_extent);
786 	}
787 	BUG_ON(ret);
788 
789 	if (device->bytes_used > 0)
790 		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
791 	ret = btrfs_del_item(trans, root, path);
792 	BUG_ON(ret);
793 
794 	btrfs_free_path(path);
795 	return ret;
796 }
797 
798 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
799 			   struct btrfs_device *device,
800 			   u64 chunk_tree, u64 chunk_objectid,
801 			   u64 chunk_offset, u64 start, u64 num_bytes)
802 {
803 	int ret;
804 	struct btrfs_path *path;
805 	struct btrfs_root *root = device->dev_root;
806 	struct btrfs_dev_extent *extent;
807 	struct extent_buffer *leaf;
808 	struct btrfs_key key;
809 
810 	WARN_ON(!device->in_fs_metadata);
811 	path = btrfs_alloc_path();
812 	if (!path)
813 		return -ENOMEM;
814 
815 	key.objectid = device->devid;
816 	key.offset = start;
817 	key.type = BTRFS_DEV_EXTENT_KEY;
818 	ret = btrfs_insert_empty_item(trans, root, path, &key,
819 				      sizeof(*extent));
820 	BUG_ON(ret);
821 
822 	leaf = path->nodes[0];
823 	extent = btrfs_item_ptr(leaf, path->slots[0],
824 				struct btrfs_dev_extent);
825 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
826 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
827 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
828 
829 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
830 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
831 		    BTRFS_UUID_SIZE);
832 
833 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
834 	btrfs_mark_buffer_dirty(leaf);
835 	btrfs_free_path(path);
836 	return ret;
837 }
838 
839 static noinline int find_next_chunk(struct btrfs_root *root,
840 				    u64 objectid, u64 *offset)
841 {
842 	struct btrfs_path *path;
843 	int ret;
844 	struct btrfs_key key;
845 	struct btrfs_chunk *chunk;
846 	struct btrfs_key found_key;
847 
848 	path = btrfs_alloc_path();
849 	BUG_ON(!path);
850 
851 	key.objectid = objectid;
852 	key.offset = (u64)-1;
853 	key.type = BTRFS_CHUNK_ITEM_KEY;
854 
855 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
856 	if (ret < 0)
857 		goto error;
858 
859 	BUG_ON(ret == 0);
860 
861 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
862 	if (ret) {
863 		*offset = 0;
864 	} else {
865 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
866 				      path->slots[0]);
867 		if (found_key.objectid != objectid)
868 			*offset = 0;
869 		else {
870 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
871 					       struct btrfs_chunk);
872 			*offset = found_key.offset +
873 				btrfs_chunk_length(path->nodes[0], chunk);
874 		}
875 	}
876 	ret = 0;
877 error:
878 	btrfs_free_path(path);
879 	return ret;
880 }
881 
882 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
883 {
884 	int ret;
885 	struct btrfs_key key;
886 	struct btrfs_key found_key;
887 	struct btrfs_path *path;
888 
889 	root = root->fs_info->chunk_root;
890 
891 	path = btrfs_alloc_path();
892 	if (!path)
893 		return -ENOMEM;
894 
895 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
896 	key.type = BTRFS_DEV_ITEM_KEY;
897 	key.offset = (u64)-1;
898 
899 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
900 	if (ret < 0)
901 		goto error;
902 
903 	BUG_ON(ret == 0);
904 
905 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
906 				  BTRFS_DEV_ITEM_KEY);
907 	if (ret) {
908 		*objectid = 1;
909 	} else {
910 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
911 				      path->slots[0]);
912 		*objectid = found_key.offset + 1;
913 	}
914 	ret = 0;
915 error:
916 	btrfs_free_path(path);
917 	return ret;
918 }
919 
920 /*
921  * the device information is stored in the chunk root
922  * the btrfs_device struct should be fully filled in
923  */
924 int btrfs_add_device(struct btrfs_trans_handle *trans,
925 		     struct btrfs_root *root,
926 		     struct btrfs_device *device)
927 {
928 	int ret;
929 	struct btrfs_path *path;
930 	struct btrfs_dev_item *dev_item;
931 	struct extent_buffer *leaf;
932 	struct btrfs_key key;
933 	unsigned long ptr;
934 
935 	root = root->fs_info->chunk_root;
936 
937 	path = btrfs_alloc_path();
938 	if (!path)
939 		return -ENOMEM;
940 
941 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
942 	key.type = BTRFS_DEV_ITEM_KEY;
943 	key.offset = device->devid;
944 
945 	ret = btrfs_insert_empty_item(trans, root, path, &key,
946 				      sizeof(*dev_item));
947 	if (ret)
948 		goto out;
949 
950 	leaf = path->nodes[0];
951 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
952 
953 	btrfs_set_device_id(leaf, dev_item, device->devid);
954 	btrfs_set_device_generation(leaf, dev_item, 0);
955 	btrfs_set_device_type(leaf, dev_item, device->type);
956 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
957 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
958 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
959 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
960 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
961 	btrfs_set_device_group(leaf, dev_item, 0);
962 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
963 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
964 	btrfs_set_device_start_offset(leaf, dev_item, 0);
965 
966 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
967 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
968 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
969 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
970 	btrfs_mark_buffer_dirty(leaf);
971 
972 	ret = 0;
973 out:
974 	btrfs_free_path(path);
975 	return ret;
976 }
977 
978 static int btrfs_rm_dev_item(struct btrfs_root *root,
979 			     struct btrfs_device *device)
980 {
981 	int ret;
982 	struct btrfs_path *path;
983 	struct btrfs_key key;
984 	struct btrfs_trans_handle *trans;
985 
986 	root = root->fs_info->chunk_root;
987 
988 	path = btrfs_alloc_path();
989 	if (!path)
990 		return -ENOMEM;
991 
992 	trans = btrfs_start_transaction(root, 1);
993 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
994 	key.type = BTRFS_DEV_ITEM_KEY;
995 	key.offset = device->devid;
996 	lock_chunks(root);
997 
998 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
999 	if (ret < 0)
1000 		goto out;
1001 
1002 	if (ret > 0) {
1003 		ret = -ENOENT;
1004 		goto out;
1005 	}
1006 
1007 	ret = btrfs_del_item(trans, root, path);
1008 	if (ret)
1009 		goto out;
1010 out:
1011 	btrfs_free_path(path);
1012 	unlock_chunks(root);
1013 	btrfs_commit_transaction(trans, root);
1014 	return ret;
1015 }
1016 
1017 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1018 {
1019 	struct btrfs_device *device;
1020 	struct btrfs_device *next_device;
1021 	struct block_device *bdev;
1022 	struct buffer_head *bh = NULL;
1023 	struct btrfs_super_block *disk_super;
1024 	u64 all_avail;
1025 	u64 devid;
1026 	u64 num_devices;
1027 	u8 *dev_uuid;
1028 	int ret = 0;
1029 
1030 	mutex_lock(&uuid_mutex);
1031 	mutex_lock(&root->fs_info->volume_mutex);
1032 
1033 	all_avail = root->fs_info->avail_data_alloc_bits |
1034 		root->fs_info->avail_system_alloc_bits |
1035 		root->fs_info->avail_metadata_alloc_bits;
1036 
1037 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1038 	    root->fs_info->fs_devices->rw_devices <= 4) {
1039 		printk(KERN_ERR "btrfs: unable to go below four devices "
1040 		       "on raid10\n");
1041 		ret = -EINVAL;
1042 		goto out;
1043 	}
1044 
1045 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1046 	    root->fs_info->fs_devices->rw_devices <= 2) {
1047 		printk(KERN_ERR "btrfs: unable to go below two "
1048 		       "devices on raid1\n");
1049 		ret = -EINVAL;
1050 		goto out;
1051 	}
1052 
1053 	if (strcmp(device_path, "missing") == 0) {
1054 		struct list_head *devices;
1055 		struct btrfs_device *tmp;
1056 
1057 		device = NULL;
1058 		devices = &root->fs_info->fs_devices->devices;
1059 		list_for_each_entry(tmp, devices, dev_list) {
1060 			if (tmp->in_fs_metadata && !tmp->bdev) {
1061 				device = tmp;
1062 				break;
1063 			}
1064 		}
1065 		bdev = NULL;
1066 		bh = NULL;
1067 		disk_super = NULL;
1068 		if (!device) {
1069 			printk(KERN_ERR "btrfs: no missing devices found to "
1070 			       "remove\n");
1071 			goto out;
1072 		}
1073 	} else {
1074 		bdev = open_bdev_exclusive(device_path, FMODE_READ,
1075 				      root->fs_info->bdev_holder);
1076 		if (IS_ERR(bdev)) {
1077 			ret = PTR_ERR(bdev);
1078 			goto out;
1079 		}
1080 
1081 		set_blocksize(bdev, 4096);
1082 		bh = btrfs_read_dev_super(bdev);
1083 		if (!bh) {
1084 			ret = -EIO;
1085 			goto error_close;
1086 		}
1087 		disk_super = (struct btrfs_super_block *)bh->b_data;
1088 		devid = le64_to_cpu(disk_super->dev_item.devid);
1089 		dev_uuid = disk_super->dev_item.uuid;
1090 		device = btrfs_find_device(root, devid, dev_uuid,
1091 					   disk_super->fsid);
1092 		if (!device) {
1093 			ret = -ENOENT;
1094 			goto error_brelse;
1095 		}
1096 	}
1097 
1098 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1099 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1100 		       "device\n");
1101 		ret = -EINVAL;
1102 		goto error_brelse;
1103 	}
1104 
1105 	if (device->writeable) {
1106 		list_del_init(&device->dev_alloc_list);
1107 		root->fs_info->fs_devices->rw_devices--;
1108 	}
1109 
1110 	ret = btrfs_shrink_device(device, 0);
1111 	if (ret)
1112 		goto error_brelse;
1113 
1114 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1115 	if (ret)
1116 		goto error_brelse;
1117 
1118 	device->in_fs_metadata = 0;
1119 	list_del_init(&device->dev_list);
1120 	device->fs_devices->num_devices--;
1121 
1122 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1123 				 struct btrfs_device, dev_list);
1124 	if (device->bdev == root->fs_info->sb->s_bdev)
1125 		root->fs_info->sb->s_bdev = next_device->bdev;
1126 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1127 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1128 
1129 	if (device->bdev) {
1130 		close_bdev_exclusive(device->bdev, device->mode);
1131 		device->bdev = NULL;
1132 		device->fs_devices->open_devices--;
1133 	}
1134 
1135 	num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1136 	btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1137 
1138 	if (device->fs_devices->open_devices == 0) {
1139 		struct btrfs_fs_devices *fs_devices;
1140 		fs_devices = root->fs_info->fs_devices;
1141 		while (fs_devices) {
1142 			if (fs_devices->seed == device->fs_devices)
1143 				break;
1144 			fs_devices = fs_devices->seed;
1145 		}
1146 		fs_devices->seed = device->fs_devices->seed;
1147 		device->fs_devices->seed = NULL;
1148 		__btrfs_close_devices(device->fs_devices);
1149 		free_fs_devices(device->fs_devices);
1150 	}
1151 
1152 	/*
1153 	 * at this point, the device is zero sized.  We want to
1154 	 * remove it from the devices list and zero out the old super
1155 	 */
1156 	if (device->writeable) {
1157 		/* make sure this device isn't detected as part of
1158 		 * the FS anymore
1159 		 */
1160 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1161 		set_buffer_dirty(bh);
1162 		sync_dirty_buffer(bh);
1163 	}
1164 
1165 	kfree(device->name);
1166 	kfree(device);
1167 	ret = 0;
1168 
1169 error_brelse:
1170 	brelse(bh);
1171 error_close:
1172 	if (bdev)
1173 		close_bdev_exclusive(bdev, FMODE_READ);
1174 out:
1175 	mutex_unlock(&root->fs_info->volume_mutex);
1176 	mutex_unlock(&uuid_mutex);
1177 	return ret;
1178 }
1179 
1180 /*
1181  * does all the dirty work required for changing file system's UUID.
