xref: /openbmc/linux/fs/btrfs/volumes.c (revision a7b8e39c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35 #include "zoned.h"
36 
37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
38 					 BTRFS_BLOCK_GROUP_RAID10 | \
39 					 BTRFS_BLOCK_GROUP_RAID56_MASK)
40 
41 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
42 	[BTRFS_RAID_RAID10] = {
43 		.sub_stripes	= 2,
44 		.dev_stripes	= 1,
45 		.devs_max	= 0,	/* 0 == as many as possible */
46 		.devs_min	= 2,
47 		.tolerated_failures = 1,
48 		.devs_increment	= 2,
49 		.ncopies	= 2,
50 		.nparity        = 0,
51 		.raid_name	= "raid10",
52 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
53 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 		.nparity        = 0,
64 		.raid_name	= "raid1",
65 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
66 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
67 	},
68 	[BTRFS_RAID_RAID1C3] = {
69 		.sub_stripes	= 1,
70 		.dev_stripes	= 1,
71 		.devs_max	= 3,
72 		.devs_min	= 3,
73 		.tolerated_failures = 2,
74 		.devs_increment	= 3,
75 		.ncopies	= 3,
76 		.nparity        = 0,
77 		.raid_name	= "raid1c3",
78 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
79 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
80 	},
81 	[BTRFS_RAID_RAID1C4] = {
82 		.sub_stripes	= 1,
83 		.dev_stripes	= 1,
84 		.devs_max	= 4,
85 		.devs_min	= 4,
86 		.tolerated_failures = 3,
87 		.devs_increment	= 4,
88 		.ncopies	= 4,
89 		.nparity        = 0,
90 		.raid_name	= "raid1c4",
91 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
92 		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
93 	},
94 	[BTRFS_RAID_DUP] = {
95 		.sub_stripes	= 1,
96 		.dev_stripes	= 2,
97 		.devs_max	= 1,
98 		.devs_min	= 1,
99 		.tolerated_failures = 0,
100 		.devs_increment	= 1,
101 		.ncopies	= 2,
102 		.nparity        = 0,
103 		.raid_name	= "dup",
104 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
105 		.mindev_error	= 0,
106 	},
107 	[BTRFS_RAID_RAID0] = {
108 		.sub_stripes	= 1,
109 		.dev_stripes	= 1,
110 		.devs_max	= 0,
111 		.devs_min	= 1,
112 		.tolerated_failures = 0,
113 		.devs_increment	= 1,
114 		.ncopies	= 1,
115 		.nparity        = 0,
116 		.raid_name	= "raid0",
117 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
118 		.mindev_error	= 0,
119 	},
120 	[BTRFS_RAID_SINGLE] = {
121 		.sub_stripes	= 1,
122 		.dev_stripes	= 1,
123 		.devs_max	= 1,
124 		.devs_min	= 1,
125 		.tolerated_failures = 0,
126 		.devs_increment	= 1,
127 		.ncopies	= 1,
128 		.nparity        = 0,
129 		.raid_name	= "single",
130 		.bg_flag	= 0,
131 		.mindev_error	= 0,
132 	},
133 	[BTRFS_RAID_RAID5] = {
134 		.sub_stripes	= 1,
135 		.dev_stripes	= 1,
136 		.devs_max	= 0,
137 		.devs_min	= 2,
138 		.tolerated_failures = 1,
139 		.devs_increment	= 1,
140 		.ncopies	= 1,
141 		.nparity        = 1,
142 		.raid_name	= "raid5",
143 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
144 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
145 	},
146 	[BTRFS_RAID_RAID6] = {
147 		.sub_stripes	= 1,
148 		.dev_stripes	= 1,
149 		.devs_max	= 0,
150 		.devs_min	= 3,
151 		.tolerated_failures = 2,
152 		.devs_increment	= 1,
153 		.ncopies	= 1,
154 		.nparity        = 2,
155 		.raid_name	= "raid6",
156 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
157 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
158 	},
159 };
160 
161 /*
162  * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
163  * can be used as index to access btrfs_raid_array[].
164  */
165 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
166 {
167 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
168 		return BTRFS_RAID_RAID10;
169 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
170 		return BTRFS_RAID_RAID1;
171 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
172 		return BTRFS_RAID_RAID1C3;
173 	else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
174 		return BTRFS_RAID_RAID1C4;
175 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
176 		return BTRFS_RAID_DUP;
177 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
178 		return BTRFS_RAID_RAID0;
179 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
180 		return BTRFS_RAID_RAID5;
181 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
182 		return BTRFS_RAID_RAID6;
183 
184 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
185 }
186 
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 	const int index = btrfs_bg_flags_to_raid_index(flags);
190 
191 	if (index >= BTRFS_NR_RAID_TYPES)
192 		return NULL;
193 
194 	return btrfs_raid_array[index].raid_name;
195 }
196 
197 /*
198  * Fill @buf with textual description of @bg_flags, no more than @size_buf
199  * bytes including terminating null byte.
200  */
201 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
202 {
203 	int i;
204 	int ret;
205 	char *bp = buf;
206 	u64 flags = bg_flags;
207 	u32 size_bp = size_buf;
208 
209 	if (!flags) {
210 		strcpy(bp, "NONE");
211 		return;
212 	}
213 
214 #define DESCRIBE_FLAG(flag, desc)						\
215 	do {								\
216 		if (flags & (flag)) {					\
217 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
218 			if (ret < 0 || ret >= size_bp)			\
219 				goto out_overflow;			\
220 			size_bp -= ret;					\
221 			bp += ret;					\
222 			flags &= ~(flag);				\
223 		}							\
224 	} while (0)
225 
226 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
227 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
228 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
229 
230 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
231 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
232 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
233 			      btrfs_raid_array[i].raid_name);
234 #undef DESCRIBE_FLAG
235 
236 	if (flags) {
237 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
238 		size_bp -= ret;
239 	}
240 
241 	if (size_bp < size_buf)
242 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
243 
244 	/*
245 	 * The text is trimmed, it's up to the caller to provide sufficiently
246 	 * large buffer
247 	 */
248 out_overflow:;
249 }
250 
251 static int init_first_rw_device(struct btrfs_trans_handle *trans);
252 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
253 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
254 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
255 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
256 			     enum btrfs_map_op op,
257 			     u64 logical, u64 *length,
258 			     struct btrfs_io_context **bioc_ret,
259 			     int mirror_num, int need_raid_map);
260 
261 /*
262  * Device locking
263  * ==============
264  *
265  * There are several mutexes that protect manipulation of devices and low-level
266  * structures like chunks but not block groups, extents or files
267  *
268  * uuid_mutex (global lock)
269  * ------------------------
270  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
271  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
272  * device) or requested by the device= mount option
273  *
274  * the mutex can be very coarse and can cover long-running operations
275  *
276  * protects: updates to fs_devices counters like missing devices, rw devices,
277  * seeding, structure cloning, opening/closing devices at mount/umount time
278  *
279  * global::fs_devs - add, remove, updates to the global list
280  *
281  * does not protect: manipulation of the fs_devices::devices list in general
282  * but in mount context it could be used to exclude list modifications by eg.
283  * scan ioctl
284  *
285  * btrfs_device::name - renames (write side), read is RCU
286  *
287  * fs_devices::device_list_mutex (per-fs, with RCU)
288  * ------------------------------------------------
289  * protects updates to fs_devices::devices, ie. adding and deleting
290  *
291  * simple list traversal with read-only actions can be done with RCU protection
292  *
293  * may be used to exclude some operations from running concurrently without any
294  * modifications to the list (see write_all_supers)
295  *
296  * Is not required at mount and close times, because our device list is
297  * protected by the uuid_mutex at that point.
298  *
299  * balance_mutex
300  * -------------
301  * protects balance structures (status, state) and context accessed from
302  * several places (internally, ioctl)
303  *
304  * chunk_mutex
305  * -----------
306  * protects chunks, adding or removing during allocation, trim or when a new
307  * device is added/removed. Additionally it also protects post_commit_list of
308  * individual devices, since they can be added to the transaction's
309  * post_commit_list only with chunk_mutex held.
310  *
311  * cleaner_mutex
312  * -------------
313  * a big lock that is held by the cleaner thread and prevents running subvolume
314  * cleaning together with relocation or delayed iputs
315  *
316  *
317  * Lock nesting
318  * ============
319  *
320  * uuid_mutex
321  *   device_list_mutex
322  *     chunk_mutex
323  *   balance_mutex
324  *
325  *
326  * Exclusive operations
327  * ====================
328  *
329  * Maintains the exclusivity of the following operations that apply to the
330  * whole filesystem and cannot run in parallel.
331  *
332  * - Balance (*)
333  * - Device add
334  * - Device remove
335  * - Device replace (*)
336  * - Resize
337  *
338  * The device operations (as above) can be in one of the following states:
339  *
340  * - Running state
341  * - Paused state
342  * - Completed state
343  *
344  * Only device operations marked with (*) can go into the Paused state for the
345  * following reasons:
346  *
347  * - ioctl (only Balance can be Paused through ioctl)
348  * - filesystem remounted as read-only
349  * - filesystem unmounted and mounted as read-only
350  * - system power-cycle and filesystem mounted as read-only
351  * - filesystem or device errors leading to forced read-only
352  *
353  * The status of exclusive operation is set and cleared atomically.
354  * During the course of Paused state, fs_info::exclusive_operation remains set.
355  * A device operation in Paused or Running state can be canceled or resumed
356  * either by ioctl (Balance only) or when remounted as read-write.
357  * The exclusive status is cleared when the device operation is canceled or
358  * completed.
359  */
360 
361 DEFINE_MUTEX(uuid_mutex);
362 static LIST_HEAD(fs_uuids);
363 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
364 {
365 	return &fs_uuids;
366 }
367 
368 /*
369  * alloc_fs_devices - allocate struct btrfs_fs_devices
370  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
371  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
372  *
373  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
374  * The returned struct is not linked onto any lists and can be destroyed with
375  * kfree() right away.
376  */
377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
378 						 const u8 *metadata_fsid)
379 {
380 	struct btrfs_fs_devices *fs_devs;
381 
382 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
383 	if (!fs_devs)
384 		return ERR_PTR(-ENOMEM);
385 
386 	mutex_init(&fs_devs->device_list_mutex);
387 
388 	INIT_LIST_HEAD(&fs_devs->devices);
389 	INIT_LIST_HEAD(&fs_devs->alloc_list);
390 	INIT_LIST_HEAD(&fs_devs->fs_list);
391 	INIT_LIST_HEAD(&fs_devs->seed_list);
392 	if (fsid)
393 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
394 
395 	if (metadata_fsid)
396 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
397 	else if (fsid)
398 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 
400 	return fs_devs;
401 }
402 
403 void btrfs_free_device(struct btrfs_device *device)
404 {
405 	WARN_ON(!list_empty(&device->post_commit_list));
406 	rcu_string_free(device->name);
407 	extent_io_tree_release(&device->alloc_state);
408 	bio_put(device->flush_bio);
409 	btrfs_destroy_dev_zone_info(device);
410 	kfree(device);
411 }
412 
413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414 {
415 	struct btrfs_device *device;
416 	WARN_ON(fs_devices->opened);
417 	while (!list_empty(&fs_devices->devices)) {
418 		device = list_entry(fs_devices->devices.next,
419 				    struct btrfs_device, dev_list);
420 		list_del(&device->dev_list);
421 		btrfs_free_device(device);
422 	}
423 	kfree(fs_devices);
424 }
425 
426 void __exit btrfs_cleanup_fs_uuids(void)
427 {
428 	struct btrfs_fs_devices *fs_devices;
429 
430 	while (!list_empty(&fs_uuids)) {
431 		fs_devices = list_entry(fs_uuids.next,
432 					struct btrfs_fs_devices, fs_list);
433 		list_del(&fs_devices->fs_list);
434 		free_fs_devices(fs_devices);
435 	}
436 }
437 
438 static noinline struct btrfs_fs_devices *find_fsid(
439 		const u8 *fsid, const u8 *metadata_fsid)
440 {
441 	struct btrfs_fs_devices *fs_devices;
442 
443 	ASSERT(fsid);
444 
445 	/* Handle non-split brain cases */
446 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
447 		if (metadata_fsid) {
448 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
449 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
450 				      BTRFS_FSID_SIZE) == 0)
451 				return fs_devices;
452 		} else {
453 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
454 				return fs_devices;
455 		}
456 	}
457 	return NULL;
458 }
459 
460 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
461 				struct btrfs_super_block *disk_super)
462 {
463 
464 	struct btrfs_fs_devices *fs_devices;
465 
466 	/*
467 	 * Handle scanned device having completed its fsid change but
468 	 * belonging to a fs_devices that was created by first scanning
469 	 * a device which didn't have its fsid/metadata_uuid changed
470 	 * at all and the CHANGING_FSID_V2 flag set.
471 	 */
472 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
473 		if (fs_devices->fsid_change &&
474 		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
475 			   BTRFS_FSID_SIZE) == 0 &&
476 		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
477 			   BTRFS_FSID_SIZE) == 0) {
478 			return fs_devices;
479 		}
480 	}
481 	/*
482 	 * Handle scanned device having completed its fsid change but
483 	 * belonging to a fs_devices that was created by a device that
484 	 * has an outdated pair of fsid/metadata_uuid and
485 	 * CHANGING_FSID_V2 flag set.
486 	 */
487 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
488 		if (fs_devices->fsid_change &&
489 		    memcmp(fs_devices->metadata_uuid,
490 			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
491 		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
492 			   BTRFS_FSID_SIZE) == 0) {
493 			return fs_devices;
494 		}
495 	}
496 
497 	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
498 }
499 
500 
501 static int
502 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
503 		      int flush, struct block_device **bdev,
504 		      struct btrfs_super_block **disk_super)
505 {
506 	int ret;
507 
508 	*bdev = blkdev_get_by_path(device_path, flags, holder);
509 
510 	if (IS_ERR(*bdev)) {
511 		ret = PTR_ERR(*bdev);
512 		goto error;
513 	}
514 
515 	if (flush)
516 		sync_blockdev(*bdev);
517 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
518 	if (ret) {
519 		blkdev_put(*bdev, flags);
520 		goto error;
521 	}
522 	invalidate_bdev(*bdev);
523 	*disk_super = btrfs_read_dev_super(*bdev);
524 	if (IS_ERR(*disk_super)) {
525 		ret = PTR_ERR(*disk_super);
526 		blkdev_put(*bdev, flags);
527 		goto error;
528 	}
529 
530 	return 0;
531 
532 error:
533 	*bdev = NULL;
534 	return ret;
535 }
536 
537 /**
538  *  Search and remove all stale devices (which are not mounted).
539  *  When both inputs are NULL, it will search and release all stale devices.
540  *
541  *  @devt:	Optional. When provided will it release all unmounted devices
542  *		matching this devt only.
543  *  @skip_device:  Optional. Will skip this device when searching for the stale
544  *		devices.
545  *
546  *  Return:	0 for success or if @devt is 0.
547  *		-EBUSY if @devt is a mounted device.
548  *		-ENOENT if @devt does not match any device in the list.
549  */
550 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
551 {
552 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
553 	struct btrfs_device *device, *tmp_device;
554 	int ret = 0;
555 
556 	lockdep_assert_held(&uuid_mutex);
557 
558 	if (devt)
559 		ret = -ENOENT;
560 
561 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
562 
563 		mutex_lock(&fs_devices->device_list_mutex);
564 		list_for_each_entry_safe(device, tmp_device,
565 					 &fs_devices->devices, dev_list) {
566 			if (skip_device && skip_device == device)
567 				continue;
568 			if (devt && devt != device->devt)
569 				continue;
570 			if (fs_devices->opened) {
571 				/* for an already deleted device return 0 */
572 				if (devt && ret != 0)
573 					ret = -EBUSY;
574 				break;
575 			}
576 
577 			/* delete the stale device */
578 			fs_devices->num_devices--;
579 			list_del(&device->dev_list);
580 			btrfs_free_device(device);
581 
582 			ret = 0;
583 		}
584 		mutex_unlock(&fs_devices->device_list_mutex);
585 
586 		if (fs_devices->num_devices == 0) {
587 			btrfs_sysfs_remove_fsid(fs_devices);
588 			list_del(&fs_devices->fs_list);
589 			free_fs_devices(fs_devices);
590 		}
591 	}
592 
593 	return ret;
594 }
595 
596 /*
597  * This is only used on mount, and we are protected from competing things
598  * messing with our fs_devices by the uuid_mutex, thus we do not need the
599  * fs_devices->device_list_mutex here.
600  */
601 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
602 			struct btrfs_device *device, fmode_t flags,
603 			void *holder)
604 {
605 	struct block_device *bdev;
606 	struct btrfs_super_block *disk_super;
607 	u64 devid;
608 	int ret;
609 
610 	if (device->bdev)
611 		return -EINVAL;
612 	if (!device->name)
613 		return -EINVAL;
614 
615 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
616 				    &bdev, &disk_super);
617 	if (ret)
618 		return ret;
619 
620 	devid = btrfs_stack_device_id(&disk_super->dev_item);
621 	if (devid != device->devid)
622 		goto error_free_page;
623 
624 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
625 		goto error_free_page;
626 
627 	device->generation = btrfs_super_generation(disk_super);
628 
629 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
630 		if (btrfs_super_incompat_flags(disk_super) &
631 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
632 			pr_err(
633 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
634 			goto error_free_page;
635 		}
636 
637 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
638 		fs_devices->seeding = true;
639 	} else {
640 		if (bdev_read_only(bdev))
641 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
642 		else
643 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
644 	}
645 
646 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
647 		fs_devices->rotating = true;
648 
649 	device->bdev = bdev;
650 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
651 	device->mode = flags;
652 
653 	fs_devices->open_devices++;
654 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
655 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
656 		fs_devices->rw_devices++;
657 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
658 	}
659 	btrfs_release_disk_super(disk_super);
660 
661 	return 0;
662 
663 error_free_page:
664 	btrfs_release_disk_super(disk_super);
665 	blkdev_put(bdev, flags);
666 
667 	return -EINVAL;
668 }
669 
670 /*
671  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
672  * being created with a disk that has already completed its fsid change. Such
673  * disk can belong to an fs which has its FSID changed or to one which doesn't.
674  * Handle both cases here.
675  */
676 static struct btrfs_fs_devices *find_fsid_inprogress(
677 					struct btrfs_super_block *disk_super)
678 {
679 	struct btrfs_fs_devices *fs_devices;
680 
681 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
682 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
683 			   BTRFS_FSID_SIZE) != 0 &&
684 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
685 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
686 			return fs_devices;
687 		}
688 	}
689 
690 	return find_fsid(disk_super->fsid, NULL);
691 }
692 
693 
694 static struct btrfs_fs_devices *find_fsid_changed(
695 					struct btrfs_super_block *disk_super)
696 {
697 	struct btrfs_fs_devices *fs_devices;
698 
699 	/*
700 	 * Handles the case where scanned device is part of an fs that had
701 	 * multiple successful changes of FSID but currently device didn't
702 	 * observe it. Meaning our fsid will be different than theirs. We need
703 	 * to handle two subcases :
704 	 *  1 - The fs still continues to have different METADATA/FSID uuids.
705 	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
706 	 *  are equal).
707 	 */
708 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
709 		/* Changed UUIDs */
710 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
711 			   BTRFS_FSID_SIZE) != 0 &&
712 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
713 			   BTRFS_FSID_SIZE) == 0 &&
714 		    memcmp(fs_devices->fsid, disk_super->fsid,
715 			   BTRFS_FSID_SIZE) != 0)
716 			return fs_devices;
717 
718 		/* Unchanged UUIDs */
719 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720 			   BTRFS_FSID_SIZE) == 0 &&
721 		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
722 			   BTRFS_FSID_SIZE) == 0)
723 			return fs_devices;
724 	}
725 
726 	return NULL;
727 }
728 
729 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
730 				struct btrfs_super_block *disk_super)
731 {
732 	struct btrfs_fs_devices *fs_devices;
733 
734 	/*
735 	 * Handle the case where the scanned device is part of an fs whose last
736 	 * metadata UUID change reverted it to the original FSID. At the same
737 	 * time * fs_devices was first created by another constitutent device
738 	 * which didn't fully observe the operation. This results in an
739 	 * btrfs_fs_devices created with metadata/fsid different AND
740 	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
741 	 * fs_devices equal to the FSID of the disk.
742 	 */
743 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
744 		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
745 			   BTRFS_FSID_SIZE) != 0 &&
746 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
747 			   BTRFS_FSID_SIZE) == 0 &&
748 		    fs_devices->fsid_change)
749 			return fs_devices;
750 	}
751 
752 	return NULL;
753 }
754 /*
755  * Add new device to list of registered devices
756  *
757  * Returns:
758  * device pointer which was just added or updated when successful
759  * error pointer when failed
760  */
761 static noinline struct btrfs_device *device_list_add(const char *path,
762 			   struct btrfs_super_block *disk_super,
763 			   bool *new_device_added)
764 {
765 	struct btrfs_device *device;
766 	struct btrfs_fs_devices *fs_devices = NULL;
767 	struct rcu_string *name;
768 	u64 found_transid = btrfs_super_generation(disk_super);
769 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
770 	dev_t path_devt;
771 	int error;
772 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
773 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
774 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
775 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
776 
777 	error = lookup_bdev(path, &path_devt);
778 	if (error)
779 		return ERR_PTR(error);
780 
781 	if (fsid_change_in_progress) {
782 		if (!has_metadata_uuid)
783 			fs_devices = find_fsid_inprogress(disk_super);
784 		else
785 			fs_devices = find_fsid_changed(disk_super);
786 	} else if (has_metadata_uuid) {
787 		fs_devices = find_fsid_with_metadata_uuid(disk_super);
788 	} else {
789 		fs_devices = find_fsid_reverted_metadata(disk_super);
790 		if (!fs_devices)
791 			fs_devices = find_fsid(disk_super->fsid, NULL);
792 	}
793 
794 
795 	if (!fs_devices) {
796 		if (has_metadata_uuid)
797 			fs_devices = alloc_fs_devices(disk_super->fsid,
798 						      disk_super->metadata_uuid);
799 		else
800 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
801 
802 		if (IS_ERR(fs_devices))
803 			return ERR_CAST(fs_devices);
804 
805 		fs_devices->fsid_change = fsid_change_in_progress;
806 
807 		mutex_lock(&fs_devices->device_list_mutex);
808 		list_add(&fs_devices->fs_list, &fs_uuids);
809 
810 		device = NULL;
811 	} else {
812 		struct btrfs_dev_lookup_args args = {
813 			.devid = devid,
814 			.uuid = disk_super->dev_item.uuid,
815 		};
816 
817 		mutex_lock(&fs_devices->device_list_mutex);
818 		device = btrfs_find_device(fs_devices, &args);
819 
820 		/*
821 		 * If this disk has been pulled into an fs devices created by
822 		 * a device which had the CHANGING_FSID_V2 flag then replace the
823 		 * metadata_uuid/fsid values of the fs_devices.
824 		 */
825 		if (fs_devices->fsid_change &&
826 		    found_transid > fs_devices->latest_generation) {
827 			memcpy(fs_devices->fsid, disk_super->fsid,
828 					BTRFS_FSID_SIZE);
829 
830 			if (has_metadata_uuid)
831 				memcpy(fs_devices->metadata_uuid,
832 				       disk_super->metadata_uuid,
833 				       BTRFS_FSID_SIZE);
834 			else
835 				memcpy(fs_devices->metadata_uuid,
836 				       disk_super->fsid, BTRFS_FSID_SIZE);
837 
838 			fs_devices->fsid_change = false;
839 		}
840 	}
841 
842 	if (!device) {
843 		if (fs_devices->opened) {
844 			mutex_unlock(&fs_devices->device_list_mutex);
845 			return ERR_PTR(-EBUSY);
846 		}
847 
848 		device = btrfs_alloc_device(NULL, &devid,
849 					    disk_super->dev_item.uuid);
850 		if (IS_ERR(device)) {
851 			mutex_unlock(&fs_devices->device_list_mutex);
852 			/* we can safely leave the fs_devices entry around */
853 			return device;
854 		}
855 
856 		name = rcu_string_strdup(path, GFP_NOFS);
857 		if (!name) {
858 			btrfs_free_device(device);
859 			mutex_unlock(&fs_devices->device_list_mutex);
860 			return ERR_PTR(-ENOMEM);
861 		}
862 		rcu_assign_pointer(device->name, name);
863 		device->devt = path_devt;
864 
865 		list_add_rcu(&device->dev_list, &fs_devices->devices);
866 		fs_devices->num_devices++;
867 
868 		device->fs_devices = fs_devices;
869 		*new_device_added = true;
870 
871 		if (disk_super->label[0])
872 			pr_info(
873 	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
874 				disk_super->label, devid, found_transid, path,
875 				current->comm, task_pid_nr(current));
876 		else
877 			pr_info(
878 	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
879 				disk_super->fsid, devid, found_transid, path,
880 				current->comm, task_pid_nr(current));
881 
882 	} else if (!device->name || strcmp(device->name->str, path)) {
883 		/*
884 		 * When FS is already mounted.
885 		 * 1. If you are here and if the device->name is NULL that
886 		 *    means this device was missing at time of FS mount.
887 		 * 2. If you are here and if the device->name is different
888 		 *    from 'path' that means either
889 		 *      a. The same device disappeared and reappeared with
890 		 *         different name. or
891 		 *      b. The missing-disk-which-was-replaced, has
892 		 *         reappeared now.
893 		 *
894 		 * We must allow 1 and 2a above. But 2b would be a spurious
895 		 * and unintentional.
896 		 *
897 		 * Further in case of 1 and 2a above, the disk at 'path'
898 		 * would have missed some transaction when it was away and
899 		 * in case of 2a the stale bdev has to be updated as well.
900 		 * 2b must not be allowed at all time.
901 		 */
902 
903 		/*
904 		 * For now, we do allow update to btrfs_fs_device through the
905 		 * btrfs dev scan cli after FS has been mounted.  We're still
906 		 * tracking a problem where systems fail mount by subvolume id
907 		 * when we reject replacement on a mounted FS.
