xref: /openbmc/linux/fs/btrfs/volumes.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <linux/list_sort.h>
31 #include <asm/div64.h>
32 #include "ctree.h"
33 #include "extent_map.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "raid56.h"
39 #include "async-thread.h"
40 #include "check-integrity.h"
41 #include "rcu-string.h"
42 #include "math.h"
43 #include "dev-replace.h"
44 #include "sysfs.h"
45 
46 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
47 	[BTRFS_RAID_RAID10] = {
48 		.sub_stripes	= 2,
49 		.dev_stripes	= 1,
50 		.devs_max	= 0,	/* 0 == as many as possible */
51 		.devs_min	= 4,
52 		.tolerated_failures = 1,
53 		.devs_increment	= 2,
54 		.ncopies	= 2,
55 	},
56 	[BTRFS_RAID_RAID1] = {
57 		.sub_stripes	= 1,
58 		.dev_stripes	= 1,
59 		.devs_max	= 2,
60 		.devs_min	= 2,
61 		.tolerated_failures = 1,
62 		.devs_increment	= 2,
63 		.ncopies	= 2,
64 	},
65 	[BTRFS_RAID_DUP] = {
66 		.sub_stripes	= 1,
67 		.dev_stripes	= 2,
68 		.devs_max	= 1,
69 		.devs_min	= 1,
70 		.tolerated_failures = 0,
71 		.devs_increment	= 1,
72 		.ncopies	= 2,
73 	},
74 	[BTRFS_RAID_RAID0] = {
75 		.sub_stripes	= 1,
76 		.dev_stripes	= 1,
77 		.devs_max	= 0,
78 		.devs_min	= 2,
79 		.tolerated_failures = 0,
80 		.devs_increment	= 1,
81 		.ncopies	= 1,
82 	},
83 	[BTRFS_RAID_SINGLE] = {
84 		.sub_stripes	= 1,
85 		.dev_stripes	= 1,
86 		.devs_max	= 1,
87 		.devs_min	= 1,
88 		.tolerated_failures = 0,
89 		.devs_increment	= 1,
90 		.ncopies	= 1,
91 	},
92 	[BTRFS_RAID_RAID5] = {
93 		.sub_stripes	= 1,
94 		.dev_stripes	= 1,
95 		.devs_max	= 0,
96 		.devs_min	= 2,
97 		.tolerated_failures = 1,
98 		.devs_increment	= 1,
99 		.ncopies	= 2,
100 	},
101 	[BTRFS_RAID_RAID6] = {
102 		.sub_stripes	= 1,
103 		.dev_stripes	= 1,
104 		.devs_max	= 0,
105 		.devs_min	= 3,
106 		.tolerated_failures = 2,
107 		.devs_increment	= 1,
108 		.ncopies	= 3,
109 	},
110 };
111 
112 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
113 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
114 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
115 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
116 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
117 	[BTRFS_RAID_SINGLE] = 0,
118 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
119 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
120 };
121 
122 /*
123  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
124  * condition is not met. Zero means there's no corresponding
125  * BTRFS_ERROR_DEV_*_NOT_MET value.
126  */
127 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
128 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
129 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
130 	[BTRFS_RAID_DUP]    = 0,
131 	[BTRFS_RAID_RAID0]  = 0,
132 	[BTRFS_RAID_SINGLE] = 0,
133 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
134 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
135 };
136 
137 static int init_first_rw_device(struct btrfs_trans_handle *trans,
138 				struct btrfs_fs_info *fs_info);
139 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
144 			     enum btrfs_map_op op,
145 			     u64 logical, u64 *length,
146 			     struct btrfs_bio **bbio_ret,
147 			     int mirror_num, int need_raid_map);
148 
149 /*
150  * Device locking
151  * ==============
152  *
153  * There are several mutexes that protect manipulation of devices and low-level
154  * structures like chunks but not block groups, extents or files
155  *
156  * uuid_mutex (global lock)
157  * ------------------------
158  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
159  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
160  * device) or requested by the device= mount option
161  *
162  * the mutex can be very coarse and can cover long-running operations
163  *
164  * protects: updates to fs_devices counters like missing devices, rw devices,
165  * seeding, structure cloning, openning/closing devices at mount/umount time
166  *
167  * global::fs_devs - add, remove, updates to the global list
168  *
169  * does not protect: manipulation of the fs_devices::devices list!
170  *
171  * btrfs_device::name - renames (write side), read is RCU
172  *
173  * fs_devices::device_list_mutex (per-fs, with RCU)
174  * ------------------------------------------------
175  * protects updates to fs_devices::devices, ie. adding and deleting
176  *
177  * simple list traversal with read-only actions can be done with RCU protection
178  *
179  * may be used to exclude some operations from running concurrently without any
180  * modifications to the list (see write_all_supers)
181  *
182  * volume_mutex
183  * ------------
184  * coarse lock owned by a mounted filesystem; used to exclude some operations
185  * that cannot run in parallel and affect the higher-level properties of the
186  * filesystem like: device add/deleting/resize/replace, or balance
187  *
188  * balance_mutex
189  * -------------
190  * protects balance structures (status, state) and context accessed from
191  * several places (internally, ioctl)
192  *
193  * chunk_mutex
194  * -----------
195  * protects chunks, adding or removing during allocation, trim or when a new
196  * device is added/removed
197  *
198  * cleaner_mutex
199  * -------------
200  * a big lock that is held by the cleaner thread and prevents running subvolume
201  * cleaning together with relocation or delayed iputs
202  *
203  *
204  * Lock nesting
205  * ============
206  *
207  * uuid_mutex
208  *   volume_mutex
209  *     device_list_mutex
210  *       chunk_mutex
211  *     balance_mutex
212  */
213 
214 DEFINE_MUTEX(uuid_mutex);
215 static LIST_HEAD(fs_uuids);
216 struct list_head *btrfs_get_fs_uuids(void)
217 {
218 	return &fs_uuids;
219 }
220 
221 /*
222  * alloc_fs_devices - allocate struct btrfs_fs_devices
223  * @fsid:	if not NULL, copy the uuid to fs_devices::fsid
224  *
225  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
226  * The returned struct is not linked onto any lists and can be destroyed with
227  * kfree() right away.
228  */
229 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
230 {
231 	struct btrfs_fs_devices *fs_devs;
232 
233 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
234 	if (!fs_devs)
235 		return ERR_PTR(-ENOMEM);
236 
237 	mutex_init(&fs_devs->device_list_mutex);
238 
239 	INIT_LIST_HEAD(&fs_devs->devices);
240 	INIT_LIST_HEAD(&fs_devs->resized_devices);
241 	INIT_LIST_HEAD(&fs_devs->alloc_list);
242 	INIT_LIST_HEAD(&fs_devs->list);
243 	if (fsid)
244 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
245 
246 	return fs_devs;
247 }
248 
249 static void free_device(struct btrfs_device *device)
250 {
251 	rcu_string_free(device->name);
252 	bio_put(device->flush_bio);
253 	kfree(device);
254 }
255 
256 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
257 {
258 	struct btrfs_device *device;
259 	WARN_ON(fs_devices->opened);
260 	while (!list_empty(&fs_devices->devices)) {
261 		device = list_entry(fs_devices->devices.next,
262 				    struct btrfs_device, dev_list);
263 		list_del(&device->dev_list);
264 		free_device(device);
265 	}
266 	kfree(fs_devices);
267 }
268 
269 static void btrfs_kobject_uevent(struct block_device *bdev,
270 				 enum kobject_action action)
271 {
272 	int ret;
273 
274 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
275 	if (ret)
276 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
277 			action,
278 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
279 			&disk_to_dev(bdev->bd_disk)->kobj);
280 }
281 
282 void __exit btrfs_cleanup_fs_uuids(void)
283 {
284 	struct btrfs_fs_devices *fs_devices;
285 
286 	while (!list_empty(&fs_uuids)) {
287 		fs_devices = list_entry(fs_uuids.next,
288 					struct btrfs_fs_devices, list);
289 		list_del(&fs_devices->list);
290 		free_fs_devices(fs_devices);
291 	}
292 }
293 
294 /*
295  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
296  * Returned struct is not linked onto any lists and must be destroyed using
297  * free_device.
298  */
299 static struct btrfs_device *__alloc_device(void)
300 {
301 	struct btrfs_device *dev;
302 
303 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
304 	if (!dev)
305 		return ERR_PTR(-ENOMEM);
306 
307 	/*
308 	 * Preallocate a bio that's always going to be used for flushing device
309 	 * barriers and matches the device lifespan
310 	 */
311 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
312 	if (!dev->flush_bio) {
313 		kfree(dev);
314 		return ERR_PTR(-ENOMEM);
315 	}
316 
317 	INIT_LIST_HEAD(&dev->dev_list);
318 	INIT_LIST_HEAD(&dev->dev_alloc_list);
319 	INIT_LIST_HEAD(&dev->resized_list);
320 
321 	spin_lock_init(&dev->io_lock);
322 
323 	atomic_set(&dev->reada_in_flight, 0);
324 	atomic_set(&dev->dev_stats_ccnt, 0);
325 	btrfs_device_data_ordered_init(dev);
326 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
327 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
328 
329 	return dev;
330 }
331 
332 /*
333  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
334  * return NULL.
335  *
336  * If devid and uuid are both specified, the match must be exact, otherwise
337  * only devid is used.
338  */
339 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
340 		u64 devid, const u8 *uuid)
341 {
342 	struct list_head *head = &fs_devices->devices;
343 	struct btrfs_device *dev;
344 
345 	list_for_each_entry(dev, head, dev_list) {
346 		if (dev->devid == devid &&
347 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
348 			return dev;
349 		}
350 	}
351 	return NULL;
352 }
353 
354 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
355 {
356 	struct btrfs_fs_devices *fs_devices;
357 
358 	list_for_each_entry(fs_devices, &fs_uuids, list) {
359 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
360 			return fs_devices;
361 	}
362 	return NULL;
363 }
364 
365 static int
366 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
367 		      int flush, struct block_device **bdev,
368 		      struct buffer_head **bh)
369 {
370 	int ret;
371 
372 	*bdev = blkdev_get_by_path(device_path, flags, holder);
373 
374 	if (IS_ERR(*bdev)) {
375 		ret = PTR_ERR(*bdev);
376 		goto error;
377 	}
378 
379 	if (flush)
380 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
381 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
382 	if (ret) {
383 		blkdev_put(*bdev, flags);
384 		goto error;
385 	}
386 	invalidate_bdev(*bdev);
387 	*bh = btrfs_read_dev_super(*bdev);
388 	if (IS_ERR(*bh)) {
389 		ret = PTR_ERR(*bh);
390 		blkdev_put(*bdev, flags);
391 		goto error;
392 	}
393 
394 	return 0;
395 
396 error:
397 	*bdev = NULL;
398 	*bh = NULL;
399 	return ret;
400 }
401 
402 static void requeue_list(struct btrfs_pending_bios *pending_bios,
403 			struct bio *head, struct bio *tail)
404 {
405 
406 	struct bio *old_head;
407 
408 	old_head = pending_bios->head;
409 	pending_bios->head = head;
410 	if (pending_bios->tail)
411 		tail->bi_next = old_head;
412 	else
413 		pending_bios->tail = tail;
414 }
415 
416 /*
417  * we try to collect pending bios for a device so we don't get a large
418  * number of procs sending bios down to the same device.  This greatly
419  * improves the schedulers ability to collect and merge the bios.
420  *
421  * But, it also turns into a long list of bios to process and that is sure
422  * to eventually make the worker thread block.  The solution here is to
423  * make some progress and then put this work struct back at the end of
424  * the list if the block device is congested.  This way, multiple devices
425  * can make progress from a single worker thread.
426  */
427 static noinline void run_scheduled_bios(struct btrfs_device *device)
428 {
429 	struct btrfs_fs_info *fs_info = device->fs_info;
430 	struct bio *pending;
431 	struct backing_dev_info *bdi;
432 	struct btrfs_pending_bios *pending_bios;
433 	struct bio *tail;
434 	struct bio *cur;
435 	int again = 0;
436 	unsigned long num_run;
437 	unsigned long batch_run = 0;
438 	unsigned long last_waited = 0;
439 	int force_reg = 0;
440 	int sync_pending = 0;
441 	struct blk_plug plug;
442 
443 	/*
444 	 * this function runs all the bios we've collected for
445 	 * a particular device.  We don't want to wander off to
446 	 * another device without first sending all of these down.
447 	 * So, setup a plug here and finish it off before we return
448 	 */
449 	blk_start_plug(&plug);
450 
451 	bdi = device->bdev->bd_bdi;
452 
453 loop:
454 	spin_lock(&device->io_lock);
455 
456 loop_lock:
457 	num_run = 0;
458 
459 	/* take all the bios off the list at once and process them
460 	 * later on (without the lock held).  But, remember the
461 	 * tail and other pointers so the bios can be properly reinserted
462 	 * into the list if we hit congestion
463 	 */
464 	if (!force_reg && device->pending_sync_bios.head) {
465 		pending_bios = &device->pending_sync_bios;
466 		force_reg = 1;
467 	} else {
468 		pending_bios = &device->pending_bios;
469 		force_reg = 0;
470 	}
471 
472 	pending = pending_bios->head;
473 	tail = pending_bios->tail;
474 	WARN_ON(pending && !tail);
475 
476 	/*
477 	 * if pending was null this time around, no bios need processing
478 	 * at all and we can stop.  Otherwise it'll loop back up again
479 	 * and do an additional check so no bios are missed.
480 	 *
481 	 * device->running_pending is used to synchronize with the
482 	 * schedule_bio code.
483 	 */
484 	if (device->pending_sync_bios.head == NULL &&
485 	    device->pending_bios.head == NULL) {
486 		again = 0;
487 		device->running_pending = 0;
488 	} else {
489 		again = 1;
490 		device->running_pending = 1;
491 	}
492 
493 	pending_bios->head = NULL;
494 	pending_bios->tail = NULL;
495 
496 	spin_unlock(&device->io_lock);
497 
498 	while (pending) {
499 
500 		rmb();
501 		/* we want to work on both lists, but do more bios on the
502 		 * sync list than the regular list
503 		 */
504 		if ((num_run > 32 &&
505 		    pending_bios != &device->pending_sync_bios &&
506 		    device->pending_sync_bios.head) ||
507 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
508 		    device->pending_bios.head)) {
509 			spin_lock(&device->io_lock);
510 			requeue_list(pending_bios, pending, tail);
511 			goto loop_lock;
512 		}
513 
514 		cur = pending;
515 		pending = pending->bi_next;
516 		cur->bi_next = NULL;
517 
518 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
519 
520 		/*
521 		 * if we're doing the sync list, record that our
522 		 * plug has some sync requests on it
523 		 *
524 		 * If we're doing the regular list and there are
525 		 * sync requests sitting around, unplug before
526 		 * we add more
527 		 */
528 		if (pending_bios == &device->pending_sync_bios) {
529 			sync_pending = 1;
530 		} else if (sync_pending) {
531 			blk_finish_plug(&plug);
532 			blk_start_plug(&plug);
533 			sync_pending = 0;
534 		}
535 
536 		btrfsic_submit_bio(cur);
537 		num_run++;
538 		batch_run++;
539 
540 		cond_resched();
541 
542 		/*
543 		 * we made progress, there is more work to do and the bdi
544 		 * is now congested.  Back off and let other work structs
545 		 * run instead
546 		 */
547 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
548 		    fs_info->fs_devices->open_devices > 1) {
549 			struct io_context *ioc;
550 
551 			ioc = current->io_context;
552 
553 			/*
554 			 * the main goal here is that we don't want to
555 			 * block if we're going to be able to submit
556 			 * more requests without blocking.
557 			 *
558 			 * This code does two great things, it pokes into
559 			 * the elevator code from a filesystem _and_
560 			 * it makes assumptions about how batching works.
561 			 */
562 			if (ioc && ioc->nr_batch_requests > 0 &&
563 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
564 			    (last_waited == 0 ||
565 			     ioc->last_waited == last_waited)) {
566 				/*
567 				 * we want to go through our batch of
568 				 * requests and stop.  So, we copy out
569 				 * the ioc->last_waited time and test
570 				 * against it before looping
571 				 */
572 				last_waited = ioc->last_waited;
573 				cond_resched();
574 				continue;
575 			}
576 			spin_lock(&device->io_lock);
577 			requeue_list(pending_bios, pending, tail);
578 			device->running_pending = 1;
579 
580 			spin_unlock(&device->io_lock);
581 			btrfs_queue_work(fs_info->submit_workers,
582 					 &device->work);
583 			goto done;
584 		}
585 	}
586 
587 	cond_resched();
588 	if (again)
589 		goto loop;
590 
591 	spin_lock(&device->io_lock);
592 	if (device->pending_bios.head || device->pending_sync_bios.head)
593 		goto loop_lock;
594 	spin_unlock(&device->io_lock);
595 
596 done:
597 	blk_finish_plug(&plug);
598 }
599 
600 static void pending_bios_fn(struct btrfs_work *work)
601 {
602 	struct btrfs_device *device;
603 
604 	device = container_of(work, struct btrfs_device, work);
605 	run_scheduled_bios(device);
606 }
607 
608 /*
609  *  Search and remove all stale (devices which are not mounted) devices.
610  *  When both inputs are NULL, it will search and release all stale devices.
611  *  path:	Optional. When provided will it release all unmounted devices
612  *		matching this path only.
613  *  skip_dev:	Optional. Will skip this device when searching for the stale
614  *		devices.
615  */
616 static void btrfs_free_stale_devices(const char *path,
617 				     struct btrfs_device *skip_dev)
618 {
619 	struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
620 	struct btrfs_device *dev, *tmp_dev;
621 
622 	list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
623 
624 		if (fs_devs->opened)
625 			continue;
626 
627 		list_for_each_entry_safe(dev, tmp_dev,
628 					 &fs_devs->devices, dev_list) {
629 			int not_found = 0;
630 
631 			if (skip_dev && skip_dev == dev)
632 				continue;
633 			if (path && !dev->name)
634 				continue;
635 
636 			rcu_read_lock();
637 			if (path)
638 				not_found = strcmp(rcu_str_deref(dev->name),
639 						   path);
640 			rcu_read_unlock();
641 			if (not_found)
642 				continue;
643 
644 			/* delete the stale device */
645 			if (fs_devs->num_devices == 1) {
646 				btrfs_sysfs_remove_fsid(fs_devs);
647 				list_del(&fs_devs->list);
648 				free_fs_devices(fs_devs);
649 				break;
650 			} else {
651 				fs_devs->num_devices--;
652 				list_del(&dev->dev_list);
653 				free_device(dev);
654 			}
655 		}
656 	}
657 }
658 
659 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
660 			struct btrfs_device *device, fmode_t flags,
661 			void *holder)
662 {
663 	struct request_queue *q;
664 	struct block_device *bdev;
665 	struct buffer_head *bh;
666 	struct btrfs_super_block *disk_super;
667 	u64 devid;
668 	int ret;
669 
670 	if (device->bdev)
671 		return -EINVAL;
672 	if (!device->name)
673 		return -EINVAL;
674 
675 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
676 				    &bdev, &bh);
677 	if (ret)
678 		return ret;
679 
680 	disk_super = (struct btrfs_super_block *)bh->b_data;
681 	devid = btrfs_stack_device_id(&disk_super->dev_item);
682 	if (devid != device->devid)
683 		goto error_brelse;
684 
685 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
686 		goto error_brelse;
687 
688 	device->generation = btrfs_super_generation(disk_super);
689 
690 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
691 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
692 		fs_devices->seeding = 1;
693 	} else {
694 		if (bdev_read_only(bdev))
695 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
696 		else
697 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
698 	}
699 
700 	q = bdev_get_queue(bdev);
701 	if (!blk_queue_nonrot(q))
702 		fs_devices->rotating = 1;
703 
704 	device->bdev = bdev;
705 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
706 	device->mode = flags;
707 
708 	fs_devices->open_devices++;
709 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
710 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
711 		fs_devices->rw_devices++;
712 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
713 	}
714 	brelse(bh);
715 
716 	return 0;
717 
718 error_brelse:
719 	brelse(bh);
720 	blkdev_put(bdev, flags);
721 
722 	return -EINVAL;
723 }
724 
725 /*
726  * Add new device to list of registered devices
727  *
728  * Returns:
729  * device pointer which was just added or updated when successful
730  * error pointer when failed
731  */
732 static noinline struct btrfs_device *device_list_add(const char *path,
733 			   struct btrfs_super_block *disk_super)
734 {
735 	struct btrfs_device *device;
736 	struct btrfs_fs_devices *fs_devices;
737 	struct rcu_string *name;
738 	u64 found_transid = btrfs_super_generation(disk_super);
739 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
740 
741 	fs_devices = find_fsid(disk_super->fsid);
742 	if (!fs_devices) {
743 		fs_devices = alloc_fs_devices(disk_super->fsid);
744 		if (IS_ERR(fs_devices))
745 			return ERR_CAST(fs_devices);
746 
747 		list_add(&fs_devices->list, &fs_uuids);
748 
749 		device = NULL;
750 	} else {
751 		device = find_device(fs_devices, devid,
752 				disk_super->dev_item.uuid);
753 	}
754 
755 	if (!device) {
756 		if (fs_devices->opened)
757 			return ERR_PTR(-EBUSY);
758 
759 		device = btrfs_alloc_device(NULL, &devid,
760 					    disk_super->dev_item.uuid);
761 		if (IS_ERR(device)) {
762 			/* we can safely leave the fs_devices entry around */
763 			return device;
764 		}
765 
766 		name = rcu_string_strdup(path, GFP_NOFS);
767 		if (!name) {
768 			free_device(device);
769 			return ERR_PTR(-ENOMEM);
770 		}
771 		rcu_assign_pointer(device->name, name);
772 
773 		mutex_lock(&fs_devices->device_list_mutex);
774 		list_add_rcu(&device->dev_list, &fs_devices->devices);
775 		fs_devices->num_devices++;
776 		mutex_unlock(&fs_devices->device_list_mutex);
777 
778 		device->fs_devices = fs_devices;
779 		btrfs_free_stale_devices(path, device);
780 
781 		if (disk_super->label[0])
782 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
783 				disk_super->label, devid, found_transid, path);
784 		else
785 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
786 				disk_super->fsid, devid, found_transid, path);
787 
788 	} else if (!device->name || strcmp(device->name->str, path)) {
789 		/*
790 		 * When FS is already mounted.
791 		 * 1. If you are here and if the device->name is NULL that
792 		 *    means this device was missing at time of FS mount.
793 		 * 2. If you are here and if the device->name is different
794 		 *    from 'path' that means either
795 		 *      a. The same device disappeared and reappeared with
796 		 *         different name. or
797 		 *      b. The missing-disk-which-was-replaced, has
798 		 *         reappeared now.
799 		 *
800 		 * We must allow 1 and 2a above. But 2b would be a spurious
801 		 * and unintentional.
802 		 *
803 		 * Further in case of 1 and 2a above, the disk at 'path'
804 		 * would have missed some transaction when it was away and
805 		 * in case of 2a the stale bdev has to be updated as well.
806 		 * 2b must not be allowed at all time.
807 		 */
808 
809 		/*
810 		 * For now, we do allow update to btrfs_fs_device through the
811 		 * btrfs dev scan cli after FS has been mounted.  We're still
812 		 * tracking a problem where systems fail mount by subvolume id
813 		 * when we reject replacement on a mounted FS.
814 		 */
815 		if (!fs_devices->opened && found_transid < device->generation) {
816 			/*
817 			 * That is if the FS is _not_ mounted and if you
818 			 * are here, that means there is more than one
819 			 * disk with same uuid and devid.We keep the one
820 			 * with larger generation number or the last-in if
821 			 * generation are equal.
822 			 */
823 			return ERR_PTR(-EEXIST);
824 		}
825 
826 		name = rcu_string_strdup(path, GFP_NOFS);
827 		if (!name)
828 			return ERR_PTR(-ENOMEM);
829 		rcu_string_free(device->name);
830 		rcu_assign_pointer(device->name, name);
831 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
832 			fs_devices->missing_devices--;
833 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
834 		}
835 	}
836 
837 	/*
838 	 * Unmount does not free the btrfs_device struct but would zero
839 	 * generation along with most of the other members. So just update
840 	 * it back. We need it to pick the disk with largest generation
841 	 * (as above).
842 	 */
843 	if (!fs_devices->opened)
844 		device->generation = found_transid;
845 
846 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
847 
848 	return device;
849 }
850 
851 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
852 {
853 	struct btrfs_fs_devices *fs_devices;
854 	struct btrfs_device *device;
855 	struct btrfs_device *orig_dev;
856 
857 	fs_devices = alloc_fs_devices(orig->fsid);
858 	if (IS_ERR(fs_devices))
859 		return fs_devices;
860 
861 	mutex_lock(&orig->device_list_mutex);
862 	fs_devices->total_devices = orig->total_devices;
863 
864 	/* We have held the volume lock, it is safe to get the devices. */
865 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
866 		struct rcu_string *name;
867 
868 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
869 					    orig_dev->uuid);
870 		if (IS_ERR(device))
871 			goto error;
872 
873 		/*
874 		 * This is ok to do without rcu read locked because we hold the
875 		 * uuid mutex so nothing we touch in here is going to disappear.
876 		 */
877 		if (orig_dev->name) {
878 			name = rcu_string_strdup(orig_dev->name->str,
879 					GFP_KERNEL);
880 			if (!name) {
881 				free_device(device);
882 				goto error;
883 			}
884 			rcu_assign_pointer(device->name, name);
885 		}
886 
887 		list_add(&device->dev_list, &fs_devices->devices);
888 		device->fs_devices = fs_devices;
889 		fs_devices->num_devices++;
890 	}
891 	mutex_unlock(&orig->device_list_mutex);
892 	return fs_devices;
893 error:
894 	mutex_unlock(&orig->device_list_mutex);
895 	free_fs_devices(fs_devices);
896 	return ERR_PTR(-ENOMEM);
897 }
898 
899 /*
900  * After we have read the system tree and know devids belonging to
901  * this filesystem, remove the device which does not belong there.
902  */
903 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
904 {
905 	struct btrfs_device *device, *next;
906 	struct btrfs_device *latest_dev = NULL;
907 
908 	mutex_lock(&uuid_mutex);
909 again:
910 	/* This is the initialized path, it is safe to release the devices. */
911 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
912 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
913 							&device->dev_state)) {
914 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
915 			     &device->dev_state) &&
916 			     (!latest_dev ||
917 			      device->generation > latest_dev->generation)) {
918 				latest_dev = device;
919 			}
920 			continue;
921 		}
922 
923 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
924 			/*
925 			 * In the first step, keep the device which has
926 			 * the correct fsid and the devid that is used
927 			 * for the dev_replace procedure.
928 			 * In the second step, the dev_replace state is
929 			 * read from the device tree and it is known
930 			 * whether the procedure is really active or
931 			 * not, which means whether this device is
932 			 * used or whether it should be removed.