1182  */
1183 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1184 				struct btrfs_root *root)
1185 {
1186 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1187 	struct btrfs_fs_devices *old_devices;
1188 	struct btrfs_fs_devices *seed_devices;
1189 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1190 	struct btrfs_device *device;
1191 	u64 super_flags;
1192 
1193 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1194 	if (!fs_devices->seeding)
1195 		return -EINVAL;
1196 
1197 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1198 	if (!seed_devices)
1199 		return -ENOMEM;
1200 
1201 	old_devices = clone_fs_devices(fs_devices);
1202 	if (IS_ERR(old_devices)) {
1203 		kfree(seed_devices);
1204 		return PTR_ERR(old_devices);
1205 	}
1206 
1207 	list_add(&old_devices->list, &fs_uuids);
1208 
1209 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1210 	seed_devices->opened = 1;
1211 	INIT_LIST_HEAD(&seed_devices->devices);
1212 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1213 	list_splice_init(&fs_devices->devices, &seed_devices->devices);
1214 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1215 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1216 		device->fs_devices = seed_devices;
1217 	}
1218 
1219 	fs_devices->seeding = 0;
1220 	fs_devices->num_devices = 0;
1221 	fs_devices->open_devices = 0;
1222 	fs_devices->seed = seed_devices;
1223 
1224 	generate_random_uuid(fs_devices->fsid);
1225 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1226 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1227 	super_flags = btrfs_super_flags(disk_super) &
1228 		      ~BTRFS_SUPER_FLAG_SEEDING;
1229 	btrfs_set_super_flags(disk_super, super_flags);
1230 
1231 	return 0;
1232 }
1233 
1234 /*
1235  * strore the expected generation for seed devices in device items.
1236  */
1237 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1238 			       struct btrfs_root *root)
1239 {
1240 	struct btrfs_path *path;
1241 	struct extent_buffer *leaf;
1242 	struct btrfs_dev_item *dev_item;
1243 	struct btrfs_device *device;
1244 	struct btrfs_key key;
1245 	u8 fs_uuid[BTRFS_UUID_SIZE];
1246 	u8 dev_uuid[BTRFS_UUID_SIZE];
1247 	u64 devid;
1248 	int ret;
1249 
1250 	path = btrfs_alloc_path();
1251 	if (!path)
1252 		return -ENOMEM;
1253 
1254 	root = root->fs_info->chunk_root;
1255 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1256 	key.offset = 0;
1257 	key.type = BTRFS_DEV_ITEM_KEY;
1258 
1259 	while (1) {
1260 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1261 		if (ret < 0)
1262 			goto error;
1263 
1264 		leaf = path->nodes[0];
1265 next_slot:
1266 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1267 			ret = btrfs_next_leaf(root, path);
1268 			if (ret > 0)
1269 				break;
1270 			if (ret < 0)
1271 				goto error;
1272 			leaf = path->nodes[0];
1273 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1274 			btrfs_release_path(root, path);
1275 			continue;
1276 		}
1277 
1278 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1279 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1280 		    key.type != BTRFS_DEV_ITEM_KEY)
1281 			break;
1282 
1283 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1284 					  struct btrfs_dev_item);
1285 		devid = btrfs_device_id(leaf, dev_item);
1286 		read_extent_buffer(leaf, dev_uuid,
1287 				   (unsigned long)btrfs_device_uuid(dev_item),
1288 				   BTRFS_UUID_SIZE);
1289 		read_extent_buffer(leaf, fs_uuid,
1290 				   (unsigned long)btrfs_device_fsid(dev_item),
1291 				   BTRFS_UUID_SIZE);
1292 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1293 		BUG_ON(!device);
1294 
1295 		if (device->fs_devices->seeding) {
1296 			btrfs_set_device_generation(leaf, dev_item,
1297 						    device->generation);
1298 			btrfs_mark_buffer_dirty(leaf);
1299 		}
1300 
1301 		path->slots[0]++;
1302 		goto next_slot;
1303 	}
1304 	ret = 0;
1305 error:
1306 	btrfs_free_path(path);
1307 	return ret;
1308 }
1309 
1310 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1311 {
1312 	struct btrfs_trans_handle *trans;
1313 	struct btrfs_device *device;
1314 	struct block_device *bdev;
1315 	struct list_head *devices;
1316 	struct super_block *sb = root->fs_info->sb;
1317 	u64 total_bytes;
1318 	int seeding_dev = 0;
1319 	int ret = 0;
1320 
1321 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1322 		return -EINVAL;
1323 
1324 	bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1325 	if (!bdev)
1326 		return -EIO;
1327 
1328 	if (root->fs_info->fs_devices->seeding) {
1329 		seeding_dev = 1;
1330 		down_write(&sb->s_umount);
1331 		mutex_lock(&uuid_mutex);
1332 	}
1333 
1334 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1335 	mutex_lock(&root->fs_info->volume_mutex);
1336 
1337 	devices = &root->fs_info->fs_devices->devices;
1338 	list_for_each_entry(device, devices, dev_list) {
1339 		if (device->bdev == bdev) {
1340 			ret = -EEXIST;
1341 			goto error;
1342 		}
1343 	}
1344 
1345 	device = kzalloc(sizeof(*device), GFP_NOFS);
1346 	if (!device) {
1347 		/* we can safely leave the fs_devices entry around */
1348 		ret = -ENOMEM;
1349 		goto error;
1350 	}
1351 
1352 	device->name = kstrdup(device_path, GFP_NOFS);
1353 	if (!device->name) {
1354 		kfree(device);
1355 		ret = -ENOMEM;
1356 		goto error;
1357 	}
1358 
1359 	ret = find_next_devid(root, &device->devid);
1360 	if (ret) {
1361 		kfree(device);
1362 		goto error;
1363 	}
1364 
1365 	trans = btrfs_start_transaction(root, 1);
1366 	lock_chunks(root);
1367 
1368 	device->barriers = 1;
1369 	device->writeable = 1;
1370 	device->work.func = pending_bios_fn;
1371 	generate_random_uuid(device->uuid);
1372 	spin_lock_init(&device->io_lock);
1373 	device->generation = trans->transid;
1374 	device->io_width = root->sectorsize;
1375 	device->io_align = root->sectorsize;
1376 	device->sector_size = root->sectorsize;
1377 	device->total_bytes = i_size_read(bdev->bd_inode);
1378 	device->dev_root = root->fs_info->dev_root;
1379 	device->bdev = bdev;
1380 	device->in_fs_metadata = 1;
1381 	device->mode = 0;
1382 	set_blocksize(device->bdev, 4096);
1383 
1384 	if (seeding_dev) {
1385 		sb->s_flags &= ~MS_RDONLY;
1386 		ret = btrfs_prepare_sprout(trans, root);
1387 		BUG_ON(ret);
1388 	}
1389 
1390 	device->fs_devices = root->fs_info->fs_devices;
1391 	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1392 	list_add(&device->dev_alloc_list,
1393 		 &root->fs_info->fs_devices->alloc_list);
1394 	root->fs_info->fs_devices->num_devices++;
1395 	root->fs_info->fs_devices->open_devices++;
1396 	root->fs_info->fs_devices->rw_devices++;
1397 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1398 
1399 	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1400 	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1401 				    total_bytes + device->total_bytes);
1402 
1403 	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1404 	btrfs_set_super_num_devices(&root->fs_info->super_copy,
1405 				    total_bytes + 1);
1406 
1407 	if (seeding_dev) {
1408 		ret = init_first_rw_device(trans, root, device);
1409 		BUG_ON(ret);
1410 		ret = btrfs_finish_sprout(trans, root);
1411 		BUG_ON(ret);
1412 	} else {
1413 		ret = btrfs_add_device(trans, root, device);
1414 	}
1415 
1416 	/*
1417 	 * we've got more storage, clear any full flags on the space
1418 	 * infos
1419 	 */
1420 	btrfs_clear_space_info_full(root->fs_info);
1421 
1422 	unlock_chunks(root);
1423 	btrfs_commit_transaction(trans, root);
1424 
1425 	if (seeding_dev) {
1426 		mutex_unlock(&uuid_mutex);
1427 		up_write(&sb->s_umount);
1428 
1429 		ret = btrfs_relocate_sys_chunks(root);
1430 		BUG_ON(ret);
1431 	}
1432 out:
1433 	mutex_unlock(&root->fs_info->volume_mutex);
1434 	return ret;
1435 error:
1436 	close_bdev_exclusive(bdev, 0);
1437 	if (seeding_dev) {
1438 		mutex_unlock(&uuid_mutex);
1439 		up_write(&sb->s_umount);
1440 	}
1441 	goto out;
1442 }
1443 
1444 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1445 					struct btrfs_device *device)
1446 {
1447 	int ret;
1448 	struct btrfs_path *path;
1449 	struct btrfs_root *root;
1450 	struct btrfs_dev_item *dev_item;
1451 	struct extent_buffer *leaf;
1452 	struct btrfs_key key;
1453 
1454 	root = device->dev_root->fs_info->chunk_root;
1455 
1456 	path = btrfs_alloc_path();
1457 	if (!path)
1458 		return -ENOMEM;
1459 
1460 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1461 	key.type = BTRFS_DEV_ITEM_KEY;
1462 	key.offset = device->devid;
1463 
1464 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1465 	if (ret < 0)
1466 		goto out;
1467 
1468 	if (ret > 0) {
1469 		ret = -ENOENT;
1470 		goto out;
1471 	}
1472 
1473 	leaf = path->nodes[0];
