1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 const btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 static int init_first_rw_device(struct btrfs_trans_handle *trans, 122 struct btrfs_root *root, 123 struct btrfs_device *device); 124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 128 129 DEFINE_MUTEX(uuid_mutex); 130 static LIST_HEAD(fs_uuids); 131 struct list_head *btrfs_get_fs_uuids(void) 132 { 133 return &fs_uuids; 134 } 135 136 static struct btrfs_fs_devices *__alloc_fs_devices(void) 137 { 138 struct btrfs_fs_devices *fs_devs; 139 140 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 141 if (!fs_devs) 142 return ERR_PTR(-ENOMEM); 143 144 mutex_init(&fs_devs->device_list_mutex); 145 146 INIT_LIST_HEAD(&fs_devs->devices); 147 INIT_LIST_HEAD(&fs_devs->resized_devices); 148 INIT_LIST_HEAD(&fs_devs->alloc_list); 149 INIT_LIST_HEAD(&fs_devs->list); 150 151 return fs_devs; 152 } 153 154 /** 155 * alloc_fs_devices - allocate struct btrfs_fs_devices 156 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 157 * generated. 158 * 159 * Return: a pointer to a new &struct btrfs_fs_devices on success; 160 * ERR_PTR() on error. Returned struct is not linked onto any lists and 161 * can be destroyed with kfree() right away. 162 */ 163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 164 { 165 struct btrfs_fs_devices *fs_devs; 166 167 fs_devs = __alloc_fs_devices(); 168 if (IS_ERR(fs_devs)) 169 return fs_devs; 170 171 if (fsid) 172 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 173 else 174 generate_random_uuid(fs_devs->fsid); 175 176 return fs_devs; 177 } 178 179 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 180 { 181 struct btrfs_device *device; 182 WARN_ON(fs_devices->opened); 183 while (!list_empty(&fs_devices->devices)) { 184 device = list_entry(fs_devices->devices.next, 185 struct btrfs_device, dev_list); 186 list_del(&device->dev_list); 187 rcu_string_free(device->name); 188 kfree(device); 189 } 190 kfree(fs_devices); 191 } 192 193 static void btrfs_kobject_uevent(struct block_device *bdev, 194 enum kobject_action action) 195 { 196 int ret; 197 198 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 199 if (ret) 200 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 201 action, 202 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 203 &disk_to_dev(bdev->bd_disk)->kobj); 204 } 205 206 void btrfs_cleanup_fs_uuids(void) 207 { 208 struct btrfs_fs_devices *fs_devices; 209 210 while (!list_empty(&fs_uuids)) { 211 fs_devices = list_entry(fs_uuids.next, 212 struct btrfs_fs_devices, list); 213 list_del(&fs_devices->list); 214 free_fs_devices(fs_devices); 215 } 216 } 217 218 static struct btrfs_device *__alloc_device(void) 219 { 220 struct btrfs_device *dev; 221 222 dev = kzalloc(sizeof(*dev), GFP_NOFS); 223 if (!dev) 224 return ERR_PTR(-ENOMEM); 225 226 INIT_LIST_HEAD(&dev->dev_list); 227 INIT_LIST_HEAD(&dev->dev_alloc_list); 228 INIT_LIST_HEAD(&dev->resized_list); 229 230 spin_lock_init(&dev->io_lock); 231 232 spin_lock_init(&dev->reada_lock); 233 atomic_set(&dev->reada_in_flight, 0); 234 atomic_set(&dev->dev_stats_ccnt, 0); 235 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 236 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 237 238 return dev; 239 } 240 241 static noinline struct btrfs_device *__find_device(struct list_head *head, 242 u64 devid, u8 *uuid) 243 { 244 struct btrfs_device *dev; 245 246 list_for_each_entry(dev, head, dev_list) { 247 if (dev->devid == devid && 248 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 249 return dev; 250 } 251 } 252 return NULL; 253 } 254 255 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 256 { 257 struct btrfs_fs_devices *fs_devices; 258 259 list_for_each_entry(fs_devices, &fs_uuids, list) { 260 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 261 return fs_devices; 262 } 263 return NULL; 264 } 265 266 static int 267 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 268 int flush, struct block_device **bdev, 269 struct buffer_head **bh) 270 { 271 int ret; 272 273 *bdev = blkdev_get_by_path(device_path, flags, holder); 274 275 if (IS_ERR(*bdev)) { 276 ret = PTR_ERR(*bdev); 277 goto error; 278 } 279 280 if (flush) 281 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 282 ret = set_blocksize(*bdev, 4096); 283 if (ret) { 284 blkdev_put(*bdev, flags); 285 goto error; 286 } 287 invalidate_bdev(*bdev); 288 *bh = btrfs_read_dev_super(*bdev); 289 if (IS_ERR(*bh)) { 290 ret = PTR_ERR(*bh); 291 blkdev_put(*bdev, flags); 292 goto error; 293 } 294 295 return 0; 296 297 error: 298 *bdev = NULL; 299 *bh = NULL; 300 return ret; 301 } 302 303 static void requeue_list(struct btrfs_pending_bios *pending_bios, 304 struct bio *head, struct bio *tail) 305 { 306 307 struct bio *old_head; 308 309 old_head = pending_bios->head; 310 pending_bios->head = head; 311 if (pending_bios->tail) 312 tail->bi_next = old_head; 313 else 314 pending_bios->tail = tail; 315 } 316 317 /* 318 * we try to collect pending bios for a device so we don't get a large 319 * number of procs sending bios down to the same device. This greatly 320 * improves the schedulers ability to collect and merge the bios. 321 * 322 * But, it also turns into a long list of bios to process and that is sure 323 * to eventually make the worker thread block. The solution here is to 324 * make some progress and then put this work struct back at the end of 325 * the list if the block device is congested. This way, multiple devices 326 * can make progress from a single worker thread. 327 */ 328 static noinline void run_scheduled_bios(struct btrfs_device *device) 329 { 330 struct bio *pending; 331 struct backing_dev_info *bdi; 332 struct btrfs_fs_info *fs_info; 333 struct btrfs_pending_bios *pending_bios; 334 struct bio *tail; 335 struct bio *cur; 336 int again = 0; 337 unsigned long num_run; 338 unsigned long batch_run = 0; 339 unsigned long limit; 340 unsigned long last_waited = 0; 341 int force_reg = 0; 342 int sync_pending = 0; 343 struct blk_plug plug; 344 345 /* 346 * this function runs all the bios we've collected for 347 * a particular device. We don't want to wander off to 348 * another device without first sending all of these down. 349 * So, setup a plug here and finish it off before we return 350 */ 351 blk_start_plug(&plug); 352 353 bdi = blk_get_backing_dev_info(device->bdev); 354 fs_info = device->dev_root->fs_info; 355 limit = btrfs_async_submit_limit(fs_info); 356 limit = limit * 2 / 3; 357 358 loop: 359 spin_lock(&device->io_lock); 360 361 loop_lock: 362 num_run = 0; 363 364 /* take all the bios off the list at once and process them 365 * later on (without the lock held). But, remember the 366 * tail and other pointers so the bios can be properly reinserted 367 * into the list if we hit congestion 368 */ 369 if (!force_reg && device->pending_sync_bios.head) { 370 pending_bios = &device->pending_sync_bios; 371 force_reg = 1; 372 } else { 373 pending_bios = &device->pending_bios; 374 force_reg = 0; 375 } 376 377 pending = pending_bios->head; 378 tail = pending_bios->tail; 379 WARN_ON(pending && !tail); 380 381 /* 382 * if pending was null this time around, no bios need processing 383 * at all and we can stop. Otherwise it'll loop back up again 384 * and do an additional check so no bios are missed. 385 * 386 * device->running_pending is used to synchronize with the 387 * schedule_bio code. 388 */ 389 if (device->pending_sync_bios.head == NULL && 390 device->pending_bios.head == NULL) { 391 again = 0; 392 device->running_pending = 0; 393 } else { 394 again = 1; 395 device->running_pending = 1; 396 } 397 398 pending_bios->head = NULL; 399 pending_bios->tail = NULL; 400 401 spin_unlock(&device->io_lock); 402 403 while (pending) { 404 405 rmb(); 406 /* we want to work on both lists, but do more bios on the 407 * sync list than the regular list 408 */ 409 if ((num_run > 32 && 410 pending_bios != &device->pending_sync_bios && 411 device->pending_sync_bios.head) || 412 (num_run > 64 && pending_bios == &device->pending_sync_bios && 413 device->pending_bios.head)) { 414 spin_lock(&device->io_lock); 415 requeue_list(pending_bios, pending, tail); 416 goto loop_lock; 417 } 418 419 cur = pending; 420 pending = pending->bi_next; 421 cur->bi_next = NULL; 422 423 /* 424 * atomic_dec_return implies a barrier for waitqueue_active 425 */ 426 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 427 waitqueue_active(&fs_info->async_submit_wait)) 428 wake_up(&fs_info->async_submit_wait); 429 430 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 431 432 /* 433 * if we're doing the sync list, record that our 434 * plug has some sync requests on it 435 * 436 * If we're doing the regular list and there are 437 * sync requests sitting around, unplug before 438 * we add more 439 */ 440 if (pending_bios == &device->pending_sync_bios) { 441 sync_pending = 1; 442 } else if (sync_pending) { 443 blk_finish_plug(&plug); 444 blk_start_plug(&plug); 445 sync_pending = 0; 446 } 447 448 btrfsic_submit_bio(cur->bi_rw, cur); 449 num_run++; 450 batch_run++; 451 452 cond_resched(); 453 454 /* 455 * we made progress, there is more work to do and the bdi 456 * is now congested. Back off and let other work structs 457 * run instead 458 */ 459 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 460 fs_info->fs_devices->open_devices > 1) { 461 struct io_context *ioc; 462 463 ioc = current->io_context; 464 465 /* 466 * the main goal here is that we don't want to 467 * block if we're going to be able to submit 468 * more requests without blocking. 469 * 470 * This code does two great things, it pokes into 471 * the elevator code from a filesystem _and_ 472 * it makes assumptions about how batching works. 473 */ 474 if (ioc && ioc->nr_batch_requests > 0 && 475 time_before(jiffies, ioc->last_waited + HZ/50UL) && 476 (last_waited == 0 || 477 ioc->last_waited == last_waited)) { 478 /* 479 * we want to go through our batch of 480 * requests and stop. So, we copy out 481 * the ioc->last_waited time and test 482 * against it before looping 483 */ 484 last_waited = ioc->last_waited; 485 cond_resched(); 486 continue; 487 } 488 spin_lock(&device->io_lock); 489 requeue_list(pending_bios, pending, tail); 490 device->running_pending = 1; 491 492 spin_unlock(&device->io_lock); 493 btrfs_queue_work(fs_info->submit_workers, 494 &device->work); 495 goto done; 496 } 497 /* unplug every 64 requests just for good measure */ 498 if (batch_run % 64 == 0) { 499 blk_finish_plug(&plug); 500 blk_start_plug(&plug); 501 sync_pending = 0; 502 } 503 } 504 505 cond_resched(); 506 if (again) 507 goto loop; 508 509 spin_lock(&device->io_lock); 510 if (device->pending_bios.head || device->pending_sync_bios.head) 511 goto loop_lock; 512 spin_unlock(&device->io_lock); 513 514 done: 515 blk_finish_plug(&plug); 516 } 517 518 static void pending_bios_fn(struct btrfs_work *work) 519 { 520 struct btrfs_device *device; 521 522 device = container_of(work, struct btrfs_device, work); 523 run_scheduled_bios(device); 524 } 525 526 527 void btrfs_free_stale_device(struct btrfs_device *cur_dev) 528 { 529 struct btrfs_fs_devices *fs_devs; 530 struct btrfs_device *dev; 531 532 if (!cur_dev->name) 533 return; 534 535 list_for_each_entry(fs_devs, &fs_uuids, list) { 536 int del = 1; 537 538 if (fs_devs->opened) 539 continue; 540 if (fs_devs->seeding) 541 continue; 542 543 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 544 545 if (dev == cur_dev) 546 continue; 547 if (!dev->name) 548 continue; 549 550 /* 551 * Todo: This won't be enough. What if the same device 552 * comes back (with new uuid and) with its mapper path? 553 * But for now, this does help as mostly an admin will 554 * either use mapper or non mapper path throughout. 555 */ 556 rcu_read_lock(); 557 del = strcmp(rcu_str_deref(dev->name), 558 rcu_str_deref(cur_dev->name)); 559 rcu_read_unlock(); 560 if (!del) 561 break; 562 } 563 564 if (!del) { 565 /* delete the stale device */ 566 if (fs_devs->num_devices == 1) { 567 btrfs_sysfs_remove_fsid(fs_devs); 568 list_del(&fs_devs->list); 569 free_fs_devices(fs_devs); 570 } else { 571 fs_devs->num_devices--; 572 list_del(&dev->dev_list); 573 rcu_string_free(dev->name); 574 kfree(dev); 575 } 576 break; 577 } 578 } 579 } 580 581 /* 582 * Add new device to list of registered devices 583 * 584 * Returns: 585 * 1 - first time device is seen 586 * 0 - device already known 587 * < 0 - error 588 */ 589 static noinline int device_list_add(const char *path, 590 struct btrfs_super_block *disk_super, 591 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 592 { 593 struct btrfs_device *device; 594 struct btrfs_fs_devices *fs_devices; 595 struct rcu_string *name; 596 int ret = 0; 597 u64 found_transid = btrfs_super_generation(disk_super); 598 599 fs_devices = find_fsid(disk_super->fsid); 600 if (!fs_devices) { 601 fs_devices = alloc_fs_devices(disk_super->fsid); 602 if (IS_ERR(fs_devices)) 603 return PTR_ERR(fs_devices); 604 605 list_add(&fs_devices->list, &fs_uuids); 606 607 device = NULL; 608 } else { 609 device = __find_device(&fs_devices->devices, devid, 610 disk_super->dev_item.uuid); 611 } 612 613 if (!device) { 614 if (fs_devices->opened) 615 return -EBUSY; 616 617 device = btrfs_alloc_device(NULL, &devid, 618 disk_super->dev_item.uuid); 619 if (IS_ERR(device)) { 620 /* we can safely leave the fs_devices entry around */ 621 return PTR_ERR(device); 622 } 623 624 name = rcu_string_strdup(path, GFP_NOFS); 625 if (!name) { 626 kfree(device); 627 return -ENOMEM; 628 } 629 rcu_assign_pointer(device->name, name); 630 631 mutex_lock(&fs_devices->device_list_mutex); 632 list_add_rcu(&device->dev_list, &fs_devices->devices); 633 fs_devices->num_devices++; 634 mutex_unlock(&fs_devices->device_list_mutex); 635 636 ret = 1; 637 device->fs_devices = fs_devices; 638 } else if (!device->name || strcmp(device->name->str, path)) { 639 /* 640 * When FS is already mounted. 641 * 1. If you are here and if the device->name is NULL that 642 * means this device was missing at time of FS mount. 643 * 2. If you are here and if the device->name is different 644 * from 'path' that means either 645 * a. The same device disappeared and reappeared with 646 * different name. or 647 * b. The missing-disk-which-was-replaced, has 648 * reappeared now. 649 * 650 * We must allow 1 and 2a above. But 2b would be a spurious 651 * and unintentional. 652 * 653 * Further in case of 1 and 2a above, the disk at 'path' 654 * would have missed some transaction when it was away and 655 * in case of 2a the stale bdev has to be updated as well. 656 * 2b must not be allowed at all time. 657 */ 658 659 /* 660 * For now, we do allow update to btrfs_fs_device through the 661 * btrfs dev scan cli after FS has been mounted. We're still 662 * tracking a problem where systems fail mount by subvolume id 663 * when we reject replacement on a mounted FS. 664 */ 665 if (!fs_devices->opened && found_transid < device->generation) { 666 /* 667 * That is if the FS is _not_ mounted and if you 668 * are here, that means there is more than one 669 * disk with same uuid and devid.We keep the one 670 * with larger generation number or the last-in if 671 * generation are equal. 672 */ 673 return -EEXIST; 674 } 675 676 name = rcu_string_strdup(path, GFP_NOFS); 677 if (!name) 678 return -ENOMEM; 679 rcu_string_free(device->name); 680 rcu_assign_pointer(device->name, name); 681 if (device->missing) { 682 fs_devices->missing_devices--; 683 device->missing = 0; 684 } 685 } 686 687 /* 688 * Unmount does not free the btrfs_device struct but would zero 689 * generation along with most of the other members. So just update 690 * it back. We need it to pick the disk with largest generation 691 * (as above). 692 */ 693 if (!fs_devices->opened) 694 device->generation = found_transid; 695 696 /* 697 * if there is new btrfs on an already registered device, 698 * then remove the stale device entry. 699 */ 700 btrfs_free_stale_device(device); 701 702 *fs_devices_ret = fs_devices; 703 704 return ret; 705 } 706 707 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 708 { 709 struct btrfs_fs_devices *fs_devices; 710 struct btrfs_device *device; 711 struct btrfs_device *orig_dev; 712 713 fs_devices = alloc_fs_devices(orig->fsid); 714 if (IS_ERR(fs_devices)) 715 return fs_devices; 716 717 mutex_lock(&orig->device_list_mutex); 718 fs_devices->total_devices = orig->total_devices; 719 720 /* We have held the volume lock, it is safe to get the devices. */ 721 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 722 struct rcu_string *name; 723 724 device = btrfs_alloc_device(NULL, &orig_dev->devid, 725 orig_dev->uuid); 726 if (IS_ERR(device)) 727 goto error; 728 729 /* 730 * This is ok to do without rcu read locked because we hold the 731 * uuid mutex so nothing we touch in here is going to disappear. 732 */ 733 if (orig_dev->name) { 734 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 735 if (!name) { 736 kfree(device); 737 goto error; 738 } 739 rcu_assign_pointer(device->name, name); 740 } 741 742 list_add(&device->dev_list, &fs_devices->devices); 743 device->fs_devices = fs_devices; 744 fs_devices->num_devices++; 745 } 746 mutex_unlock(&orig->device_list_mutex); 747 return fs_devices; 748 error: 749 mutex_unlock(&orig->device_list_mutex); 750 free_fs_devices(fs_devices); 751 return ERR_PTR(-ENOMEM); 752 } 753 754 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 755 { 756 struct btrfs_device *device, *next; 757 struct btrfs_device *latest_dev = NULL; 758 759 mutex_lock(&uuid_mutex); 760 again: 761 /* This is the initialized path, it is safe to release the devices. */ 762 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 763 if (device->in_fs_metadata) { 764 if (!device->is_tgtdev_for_dev_replace && 765 (!latest_dev || 766 device->generation > latest_dev->generation)) { 767 latest_dev = device; 768 } 769 continue; 770 } 771 772 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 773 /* 774 * In the first step, keep the device which has 775 * the correct fsid and the devid that is used 776 * for the dev_replace procedure. 777 * In the second step, the dev_replace state is 778 * read from the device tree and it is known 779 * whether the procedure is really active or 780 * not, which means whether this device is 781 * used or whether it should be removed. 782 */ 783 if (step == 0 || device->is_tgtdev_for_dev_replace) { 784 continue; 785 } 786 } 787 if (device->bdev) { 788 blkdev_put(device->bdev, device->mode); 789 device->bdev = NULL; 790 fs_devices->open_devices--; 791 } 792 if (device->writeable) { 793 list_del_init(&device->dev_alloc_list); 794 device->writeable = 0; 795 if (!device->is_tgtdev_for_dev_replace) 796 fs_devices->rw_devices--; 797 } 798 list_del_init(&device->dev_list); 799 fs_devices->num_devices--; 800 rcu_string_free(device->name); 801 kfree(device); 802 } 803 804 if (fs_devices->seed) { 805 fs_devices = fs_devices->seed; 806 goto again; 807 } 808 809 fs_devices->latest_bdev = latest_dev->bdev; 810 811 mutex_unlock(&uuid_mutex); 812 } 813 814 static void __free_device(struct work_struct *work) 815 { 816 struct btrfs_device *device; 817 818 device = container_of(work, struct btrfs_device, rcu_work); 819 820 if (device->bdev) 821 blkdev_put(device->bdev, device->mode); 822 823 rcu_string_free(device->name); 824 kfree(device); 825 } 826 827 static void free_device(struct rcu_head *head) 828 { 829 struct btrfs_device *device; 830 831 device = container_of(head, struct btrfs_device, rcu); 832 833 INIT_WORK(&device->rcu_work, __free_device); 834 schedule_work(&device->rcu_work); 835 } 836 837 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 838 { 839 struct btrfs_device *device, *tmp; 840 841 if (--fs_devices->opened > 0) 842 return 0; 843 844 mutex_lock(&fs_devices->device_list_mutex); 845 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 846 btrfs_close_one_device(device); 847 } 848 mutex_unlock(&fs_devices->device_list_mutex); 849 850 WARN_ON(fs_devices->open_devices); 851 WARN_ON(fs_devices->rw_devices); 852 fs_devices->opened = 0; 853 fs_devices->seeding = 0; 854 855 return 0; 856 } 857 858 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 859 { 860 struct btrfs_fs_devices *seed_devices = NULL; 861 int ret; 862 863 mutex_lock(&uuid_mutex); 864 ret = __btrfs_close_devices(fs_devices); 865 if (!fs_devices->opened) { 866 seed_devices = fs_devices->seed; 867 fs_devices->seed = NULL; 868 } 869 mutex_unlock(&uuid_mutex); 870 871 while (seed_devices) { 872 fs_devices = seed_devices; 873 seed_devices = fs_devices->seed; 874 __btrfs_close_devices(fs_devices); 875 free_fs_devices(fs_devices); 876 } 877 /* 878 * Wait for rcu kworkers under __btrfs_close_devices 879 * to finish all blkdev_puts so device is really 880 * free when umount is done. 881 */ 882 rcu_barrier(); 883 return ret; 884 } 885 886 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 887 fmode_t flags, void *holder) 888 { 889 struct request_queue *q; 890 struct block_device *bdev; 891 struct list_head *head = &fs_devices->devices; 892 struct btrfs_device *device; 893 struct btrfs_device *latest_dev = NULL; 894 struct buffer_head *bh; 895 struct btrfs_super_block *disk_super; 896 u64 devid; 897 int seeding = 1; 898 int ret = 0; 899 900 flags |= FMODE_EXCL; 901 902 list_for_each_entry(device, head, dev_list) { 903 if (device->bdev) 904 continue; 905 if (!device->name) 906 continue; 907 908 /* Just open everything we can; ignore failures here */ 909 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 910 &bdev, &bh)) 911 continue; 912 913 disk_super = (struct btrfs_super_block *)bh->b_data; 914 devid = btrfs_stack_device_id(&disk_super->dev_item); 915 if (devid != device->devid) 916 goto error_brelse; 917 918 if (memcmp(device->uuid, disk_super->dev_item.uuid, 919 BTRFS_UUID_SIZE)) 920 goto error_brelse; 921 922 device->generation = btrfs_super_generation(disk_super); 923 if (!latest_dev || 924 device->generation > latest_dev->generation) 925 latest_dev = device; 926 927 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 928 device->writeable = 0; 929 } else { 930 device->writeable = !bdev_read_only(bdev); 931 seeding = 0; 932 } 933 934 q = bdev_get_queue(bdev); 935 if (blk_queue_discard(q)) 936 device->can_discard = 1; 937 938 device->bdev = bdev; 939 device->in_fs_metadata = 0; 940 device->mode = flags; 941 942 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 943 fs_devices->rotating = 1; 944 945 fs_devices->open_devices++; 946 if (device->writeable && 947 device->devid != BTRFS_DEV_REPLACE_DEVID) { 948 fs_devices->rw_devices++; 949 list_add(&device->dev_alloc_list, 950 &fs_devices->alloc_list); 951 } 952 brelse(bh); 953 continue; 954 955 error_brelse: 956 brelse(bh); 957 blkdev_put(bdev, flags); 958 continue; 959 } 960 if (fs_devices->open_devices == 0) { 961 ret = -EINVAL; 962 goto out; 963 } 964 fs_devices->seeding = seeding; 965 fs_devices->opened = 1; 966 fs_devices->latest_bdev = latest_dev->bdev; 967 fs_devices->total_rw_bytes = 0; 968 out: 969 return ret; 970 } 971 972 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 973 fmode_t flags, void *holder) 974 { 975 int ret; 976 977 mutex_lock(&uuid_mutex); 978 if (fs_devices->opened) { 979 fs_devices->opened++; 980 ret = 0; 981 } else { 982 ret = __btrfs_open_devices(fs_devices, flags, holder); 983 } 984 mutex_unlock(&uuid_mutex); 985 return ret; 986 } 987 988 /* 989 * Look for a btrfs signature on a device. This may be called out of the mount path 990 * and we are not allowed to call set_blocksize during the scan. The superblock 991 * is read via pagecache 992 */ 993 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 994 struct btrfs_fs_devices **fs_devices_ret) 995 { 996 struct btrfs_super_block *disk_super; 997 struct block_device *bdev; 998 struct page *page; 999 void *p; 1000 int ret = -EINVAL; 1001 u64 devid; 1002 u64 transid; 1003 u64 total_devices; 1004 u64 bytenr; 1005 pgoff_t index; 1006 1007 /* 1008 * we would like to check all the supers, but that would make 1009 * a btrfs mount succeed after a mkfs from a different FS. 1010 * So, we need to add a special mount option to scan for 1011 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1012 */ 1013 bytenr = btrfs_sb_offset(0); 1014 flags |= FMODE_EXCL; 1015 mutex_lock(&uuid_mutex); 1016 1017 bdev = blkdev_get_by_path(path, flags, holder); 1018 1019 if (IS_ERR(bdev)) { 1020 ret = PTR_ERR(bdev); 1021 goto error; 1022 } 1023 1024 /* make sure our super fits in the device */ 1025 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 1026 goto error_bdev_put; 1027 1028 /* make sure our super fits in the page */ 1029 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 1030 goto error_bdev_put; 1031 1032 /* make sure our super doesn't straddle pages on disk */ 1033 index = bytenr >> PAGE_CACHE_SHIFT; 1034 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 1035 goto error_bdev_put; 1036 1037 /* pull in the page with our super */ 1038 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1039 