933 			 */
934 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
935 						  &device->dev_state)) {
936 				continue;
937 			}
938 		}
939 		if (device->bdev) {
940 			blkdev_put(device->bdev, device->mode);
941 			device->bdev = NULL;
942 			fs_devices->open_devices--;
943 		}
944 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
945 			list_del_init(&device->dev_alloc_list);
946 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
947 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
948 				      &device->dev_state))
949 				fs_devices->rw_devices--;
950 		}
951 		list_del_init(&device->dev_list);
952 		fs_devices->num_devices--;
953 		free_device(device);
954 	}
955 
956 	if (fs_devices->seed) {
957 		fs_devices = fs_devices->seed;
958 		goto again;
959 	}
960 
961 	fs_devices->latest_bdev = latest_dev->bdev;
962 
963 	mutex_unlock(&uuid_mutex);
964 }
965 
966 static void free_device_rcu(struct rcu_head *head)
967 {
968 	struct btrfs_device *device;
969 
970 	device = container_of(head, struct btrfs_device, rcu);
971 	free_device(device);
972 }
973 
974 static void btrfs_close_bdev(struct btrfs_device *device)
975 {
976 	if (!device->bdev)
977 		return;
978 
979 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
980 		sync_blockdev(device->bdev);
981 		invalidate_bdev(device->bdev);
982 	}
983 
984 	blkdev_put(device->bdev, device->mode);
985 }
986 
987 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
988 {
989 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
990 	struct btrfs_device *new_device;
991 	struct rcu_string *name;
992 
993 	if (device->bdev)
994 		fs_devices->open_devices--;
995 
996 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
997 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
998 		list_del_init(&device->dev_alloc_list);
999 		fs_devices->rw_devices--;
1000 	}
1001 
1002 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1003 		fs_devices->missing_devices--;
1004 
1005 	new_device = btrfs_alloc_device(NULL, &device->devid,
1006 					device->uuid);
1007 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1008 
1009 	/* Safe because we are under uuid_mutex */
1010 	if (device->name) {
1011 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1012 		BUG_ON(!name); /* -ENOMEM */
1013 		rcu_assign_pointer(new_device->name, name);
1014 	}
1015 
1016 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1017 	new_device->fs_devices = device->fs_devices;
1018 }
1019 
1020 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1021 {
1022 	struct btrfs_device *device, *tmp;
1023 	struct list_head pending_put;
1024 
1025 	INIT_LIST_HEAD(&pending_put);
1026 
1027 	if (--fs_devices->opened > 0)
1028 		return 0;
1029 
1030 	mutex_lock(&fs_devices->device_list_mutex);
1031 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1032 		btrfs_prepare_close_one_device(device);
1033 		list_add(&device->dev_list, &pending_put);
1034 	}
1035 	mutex_unlock(&fs_devices->device_list_mutex);
1036 
1037 	/*
1038 	 * btrfs_show_devname() is using the device_list_mutex,
1039 	 * sometimes call to blkdev_put() leads vfs calling
1040 	 * into this func. So do put outside of device_list_mutex,
1041 	 * as of now.
1042 	 */
1043 	while (!list_empty(&pending_put)) {
1044 		device = list_first_entry(&pending_put,
1045 				struct btrfs_device, dev_list);
1046 		list_del(&device->dev_list);
1047 		btrfs_close_bdev(device);
1048 		call_rcu(&device->rcu, free_device_rcu);
1049 	}
1050 
1051 	WARN_ON(fs_devices->open_devices);
1052 	WARN_ON(fs_devices->rw_devices);
1053 	fs_devices->opened = 0;
1054 	fs_devices->seeding = 0;
1055 
1056 	return 0;
1057 }
1058 
1059 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1060 {
1061 	struct btrfs_fs_devices *seed_devices = NULL;
1062 	int ret;
1063 
1064 	mutex_lock(&uuid_mutex);
1065 	ret = __btrfs_close_devices(fs_devices);
1066 	if (!fs_devices->opened) {
1067 		seed_devices = fs_devices->seed;
1068 		fs_devices->seed = NULL;
1069 	}
1070 	mutex_unlock(&uuid_mutex);
1071 
1072 	while (seed_devices) {
1073 		fs_devices = seed_devices;
1074 		seed_devices = fs_devices->seed;
1075 		__btrfs_close_devices(fs_devices);
1076 		free_fs_devices(fs_devices);
1077 	}
1078 	return ret;
1079 }
1080 
1081 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1082 				fmode_t flags, void *holder)
1083 {
1084 	struct list_head *head = &fs_devices->devices;
1085 	struct btrfs_device *device;
1086 	struct btrfs_device *latest_dev = NULL;
1087 	int ret = 0;
1088 
1089 	flags |= FMODE_EXCL;
1090 
1091 	list_for_each_entry(device, head, dev_list) {
1092 		/* Just open everything we can; ignore failures here */
1093 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1094 			continue;
1095 
1096 		if (!latest_dev ||
1097 		    device->generation > latest_dev->generation)
1098 			latest_dev = device;
1099 	}
1100 	if (fs_devices->open_devices == 0) {
1101 		ret = -EINVAL;
1102 		goto out;
1103 	}
1104 	fs_devices->opened = 1;
1105 	fs_devices->latest_bdev = latest_dev->bdev;
1106 	fs_devices->total_rw_bytes = 0;
1107 out:
1108 	return ret;
1109 }
1110 
1111 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1112 {
1113 	struct btrfs_device *dev1, *dev2;
1114 
1115 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1116 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1117 
1118 	if (dev1->devid < dev2->devid)
1119 		return -1;
1120 	else if (dev1->devid > dev2->devid)
1121 		return 1;
1122 	return 0;
1123 }
1124 
1125 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1126 		       fmode_t flags, void *holder)
1127 {
1128 	int ret;
1129 
1130 	mutex_lock(&uuid_mutex);
1131 	if (fs_devices->opened) {
1132 		fs_devices->opened++;
1133 		ret = 0;
1134 	} else {
1135 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1136 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1137 	}
1138 	mutex_unlock(&uuid_mutex);
1139 	return ret;
1140 }
1141 
1142 static void btrfs_release_disk_super(struct page *page)
1143 {
1144 	kunmap(page);
1145 	put_page(page);
1146 }
1147 
1148 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1149 				 struct page **page,
1150 				 struct btrfs_super_block **disk_super)
1151 {
1152 	void *p;
1153 	pgoff_t index;
1154 
1155 	/* make sure our super fits in the device */
1156 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1157 		return 1;
1158 
1159 	/* make sure our super fits in the page */
1160 	if (sizeof(**disk_super) > PAGE_SIZE)
1161 		return 1;
1162 
1163 	/* make sure our super doesn't straddle pages on disk */
1164 	index = bytenr >> PAGE_SHIFT;
1165 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1166 		return 1;
1167 
1168 	/* pull in the page with our super */
1169 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1170 				   index, GFP_KERNEL);
1171 
1172 	if (IS_ERR_OR_NULL(*page))
1173 		return 1;
1174 
1175 	p = kmap(*page);
1176 
1177 	/* align our pointer to the offset of the super block */
1178 	*disk_super = p + (bytenr & ~PAGE_MASK);
1179 
1180 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1181 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1182 		btrfs_release_disk_super(*page);
1183 		return 1;
1184 	}
1185 
1186 	if ((*disk_super)->label[0] &&
1187 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1188 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1189 
1190 	return 0;
1191 }
1192 
1193 /*
1194  * Look for a btrfs signature on a device. This may be called out of the mount path
1195  * and we are not allowed to call set_blocksize during the scan. The superblock
1196  * is read via pagecache
1197  */
1198 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1199 			  struct btrfs_fs_devices **fs_devices_ret)
1200 {
1201 	struct btrfs_super_block *disk_super;
1202 	struct btrfs_device *device;
1203 	struct block_device *bdev;
1204 	struct page *page;
1205 	int ret = 0;
1206 	u64 bytenr;
1207 
1208 	/*
1209 	 * we would like to check all the supers, but that would make
1210 	 * a btrfs mount succeed after a mkfs from a different FS.
1211 	 * So, we need to add a special mount option to scan for
1212 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1213 	 */
1214 	bytenr = btrfs_sb_offset(0);
1215 	flags |= FMODE_EXCL;
1216 	mutex_lock(&uuid_mutex);
1217 
1218 	bdev = blkdev_get_by_path(path, flags, holder);
1219 	if (IS_ERR(bdev)) {
1220 		ret = PTR_ERR(bdev);
1221 		goto error;
1222 	}
1223 
1224 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1225 		ret = -EINVAL;
1226 		goto error_bdev_put;
1227 	}
1228 
1229 	device = device_list_add(path, disk_super);
1230 	if (IS_ERR(device))
1231 		ret = PTR_ERR(device);
1232 	else
1233 		*fs_devices_ret = device->fs_devices;
1234 
1235 	btrfs_release_disk_super(page);
1236 
1237 error_bdev_put:
1238 	blkdev_put(bdev, flags);
1239 error:
1240 	mutex_unlock(&uuid_mutex);
1241 	return ret;
1242 }
1243 
1244 /* helper to account the used device space in the range */
1245 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1246 				   u64 end, u64 *length)
1247 {
1248 	struct btrfs_key key;
1249 	struct btrfs_root *root = device->fs_info->dev_root;
1250 	struct btrfs_dev_extent *dev_extent;
1251 	struct btrfs_path *path;
1252 	u64 extent_end;
1253 	int ret;
1254 	int slot;
1255 	struct extent_buffer *l;
1256 
1257 	*length = 0;
1258 
1259 	if (start >= device->total_bytes ||
1260 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1261 		return 0;
1262 
1263 	path = btrfs_alloc_path();
1264 	if (!path)
1265 		return -ENOMEM;
1266 	path->reada = READA_FORWARD;
1267 
1268 	key.objectid = device->devid;
1269 	key.offset = start;
1270 	key.type = BTRFS_DEV_EXTENT_KEY;
1271 
1272 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1273 	if (ret < 0)
1274 		goto out;
1275 	if (ret > 0) {
1276 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1277 		if (ret < 0)
1278 			goto out;
1279 	}
1280 
1281 	while (1) {
1282 		l = path->nodes[0];
1283 		slot = path->slots[0];
1284 		if (slot >= btrfs_header_nritems(l)) {
1285 			ret = btrfs_next_leaf(root, path);
1286 			if (ret == 0)
1287 				continue;
1288 			if (ret < 0)
1289 				goto out;
1290 
1291 			break;
1292 		}
1293 		btrfs_item_key_to_cpu(l, &key, slot);
1294 
1295 		if (key.objectid < device->devid)
1296 			goto next;
1297 
1298 		if (key.objectid > device->devid)
1299 			break;
1300 
1301 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1302 			goto next;
1303 
1304 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1305 		extent_end = key.offset + btrfs_dev_extent_length(l,
1306 								  dev_extent);
1307 		if (key.offset <= start && extent_end > end) {
1308 			*length = end - start + 1;
1309 			break;
1310 		} else if (key.offset <= start && extent_end > start)
1311 			*length += extent_end - start;
1312 		else if (key.offset > start && extent_end <= end)
1313 			*length += extent_end - key.offset;
1314 		else if (key.offset > start && key.offset <= end) {
1315 			*length += end - key.offset + 1;
1316 			break;
1317 		} else if (key.offset > end)
1318 			break;
1319 
1320 next:
1321 		path->slots[0]++;
1322 	}
1323 	ret = 0;
1324 out:
1325 	btrfs_free_path(path);
1326 	return ret;
1327 }
1328 
1329 static int contains_pending_extent(struct btrfs_transaction *transaction,
1330 				   struct btrfs_device *device,
1331 				   u64 *start, u64 len)
1332 {
1333 	struct btrfs_fs_info *fs_info = device->fs_info;
1334 	struct extent_map *em;
1335 	struct list_head *search_list = &fs_info->pinned_chunks;
1336 	int ret = 0;
1337 	u64 physical_start = *start;
1338 
1339 	if (transaction)
1340 		search_list = &transaction->pending_chunks;
1341 again:
1342 	list_for_each_entry(em, search_list, list) {
1343 		struct map_lookup *map;
1344 		int i;
1345 
1346 		map = em->map_lookup;
1347 		for (i = 0; i < map->num_stripes; i++) {
1348 			u64 end;
1349 
1350 			if (map->stripes[i].dev != device)
1351 				continue;
1352 			if (map->stripes[i].physical >= physical_start + len ||
1353 			    map->stripes[i].physical + em->orig_block_len <=
1354 			    physical_start)
1355 				continue;
1356 			/*
1357 			 * Make sure that while processing the pinned list we do
1358 			 * not override our *start with a lower value, because
1359 			 * we can have pinned chunks that fall within this
1360 			 * device hole and that have lower physical addresses
1361 			 * than the pending chunks we processed before. If we
1362 			 * do not take this special care we can end up getting
1363 			 * 2 pending chunks that start at the same physical
1364 			 * device offsets because the end offset of a pinned
1365 			 * chunk can be equal to the start offset of some
1366 			 * pending chunk.
1367 			 */
1368 			end = map->stripes[i].physical + em->orig_block_len;
1369 			if (end > *start) {
1370 				*start = end;
1371 				ret = 1;
1372 			}
1373 		}
1374 	}
1375 	if (search_list != &fs_info->pinned_chunks) {
1376 		search_list = &fs_info->pinned_chunks;
1377 		goto again;
1378 	}
1379 
1380 	return ret;
1381 }
1382 
1383 
1384 /*
1385  * find_free_dev_extent_start - find free space in the specified device
1386  * @device:	  the device which we search the free space in
1387  * @num_bytes:	  the size of the free space that we need
1388  * @search_start: the position from which to begin the search
1389  * @start:	  store the start of the free space.
1390  * @len:	  the size of the free space. that we find, or the size
1391  *		  of the max free space if we don't find suitable free space
1392  *
1393  * this uses a pretty simple search, the expectation is that it is
1394  * called very infrequently and that a given device has a small number
1395  * of extents
1396  *
1397  * @start is used to store the start of the free space if we find. But if we
1398  * don't find suitable free space, it will be used to store the start position
1399  * of the max free space.
1400  *
1401  * @len is used to store the size of the free space that we find.
1402  * But if we don't find suitable free space, it is used to store the size of
1403  * the max free space.
1404  */
1405 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1406 			       struct btrfs_device *device, u64 num_bytes,
1407 			       u64 search_start, u64 *start, u64 *len)
1408 {
1409 	struct btrfs_fs_info *fs_info = device->fs_info;
1410 	struct btrfs_root *root = fs_info->dev_root;
1411 	struct btrfs_key key;
1412 	struct btrfs_dev_extent *dev_extent;
1413 	struct btrfs_path *path;
1414 	u64 hole_size;
1415 	u64 max_hole_start;
1416 	u64 max_hole_size;
1417 	u64 extent_end;
1418 	u64 search_end = device->total_bytes;
1419 	int ret;
1420 	int slot;
1421 	struct extent_buffer *l;
1422 
1423 	/*
1424 	 * We don't want to overwrite the superblock on the drive nor any area
1425 	 * used by the boot loader (grub for example), so we make sure to start
1426 	 * at an offset of at least 1MB.
1427 	 */
1428 	search_start = max_t(u64, search_start, SZ_1M);
1429 
1430 	path = btrfs_alloc_path();
1431 	if (!path)
1432 		return -ENOMEM;
1433 
1434 	max_hole_start = search_start;
1435 	max_hole_size = 0;
1436 
1437 again:
1438 	if (search_start >= search_end ||
1439 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1440 		ret = -ENOSPC;
1441 		goto out;
1442 	}
1443 
1444 	path->reada = READA_FORWARD;
1445 	path->search_commit_root = 1;
1446 	path->skip_locking = 1;
1447 
1448 	key.objectid = device->devid;
1449 	key.offset = search_start;
1450 	key.type = BTRFS_DEV_EXTENT_KEY;
1451 
1452 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1453 	if (ret < 0)
1454 		goto out;
1455 	if (ret > 0) {
1456 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1457 		if (ret < 0)
1458 			goto out;
1459 	}
1460 
1461 	while (1) {
1462 		l = path->nodes[0];
1463 		slot = path->slots[0];
1464 		if (slot >= btrfs_header_nritems(l)) {
1465 			ret = btrfs_next_leaf(root, path);
1466 			if (ret == 0)
1467 				continue;
1468 			if (ret < 0)
1469 				goto out;
1470 
1471 			break;
1472 		}
1473 		btrfs_item_key_to_cpu(l, &key, slot);
1474 
1475 		if (key.objectid < device->devid)
1476 			goto next;
1477 
1478 		if (key.objectid > device->devid)
1479 			break;
1480 
1481 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1482 			goto next;
1483 
1484 		if (key.offset > search_start) {
1485 			hole_size = key.offset - search_start;
1486 
1487 			/*
1488 			 * Have to check before we set max_hole_start, otherwise
1489 			 * we could end up sending back this offset anyway.
1490 			 */
1491 			if (contains_pending_extent(transaction, device,
1492 						    &search_start,
1493 						    hole_size)) {
1494 				if (key.offset >= search_start) {
1495 					hole_size = key.offset - search_start;
1496 				} else {
1497 					WARN_ON_ONCE(1);
1498 					hole_size = 0;
1499 				}
1500 			}
1501 
1502 			if (hole_size > max_hole_size) {
1503 				max_hole_start = search_start;
1504 				max_hole_size = hole_size;
1505 			}
1506 
1507 			/*
1508 			 * If this free space is greater than which we need,
1509 			 * it must be the max free space that we have found
1510 			 * until now, so max_hole_start must point to the start
1511 			 * of this free space and the length of this free space
1512 			 * is stored in max_hole_size. Thus, we return
1513 			 * max_hole_start and max_hole_size and go back to the
1514 			 * caller.
1515 			 */
1516 			if (hole_size >= num_bytes) {
1517 				ret = 0;
1518 				goto out;
1519 			}
1520 		}
1521 
1522 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1523 		extent_end = key.offset + btrfs_dev_extent_length(l,
1524 								  dev_extent);
1525 		if (extent_end > search_start)
1526 			search_start = extent_end;
1527 next:
1528 		path->slots[0]++;
1529 		cond_resched();
1530 	}
1531 
1532 	/*
1533 	 * At this point, search_start should be the end of
1534 	 * allocated dev extents, and when shrinking the device,
1535 	 * search_end may be smaller than search_start.
1536 	 */
1537 	if (search_end > search_start) {
1538 		hole_size = search_end - search_start;
1539 
1540 		if (contains_pending_extent(transaction, device, &search_start,
1541 					    hole_size)) {
1542 			btrfs_release_path(path);
1543 			goto again;
1544 		}
1545 
1546 		if (hole_size > max_hole_size) {
1547 			max_hole_start = search_start;
1548 			max_hole_size = hole_size;
1549 		}
1550 	}
1551 
1552 	/* See above. */
1553 	if (max_hole_size < num_bytes)
1554 		ret = -ENOSPC;
1555 	else
1556 		ret = 0;
1557 
1558 out:
1559 	btrfs_free_path(path);
1560 	*start = max_hole_start;
1561 	if (len)
1562 		*len = max_hole_size;
1563 	return ret;
1564 }
1565 
1566 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1567 			 struct btrfs_device *device, u64 num_bytes,
1568 			 u64 *start, u64 *len)
1569 {
1570 	/* FIXME use last free of some kind */
1571 	return find_free_dev_extent_start(trans->transaction, device,
1572 					  num_bytes, 0, start, len);
1573 }
1574 
1575 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1576 			  struct btrfs_device *device,
1577 			  u64 start, u64 *dev_extent_len)
1578 {
1579 	struct btrfs_fs_info *fs_info = device->fs_info;
1580 	struct btrfs_root *root = fs_info->dev_root;
1581 	int ret;
1582 	struct btrfs_path *path;
1583 	struct btrfs_key key;
1584 	struct btrfs_key found_key;
1585 	struct extent_buffer *leaf = NULL;
1586 	struct btrfs_dev_extent *extent = NULL;
1587 
1588 	path = btrfs_alloc_path();
1589 	if (!path)
1590 		return -ENOMEM;
1591 
1592 	key.objectid = device->devid;
1593 	key.offset = start;
1594 	key.type = BTRFS_DEV_EXTENT_KEY;
1595 again:
1596 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1597 	if (ret > 0) {
1598 		ret = btrfs_previous_item(root, path, key.objectid,
1599 					  BTRFS_DEV_EXTENT_KEY);
1600 		if (ret)
1601 			goto out;
1602 		leaf = path->nodes[0];
1603 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1604 		extent = btrfs_item_ptr(leaf, path->slots[0],
1605 					struct btrfs_dev_extent);
1606 		BUG_ON(found_key.offset > start || found_key.offset +
1607 		       btrfs_dev_extent_length(leaf, extent) < start);
1608 		key = found_key;
1609 		btrfs_release_path(path);
1610 		goto again;
1611 	} else if (ret == 0) {
1612 		leaf = path->nodes[0];
1613 		extent = btrfs_item_ptr(leaf, path->slots[0],
1614 					struct btrfs_dev_extent);
1615 	} else {
1616 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1617 		goto out;
1618 	}
1619 
1620 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1621 
1622 	ret = btrfs_del_item(trans, root, path);
1623 	if (ret) {
1624 		btrfs_handle_fs_error(fs_info, ret,
1625 				      "Failed to remove dev extent item");
1626 	} else {
1627 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1628 	}
1629 out:
1630 	btrfs_free_path(path);
1631 	return ret;
1632 }
1633 
1634 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1635 				  struct btrfs_device *device,
1636 				  u64 chunk_offset, u64 start, u64 num_bytes)
1637 {
1638 	int ret;
1639 	struct btrfs_path *path;
1640 	struct btrfs_fs_info *fs_info = device->fs_info;
1641 	struct btrfs_root *root = fs_info->dev_root;
1642 	struct btrfs_dev_extent *extent;
1643 	struct extent_buffer *leaf;
1644 	struct btrfs_key key;
1645 
1646 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1647 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1648 	path = btrfs_alloc_path();
1649 	if (!path)
1650 		return -ENOMEM;
1651 
1652 	key.objectid = device->devid;
1653 	key.offset = start;
1654 	key.type = BTRFS_DEV_EXTENT_KEY;
1655 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1656 				      sizeof(*extent));
1657 	if (ret)
1658 		goto out;
1659 
1660 	leaf = path->nodes[0];
1661 	extent = btrfs_item_ptr(leaf, path->slots[0],
1662 				struct btrfs_dev_extent);
1663 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1664 					BTRFS_CHUNK_TREE_OBJECTID);
1665 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1666 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1667 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1668 
1669 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1670 	btrfs_mark_buffer_dirty(leaf);
1671 out:
1672 	btrfs_free_path(path);
1673 	return ret;
1674 }
1675 
1676 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1677 {
1678 	struct extent_map_tree *em_tree;
1679 	struct extent_map *em;
1680 	struct rb_node *n;
1681 	u64 ret = 0;
1682 
1683 	em_tree = &fs_info->mapping_tree.map_tree;
1684 	read_lock(&em_tree->lock);
1685 	n = rb_last(&em_tree->map);
1686 	if (n) {
1687 		em = rb_entry(n, struct extent_map, rb_node);
1688 		ret = em->start + em->len;
1689 	}
1690 	read_unlock(&em_tree->lock);
1691 
1692 	return ret;
1693 }
1694 
1695 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1696 				    u64 *devid_ret)
1697 {
1698 	int ret;
1699 	struct btrfs_key key;
1700 	struct btrfs_key found_key;
1701 	struct btrfs_path *path;
1702 
1703 	path = btrfs_alloc_path();
1704 	if (!path)
1705 		return -ENOMEM;
1706 
1707 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1708 	key.type = BTRFS_DEV_ITEM_KEY;
1709 	key.offset = (u64)-1;
1710 
1711 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1712 	if (ret < 0)
1713 		goto error;
1714 
1715 	BUG_ON(ret == 0); /* Corruption */
1716 
1717 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1718 				  BTRFS_DEV_ITEMS_OBJECTID,
1719 				  BTRFS_DEV_ITEM_KEY);
1720 	if (ret) {
1721 		*devid_ret = 1;
1722 	} else {
1723 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1724 				      path->slots[0]);
1725 		*devid_ret = found_key.offset + 1;
1726 	}
1727 	ret = 0;
1728 error:
1729 	btrfs_free_path(path);
1730 	return ret;
1731 }
1732 
1733 /*
1734  * the device information is stored in the chunk root
1735  * the btrfs_device struct should be fully filled in
1736  */
1737 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1738 			    struct btrfs_fs_info *fs_info,
1739 			    struct btrfs_device *device)
1740 {
1741 	struct btrfs_root *root = fs_info->chunk_root;
1742 	int ret;
1743 	struct btrfs_path *path;
1744 	struct btrfs_dev_item *dev_item;
1745 	struct extent_buffer *leaf;
1746 	struct btrfs_key key;
1747 	unsigned long ptr;
1748 
1749 	path = btrfs_alloc_path();
1750 	if (!path)
1751 		return -ENOMEM;
1752 
1753 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1754 	key.type = BTRFS_DEV_ITEM_KEY;
1755 	key.offset = device->devid;
1756 
1757 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1758 				      sizeof(*dev_item));
1759 	if (ret)
1760 		goto out;
1761 
1762 	leaf = path->nodes[0];
1763 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1764 
1765 	btrfs_set_device_id(leaf, dev_item, device->devid);
1766 	btrfs_set_device_generation(leaf, dev_item, 0);
1767 	btrfs_set_device_type(leaf, dev_item, device->type);
1768 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1769 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1770 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1771 	btrfs_set_device_total_bytes(leaf, dev_item,
1772 				     btrfs_device_get_disk_total_bytes(device));
1773 	btrfs_set_device_bytes_used(leaf, dev_item,
1774 				    btrfs_device_get_bytes_used(device));
1775 	btrfs_set_device_group(leaf, dev_item, 0);
1776 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1777 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1778 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1779 
1780 	ptr = btrfs_device_uuid(dev_item);
1781 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1782 	ptr = btrfs_device_fsid(dev_item);
1783 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1784 	btrfs_mark_buffer_dirty(leaf);
1785 
1786 	ret = 0;
1787 out:
1788 	btrfs_free_path(path);
1789 	return ret;
1790 }
1791 
1792 /*
1793  * Function to update ctime/mtime for a given device path.
1794  * Mainly used for ctime/mtime based probe like libblkid.
1795  */
1796 static void update_dev_time(const char *path_name)
1797 {
1798 	struct file *filp;
1799 
1800 	filp = filp_open(path_name, O_RDWR, 0);
1801 	if (IS_ERR(filp))
1802 		return;
1803 	file_update_time(filp);
1804 	filp_close(filp, NULL);
1805 }
1806 
1807 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1808 			     struct btrfs_device *device)
1809 {
1810 	struct btrfs_root *root = fs_info->chunk_root;
1811 	int ret;
1812 	struct btrfs_path *path;
1813 	struct btrfs_key key;
1814 	struct btrfs_trans_handle *trans;
1815 
1816 	path = btrfs_alloc_path();
1817 	if (!path)
1818 		return -ENOMEM;
1819 
1820 	trans = btrfs_start_transaction(root, 0);
1821 	if (IS_ERR(trans)) {
1822 		btrfs_free_path(path);
1823 		return PTR_ERR(trans);
1824 	}
1825 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1826 	key.type = BTRFS_DEV_ITEM_KEY;
1827 	key.offset = device->devid;
1828 
1829 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1830 	if (ret) {
1831 		if (ret > 0)
1832 			ret = -ENOENT;
1833 		btrfs_abort_transaction(trans, ret);
1834 		btrfs_end_transaction(trans);
1835 		goto out;
1836 	}
1837 
1838 	ret = btrfs_del_item(trans, root, path);
1839 	if (ret) {
1840 		btrfs_abort_transaction(trans, ret);
1841 		btrfs_end_transaction(trans);
1842 	}
1843 
1844 out:
1845 	btrfs_free_path(path);
1846 	if (!ret)
1847 		ret = btrfs_commit_transaction(trans);
1848 	return ret;
1849 }
1850 
1851 /*
1852  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1853  * filesystem. It's up to the caller to adjust that number regarding eg. device
1854  * replace.
1855  */
1856 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1857 		u64 num_devices)
1858 {
1859 	u64 all_avail;
1860 	unsigned seq;
1861 	int i;
1862 
1863 	do {
1864 		seq = read_seqbegin(&fs_info->profiles_lock);
1865 
1866 		all_avail = fs_info->avail_data_alloc_bits |
1867 			    fs_info->avail_system_alloc_bits |
1868 			    fs_info->avail_metadata_alloc_bits;
1869 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1870 
1871 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1872 		if (!(all_avail & btrfs_raid_group[i]))
1873 			continue;
1874 
1875 		if (num_devices < btrfs_raid_array[i].devs_min) {
1876 			int ret = btrfs_raid_mindev_error[i];
1877 
1878 			if (ret)
1879 				return ret;
1880 		}
1881 	}
1882 
1883 	return 0;
1884 }
1885 
1886 static struct btrfs_device * btrfs_find_next_active_device(
1887 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1888 {
1889 	struct btrfs_device *next_device;
1890 
1891 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1892 		if (next_device != device &&
1893 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1894 		    && next_device->bdev)
1895 			return next_device;
1896 	}
1897 
1898 	return NULL;
1899 }
1900 
1901 /*
1902  * Helper function to check if the given device is part of s_bdev / latest_bdev
1903  * and replace it with the provided or the next active device, in the context
1904  * where this function called, there should be always be another device (or
1905  * this_dev) which is active.