1474 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1475 
1476 	btrfs_set_device_id(leaf, dev_item, device->devid);
1477 	btrfs_set_device_type(leaf, dev_item, device->type);
1478 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1479 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1480 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1481 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1482 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1483 	btrfs_mark_buffer_dirty(leaf);
1484 
1485 out:
1486 	btrfs_free_path(path);
1487 	return ret;
1488 }
1489 
1490 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1491 		      struct btrfs_device *device, u64 new_size)
1492 {
1493 	struct btrfs_super_block *super_copy =
1494 		&device->dev_root->fs_info->super_copy;
1495 	u64 old_total = btrfs_super_total_bytes(super_copy);
1496 	u64 diff = new_size - device->total_bytes;
1497 
1498 	if (!device->writeable)
1499 		return -EACCES;
1500 	if (new_size <= device->total_bytes)
1501 		return -EINVAL;
1502 
1503 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1504 	device->fs_devices->total_rw_bytes += diff;
1505 
1506 	device->total_bytes = new_size;
1507 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1508 
1509 	return btrfs_update_device(trans, device);
1510 }
1511 
1512 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1513 		      struct btrfs_device *device, u64 new_size)
1514 {
1515 	int ret;
1516 	lock_chunks(device->dev_root);
1517 	ret = __btrfs_grow_device(trans, device, new_size);
1518 	unlock_chunks(device->dev_root);
1519 	return ret;
1520 }
1521 
1522 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1523 			    struct btrfs_root *root,
1524 			    u64 chunk_tree, u64 chunk_objectid,
1525 			    u64 chunk_offset)
1526 {
1527 	int ret;
1528 	struct btrfs_path *path;
1529 	struct btrfs_key key;
1530 
1531 	root = root->fs_info->chunk_root;
1532 	path = btrfs_alloc_path();
1533 	if (!path)
1534 		return -ENOMEM;
1535 
1536 	key.objectid = chunk_objectid;
1537 	key.offset = chunk_offset;
1538 	key.type = BTRFS_CHUNK_ITEM_KEY;
1539 
1540 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1541 	BUG_ON(ret);
1542 
1543 	ret = btrfs_del_item(trans, root, path);
1544 	BUG_ON(ret);
1545 
1546 	btrfs_free_path(path);
1547 	return 0;
1548 }
1549 
1550 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1551 			chunk_offset)
1552 {
1553 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1554 	struct btrfs_disk_key *disk_key;
1555 	struct btrfs_chunk *chunk;
1556 	u8 *ptr;
1557 	int ret = 0;
1558 	u32 num_stripes;
1559 	u32 array_size;
1560 	u32 len = 0;
1561 	u32 cur;
1562 	struct btrfs_key key;
1563 
1564 	array_size = btrfs_super_sys_array_size(super_copy);
1565 
1566 	ptr = super_copy->sys_chunk_array;
1567 	cur = 0;
1568 
1569 	while (cur < array_size) {
1570 		disk_key = (struct btrfs_disk_key *)ptr;
1571 		btrfs_disk_key_to_cpu(&key, disk_key);
1572 
1573 		len = sizeof(*disk_key);
1574 
1575 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1576 			chunk = (struct btrfs_chunk *)(ptr + len);
1577 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1578 			len += btrfs_chunk_item_size(num_stripes);
1579 		} else {
1580 			ret = -EIO;
1581 			break;
1582 		}
1583 		if (key.objectid == chunk_objectid &&
1584 		    key.offset == chunk_offset) {
1585 			memmove(ptr, ptr + len, array_size - (cur + len));
1586 			array_size -= len;
1587 			btrfs_set_super_sys_array_size(super_copy, array_size);
1588 		} else {
1589 			ptr += len;
1590 			cur += len;
1591 		}
1592 	}
1593 	return ret;
1594 }
1595 
1596 static int btrfs_relocate_chunk(struct btrfs_root *root,
1597 			 u64 chunk_tree, u64 chunk_objectid,
1598 			 u64 chunk_offset)
1599 {
1600 	struct extent_map_tree *em_tree;
1601 	struct btrfs_root *extent_root;
1602 	struct btrfs_trans_handle *trans;
1603 	struct extent_map *em;
1604 	struct map_lookup *map;
1605 	int ret;
1606 	int i;
1607 
1608 	printk(KERN_INFO "btrfs relocating chunk %llu\n",
1609 	       (unsigned long long)chunk_offset);
1610 	root = root->fs_info->chunk_root;
1611 	extent_root = root->fs_info->extent_root;
1612 	em_tree = &root->fs_info->mapping_tree.map_tree;
1613 
1614 	/* step one, relocate all the extents inside this chunk */
1615 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1616 	BUG_ON(ret);
1617 
1618 	trans = btrfs_start_transaction(root, 1);
1619 	BUG_ON(!trans);
1620 
1621 	lock_chunks(root);
1622 
1623 	/*
1624 	 * step two, delete the device extents and the
1625 	 * chunk tree entries
1626 	 */
1627 	spin_lock(&em_tree->lock);
1628 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1629 	spin_unlock(&em_tree->lock);
1630 
1631 	BUG_ON(em->start > chunk_offset ||
1632 	       em->start + em->len < chunk_offset);
1633 	map = (struct map_lookup *)em->bdev;
1634 
1635 	for (i = 0; i < map->num_stripes; i++) {
1636 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1637 					    map->stripes[i].physical);
1638 		BUG_ON(ret);
1639 
1640 		if (map->stripes[i].dev) {
1641 			ret = btrfs_update_device(trans, map->stripes[i].dev);
1642 			BUG_ON(ret);
1643 		}
1644 	}
1645 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1646 			       chunk_offset);
1647 
1648 	BUG_ON(ret);
1649 
1650 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1651 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1652 		BUG_ON(ret);
1653 	}
1654 
1655 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1656 	BUG_ON(ret);
1657 
1658 	spin_lock(&em_tree->lock);
1659 	remove_extent_mapping(em_tree, em);
1660 	spin_unlock(&em_tree->lock);
1661 
1662 	kfree(map);
1663 	em->bdev = NULL;
1664 
1665 	/* once for the tree */
1666 	free_extent_map(em);
1667 	/* once for us */
1668 	free_extent_map(em);
1669 
1670 	unlock_chunks(root);
1671 	btrfs_end_transaction(trans, root);
1672 	return 0;
1673 }
1674 
1675 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1676 {
1677 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1678 	struct btrfs_path *path;
1679 	struct extent_buffer *leaf;
1680 	struct btrfs_chunk *chunk;
1681 	struct btrfs_key key;
1682 	struct btrfs_key found_key;
1683 	u64 chunk_tree = chunk_root->root_key.objectid;
1684 	u64 chunk_type;
1685 	int ret;
1686 
1687 	path = btrfs_alloc_path();
1688 	if (!path)
1689 		return -ENOMEM;
1690 
1691 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1692 	key.offset = (u64)-1;
1693 	key.type = BTRFS_CHUNK_ITEM_KEY;
1694 
1695 	while (1) {
1696 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1697 		if (ret < 0)
1698 			goto error;
1699 		BUG_ON(ret == 0);
1700 
1701 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
1702 					  key.type);
1703 		if (ret < 0)
1704 			goto error;
1705 		if (ret > 0)
1706 			break;
1707 
1708 		leaf = path->nodes[0];
1709 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1710 
1711 		chunk = btrfs_item_ptr(leaf, path->slots[0],
1712 				       struct btrfs_chunk);
1713 		chunk_type = btrfs_chunk_type(leaf, chunk);
1714 		btrfs_release_path(chunk_root, path);
1715 
1716 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1717 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1718 						   found_key.objectid,
1719 						   found_key.offset);
1720 			BUG_ON(ret);
1721 		}
1722 
1723 		if (found_key.offset == 0)
1724 			break;
1725 		key.offset = found_key.offset - 1;
1726 	}
1727 	ret = 0;
1728 error:
1729 	btrfs_free_path(path);
1730 	return ret;
1731 }
1732 
1733 static u64 div_factor(u64 num, int factor)
1734 {
1735 	if (factor == 10)
1736 		return num;
1737 	num *= factor;
1738 	do_div(num, 10);
1739 	return num;
1740 }
1741 
1742 int btrfs_balance(struct btrfs_root *dev_root)
1743 {
1744 	int ret;
1745 	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1746 	struct btrfs_device *device;
1747 	u64 old_size;
1748 	u64 size_to_free;
1749 	struct btrfs_path *path;
1750 	struct btrfs_key key;
1751 	struct btrfs_chunk *chunk;
1752 	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1753 	struct btrfs_trans_handle *trans;
1754 	struct btrfs_key found_key;
1755 
1756 	if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1757 		return -EROFS;
1758 
1759 	mutex_lock(&dev_root->fs_info->volume_mutex);
1760 	dev_root = dev_root->fs_info->dev_root;
1761 
1762 	/* step one make some room on all the devices */
1763 	list_for_each_entry(device, devices, dev_list) {
1764 		old_size = device->total_bytes;
1765 		size_to_free = div_factor(old_size, 1);
1766 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1767 		if (!device->writeable ||
1768 		    device->total_bytes - device->bytes_used > size_to_free)
1769 			continue;
1770 
1771 		ret = btrfs_shrink_device(device, old_size - size_to_free);