index, GFP_NOFS); 1040 1041 if (IS_ERR_OR_NULL(page)) 1042 goto error_bdev_put; 1043 1044 p = kmap(page); 1045 1046 /* align our pointer to the offset of the super block */ 1047 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 1048 1049 if (btrfs_super_bytenr(disk_super) != bytenr || 1050 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 1051 goto error_unmap; 1052 1053 devid = btrfs_stack_device_id(&disk_super->dev_item); 1054 transid = btrfs_super_generation(disk_super); 1055 total_devices = btrfs_super_num_devices(disk_super); 1056 1057 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1058 if (ret > 0) { 1059 if (disk_super->label[0]) { 1060 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 1061 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1062 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 1063 } else { 1064 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 1065 } 1066 1067 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 1068 ret = 0; 1069 } 1070 if (!ret && fs_devices_ret) 1071 (*fs_devices_ret)->total_devices = total_devices; 1072 1073 error_unmap: 1074 kunmap(page); 1075 page_cache_release(page); 1076 1077 error_bdev_put: 1078 blkdev_put(bdev, flags); 1079 error: 1080 mutex_unlock(&uuid_mutex); 1081 return ret; 1082 } 1083 1084 /* helper to account the used device space in the range */ 1085 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1086 u64 end, u64 *length) 1087 { 1088 struct btrfs_key key; 1089 struct btrfs_root *root = device->dev_root; 1090 struct btrfs_dev_extent *dev_extent; 1091 struct btrfs_path *path; 1092 u64 extent_end; 1093 int ret; 1094 int slot; 1095 struct extent_buffer *l; 1096 1097 *length = 0; 1098 1099 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1100 return 0; 1101 1102 path = btrfs_alloc_path(); 1103 if (!path) 1104 return -ENOMEM; 1105 path->reada = 2; 1106 1107 key.objectid = device->devid; 1108 key.offset = start; 1109 key.type = BTRFS_DEV_EXTENT_KEY; 1110 1111 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1112 if (ret < 0) 1113 goto out; 1114 if (ret > 0) { 1115 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1116 if (ret < 0) 1117 goto out; 1118 } 1119 1120 while (1) { 1121 l = path->nodes[0]; 1122 slot = path->slots[0]; 1123 if (slot >= btrfs_header_nritems(l)) { 1124 ret = btrfs_next_leaf(root, path); 1125 if (ret == 0) 1126 continue; 1127 if (ret < 0) 1128 goto out; 1129 1130 break; 1131 } 1132 btrfs_item_key_to_cpu(l, &key, slot); 1133 1134 if (key.objectid < device->devid) 1135 goto next; 1136 1137 if (key.objectid > device->devid) 1138 break; 1139 1140 if (key.type != BTRFS_DEV_EXTENT_KEY) 1141 goto next; 1142 1143 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1144 extent_end = key.offset + btrfs_dev_extent_length(l, 1145 dev_extent); 1146 if (key.offset <= start && extent_end > end) { 1147 *length = end - start + 1; 1148 break; 1149 } else if (key.offset <= start && extent_end > start) 1150 *length += extent_end - start; 1151 else if (key.offset > start && extent_end <= end) 1152 *length += extent_end - key.offset; 1153 else if (key.offset > start && key.offset <= end) { 1154 *length += end - key.offset + 1; 1155 break; 1156 } else if (key.offset > end) 1157 break; 1158 1159 next: 1160 path->slots[0]++; 1161 } 1162 ret = 0; 1163 out: 1164 btrfs_free_path(path); 1165 return ret; 1166 } 1167 1168 static int contains_pending_extent(struct btrfs_transaction *transaction, 1169 struct btrfs_device *device, 1170 u64 *start, u64 len) 1171 { 1172 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 1173 struct extent_map *em; 1174 struct list_head *search_list = &fs_info->pinned_chunks; 1175 int ret = 0; 1176 u64 physical_start = *start; 1177 1178 if (transaction) 1179 search_list = &transaction->pending_chunks; 1180 again: 1181 list_for_each_entry(em, search_list, list) { 1182 struct map_lookup *map; 1183 int i; 1184 1185 map = (struct map_lookup *)em->bdev; 1186 for (i = 0; i < map->num_stripes; i++) { 1187 u64 end; 1188 1189 if (map->stripes[i].dev != device) 1190 continue; 1191 if (map->stripes[i].physical >= physical_start + len || 1192 map->stripes[i].physical + em->orig_block_len <= 1193 physical_start) 1194 continue; 1195 /* 1196 * Make sure that while processing the pinned list we do 1197 * not override our *start with a lower value, because 1198 * we can have pinned chunks that fall within this 1199 * device hole and that have lower physical addresses 1200 * than the pending chunks we processed before. If we 1201 * do not take this special care we can end up getting 1202 * 2 pending chunks that start at the same physical 1203 * device offsets because the end offset of a pinned 1204 * chunk can be equal to the start offset of some 1205 * pending chunk. 1206 */ 1207 end = map->stripes[i].physical + em->orig_block_len; 1208 if (end > *start) { 1209 *start = end; 1210 ret = 1; 1211 } 1212 } 1213 } 1214 if (search_list != &fs_info->pinned_chunks) { 1215 search_list = &fs_info->pinned_chunks; 1216 goto again; 1217 } 1218 1219 return ret; 1220 } 1221 1222 1223 /* 1224 * find_free_dev_extent_start - find free space in the specified device 1225 * @device: the device which we search the free space in 1226 * @num_bytes: the size of the free space that we need 1227 * @search_start: the position from which to begin the search 1228 * @start: store the start of the free space. 1229 * @len: the size of the free space. that we find, or the size 1230 * of the max free space if we don't find suitable free space 1231 * 1232 * this uses a pretty simple search, the expectation is that it is 1233 * called very infrequently and that a given device has a small number 1234 * of extents 1235 * 1236 * @start is used to store the start of the free space if we find. But if we 1237 * don't find suitable free space, it will be used to store the start position 1238 * of the max free space. 1239 * 1240 * @len is used to store the size of the free space that we find. 1241 * But if we don't find suitable free space, it is used to store the size of 1242 * the max free space. 1243 */ 1244 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1245 struct btrfs_device *device, u64 num_bytes, 1246 u64 search_start, u64 *start, u64 *len) 1247 { 1248 struct btrfs_key key; 1249 struct btrfs_root *root = device->dev_root; 1250 struct btrfs_dev_extent *dev_extent; 1251 struct btrfs_path *path; 1252 u64 hole_size; 1253 u64 max_hole_start; 1254 u64 max_hole_size; 1255 u64 extent_end; 1256 u64 search_end = device->total_bytes; 1257 int ret; 1258 int slot; 1259 struct extent_buffer *l; 1260 1261 path = btrfs_alloc_path(); 1262 if (!path) 1263 return -ENOMEM; 1264 1265 max_hole_start = search_start; 1266 max_hole_size = 0; 1267 1268 again: 1269 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1270 ret = -ENOSPC; 1271 goto out; 1272 } 1273 1274 path->reada = 2; 1275 path->search_commit_root = 1; 1276 path->skip_locking = 1; 1277 1278 key.objectid = device->devid; 1279 key.offset = search_start; 1280 key.type = BTRFS_DEV_EXTENT_KEY; 1281 1282 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1283 if (ret < 0) 1284 goto out; 1285 if (ret > 0) { 1286 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1287 if (ret < 0) 1288 goto out; 1289 } 1290 1291 while (1) { 1292 l = path->nodes[0]; 1293 slot = path->slots[0]; 1294 if (slot >= btrfs_header_nritems(l)) { 1295 ret = btrfs_next_leaf(root, path); 1296 if (ret == 0) 1297 continue; 1298 if (ret < 0) 1299 goto out; 1300 1301 break; 1302 } 1303 btrfs_item_key_to_cpu(l, &key, slot); 1304 1305 if (key.objectid < device->devid) 1306 goto next; 1307 1308 if (key.objectid > device->devid) 1309 break; 1310 1311 if (key.type != BTRFS_DEV_EXTENT_KEY) 1312 goto next; 1313 1314 if (key.offset > search_start) { 1315 hole_size = key.offset - search_start; 1316 1317 /* 1318 * Have to check before we set max_hole_start, otherwise 1319 * we could end up sending back this offset anyway. 1320 */ 1321 if (contains_pending_extent(transaction, device, 1322 &search_start, 1323 hole_size)) { 1324 if (key.offset >= search_start) { 1325 hole_size = key.offset - search_start; 1326 } else { 1327 WARN_ON_ONCE(1); 1328 hole_size = 0; 1329 } 1330 } 1331 1332 if (hole_size > max_hole_size) { 1333 max_hole_start = search_start; 1334 max_hole_size = hole_size; 1335 } 1336 1337 /* 1338 * If this free space is greater than which we need, 1339 * it must be the max free space that we have found 1340 * until now, so max_hole_start must point to the start 1341 * of this free space and the length of this free space 1342 * is stored in max_hole_size. Thus, we return 1343 * max_hole_start and max_hole_size and go back to the 1344 * caller. 1345 */ 1346 if (hole_size >= num_bytes) { 1347 ret = 0; 1348 goto out; 1349 } 1350 } 1351 1352 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1353 extent_end = key.offset + btrfs_dev_extent_length(l, 1354 dev_extent); 1355 if (extent_end > search_start) 1356 search_start = extent_end; 1357 next: 1358 path->slots[0]++; 1359 cond_resched(); 1360 } 1361 1362 /* 1363 * At this point, search_start should be the end of 1364 * allocated dev extents, and when shrinking the device, 1365 * search_end may be smaller than search_start. 1366 */ 1367 if (search_end > search_start) { 1368 hole_size = search_end - search_start; 1369 1370 if (contains_pending_extent(transaction, device, &search_start, 1371 hole_size)) { 1372 btrfs_release_path(path); 1373 goto again; 1374 } 1375 1376 if (hole_size > max_hole_size) { 1377 max_hole_start = search_start; 1378 max_hole_size = hole_size; 1379 } 1380 } 1381 1382 /* See above. */ 1383 if (max_hole_size < num_bytes) 1384 ret = -ENOSPC; 1385 else 1386 ret = 0; 1387 1388 out: 1389 btrfs_free_path(path); 1390 *start = max_hole_start; 1391 if (len) 1392 *len = max_hole_size; 1393 return ret; 1394 } 1395 1396 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1397 struct btrfs_device *device, u64 num_bytes, 1398 u64 *start, u64 *len) 1399 { 1400 struct btrfs_root *root = device->dev_root; 1401 u64 search_start; 1402 1403 /* FIXME use last free of some kind */ 1404 1405 /* 1406 * we don't want to overwrite the superblock on the drive, 1407 * so we make sure to start at an offset of at least 1MB 1408 */ 1409 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1410 return find_free_dev_extent_start(trans->transaction, device, 1411 num_bytes, search_start, start, len); 1412 } 1413 1414 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1415 struct btrfs_device *device, 1416 u64 start, u64 *dev_extent_len) 1417 { 1418 int ret; 1419 struct btrfs_path *path; 1420 struct btrfs_root *root = device->dev_root; 1421 struct btrfs_key key; 1422 struct btrfs_key found_key; 1423 struct extent_buffer *leaf = NULL; 1424 struct btrfs_dev_extent *extent = NULL; 1425 1426 path = btrfs_alloc_path(); 1427 if (!path) 1428 return -ENOMEM; 1429 1430 key.objectid = device->devid; 1431 key.offset = start; 1432 key.type = BTRFS_DEV_EXTENT_KEY; 1433 again: 1434 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1435 if (ret > 0) { 1436 ret = btrfs_previous_item(root, path, key.objectid, 1437 BTRFS_DEV_EXTENT_KEY); 1438 if (ret) 1439 goto out; 1440 leaf = path->nodes[0]; 1441 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1442 extent = btrfs_item_ptr(leaf, path->slots[0], 1443 struct btrfs_dev_extent); 1444 BUG_ON(found_key.offset > start || found_key.offset + 1445 btrfs_dev_extent_length(leaf, extent) < start); 1446 key = found_key; 1447 btrfs_release_path(path); 1448 goto again; 1449 } else if (ret == 0) { 1450 leaf = path->nodes[0]; 1451 extent = btrfs_item_ptr(leaf, path->slots[0], 1452 struct btrfs_dev_extent); 1453 } else { 1454 btrfs_std_error(root->fs_info, ret, "Slot search failed"); 1455 goto out; 1456 } 1457 1458 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1459 1460 ret = btrfs_del_item(trans, root, path); 1461 if (ret) { 1462 btrfs_std_error(root->fs_info, ret, 1463 "Failed to remove dev extent item"); 1464 } else { 1465 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1466 } 1467 out: 1468 btrfs_free_path(path); 1469 return ret; 1470 } 1471 1472 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1473 struct btrfs_device *device, 1474 u64 chunk_tree, u64 chunk_objectid, 1475 u64 chunk_offset, u64 start, u64 num_bytes) 1476 { 1477 int ret; 1478 struct btrfs_path *path; 1479 struct btrfs_root *root = device->dev_root; 1480 struct btrfs_dev_extent *extent; 1481 struct extent_buffer *leaf; 1482 struct btrfs_key key; 1483 1484 WARN_ON(!device->in_fs_metadata); 1485 WARN_ON(device->is_tgtdev_for_dev_replace); 1486 path = btrfs_alloc_path(); 1487 if (!path) 1488 return -ENOMEM; 1489 1490 key.objectid = device->devid; 1491 key.offset = start; 1492 key.type = BTRFS_DEV_EXTENT_KEY; 1493 ret = btrfs_insert_empty_item(trans, root, path, &key, 1494 sizeof(*extent)); 1495 if (ret) 1496 goto out; 1497 1498 leaf = path->nodes[0]; 1499 extent = btrfs_item_ptr(leaf, path->slots[0], 1500 struct btrfs_dev_extent); 1501 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1502 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1503 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1504 1505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1506 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1507 1508 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1509 btrfs_mark_buffer_dirty(leaf); 1510 out: 1511 btrfs_free_path(path); 1512 return ret; 1513 } 1514 1515 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1516 { 1517 struct extent_map_tree *em_tree; 1518 struct extent_map *em; 1519 struct rb_node *n; 1520 u64 ret = 0; 1521 1522 em_tree = &fs_info->mapping_tree.map_tree; 1523 read_lock(&em_tree->lock); 1524 n = rb_last(&em_tree->map); 1525 if (n) { 1526 em = rb_entry(n, struct extent_map, rb_node); 1527 ret = em->start + em->len; 1528 } 1529 read_unlock(&em_tree->lock); 1530 1531 return ret; 1532 } 1533 1534 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1535 u64 *devid_ret) 1536 { 1537 int ret; 1538 struct btrfs_key key; 1539 struct btrfs_key found_key; 1540 struct btrfs_path *path; 1541 1542 path = btrfs_alloc_path(); 1543 if (!path) 1544 return -ENOMEM; 1545 1546 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1547 key.type = BTRFS_DEV_ITEM_KEY; 1548 key.offset = (u64)-1; 1549 1550 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1551 if (ret < 0) 1552 goto error; 1553 1554 BUG_ON(ret == 0); /* Corruption */ 1555 1556 ret = btrfs_previous_item(fs_info->chunk_root, path, 1557 BTRFS_DEV_ITEMS_OBJECTID, 1558 BTRFS_DEV_ITEM_KEY); 1559 if (ret) { 1560 *devid_ret = 1; 1561 } else { 1562 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1563 path->slots[0]); 1564 *devid_ret = found_key.offset + 1; 1565 } 1566 ret = 0; 1567 error: 1568 btrfs_free_path(path); 1569 return ret; 1570 } 1571 1572 /* 1573 * the device information is stored in the chunk root 1574 * the btrfs_device struct should be fully filled in 1575 */ 1576 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1577 struct btrfs_root *root, 1578 struct btrfs_device *device) 1579 { 1580 int ret; 1581 struct btrfs_path *path; 1582 struct btrfs_dev_item *dev_item; 1583 struct extent_buffer *leaf; 1584 struct btrfs_key key; 1585 unsigned long ptr; 1586 1587 root = root->fs_info->chunk_root; 1588 1589 path = btrfs_alloc_path(); 1590 if (!path) 1591 return -ENOMEM; 1592 1593 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1594 key.type = BTRFS_DEV_ITEM_KEY; 1595 key.offset = device->devid; 1596 1597 ret = btrfs_insert_empty_item(trans, root, path, &key, 1598 sizeof(*dev_item)); 1599 if (ret) 1600 goto out; 1601 1602 leaf = path->nodes[0]; 1603 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1604 1605 btrfs_set_device_id(leaf, dev_item, device->devid); 1606 btrfs_set_device_generation(leaf, dev_item, 0); 1607 btrfs_set_device_type(leaf, dev_item, device->type); 1608 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1609 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1610 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1611 btrfs_set_device_total_bytes(leaf, dev_item, 1612 btrfs_device_get_disk_total_bytes(device)); 1613 btrfs_set_device_bytes_used(leaf, dev_item, 1614 btrfs_device_get_bytes_used(device)); 1615 btrfs_set_device_group(leaf, dev_item, 0); 1616 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1617 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1618 btrfs_set_device_start_offset(leaf, dev_item, 0); 1619 1620 ptr = btrfs_device_uuid(dev_item); 1621 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1622 ptr = btrfs_device_fsid(dev_item); 1623 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1624 btrfs_mark_buffer_dirty(leaf); 1625 1626 ret = 0; 1627 out: 1628 btrfs_free_path(path); 1629 return ret; 1630 } 1631 1632 /* 1633 * Function to update ctime/mtime for a given device path. 1634 * Mainly used for ctime/mtime based probe like libblkid. 1635 */ 1636 static void update_dev_time(char *path_name) 1637 { 1638 struct file *filp; 1639 1640 filp = filp_open(path_name, O_RDWR, 0); 1641 if (IS_ERR(filp)) 1642 return; 1643 file_update_time(filp); 1644 filp_close(filp, NULL); 1645 return; 1646 } 1647 1648 static int btrfs_rm_dev_item(struct btrfs_root *root, 1649 struct btrfs_device *device) 1650 { 1651 int ret; 1652 struct btrfs_path *path; 1653 struct btrfs_key key; 1654 struct btrfs_trans_handle *trans; 1655 1656 root = root->fs_info->chunk_root; 1657 1658 path = btrfs_alloc_path(); 1659 if (!path) 1660 return -ENOMEM; 1661 1662 trans = btrfs_start_transaction(root, 0); 1663 if (IS_ERR(trans)) { 1664 btrfs_free_path(path); 1665 return PTR_ERR(trans); 1666 } 1667 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1668 key.type = BTRFS_DEV_ITEM_KEY; 1669 key.offset = device->devid; 1670 1671 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1672 if (ret < 0) 1673 goto out; 1674 1675 if (ret > 0) { 1676 ret = -ENOENT; 1677 goto out; 1678 } 1679 1680 ret = btrfs_del_item(trans, root, path); 1681 if (ret) 1682 goto out; 1683 out: 1684 btrfs_free_path(path); 1685 btrfs_commit_transaction(trans, root); 1686 return ret; 1687 } 1688 1689 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1690 { 1691 struct btrfs_device *device; 1692 struct btrfs_device *next_device; 1693 struct block_device *bdev; 1694 struct buffer_head *bh = NULL; 1695 struct btrfs_super_block *disk_super; 1696 struct btrfs_fs_devices *cur_devices; 1697 u64 all_avail; 1698 u64 devid; 1699 u64 num_devices; 1700 u8 *dev_uuid; 1701 unsigned seq; 1702 int ret = 0; 1703 bool clear_super = false; 1704 1705 mutex_lock(&uuid_mutex); 1706 1707 do { 1708 seq = read_seqbegin(&root->fs_info->profiles_lock); 1709 1710 all_avail = root->fs_info->avail_data_alloc_bits | 1711 root->fs_info->avail_system_alloc_bits | 1712 root->fs_info->avail_metadata_alloc_bits; 1713 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1714 1715 num_devices = root->fs_info->fs_devices->num_devices; 1716 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1717 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1718 WARN_ON(num_devices < 1); 1719 num_devices--; 1720 } 1721 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1722 1723 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1724 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1725 goto out; 1726 } 1727 1728 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1729 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1730 goto out; 1731 } 1732 1733 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1734 root->fs_info->fs_devices->rw_devices <= 2) { 1735 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1736 goto out; 1737 } 1738 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1739 root->fs_info->fs_devices->rw_devices <= 3) { 1740 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1741 goto out; 1742 } 1743 1744 if (strcmp(device_path, "missing") == 0) { 1745 struct list_head *devices; 1746 struct btrfs_device *tmp; 1747 1748 device = NULL; 1749 devices = &root->fs_info->fs_devices->devices; 1750 /* 1751 * It is safe to read the devices since the volume_mutex 1752 * is held. 1753 */ 1754 list_for_each_entry(tmp, devices, dev_list) { 1755 if (tmp->in_fs_metadata && 1756 !tmp->is_tgtdev_for_dev_replace && 1757 !tmp->bdev) { 1758 device = tmp; 1759 break; 1760 } 1761 } 1762 bdev = NULL; 1763 bh = NULL; 1764 disk_super = NULL; 1765 if (!device) { 1766 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1767 goto out; 1768 } 1769 } else { 1770 ret = btrfs_get_bdev_and_sb(device_path, 1771 FMODE_WRITE | FMODE_EXCL, 1772 root->fs_info->bdev_holder, 0, 1773 &bdev, &bh); 1774 if (ret) 1775 goto out; 1776 disk_super = (struct btrfs_super_block *)bh->b_data; 1777 devid = btrfs_stack_device_id(&disk_super->dev_item); 1778 dev_uuid = disk_super->dev_item.uuid; 1779 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1780 disk_super->fsid); 1781 if (!device) { 1782 ret = -ENOENT; 1783 goto error_brelse; 1784 } 1785 } 1786 1787 if (device->is_tgtdev_for_dev_replace) { 1788 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1789 goto error_brelse; 1790 } 1791 1792 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1793 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1794 goto error_brelse; 1795 } 1796 1797 if (device->writeable) { 1798 lock_chunks(root); 1799 list_del_init(&device->dev_alloc_list); 1800 device->fs_devices->rw_devices--; 1801 unlock_chunks(root); 1802 clear_super = true; 1803 } 1804 1805 mutex_unlock(&uuid_mutex); 1806 ret = btrfs_shrink_device(device, 0); 1807 mutex_lock(&uuid_mutex); 1808 if (ret) 1809 goto error_undo; 1810 1811 /* 1812 * TODO: the superblock still includes this device in its num_devices 1813 * counter although write_all_supers() is not locked out. This 1814 * could give a filesystem state which requires a degraded mount. 1815 */ 1816 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1817 if (ret) 1818 goto error_undo; 1819 1820 device->in_fs_metadata = 0; 1821 btrfs_scrub_cancel_dev(root->fs_info, device); 1822 1823 /* 1824 * the device list mutex makes sure that we don't change 1825 * the device list while someone else is writing out all 1826 * the device supers. Whoever is writing all supers, should 1827 * lock the device list mutex before getting the number of 1828 * devices in the super block (super_copy). Conversely, 1829 * whoever updates the number of devices in the super block 1830 * (super_copy) should hold the device list mutex. 1831 */ 1832 1833 cur_devices = device->fs_devices; 1834 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1835 list_del_rcu(&device->dev_list); 1836 1837 device->fs_devices->num_devices--; 1838 device->fs_devices->total_devices--; 1839 1840 if (device->missing) 1841 device->fs_devices->missing_devices--; 1842 1843 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1844 struct btrfs_device, dev_list); 1845 if (device->bdev == root->fs_info->sb->s_bdev) 1846 root->fs_info->sb->s_bdev = next_device->bdev; 1847 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1848 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1849 1850 if (device->bdev) { 1851 device->fs_devices->open_devices--; 1852 /* remove sysfs entry */ 1853 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device); 1854 } 1855 1856 call_rcu(&device->rcu, free_device); 1857 1858 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1859 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1860 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1861 1862 if (cur_devices->open_devices == 0) { 1863 struct btrfs_fs_devices *fs_devices; 1864 fs_devices = root->fs_info->fs_devices; 1865 while (fs_devices) { 1866 if (fs_devices->seed == cur_devices) { 1867 fs_devices->seed = cur_devices->seed; 1868 break; 1869 } 1870 fs_devices = fs_devices->seed; 1871 } 1872 cur_devices->seed = NULL; 1873 __btrfs_close_devices(cur_devices); 1874 free_fs_devices(cur_devices); 1875 } 1876 1877 root->fs_info->num_tolerated_disk_barrier_failures = 1878 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1879 1880 /* 1881 * at this point, the device is zero sized. We want to 1882 * remove it from the devices list and zero out the old super 1883 */ 1884 if (clear_super && disk_super) { 1885 u64 bytenr; 1886 int i; 1887 1888 /* make sure this device isn't detected as part of 1889 * the FS anymore 1890 */ 1891 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1892 set_buffer_dirty(bh); 1893 sync_dirty_buffer(bh); 1894 1895 /* clear the mirror copies of super block on the disk 1896 * being removed, 0th copy is been taken care above and 1897 * the below would take of the rest 1898 */ 1899 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1900 bytenr = btrfs_sb_offset(i); 1901 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 1902 i_size_read(bdev->bd_inode)) 1903 break; 1904 1905 brelse(bh); 1906 bh = __bread(bdev, bytenr / 4096, 1907 BTRFS_SUPER_INFO_SIZE); 1908 if (!bh) 1909 continue; 1910 1911 disk_super = (struct btrfs_super_block *)bh->b_data; 1912 1913 if (btrfs_super_bytenr(disk_super) != bytenr || 1914 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1915 continue; 1916 } 1917 memset(&disk_super->magic, 0, 1918 sizeof(disk_super->magic)); 1919 set_buffer_dirty(bh); 1920 sync_dirty_buffer(bh); 1921 } 1922 } 1923 1924 ret = 0; 1925 1926 if (bdev) { 1927 /* Notify udev that device has changed */ 1928 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1929 1930 /* Update ctime/mtime for device path for libblkid */ 1931 update_dev_time(device_path); 1932 } 1933 1934 error_brelse: 1935 brelse(bh); 1936 if (bdev) 1937 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1938 out: 1939 mutex_unlock(&uuid_mutex); 1940 return ret; 1941 error_undo: 1942 if (device->writeable) { 1943 lock_chunks(root); 1944 list_add(&device->dev_alloc_list, 1945 &root->fs_info->fs_devices->alloc_list); 1946 device->fs_devices->rw_devices++; 1947 unlock_chunks(root); 1948 } 1949 goto error_brelse; 1950 } 1951 1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1953 struct btrfs_device *srcdev) 1954 { 1955 struct btrfs_fs_devices *fs_devices; 1956 1957 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1958 1959 /* 1960 * in case of fs with no seed, srcdev->fs_devices will point 1961 * to fs_devices of fs_info. However when the dev being replaced is 1962 * a seed dev it will point to the seed's local fs_devices. In short 1963 * srcdev will have its correct fs_devices in both the cases. 