1906  */
1907 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1908 		struct btrfs_device *device, struct btrfs_device *this_dev)
1909 {
1910 	struct btrfs_device *next_device;
1911 
1912 	if (this_dev)
1913 		next_device = this_dev;
1914 	else
1915 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1916 								device);
1917 	ASSERT(next_device);
1918 
1919 	if (fs_info->sb->s_bdev &&
1920 			(fs_info->sb->s_bdev == device->bdev))
1921 		fs_info->sb->s_bdev = next_device->bdev;
1922 
1923 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1924 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1925 }
1926 
1927 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1928 		u64 devid)
1929 {
1930 	struct btrfs_device *device;
1931 	struct btrfs_fs_devices *cur_devices;
1932 	u64 num_devices;
1933 	int ret = 0;
1934 
1935 	mutex_lock(&fs_info->volume_mutex);
1936 	mutex_lock(&uuid_mutex);
1937 
1938 	num_devices = fs_info->fs_devices->num_devices;
1939 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1940 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1941 		WARN_ON(num_devices < 1);
1942 		num_devices--;
1943 	}
1944 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1945 
1946 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1947 	if (ret)
1948 		goto out;
1949 
1950 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1951 					   &device);
1952 	if (ret)
1953 		goto out;
1954 
1955 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1956 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1957 		goto out;
1958 	}
1959 
1960 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1961 	    fs_info->fs_devices->rw_devices == 1) {
1962 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1963 		goto out;
1964 	}
1965 
1966 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1967 		mutex_lock(&fs_info->chunk_mutex);
1968 		list_del_init(&device->dev_alloc_list);
1969 		device->fs_devices->rw_devices--;
1970 		mutex_unlock(&fs_info->chunk_mutex);
1971 	}
1972 
1973 	mutex_unlock(&uuid_mutex);
1974 	ret = btrfs_shrink_device(device, 0);
1975 	mutex_lock(&uuid_mutex);
1976 	if (ret)
1977 		goto error_undo;
1978 
1979 	/*
1980 	 * TODO: the superblock still includes this device in its num_devices
1981 	 * counter although write_all_supers() is not locked out. This
1982 	 * could give a filesystem state which requires a degraded mount.
1983 	 */
1984 	ret = btrfs_rm_dev_item(fs_info, device);
1985 	if (ret)
1986 		goto error_undo;
1987 
1988 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1989 	btrfs_scrub_cancel_dev(fs_info, device);
1990 
1991 	/*
1992 	 * the device list mutex makes sure that we don't change
1993 	 * the device list while someone else is writing out all
1994 	 * the device supers. Whoever is writing all supers, should
1995 	 * lock the device list mutex before getting the number of
1996 	 * devices in the super block (super_copy). Conversely,
1997 	 * whoever updates the number of devices in the super block
1998 	 * (super_copy) should hold the device list mutex.
1999 	 */
2000 
2001 	cur_devices = device->fs_devices;
2002 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2003 	list_del_rcu(&device->dev_list);
2004 
2005 	device->fs_devices->num_devices--;
2006 	device->fs_devices->total_devices--;
2007 
2008 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2009 		device->fs_devices->missing_devices--;
2010 
2011 	btrfs_assign_next_active_device(fs_info, device, NULL);
2012 
2013 	if (device->bdev) {
2014 		device->fs_devices->open_devices--;
2015 		/* remove sysfs entry */
2016 		btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2017 	}
2018 
2019 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2020 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2021 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2022 
2023 	/*
2024 	 * at this point, the device is zero sized and detached from
2025 	 * the devices list.  All that's left is to zero out the old
2026 	 * supers and free the device.
2027 	 */
2028 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2029 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2030 
2031 	btrfs_close_bdev(device);
2032 	call_rcu(&device->rcu, free_device_rcu);
2033 
2034 	if (cur_devices->open_devices == 0) {
2035 		struct btrfs_fs_devices *fs_devices;
2036 		fs_devices = fs_info->fs_devices;
2037 		while (fs_devices) {
2038 			if (fs_devices->seed == cur_devices) {
2039 				fs_devices->seed = cur_devices->seed;
2040 				break;
2041 			}
2042 			fs_devices = fs_devices->seed;
2043 		}
2044 		cur_devices->seed = NULL;
2045 		__btrfs_close_devices(cur_devices);
2046 		free_fs_devices(cur_devices);
2047 	}
2048 
2049 out:
2050 	mutex_unlock(&uuid_mutex);
2051 	mutex_unlock(&fs_info->volume_mutex);
2052 	return ret;
2053 
2054 error_undo:
2055 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2056 		mutex_lock(&fs_info->chunk_mutex);
2057 		list_add(&device->dev_alloc_list,
2058 			 &fs_info->fs_devices->alloc_list);
2059 		device->fs_devices->rw_devices++;
2060 		mutex_unlock(&fs_info->chunk_mutex);
2061 	}
2062 	goto out;
2063 }
2064 
2065 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2066 					struct btrfs_device *srcdev)
2067 {
2068 	struct btrfs_fs_devices *fs_devices;
2069 
2070 	lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2071 
2072 	/*
2073 	 * in case of fs with no seed, srcdev->fs_devices will point
2074 	 * to fs_devices of fs_info. However when the dev being replaced is
2075 	 * a seed dev it will point to the seed's local fs_devices. In short
2076 	 * srcdev will have its correct fs_devices in both the cases.
2077 	 */
2078 	fs_devices = srcdev->fs_devices;
2079 
2080 	list_del_rcu(&srcdev->dev_list);
2081 	list_del(&srcdev->dev_alloc_list);
2082 	fs_devices->num_devices--;
2083 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2084 		fs_devices->missing_devices--;
2085 
2086 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2087 		fs_devices->rw_devices--;
2088 
2089 	if (srcdev->bdev)
2090 		fs_devices->open_devices--;
2091 }
2092 
2093 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2094 				      struct btrfs_device *srcdev)
2095 {
2096 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2097 
2098 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2099 		/* zero out the old super if it is writable */
2100 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2101 	}
2102 
2103 	btrfs_close_bdev(srcdev);
2104 	call_rcu(&srcdev->rcu, free_device_rcu);
2105 
2106 	/* if this is no devs we rather delete the fs_devices */
2107 	if (!fs_devices->num_devices) {
2108 		struct btrfs_fs_devices *tmp_fs_devices;
2109 
2110 		/*
2111 		 * On a mounted FS, num_devices can't be zero unless it's a
2112 		 * seed. In case of a seed device being replaced, the replace
2113 		 * target added to the sprout FS, so there will be no more
2114 		 * device left under the seed FS.
2115 		 */
2116 		ASSERT(fs_devices->seeding);
2117 
2118 		tmp_fs_devices = fs_info->fs_devices;
2119 		while (tmp_fs_devices) {
2120 			if (tmp_fs_devices->seed == fs_devices) {
2121 				tmp_fs_devices->seed = fs_devices->seed;
2122 				break;
2123 			}
2124 			tmp_fs_devices = tmp_fs_devices->seed;
2125 		}
2126 		fs_devices->seed = NULL;
2127 		__btrfs_close_devices(fs_devices);
2128 		free_fs_devices(fs_devices);
2129 	}
2130 }
2131 
2132 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2133 				      struct btrfs_device *tgtdev)
2134 {
2135 	mutex_lock(&uuid_mutex);
2136 	WARN_ON(!tgtdev);
2137 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2138 
2139 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2140 
2141 	if (tgtdev->bdev)
2142 		fs_info->fs_devices->open_devices--;
2143 
2144 	fs_info->fs_devices->num_devices--;
2145 
2146 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2147 
2148 	list_del_rcu(&tgtdev->dev_list);
2149 
2150 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2151 	mutex_unlock(&uuid_mutex);
2152 
2153 	/*
2154 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2155 	 * may lead to a call to btrfs_show_devname() which will try
2156 	 * to hold device_list_mutex. And here this device
2157 	 * is already out of device list, so we don't have to hold
2158 	 * the device_list_mutex lock.
2159 	 */
2160 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2161 
2162 	btrfs_close_bdev(tgtdev);
2163 	call_rcu(&tgtdev->rcu, free_device_rcu);
2164 }
2165 
2166 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2167 				     const char *device_path,
2168 				     struct btrfs_device **device)
2169 {
2170 	int ret = 0;
2171 	struct btrfs_super_block *disk_super;
2172 	u64 devid;
2173 	u8 *dev_uuid;
2174 	struct block_device *bdev;
2175 	struct buffer_head *bh;
2176 
2177 	*device = NULL;
2178 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2179 				    fs_info->bdev_holder, 0, &bdev, &bh);
2180 	if (ret)
2181 		return ret;
2182 	disk_super = (struct btrfs_super_block *)bh->b_data;
2183 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2184 	dev_uuid = disk_super->dev_item.uuid;
2185 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2186 	brelse(bh);
2187 	if (!*device)
2188 		ret = -ENOENT;
2189 	blkdev_put(bdev, FMODE_READ);
2190 	return ret;
2191 }
2192 
2193 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2194 					 const char *device_path,
2195 					 struct btrfs_device **device)
2196 {
2197 	*device = NULL;
2198 	if (strcmp(device_path, "missing") == 0) {
2199 		struct list_head *devices;
2200 		struct btrfs_device *tmp;
2201 
2202 		devices = &fs_info->fs_devices->devices;
2203 		/*
2204 		 * It is safe to read the devices since the volume_mutex
2205 		 * is held by the caller.
2206 		 */
2207 		list_for_each_entry(tmp, devices, dev_list) {
2208 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2209 					&tmp->dev_state) && !tmp->bdev) {
2210 				*device = tmp;
2211 				break;
2212 			}
2213 		}
2214 
2215 		if (!*device)
2216 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2217 
2218 		return 0;
2219 	} else {
2220 		return btrfs_find_device_by_path(fs_info, device_path, device);
2221 	}
2222 }
2223 
2224 /*
2225  * Lookup a device given by device id, or the path if the id is 0.
2226  */
2227 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2228 				 const char *devpath,
2229 				 struct btrfs_device **device)
2230 {
2231 	int ret;
2232 
2233 	if (devid) {
2234 		ret = 0;
2235 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2236 		if (!*device)
2237 			ret = -ENOENT;
2238 	} else {
2239 		if (!devpath || !devpath[0])
2240 			return -EINVAL;
2241 
2242 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2243 							   device);
2244 	}
2245 	return ret;
2246 }
2247 
2248 /*
2249  * does all the dirty work required for changing file system's UUID.
2250  */
2251 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2252 {
2253 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2254 	struct btrfs_fs_devices *old_devices;
2255 	struct btrfs_fs_devices *seed_devices;
2256 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2257 	struct btrfs_device *device;
2258 	u64 super_flags;
2259 
2260 	lockdep_assert_held(&uuid_mutex);
2261 	if (!fs_devices->seeding)
2262 		return -EINVAL;
2263 
2264 	seed_devices = alloc_fs_devices(NULL);
2265 	if (IS_ERR(seed_devices))
2266 		return PTR_ERR(seed_devices);
2267 
2268 	old_devices = clone_fs_devices(fs_devices);
2269 	if (IS_ERR(old_devices)) {
2270 		kfree(seed_devices);
2271 		return PTR_ERR(old_devices);
2272 	}
2273 
2274 	list_add(&old_devices->list, &fs_uuids);
2275 
2276 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2277 	seed_devices->opened = 1;
2278 	INIT_LIST_HEAD(&seed_devices->devices);
2279 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2280 	mutex_init(&seed_devices->device_list_mutex);
2281 
2282 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2283 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2284 			      synchronize_rcu);
2285 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2286 		device->fs_devices = seed_devices;
2287 
2288 	mutex_lock(&fs_info->chunk_mutex);
2289 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2290 	mutex_unlock(&fs_info->chunk_mutex);
2291 
2292 	fs_devices->seeding = 0;
2293 	fs_devices->num_devices = 0;
2294 	fs_devices->open_devices = 0;
2295 	fs_devices->missing_devices = 0;
2296 	fs_devices->rotating = 0;
2297 	fs_devices->seed = seed_devices;
2298 
2299 	generate_random_uuid(fs_devices->fsid);
2300 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2301 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2302 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2303 
2304 	super_flags = btrfs_super_flags(disk_super) &
2305 		      ~BTRFS_SUPER_FLAG_SEEDING;
2306 	btrfs_set_super_flags(disk_super, super_flags);
2307 
2308 	return 0;
2309 }
2310 
2311 /*
2312  * Store the expected generation for seed devices in device items.
2313  */
2314 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2315 			       struct btrfs_fs_info *fs_info)
2316 {
2317 	struct btrfs_root *root = fs_info->chunk_root;
2318 	struct btrfs_path *path;
2319 	struct extent_buffer *leaf;
2320 	struct btrfs_dev_item *dev_item;
2321 	struct btrfs_device *device;
2322 	struct btrfs_key key;
2323 	u8 fs_uuid[BTRFS_FSID_SIZE];
2324 	u8 dev_uuid[BTRFS_UUID_SIZE];
2325 	u64 devid;
2326 	int ret;
2327 
2328 	path = btrfs_alloc_path();
2329 	if (!path)
2330 		return -ENOMEM;
2331 
2332 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2333 	key.offset = 0;
2334 	key.type = BTRFS_DEV_ITEM_KEY;
2335 
2336 	while (1) {
2337 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2338 		if (ret < 0)
2339 			goto error;
2340 
2341 		leaf = path->nodes[0];
2342 next_slot:
2343 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2344 			ret = btrfs_next_leaf(root, path);
2345 			if (ret > 0)
2346 				break;
2347 			if (ret < 0)
2348 				goto error;
2349 			leaf = path->nodes[0];
2350 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2351 			btrfs_release_path(path);
2352 			continue;
2353 		}
2354 
2355 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2356 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2357 		    key.type != BTRFS_DEV_ITEM_KEY)
2358 			break;
2359 
2360 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2361 					  struct btrfs_dev_item);
2362 		devid = btrfs_device_id(leaf, dev_item);
2363 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2364 				   BTRFS_UUID_SIZE);
2365 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2366 				   BTRFS_FSID_SIZE);
2367 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2368 		BUG_ON(!device); /* Logic error */
2369 
2370 		if (device->fs_devices->seeding) {
2371 			btrfs_set_device_generation(leaf, dev_item,
2372 						    device->generation);
2373 			btrfs_mark_buffer_dirty(leaf);
2374 		}
2375 
2376 		path->slots[0]++;
2377 		goto next_slot;
2378 	}
2379 	ret = 0;
2380 error:
2381 	btrfs_free_path(path);
2382 	return ret;
2383 }
2384 
2385 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2386 {
2387 	struct btrfs_root *root = fs_info->dev_root;
2388 	struct request_queue *q;
2389 	struct btrfs_trans_handle *trans;
2390 	struct btrfs_device *device;
2391 	struct block_device *bdev;
2392 	struct list_head *devices;
2393 	struct super_block *sb = fs_info->sb;
2394 	struct rcu_string *name;
2395 	u64 tmp;
2396 	int seeding_dev = 0;
2397 	int ret = 0;
2398 	bool unlocked = false;
2399 
2400 	if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2401 		return -EROFS;
2402 
2403 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2404 				  fs_info->bdev_holder);
2405 	if (IS_ERR(bdev))
2406 		return PTR_ERR(bdev);
2407 
2408 	if (fs_info->fs_devices->seeding) {
2409 		seeding_dev = 1;
2410 		down_write(&sb->s_umount);
2411 		mutex_lock(&uuid_mutex);
2412 	}
2413 
2414 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2415 
2416 	devices = &fs_info->fs_devices->devices;
2417 
2418 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2419 	list_for_each_entry(device, devices, dev_list) {
2420 		if (device->bdev == bdev) {
2421 			ret = -EEXIST;
2422 			mutex_unlock(
2423 				&fs_info->fs_devices->device_list_mutex);
2424 			goto error;
2425 		}
2426 	}
2427 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2428 
2429 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2430 	if (IS_ERR(device)) {
2431 		/* we can safely leave the fs_devices entry around */
2432 		ret = PTR_ERR(device);
2433 		goto error;
2434 	}
2435 
2436 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2437 	if (!name) {
2438 		ret = -ENOMEM;
2439 		goto error_free_device;
2440 	}
2441 	rcu_assign_pointer(device->name, name);
2442 
2443 	trans = btrfs_start_transaction(root, 0);
2444 	if (IS_ERR(trans)) {
2445 		ret = PTR_ERR(trans);
2446 		goto error_free_device;
2447 	}
2448 
2449 	q = bdev_get_queue(bdev);
2450 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2451 	device->generation = trans->transid;
2452 	device->io_width = fs_info->sectorsize;
2453 	device->io_align = fs_info->sectorsize;
2454 	device->sector_size = fs_info->sectorsize;
2455 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2456 					 fs_info->sectorsize);
2457 	device->disk_total_bytes = device->total_bytes;
2458 	device->commit_total_bytes = device->total_bytes;
2459 	device->fs_info = fs_info;
2460 	device->bdev = bdev;
2461 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2462 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2463 	device->mode = FMODE_EXCL;
2464 	device->dev_stats_valid = 1;
2465 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2466 
2467 	if (seeding_dev) {
2468 		sb->s_flags &= ~SB_RDONLY;
2469 		ret = btrfs_prepare_sprout(fs_info);
2470 		if (ret) {
2471 			btrfs_abort_transaction(trans, ret);
2472 			goto error_trans;
2473 		}
2474 	}
2475 
2476 	device->fs_devices = fs_info->fs_devices;
2477 
2478 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2479 	mutex_lock(&fs_info->chunk_mutex);
2480 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2481 	list_add(&device->dev_alloc_list,
2482 		 &fs_info->fs_devices->alloc_list);
2483 	fs_info->fs_devices->num_devices++;
2484 	fs_info->fs_devices->open_devices++;
2485 	fs_info->fs_devices->rw_devices++;
2486 	fs_info->fs_devices->total_devices++;
2487 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2488 
2489 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2490 
2491 	if (!blk_queue_nonrot(q))
2492 		fs_info->fs_devices->rotating = 1;
2493 
2494 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2495 	btrfs_set_super_total_bytes(fs_info->super_copy,
2496 		round_down(tmp + device->total_bytes, fs_info->sectorsize));
2497 
2498 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2499 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2500 
2501 	/* add sysfs device entry */
2502 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2503 
2504 	/*
2505 	 * we've got more storage, clear any full flags on the space
2506 	 * infos
2507 	 */
2508 	btrfs_clear_space_info_full(fs_info);
2509 
2510 	mutex_unlock(&fs_info->chunk_mutex);
2511 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2512 
2513 	if (seeding_dev) {
2514 		mutex_lock(&fs_info->chunk_mutex);
2515 		ret = init_first_rw_device(trans, fs_info);
2516 		mutex_unlock(&fs_info->chunk_mutex);
2517 		if (ret) {
2518 			btrfs_abort_transaction(trans, ret);
2519 			goto error_sysfs;
2520 		}
2521 	}
2522 
2523 	ret = btrfs_add_dev_item(trans, fs_info, device);
2524 	if (ret) {
2525 		btrfs_abort_transaction(trans, ret);
2526 		goto error_sysfs;
2527 	}
2528 
2529 	if (seeding_dev) {
2530 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2531 
2532 		ret = btrfs_finish_sprout(trans, fs_info);
2533 		if (ret) {
2534 			btrfs_abort_transaction(trans, ret);
2535 			goto error_sysfs;
2536 		}
2537 
2538 		/* Sprouting would change fsid of the mounted root,
2539 		 * so rename the fsid on the sysfs
2540 		 */
2541 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2542 						fs_info->fsid);
2543 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2544 			btrfs_warn(fs_info,
2545 				   "sysfs: failed to create fsid for sprout");
2546 	}
2547 
2548 	ret = btrfs_commit_transaction(trans);
2549 
2550 	if (seeding_dev) {
2551 		mutex_unlock(&uuid_mutex);
2552 		up_write(&sb->s_umount);
2553 		unlocked = true;
2554 
2555 		if (ret) /* transaction commit */
2556 			return ret;
2557 
2558 		ret = btrfs_relocate_sys_chunks(fs_info);
2559 		if (ret < 0)
2560 			btrfs_handle_fs_error(fs_info, ret,
2561 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2562 		trans = btrfs_attach_transaction(root);
2563 		if (IS_ERR(trans)) {
2564 			if (PTR_ERR(trans) == -ENOENT)
2565 				return 0;
2566 			ret = PTR_ERR(trans);
2567 			trans = NULL;
2568 			goto error_sysfs;
2569 		}
2570 		ret = btrfs_commit_transaction(trans);
2571 	}
2572 
2573 	/* Update ctime/mtime for libblkid */
2574 	update_dev_time(device_path);
2575 	return ret;
2576 
2577 error_sysfs:
2578 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2579 error_trans:
2580 	if (seeding_dev)
2581 		sb->s_flags |= SB_RDONLY;
2582 	if (trans)
2583 		btrfs_end_transaction(trans);
2584 error_free_device:
2585 	free_device(device);
2586 error:
2587 	blkdev_put(bdev, FMODE_EXCL);
2588 	if (seeding_dev && !unlocked) {
2589 		mutex_unlock(&uuid_mutex);
2590 		up_write(&sb->s_umount);
2591 	}
2592 	return ret;
2593 }
2594 
2595 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2596 				  const char *device_path,
2597 				  struct btrfs_device *srcdev,
2598 				  struct btrfs_device **device_out)
2599 {
2600 	struct btrfs_device *device;
2601 	struct block_device *bdev;
2602 	struct list_head *devices;
2603 	struct rcu_string *name;
2604 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2605 	int ret = 0;
2606 
2607 	*device_out = NULL;
2608 	if (fs_info->fs_devices->seeding) {
2609 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2610 		return -EINVAL;
2611 	}
2612 
2613 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2614 				  fs_info->bdev_holder);
2615 	if (IS_ERR(bdev)) {
2616 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2617 		return PTR_ERR(bdev);
2618 	}
2619 
2620 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2621 
2622 	devices = &fs_info->fs_devices->devices;
2623 	list_for_each_entry(device, devices, dev_list) {
2624 		if (device->bdev == bdev) {
2625 			btrfs_err(fs_info,
2626 				  "target device is in the filesystem!");
2627 			ret = -EEXIST;
2628 			goto error;
2629 		}
2630 	}
2631 
2632 
2633 	if (i_size_read(bdev->bd_inode) <
2634 	    btrfs_device_get_total_bytes(srcdev)) {
2635 		btrfs_err(fs_info,
2636 			  "target device is smaller than source device!");
2637 		ret = -EINVAL;
2638 		goto error;
2639 	}
2640 
2641 
2642 	device = btrfs_alloc_device(NULL, &devid, NULL);
2643 	if (IS_ERR(device)) {
2644 		ret = PTR_ERR(device);
2645 		goto error;
2646 	}
2647 
2648 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2649 	if (!name) {
2650 		free_device(device);
2651 		ret = -ENOMEM;
2652 		goto error;
2653 	}
2654 	rcu_assign_pointer(device->name, name);
2655 
2656 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2657 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2658 	device->generation = 0;
2659 	device->io_width = fs_info->sectorsize;
2660 	device->io_align = fs_info->sectorsize;
2661 	device->sector_size = fs_info->sectorsize;
2662 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2663 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2664 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2665 	device->commit_total_bytes = srcdev->commit_total_bytes;
2666 	device->commit_bytes_used = device->bytes_used;
2667 	device->fs_info = fs_info;
2668 	device->bdev = bdev;
2669 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2670 	set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2671 	device->mode = FMODE_EXCL;
2672 	device->dev_stats_valid = 1;
2673 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2674 	device->fs_devices = fs_info->fs_devices;
2675 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2676 	fs_info->fs_devices->num_devices++;
2677 	fs_info->fs_devices->open_devices++;
2678 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2679 
2680 	*device_out = device;
2681 	return ret;
2682 
2683 error:
2684 	blkdev_put(bdev, FMODE_EXCL);
2685 	return ret;
2686 }
2687 
2688 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2689 					struct btrfs_device *device)
2690 {
2691 	int ret;
2692 	struct btrfs_path *path;
2693 	struct btrfs_root *root = device->fs_info->chunk_root;
2694 	struct btrfs_dev_item *dev_item;
2695 	struct extent_buffer *leaf;
2696 	struct btrfs_key key;
2697 
2698 	path = btrfs_alloc_path();
2699 	if (!path)
2700 		return -ENOMEM;
2701 
2702 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2703 	key.type = BTRFS_DEV_ITEM_KEY;
2704 	key.offset = device->devid;
2705 
2706 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2707 	if (ret < 0)
2708 		goto out;
2709 
2710 	if (ret > 0) {
2711 		ret = -ENOENT;
2712 		goto out;
2713 	}
2714 
2715 	leaf = path->nodes[0];
2716 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2717 
2718 	btrfs_set_device_id(leaf, dev_item, device->devid);
2719 	btrfs_set_device_type(leaf, dev_item, device->type);
2720 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2721 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2722 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2723 	btrfs_set_device_total_bytes(leaf, dev_item,
2724 				     btrfs_device_get_disk_total_bytes(device));
2725 	btrfs_set_device_bytes_used(leaf, dev_item,
2726 				    btrfs_device_get_bytes_used(device));
2727 	btrfs_mark_buffer_dirty(leaf);
2728 
2729 out:
2730 	btrfs_free_path(path);
2731 	return ret;
2732 }
2733 
2734 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2735 		      struct btrfs_device *device, u64 new_size)
2736 {
2737 	struct btrfs_fs_info *fs_info = device->fs_info;
2738 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2739 	struct btrfs_fs_devices *fs_devices;
2740 	u64 old_total;
2741 	u64 diff;
2742 
2743 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2744 		return -EACCES;
2745 
2746 	new_size = round_down(new_size, fs_info->sectorsize);
2747 
2748 	mutex_lock(&fs_info->chunk_mutex);
2749 	old_total = btrfs_super_total_bytes(super_copy);
2750 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2751 
2752 	if (new_size <= device->total_bytes ||
2753 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2754 		mutex_unlock(&fs_info->chunk_mutex);
2755 		return -EINVAL;
2756 	}
2757 
2758 	fs_devices = fs_info->fs_devices;
2759 
2760 	btrfs_set_super_total_bytes(super_copy,
2761 			round_down(old_total + diff, fs_info->sectorsize));
2762 	device->fs_devices->total_rw_bytes += diff;
2763 
2764 	btrfs_device_set_total_bytes(device, new_size);
2765 	btrfs_device_set_disk_total_bytes(device, new_size);
2766 	btrfs_clear_space_info_full(device->fs_info);
2767 	if (list_empty(&device->resized_list))
2768 		list_add_tail(&device->resized_list,
2769 			      &fs_devices->resized_devices);
2770 	mutex_unlock(&fs_info->chunk_mutex);
2771 
2772 	return btrfs_update_device(trans, device);
2773 }
2774 
2775 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2776 			    struct btrfs_fs_info *fs_info, u64 chunk_offset)
2777 {
2778 	struct btrfs_root *root = fs_info->chunk_root;
2779 	int ret;
2780 	struct btrfs_path *path;
2781 	struct btrfs_key key;
2782 
2783 	path = btrfs_alloc_path();
2784 	if (!path)
2785 		return -ENOMEM;
2786 
2787 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2788 	key.offset = chunk_offset;
2789 	key.type = BTRFS_CHUNK_ITEM_KEY;
2790 
2791 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2792 	if (ret < 0)
2793 		goto out;
2794 	else if (ret > 0) { /* Logic error or corruption */
2795 		btrfs_handle_fs_error(fs_info, -ENOENT,
2796 				      "Failed lookup while freeing chunk.");
2797 		ret = -ENOENT;
2798 		goto out;
2799 	}
2800 
2801 	ret = btrfs_del_item(trans, root, path);
2802 	if (ret < 0)
2803 		btrfs_handle_fs_error(fs_info, ret,
2804 				      "Failed to delete chunk item.");
2805 out:
2806 	btrfs_free_path(path);
2807 	return ret;
2808 }
2809 
2810 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2811 {
2812 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2813 	struct btrfs_disk_key *disk_key;
2814 	struct btrfs_chunk *chunk;
2815 	u8 *ptr;
2816 	int ret = 0;
2817 	u32 num_stripes;
2818 	u32 array_size;
2819 	u32 len = 0;
2820 	u32 cur;
2821 	struct btrfs_key key;
2822 
2823 	mutex_lock(&fs_info->chunk_mutex);
2824 	array_size = btrfs_super_sys_array_size(super_copy);
2825 
2826 	ptr = super_copy->sys_chunk_array;
2827 	cur = 0;
2828 
2829 	while (cur < array_size) {
2830 		disk_key = (struct btrfs_disk_key *)ptr;
2831 		btrfs_disk_key_to_cpu(&key, disk_key);
2832 
2833 		len = sizeof(*disk_key);
2834 
2835 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2836 			chunk = (struct btrfs_chunk *)(ptr + len);
2837 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2838 			len += btrfs_chunk_item_size(num_stripes);
2839 		} else {
2840 			ret = -EIO;
2841 			break;
2842 		}
2843 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2844 		    key.offset == chunk_offset) {
2845 			memmove(ptr, ptr + len, array_size - (cur + len));
2846 			array_size -= len;
2847 			btrfs_set_super_sys_array_size(super_copy, array_size);
2848 		} else {
2849 			ptr += len;
2850 			cur += len;
2851 		}
2852 	}
2853 	mutex_unlock(&fs_info->chunk_mutex);
2854 	return ret;
2855 }
2856 
2857 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2858 					u64 logical, u64 length)
2859 {
2860 	struct extent_map_tree *em_tree;
2861 	struct extent_map *em;
2862 
2863 	em_tree = &fs_info->mapping_tree.map_tree;
2864 	read_lock(&em_tree->lock);
2865 	em = lookup_extent_mapping(em_tree, logical, length);
2866 	read_unlock(&em_tree->lock);
2867 
2868 	if (!em) {
2869 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2870 			   logical, length);
2871 		return ERR_PTR(-EINVAL);
2872 	}
2873 
2874 	if (em->start > logical || em->start + em->len < logical) {
2875 		btrfs_crit(fs_info,
2876 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2877 			   logical, length, em->start, em->start + em->len);
2878 		free_extent_map(em);
2879 		return ERR_PTR(-EINVAL);
2880 	}
2881 
2882 	/* callers are responsible for dropping em's ref. */
2883 	return em;
2884 }
2885 
2886 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2887 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2888 {
2889 	struct extent_map *em;
2890 	struct map_lookup *map;
2891 	u64 dev_extent_len = 0;
2892 	int i, ret = 0;
2893 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2894 
2895 	em = get_chunk_map(fs_info, chunk_offset, 1);
2896 	if (IS_ERR(em)) {
2897 		/*
2898 		 * This is a logic error, but we don't want to just rely on the
2899 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2900 		 * do anything we still error out.