908 		 */
909 		if (!fs_devices->opened && found_transid < device->generation) {
910 			/*
911 			 * That is if the FS is _not_ mounted and if you
912 			 * are here, that means there is more than one
913 			 * disk with same uuid and devid.We keep the one
914 			 * with larger generation number or the last-in if
915 			 * generation are equal.
916 			 */
917 			mutex_unlock(&fs_devices->device_list_mutex);
918 			return ERR_PTR(-EEXIST);
919 		}
920 
921 		/*
922 		 * We are going to replace the device path for a given devid,
923 		 * make sure it's the same device if the device is mounted
924 		 *
925 		 * NOTE: the device->fs_info may not be reliable here so pass
926 		 * in a NULL to message helpers instead. This avoids a possible
927 		 * use-after-free when the fs_info and fs_info->sb are already
928 		 * torn down.
929 		 */
930 		if (device->bdev) {
931 			if (device->devt != path_devt) {
932 				mutex_unlock(&fs_devices->device_list_mutex);
933 				btrfs_warn_in_rcu(NULL,
934 	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 						  path, devid, found_transid,
936 						  current->comm,
937 						  task_pid_nr(current));
938 				return ERR_PTR(-EEXIST);
939 			}
940 			btrfs_info_in_rcu(NULL,
941 	"devid %llu device path %s changed to %s scanned by %s (%d)",
942 					  devid, rcu_str_deref(device->name),
943 					  path, current->comm,
944 					  task_pid_nr(current));
945 		}
946 
947 		name = rcu_string_strdup(path, GFP_NOFS);
948 		if (!name) {
949 			mutex_unlock(&fs_devices->device_list_mutex);
950 			return ERR_PTR(-ENOMEM);
951 		}
952 		rcu_string_free(device->name);
953 		rcu_assign_pointer(device->name, name);
954 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
955 			fs_devices->missing_devices--;
956 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
957 		}
958 		device->devt = path_devt;
959 	}
960 
961 	/*
962 	 * Unmount does not free the btrfs_device struct but would zero
963 	 * generation along with most of the other members. So just update
964 	 * it back. We need it to pick the disk with largest generation
965 	 * (as above).
966 	 */
967 	if (!fs_devices->opened) {
968 		device->generation = found_transid;
969 		fs_devices->latest_generation = max_t(u64, found_transid,
970 						fs_devices->latest_generation);
971 	}
972 
973 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974 
975 	mutex_unlock(&fs_devices->device_list_mutex);
976 	return device;
977 }
978 
979 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980 {
981 	struct btrfs_fs_devices *fs_devices;
982 	struct btrfs_device *device;
983 	struct btrfs_device *orig_dev;
984 	int ret = 0;
985 
986 	lockdep_assert_held(&uuid_mutex);
987 
988 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 	if (IS_ERR(fs_devices))
990 		return fs_devices;
991 
992 	fs_devices->total_devices = orig->total_devices;
993 
994 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
995 		struct rcu_string *name;
996 
997 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
998 					    orig_dev->uuid);
999 		if (IS_ERR(device)) {
1000 			ret = PTR_ERR(device);
1001 			goto error;
1002 		}
1003 
1004 		/*
1005 		 * This is ok to do without rcu read locked because we hold the
1006 		 * uuid mutex so nothing we touch in here is going to disappear.
1007 		 */
1008 		if (orig_dev->name) {
1009 			name = rcu_string_strdup(orig_dev->name->str,
1010 					GFP_KERNEL);
1011 			if (!name) {
1012 				btrfs_free_device(device);
1013 				ret = -ENOMEM;
1014 				goto error;
1015 			}
1016 			rcu_assign_pointer(device->name, name);
1017 		}
1018 
1019 		list_add(&device->dev_list, &fs_devices->devices);
1020 		device->fs_devices = fs_devices;
1021 		fs_devices->num_devices++;
1022 	}
1023 	return fs_devices;
1024 error:
1025 	free_fs_devices(fs_devices);
1026 	return ERR_PTR(ret);
1027 }
1028 
1029 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1030 				      struct btrfs_device **latest_dev)
1031 {
1032 	struct btrfs_device *device, *next;
1033 
1034 	/* This is the initialized path, it is safe to release the devices. */
1035 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1036 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1037 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1038 				      &device->dev_state) &&
1039 			    !test_bit(BTRFS_DEV_STATE_MISSING,
1040 				      &device->dev_state) &&
1041 			    (!*latest_dev ||
1042 			     device->generation > (*latest_dev)->generation)) {
1043 				*latest_dev = device;
1044 			}
1045 			continue;
1046 		}
1047 
1048 		/*
1049 		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1050 		 * in btrfs_init_dev_replace() so just continue.
1051 		 */
1052 		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1053 			continue;
1054 
1055 		if (device->bdev) {
1056 			blkdev_put(device->bdev, device->mode);
1057 			device->bdev = NULL;
1058 			fs_devices->open_devices--;
1059 		}
1060 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1061 			list_del_init(&device->dev_alloc_list);
1062 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1063 			fs_devices->rw_devices--;
1064 		}
1065 		list_del_init(&device->dev_list);
1066 		fs_devices->num_devices--;
1067 		btrfs_free_device(device);
1068 	}
1069 
1070 }
1071 
1072 /*
1073  * After we have read the system tree and know devids belonging to this
1074  * filesystem, remove the device which does not belong there.
1075  */
1076 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1077 {
1078 	struct btrfs_device *latest_dev = NULL;
1079 	struct btrfs_fs_devices *seed_dev;
1080 
1081 	mutex_lock(&uuid_mutex);
1082 	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1083 
1084 	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1085 		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1086 
1087 	fs_devices->latest_dev = latest_dev;
1088 
1089 	mutex_unlock(&uuid_mutex);
1090 }
1091 
1092 static void btrfs_close_bdev(struct btrfs_device *device)
1093 {
1094 	if (!device->bdev)
1095 		return;
1096 
1097 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1098 		sync_blockdev(device->bdev);
1099 		invalidate_bdev(device->bdev);
1100 	}
1101 
1102 	blkdev_put(device->bdev, device->mode);
1103 }
1104 
1105 static void btrfs_close_one_device(struct btrfs_device *device)
1106 {
1107 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1108 
1109 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1110 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1111 		list_del_init(&device->dev_alloc_list);
1112 		fs_devices->rw_devices--;
1113 	}
1114 
1115 	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1116 		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1117 
1118 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1119 		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1120 		fs_devices->missing_devices--;
1121 	}
1122 
1123 	btrfs_close_bdev(device);
1124 	if (device->bdev) {
1125 		fs_devices->open_devices--;
1126 		device->bdev = NULL;
1127 	}
1128 	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1129 	btrfs_destroy_dev_zone_info(device);
1130 
1131 	device->fs_info = NULL;
1132 	atomic_set(&device->dev_stats_ccnt, 0);
1133 	extent_io_tree_release(&device->alloc_state);
1134 
1135 	/*
1136 	 * Reset the flush error record. We might have a transient flush error
1137 	 * in this mount, and if so we aborted the current transaction and set
1138 	 * the fs to an error state, guaranteeing no super blocks can be further
1139 	 * committed. However that error might be transient and if we unmount the
1140 	 * filesystem and mount it again, we should allow the mount to succeed
1141 	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1142 	 * filesystem again we still get flush errors, then we will again abort
1143 	 * any transaction and set the error state, guaranteeing no commits of
1144 	 * unsafe super blocks.
1145 	 */
1146 	device->last_flush_error = 0;
1147 
1148 	/* Verify the device is back in a pristine state  */
1149 	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1150 	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1151 	ASSERT(list_empty(&device->dev_alloc_list));
1152 	ASSERT(list_empty(&device->post_commit_list));
1153 }
1154 
1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1156 {
1157 	struct btrfs_device *device, *tmp;
1158 
1159 	lockdep_assert_held(&uuid_mutex);
1160 
1161 	if (--fs_devices->opened > 0)
1162 		return;
1163 
1164 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1165 		btrfs_close_one_device(device);
1166 
1167 	WARN_ON(fs_devices->open_devices);
1168 	WARN_ON(fs_devices->rw_devices);
1169 	fs_devices->opened = 0;
1170 	fs_devices->seeding = false;
1171 	fs_devices->fs_info = NULL;
1172 }
1173 
1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1175 {
1176 	LIST_HEAD(list);
1177 	struct btrfs_fs_devices *tmp;
1178 
1179 	mutex_lock(&uuid_mutex);
1180 	close_fs_devices(fs_devices);
1181 	if (!fs_devices->opened)
1182 		list_splice_init(&fs_devices->seed_list, &list);
1183 
1184 	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1185 		close_fs_devices(fs_devices);
1186 		list_del(&fs_devices->seed_list);
1187 		free_fs_devices(fs_devices);
1188 	}
1189 	mutex_unlock(&uuid_mutex);
1190 }
1191 
1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1193 				fmode_t flags, void *holder)
1194 {
1195 	struct btrfs_device *device;
1196 	struct btrfs_device *latest_dev = NULL;
1197 	struct btrfs_device *tmp_device;
1198 
1199 	flags |= FMODE_EXCL;
1200 
1201 	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1202 				 dev_list) {
1203 		int ret;
1204 
1205 		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1206 		if (ret == 0 &&
1207 		    (!latest_dev || device->generation > latest_dev->generation)) {
1208 			latest_dev = device;
1209 		} else if (ret == -ENODATA) {
1210 			fs_devices->num_devices--;
1211 			list_del(&device->dev_list);
1212 			btrfs_free_device(device);
1213 		}
1214 	}
1215 	if (fs_devices->open_devices == 0)
1216 		return -EINVAL;
1217 
1218 	fs_devices->opened = 1;
1219 	fs_devices->latest_dev = latest_dev;
1220 	fs_devices->total_rw_bytes = 0;
1221 	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1222 	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223 
1224 	return 0;
1225 }
1226 
1227 static int devid_cmp(void *priv, const struct list_head *a,
1228 		     const struct list_head *b)
1229 {
1230 	const struct btrfs_device *dev1, *dev2;
1231 
1232 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1233 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1234 
1235 	if (dev1->devid < dev2->devid)
1236 		return -1;
1237 	else if (dev1->devid > dev2->devid)
1238 		return 1;
1239 	return 0;
1240 }
1241 
1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1243 		       fmode_t flags, void *holder)
1244 {
1245 	int ret;
1246 
1247 	lockdep_assert_held(&uuid_mutex);
1248 	/*
1249 	 * The device_list_mutex cannot be taken here in case opening the
1250 	 * underlying device takes further locks like open_mutex.
1251 	 *
1252 	 * We also don't need the lock here as this is called during mount and
1253 	 * exclusion is provided by uuid_mutex
1254 	 */
1255 
1256 	if (fs_devices->opened) {
1257 		fs_devices->opened++;
1258 		ret = 0;
1259 	} else {
1260 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1261 		ret = open_fs_devices(fs_devices, flags, holder);
1262 	}
1263 
1264 	return ret;
1265 }
1266 
1267 void btrfs_release_disk_super(struct btrfs_super_block *super)
1268 {
1269 	struct page *page = virt_to_page(super);
1270 
1271 	put_page(page);
1272 }
1273 
1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1275 						       u64 bytenr, u64 bytenr_orig)
1276 {
1277 	struct btrfs_super_block *disk_super;
1278 	struct page *page;
1279 	void *p;
1280 	pgoff_t index;
1281 
1282 	/* make sure our super fits in the device */
1283 	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1284 		return ERR_PTR(-EINVAL);
1285 
1286 	/* make sure our super fits in the page */
1287 	if (sizeof(*disk_super) > PAGE_SIZE)
1288 		return ERR_PTR(-EINVAL);
1289 
1290 	/* make sure our super doesn't straddle pages on disk */
1291 	index = bytenr >> PAGE_SHIFT;
1292 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1293 		return ERR_PTR(-EINVAL);
1294 
1295 	/* pull in the page with our super */
1296 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1297 
1298 	if (IS_ERR(page))
1299 		return ERR_CAST(page);
1300 
1301 	p = page_address(page);
1302 
1303 	/* align our pointer to the offset of the super block */
1304 	disk_super = p + offset_in_page(bytenr);
1305 
1306 	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1307 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1308 		btrfs_release_disk_super(p);
1309 		return ERR_PTR(-EINVAL);
1310 	}
1311 
1312 	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1313 		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1314 
1315 	return disk_super;
1316 }
1317 
1318 int btrfs_forget_devices(dev_t devt)
1319 {
1320 	int ret;
1321 
1322 	mutex_lock(&uuid_mutex);
1323 	ret = btrfs_free_stale_devices(devt, NULL);
1324 	mutex_unlock(&uuid_mutex);
1325 
1326 	return ret;
1327 }
1328 
1329 /*
1330  * Look for a btrfs signature on a device. This may be called out of the mount path
1331  * and we are not allowed to call set_blocksize during the scan. The superblock
1332  * is read via pagecache
1333  */
1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1335 					   void *holder)
1336 {
1337 	struct btrfs_super_block *disk_super;
1338 	bool new_device_added = false;
1339 	struct btrfs_device *device = NULL;
1340 	struct block_device *bdev;
1341 	u64 bytenr, bytenr_orig;
1342 	int ret;
1343 
1344 	lockdep_assert_held(&uuid_mutex);
1345 
1346 	/*
1347 	 * we would like to check all the supers, but that would make
1348 	 * a btrfs mount succeed after a mkfs from a different FS.
1349 	 * So, we need to add a special mount option to scan for
1350 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1351 	 */
1352 	flags |= FMODE_EXCL;
1353 
1354 	bdev = blkdev_get_by_path(path, flags, holder);
1355 	if (IS_ERR(bdev))
1356 		return ERR_CAST(bdev);
1357 
1358 	bytenr_orig = btrfs_sb_offset(0);
1359 	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1360 	if (ret) {
1361 		device = ERR_PTR(ret);
1362 		goto error_bdev_put;
1363 	}
1364 
1365 	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1366 	if (IS_ERR(disk_super)) {
1367 		device = ERR_CAST(disk_super);
1368 		goto error_bdev_put;
1369 	}
1370 
1371 	device = device_list_add(path, disk_super, &new_device_added);
1372 	if (!IS_ERR(device) && new_device_added)
1373 		btrfs_free_stale_devices(device->devt, device);
1374 
1375 	btrfs_release_disk_super(disk_super);
1376 
1377 error_bdev_put:
1378 	blkdev_put(bdev, flags);
1379 
1380 	return device;
1381 }
1382 
1383 /*
1384  * Try to find a chunk that intersects [start, start + len] range and when one
1385  * such is found, record the end of it in *start
1386  */
1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1388 				    u64 len)
1389 {
1390 	u64 physical_start, physical_end;
1391 
1392 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1393 
1394 	if (!find_first_extent_bit(&device->alloc_state, *start,
1395 				   &physical_start, &physical_end,
1396 				   CHUNK_ALLOCATED, NULL)) {
1397 
1398 		if (in_range(physical_start, *start, len) ||
1399 		    in_range(*start, physical_start,
1400 			     physical_end - physical_start)) {
1401 			*start = physical_end + 1;
1402 			return true;
1403 		}
1404 	}
1405 	return false;
1406 }
1407 
1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1409 {
1410 	switch (device->fs_devices->chunk_alloc_policy) {
1411 	case BTRFS_CHUNK_ALLOC_REGULAR:
1412 		/*
1413 		 * We don't want to overwrite the superblock on the drive nor
1414 		 * any area used by the boot loader (grub for example), so we
1415 		 * make sure to start at an offset of at least 1MB.
1416 		 */
1417 		return max_t(u64, start, SZ_1M);
1418 	case BTRFS_CHUNK_ALLOC_ZONED:
1419 		/*
1420 		 * We don't care about the starting region like regular
1421 		 * allocator, because we anyway use/reserve the first two zones
1422 		 * for superblock logging.
1423 		 */
1424 		return ALIGN(start, device->zone_info->zone_size);
1425 	default:
1426 		BUG();
1427 	}
1428 }
1429 
1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1431 					u64 *hole_start, u64 *hole_size,
1432 					u64 num_bytes)
1433 {
1434 	u64 zone_size = device->zone_info->zone_size;
1435 	u64 pos;
1436 	int ret;
1437 	bool changed = false;
1438 
1439 	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1440 
1441 	while (*hole_size > 0) {
1442 		pos = btrfs_find_allocatable_zones(device, *hole_start,
1443 						   *hole_start + *hole_size,
1444 						   num_bytes);
1445 		if (pos != *hole_start) {
1446 			*hole_size = *hole_start + *hole_size - pos;
1447 			*hole_start = pos;
1448 			changed = true;
1449 			if (*hole_size < num_bytes)
1450 				break;
1451 		}
1452 
1453 		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1454 
1455 		/* Range is ensured to be empty */
1456 		if (!ret)
1457 			return changed;
1458 
1459 		/* Given hole range was invalid (outside of device) */
1460 		if (ret == -ERANGE) {
1461 			*hole_start += *hole_size;
1462 			*hole_size = 0;
1463 			return true;
1464 		}
1465 
1466 		*hole_start += zone_size;
1467 		*hole_size -= zone_size;
1468 		changed = true;
1469 	}
1470 
1471 	return changed;
1472 }
1473 
1474 /**
1475  * dev_extent_hole_check - check if specified hole is suitable for allocation
1476  * @device:	the device which we have the hole
1477  * @hole_start: starting position of the hole
1478  * @hole_size:	the size of the hole
1479  * @num_bytes:	the size of the free space that we need
1480  *
1481  * This function may modify @hole_start and @hole_size to reflect the suitable
1482  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1483  */
1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1485 				  u64 *hole_size, u64 num_bytes)
1486 {
1487 	bool changed = false;
1488 	u64 hole_end = *hole_start + *hole_size;
1489 
1490 	for (;;) {
1491 		/*
1492 		 * Check before we set max_hole_start, otherwise we could end up
1493 		 * sending back this offset anyway.
1494 		 */
1495 		if (contains_pending_extent(device, hole_start, *hole_size)) {
1496 			if (hole_end >= *hole_start)
1497 				*hole_size = hole_end - *hole_start;
1498 			else
1499 				*hole_size = 0;
1500 			changed = true;
1501 		}
1502 
1503 		switch (device->fs_devices->chunk_alloc_policy) {
1504 		case BTRFS_CHUNK_ALLOC_REGULAR:
1505 			/* No extra check */
1506 			break;
1507 		case BTRFS_CHUNK_ALLOC_ZONED:
1508 			if (dev_extent_hole_check_zoned(device, hole_start,
1509 							hole_size, num_bytes)) {
1510 				changed = true;
1511 				/*
1512 				 * The changed hole can contain pending extent.
1513 				 * Loop again to check that.
1514 				 */
1515 				continue;
1516 			}
1517 			break;
1518 		default:
1519 			BUG();
1520 		}
1521 
1522 		break;
1523 	}
1524 
1525 	return changed;
1526 }
1527 
1528 /*
1529  * find_free_dev_extent_start - find free space in the specified device
1530  * @device:	  the device which we search the free space in
1531  * @num_bytes:	  the size of the free space that we need
1532  * @search_start: the position from which to begin the search
1533  * @start:	  store the start of the free space.
1534  * @len:	  the size of the free space. that we find, or the size
1535  *		  of the max free space if we don't find suitable free space
1536  *
1537  * this uses a pretty simple search, the expectation is that it is
1538  * called very infrequently and that a given device has a small number
1539  * of extents
1540  *
1541  * @start is used to store the start of the free space if we find. But if we
1542  * don't find suitable free space, it will be used to store the start position
1543  * of the max free space.
1544  *
1545  * @len is used to store the size of the free space that we find.
1546  * But if we don't find suitable free space, it is used to store the size of
1547  * the max free space.
1548  *
1549  * NOTE: This function will search *commit* root of device tree, and does extra
1550  * check to ensure dev extents are not double allocated.
1551  * This makes the function safe to allocate dev extents but may not report
1552  * correct usable device space, as device extent freed in current transaction
1553  * is not reported as available.
1554  */
1555 static int find_free_dev_extent_start(struct btrfs_device *device,
1556 				u64 num_bytes, u64 search_start, u64 *start,
1557 				u64 *len)
1558 {
1559 	struct btrfs_fs_info *fs_info = device->fs_info;
1560 	struct btrfs_root *root = fs_info->dev_root;
1561 	struct btrfs_key key;
1562 	struct btrfs_dev_extent *dev_extent;
1563 	struct btrfs_path *path;
1564 	u64 hole_size;
1565 	u64 max_hole_start;
1566 	u64 max_hole_size;
1567 	u64 extent_end;
1568 	u64 search_end = device->total_bytes;
1569 	int ret;
1570 	int slot;
1571 	struct extent_buffer *l;
1572 
1573 	search_start = dev_extent_search_start(device, search_start);
1574 
1575 	WARN_ON(device->zone_info &&
1576 		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1577 
1578 	path = btrfs_alloc_path();
1579 	if (!path)
1580 		return -ENOMEM;
1581 
1582 	max_hole_start = search_start;
1583 	max_hole_size = 0;
1584 
1585 again:
1586 	if (search_start >= search_end ||
1587 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1588 		ret = -ENOSPC;
1589 		goto out;
1590 	}
1591 
1592 	path->reada = READA_FORWARD;
1593 	path->search_commit_root = 1;
1594 	path->skip_locking = 1;
1595 
1596 	key.objectid = device->devid;
1597 	key.offset = search_start;
1598 	key.type = BTRFS_DEV_EXTENT_KEY;
1599 
1600 	ret = btrfs_search_backwards(root, &key, path);
1601 	if (ret < 0)
1602 		goto out;
1603 
1604 	while (1) {
1605 		l = path->nodes[0];
1606 		slot = path->slots[0];
1607 		if (slot >= btrfs_header_nritems(l)) {
1608 			ret = btrfs_next_leaf(root, path);
1609 			if (ret == 0)
1610 				continue;
1611 			if (ret < 0)
1612 				goto out;
1613 
1614 			break;
1615 		}
1616 		btrfs_item_key_to_cpu(l, &key, slot);
1617 
1618 		if (key.objectid < device->devid)
1619 			goto next;
1620 
1621 		if (key.objectid > device->devid)
1622 			break;
1623 
1624 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1625 			goto next;
1626 
1627 		if (key.offset > search_start) {
1628 			hole_size = key.offset - search_start;
1629 			dev_extent_hole_check(device, &search_start, &hole_size,
1630 					      num_bytes);
1631 
1632 			if (hole_size > max_hole_size) {
1633 				max_hole_start = search_start;
1634 				max_hole_size = hole_size;
1635 			}
1636 
1637 			/*
1638 			 * If this free space is greater than which we need,
1639 			 * it must be the max free space that we have found
1640 			 * until now, so max_hole_start must point to the start
1641 			 * of this free space and the length of this free space
1642 			 * is stored in max_hole_size. Thus, we return
1643 			 * max_hole_start and max_hole_size and go back to the
1644 			 * caller.
1645 			 */
1646 			if (hole_size >= num_bytes) {
1647 				ret = 0;
1648 				goto out;
1649 			}
1650 		}
1651 
1652 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1653 		extent_end = key.offset + btrfs_dev_extent_length(l,
1654 								  dev_extent);
1655 		if (extent_end > search_start)
1656 			search_start = extent_end;
1657 next:
1658 		path->slots[0]++;
1659 		cond_resched();
1660 	}
1661 
1662 	/*
1663 	 * At this point, search_start should be the end of
1664 	 * allocated dev extents, and when shrinking the device,
1665 	 * search_end may be smaller than search_start.