1964 */ 1965 fs_devices = srcdev->fs_devices; 1966 1967 list_del_rcu(&srcdev->dev_list); 1968 list_del_rcu(&srcdev->dev_alloc_list); 1969 fs_devices->num_devices--; 1970 if (srcdev->missing) 1971 fs_devices->missing_devices--; 1972 1973 if (srcdev->writeable) { 1974 fs_devices->rw_devices--; 1975 /* zero out the old super if it is writable */ 1976 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 1977 } 1978 1979 if (srcdev->bdev) 1980 fs_devices->open_devices--; 1981 } 1982 1983 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 1984 struct btrfs_device *srcdev) 1985 { 1986 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 1987 1988 call_rcu(&srcdev->rcu, free_device); 1989 1990 /* 1991 * unless fs_devices is seed fs, num_devices shouldn't go 1992 * zero 1993 */ 1994 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 1995 1996 /* if this is no devs we rather delete the fs_devices */ 1997 if (!fs_devices->num_devices) { 1998 struct btrfs_fs_devices *tmp_fs_devices; 1999 2000 tmp_fs_devices = fs_info->fs_devices; 2001 while (tmp_fs_devices) { 2002 if (tmp_fs_devices->seed == fs_devices) { 2003 tmp_fs_devices->seed = fs_devices->seed; 2004 break; 2005 } 2006 tmp_fs_devices = tmp_fs_devices->seed; 2007 } 2008 fs_devices->seed = NULL; 2009 __btrfs_close_devices(fs_devices); 2010 free_fs_devices(fs_devices); 2011 } 2012 } 2013 2014 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2015 struct btrfs_device *tgtdev) 2016 { 2017 struct btrfs_device *next_device; 2018 2019 mutex_lock(&uuid_mutex); 2020 WARN_ON(!tgtdev); 2021 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2022 2023 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2024 2025 if (tgtdev->bdev) { 2026 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2027 fs_info->fs_devices->open_devices--; 2028 } 2029 fs_info->fs_devices->num_devices--; 2030 2031 next_device = list_entry(fs_info->fs_devices->devices.next, 2032 struct btrfs_device, dev_list); 2033 if (tgtdev->bdev == fs_info->sb->s_bdev) 2034 fs_info->sb->s_bdev = next_device->bdev; 2035 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 2036 fs_info->fs_devices->latest_bdev = next_device->bdev; 2037 list_del_rcu(&tgtdev->dev_list); 2038 2039 call_rcu(&tgtdev->rcu, free_device); 2040 2041 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2042 mutex_unlock(&uuid_mutex); 2043 } 2044 2045 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 2046 struct btrfs_device **device) 2047 { 2048 int ret = 0; 2049 struct btrfs_super_block *disk_super; 2050 u64 devid; 2051 u8 *dev_uuid; 2052 struct block_device *bdev; 2053 struct buffer_head *bh; 2054 2055 *device = NULL; 2056 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2057 root->fs_info->bdev_holder, 0, &bdev, &bh); 2058 if (ret) 2059 return ret; 2060 disk_super = (struct btrfs_super_block *)bh->b_data; 2061 devid = btrfs_stack_device_id(&disk_super->dev_item); 2062 dev_uuid = disk_super->dev_item.uuid; 2063 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2064 disk_super->fsid); 2065 brelse(bh); 2066 if (!*device) 2067 ret = -ENOENT; 2068 blkdev_put(bdev, FMODE_READ); 2069 return ret; 2070 } 2071 2072 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 2073 char *device_path, 2074 struct btrfs_device **device) 2075 { 2076 *device = NULL; 2077 if (strcmp(device_path, "missing") == 0) { 2078 struct list_head *devices; 2079 struct btrfs_device *tmp; 2080 2081 devices = &root->fs_info->fs_devices->devices; 2082 /* 2083 * It is safe to read the devices since the volume_mutex 2084 * is held by the caller. 2085 */ 2086 list_for_each_entry(tmp, devices, dev_list) { 2087 if (tmp->in_fs_metadata && !tmp->bdev) { 2088 *device = tmp; 2089 break; 2090 } 2091 } 2092 2093 if (!*device) 2094 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2095 2096 return 0; 2097 } else { 2098 return btrfs_find_device_by_path(root, device_path, device); 2099 } 2100 } 2101 2102 /* 2103 * does all the dirty work required for changing file system's UUID. 2104 */ 2105 static int btrfs_prepare_sprout(struct btrfs_root *root) 2106 { 2107 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2108 struct btrfs_fs_devices *old_devices; 2109 struct btrfs_fs_devices *seed_devices; 2110 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 2111 struct btrfs_device *device; 2112 u64 super_flags; 2113 2114 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2115 if (!fs_devices->seeding) 2116 return -EINVAL; 2117 2118 seed_devices = __alloc_fs_devices(); 2119 if (IS_ERR(seed_devices)) 2120 return PTR_ERR(seed_devices); 2121 2122 old_devices = clone_fs_devices(fs_devices); 2123 if (IS_ERR(old_devices)) { 2124 kfree(seed_devices); 2125 return PTR_ERR(old_devices); 2126 } 2127 2128 list_add(&old_devices->list, &fs_uuids); 2129 2130 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2131 seed_devices->opened = 1; 2132 INIT_LIST_HEAD(&seed_devices->devices); 2133 INIT_LIST_HEAD(&seed_devices->alloc_list); 2134 mutex_init(&seed_devices->device_list_mutex); 2135 2136 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2137 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2138 synchronize_rcu); 2139 list_for_each_entry(device, &seed_devices->devices, dev_list) 2140 device->fs_devices = seed_devices; 2141 2142 lock_chunks(root); 2143 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2144 unlock_chunks(root); 2145 2146 fs_devices->seeding = 0; 2147 fs_devices->num_devices = 0; 2148 fs_devices->open_devices = 0; 2149 fs_devices->missing_devices = 0; 2150 fs_devices->rotating = 0; 2151 fs_devices->seed = seed_devices; 2152 2153 generate_random_uuid(fs_devices->fsid); 2154 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2155 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2156 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2157 2158 super_flags = btrfs_super_flags(disk_super) & 2159 ~BTRFS_SUPER_FLAG_SEEDING; 2160 btrfs_set_super_flags(disk_super, super_flags); 2161 2162 return 0; 2163 } 2164 2165 /* 2166 * strore the expected generation for seed devices in device items. 2167 */ 2168 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2169 struct btrfs_root *root) 2170 { 2171 struct btrfs_path *path; 2172 struct extent_buffer *leaf; 2173 struct btrfs_dev_item *dev_item; 2174 struct btrfs_device *device; 2175 struct btrfs_key key; 2176 u8 fs_uuid[BTRFS_UUID_SIZE]; 2177 u8 dev_uuid[BTRFS_UUID_SIZE]; 2178 u64 devid; 2179 int ret; 2180 2181 path = btrfs_alloc_path(); 2182 if (!path) 2183 return -ENOMEM; 2184 2185 root = root->fs_info->chunk_root; 2186 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2187 key.offset = 0; 2188 key.type = BTRFS_DEV_ITEM_KEY; 2189 2190 while (1) { 2191 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2192 if (ret < 0) 2193 goto error; 2194 2195 leaf = path->nodes[0]; 2196 next_slot: 2197 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2198 ret = btrfs_next_leaf(root, path); 2199 if (ret > 0) 2200 break; 2201 if (ret < 0) 2202 goto error; 2203 leaf = path->nodes[0]; 2204 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2205 btrfs_release_path(path); 2206 continue; 2207 } 2208 2209 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2210 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2211 key.type != BTRFS_DEV_ITEM_KEY) 2212 break; 2213 2214 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2215 struct btrfs_dev_item); 2216 devid = btrfs_device_id(leaf, dev_item); 2217 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2218 BTRFS_UUID_SIZE); 2219 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2220 BTRFS_UUID_SIZE); 2221 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2222 fs_uuid); 2223 BUG_ON(!device); /* Logic error */ 2224 2225 if (device->fs_devices->seeding) { 2226 btrfs_set_device_generation(leaf, dev_item, 2227 device->generation); 2228 btrfs_mark_buffer_dirty(leaf); 2229 } 2230 2231 path->slots[0]++; 2232 goto next_slot; 2233 } 2234 ret = 0; 2235 error: 2236 btrfs_free_path(path); 2237 return ret; 2238 } 2239 2240 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2241 { 2242 struct request_queue *q; 2243 struct btrfs_trans_handle *trans; 2244 struct btrfs_device *device; 2245 struct block_device *bdev; 2246 struct list_head *devices; 2247 struct super_block *sb = root->fs_info->sb; 2248 struct rcu_string *name; 2249 u64 tmp; 2250 int seeding_dev = 0; 2251 int ret = 0; 2252 2253 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2254 return -EROFS; 2255 2256 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2257 root->fs_info->bdev_holder); 2258 if (IS_ERR(bdev)) 2259 return PTR_ERR(bdev); 2260 2261 if (root->fs_info->fs_devices->seeding) { 2262 seeding_dev = 1; 2263 down_write(&sb->s_umount); 2264 mutex_lock(&uuid_mutex); 2265 } 2266 2267 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2268 2269 devices = &root->fs_info->fs_devices->devices; 2270 2271 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2272 list_for_each_entry(device, devices, dev_list) { 2273 if (device->bdev == bdev) { 2274 ret = -EEXIST; 2275 mutex_unlock( 2276 &root->fs_info->fs_devices->device_list_mutex); 2277 goto error; 2278 } 2279 } 2280 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2281 2282 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2283 if (IS_ERR(device)) { 2284 /* we can safely leave the fs_devices entry around */ 2285 ret = PTR_ERR(device); 2286 goto error; 2287 } 2288 2289 name = rcu_string_strdup(device_path, GFP_NOFS); 2290 if (!name) { 2291 kfree(device); 2292 ret = -ENOMEM; 2293 goto error; 2294 } 2295 rcu_assign_pointer(device->name, name); 2296 2297 trans = btrfs_start_transaction(root, 0); 2298 if (IS_ERR(trans)) { 2299 rcu_string_free(device->name); 2300 kfree(device); 2301 ret = PTR_ERR(trans); 2302 goto error; 2303 } 2304 2305 q = bdev_get_queue(bdev); 2306 if (blk_queue_discard(q)) 2307 device->can_discard = 1; 2308 device->writeable = 1; 2309 device->generation = trans->transid; 2310 device->io_width = root->sectorsize; 2311 device->io_align = root->sectorsize; 2312 device->sector_size = root->sectorsize; 2313 device->total_bytes = i_size_read(bdev->bd_inode); 2314 device->disk_total_bytes = device->total_bytes; 2315 device->commit_total_bytes = device->total_bytes; 2316 device->dev_root = root->fs_info->dev_root; 2317 device->bdev = bdev; 2318 device->in_fs_metadata = 1; 2319 device->is_tgtdev_for_dev_replace = 0; 2320 device->mode = FMODE_EXCL; 2321 device->dev_stats_valid = 1; 2322 set_blocksize(device->bdev, 4096); 2323 2324 if (seeding_dev) { 2325 sb->s_flags &= ~MS_RDONLY; 2326 ret = btrfs_prepare_sprout(root); 2327 BUG_ON(ret); /* -ENOMEM */ 2328 } 2329 2330 device->fs_devices = root->fs_info->fs_devices; 2331 2332 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2333 lock_chunks(root); 2334 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2335 list_add(&device->dev_alloc_list, 2336 &root->fs_info->fs_devices->alloc_list); 2337 root->fs_info->fs_devices->num_devices++; 2338 root->fs_info->fs_devices->open_devices++; 2339 root->fs_info->fs_devices->rw_devices++; 2340 root->fs_info->fs_devices->total_devices++; 2341 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2342 2343 spin_lock(&root->fs_info->free_chunk_lock); 2344 root->fs_info->free_chunk_space += device->total_bytes; 2345 spin_unlock(&root->fs_info->free_chunk_lock); 2346 2347 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2348 root->fs_info->fs_devices->rotating = 1; 2349 2350 tmp = btrfs_super_total_bytes(root->fs_info->super_copy); 2351 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2352 tmp + device->total_bytes); 2353 2354 tmp = btrfs_super_num_devices(root->fs_info->super_copy); 2355 btrfs_set_super_num_devices(root->fs_info->super_copy, 2356 tmp + 1); 2357 2358 /* add sysfs device entry */ 2359 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device); 2360 2361 /* 2362 * we've got more storage, clear any full flags on the space 2363 * infos 2364 */ 2365 btrfs_clear_space_info_full(root->fs_info); 2366 2367 unlock_chunks(root); 2368 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2369 2370 if (seeding_dev) { 2371 lock_chunks(root); 2372 ret = init_first_rw_device(trans, root, device); 2373 unlock_chunks(root); 2374 if (ret) { 2375 btrfs_abort_transaction(trans, root, ret); 2376 goto error_trans; 2377 } 2378 } 2379 2380 ret = btrfs_add_device(trans, root, device); 2381 if (ret) { 2382 btrfs_abort_transaction(trans, root, ret); 2383 goto error_trans; 2384 } 2385 2386 if (seeding_dev) { 2387 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2388 2389 ret = btrfs_finish_sprout(trans, root); 2390 if (ret) { 2391 btrfs_abort_transaction(trans, root, ret); 2392 goto error_trans; 2393 } 2394 2395 /* Sprouting would change fsid of the mounted root, 2396 * so rename the fsid on the sysfs 2397 */ 2398 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2399 root->fs_info->fsid); 2400 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj, 2401 fsid_buf)) 2402 btrfs_warn(root->fs_info, 2403 "sysfs: failed to create fsid for sprout"); 2404 } 2405 2406 root->fs_info->num_tolerated_disk_barrier_failures = 2407 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2408 ret = btrfs_commit_transaction(trans, root); 2409 2410 if (seeding_dev) { 2411 mutex_unlock(&uuid_mutex); 2412 up_write(&sb->s_umount); 2413 2414 if (ret) /* transaction commit */ 2415 return ret; 2416 2417 ret = btrfs_relocate_sys_chunks(root); 2418 if (ret < 0) 2419 btrfs_std_error(root->fs_info, ret, 2420 "Failed to relocate sys chunks after " 2421 "device initialization. This can be fixed " 2422 "using the \"btrfs balance\" command."); 2423 trans = btrfs_attach_transaction(root); 2424 if (IS_ERR(trans)) { 2425 if (PTR_ERR(trans) == -ENOENT) 2426 return 0; 2427 return PTR_ERR(trans); 2428 } 2429 ret = btrfs_commit_transaction(trans, root); 2430 } 2431 2432 /* Update ctime/mtime for libblkid */ 2433 update_dev_time(device_path); 2434 return ret; 2435 2436 error_trans: 2437 btrfs_end_transaction(trans, root); 2438 rcu_string_free(device->name); 2439 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device); 2440 kfree(device); 2441 error: 2442 blkdev_put(bdev, FMODE_EXCL); 2443 if (seeding_dev) { 2444 mutex_unlock(&uuid_mutex); 2445 up_write(&sb->s_umount); 2446 } 2447 return ret; 2448 } 2449 2450 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2451 struct btrfs_device *srcdev, 2452 struct btrfs_device **device_out) 2453 { 2454 struct request_queue *q; 2455 struct btrfs_device *device; 2456 struct block_device *bdev; 2457 struct btrfs_fs_info *fs_info = root->fs_info; 2458 struct list_head *devices; 2459 struct rcu_string *name; 2460 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2461 int ret = 0; 2462 2463 *device_out = NULL; 2464 if (fs_info->fs_devices->seeding) { 2465 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2466 return -EINVAL; 2467 } 2468 2469 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2470 fs_info->bdev_holder); 2471 if (IS_ERR(bdev)) { 2472 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2473 return PTR_ERR(bdev); 2474 } 2475 2476 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2477 2478 devices = &fs_info->fs_devices->devices; 2479 list_for_each_entry(device, devices, dev_list) { 2480 if (device->bdev == bdev) { 2481 btrfs_err(fs_info, "target device is in the filesystem!"); 2482 ret = -EEXIST; 2483 goto error; 2484 } 2485 } 2486 2487 2488 if (i_size_read(bdev->bd_inode) < 2489 btrfs_device_get_total_bytes(srcdev)) { 2490 btrfs_err(fs_info, "target device is smaller than source device!"); 2491 ret = -EINVAL; 2492 goto error; 2493 } 2494 2495 2496 device = btrfs_alloc_device(NULL, &devid, NULL); 2497 if (IS_ERR(device)) { 2498 ret = PTR_ERR(device); 2499 goto error; 2500 } 2501 2502 name = rcu_string_strdup(device_path, GFP_NOFS); 2503 if (!name) { 2504 kfree(device); 2505 ret = -ENOMEM; 2506 goto error; 2507 } 2508 rcu_assign_pointer(device->name, name); 2509 2510 q = bdev_get_queue(bdev); 2511 if (blk_queue_discard(q)) 2512 device->can_discard = 1; 2513 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2514 device->writeable = 1; 2515 device->generation = 0; 2516 device->io_width = root->sectorsize; 2517 device->io_align = root->sectorsize; 2518 device->sector_size = root->sectorsize; 2519 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2520 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2521 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2522 ASSERT(list_empty(&srcdev->resized_list)); 2523 device->commit_total_bytes = srcdev->commit_total_bytes; 2524 device->commit_bytes_used = device->bytes_used; 2525 device->dev_root = fs_info->dev_root; 2526 device->bdev = bdev; 2527 device->in_fs_metadata = 1; 2528 device->is_tgtdev_for_dev_replace = 1; 2529 device->mode = FMODE_EXCL; 2530 device->dev_stats_valid = 1; 2531 set_blocksize(device->bdev, 4096); 2532 device->fs_devices = fs_info->fs_devices; 2533 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2534 fs_info->fs_devices->num_devices++; 2535 fs_info->fs_devices->open_devices++; 2536 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2537 2538 *device_out = device; 2539 return ret; 2540 2541 error: 2542 blkdev_put(bdev, FMODE_EXCL); 2543 return ret; 2544 } 2545 2546 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2547 struct btrfs_device *tgtdev) 2548 { 2549 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2550 tgtdev->io_width = fs_info->dev_root->sectorsize; 2551 tgtdev->io_align = fs_info->dev_root->sectorsize; 2552 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2553 tgtdev->dev_root = fs_info->dev_root; 2554 tgtdev->in_fs_metadata = 1; 2555 } 2556 2557 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2558 struct btrfs_device *device) 2559 { 2560 int ret; 2561 struct btrfs_path *path; 2562 struct btrfs_root *root; 2563 struct btrfs_dev_item *dev_item; 2564 struct extent_buffer *leaf; 2565 struct btrfs_key key; 2566 2567 root = device->dev_root->fs_info->chunk_root; 2568 2569 path = btrfs_alloc_path(); 2570 if (!path) 2571 return -ENOMEM; 2572 2573 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2574 key.type = BTRFS_DEV_ITEM_KEY; 2575 key.offset = device->devid; 2576 2577 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2578 if (ret < 0) 2579 goto out; 2580 2581 if (ret > 0) { 2582 ret = -ENOENT; 2583 goto out; 2584 } 2585 2586 leaf = path->nodes[0]; 2587 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2588 2589 btrfs_set_device_id(leaf, dev_item, device->devid); 2590 btrfs_set_device_type(leaf, dev_item, device->type); 2591 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2592 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2593 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2594 btrfs_set_device_total_bytes(leaf, dev_item, 2595 btrfs_device_get_disk_total_bytes(device)); 2596 btrfs_set_device_bytes_used(leaf, dev_item, 2597 btrfs_device_get_bytes_used(device)); 2598 btrfs_mark_buffer_dirty(leaf); 2599 2600 out: 2601 btrfs_free_path(path); 2602 return ret; 2603 } 2604 2605 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2606 struct btrfs_device *device, u64 new_size) 2607 { 2608 struct btrfs_super_block *super_copy = 2609 device->dev_root->fs_info->super_copy; 2610 struct btrfs_fs_devices *fs_devices; 2611 u64 old_total; 2612 u64 diff; 2613 2614 if (!device->writeable) 2615 return -EACCES; 2616 2617 lock_chunks(device->dev_root); 2618 old_total = btrfs_super_total_bytes(super_copy); 2619 diff = new_size - device->total_bytes; 2620 2621 if (new_size <= device->total_bytes || 2622 device->is_tgtdev_for_dev_replace) { 2623 unlock_chunks(device->dev_root); 2624 return -EINVAL; 2625 } 2626 2627 fs_devices = device->dev_root->fs_info->fs_devices; 2628 2629 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2630 device->fs_devices->total_rw_bytes += diff; 2631 2632 btrfs_device_set_total_bytes(device, new_size); 2633 btrfs_device_set_disk_total_bytes(device, new_size); 2634 btrfs_clear_space_info_full(device->dev_root->fs_info); 2635 if (list_empty(&device->resized_list)) 2636 list_add_tail(&device->resized_list, 2637 &fs_devices->resized_devices); 2638 unlock_chunks(device->dev_root); 2639 2640 return btrfs_update_device(trans, device); 2641 } 2642 2643 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2644 struct btrfs_root *root, u64 chunk_objectid, 2645 u64 chunk_offset) 2646 { 2647 int ret; 2648 struct btrfs_path *path; 2649 struct btrfs_key key; 2650 2651 root = root->fs_info->chunk_root; 2652 path = btrfs_alloc_path(); 2653 if (!path) 2654 return -ENOMEM; 2655 2656 key.objectid = chunk_objectid; 2657 key.offset = chunk_offset; 2658 key.type = BTRFS_CHUNK_ITEM_KEY; 2659 2660 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2661 if (ret < 0) 2662 goto out; 2663 else if (ret > 0) { /* Logic error or corruption */ 2664 btrfs_std_error(root->fs_info, -ENOENT, 2665 "Failed lookup while freeing chunk."); 2666 ret = -ENOENT; 2667 goto out; 2668 } 2669 2670 ret = btrfs_del_item(trans, root, path); 2671 if (ret < 0) 2672 btrfs_std_error(root->fs_info, ret, 2673 "Failed to delete chunk item."); 2674 out: 2675 btrfs_free_path(path); 2676 return ret; 2677 } 2678 2679 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2680 chunk_offset) 2681 { 2682 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2683 struct btrfs_disk_key *disk_key; 2684 struct btrfs_chunk *chunk; 2685 u8 *ptr; 2686 int ret = 0; 2687 u32 num_stripes; 2688 u32 array_size; 2689 u32 len = 0; 2690 u32 cur; 2691 struct btrfs_key key; 2692 2693 lock_chunks(root); 2694 array_size = btrfs_super_sys_array_size(super_copy); 2695 2696 ptr = super_copy->sys_chunk_array; 2697 cur = 0; 2698 2699 while (cur < array_size) { 2700 disk_key = (struct btrfs_disk_key *)ptr; 2701 btrfs_disk_key_to_cpu(&key, disk_key); 2702 2703 len = sizeof(*disk_key); 2704 2705 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2706 chunk = (struct btrfs_chunk *)(ptr + len); 2707 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2708 len += btrfs_chunk_item_size(num_stripes); 2709 } else { 2710 ret = -EIO; 2711 break; 2712 } 2713 if (key.objectid == chunk_objectid && 2714 key.offset == chunk_offset) { 2715 memmove(ptr, ptr + len, array_size - (cur + len)); 2716 array_size -= len; 2717 btrfs_set_super_sys_array_size(super_copy, array_size); 2718 } else { 2719 ptr += len; 2720 cur += len; 2721 } 2722 } 2723 unlock_chunks(root); 2724 return ret; 2725 } 2726 2727 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2728 struct btrfs_root *root, u64 chunk_offset) 2729 { 2730 struct extent_map_tree *em_tree; 2731 struct extent_map *em; 2732 struct btrfs_root *extent_root = root->fs_info->extent_root; 2733 struct map_lookup *map; 2734 u64 dev_extent_len = 0; 2735 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2736 int i, ret = 0; 2737 2738 /* Just in case */ 2739 root = root->fs_info->chunk_root; 2740 em_tree = &root->fs_info->mapping_tree.map_tree; 2741 2742 read_lock(&em_tree->lock); 2743 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2744 read_unlock(&em_tree->lock); 2745 2746 if (!em || em->start > chunk_offset || 2747 em->start + em->len < chunk_offset) { 2748 /* 2749 * This is a logic error, but we don't want to just rely on the 2750 * user having built with ASSERT enabled, so if ASSERT doens't 2751 * do anything we still error out. 2752 */ 2753 ASSERT(0); 2754 if (em) 2755 free_extent_map(em); 2756 return -EINVAL; 2757 } 2758 map = (struct map_lookup *)em->bdev; 2759 lock_chunks(root->fs_info->chunk_root); 2760 check_system_chunk(trans, extent_root, map->type); 2761 unlock_chunks(root->fs_info->chunk_root); 2762 2763 for (i = 0; i < map->num_stripes; i++) { 2764 struct btrfs_device *device = map->stripes[i].dev; 2765 ret = btrfs_free_dev_extent(trans, device, 2766 map->stripes[i].physical, 2767 &dev_extent_len); 2768 if (ret) { 2769 btrfs_abort_transaction(trans, root, ret); 2770 goto out; 2771 } 2772 2773 if (device->bytes_used > 0) { 2774 lock_chunks(root); 2775 btrfs_device_set_bytes_used(device, 2776 device->bytes_used - dev_extent_len); 2777 spin_lock(&root->fs_info->free_chunk_lock); 2778 root->fs_info->free_chunk_space += dev_extent_len; 2779 spin_unlock(&root->fs_info->free_chunk_lock); 2780 btrfs_clear_space_info_full(root->fs_info); 2781 unlock_chunks(root); 2782 } 2783 2784 if (map->stripes[i].dev) { 2785 ret = btrfs_update_device(trans, map->stripes[i].dev); 2786 if (ret) { 2787 btrfs_abort_transaction(trans, root, ret); 2788 goto out; 2789 } 2790 } 2791 } 2792 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset); 2793 if (ret) { 2794 btrfs_abort_transaction(trans, root, ret); 2795 goto out; 2796 } 2797 2798 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2799 2800 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2801 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2802 if (ret) { 2803 btrfs_abort_transaction(trans, root, ret); 2804 goto out; 2805 } 2806 } 2807 2808 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em); 2809 if (ret) { 2810 btrfs_abort_transaction(trans, extent_root, ret); 2811 goto out; 2812 } 2813 2814 out: 2815 /* once for us */ 2816 free_extent_map(em); 2817 return ret; 2818 } 2819 2820 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset) 2821 { 2822 struct btrfs_root *extent_root; 2823 struct btrfs_trans_handle *trans; 2824 int ret; 2825 2826 root = root->fs_info->chunk_root; 2827 extent_root = root->fs_info->extent_root; 2828 2829 /* 2830 * Prevent races with automatic removal of unused block groups. 