2901 		 */
2902 		ASSERT(0);
2903 		return PTR_ERR(em);
2904 	}
2905 	map = em->map_lookup;
2906 	mutex_lock(&fs_info->chunk_mutex);
2907 	check_system_chunk(trans, fs_info, map->type);
2908 	mutex_unlock(&fs_info->chunk_mutex);
2909 
2910 	/*
2911 	 * Take the device list mutex to prevent races with the final phase of
2912 	 * a device replace operation that replaces the device object associated
2913 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2914 	 */
2915 	mutex_lock(&fs_devices->device_list_mutex);
2916 	for (i = 0; i < map->num_stripes; i++) {
2917 		struct btrfs_device *device = map->stripes[i].dev;
2918 		ret = btrfs_free_dev_extent(trans, device,
2919 					    map->stripes[i].physical,
2920 					    &dev_extent_len);
2921 		if (ret) {
2922 			mutex_unlock(&fs_devices->device_list_mutex);
2923 			btrfs_abort_transaction(trans, ret);
2924 			goto out;
2925 		}
2926 
2927 		if (device->bytes_used > 0) {
2928 			mutex_lock(&fs_info->chunk_mutex);
2929 			btrfs_device_set_bytes_used(device,
2930 					device->bytes_used - dev_extent_len);
2931 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2932 			btrfs_clear_space_info_full(fs_info);
2933 			mutex_unlock(&fs_info->chunk_mutex);
2934 		}
2935 
2936 		if (map->stripes[i].dev) {
2937 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2938 			if (ret) {
2939 				mutex_unlock(&fs_devices->device_list_mutex);
2940 				btrfs_abort_transaction(trans, ret);
2941 				goto out;
2942 			}
2943 		}
2944 	}
2945 	mutex_unlock(&fs_devices->device_list_mutex);
2946 
2947 	ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2948 	if (ret) {
2949 		btrfs_abort_transaction(trans, ret);
2950 		goto out;
2951 	}
2952 
2953 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2954 
2955 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2956 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2957 		if (ret) {
2958 			btrfs_abort_transaction(trans, ret);
2959 			goto out;
2960 		}
2961 	}
2962 
2963 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2964 	if (ret) {
2965 		btrfs_abort_transaction(trans, ret);
2966 		goto out;
2967 	}
2968 
2969 out:
2970 	/* once for us */
2971 	free_extent_map(em);
2972 	return ret;
2973 }
2974 
2975 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976 {
2977 	struct btrfs_root *root = fs_info->chunk_root;
2978 	struct btrfs_trans_handle *trans;
2979 	int ret;
2980 
2981 	/*
2982 	 * Prevent races with automatic removal of unused block groups.
2983 	 * After we relocate and before we remove the chunk with offset
2984 	 * chunk_offset, automatic removal of the block group can kick in,
2985 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2986 	 *
2987 	 * Make sure to acquire this mutex before doing a tree search (dev
2988 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2989 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2990 	 * we release the path used to search the chunk/dev tree and before
2991 	 * the current task acquires this mutex and calls us.
2992 	 */
2993 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2994 
2995 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2996 	if (ret)
2997 		return -ENOSPC;
2998 
2999 	/* step one, relocate all the extents inside this chunk */
3000 	btrfs_scrub_pause(fs_info);
3001 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3002 	btrfs_scrub_continue(fs_info);
3003 	if (ret)
3004 		return ret;
3005 
3006 	/*
3007 	 * We add the kobjects here (and after forcing data chunk creation)
3008 	 * since relocation is the only place we'll create chunks of a new
3009 	 * type at runtime.  The only place where we'll remove the last
3010 	 * chunk of a type is the call immediately below this one.  Even
3011 	 * so, we're protected against races with the cleaner thread since
3012 	 * we're covered by the delete_unused_bgs_mutex.
3013 	 */
3014 	btrfs_add_raid_kobjects(fs_info);
3015 
3016 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3017 						     chunk_offset);
3018 	if (IS_ERR(trans)) {
3019 		ret = PTR_ERR(trans);
3020 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3021 		return ret;
3022 	}
3023 
3024 	/*
3025 	 * step two, delete the device extents and the
3026 	 * chunk tree entries
3027 	 */
3028 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3029 	btrfs_end_transaction(trans);
3030 	return ret;
3031 }
3032 
3033 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3034 {
3035 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3036 	struct btrfs_path *path;
3037 	struct extent_buffer *leaf;
3038 	struct btrfs_chunk *chunk;
3039 	struct btrfs_key key;
3040 	struct btrfs_key found_key;
3041 	u64 chunk_type;
3042 	bool retried = false;
3043 	int failed = 0;
3044 	int ret;
3045 
3046 	path = btrfs_alloc_path();
3047 	if (!path)
3048 		return -ENOMEM;
3049 
3050 again:
3051 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3052 	key.offset = (u64)-1;
3053 	key.type = BTRFS_CHUNK_ITEM_KEY;
3054 
3055 	while (1) {
3056 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3057 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3058 		if (ret < 0) {
3059 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3060 			goto error;
3061 		}
3062 		BUG_ON(ret == 0); /* Corruption */
3063 
3064 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3065 					  key.type);
3066 		if (ret)
3067 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3068 		if (ret < 0)
3069 			goto error;
3070 		if (ret > 0)
3071 			break;
3072 
3073 		leaf = path->nodes[0];
3074 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3075 
3076 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3077 				       struct btrfs_chunk);
3078 		chunk_type = btrfs_chunk_type(leaf, chunk);
3079 		btrfs_release_path(path);
3080 
3081 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3082 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3083 			if (ret == -ENOSPC)
3084 				failed++;
3085 			else
3086 				BUG_ON(ret);
3087 		}
3088 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3089 
3090 		if (found_key.offset == 0)
3091 			break;
3092 		key.offset = found_key.offset - 1;
3093 	}
3094 	ret = 0;
3095 	if (failed && !retried) {
3096 		failed = 0;
3097 		retried = true;
3098 		goto again;
3099 	} else if (WARN_ON(failed && retried)) {
3100 		ret = -ENOSPC;
3101 	}
3102 error:
3103 	btrfs_free_path(path);
3104 	return ret;
3105 }
3106 
3107 /*
3108  * return 1 : allocate a data chunk successfully,
3109  * return <0: errors during allocating a data chunk,
3110  * return 0 : no need to allocate a data chunk.
3111  */
3112 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3113 				      u64 chunk_offset)
3114 {
3115 	struct btrfs_block_group_cache *cache;
3116 	u64 bytes_used;
3117 	u64 chunk_type;
3118 
3119 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3120 	ASSERT(cache);
3121 	chunk_type = cache->flags;
3122 	btrfs_put_block_group(cache);
3123 
3124 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3125 		spin_lock(&fs_info->data_sinfo->lock);
3126 		bytes_used = fs_info->data_sinfo->bytes_used;
3127 		spin_unlock(&fs_info->data_sinfo->lock);
3128 
3129 		if (!bytes_used) {
3130 			struct btrfs_trans_handle *trans;
3131 			int ret;
3132 
3133 			trans =	btrfs_join_transaction(fs_info->tree_root);
3134 			if (IS_ERR(trans))
3135 				return PTR_ERR(trans);
3136 
3137 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3138 						      BTRFS_BLOCK_GROUP_DATA);
3139 			btrfs_end_transaction(trans);
3140 			if (ret < 0)
3141 				return ret;
3142 
3143 			btrfs_add_raid_kobjects(fs_info);
3144 
3145 			return 1;
3146 		}
3147 	}
3148 	return 0;
3149 }
3150 
3151 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3152 			       struct btrfs_balance_control *bctl)
3153 {
3154 	struct btrfs_root *root = fs_info->tree_root;
3155 	struct btrfs_trans_handle *trans;
3156 	struct btrfs_balance_item *item;
3157 	struct btrfs_disk_balance_args disk_bargs;
3158 	struct btrfs_path *path;
3159 	struct extent_buffer *leaf;
3160 	struct btrfs_key key;
3161 	int ret, err;
3162 
3163 	path = btrfs_alloc_path();
3164 	if (!path)
3165 		return -ENOMEM;
3166 
3167 	trans = btrfs_start_transaction(root, 0);
3168 	if (IS_ERR(trans)) {
3169 		btrfs_free_path(path);
3170 		return PTR_ERR(trans);
3171 	}
3172 
3173 	key.objectid = BTRFS_BALANCE_OBJECTID;
3174 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3175 	key.offset = 0;
3176 
3177 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3178 				      sizeof(*item));
3179 	if (ret)
3180 		goto out;
3181 
3182 	leaf = path->nodes[0];
3183 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3184 
3185 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3186 
3187 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3188 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3189 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3190 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3191 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3192 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3193 
3194 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3195 
3196 	btrfs_mark_buffer_dirty(leaf);
3197 out:
3198 	btrfs_free_path(path);
3199 	err = btrfs_commit_transaction(trans);
3200 	if (err && !ret)
3201 		ret = err;
3202 	return ret;
3203 }
3204 
3205 static int del_balance_item(struct btrfs_fs_info *fs_info)
3206 {
3207 	struct btrfs_root *root = fs_info->tree_root;
3208 	struct btrfs_trans_handle *trans;
3209 	struct btrfs_path *path;
3210 	struct btrfs_key key;
3211 	int ret, err;
3212 
3213 	path = btrfs_alloc_path();
3214 	if (!path)
3215 		return -ENOMEM;
3216 
3217 	trans = btrfs_start_transaction(root, 0);
3218 	if (IS_ERR(trans)) {
3219 		btrfs_free_path(path);
3220 		return PTR_ERR(trans);
3221 	}
3222 
3223 	key.objectid = BTRFS_BALANCE_OBJECTID;
3224 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3225 	key.offset = 0;
3226 
3227 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3228 	if (ret < 0)
3229 		goto out;
3230 	if (ret > 0) {
3231 		ret = -ENOENT;
3232 		goto out;
3233 	}
3234 
3235 	ret = btrfs_del_item(trans, root, path);
3236 out:
3237 	btrfs_free_path(path);
3238 	err = btrfs_commit_transaction(trans);
3239 	if (err && !ret)
3240 		ret = err;
3241 	return ret;
3242 }
3243 
3244 /*
3245  * This is a heuristic used to reduce the number of chunks balanced on
3246  * resume after balance was interrupted.
3247  */
3248 static void update_balance_args(struct btrfs_balance_control *bctl)
3249 {
3250 	/*
3251 	 * Turn on soft mode for chunk types that were being converted.
3252 	 */
3253 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3254 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3255 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3256 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3257 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3258 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3259 
3260 	/*
3261 	 * Turn on usage filter if is not already used.  The idea is
3262 	 * that chunks that we have already balanced should be
3263 	 * reasonably full.  Don't do it for chunks that are being
3264 	 * converted - that will keep us from relocating unconverted
3265 	 * (albeit full) chunks.
3266 	 */
3267 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3268 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3269 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3270 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3271 		bctl->data.usage = 90;
3272 	}
3273 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3274 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3275 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3276 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3277 		bctl->sys.usage = 90;
3278 	}
3279 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3280 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3281 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3282 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3283 		bctl->meta.usage = 90;
3284 	}
3285 }
3286 
3287 /*
3288  * Should be called with both balance and volume mutexes held to
3289  * serialize other volume operations (add_dev/rm_dev/resize) with
3290  * restriper.  Same goes for unset_balance_control.
3291  */
3292 static void set_balance_control(struct btrfs_balance_control *bctl)
3293 {
3294 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3295 
3296 	BUG_ON(fs_info->balance_ctl);
3297 
3298 	spin_lock(&fs_info->balance_lock);
3299 	fs_info->balance_ctl = bctl;
3300 	spin_unlock(&fs_info->balance_lock);
3301 }
3302 
3303 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3304 {
3305 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3306 
3307 	BUG_ON(!fs_info->balance_ctl);
3308 
3309 	spin_lock(&fs_info->balance_lock);
3310 	fs_info->balance_ctl = NULL;
3311 	spin_unlock(&fs_info->balance_lock);
3312 
3313 	kfree(bctl);
3314 }
3315 
3316 /*
3317  * Balance filters.  Return 1 if chunk should be filtered out
3318  * (should not be balanced).
3319  */
3320 static int chunk_profiles_filter(u64 chunk_type,
3321 				 struct btrfs_balance_args *bargs)
3322 {
3323 	chunk_type = chunk_to_extended(chunk_type) &
3324 				BTRFS_EXTENDED_PROFILE_MASK;
3325 
3326 	if (bargs->profiles & chunk_type)
3327 		return 0;
3328 
3329 	return 1;
3330 }
3331 
3332 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3333 			      struct btrfs_balance_args *bargs)
3334 {
3335 	struct btrfs_block_group_cache *cache;
3336 	u64 chunk_used;
3337 	u64 user_thresh_min;
3338 	u64 user_thresh_max;
3339 	int ret = 1;
3340 
3341 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3342 	chunk_used = btrfs_block_group_used(&cache->item);
3343 
3344 	if (bargs->usage_min == 0)
3345 		user_thresh_min = 0;
3346 	else
3347 		user_thresh_min = div_factor_fine(cache->key.offset,
3348 					bargs->usage_min);
3349 
3350 	if (bargs->usage_max == 0)
3351 		user_thresh_max = 1;
3352 	else if (bargs->usage_max > 100)
3353 		user_thresh_max = cache->key.offset;
3354 	else
3355 		user_thresh_max = div_factor_fine(cache->key.offset,
3356 					bargs->usage_max);
3357 
3358 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3359 		ret = 0;
3360 
3361 	btrfs_put_block_group(cache);
3362 	return ret;
3363 }
3364 
3365 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3366 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3367 {
3368 	struct btrfs_block_group_cache *cache;
3369 	u64 chunk_used, user_thresh;
3370 	int ret = 1;
3371 
3372 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3373 	chunk_used = btrfs_block_group_used(&cache->item);
3374 
3375 	if (bargs->usage_min == 0)
3376 		user_thresh = 1;
3377 	else if (bargs->usage > 100)
3378 		user_thresh = cache->key.offset;
3379 	else
3380 		user_thresh = div_factor_fine(cache->key.offset,
3381 					      bargs->usage);
3382 
3383 	if (chunk_used < user_thresh)
3384 		ret = 0;
3385 
3386 	btrfs_put_block_group(cache);
3387 	return ret;
3388 }
3389 
3390 static int chunk_devid_filter(struct extent_buffer *leaf,
3391 			      struct btrfs_chunk *chunk,
3392 			      struct btrfs_balance_args *bargs)
3393 {
3394 	struct btrfs_stripe *stripe;
3395 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3396 	int i;
3397 
3398 	for (i = 0; i < num_stripes; i++) {
3399 		stripe = btrfs_stripe_nr(chunk, i);
3400 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3401 			return 0;
3402 	}
3403 
3404 	return 1;
3405 }
3406 
3407 /* [pstart, pend) */
3408 static int chunk_drange_filter(struct extent_buffer *leaf,
3409 			       struct btrfs_chunk *chunk,
3410 			       struct btrfs_balance_args *bargs)
3411 {
3412 	struct btrfs_stripe *stripe;
3413 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3414 	u64 stripe_offset;
3415 	u64 stripe_length;
3416 	int factor;
3417 	int i;
3418 
3419 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3420 		return 0;
3421 
3422 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3423 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3424 		factor = num_stripes / 2;
3425 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3426 		factor = num_stripes - 1;
3427 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3428 		factor = num_stripes - 2;
3429 	} else {
3430 		factor = num_stripes;
3431 	}
3432 
3433 	for (i = 0; i < num_stripes; i++) {
3434 		stripe = btrfs_stripe_nr(chunk, i);
3435 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3436 			continue;
3437 
3438 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3439 		stripe_length = btrfs_chunk_length(leaf, chunk);
3440 		stripe_length = div_u64(stripe_length, factor);
3441 
3442 		if (stripe_offset < bargs->pend &&
3443 		    stripe_offset + stripe_length > bargs->pstart)
3444 			return 0;
3445 	}
3446 
3447 	return 1;
3448 }
3449 
3450 /* [vstart, vend) */
3451 static int chunk_vrange_filter(struct extent_buffer *leaf,
3452 			       struct btrfs_chunk *chunk,
3453 			       u64 chunk_offset,
3454 			       struct btrfs_balance_args *bargs)
3455 {
3456 	if (chunk_offset < bargs->vend &&
3457 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3458 		/* at least part of the chunk is inside this vrange */
3459 		return 0;
3460 
3461 	return 1;
3462 }
3463 
3464 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3465 			       struct btrfs_chunk *chunk,
3466 			       struct btrfs_balance_args *bargs)
3467 {
3468 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3469 
3470 	if (bargs->stripes_min <= num_stripes
3471 			&& num_stripes <= bargs->stripes_max)
3472 		return 0;
3473 
3474 	return 1;
3475 }
3476 
3477 static int chunk_soft_convert_filter(u64 chunk_type,
3478 				     struct btrfs_balance_args *bargs)
3479 {
3480 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3481 		return 0;
3482 
3483 	chunk_type = chunk_to_extended(chunk_type) &
3484 				BTRFS_EXTENDED_PROFILE_MASK;
3485 
3486 	if (bargs->target == chunk_type)
3487 		return 1;
3488 
3489 	return 0;
3490 }
3491 
3492 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3493 				struct extent_buffer *leaf,
3494 				struct btrfs_chunk *chunk, u64 chunk_offset)
3495 {
3496 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3497 	struct btrfs_balance_args *bargs = NULL;
3498 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3499 
3500 	/* type filter */
3501 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3502 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3503 		return 0;
3504 	}
3505 
3506 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3507 		bargs = &bctl->data;
3508 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3509 		bargs = &bctl->sys;
3510 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3511 		bargs = &bctl->meta;
3512 
3513 	/* profiles filter */
3514 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3515 	    chunk_profiles_filter(chunk_type, bargs)) {
3516 		return 0;
3517 	}
3518 
3519 	/* usage filter */
3520 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3521 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3522 		return 0;
3523 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3524 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3525 		return 0;
3526 	}
3527 
3528 	/* devid filter */
3529 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3530 	    chunk_devid_filter(leaf, chunk, bargs)) {
3531 		return 0;
3532 	}
3533 
3534 	/* drange filter, makes sense only with devid filter */
3535 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3536 	    chunk_drange_filter(leaf, chunk, bargs)) {
3537 		return 0;
3538 	}
3539 
3540 	/* vrange filter */
3541 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3542 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3543 		return 0;
3544 	}
3545 
3546 	/* stripes filter */
3547 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3548 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3549 		return 0;
3550 	}
3551 
3552 	/* soft profile changing mode */
3553 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3554 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3555 		return 0;
3556 	}
3557 
3558 	/*
3559 	 * limited by count, must be the last filter
3560 	 */
3561 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3562 		if (bargs->limit == 0)
3563 			return 0;
3564 		else
3565 			bargs->limit--;
3566 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3567 		/*
3568 		 * Same logic as the 'limit' filter; the minimum cannot be
3569 		 * determined here because we do not have the global information
3570 		 * about the count of all chunks that satisfy the filters.
3571 		 */
3572 		if (bargs->limit_max == 0)
3573 			return 0;
3574 		else
3575 			bargs->limit_max--;
3576 	}
3577 
3578 	return 1;
3579 }
3580 
3581 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3582 {
3583 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3584 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3585 	struct btrfs_root *dev_root = fs_info->dev_root;
3586 	struct list_head *devices;
3587 	struct btrfs_device *device;
3588 	u64 old_size;
3589 	u64 size_to_free;
3590 	u64 chunk_type;
3591 	struct btrfs_chunk *chunk;
3592 	struct btrfs_path *path = NULL;
3593 	struct btrfs_key key;
3594 	struct btrfs_key found_key;
3595 	struct btrfs_trans_handle *trans;
3596 	struct extent_buffer *leaf;
3597 	int slot;
3598 	int ret;
3599 	int enospc_errors = 0;
3600 	bool counting = true;
3601 	/* The single value limit and min/max limits use the same bytes in the */
3602 	u64 limit_data = bctl->data.limit;
3603 	u64 limit_meta = bctl->meta.limit;
3604 	u64 limit_sys = bctl->sys.limit;
3605 	u32 count_data = 0;
3606 	u32 count_meta = 0;
3607 	u32 count_sys = 0;
3608 	int chunk_reserved = 0;
3609 
3610 	/* step one make some room on all the devices */
3611 	devices = &fs_info->fs_devices->devices;
3612 	list_for_each_entry(device, devices, dev_list) {
3613 		old_size = btrfs_device_get_total_bytes(device);
3614 		size_to_free = div_factor(old_size, 1);
3615 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3616 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3617 		    btrfs_device_get_total_bytes(device) -
3618 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3619 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3620 			continue;
3621 
3622 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3623 		if (ret == -ENOSPC)
3624 			break;
3625 		if (ret) {
3626 			/* btrfs_shrink_device never returns ret > 0 */
3627 			WARN_ON(ret > 0);
3628 			goto error;
3629 		}
3630 
3631 		trans = btrfs_start_transaction(dev_root, 0);
3632 		if (IS_ERR(trans)) {
3633 			ret = PTR_ERR(trans);
3634 			btrfs_info_in_rcu(fs_info,
3635 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3636 					  rcu_str_deref(device->name), ret,
3637 					  old_size, old_size - size_to_free);
3638 			goto error;
3639 		}
3640 
3641 		ret = btrfs_grow_device(trans, device, old_size);
3642 		if (ret) {
3643 			btrfs_end_transaction(trans);
3644 			/* btrfs_grow_device never returns ret > 0 */
3645 			WARN_ON(ret > 0);
3646 			btrfs_info_in_rcu(fs_info,
3647 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3648 					  rcu_str_deref(device->name), ret,
3649 					  old_size, old_size - size_to_free);
3650 			goto error;
3651 		}
3652 
3653 		btrfs_end_transaction(trans);
3654 	}
3655 
3656 	/* step two, relocate all the chunks */
3657 	path = btrfs_alloc_path();
3658 	if (!path) {
3659 		ret = -ENOMEM;
3660 		goto error;
3661 	}
3662 
3663 	/* zero out stat counters */
3664 	spin_lock(&fs_info->balance_lock);
3665 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3666 	spin_unlock(&fs_info->balance_lock);
3667 again:
3668 	if (!counting) {
3669 		/*
3670 		 * The single value limit and min/max limits use the same bytes
3671 		 * in the
3672 		 */
3673 		bctl->data.limit = limit_data;
3674 		bctl->meta.limit = limit_meta;
3675 		bctl->sys.limit = limit_sys;
3676 	}
3677 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3678 	key.offset = (u64)-1;
3679 	key.type = BTRFS_CHUNK_ITEM_KEY;
3680 
3681 	while (1) {
3682 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3683 		    atomic_read(&fs_info->balance_cancel_req)) {
3684 			ret = -ECANCELED;
3685 			goto error;
3686 		}
3687 
3688 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3689 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3690 		if (ret < 0) {
3691 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3692 			goto error;
3693 		}
3694 
3695 		/*
3696 		 * this shouldn't happen, it means the last relocate
3697 		 * failed
3698 		 */
3699 		if (ret == 0)
3700 			BUG(); /* FIXME break ? */
3701 
3702 		ret = btrfs_previous_item(chunk_root, path, 0,
3703 					  BTRFS_CHUNK_ITEM_KEY);
3704 		if (ret) {
3705 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3706 			ret = 0;
3707 			break;
3708 		}
3709 
3710 		leaf = path->nodes[0];
3711 		slot = path->slots[0];
3712 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3713 
3714 		if (found_key.objectid != key.objectid) {
3715 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3716 			break;
3717 		}
3718 
3719 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3720 		chunk_type = btrfs_chunk_type(leaf, chunk);
3721 
3722 		if (!counting) {
3723 			spin_lock(&fs_info->balance_lock);
3724 			bctl->stat.considered++;
3725 			spin_unlock(&fs_info->balance_lock);
3726 		}
3727 
3728 		ret = should_balance_chunk(fs_info, leaf, chunk,
3729 					   found_key.offset);
3730 
3731 		btrfs_release_path(path);
3732 		if (!ret) {
3733 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3734 			goto loop;
3735 		}
3736 
3737 		if (counting) {
3738 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3739 			spin_lock(&fs_info->balance_lock);
3740 			bctl->stat.expected++;
3741 			spin_unlock(&fs_info->balance_lock);
3742 
3743 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3744 				count_data++;
3745 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3746 				count_sys++;
3747 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3748 				count_meta++;
3749 
3750 			goto loop;
3751 		}
3752 
3753 		/*
3754 		 * Apply limit_min filter, no need to check if the LIMITS
3755 		 * filter is used, limit_min is 0 by default
3756 		 */
3757 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3758 					count_data < bctl->data.limit_min)
3759 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3760 					count_meta < bctl->meta.limit_min)
3761 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3762 					count_sys < bctl->sys.limit_min)) {
3763 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3764 			goto loop;
3765 		}
3766 
3767 		if (!chunk_reserved) {
3768 			/*
3769 			 * We may be relocating the only data chunk we have,
3770 			 * which could potentially end up with losing data's
3771 			 * raid profile, so lets allocate an empty one in
3772 			 * advance.