1666 	 */
1667 	if (search_end > search_start) {
1668 		hole_size = search_end - search_start;
1669 		if (dev_extent_hole_check(device, &search_start, &hole_size,
1670 					  num_bytes)) {
1671 			btrfs_release_path(path);
1672 			goto again;
1673 		}
1674 
1675 		if (hole_size > max_hole_size) {
1676 			max_hole_start = search_start;
1677 			max_hole_size = hole_size;
1678 		}
1679 	}
1680 
1681 	/* See above. */
1682 	if (max_hole_size < num_bytes)
1683 		ret = -ENOSPC;
1684 	else
1685 		ret = 0;
1686 
1687 out:
1688 	btrfs_free_path(path);
1689 	*start = max_hole_start;
1690 	if (len)
1691 		*len = max_hole_size;
1692 	return ret;
1693 }
1694 
1695 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1696 			 u64 *start, u64 *len)
1697 {
1698 	/* FIXME use last free of some kind */
1699 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1700 }
1701 
1702 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1703 			  struct btrfs_device *device,
1704 			  u64 start, u64 *dev_extent_len)
1705 {
1706 	struct btrfs_fs_info *fs_info = device->fs_info;
1707 	struct btrfs_root *root = fs_info->dev_root;
1708 	int ret;
1709 	struct btrfs_path *path;
1710 	struct btrfs_key key;
1711 	struct btrfs_key found_key;
1712 	struct extent_buffer *leaf = NULL;
1713 	struct btrfs_dev_extent *extent = NULL;
1714 
1715 	path = btrfs_alloc_path();
1716 	if (!path)
1717 		return -ENOMEM;
1718 
1719 	key.objectid = device->devid;
1720 	key.offset = start;
1721 	key.type = BTRFS_DEV_EXTENT_KEY;
1722 again:
1723 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1724 	if (ret > 0) {
1725 		ret = btrfs_previous_item(root, path, key.objectid,
1726 					  BTRFS_DEV_EXTENT_KEY);
1727 		if (ret)
1728 			goto out;
1729 		leaf = path->nodes[0];
1730 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1731 		extent = btrfs_item_ptr(leaf, path->slots[0],
1732 					struct btrfs_dev_extent);
1733 		BUG_ON(found_key.offset > start || found_key.offset +
1734 		       btrfs_dev_extent_length(leaf, extent) < start);
1735 		key = found_key;
1736 		btrfs_release_path(path);
1737 		goto again;
1738 	} else if (ret == 0) {
1739 		leaf = path->nodes[0];
1740 		extent = btrfs_item_ptr(leaf, path->slots[0],
1741 					struct btrfs_dev_extent);
1742 	} else {
1743 		goto out;
1744 	}
1745 
1746 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1747 
1748 	ret = btrfs_del_item(trans, root, path);
1749 	if (ret == 0)
1750 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1751 out:
1752 	btrfs_free_path(path);
1753 	return ret;
1754 }
1755 
1756 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1757 {
1758 	struct extent_map_tree *em_tree;
1759 	struct extent_map *em;
1760 	struct rb_node *n;
1761 	u64 ret = 0;
1762 
1763 	em_tree = &fs_info->mapping_tree;
1764 	read_lock(&em_tree->lock);
1765 	n = rb_last(&em_tree->map.rb_root);
1766 	if (n) {
1767 		em = rb_entry(n, struct extent_map, rb_node);
1768 		ret = em->start + em->len;
1769 	}
1770 	read_unlock(&em_tree->lock);
1771 
1772 	return ret;
1773 }
1774 
1775 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1776 				    u64 *devid_ret)
1777 {
1778 	int ret;
1779 	struct btrfs_key key;
1780 	struct btrfs_key found_key;
1781 	struct btrfs_path *path;
1782 
1783 	path = btrfs_alloc_path();
1784 	if (!path)
1785 		return -ENOMEM;
1786 
1787 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1788 	key.type = BTRFS_DEV_ITEM_KEY;
1789 	key.offset = (u64)-1;
1790 
1791 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1792 	if (ret < 0)
1793 		goto error;
1794 
1795 	if (ret == 0) {
1796 		/* Corruption */
1797 		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1798 		ret = -EUCLEAN;
1799 		goto error;
1800 	}
1801 
1802 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1803 				  BTRFS_DEV_ITEMS_OBJECTID,
1804 				  BTRFS_DEV_ITEM_KEY);
1805 	if (ret) {
1806 		*devid_ret = 1;
1807 	} else {
1808 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1809 				      path->slots[0]);
1810 		*devid_ret = found_key.offset + 1;
1811 	}
1812 	ret = 0;
1813 error:
1814 	btrfs_free_path(path);
1815 	return ret;
1816 }
1817 
1818 /*
1819  * the device information is stored in the chunk root
1820  * the btrfs_device struct should be fully filled in
1821  */
1822 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1823 			    struct btrfs_device *device)
1824 {
1825 	int ret;
1826 	struct btrfs_path *path;
1827 	struct btrfs_dev_item *dev_item;
1828 	struct extent_buffer *leaf;
1829 	struct btrfs_key key;
1830 	unsigned long ptr;
1831 
1832 	path = btrfs_alloc_path();
1833 	if (!path)
1834 		return -ENOMEM;
1835 
1836 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1837 	key.type = BTRFS_DEV_ITEM_KEY;
1838 	key.offset = device->devid;
1839 
1840 	btrfs_reserve_chunk_metadata(trans, true);
1841 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1842 				      &key, sizeof(*dev_item));
1843 	btrfs_trans_release_chunk_metadata(trans);
1844 	if (ret)
1845 		goto out;
1846 
1847 	leaf = path->nodes[0];
1848 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1849 
1850 	btrfs_set_device_id(leaf, dev_item, device->devid);
1851 	btrfs_set_device_generation(leaf, dev_item, 0);
1852 	btrfs_set_device_type(leaf, dev_item, device->type);
1853 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1854 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1855 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1856 	btrfs_set_device_total_bytes(leaf, dev_item,
1857 				     btrfs_device_get_disk_total_bytes(device));
1858 	btrfs_set_device_bytes_used(leaf, dev_item,
1859 				    btrfs_device_get_bytes_used(device));
1860 	btrfs_set_device_group(leaf, dev_item, 0);
1861 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1862 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1863 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1864 
1865 	ptr = btrfs_device_uuid(dev_item);
1866 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1867 	ptr = btrfs_device_fsid(dev_item);
1868 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1869 			    ptr, BTRFS_FSID_SIZE);
1870 	btrfs_mark_buffer_dirty(leaf);
1871 
1872 	ret = 0;
1873 out:
1874 	btrfs_free_path(path);
1875 	return ret;
1876 }
1877 
1878 /*
1879  * Function to update ctime/mtime for a given device path.
1880  * Mainly used for ctime/mtime based probe like libblkid.
1881  *
1882  * We don't care about errors here, this is just to be kind to userspace.
1883  */
1884 static void update_dev_time(const char *device_path)
1885 {
1886 	struct path path;
1887 	struct timespec64 now;
1888 	int ret;
1889 
1890 	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1891 	if (ret)
1892 		return;
1893 
1894 	now = current_time(d_inode(path.dentry));
1895 	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1896 	path_put(&path);
1897 }
1898 
1899 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1900 			     struct btrfs_device *device)
1901 {
1902 	struct btrfs_root *root = device->fs_info->chunk_root;
1903 	int ret;
1904 	struct btrfs_path *path;
1905 	struct btrfs_key key;
1906 
1907 	path = btrfs_alloc_path();
1908 	if (!path)
1909 		return -ENOMEM;
1910 
1911 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1912 	key.type = BTRFS_DEV_ITEM_KEY;
1913 	key.offset = device->devid;
1914 
1915 	btrfs_reserve_chunk_metadata(trans, false);
1916 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1917 	btrfs_trans_release_chunk_metadata(trans);
1918 	if (ret) {
1919 		if (ret > 0)
1920 			ret = -ENOENT;
1921 		goto out;
1922 	}
1923 
1924 	ret = btrfs_del_item(trans, root, path);
1925 out:
1926 	btrfs_free_path(path);
1927 	return ret;
1928 }
1929 
1930 /*
1931  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1932  * filesystem. It's up to the caller to adjust that number regarding eg. device
1933  * replace.
1934  */
1935 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1936 		u64 num_devices)
1937 {
1938 	u64 all_avail;
1939 	unsigned seq;
1940 	int i;
1941 
1942 	do {
1943 		seq = read_seqbegin(&fs_info->profiles_lock);
1944 
1945 		all_avail = fs_info->avail_data_alloc_bits |
1946 			    fs_info->avail_system_alloc_bits |
1947 			    fs_info->avail_metadata_alloc_bits;
1948 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1949 
1950 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1951 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1952 			continue;
1953 
1954 		if (num_devices < btrfs_raid_array[i].devs_min)
1955 			return btrfs_raid_array[i].mindev_error;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 static struct btrfs_device * btrfs_find_next_active_device(
1962 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1963 {
1964 	struct btrfs_device *next_device;
1965 
1966 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1967 		if (next_device != device &&
1968 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1969 		    && next_device->bdev)
1970 			return next_device;
1971 	}
1972 
1973 	return NULL;
1974 }
1975 
1976 /*
1977  * Helper function to check if the given device is part of s_bdev / latest_dev
1978  * and replace it with the provided or the next active device, in the context
1979  * where this function called, there should be always be another device (or
1980  * this_dev) which is active.
1981  */
1982 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1983 					    struct btrfs_device *next_device)
1984 {
1985 	struct btrfs_fs_info *fs_info = device->fs_info;
1986 
1987 	if (!next_device)
1988 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1989 							    device);
1990 	ASSERT(next_device);
1991 
1992 	if (fs_info->sb->s_bdev &&
1993 			(fs_info->sb->s_bdev == device->bdev))
1994 		fs_info->sb->s_bdev = next_device->bdev;
1995 
1996 	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1997 		fs_info->fs_devices->latest_dev = next_device;
1998 }
1999 
2000 /*
2001  * Return btrfs_fs_devices::num_devices excluding the device that's being
2002  * currently replaced.
2003  */
2004 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2005 {
2006 	u64 num_devices = fs_info->fs_devices->num_devices;
2007 
2008 	down_read(&fs_info->dev_replace.rwsem);
2009 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2010 		ASSERT(num_devices > 1);
2011 		num_devices--;
2012 	}
2013 	up_read(&fs_info->dev_replace.rwsem);
2014 
2015 	return num_devices;
2016 }
2017 
2018 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2019 			       struct block_device *bdev,
2020 			       const char *device_path)
2021 {
2022 	struct btrfs_super_block *disk_super;
2023 	int copy_num;
2024 
2025 	if (!bdev)
2026 		return;
2027 
2028 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2029 		struct page *page;
2030 		int ret;
2031 
2032 		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2033 		if (IS_ERR(disk_super))
2034 			continue;
2035 
2036 		if (bdev_is_zoned(bdev)) {
2037 			btrfs_reset_sb_log_zones(bdev, copy_num);
2038 			continue;
2039 		}
2040 
2041 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2042 
2043 		page = virt_to_page(disk_super);
2044 		set_page_dirty(page);
2045 		lock_page(page);
2046 		/* write_on_page() unlocks the page */
2047 		ret = write_one_page(page);
2048 		if (ret)
2049 			btrfs_warn(fs_info,
2050 				"error clearing superblock number %d (%d)",
2051 				copy_num, ret);
2052 		btrfs_release_disk_super(disk_super);
2053 
2054 	}
2055 
2056 	/* Notify udev that device has changed */
2057 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2058 
2059 	/* Update ctime/mtime for device path for libblkid */
2060 	update_dev_time(device_path);
2061 }
2062 
2063 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2064 		    struct btrfs_dev_lookup_args *args,
2065 		    struct block_device **bdev, fmode_t *mode)
2066 {
2067 	struct btrfs_trans_handle *trans;
2068 	struct btrfs_device *device;
2069 	struct btrfs_fs_devices *cur_devices;
2070 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2071 	u64 num_devices;
2072 	int ret = 0;
2073 
2074 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2075 		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2076 		return -EINVAL;
2077 	}
2078 
2079 	/*
2080 	 * The device list in fs_devices is accessed without locks (neither
2081 	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2082 	 * filesystem and another device rm cannot run.
2083 	 */
2084 	num_devices = btrfs_num_devices(fs_info);
2085 
2086 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2087 	if (ret)
2088 		return ret;
2089 
2090 	device = btrfs_find_device(fs_info->fs_devices, args);
2091 	if (!device) {
2092 		if (args->missing)
2093 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2094 		else
2095 			ret = -ENOENT;
2096 		return ret;
2097 	}
2098 
2099 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2100 		btrfs_warn_in_rcu(fs_info,
2101 		  "cannot remove device %s (devid %llu) due to active swapfile",
2102 				  rcu_str_deref(device->name), device->devid);
2103 		return -ETXTBSY;
2104 	}
2105 
2106 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2107 		return BTRFS_ERROR_DEV_TGT_REPLACE;
2108 
2109 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2110 	    fs_info->fs_devices->rw_devices == 1)
2111 		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2112 
2113 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2114 		mutex_lock(&fs_info->chunk_mutex);
2115 		list_del_init(&device->dev_alloc_list);
2116 		device->fs_devices->rw_devices--;
2117 		mutex_unlock(&fs_info->chunk_mutex);
2118 	}
2119 
2120 	ret = btrfs_shrink_device(device, 0);
2121 	if (ret)
2122 		goto error_undo;
2123 
2124 	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2125 	if (IS_ERR(trans)) {
2126 		ret = PTR_ERR(trans);
2127 		goto error_undo;
2128 	}
2129 
2130 	ret = btrfs_rm_dev_item(trans, device);
2131 	if (ret) {
2132 		/* Any error in dev item removal is critical */
2133 		btrfs_crit(fs_info,
2134 			   "failed to remove device item for devid %llu: %d",
2135 			   device->devid, ret);
2136 		btrfs_abort_transaction(trans, ret);
2137 		btrfs_end_transaction(trans);
2138 		return ret;
2139 	}
2140 
2141 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2142 	btrfs_scrub_cancel_dev(device);
2143 
2144 	/*
2145 	 * the device list mutex makes sure that we don't change
2146 	 * the device list while someone else is writing out all
2147 	 * the device supers. Whoever is writing all supers, should
2148 	 * lock the device list mutex before getting the number of
2149 	 * devices in the super block (super_copy). Conversely,
2150 	 * whoever updates the number of devices in the super block
2151 	 * (super_copy) should hold the device list mutex.
2152 	 */
2153 
2154 	/*
2155 	 * In normal cases the cur_devices == fs_devices. But in case
2156 	 * of deleting a seed device, the cur_devices should point to
2157 	 * its own fs_devices listed under the fs_devices->seed_list.
2158 	 */
2159 	cur_devices = device->fs_devices;
2160 	mutex_lock(&fs_devices->device_list_mutex);
2161 	list_del_rcu(&device->dev_list);
2162 
2163 	cur_devices->num_devices--;
2164 	cur_devices->total_devices--;
2165 	/* Update total_devices of the parent fs_devices if it's seed */
2166 	if (cur_devices != fs_devices)
2167 		fs_devices->total_devices--;
2168 
2169 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2170 		cur_devices->missing_devices--;
2171 
2172 	btrfs_assign_next_active_device(device, NULL);
2173 
2174 	if (device->bdev) {
2175 		cur_devices->open_devices--;
2176 		/* remove sysfs entry */
2177 		btrfs_sysfs_remove_device(device);
2178 	}
2179 
2180 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2181 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2182 	mutex_unlock(&fs_devices->device_list_mutex);
2183 
2184 	/*
2185 	 * At this point, the device is zero sized and detached from the
2186 	 * devices list.  All that's left is to zero out the old supers and
2187 	 * free the device.
2188 	 *
2189 	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2190 	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2191 	 * block device and it's dependencies.  Instead just flush the device
2192 	 * and let the caller do the final blkdev_put.
2193 	 */
2194 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2195 		btrfs_scratch_superblocks(fs_info, device->bdev,
2196 					  device->name->str);
2197 		if (device->bdev) {
2198 			sync_blockdev(device->bdev);
2199 			invalidate_bdev(device->bdev);
2200 		}
2201 	}
2202 
2203 	*bdev = device->bdev;
2204 	*mode = device->mode;
2205 	synchronize_rcu();
2206 	btrfs_free_device(device);
2207 
2208 	/*
2209 	 * This can happen if cur_devices is the private seed devices list.  We
2210 	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2211 	 * to be held, but in fact we don't need that for the private
2212 	 * seed_devices, we can simply decrement cur_devices->opened and then
2213 	 * remove it from our list and free the fs_devices.
2214 	 */
2215 	if (cur_devices->num_devices == 0) {
2216 		list_del_init(&cur_devices->seed_list);
2217 		ASSERT(cur_devices->opened == 1);
2218 		cur_devices->opened--;
2219 		free_fs_devices(cur_devices);
2220 	}
2221 
2222 	ret = btrfs_commit_transaction(trans);
2223 
2224 	return ret;
2225 
2226 error_undo:
2227 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2228 		mutex_lock(&fs_info->chunk_mutex);
2229 		list_add(&device->dev_alloc_list,
2230 			 &fs_devices->alloc_list);
2231 		device->fs_devices->rw_devices++;
2232 		mutex_unlock(&fs_info->chunk_mutex);
2233 	}
2234 	return ret;
2235 }
2236 
2237 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2238 {
2239 	struct btrfs_fs_devices *fs_devices;
2240 
2241 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2242 
2243 	/*
2244 	 * in case of fs with no seed, srcdev->fs_devices will point
2245 	 * to fs_devices of fs_info. However when the dev being replaced is
2246 	 * a seed dev it will point to the seed's local fs_devices. In short
2247 	 * srcdev will have its correct fs_devices in both the cases.
2248 	 */
2249 	fs_devices = srcdev->fs_devices;
2250 
2251 	list_del_rcu(&srcdev->dev_list);
2252 	list_del(&srcdev->dev_alloc_list);
2253 	fs_devices->num_devices--;
2254 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2255 		fs_devices->missing_devices--;
2256 
2257 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2258 		fs_devices->rw_devices--;
2259 
2260 	if (srcdev->bdev)
2261 		fs_devices->open_devices--;
2262 }
2263 
2264 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2265 {
2266 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2267 
2268 	mutex_lock(&uuid_mutex);
2269 
2270 	btrfs_close_bdev(srcdev);
2271 	synchronize_rcu();
2272 	btrfs_free_device(srcdev);
2273 
2274 	/* if this is no devs we rather delete the fs_devices */
2275 	if (!fs_devices->num_devices) {
2276 		/*
2277 		 * On a mounted FS, num_devices can't be zero unless it's a
2278 		 * seed. In case of a seed device being replaced, the replace
2279 		 * target added to the sprout FS, so there will be no more
2280 		 * device left under the seed FS.
2281 		 */
2282 		ASSERT(fs_devices->seeding);
2283 
2284 		list_del_init(&fs_devices->seed_list);
2285 		close_fs_devices(fs_devices);
2286 		free_fs_devices(fs_devices);
2287 	}
2288 	mutex_unlock(&uuid_mutex);
2289 }
2290 
2291 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2292 {
2293 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2294 
2295 	mutex_lock(&fs_devices->device_list_mutex);
2296 
2297 	btrfs_sysfs_remove_device(tgtdev);
2298 
2299 	if (tgtdev->bdev)
2300 		fs_devices->open_devices--;
2301 
2302 	fs_devices->num_devices--;
2303 
2304 	btrfs_assign_next_active_device(tgtdev, NULL);
2305 
2306 	list_del_rcu(&tgtdev->dev_list);
2307 
2308 	mutex_unlock(&fs_devices->device_list_mutex);
2309 
2310 	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2311 				  tgtdev->name->str);
2312 
2313 	btrfs_close_bdev(tgtdev);
2314 	synchronize_rcu();
2315 	btrfs_free_device(tgtdev);
2316 }
2317 
2318 /**
2319  * Populate args from device at path
2320  *
2321  * @fs_info:	the filesystem
2322  * @args:	the args to populate
2323  * @path:	the path to the device
2324  *
2325  * This will read the super block of the device at @path and populate @args with
2326  * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2327  * lookup a device to operate on, but need to do it before we take any locks.
2328  * This properly handles the special case of "missing" that a user may pass in,
2329  * and does some basic sanity checks.  The caller must make sure that @path is
2330  * properly NUL terminated before calling in, and must call
2331  * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2332  * uuid buffers.
2333  *
2334  * Return: 0 for success, -errno for failure
2335  */
2336 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2337 				 struct btrfs_dev_lookup_args *args,
2338 				 const char *path)
2339 {
2340 	struct btrfs_super_block *disk_super;
2341 	struct block_device *bdev;
2342 	int ret;
2343 
2344 	if (!path || !path[0])
2345 		return -EINVAL;
2346 	if (!strcmp(path, "missing")) {
2347 		args->missing = true;
2348 		return 0;
2349 	}
2350 
2351 	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2352 	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2353 	if (!args->uuid || !args->fsid) {
2354 		btrfs_put_dev_args_from_path(args);
2355 		return -ENOMEM;
2356 	}
2357 
2358 	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2359 				    &bdev, &disk_super);
2360 	if (ret)
2361 		return ret;
2362 	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2363 	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2364 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2365 		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2366 	else
2367 		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2368 	btrfs_release_disk_super(disk_super);
2369 	blkdev_put(bdev, FMODE_READ);
2370 	return 0;
2371 }
2372 
2373 /*
2374  * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2375  * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2376  * that don't need to be freed.
2377  */
2378 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2379 {
2380 	kfree(args->uuid);
2381 	kfree(args->fsid);
2382 	args->uuid = NULL;
2383 	args->fsid = NULL;
2384 }
2385 
2386 struct btrfs_device *btrfs_find_device_by_devspec(
2387 		struct btrfs_fs_info *fs_info, u64 devid,
2388 		const char *device_path)
2389 {
2390 	BTRFS_DEV_LOOKUP_ARGS(args);
2391 	struct btrfs_device *device;
2392 	int ret;
2393 
2394 	if (devid) {
2395 		args.devid = devid;
2396 		device = btrfs_find_device(fs_info->fs_devices, &args);
2397 		if (!device)
2398 			return ERR_PTR(-ENOENT);
2399 		return device;
2400 	}
2401 
2402 	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2403 	if (ret)
2404 		return ERR_PTR(ret);
2405 	device = btrfs_find_device(fs_info->fs_devices, &args);
2406 	btrfs_put_dev_args_from_path(&args);
2407 	if (!device)
2408 		return ERR_PTR(-ENOENT);
2409 	return device;
2410 }
2411 
2412 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2413 {
2414 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2415 	struct btrfs_fs_devices *old_devices;
2416 	struct btrfs_fs_devices *seed_devices;
2417 
2418 	lockdep_assert_held(&uuid_mutex);
2419 	if (!fs_devices->seeding)
2420 		return ERR_PTR(-EINVAL);
2421 
2422 	/*
2423 	 * Private copy of the seed devices, anchored at
2424 	 * fs_info->fs_devices->seed_list
2425 	 */
2426 	seed_devices = alloc_fs_devices(NULL, NULL);
2427 	if (IS_ERR(seed_devices))
2428 		return seed_devices;
2429 
2430 	/*
2431 	 * It's necessary to retain a copy of the original seed fs_devices in
2432 	 * fs_uuids so that filesystems which have been seeded can successfully
2433 	 * reference the seed device from open_seed_devices. This also supports
2434 	 * multiple fs seed.
2435 	 */
2436 	old_devices = clone_fs_devices(fs_devices);
2437 	if (IS_ERR(old_devices)) {
2438 		kfree(seed_devices);
2439 		return old_devices;
2440 	}
2441 
2442 	list_add(&old_devices->fs_list, &fs_uuids);
2443 
2444 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2445 	seed_devices->opened = 1;
2446 	INIT_LIST_HEAD(&seed_devices->devices);
2447 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2448 	mutex_init(&seed_devices->device_list_mutex);
2449 
2450 	return seed_devices;
2451 }
2452 
2453 /*
2454  * Splice seed devices into the sprout fs_devices.
2455  * Generate a new fsid for the sprouted read-write filesystem.
2456  */
2457 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2458 			       struct btrfs_fs_devices *seed_devices)
2459 {
2460 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2461 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2462 	struct btrfs_device *device;
2463 	u64 super_flags;
2464 
2465 	/*
2466 	 * We are updating the fsid, the thread leading to device_list_add()
2467 	 * could race, so uuid_mutex is needed.
2468 	 */
2469 	lockdep_assert_held(&uuid_mutex);
2470 
2471 	/*
2472 	 * The threads listed below may traverse dev_list but can do that without
2473 	 * device_list_mutex:
2474 	 * - All device ops and balance - as we are in btrfs_exclop_start.
2475 	 * - Various dev_list readers - are using RCU.
2476 	 * - btrfs_ioctl_fitrim() - is using RCU.
2477 	 *
2478 	 * For-read threads as below are using device_list_mutex:
2479 	 * - Readonly scrub btrfs_scrub_dev()
2480 	 * - Readonly scrub btrfs_scrub_progress()
2481 	 * - btrfs_get_dev_stats()
2482 	 */
2483 	lockdep_assert_held(&fs_devices->device_list_mutex);
2484 
2485 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2486 			      synchronize_rcu);
2487 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2488 		device->fs_devices = seed_devices;
2489 
2490 	fs_devices->seeding = false;
2491 	fs_devices->num_devices = 0;
2492 	fs_devices->open_devices = 0;
2493 	fs_devices->missing_devices = 0;
2494 	fs_devices->rotating = false;
2495 	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2496 
2497 	generate_random_uuid(fs_devices->fsid);
2498 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2499 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2500 
2501 	super_flags = btrfs_super_flags(disk_super) &
2502 		      ~BTRFS_SUPER_FLAG_SEEDING;
2503 	btrfs_set_super_flags(disk_super, super_flags);
2504 }
2505 
2506 /*
2507  * Store the expected generation for seed devices in device items.