2831 * After we relocate and before we remove the chunk with offset 2832 * chunk_offset, automatic removal of the block group can kick in, 2833 * resulting in a failure when calling btrfs_remove_chunk() below. 2834 * 2835 * Make sure to acquire this mutex before doing a tree search (dev 2836 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2837 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2838 * we release the path used to search the chunk/dev tree and before 2839 * the current task acquires this mutex and calls us. 2840 */ 2841 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex)); 2842 2843 ret = btrfs_can_relocate(extent_root, chunk_offset); 2844 if (ret) 2845 return -ENOSPC; 2846 2847 /* step one, relocate all the extents inside this chunk */ 2848 btrfs_scrub_pause(root); 2849 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2850 btrfs_scrub_continue(root); 2851 if (ret) 2852 return ret; 2853 2854 trans = btrfs_start_trans_remove_block_group(root->fs_info, 2855 chunk_offset); 2856 if (IS_ERR(trans)) { 2857 ret = PTR_ERR(trans); 2858 btrfs_std_error(root->fs_info, ret, NULL); 2859 return ret; 2860 } 2861 2862 /* 2863 * step two, delete the device extents and the 2864 * chunk tree entries 2865 */ 2866 ret = btrfs_remove_chunk(trans, root, chunk_offset); 2867 btrfs_end_transaction(trans, root); 2868 return ret; 2869 } 2870 2871 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2872 { 2873 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2874 struct btrfs_path *path; 2875 struct extent_buffer *leaf; 2876 struct btrfs_chunk *chunk; 2877 struct btrfs_key key; 2878 struct btrfs_key found_key; 2879 u64 chunk_type; 2880 bool retried = false; 2881 int failed = 0; 2882 int ret; 2883 2884 path = btrfs_alloc_path(); 2885 if (!path) 2886 return -ENOMEM; 2887 2888 again: 2889 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2890 key.offset = (u64)-1; 2891 key.type = BTRFS_CHUNK_ITEM_KEY; 2892 2893 while (1) { 2894 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 2895 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2896 if (ret < 0) { 2897 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2898 goto error; 2899 } 2900 BUG_ON(ret == 0); /* Corruption */ 2901 2902 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2903 key.type); 2904 if (ret) 2905 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2906 if (ret < 0) 2907 goto error; 2908 if (ret > 0) 2909 break; 2910 2911 leaf = path->nodes[0]; 2912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2913 2914 chunk = btrfs_item_ptr(leaf, path->slots[0], 2915 struct btrfs_chunk); 2916 chunk_type = btrfs_chunk_type(leaf, chunk); 2917 btrfs_release_path(path); 2918 2919 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2920 ret = btrfs_relocate_chunk(chunk_root, 2921 found_key.offset); 2922 if (ret == -ENOSPC) 2923 failed++; 2924 else 2925 BUG_ON(ret); 2926 } 2927 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2928 2929 if (found_key.offset == 0) 2930 break; 2931 key.offset = found_key.offset - 1; 2932 } 2933 ret = 0; 2934 if (failed && !retried) { 2935 failed = 0; 2936 retried = true; 2937 goto again; 2938 } else if (WARN_ON(failed && retried)) { 2939 ret = -ENOSPC; 2940 } 2941 error: 2942 btrfs_free_path(path); 2943 return ret; 2944 } 2945 2946 static int insert_balance_item(struct btrfs_root *root, 2947 struct btrfs_balance_control *bctl) 2948 { 2949 struct btrfs_trans_handle *trans; 2950 struct btrfs_balance_item *item; 2951 struct btrfs_disk_balance_args disk_bargs; 2952 struct btrfs_path *path; 2953 struct extent_buffer *leaf; 2954 struct btrfs_key key; 2955 int ret, err; 2956 2957 path = btrfs_alloc_path(); 2958 if (!path) 2959 return -ENOMEM; 2960 2961 trans = btrfs_start_transaction(root, 0); 2962 if (IS_ERR(trans)) { 2963 btrfs_free_path(path); 2964 return PTR_ERR(trans); 2965 } 2966 2967 key.objectid = BTRFS_BALANCE_OBJECTID; 2968 key.type = BTRFS_BALANCE_ITEM_KEY; 2969 key.offset = 0; 2970 2971 ret = btrfs_insert_empty_item(trans, root, path, &key, 2972 sizeof(*item)); 2973 if (ret) 2974 goto out; 2975 2976 leaf = path->nodes[0]; 2977 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2978 2979 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2980 2981 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2982 btrfs_set_balance_data(leaf, item, &disk_bargs); 2983 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2984 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2985 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2986 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2987 2988 btrfs_set_balance_flags(leaf, item, bctl->flags); 2989 2990 btrfs_mark_buffer_dirty(leaf); 2991 out: 2992 btrfs_free_path(path); 2993 err = btrfs_commit_transaction(trans, root); 2994 if (err && !ret) 2995 ret = err; 2996 return ret; 2997 } 2998 2999 static int del_balance_item(struct btrfs_root *root) 3000 { 3001 struct btrfs_trans_handle *trans; 3002 struct btrfs_path *path; 3003 struct btrfs_key key; 3004 int ret, err; 3005 3006 path = btrfs_alloc_path(); 3007 if (!path) 3008 return -ENOMEM; 3009 3010 trans = btrfs_start_transaction(root, 0); 3011 if (IS_ERR(trans)) { 3012 btrfs_free_path(path); 3013 return PTR_ERR(trans); 3014 } 3015 3016 key.objectid = BTRFS_BALANCE_OBJECTID; 3017 key.type = BTRFS_BALANCE_ITEM_KEY; 3018 key.offset = 0; 3019 3020 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3021 if (ret < 0) 3022 goto out; 3023 if (ret > 0) { 3024 ret = -ENOENT; 3025 goto out; 3026 } 3027 3028 ret = btrfs_del_item(trans, root, path); 3029 out: 3030 btrfs_free_path(path); 3031 err = btrfs_commit_transaction(trans, root); 3032 if (err && !ret) 3033 ret = err; 3034 return ret; 3035 } 3036 3037 /* 3038 * This is a heuristic used to reduce the number of chunks balanced on 3039 * resume after balance was interrupted. 3040 */ 3041 static void update_balance_args(struct btrfs_balance_control *bctl) 3042 { 3043 /* 3044 * Turn on soft mode for chunk types that were being converted. 3045 */ 3046 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3047 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3048 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3049 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3050 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3051 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3052 3053 /* 3054 * Turn on usage filter if is not already used. The idea is 3055 * that chunks that we have already balanced should be 3056 * reasonably full. Don't do it for chunks that are being 3057 * converted - that will keep us from relocating unconverted 3058 * (albeit full) chunks. 3059 */ 3060 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3061 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3062 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3063 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3064 bctl->data.usage = 90; 3065 } 3066 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3067 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3068 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3069 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3070 bctl->sys.usage = 90; 3071 } 3072 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3073 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3074 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3075 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3076 bctl->meta.usage = 90; 3077 } 3078 } 3079 3080 /* 3081 * Should be called with both balance and volume mutexes held to 3082 * serialize other volume operations (add_dev/rm_dev/resize) with 3083 * restriper. Same goes for unset_balance_control. 3084 */ 3085 static void set_balance_control(struct btrfs_balance_control *bctl) 3086 { 3087 struct btrfs_fs_info *fs_info = bctl->fs_info; 3088 3089 BUG_ON(fs_info->balance_ctl); 3090 3091 spin_lock(&fs_info->balance_lock); 3092 fs_info->balance_ctl = bctl; 3093 spin_unlock(&fs_info->balance_lock); 3094 } 3095 3096 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3097 { 3098 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3099 3100 BUG_ON(!fs_info->balance_ctl); 3101 3102 spin_lock(&fs_info->balance_lock); 3103 fs_info->balance_ctl = NULL; 3104 spin_unlock(&fs_info->balance_lock); 3105 3106 kfree(bctl); 3107 } 3108 3109 /* 3110 * Balance filters. Return 1 if chunk should be filtered out 3111 * (should not be balanced). 3112 */ 3113 static int chunk_profiles_filter(u64 chunk_type, 3114 struct btrfs_balance_args *bargs) 3115 { 3116 chunk_type = chunk_to_extended(chunk_type) & 3117 BTRFS_EXTENDED_PROFILE_MASK; 3118 3119 if (bargs->profiles & chunk_type) 3120 return 0; 3121 3122 return 1; 3123 } 3124 3125 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3126 struct btrfs_balance_args *bargs) 3127 { 3128 struct btrfs_block_group_cache *cache; 3129 u64 chunk_used; 3130 u64 user_thresh_min; 3131 u64 user_thresh_max; 3132 int ret = 1; 3133 3134 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3135 chunk_used = btrfs_block_group_used(&cache->item); 3136 3137 if (bargs->usage_min == 0) 3138 user_thresh_min = 0; 3139 else 3140 user_thresh_min = div_factor_fine(cache->key.offset, 3141 bargs->usage_min); 3142 3143 if (bargs->usage_max == 0) 3144 user_thresh_max = 1; 3145 else if (bargs->usage_max > 100) 3146 user_thresh_max = cache->key.offset; 3147 else 3148 user_thresh_max = div_factor_fine(cache->key.offset, 3149 bargs->usage_max); 3150 3151 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3152 ret = 0; 3153 3154 btrfs_put_block_group(cache); 3155 return ret; 3156 } 3157 3158 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3159 u64 chunk_offset, struct btrfs_balance_args *bargs) 3160 { 3161 struct btrfs_block_group_cache *cache; 3162 u64 chunk_used, user_thresh; 3163 int ret = 1; 3164 3165 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3166 chunk_used = btrfs_block_group_used(&cache->item); 3167 3168 if (bargs->usage_min == 0) 3169 user_thresh = 1; 3170 else if (bargs->usage > 100) 3171 user_thresh = cache->key.offset; 3172 else 3173 user_thresh = div_factor_fine(cache->key.offset, 3174 bargs->usage); 3175 3176 if (chunk_used < user_thresh) 3177 ret = 0; 3178 3179 btrfs_put_block_group(cache); 3180 return ret; 3181 } 3182 3183 static int chunk_devid_filter(struct extent_buffer *leaf, 3184 struct btrfs_chunk *chunk, 3185 struct btrfs_balance_args *bargs) 3186 { 3187 struct btrfs_stripe *stripe; 3188 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3189 int i; 3190 3191 for (i = 0; i < num_stripes; i++) { 3192 stripe = btrfs_stripe_nr(chunk, i); 3193 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3194 return 0; 3195 } 3196 3197 return 1; 3198 } 3199 3200 /* [pstart, pend) */ 3201 static int chunk_drange_filter(struct extent_buffer *leaf, 3202 struct btrfs_chunk *chunk, 3203 u64 chunk_offset, 3204 struct btrfs_balance_args *bargs) 3205 { 3206 struct btrfs_stripe *stripe; 3207 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3208 u64 stripe_offset; 3209 u64 stripe_length; 3210 int factor; 3211 int i; 3212 3213 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3214 return 0; 3215 3216 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3217 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3218 factor = num_stripes / 2; 3219 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3220 factor = num_stripes - 1; 3221 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3222 factor = num_stripes - 2; 3223 } else { 3224 factor = num_stripes; 3225 } 3226 3227 for (i = 0; i < num_stripes; i++) { 3228 stripe = btrfs_stripe_nr(chunk, i); 3229 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3230 continue; 3231 3232 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3233 stripe_length = btrfs_chunk_length(leaf, chunk); 3234 stripe_length = div_u64(stripe_length, factor); 3235 3236 if (stripe_offset < bargs->pend && 3237 stripe_offset + stripe_length > bargs->pstart) 3238 return 0; 3239 } 3240 3241 return 1; 3242 } 3243 3244 /* [vstart, vend) */ 3245 static int chunk_vrange_filter(struct extent_buffer *leaf, 3246 struct btrfs_chunk *chunk, 3247 u64 chunk_offset, 3248 struct btrfs_balance_args *bargs) 3249 { 3250 if (chunk_offset < bargs->vend && 3251 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3252 /* at least part of the chunk is inside this vrange */ 3253 return 0; 3254 3255 return 1; 3256 } 3257 3258 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3259 struct btrfs_chunk *chunk, 3260 struct btrfs_balance_args *bargs) 3261 { 3262 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3263 3264 if (bargs->stripes_min <= num_stripes 3265 && num_stripes <= bargs->stripes_max) 3266 return 0; 3267 3268 return 1; 3269 } 3270 3271 static int chunk_soft_convert_filter(u64 chunk_type, 3272 struct btrfs_balance_args *bargs) 3273 { 3274 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3275 return 0; 3276 3277 chunk_type = chunk_to_extended(chunk_type) & 3278 BTRFS_EXTENDED_PROFILE_MASK; 3279 3280 if (bargs->target == chunk_type) 3281 return 1; 3282 3283 return 0; 3284 } 3285 3286 static int should_balance_chunk(struct btrfs_root *root, 3287 struct extent_buffer *leaf, 3288 struct btrfs_chunk *chunk, u64 chunk_offset) 3289 { 3290 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3291 struct btrfs_balance_args *bargs = NULL; 3292 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3293 3294 /* type filter */ 3295 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3296 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3297 return 0; 3298 } 3299 3300 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3301 bargs = &bctl->data; 3302 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3303 bargs = &bctl->sys; 3304 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3305 bargs = &bctl->meta; 3306 3307 /* profiles filter */ 3308 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3309 chunk_profiles_filter(chunk_type, bargs)) { 3310 return 0; 3311 } 3312 3313 /* usage filter */ 3314 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3315 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3316 return 0; 3317 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3318 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) { 3319 return 0; 3320 } 3321 3322 /* devid filter */ 3323 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3324 chunk_devid_filter(leaf, chunk, bargs)) { 3325 return 0; 3326 } 3327 3328 /* drange filter, makes sense only with devid filter */ 3329 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3330 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3331 return 0; 3332 } 3333 3334 /* vrange filter */ 3335 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3336 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3337 return 0; 3338 } 3339 3340 /* stripes filter */ 3341 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3342 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3343 return 0; 3344 } 3345 3346 /* soft profile changing mode */ 3347 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3348 chunk_soft_convert_filter(chunk_type, bargs)) { 3349 return 0; 3350 } 3351 3352 /* 3353 * limited by count, must be the last filter 3354 */ 3355 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3356 if (bargs->limit == 0) 3357 return 0; 3358 else 3359 bargs->limit--; 3360 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3361 /* 3362 * Same logic as the 'limit' filter; the minimum cannot be 3363 * determined here because we do not have the global informatoin 3364 * about the count of all chunks that satisfy the filters. 3365 */ 3366 if (bargs->limit_max == 0) 3367 return 0; 3368 else 3369 bargs->limit_max--; 3370 } 3371 3372 return 1; 3373 } 3374 3375 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3376 { 3377 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3378 struct btrfs_root *chunk_root = fs_info->chunk_root; 3379 struct btrfs_root *dev_root = fs_info->dev_root; 3380 struct list_head *devices; 3381 struct btrfs_device *device; 3382 u64 old_size; 3383 u64 size_to_free; 3384 u64 chunk_type; 3385 struct btrfs_chunk *chunk; 3386 struct btrfs_path *path; 3387 struct btrfs_key key; 3388 struct btrfs_key found_key; 3389 struct btrfs_trans_handle *trans; 3390 struct extent_buffer *leaf; 3391 int slot; 3392 int ret; 3393 int enospc_errors = 0; 3394 bool counting = true; 3395 /* The single value limit and min/max limits use the same bytes in the */ 3396 u64 limit_data = bctl->data.limit; 3397 u64 limit_meta = bctl->meta.limit; 3398 u64 limit_sys = bctl->sys.limit; 3399 u32 count_data = 0; 3400 u32 count_meta = 0; 3401 u32 count_sys = 0; 3402 int chunk_reserved = 0; 3403 3404 /* step one make some room on all the devices */ 3405 devices = &fs_info->fs_devices->devices; 3406 list_for_each_entry(device, devices, dev_list) { 3407 old_size = btrfs_device_get_total_bytes(device); 3408 size_to_free = div_factor(old_size, 1); 3409 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 3410 if (!device->writeable || 3411 btrfs_device_get_total_bytes(device) - 3412 btrfs_device_get_bytes_used(device) > size_to_free || 3413 device->is_tgtdev_for_dev_replace) 3414 continue; 3415 3416 ret = btrfs_shrink_device(device, old_size - size_to_free); 3417 if (ret == -ENOSPC) 3418 break; 3419 BUG_ON(ret); 3420 3421 trans = btrfs_start_transaction(dev_root, 0); 3422 BUG_ON(IS_ERR(trans)); 3423 3424 ret = btrfs_grow_device(trans, device, old_size); 3425 BUG_ON(ret); 3426 3427 btrfs_end_transaction(trans, dev_root); 3428 } 3429 3430 /* step two, relocate all the chunks */ 3431 path = btrfs_alloc_path(); 3432 if (!path) { 3433 ret = -ENOMEM; 3434 goto error; 3435 } 3436 3437 /* zero out stat counters */ 3438 spin_lock(&fs_info->balance_lock); 3439 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3440 spin_unlock(&fs_info->balance_lock); 3441 again: 3442 if (!counting) { 3443 /* 3444 * The single value limit and min/max limits use the same bytes 3445 * in the 3446 */ 3447 bctl->data.limit = limit_data; 3448 bctl->meta.limit = limit_meta; 3449 bctl->sys.limit = limit_sys; 3450 } 3451 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3452 key.offset = (u64)-1; 3453 key.type = BTRFS_CHUNK_ITEM_KEY; 3454 3455 while (1) { 3456 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3457 atomic_read(&fs_info->balance_cancel_req)) { 3458 ret = -ECANCELED; 3459 goto error; 3460 } 3461 3462 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3463 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3464 if (ret < 0) { 3465 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3466 goto error; 3467 } 3468 3469 /* 3470 * this shouldn't happen, it means the last relocate 3471 * failed 3472 */ 3473 if (ret == 0) 3474 BUG(); /* FIXME break ? */ 3475 3476 ret = btrfs_previous_item(chunk_root, path, 0, 3477 BTRFS_CHUNK_ITEM_KEY); 3478 if (ret) { 3479 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3480 ret = 0; 3481 break; 3482 } 3483 3484 leaf = path->nodes[0]; 3485 slot = path->slots[0]; 3486 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3487 3488 if (found_key.objectid != key.objectid) { 3489 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3490 break; 3491 } 3492 3493 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3494 chunk_type = btrfs_chunk_type(leaf, chunk); 3495 3496 if (!counting) { 3497 spin_lock(&fs_info->balance_lock); 3498 bctl->stat.considered++; 3499 spin_unlock(&fs_info->balance_lock); 3500 } 3501 3502 ret = should_balance_chunk(chunk_root, leaf, chunk, 3503 found_key.offset); 3504 3505 btrfs_release_path(path); 3506 if (!ret) { 3507 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3508 goto loop; 3509 } 3510 3511 if (counting) { 3512 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3513 spin_lock(&fs_info->balance_lock); 3514 bctl->stat.expected++; 3515 spin_unlock(&fs_info->balance_lock); 3516 3517 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3518 count_data++; 3519 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3520 count_sys++; 3521 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3522 count_meta++; 3523 3524 goto loop; 3525 } 3526 3527 /* 3528 * Apply limit_min filter, no need to check if the LIMITS 3529 * filter is used, limit_min is 0 by default 3530 */ 3531 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3532 count_data < bctl->data.limit_min) 3533 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3534 count_meta < bctl->meta.limit_min) 3535 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3536 count_sys < bctl->sys.limit_min)) { 3537 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3538 goto loop; 3539 } 3540 3541 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) { 3542 trans = btrfs_start_transaction(chunk_root, 0); 3543 if (IS_ERR(trans)) { 3544 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3545 ret = PTR_ERR(trans); 3546 goto error; 3547 } 3548 3549 ret = btrfs_force_chunk_alloc(trans, chunk_root, 3550 BTRFS_BLOCK_GROUP_DATA); 3551 btrfs_end_transaction(trans, chunk_root); 3552 if (ret < 0) { 3553 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3554 goto error; 3555 } 3556 chunk_reserved = 1; 3557 } 3558 3559 ret = btrfs_relocate_chunk(chunk_root, 3560 found_key.offset); 3561 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3562 if (ret && ret != -ENOSPC) 3563 goto error; 3564 if (ret == -ENOSPC) { 3565 enospc_errors++; 3566 } else { 3567 spin_lock(&fs_info->balance_lock); 3568 bctl->stat.completed++; 3569 spin_unlock(&fs_info->balance_lock); 3570 } 3571 loop: 3572 if (found_key.offset == 0) 3573 break; 3574 key.offset = found_key.offset - 1; 3575 } 3576 3577 if (counting) { 3578 btrfs_release_path(path); 3579 counting = false; 3580 goto again; 3581 } 3582 error: 3583 btrfs_free_path(path); 3584 if (enospc_errors) { 3585 btrfs_info(fs_info, "%d enospc errors during balance", 3586 enospc_errors); 3587 if (!ret) 3588 ret = -ENOSPC; 3589 } 3590 3591 return ret; 3592 } 3593 3594 /** 3595 * alloc_profile_is_valid - see if a given profile is valid and reduced 3596 * @flags: profile to validate 3597 * @extended: if true @flags is treated as an extended profile 3598 */ 3599 static int alloc_profile_is_valid(u64 flags, int extended) 3600 { 3601 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3602 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3603 3604 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3605 3606 /* 1) check that all other bits are zeroed */ 3607 if (flags & ~mask) 3608 return 0; 3609 3610 /* 2) see if profile is reduced */ 3611 if (flags == 0) 3612 return !extended; /* "0" is valid for usual profiles */ 3613 3614 /* true if exactly one bit set */ 3615 return (flags & (flags - 1)) == 0; 3616 } 3617 3618 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3619 { 3620 /* cancel requested || normal exit path */ 3621 return atomic_read(&fs_info->balance_cancel_req) || 3622 (atomic_read(&fs_info->balance_pause_req) == 