3773 			 */
3774 			ret = btrfs_may_alloc_data_chunk(fs_info,
3775 							 found_key.offset);
3776 			if (ret < 0) {
3777 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3778 				goto error;
3779 			} else if (ret == 1) {
3780 				chunk_reserved = 1;
3781 			}
3782 		}
3783 
3784 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3785 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3786 		if (ret && ret != -ENOSPC)
3787 			goto error;
3788 		if (ret == -ENOSPC) {
3789 			enospc_errors++;
3790 		} else {
3791 			spin_lock(&fs_info->balance_lock);
3792 			bctl->stat.completed++;
3793 			spin_unlock(&fs_info->balance_lock);
3794 		}
3795 loop:
3796 		if (found_key.offset == 0)
3797 			break;
3798 		key.offset = found_key.offset - 1;
3799 	}
3800 
3801 	if (counting) {
3802 		btrfs_release_path(path);
3803 		counting = false;
3804 		goto again;
3805 	}
3806 error:
3807 	btrfs_free_path(path);
3808 	if (enospc_errors) {
3809 		btrfs_info(fs_info, "%d enospc errors during balance",
3810 			   enospc_errors);
3811 		if (!ret)
3812 			ret = -ENOSPC;
3813 	}
3814 
3815 	return ret;
3816 }
3817 
3818 /**
3819  * alloc_profile_is_valid - see if a given profile is valid and reduced
3820  * @flags: profile to validate
3821  * @extended: if true @flags is treated as an extended profile
3822  */
3823 static int alloc_profile_is_valid(u64 flags, int extended)
3824 {
3825 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3826 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3827 
3828 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3829 
3830 	/* 1) check that all other bits are zeroed */
3831 	if (flags & ~mask)
3832 		return 0;
3833 
3834 	/* 2) see if profile is reduced */
3835 	if (flags == 0)
3836 		return !extended; /* "0" is valid for usual profiles */
3837 
3838 	/* true if exactly one bit set */
3839 	return (flags & (flags - 1)) == 0;
3840 }
3841 
3842 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3843 {
3844 	/* cancel requested || normal exit path */
3845 	return atomic_read(&fs_info->balance_cancel_req) ||
3846 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3847 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3848 }
3849 
3850 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3851 {
3852 	int ret;
3853 
3854 	unset_balance_control(fs_info);
3855 	ret = del_balance_item(fs_info);
3856 	if (ret)
3857 		btrfs_handle_fs_error(fs_info, ret, NULL);
3858 
3859 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3860 }
3861 
3862 /* Non-zero return value signifies invalidity */
3863 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3864 		u64 allowed)
3865 {
3866 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3867 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3868 		 (bctl_arg->target & ~allowed)));
3869 }
3870 
3871 /*
3872  * Should be called with both balance and volume mutexes held
3873  */
3874 int btrfs_balance(struct btrfs_balance_control *bctl,
3875 		  struct btrfs_ioctl_balance_args *bargs)
3876 {
3877 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3878 	u64 meta_target, data_target;
3879 	u64 allowed;
3880 	int mixed = 0;
3881 	int ret;
3882 	u64 num_devices;
3883 	unsigned seq;
3884 
3885 	if (btrfs_fs_closing(fs_info) ||
3886 	    atomic_read(&fs_info->balance_pause_req) ||
3887 	    atomic_read(&fs_info->balance_cancel_req)) {
3888 		ret = -EINVAL;
3889 		goto out;
3890 	}
3891 
3892 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3893 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3894 		mixed = 1;
3895 
3896 	/*
3897 	 * In case of mixed groups both data and meta should be picked,
3898 	 * and identical options should be given for both of them.
3899 	 */
3900 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3901 	if (mixed && (bctl->flags & allowed)) {
3902 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3903 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3904 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3905 			btrfs_err(fs_info,
3906 				  "with mixed groups data and metadata balance options must be the same");
3907 			ret = -EINVAL;
3908 			goto out;
3909 		}
3910 	}
3911 
3912 	num_devices = fs_info->fs_devices->num_devices;
3913 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3914 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3915 		BUG_ON(num_devices < 1);
3916 		num_devices--;
3917 	}
3918 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3919 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3920 	if (num_devices > 1)
3921 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3922 	if (num_devices > 2)
3923 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3924 	if (num_devices > 3)
3925 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3926 			    BTRFS_BLOCK_GROUP_RAID6);
3927 	if (validate_convert_profile(&bctl->data, allowed)) {
3928 		btrfs_err(fs_info,
3929 			  "unable to start balance with target data profile %llu",
3930 			  bctl->data.target);
3931 		ret = -EINVAL;
3932 		goto out;
3933 	}
3934 	if (validate_convert_profile(&bctl->meta, allowed)) {
3935 		btrfs_err(fs_info,
3936 			  "unable to start balance with target metadata profile %llu",
3937 			  bctl->meta.target);
3938 		ret = -EINVAL;
3939 		goto out;
3940 	}
3941 	if (validate_convert_profile(&bctl->sys, allowed)) {
3942 		btrfs_err(fs_info,
3943 			  "unable to start balance with target system profile %llu",
3944 			  bctl->sys.target);
3945 		ret = -EINVAL;
3946 		goto out;
3947 	}
3948 
3949 	/* allow to reduce meta or sys integrity only if force set */
3950 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3951 			BTRFS_BLOCK_GROUP_RAID10 |
3952 			BTRFS_BLOCK_GROUP_RAID5 |
3953 			BTRFS_BLOCK_GROUP_RAID6;
3954 	do {
3955 		seq = read_seqbegin(&fs_info->profiles_lock);
3956 
3957 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3958 		     (fs_info->avail_system_alloc_bits & allowed) &&
3959 		     !(bctl->sys.target & allowed)) ||
3960 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3961 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3962 		     !(bctl->meta.target & allowed))) {
3963 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3964 				btrfs_info(fs_info,
3965 					   "force reducing metadata integrity");
3966 			} else {
3967 				btrfs_err(fs_info,
3968 					  "balance will reduce metadata integrity, use force if you want this");
3969 				ret = -EINVAL;
3970 				goto out;
3971 			}
3972 		}
3973 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3974 
3975 	/* if we're not converting, the target field is uninitialized */
3976 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3977 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3978 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3979 		bctl->data.target : fs_info->avail_data_alloc_bits;
3980 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3981 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3982 		btrfs_warn(fs_info,
3983 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3984 			   meta_target, data_target);
3985 	}
3986 
3987 	ret = insert_balance_item(fs_info, bctl);
3988 	if (ret && ret != -EEXIST)
3989 		goto out;
3990 
3991 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3992 		BUG_ON(ret == -EEXIST);
3993 		set_balance_control(bctl);
3994 	} else {
3995 		BUG_ON(ret != -EEXIST);
3996 		spin_lock(&fs_info->balance_lock);
3997 		update_balance_args(bctl);
3998 		spin_unlock(&fs_info->balance_lock);
3999 	}
4000 
4001 	atomic_inc(&fs_info->balance_running);
4002 	mutex_unlock(&fs_info->balance_mutex);
4003 
4004 	ret = __btrfs_balance(fs_info);
4005 
4006 	mutex_lock(&fs_info->balance_mutex);
4007 	atomic_dec(&fs_info->balance_running);
4008 
4009 	if (bargs) {
4010 		memset(bargs, 0, sizeof(*bargs));
4011 		update_ioctl_balance_args(fs_info, 0, bargs);
4012 	}
4013 
4014 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4015 	    balance_need_close(fs_info)) {
4016 		__cancel_balance(fs_info);
4017 	}
4018 
4019 	wake_up(&fs_info->balance_wait_q);
4020 
4021 	return ret;
4022 out:
4023 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4024 		__cancel_balance(fs_info);
4025 	else {
4026 		kfree(bctl);
4027 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4028 	}
4029 	return ret;
4030 }
4031 
4032 static int balance_kthread(void *data)
4033 {
4034 	struct btrfs_fs_info *fs_info = data;
4035 	int ret = 0;
4036 
4037 	mutex_lock(&fs_info->volume_mutex);
4038 	mutex_lock(&fs_info->balance_mutex);
4039 
4040 	if (fs_info->balance_ctl) {
4041 		btrfs_info(fs_info, "continuing balance");
4042 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
4043 	}
4044 
4045 	mutex_unlock(&fs_info->balance_mutex);
4046 	mutex_unlock(&fs_info->volume_mutex);
4047 
4048 	return ret;
4049 }
4050 
4051 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4052 {
4053 	struct task_struct *tsk;
4054 
4055 	spin_lock(&fs_info->balance_lock);
4056 	if (!fs_info->balance_ctl) {
4057 		spin_unlock(&fs_info->balance_lock);
4058 		return 0;
4059 	}
4060 	spin_unlock(&fs_info->balance_lock);
4061 
4062 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4063 		btrfs_info(fs_info, "force skipping balance");
4064 		return 0;
4065 	}
4066 
4067 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4068 	return PTR_ERR_OR_ZERO(tsk);
4069 }
4070 
4071 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4072 {
4073 	struct btrfs_balance_control *bctl;
4074 	struct btrfs_balance_item *item;
4075 	struct btrfs_disk_balance_args disk_bargs;
4076 	struct btrfs_path *path;
4077 	struct extent_buffer *leaf;
4078 	struct btrfs_key key;
4079 	int ret;
4080 
4081 	path = btrfs_alloc_path();
4082 	if (!path)
4083 		return -ENOMEM;
4084 
4085 	key.objectid = BTRFS_BALANCE_OBJECTID;
4086 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4087 	key.offset = 0;
4088 
4089 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4090 	if (ret < 0)
4091 		goto out;
4092 	if (ret > 0) { /* ret = -ENOENT; */
4093 		ret = 0;
4094 		goto out;
4095 	}
4096 
4097 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4098 	if (!bctl) {
4099 		ret = -ENOMEM;
4100 		goto out;
4101 	}
4102 
4103 	leaf = path->nodes[0];
4104 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4105 
4106 	bctl->fs_info = fs_info;
4107 	bctl->flags = btrfs_balance_flags(leaf, item);
4108 	bctl->flags |= BTRFS_BALANCE_RESUME;
4109 
4110 	btrfs_balance_data(leaf, item, &disk_bargs);
4111 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4112 	btrfs_balance_meta(leaf, item, &disk_bargs);
4113 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4114 	btrfs_balance_sys(leaf, item, &disk_bargs);
4115 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4116 
4117 	WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4118 
4119 	mutex_lock(&fs_info->volume_mutex);
4120 	mutex_lock(&fs_info->balance_mutex);
4121 
4122 	set_balance_control(bctl);
4123 
4124 	mutex_unlock(&fs_info->balance_mutex);
4125 	mutex_unlock(&fs_info->volume_mutex);
4126 out:
4127 	btrfs_free_path(path);
4128 	return ret;
4129 }
4130 
4131 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4132 {
4133 	int ret = 0;
4134 
4135 	mutex_lock(&fs_info->balance_mutex);
4136 	if (!fs_info->balance_ctl) {
4137 		mutex_unlock(&fs_info->balance_mutex);
4138 		return -ENOTCONN;
4139 	}
4140 
4141 	if (atomic_read(&fs_info->balance_running)) {
4142 		atomic_inc(&fs_info->balance_pause_req);
4143 		mutex_unlock(&fs_info->balance_mutex);
4144 
4145 		wait_event(fs_info->balance_wait_q,
4146 			   atomic_read(&fs_info->balance_running) == 0);
4147 
4148 		mutex_lock(&fs_info->balance_mutex);
4149 		/* we are good with balance_ctl ripped off from under us */
4150 		BUG_ON(atomic_read(&fs_info->balance_running));
4151 		atomic_dec(&fs_info->balance_pause_req);
4152 	} else {
4153 		ret = -ENOTCONN;
4154 	}
4155 
4156 	mutex_unlock(&fs_info->balance_mutex);
4157 	return ret;
4158 }
4159 
4160 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4161 {
4162 	if (sb_rdonly(fs_info->sb))
4163 		return -EROFS;
4164 
4165 	mutex_lock(&fs_info->balance_mutex);
4166 	if (!fs_info->balance_ctl) {
4167 		mutex_unlock(&fs_info->balance_mutex);
4168 		return -ENOTCONN;
4169 	}
4170 
4171 	atomic_inc(&fs_info->balance_cancel_req);
4172 	/*
4173 	 * if we are running just wait and return, balance item is
4174 	 * deleted in btrfs_balance in this case
4175 	 */
4176 	if (atomic_read(&fs_info->balance_running)) {
4177 		mutex_unlock(&fs_info->balance_mutex);
4178 		wait_event(fs_info->balance_wait_q,
4179 			   atomic_read(&fs_info->balance_running) == 0);
4180 		mutex_lock(&fs_info->balance_mutex);
4181 	} else {
4182 		/* __cancel_balance needs volume_mutex */
4183 		mutex_unlock(&fs_info->balance_mutex);
4184 		mutex_lock(&fs_info->volume_mutex);
4185 		mutex_lock(&fs_info->balance_mutex);
4186 
4187 		if (fs_info->balance_ctl)
4188 			__cancel_balance(fs_info);
4189 
4190 		mutex_unlock(&fs_info->volume_mutex);
4191 	}
4192 
4193 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4194 	atomic_dec(&fs_info->balance_cancel_req);
4195 	mutex_unlock(&fs_info->balance_mutex);
4196 	return 0;
4197 }
4198 
4199 static int btrfs_uuid_scan_kthread(void *data)
4200 {
4201 	struct btrfs_fs_info *fs_info = data;
4202 	struct btrfs_root *root = fs_info->tree_root;
4203 	struct btrfs_key key;
4204 	struct btrfs_path *path = NULL;
4205 	int ret = 0;
4206 	struct extent_buffer *eb;
4207 	int slot;
4208 	struct btrfs_root_item root_item;
4209 	u32 item_size;
4210 	struct btrfs_trans_handle *trans = NULL;
4211 
4212 	path = btrfs_alloc_path();
4213 	if (!path) {
4214 		ret = -ENOMEM;
4215 		goto out;
4216 	}
4217 
4218 	key.objectid = 0;
4219 	key.type = BTRFS_ROOT_ITEM_KEY;
4220 	key.offset = 0;
4221 
4222 	while (1) {
4223 		ret = btrfs_search_forward(root, &key, path,
4224 				BTRFS_OLDEST_GENERATION);
4225 		if (ret) {
4226 			if (ret > 0)
4227 				ret = 0;
4228 			break;
4229 		}
4230 
4231 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4232 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4233 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4234 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4235 			goto skip;
4236 
4237 		eb = path->nodes[0];
4238 		slot = path->slots[0];
4239 		item_size = btrfs_item_size_nr(eb, slot);
4240 		if (item_size < sizeof(root_item))
4241 			goto skip;
4242 
4243 		read_extent_buffer(eb, &root_item,
4244 				   btrfs_item_ptr_offset(eb, slot),
4245 				   (int)sizeof(root_item));
4246 		if (btrfs_root_refs(&root_item) == 0)
4247 			goto skip;
4248 
4249 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4250 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4251 			if (trans)
4252 				goto update_tree;
4253 
4254 			btrfs_release_path(path);
4255 			/*
4256 			 * 1 - subvol uuid item
4257 			 * 1 - received_subvol uuid item
4258 			 */
4259 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4260 			if (IS_ERR(trans)) {
4261 				ret = PTR_ERR(trans);
4262 				break;
4263 			}
4264 			continue;
4265 		} else {
4266 			goto skip;
4267 		}
4268 update_tree:
4269 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4270 			ret = btrfs_uuid_tree_add(trans, fs_info,
4271 						  root_item.uuid,
4272 						  BTRFS_UUID_KEY_SUBVOL,
4273 						  key.objectid);
4274 			if (ret < 0) {
4275 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4276 					ret);
4277 				break;
4278 			}
4279 		}
4280 
4281 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4282 			ret = btrfs_uuid_tree_add(trans, fs_info,
4283 						  root_item.received_uuid,
4284 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4285 						  key.objectid);
4286 			if (ret < 0) {
4287 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4288 					ret);
4289 				break;
4290 			}
4291 		}
4292 
4293 skip:
4294 		if (trans) {
4295 			ret = btrfs_end_transaction(trans);
4296 			trans = NULL;
4297 			if (ret)
4298 				break;
4299 		}
4300 
4301 		btrfs_release_path(path);
4302 		if (key.offset < (u64)-1) {
4303 			key.offset++;
4304 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4305 			key.offset = 0;
4306 			key.type = BTRFS_ROOT_ITEM_KEY;
4307 		} else if (key.objectid < (u64)-1) {
4308 			key.offset = 0;
4309 			key.type = BTRFS_ROOT_ITEM_KEY;
4310 			key.objectid++;
4311 		} else {
4312 			break;
4313 		}
4314 		cond_resched();
4315 	}
4316 
4317 out:
4318 	btrfs_free_path(path);
4319 	if (trans && !IS_ERR(trans))
4320 		btrfs_end_transaction(trans);
4321 	if (ret)
4322 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4323 	else
4324 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4325 	up(&fs_info->uuid_tree_rescan_sem);
4326 	return 0;
4327 }
4328 
4329 /*
4330  * Callback for btrfs_uuid_tree_iterate().
4331  * returns:
4332  * 0	check succeeded, the entry is not outdated.
4333  * < 0	if an error occurred.
4334  * > 0	if the check failed, which means the caller shall remove the entry.
4335  */
4336 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4337 				       u8 *uuid, u8 type, u64 subid)
4338 {
4339 	struct btrfs_key key;
4340 	int ret = 0;
4341 	struct btrfs_root *subvol_root;
4342 
4343 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4344 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4345 		goto out;
4346 
4347 	key.objectid = subid;
4348 	key.type = BTRFS_ROOT_ITEM_KEY;
4349 	key.offset = (u64)-1;
4350 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4351 	if (IS_ERR(subvol_root)) {
4352 		ret = PTR_ERR(subvol_root);
4353 		if (ret == -ENOENT)
4354 			ret = 1;
4355 		goto out;
4356 	}
4357 
4358 	switch (type) {
4359 	case BTRFS_UUID_KEY_SUBVOL:
4360 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4361 			ret = 1;
4362 		break;
4363 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4364 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4365 			   BTRFS_UUID_SIZE))
4366 			ret = 1;
4367 		break;
4368 	}
4369 
4370 out:
4371 	return ret;
4372 }
4373 
4374 static int btrfs_uuid_rescan_kthread(void *data)
4375 {
4376 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4377 	int ret;
4378 
4379 	/*
4380 	 * 1st step is to iterate through the existing UUID tree and
4381 	 * to delete all entries that contain outdated data.
4382 	 * 2nd step is to add all missing entries to the UUID tree.
4383 	 */
4384 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4385 	if (ret < 0) {
4386 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4387 		up(&fs_info->uuid_tree_rescan_sem);
4388 		return ret;
4389 	}
4390 	return btrfs_uuid_scan_kthread(data);
4391 }
4392 
4393 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4394 {
4395 	struct btrfs_trans_handle *trans;
4396 	struct btrfs_root *tree_root = fs_info->tree_root;
4397 	struct btrfs_root *uuid_root;
4398 	struct task_struct *task;
4399 	int ret;
4400 
4401 	/*
4402 	 * 1 - root node
4403 	 * 1 - root item
4404 	 */
4405 	trans = btrfs_start_transaction(tree_root, 2);
4406 	if (IS_ERR(trans))
4407 		return PTR_ERR(trans);
4408 
4409 	uuid_root = btrfs_create_tree(trans, fs_info,
4410 				      BTRFS_UUID_TREE_OBJECTID);
4411 	if (IS_ERR(uuid_root)) {
4412 		ret = PTR_ERR(uuid_root);
4413 		btrfs_abort_transaction(trans, ret);
4414 		btrfs_end_transaction(trans);
4415 		return ret;
4416 	}
4417 
4418 	fs_info->uuid_root = uuid_root;
4419 
4420 	ret = btrfs_commit_transaction(trans);
4421 	if (ret)
4422 		return ret;
4423 
4424 	down(&fs_info->uuid_tree_rescan_sem);
4425 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4426 	if (IS_ERR(task)) {
4427 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4428 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4429 		up(&fs_info->uuid_tree_rescan_sem);
4430 		return PTR_ERR(task);
4431 	}
4432 
4433 	return 0;
4434 }
4435 
4436 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4437 {
4438 	struct task_struct *task;
4439 
4440 	down(&fs_info->uuid_tree_rescan_sem);
4441 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4442 	if (IS_ERR(task)) {
4443 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4444 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4445 		up(&fs_info->uuid_tree_rescan_sem);
4446 		return PTR_ERR(task);
4447 	}
4448 
4449 	return 0;
4450 }
4451 
4452 /*
4453  * shrinking a device means finding all of the device extents past
4454  * the new size, and then following the back refs to the chunks.
4455  * The chunk relocation code actually frees the device extent
4456  */
4457 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4458 {
4459 	struct btrfs_fs_info *fs_info = device->fs_info;
4460 	struct btrfs_root *root = fs_info->dev_root;
4461 	struct btrfs_trans_handle *trans;
4462 	struct btrfs_dev_extent *dev_extent = NULL;
4463 	struct btrfs_path *path;
4464 	u64 length;
4465 	u64 chunk_offset;
4466 	int ret;
4467 	int slot;
4468 	int failed = 0;
4469 	bool retried = false;
4470 	bool checked_pending_chunks = false;
4471 	struct extent_buffer *l;
4472 	struct btrfs_key key;
4473 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4474 	u64 old_total = btrfs_super_total_bytes(super_copy);
4475 	u64 old_size = btrfs_device_get_total_bytes(device);
4476 	u64 diff;
4477 
4478 	new_size = round_down(new_size, fs_info->sectorsize);
4479 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4480 
4481 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4482 		return -EINVAL;
4483 
4484 	path = btrfs_alloc_path();
4485 	if (!path)
4486 		return -ENOMEM;
4487 
4488 	path->reada = READA_FORWARD;
4489 
4490 	mutex_lock(&fs_info->chunk_mutex);
4491 
4492 	btrfs_device_set_total_bytes(device, new_size);
4493 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4494 		device->fs_devices->total_rw_bytes -= diff;
4495 		atomic64_sub(diff, &fs_info->free_chunk_space);
4496 	}
4497 	mutex_unlock(&fs_info->chunk_mutex);
4498 
4499 again:
4500 	key.objectid = device->devid;
4501 	key.offset = (u64)-1;
4502 	key.type = BTRFS_DEV_EXTENT_KEY;
4503 
4504 	do {
4505 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4506 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4507 		if (ret < 0) {
4508 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4509 			goto done;
4510 		}
4511 
4512 		ret = btrfs_previous_item(root, path, 0, key.type);
4513 		if (ret)
4514 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4515 		if (ret < 0)
4516 			goto done;
4517 		if (ret) {
4518 			ret = 0;
4519 			btrfs_release_path(path);
4520 			break;
4521 		}
4522 
4523 		l = path->nodes[0];
4524 		slot = path->slots[0];
4525 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4526 
4527 		if (key.objectid != device->devid) {
4528 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4529 			btrfs_release_path(path);
4530 			break;
4531 		}
4532 
4533 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4534 		length = btrfs_dev_extent_length(l, dev_extent);
4535 
4536 		if (key.offset + length <= new_size) {
4537 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4538 			btrfs_release_path(path);
4539 			break;
4540 		}
4541 
4542 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4543 		btrfs_release_path(path);
4544 
4545 		/*
4546 		 * We may be relocating the only data chunk we have,
4547 		 * which could potentially end up with losing data's
4548 		 * raid profile, so lets allocate an empty one in
4549 		 * advance.
4550 		 */
4551 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4552 		if (ret < 0) {
4553 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4554 			goto done;
4555 		}
4556 
4557 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4558 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4559 		if (ret && ret != -ENOSPC)
4560 			goto done;
4561 		if (ret == -ENOSPC)
4562 			failed++;
4563 	} while (key.offset-- > 0);
4564 
4565 	if (failed && !retried) {
4566 		failed = 0;
4567 		retried = true;
4568 		goto again;
4569 	} else if (failed && retried) {
4570 		ret = -ENOSPC;
4571 		goto done;
4572 	}
4573 
4574 	/* Shrinking succeeded, else we would be at "done". */
4575 	trans = btrfs_start_transaction(root, 0);
4576 	if (IS_ERR(trans)) {
4577 		ret = PTR_ERR(trans);
4578 		goto done;
4579 	}
4580 
4581 	mutex_lock(&fs_info->chunk_mutex);
4582 
4583 	/*
4584 	 * We checked in the above loop all device extents that were already in
4585 	 * the device tree. However before we have updated the device's
4586 	 * total_bytes to the new size, we might have had chunk allocations that
4587 	 * have not complete yet (new block groups attached to transaction
4588 	 * handles), and therefore their device extents were not yet in the
4589 	 * device tree and we missed them in the loop above. So if we have any
4590 	 * pending chunk using a device extent that overlaps the device range
4591 	 * that we can not use anymore, commit the current transaction and
4592 	 * repeat the search on the device tree - this way we guarantee we will
4593 	 * not have chunks using device extents that end beyond 'new_size'.
4594 	 */
4595 	if (!checked_pending_chunks) {
4596 		u64 start = new_size;
4597 		u64 len = old_size - new_size;
4598 
4599 		if (contains_pending_extent(trans->transaction, device,
4600 					    &start, len)) {
4601 			mutex_unlock(&fs_info->chunk_mutex);
4602 			checked_pending_chunks = true;
4603 			failed = 0;
4604 			retried = false;
4605 			ret = btrfs_commit_transaction(trans);
4606 			if (ret)
4607 				goto done;
4608 			goto again;
4609 		}
4610 	}
4611 
4612 	btrfs_device_set_disk_total_bytes(device, new_size);
4613 	if (list_empty(&device->resized_list))
4614 		list_add_tail(&device->resized_list,
4615 			      &fs_info->fs_devices->resized_devices);
4616 
4617 	WARN_ON(diff > old_total);
4618 	btrfs_set_super_total_bytes(super_copy,
4619 			round_down(old_total - diff, fs_info->sectorsize));
4620 	mutex_unlock(&fs_info->chunk_mutex);
4621 
4622 	/* Now btrfs_update_device() will change the on-disk size. */
4623 	ret = btrfs_update_device(trans, device);
4624 	btrfs_end_transaction(trans);
4625 done:
4626 	btrfs_free_path(path);
4627 	if (ret) {
4628 		mutex_lock(&fs_info->chunk_mutex);
4629 		btrfs_device_set_total_bytes(device, old_size);
4630 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4631 			device->fs_devices->total_rw_bytes += diff;
4632 		atomic64_add(diff, &fs_info->free_chunk_space);
4633 		mutex_unlock(&fs_info->chunk_mutex);
4634 	}
4635 	return ret;
4636 }
4637 
4638 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4639 			   struct btrfs_key *key,
4640 			   struct btrfs_chunk *chunk, int item_size)
4641 {
4642 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4643 	struct btrfs_disk_key disk_key;
4644 	u32 array_size;
4645 	u8 *ptr;
4646 
4647 	mutex_lock(&fs_info->chunk_mutex);
4648 	array_size = btrfs_super_sys_array_size(super_copy);
4649 	if (array_size + item_size + sizeof(disk_key)
4650 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4651 		mutex_unlock(&fs_info->chunk_mutex);
4652 		return -EFBIG;
4653 	}
4654 
4655 	ptr = super_copy->sys_chunk_array + array_size;
4656 	btrfs_cpu_key_to_disk(&disk_key, key);
4657 	memcpy(ptr, &disk_key, sizeof(disk_key));
4658 	ptr += sizeof(disk_key);
4659 	memcpy(ptr, chunk, item_size);
4660 	item_size += sizeof(disk_key);
4661 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4662 	mutex_unlock(&fs_info->chunk_mutex);
4663 
4664 	return 0;
4665 }
4666 
4667 /*
4668  * sort the devices in descending order by max_avail, total_avail
4669  */
4670 static int btrfs_cmp_device_info(const void *a, const void *b)
4671 {
4672 	const struct btrfs_device_info *di_a = a;
4673 	const struct btrfs_device_info *di_b = b;
4674 
4675 	if (di_a->max_avail > di_b->max_avail)
4676 		return -1;
4677 	if (di_a->max_avail < di_b->max_avail)
4678 		return 1;
4679 	if (di_a->total_avail > di_b->total_avail)
4680 		return -1;
4681 	if (di_a->total_avail < di_b->total_avail)
4682 		return 1;
4683 	return 0;
4684 }
4685 
4686 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4687 {
4688 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4689 		return;
4690 
4691 	btrfs_set_fs_incompat(info, RAID56);
4692 }
4693 
4694 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
4695 			- sizeof(struct btrfs_chunk))		\
4696 			/ sizeof(struct btrfs_stripe) + 1)
4697 
4698 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4699 				- 2 * sizeof(struct btrfs_disk_key)	\
4700 				- 2 * sizeof(struct btrfs_chunk))	\
4701 				/ sizeof(struct btrfs_stripe) + 1)
4702 
4703 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4704 			       u64 start, u64 type)
4705 {
4706 	struct btrfs_fs_info *info = trans->fs_info;
4707 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4708 	struct btrfs_device *device;
4709 	struct map_lookup *map = NULL;
4710 	struct extent_map_tree *em_tree;
4711 	struct extent_map *em;
4712 	struct btrfs_device_info *devices_info = NULL;
4713 	u64 total_avail;
4714 	int num_stripes;	/* total number of stripes to allocate */
4715 	int data_stripes;	/* number of stripes that count for
4716 				   block group size */
4717 	int sub_stripes;	/* sub_stripes info for map */
4718 	int dev_stripes;	/* stripes per dev */
4719 	int devs_max;		/* max devs to use */
4720 	int devs_min;		/* min devs needed */
4721 	int devs_increment;	/* ndevs has to be a multiple of this */
4722 	int ncopies;		/* how many copies to data has */
4723 	int ret;
4724 	u64 max_stripe_size;
4725 	u64 max_chunk_size;
4726 	u64 stripe_size;
4727 	u64 num_bytes;
4728 	int ndevs;
4729 	int i;
4730 	int j;
4731 	int index;
4732 
4733 	BUG_ON(!alloc_profile_is_valid(type, 0));
4734 
4735 	if (list_empty(&fs_devices->alloc_list)) {
4736 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4737 			btrfs_debug(info, "%s: no writable device", __func__);
4738 		return -ENOSPC;
4739 	}
4740 
4741 	index = btrfs_bg_flags_to_raid_index(type);
4742 
4743 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4744 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4745 	devs_max = btrfs_raid_array[index].devs_max;
4746 	devs_min = btrfs_raid_array[index].devs_min;
4747 	devs_increment = btrfs_raid_array[index].devs_increment;
4748 	ncopies = btrfs_raid_array[index].ncopies;
4749 
4750 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4751 		max_stripe_size = SZ_1G;
4752 		max_chunk_size = 10 * max_stripe_size;
4753 		if (!devs_max)
4754 			devs_max = BTRFS_MAX_DEVS(info);
4755 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4756 		/* for larger filesystems, use larger metadata chunks */
4757 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4758 			max_stripe_size = SZ_1G;
4759 		else
4760 			max_stripe_size = SZ_256M;
4761 		max_chunk_size = max_stripe_size;
4762 		if (!devs_max)
4763 			devs_max = BTRFS_MAX_DEVS(info);
4764 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4765 		max_stripe_size = SZ_32M;
4766 		max_chunk_size = 2 * max_stripe_size;
4767 		if (!devs_max)
4768 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4769 	} else {
4770 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4771 		       type);
4772 		BUG_ON(1);
4773 	}
4774 
4775 	/* we don't want a chunk larger than 10% of writeable space */
4776 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4777 			     max_chunk_size);
4778 
4779 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4780 			       GFP_NOFS);
4781 	if (!devices_info)
4782 		return -ENOMEM;
4783 
4784 	/*
4785 	 * in the first pass through the devices list, we gather information
4786 	 * about the available holes on each device.