2508  */
2509 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2510 {
2511 	BTRFS_DEV_LOOKUP_ARGS(args);
2512 	struct btrfs_fs_info *fs_info = trans->fs_info;
2513 	struct btrfs_root *root = fs_info->chunk_root;
2514 	struct btrfs_path *path;
2515 	struct extent_buffer *leaf;
2516 	struct btrfs_dev_item *dev_item;
2517 	struct btrfs_device *device;
2518 	struct btrfs_key key;
2519 	u8 fs_uuid[BTRFS_FSID_SIZE];
2520 	u8 dev_uuid[BTRFS_UUID_SIZE];
2521 	int ret;
2522 
2523 	path = btrfs_alloc_path();
2524 	if (!path)
2525 		return -ENOMEM;
2526 
2527 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2528 	key.offset = 0;
2529 	key.type = BTRFS_DEV_ITEM_KEY;
2530 
2531 	while (1) {
2532 		btrfs_reserve_chunk_metadata(trans, false);
2533 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2534 		btrfs_trans_release_chunk_metadata(trans);
2535 		if (ret < 0)
2536 			goto error;
2537 
2538 		leaf = path->nodes[0];
2539 next_slot:
2540 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2541 			ret = btrfs_next_leaf(root, path);
2542 			if (ret > 0)
2543 				break;
2544 			if (ret < 0)
2545 				goto error;
2546 			leaf = path->nodes[0];
2547 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2548 			btrfs_release_path(path);
2549 			continue;
2550 		}
2551 
2552 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2553 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2554 		    key.type != BTRFS_DEV_ITEM_KEY)
2555 			break;
2556 
2557 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2558 					  struct btrfs_dev_item);
2559 		args.devid = btrfs_device_id(leaf, dev_item);
2560 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2561 				   BTRFS_UUID_SIZE);
2562 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2563 				   BTRFS_FSID_SIZE);
2564 		args.uuid = dev_uuid;
2565 		args.fsid = fs_uuid;
2566 		device = btrfs_find_device(fs_info->fs_devices, &args);
2567 		BUG_ON(!device); /* Logic error */
2568 
2569 		if (device->fs_devices->seeding) {
2570 			btrfs_set_device_generation(leaf, dev_item,
2571 						    device->generation);
2572 			btrfs_mark_buffer_dirty(leaf);
2573 		}
2574 
2575 		path->slots[0]++;
2576 		goto next_slot;
2577 	}
2578 	ret = 0;
2579 error:
2580 	btrfs_free_path(path);
2581 	return ret;
2582 }
2583 
2584 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2585 {
2586 	struct btrfs_root *root = fs_info->dev_root;
2587 	struct btrfs_trans_handle *trans;
2588 	struct btrfs_device *device;
2589 	struct block_device *bdev;
2590 	struct super_block *sb = fs_info->sb;
2591 	struct rcu_string *name;
2592 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2593 	struct btrfs_fs_devices *seed_devices;
2594 	u64 orig_super_total_bytes;
2595 	u64 orig_super_num_devices;
2596 	int ret = 0;
2597 	bool seeding_dev = false;
2598 	bool locked = false;
2599 
2600 	if (sb_rdonly(sb) && !fs_devices->seeding)
2601 		return -EROFS;
2602 
2603 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2604 				  fs_info->bdev_holder);
2605 	if (IS_ERR(bdev))
2606 		return PTR_ERR(bdev);
2607 
2608 	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2609 		ret = -EINVAL;
2610 		goto error;
2611 	}
2612 
2613 	if (fs_devices->seeding) {
2614 		seeding_dev = true;
2615 		down_write(&sb->s_umount);
2616 		mutex_lock(&uuid_mutex);
2617 		locked = true;
2618 	}
2619 
2620 	sync_blockdev(bdev);
2621 
2622 	rcu_read_lock();
2623 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2624 		if (device->bdev == bdev) {
2625 			ret = -EEXIST;
2626 			rcu_read_unlock();
2627 			goto error;
2628 		}
2629 	}
2630 	rcu_read_unlock();
2631 
2632 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2633 	if (IS_ERR(device)) {
2634 		/* we can safely leave the fs_devices entry around */
2635 		ret = PTR_ERR(device);
2636 		goto error;
2637 	}
2638 
2639 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2640 	if (!name) {
2641 		ret = -ENOMEM;
2642 		goto error_free_device;
2643 	}
2644 	rcu_assign_pointer(device->name, name);
2645 
2646 	device->fs_info = fs_info;
2647 	device->bdev = bdev;
2648 	ret = lookup_bdev(device_path, &device->devt);
2649 	if (ret)
2650 		goto error_free_device;
2651 
2652 	ret = btrfs_get_dev_zone_info(device, false);
2653 	if (ret)
2654 		goto error_free_device;
2655 
2656 	trans = btrfs_start_transaction(root, 0);
2657 	if (IS_ERR(trans)) {
2658 		ret = PTR_ERR(trans);
2659 		goto error_free_zone;
2660 	}
2661 
2662 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2663 	device->generation = trans->transid;
2664 	device->io_width = fs_info->sectorsize;
2665 	device->io_align = fs_info->sectorsize;
2666 	device->sector_size = fs_info->sectorsize;
2667 	device->total_bytes =
2668 		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2669 	device->disk_total_bytes = device->total_bytes;
2670 	device->commit_total_bytes = device->total_bytes;
2671 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2672 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2673 	device->mode = FMODE_EXCL;
2674 	device->dev_stats_valid = 1;
2675 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2676 
2677 	if (seeding_dev) {
2678 		btrfs_clear_sb_rdonly(sb);
2679 
2680 		/* GFP_KERNEL allocation must not be under device_list_mutex */
2681 		seed_devices = btrfs_init_sprout(fs_info);
2682 		if (IS_ERR(seed_devices)) {
2683 			ret = PTR_ERR(seed_devices);
2684 			btrfs_abort_transaction(trans, ret);
2685 			goto error_trans;
2686 		}
2687 	}
2688 
2689 	mutex_lock(&fs_devices->device_list_mutex);
2690 	if (seeding_dev) {
2691 		btrfs_setup_sprout(fs_info, seed_devices);
2692 		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2693 						device);
2694 	}
2695 
2696 	device->fs_devices = fs_devices;
2697 
2698 	mutex_lock(&fs_info->chunk_mutex);
2699 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2700 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2701 	fs_devices->num_devices++;
2702 	fs_devices->open_devices++;
2703 	fs_devices->rw_devices++;
2704 	fs_devices->total_devices++;
2705 	fs_devices->total_rw_bytes += device->total_bytes;
2706 
2707 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2708 
2709 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2710 		fs_devices->rotating = true;
2711 
2712 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2713 	btrfs_set_super_total_bytes(fs_info->super_copy,
2714 		round_down(orig_super_total_bytes + device->total_bytes,
2715 			   fs_info->sectorsize));
2716 
2717 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2718 	btrfs_set_super_num_devices(fs_info->super_copy,
2719 				    orig_super_num_devices + 1);
2720 
2721 	/*
2722 	 * we've got more storage, clear any full flags on the space
2723 	 * infos
2724 	 */
2725 	btrfs_clear_space_info_full(fs_info);
2726 
2727 	mutex_unlock(&fs_info->chunk_mutex);
2728 
2729 	/* Add sysfs device entry */
2730 	btrfs_sysfs_add_device(device);
2731 
2732 	mutex_unlock(&fs_devices->device_list_mutex);
2733 
2734 	if (seeding_dev) {
2735 		mutex_lock(&fs_info->chunk_mutex);
2736 		ret = init_first_rw_device(trans);
2737 		mutex_unlock(&fs_info->chunk_mutex);
2738 		if (ret) {
2739 			btrfs_abort_transaction(trans, ret);
2740 			goto error_sysfs;
2741 		}
2742 	}
2743 
2744 	ret = btrfs_add_dev_item(trans, device);
2745 	if (ret) {
2746 		btrfs_abort_transaction(trans, ret);
2747 		goto error_sysfs;
2748 	}
2749 
2750 	if (seeding_dev) {
2751 		ret = btrfs_finish_sprout(trans);
2752 		if (ret) {
2753 			btrfs_abort_transaction(trans, ret);
2754 			goto error_sysfs;
2755 		}
2756 
2757 		/*
2758 		 * fs_devices now represents the newly sprouted filesystem and
2759 		 * its fsid has been changed by btrfs_sprout_splice().
2760 		 */
2761 		btrfs_sysfs_update_sprout_fsid(fs_devices);
2762 	}
2763 
2764 	ret = btrfs_commit_transaction(trans);
2765 
2766 	if (seeding_dev) {
2767 		mutex_unlock(&uuid_mutex);
2768 		up_write(&sb->s_umount);
2769 		locked = false;
2770 
2771 		if (ret) /* transaction commit */
2772 			return ret;
2773 
2774 		ret = btrfs_relocate_sys_chunks(fs_info);
2775 		if (ret < 0)
2776 			btrfs_handle_fs_error(fs_info, ret,
2777 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2778 		trans = btrfs_attach_transaction(root);
2779 		if (IS_ERR(trans)) {
2780 			if (PTR_ERR(trans) == -ENOENT)
2781 				return 0;
2782 			ret = PTR_ERR(trans);
2783 			trans = NULL;
2784 			goto error_sysfs;
2785 		}
2786 		ret = btrfs_commit_transaction(trans);
2787 	}
2788 
2789 	/*
2790 	 * Now that we have written a new super block to this device, check all
2791 	 * other fs_devices list if device_path alienates any other scanned
2792 	 * device.
2793 	 * We can ignore the return value as it typically returns -EINVAL and
2794 	 * only succeeds if the device was an alien.
2795 	 */
2796 	btrfs_forget_devices(device->devt);
2797 
2798 	/* Update ctime/mtime for blkid or udev */
2799 	update_dev_time(device_path);
2800 
2801 	return ret;
2802 
2803 error_sysfs:
2804 	btrfs_sysfs_remove_device(device);
2805 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2806 	mutex_lock(&fs_info->chunk_mutex);
2807 	list_del_rcu(&device->dev_list);
2808 	list_del(&device->dev_alloc_list);
2809 	fs_info->fs_devices->num_devices--;
2810 	fs_info->fs_devices->open_devices--;
2811 	fs_info->fs_devices->rw_devices--;
2812 	fs_info->fs_devices->total_devices--;
2813 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2814 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2815 	btrfs_set_super_total_bytes(fs_info->super_copy,
2816 				    orig_super_total_bytes);
2817 	btrfs_set_super_num_devices(fs_info->super_copy,
2818 				    orig_super_num_devices);
2819 	mutex_unlock(&fs_info->chunk_mutex);
2820 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2821 error_trans:
2822 	if (seeding_dev)
2823 		btrfs_set_sb_rdonly(sb);
2824 	if (trans)
2825 		btrfs_end_transaction(trans);
2826 error_free_zone:
2827 	btrfs_destroy_dev_zone_info(device);
2828 error_free_device:
2829 	btrfs_free_device(device);
2830 error:
2831 	blkdev_put(bdev, FMODE_EXCL);
2832 	if (locked) {
2833 		mutex_unlock(&uuid_mutex);
2834 		up_write(&sb->s_umount);
2835 	}
2836 	return ret;
2837 }
2838 
2839 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2840 					struct btrfs_device *device)
2841 {
2842 	int ret;
2843 	struct btrfs_path *path;
2844 	struct btrfs_root *root = device->fs_info->chunk_root;
2845 	struct btrfs_dev_item *dev_item;
2846 	struct extent_buffer *leaf;
2847 	struct btrfs_key key;
2848 
2849 	path = btrfs_alloc_path();
2850 	if (!path)
2851 		return -ENOMEM;
2852 
2853 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2854 	key.type = BTRFS_DEV_ITEM_KEY;
2855 	key.offset = device->devid;
2856 
2857 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2858 	if (ret < 0)
2859 		goto out;
2860 
2861 	if (ret > 0) {
2862 		ret = -ENOENT;
2863 		goto out;
2864 	}
2865 
2866 	leaf = path->nodes[0];
2867 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2868 
2869 	btrfs_set_device_id(leaf, dev_item, device->devid);
2870 	btrfs_set_device_type(leaf, dev_item, device->type);
2871 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2872 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2873 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2874 	btrfs_set_device_total_bytes(leaf, dev_item,
2875 				     btrfs_device_get_disk_total_bytes(device));
2876 	btrfs_set_device_bytes_used(leaf, dev_item,
2877 				    btrfs_device_get_bytes_used(device));
2878 	btrfs_mark_buffer_dirty(leaf);
2879 
2880 out:
2881 	btrfs_free_path(path);
2882 	return ret;
2883 }
2884 
2885 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2886 		      struct btrfs_device *device, u64 new_size)
2887 {
2888 	struct btrfs_fs_info *fs_info = device->fs_info;
2889 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2890 	u64 old_total;
2891 	u64 diff;
2892 	int ret;
2893 
2894 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2895 		return -EACCES;
2896 
2897 	new_size = round_down(new_size, fs_info->sectorsize);
2898 
2899 	mutex_lock(&fs_info->chunk_mutex);
2900 	old_total = btrfs_super_total_bytes(super_copy);
2901 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2902 
2903 	if (new_size <= device->total_bytes ||
2904 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2905 		mutex_unlock(&fs_info->chunk_mutex);
2906 		return -EINVAL;
2907 	}
2908 
2909 	btrfs_set_super_total_bytes(super_copy,
2910 			round_down(old_total + diff, fs_info->sectorsize));
2911 	device->fs_devices->total_rw_bytes += diff;
2912 
2913 	btrfs_device_set_total_bytes(device, new_size);
2914 	btrfs_device_set_disk_total_bytes(device, new_size);
2915 	btrfs_clear_space_info_full(device->fs_info);
2916 	if (list_empty(&device->post_commit_list))
2917 		list_add_tail(&device->post_commit_list,
2918 			      &trans->transaction->dev_update_list);
2919 	mutex_unlock(&fs_info->chunk_mutex);
2920 
2921 	btrfs_reserve_chunk_metadata(trans, false);
2922 	ret = btrfs_update_device(trans, device);
2923 	btrfs_trans_release_chunk_metadata(trans);
2924 
2925 	return ret;
2926 }
2927 
2928 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2929 {
2930 	struct btrfs_fs_info *fs_info = trans->fs_info;
2931 	struct btrfs_root *root = fs_info->chunk_root;
2932 	int ret;
2933 	struct btrfs_path *path;
2934 	struct btrfs_key key;
2935 
2936 	path = btrfs_alloc_path();
2937 	if (!path)
2938 		return -ENOMEM;
2939 
2940 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2941 	key.offset = chunk_offset;
2942 	key.type = BTRFS_CHUNK_ITEM_KEY;
2943 
2944 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2945 	if (ret < 0)
2946 		goto out;
2947 	else if (ret > 0) { /* Logic error or corruption */
2948 		btrfs_handle_fs_error(fs_info, -ENOENT,
2949 				      "Failed lookup while freeing chunk.");
2950 		ret = -ENOENT;
2951 		goto out;
2952 	}
2953 
2954 	ret = btrfs_del_item(trans, root, path);
2955 	if (ret < 0)
2956 		btrfs_handle_fs_error(fs_info, ret,
2957 				      "Failed to delete chunk item.");
2958 out:
2959 	btrfs_free_path(path);
2960 	return ret;
2961 }
2962 
2963 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2964 {
2965 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2966 	struct btrfs_disk_key *disk_key;
2967 	struct btrfs_chunk *chunk;
2968 	u8 *ptr;
2969 	int ret = 0;
2970 	u32 num_stripes;
2971 	u32 array_size;
2972 	u32 len = 0;
2973 	u32 cur;
2974 	struct btrfs_key key;
2975 
2976 	lockdep_assert_held(&fs_info->chunk_mutex);
2977 	array_size = btrfs_super_sys_array_size(super_copy);
2978 
2979 	ptr = super_copy->sys_chunk_array;
2980 	cur = 0;
2981 
2982 	while (cur < array_size) {
2983 		disk_key = (struct btrfs_disk_key *)ptr;
2984 		btrfs_disk_key_to_cpu(&key, disk_key);
2985 
2986 		len = sizeof(*disk_key);
2987 
2988 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2989 			chunk = (struct btrfs_chunk *)(ptr + len);
2990 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2991 			len += btrfs_chunk_item_size(num_stripes);
2992 		} else {
2993 			ret = -EIO;
2994 			break;
2995 		}
2996 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2997 		    key.offset == chunk_offset) {
2998 			memmove(ptr, ptr + len, array_size - (cur + len));
2999 			array_size -= len;
3000 			btrfs_set_super_sys_array_size(super_copy, array_size);
3001 		} else {
3002 			ptr += len;
3003 			cur += len;
3004 		}
3005 	}
3006 	return ret;
3007 }
3008 
3009 /*
3010  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3011  * @logical: Logical block offset in bytes.
3012  * @length: Length of extent in bytes.
3013  *
3014  * Return: Chunk mapping or ERR_PTR.
3015  */
3016 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3017 				       u64 logical, u64 length)
3018 {
3019 	struct extent_map_tree *em_tree;
3020 	struct extent_map *em;
3021 
3022 	em_tree = &fs_info->mapping_tree;
3023 	read_lock(&em_tree->lock);
3024 	em = lookup_extent_mapping(em_tree, logical, length);
3025 	read_unlock(&em_tree->lock);
3026 
3027 	if (!em) {
3028 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3029 			   logical, length);
3030 		return ERR_PTR(-EINVAL);
3031 	}
3032 
3033 	if (em->start > logical || em->start + em->len < logical) {
3034 		btrfs_crit(fs_info,
3035 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3036 			   logical, length, em->start, em->start + em->len);
3037 		free_extent_map(em);
3038 		return ERR_PTR(-EINVAL);
3039 	}
3040 
3041 	/* callers are responsible for dropping em's ref. */
3042 	return em;
3043 }
3044 
3045 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3046 			     struct map_lookup *map, u64 chunk_offset)
3047 {
3048 	int i;
3049 
3050 	/*
3051 	 * Removing chunk items and updating the device items in the chunks btree
3052 	 * requires holding the chunk_mutex.
3053 	 * See the comment at btrfs_chunk_alloc() for the details.
3054 	 */
3055 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3056 
3057 	for (i = 0; i < map->num_stripes; i++) {
3058 		int ret;
3059 
3060 		ret = btrfs_update_device(trans, map->stripes[i].dev);
3061 		if (ret)
3062 			return ret;
3063 	}
3064 
3065 	return btrfs_free_chunk(trans, chunk_offset);
3066 }
3067 
3068 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3069 {
3070 	struct btrfs_fs_info *fs_info = trans->fs_info;
3071 	struct extent_map *em;
3072 	struct map_lookup *map;
3073 	u64 dev_extent_len = 0;
3074 	int i, ret = 0;
3075 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3076 
3077 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3078 	if (IS_ERR(em)) {
3079 		/*
3080 		 * This is a logic error, but we don't want to just rely on the
3081 		 * user having built with ASSERT enabled, so if ASSERT doesn't
3082 		 * do anything we still error out.
3083 		 */
3084 		ASSERT(0);
3085 		return PTR_ERR(em);
3086 	}
3087 	map = em->map_lookup;
3088 
3089 	/*
3090 	 * First delete the device extent items from the devices btree.
3091 	 * We take the device_list_mutex to avoid racing with the finishing phase
3092 	 * of a device replace operation. See the comment below before acquiring
3093 	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3094 	 * because that can result in a deadlock when deleting the device extent
3095 	 * items from the devices btree - COWing an extent buffer from the btree
3096 	 * may result in allocating a new metadata chunk, which would attempt to
3097 	 * lock again fs_info->chunk_mutex.
3098 	 */
3099 	mutex_lock(&fs_devices->device_list_mutex);
3100 	for (i = 0; i < map->num_stripes; i++) {
3101 		struct btrfs_device *device = map->stripes[i].dev;
3102 		ret = btrfs_free_dev_extent(trans, device,
3103 					    map->stripes[i].physical,
3104 					    &dev_extent_len);
3105 		if (ret) {
3106 			mutex_unlock(&fs_devices->device_list_mutex);
3107 			btrfs_abort_transaction(trans, ret);
3108 			goto out;
3109 		}
3110 
3111 		if (device->bytes_used > 0) {
3112 			mutex_lock(&fs_info->chunk_mutex);
3113 			btrfs_device_set_bytes_used(device,
3114 					device->bytes_used - dev_extent_len);
3115 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3116 			btrfs_clear_space_info_full(fs_info);
3117 			mutex_unlock(&fs_info->chunk_mutex);
3118 		}
3119 	}
3120 	mutex_unlock(&fs_devices->device_list_mutex);
3121 
3122 	/*
3123 	 * We acquire fs_info->chunk_mutex for 2 reasons:
3124 	 *
3125 	 * 1) Just like with the first phase of the chunk allocation, we must
3126 	 *    reserve system space, do all chunk btree updates and deletions, and
3127 	 *    update the system chunk array in the superblock while holding this
3128 	 *    mutex. This is for similar reasons as explained on the comment at
3129 	 *    the top of btrfs_chunk_alloc();
3130 	 *
3131 	 * 2) Prevent races with the final phase of a device replace operation
3132 	 *    that replaces the device object associated with the map's stripes,
3133 	 *    because the device object's id can change at any time during that
3134 	 *    final phase of the device replace operation
3135 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3136 	 *    replaced device and then see it with an ID of
3137 	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3138 	 *    the device item, which does not exists on the chunk btree.
3139 	 *    The finishing phase of device replace acquires both the
3140 	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3141 	 *    safe by just acquiring the chunk_mutex.
3142 	 */
3143 	trans->removing_chunk = true;
3144 	mutex_lock(&fs_info->chunk_mutex);
3145 
3146 	check_system_chunk(trans, map->type);
3147 
3148 	ret = remove_chunk_item(trans, map, chunk_offset);
3149 	/*
3150 	 * Normally we should not get -ENOSPC since we reserved space before
3151 	 * through the call to check_system_chunk().
3152 	 *
3153 	 * Despite our system space_info having enough free space, we may not
3154 	 * be able to allocate extents from its block groups, because all have
3155 	 * an incompatible profile, which will force us to allocate a new system
3156 	 * block group with the right profile, or right after we called
3157 	 * check_system_space() above, a scrub turned the only system block group
3158 	 * with enough free space into RO mode.
3159 	 * This is explained with more detail at do_chunk_alloc().
3160 	 *
3161 	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3162 	 */
3163 	if (ret == -ENOSPC) {
3164 		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3165 		struct btrfs_block_group *sys_bg;
3166 
3167 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3168 		if (IS_ERR(sys_bg)) {
3169 			ret = PTR_ERR(sys_bg);
3170 			btrfs_abort_transaction(trans, ret);
3171 			goto out;
3172 		}
3173 
3174 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3175 		if (ret) {
3176 			btrfs_abort_transaction(trans, ret);
3177 			goto out;
3178 		}
3179 
3180 		ret = remove_chunk_item(trans, map, chunk_offset);
3181 		if (ret) {
3182 			btrfs_abort_transaction(trans, ret);
3183 			goto out;
3184 		}
3185 	} else if (ret) {
3186 		btrfs_abort_transaction(trans, ret);
3187 		goto out;
3188 	}
3189 
3190 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3191 
3192 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3193 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3194 		if (ret) {
3195 			btrfs_abort_transaction(trans, ret);
3196 			goto out;
3197 		}
3198 	}
3199 
3200 	mutex_unlock(&fs_info->chunk_mutex);
3201 	trans->removing_chunk = false;
3202 
3203 	/*
3204 	 * We are done with chunk btree updates and deletions, so release the
3205 	 * system space we previously reserved (with check_system_chunk()).
3206 	 */
3207 	btrfs_trans_release_chunk_metadata(trans);
3208 
3209 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3210 	if (ret) {
3211 		btrfs_abort_transaction(trans, ret);
3212 		goto out;
3213 	}
3214 
3215 out:
3216 	if (trans->removing_chunk) {
3217 		mutex_unlock(&fs_info->chunk_mutex);
3218 		trans->removing_chunk = false;
3219 	}
3220 	/* once for us */
3221 	free_extent_map(em);
3222 	return ret;
3223 }
3224 
3225 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3226 {
3227 	struct btrfs_root *root = fs_info->chunk_root;
3228 	struct btrfs_trans_handle *trans;
3229 	struct btrfs_block_group *block_group;
3230 	u64 length;
3231 	int ret;
3232 
3233 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3234 		btrfs_err(fs_info,
3235 			  "relocate: not supported on extent tree v2 yet");
3236 		return -EINVAL;
3237 	}
3238 
3239 	/*
3240 	 * Prevent races with automatic removal of unused block groups.
3241 	 * After we relocate and before we remove the chunk with offset
3242 	 * chunk_offset, automatic removal of the block group can kick in,
3243 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3244 	 *
3245 	 * Make sure to acquire this mutex before doing a tree search (dev
3246 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3247 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3248 	 * we release the path used to search the chunk/dev tree and before
3249 	 * the current task acquires this mutex and calls us.
3250 	 */
3251 	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3252 
3253 	/* step one, relocate all the extents inside this chunk */
3254 	btrfs_scrub_pause(fs_info);
3255 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3256 	btrfs_scrub_continue(fs_info);
3257 	if (ret)
3258 		return ret;
3259 
3260 	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3261 	if (!block_group)
3262 		return -ENOENT;
3263 	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3264 	length = block_group->length;
3265 	btrfs_put_block_group(block_group);
3266 
3267 	/*
3268 	 * On a zoned file system, discard the whole block group, this will
3269 	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3270 	 * resetting the zone fails, don't treat it as a fatal problem from the
3271 	 * filesystem's point of view.
3272 	 */
3273 	if (btrfs_is_zoned(fs_info)) {
3274 		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3275 		if (ret)
3276 			btrfs_info(fs_info,
3277 				"failed to reset zone %llu after relocation",
3278 				chunk_offset);
3279 	}
3280 
3281 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3282 						     chunk_offset);
3283 	if (IS_ERR(trans)) {
3284 		ret = PTR_ERR(trans);
3285 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3286 		return ret;
3287 	}
3288 
3289 	/*
3290 	 * step two, delete the device extents and the
3291 	 * chunk tree entries
3292 	 */
3293 	ret = btrfs_remove_chunk(trans, chunk_offset);
3294 	btrfs_end_transaction(trans);
3295 	return ret;
3296 }
3297 
3298 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3299 {
3300 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3301 	struct btrfs_path *path;
3302 	struct extent_buffer *leaf;
3303 	struct btrfs_chunk *chunk;
3304 	struct btrfs_key key;
3305 	struct btrfs_key found_key;
3306 	u64 chunk_type;
3307 	bool retried = false;
3308 	int failed = 0;
3309 	int ret;
3310 
3311 	path = btrfs_alloc_path();
3312 	if (!path)
3313 		return -ENOMEM;
3314 
3315 again:
3316 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3317 	key.offset = (u64)-1;
3318 	key.type = BTRFS_CHUNK_ITEM_KEY;
3319 
3320 	while (1) {
3321 		mutex_lock(&fs_info->reclaim_bgs_lock);
3322 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3323 		if (ret < 0) {
3324 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3325 			goto error;
3326 		}
3327 		BUG_ON(ret == 0); /* Corruption */
3328 
3329 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3330 					  key.type);
3331 		if (ret)
3332 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3333 		if (ret < 0)
3334 			goto error;
3335 		if (ret > 0)
3336 			break;
3337 
3338 		leaf = path->nodes[0];
3339 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3340 
3341 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3342 				       struct btrfs_chunk);
3343 		chunk_type = btrfs_chunk_type(leaf, chunk);
3344 		btrfs_release_path(path);
3345 
3346 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3347 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3348 			if (ret == -ENOSPC)
3349 				failed++;
3350 			else
3351 				BUG_ON(ret);
3352 		}
3353 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3354 
3355 		if (found_key.offset == 0)
3356 			break;
3357 		key.offset = found_key.offset - 1;
3358 	}
3359 	ret = 0;
3360 	if (failed && !retried) {
3361 		failed = 0;
3362 		retried = true;
3363 		goto again;
3364 	} else if (WARN_ON(failed && retried)) {
3365 		ret = -ENOSPC;
3366 	}
3367 error:
3368 	btrfs_free_path(path);
3369 	return ret;
3370 }
3371 
3372 /*
3373  * return 1 : allocate a data chunk successfully,
3374  * return <0: errors during allocating a data chunk,
3375  * return 0 : no need to allocate a data chunk.