0 && 3623 atomic_read(&fs_info->balance_cancel_req) == 0); 3624 } 3625 3626 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3627 { 3628 int ret; 3629 3630 unset_balance_control(fs_info); 3631 ret = del_balance_item(fs_info->tree_root); 3632 if (ret) 3633 btrfs_std_error(fs_info, ret, NULL); 3634 3635 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3636 } 3637 3638 /* Non-zero return value signifies invalidity */ 3639 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3640 u64 allowed) 3641 { 3642 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3643 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3644 (bctl_arg->target & ~allowed))); 3645 } 3646 3647 /* 3648 * Should be called with both balance and volume mutexes held 3649 */ 3650 int btrfs_balance(struct btrfs_balance_control *bctl, 3651 struct btrfs_ioctl_balance_args *bargs) 3652 { 3653 struct btrfs_fs_info *fs_info = bctl->fs_info; 3654 u64 allowed; 3655 int mixed = 0; 3656 int ret; 3657 u64 num_devices; 3658 unsigned seq; 3659 3660 if (btrfs_fs_closing(fs_info) || 3661 atomic_read(&fs_info->balance_pause_req) || 3662 atomic_read(&fs_info->balance_cancel_req)) { 3663 ret = -EINVAL; 3664 goto out; 3665 } 3666 3667 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3668 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3669 mixed = 1; 3670 3671 /* 3672 * In case of mixed groups both data and meta should be picked, 3673 * and identical options should be given for both of them. 3674 */ 3675 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3676 if (mixed && (bctl->flags & allowed)) { 3677 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3678 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3679 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3680 btrfs_err(fs_info, "with mixed groups data and " 3681 "metadata balance options must be the same"); 3682 ret = -EINVAL; 3683 goto out; 3684 } 3685 } 3686 3687 num_devices = fs_info->fs_devices->num_devices; 3688 btrfs_dev_replace_lock(&fs_info->dev_replace); 3689 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3690 BUG_ON(num_devices < 1); 3691 num_devices--; 3692 } 3693 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3694 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3695 if (num_devices == 1) 3696 allowed |= BTRFS_BLOCK_GROUP_DUP; 3697 else if (num_devices > 1) 3698 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3699 if (num_devices > 2) 3700 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3701 if (num_devices > 3) 3702 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3703 BTRFS_BLOCK_GROUP_RAID6); 3704 if (validate_convert_profile(&bctl->data, allowed)) { 3705 btrfs_err(fs_info, "unable to start balance with target " 3706 "data profile %llu", 3707 bctl->data.target); 3708 ret = -EINVAL; 3709 goto out; 3710 } 3711 if (validate_convert_profile(&bctl->meta, allowed)) { 3712 btrfs_err(fs_info, 3713 "unable to start balance with target metadata profile %llu", 3714 bctl->meta.target); 3715 ret = -EINVAL; 3716 goto out; 3717 } 3718 if (validate_convert_profile(&bctl->sys, allowed)) { 3719 btrfs_err(fs_info, 3720 "unable to start balance with target system profile %llu", 3721 bctl->sys.target); 3722 ret = -EINVAL; 3723 goto out; 3724 } 3725 3726 /* allow dup'ed data chunks only in mixed mode */ 3727 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3728 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3729 btrfs_err(fs_info, "dup for data is not allowed"); 3730 ret = -EINVAL; 3731 goto out; 3732 } 3733 3734 /* allow to reduce meta or sys integrity only if force set */ 3735 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3736 BTRFS_BLOCK_GROUP_RAID10 | 3737 BTRFS_BLOCK_GROUP_RAID5 | 3738 BTRFS_BLOCK_GROUP_RAID6; 3739 do { 3740 seq = read_seqbegin(&fs_info->profiles_lock); 3741 3742 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3743 (fs_info->avail_system_alloc_bits & allowed) && 3744 !(bctl->sys.target & allowed)) || 3745 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3746 (fs_info->avail_metadata_alloc_bits & allowed) && 3747 !(bctl->meta.target & allowed))) { 3748 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3749 btrfs_info(fs_info, "force reducing metadata integrity"); 3750 } else { 3751 btrfs_err(fs_info, "balance will reduce metadata " 3752 "integrity, use force if you want this"); 3753 ret = -EINVAL; 3754 goto out; 3755 } 3756 } 3757 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3758 3759 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3760 fs_info->num_tolerated_disk_barrier_failures = min( 3761 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info), 3762 btrfs_get_num_tolerated_disk_barrier_failures( 3763 bctl->sys.target)); 3764 } 3765 3766 ret = insert_balance_item(fs_info->tree_root, bctl); 3767 if (ret && ret != -EEXIST) 3768 goto out; 3769 3770 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3771 BUG_ON(ret == -EEXIST); 3772 set_balance_control(bctl); 3773 } else { 3774 BUG_ON(ret != -EEXIST); 3775 spin_lock(&fs_info->balance_lock); 3776 update_balance_args(bctl); 3777 spin_unlock(&fs_info->balance_lock); 3778 } 3779 3780 atomic_inc(&fs_info->balance_running); 3781 mutex_unlock(&fs_info->balance_mutex); 3782 3783 ret = __btrfs_balance(fs_info); 3784 3785 mutex_lock(&fs_info->balance_mutex); 3786 atomic_dec(&fs_info->balance_running); 3787 3788 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3789 fs_info->num_tolerated_disk_barrier_failures = 3790 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3791 } 3792 3793 if (bargs) { 3794 memset(bargs, 0, sizeof(*bargs)); 3795 update_ioctl_balance_args(fs_info, 0, bargs); 3796 } 3797 3798 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3799 balance_need_close(fs_info)) { 3800 __cancel_balance(fs_info); 3801 } 3802 3803 wake_up(&fs_info->balance_wait_q); 3804 3805 return ret; 3806 out: 3807 if (bctl->flags & BTRFS_BALANCE_RESUME) 3808 __cancel_balance(fs_info); 3809 else { 3810 kfree(bctl); 3811 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3812 } 3813 return ret; 3814 } 3815 3816 static int balance_kthread(void *data) 3817 { 3818 struct btrfs_fs_info *fs_info = data; 3819 int ret = 0; 3820 3821 mutex_lock(&fs_info->volume_mutex); 3822 mutex_lock(&fs_info->balance_mutex); 3823 3824 if (fs_info->balance_ctl) { 3825 btrfs_info(fs_info, "continuing balance"); 3826 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3827 } 3828 3829 mutex_unlock(&fs_info->balance_mutex); 3830 mutex_unlock(&fs_info->volume_mutex); 3831 3832 return ret; 3833 } 3834 3835 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3836 { 3837 struct task_struct *tsk; 3838 3839 spin_lock(&fs_info->balance_lock); 3840 if (!fs_info->balance_ctl) { 3841 spin_unlock(&fs_info->balance_lock); 3842 return 0; 3843 } 3844 spin_unlock(&fs_info->balance_lock); 3845 3846 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3847 btrfs_info(fs_info, "force skipping balance"); 3848 return 0; 3849 } 3850 3851 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3852 return PTR_ERR_OR_ZERO(tsk); 3853 } 3854 3855 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3856 { 3857 struct btrfs_balance_control *bctl; 3858 struct btrfs_balance_item *item; 3859 struct btrfs_disk_balance_args disk_bargs; 3860 struct btrfs_path *path; 3861 struct extent_buffer *leaf; 3862 struct btrfs_key key; 3863 int ret; 3864 3865 path = btrfs_alloc_path(); 3866 if (!path) 3867 return -ENOMEM; 3868 3869 key.objectid = BTRFS_BALANCE_OBJECTID; 3870 key.type = BTRFS_BALANCE_ITEM_KEY; 3871 key.offset = 0; 3872 3873 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3874 if (ret < 0) 3875 goto out; 3876 if (ret > 0) { /* ret = -ENOENT; */ 3877 ret = 0; 3878 goto out; 3879 } 3880 3881 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3882 if (!bctl) { 3883 ret = -ENOMEM; 3884 goto out; 3885 } 3886 3887 leaf = path->nodes[0]; 3888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3889 3890 bctl->fs_info = fs_info; 3891 bctl->flags = btrfs_balance_flags(leaf, item); 3892 bctl->flags |= BTRFS_BALANCE_RESUME; 3893 3894 btrfs_balance_data(leaf, item, &disk_bargs); 3895 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3896 btrfs_balance_meta(leaf, item, &disk_bargs); 3897 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3898 btrfs_balance_sys(leaf, item, &disk_bargs); 3899 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3900 3901 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3902 3903 mutex_lock(&fs_info->volume_mutex); 3904 mutex_lock(&fs_info->balance_mutex); 3905 3906 set_balance_control(bctl); 3907 3908 mutex_unlock(&fs_info->balance_mutex); 3909 mutex_unlock(&fs_info->volume_mutex); 3910 out: 3911 btrfs_free_path(path); 3912 return ret; 3913 } 3914 3915 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3916 { 3917 int ret = 0; 3918 3919 mutex_lock(&fs_info->balance_mutex); 3920 if (!fs_info->balance_ctl) { 3921 mutex_unlock(&fs_info->balance_mutex); 3922 return -ENOTCONN; 3923 } 3924 3925 if (atomic_read(&fs_info->balance_running)) { 3926 atomic_inc(&fs_info->balance_pause_req); 3927 mutex_unlock(&fs_info->balance_mutex); 3928 3929 wait_event(fs_info->balance_wait_q, 3930 atomic_read(&fs_info->balance_running) == 0); 3931 3932 mutex_lock(&fs_info->balance_mutex); 3933 /* we are good with balance_ctl ripped off from under us */ 3934 BUG_ON(atomic_read(&fs_info->balance_running)); 3935 atomic_dec(&fs_info->balance_pause_req); 3936 } else { 3937 ret = -ENOTCONN; 3938 } 3939 3940 mutex_unlock(&fs_info->balance_mutex); 3941 return ret; 3942 } 3943 3944 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3945 { 3946 if (fs_info->sb->s_flags & MS_RDONLY) 3947 return -EROFS; 3948 3949 mutex_lock(&fs_info->balance_mutex); 3950 if (!fs_info->balance_ctl) { 3951 mutex_unlock(&fs_info->balance_mutex); 3952 return -ENOTCONN; 3953 } 3954 3955 atomic_inc(&fs_info->balance_cancel_req); 3956 /* 3957 * if we are running just wait and return, balance item is 3958 * deleted in btrfs_balance in this case 3959 */ 3960 if (atomic_read(&fs_info->balance_running)) { 3961 mutex_unlock(&fs_info->balance_mutex); 3962 wait_event(fs_info->balance_wait_q, 3963 atomic_read(&fs_info->balance_running) == 0); 3964 mutex_lock(&fs_info->balance_mutex); 3965 } else { 3966 /* __cancel_balance needs volume_mutex */ 3967 mutex_unlock(&fs_info->balance_mutex); 3968 mutex_lock(&fs_info->volume_mutex); 3969 mutex_lock(&fs_info->balance_mutex); 3970 3971 if (fs_info->balance_ctl) 3972 __cancel_balance(fs_info); 3973 3974 mutex_unlock(&fs_info->volume_mutex); 3975 } 3976 3977 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3978 atomic_dec(&fs_info->balance_cancel_req); 3979 mutex_unlock(&fs_info->balance_mutex); 3980 return 0; 3981 } 3982 3983 static int btrfs_uuid_scan_kthread(void *data) 3984 { 3985 struct btrfs_fs_info *fs_info = data; 3986 struct btrfs_root *root = fs_info->tree_root; 3987 struct btrfs_key key; 3988 struct btrfs_key max_key; 3989 struct btrfs_path *path = NULL; 3990 int ret = 0; 3991 struct extent_buffer *eb; 3992 int slot; 3993 struct btrfs_root_item root_item; 3994 u32 item_size; 3995 struct btrfs_trans_handle *trans = NULL; 3996 3997 path = btrfs_alloc_path(); 3998 if (!path) { 3999 ret = -ENOMEM; 4000 goto out; 4001 } 4002 4003 key.objectid = 0; 4004 key.type = BTRFS_ROOT_ITEM_KEY; 4005 key.offset = 0; 4006 4007 max_key.objectid = (u64)-1; 4008 max_key.type = BTRFS_ROOT_ITEM_KEY; 4009 max_key.offset = (u64)-1; 4010 4011 while (1) { 4012 ret = btrfs_search_forward(root, &key, path, 0); 4013 if (ret) { 4014 if (ret > 0) 4015 ret = 0; 4016 break; 4017 } 4018 4019 if (key.type != BTRFS_ROOT_ITEM_KEY || 4020 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4021 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4022 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4023 goto skip; 4024 4025 eb = path->nodes[0]; 4026 slot = path->slots[0]; 4027 item_size = btrfs_item_size_nr(eb, slot); 4028 if (item_size < sizeof(root_item)) 4029 goto skip; 4030 4031 read_extent_buffer(eb, &root_item, 4032 btrfs_item_ptr_offset(eb, slot), 4033 (int)sizeof(root_item)); 4034 if (btrfs_root_refs(&root_item) == 0) 4035 goto skip; 4036 4037 if (!btrfs_is_empty_uuid(root_item.uuid) || 4038 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4039 if (trans) 4040 goto update_tree; 4041 4042 btrfs_release_path(path); 4043 /* 4044 * 1 - subvol uuid item 4045 * 1 - received_subvol uuid item 4046 */ 4047 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4048 if (IS_ERR(trans)) { 4049 ret = PTR_ERR(trans); 4050 break; 4051 } 4052 continue; 4053 } else { 4054 goto skip; 4055 } 4056 update_tree: 4057 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4058 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 4059 root_item.uuid, 4060 BTRFS_UUID_KEY_SUBVOL, 4061 key.objectid); 4062 if (ret < 0) { 4063 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4064 ret); 4065 break; 4066 } 4067 } 4068 4069 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4070 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 4071 root_item.received_uuid, 4072 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4073 key.objectid); 4074 if (ret < 0) { 4075 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4076 ret); 4077 break; 4078 } 4079 } 4080 4081 skip: 4082 if (trans) { 4083 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 4084 trans = NULL; 4085 if (ret) 4086 break; 4087 } 4088 4089 btrfs_release_path(path); 4090 if (key.offset < (u64)-1) { 4091 key.offset++; 4092 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4093 key.offset = 0; 4094 key.type = BTRFS_ROOT_ITEM_KEY; 4095 } else if (key.objectid < (u64)-1) { 4096 key.offset = 0; 4097 key.type = BTRFS_ROOT_ITEM_KEY; 4098 key.objectid++; 4099 } else { 4100 break; 4101 } 4102 cond_resched(); 4103 } 4104 4105 out: 4106 btrfs_free_path(path); 4107 if (trans && !IS_ERR(trans)) 4108 btrfs_end_transaction(trans, fs_info->uuid_root); 4109 if (ret) 4110 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4111 else 4112 fs_info->update_uuid_tree_gen = 1; 4113 up(&fs_info->uuid_tree_rescan_sem); 4114 return 0; 4115 } 4116 4117 /* 4118 * Callback for btrfs_uuid_tree_iterate(). 4119 * returns: 4120 * 0 check succeeded, the entry is not outdated. 4121 * < 0 if an error occured. 4122 * > 0 if the check failed, which means the caller shall remove the entry. 4123 */ 4124 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4125 u8 *uuid, u8 type, u64 subid) 4126 { 4127 struct btrfs_key key; 4128 int ret = 0; 4129 struct btrfs_root *subvol_root; 4130 4131 if (type != BTRFS_UUID_KEY_SUBVOL && 4132 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4133 goto out; 4134 4135 key.objectid = subid; 4136 key.type = BTRFS_ROOT_ITEM_KEY; 4137 key.offset = (u64)-1; 4138 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4139 if (IS_ERR(subvol_root)) { 4140 ret = PTR_ERR(subvol_root); 4141 if (ret == -ENOENT) 4142 ret = 1; 4143 goto out; 4144 } 4145 4146 switch (type) { 4147 case BTRFS_UUID_KEY_SUBVOL: 4148 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4149 ret = 1; 4150 break; 4151 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4152 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4153 BTRFS_UUID_SIZE)) 4154 ret = 1; 4155 break; 4156 } 4157 4158 out: 4159 return ret; 4160 } 4161 4162 static int btrfs_uuid_rescan_kthread(void *data) 4163 { 4164 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4165 int ret; 4166 4167 /* 4168 * 1st step is to iterate through the existing UUID tree and 4169 * to delete all entries that contain outdated data. 4170 * 2nd step is to add all missing entries to the UUID tree. 4171 */ 4172 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4173 if (ret < 0) { 4174 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4175 up(&fs_info->uuid_tree_rescan_sem); 4176 return ret; 4177 } 4178 return btrfs_uuid_scan_kthread(data); 4179 } 4180 4181 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4182 { 4183 struct btrfs_trans_handle *trans; 4184 struct btrfs_root *tree_root = fs_info->tree_root; 4185 struct btrfs_root *uuid_root; 4186 struct task_struct *task; 4187 int ret; 4188 4189 /* 4190 * 1 - root node 4191 * 1 - root item 4192 */ 4193 trans = btrfs_start_transaction(tree_root, 2); 4194 if (IS_ERR(trans)) 4195 return PTR_ERR(trans); 4196 4197 uuid_root = btrfs_create_tree(trans, fs_info, 4198 BTRFS_UUID_TREE_OBJECTID); 4199 if (IS_ERR(uuid_root)) { 4200 ret = PTR_ERR(uuid_root); 4201 btrfs_abort_transaction(trans, tree_root, ret); 4202 return ret; 4203 } 4204 4205 fs_info->uuid_root = uuid_root; 4206 4207 ret = btrfs_commit_transaction(trans, tree_root); 4208 if (ret) 4209 return ret; 4210 4211 down(&fs_info->uuid_tree_rescan_sem); 4212 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4213 if (IS_ERR(task)) { 4214 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4215 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4216 up(&fs_info->uuid_tree_rescan_sem); 4217 return PTR_ERR(task); 4218 } 4219 4220 return 0; 4221 } 4222 4223 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4224 { 4225 struct task_struct *task; 4226 4227 down(&fs_info->uuid_tree_rescan_sem); 4228 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4229 if (IS_ERR(task)) { 4230 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4231 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4232 up(&fs_info->uuid_tree_rescan_sem); 4233 return PTR_ERR(task); 4234 } 4235 4236 return 0; 4237 } 4238 4239 /* 4240 * shrinking a device means finding all of the device extents past 4241 * the new size, and then following the back refs to the chunks. 4242 * The chunk relocation code actually frees the device extent 4243 */ 4244 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4245 { 4246 struct btrfs_trans_handle *trans; 4247 struct btrfs_root *root = device->dev_root; 4248 struct btrfs_dev_extent *dev_extent = NULL; 4249 struct btrfs_path *path; 4250 u64 length; 4251 u64 chunk_offset; 4252 int ret; 4253 int slot; 4254 int failed = 0; 4255 bool retried = false; 4256 bool checked_pending_chunks = false; 4257 struct extent_buffer *l; 4258 struct btrfs_key key; 4259 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4260 u64 old_total = btrfs_super_total_bytes(super_copy); 4261 u64 old_size = btrfs_device_get_total_bytes(device); 4262 u64 diff = old_size - new_size; 4263 4264 if (device->is_tgtdev_for_dev_replace) 4265 return -EINVAL; 4266 4267 path = btrfs_alloc_path(); 4268 if (!path) 4269 return -ENOMEM; 4270 4271 path->reada = 2; 4272 4273 lock_chunks(root); 4274 4275 btrfs_device_set_total_bytes(device, new_size); 4276 if (device->writeable) { 4277 device->fs_devices->total_rw_bytes -= diff; 4278 spin_lock(&root->fs_info->free_chunk_lock); 4279 root->fs_info->free_chunk_space -= diff; 4280 spin_unlock(&root->fs_info->free_chunk_lock); 4281 } 4282 unlock_chunks(root); 4283 4284 again: 4285 key.objectid = device->devid; 4286 key.offset = (u64)-1; 4287 key.type = BTRFS_DEV_EXTENT_KEY; 4288 4289 do { 4290 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 4291 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4292 if (ret < 0) { 4293 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4294 goto done; 4295 } 4296 4297 ret = btrfs_previous_item(root, path, 0, key.type); 4298 if (ret) 4299 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4300 if (ret < 0) 4301 goto done; 4302 if (ret) { 4303 ret = 0; 4304 btrfs_release_path(path); 4305 break; 4306 } 4307 4308 l = path->nodes[0]; 4309 slot = path->slots[0]; 4310 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4311 4312 if (key.objectid != device->devid) { 4313 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4314 btrfs_release_path(path); 4315 break; 4316 } 4317 4318 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4319 length = btrfs_dev_extent_length(l, dev_extent); 4320 4321 if (key.offset + length <= new_size) { 4322 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4323 btrfs_release_path(path); 4324 break; 4325 } 4326 4327 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4328 btrfs_release_path(path); 4329 4330 ret = btrfs_relocate_chunk(root, chunk_offset); 4331 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4332 if (ret && ret != -ENOSPC) 4333 goto done; 4334 if (ret == -ENOSPC) 4335 failed++; 4336 } while (key.offset-- > 0); 4337 4338 if (failed && !retried) { 4339 failed = 0; 4340 retried = true; 4341 goto again; 4342 } else if (failed && retried) { 4343 ret = -ENOSPC; 4344 goto done; 4345 } 4346 4347 /* Shrinking succeeded, else we would be at "done". */ 4348 trans = btrfs_start_transaction(root, 0); 4349 if (IS_ERR(trans)) { 4350 ret = PTR_ERR(trans); 4351 goto done; 4352 } 4353 4354 lock_chunks(root); 4355 4356 /* 4357 * We checked in the above loop all device extents that were already in 4358 * the device tree. However before we have updated the device's 4359 * total_bytes to the new size, we might have had chunk allocations that 4360 * have not complete yet (new block groups attached to transaction 4361 * handles), and therefore their device extents were not yet in the 4362 * device tree and we missed them in the loop above. So if we have any 4363 * pending chunk using a device extent that overlaps the device range 4364 * that we can not use anymore, commit the current transaction and 4365 * repeat the search on the device tree - this way we guarantee we will 4366 * not have chunks using device extents that end beyond 'new_size'. 4367 */ 4368 if (!checked_pending_chunks) { 4369 u64 start = new_size; 4370 u64 len = old_size - new_size; 4371 4372 if (contains_pending_extent(trans->transaction, device, 4373 &start, len)) { 4374 unlock_chunks(root); 4375 checked_pending_chunks = true; 4376 failed = 0; 4377 retried = false; 4378 ret = btrfs_commit_transaction(trans, root); 4379 if (ret) 4380 goto done; 4381 goto again; 4382 } 4383 } 4384 4385 btrfs_device_set_disk_total_bytes(device, new_size); 4386 if (list_empty(&device->resized_list)) 4387 list_add_tail(&device->resized_list, 4388 &root->fs_info->fs_devices->resized_devices); 4389 4390 WARN_ON(diff > old_total); 4391 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4392 unlock_chunks(root); 4393 4394 /* Now btrfs_update_device() will change the on-disk size. */ 4395 ret = btrfs_update_device(trans, device); 4396 btrfs_end_transaction(trans, root); 4397 done: 4398 btrfs_free_path(path); 4399 if (ret) { 4400 lock_chunks(root); 4401 btrfs_device_set_total_bytes(device, old_size); 4402 if (device->writeable) 4403 device->fs_devices->total_rw_bytes += diff; 4404 spin_lock(&root->fs_info->free_chunk_lock); 4405 root->fs_info->free_chunk_space += diff; 4406 spin_unlock(&root->fs_info->free_chunk_lock); 4407 unlock_chunks(root); 4408 } 4409 return ret; 4410 } 4411 4412 static int btrfs_add_system_chunk(struct btrfs_root *root, 4413 struct btrfs_key *key, 4414 struct btrfs_chunk *chunk, int item_size) 4415 { 4416 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4417 struct btrfs_disk_key disk_key; 4418 u32 array_size; 4419 u8 *ptr; 4420 4421 lock_chunks(root); 4422 array_size = btrfs_super_sys_array_size(super_copy); 4423 if (array_size + item_size + sizeof(disk_key) 4424 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4425 unlock_chunks(root); 4426 return -EFBIG; 4427 } 4428 4429 ptr = super_copy->sys_chunk_array + array_size; 4430 btrfs_cpu_key_to_disk(&disk_key, key); 4431 memcpy(ptr, &disk_key, sizeof(disk_key)); 4432 ptr += sizeof(disk_key); 4433 memcpy(ptr, chunk, item_size); 4434 item_size += sizeof(disk_key); 4435 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4436 unlock_chunks(root); 4437 4438 return 0; 4439 } 4440 4441 /* 4442 * sort the devices in descending order by max_avail, total_avail 4443 */ 4444 static int btrfs_cmp_device_info(const void *a, const void *b) 4445 { 4446 const struct btrfs_device_info *di_a = a; 4447 const struct btrfs_device_info *di_b = b; 4448 4449 if (di_a->max_avail > di_b->max_avail) 4450 return -1; 4451 if (di_a->max_avail < di_b->max_avail) 4452 return 1; 4453 if (di_a->total_avail > di_b->total_avail) 4454 return -1; 4455 if (di_a->total_avail < di_b->total_avail) 4456 return 1; 4457 return 0; 4458 } 4459 4460 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4461 { 4462 /* TODO allow them to set a preferred stripe size */ 4463 return 64 * 1024; 4464 } 4465 4466 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4467 { 4468 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4469 return; 4470 4471 btrfs_set_fs_incompat(info, RAID56); 4472 } 4473 4474 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ 4475 - sizeof(struct btrfs_item) \ 4476 - sizeof(struct btrfs_chunk)) \ 4477 / sizeof(struct btrfs_stripe) + 1) 4478 4479 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4480 - 2 * sizeof(struct btrfs_disk_key) \ 4481 - 2 * sizeof(struct btrfs_chunk)) \ 4482 / sizeof(struct btrfs_stripe) + 1) 4483 4484 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4485 struct btrfs_root *extent_root, u64 start, 4486 u64 type) 4487 { 4488 struct btrfs_fs_info *info = extent_root->fs_info; 4489 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4490 struct list_head *cur; 4491 struct map_lookup *map = NULL; 4492 struct extent_map_tree *em_tree; 4493 struct extent_map *em; 4494 struct btrfs_device_info *devices_info = NULL; 4495 u64 total_avail; 4496 int num_stripes; /* total number of stripes to allocate */ 4497 int data_stripes; /* number of stripes that count for 4498 block group size */ 4499 int sub_stripes; /* sub_stripes info for map */ 4500 int dev_stripes; /* stripes per dev */ 4501 int devs_max; /* max devs to use */ 4502 int devs_min; /* min devs needed */ 4503 int devs_increment; /* ndevs has to be a multiple of this */ 4504 int ncopies; /* how many copies to data has */ 4505 int ret; 4506 u64 max_stripe_size; 4507 u64 max_chunk_size; 4508 u64 stripe_size; 4509 u64 num_bytes; 4510 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4511 int ndevs; 4512 int i; 4513 int j; 4514 int index; 4515 4516 BUG_ON(!alloc_profile_is_valid(type, 0)); 4517 4518 if (list_empty(&fs_devices->alloc_list)) 4519 return -ENOSPC; 4520 4521 index = __get_raid_index(type); 4522 4523 sub_stripes = btrfs_raid_array[index].sub_stripes; 4524 dev_stripes = btrfs_raid_array[index].dev_stripes; 4525 devs_max = btrfs_raid_array[index].devs_max; 4526 devs_min = btrfs_raid_array[index].devs_min; 4527 devs_increment = btrfs_raid_array[index].devs_increment; 4528 ncopies = btrfs_raid_array[index].ncopies; 4529 4530 if (type & BTRFS_BLOCK_GROUP_DATA) { 4531 max_stripe_size = 1024 * 1024 * 1024; 4532 max_chunk_size = 10 * max_stripe_size; 4533 if (!devs_max) 4534 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4535 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4536 /* for larger filesystems, use larger metadata chunks */ 4537 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4538 max_stripe_size = 1024 * 1024 * 1024; 4539 else 4540 max_stripe_size = 256 * 1024 * 1024; 4541 max_chunk_size = max_stripe_size; 4542 if (!devs_max) 4543 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4544 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4545 max_stripe_size = 32 * 1024 * 1024; 4546 max_chunk_size = 2 * max_stripe_size; 4547 if (!devs_max) 4548 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4549 } else { 4550 btrfs_err(info, "invalid chunk type 0x%llx requested", 4551 type); 4552 BUG_ON(1); 4553 } 4554 4555 /* we don't want a chunk larger than 10% of writeable space */ 4556 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4557 max_chunk_size); 4558 4559 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4560 GFP_NOFS); 4561 if (!devices_info) 4562 return -ENOMEM; 4563 4564 cur = fs_devices->alloc_list.next; 4565 4566 /* 4567 * in the first pass through the devices list, we gather information 4568 * about the available holes on each device. 