1772 		BUG_ON(ret);
1773 
1774 		trans = btrfs_start_transaction(dev_root, 1);
1775 		BUG_ON(!trans);
1776 
1777 		ret = btrfs_grow_device(trans, device, old_size);
1778 		BUG_ON(ret);
1779 
1780 		btrfs_end_transaction(trans, dev_root);
1781 	}
1782 
1783 	/* step two, relocate all the chunks */
1784 	path = btrfs_alloc_path();
1785 	BUG_ON(!path);
1786 
1787 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1788 	key.offset = (u64)-1;
1789 	key.type = BTRFS_CHUNK_ITEM_KEY;
1790 
1791 	while (1) {
1792 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1793 		if (ret < 0)
1794 			goto error;
1795 
1796 		/*
1797 		 * this shouldn't happen, it means the last relocate
1798 		 * failed
1799 		 */
1800 		if (ret == 0)
1801 			break;
1802 
1803 		ret = btrfs_previous_item(chunk_root, path, 0,
1804 					  BTRFS_CHUNK_ITEM_KEY);
1805 		if (ret)
1806 			break;
1807 
1808 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1809 				      path->slots[0]);
1810 		if (found_key.objectid != key.objectid)
1811 			break;
1812 
1813 		chunk = btrfs_item_ptr(path->nodes[0],
1814 				       path->slots[0],
1815 				       struct btrfs_chunk);
1816 		key.offset = found_key.offset;
1817 		/* chunk zero is special */
1818 		if (key.offset == 0)
1819 			break;
1820 
1821 		btrfs_release_path(chunk_root, path);
1822 		ret = btrfs_relocate_chunk(chunk_root,
1823 					   chunk_root->root_key.objectid,
1824 					   found_key.objectid,
1825 					   found_key.offset);
1826 		BUG_ON(ret);
1827 	}
1828 	ret = 0;
1829 error:
1830 	btrfs_free_path(path);
1831 	mutex_unlock(&dev_root->fs_info->volume_mutex);
1832 	return ret;
1833 }
1834 
1835 /*
1836  * shrinking a device means finding all of the device extents past
1837  * the new size, and then following the back refs to the chunks.
1838  * The chunk relocation code actually frees the device extent
1839  */
1840 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1841 {
1842 	struct btrfs_trans_handle *trans;
1843 	struct btrfs_root *root = device->dev_root;
1844 	struct btrfs_dev_extent *dev_extent = NULL;
1845 	struct btrfs_path *path;
1846 	u64 length;
1847 	u64 chunk_tree;
1848 	u64 chunk_objectid;
1849 	u64 chunk_offset;
1850 	int ret;
1851 	int slot;
1852 	struct extent_buffer *l;
1853 	struct btrfs_key key;
1854 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1855 	u64 old_total = btrfs_super_total_bytes(super_copy);
1856 	u64 diff = device->total_bytes - new_size;
1857 
1858 	if (new_size >= device->total_bytes)
1859 		return -EINVAL;
1860 
1861 	path = btrfs_alloc_path();
1862 	if (!path)
1863 		return -ENOMEM;
1864 
1865 	trans = btrfs_start_transaction(root, 1);
1866 	if (!trans) {
1867 		ret = -ENOMEM;
1868 		goto done;
1869 	}
1870 
1871 	path->reada = 2;
1872 
1873 	lock_chunks(root);
1874 
1875 	device->total_bytes = new_size;
1876 	if (device->writeable)
1877 		device->fs_devices->total_rw_bytes -= diff;
1878 	ret = btrfs_update_device(trans, device);
1879 	if (ret) {
1880 		unlock_chunks(root);
1881 		btrfs_end_transaction(trans, root);
1882 		goto done;
1883 	}
1884 	WARN_ON(diff > old_total);
1885 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
1886 	unlock_chunks(root);
1887 	btrfs_end_transaction(trans, root);
1888 
1889 	key.objectid = device->devid;
1890 	key.offset = (u64)-1;
1891 	key.type = BTRFS_DEV_EXTENT_KEY;
1892 
1893 	while (1) {
1894 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1895 		if (ret < 0)
1896 			goto done;
1897 
1898 		ret = btrfs_previous_item(root, path, 0, key.type);
1899 		if (ret < 0)
1900 			goto done;
1901 		if (ret) {
1902 			ret = 0;
1903 			goto done;
1904 		}
1905 
1906 		l = path->nodes[0];
1907 		slot = path->slots[0];
1908 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1909 
1910 		if (key.objectid != device->devid)
1911 			goto done;
1912 
1913 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1914 		length = btrfs_dev_extent_length(l, dev_extent);
1915 
1916 		if (key.offset + length <= new_size)
1917 			goto done;
1918 
1919 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1920 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1921 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1922 		btrfs_release_path(root, path);
1923 
1924 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1925 					   chunk_offset);
1926 		if (ret)
1927 			goto done;
1928 	}
1929 
1930 done:
1931 	btrfs_free_path(path);
1932 	return ret;
1933 }
1934 
1935 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
1936 			   struct btrfs_root *root,
1937 			   struct btrfs_key *key,
1938 			   struct btrfs_chunk *chunk, int item_size)
1939 {
1940 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1941 	struct btrfs_disk_key disk_key;
1942 	u32 array_size;
1943 	u8 *ptr;
1944 
1945 	array_size = btrfs_super_sys_array_size(super_copy);
1946 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1947 		return -EFBIG;
1948 
1949 	ptr = super_copy->sys_chunk_array + array_size;
1950 	btrfs_cpu_key_to_disk(&disk_key, key);
1951 	memcpy(ptr, &disk_key, sizeof(disk_key));
1952 	ptr += sizeof(disk_key);
1953 	memcpy(ptr, chunk, item_size);
1954 	item_size += sizeof(disk_key);
1955 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1956 	return 0;
1957 }
1958 
1959 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
1960 					int num_stripes, int sub_stripes)
1961 {
1962 	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1963 		return calc_size;
1964 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1965 		return calc_size * (num_stripes / sub_stripes);
1966 	else
1967 		return calc_size * num_stripes;
1968 }
1969 
1970 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1971 			       struct btrfs_root *extent_root,
1972 			       struct map_lookup **map_ret,
1973 			       u64 *num_bytes, u64 *stripe_size,
1974 			       u64 start, u64 type)
1975 {
1976 	struct btrfs_fs_info *info = extent_root->fs_info;
1977 	struct btrfs_device *device = NULL;
1978 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
1979 	struct list_head *cur;
1980 	struct map_lookup *map = NULL;
1981 	struct extent_map_tree *em_tree;
1982 	struct extent_map *em;
1983 	struct list_head private_devs;
1984 	int min_stripe_size = 1 * 1024 * 1024;
1985 	u64 calc_size = 1024 * 1024 * 1024;
1986 	u64 max_chunk_size = calc_size;
1987 	u64 min_free;
1988 	u64 avail;
1989 	u64 max_avail = 0;
1990 	u64 dev_offset;
1991 	int num_stripes = 1;
1992 	int min_stripes = 1;
1993 	int sub_stripes = 0;
1994 	int looped = 0;
1995 	int ret;
1996 	int index;
1997 	int stripe_len = 64 * 1024;
1998 
1999 	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2000 	    (type & BTRFS_BLOCK_GROUP_DUP)) {
2001 		WARN_ON(1);
2002 		type &= ~BTRFS_BLOCK_GROUP_DUP;
2003 	}
2004 	if (list_empty(&fs_devices->alloc_list))
2005 		return -ENOSPC;
2006 
2007 	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2008 		num_stripes = fs_devices->rw_devices;
2009 		min_stripes = 2;
2010 	}
2011 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2012 		num_stripes = 2;
2013 		min_stripes = 2;
2014 	}
2015 	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2016 		num_stripes = min_t(u64, 2, fs_devices->rw_devices);
2017 		if (num_stripes < 2)
2018 			return -ENOSPC;
2019 		min_stripes = 2;
2020 	}
2021 	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2022 		num_stripes = fs_devices->rw_devices;
2023 		if (num_stripes < 4)
2024 			return -ENOSPC;
2025 		num_stripes &= ~(u32)1;
2026 		sub_stripes = 2;
2027 		min_stripes = 4;
2028 	}
2029 
2030 	if (type & BTRFS_BLOCK_GROUP_DATA) {
2031 		max_chunk_size = 10 * calc_size;
2032 		min_stripe_size = 64 * 1024 * 1024;
2033 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2034 		max_chunk_size = 4 * calc_size;
2035 		min_stripe_size = 32 * 1024 * 1024;
2036 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2037 		calc_size = 8 * 1024 * 1024;
2038 		max_chunk_size = calc_size * 2;
2039 		min_stripe_size = 1 * 1024 * 1024;
2040 	}
2041 
2042 	/* we don't want a chunk larger than 10% of writeable space */
2043 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2044 			     max_chunk_size);
2045 
2046 again:
2047 	if (!map || map->num_stripes != num_stripes) {
2048 		kfree(map);
2049 		map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2050 		if (!map)
2051 			return -ENOMEM;
2052 		map->num_stripes = num_stripes;
2053 	}
2054 
2055 	if (calc_size * num_stripes > max_chunk_size) {
2056 		calc_size = max_chunk_size;
2057 		do_div(calc_size, num_stripes);
2058 		do_div(calc_size, stripe_len);
2059 		calc_size *= stripe_len;
2060 	}
2061 	/* we don't want tiny stripes */