4787 	 */
4788 	ndevs = 0;
4789 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4790 		u64 max_avail;
4791 		u64 dev_offset;
4792 
4793 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4794 			WARN(1, KERN_ERR
4795 			       "BTRFS: read-only device in alloc_list\n");
4796 			continue;
4797 		}
4798 
4799 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4800 					&device->dev_state) ||
4801 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4802 			continue;
4803 
4804 		if (device->total_bytes > device->bytes_used)
4805 			total_avail = device->total_bytes - device->bytes_used;
4806 		else
4807 			total_avail = 0;
4808 
4809 		/* If there is no space on this device, skip it. */
4810 		if (total_avail == 0)
4811 			continue;
4812 
4813 		ret = find_free_dev_extent(trans, device,
4814 					   max_stripe_size * dev_stripes,
4815 					   &dev_offset, &max_avail);
4816 		if (ret && ret != -ENOSPC)
4817 			goto error;
4818 
4819 		if (ret == 0)
4820 			max_avail = max_stripe_size * dev_stripes;
4821 
4822 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4823 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4824 				btrfs_debug(info,
4825 			"%s: devid %llu has no free space, have=%llu want=%u",
4826 					    __func__, device->devid, max_avail,
4827 					    BTRFS_STRIPE_LEN * dev_stripes);
4828 			continue;
4829 		}
4830 
4831 		if (ndevs == fs_devices->rw_devices) {
4832 			WARN(1, "%s: found more than %llu devices\n",
4833 			     __func__, fs_devices->rw_devices);
4834 			break;
4835 		}
4836 		devices_info[ndevs].dev_offset = dev_offset;
4837 		devices_info[ndevs].max_avail = max_avail;
4838 		devices_info[ndevs].total_avail = total_avail;
4839 		devices_info[ndevs].dev = device;
4840 		++ndevs;
4841 	}
4842 
4843 	/*
4844 	 * now sort the devices by hole size / available space
4845 	 */
4846 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4847 	     btrfs_cmp_device_info, NULL);
4848 
4849 	/* round down to number of usable stripes */
4850 	ndevs = round_down(ndevs, devs_increment);
4851 
4852 	if (ndevs < devs_min) {
4853 		ret = -ENOSPC;
4854 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4855 			btrfs_debug(info,
4856 	"%s: not enough devices with free space: have=%d minimum required=%d",
4857 				    __func__, ndevs, devs_min);
4858 		}
4859 		goto error;
4860 	}
4861 
4862 	ndevs = min(ndevs, devs_max);
4863 
4864 	/*
4865 	 * The primary goal is to maximize the number of stripes, so use as
4866 	 * many devices as possible, even if the stripes are not maximum sized.
4867 	 *
4868 	 * The DUP profile stores more than one stripe per device, the
4869 	 * max_avail is the total size so we have to adjust.
4870 	 */
4871 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4872 	num_stripes = ndevs * dev_stripes;
4873 
4874 	/*
4875 	 * this will have to be fixed for RAID1 and RAID10 over
4876 	 * more drives
4877 	 */
4878 	data_stripes = num_stripes / ncopies;
4879 
4880 	if (type & BTRFS_BLOCK_GROUP_RAID5)
4881 		data_stripes = num_stripes - 1;
4882 
4883 	if (type & BTRFS_BLOCK_GROUP_RAID6)
4884 		data_stripes = num_stripes - 2;
4885 
4886 	/*
4887 	 * Use the number of data stripes to figure out how big this chunk
4888 	 * is really going to be in terms of logical address space,
4889 	 * and compare that answer with the max chunk size
4890 	 */
4891 	if (stripe_size * data_stripes > max_chunk_size) {
4892 		stripe_size = div_u64(max_chunk_size, data_stripes);
4893 
4894 		/* bump the answer up to a 16MB boundary */
4895 		stripe_size = round_up(stripe_size, SZ_16M);
4896 
4897 		/*
4898 		 * But don't go higher than the limits we found while searching
4899 		 * for free extents
4900 		 */
4901 		stripe_size = min(devices_info[ndevs - 1].max_avail,
4902 				  stripe_size);
4903 	}
4904 
4905 	/* align to BTRFS_STRIPE_LEN */
4906 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4907 
4908 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4909 	if (!map) {
4910 		ret = -ENOMEM;
4911 		goto error;
4912 	}
4913 	map->num_stripes = num_stripes;
4914 
4915 	for (i = 0; i < ndevs; ++i) {
4916 		for (j = 0; j < dev_stripes; ++j) {
4917 			int s = i * dev_stripes + j;
4918 			map->stripes[s].dev = devices_info[i].dev;
4919 			map->stripes[s].physical = devices_info[i].dev_offset +
4920 						   j * stripe_size;
4921 		}
4922 	}
4923 	map->stripe_len = BTRFS_STRIPE_LEN;
4924 	map->io_align = BTRFS_STRIPE_LEN;
4925 	map->io_width = BTRFS_STRIPE_LEN;
4926 	map->type = type;
4927 	map->sub_stripes = sub_stripes;
4928 
4929 	num_bytes = stripe_size * data_stripes;
4930 
4931 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4932 
4933 	em = alloc_extent_map();
4934 	if (!em) {
4935 		kfree(map);
4936 		ret = -ENOMEM;
4937 		goto error;
4938 	}
4939 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4940 	em->map_lookup = map;
4941 	em->start = start;
4942 	em->len = num_bytes;
4943 	em->block_start = 0;
4944 	em->block_len = em->len;
4945 	em->orig_block_len = stripe_size;
4946 
4947 	em_tree = &info->mapping_tree.map_tree;
4948 	write_lock(&em_tree->lock);
4949 	ret = add_extent_mapping(em_tree, em, 0);
4950 	if (ret) {
4951 		write_unlock(&em_tree->lock);
4952 		free_extent_map(em);
4953 		goto error;
4954 	}
4955 
4956 	list_add_tail(&em->list, &trans->transaction->pending_chunks);
4957 	refcount_inc(&em->refs);
4958 	write_unlock(&em_tree->lock);
4959 
4960 	ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4961 	if (ret)
4962 		goto error_del_extent;
4963 
4964 	for (i = 0; i < map->num_stripes; i++) {
4965 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4966 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4967 	}
4968 
4969 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4970 
4971 	free_extent_map(em);
4972 	check_raid56_incompat_flag(info, type);
4973 
4974 	kfree(devices_info);
4975 	return 0;
4976 
4977 error_del_extent:
4978 	write_lock(&em_tree->lock);
4979 	remove_extent_mapping(em_tree, em);
4980 	write_unlock(&em_tree->lock);
4981 
4982 	/* One for our allocation */
4983 	free_extent_map(em);
4984 	/* One for the tree reference */
4985 	free_extent_map(em);
4986 	/* One for the pending_chunks list reference */
4987 	free_extent_map(em);
4988 error:
4989 	kfree(devices_info);
4990 	return ret;
4991 }
4992 
4993 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4994 				struct btrfs_fs_info *fs_info,
4995 				u64 chunk_offset, u64 chunk_size)
4996 {
4997 	struct btrfs_root *extent_root = fs_info->extent_root;
4998 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4999 	struct btrfs_key key;
5000 	struct btrfs_device *device;
5001 	struct btrfs_chunk *chunk;
5002 	struct btrfs_stripe *stripe;
5003 	struct extent_map *em;
5004 	struct map_lookup *map;
5005 	size_t item_size;
5006 	u64 dev_offset;
5007 	u64 stripe_size;
5008 	int i = 0;
5009 	int ret = 0;
5010 
5011 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
5012 	if (IS_ERR(em))
5013 		return PTR_ERR(em);
5014 
5015 	map = em->map_lookup;
5016 	item_size = btrfs_chunk_item_size(map->num_stripes);
5017 	stripe_size = em->orig_block_len;
5018 
5019 	chunk = kzalloc(item_size, GFP_NOFS);
5020 	if (!chunk) {
5021 		ret = -ENOMEM;
5022 		goto out;
5023 	}
5024 
5025 	/*
5026 	 * Take the device list mutex to prevent races with the final phase of
5027 	 * a device replace operation that replaces the device object associated
5028 	 * with the map's stripes, because the device object's id can change
5029 	 * at any time during that final phase of the device replace operation
5030 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5031 	 */
5032 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5033 	for (i = 0; i < map->num_stripes; i++) {
5034 		device = map->stripes[i].dev;
5035 		dev_offset = map->stripes[i].physical;
5036 
5037 		ret = btrfs_update_device(trans, device);
5038 		if (ret)
5039 			break;
5040 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5041 					     dev_offset, stripe_size);
5042 		if (ret)
5043 			break;
5044 	}
5045 	if (ret) {
5046 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5047 		goto out;
5048 	}
5049 
5050 	stripe = &chunk->stripe;
5051 	for (i = 0; i < map->num_stripes; i++) {
5052 		device = map->stripes[i].dev;
5053 		dev_offset = map->stripes[i].physical;
5054 
5055 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5056 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5057 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5058 		stripe++;
5059 	}
5060 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5061 
5062 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5063 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5064 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5065 	btrfs_set_stack_chunk_type(chunk, map->type);
5066 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5067 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5068 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5069 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5070 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5071 
5072 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5073 	key.type = BTRFS_CHUNK_ITEM_KEY;
5074 	key.offset = chunk_offset;
5075 
5076 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5077 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5078 		/*
5079 		 * TODO: Cleanup of inserted chunk root in case of
5080 		 * failure.
5081 		 */
5082 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5083 	}
5084 
5085 out:
5086 	kfree(chunk);
5087 	free_extent_map(em);
5088 	return ret;
5089 }
5090 
5091 /*
5092  * Chunk allocation falls into two parts. The first part does works
5093  * that make the new allocated chunk useable, but not do any operation
5094  * that modifies the chunk tree. The second part does the works that
5095  * require modifying the chunk tree. This division is important for the
5096  * bootstrap process of adding storage to a seed btrfs.
5097  */
5098 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5099 		      struct btrfs_fs_info *fs_info, u64 type)
5100 {
5101 	u64 chunk_offset;
5102 
5103 	lockdep_assert_held(&fs_info->chunk_mutex);
5104 	chunk_offset = find_next_chunk(fs_info);
5105 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5106 }
5107 
5108 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5109 					 struct btrfs_fs_info *fs_info)
5110 {
5111 	u64 chunk_offset;
5112 	u64 sys_chunk_offset;
5113 	u64 alloc_profile;
5114 	int ret;
5115 
5116 	chunk_offset = find_next_chunk(fs_info);
5117 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5118 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5119 	if (ret)
5120 		return ret;
5121 
5122 	sys_chunk_offset = find_next_chunk(fs_info);
5123 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5124 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5125 	return ret;
5126 }
5127 
5128 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5129 {
5130 	int max_errors;
5131 
5132 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5133 			 BTRFS_BLOCK_GROUP_RAID10 |
5134 			 BTRFS_BLOCK_GROUP_RAID5 |
5135 			 BTRFS_BLOCK_GROUP_DUP)) {
5136 		max_errors = 1;
5137 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5138 		max_errors = 2;
5139 	} else {
5140 		max_errors = 0;
5141 	}
5142 
5143 	return max_errors;
5144 }
5145 
5146 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5147 {
5148 	struct extent_map *em;
5149 	struct map_lookup *map;
5150 	int readonly = 0;
5151 	int miss_ndevs = 0;
5152 	int i;
5153 
5154 	em = get_chunk_map(fs_info, chunk_offset, 1);
5155 	if (IS_ERR(em))
5156 		return 1;
5157 
5158 	map = em->map_lookup;
5159 	for (i = 0; i < map->num_stripes; i++) {
5160 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5161 					&map->stripes[i].dev->dev_state)) {
5162 			miss_ndevs++;
5163 			continue;
5164 		}
5165 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5166 					&map->stripes[i].dev->dev_state)) {
5167 			readonly = 1;
5168 			goto end;
5169 		}
5170 	}
5171 
5172 	/*
5173 	 * If the number of missing devices is larger than max errors,
5174 	 * we can not write the data into that chunk successfully, so
5175 	 * set it readonly.
5176 	 */
5177 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5178 		readonly = 1;
5179 end:
5180 	free_extent_map(em);
5181 	return readonly;
5182 }
5183 
5184 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5185 {
5186 	extent_map_tree_init(&tree->map_tree);
5187 }
5188 
5189 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5190 {
5191 	struct extent_map *em;
5192 
5193 	while (1) {
5194 		write_lock(&tree->map_tree.lock);
5195 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5196 		if (em)
5197 			remove_extent_mapping(&tree->map_tree, em);
5198 		write_unlock(&tree->map_tree.lock);
5199 		if (!em)
5200 			break;
5201 		/* once for us */
5202 		free_extent_map(em);
5203 		/* once for the tree */
5204 		free_extent_map(em);
5205 	}
5206 }
5207 
5208 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5209 {
5210 	struct extent_map *em;
5211 	struct map_lookup *map;
5212 	int ret;
5213 
5214 	em = get_chunk_map(fs_info, logical, len);
5215 	if (IS_ERR(em))
5216 		/*
5217 		 * We could return errors for these cases, but that could get
5218 		 * ugly and we'd probably do the same thing which is just not do
5219 		 * anything else and exit, so return 1 so the callers don't try
5220 		 * to use other copies.
5221 		 */
5222 		return 1;
5223 
5224 	map = em->map_lookup;
5225 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5226 		ret = map->num_stripes;
5227 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5228 		ret = map->sub_stripes;
5229 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5230 		ret = 2;
5231 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5232 		/*
5233 		 * There could be two corrupted data stripes, we need
5234 		 * to loop retry in order to rebuild the correct data.
5235 		 *
5236 		 * Fail a stripe at a time on every retry except the
5237 		 * stripe under reconstruction.
5238 		 */
5239 		ret = map->num_stripes;
5240 	else
5241 		ret = 1;
5242 	free_extent_map(em);
5243 
5244 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5245 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5246 	    fs_info->dev_replace.tgtdev)
5247 		ret++;
5248 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5249 
5250 	return ret;
5251 }
5252 
5253 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5254 				    u64 logical)
5255 {
5256 	struct extent_map *em;
5257 	struct map_lookup *map;
5258 	unsigned long len = fs_info->sectorsize;
5259 
5260 	em = get_chunk_map(fs_info, logical, len);
5261 
5262 	if (!WARN_ON(IS_ERR(em))) {
5263 		map = em->map_lookup;
5264 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5265 			len = map->stripe_len * nr_data_stripes(map);
5266 		free_extent_map(em);
5267 	}
5268 	return len;
5269 }
5270 
5271 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5272 {
5273 	struct extent_map *em;
5274 	struct map_lookup *map;
5275 	int ret = 0;
5276 
5277 	em = get_chunk_map(fs_info, logical, len);
5278 
5279 	if(!WARN_ON(IS_ERR(em))) {
5280 		map = em->map_lookup;
5281 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5282 			ret = 1;
5283 		free_extent_map(em);
5284 	}
5285 	return ret;
5286 }
5287 
5288 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5289 			    struct map_lookup *map, int first,
5290 			    int dev_replace_is_ongoing)
5291 {
5292 	int i;
5293 	int num_stripes;
5294 	int preferred_mirror;
5295 	int tolerance;
5296 	struct btrfs_device *srcdev;
5297 
5298 	ASSERT((map->type &
5299 		 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5300 
5301 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5302 		num_stripes = map->sub_stripes;
5303 	else
5304 		num_stripes = map->num_stripes;
5305 
5306 	preferred_mirror = first + current->pid % num_stripes;
5307 
5308 	if (dev_replace_is_ongoing &&
5309 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5310 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5311 		srcdev = fs_info->dev_replace.srcdev;
5312 	else
5313 		srcdev = NULL;
5314 
5315 	/*
5316 	 * try to avoid the drive that is the source drive for a
5317 	 * dev-replace procedure, only choose it if no other non-missing
5318 	 * mirror is available
5319 	 */
5320 	for (tolerance = 0; tolerance < 2; tolerance++) {
5321 		if (map->stripes[preferred_mirror].dev->bdev &&
5322 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5323 			return preferred_mirror;
5324 		for (i = first; i < first + num_stripes; i++) {
5325 			if (map->stripes[i].dev->bdev &&
5326 			    (tolerance || map->stripes[i].dev != srcdev))
5327 				return i;
5328 		}
5329 	}
5330 
5331 	/* we couldn't find one that doesn't fail.  Just return something
5332 	 * and the io error handling code will clean up eventually
5333 	 */
5334 	return preferred_mirror;
5335 }
5336 
5337 static inline int parity_smaller(u64 a, u64 b)
5338 {
5339 	return a > b;
5340 }
5341 
5342 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5343 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5344 {
5345 	struct btrfs_bio_stripe s;
5346 	int i;
5347 	u64 l;
5348 	int again = 1;
5349 
5350 	while (again) {
5351 		again = 0;
5352 		for (i = 0; i < num_stripes - 1; i++) {
5353 			if (parity_smaller(bbio->raid_map[i],
5354 					   bbio->raid_map[i+1])) {
5355 				s = bbio->stripes[i];
5356 				l = bbio->raid_map[i];
5357 				bbio->stripes[i] = bbio->stripes[i+1];
5358 				bbio->raid_map[i] = bbio->raid_map[i+1];
5359 				bbio->stripes[i+1] = s;
5360 				bbio->raid_map[i+1] = l;
5361 
5362 				again = 1;
5363 			}
5364 		}
5365 	}
5366 }
5367 
5368 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5369 {
5370 	struct btrfs_bio *bbio = kzalloc(
5371 		 /* the size of the btrfs_bio */
5372 		sizeof(struct btrfs_bio) +
5373 		/* plus the variable array for the stripes */
5374 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5375 		/* plus the variable array for the tgt dev */
5376 		sizeof(int) * (real_stripes) +
5377 		/*
5378 		 * plus the raid_map, which includes both the tgt dev
5379 		 * and the stripes
5380 		 */
5381 		sizeof(u64) * (total_stripes),
5382 		GFP_NOFS|__GFP_NOFAIL);
5383 
5384 	atomic_set(&bbio->error, 0);
5385 	refcount_set(&bbio->refs, 1);
5386 
5387 	return bbio;
5388 }
5389 
5390 void btrfs_get_bbio(struct btrfs_bio *bbio)
5391 {
5392 	WARN_ON(!refcount_read(&bbio->refs));
5393 	refcount_inc(&bbio->refs);
5394 }
5395 
5396 void btrfs_put_bbio(struct btrfs_bio *bbio)
5397 {
5398 	if (!bbio)
5399 		return;
5400 	if (refcount_dec_and_test(&bbio->refs))
5401 		kfree(bbio);
5402 }
5403 
5404 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5405 /*
5406  * Please note that, discard won't be sent to target device of device
5407  * replace.
5408  */
5409 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5410 					 u64 logical, u64 length,
5411 					 struct btrfs_bio **bbio_ret)
5412 {
5413 	struct extent_map *em;
5414 	struct map_lookup *map;
5415 	struct btrfs_bio *bbio;
5416 	u64 offset;
5417 	u64 stripe_nr;
5418 	u64 stripe_nr_end;
5419 	u64 stripe_end_offset;
5420 	u64 stripe_cnt;
5421 	u64 stripe_len;
5422 	u64 stripe_offset;
5423 	u64 num_stripes;
5424 	u32 stripe_index;
5425 	u32 factor = 0;
5426 	u32 sub_stripes = 0;
5427 	u64 stripes_per_dev = 0;
5428 	u32 remaining_stripes = 0;
5429 	u32 last_stripe = 0;
5430 	int ret = 0;
5431 	int i;
5432 
5433 	/* discard always return a bbio */
5434 	ASSERT(bbio_ret);
5435 
5436 	em = get_chunk_map(fs_info, logical, length);
5437 	if (IS_ERR(em))
5438 		return PTR_ERR(em);
5439 
5440 	map = em->map_lookup;
5441 	/* we don't discard raid56 yet */
5442 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5443 		ret = -EOPNOTSUPP;
5444 		goto out;
5445 	}
5446 
5447 	offset = logical - em->start;
5448 	length = min_t(u64, em->len - offset, length);
5449 
5450 	stripe_len = map->stripe_len;
5451 	/*
5452 	 * stripe_nr counts the total number of stripes we have to stride
5453 	 * to get to this block
5454 	 */
5455 	stripe_nr = div64_u64(offset, stripe_len);
5456 
5457 	/* stripe_offset is the offset of this block in its stripe */
5458 	stripe_offset = offset - stripe_nr * stripe_len;
5459 
5460 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5461 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5462 	stripe_cnt = stripe_nr_end - stripe_nr;
5463 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5464 			    (offset + length);
5465 	/*
5466 	 * after this, stripe_nr is the number of stripes on this
5467 	 * device we have to walk to find the data, and stripe_index is
5468 	 * the number of our device in the stripe array
5469 	 */
5470 	num_stripes = 1;
5471 	stripe_index = 0;
5472 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5473 			 BTRFS_BLOCK_GROUP_RAID10)) {
5474 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5475 			sub_stripes = 1;
5476 		else
5477 			sub_stripes = map->sub_stripes;
5478 
5479 		factor = map->num_stripes / sub_stripes;
5480 		num_stripes = min_t(u64, map->num_stripes,
5481 				    sub_stripes * stripe_cnt);
5482 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5483 		stripe_index *= sub_stripes;
5484 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5485 					      &remaining_stripes);
5486 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5487 		last_stripe *= sub_stripes;
5488 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5489 				BTRFS_BLOCK_GROUP_DUP)) {
5490 		num_stripes = map->num_stripes;
5491 	} else {
5492 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5493 					&stripe_index);
5494 	}
5495 
5496 	bbio = alloc_btrfs_bio(num_stripes, 0);
5497 	if (!bbio) {
5498 		ret = -ENOMEM;
5499 		goto out;
5500 	}
5501 
5502 	for (i = 0; i < num_stripes; i++) {
5503 		bbio->stripes[i].physical =
5504 			map->stripes[stripe_index].physical +
5505 			stripe_offset + stripe_nr * map->stripe_len;
5506 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5507 
5508 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5509 				 BTRFS_BLOCK_GROUP_RAID10)) {
5510 			bbio->stripes[i].length = stripes_per_dev *
5511 				map->stripe_len;
5512 
5513 			if (i / sub_stripes < remaining_stripes)
5514 				bbio->stripes[i].length +=
5515 					map->stripe_len;
5516 
5517 			/*
5518 			 * Special for the first stripe and
5519 			 * the last stripe:
5520 			 *
5521 			 * |-------|...|-------|
5522 			 *     |----------|
5523 			 *    off     end_off
5524 			 */
5525 			if (i < sub_stripes)
5526 				bbio->stripes[i].length -=
5527 					stripe_offset;
5528 
5529 			if (stripe_index >= last_stripe &&
5530 			    stripe_index <= (last_stripe +
5531 					     sub_stripes - 1))
5532 				bbio->stripes[i].length -=
5533 					stripe_end_offset;
5534 
5535 			if (i == sub_stripes - 1)
5536 				stripe_offset = 0;
5537 		} else {
5538 			bbio->stripes[i].length = length;
5539 		}
5540 
5541 		stripe_index++;
5542 		if (stripe_index == map->num_stripes) {
5543 			stripe_index = 0;
5544 			stripe_nr++;
5545 		}
5546 	}
5547 
5548 	*bbio_ret = bbio;
5549 	bbio->map_type = map->type;
5550 	bbio->num_stripes = num_stripes;
5551 out:
5552 	free_extent_map(em);
5553 	return ret;
5554 }
5555 
5556 /*
5557  * In dev-replace case, for repair case (that's the only case where the mirror
5558  * is selected explicitly when calling btrfs_map_block), blocks left of the
5559  * left cursor can also be read from the target drive.
5560  *
5561  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5562  * array of stripes.
5563  * For READ, it also needs to be supported using the same mirror number.
5564  *
5565  * If the requested block is not left of the left cursor, EIO is returned. This
5566  * can happen because btrfs_num_copies() returns one more in the dev-replace
5567  * case.
5568  */
5569 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5570 					 u64 logical, u64 length,
5571 					 u64 srcdev_devid, int *mirror_num,
5572 					 u64 *physical)
5573 {
5574 	struct btrfs_bio *bbio = NULL;
5575 	int num_stripes;
5576 	int index_srcdev = 0;
5577 	int found = 0;
5578 	u64 physical_of_found = 0;
5579 	int i;
5580 	int ret = 0;
5581 
5582 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5583 				logical, &length, &bbio, 0, 0);
5584 	if (ret) {
5585 		ASSERT(bbio == NULL);
5586 		return ret;
5587 	}
5588 
5589 	num_stripes = bbio->num_stripes;
5590 	if (*mirror_num > num_stripes) {
5591 		/*
5592 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5593 		 * that means that the requested area is not left of the left
5594 		 * cursor
5595 		 */
5596 		btrfs_put_bbio(bbio);
5597 		return -EIO;
5598 	}
5599 
5600 	/*
5601 	 * process the rest of the function using the mirror_num of the source
5602 	 * drive. Therefore look it up first.  At the end, patch the device
5603 	 * pointer to the one of the target drive.