4569 */ 4570 ndevs = 0; 4571 while (cur != &fs_devices->alloc_list) { 4572 struct btrfs_device *device; 4573 u64 max_avail; 4574 u64 dev_offset; 4575 4576 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4577 4578 cur = cur->next; 4579 4580 if (!device->writeable) { 4581 WARN(1, KERN_ERR 4582 "BTRFS: read-only device in alloc_list\n"); 4583 continue; 4584 } 4585 4586 if (!device->in_fs_metadata || 4587 device->is_tgtdev_for_dev_replace) 4588 continue; 4589 4590 if (device->total_bytes > device->bytes_used) 4591 total_avail = device->total_bytes - device->bytes_used; 4592 else 4593 total_avail = 0; 4594 4595 /* If there is no space on this device, skip it. */ 4596 if (total_avail == 0) 4597 continue; 4598 4599 ret = find_free_dev_extent(trans, device, 4600 max_stripe_size * dev_stripes, 4601 &dev_offset, &max_avail); 4602 if (ret && ret != -ENOSPC) 4603 goto error; 4604 4605 if (ret == 0) 4606 max_avail = max_stripe_size * dev_stripes; 4607 4608 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4609 continue; 4610 4611 if (ndevs == fs_devices->rw_devices) { 4612 WARN(1, "%s: found more than %llu devices\n", 4613 __func__, fs_devices->rw_devices); 4614 break; 4615 } 4616 devices_info[ndevs].dev_offset = dev_offset; 4617 devices_info[ndevs].max_avail = max_avail; 4618 devices_info[ndevs].total_avail = total_avail; 4619 devices_info[ndevs].dev = device; 4620 ++ndevs; 4621 } 4622 4623 /* 4624 * now sort the devices by hole size / available space 4625 */ 4626 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4627 btrfs_cmp_device_info, NULL); 4628 4629 /* round down to number of usable stripes */ 4630 ndevs -= ndevs % devs_increment; 4631 4632 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4633 ret = -ENOSPC; 4634 goto error; 4635 } 4636 4637 if (devs_max && ndevs > devs_max) 4638 ndevs = devs_max; 4639 /* 4640 * the primary goal is to maximize the number of stripes, so use as many 4641 * devices as possible, even if the stripes are not maximum sized. 4642 */ 4643 stripe_size = devices_info[ndevs-1].max_avail; 4644 num_stripes = ndevs * dev_stripes; 4645 4646 /* 4647 * this will have to be fixed for RAID1 and RAID10 over 4648 * more drives 4649 */ 4650 data_stripes = num_stripes / ncopies; 4651 4652 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4653 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4654 btrfs_super_stripesize(info->super_copy)); 4655 data_stripes = num_stripes - 1; 4656 } 4657 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4658 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4659 btrfs_super_stripesize(info->super_copy)); 4660 data_stripes = num_stripes - 2; 4661 } 4662 4663 /* 4664 * Use the number of data stripes to figure out how big this chunk 4665 * is really going to be in terms of logical address space, 4666 * and compare that answer with the max chunk size 4667 */ 4668 if (stripe_size * data_stripes > max_chunk_size) { 4669 u64 mask = (1ULL << 24) - 1; 4670 4671 stripe_size = div_u64(max_chunk_size, data_stripes); 4672 4673 /* bump the answer up to a 16MB boundary */ 4674 stripe_size = (stripe_size + mask) & ~mask; 4675 4676 /* but don't go higher than the limits we found 4677 * while searching for free extents 4678 */ 4679 if (stripe_size > devices_info[ndevs-1].max_avail) 4680 stripe_size = devices_info[ndevs-1].max_avail; 4681 } 4682 4683 stripe_size = div_u64(stripe_size, dev_stripes); 4684 4685 /* align to BTRFS_STRIPE_LEN */ 4686 stripe_size = div_u64(stripe_size, raid_stripe_len); 4687 stripe_size *= raid_stripe_len; 4688 4689 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4690 if (!map) { 4691 ret = -ENOMEM; 4692 goto error; 4693 } 4694 map->num_stripes = num_stripes; 4695 4696 for (i = 0; i < ndevs; ++i) { 4697 for (j = 0; j < dev_stripes; ++j) { 4698 int s = i * dev_stripes + j; 4699 map->stripes[s].dev = devices_info[i].dev; 4700 map->stripes[s].physical = devices_info[i].dev_offset + 4701 j * stripe_size; 4702 } 4703 } 4704 map->sector_size = extent_root->sectorsize; 4705 map->stripe_len = raid_stripe_len; 4706 map->io_align = raid_stripe_len; 4707 map->io_width = raid_stripe_len; 4708 map->type = type; 4709 map->sub_stripes = sub_stripes; 4710 4711 num_bytes = stripe_size * data_stripes; 4712 4713 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4714 4715 em = alloc_extent_map(); 4716 if (!em) { 4717 kfree(map); 4718 ret = -ENOMEM; 4719 goto error; 4720 } 4721 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4722 em->bdev = (struct block_device *)map; 4723 em->start = start; 4724 em->len = num_bytes; 4725 em->block_start = 0; 4726 em->block_len = em->len; 4727 em->orig_block_len = stripe_size; 4728 4729 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4730 write_lock(&em_tree->lock); 4731 ret = add_extent_mapping(em_tree, em, 0); 4732 if (!ret) { 4733 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4734 atomic_inc(&em->refs); 4735 } 4736 write_unlock(&em_tree->lock); 4737 if (ret) { 4738 free_extent_map(em); 4739 goto error; 4740 } 4741 4742 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4743 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4744 start, num_bytes); 4745 if (ret) 4746 goto error_del_extent; 4747 4748 for (i = 0; i < map->num_stripes; i++) { 4749 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4750 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4751 } 4752 4753 spin_lock(&extent_root->fs_info->free_chunk_lock); 4754 extent_root->fs_info->free_chunk_space -= (stripe_size * 4755 map->num_stripes); 4756 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4757 4758 free_extent_map(em); 4759 check_raid56_incompat_flag(extent_root->fs_info, type); 4760 4761 kfree(devices_info); 4762 return 0; 4763 4764 error_del_extent: 4765 write_lock(&em_tree->lock); 4766 remove_extent_mapping(em_tree, em); 4767 write_unlock(&em_tree->lock); 4768 4769 /* One for our allocation */ 4770 free_extent_map(em); 4771 /* One for the tree reference */ 4772 free_extent_map(em); 4773 /* One for the pending_chunks list reference */ 4774 free_extent_map(em); 4775 error: 4776 kfree(devices_info); 4777 return ret; 4778 } 4779 4780 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4781 struct btrfs_root *extent_root, 4782 u64 chunk_offset, u64 chunk_size) 4783 { 4784 struct btrfs_key key; 4785 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4786 struct btrfs_device *device; 4787 struct btrfs_chunk *chunk; 4788 struct btrfs_stripe *stripe; 4789 struct extent_map_tree *em_tree; 4790 struct extent_map *em; 4791 struct map_lookup *map; 4792 size_t item_size; 4793 u64 dev_offset; 4794 u64 stripe_size; 4795 int i = 0; 4796 int ret; 4797 4798 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4799 read_lock(&em_tree->lock); 4800 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4801 read_unlock(&em_tree->lock); 4802 4803 if (!em) { 4804 btrfs_crit(extent_root->fs_info, "unable to find logical " 4805 "%Lu len %Lu", chunk_offset, chunk_size); 4806 return -EINVAL; 4807 } 4808 4809 if (em->start != chunk_offset || em->len != chunk_size) { 4810 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4811 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4812 chunk_size, em->start, em->len); 4813 free_extent_map(em); 4814 return -EINVAL; 4815 } 4816 4817 map = (struct map_lookup *)em->bdev; 4818 item_size = btrfs_chunk_item_size(map->num_stripes); 4819 stripe_size = em->orig_block_len; 4820 4821 chunk = kzalloc(item_size, GFP_NOFS); 4822 if (!chunk) { 4823 ret = -ENOMEM; 4824 goto out; 4825 } 4826 4827 for (i = 0; i < map->num_stripes; i++) { 4828 device = map->stripes[i].dev; 4829 dev_offset = map->stripes[i].physical; 4830 4831 ret = btrfs_update_device(trans, device); 4832 if (ret) 4833 goto out; 4834 ret = btrfs_alloc_dev_extent(trans, device, 4835 chunk_root->root_key.objectid, 4836 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4837 chunk_offset, dev_offset, 4838 stripe_size); 4839 if (ret) 4840 goto out; 4841 } 4842 4843 stripe = &chunk->stripe; 4844 for (i = 0; i < map->num_stripes; i++) { 4845 device = map->stripes[i].dev; 4846 dev_offset = map->stripes[i].physical; 4847 4848 btrfs_set_stack_stripe_devid(stripe, device->devid); 4849 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4850 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4851 stripe++; 4852 } 4853 4854 btrfs_set_stack_chunk_length(chunk, chunk_size); 4855 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4856 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4857 btrfs_set_stack_chunk_type(chunk, map->type); 4858 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4859 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4860 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4861 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4862 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4863 4864 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4865 key.type = BTRFS_CHUNK_ITEM_KEY; 4866 key.offset = chunk_offset; 4867 4868 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4869 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4870 /* 4871 * TODO: Cleanup of inserted chunk root in case of 4872 * failure. 4873 */ 4874 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4875 item_size); 4876 } 4877 4878 out: 4879 kfree(chunk); 4880 free_extent_map(em); 4881 return ret; 4882 } 4883 4884 /* 4885 * Chunk allocation falls into two parts. The first part does works 4886 * that make the new allocated chunk useable, but not do any operation 4887 * that modifies the chunk tree. The second part does the works that 4888 * require modifying the chunk tree. This division is important for the 4889 * bootstrap process of adding storage to a seed btrfs. 4890 */ 4891 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4892 struct btrfs_root *extent_root, u64 type) 4893 { 4894 u64 chunk_offset; 4895 4896 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex)); 4897 chunk_offset = find_next_chunk(extent_root->fs_info); 4898 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4899 } 4900 4901 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4902 struct btrfs_root *root, 4903 struct btrfs_device *device) 4904 { 4905 u64 chunk_offset; 4906 u64 sys_chunk_offset; 4907 u64 alloc_profile; 4908 struct btrfs_fs_info *fs_info = root->fs_info; 4909 struct btrfs_root *extent_root = fs_info->extent_root; 4910 int ret; 4911 4912 chunk_offset = find_next_chunk(fs_info); 4913 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4914 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4915 alloc_profile); 4916 if (ret) 4917 return ret; 4918 4919 sys_chunk_offset = find_next_chunk(root->fs_info); 4920 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4921 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4922 alloc_profile); 4923 return ret; 4924 } 4925 4926 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4927 { 4928 int max_errors; 4929 4930 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4931 BTRFS_BLOCK_GROUP_RAID10 | 4932 BTRFS_BLOCK_GROUP_RAID5 | 4933 BTRFS_BLOCK_GROUP_DUP)) { 4934 max_errors = 1; 4935 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 4936 max_errors = 2; 4937 } else { 4938 max_errors = 0; 4939 } 4940 4941 return max_errors; 4942 } 4943 4944 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4945 { 4946 struct extent_map *em; 4947 struct map_lookup *map; 4948 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4949 int readonly = 0; 4950 int miss_ndevs = 0; 4951 int i; 4952 4953 read_lock(&map_tree->map_tree.lock); 4954 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4955 read_unlock(&map_tree->map_tree.lock); 4956 if (!em) 4957 return 1; 4958 4959 map = (struct map_lookup *)em->bdev; 4960 for (i = 0; i < map->num_stripes; i++) { 4961 if (map->stripes[i].dev->missing) { 4962 miss_ndevs++; 4963 continue; 4964 } 4965 4966 if (!map->stripes[i].dev->writeable) { 4967 readonly = 1; 4968 goto end; 4969 } 4970 } 4971 4972 /* 4973 * If the number of missing devices is larger than max errors, 4974 * we can not write the data into that chunk successfully, so 4975 * set it readonly. 4976 */ 4977 if (miss_ndevs > btrfs_chunk_max_errors(map)) 4978 readonly = 1; 4979 end: 4980 free_extent_map(em); 4981 return readonly; 4982 } 4983 4984 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4985 { 4986 extent_map_tree_init(&tree->map_tree); 4987 } 4988 4989 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4990 { 4991 struct extent_map *em; 4992 4993 while (1) { 4994 write_lock(&tree->map_tree.lock); 4995 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4996 if (em) 4997 remove_extent_mapping(&tree->map_tree, em); 4998 write_unlock(&tree->map_tree.lock); 4999 if (!em) 5000 break; 5001 /* once for us */ 5002 free_extent_map(em); 5003 /* once for the tree */ 5004 free_extent_map(em); 5005 } 5006 } 5007 5008 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5009 { 5010 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5011 struct extent_map *em; 5012 struct map_lookup *map; 5013 struct extent_map_tree *em_tree = &map_tree->map_tree; 5014 int ret; 5015 5016 read_lock(&em_tree->lock); 5017 em = lookup_extent_mapping(em_tree, logical, len); 5018 read_unlock(&em_tree->lock); 5019 5020 /* 5021 * We could return errors for these cases, but that could get ugly and 5022 * we'd probably do the same thing which is just not do anything else 5023 * and exit, so return 1 so the callers don't try to use other copies. 5024 */ 5025 if (!em) { 5026 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 5027 logical+len); 5028 return 1; 5029 } 5030 5031 if (em->start > logical || em->start + em->len < logical) { 5032 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 5033 "%Lu-%Lu", logical, logical+len, em->start, 5034 em->start + em->len); 5035 free_extent_map(em); 5036 return 1; 5037 } 5038 5039 map = (struct map_lookup *)em->bdev; 5040 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5041 ret = map->num_stripes; 5042 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5043 ret = map->sub_stripes; 5044 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5045 ret = 2; 5046 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5047 ret = 3; 5048 else 5049 ret = 1; 5050 free_extent_map(em); 5051 5052 btrfs_dev_replace_lock(&fs_info->dev_replace); 5053 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 5054 ret++; 5055 btrfs_dev_replace_unlock(&fs_info->dev_replace); 5056 5057 return ret; 5058 } 5059 5060 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 5061 struct btrfs_mapping_tree *map_tree, 5062 u64 logical) 5063 { 5064 struct extent_map *em; 5065 struct map_lookup *map; 5066 struct extent_map_tree *em_tree = &map_tree->map_tree; 5067 unsigned long len = root->sectorsize; 5068 5069 read_lock(&em_tree->lock); 5070 em = lookup_extent_mapping(em_tree, logical, len); 5071 read_unlock(&em_tree->lock); 5072 BUG_ON(!em); 5073 5074 BUG_ON(em->start > logical || em->start + em->len < logical); 5075 map = (struct map_lookup *)em->bdev; 5076 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5077 len = map->stripe_len * nr_data_stripes(map); 5078 free_extent_map(em); 5079 return len; 5080 } 5081 5082 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 5083 u64 logical, u64 len, int mirror_num) 5084 { 5085 struct extent_map *em; 5086 struct map_lookup *map; 5087 struct extent_map_tree *em_tree = &map_tree->map_tree; 5088 int ret = 0; 5089 5090 read_lock(&em_tree->lock); 5091 em = lookup_extent_mapping(em_tree, logical, len); 5092 read_unlock(&em_tree->lock); 5093 BUG_ON(!em); 5094 5095 BUG_ON(em->start > logical || em->start + em->len < logical); 5096 map = (struct map_lookup *)em->bdev; 5097 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5098 ret = 1; 5099 free_extent_map(em); 5100 return ret; 5101 } 5102 5103 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5104 struct map_lookup *map, int first, int num, 5105 int optimal, int dev_replace_is_ongoing) 5106 { 5107 int i; 5108 int tolerance; 5109 struct btrfs_device *srcdev; 5110 5111 if (dev_replace_is_ongoing && 5112 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5113 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5114 srcdev = fs_info->dev_replace.srcdev; 5115 else 5116 srcdev = NULL; 5117 5118 /* 5119 * try to avoid the drive that is the source drive for a 5120 * dev-replace procedure, only choose it if no other non-missing 5121 * mirror is available 5122 */ 5123 for (tolerance = 0; tolerance < 2; tolerance++) { 5124 if (map->stripes[optimal].dev->bdev && 5125 (tolerance || map->stripes[optimal].dev != srcdev)) 5126 return optimal; 5127 for (i = first; i < first + num; i++) { 5128 if (map->stripes[i].dev->bdev && 5129 (tolerance || map->stripes[i].dev != srcdev)) 5130 return i; 5131 } 5132 } 5133 5134 /* we couldn't find one that doesn't fail. Just return something 5135 * and the io error handling code will clean up eventually 5136 */ 5137 return optimal; 5138 } 5139 5140 static inline int parity_smaller(u64 a, u64 b) 5141 { 5142 return a > b; 5143 } 5144 5145 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5146 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5147 { 5148 struct btrfs_bio_stripe s; 5149 int i; 5150 u64 l; 5151 int again = 1; 5152 5153 while (again) { 5154 again = 0; 5155 for (i = 0; i < num_stripes - 1; i++) { 5156 if (parity_smaller(bbio->raid_map[i], 5157 bbio->raid_map[i+1])) { 5158 s = bbio->stripes[i]; 5159 l = bbio->raid_map[i]; 5160 bbio->stripes[i] = bbio->stripes[i+1]; 5161 bbio->raid_map[i] = bbio->raid_map[i+1]; 5162 bbio->stripes[i+1] = s; 5163 bbio->raid_map[i+1] = l; 5164 5165 again = 1; 5166 } 5167 } 5168 } 5169 } 5170 5171 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5172 { 5173 struct btrfs_bio *bbio = kzalloc( 5174 /* the size of the btrfs_bio */ 5175 sizeof(struct btrfs_bio) + 5176 /* plus the variable array for the stripes */ 5177 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5178 /* plus the variable array for the tgt dev */ 5179 sizeof(int) * (real_stripes) + 5180 /* 5181 * plus the raid_map, which includes both the tgt dev 5182 * and the stripes 5183 */ 5184 sizeof(u64) * (total_stripes), 5185 GFP_NOFS|__GFP_NOFAIL); 5186 5187 atomic_set(&bbio->error, 0); 5188 atomic_set(&bbio->refs, 1); 5189 5190 return bbio; 5191 } 5192 5193 void btrfs_get_bbio(struct btrfs_bio *bbio) 5194 { 5195 WARN_ON(!atomic_read(&bbio->refs)); 5196 atomic_inc(&bbio->refs); 5197 } 5198 5199 void btrfs_put_bbio(struct btrfs_bio *bbio) 5200 { 5201 if (!bbio) 5202 return; 5203 if (atomic_dec_and_test(&bbio->refs)) 5204 kfree(bbio); 5205 } 5206 5207 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5208 u64 logical, u64 *length, 5209 struct btrfs_bio **bbio_ret, 5210 int mirror_num, int need_raid_map) 5211 { 5212 struct extent_map *em; 5213 struct map_lookup *map; 5214 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5215 struct extent_map_tree *em_tree = &map_tree->map_tree; 5216 u64 offset; 5217 u64 stripe_offset; 5218 u64 stripe_end_offset; 5219 u64 stripe_nr; 5220 u64 stripe_nr_orig; 5221 u64 stripe_nr_end; 5222 u64 stripe_len; 5223 u32 stripe_index; 5224 int i; 5225 int ret = 0; 5226 int num_stripes; 5227 int max_errors = 0; 5228 int tgtdev_indexes = 0; 5229 struct btrfs_bio *bbio = NULL; 5230 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5231 int dev_replace_is_ongoing = 0; 5232 int num_alloc_stripes; 5233 int patch_the_first_stripe_for_dev_replace = 0; 5234 u64 physical_to_patch_in_first_stripe = 0; 5235 u64 raid56_full_stripe_start = (u64)-1; 5236 5237 read_lock(&em_tree->lock); 5238 em = lookup_extent_mapping(em_tree, logical, *length); 5239 read_unlock(&em_tree->lock); 5240 5241 if (!em) { 5242 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 5243 logical, *length); 5244 return -EINVAL; 5245 } 5246 5247 if (em->start > logical || em->start + em->len < logical) { 5248 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 5249 "found %Lu-%Lu", logical, em->start, 5250 em->start + em->len); 5251 free_extent_map(em); 5252 return -EINVAL; 5253 } 5254 5255 map = (struct map_lookup *)em->bdev; 5256 offset = logical - em->start; 5257 5258 stripe_len = map->stripe_len; 5259 stripe_nr = offset; 5260 /* 5261 * stripe_nr counts the total number of stripes we have to stride 5262 * to get to this block 5263 */ 5264 stripe_nr = div64_u64(stripe_nr, stripe_len); 5265 5266 stripe_offset = stripe_nr * stripe_len; 5267 BUG_ON(offset < stripe_offset); 5268 5269 /* stripe_offset is the offset of this block in its stripe*/ 5270 stripe_offset = offset - stripe_offset; 5271 5272 /* if we're here for raid56, we need to know the stripe aligned start */ 5273 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5274 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5275 raid56_full_stripe_start = offset; 5276 5277 /* allow a write of a full stripe, but make sure we don't 5278 * allow straddling of stripes 5279 */ 5280 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5281 full_stripe_len); 5282 raid56_full_stripe_start *= full_stripe_len; 5283 } 5284 5285 if (rw & REQ_DISCARD) { 5286 /* we don't discard raid56 yet */ 5287 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5288 ret = -EOPNOTSUPP; 5289 goto out; 5290 } 5291 *length = min_t(u64, em->len - offset, *length); 5292 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5293 u64 max_len; 5294 /* For writes to RAID[56], allow a full stripeset across all disks. 