2062 	calc_size = max_t(u64, min_stripe_size, calc_size);
2063 
2064 	do_div(calc_size, stripe_len);
2065 	calc_size *= stripe_len;
2066 
2067 	cur = fs_devices->alloc_list.next;
2068 	index = 0;
2069 
2070 	if (type & BTRFS_BLOCK_GROUP_DUP)
2071 		min_free = calc_size * 2;
2072 	else
2073 		min_free = calc_size;
2074 
2075 	/*
2076 	 * we add 1MB because we never use the first 1MB of the device, unless
2077 	 * we've looped, then we are likely allocating the maximum amount of
2078 	 * space left already
2079 	 */
2080 	if (!looped)
2081 		min_free += 1024 * 1024;
2082 
2083 	INIT_LIST_HEAD(&private_devs);
2084 	while (index < num_stripes) {
2085 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2086 		BUG_ON(!device->writeable);
2087 		if (device->total_bytes > device->bytes_used)
2088 			avail = device->total_bytes - device->bytes_used;
2089 		else
2090 			avail = 0;
2091 		cur = cur->next;
2092 
2093 		if (device->in_fs_metadata && avail >= min_free) {
2094 			ret = find_free_dev_extent(trans, device,
2095 						   min_free, &dev_offset);
2096 			if (ret == 0) {
2097 				list_move_tail(&device->dev_alloc_list,
2098 					       &private_devs);
2099 				map->stripes[index].dev = device;
2100 				map->stripes[index].physical = dev_offset;
2101 				index++;
2102 				if (type & BTRFS_BLOCK_GROUP_DUP) {
2103 					map->stripes[index].dev = device;
2104 					map->stripes[index].physical =
2105 						dev_offset + calc_size;
2106 					index++;
2107 				}
2108 			}
2109 		} else if (device->in_fs_metadata && avail > max_avail)
2110 			max_avail = avail;
2111 		if (cur == &fs_devices->alloc_list)
2112 			break;
2113 	}
2114 	list_splice(&private_devs, &fs_devices->alloc_list);
2115 	if (index < num_stripes) {
2116 		if (index >= min_stripes) {
2117 			num_stripes = index;
2118 			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2119 				num_stripes /= sub_stripes;
2120 				num_stripes *= sub_stripes;
2121 			}
2122 			looped = 1;
2123 			goto again;
2124 		}
2125 		if (!looped && max_avail > 0) {
2126 			looped = 1;
2127 			calc_size = max_avail;
2128 			goto again;
2129 		}
2130 		kfree(map);
2131 		return -ENOSPC;
2132 	}
2133 	map->sector_size = extent_root->sectorsize;
2134 	map->stripe_len = stripe_len;
2135 	map->io_align = stripe_len;
2136 	map->io_width = stripe_len;
2137 	map->type = type;
2138 	map->num_stripes = num_stripes;
2139 	map->sub_stripes = sub_stripes;
2140 
2141 	*map_ret = map;
2142 	*stripe_size = calc_size;
2143 	*num_bytes = chunk_bytes_by_type(type, calc_size,
2144 					 num_stripes, sub_stripes);
2145 
2146 	em = alloc_extent_map(GFP_NOFS);
2147 	if (!em) {
2148 		kfree(map);
2149 		return -ENOMEM;
2150 	}
2151 	em->bdev = (struct block_device *)map;
2152 	em->start = start;
2153 	em->len = *num_bytes;
2154 	em->block_start = 0;
2155 	em->block_len = em->len;
2156 
2157 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2158 	spin_lock(&em_tree->lock);
2159 	ret = add_extent_mapping(em_tree, em);
2160 	spin_unlock(&em_tree->lock);
2161 	BUG_ON(ret);
2162 	free_extent_map(em);
2163 
2164 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
2165 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2166 				     start, *num_bytes);
2167 	BUG_ON(ret);
2168 
2169 	index = 0;
2170 	while (index < map->num_stripes) {
2171 		device = map->stripes[index].dev;
2172 		dev_offset = map->stripes[index].physical;
2173 
2174 		ret = btrfs_alloc_dev_extent(trans, device,
2175 				info->chunk_root->root_key.objectid,
2176 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2177 				start, dev_offset, calc_size);
2178 		BUG_ON(ret);
2179 		index++;
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2186 				struct btrfs_root *extent_root,
2187 				struct map_lookup *map, u64 chunk_offset,
2188 				u64 chunk_size, u64 stripe_size)
2189 {
2190 	u64 dev_offset;
2191 	struct btrfs_key key;
2192 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2193 	struct btrfs_device *device;
2194 	struct btrfs_chunk *chunk;
2195 	struct btrfs_stripe *stripe;
2196 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2197 	int index = 0;
2198 	int ret;
2199 
2200 	chunk = kzalloc(item_size, GFP_NOFS);
2201 	if (!chunk)
2202 		return -ENOMEM;
2203 
2204 	index = 0;
2205 	while (index < map->num_stripes) {
2206 		device = map->stripes[index].dev;
2207 		device->bytes_used += stripe_size;
2208 		ret = btrfs_update_device(trans, device);
2209 		BUG_ON(ret);
2210 		index++;
2211 	}
2212 
2213 	index = 0;
2214 	stripe = &chunk->stripe;
2215 	while (index < map->num_stripes) {
2216 		device = map->stripes[index].dev;
2217 		dev_offset = map->stripes[index].physical;
2218 
2219 		btrfs_set_stack_stripe_devid(stripe, device->devid);
2220 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
2221 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2222 		stripe++;
2223 		index++;
2224 	}
2225 
2226 	btrfs_set_stack_chunk_length(chunk, chunk_size);
2227 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2228 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2229 	btrfs_set_stack_chunk_type(chunk, map->type);
2230 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2231 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2232 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2233 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2234 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2235 
2236 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2237 	key.type = BTRFS_CHUNK_ITEM_KEY;
2238 	key.offset = chunk_offset;
2239 
2240 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2241 	BUG_ON(ret);
2242 
2243 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2244 		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2245 					     item_size);
2246 		BUG_ON(ret);
2247 	}
2248 	kfree(chunk);
2249 	return 0;
2250 }
2251 
2252 /*
2253  * Chunk allocation falls into two parts. The first part does works
2254  * that make the new allocated chunk useable, but not do any operation
2255  * that modifies the chunk tree. The second part does the works that
2256  * require modifying the chunk tree. This division is important for the
2257  * bootstrap process of adding storage to a seed btrfs.
2258  */
2259 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2260 		      struct btrfs_root *extent_root, u64 type)
2261 {
2262 	u64 chunk_offset;
2263 	u64 chunk_size;
2264 	u64 stripe_size;
2265 	struct map_lookup *map;
2266 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2267 	int ret;
2268 
2269 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2270 			      &chunk_offset);
2271 	if (ret)
2272 		return ret;
2273 
2274 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2275 				  &stripe_size, chunk_offset, type);
2276 	if (ret)
2277 		return ret;
2278 
2279 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2280 				   chunk_size, stripe_size);
2281 	BUG_ON(ret);
2282 	return 0;
2283 }
2284 
2285 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2286 					 struct btrfs_root *root,
2287 					 struct btrfs_device *device)
2288 {
2289 	u64 chunk_offset;
2290 	u64 sys_chunk_offset;
2291 	u64 chunk_size;
2292 	u64 sys_chunk_size;
2293 	u64 stripe_size;
2294 	u64 sys_stripe_size;
2295 	u64 alloc_profile;
2296 	struct map_lookup *map;
2297 	struct map_lookup *sys_map;
2298 	struct btrfs_fs_info *fs_info = root->fs_info;
2299 	struct btrfs_root *extent_root = fs_info->extent_root;
2300 	int ret;
2301 
2302 	ret = find_next_chunk(fs_info->chunk_root,
2303 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2304 	BUG_ON(ret);
2305 
2306 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2307 			(fs_info->metadata_alloc_profile &
2308 			 fs_info->avail_metadata_alloc_bits);
2309 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2310 
2311 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2312 				  &stripe_size, chunk_offset, alloc_profile);
2313 	BUG_ON(ret);
2314 
2315 	sys_chunk_offset = chunk_offset + chunk_size;
2316 
2317 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2318 			(fs_info->system_alloc_profile &
2319 			 fs_info->avail_system_alloc_bits);
2320 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2321 
2322 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2323 				  &sys_chunk_size, &sys_stripe_size,
2324 				  sys_chunk_offset, alloc_profile);
2325 	BUG_ON(ret);
2326 
2327 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2328 	BUG_ON(ret);
2329 
2330 	/*
2331 	 * Modifying chunk tree needs allocating new blocks from both
2332 	 * system block group and metadata block group. So we only can
2333 	 * do operations require modifying the chunk tree after both
2334 	 * block groups were created.