3376  */
3377 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3378 				      u64 chunk_offset)
3379 {
3380 	struct btrfs_block_group *cache;
3381 	u64 bytes_used;
3382 	u64 chunk_type;
3383 
3384 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3385 	ASSERT(cache);
3386 	chunk_type = cache->flags;
3387 	btrfs_put_block_group(cache);
3388 
3389 	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3390 		return 0;
3391 
3392 	spin_lock(&fs_info->data_sinfo->lock);
3393 	bytes_used = fs_info->data_sinfo->bytes_used;
3394 	spin_unlock(&fs_info->data_sinfo->lock);
3395 
3396 	if (!bytes_used) {
3397 		struct btrfs_trans_handle *trans;
3398 		int ret;
3399 
3400 		trans =	btrfs_join_transaction(fs_info->tree_root);
3401 		if (IS_ERR(trans))
3402 			return PTR_ERR(trans);
3403 
3404 		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3405 		btrfs_end_transaction(trans);
3406 		if (ret < 0)
3407 			return ret;
3408 		return 1;
3409 	}
3410 
3411 	return 0;
3412 }
3413 
3414 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3415 			       struct btrfs_balance_control *bctl)
3416 {
3417 	struct btrfs_root *root = fs_info->tree_root;
3418 	struct btrfs_trans_handle *trans;
3419 	struct btrfs_balance_item *item;
3420 	struct btrfs_disk_balance_args disk_bargs;
3421 	struct btrfs_path *path;
3422 	struct extent_buffer *leaf;
3423 	struct btrfs_key key;
3424 	int ret, err;
3425 
3426 	path = btrfs_alloc_path();
3427 	if (!path)
3428 		return -ENOMEM;
3429 
3430 	trans = btrfs_start_transaction(root, 0);
3431 	if (IS_ERR(trans)) {
3432 		btrfs_free_path(path);
3433 		return PTR_ERR(trans);
3434 	}
3435 
3436 	key.objectid = BTRFS_BALANCE_OBJECTID;
3437 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3438 	key.offset = 0;
3439 
3440 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3441 				      sizeof(*item));
3442 	if (ret)
3443 		goto out;
3444 
3445 	leaf = path->nodes[0];
3446 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3447 
3448 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3449 
3450 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3451 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3452 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3453 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3454 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3455 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3456 
3457 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3458 
3459 	btrfs_mark_buffer_dirty(leaf);
3460 out:
3461 	btrfs_free_path(path);
3462 	err = btrfs_commit_transaction(trans);
3463 	if (err && !ret)
3464 		ret = err;
3465 	return ret;
3466 }
3467 
3468 static int del_balance_item(struct btrfs_fs_info *fs_info)
3469 {
3470 	struct btrfs_root *root = fs_info->tree_root;
3471 	struct btrfs_trans_handle *trans;
3472 	struct btrfs_path *path;
3473 	struct btrfs_key key;
3474 	int ret, err;
3475 
3476 	path = btrfs_alloc_path();
3477 	if (!path)
3478 		return -ENOMEM;
3479 
3480 	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3481 	if (IS_ERR(trans)) {
3482 		btrfs_free_path(path);
3483 		return PTR_ERR(trans);
3484 	}
3485 
3486 	key.objectid = BTRFS_BALANCE_OBJECTID;
3487 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3488 	key.offset = 0;
3489 
3490 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3491 	if (ret < 0)
3492 		goto out;
3493 	if (ret > 0) {
3494 		ret = -ENOENT;
3495 		goto out;
3496 	}
3497 
3498 	ret = btrfs_del_item(trans, root, path);
3499 out:
3500 	btrfs_free_path(path);
3501 	err = btrfs_commit_transaction(trans);
3502 	if (err && !ret)
3503 		ret = err;
3504 	return ret;
3505 }
3506 
3507 /*
3508  * This is a heuristic used to reduce the number of chunks balanced on
3509  * resume after balance was interrupted.
3510  */
3511 static void update_balance_args(struct btrfs_balance_control *bctl)
3512 {
3513 	/*
3514 	 * Turn on soft mode for chunk types that were being converted.
3515 	 */
3516 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3517 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3518 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3519 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3520 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3521 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3522 
3523 	/*
3524 	 * Turn on usage filter if is not already used.  The idea is
3525 	 * that chunks that we have already balanced should be
3526 	 * reasonably full.  Don't do it for chunks that are being
3527 	 * converted - that will keep us from relocating unconverted
3528 	 * (albeit full) chunks.
3529 	 */
3530 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3531 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3532 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3533 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3534 		bctl->data.usage = 90;
3535 	}
3536 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3537 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3538 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3539 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3540 		bctl->sys.usage = 90;
3541 	}
3542 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546 		bctl->meta.usage = 90;
3547 	}
3548 }
3549 
3550 /*
3551  * Clear the balance status in fs_info and delete the balance item from disk.
3552  */
3553 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3554 {
3555 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3556 	int ret;
3557 
3558 	BUG_ON(!fs_info->balance_ctl);
3559 
3560 	spin_lock(&fs_info->balance_lock);
3561 	fs_info->balance_ctl = NULL;
3562 	spin_unlock(&fs_info->balance_lock);
3563 
3564 	kfree(bctl);
3565 	ret = del_balance_item(fs_info);
3566 	if (ret)
3567 		btrfs_handle_fs_error(fs_info, ret, NULL);
3568 }
3569 
3570 /*
3571  * Balance filters.  Return 1 if chunk should be filtered out
3572  * (should not be balanced).
3573  */
3574 static int chunk_profiles_filter(u64 chunk_type,
3575 				 struct btrfs_balance_args *bargs)
3576 {
3577 	chunk_type = chunk_to_extended(chunk_type) &
3578 				BTRFS_EXTENDED_PROFILE_MASK;
3579 
3580 	if (bargs->profiles & chunk_type)
3581 		return 0;
3582 
3583 	return 1;
3584 }
3585 
3586 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3587 			      struct btrfs_balance_args *bargs)
3588 {
3589 	struct btrfs_block_group *cache;
3590 	u64 chunk_used;
3591 	u64 user_thresh_min;
3592 	u64 user_thresh_max;
3593 	int ret = 1;
3594 
3595 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3596 	chunk_used = cache->used;
3597 
3598 	if (bargs->usage_min == 0)
3599 		user_thresh_min = 0;
3600 	else
3601 		user_thresh_min = div_factor_fine(cache->length,
3602 						  bargs->usage_min);
3603 
3604 	if (bargs->usage_max == 0)
3605 		user_thresh_max = 1;
3606 	else if (bargs->usage_max > 100)
3607 		user_thresh_max = cache->length;
3608 	else
3609 		user_thresh_max = div_factor_fine(cache->length,
3610 						  bargs->usage_max);
3611 
3612 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3613 		ret = 0;
3614 
3615 	btrfs_put_block_group(cache);
3616 	return ret;
3617 }
3618 
3619 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3620 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3621 {
3622 	struct btrfs_block_group *cache;
3623 	u64 chunk_used, user_thresh;
3624 	int ret = 1;
3625 
3626 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3627 	chunk_used = cache->used;
3628 
3629 	if (bargs->usage_min == 0)
3630 		user_thresh = 1;
3631 	else if (bargs->usage > 100)
3632 		user_thresh = cache->length;
3633 	else
3634 		user_thresh = div_factor_fine(cache->length, bargs->usage);
3635 
3636 	if (chunk_used < user_thresh)
3637 		ret = 0;
3638 
3639 	btrfs_put_block_group(cache);
3640 	return ret;
3641 }
3642 
3643 static int chunk_devid_filter(struct extent_buffer *leaf,
3644 			      struct btrfs_chunk *chunk,
3645 			      struct btrfs_balance_args *bargs)
3646 {
3647 	struct btrfs_stripe *stripe;
3648 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3649 	int i;
3650 
3651 	for (i = 0; i < num_stripes; i++) {
3652 		stripe = btrfs_stripe_nr(chunk, i);
3653 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3654 			return 0;
3655 	}
3656 
3657 	return 1;
3658 }
3659 
3660 static u64 calc_data_stripes(u64 type, int num_stripes)
3661 {
3662 	const int index = btrfs_bg_flags_to_raid_index(type);
3663 	const int ncopies = btrfs_raid_array[index].ncopies;
3664 	const int nparity = btrfs_raid_array[index].nparity;
3665 
3666 	return (num_stripes - nparity) / ncopies;
3667 }
3668 
3669 /* [pstart, pend) */
3670 static int chunk_drange_filter(struct extent_buffer *leaf,
3671 			       struct btrfs_chunk *chunk,
3672 			       struct btrfs_balance_args *bargs)
3673 {
3674 	struct btrfs_stripe *stripe;
3675 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3676 	u64 stripe_offset;
3677 	u64 stripe_length;
3678 	u64 type;
3679 	int factor;
3680 	int i;
3681 
3682 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3683 		return 0;
3684 
3685 	type = btrfs_chunk_type(leaf, chunk);
3686 	factor = calc_data_stripes(type, num_stripes);
3687 
3688 	for (i = 0; i < num_stripes; i++) {
3689 		stripe = btrfs_stripe_nr(chunk, i);
3690 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3691 			continue;
3692 
3693 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3694 		stripe_length = btrfs_chunk_length(leaf, chunk);
3695 		stripe_length = div_u64(stripe_length, factor);
3696 
3697 		if (stripe_offset < bargs->pend &&
3698 		    stripe_offset + stripe_length > bargs->pstart)
3699 			return 0;
3700 	}
3701 
3702 	return 1;
3703 }
3704 
3705 /* [vstart, vend) */
3706 static int chunk_vrange_filter(struct extent_buffer *leaf,
3707 			       struct btrfs_chunk *chunk,
3708 			       u64 chunk_offset,
3709 			       struct btrfs_balance_args *bargs)
3710 {
3711 	if (chunk_offset < bargs->vend &&
3712 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3713 		/* at least part of the chunk is inside this vrange */
3714 		return 0;
3715 
3716 	return 1;
3717 }
3718 
3719 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3720 			       struct btrfs_chunk *chunk,
3721 			       struct btrfs_balance_args *bargs)
3722 {
3723 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3724 
3725 	if (bargs->stripes_min <= num_stripes
3726 			&& num_stripes <= bargs->stripes_max)
3727 		return 0;
3728 
3729 	return 1;
3730 }
3731 
3732 static int chunk_soft_convert_filter(u64 chunk_type,
3733 				     struct btrfs_balance_args *bargs)
3734 {
3735 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3736 		return 0;
3737 
3738 	chunk_type = chunk_to_extended(chunk_type) &
3739 				BTRFS_EXTENDED_PROFILE_MASK;
3740 
3741 	if (bargs->target == chunk_type)
3742 		return 1;
3743 
3744 	return 0;
3745 }
3746 
3747 static int should_balance_chunk(struct extent_buffer *leaf,
3748 				struct btrfs_chunk *chunk, u64 chunk_offset)
3749 {
3750 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3751 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3752 	struct btrfs_balance_args *bargs = NULL;
3753 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3754 
3755 	/* type filter */
3756 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3757 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3758 		return 0;
3759 	}
3760 
3761 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3762 		bargs = &bctl->data;
3763 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3764 		bargs = &bctl->sys;
3765 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3766 		bargs = &bctl->meta;
3767 
3768 	/* profiles filter */
3769 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3770 	    chunk_profiles_filter(chunk_type, bargs)) {
3771 		return 0;
3772 	}
3773 
3774 	/* usage filter */
3775 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3776 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3777 		return 0;
3778 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3779 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3780 		return 0;
3781 	}
3782 
3783 	/* devid filter */
3784 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3785 	    chunk_devid_filter(leaf, chunk, bargs)) {
3786 		return 0;
3787 	}
3788 
3789 	/* drange filter, makes sense only with devid filter */
3790 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3791 	    chunk_drange_filter(leaf, chunk, bargs)) {
3792 		return 0;
3793 	}
3794 
3795 	/* vrange filter */
3796 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3797 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3798 		return 0;
3799 	}
3800 
3801 	/* stripes filter */
3802 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3803 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3804 		return 0;
3805 	}
3806 
3807 	/* soft profile changing mode */
3808 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3809 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3810 		return 0;
3811 	}
3812 
3813 	/*
3814 	 * limited by count, must be the last filter
3815 	 */
3816 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3817 		if (bargs->limit == 0)
3818 			return 0;
3819 		else
3820 			bargs->limit--;
3821 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3822 		/*
3823 		 * Same logic as the 'limit' filter; the minimum cannot be
3824 		 * determined here because we do not have the global information
3825 		 * about the count of all chunks that satisfy the filters.
3826 		 */
3827 		if (bargs->limit_max == 0)
3828 			return 0;
3829 		else
3830 			bargs->limit_max--;
3831 	}
3832 
3833 	return 1;
3834 }
3835 
3836 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3837 {
3838 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3839 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3840 	u64 chunk_type;
3841 	struct btrfs_chunk *chunk;
3842 	struct btrfs_path *path = NULL;
3843 	struct btrfs_key key;
3844 	struct btrfs_key found_key;
3845 	struct extent_buffer *leaf;
3846 	int slot;
3847 	int ret;
3848 	int enospc_errors = 0;
3849 	bool counting = true;
3850 	/* The single value limit and min/max limits use the same bytes in the */
3851 	u64 limit_data = bctl->data.limit;
3852 	u64 limit_meta = bctl->meta.limit;
3853 	u64 limit_sys = bctl->sys.limit;
3854 	u32 count_data = 0;
3855 	u32 count_meta = 0;
3856 	u32 count_sys = 0;
3857 	int chunk_reserved = 0;
3858 
3859 	path = btrfs_alloc_path();
3860 	if (!path) {
3861 		ret = -ENOMEM;
3862 		goto error;
3863 	}
3864 
3865 	/* zero out stat counters */
3866 	spin_lock(&fs_info->balance_lock);
3867 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3868 	spin_unlock(&fs_info->balance_lock);
3869 again:
3870 	if (!counting) {
3871 		/*
3872 		 * The single value limit and min/max limits use the same bytes
3873 		 * in the
3874 		 */
3875 		bctl->data.limit = limit_data;
3876 		bctl->meta.limit = limit_meta;
3877 		bctl->sys.limit = limit_sys;
3878 	}
3879 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3880 	key.offset = (u64)-1;
3881 	key.type = BTRFS_CHUNK_ITEM_KEY;
3882 
3883 	while (1) {
3884 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3885 		    atomic_read(&fs_info->balance_cancel_req)) {
3886 			ret = -ECANCELED;
3887 			goto error;
3888 		}
3889 
3890 		mutex_lock(&fs_info->reclaim_bgs_lock);
3891 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3892 		if (ret < 0) {
3893 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3894 			goto error;
3895 		}
3896 
3897 		/*
3898 		 * this shouldn't happen, it means the last relocate
3899 		 * failed
3900 		 */
3901 		if (ret == 0)
3902 			BUG(); /* FIXME break ? */
3903 
3904 		ret = btrfs_previous_item(chunk_root, path, 0,
3905 					  BTRFS_CHUNK_ITEM_KEY);
3906 		if (ret) {
3907 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3908 			ret = 0;
3909 			break;
3910 		}
3911 
3912 		leaf = path->nodes[0];
3913 		slot = path->slots[0];
3914 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3915 
3916 		if (found_key.objectid != key.objectid) {
3917 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3918 			break;
3919 		}
3920 
3921 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3922 		chunk_type = btrfs_chunk_type(leaf, chunk);
3923 
3924 		if (!counting) {
3925 			spin_lock(&fs_info->balance_lock);
3926 			bctl->stat.considered++;
3927 			spin_unlock(&fs_info->balance_lock);
3928 		}
3929 
3930 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3931 
3932 		btrfs_release_path(path);
3933 		if (!ret) {
3934 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3935 			goto loop;
3936 		}
3937 
3938 		if (counting) {
3939 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3940 			spin_lock(&fs_info->balance_lock);
3941 			bctl->stat.expected++;
3942 			spin_unlock(&fs_info->balance_lock);
3943 
3944 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3945 				count_data++;
3946 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3947 				count_sys++;
3948 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3949 				count_meta++;
3950 
3951 			goto loop;
3952 		}
3953 
3954 		/*
3955 		 * Apply limit_min filter, no need to check if the LIMITS
3956 		 * filter is used, limit_min is 0 by default
3957 		 */
3958 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3959 					count_data < bctl->data.limit_min)
3960 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3961 					count_meta < bctl->meta.limit_min)
3962 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3963 					count_sys < bctl->sys.limit_min)) {
3964 			mutex_unlock(&fs_info->reclaim_bgs_lock);
3965 			goto loop;
3966 		}
3967 
3968 		if (!chunk_reserved) {
3969 			/*
3970 			 * We may be relocating the only data chunk we have,
3971 			 * which could potentially end up with losing data's
3972 			 * raid profile, so lets allocate an empty one in
3973 			 * advance.
3974 			 */
3975 			ret = btrfs_may_alloc_data_chunk(fs_info,
3976 							 found_key.offset);
3977 			if (ret < 0) {
3978 				mutex_unlock(&fs_info->reclaim_bgs_lock);
3979 				goto error;
3980 			} else if (ret == 1) {
3981 				chunk_reserved = 1;
3982 			}
3983 		}
3984 
3985 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3986 		mutex_unlock(&fs_info->reclaim_bgs_lock);
3987 		if (ret == -ENOSPC) {
3988 			enospc_errors++;
3989 		} else if (ret == -ETXTBSY) {
3990 			btrfs_info(fs_info,
3991 	   "skipping relocation of block group %llu due to active swapfile",
3992 				   found_key.offset);
3993 			ret = 0;
3994 		} else if (ret) {
3995 			goto error;
3996 		} else {
3997 			spin_lock(&fs_info->balance_lock);
3998 			bctl->stat.completed++;
3999 			spin_unlock(&fs_info->balance_lock);
4000 		}
4001 loop:
4002 		if (found_key.offset == 0)
4003 			break;
4004 		key.offset = found_key.offset - 1;
4005 	}
4006 
4007 	if (counting) {
4008 		btrfs_release_path(path);
4009 		counting = false;
4010 		goto again;
4011 	}
4012 error:
4013 	btrfs_free_path(path);
4014 	if (enospc_errors) {
4015 		btrfs_info(fs_info, "%d enospc errors during balance",
4016 			   enospc_errors);
4017 		if (!ret)
4018 			ret = -ENOSPC;
4019 	}
4020 
4021 	return ret;
4022 }
4023 
4024 /**
4025  * alloc_profile_is_valid - see if a given profile is valid and reduced
4026  * @flags: profile to validate
4027  * @extended: if true @flags is treated as an extended profile
4028  */
4029 static int alloc_profile_is_valid(u64 flags, int extended)
4030 {
4031 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4032 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4033 
4034 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4035 
4036 	/* 1) check that all other bits are zeroed */
4037 	if (flags & ~mask)
4038 		return 0;
4039 
4040 	/* 2) see if profile is reduced */
4041 	if (flags == 0)
4042 		return !extended; /* "0" is valid for usual profiles */
4043 
4044 	return has_single_bit_set(flags);
4045 }
4046 
4047 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4048 {
4049 	/* cancel requested || normal exit path */
4050 	return atomic_read(&fs_info->balance_cancel_req) ||
4051 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4052 		 atomic_read(&fs_info->balance_cancel_req) == 0);
4053 }
4054 
4055 /*
4056  * Validate target profile against allowed profiles and return true if it's OK.
4057  * Otherwise print the error message and return false.
4058  */
4059 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4060 		const struct btrfs_balance_args *bargs,
4061 		u64 allowed, const char *type)
4062 {
4063 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4064 		return true;
4065 
4066 	/* Profile is valid and does not have bits outside of the allowed set */
4067 	if (alloc_profile_is_valid(bargs->target, 1) &&
4068 	    (bargs->target & ~allowed) == 0)
4069 		return true;
4070 
4071 	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4072 			type, btrfs_bg_type_to_raid_name(bargs->target));
4073 	return false;
4074 }
4075 
4076 /*
4077  * Fill @buf with textual description of balance filter flags @bargs, up to
4078  * @size_buf including the terminating null. The output may be trimmed if it
4079  * does not fit into the provided buffer.
4080  */
4081 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4082 				 u32 size_buf)
4083 {
4084 	int ret;
4085 	u32 size_bp = size_buf;
4086 	char *bp = buf;
4087 	u64 flags = bargs->flags;
4088 	char tmp_buf[128] = {'\0'};
4089 
4090 	if (!flags)
4091 		return;
4092 
4093 #define CHECK_APPEND_NOARG(a)						\
4094 	do {								\
4095 		ret = snprintf(bp, size_bp, (a));			\
4096 		if (ret < 0 || ret >= size_bp)				\
4097 			goto out_overflow;				\
4098 		size_bp -= ret;						\
4099 		bp += ret;						\
4100 	} while (0)
4101 
4102 #define CHECK_APPEND_1ARG(a, v1)					\
4103 	do {								\
4104 		ret = snprintf(bp, size_bp, (a), (v1));			\
4105 		if (ret < 0 || ret >= size_bp)				\
4106 			goto out_overflow;				\
4107 		size_bp -= ret;						\
4108 		bp += ret;						\
4109 	} while (0)
4110 
4111 #define CHECK_APPEND_2ARG(a, v1, v2)					\
4112 	do {								\
4113 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4114 		if (ret < 0 || ret >= size_bp)				\
4115 			goto out_overflow;				\
4116 		size_bp -= ret;						\
4117 		bp += ret;						\
4118 	} while (0)
4119 
4120 	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4121 		CHECK_APPEND_1ARG("convert=%s,",
4122 				  btrfs_bg_type_to_raid_name(bargs->target));
4123 
4124 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4125 		CHECK_APPEND_NOARG("soft,");
4126 
4127 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4128 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4129 					    sizeof(tmp_buf));
4130 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4131 	}
4132 
4133 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4134 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4135 
4136 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4137 		CHECK_APPEND_2ARG("usage=%u..%u,",
4138 				  bargs->usage_min, bargs->usage_max);
4139 
4140 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4141 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4142 
4143 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4144 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4145 				  bargs->pstart, bargs->pend);
4146 
4147 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4148 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4149 				  bargs->vstart, bargs->vend);
4150 
4151 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4152 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4153 
4154 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4155 		CHECK_APPEND_2ARG("limit=%u..%u,",
4156 				bargs->limit_min, bargs->limit_max);
4157 
4158 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4159 		CHECK_APPEND_2ARG("stripes=%u..%u,",
4160 				  bargs->stripes_min, bargs->stripes_max);
4161 
4162 #undef CHECK_APPEND_2ARG
4163 #undef CHECK_APPEND_1ARG
4164 #undef CHECK_APPEND_NOARG
4165 
4166 out_overflow:
4167 
4168 	if (size_bp < size_buf)
4169 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4170 	else
4171 		buf[0] = '\0';
4172 }
4173 
4174 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4175 {
4176 	u32 size_buf = 1024;
4177 	char tmp_buf[192] = {'\0'};
4178 	char *buf;
4179 	char *bp;
4180 	u32 size_bp = size_buf;
4181 	int ret;
4182 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4183 
4184 	buf = kzalloc(size_buf, GFP_KERNEL);
4185 	if (!buf)
4186 		return;
4187 
4188 	bp = buf;
4189 
4190 #define CHECK_APPEND_1ARG(a, v1)					\
4191 	do {								\
4192 		ret = snprintf(bp, size_bp, (a), (v1));			\
4193 		if (ret < 0 || ret >= size_bp)				\
4194 			goto out_overflow;				\
4195 		size_bp -= ret;						\
4196 		bp += ret;						\
4197 	} while (0)
4198 
4199 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4200 		CHECK_APPEND_1ARG("%s", "-f ");
4201 
4202 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4203 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4204 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4205 	}
4206 
4207 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4208 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4209 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4210 	}
4211 
4212 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4213 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4214 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4215 	}
4216 
4217 #undef CHECK_APPEND_1ARG
4218 
4219 out_overflow:
4220 
4221 	if (size_bp < size_buf)
4222 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4223 	btrfs_info(fs_info, "balance: %s %s",
4224 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4225 		   "resume" : "start", buf);
4226 
4227 	kfree(buf);
4228 }
4229 
4230 /*
4231  * Should be called with balance mutexe held
4232  */
4233 int btrfs_balance(struct btrfs_fs_info *fs_info,
4234 		  struct btrfs_balance_control *bctl,
4235 		  struct btrfs_ioctl_balance_args *bargs)
4236 {
4237 	u64 meta_target, data_target;
4238 	u64 allowed;
4239 	int mixed = 0;
4240 	int ret;
4241 	u64 num_devices;
4242 	unsigned seq;
4243 	bool reducing_redundancy;
4244 	int i;
4245 
4246 	if (btrfs_fs_closing(fs_info) ||
4247 	    atomic_read(&fs_info->balance_pause_req) ||
4248 	    btrfs_should_cancel_balance(fs_info)) {
4249 		ret = -EINVAL;
4250 		goto out;
4251 	}
4252 
4253 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4254 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4255 		mixed = 1;
4256 
4257 	/*
4258 	 * In case of mixed groups both data and meta should be picked,
4259 	 * and identical options should be given for both of them.
4260 	 */
4261 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4262 	if (mixed && (bctl->flags & allowed)) {
4263 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4264 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4265 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4266 			btrfs_err(fs_info,
4267 	  "balance: mixed groups data and metadata options must be the same");
4268 			ret = -EINVAL;
4269 			goto out;
4270 		}
4271 	}
4272 
4273 	/*
4274 	 * rw_devices will not change at the moment, device add/delete/replace
4275 	 * are exclusive
4276 	 */
4277 	num_devices = fs_info->fs_devices->rw_devices;
4278 
4279 	/*
4280 	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4281 	 * special bit for it, to make it easier to distinguish.  Thus we need
4282 	 * to set it manually, or balance would refuse the profile.