5295 For other RAID types and for RAID[56] reads, just allow a single 5296 stripe (on a single disk). */ 5297 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5298 (rw & REQ_WRITE)) { 5299 max_len = stripe_len * nr_data_stripes(map) - 5300 (offset - raid56_full_stripe_start); 5301 } else { 5302 /* we limit the length of each bio to what fits in a stripe */ 5303 max_len = stripe_len - stripe_offset; 5304 } 5305 *length = min_t(u64, em->len - offset, max_len); 5306 } else { 5307 *length = em->len - offset; 5308 } 5309 5310 /* This is for when we're called from btrfs_merge_bio_hook() and all 5311 it cares about is the length */ 5312 if (!bbio_ret) 5313 goto out; 5314 5315 btrfs_dev_replace_lock(dev_replace); 5316 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5317 if (!dev_replace_is_ongoing) 5318 btrfs_dev_replace_unlock(dev_replace); 5319 5320 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5321 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 5322 dev_replace->tgtdev != NULL) { 5323 /* 5324 * in dev-replace case, for repair case (that's the only 5325 * case where the mirror is selected explicitly when 5326 * calling btrfs_map_block), blocks left of the left cursor 5327 * can also be read from the target drive. 5328 * For REQ_GET_READ_MIRRORS, the target drive is added as 5329 * the last one to the array of stripes. For READ, it also 5330 * needs to be supported using the same mirror number. 5331 * If the requested block is not left of the left cursor, 5332 * EIO is returned. This can happen because btrfs_num_copies() 5333 * returns one more in the dev-replace case. 5334 */ 5335 u64 tmp_length = *length; 5336 struct btrfs_bio *tmp_bbio = NULL; 5337 int tmp_num_stripes; 5338 u64 srcdev_devid = dev_replace->srcdev->devid; 5339 int index_srcdev = 0; 5340 int found = 0; 5341 u64 physical_of_found = 0; 5342 5343 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 5344 logical, &tmp_length, &tmp_bbio, 0, 0); 5345 if (ret) { 5346 WARN_ON(tmp_bbio != NULL); 5347 goto out; 5348 } 5349 5350 tmp_num_stripes = tmp_bbio->num_stripes; 5351 if (mirror_num > tmp_num_stripes) { 5352 /* 5353 * REQ_GET_READ_MIRRORS does not contain this 5354 * mirror, that means that the requested area 5355 * is not left of the left cursor 5356 */ 5357 ret = -EIO; 5358 btrfs_put_bbio(tmp_bbio); 5359 goto out; 5360 } 5361 5362 /* 5363 * process the rest of the function using the mirror_num 5364 * of the source drive. Therefore look it up first. 5365 * At the end, patch the device pointer to the one of the 5366 * target drive. 5367 */ 5368 for (i = 0; i < tmp_num_stripes; i++) { 5369 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 5370 /* 5371 * In case of DUP, in order to keep it 5372 * simple, only add the mirror with the 5373 * lowest physical address 5374 */ 5375 if (found && 5376 physical_of_found <= 5377 tmp_bbio->stripes[i].physical) 5378 continue; 5379 index_srcdev = i; 5380 found = 1; 5381 physical_of_found = 5382 tmp_bbio->stripes[i].physical; 5383 } 5384 } 5385 5386 if (found) { 5387 mirror_num = index_srcdev + 1; 5388 patch_the_first_stripe_for_dev_replace = 1; 5389 physical_to_patch_in_first_stripe = physical_of_found; 5390 } else { 5391 WARN_ON(1); 5392 ret = -EIO; 5393 btrfs_put_bbio(tmp_bbio); 5394 goto out; 5395 } 5396 5397 btrfs_put_bbio(tmp_bbio); 5398 } else if (mirror_num > map->num_stripes) { 5399 mirror_num = 0; 5400 } 5401 5402 num_stripes = 1; 5403 stripe_index = 0; 5404 stripe_nr_orig = stripe_nr; 5405 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5406 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5407 stripe_end_offset = stripe_nr_end * map->stripe_len - 5408 (offset + *length); 5409 5410 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5411 if (rw & REQ_DISCARD) 5412 num_stripes = min_t(u64, map->num_stripes, 5413 stripe_nr_end - stripe_nr_orig); 5414 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5415 &stripe_index); 5416 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))) 5417 mirror_num = 1; 5418 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5419 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 5420 num_stripes = map->num_stripes; 5421 else if (mirror_num) 5422 stripe_index = mirror_num - 1; 5423 else { 5424 stripe_index = find_live_mirror(fs_info, map, 0, 5425 map->num_stripes, 5426 current->pid % map->num_stripes, 5427 dev_replace_is_ongoing); 5428 mirror_num = stripe_index + 1; 5429 } 5430 5431 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5432 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 5433 num_stripes = map->num_stripes; 5434 } else if (mirror_num) { 5435 stripe_index = mirror_num - 1; 5436 } else { 5437 mirror_num = 1; 5438 } 5439 5440 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5441 u32 factor = map->num_stripes / map->sub_stripes; 5442 5443 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5444 stripe_index *= map->sub_stripes; 5445 5446 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5447 num_stripes = map->sub_stripes; 5448 else if (rw & REQ_DISCARD) 5449 num_stripes = min_t(u64, map->sub_stripes * 5450 (stripe_nr_end - stripe_nr_orig), 5451 map->num_stripes); 5452 else if (mirror_num) 5453 stripe_index += mirror_num - 1; 5454 else { 5455 int old_stripe_index = stripe_index; 5456 stripe_index = find_live_mirror(fs_info, map, 5457 stripe_index, 5458 map->sub_stripes, stripe_index + 5459 current->pid % map->sub_stripes, 5460 dev_replace_is_ongoing); 5461 mirror_num = stripe_index - old_stripe_index + 1; 5462 } 5463 5464 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5465 if (need_raid_map && 5466 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5467 mirror_num > 1)) { 5468 /* push stripe_nr back to the start of the full stripe */ 5469 stripe_nr = div_u64(raid56_full_stripe_start, 5470 stripe_len * nr_data_stripes(map)); 5471 5472 /* RAID[56] write or recovery. Return all stripes */ 5473 num_stripes = map->num_stripes; 5474 max_errors = nr_parity_stripes(map); 5475 5476 *length = map->stripe_len; 5477 stripe_index = 0; 5478 stripe_offset = 0; 5479 } else { 5480 /* 5481 * Mirror #0 or #1 means the original data block. 5482 * Mirror #2 is RAID5 parity block. 5483 * Mirror #3 is RAID6 Q block. 5484 */ 5485 stripe_nr = div_u64_rem(stripe_nr, 5486 nr_data_stripes(map), &stripe_index); 5487 if (mirror_num > 1) 5488 stripe_index = nr_data_stripes(map) + 5489 mirror_num - 2; 5490 5491 /* We distribute the parity blocks across stripes */ 5492 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5493 &stripe_index); 5494 if (!(rw & (REQ_WRITE | REQ_DISCARD | 5495 REQ_GET_READ_MIRRORS)) && mirror_num <= 1) 5496 mirror_num = 1; 5497 } 5498 } else { 5499 /* 5500 * after this, stripe_nr is the number of stripes on this 5501 * device we have to walk to find the data, and stripe_index is 5502 * the number of our device in the stripe array 5503 */ 5504 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5505 &stripe_index); 5506 mirror_num = stripe_index + 1; 5507 } 5508 BUG_ON(stripe_index >= map->num_stripes); 5509 5510 num_alloc_stripes = num_stripes; 5511 if (dev_replace_is_ongoing) { 5512 if (rw & (REQ_WRITE | REQ_DISCARD)) 5513 num_alloc_stripes <<= 1; 5514 if (rw & REQ_GET_READ_MIRRORS) 5515 num_alloc_stripes++; 5516 tgtdev_indexes = num_stripes; 5517 } 5518 5519 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5520 if (!bbio) { 5521 ret = -ENOMEM; 5522 goto out; 5523 } 5524 if (dev_replace_is_ongoing) 5525 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5526 5527 /* build raid_map */ 5528 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5529 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5530 mirror_num > 1)) { 5531 u64 tmp; 5532 unsigned rot; 5533 5534 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5535 sizeof(struct btrfs_bio_stripe) * 5536 num_alloc_stripes + 5537 sizeof(int) * tgtdev_indexes); 5538 5539 /* Work out the disk rotation on this stripe-set */ 5540 div_u64_rem(stripe_nr, num_stripes, &rot); 5541 5542 /* Fill in the logical address of each stripe */ 5543 tmp = stripe_nr * nr_data_stripes(map); 5544 for (i = 0; i < nr_data_stripes(map); i++) 5545 bbio->raid_map[(i+rot) % num_stripes] = 5546 em->start + (tmp + i) * map->stripe_len; 5547 5548 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5549 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5550 bbio->raid_map[(i+rot+1) % num_stripes] = 5551 RAID6_Q_STRIPE; 5552 } 5553 5554 if (rw & REQ_DISCARD) { 5555 u32 factor = 0; 5556 u32 sub_stripes = 0; 5557 u64 stripes_per_dev = 0; 5558 u32 remaining_stripes = 0; 5559 u32 last_stripe = 0; 5560 5561 if (map->type & 5562 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5563 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5564 sub_stripes = 1; 5565 else 5566 sub_stripes = map->sub_stripes; 5567 5568 factor = map->num_stripes / sub_stripes; 5569 stripes_per_dev = div_u64_rem(stripe_nr_end - 5570 stripe_nr_orig, 5571 factor, 5572 &remaining_stripes); 5573 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5574 last_stripe *= sub_stripes; 5575 } 5576 5577 for (i = 0; i < num_stripes; i++) { 5578 bbio->stripes[i].physical = 5579 map->stripes[stripe_index].physical + 5580 stripe_offset + stripe_nr * map->stripe_len; 5581 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5582 5583 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5584 BTRFS_BLOCK_GROUP_RAID10)) { 5585 bbio->stripes[i].length = stripes_per_dev * 5586 map->stripe_len; 5587 5588 if (i / sub_stripes < remaining_stripes) 5589 bbio->stripes[i].length += 5590 map->stripe_len; 5591 5592 /* 5593 * Special for the first stripe and 5594 * the last stripe: 5595 * 5596 * |-------|...|-------| 5597 * |----------| 5598 * off end_off 5599 */ 5600 if (i < sub_stripes) 5601 bbio->stripes[i].length -= 5602 stripe_offset; 5603 5604 if (stripe_index >= last_stripe && 5605 stripe_index <= (last_stripe + 5606 sub_stripes - 1)) 5607 bbio->stripes[i].length -= 5608 stripe_end_offset; 5609 5610 if (i == sub_stripes - 1) 5611 stripe_offset = 0; 5612 } else 5613 bbio->stripes[i].length = *length; 5614 5615 stripe_index++; 5616 if (stripe_index == map->num_stripes) { 5617 /* This could only happen for RAID0/10 */ 5618 stripe_index = 0; 5619 stripe_nr++; 5620 } 5621 } 5622 } else { 5623 for (i = 0; i < num_stripes; i++) { 5624 bbio->stripes[i].physical = 5625 map->stripes[stripe_index].physical + 5626 stripe_offset + 5627 stripe_nr * map->stripe_len; 5628 bbio->stripes[i].dev = 5629 map->stripes[stripe_index].dev; 5630 stripe_index++; 5631 } 5632 } 5633 5634 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5635 max_errors = btrfs_chunk_max_errors(map); 5636 5637 if (bbio->raid_map) 5638 sort_parity_stripes(bbio, num_stripes); 5639 5640 tgtdev_indexes = 0; 5641 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5642 dev_replace->tgtdev != NULL) { 5643 int index_where_to_add; 5644 u64 srcdev_devid = dev_replace->srcdev->devid; 5645 5646 /* 5647 * duplicate the write operations while the dev replace 5648 * procedure is running. Since the copying of the old disk 5649 * to the new disk takes place at run time while the 5650 * filesystem is mounted writable, the regular write 5651 * operations to the old disk have to be duplicated to go 5652 * to the new disk as well. 5653 * Note that device->missing is handled by the caller, and 5654 * that the write to the old disk is already set up in the 5655 * stripes array. 5656 */ 5657 index_where_to_add = num_stripes; 5658 for (i = 0; i < num_stripes; i++) { 5659 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5660 /* write to new disk, too */ 5661 struct btrfs_bio_stripe *new = 5662 bbio->stripes + index_where_to_add; 5663 struct btrfs_bio_stripe *old = 5664 bbio->stripes + i; 5665 5666 new->physical = old->physical; 5667 new->length = old->length; 5668 new->dev = dev_replace->tgtdev; 5669 bbio->tgtdev_map[i] = index_where_to_add; 5670 index_where_to_add++; 5671 max_errors++; 5672 tgtdev_indexes++; 5673 } 5674 } 5675 num_stripes = index_where_to_add; 5676 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5677 dev_replace->tgtdev != NULL) { 5678 u64 srcdev_devid = dev_replace->srcdev->devid; 5679 int index_srcdev = 0; 5680 int found = 0; 5681 u64 physical_of_found = 0; 5682 5683 /* 5684 * During the dev-replace procedure, the target drive can 5685 * also be used to read data in case it is needed to repair 5686 * a corrupt block elsewhere. This is possible if the 5687 * requested area is left of the left cursor. In this area, 5688 * the target drive is a full copy of the source drive. 5689 */ 5690 for (i = 0; i < num_stripes; i++) { 5691 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5692 /* 5693 * In case of DUP, in order to keep it 5694 * simple, only add the mirror with the 5695 * lowest physical address 5696 */ 5697 if (found && 5698 physical_of_found <= 5699 bbio->stripes[i].physical) 5700 continue; 5701 index_srcdev = i; 5702 found = 1; 5703 physical_of_found = bbio->stripes[i].physical; 5704 } 5705 } 5706 if (found) { 5707 if (physical_of_found + map->stripe_len <= 5708 dev_replace->cursor_left) { 5709 struct btrfs_bio_stripe *tgtdev_stripe = 5710 bbio->stripes + num_stripes; 5711 5712 tgtdev_stripe->physical = physical_of_found; 5713 tgtdev_stripe->length = 5714 bbio->stripes[index_srcdev].length; 5715 tgtdev_stripe->dev = dev_replace->tgtdev; 5716 bbio->tgtdev_map[index_srcdev] = num_stripes; 5717 5718 tgtdev_indexes++; 5719 num_stripes++; 5720 } 5721 } 5722 } 5723 5724 *bbio_ret = bbio; 5725 bbio->map_type = map->type; 5726 bbio->num_stripes = num_stripes; 5727 bbio->max_errors = max_errors; 5728 bbio->mirror_num = mirror_num; 5729 bbio->num_tgtdevs = tgtdev_indexes; 5730 5731 /* 5732 * this is the case that REQ_READ && dev_replace_is_ongoing && 5733 * mirror_num == num_stripes + 1 && dev_replace target drive is 5734 * available as a mirror 5735 */ 5736 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5737 WARN_ON(num_stripes > 1); 5738 bbio->stripes[0].dev = dev_replace->tgtdev; 5739 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5740 bbio->mirror_num = map->num_stripes + 1; 5741 } 5742 out: 5743 if (dev_replace_is_ongoing) 5744 btrfs_dev_replace_unlock(dev_replace); 5745 free_extent_map(em); 5746 return ret; 5747 } 5748 5749 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5750 u64 logical, u64 *length, 5751 struct btrfs_bio **bbio_ret, int mirror_num) 5752 { 5753 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5754 mirror_num, 0); 5755 } 5756 5757 /* For Scrub/replace */ 5758 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw, 5759 u64 logical, u64 *length, 5760 struct btrfs_bio **bbio_ret, int mirror_num, 5761 int need_raid_map) 5762 { 5763 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5764 mirror_num, need_raid_map); 5765 } 5766 5767 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5768 u64 chunk_start, u64 physical, u64 devid, 5769 u64 **logical, int *naddrs, int *stripe_len) 5770 { 5771 struct extent_map_tree *em_tree = &map_tree->map_tree; 5772 struct extent_map *em; 5773 struct map_lookup *map; 5774 u64 *buf; 5775 u64 bytenr; 5776 u64 length; 5777 u64 stripe_nr; 5778 u64 rmap_len; 5779 int i, j, nr = 0; 5780 5781 read_lock(&em_tree->lock); 5782 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5783 read_unlock(&em_tree->lock); 5784 5785 if (!em) { 5786 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5787 chunk_start); 5788 return -EIO; 5789 } 5790 5791 if (em->start != chunk_start) { 5792 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5793 em->start, chunk_start); 5794 free_extent_map(em); 5795 return -EIO; 5796 } 5797 map = (struct map_lookup *)em->bdev; 5798 5799 length = em->len; 5800 rmap_len = map->stripe_len; 5801 5802 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5803 length = div_u64(length, map->num_stripes / map->sub_stripes); 5804 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5805 length = div_u64(length, map->num_stripes); 5806 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5807 length = div_u64(length, nr_data_stripes(map)); 5808 rmap_len = map->stripe_len * nr_data_stripes(map); 5809 } 5810 5811 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5812 BUG_ON(!buf); /* -ENOMEM */ 5813 5814 for (i = 0; i < map->num_stripes; i++) { 5815 if (devid && map->stripes[i].dev->devid != devid) 5816 continue; 5817 if (map->stripes[i].physical > physical || 5818 map->stripes[i].physical + length <= physical) 5819 continue; 5820 5821 stripe_nr = physical - map->stripes[i].physical; 5822 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5823 5824 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5825 stripe_nr = stripe_nr * map->num_stripes + i; 5826 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5827 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5828 stripe_nr = stripe_nr * map->num_stripes + i; 5829 } /* else if RAID[56], multiply by nr_data_stripes(). 5830 * Alternatively, just use rmap_len below instead of 5831 * map->stripe_len */ 5832 5833 bytenr = chunk_start + stripe_nr * rmap_len; 5834 WARN_ON(nr >= map->num_stripes); 5835 for (j = 0; j < nr; j++) { 5836 if (buf[j] == bytenr) 5837 break; 5838 } 5839 if (j == nr) { 5840 WARN_ON(nr >= map->num_stripes); 5841 buf[nr++] = bytenr; 5842 } 5843 } 5844 5845 *logical = buf; 5846 *naddrs = nr; 5847 *stripe_len = rmap_len; 5848 5849 free_extent_map(em); 5850 return 0; 5851 } 5852 5853 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5854 { 5855 bio->bi_private = bbio->private; 5856 bio->bi_end_io = bbio->end_io; 5857 bio_endio(bio); 5858 5859 btrfs_put_bbio(bbio); 5860 } 5861 5862 static void btrfs_end_bio(struct bio *bio) 5863 { 5864 struct btrfs_bio *bbio = bio->bi_private; 5865 int is_orig_bio = 0; 5866 5867 if (bio->bi_error) { 5868 atomic_inc(&bbio->error); 5869 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) { 5870 unsigned int stripe_index = 5871 btrfs_io_bio(bio)->stripe_index; 5872 struct btrfs_device *dev; 5873 5874 BUG_ON(stripe_index >= bbio->num_stripes); 5875 dev = bbio->stripes[stripe_index].dev; 5876 if (dev->bdev) { 5877 if (bio->bi_rw & WRITE) 5878 btrfs_dev_stat_inc(dev, 5879 BTRFS_DEV_STAT_WRITE_ERRS); 5880 else 5881 btrfs_dev_stat_inc(dev, 5882 BTRFS_DEV_STAT_READ_ERRS); 5883 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5884 btrfs_dev_stat_inc(dev, 5885 BTRFS_DEV_STAT_FLUSH_ERRS); 5886 btrfs_dev_stat_print_on_error(dev); 5887 } 5888 } 5889 } 5890 5891 if (bio == bbio->orig_bio) 5892 is_orig_bio = 1; 5893 5894 btrfs_bio_counter_dec(bbio->fs_info); 5895 5896 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5897 if (!is_orig_bio) { 5898 bio_put(bio); 5899 bio = bbio->orig_bio; 5900 } 5901 5902 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5903 /* only send an error to the higher layers if it is 5904 * beyond the tolerance of the btrfs bio 5905 */ 5906 if (atomic_read(&bbio->error) > bbio->max_errors) { 5907 bio->bi_error = -EIO; 5908 } else { 5909 /* 5910 * this bio is actually up to date, we didn't 5911 * go over the max number of errors 5912 */ 5913 bio->bi_error = 0; 5914 } 5915 5916 btrfs_end_bbio(bbio, bio); 5917 } else if (!is_orig_bio) { 5918 bio_put(bio); 5919 } 5920 } 5921 5922 /* 5923 * see run_scheduled_bios for a description of why bios are collected for 5924 * async submit. 5925 * 5926 * This will add one bio to the pending list for a device and make sure 5927 * the work struct is scheduled. 5928 */ 5929 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5930 struct btrfs_device *device, 5931 int rw, struct bio *bio) 5932 { 5933 int should_queue = 1; 5934 struct btrfs_pending_bios *pending_bios; 5935 5936 if (device->missing || !device->bdev) { 5937 bio_io_error(bio); 5938 return; 5939 } 5940 5941 /* don't bother with additional async steps for reads, right now */ 5942 if (!(rw & REQ_WRITE)) { 5943 bio_get(bio); 5944 btrfsic_submit_bio(rw, bio); 5945 bio_put(bio); 5946 return; 5947 } 5948 5949 /* 5950 * nr_async_bios allows us to reliably return congestion to the 5951 * higher layers. Otherwise, the async bio makes it appear we have 5952 * made progress against dirty pages when we've really just put it 5953 * on a queue for later 5954 */ 5955 atomic_inc(&root->fs_info->nr_async_bios); 5956 WARN_ON(bio->bi_next); 5957 bio->bi_next = NULL; 5958 bio->bi_rw |= rw; 5959 5960 spin_lock(&device->io_lock); 5961 if (bio->bi_rw & REQ_SYNC) 5962 pending_bios = &device->pending_sync_bios; 5963 else 5964 pending_bios = &device->pending_bios; 5965 5966 if (pending_bios->tail) 5967 pending_bios->tail->bi_next = bio; 5968 5969 pending_bios->tail = bio; 5970 if (!pending_bios->head) 5971 pending_bios->head = bio; 5972 if (device->running_pending) 5973 should_queue = 0; 5974 5975 spin_unlock(&device->io_lock); 5976 5977 if (should_queue) 5978 btrfs_queue_work(root->fs_info->submit_workers, 5979 &device->work); 5980 } 5981 5982 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5983 struct bio *bio, u64 physical, int dev_nr, 5984 int rw, int async) 5985 { 5986 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5987 5988 bio->bi_private = bbio; 5989 btrfs_io_bio(bio)->stripe_index = dev_nr; 5990 bio->bi_end_io = btrfs_end_bio; 5991 bio->bi_iter.bi_sector = physical >> 9; 5992 #ifdef DEBUG 5993 { 5994 struct rcu_string *name; 5995 5996 rcu_read_lock(); 5997 name = rcu_dereference(dev->name); 5998 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 5999 "(%s id %llu), size=%u\n", rw, 6000 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, 6001 name->str, dev->devid, bio->bi_iter.bi_size); 6002 rcu_read_unlock(); 6003 } 6004 #endif 6005 bio->bi_bdev = dev->bdev; 6006 6007 btrfs_bio_counter_inc_noblocked(root->fs_info); 6008 6009 if (async) 6010 btrfs_schedule_bio(root, dev, rw, bio); 6011 else 6012 btrfsic_submit_bio(rw, bio); 6013 } 6014 6015 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6016 { 6017 atomic_inc(&bbio->error); 6018 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6019 /* Shoud be the original bio. */ 6020 WARN_ON(bio != bbio->orig_bio); 6021 6022 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6023 bio->bi_iter.bi_sector = logical >> 9; 6024 bio->bi_error = -EIO; 6025 btrfs_end_bbio(bbio, bio); 6026 } 6027 } 6028 6029 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 6030 int mirror_num, int async_submit) 6031 { 6032 struct btrfs_device *dev; 6033 struct bio *first_bio = bio; 6034 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6035 u64 length = 0; 6036 u64 map_length; 6037 int ret; 6038 int dev_nr; 6039 int total_devs; 6040 struct btrfs_bio *bbio = NULL; 6041 6042 length = bio->bi_iter.bi_size; 6043 map_length = length; 6044 6045 btrfs_bio_counter_inc_blocked(root->fs_info); 6046 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 6047 mirror_num, 1); 6048 if (ret) { 6049 btrfs_bio_counter_dec(root->fs_info); 6050 return ret; 6051 } 6052 6053 total_devs = bbio->num_stripes; 6054 bbio->orig_bio = first_bio; 6055 bbio->private = first_bio->bi_private; 6056 bbio->end_io = first_bio->bi_end_io; 6057 bbio->fs_info = root->fs_info; 6058 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6059 6060 if (bbio->raid_map) { 6061 /* In this case, map_length has been set to the length of 6062 a single stripe; not the whole write */ 6063 if (rw & WRITE) { 6064 ret = raid56_parity_write(root, bio, bbio, map_length); 6065 } else { 6066 ret = raid56_parity_recover(root, bio, bbio, map_length, 6067 mirror_num, 1); 6068 } 6069 6070 btrfs_bio_counter_dec(root->fs_info); 6071 return ret; 6072 } 6073 6074 if (map_length < length) { 6075 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 6076 logical, length, map_length); 6077 BUG(); 6078 } 6079 6080 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6081 dev = bbio->stripes[dev_nr].dev; 6082 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 6083 bbio_error(bbio, first_bio, logical); 6084 continue; 6085 } 6086 6087 if (dev_nr < total_devs - 1) { 6088 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 6089 BUG_ON(!bio); /* -ENOMEM */ 6090 } else 6091 bio = first_bio; 6092 6093 submit_stripe_bio(root, bbio, bio, 6094 bbio->stripes[dev_nr].physical, dev_nr, rw, 6095 async_submit); 6096 } 6097 btrfs_bio_counter_dec(root->fs_info); 6098 return 0; 6099 } 6100 6101 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6102 u8 *uuid, u8 *fsid) 6103 { 6104 struct btrfs_device *device; 6105 struct btrfs_fs_devices *cur_devices; 6106 6107 cur_devices = fs_info->fs_devices; 6108 while (cur_devices) { 6109 if (!fsid || 6110 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 6111 device = __find_device(&cur_devices->devices, 6112 devid, uuid); 6113 if (device) 6114 return device; 6115 } 6116 cur_devices = cur_devices->seed; 6117 } 6118 return NULL; 6119 } 6120 6121 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 6122 struct btrfs_fs_devices *fs_devices, 6123 u64 devid, u8 *dev_uuid) 6124 { 6125 struct btrfs_device *device; 6126 6127 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6128 if (IS_ERR(device)) 6129 return NULL; 6130 6131 list_add(&device->dev_list, &fs_devices->devices); 6132 device->fs_devices = fs_devices; 6133 fs_devices->num_devices++; 6134 6135 device->missing = 1; 6136 fs_devices->missing_devices++; 6137 6138 return device; 6139 } 6140 6141 /** 6142 * btrfs_alloc_device - allocate struct btrfs_device 6143 * @fs_info: used only for generating a new devid, can be NULL if 6144 * devid is provided (i.e. @devid != NULL). 6145 * @devid: a pointer to devid for this device. If NULL a new devid 6146 * is generated. 