2335 	 */
2336 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2337 				   chunk_size, stripe_size);
2338 	BUG_ON(ret);
2339 
2340 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2341 				   sys_chunk_offset, sys_chunk_size,
2342 				   sys_stripe_size);
2343 	BUG_ON(ret);
2344 	return 0;
2345 }
2346 
2347 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2348 {
2349 	struct extent_map *em;
2350 	struct map_lookup *map;
2351 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2352 	int readonly = 0;
2353 	int i;
2354 
2355 	spin_lock(&map_tree->map_tree.lock);
2356 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2357 	spin_unlock(&map_tree->map_tree.lock);
2358 	if (!em)
2359 		return 1;
2360 
2361 	map = (struct map_lookup *)em->bdev;
2362 	for (i = 0; i < map->num_stripes; i++) {
2363 		if (!map->stripes[i].dev->writeable) {
2364 			readonly = 1;
2365 			break;
2366 		}
2367 	}
2368 	free_extent_map(em);
2369 	return readonly;
2370 }
2371 
2372 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2373 {
2374 	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2375 }
2376 
2377 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2378 {
2379 	struct extent_map *em;
2380 
2381 	while (1) {
2382 		spin_lock(&tree->map_tree.lock);
2383 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2384 		if (em)
2385 			remove_extent_mapping(&tree->map_tree, em);
2386 		spin_unlock(&tree->map_tree.lock);
2387 		if (!em)
2388 			break;
2389 		kfree(em->bdev);
2390 		/* once for us */
2391 		free_extent_map(em);
2392 		/* once for the tree */
2393 		free_extent_map(em);
2394 	}
2395 }
2396 
2397 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2398 {
2399 	struct extent_map *em;
2400 	struct map_lookup *map;
2401 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2402 	int ret;
2403 
2404 	spin_lock(&em_tree->lock);
2405 	em = lookup_extent_mapping(em_tree, logical, len);
2406 	spin_unlock(&em_tree->lock);
2407 	BUG_ON(!em);
2408 
2409 	BUG_ON(em->start > logical || em->start + em->len < logical);
2410 	map = (struct map_lookup *)em->bdev;
2411 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2412 		ret = map->num_stripes;
2413 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2414 		ret = map->sub_stripes;
2415 	else
2416 		ret = 1;
2417 	free_extent_map(em);
2418 	return ret;
2419 }
2420 
2421 static int find_live_mirror(struct map_lookup *map, int first, int num,
2422 			    int optimal)
2423 {
2424 	int i;
2425 	if (map->stripes[optimal].dev->bdev)
2426 		return optimal;
2427 	for (i = first; i < first + num; i++) {
2428 		if (map->stripes[i].dev->bdev)
2429 			return i;
2430 	}
2431 	/* we couldn't find one that doesn't fail.  Just return something
2432 	 * and the io error handling code will clean up eventually
2433 	 */
2434 	return optimal;
2435 }
2436 
2437 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2438 			     u64 logical, u64 *length,
2439 			     struct btrfs_multi_bio **multi_ret,
2440 			     int mirror_num, struct page *unplug_page)
2441 {
2442 	struct extent_map *em;
2443 	struct map_lookup *map;
2444 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2445 	u64 offset;
2446 	u64 stripe_offset;
2447 	u64 stripe_nr;
2448 	int stripes_allocated = 8;
2449 	int stripes_required = 1;
2450 	int stripe_index;
2451 	int i;
2452 	int num_stripes;
2453 	int max_errors = 0;
2454 	struct btrfs_multi_bio *multi = NULL;
2455 
2456 	if (multi_ret && !(rw & (1 << BIO_RW)))
2457 		stripes_allocated = 1;
2458 again:
2459 	if (multi_ret) {
2460 		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2461 				GFP_NOFS);
2462 		if (!multi)
2463 			return -ENOMEM;
2464 
2465 		atomic_set(&multi->error, 0);
2466 	}
2467 
2468 	spin_lock(&em_tree->lock);
2469 	em = lookup_extent_mapping(em_tree, logical, *length);
2470 	spin_unlock(&em_tree->lock);
2471 
2472 	if (!em && unplug_page)
2473 		return 0;
2474 
2475 	if (!em) {
2476 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2477 		       (unsigned long long)logical,
2478 		       (unsigned long long)*length);
2479 		BUG();
2480 	}
2481 
2482 	BUG_ON(em->start > logical || em->start + em->len < logical);
2483 	map = (struct map_lookup *)em->bdev;
2484 	offset = logical - em->start;
2485 
2486 	if (mirror_num > map->num_stripes)
2487 		mirror_num = 0;
2488 
2489 	/* if our multi bio struct is too small, back off and try again */
2490 	if (rw & (1 << BIO_RW)) {
2491 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2492 				 BTRFS_BLOCK_GROUP_DUP)) {
2493 			stripes_required = map->num_stripes;
2494 			max_errors = 1;
2495 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2496 			stripes_required = map->sub_stripes;
2497 			max_errors = 1;
2498 		}
2499 	}
2500 	if (multi_ret && rw == WRITE &&
2501 	    stripes_allocated < stripes_required) {
2502 		stripes_allocated = map->num_stripes;
2503 		free_extent_map(em);
2504 		kfree(multi);
2505 		goto again;
2506 	}
2507 	stripe_nr = offset;
2508 	/*
2509 	 * stripe_nr counts the total number of stripes we have to stride
2510 	 * to get to this block
2511 	 */
2512 	do_div(stripe_nr, map->stripe_len);
2513 
2514 	stripe_offset = stripe_nr * map->stripe_len;
2515 	BUG_ON(offset < stripe_offset);
2516 
2517 	/* stripe_offset is the offset of this block in its stripe*/
2518 	stripe_offset = offset - stripe_offset;
2519 
2520 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2521 			 BTRFS_BLOCK_GROUP_RAID10 |
2522 			 BTRFS_BLOCK_GROUP_DUP)) {
2523 		/* we limit the length of each bio to what fits in a stripe */
2524 		*length = min_t(u64, em->len - offset,
2525 			      map->stripe_len - stripe_offset);
2526 	} else {
2527 		*length = em->len - offset;
2528 	}
2529 
2530 	if (!multi_ret && !unplug_page)
2531 		goto out;
2532 
2533 	num_stripes = 1;
2534 	stripe_index = 0;
2535 	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2536 		if (unplug_page || (rw & (1 << BIO_RW)))
2537 			num_stripes = map->num_stripes;
2538 		else if (mirror_num)
2539 			stripe_index = mirror_num - 1;
2540 		else {
2541 			stripe_index = find_live_mirror(map, 0,
2542 					    map->num_stripes,
2543 					    current->pid % map->num_stripes);
2544 		}
2545 
2546 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2547 		if (rw & (1 << BIO_RW))
2548 			num_stripes = map->num_stripes;
2549 		else if (mirror_num)
2550 			stripe_index = mirror_num - 1;
2551 
2552 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2553 		int factor = map->num_stripes / map->sub_stripes;
2554 
2555 		stripe_index = do_div(stripe_nr, factor);
2556 		stripe_index *= map->sub_stripes;
2557 
2558 		if (unplug_page || (rw & (1 << BIO_RW)))
2559 			num_stripes = map->sub_stripes;
2560 		else if (mirror_num)
2561 			stripe_index += mirror_num - 1;
2562 		else {
2563 			stripe_index = find_live_mirror(map, stripe_index,
2564 					      map->sub_stripes, stripe_index +
2565 					      current->pid % map->sub_stripes);
2566 		}
2567 	} else {
2568 		/*
2569 		 * after this do_div call, stripe_nr is the number of stripes
2570 		 * on this device we have to walk to find the data, and
2571 		 * stripe_index is the number of our device in the stripe array
2572 		 */
2573 		stripe_index = do_div(stripe_nr, map->num_stripes);
2574 	}
2575 	BUG_ON(stripe_index >= map->num_stripes);
2576 
2577 	for (i = 0; i < num_stripes; i++) {
2578 		if (unplug_page) {
2579 			struct btrfs_device *device;
2580 			struct backing_dev_info *bdi;
2581 
2582 			device = map->stripes[stripe_index].dev;
2583 			if (device->bdev) {
2584 				bdi = blk_get_backing_dev_info(device->bdev);
2585 				if (bdi->unplug_io_fn)
2586 					bdi->unplug_io_fn(bdi, unplug_page);
2587 			}
2588 		} else {
2589 			multi->stripes[i].physical =
2590 				map->stripes[stripe_index].physical +
2591 				stripe_offset + stripe_nr * map->stripe_len;
2592 			multi->stripes[i].dev = map->stripes[stripe_index].dev;
2593 		}
2594 		stripe_index++;
2595 	}
2596 	if (multi_ret) {
2597 		*multi_ret = multi;
2598 		multi->num_stripes = num_stripes;
2599 		multi->max_errors = max_errors;
2600 	}
2601 out:
2602 	free_extent_map(em);
2603 	return 0;
2604 }
2605 
2606 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2607 		      u64 logical, u64 *length,
2608 		      struct btrfs_multi_bio **multi_ret, int mirror_num)
2609 {
2610 	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2611 				 mirror_num, NULL);
2612 }
2613 
2614 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2615 		     u64 chunk_start, u64 physical, u64 devid,
2616 		     u64 **logical, int *naddrs, int *stripe_len)
2617 {
2618 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2619 	struct extent_map *em;
2620 	struct map_lookup *map;
2621 	u64 *buf;
2622 	u64 bytenr;
2623 	u64 length;
2624 	u64 stripe_nr;
2625 	int i, j, nr = 0;
2626 
2627 	spin_lock(&em_tree->lock);
2628 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
2629 	spin_unlock(&em_tree->lock);
2630 
2631 	BUG_ON(!em || em->start != chunk_start);
2632 	map = (struct map_lookup *)em->bdev;
2633 
2634 	length = em->len;
2635 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2636 		do_div(length, map->num_stripes / map->sub_stripes);