5604 	 */
5605 	for (i = 0; i < num_stripes; i++) {
5606 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5607 			continue;
5608 
5609 		/*
5610 		 * In case of DUP, in order to keep it simple, only add the
5611 		 * mirror with the lowest physical address
5612 		 */
5613 		if (found &&
5614 		    physical_of_found <= bbio->stripes[i].physical)
5615 			continue;
5616 
5617 		index_srcdev = i;
5618 		found = 1;
5619 		physical_of_found = bbio->stripes[i].physical;
5620 	}
5621 
5622 	btrfs_put_bbio(bbio);
5623 
5624 	ASSERT(found);
5625 	if (!found)
5626 		return -EIO;
5627 
5628 	*mirror_num = index_srcdev + 1;
5629 	*physical = physical_of_found;
5630 	return ret;
5631 }
5632 
5633 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5634 				      struct btrfs_bio **bbio_ret,
5635 				      struct btrfs_dev_replace *dev_replace,
5636 				      int *num_stripes_ret, int *max_errors_ret)
5637 {
5638 	struct btrfs_bio *bbio = *bbio_ret;
5639 	u64 srcdev_devid = dev_replace->srcdev->devid;
5640 	int tgtdev_indexes = 0;
5641 	int num_stripes = *num_stripes_ret;
5642 	int max_errors = *max_errors_ret;
5643 	int i;
5644 
5645 	if (op == BTRFS_MAP_WRITE) {
5646 		int index_where_to_add;
5647 
5648 		/*
5649 		 * duplicate the write operations while the dev replace
5650 		 * procedure is running. Since the copying of the old disk to
5651 		 * the new disk takes place at run time while the filesystem is
5652 		 * mounted writable, the regular write operations to the old
5653 		 * disk have to be duplicated to go to the new disk as well.
5654 		 *
5655 		 * Note that device->missing is handled by the caller, and that
5656 		 * the write to the old disk is already set up in the stripes
5657 		 * array.
5658 		 */
5659 		index_where_to_add = num_stripes;
5660 		for (i = 0; i < num_stripes; i++) {
5661 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5662 				/* write to new disk, too */
5663 				struct btrfs_bio_stripe *new =
5664 					bbio->stripes + index_where_to_add;
5665 				struct btrfs_bio_stripe *old =
5666 					bbio->stripes + i;
5667 
5668 				new->physical = old->physical;
5669 				new->length = old->length;
5670 				new->dev = dev_replace->tgtdev;
5671 				bbio->tgtdev_map[i] = index_where_to_add;
5672 				index_where_to_add++;
5673 				max_errors++;
5674 				tgtdev_indexes++;
5675 			}
5676 		}
5677 		num_stripes = index_where_to_add;
5678 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5679 		int index_srcdev = 0;
5680 		int found = 0;
5681 		u64 physical_of_found = 0;
5682 
5683 		/*
5684 		 * During the dev-replace procedure, the target drive can also
5685 		 * be used to read data in case it is needed to repair a corrupt
5686 		 * block elsewhere. This is possible if the requested area is
5687 		 * left of the left cursor. In this area, the target drive is a
5688 		 * full copy of the source drive.
5689 		 */
5690 		for (i = 0; i < num_stripes; i++) {
5691 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5692 				/*
5693 				 * In case of DUP, in order to keep it simple,
5694 				 * only add the mirror with the lowest physical
5695 				 * address
5696 				 */
5697 				if (found &&
5698 				    physical_of_found <=
5699 				     bbio->stripes[i].physical)
5700 					continue;
5701 				index_srcdev = i;
5702 				found = 1;
5703 				physical_of_found = bbio->stripes[i].physical;
5704 			}
5705 		}
5706 		if (found) {
5707 			struct btrfs_bio_stripe *tgtdev_stripe =
5708 				bbio->stripes + num_stripes;
5709 
5710 			tgtdev_stripe->physical = physical_of_found;
5711 			tgtdev_stripe->length =
5712 				bbio->stripes[index_srcdev].length;
5713 			tgtdev_stripe->dev = dev_replace->tgtdev;
5714 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5715 
5716 			tgtdev_indexes++;
5717 			num_stripes++;
5718 		}
5719 	}
5720 
5721 	*num_stripes_ret = num_stripes;
5722 	*max_errors_ret = max_errors;
5723 	bbio->num_tgtdevs = tgtdev_indexes;
5724 	*bbio_ret = bbio;
5725 }
5726 
5727 static bool need_full_stripe(enum btrfs_map_op op)
5728 {
5729 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5730 }
5731 
5732 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5733 			     enum btrfs_map_op op,
5734 			     u64 logical, u64 *length,
5735 			     struct btrfs_bio **bbio_ret,
5736 			     int mirror_num, int need_raid_map)
5737 {
5738 	struct extent_map *em;
5739 	struct map_lookup *map;
5740 	u64 offset;
5741 	u64 stripe_offset;
5742 	u64 stripe_nr;
5743 	u64 stripe_len;
5744 	u32 stripe_index;
5745 	int i;
5746 	int ret = 0;
5747 	int num_stripes;
5748 	int max_errors = 0;
5749 	int tgtdev_indexes = 0;
5750 	struct btrfs_bio *bbio = NULL;
5751 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5752 	int dev_replace_is_ongoing = 0;
5753 	int num_alloc_stripes;
5754 	int patch_the_first_stripe_for_dev_replace = 0;
5755 	u64 physical_to_patch_in_first_stripe = 0;
5756 	u64 raid56_full_stripe_start = (u64)-1;
5757 
5758 	if (op == BTRFS_MAP_DISCARD)
5759 		return __btrfs_map_block_for_discard(fs_info, logical,
5760 						     *length, bbio_ret);
5761 
5762 	em = get_chunk_map(fs_info, logical, *length);
5763 	if (IS_ERR(em))
5764 		return PTR_ERR(em);
5765 
5766 	map = em->map_lookup;
5767 	offset = logical - em->start;
5768 
5769 	stripe_len = map->stripe_len;
5770 	stripe_nr = offset;
5771 	/*
5772 	 * stripe_nr counts the total number of stripes we have to stride
5773 	 * to get to this block
5774 	 */
5775 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5776 
5777 	stripe_offset = stripe_nr * stripe_len;
5778 	if (offset < stripe_offset) {
5779 		btrfs_crit(fs_info,
5780 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5781 			   stripe_offset, offset, em->start, logical,
5782 			   stripe_len);
5783 		free_extent_map(em);
5784 		return -EINVAL;
5785 	}
5786 
5787 	/* stripe_offset is the offset of this block in its stripe*/
5788 	stripe_offset = offset - stripe_offset;
5789 
5790 	/* if we're here for raid56, we need to know the stripe aligned start */
5791 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5792 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5793 		raid56_full_stripe_start = offset;
5794 
5795 		/* allow a write of a full stripe, but make sure we don't
5796 		 * allow straddling of stripes
5797 		 */
5798 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5799 				full_stripe_len);
5800 		raid56_full_stripe_start *= full_stripe_len;
5801 	}
5802 
5803 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5804 		u64 max_len;
5805 		/* For writes to RAID[56], allow a full stripeset across all disks.
5806 		   For other RAID types and for RAID[56] reads, just allow a single
5807 		   stripe (on a single disk). */
5808 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5809 		    (op == BTRFS_MAP_WRITE)) {
5810 			max_len = stripe_len * nr_data_stripes(map) -
5811 				(offset - raid56_full_stripe_start);
5812 		} else {
5813 			/* we limit the length of each bio to what fits in a stripe */
5814 			max_len = stripe_len - stripe_offset;
5815 		}
5816 		*length = min_t(u64, em->len - offset, max_len);
5817 	} else {
5818 		*length = em->len - offset;
5819 	}
5820 
5821 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5822 	   it cares about is the length */
5823 	if (!bbio_ret)
5824 		goto out;
5825 
5826 	btrfs_dev_replace_read_lock(dev_replace);
5827 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5828 	if (!dev_replace_is_ongoing)
5829 		btrfs_dev_replace_read_unlock(dev_replace);
5830 	else
5831 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5832 
5833 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5834 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5835 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5836 						    dev_replace->srcdev->devid,
5837 						    &mirror_num,
5838 					    &physical_to_patch_in_first_stripe);
5839 		if (ret)
5840 			goto out;
5841 		else
5842 			patch_the_first_stripe_for_dev_replace = 1;
5843 	} else if (mirror_num > map->num_stripes) {
5844 		mirror_num = 0;
5845 	}
5846 
5847 	num_stripes = 1;
5848 	stripe_index = 0;
5849 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5850 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5851 				&stripe_index);
5852 		if (!need_full_stripe(op))
5853 			mirror_num = 1;
5854 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5855 		if (need_full_stripe(op))
5856 			num_stripes = map->num_stripes;
5857 		else if (mirror_num)
5858 			stripe_index = mirror_num - 1;
5859 		else {
5860 			stripe_index = find_live_mirror(fs_info, map, 0,
5861 					    dev_replace_is_ongoing);
5862 			mirror_num = stripe_index + 1;
5863 		}
5864 
5865 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5866 		if (need_full_stripe(op)) {
5867 			num_stripes = map->num_stripes;
5868 		} else if (mirror_num) {
5869 			stripe_index = mirror_num - 1;
5870 		} else {
5871 			mirror_num = 1;
5872 		}
5873 
5874 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5875 		u32 factor = map->num_stripes / map->sub_stripes;
5876 
5877 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5878 		stripe_index *= map->sub_stripes;
5879 
5880 		if (need_full_stripe(op))
5881 			num_stripes = map->sub_stripes;
5882 		else if (mirror_num)
5883 			stripe_index += mirror_num - 1;
5884 		else {
5885 			int old_stripe_index = stripe_index;
5886 			stripe_index = find_live_mirror(fs_info, map,
5887 					      stripe_index,
5888 					      dev_replace_is_ongoing);
5889 			mirror_num = stripe_index - old_stripe_index + 1;
5890 		}
5891 
5892 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5893 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5894 			/* push stripe_nr back to the start of the full stripe */
5895 			stripe_nr = div64_u64(raid56_full_stripe_start,
5896 					stripe_len * nr_data_stripes(map));
5897 
5898 			/* RAID[56] write or recovery. Return all stripes */
5899 			num_stripes = map->num_stripes;
5900 			max_errors = nr_parity_stripes(map);
5901 
5902 			*length = map->stripe_len;
5903 			stripe_index = 0;
5904 			stripe_offset = 0;
5905 		} else {
5906 			/*
5907 			 * Mirror #0 or #1 means the original data block.
5908 			 * Mirror #2 is RAID5 parity block.
5909 			 * Mirror #3 is RAID6 Q block.
5910 			 */
5911 			stripe_nr = div_u64_rem(stripe_nr,
5912 					nr_data_stripes(map), &stripe_index);
5913 			if (mirror_num > 1)
5914 				stripe_index = nr_data_stripes(map) +
5915 						mirror_num - 2;
5916 
5917 			/* We distribute the parity blocks across stripes */
5918 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5919 					&stripe_index);
5920 			if (!need_full_stripe(op) && mirror_num <= 1)
5921 				mirror_num = 1;
5922 		}
5923 	} else {
5924 		/*
5925 		 * after this, stripe_nr is the number of stripes on this
5926 		 * device we have to walk to find the data, and stripe_index is
5927 		 * the number of our device in the stripe array
5928 		 */
5929 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5930 				&stripe_index);
5931 		mirror_num = stripe_index + 1;
5932 	}
5933 	if (stripe_index >= map->num_stripes) {
5934 		btrfs_crit(fs_info,
5935 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5936 			   stripe_index, map->num_stripes);
5937 		ret = -EINVAL;
5938 		goto out;
5939 	}
5940 
5941 	num_alloc_stripes = num_stripes;
5942 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5943 		if (op == BTRFS_MAP_WRITE)
5944 			num_alloc_stripes <<= 1;
5945 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5946 			num_alloc_stripes++;
5947 		tgtdev_indexes = num_stripes;
5948 	}
5949 
5950 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5951 	if (!bbio) {
5952 		ret = -ENOMEM;
5953 		goto out;
5954 	}
5955 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5956 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5957 
5958 	/* build raid_map */
5959 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5960 	    (need_full_stripe(op) || mirror_num > 1)) {
5961 		u64 tmp;
5962 		unsigned rot;
5963 
5964 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5965 				 sizeof(struct btrfs_bio_stripe) *
5966 				 num_alloc_stripes +
5967 				 sizeof(int) * tgtdev_indexes);
5968 
5969 		/* Work out the disk rotation on this stripe-set */
5970 		div_u64_rem(stripe_nr, num_stripes, &rot);
5971 
5972 		/* Fill in the logical address of each stripe */
5973 		tmp = stripe_nr * nr_data_stripes(map);
5974 		for (i = 0; i < nr_data_stripes(map); i++)
5975 			bbio->raid_map[(i+rot) % num_stripes] =
5976 				em->start + (tmp + i) * map->stripe_len;
5977 
5978 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5979 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5980 			bbio->raid_map[(i+rot+1) % num_stripes] =
5981 				RAID6_Q_STRIPE;
5982 	}
5983 
5984 
5985 	for (i = 0; i < num_stripes; i++) {
5986 		bbio->stripes[i].physical =
5987 			map->stripes[stripe_index].physical +
5988 			stripe_offset +
5989 			stripe_nr * map->stripe_len;
5990 		bbio->stripes[i].dev =
5991 			map->stripes[stripe_index].dev;
5992 		stripe_index++;
5993 	}
5994 
5995 	if (need_full_stripe(op))
5996 		max_errors = btrfs_chunk_max_errors(map);
5997 
5998 	if (bbio->raid_map)
5999 		sort_parity_stripes(bbio, num_stripes);
6000 
6001 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6002 	    need_full_stripe(op)) {
6003 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6004 					  &max_errors);
6005 	}
6006 
6007 	*bbio_ret = bbio;
6008 	bbio->map_type = map->type;
6009 	bbio->num_stripes = num_stripes;
6010 	bbio->max_errors = max_errors;
6011 	bbio->mirror_num = mirror_num;
6012 
6013 	/*
6014 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6015 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6016 	 * available as a mirror
6017 	 */
6018 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6019 		WARN_ON(num_stripes > 1);
6020 		bbio->stripes[0].dev = dev_replace->tgtdev;
6021 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6022 		bbio->mirror_num = map->num_stripes + 1;
6023 	}
6024 out:
6025 	if (dev_replace_is_ongoing) {
6026 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
6027 		btrfs_dev_replace_read_unlock(dev_replace);
6028 	}
6029 	free_extent_map(em);
6030 	return ret;
6031 }
6032 
6033 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6034 		      u64 logical, u64 *length,
6035 		      struct btrfs_bio **bbio_ret, int mirror_num)
6036 {
6037 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6038 				 mirror_num, 0);
6039 }
6040 
6041 /* For Scrub/replace */
6042 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6043 		     u64 logical, u64 *length,
6044 		     struct btrfs_bio **bbio_ret)
6045 {
6046 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6047 }
6048 
6049 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
6050 		     u64 chunk_start, u64 physical, u64 devid,
6051 		     u64 **logical, int *naddrs, int *stripe_len)
6052 {
6053 	struct extent_map *em;
6054 	struct map_lookup *map;
6055 	u64 *buf;
6056 	u64 bytenr;
6057 	u64 length;
6058 	u64 stripe_nr;
6059 	u64 rmap_len;
6060 	int i, j, nr = 0;
6061 
6062 	em = get_chunk_map(fs_info, chunk_start, 1);
6063 	if (IS_ERR(em))
6064 		return -EIO;
6065 
6066 	map = em->map_lookup;
6067 	length = em->len;
6068 	rmap_len = map->stripe_len;
6069 
6070 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6071 		length = div_u64(length, map->num_stripes / map->sub_stripes);
6072 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6073 		length = div_u64(length, map->num_stripes);
6074 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6075 		length = div_u64(length, nr_data_stripes(map));
6076 		rmap_len = map->stripe_len * nr_data_stripes(map);
6077 	}
6078 
6079 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6080 	BUG_ON(!buf); /* -ENOMEM */
6081 
6082 	for (i = 0; i < map->num_stripes; i++) {
6083 		if (devid && map->stripes[i].dev->devid != devid)
6084 			continue;
6085 		if (map->stripes[i].physical > physical ||
6086 		    map->stripes[i].physical + length <= physical)
6087 			continue;
6088 
6089 		stripe_nr = physical - map->stripes[i].physical;
6090 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6091 
6092 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6093 			stripe_nr = stripe_nr * map->num_stripes + i;
6094 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6095 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6096 			stripe_nr = stripe_nr * map->num_stripes + i;
6097 		} /* else if RAID[56], multiply by nr_data_stripes().
6098 		   * Alternatively, just use rmap_len below instead of
6099 		   * map->stripe_len */
6100 
6101 		bytenr = chunk_start + stripe_nr * rmap_len;
6102 		WARN_ON(nr >= map->num_stripes);
6103 		for (j = 0; j < nr; j++) {
6104 			if (buf[j] == bytenr)
6105 				break;
6106 		}
6107 		if (j == nr) {
6108 			WARN_ON(nr >= map->num_stripes);
6109 			buf[nr++] = bytenr;
6110 		}
6111 	}
6112 
6113 	*logical = buf;
6114 	*naddrs = nr;
6115 	*stripe_len = rmap_len;
6116 
6117 	free_extent_map(em);
6118 	return 0;
6119 }
6120 
6121 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6122 {
6123 	bio->bi_private = bbio->private;
6124 	bio->bi_end_io = bbio->end_io;
6125 	bio_endio(bio);
6126 
6127 	btrfs_put_bbio(bbio);
6128 }
6129 
6130 static void btrfs_end_bio(struct bio *bio)
6131 {
6132 	struct btrfs_bio *bbio = bio->bi_private;
6133 	int is_orig_bio = 0;
6134 
6135 	if (bio->bi_status) {
6136 		atomic_inc(&bbio->error);
6137 		if (bio->bi_status == BLK_STS_IOERR ||
6138 		    bio->bi_status == BLK_STS_TARGET) {
6139 			unsigned int stripe_index =
6140 				btrfs_io_bio(bio)->stripe_index;
6141 			struct btrfs_device *dev;
6142 
6143 			BUG_ON(stripe_index >= bbio->num_stripes);
6144 			dev = bbio->stripes[stripe_index].dev;
6145 			if (dev->bdev) {
6146 				if (bio_op(bio) == REQ_OP_WRITE)
6147 					btrfs_dev_stat_inc_and_print(dev,
6148 						BTRFS_DEV_STAT_WRITE_ERRS);
6149 				else
6150 					btrfs_dev_stat_inc_and_print(dev,
6151 						BTRFS_DEV_STAT_READ_ERRS);
6152 				if (bio->bi_opf & REQ_PREFLUSH)
6153 					btrfs_dev_stat_inc_and_print(dev,
6154 						BTRFS_DEV_STAT_FLUSH_ERRS);
6155 			}
6156 		}
6157 	}
6158 
6159 	if (bio == bbio->orig_bio)
6160 		is_orig_bio = 1;
6161 
6162 	btrfs_bio_counter_dec(bbio->fs_info);
6163 
6164 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6165 		if (!is_orig_bio) {
6166 			bio_put(bio);
6167 			bio = bbio->orig_bio;
6168 		}
6169 
6170 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6171 		/* only send an error to the higher layers if it is
6172 		 * beyond the tolerance of the btrfs bio
6173 		 */
6174 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6175 			bio->bi_status = BLK_STS_IOERR;
6176 		} else {
6177 			/*
6178 			 * this bio is actually up to date, we didn't
6179 			 * go over the max number of errors
6180 			 */
6181 			bio->bi_status = BLK_STS_OK;
6182 		}
6183 
6184 		btrfs_end_bbio(bbio, bio);
6185 	} else if (!is_orig_bio) {
6186 		bio_put(bio);
6187 	}
6188 }
6189 
6190 /*
6191  * see run_scheduled_bios for a description of why bios are collected for
6192  * async submit.
6193  *
6194  * This will add one bio to the pending list for a device and make sure
6195  * the work struct is scheduled.
6196  */
6197 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6198 					struct bio *bio)
6199 {
6200 	struct btrfs_fs_info *fs_info = device->fs_info;
6201 	int should_queue = 1;
6202 	struct btrfs_pending_bios *pending_bios;
6203 
6204 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6205 	    !device->bdev) {
6206 		bio_io_error(bio);
6207 		return;
6208 	}
6209 
6210 	/* don't bother with additional async steps for reads, right now */
6211 	if (bio_op(bio) == REQ_OP_READ) {
6212 		btrfsic_submit_bio(bio);
6213 		return;
6214 	}
6215 
6216 	WARN_ON(bio->bi_next);
6217 	bio->bi_next = NULL;
6218 
6219 	spin_lock(&device->io_lock);
6220 	if (op_is_sync(bio->bi_opf))
6221 		pending_bios = &device->pending_sync_bios;
6222 	else
6223 		pending_bios = &device->pending_bios;
6224 
6225 	if (pending_bios->tail)
6226 		pending_bios->tail->bi_next = bio;
6227 
6228 	pending_bios->tail = bio;
6229 	if (!pending_bios->head)
6230 		pending_bios->head = bio;
6231 	if (device->running_pending)
6232 		should_queue = 0;
6233 
6234 	spin_unlock(&device->io_lock);
6235 
6236 	if (should_queue)
6237 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6238 }
6239 
6240 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6241 			      u64 physical, int dev_nr, int async)
6242 {
6243 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6244 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6245 
6246 	bio->bi_private = bbio;
6247 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6248 	bio->bi_end_io = btrfs_end_bio;
6249 	bio->bi_iter.bi_sector = physical >> 9;
6250 #ifdef DEBUG
6251 	{
6252 		struct rcu_string *name;
6253 
6254 		rcu_read_lock();
6255 		name = rcu_dereference(dev->name);
6256 		btrfs_debug(fs_info,
6257 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6258 			bio_op(bio), bio->bi_opf,
6259 			(u64)bio->bi_iter.bi_sector,
6260 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6261 			bio->bi_iter.bi_size);
6262 		rcu_read_unlock();
6263 	}
6264 #endif
6265 	bio_set_dev(bio, dev->bdev);
6266 
6267 	btrfs_bio_counter_inc_noblocked(fs_info);
6268 
6269 	if (async)
6270 		btrfs_schedule_bio(dev, bio);
6271 	else
6272 		btrfsic_submit_bio(bio);
6273 }
6274 
6275 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6276 {
6277 	atomic_inc(&bbio->error);
6278 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6279 		/* Should be the original bio. */
6280 		WARN_ON(bio != bbio->orig_bio);
6281 
6282 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6283 		bio->bi_iter.bi_sector = logical >> 9;
6284 		if (atomic_read(&bbio->error) > bbio->max_errors)
6285 			bio->bi_status = BLK_STS_IOERR;
6286 		else
6287 			bio->bi_status = BLK_STS_OK;
6288 		btrfs_end_bbio(bbio, bio);
6289 	}
6290 }
6291 
6292 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6293 			   int mirror_num, int async_submit)
6294 {
6295 	struct btrfs_device *dev;
6296 	struct bio *first_bio = bio;
6297 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6298 	u64 length = 0;
6299 	u64 map_length;
6300 	int ret;
6301 	int dev_nr;
6302 	int total_devs;
6303 	struct btrfs_bio *bbio = NULL;
6304 
6305 	length = bio->bi_iter.bi_size;
6306 	map_length = length;
6307 
6308 	btrfs_bio_counter_inc_blocked(fs_info);
6309 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6310 				&map_length, &bbio, mirror_num, 1);
6311 	if (ret) {
6312 		btrfs_bio_counter_dec(fs_info);
6313 		return errno_to_blk_status(ret);
6314 	}
6315 
6316 	total_devs = bbio->num_stripes;
6317 	bbio->orig_bio = first_bio;
6318 	bbio->private = first_bio->bi_private;
6319 	bbio->end_io = first_bio->bi_end_io;
6320 	bbio->fs_info = fs_info;
6321 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6322 
6323 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6324 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6325 		/* In this case, map_length has been set to the length of
6326 		   a single stripe; not the whole write */
6327 		if (bio_op(bio) == REQ_OP_WRITE) {
6328 			ret = raid56_parity_write(fs_info, bio, bbio,
6329 						  map_length);
6330 		} else {
6331 			ret = raid56_parity_recover(fs_info, bio, bbio,
6332 						    map_length, mirror_num, 1);
6333 		}
6334 
6335 		btrfs_bio_counter_dec(fs_info);
6336 		return errno_to_blk_status(ret);
6337 	}
6338 
6339 	if (map_length < length) {
6340 		btrfs_crit(fs_info,
6341 			   "mapping failed logical %llu bio len %llu len %llu",
6342 			   logical, length, map_length);
6343 		BUG();
6344 	}
6345 
6346 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6347 		dev = bbio->stripes[dev_nr].dev;
6348 		if (!dev || !dev->bdev ||
6349 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6350 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6351 			bbio_error(bbio, first_bio, logical);
6352 			continue;
6353 		}
6354 
6355 		if (dev_nr < total_devs - 1)
6356 			bio = btrfs_bio_clone(first_bio);
6357 		else
6358 			bio = first_bio;
6359 
6360 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6361 				  dev_nr, async_submit);
6362 	}
6363 	btrfs_bio_counter_dec(fs_info);
6364 	return BLK_STS_OK;
6365 }
6366 
6367 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6368 				       u8 *uuid, u8 *fsid)
6369 {
6370 	struct btrfs_device *device;
6371 	struct btrfs_fs_devices *cur_devices;
6372 
6373 	cur_devices = fs_info->fs_devices;
6374 	while (cur_devices) {
6375 		if (!fsid ||
6376 		    !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6377 			device = find_device(cur_devices, devid, uuid);
6378 			if (device)
6379 				return device;
6380 		}
6381 		cur_devices = cur_devices->seed;
6382 	}
6383 	return NULL;
6384 }
6385 
6386 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6387 					    u64 devid, u8 *dev_uuid)
6388 {
6389 	struct btrfs_device *device;
6390 
6391 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6392 	if (IS_ERR(device))
6393 		return device;
6394 
6395 	list_add(&device->dev_list, &fs_devices->devices);
6396 	device->fs_devices = fs_devices;
6397 	fs_devices->num_devices++;
6398 
6399 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6400 	fs_devices->missing_devices++;
6401 
6402 	return device;
6403 }
6404 
6405 /**
6406  * btrfs_alloc_device - allocate struct btrfs_device
6407  * @fs_info:	used only for generating a new devid, can be NULL if
6408  *		devid is provided (i.e. @devid != NULL).
6409  * @devid:	a pointer to devid for this device.  If NULL a new devid
6410  *		is generated.
6411  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6412  *		is generated.
6413  *
6414  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6415  * on error.  Returned struct is not linked onto any lists and must be
6416  * destroyed with free_device.