6147 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6148 * is generated. 6149 * 6150 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6151 * on error. Returned struct is not linked onto any lists and can be 6152 * destroyed with kfree() right away. 6153 */ 6154 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6155 const u64 *devid, 6156 const u8 *uuid) 6157 { 6158 struct btrfs_device *dev; 6159 u64 tmp; 6160 6161 if (WARN_ON(!devid && !fs_info)) 6162 return ERR_PTR(-EINVAL); 6163 6164 dev = __alloc_device(); 6165 if (IS_ERR(dev)) 6166 return dev; 6167 6168 if (devid) 6169 tmp = *devid; 6170 else { 6171 int ret; 6172 6173 ret = find_next_devid(fs_info, &tmp); 6174 if (ret) { 6175 kfree(dev); 6176 return ERR_PTR(ret); 6177 } 6178 } 6179 dev->devid = tmp; 6180 6181 if (uuid) 6182 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6183 else 6184 generate_random_uuid(dev->uuid); 6185 6186 btrfs_init_work(&dev->work, btrfs_submit_helper, 6187 pending_bios_fn, NULL, NULL); 6188 6189 return dev; 6190 } 6191 6192 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 6193 struct extent_buffer *leaf, 6194 struct btrfs_chunk *chunk) 6195 { 6196 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6197 struct map_lookup *map; 6198 struct extent_map *em; 6199 u64 logical; 6200 u64 length; 6201 u64 devid; 6202 u8 uuid[BTRFS_UUID_SIZE]; 6203 int num_stripes; 6204 int ret; 6205 int i; 6206 6207 logical = key->offset; 6208 length = btrfs_chunk_length(leaf, chunk); 6209 6210 read_lock(&map_tree->map_tree.lock); 6211 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6212 read_unlock(&map_tree->map_tree.lock); 6213 6214 /* already mapped? */ 6215 if (em && em->start <= logical && em->start + em->len > logical) { 6216 free_extent_map(em); 6217 return 0; 6218 } else if (em) { 6219 free_extent_map(em); 6220 } 6221 6222 em = alloc_extent_map(); 6223 if (!em) 6224 return -ENOMEM; 6225 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6226 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6227 if (!map) { 6228 free_extent_map(em); 6229 return -ENOMEM; 6230 } 6231 6232 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6233 em->bdev = (struct block_device *)map; 6234 em->start = logical; 6235 em->len = length; 6236 em->orig_start = 0; 6237 em->block_start = 0; 6238 em->block_len = em->len; 6239 6240 map->num_stripes = num_stripes; 6241 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6242 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6243 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6244 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6245 map->type = btrfs_chunk_type(leaf, chunk); 6246 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6247 for (i = 0; i < num_stripes; i++) { 6248 map->stripes[i].physical = 6249 btrfs_stripe_offset_nr(leaf, chunk, i); 6250 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6251 read_extent_buffer(leaf, uuid, (unsigned long) 6252 btrfs_stripe_dev_uuid_nr(chunk, i), 6253 BTRFS_UUID_SIZE); 6254 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 6255 uuid, NULL); 6256 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 6257 free_extent_map(em); 6258 return -EIO; 6259 } 6260 if (!map->stripes[i].dev) { 6261 map->stripes[i].dev = 6262 add_missing_dev(root, root->fs_info->fs_devices, 6263 devid, uuid); 6264 if (!map->stripes[i].dev) { 6265 free_extent_map(em); 6266 return -EIO; 6267 } 6268 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing", 6269 devid, uuid); 6270 } 6271 map->stripes[i].dev->in_fs_metadata = 1; 6272 } 6273 6274 write_lock(&map_tree->map_tree.lock); 6275 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6276 write_unlock(&map_tree->map_tree.lock); 6277 BUG_ON(ret); /* Tree corruption */ 6278 free_extent_map(em); 6279 6280 return 0; 6281 } 6282 6283 static void fill_device_from_item(struct extent_buffer *leaf, 6284 struct btrfs_dev_item *dev_item, 6285 struct btrfs_device *device) 6286 { 6287 unsigned long ptr; 6288 6289 device->devid = btrfs_device_id(leaf, dev_item); 6290 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6291 device->total_bytes = device->disk_total_bytes; 6292 device->commit_total_bytes = device->disk_total_bytes; 6293 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6294 device->commit_bytes_used = device->bytes_used; 6295 device->type = btrfs_device_type(leaf, dev_item); 6296 device->io_align = btrfs_device_io_align(leaf, dev_item); 6297 device->io_width = btrfs_device_io_width(leaf, dev_item); 6298 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6299 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6300 device->is_tgtdev_for_dev_replace = 0; 6301 6302 ptr = btrfs_device_uuid(dev_item); 6303 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6304 } 6305 6306 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root, 6307 u8 *fsid) 6308 { 6309 struct btrfs_fs_devices *fs_devices; 6310 int ret; 6311 6312 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6313 6314 fs_devices = root->fs_info->fs_devices->seed; 6315 while (fs_devices) { 6316 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6317 return fs_devices; 6318 6319 fs_devices = fs_devices->seed; 6320 } 6321 6322 fs_devices = find_fsid(fsid); 6323 if (!fs_devices) { 6324 if (!btrfs_test_opt(root, DEGRADED)) 6325 return ERR_PTR(-ENOENT); 6326 6327 fs_devices = alloc_fs_devices(fsid); 6328 if (IS_ERR(fs_devices)) 6329 return fs_devices; 6330 6331 fs_devices->seeding = 1; 6332 fs_devices->opened = 1; 6333 return fs_devices; 6334 } 6335 6336 fs_devices = clone_fs_devices(fs_devices); 6337 if (IS_ERR(fs_devices)) 6338 return fs_devices; 6339 6340 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6341 root->fs_info->bdev_holder); 6342 if (ret) { 6343 free_fs_devices(fs_devices); 6344 fs_devices = ERR_PTR(ret); 6345 goto out; 6346 } 6347 6348 if (!fs_devices->seeding) { 6349 __btrfs_close_devices(fs_devices); 6350 free_fs_devices(fs_devices); 6351 fs_devices = ERR_PTR(-EINVAL); 6352 goto out; 6353 } 6354 6355 fs_devices->seed = root->fs_info->fs_devices->seed; 6356 root->fs_info->fs_devices->seed = fs_devices; 6357 out: 6358 return fs_devices; 6359 } 6360 6361 static int read_one_dev(struct btrfs_root *root, 6362 struct extent_buffer *leaf, 6363 struct btrfs_dev_item *dev_item) 6364 { 6365 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6366 struct btrfs_device *device; 6367 u64 devid; 6368 int ret; 6369 u8 fs_uuid[BTRFS_UUID_SIZE]; 6370 u8 dev_uuid[BTRFS_UUID_SIZE]; 6371 6372 devid = btrfs_device_id(leaf, dev_item); 6373 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6374 BTRFS_UUID_SIZE); 6375 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6376 BTRFS_UUID_SIZE); 6377 6378 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6379 fs_devices = open_seed_devices(root, fs_uuid); 6380 if (IS_ERR(fs_devices)) 6381 return PTR_ERR(fs_devices); 6382 } 6383 6384 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6385 if (!device) { 6386 if (!btrfs_test_opt(root, DEGRADED)) 6387 return -EIO; 6388 6389 device = add_missing_dev(root, fs_devices, devid, dev_uuid); 6390 if (!device) 6391 return -ENOMEM; 6392 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing", 6393 devid, dev_uuid); 6394 } else { 6395 if (!device->bdev && !btrfs_test_opt(root, DEGRADED)) 6396 return -EIO; 6397 6398 if(!device->bdev && !device->missing) { 6399 /* 6400 * this happens when a device that was properly setup 6401 * in the device info lists suddenly goes bad. 6402 * device->bdev is NULL, and so we have to set 6403 * device->missing to one here 6404 */ 6405 device->fs_devices->missing_devices++; 6406 device->missing = 1; 6407 } 6408 6409 /* Move the device to its own fs_devices */ 6410 if (device->fs_devices != fs_devices) { 6411 ASSERT(device->missing); 6412 6413 list_move(&device->dev_list, &fs_devices->devices); 6414 device->fs_devices->num_devices--; 6415 fs_devices->num_devices++; 6416 6417 device->fs_devices->missing_devices--; 6418 fs_devices->missing_devices++; 6419 6420 device->fs_devices = fs_devices; 6421 } 6422 } 6423 6424 if (device->fs_devices != root->fs_info->fs_devices) { 6425 BUG_ON(device->writeable); 6426 if (device->generation != 6427 btrfs_device_generation(leaf, dev_item)) 6428 return -EINVAL; 6429 } 6430 6431 fill_device_from_item(leaf, dev_item, device); 6432 device->in_fs_metadata = 1; 6433 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6434 device->fs_devices->total_rw_bytes += device->total_bytes; 6435 spin_lock(&root->fs_info->free_chunk_lock); 6436 root->fs_info->free_chunk_space += device->total_bytes - 6437 device->bytes_used; 6438 spin_unlock(&root->fs_info->free_chunk_lock); 6439 } 6440 ret = 0; 6441 return ret; 6442 } 6443 6444 int btrfs_read_sys_array(struct btrfs_root *root) 6445 { 6446 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6447 struct extent_buffer *sb; 6448 struct btrfs_disk_key *disk_key; 6449 struct btrfs_chunk *chunk; 6450 u8 *array_ptr; 6451 unsigned long sb_array_offset; 6452 int ret = 0; 6453 u32 num_stripes; 6454 u32 array_size; 6455 u32 len = 0; 6456 u32 cur_offset; 6457 struct btrfs_key key; 6458 6459 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize); 6460 /* 6461 * This will create extent buffer of nodesize, superblock size is 6462 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6463 * overallocate but we can keep it as-is, only the first page is used. 6464 */ 6465 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET); 6466 if (!sb) 6467 return -ENOMEM; 6468 btrfs_set_buffer_uptodate(sb); 6469 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6470 /* 6471 * The sb extent buffer is artifical and just used to read the system array. 6472 * btrfs_set_buffer_uptodate() call does not properly mark all it's 6473 * pages up-to-date when the page is larger: extent does not cover the 6474 * whole page and consequently check_page_uptodate does not find all 6475 * the page's extents up-to-date (the hole beyond sb), 6476 * write_extent_buffer then triggers a WARN_ON. 6477 * 6478 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6479 * but sb spans only this function. Add an explicit SetPageUptodate call 6480 * to silence the warning eg. on PowerPC 64. 6481 */ 6482 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 6483 SetPageUptodate(sb->pages[0]); 6484 6485 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6486 array_size = btrfs_super_sys_array_size(super_copy); 6487 6488 array_ptr = super_copy->sys_chunk_array; 6489 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6490 cur_offset = 0; 6491 6492 while (cur_offset < array_size) { 6493 disk_key = (struct btrfs_disk_key *)array_ptr; 6494 len = sizeof(*disk_key); 6495 if (cur_offset + len > array_size) 6496 goto out_short_read; 6497 6498 btrfs_disk_key_to_cpu(&key, disk_key); 6499 6500 array_ptr += len; 6501 sb_array_offset += len; 6502 cur_offset += len; 6503 6504 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6505 chunk = (struct btrfs_chunk *)sb_array_offset; 6506 /* 6507 * At least one btrfs_chunk with one stripe must be 6508 * present, exact stripe count check comes afterwards 6509 */ 6510 len = btrfs_chunk_item_size(1); 6511 if (cur_offset + len > array_size) 6512 goto out_short_read; 6513 6514 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6515 len = btrfs_chunk_item_size(num_stripes); 6516 if (cur_offset + len > array_size) 6517 goto out_short_read; 6518 6519 ret = read_one_chunk(root, &key, sb, chunk); 6520 if (ret) 6521 break; 6522 } else { 6523 ret = -EIO; 6524 break; 6525 } 6526 array_ptr += len; 6527 sb_array_offset += len; 6528 cur_offset += len; 6529 } 6530 free_extent_buffer(sb); 6531 return ret; 6532 6533 out_short_read: 6534 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n", 6535 len, cur_offset); 6536 free_extent_buffer(sb); 6537 return -EIO; 6538 } 6539 6540 int btrfs_read_chunk_tree(struct btrfs_root *root) 6541 { 6542 struct btrfs_path *path; 6543 struct extent_buffer *leaf; 6544 struct btrfs_key key; 6545 struct btrfs_key found_key; 6546 int ret; 6547 int slot; 6548 6549 root = root->fs_info->chunk_root; 6550 6551 path = btrfs_alloc_path(); 6552 if (!path) 6553 return -ENOMEM; 6554 6555 mutex_lock(&uuid_mutex); 6556 lock_chunks(root); 6557 6558 /* 6559 * Read all device items, and then all the chunk items. All 6560 * device items are found before any chunk item (their object id 6561 * is smaller than the lowest possible object id for a chunk 6562 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6563 */ 6564 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6565 key.offset = 0; 6566 key.type = 0; 6567 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6568 if (ret < 0) 6569 goto error; 6570 while (1) { 6571 leaf = path->nodes[0]; 6572 slot = path->slots[0]; 6573 if (slot >= btrfs_header_nritems(leaf)) { 6574 ret = btrfs_next_leaf(root, path); 6575 if (ret == 0) 6576 continue; 6577 if (ret < 0) 6578 goto error; 6579 break; 6580 } 6581 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6582 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6583 struct btrfs_dev_item *dev_item; 6584 dev_item = btrfs_item_ptr(leaf, slot, 6585 struct btrfs_dev_item); 6586 ret = read_one_dev(root, leaf, dev_item); 6587 if (ret) 6588 goto error; 6589 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6590 struct btrfs_chunk *chunk; 6591 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6592 ret = read_one_chunk(root, &found_key, leaf, chunk); 6593 if (ret) 6594 goto error; 6595 } 6596 path->slots[0]++; 6597 } 6598 ret = 0; 6599 error: 6600 unlock_chunks(root); 6601 mutex_unlock(&uuid_mutex); 6602 6603 btrfs_free_path(path); 6604 return ret; 6605 } 6606 6607 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6608 { 6609 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6610 struct btrfs_device *device; 6611 6612 while (fs_devices) { 6613 mutex_lock(&fs_devices->device_list_mutex); 6614 list_for_each_entry(device, &fs_devices->devices, dev_list) 6615 device->dev_root = fs_info->dev_root; 6616 mutex_unlock(&fs_devices->device_list_mutex); 6617 6618 fs_devices = fs_devices->seed; 6619 } 6620 } 6621 6622 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6623 { 6624 int i; 6625 6626 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6627 btrfs_dev_stat_reset(dev, i); 6628 } 6629 6630 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6631 { 6632 struct btrfs_key key; 6633 struct btrfs_key found_key; 6634 struct btrfs_root *dev_root = fs_info->dev_root; 6635 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6636 struct extent_buffer *eb; 6637 int slot; 6638 int ret = 0; 6639 struct btrfs_device *device; 6640 struct btrfs_path *path = NULL; 6641 int i; 6642 6643 path = btrfs_alloc_path(); 6644 if (!path) { 6645 ret = -ENOMEM; 6646 goto out; 6647 } 6648 6649 mutex_lock(&fs_devices->device_list_mutex); 6650 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6651 int item_size; 6652 struct btrfs_dev_stats_item *ptr; 6653 6654 key.objectid = 0; 6655 key.type = BTRFS_DEV_STATS_KEY; 6656 key.offset = device->devid; 6657 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6658 if (ret) { 6659 __btrfs_reset_dev_stats(device); 6660 device->dev_stats_valid = 1; 6661 btrfs_release_path(path); 6662 continue; 6663 } 6664 slot = path->slots[0]; 6665 eb = path->nodes[0]; 6666 btrfs_item_key_to_cpu(eb, &found_key, slot); 6667 item_size = btrfs_item_size_nr(eb, slot); 6668 6669 ptr = btrfs_item_ptr(eb, slot, 6670 struct btrfs_dev_stats_item); 6671 6672 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6673 if (item_size >= (1 + i) * sizeof(__le64)) 6674 btrfs_dev_stat_set(device, i, 6675 btrfs_dev_stats_value(eb, ptr, i)); 6676 else 6677 btrfs_dev_stat_reset(device, i); 6678 } 6679 6680 device->dev_stats_valid = 1; 6681 btrfs_dev_stat_print_on_load(device); 6682 btrfs_release_path(path); 6683 } 6684 mutex_unlock(&fs_devices->device_list_mutex); 6685 6686 out: 6687 btrfs_free_path(path); 6688 return ret < 0 ? ret : 0; 6689 } 6690 6691 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6692 struct btrfs_root *dev_root, 6693 struct btrfs_device *device) 6694 { 6695 struct btrfs_path *path; 6696 struct btrfs_key key; 6697 struct extent_buffer *eb; 6698 struct btrfs_dev_stats_item *ptr; 6699 int ret; 6700 int i; 6701 6702 key.objectid = 0; 6703 key.type = BTRFS_DEV_STATS_KEY; 6704 key.offset = device->devid; 6705 6706 path = btrfs_alloc_path(); 6707 BUG_ON(!path); 6708 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6709 if (ret < 0) { 6710 btrfs_warn_in_rcu(dev_root->fs_info, 6711 "error %d while searching for dev_stats item for device %s", 6712 ret, rcu_str_deref(device->name)); 6713 goto out; 6714 } 6715 6716 if (ret == 0 && 6717 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6718 /* need to delete old one and insert a new one */ 6719 ret = btrfs_del_item(trans, dev_root, path); 6720 if (ret != 0) { 6721 btrfs_warn_in_rcu(dev_root->fs_info, 6722 "delete too small dev_stats item for device %s failed %d", 6723 rcu_str_deref(device->name), ret); 6724 goto out; 6725 } 6726 ret = 1; 6727 } 6728 6729 if (ret == 1) { 6730 /* need to insert a new item */ 6731 btrfs_release_path(path); 6732 ret = btrfs_insert_empty_item(trans, dev_root, path, 6733 &key, sizeof(*ptr)); 6734 if (ret < 0) { 6735 btrfs_warn_in_rcu(dev_root->fs_info, 6736 "insert dev_stats item for device %s failed %d", 6737 rcu_str_deref(device->name), ret); 6738 goto out; 6739 } 6740 } 6741 6742 eb = path->nodes[0]; 6743 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6744 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6745 btrfs_set_dev_stats_value(eb, ptr, i, 6746 btrfs_dev_stat_read(device, i)); 6747 btrfs_mark_buffer_dirty(eb); 6748 6749 out: 6750 btrfs_free_path(path); 6751 return ret; 6752 } 6753 6754 /* 6755 * called from commit_transaction. Writes all changed device stats to disk. 6756 */ 6757 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6758 struct btrfs_fs_info *fs_info) 6759 { 6760 struct btrfs_root *dev_root = fs_info->dev_root; 6761 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6762 struct btrfs_device *device; 6763 int stats_cnt; 6764 int ret = 0; 6765 6766 mutex_lock(&fs_devices->device_list_mutex); 6767 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6768 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 6769 continue; 6770 6771 stats_cnt = atomic_read(&device->dev_stats_ccnt); 6772 ret = update_dev_stat_item(trans, dev_root, device); 6773 if (!ret) 6774 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 6775 } 6776 mutex_unlock(&fs_devices->device_list_mutex); 6777 6778 return ret; 6779 } 6780 6781 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6782 { 6783 btrfs_dev_stat_inc(dev, index); 6784 btrfs_dev_stat_print_on_error(dev); 6785 } 6786 6787 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6788 { 6789 if (!dev->dev_stats_valid) 6790 return; 6791 btrfs_err_rl_in_rcu(dev->dev_root->fs_info, 6792 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 6793 rcu_str_deref(dev->name), 6794 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6795 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6796 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6797 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6798 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6799 } 6800 6801 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6802 { 6803 int i; 6804 6805 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6806 if (btrfs_dev_stat_read(dev, i) != 0) 6807 break; 6808 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6809 return; /* all values == 0, suppress message */ 6810 6811 btrfs_info_in_rcu(dev->dev_root->fs_info, 6812 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 6813 rcu_str_deref(dev->name), 6814 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6815 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6816 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6817 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6818 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6819 } 6820 6821 int btrfs_get_dev_stats(struct btrfs_root *root, 6822 struct btrfs_ioctl_get_dev_stats *stats) 6823 { 6824 struct btrfs_device *dev; 6825 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6826 int i; 6827 6828 mutex_lock(&fs_devices->device_list_mutex); 6829 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6830 mutex_unlock(&fs_devices->device_list_mutex); 6831 6832 if (!dev) { 6833 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 6834 return -ENODEV; 6835 } else if (!dev->dev_stats_valid) { 6836 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 6837 return -ENODEV; 6838 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6839 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6840 if (stats->nr_items > i) 6841 stats->values[i] = 6842 btrfs_dev_stat_read_and_reset(dev, i); 6843 else 6844 btrfs_dev_stat_reset(dev, i); 6845 } 6846 } else { 6847 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6848 if (stats->nr_items > i) 6849 stats->values[i] = btrfs_dev_stat_read(dev, i); 6850 } 6851 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6852 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6853 return 0; 6854 } 6855 6856 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path) 6857 { 6858 struct buffer_head *bh; 6859 struct btrfs_super_block *disk_super; 6860 int copy_num; 6861 6862 if (!bdev) 6863 return; 6864 6865 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 6866 copy_num++) { 6867 6868 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 6869 continue; 6870 6871 disk_super = (struct btrfs_super_block *)bh->b_data; 6872 6873 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6874 set_buffer_dirty(bh); 6875 sync_dirty_buffer(bh); 6876 brelse(bh); 6877 } 6878 6879 /* Notify udev that device has changed */ 6880 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 6881 6882 /* Update ctime/mtime for device path for libblkid */ 6883 update_dev_time(device_path); 6884 } 6885 6886 /* 6887 * Update the size of all devices, which is used for writing out the 6888 * super blocks. 6889 */ 6890 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 6891 { 6892 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6893 struct btrfs_device *curr, *next; 6894 6895 if (list_empty(&fs_devices->resized_devices)) 6896 return; 6897 6898 mutex_lock(&fs_devices->device_list_mutex); 6899 lock_chunks(fs_info->dev_root); 6900 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 6901 resized_list) { 6902 list_del_init(&curr->resized_list); 6903 curr->commit_total_bytes = curr->disk_total_bytes; 6904 } 6905 unlock_chunks(fs_info->dev_root); 6906 mutex_unlock(&fs_devices->device_list_mutex); 6907 } 6908 6909 /* Must be invoked during the transaction commit */ 6910 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root, 6911 struct btrfs_transaction *transaction) 6912 { 6913 struct extent_map *em; 6914 struct map_lookup *map; 6915 struct btrfs_device *dev; 6916 int i; 6917 6918 if (list_empty(&transaction->pending_chunks)) 6919 return; 6920 6921 /* In order to kick the device replace finish process */ 6922 lock_chunks(root); 6923 list_for_each_entry(em, &transaction->pending_chunks, list) { 6924 map = (struct map_lookup *)em->bdev; 6925 6926 for (i = 0; i < map->num_stripes; i++) { 6927 dev = map->stripes[i].dev; 6928 dev->commit_bytes_used = dev->bytes_used; 6929 } 6930 } 6931 unlock_chunks(root); 6932 } 6933 6934 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 6935 { 6936 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6937 while (fs_devices) { 6938 fs_devices->fs_info = fs_info; 6939 fs_devices = fs_devices->seed; 6940 } 6941 } 6942 6943 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 6944 { 6945 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6946 while (fs_devices) { 6947 fs_devices->fs_info = NULL; 6948 fs_devices = fs_devices->seed; 6949 } 6950 } 6951 6952 void btrfs_close_one_device(struct btrfs_device *device) 6953 { 6954 struct btrfs_fs_devices *fs_devices = device->fs_devices; 6955 struct btrfs_device *new_device; 6956 struct rcu_string *name; 6957 6958 if (device->bdev) 6959 fs_devices->open_devices--; 6960 6961 if (device->writeable && 6962 device->devid != BTRFS_DEV_REPLACE_DEVID) { 6963 list_del_init(&device->dev_alloc_list); 6964 fs_devices->rw_devices--; 6965 } 6966 6967 if (device->missing) 6968 fs_devices->missing_devices--; 6969 6970 new_device = btrfs_alloc_device(NULL, &device->devid, 6971 device->uuid); 6972 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 6973 6974 /* Safe because we are under uuid_mutex */ 6975 if (device->name) { 6976 name = rcu_string_strdup(device->name->str, GFP_NOFS); 6977 BUG_ON(!name); /* -ENOMEM */ 6978 rcu_assign_pointer(new_device->name, name); 6979 } 6980 6981 list_replace_rcu(&device->dev_list, &new_device->dev_list); 6982 new_device->fs_devices = device->fs_devices; 6983 6984 call_rcu(&device->rcu, free_device); 6985 } 6986