2637 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2638 		do_div(length, map->num_stripes);
2639 
2640 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2641 	BUG_ON(!buf);
2642 
2643 	for (i = 0; i < map->num_stripes; i++) {
2644 		if (devid && map->stripes[i].dev->devid != devid)
2645 			continue;
2646 		if (map->stripes[i].physical > physical ||
2647 		    map->stripes[i].physical + length <= physical)
2648 			continue;
2649 
2650 		stripe_nr = physical - map->stripes[i].physical;
2651 		do_div(stripe_nr, map->stripe_len);
2652 
2653 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2654 			stripe_nr = stripe_nr * map->num_stripes + i;
2655 			do_div(stripe_nr, map->sub_stripes);
2656 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2657 			stripe_nr = stripe_nr * map->num_stripes + i;
2658 		}
2659 		bytenr = chunk_start + stripe_nr * map->stripe_len;
2660 		WARN_ON(nr >= map->num_stripes);
2661 		for (j = 0; j < nr; j++) {
2662 			if (buf[j] == bytenr)
2663 				break;
2664 		}
2665 		if (j == nr) {
2666 			WARN_ON(nr >= map->num_stripes);
2667 			buf[nr++] = bytenr;
2668 		}
2669 	}
2670 
2671 	for (i = 0; i > nr; i++) {
2672 		struct btrfs_multi_bio *multi;
2673 		struct btrfs_bio_stripe *stripe;
2674 		int ret;
2675 
2676 		length = 1;
2677 		ret = btrfs_map_block(map_tree, WRITE, buf[i],
2678 				      &length, &multi, 0);
2679 		BUG_ON(ret);
2680 
2681 		stripe = multi->stripes;
2682 		for (j = 0; j < multi->num_stripes; j++) {
2683 			if (stripe->physical >= physical &&
2684 			    physical < stripe->physical + length)
2685 				break;
2686 		}
2687 		BUG_ON(j >= multi->num_stripes);
2688 		kfree(multi);
2689 	}
2690 
2691 	*logical = buf;
2692 	*naddrs = nr;
2693 	*stripe_len = map->stripe_len;
2694 
2695 	free_extent_map(em);
2696 	return 0;
2697 }
2698 
2699 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2700 		      u64 logical, struct page *page)
2701 {
2702 	u64 length = PAGE_CACHE_SIZE;
2703 	return __btrfs_map_block(map_tree, READ, logical, &length,
2704 				 NULL, 0, page);
2705 }
2706 
2707 static void end_bio_multi_stripe(struct bio *bio, int err)
2708 {
2709 	struct btrfs_multi_bio *multi = bio->bi_private;
2710 	int is_orig_bio = 0;
2711 
2712 	if (err)
2713 		atomic_inc(&multi->error);
2714 
2715 	if (bio == multi->orig_bio)
2716 		is_orig_bio = 1;
2717 
2718 	if (atomic_dec_and_test(&multi->stripes_pending)) {
2719 		if (!is_orig_bio) {
2720 			bio_put(bio);
2721 			bio = multi->orig_bio;
2722 		}
2723 		bio->bi_private = multi->private;
2724 		bio->bi_end_io = multi->end_io;
2725 		/* only send an error to the higher layers if it is
2726 		 * beyond the tolerance of the multi-bio
2727 		 */
2728 		if (atomic_read(&multi->error) > multi->max_errors) {
2729 			err = -EIO;
2730 		} else if (err) {
2731 			/*
2732 			 * this bio is actually up to date, we didn't
2733 			 * go over the max number of errors
2734 			 */
2735 			set_bit(BIO_UPTODATE, &bio->bi_flags);
2736 			err = 0;
2737 		}
2738 		kfree(multi);
2739 
2740 		bio_endio(bio, err);
2741 	} else if (!is_orig_bio) {
2742 		bio_put(bio);
2743 	}
2744 }
2745 
2746 struct async_sched {
2747 	struct bio *bio;
2748 	int rw;
2749 	struct btrfs_fs_info *info;
2750 	struct btrfs_work work;
2751 };
2752 
2753 /*
2754  * see run_scheduled_bios for a description of why bios are collected for
2755  * async submit.
2756  *
2757  * This will add one bio to the pending list for a device and make sure
2758  * the work struct is scheduled.
2759  */
2760 static noinline int schedule_bio(struct btrfs_root *root,
2761 				 struct btrfs_device *device,
2762 				 int rw, struct bio *bio)
2763 {
2764 	int should_queue = 1;
2765 
2766 	/* don't bother with additional async steps for reads, right now */
2767 	if (!(rw & (1 << BIO_RW))) {
2768 		bio_get(bio);
2769 		submit_bio(rw, bio);
2770 		bio_put(bio);
2771 		return 0;
2772 	}
2773 
2774 	/*
2775 	 * nr_async_bios allows us to reliably return congestion to the
2776 	 * higher layers.  Otherwise, the async bio makes it appear we have
2777 	 * made progress against dirty pages when we've really just put it
2778 	 * on a queue for later
2779 	 */
2780 	atomic_inc(&root->fs_info->nr_async_bios);
2781 	WARN_ON(bio->bi_next);
2782 	bio->bi_next = NULL;
2783 	bio->bi_rw |= rw;
2784 
2785 	spin_lock(&device->io_lock);
2786 
2787 	if (device->pending_bio_tail)
2788 		device->pending_bio_tail->bi_next = bio;
2789 
2790 	device->pending_bio_tail = bio;
2791 	if (!device->pending_bios)
2792 		device->pending_bios = bio;
2793 	if (device->running_pending)
2794 		should_queue = 0;
2795 
2796 	spin_unlock(&device->io_lock);
2797 
2798 	if (should_queue)
2799 		btrfs_queue_worker(&root->fs_info->submit_workers,
2800 				   &device->work);
2801 	return 0;
2802 }
2803 
2804 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2805 		  int mirror_num, int async_submit)
2806 {
2807 	struct btrfs_mapping_tree *map_tree;
2808 	struct btrfs_device *dev;
2809 	struct bio *first_bio = bio;
2810 	u64 logical = (u64)bio->bi_sector << 9;
2811 	u64 length = 0;
2812 	u64 map_length;
2813 	struct btrfs_multi_bio *multi = NULL;
2814 	int ret;
2815 	int dev_nr = 0;
2816 	int total_devs = 1;
2817 
2818 	length = bio->bi_size;
2819 	map_tree = &root->fs_info->mapping_tree;
2820 	map_length = length;
2821 
2822 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2823 			      mirror_num);
2824 	BUG_ON(ret);
2825 
2826 	total_devs = multi->num_stripes;
2827 	if (map_length < length) {
2828 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
2829 		       "len %llu\n", (unsigned long long)logical,
2830 		       (unsigned long long)length,
2831 		       (unsigned long long)map_length);
2832 		BUG();
2833 	}
2834 	multi->end_io = first_bio->bi_end_io;
2835 	multi->private = first_bio->bi_private;
2836 	multi->orig_bio = first_bio;
2837 	atomic_set(&multi->stripes_pending, multi->num_stripes);
2838 
2839 	while (dev_nr < total_devs) {
2840 		if (total_devs > 1) {
2841 			if (dev_nr < total_devs - 1) {
2842 				bio = bio_clone(first_bio, GFP_NOFS);
2843 				BUG_ON(!bio);
2844 			} else {
2845 				bio = first_bio;
2846 			}
2847 			bio->bi_private = multi;
2848 			bio->bi_end_io = end_bio_multi_stripe;
2849 		}
2850 		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2851 		dev = multi->stripes[dev_nr].dev;
2852 		BUG_ON(rw == WRITE && !dev->writeable);
2853 		if (dev && dev->bdev) {
2854 			bio->bi_bdev = dev->bdev;
2855 			if (async_submit)
2856 				schedule_bio(root, dev, rw, bio);
2857 			else
2858 				submit_bio(rw, bio);
2859 		} else {
2860 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2861 			bio->bi_sector = logical >> 9;
2862 			bio_endio(bio, -EIO);
2863 		}
2864 		dev_nr++;
2865 	}
2866 	if (total_devs == 1)
2867 		kfree(multi);
2868 	return 0;
2869 }
2870 
2871 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2872 				       u8 *uuid, u8 *fsid)
2873 {
2874 	struct btrfs_device *device;
2875 	struct btrfs_fs_devices *cur_devices;
2876 
2877 	cur_devices = root->fs_info->fs_devices;
2878 	while (cur_devices) {
2879 		if (!fsid ||
2880 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
2881 			device = __find_device(&cur_devices->devices,
2882 					       devid, uuid);
2883 			if (device)
2884 				return device;
2885 		}
2886 		cur_devices = cur_devices->seed;
2887 	}
2888 	return NULL;
2889 }
2890 
2891 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2892 					    u64 devid, u8 *dev_uuid)
2893 {
2894 	struct btrfs_device *device;
2895 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2896 
2897 	device = kzalloc(sizeof(*device), GFP_NOFS);
2898 	if (!device)
2899 		return NULL;
2900 	list_add(&device->dev_list,
2901 		 &fs_devices->devices);
2902 	device->barriers = 1;
2903 	device->dev_root = root->fs_info->dev_root;
2904 	device->devid = devid;
2905 	device->work.func = pending_bios_fn;
2906 	device->fs_devices = fs_devices;
2907 	fs_devices->num_devices++;
2908 	spin_lock_init(&device->io_lock);
2909 	INIT_LIST_HEAD(&device->dev_alloc_list);
2910 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2911 	return device;
2912 }
2913 
2914 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2915 			  struct extent_buffer *leaf,
2916 			  struct btrfs_chunk *chunk)
2917 {
2918 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2919 	struct map_lookup *map;
2920 	struct extent_map *em;
2921 	u64 logical;
2922 	u64 length;
2923 	u64 devid;
2924 	u8 uuid[BTRFS_UUID_SIZE];
2925 	int num_stripes;
2926 	int ret;
2927 	int i;
2928 
2929 	logical = key->offset;
2930 	length = btrfs_chunk_length(leaf, chunk);
2931 
2932 	spin_lock(&map_tree->map_tree.lock);
2933 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
2934 	spin_unlock(&map_tree->map_tree.lock);
2935 
2936 	/* already mapped? */
2937 	if (em && em->start <= logical && em->start + em->len > logical) {
2938 		free_extent_map(em);
2939 		return 0;
2940 	} else if (em) {
2941 		free_extent_map(em);
2942 	}
2943 
2944 	em = alloc_extent_map(GFP_NOFS);
2945 	if (!em)
2946 		return -ENOMEM;
2947 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2948 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2949 	if (!map) {