4283 	 */
4284 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4285 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4286 		if (num_devices >= btrfs_raid_array[i].devs_min)
4287 			allowed |= btrfs_raid_array[i].bg_flag;
4288 
4289 	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4290 	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4291 	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4292 		ret = -EINVAL;
4293 		goto out;
4294 	}
4295 
4296 	/*
4297 	 * Allow to reduce metadata or system integrity only if force set for
4298 	 * profiles with redundancy (copies, parity)
4299 	 */
4300 	allowed = 0;
4301 	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4302 		if (btrfs_raid_array[i].ncopies >= 2 ||
4303 		    btrfs_raid_array[i].tolerated_failures >= 1)
4304 			allowed |= btrfs_raid_array[i].bg_flag;
4305 	}
4306 	do {
4307 		seq = read_seqbegin(&fs_info->profiles_lock);
4308 
4309 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4310 		     (fs_info->avail_system_alloc_bits & allowed) &&
4311 		     !(bctl->sys.target & allowed)) ||
4312 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4313 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4314 		     !(bctl->meta.target & allowed)))
4315 			reducing_redundancy = true;
4316 		else
4317 			reducing_redundancy = false;
4318 
4319 		/* if we're not converting, the target field is uninitialized */
4320 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4321 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4322 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4323 			bctl->data.target : fs_info->avail_data_alloc_bits;
4324 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4325 
4326 	if (reducing_redundancy) {
4327 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4328 			btrfs_info(fs_info,
4329 			   "balance: force reducing metadata redundancy");
4330 		} else {
4331 			btrfs_err(fs_info,
4332 	"balance: reduces metadata redundancy, use --force if you want this");
4333 			ret = -EINVAL;
4334 			goto out;
4335 		}
4336 	}
4337 
4338 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4339 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4340 		btrfs_warn(fs_info,
4341 	"balance: metadata profile %s has lower redundancy than data profile %s",
4342 				btrfs_bg_type_to_raid_name(meta_target),
4343 				btrfs_bg_type_to_raid_name(data_target));
4344 	}
4345 
4346 	ret = insert_balance_item(fs_info, bctl);
4347 	if (ret && ret != -EEXIST)
4348 		goto out;
4349 
4350 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4351 		BUG_ON(ret == -EEXIST);
4352 		BUG_ON(fs_info->balance_ctl);
4353 		spin_lock(&fs_info->balance_lock);
4354 		fs_info->balance_ctl = bctl;
4355 		spin_unlock(&fs_info->balance_lock);
4356 	} else {
4357 		BUG_ON(ret != -EEXIST);
4358 		spin_lock(&fs_info->balance_lock);
4359 		update_balance_args(bctl);
4360 		spin_unlock(&fs_info->balance_lock);
4361 	}
4362 
4363 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4364 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4365 	describe_balance_start_or_resume(fs_info);
4366 	mutex_unlock(&fs_info->balance_mutex);
4367 
4368 	ret = __btrfs_balance(fs_info);
4369 
4370 	mutex_lock(&fs_info->balance_mutex);
4371 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4372 		btrfs_info(fs_info, "balance: paused");
4373 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4374 	}
4375 	/*
4376 	 * Balance can be canceled by:
4377 	 *
4378 	 * - Regular cancel request
4379 	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4380 	 *
4381 	 * - Fatal signal to "btrfs" process
4382 	 *   Either the signal caught by wait_reserve_ticket() and callers
4383 	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4384 	 *   got -ECANCELED.
4385 	 *   Either way, in this case balance_cancel_req = 0, and
4386 	 *   ret == -EINTR or ret == -ECANCELED.
4387 	 *
4388 	 * So here we only check the return value to catch canceled balance.
4389 	 */
4390 	else if (ret == -ECANCELED || ret == -EINTR)
4391 		btrfs_info(fs_info, "balance: canceled");
4392 	else
4393 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4394 
4395 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4396 
4397 	if (bargs) {
4398 		memset(bargs, 0, sizeof(*bargs));
4399 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4400 	}
4401 
4402 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4403 	    balance_need_close(fs_info)) {
4404 		reset_balance_state(fs_info);
4405 		btrfs_exclop_finish(fs_info);
4406 	}
4407 
4408 	wake_up(&fs_info->balance_wait_q);
4409 
4410 	return ret;
4411 out:
4412 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4413 		reset_balance_state(fs_info);
4414 	else
4415 		kfree(bctl);
4416 	btrfs_exclop_finish(fs_info);
4417 
4418 	return ret;
4419 }
4420 
4421 static int balance_kthread(void *data)
4422 {
4423 	struct btrfs_fs_info *fs_info = data;
4424 	int ret = 0;
4425 
4426 	sb_start_write(fs_info->sb);
4427 	mutex_lock(&fs_info->balance_mutex);
4428 	if (fs_info->balance_ctl)
4429 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4430 	mutex_unlock(&fs_info->balance_mutex);
4431 	sb_end_write(fs_info->sb);
4432 
4433 	return ret;
4434 }
4435 
4436 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4437 {
4438 	struct task_struct *tsk;
4439 
4440 	mutex_lock(&fs_info->balance_mutex);
4441 	if (!fs_info->balance_ctl) {
4442 		mutex_unlock(&fs_info->balance_mutex);
4443 		return 0;
4444 	}
4445 	mutex_unlock(&fs_info->balance_mutex);
4446 
4447 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4448 		btrfs_info(fs_info, "balance: resume skipped");
4449 		return 0;
4450 	}
4451 
4452 	spin_lock(&fs_info->super_lock);
4453 	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4454 	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4455 	spin_unlock(&fs_info->super_lock);
4456 	/*
4457 	 * A ro->rw remount sequence should continue with the paused balance
4458 	 * regardless of who pauses it, system or the user as of now, so set
4459 	 * the resume flag.
4460 	 */
4461 	spin_lock(&fs_info->balance_lock);
4462 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4463 	spin_unlock(&fs_info->balance_lock);
4464 
4465 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4466 	return PTR_ERR_OR_ZERO(tsk);
4467 }
4468 
4469 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4470 {
4471 	struct btrfs_balance_control *bctl;
4472 	struct btrfs_balance_item *item;
4473 	struct btrfs_disk_balance_args disk_bargs;
4474 	struct btrfs_path *path;
4475 	struct extent_buffer *leaf;
4476 	struct btrfs_key key;
4477 	int ret;
4478 
4479 	path = btrfs_alloc_path();
4480 	if (!path)
4481 		return -ENOMEM;
4482 
4483 	key.objectid = BTRFS_BALANCE_OBJECTID;
4484 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4485 	key.offset = 0;
4486 
4487 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4488 	if (ret < 0)
4489 		goto out;
4490 	if (ret > 0) { /* ret = -ENOENT; */
4491 		ret = 0;
4492 		goto out;
4493 	}
4494 
4495 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4496 	if (!bctl) {
4497 		ret = -ENOMEM;
4498 		goto out;
4499 	}
4500 
4501 	leaf = path->nodes[0];
4502 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4503 
4504 	bctl->flags = btrfs_balance_flags(leaf, item);
4505 	bctl->flags |= BTRFS_BALANCE_RESUME;
4506 
4507 	btrfs_balance_data(leaf, item, &disk_bargs);
4508 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4509 	btrfs_balance_meta(leaf, item, &disk_bargs);
4510 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4511 	btrfs_balance_sys(leaf, item, &disk_bargs);
4512 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4513 
4514 	/*
4515 	 * This should never happen, as the paused balance state is recovered
4516 	 * during mount without any chance of other exclusive ops to collide.
4517 	 *
4518 	 * This gives the exclusive op status to balance and keeps in paused
4519 	 * state until user intervention (cancel or umount). If the ownership
4520 	 * cannot be assigned, show a message but do not fail. The balance
4521 	 * is in a paused state and must have fs_info::balance_ctl properly
4522 	 * set up.
4523 	 */
4524 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4525 		btrfs_warn(fs_info,
4526 	"balance: cannot set exclusive op status, resume manually");
4527 
4528 	btrfs_release_path(path);
4529 
4530 	mutex_lock(&fs_info->balance_mutex);
4531 	BUG_ON(fs_info->balance_ctl);
4532 	spin_lock(&fs_info->balance_lock);
4533 	fs_info->balance_ctl = bctl;
4534 	spin_unlock(&fs_info->balance_lock);
4535 	mutex_unlock(&fs_info->balance_mutex);
4536 out:
4537 	btrfs_free_path(path);
4538 	return ret;
4539 }
4540 
4541 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4542 {
4543 	int ret = 0;
4544 
4545 	mutex_lock(&fs_info->balance_mutex);
4546 	if (!fs_info->balance_ctl) {
4547 		mutex_unlock(&fs_info->balance_mutex);
4548 		return -ENOTCONN;
4549 	}
4550 
4551 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4552 		atomic_inc(&fs_info->balance_pause_req);
4553 		mutex_unlock(&fs_info->balance_mutex);
4554 
4555 		wait_event(fs_info->balance_wait_q,
4556 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4557 
4558 		mutex_lock(&fs_info->balance_mutex);
4559 		/* we are good with balance_ctl ripped off from under us */
4560 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4561 		atomic_dec(&fs_info->balance_pause_req);
4562 	} else {
4563 		ret = -ENOTCONN;
4564 	}
4565 
4566 	mutex_unlock(&fs_info->balance_mutex);
4567 	return ret;
4568 }
4569 
4570 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4571 {
4572 	mutex_lock(&fs_info->balance_mutex);
4573 	if (!fs_info->balance_ctl) {
4574 		mutex_unlock(&fs_info->balance_mutex);
4575 		return -ENOTCONN;
4576 	}
4577 
4578 	/*
4579 	 * A paused balance with the item stored on disk can be resumed at
4580 	 * mount time if the mount is read-write. Otherwise it's still paused
4581 	 * and we must not allow cancelling as it deletes the item.
4582 	 */
4583 	if (sb_rdonly(fs_info->sb)) {
4584 		mutex_unlock(&fs_info->balance_mutex);
4585 		return -EROFS;
4586 	}
4587 
4588 	atomic_inc(&fs_info->balance_cancel_req);
4589 	/*
4590 	 * if we are running just wait and return, balance item is
4591 	 * deleted in btrfs_balance in this case
4592 	 */
4593 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4594 		mutex_unlock(&fs_info->balance_mutex);
4595 		wait_event(fs_info->balance_wait_q,
4596 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4597 		mutex_lock(&fs_info->balance_mutex);
4598 	} else {
4599 		mutex_unlock(&fs_info->balance_mutex);
4600 		/*
4601 		 * Lock released to allow other waiters to continue, we'll
4602 		 * reexamine the status again.
4603 		 */
4604 		mutex_lock(&fs_info->balance_mutex);
4605 
4606 		if (fs_info->balance_ctl) {
4607 			reset_balance_state(fs_info);
4608 			btrfs_exclop_finish(fs_info);
4609 			btrfs_info(fs_info, "balance: canceled");
4610 		}
4611 	}
4612 
4613 	BUG_ON(fs_info->balance_ctl ||
4614 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4615 	atomic_dec(&fs_info->balance_cancel_req);
4616 	mutex_unlock(&fs_info->balance_mutex);
4617 	return 0;
4618 }
4619 
4620 int btrfs_uuid_scan_kthread(void *data)
4621 {
4622 	struct btrfs_fs_info *fs_info = data;
4623 	struct btrfs_root *root = fs_info->tree_root;
4624 	struct btrfs_key key;
4625 	struct btrfs_path *path = NULL;
4626 	int ret = 0;
4627 	struct extent_buffer *eb;
4628 	int slot;
4629 	struct btrfs_root_item root_item;
4630 	u32 item_size;
4631 	struct btrfs_trans_handle *trans = NULL;
4632 	bool closing = false;
4633 
4634 	path = btrfs_alloc_path();
4635 	if (!path) {
4636 		ret = -ENOMEM;
4637 		goto out;
4638 	}
4639 
4640 	key.objectid = 0;
4641 	key.type = BTRFS_ROOT_ITEM_KEY;
4642 	key.offset = 0;
4643 
4644 	while (1) {
4645 		if (btrfs_fs_closing(fs_info)) {
4646 			closing = true;
4647 			break;
4648 		}
4649 		ret = btrfs_search_forward(root, &key, path,
4650 				BTRFS_OLDEST_GENERATION);
4651 		if (ret) {
4652 			if (ret > 0)
4653 				ret = 0;
4654 			break;
4655 		}
4656 
4657 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4658 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4659 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4660 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4661 			goto skip;
4662 
4663 		eb = path->nodes[0];
4664 		slot = path->slots[0];
4665 		item_size = btrfs_item_size(eb, slot);
4666 		if (item_size < sizeof(root_item))
4667 			goto skip;
4668 
4669 		read_extent_buffer(eb, &root_item,
4670 				   btrfs_item_ptr_offset(eb, slot),
4671 				   (int)sizeof(root_item));
4672 		if (btrfs_root_refs(&root_item) == 0)
4673 			goto skip;
4674 
4675 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4676 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4677 			if (trans)
4678 				goto update_tree;
4679 
4680 			btrfs_release_path(path);
4681 			/*
4682 			 * 1 - subvol uuid item
4683 			 * 1 - received_subvol uuid item
4684 			 */
4685 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4686 			if (IS_ERR(trans)) {
4687 				ret = PTR_ERR(trans);
4688 				break;
4689 			}
4690 			continue;
4691 		} else {
4692 			goto skip;
4693 		}
4694 update_tree:
4695 		btrfs_release_path(path);
4696 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4697 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4698 						  BTRFS_UUID_KEY_SUBVOL,
4699 						  key.objectid);
4700 			if (ret < 0) {
4701 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4702 					ret);
4703 				break;
4704 			}
4705 		}
4706 
4707 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4708 			ret = btrfs_uuid_tree_add(trans,
4709 						  root_item.received_uuid,
4710 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4711 						  key.objectid);
4712 			if (ret < 0) {
4713 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4714 					ret);
4715 				break;
4716 			}
4717 		}
4718 
4719 skip:
4720 		btrfs_release_path(path);
4721 		if (trans) {
4722 			ret = btrfs_end_transaction(trans);
4723 			trans = NULL;
4724 			if (ret)
4725 				break;
4726 		}
4727 
4728 		if (key.offset < (u64)-1) {
4729 			key.offset++;
4730 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4731 			key.offset = 0;
4732 			key.type = BTRFS_ROOT_ITEM_KEY;
4733 		} else if (key.objectid < (u64)-1) {
4734 			key.offset = 0;
4735 			key.type = BTRFS_ROOT_ITEM_KEY;
4736 			key.objectid++;
4737 		} else {
4738 			break;
4739 		}
4740 		cond_resched();
4741 	}
4742 
4743 out:
4744 	btrfs_free_path(path);
4745 	if (trans && !IS_ERR(trans))
4746 		btrfs_end_transaction(trans);
4747 	if (ret)
4748 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4749 	else if (!closing)
4750 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4751 	up(&fs_info->uuid_tree_rescan_sem);
4752 	return 0;
4753 }
4754 
4755 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4756 {
4757 	struct btrfs_trans_handle *trans;
4758 	struct btrfs_root *tree_root = fs_info->tree_root;
4759 	struct btrfs_root *uuid_root;
4760 	struct task_struct *task;
4761 	int ret;
4762 
4763 	/*
4764 	 * 1 - root node
4765 	 * 1 - root item
4766 	 */
4767 	trans = btrfs_start_transaction(tree_root, 2);
4768 	if (IS_ERR(trans))
4769 		return PTR_ERR(trans);
4770 
4771 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4772 	if (IS_ERR(uuid_root)) {
4773 		ret = PTR_ERR(uuid_root);
4774 		btrfs_abort_transaction(trans, ret);
4775 		btrfs_end_transaction(trans);
4776 		return ret;
4777 	}
4778 
4779 	fs_info->uuid_root = uuid_root;
4780 
4781 	ret = btrfs_commit_transaction(trans);
4782 	if (ret)
4783 		return ret;
4784 
4785 	down(&fs_info->uuid_tree_rescan_sem);
4786 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4787 	if (IS_ERR(task)) {
4788 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4789 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4790 		up(&fs_info->uuid_tree_rescan_sem);
4791 		return PTR_ERR(task);
4792 	}
4793 
4794 	return 0;
4795 }
4796 
4797 /*
4798  * shrinking a device means finding all of the device extents past
4799  * the new size, and then following the back refs to the chunks.
4800  * The chunk relocation code actually frees the device extent
4801  */
4802 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4803 {
4804 	struct btrfs_fs_info *fs_info = device->fs_info;
4805 	struct btrfs_root *root = fs_info->dev_root;
4806 	struct btrfs_trans_handle *trans;
4807 	struct btrfs_dev_extent *dev_extent = NULL;
4808 	struct btrfs_path *path;
4809 	u64 length;
4810 	u64 chunk_offset;
4811 	int ret;
4812 	int slot;
4813 	int failed = 0;
4814 	bool retried = false;
4815 	struct extent_buffer *l;
4816 	struct btrfs_key key;
4817 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4818 	u64 old_total = btrfs_super_total_bytes(super_copy);
4819 	u64 old_size = btrfs_device_get_total_bytes(device);
4820 	u64 diff;
4821 	u64 start;
4822 
4823 	new_size = round_down(new_size, fs_info->sectorsize);
4824 	start = new_size;
4825 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4826 
4827 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4828 		return -EINVAL;
4829 
4830 	path = btrfs_alloc_path();
4831 	if (!path)
4832 		return -ENOMEM;
4833 
4834 	path->reada = READA_BACK;
4835 
4836 	trans = btrfs_start_transaction(root, 0);
4837 	if (IS_ERR(trans)) {
4838 		btrfs_free_path(path);
4839 		return PTR_ERR(trans);
4840 	}
4841 
4842 	mutex_lock(&fs_info->chunk_mutex);
4843 
4844 	btrfs_device_set_total_bytes(device, new_size);
4845 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4846 		device->fs_devices->total_rw_bytes -= diff;
4847 		atomic64_sub(diff, &fs_info->free_chunk_space);
4848 	}
4849 
4850 	/*
4851 	 * Once the device's size has been set to the new size, ensure all
4852 	 * in-memory chunks are synced to disk so that the loop below sees them
4853 	 * and relocates them accordingly.
4854 	 */
4855 	if (contains_pending_extent(device, &start, diff)) {
4856 		mutex_unlock(&fs_info->chunk_mutex);
4857 		ret = btrfs_commit_transaction(trans);
4858 		if (ret)
4859 			goto done;
4860 	} else {
4861 		mutex_unlock(&fs_info->chunk_mutex);
4862 		btrfs_end_transaction(trans);
4863 	}
4864 
4865 again:
4866 	key.objectid = device->devid;
4867 	key.offset = (u64)-1;
4868 	key.type = BTRFS_DEV_EXTENT_KEY;
4869 
4870 	do {
4871 		mutex_lock(&fs_info->reclaim_bgs_lock);
4872 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4873 		if (ret < 0) {
4874 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4875 			goto done;
4876 		}
4877 
4878 		ret = btrfs_previous_item(root, path, 0, key.type);
4879 		if (ret) {
4880 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4881 			if (ret < 0)
4882 				goto done;
4883 			ret = 0;
4884 			btrfs_release_path(path);
4885 			break;
4886 		}
4887 
4888 		l = path->nodes[0];
4889 		slot = path->slots[0];
4890 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4891 
4892 		if (key.objectid != device->devid) {
4893 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4894 			btrfs_release_path(path);
4895 			break;
4896 		}
4897 
4898 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4899 		length = btrfs_dev_extent_length(l, dev_extent);
4900 
4901 		if (key.offset + length <= new_size) {
4902 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4903 			btrfs_release_path(path);
4904 			break;
4905 		}
4906 
4907 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4908 		btrfs_release_path(path);
4909 
4910 		/*
4911 		 * We may be relocating the only data chunk we have,
4912 		 * which could potentially end up with losing data's
4913 		 * raid profile, so lets allocate an empty one in
4914 		 * advance.
4915 		 */
4916 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4917 		if (ret < 0) {
4918 			mutex_unlock(&fs_info->reclaim_bgs_lock);
4919 			goto done;
4920 		}
4921 
4922 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4923 		mutex_unlock(&fs_info->reclaim_bgs_lock);
4924 		if (ret == -ENOSPC) {
4925 			failed++;
4926 		} else if (ret) {
4927 			if (ret == -ETXTBSY) {
4928 				btrfs_warn(fs_info,
4929 		   "could not shrink block group %llu due to active swapfile",
4930 					   chunk_offset);
4931 			}
4932 			goto done;
4933 		}
4934 	} while (key.offset-- > 0);
4935 
4936 	if (failed && !retried) {
4937 		failed = 0;
4938 		retried = true;
4939 		goto again;
4940 	} else if (failed && retried) {
4941 		ret = -ENOSPC;
4942 		goto done;
4943 	}
4944 
4945 	/* Shrinking succeeded, else we would be at "done". */
4946 	trans = btrfs_start_transaction(root, 0);
4947 	if (IS_ERR(trans)) {
4948 		ret = PTR_ERR(trans);
4949 		goto done;
4950 	}
4951 
4952 	mutex_lock(&fs_info->chunk_mutex);
4953 	/* Clear all state bits beyond the shrunk device size */
4954 	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4955 			  CHUNK_STATE_MASK);
4956 
4957 	btrfs_device_set_disk_total_bytes(device, new_size);
4958 	if (list_empty(&device->post_commit_list))
4959 		list_add_tail(&device->post_commit_list,
4960 			      &trans->transaction->dev_update_list);
4961 
4962 	WARN_ON(diff > old_total);
4963 	btrfs_set_super_total_bytes(super_copy,
4964 			round_down(old_total - diff, fs_info->sectorsize));
4965 	mutex_unlock(&fs_info->chunk_mutex);
4966 
4967 	btrfs_reserve_chunk_metadata(trans, false);
4968 	/* Now btrfs_update_device() will change the on-disk size. */
4969 	ret = btrfs_update_device(trans, device);
4970 	btrfs_trans_release_chunk_metadata(trans);
4971 	if (ret < 0) {
4972 		btrfs_abort_transaction(trans, ret);
4973 		btrfs_end_transaction(trans);
4974 	} else {
4975 		ret = btrfs_commit_transaction(trans);
4976 	}
4977 done:
4978 	btrfs_free_path(path);
4979 	if (ret) {
4980 		mutex_lock(&fs_info->chunk_mutex);
4981 		btrfs_device_set_total_bytes(device, old_size);
4982 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4983 			device->fs_devices->total_rw_bytes += diff;
4984 		atomic64_add(diff, &fs_info->free_chunk_space);
4985 		mutex_unlock(&fs_info->chunk_mutex);
4986 	}
4987 	return ret;
4988 }
4989 
4990 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4991 			   struct btrfs_key *key,
4992 			   struct btrfs_chunk *chunk, int item_size)
4993 {
4994 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4995 	struct btrfs_disk_key disk_key;
4996 	u32 array_size;
4997 	u8 *ptr;
4998 
4999 	lockdep_assert_held(&fs_info->chunk_mutex);
5000 
5001 	array_size = btrfs_super_sys_array_size(super_copy);
5002 	if (array_size + item_size + sizeof(disk_key)
5003 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5004 		return -EFBIG;
5005 
5006 	ptr = super_copy->sys_chunk_array + array_size;
5007 	btrfs_cpu_key_to_disk(&disk_key, key);
5008 	memcpy(ptr, &disk_key, sizeof(disk_key));
5009 	ptr += sizeof(disk_key);
5010 	memcpy(ptr, chunk, item_size);
5011 	item_size += sizeof(disk_key);
5012 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5013 
5014 	return 0;
5015 }
5016 
5017 /*
5018  * sort the devices in descending order by max_avail, total_avail
5019  */
5020 static int btrfs_cmp_device_info(const void *a, const void *b)
5021 {
5022 	const struct btrfs_device_info *di_a = a;
5023 	const struct btrfs_device_info *di_b = b;
5024 
5025 	if (di_a->max_avail > di_b->max_avail)
5026 		return -1;
5027 	if (di_a->max_avail < di_b->max_avail)
5028 		return 1;
5029 	if (di_a->total_avail > di_b->total_avail)
5030 		return -1;
5031 	if (di_a->total_avail < di_b->total_avail)
5032 		return 1;
5033 	return 0;
5034 }
5035 
5036 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5037 {
5038 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5039 		return;
5040 
5041 	btrfs_set_fs_incompat(info, RAID56);
5042 }
5043 
5044 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5045 {
5046 	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5047 		return;
5048 
5049 	btrfs_set_fs_incompat(info, RAID1C34);
5050 }
5051 
5052 /*
5053  * Structure used internally for btrfs_create_chunk() function.
5054  * Wraps needed parameters.