6417  */
6418 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6419 					const u64 *devid,
6420 					const u8 *uuid)
6421 {
6422 	struct btrfs_device *dev;
6423 	u64 tmp;
6424 
6425 	if (WARN_ON(!devid && !fs_info))
6426 		return ERR_PTR(-EINVAL);
6427 
6428 	dev = __alloc_device();
6429 	if (IS_ERR(dev))
6430 		return dev;
6431 
6432 	if (devid)
6433 		tmp = *devid;
6434 	else {
6435 		int ret;
6436 
6437 		ret = find_next_devid(fs_info, &tmp);
6438 		if (ret) {
6439 			free_device(dev);
6440 			return ERR_PTR(ret);
6441 		}
6442 	}
6443 	dev->devid = tmp;
6444 
6445 	if (uuid)
6446 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6447 	else
6448 		generate_random_uuid(dev->uuid);
6449 
6450 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6451 			pending_bios_fn, NULL, NULL);
6452 
6453 	return dev;
6454 }
6455 
6456 /* Return -EIO if any error, otherwise return 0. */
6457 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6458 				   struct extent_buffer *leaf,
6459 				   struct btrfs_chunk *chunk, u64 logical)
6460 {
6461 	u64 length;
6462 	u64 stripe_len;
6463 	u16 num_stripes;
6464 	u16 sub_stripes;
6465 	u64 type;
6466 
6467 	length = btrfs_chunk_length(leaf, chunk);
6468 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6469 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6470 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6471 	type = btrfs_chunk_type(leaf, chunk);
6472 
6473 	if (!num_stripes) {
6474 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6475 			  num_stripes);
6476 		return -EIO;
6477 	}
6478 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6479 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6480 		return -EIO;
6481 	}
6482 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6483 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6484 			  btrfs_chunk_sector_size(leaf, chunk));
6485 		return -EIO;
6486 	}
6487 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6488 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6489 		return -EIO;
6490 	}
6491 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6492 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6493 			  stripe_len);
6494 		return -EIO;
6495 	}
6496 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6497 	    type) {
6498 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6499 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6500 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6501 			  btrfs_chunk_type(leaf, chunk));
6502 		return -EIO;
6503 	}
6504 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6505 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6506 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6507 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6508 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6509 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6510 	     num_stripes != 1)) {
6511 		btrfs_err(fs_info,
6512 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6513 			num_stripes, sub_stripes,
6514 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6515 		return -EIO;
6516 	}
6517 
6518 	return 0;
6519 }
6520 
6521 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6522 					u64 devid, u8 *uuid, bool error)
6523 {
6524 	if (error)
6525 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6526 			      devid, uuid);
6527 	else
6528 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6529 			      devid, uuid);
6530 }
6531 
6532 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6533 			  struct extent_buffer *leaf,
6534 			  struct btrfs_chunk *chunk)
6535 {
6536 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6537 	struct map_lookup *map;
6538 	struct extent_map *em;
6539 	u64 logical;
6540 	u64 length;
6541 	u64 devid;
6542 	u8 uuid[BTRFS_UUID_SIZE];
6543 	int num_stripes;
6544 	int ret;
6545 	int i;
6546 
6547 	logical = key->offset;
6548 	length = btrfs_chunk_length(leaf, chunk);
6549 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6550 
6551 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6552 	if (ret)
6553 		return ret;
6554 
6555 	read_lock(&map_tree->map_tree.lock);
6556 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6557 	read_unlock(&map_tree->map_tree.lock);
6558 
6559 	/* already mapped? */
6560 	if (em && em->start <= logical && em->start + em->len > logical) {
6561 		free_extent_map(em);
6562 		return 0;
6563 	} else if (em) {
6564 		free_extent_map(em);
6565 	}
6566 
6567 	em = alloc_extent_map();
6568 	if (!em)
6569 		return -ENOMEM;
6570 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6571 	if (!map) {
6572 		free_extent_map(em);
6573 		return -ENOMEM;
6574 	}
6575 
6576 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6577 	em->map_lookup = map;
6578 	em->start = logical;
6579 	em->len = length;
6580 	em->orig_start = 0;
6581 	em->block_start = 0;
6582 	em->block_len = em->len;
6583 
6584 	map->num_stripes = num_stripes;
6585 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6586 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6587 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6588 	map->type = btrfs_chunk_type(leaf, chunk);
6589 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6590 	for (i = 0; i < num_stripes; i++) {
6591 		map->stripes[i].physical =
6592 			btrfs_stripe_offset_nr(leaf, chunk, i);
6593 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6594 		read_extent_buffer(leaf, uuid, (unsigned long)
6595 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6596 				   BTRFS_UUID_SIZE);
6597 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6598 							uuid, NULL);
6599 		if (!map->stripes[i].dev &&
6600 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6601 			free_extent_map(em);
6602 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6603 			return -ENOENT;
6604 		}
6605 		if (!map->stripes[i].dev) {
6606 			map->stripes[i].dev =
6607 				add_missing_dev(fs_info->fs_devices, devid,
6608 						uuid);
6609 			if (IS_ERR(map->stripes[i].dev)) {
6610 				free_extent_map(em);
6611 				btrfs_err(fs_info,
6612 					"failed to init missing dev %llu: %ld",
6613 					devid, PTR_ERR(map->stripes[i].dev));
6614 				return PTR_ERR(map->stripes[i].dev);
6615 			}
6616 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6617 		}
6618 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6619 				&(map->stripes[i].dev->dev_state));
6620 
6621 	}
6622 
6623 	write_lock(&map_tree->map_tree.lock);
6624 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6625 	write_unlock(&map_tree->map_tree.lock);
6626 	BUG_ON(ret); /* Tree corruption */
6627 	free_extent_map(em);
6628 
6629 	return 0;
6630 }
6631 
6632 static void fill_device_from_item(struct extent_buffer *leaf,
6633 				 struct btrfs_dev_item *dev_item,
6634 				 struct btrfs_device *device)
6635 {
6636 	unsigned long ptr;
6637 
6638 	device->devid = btrfs_device_id(leaf, dev_item);
6639 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6640 	device->total_bytes = device->disk_total_bytes;
6641 	device->commit_total_bytes = device->disk_total_bytes;
6642 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6643 	device->commit_bytes_used = device->bytes_used;
6644 	device->type = btrfs_device_type(leaf, dev_item);
6645 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6646 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6647 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6648 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6649 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6650 
6651 	ptr = btrfs_device_uuid(dev_item);
6652 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6653 }
6654 
6655 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6656 						  u8 *fsid)
6657 {
6658 	struct btrfs_fs_devices *fs_devices;
6659 	int ret;
6660 
6661 	lockdep_assert_held(&uuid_mutex);
6662 	ASSERT(fsid);
6663 
6664 	fs_devices = fs_info->fs_devices->seed;
6665 	while (fs_devices) {
6666 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6667 			return fs_devices;
6668 
6669 		fs_devices = fs_devices->seed;
6670 	}
6671 
6672 	fs_devices = find_fsid(fsid);
6673 	if (!fs_devices) {
6674 		if (!btrfs_test_opt(fs_info, DEGRADED))
6675 			return ERR_PTR(-ENOENT);
6676 
6677 		fs_devices = alloc_fs_devices(fsid);
6678 		if (IS_ERR(fs_devices))
6679 			return fs_devices;
6680 
6681 		fs_devices->seeding = 1;
6682 		fs_devices->opened = 1;
6683 		return fs_devices;
6684 	}
6685 
6686 	fs_devices = clone_fs_devices(fs_devices);
6687 	if (IS_ERR(fs_devices))
6688 		return fs_devices;
6689 
6690 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6691 				   fs_info->bdev_holder);
6692 	if (ret) {
6693 		free_fs_devices(fs_devices);
6694 		fs_devices = ERR_PTR(ret);
6695 		goto out;
6696 	}
6697 
6698 	if (!fs_devices->seeding) {
6699 		__btrfs_close_devices(fs_devices);
6700 		free_fs_devices(fs_devices);
6701 		fs_devices = ERR_PTR(-EINVAL);
6702 		goto out;
6703 	}
6704 
6705 	fs_devices->seed = fs_info->fs_devices->seed;
6706 	fs_info->fs_devices->seed = fs_devices;
6707 out:
6708 	return fs_devices;
6709 }
6710 
6711 static int read_one_dev(struct btrfs_fs_info *fs_info,
6712 			struct extent_buffer *leaf,
6713 			struct btrfs_dev_item *dev_item)
6714 {
6715 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6716 	struct btrfs_device *device;
6717 	u64 devid;
6718 	int ret;
6719 	u8 fs_uuid[BTRFS_FSID_SIZE];
6720 	u8 dev_uuid[BTRFS_UUID_SIZE];
6721 
6722 	devid = btrfs_device_id(leaf, dev_item);
6723 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6724 			   BTRFS_UUID_SIZE);
6725 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6726 			   BTRFS_FSID_SIZE);
6727 
6728 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6729 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6730 		if (IS_ERR(fs_devices))
6731 			return PTR_ERR(fs_devices);
6732 	}
6733 
6734 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6735 	if (!device) {
6736 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6737 			btrfs_report_missing_device(fs_info, devid,
6738 							dev_uuid, true);
6739 			return -ENOENT;
6740 		}
6741 
6742 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6743 		if (IS_ERR(device)) {
6744 			btrfs_err(fs_info,
6745 				"failed to add missing dev %llu: %ld",
6746 				devid, PTR_ERR(device));
6747 			return PTR_ERR(device);
6748 		}
6749 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6750 	} else {
6751 		if (!device->bdev) {
6752 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6753 				btrfs_report_missing_device(fs_info,
6754 						devid, dev_uuid, true);
6755 				return -ENOENT;
6756 			}
6757 			btrfs_report_missing_device(fs_info, devid,
6758 							dev_uuid, false);
6759 		}
6760 
6761 		if (!device->bdev &&
6762 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6763 			/*
6764 			 * this happens when a device that was properly setup
6765 			 * in the device info lists suddenly goes bad.
6766 			 * device->bdev is NULL, and so we have to set
6767 			 * device->missing to one here
6768 			 */
6769 			device->fs_devices->missing_devices++;
6770 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6771 		}
6772 
6773 		/* Move the device to its own fs_devices */
6774 		if (device->fs_devices != fs_devices) {
6775 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6776 							&device->dev_state));
6777 
6778 			list_move(&device->dev_list, &fs_devices->devices);
6779 			device->fs_devices->num_devices--;
6780 			fs_devices->num_devices++;
6781 
6782 			device->fs_devices->missing_devices--;
6783 			fs_devices->missing_devices++;
6784 
6785 			device->fs_devices = fs_devices;
6786 		}
6787 	}
6788 
6789 	if (device->fs_devices != fs_info->fs_devices) {
6790 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6791 		if (device->generation !=
6792 		    btrfs_device_generation(leaf, dev_item))
6793 			return -EINVAL;
6794 	}
6795 
6796 	fill_device_from_item(leaf, dev_item, device);
6797 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6798 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6799 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6800 		device->fs_devices->total_rw_bytes += device->total_bytes;
6801 		atomic64_add(device->total_bytes - device->bytes_used,
6802 				&fs_info->free_chunk_space);
6803 	}
6804 	ret = 0;
6805 	return ret;
6806 }
6807 
6808 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6809 {
6810 	struct btrfs_root *root = fs_info->tree_root;
6811 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6812 	struct extent_buffer *sb;
6813 	struct btrfs_disk_key *disk_key;
6814 	struct btrfs_chunk *chunk;
6815 	u8 *array_ptr;
6816 	unsigned long sb_array_offset;
6817 	int ret = 0;
6818 	u32 num_stripes;
6819 	u32 array_size;
6820 	u32 len = 0;
6821 	u32 cur_offset;
6822 	u64 type;
6823 	struct btrfs_key key;
6824 
6825 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6826 	/*
6827 	 * This will create extent buffer of nodesize, superblock size is
6828 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6829 	 * overallocate but we can keep it as-is, only the first page is used.
6830 	 */
6831 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6832 	if (IS_ERR(sb))
6833 		return PTR_ERR(sb);
6834 	set_extent_buffer_uptodate(sb);
6835 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6836 	/*
6837 	 * The sb extent buffer is artificial and just used to read the system array.
6838 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6839 	 * pages up-to-date when the page is larger: extent does not cover the
6840 	 * whole page and consequently check_page_uptodate does not find all
6841 	 * the page's extents up-to-date (the hole beyond sb),
6842 	 * write_extent_buffer then triggers a WARN_ON.
6843 	 *
6844 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6845 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6846 	 * to silence the warning eg. on PowerPC 64.
6847 	 */
6848 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6849 		SetPageUptodate(sb->pages[0]);
6850 
6851 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6852 	array_size = btrfs_super_sys_array_size(super_copy);
6853 
6854 	array_ptr = super_copy->sys_chunk_array;
6855 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6856 	cur_offset = 0;
6857 
6858 	while (cur_offset < array_size) {
6859 		disk_key = (struct btrfs_disk_key *)array_ptr;
6860 		len = sizeof(*disk_key);
6861 		if (cur_offset + len > array_size)
6862 			goto out_short_read;
6863 
6864 		btrfs_disk_key_to_cpu(&key, disk_key);
6865 
6866 		array_ptr += len;
6867 		sb_array_offset += len;
6868 		cur_offset += len;
6869 
6870 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6871 			chunk = (struct btrfs_chunk *)sb_array_offset;
6872 			/*
6873 			 * At least one btrfs_chunk with one stripe must be
6874 			 * present, exact stripe count check comes afterwards
6875 			 */
6876 			len = btrfs_chunk_item_size(1);
6877 			if (cur_offset + len > array_size)
6878 				goto out_short_read;
6879 
6880 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6881 			if (!num_stripes) {
6882 				btrfs_err(fs_info,
6883 					"invalid number of stripes %u in sys_array at offset %u",
6884 					num_stripes, cur_offset);
6885 				ret = -EIO;
6886 				break;
6887 			}
6888 
6889 			type = btrfs_chunk_type(sb, chunk);
6890 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6891 				btrfs_err(fs_info,
6892 			    "invalid chunk type %llu in sys_array at offset %u",
6893 					type, cur_offset);
6894 				ret = -EIO;
6895 				break;
6896 			}
6897 
6898 			len = btrfs_chunk_item_size(num_stripes);
6899 			if (cur_offset + len > array_size)
6900 				goto out_short_read;
6901 
6902 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6903 			if (ret)
6904 				break;
6905 		} else {
6906 			btrfs_err(fs_info,
6907 			    "unexpected item type %u in sys_array at offset %u",
6908 				  (u32)key.type, cur_offset);
6909 			ret = -EIO;
6910 			break;
6911 		}
6912 		array_ptr += len;
6913 		sb_array_offset += len;
6914 		cur_offset += len;
6915 	}
6916 	clear_extent_buffer_uptodate(sb);
6917 	free_extent_buffer_stale(sb);
6918 	return ret;
6919 
6920 out_short_read:
6921 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6922 			len, cur_offset);
6923 	clear_extent_buffer_uptodate(sb);
6924 	free_extent_buffer_stale(sb);
6925 	return -EIO;
6926 }
6927 
6928 /*
6929  * Check if all chunks in the fs are OK for read-write degraded mount
6930  *
6931  * If the @failing_dev is specified, it's accounted as missing.
6932  *
6933  * Return true if all chunks meet the minimal RW mount requirements.
6934  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6935  */
6936 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6937 					struct btrfs_device *failing_dev)
6938 {
6939 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6940 	struct extent_map *em;
6941 	u64 next_start = 0;
6942 	bool ret = true;
6943 
6944 	read_lock(&map_tree->map_tree.lock);
6945 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6946 	read_unlock(&map_tree->map_tree.lock);
6947 	/* No chunk at all? Return false anyway */
6948 	if (!em) {
6949 		ret = false;
6950 		goto out;
6951 	}
6952 	while (em) {
6953 		struct map_lookup *map;
6954 		int missing = 0;
6955 		int max_tolerated;
6956 		int i;
6957 
6958 		map = em->map_lookup;
6959 		max_tolerated =
6960 			btrfs_get_num_tolerated_disk_barrier_failures(
6961 					map->type);
6962 		for (i = 0; i < map->num_stripes; i++) {
6963 			struct btrfs_device *dev = map->stripes[i].dev;
6964 
6965 			if (!dev || !dev->bdev ||
6966 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6967 			    dev->last_flush_error)
6968 				missing++;
6969 			else if (failing_dev && failing_dev == dev)
6970 				missing++;
6971 		}
6972 		if (missing > max_tolerated) {
6973 			if (!failing_dev)
6974 				btrfs_warn(fs_info,
6975 	"chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6976 				   em->start, missing, max_tolerated);
6977 			free_extent_map(em);
6978 			ret = false;
6979 			goto out;
6980 		}
6981 		next_start = extent_map_end(em);
6982 		free_extent_map(em);
6983 
6984 		read_lock(&map_tree->map_tree.lock);
6985 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6986 					   (u64)(-1) - next_start);
6987 		read_unlock(&map_tree->map_tree.lock);
6988 	}
6989 out:
6990 	return ret;
6991 }
6992 
6993 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6994 {
6995 	struct btrfs_root *root = fs_info->chunk_root;
6996 	struct btrfs_path *path;
6997 	struct extent_buffer *leaf;
6998 	struct btrfs_key key;
6999 	struct btrfs_key found_key;
7000 	int ret;
7001 	int slot;
7002 	u64 total_dev = 0;
7003 
7004 	path = btrfs_alloc_path();
7005 	if (!path)
7006 		return -ENOMEM;
7007 
7008 	mutex_lock(&uuid_mutex);
7009 	mutex_lock(&fs_info->chunk_mutex);
7010 
7011 	/*
7012 	 * Read all device items, and then all the chunk items. All
7013 	 * device items are found before any chunk item (their object id
7014 	 * is smaller than the lowest possible object id for a chunk
7015 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7016 	 */
7017 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7018 	key.offset = 0;
7019 	key.type = 0;
7020 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7021 	if (ret < 0)
7022 		goto error;
7023 	while (1) {
7024 		leaf = path->nodes[0];
7025 		slot = path->slots[0];
7026 		if (slot >= btrfs_header_nritems(leaf)) {
7027 			ret = btrfs_next_leaf(root, path);
7028 			if (ret == 0)
7029 				continue;
7030 			if (ret < 0)
7031 				goto error;
7032 			break;
7033 		}
7034 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7035 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7036 			struct btrfs_dev_item *dev_item;
7037 			dev_item = btrfs_item_ptr(leaf, slot,
7038 						  struct btrfs_dev_item);
7039 			ret = read_one_dev(fs_info, leaf, dev_item);
7040 			if (ret)
7041 				goto error;
7042 			total_dev++;
7043 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7044 			struct btrfs_chunk *chunk;
7045 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7046 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7047 			if (ret)
7048 				goto error;
7049 		}
7050 		path->slots[0]++;
7051 	}
7052 
7053 	/*
7054 	 * After loading chunk tree, we've got all device information,
7055 	 * do another round of validation checks.
7056 	 */
7057 	if (total_dev != fs_info->fs_devices->total_devices) {
7058 		btrfs_err(fs_info,
7059 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7060 			  btrfs_super_num_devices(fs_info->super_copy),
7061 			  total_dev);
7062 		ret = -EINVAL;
7063 		goto error;
7064 	}
7065 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7066 	    fs_info->fs_devices->total_rw_bytes) {
7067 		btrfs_err(fs_info,
7068 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7069 			  btrfs_super_total_bytes(fs_info->super_copy),
7070 			  fs_info->fs_devices->total_rw_bytes);
7071 		ret = -EINVAL;
7072 		goto error;
7073 	}
7074 	ret = 0;
7075 error:
7076 	mutex_unlock(&fs_info->chunk_mutex);
7077 	mutex_unlock(&uuid_mutex);
7078 
7079 	btrfs_free_path(path);
7080 	return ret;
7081 }
7082 
7083 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7084 {
7085 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7086 	struct btrfs_device *device;
7087 
7088 	while (fs_devices) {
7089 		mutex_lock(&fs_devices->device_list_mutex);
7090 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7091 			device->fs_info = fs_info;
7092 		mutex_unlock(&fs_devices->device_list_mutex);
7093 
7094 		fs_devices = fs_devices->seed;
7095 	}
7096 }
7097 
7098 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7099 {
7100 	int i;
7101 
7102 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7103 		btrfs_dev_stat_reset(dev, i);
7104 }
7105 
7106 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7107 {
7108 	struct btrfs_key key;
7109 	struct btrfs_key found_key;
7110 	struct btrfs_root *dev_root = fs_info->dev_root;
7111 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112 	struct extent_buffer *eb;
7113 	int slot;
7114 	int ret = 0;
7115 	struct btrfs_device *device;
7116 	struct btrfs_path *path = NULL;
7117 	int i;
7118 
7119 	path = btrfs_alloc_path();
7120 	if (!path) {
7121 		ret = -ENOMEM;
7122 		goto out;
7123 	}
7124 
7125 	mutex_lock(&fs_devices->device_list_mutex);
7126 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7127 		int item_size;
7128 		struct btrfs_dev_stats_item *ptr;
7129 
7130 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7131 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7132 		key.offset = device->devid;
7133 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7134 		if (ret) {
7135 			__btrfs_reset_dev_stats(device);
7136 			device->dev_stats_valid = 1;
7137 			btrfs_release_path(path);
7138 			continue;
7139 		}
7140 		slot = path->slots[0];
7141 		eb = path->nodes[0];
7142 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7143 		item_size = btrfs_item_size_nr(eb, slot);
7144 
7145 		ptr = btrfs_item_ptr(eb, slot,
7146 				     struct btrfs_dev_stats_item);
7147 
7148 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7149 			if (item_size >= (1 + i) * sizeof(__le64))
7150 				btrfs_dev_stat_set(device, i,
7151 					btrfs_dev_stats_value(eb, ptr, i));
7152 			else
7153 				btrfs_dev_stat_reset(device, i);
7154 		}
7155 
7156 		device->dev_stats_valid = 1;
7157 		btrfs_dev_stat_print_on_load(device);
7158 		btrfs_release_path(path);
7159 	}
7160 	mutex_unlock(&fs_devices->device_list_mutex);
7161 
7162 out:
7163 	btrfs_free_path(path);
7164 	return ret < 0 ? ret : 0;
7165 }
7166 
7167 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7168 				struct btrfs_fs_info *fs_info,
7169 				struct btrfs_device *device)
7170 {
7171 	struct btrfs_root *dev_root = fs_info->dev_root;
7172 	struct btrfs_path *path;
7173 	struct btrfs_key key;
7174 	struct extent_buffer *eb;
7175 	struct btrfs_dev_stats_item *ptr;
7176 	int ret;
7177 	int i;
7178 
7179 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7180 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7181 	key.offset = device->devid;
7182 
7183 	path = btrfs_alloc_path();
7184 	if (!path)
7185 		return -ENOMEM;
7186 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7187 	if (ret < 0) {
7188 		btrfs_warn_in_rcu(fs_info,
7189 			"error %d while searching for dev_stats item for device %s",
7190 			      ret, rcu_str_deref(device->name));
7191 		goto out;
7192 	}
7193 
7194 	if (ret == 0 &&
7195 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7196 		/* need to delete old one and insert a new one */
7197 		ret = btrfs_del_item(trans, dev_root, path);
7198 		if (ret != 0) {
7199 			btrfs_warn_in_rcu(fs_info,
7200 				"delete too small dev_stats item for device %s failed %d",
7201 				      rcu_str_deref(device->name), ret);
7202 			goto out;
7203 		}
7204 		ret = 1;
7205 	}
7206 
7207 	if (ret == 1) {
7208 		/* need to insert a new item */
7209 		btrfs_release_path(path);
7210 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7211 					      &key, sizeof(*ptr));
7212 		if (ret < 0) {
7213 			btrfs_warn_in_rcu(fs_info,
7214 				"insert dev_stats item for device %s failed %d",
7215 				rcu_str_deref(device->name), ret);
7216 			goto out;
7217 		}
7218 	}
7219 
7220 	eb = path->nodes[0];
7221 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7222 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7223 		btrfs_set_dev_stats_value(eb, ptr, i,
7224 					  btrfs_dev_stat_read(device, i));
7225 	btrfs_mark_buffer_dirty(eb);
7226 
7227 out:
7228 	btrfs_free_path(path);
7229 	return ret;
7230 }
7231 
7232 /*
7233  * called from commit_transaction. Writes all changed device stats to disk.
7234  */
7235 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7236 			struct btrfs_fs_info *fs_info)
7237 {
7238 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7239 	struct btrfs_device *device;
7240 	int stats_cnt;
7241 	int ret = 0;
7242 
7243 	mutex_lock(&fs_devices->device_list_mutex);
7244 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7245 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7246 		if (!device->dev_stats_valid || stats_cnt == 0)
7247 			continue;
7248 
7249 
7250 		/*
7251 		 * There is a LOAD-LOAD control dependency between the value of
7252 		 * dev_stats_ccnt and updating the on-disk values which requires
7253 		 * reading the in-memory counters. Such control dependencies
7254 		 * require explicit read memory barriers.
7255 		 *
7256 		 * This memory barriers pairs with smp_mb__before_atomic in
7257 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7258 		 * barrier implied by atomic_xchg in
7259 		 * btrfs_dev_stats_read_and_reset
7260 		 */
7261 		smp_rmb();
7262 
7263 		ret = update_dev_stat_item(trans, fs_info, device);
7264 		if (!ret)
7265 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7266 	}
7267 	mutex_unlock(&fs_devices->device_list_mutex);
7268 
7269 	return ret;
7270 }
7271 
7272 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7273 {
7274 	btrfs_dev_stat_inc(dev, index);
7275 	btrfs_dev_stat_print_on_error(dev);
7276 }
7277 
7278 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7279 {
7280 	if (!dev->dev_stats_valid)
7281 		return;
7282 	btrfs_err_rl_in_rcu(dev->fs_info,
7283 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7284 			   rcu_str_deref(dev->name),
7285 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7286 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7287 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7288 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7289 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7290 }
7291 
7292 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7293 {
7294 	int i;
7295 
7296 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7297 		if (btrfs_dev_stat_read(dev, i) != 0)
7298 			break;
7299 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7300 		return; /* all values == 0, suppress message */
7301 
7302 	btrfs_info_in_rcu(dev->fs_info,
7303 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7304 	       rcu_str_deref(dev->name),
7305 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7306 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7307 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7308 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7309 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7310 }
7311 
7312 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7313 			struct btrfs_ioctl_get_dev_stats *stats)
7314 {
7315 	struct btrfs_device *dev;
7316 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7317 	int i;
7318 
7319 	mutex_lock(&fs_devices->device_list_mutex);
7320 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7321 	mutex_unlock(&fs_devices->device_list_mutex);
7322 
7323 	if (!dev) {
7324 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7325 		return -ENODEV;
7326 	} else if (!dev->dev_stats_valid) {
7327 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7328 		return -ENODEV;
7329 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7330 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7331 			if (stats->nr_items > i)
7332 				stats->values[i] =
7333 					btrfs_dev_stat_read_and_reset(dev, i);
7334 			else
7335 				btrfs_dev_stat_reset(dev, i);
7336 		}
7337 	} else {
7338 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7339 			if (stats->nr_items > i)
7340 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7341 	}
7342 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7343 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7344 	return 0;
7345 }
7346 
7347 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7348 {
7349 	struct buffer_head *bh;
7350 	struct btrfs_super_block *disk_super;
7351 	int copy_num;
7352 
7353 	if (!bdev)
7354 		return;
7355 
7356 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7357 		copy_num++) {
7358 
7359 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7360 			continue;
7361 
7362 		disk_super = (struct btrfs_super_block *)bh->b_data;
7363 
7364 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7365 		set_buffer_dirty(bh);
7366 		sync_dirty_buffer(bh);
7367 		brelse(bh);
7368 	}
7369 
7370 	/* Notify udev that device has changed */
7371 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7372 
7373 	/* Update ctime/mtime for device path for libblkid */
7374 	update_dev_time(device_path);
7375 }
7376 
7377 /*
7378  * Update the size of all devices, which is used for writing out the
7379  * super blocks.
7380  */
7381 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7382 {
7383 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7384 	struct btrfs_device *curr, *next;
7385 
7386 	if (list_empty(&fs_devices->resized_devices))
7387 		return;
7388 
7389 	mutex_lock(&fs_devices->device_list_mutex);
7390 	mutex_lock(&fs_info->chunk_mutex);
7391 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7392 				 resized_list) {
7393 		list_del_init(&curr->resized_list);
7394 		curr->commit_total_bytes = curr->disk_total_bytes;
7395 	}
7396 	mutex_unlock(&fs_info->chunk_mutex);
7397 	mutex_unlock(&fs_devices->device_list_mutex);
7398 }
7399 
7400 /* Must be invoked during the transaction commit */
7401 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7402 {
7403 	struct btrfs_fs_info *fs_info = trans->fs_info;
7404 	struct extent_map *em;
7405 	struct map_lookup *map;
7406 	struct btrfs_device *dev;
7407 	int i;
7408 
7409 	if (list_empty(&trans->pending_chunks))
7410 		return;
7411 
7412 	/* In order to kick the device replace finish process */
7413 	mutex_lock(&fs_info->chunk_mutex);
7414 	list_for_each_entry(em, &trans->pending_chunks, list) {
7415 		map = em->map_lookup;
7416 
7417 		for (i = 0; i < map->num_stripes; i++) {
7418 			dev = map->stripes[i].dev;
7419 			dev->commit_bytes_used = dev->bytes_used;
7420 		}
7421 	}
7422 	mutex_unlock(&fs_info->chunk_mutex);
7423 }
7424 
7425 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7426 {
7427 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7428 	while (fs_devices) {
7429 		fs_devices->fs_info = fs_info;
7430 		fs_devices = fs_devices->seed;
7431 	}
7432 }
7433 
7434 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7435 {
7436 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7437 	while (fs_devices) {
7438 		fs_devices->fs_info = NULL;
7439 		fs_devices = fs_devices->seed;
7440 	}
7441 }
7442