2950 		free_extent_map(em);
2951 		return -ENOMEM;
2952 	}
2953 
2954 	em->bdev = (struct block_device *)map;
2955 	em->start = logical;
2956 	em->len = length;
2957 	em->block_start = 0;
2958 	em->block_len = em->len;
2959 
2960 	map->num_stripes = num_stripes;
2961 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
2962 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
2963 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2964 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2965 	map->type = btrfs_chunk_type(leaf, chunk);
2966 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
2967 	for (i = 0; i < num_stripes; i++) {
2968 		map->stripes[i].physical =
2969 			btrfs_stripe_offset_nr(leaf, chunk, i);
2970 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
2971 		read_extent_buffer(leaf, uuid, (unsigned long)
2972 				   btrfs_stripe_dev_uuid_nr(chunk, i),
2973 				   BTRFS_UUID_SIZE);
2974 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
2975 							NULL);
2976 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
2977 			kfree(map);
2978 			free_extent_map(em);
2979 			return -EIO;
2980 		}
2981 		if (!map->stripes[i].dev) {
2982 			map->stripes[i].dev =
2983 				add_missing_dev(root, devid, uuid);
2984 			if (!map->stripes[i].dev) {
2985 				kfree(map);
2986 				free_extent_map(em);
2987 				return -EIO;
2988 			}
2989 		}
2990 		map->stripes[i].dev->in_fs_metadata = 1;
2991 	}
2992 
2993 	spin_lock(&map_tree->map_tree.lock);
2994 	ret = add_extent_mapping(&map_tree->map_tree, em);
2995 	spin_unlock(&map_tree->map_tree.lock);
2996 	BUG_ON(ret);
2997 	free_extent_map(em);
2998 
2999 	return 0;
3000 }
3001 
3002 static int fill_device_from_item(struct extent_buffer *leaf,
3003 				 struct btrfs_dev_item *dev_item,
3004 				 struct btrfs_device *device)
3005 {
3006 	unsigned long ptr;
3007 
3008 	device->devid = btrfs_device_id(leaf, dev_item);
3009 	device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3010 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3011 	device->type = btrfs_device_type(leaf, dev_item);
3012 	device->io_align = btrfs_device_io_align(leaf, dev_item);
3013 	device->io_width = btrfs_device_io_width(leaf, dev_item);
3014 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3015 
3016 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
3017 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3018 
3019 	return 0;
3020 }
3021 
3022 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3023 {
3024 	struct btrfs_fs_devices *fs_devices;
3025 	int ret;
3026 
3027 	mutex_lock(&uuid_mutex);
3028 
3029 	fs_devices = root->fs_info->fs_devices->seed;
3030 	while (fs_devices) {
3031 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3032 			ret = 0;
3033 			goto out;
3034 		}
3035 		fs_devices = fs_devices->seed;
3036 	}
3037 
3038 	fs_devices = find_fsid(fsid);
3039 	if (!fs_devices) {
3040 		ret = -ENOENT;
3041 		goto out;
3042 	}
3043 
3044 	fs_devices = clone_fs_devices(fs_devices);
3045 	if (IS_ERR(fs_devices)) {
3046 		ret = PTR_ERR(fs_devices);
3047 		goto out;
3048 	}
3049 
3050 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3051 				   root->fs_info->bdev_holder);
3052 	if (ret)
3053 		goto out;
3054 
3055 	if (!fs_devices->seeding) {
3056 		__btrfs_close_devices(fs_devices);
3057 		free_fs_devices(fs_devices);
3058 		ret = -EINVAL;
3059 		goto out;
3060 	}
3061 
3062 	fs_devices->seed = root->fs_info->fs_devices->seed;
3063 	root->fs_info->fs_devices->seed = fs_devices;
3064 out:
3065 	mutex_unlock(&uuid_mutex);
3066 	return ret;
3067 }
3068 
3069 static int read_one_dev(struct btrfs_root *root,
3070 			struct extent_buffer *leaf,
3071 			struct btrfs_dev_item *dev_item)
3072 {
3073 	struct btrfs_device *device;
3074 	u64 devid;
3075 	int ret;
3076 	u8 fs_uuid[BTRFS_UUID_SIZE];
3077 	u8 dev_uuid[BTRFS_UUID_SIZE];
3078 
3079 	devid = btrfs_device_id(leaf, dev_item);
3080 	read_extent_buffer(leaf, dev_uuid,
3081 			   (unsigned long)btrfs_device_uuid(dev_item),
3082 			   BTRFS_UUID_SIZE);
3083 	read_extent_buffer(leaf, fs_uuid,
3084 			   (unsigned long)btrfs_device_fsid(dev_item),
3085 			   BTRFS_UUID_SIZE);
3086 
3087 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3088 		ret = open_seed_devices(root, fs_uuid);
3089 		if (ret && !btrfs_test_opt(root, DEGRADED))
3090 			return ret;
3091 	}
3092 
3093 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3094 	if (!device || !device->bdev) {
3095 		if (!btrfs_test_opt(root, DEGRADED))
3096 			return -EIO;
3097 
3098 		if (!device) {
3099 			printk(KERN_WARNING "warning devid %llu missing\n",
3100 			       (unsigned long long)devid);
3101 			device = add_missing_dev(root, devid, dev_uuid);
3102 			if (!device)
3103 				return -ENOMEM;
3104 		}
3105 	}
3106 
3107 	if (device->fs_devices != root->fs_info->fs_devices) {
3108 		BUG_ON(device->writeable);
3109 		if (device->generation !=
3110 		    btrfs_device_generation(leaf, dev_item))
3111 			return -EINVAL;
3112 	}
3113 
3114 	fill_device_from_item(leaf, dev_item, device);
3115 	device->dev_root = root->fs_info->dev_root;
3116 	device->in_fs_metadata = 1;
3117 	if (device->writeable)
3118 		device->fs_devices->total_rw_bytes += device->total_bytes;
3119 	ret = 0;
3120 	return ret;
3121 }
3122 
3123 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3124 {
3125 	struct btrfs_dev_item *dev_item;
3126 
3127 	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3128 						     dev_item);
3129 	return read_one_dev(root, buf, dev_item);
3130 }
3131 
3132 int btrfs_read_sys_array(struct btrfs_root *root)
3133 {
3134 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3135 	struct extent_buffer *sb;
3136 	struct btrfs_disk_key *disk_key;
3137 	struct btrfs_chunk *chunk;
3138 	u8 *ptr;
3139 	unsigned long sb_ptr;
3140 	int ret = 0;
3141 	u32 num_stripes;
3142 	u32 array_size;
3143 	u32 len = 0;
3144 	u32 cur;
3145 	struct btrfs_key key;
3146 
3147 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3148 					  BTRFS_SUPER_INFO_SIZE);
3149 	if (!sb)
3150 		return -ENOMEM;
3151 	btrfs_set_buffer_uptodate(sb);
3152 	btrfs_set_buffer_lockdep_class(sb, 0);
3153 
3154 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3155 	array_size = btrfs_super_sys_array_size(super_copy);
3156 
3157 	ptr = super_copy->sys_chunk_array;
3158 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3159 	cur = 0;
3160 
3161 	while (cur < array_size) {
3162 		disk_key = (struct btrfs_disk_key *)ptr;
3163 		btrfs_disk_key_to_cpu(&key, disk_key);
3164 
3165 		len = sizeof(*disk_key); ptr += len;
3166 		sb_ptr += len;
3167 		cur += len;
3168 
3169 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3170 			chunk = (struct btrfs_chunk *)sb_ptr;
3171 			ret = read_one_chunk(root, &key, sb, chunk);
3172 			if (ret)
3173 				break;
3174 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3175 			len = btrfs_chunk_item_size(num_stripes);
3176 		} else {
3177 			ret = -EIO;
3178 			break;
3179 		}
3180 		ptr += len;
3181 		sb_ptr += len;
3182 		cur += len;
3183 	}
3184 	free_extent_buffer(sb);
3185 	return ret;
3186 }
3187 
3188 int btrfs_read_chunk_tree(struct btrfs_root *root)
3189 {
3190 	struct btrfs_path *path;
3191 	struct extent_buffer *leaf;
3192 	struct btrfs_key key;
3193 	struct btrfs_key found_key;
3194 	int ret;
3195 	int slot;
3196 
3197 	root = root->fs_info->chunk_root;
3198 
3199 	path = btrfs_alloc_path();
3200 	if (!path)
3201 		return -ENOMEM;
3202 
3203 	/* first we search for all of the device items, and then we
3204 	 * read in all of the chunk items.  This way we can create chunk
3205 	 * mappings that reference all of the devices that are afound
3206 	 */
3207 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3208 	key.offset = 0;
3209 	key.type = 0;
3210 again:
3211 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3212 	while (1) {
3213 		leaf = path->nodes[0];
3214 		slot = path->slots[0];
3215 		if (slot >= btrfs_header_nritems(leaf)) {
3216 			ret = btrfs_next_leaf(root, path);
3217 			if (ret == 0)
3218 				continue;
3219 			if (ret < 0)
3220 				goto error;
3221 			break;
3222 		}
3223 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3224 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3225 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3226 				break;
3227 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3228 				struct btrfs_dev_item *dev_item;
3229 				dev_item = btrfs_item_ptr(leaf, slot,
3230 						  struct btrfs_dev_item);
3231 				ret = read_one_dev(root, leaf, dev_item);
3232 				if (ret)
3233 					goto error;
3234 			}
3235 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3236 			struct btrfs_chunk *chunk;
3237 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3238 			ret = read_one_chunk(root, &found_key, leaf, chunk);
3239 			if (ret)
3240 				goto error;
3241 		}
3242 		path->slots[0]++;
3243 	}
3244 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3245 		key.objectid = 0;
3246 		btrfs_release_path(root, path);
3247 		goto again;
3248 	}
3249 	ret = 0;
3250 error:
3251 	btrfs_free_path(path);
3252 	return ret;
3253 }
3254