5055  */
5056 struct alloc_chunk_ctl {
5057 	u64 start;
5058 	u64 type;
5059 	/* Total number of stripes to allocate */
5060 	int num_stripes;
5061 	/* sub_stripes info for map */
5062 	int sub_stripes;
5063 	/* Stripes per device */
5064 	int dev_stripes;
5065 	/* Maximum number of devices to use */
5066 	int devs_max;
5067 	/* Minimum number of devices to use */
5068 	int devs_min;
5069 	/* ndevs has to be a multiple of this */
5070 	int devs_increment;
5071 	/* Number of copies */
5072 	int ncopies;
5073 	/* Number of stripes worth of bytes to store parity information */
5074 	int nparity;
5075 	u64 max_stripe_size;
5076 	u64 max_chunk_size;
5077 	u64 dev_extent_min;
5078 	u64 stripe_size;
5079 	u64 chunk_size;
5080 	int ndevs;
5081 };
5082 
5083 static void init_alloc_chunk_ctl_policy_regular(
5084 				struct btrfs_fs_devices *fs_devices,
5085 				struct alloc_chunk_ctl *ctl)
5086 {
5087 	u64 type = ctl->type;
5088 
5089 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5090 		ctl->max_stripe_size = SZ_1G;
5091 		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5092 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5093 		/* For larger filesystems, use larger metadata chunks */
5094 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5095 			ctl->max_stripe_size = SZ_1G;
5096 		else
5097 			ctl->max_stripe_size = SZ_256M;
5098 		ctl->max_chunk_size = ctl->max_stripe_size;
5099 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5100 		ctl->max_stripe_size = SZ_32M;
5101 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5102 		ctl->devs_max = min_t(int, ctl->devs_max,
5103 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5104 	} else {
5105 		BUG();
5106 	}
5107 
5108 	/* We don't want a chunk larger than 10% of writable space */
5109 	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5110 				  ctl->max_chunk_size);
5111 	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5112 }
5113 
5114 static void init_alloc_chunk_ctl_policy_zoned(
5115 				      struct btrfs_fs_devices *fs_devices,
5116 				      struct alloc_chunk_ctl *ctl)
5117 {
5118 	u64 zone_size = fs_devices->fs_info->zone_size;
5119 	u64 limit;
5120 	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5121 	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5122 	u64 min_chunk_size = min_data_stripes * zone_size;
5123 	u64 type = ctl->type;
5124 
5125 	ctl->max_stripe_size = zone_size;
5126 	if (type & BTRFS_BLOCK_GROUP_DATA) {
5127 		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5128 						 zone_size);
5129 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5130 		ctl->max_chunk_size = ctl->max_stripe_size;
5131 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5132 		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5133 		ctl->devs_max = min_t(int, ctl->devs_max,
5134 				      BTRFS_MAX_DEVS_SYS_CHUNK);
5135 	} else {
5136 		BUG();
5137 	}
5138 
5139 	/* We don't want a chunk larger than 10% of writable space */
5140 	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5141 			       zone_size),
5142 		    min_chunk_size);
5143 	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5144 	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5145 }
5146 
5147 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5148 				 struct alloc_chunk_ctl *ctl)
5149 {
5150 	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5151 
5152 	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5153 	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5154 	ctl->devs_max = btrfs_raid_array[index].devs_max;
5155 	if (!ctl->devs_max)
5156 		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5157 	ctl->devs_min = btrfs_raid_array[index].devs_min;
5158 	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5159 	ctl->ncopies = btrfs_raid_array[index].ncopies;
5160 	ctl->nparity = btrfs_raid_array[index].nparity;
5161 	ctl->ndevs = 0;
5162 
5163 	switch (fs_devices->chunk_alloc_policy) {
5164 	case BTRFS_CHUNK_ALLOC_REGULAR:
5165 		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5166 		break;
5167 	case BTRFS_CHUNK_ALLOC_ZONED:
5168 		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5169 		break;
5170 	default:
5171 		BUG();
5172 	}
5173 }
5174 
5175 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5176 			      struct alloc_chunk_ctl *ctl,
5177 			      struct btrfs_device_info *devices_info)
5178 {
5179 	struct btrfs_fs_info *info = fs_devices->fs_info;
5180 	struct btrfs_device *device;
5181 	u64 total_avail;
5182 	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5183 	int ret;
5184 	int ndevs = 0;
5185 	u64 max_avail;
5186 	u64 dev_offset;
5187 
5188 	/*
5189 	 * in the first pass through the devices list, we gather information
5190 	 * about the available holes on each device.
5191 	 */
5192 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5193 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5194 			WARN(1, KERN_ERR
5195 			       "BTRFS: read-only device in alloc_list\n");
5196 			continue;
5197 		}
5198 
5199 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5200 					&device->dev_state) ||
5201 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5202 			continue;
5203 
5204 		if (device->total_bytes > device->bytes_used)
5205 			total_avail = device->total_bytes - device->bytes_used;
5206 		else
5207 			total_avail = 0;
5208 
5209 		/* If there is no space on this device, skip it. */
5210 		if (total_avail < ctl->dev_extent_min)
5211 			continue;
5212 
5213 		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5214 					   &max_avail);
5215 		if (ret && ret != -ENOSPC)
5216 			return ret;
5217 
5218 		if (ret == 0)
5219 			max_avail = dev_extent_want;
5220 
5221 		if (max_avail < ctl->dev_extent_min) {
5222 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5223 				btrfs_debug(info,
5224 			"%s: devid %llu has no free space, have=%llu want=%llu",
5225 					    __func__, device->devid, max_avail,
5226 					    ctl->dev_extent_min);
5227 			continue;
5228 		}
5229 
5230 		if (ndevs == fs_devices->rw_devices) {
5231 			WARN(1, "%s: found more than %llu devices\n",
5232 			     __func__, fs_devices->rw_devices);
5233 			break;
5234 		}
5235 		devices_info[ndevs].dev_offset = dev_offset;
5236 		devices_info[ndevs].max_avail = max_avail;
5237 		devices_info[ndevs].total_avail = total_avail;
5238 		devices_info[ndevs].dev = device;
5239 		++ndevs;
5240 	}
5241 	ctl->ndevs = ndevs;
5242 
5243 	/*
5244 	 * now sort the devices by hole size / available space
5245 	 */
5246 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5247 	     btrfs_cmp_device_info, NULL);
5248 
5249 	return 0;
5250 }
5251 
5252 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5253 				      struct btrfs_device_info *devices_info)
5254 {
5255 	/* Number of stripes that count for block group size */
5256 	int data_stripes;
5257 
5258 	/*
5259 	 * The primary goal is to maximize the number of stripes, so use as
5260 	 * many devices as possible, even if the stripes are not maximum sized.
5261 	 *
5262 	 * The DUP profile stores more than one stripe per device, the
5263 	 * max_avail is the total size so we have to adjust.
5264 	 */
5265 	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5266 				   ctl->dev_stripes);
5267 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5268 
5269 	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5270 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5271 
5272 	/*
5273 	 * Use the number of data stripes to figure out how big this chunk is
5274 	 * really going to be in terms of logical address space, and compare
5275 	 * that answer with the max chunk size. If it's higher, we try to
5276 	 * reduce stripe_size.
5277 	 */
5278 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5279 		/*
5280 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5281 		 * then use it, unless it ends up being even bigger than the
5282 		 * previous value we had already.
5283 		 */
5284 		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5285 							data_stripes), SZ_16M),
5286 				       ctl->stripe_size);
5287 	}
5288 
5289 	/* Align to BTRFS_STRIPE_LEN */
5290 	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5291 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5292 
5293 	return 0;
5294 }
5295 
5296 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5297 				    struct btrfs_device_info *devices_info)
5298 {
5299 	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5300 	/* Number of stripes that count for block group size */
5301 	int data_stripes;
5302 
5303 	/*
5304 	 * It should hold because:
5305 	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5306 	 */
5307 	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5308 
5309 	ctl->stripe_size = zone_size;
5310 	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5311 	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5312 
5313 	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5314 	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5315 		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5316 					     ctl->stripe_size) + ctl->nparity,
5317 				     ctl->dev_stripes);
5318 		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5319 		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5320 		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5321 	}
5322 
5323 	ctl->chunk_size = ctl->stripe_size * data_stripes;
5324 
5325 	return 0;
5326 }
5327 
5328 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5329 			      struct alloc_chunk_ctl *ctl,
5330 			      struct btrfs_device_info *devices_info)
5331 {
5332 	struct btrfs_fs_info *info = fs_devices->fs_info;
5333 
5334 	/*
5335 	 * Round down to number of usable stripes, devs_increment can be any
5336 	 * number so we can't use round_down() that requires power of 2, while
5337 	 * rounddown is safe.
5338 	 */
5339 	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5340 
5341 	if (ctl->ndevs < ctl->devs_min) {
5342 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5343 			btrfs_debug(info,
5344 	"%s: not enough devices with free space: have=%d minimum required=%d",
5345 				    __func__, ctl->ndevs, ctl->devs_min);
5346 		}
5347 		return -ENOSPC;
5348 	}
5349 
5350 	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5351 
5352 	switch (fs_devices->chunk_alloc_policy) {
5353 	case BTRFS_CHUNK_ALLOC_REGULAR:
5354 		return decide_stripe_size_regular(ctl, devices_info);
5355 	case BTRFS_CHUNK_ALLOC_ZONED:
5356 		return decide_stripe_size_zoned(ctl, devices_info);
5357 	default:
5358 		BUG();
5359 	}
5360 }
5361 
5362 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5363 			struct alloc_chunk_ctl *ctl,
5364 			struct btrfs_device_info *devices_info)
5365 {
5366 	struct btrfs_fs_info *info = trans->fs_info;
5367 	struct map_lookup *map = NULL;
5368 	struct extent_map_tree *em_tree;
5369 	struct btrfs_block_group *block_group;
5370 	struct extent_map *em;
5371 	u64 start = ctl->start;
5372 	u64 type = ctl->type;
5373 	int ret;
5374 	int i;
5375 	int j;
5376 
5377 	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5378 	if (!map)
5379 		return ERR_PTR(-ENOMEM);
5380 	map->num_stripes = ctl->num_stripes;
5381 
5382 	for (i = 0; i < ctl->ndevs; ++i) {
5383 		for (j = 0; j < ctl->dev_stripes; ++j) {
5384 			int s = i * ctl->dev_stripes + j;
5385 			map->stripes[s].dev = devices_info[i].dev;
5386 			map->stripes[s].physical = devices_info[i].dev_offset +
5387 						   j * ctl->stripe_size;
5388 		}
5389 	}
5390 	map->stripe_len = BTRFS_STRIPE_LEN;
5391 	map->io_align = BTRFS_STRIPE_LEN;
5392 	map->io_width = BTRFS_STRIPE_LEN;
5393 	map->type = type;
5394 	map->sub_stripes = ctl->sub_stripes;
5395 
5396 	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5397 
5398 	em = alloc_extent_map();
5399 	if (!em) {
5400 		kfree(map);
5401 		return ERR_PTR(-ENOMEM);
5402 	}
5403 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5404 	em->map_lookup = map;
5405 	em->start = start;
5406 	em->len = ctl->chunk_size;
5407 	em->block_start = 0;
5408 	em->block_len = em->len;
5409 	em->orig_block_len = ctl->stripe_size;
5410 
5411 	em_tree = &info->mapping_tree;
5412 	write_lock(&em_tree->lock);
5413 	ret = add_extent_mapping(em_tree, em, 0);
5414 	if (ret) {
5415 		write_unlock(&em_tree->lock);
5416 		free_extent_map(em);
5417 		return ERR_PTR(ret);
5418 	}
5419 	write_unlock(&em_tree->lock);
5420 
5421 	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5422 	if (IS_ERR(block_group))
5423 		goto error_del_extent;
5424 
5425 	for (i = 0; i < map->num_stripes; i++) {
5426 		struct btrfs_device *dev = map->stripes[i].dev;
5427 
5428 		btrfs_device_set_bytes_used(dev,
5429 					    dev->bytes_used + ctl->stripe_size);
5430 		if (list_empty(&dev->post_commit_list))
5431 			list_add_tail(&dev->post_commit_list,
5432 				      &trans->transaction->dev_update_list);
5433 	}
5434 
5435 	atomic64_sub(ctl->stripe_size * map->num_stripes,
5436 		     &info->free_chunk_space);
5437 
5438 	free_extent_map(em);
5439 	check_raid56_incompat_flag(info, type);
5440 	check_raid1c34_incompat_flag(info, type);
5441 
5442 	return block_group;
5443 
5444 error_del_extent:
5445 	write_lock(&em_tree->lock);
5446 	remove_extent_mapping(em_tree, em);
5447 	write_unlock(&em_tree->lock);
5448 
5449 	/* One for our allocation */
5450 	free_extent_map(em);
5451 	/* One for the tree reference */
5452 	free_extent_map(em);
5453 
5454 	return block_group;
5455 }
5456 
5457 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5458 					    u64 type)
5459 {
5460 	struct btrfs_fs_info *info = trans->fs_info;
5461 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5462 	struct btrfs_device_info *devices_info = NULL;
5463 	struct alloc_chunk_ctl ctl;
5464 	struct btrfs_block_group *block_group;
5465 	int ret;
5466 
5467 	lockdep_assert_held(&info->chunk_mutex);
5468 
5469 	if (!alloc_profile_is_valid(type, 0)) {
5470 		ASSERT(0);
5471 		return ERR_PTR(-EINVAL);
5472 	}
5473 
5474 	if (list_empty(&fs_devices->alloc_list)) {
5475 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5476 			btrfs_debug(info, "%s: no writable device", __func__);
5477 		return ERR_PTR(-ENOSPC);
5478 	}
5479 
5480 	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5481 		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5482 		ASSERT(0);
5483 		return ERR_PTR(-EINVAL);
5484 	}
5485 
5486 	ctl.start = find_next_chunk(info);
5487 	ctl.type = type;
5488 	init_alloc_chunk_ctl(fs_devices, &ctl);
5489 
5490 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5491 			       GFP_NOFS);
5492 	if (!devices_info)
5493 		return ERR_PTR(-ENOMEM);
5494 
5495 	ret = gather_device_info(fs_devices, &ctl, devices_info);
5496 	if (ret < 0) {
5497 		block_group = ERR_PTR(ret);
5498 		goto out;
5499 	}
5500 
5501 	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5502 	if (ret < 0) {
5503 		block_group = ERR_PTR(ret);
5504 		goto out;
5505 	}
5506 
5507 	block_group = create_chunk(trans, &ctl, devices_info);
5508 
5509 out:
5510 	kfree(devices_info);
5511 	return block_group;
5512 }
5513 
5514 /*
5515  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5516  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5517  * chunks.
5518  *
5519  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5520  * phases.
5521  */
5522 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5523 				     struct btrfs_block_group *bg)
5524 {
5525 	struct btrfs_fs_info *fs_info = trans->fs_info;
5526 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5527 	struct btrfs_key key;
5528 	struct btrfs_chunk *chunk;
5529 	struct btrfs_stripe *stripe;
5530 	struct extent_map *em;
5531 	struct map_lookup *map;
5532 	size_t item_size;
5533 	int i;
5534 	int ret;
5535 
5536 	/*
5537 	 * We take the chunk_mutex for 2 reasons:
5538 	 *
5539 	 * 1) Updates and insertions in the chunk btree must be done while holding
5540 	 *    the chunk_mutex, as well as updating the system chunk array in the
5541 	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5542 	 *    details;
5543 	 *
5544 	 * 2) To prevent races with the final phase of a device replace operation
5545 	 *    that replaces the device object associated with the map's stripes,
5546 	 *    because the device object's id can change at any time during that
5547 	 *    final phase of the device replace operation
5548 	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5549 	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5550 	 *    which would cause a failure when updating the device item, which does
5551 	 *    not exists, or persisting a stripe of the chunk item with such ID.
5552 	 *    Here we can't use the device_list_mutex because our caller already
5553 	 *    has locked the chunk_mutex, and the final phase of device replace
5554 	 *    acquires both mutexes - first the device_list_mutex and then the
5555 	 *    chunk_mutex. Using any of those two mutexes protects us from a
5556 	 *    concurrent device replace.
5557 	 */
5558 	lockdep_assert_held(&fs_info->chunk_mutex);
5559 
5560 	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5561 	if (IS_ERR(em)) {
5562 		ret = PTR_ERR(em);
5563 		btrfs_abort_transaction(trans, ret);
5564 		return ret;
5565 	}
5566 
5567 	map = em->map_lookup;
5568 	item_size = btrfs_chunk_item_size(map->num_stripes);
5569 
5570 	chunk = kzalloc(item_size, GFP_NOFS);
5571 	if (!chunk) {
5572 		ret = -ENOMEM;
5573 		btrfs_abort_transaction(trans, ret);
5574 		goto out;
5575 	}
5576 
5577 	for (i = 0; i < map->num_stripes; i++) {
5578 		struct btrfs_device *device = map->stripes[i].dev;
5579 
5580 		ret = btrfs_update_device(trans, device);
5581 		if (ret)
5582 			goto out;
5583 	}
5584 
5585 	stripe = &chunk->stripe;
5586 	for (i = 0; i < map->num_stripes; i++) {
5587 		struct btrfs_device *device = map->stripes[i].dev;
5588 		const u64 dev_offset = map->stripes[i].physical;
5589 
5590 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5591 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5592 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5593 		stripe++;
5594 	}
5595 
5596 	btrfs_set_stack_chunk_length(chunk, bg->length);
5597 	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5598 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5599 	btrfs_set_stack_chunk_type(chunk, map->type);
5600 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5601 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5602 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5603 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5604 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5605 
5606 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5607 	key.type = BTRFS_CHUNK_ITEM_KEY;
5608 	key.offset = bg->start;
5609 
5610 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5611 	if (ret)
5612 		goto out;
5613 
5614 	bg->chunk_item_inserted = 1;
5615 
5616 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5617 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5618 		if (ret)
5619 			goto out;
5620 	}
5621 
5622 out:
5623 	kfree(chunk);
5624 	free_extent_map(em);
5625 	return ret;
5626 }
5627 
5628 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5629 {
5630 	struct btrfs_fs_info *fs_info = trans->fs_info;
5631 	u64 alloc_profile;
5632 	struct btrfs_block_group *meta_bg;
5633 	struct btrfs_block_group *sys_bg;
5634 
5635 	/*
5636 	 * When adding a new device for sprouting, the seed device is read-only
5637 	 * so we must first allocate a metadata and a system chunk. But before
5638 	 * adding the block group items to the extent, device and chunk btrees,
5639 	 * we must first:
5640 	 *
5641 	 * 1) Create both chunks without doing any changes to the btrees, as
5642 	 *    otherwise we would get -ENOSPC since the block groups from the
5643 	 *    seed device are read-only;
5644 	 *
5645 	 * 2) Add the device item for the new sprout device - finishing the setup
5646 	 *    of a new block group requires updating the device item in the chunk
5647 	 *    btree, so it must exist when we attempt to do it. The previous step
5648 	 *    ensures this does not fail with -ENOSPC.
5649 	 *
5650 	 * After that we can add the block group items to their btrees:
5651 	 * update existing device item in the chunk btree, add a new block group
5652 	 * item to the extent btree, add a new chunk item to the chunk btree and
5653 	 * finally add the new device extent items to the devices btree.
5654 	 */
5655 
5656 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5657 	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5658 	if (IS_ERR(meta_bg))
5659 		return PTR_ERR(meta_bg);
5660 
5661 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5662 	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5663 	if (IS_ERR(sys_bg))
5664 		return PTR_ERR(sys_bg);
5665 
5666 	return 0;
5667 }
5668 
5669 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5670 {
5671 	const int index = btrfs_bg_flags_to_raid_index(map->type);
5672 
5673 	return btrfs_raid_array[index].tolerated_failures;
5674 }
5675 
5676 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5677 {
5678 	struct extent_map *em;
5679 	struct map_lookup *map;
5680 	int miss_ndevs = 0;
5681 	int i;
5682 	bool ret = true;
5683 
5684 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5685 	if (IS_ERR(em))
5686 		return false;
5687 
5688 	map = em->map_lookup;
5689 	for (i = 0; i < map->num_stripes; i++) {
5690 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5691 					&map->stripes[i].dev->dev_state)) {
5692 			miss_ndevs++;
5693 			continue;
5694 		}
5695 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5696 					&map->stripes[i].dev->dev_state)) {
5697 			ret = false;
5698 			goto end;
5699 		}
5700 	}
5701 
5702 	/*
5703 	 * If the number of missing devices is larger than max errors, we can
5704 	 * not write the data into that chunk successfully.
5705 	 */
5706 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5707 		ret = false;
5708 end:
5709 	free_extent_map(em);
5710 	return ret;
5711 }
5712 
5713 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5714 {
5715 	struct extent_map *em;
5716 
5717 	while (1) {
5718 		write_lock(&tree->lock);
5719 		em = lookup_extent_mapping(tree, 0, (u64)-1);
5720 		if (em)
5721 			remove_extent_mapping(tree, em);
5722 		write_unlock(&tree->lock);
5723 		if (!em)
5724 			break;
5725 		/* once for us */
5726 		free_extent_map(em);
5727 		/* once for the tree */
5728 		free_extent_map(em);
5729 	}
5730 }
5731 
5732 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5733 {
5734 	struct extent_map *em;
5735 	struct map_lookup *map;
5736 	int ret;
5737 
5738 	em = btrfs_get_chunk_map(fs_info, logical, len);
5739 	if (IS_ERR(em))
5740 		/*
5741 		 * We could return errors for these cases, but that could get
5742 		 * ugly and we'd probably do the same thing which is just not do
5743 		 * anything else and exit, so return 1 so the callers don't try
5744 		 * to use other copies.
5745 		 */
5746 		return 1;
5747 
5748 	map = em->map_lookup;
5749 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5750 		ret = map->num_stripes;
5751 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5752 		ret = map->sub_stripes;
5753 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5754 		ret = 2;
5755 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5756 		/*
5757 		 * There could be two corrupted data stripes, we need
5758 		 * to loop retry in order to rebuild the correct data.
5759 		 *
5760 		 * Fail a stripe at a time on every retry except the
5761 		 * stripe under reconstruction.
5762 		 */
5763 		ret = map->num_stripes;
5764 	else
5765 		ret = 1;
5766 	free_extent_map(em);
5767 
5768 	down_read(&fs_info->dev_replace.rwsem);
5769 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5770 	    fs_info->dev_replace.tgtdev)
5771 		ret++;
5772 	up_read(&fs_info->dev_replace.rwsem);
5773 
5774 	return ret;
5775 }
5776 
5777 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5778 				    u64 logical)
5779 {
5780 	struct extent_map *em;
5781 	struct map_lookup *map;
5782 	unsigned long len = fs_info->sectorsize;
5783 
5784 	em = btrfs_get_chunk_map(fs_info, logical, len);
5785 
5786 	if (!WARN_ON(IS_ERR(em))) {
5787 		map = em->map_lookup;
5788 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5789 			len = map->stripe_len * nr_data_stripes(map);
5790 		free_extent_map(em);
5791 	}
5792 	return len;
5793 }
5794 
5795 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5796 {
5797 	struct extent_map *em;
5798 	struct map_lookup *map;
5799 	int ret = 0;
5800 
5801 	em = btrfs_get_chunk_map(fs_info, logical, len);
5802 
5803 	if(!WARN_ON(IS_ERR(em))) {
5804 		map = em->map_lookup;
5805 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5806 			ret = 1;
5807 		free_extent_map(em);
5808 	}
5809 	return ret;
5810 }
5811 
5812 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5813 			    struct map_lookup *map, int first,
5814 			    int dev_replace_is_ongoing)
5815 {
5816 	int i;
5817 	int num_stripes;
5818 	int preferred_mirror;
5819 	int tolerance;
5820 	struct btrfs_device *srcdev;
5821 
5822 	ASSERT((map->type &
5823 		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5824 
5825 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5826 		num_stripes = map->sub_stripes;
5827 	else
5828 		num_stripes = map->num_stripes;
5829 
5830 	switch (fs_info->fs_devices->read_policy) {
5831 	default:
5832 		/* Shouldn't happen, just warn and use pid instead of failing */
5833 		btrfs_warn_rl(fs_info,
5834 			      "unknown read_policy type %u, reset to pid",
5835 			      fs_info->fs_devices->read_policy);
5836 		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5837 		fallthrough;
5838 	case BTRFS_READ_POLICY_PID:
5839 		preferred_mirror = first + (current->pid % num_stripes);
5840 		break;
5841 	}
5842 
5843 	if (dev_replace_is_ongoing &&
5844 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5845 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5846 		srcdev = fs_info->dev_replace.srcdev;
5847 	else
5848 		srcdev = NULL;
5849 
5850 	/*
5851 	 * try to avoid the drive that is the source drive for a
5852 	 * dev-replace procedure, only choose it if no other non-missing
5853 	 * mirror is available
5854 	 */
5855 	for (tolerance = 0; tolerance < 2; tolerance++) {
5856 		if (map->stripes[preferred_mirror].dev->bdev &&
5857 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5858 			return preferred_mirror;
5859 		for (i = first; i < first + num_stripes; i++) {
5860 			if (map->stripes[i].dev->bdev &&
5861 			    (tolerance || map->stripes[i].dev != srcdev))
5862 				return i;
5863 		}
5864 	}
5865 
5866 	/* we couldn't find one that doesn't fail.  Just return something
5867 	 * and the io error handling code will clean up eventually
5868 	 */
5869 	return preferred_mirror;
5870 }
5871 
5872 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5873 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5874 {
5875 	int i;
5876 	int again = 1;
5877 
5878 	while (again) {
5879 		again = 0;
5880 		for (i = 0; i < num_stripes - 1; i++) {
5881 			/* Swap if parity is on a smaller index */
5882 			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5883 				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5884 				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5885 				again = 1;
5886 			}
5887 		}
5888 	}
5889 }
5890 
5891 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5892 						       int total_stripes,
5893 						       int real_stripes)
5894 {
5895 	struct btrfs_io_context *bioc = kzalloc(
5896 		 /* The size of btrfs_io_context */
5897 		sizeof(struct btrfs_io_context) +
5898 		/* Plus the variable array for the stripes */
5899 		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5900 		/* Plus the variable array for the tgt dev */
5901 		sizeof(int) * (real_stripes) +
5902 		/*
5903 		 * Plus the raid_map, which includes both the tgt dev
5904 		 * and the stripes.
5905 		 */
5906 		sizeof(u64) * (total_stripes),
5907 		GFP_NOFS|__GFP_NOFAIL);
5908 
5909 	atomic_set(&bioc->error, 0);
5910 	refcount_set(&bioc->refs, 1);
5911 
5912 	bioc->fs_info = fs_info;
5913 	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5914 	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5915 
5916 	return bioc;
5917 }
5918 
5919 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5920 {
5921 	WARN_ON(!refcount_read(&bioc->refs));
5922 	refcount_inc(&bioc->refs);
5923 }
5924 
5925 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5926 {
5927 	if (!bioc)
5928 		return;
5929 	if (refcount_dec_and_test(&bioc->refs))
5930 		kfree(bioc);
5931 }
5932 
5933 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5934 /*
5935  * Please note that, discard won't be sent to target device of device
5936  * replace.
5937  */
5938 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5939 					 u64 logical, u64 *length_ret,
5940 					 struct btrfs_io_context **bioc_ret)
5941 {
5942 	struct extent_map *em;
5943 	struct map_lookup *map;
5944 	struct btrfs_io_context *bioc;
5945 	u64 length = *length_ret;
5946 	u64 offset;
5947 	u64 stripe_nr;
5948 	u64 stripe_nr_end;
5949 	u64 stripe_end_offset;
5950 	u64 stripe_cnt;
5951 	u64 stripe_len;
5952 	u64 stripe_offset;
5953 	u64 num_stripes;
5954 	u32 stripe_index;
5955 	u32 factor = 0;
5956 	u32 sub_stripes = 0;
5957 	u64 stripes_per_dev = 0;
5958 	u32 remaining_stripes = 0;
5959 	u32 last_stripe = 0;
5960 	int ret = 0;
5961 	int i;
5962 
5963 	/* Discard always returns a bioc. */
5964 	ASSERT(bioc_ret);
5965 
5966 	em = btrfs_get_chunk_map(fs_info, logical, length);
5967 	if (IS_ERR(em))
5968 		return PTR_ERR(em);
5969 
5970 	map = em->map_lookup;
5971 	/* we don't discard raid56 yet */
5972 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5973 		ret = -EOPNOTSUPP;
5974 		goto out;
5975 	}
5976 
5977 	offset = logical - em->start;
5978 	length = min_t(u64, em->start + em->len - logical, length);
5979 	*length_ret = length;
5980 
5981 	stripe_len = map->stripe_len;
5982 	/*
5983 	 * stripe_nr counts the total number of stripes we have to stride
5984 	 * to get to this block
5985 	 */
5986 	stripe_nr = div64_u64(offset, stripe_len);
5987 
5988 	/* stripe_offset is the offset of this block in its stripe */
5989 	stripe_offset = offset - stripe_nr * stripe_len;
5990 
5991 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5992 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5993 	stripe_cnt = stripe_nr_end - stripe_nr;
5994 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5995 			    (offset + length);
5996 	/*
5997 	 * after this, stripe_nr is the number of stripes on this
5998 	 * device we have to walk to find the data, and stripe_index is
5999 	 * the number of our device in the stripe array
6000 	 */
6001 	num_stripes = 1;
6002 	stripe_index = 0;
6003 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6004 			 BTRFS_BLOCK_GROUP_RAID10)) {
6005 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6006 			sub_stripes = 1;
6007 		else
6008 			sub_stripes = map->sub_stripes;
6009 
6010 		factor = map->num_stripes / sub_stripes;
6011 		num_stripes = min_t(u64, map->num_stripes,
6012 				    sub_stripes * stripe_cnt);
6013 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6014 		stripe_index *= sub_stripes;
6015 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6016 					      &remaining_stripes);
6017 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6018 		last_stripe *= sub_stripes;
6019 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6020 				BTRFS_BLOCK_GROUP_DUP)) {
6021 		num_stripes = map->num_stripes;
6022 	} else {
6023 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6024 					&stripe_index);
6025 	}
6026 
6027 	bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
6028 	if (!bioc) {
6029 		ret = -ENOMEM;
6030 		goto out;
6031 	}
6032 
6033 	for (i = 0; i < num_stripes; i++) {
6034 		bioc->stripes[i].physical =
6035 			map->stripes[stripe_index].physical +
6036 			stripe_offset + stripe_nr * map->stripe_len;
6037 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6038 
6039 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6040 				 BTRFS_BLOCK_GROUP_RAID10)) {
6041 			bioc->stripes[i].length = stripes_per_dev *
6042 				map->stripe_len;
6043 
6044 			if (i / sub_stripes < remaining_stripes)
6045 				bioc->stripes[i].length += map->stripe_len;
6046 
6047 			/*
6048 			 * Special for the first stripe and
6049 			 * the last stripe:
6050 			 *
6051 			 * |-------|...|-------|
6052 			 *     |----------|
6053 			 *    off     end_off
6054 			 */
6055 			if (i < sub_stripes)
6056 				bioc->stripes[i].length -= stripe_offset;
6057 
6058 			if (stripe_index >= last_stripe &&
6059 			    stripe_index <= (last_stripe +
6060 					     sub_stripes - 1))
6061 				bioc->stripes[i].length -= stripe_end_offset;
6062 
6063 			if (i == sub_stripes - 1)
6064 				stripe_offset = 0;
6065 		} else {
6066 			bioc->stripes[i].length = length;
6067 		}
6068 
6069 		stripe_index++;
6070 		if (stripe_index == map->num_stripes) {
6071 			stripe_index = 0;
6072 			stripe_nr++;
6073 		}
6074 	}
6075 
6076 	*bioc_ret = bioc;
6077 	bioc->map_type = map->type;
6078 	bioc->num_stripes = num_stripes;
6079 out:
6080 	free_extent_map(em);
6081 	return ret;
6082 }
6083 
6084 /*
6085  * In dev-replace case, for repair case (that's the only case where the mirror
6086  * is selected explicitly when calling btrfs_map_block), blocks left of the
6087  * left cursor can also be read from the target drive.
6088  *
6089  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6090  * array of stripes.
6091  * For READ, it also needs to be supported using the same mirror number.
6092  *
6093  * If the requested block is not left of the left cursor, EIO is returned. This
6094  * can happen because btrfs_num_copies() returns one more in the dev-replace
6095  * case.
6096  */
6097 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6098 					 u64 logical, u64 length,
6099 					 u64 srcdev_devid, int *mirror_num,
6100 					 u64 *physical)
6101 {
6102 	struct btrfs_io_context *bioc = NULL;
6103 	int num_stripes;
6104 	int index_srcdev = 0;
6105 	int found = 0;
6106 	u64 physical_of_found = 0;
6107 	int i;
6108 	int ret = 0;
6109 
6110 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6111 				logical, &length, &bioc, 0, 0);
6112 	if (ret) {
6113 		ASSERT(bioc == NULL);
6114 		return ret;
6115 	}
6116 
6117 	num_stripes = bioc->num_stripes;
6118 	if (*mirror_num > num_stripes) {
6119 		/*
6120 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6121 		 * that means that the requested area is not left of the left
6122 		 * cursor
6123 		 */
6124 		btrfs_put_bioc(bioc);
6125 		return -EIO;
6126 	}
6127 
6128 	/*
6129 	 * process the rest of the function using the mirror_num of the source
6130 	 * drive. Therefore look it up first.  At the end, patch the device
6131 	 * pointer to the one of the target drive.
6132 	 */
6133 	for (i = 0; i < num_stripes; i++) {
6134 		if (bioc->stripes[i].dev->devid != srcdev_devid)
6135 			continue;
6136 
6137 		/*
6138 		 * In case of DUP, in order to keep it simple, only add the
6139 		 * mirror with the lowest physical address
6140 		 */
6141 		if (found &&
6142 		    physical_of_found <= bioc->stripes[i].physical)
6143 			continue;
6144 
6145 		index_srcdev = i;
6146 		found = 1;
6147 		physical_of_found = bioc->stripes[i].physical;
6148 	}
6149 
6150 	btrfs_put_bioc(bioc);
6151 
6152 	ASSERT(found);
6153 	if (!found)
6154 		return -EIO;
6155 
6156 	*mirror_num = index_srcdev + 1;
6157 	*physical = physical_of_found;
6158 	return ret;
6159 }
6160 
6161 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6162 {
6163 	struct btrfs_block_group *cache;
6164 	bool ret;
6165 
6166 	/* Non zoned filesystem does not use "to_copy" flag */
6167 	if (!btrfs_is_zoned(fs_info))
6168 		return false;
6169 
6170 	cache = btrfs_lookup_block_group(fs_info, logical);
6171 
6172 	spin_lock(&cache->lock);
6173 	ret = cache->to_copy;
6174 	spin_unlock(&cache->lock);
6175 
6176 	btrfs_put_block_group(cache);
6177 	return ret;
6178 }
6179 
6180 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6181 				      struct btrfs_io_context **bioc_ret,
6182 				      struct btrfs_dev_replace *dev_replace,
6183 				      u64 logical,
6184 				      int *num_stripes_ret, int *max_errors_ret)
6185 {
6186 	struct btrfs_io_context *bioc = *bioc_ret;
6187 	u64 srcdev_devid = dev_replace->srcdev->devid;
6188 	int tgtdev_indexes = 0;
6189 	int num_stripes = *num_stripes_ret;
6190 	int max_errors = *max_errors_ret;
6191 	int i;
6192 
6193 	if (op == BTRFS_MAP_WRITE) {
6194 		int index_where_to_add;
6195 
6196 		/*
6197 		 * A block group which have "to_copy" set will eventually
6198 		 * copied by dev-replace process. We can avoid cloning IO here.
6199 		 */
6200 		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6201 			return;
6202 
6203 		/*
6204 		 * duplicate the write operations while the dev replace
6205 		 * procedure is running. Since the copying of the old disk to
6206 		 * the new disk takes place at run time while the filesystem is
6207 		 * mounted writable, the regular write operations to the old
6208 		 * disk have to be duplicated to go to the new disk as well.
6209 		 *
6210 		 * Note that device->missing is handled by the caller, and that
6211 		 * the write to the old disk is already set up in the stripes
6212 		 * array.
6213 		 */
6214 		index_where_to_add = num_stripes;
6215 		for (i = 0; i < num_stripes; i++) {
6216 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6217 				/* write to new disk, too */
6218 				struct btrfs_io_stripe *new =
6219 					bioc->stripes + index_where_to_add;
6220 				struct btrfs_io_stripe *old =
6221 					bioc->stripes + i;
6222 
6223 				new->physical = old->physical;
6224 				new->length = old->length;
6225 				new->dev = dev_replace->tgtdev;
6226 				bioc->tgtdev_map[i] = index_where_to_add;
6227 				index_where_to_add++;
6228 				max_errors++;
6229 				tgtdev_indexes++;
6230 			}
6231 		}
6232 		num_stripes = index_where_to_add;
6233 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6234 		int index_srcdev = 0;
6235 		int found = 0;
6236 		u64 physical_of_found = 0;
6237 
6238 		/*
6239 		 * During the dev-replace procedure, the target drive can also
6240 		 * be used to read data in case it is needed to repair a corrupt
6241 		 * block elsewhere. This is possible if the requested area is
6242 		 * left of the left cursor. In this area, the target drive is a
6243 		 * full copy of the source drive.
6244 		 */
6245 		for (i = 0; i < num_stripes; i++) {
6246 			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6247 				/*
6248 				 * In case of DUP, in order to keep it simple,
6249 				 * only add the mirror with the lowest physical
6250 				 * address
6251 				 */
6252 				if (found &&
6253 				    physical_of_found <= bioc->stripes[i].physical)
6254 					continue;
6255 				index_srcdev = i;
6256 				found = 1;
6257 				physical_of_found = bioc->stripes[i].physical;
6258 			}
6259 		}
6260 		if (found) {
6261 			struct btrfs_io_stripe *tgtdev_stripe =
6262 				bioc->stripes + num_stripes;
6263 
6264 			tgtdev_stripe->physical = physical_of_found;
6265 			tgtdev_stripe->length =
6266 				bioc->stripes[index_srcdev].length;
6267 			tgtdev_stripe->dev = dev_replace->tgtdev;
6268 			bioc->tgtdev_map[index_srcdev] = num_stripes;
6269 
6270 			tgtdev_indexes++;
6271 			num_stripes++;
6272 		}
6273 	}
6274 
6275 	*num_stripes_ret = num_stripes;
6276 	*max_errors_ret = max_errors;
6277 	bioc->num_tgtdevs = tgtdev_indexes;
6278 	*bioc_ret = bioc;
6279 }
6280 
6281 static bool need_full_stripe(enum btrfs_map_op op)
6282 {
6283 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6284 }
6285 
6286 /*
6287  * Calculate the geometry of a particular (address, len) tuple. This
6288  * information is used to calculate how big a particular bio can get before it
6289  * straddles a stripe.
6290  *
6291  * @fs_info: the filesystem
6292  * @em:      mapping containing the logical extent
6293  * @op:      type of operation - write or read
6294  * @logical: address that we want to figure out the geometry of
6295  * @io_geom: pointer used to return values
6296  *
6297  * Returns < 0 in case a chunk for the given logical address cannot be found,
6298  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6299  */
6300 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6301 			  enum btrfs_map_op op, u64 logical,
6302 			  struct btrfs_io_geometry *io_geom)
6303 {
6304 	struct map_lookup *map;
6305 	u64 len;
6306 	u64 offset;
6307 	u64 stripe_offset;
6308 	u64 stripe_nr;
6309 	u32 stripe_len;
6310 	u64 raid56_full_stripe_start = (u64)-1;
6311 	int data_stripes;
6312 
6313 	ASSERT(op != BTRFS_MAP_DISCARD);
6314 
6315 	map = em->map_lookup;
6316 	/* Offset of this logical address in the chunk */
6317 	offset = logical - em->start;
6318 	/* Len of a stripe in a chunk */
6319 	stripe_len = map->stripe_len;
6320 	/*
6321 	 * Stripe_nr is where this block falls in
6322 	 * stripe_offset is the offset of this block in its stripe.
6323 	 */
6324 	stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6325 	ASSERT(stripe_offset < U32_MAX);
6326 
6327 	data_stripes = nr_data_stripes(map);
6328 
6329 	/* Only stripe based profiles needs to check against stripe length. */
6330 	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6331 		u64 max_len = stripe_len - stripe_offset;
6332 
6333 		/*
6334 		 * In case of raid56, we need to know the stripe aligned start
6335 		 */
6336 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6337 			unsigned long full_stripe_len = stripe_len * data_stripes;
6338 			raid56_full_stripe_start = offset;
6339 
6340 			/*
6341 			 * Allow a write of a full stripe, but make sure we
6342 			 * don't allow straddling of stripes
6343 			 */
6344 			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6345 					full_stripe_len);
6346 			raid56_full_stripe_start *= full_stripe_len;
6347 
6348 			/*
6349 			 * For writes to RAID[56], allow a full stripeset across
6350 			 * all disks. For other RAID types and for RAID[56]
6351 			 * reads, just allow a single stripe (on a single disk).
6352 			 */
6353 			if (op == BTRFS_MAP_WRITE) {
6354 				max_len = stripe_len * data_stripes -
6355 					  (offset - raid56_full_stripe_start);
6356 			}
6357 		}
6358 		len = min_t(u64, em->len - offset, max_len);
6359 	} else {
6360 		len = em->len - offset;
6361 	}
6362 
6363 	io_geom->len = len;
6364 	io_geom->offset = offset;
6365 	io_geom->stripe_len = stripe_len;
6366 	io_geom->stripe_nr = stripe_nr;
6367 	io_geom->stripe_offset = stripe_offset;
6368 	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6369 
6370 	return 0;
6371 }
6372 
6373 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6374 			     enum btrfs_map_op op,
6375 			     u64 logical, u64 *length,
6376 			     struct btrfs_io_context **bioc_ret,
6377 			     int mirror_num, int need_raid_map)
6378 {
6379 	struct extent_map *em;
6380 	struct map_lookup *map;
6381 	u64 stripe_offset;
6382 	u64 stripe_nr;
6383 	u64 stripe_len;
6384 	u32 stripe_index;
6385 	int data_stripes;
6386 	int i;
6387 	int ret = 0;
6388 	int num_stripes;
6389 	int max_errors = 0;
6390 	int tgtdev_indexes = 0;
6391 	struct btrfs_io_context *bioc = NULL;
6392 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6393 	int dev_replace_is_ongoing = 0;
6394 	int num_alloc_stripes;
6395 	int patch_the_first_stripe_for_dev_replace = 0;
6396 	u64 physical_to_patch_in_first_stripe = 0;
6397 	u64 raid56_full_stripe_start = (u64)-1;
6398 	struct btrfs_io_geometry geom;
6399 
6400 	ASSERT(bioc_ret);
6401 	ASSERT(op != BTRFS_MAP_DISCARD);
6402 
6403 	em = btrfs_get_chunk_map(fs_info, logical, *length);
6404 	ASSERT(!IS_ERR(em));
6405 
6406 	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6407 	if (ret < 0)
6408 		return ret;
6409 
6410 	map = em->map_lookup;
6411 
6412 	*length = geom.len;
6413 	stripe_len = geom.stripe_len;
6414 	stripe_nr = geom.stripe_nr;
6415 	stripe_offset = geom.stripe_offset;
6416 	raid56_full_stripe_start = geom.raid56_stripe_offset;
6417 	data_stripes = nr_data_stripes(map);
6418 
6419 	down_read(&dev_replace->rwsem);
6420 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6421 	/*
6422 	 * Hold the semaphore for read during the whole operation, write is
6423 	 * requested at commit time but must wait.
6424 	 */
6425 	if (!dev_replace_is_ongoing)
6426 		up_read(&dev_replace->rwsem);
6427 
6428 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6429 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6430 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6431 						    dev_replace->srcdev->devid,
6432 						    &mirror_num,
6433 					    &physical_to_patch_in_first_stripe);
6434 		if (ret)
6435 			goto out;
6436 		else
6437 			patch_the_first_stripe_for_dev_replace = 1;
6438 	} else if (mirror_num > map->num_stripes) {
6439 		mirror_num = 0;
6440 	}
6441 
6442 	num_stripes = 1;
6443 	stripe_index = 0;
6444 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6445 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6446 				&stripe_index);
6447 		if (!need_full_stripe(op))
6448 			mirror_num = 1;
6449 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6450 		if (need_full_stripe(op))
6451 			num_stripes = map->num_stripes;
6452 		else if (mirror_num)
6453 			stripe_index = mirror_num - 1;
6454 		else {
6455 			stripe_index = find_live_mirror(fs_info, map, 0,
6456 					    dev_replace_is_ongoing);
6457 			mirror_num = stripe_index + 1;
6458 		}
6459 
6460 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6461 		if (need_full_stripe(op)) {
6462 			num_stripes = map->num_stripes;
6463 		} else if (mirror_num) {
6464 			stripe_index = mirror_num - 1;
6465 		} else {
6466 			mirror_num = 1;
6467 		}
6468 
6469 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6470 		u32 factor = map->num_stripes / map->sub_stripes;
6471 
6472 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6473 		stripe_index *= map->sub_stripes;
6474 
6475 		if (need_full_stripe(op))
6476 			num_stripes = map->sub_stripes;
6477 		else if (mirror_num)
6478 			stripe_index += mirror_num - 1;
6479 		else {
6480 			int old_stripe_index = stripe_index;
6481 			stripe_index = find_live_mirror(fs_info, map,
6482 					      stripe_index,
6483 					      dev_replace_is_ongoing);
6484 			mirror_num = stripe_index - old_stripe_index + 1;
6485 		}
6486 
6487 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6488 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6489 			/* push stripe_nr back to the start of the full stripe */
6490 			stripe_nr = div64_u64(raid56_full_stripe_start,
6491 					stripe_len * data_stripes);
6492 
6493 			/* RAID[56] write or recovery. Return all stripes */
6494 			num_stripes = map->num_stripes;
6495 			max_errors = nr_parity_stripes(map);
6496 
6497 			*length = map->stripe_len;
6498 			stripe_index = 0;
6499 			stripe_offset = 0;
6500 		} else {
6501 			/*
6502 			 * Mirror #0 or #1 means the original data block.
6503 			 * Mirror #2 is RAID5 parity block.
6504 			 * Mirror #3 is RAID6 Q block.
6505 			 */
6506 			stripe_nr = div_u64_rem(stripe_nr,
6507 					data_stripes, &stripe_index);
6508 			if (mirror_num > 1)
6509 				stripe_index = data_stripes + mirror_num - 2;
6510 
6511 			/* We distribute the parity blocks across stripes */
6512 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6513 					&stripe_index);
6514 			if (!need_full_stripe(op) && mirror_num <= 1)
6515 				mirror_num = 1;
6516 		}
6517 	} else {
6518 		/*
6519 		 * after this, stripe_nr is the number of stripes on this
6520 		 * device we have to walk to find the data, and stripe_index is
6521 		 * the number of our device in the stripe array
6522 		 */
6523 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6524 				&stripe_index);
6525 		mirror_num = stripe_index + 1;
6526 	}
6527 	if (stripe_index >= map->num_stripes) {
6528 		btrfs_crit(fs_info,
6529 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6530 			   stripe_index, map->num_stripes);
6531 		ret = -EINVAL;
6532 		goto out;
6533 	}
6534 
6535 	num_alloc_stripes = num_stripes;
6536 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6537 		if (op == BTRFS_MAP_WRITE)
6538 			num_alloc_stripes <<= 1;
6539 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6540 			num_alloc_stripes++;
6541 		tgtdev_indexes = num_stripes;
6542 	}
6543 
6544 	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6545 	if (!bioc) {
6546 		ret = -ENOMEM;
6547 		goto out;
6548 	}
6549 
6550 	for (i = 0; i < num_stripes; i++) {
6551 		bioc->stripes[i].physical = map->stripes[stripe_index].physical +
6552 			stripe_offset + stripe_nr * map->stripe_len;
6553 		bioc->stripes[i].dev = map->stripes[stripe_index].dev;
6554 		stripe_index++;
6555 	}
6556 
6557 	/* Build raid_map */
6558 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6559 	    (need_full_stripe(op) || mirror_num > 1)) {
6560 		u64 tmp;
6561 		unsigned rot;
6562 
6563 		/* Work out the disk rotation on this stripe-set */
6564 		div_u64_rem(stripe_nr, num_stripes, &rot);
6565 
6566 		/* Fill in the logical address of each stripe */
6567 		tmp = stripe_nr * data_stripes;
6568 		for (i = 0; i < data_stripes; i++)
6569 			bioc->raid_map[(i + rot) % num_stripes] =
6570 				em->start + (tmp + i) * map->stripe_len;
6571 
6572 		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6573 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6574 			bioc->raid_map[(i + rot + 1) % num_stripes] =
6575 				RAID6_Q_STRIPE;
6576 
6577 		sort_parity_stripes(bioc, num_stripes);
6578 	}
6579 
6580 	if (need_full_stripe(op))
6581 		max_errors = btrfs_chunk_max_errors(map);
6582 
6583 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6584 	    need_full_stripe(op)) {
6585 		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6586 					  &num_stripes, &max_errors);
6587 	}
6588 
6589 	*bioc_ret = bioc;
6590 	bioc->map_type = map->type;
6591 	bioc->num_stripes = num_stripes;
6592 	bioc->max_errors = max_errors;
6593 	bioc->mirror_num = mirror_num;
6594 
6595 	/*
6596 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6597 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6598 	 * available as a mirror
6599 	 */
6600 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6601 		WARN_ON(num_stripes > 1);
6602 		bioc->stripes[0].dev = dev_replace->tgtdev;
6603 		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6604 		bioc->mirror_num = map->num_stripes + 1;
6605 	}
6606 out:
6607 	if (dev_replace_is_ongoing) {
6608 		lockdep_assert_held(&dev_replace->rwsem);
6609 		/* Unlock and let waiting writers proceed */
6610 		up_read(&dev_replace->rwsem);
6611 	}
6612 	free_extent_map(em);
6613 	return ret;
6614 }
6615 
6616 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6617 		      u64 logical, u64 *length,
6618 		      struct btrfs_io_context **bioc_ret, int mirror_num)
6619 {
6620 	if (op == BTRFS_MAP_DISCARD)
6621 		return __btrfs_map_block_for_discard(fs_info, logical,
6622 						     length, bioc_ret);
6623 
6624 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6625 				 mirror_num, 0);
6626 }
6627 
6628 /* For Scrub/replace */
6629 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6630 		     u64 logical, u64 *length,
6631 		     struct btrfs_io_context **bioc_ret)
6632 {
6633 	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
6634 }
6635 
6636 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
6637 {
6638 	bio->bi_private = bioc->private;
6639 	bio->bi_end_io = bioc->end_io;
6640 	bio_endio(bio);
6641 
6642 	btrfs_put_bioc(bioc);
6643 }
6644 
6645 static void btrfs_end_bio(struct bio *bio)
6646 {
6647 	struct btrfs_io_context *bioc = bio->bi_private;
6648 	int is_orig_bio = 0;
6649 
6650 	if (bio->bi_status) {
6651 		atomic_inc(&bioc->error);
6652 		if (bio->bi_status == BLK_STS_IOERR ||
6653 		    bio->bi_status == BLK_STS_TARGET) {
6654 			struct btrfs_device *dev = btrfs_bio(bio)->device;
6655 
6656 			ASSERT(dev->bdev);
6657 			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6658 				btrfs_dev_stat_inc_and_print(dev,
6659 						BTRFS_DEV_STAT_WRITE_ERRS);
6660 			else if (!(bio->bi_opf & REQ_RAHEAD))
6661 				btrfs_dev_stat_inc_and_print(dev,
6662 						BTRFS_DEV_STAT_READ_ERRS);
6663 			if (bio->bi_opf & REQ_PREFLUSH)
6664 				btrfs_dev_stat_inc_and_print(dev,
6665 						BTRFS_DEV_STAT_FLUSH_ERRS);
6666 		}
6667 	}
6668 
6669 	if (bio == bioc->orig_bio)
6670 		is_orig_bio = 1;
6671 
6672 	btrfs_bio_counter_dec(bioc->fs_info);
6673 
6674 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6675 		if (!is_orig_bio) {
6676 			bio_put(bio);
6677 			bio = bioc->orig_bio;
6678 		}
6679 
6680 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6681 		/* only send an error to the higher layers if it is
6682 		 * beyond the tolerance of the btrfs bio
6683 		 */
6684 		if (atomic_read(&bioc->error) > bioc->max_errors) {
6685 			bio->bi_status = BLK_STS_IOERR;
6686 		} else {
6687 			/*
6688 			 * this bio is actually up to date, we didn't
6689 			 * go over the max number of errors
6690 			 */
6691 			bio->bi_status = BLK_STS_OK;
6692 		}
6693 
6694 		btrfs_end_bioc(bioc, bio);
6695 	} else if (!is_orig_bio) {
6696 		bio_put(bio);
6697 	}
6698 }
6699 
6700 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
6701 			      u64 physical, struct btrfs_device *dev)
6702 {
6703 	struct btrfs_fs_info *fs_info = bioc->fs_info;
6704 
6705 	bio->bi_private = bioc;
6706 	btrfs_bio(bio)->device = dev;
6707 	bio->bi_end_io = btrfs_end_bio;
6708 	bio->bi_iter.bi_sector = physical >> 9;
6709 	/*
6710 	 * For zone append writing, bi_sector must point the beginning of the
6711 	 * zone
6712 	 */
6713 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6714 		if (btrfs_dev_is_sequential(dev, physical)) {
6715 			u64 zone_start = round_down(physical, fs_info->zone_size);
6716 
6717 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6718 		} else {
6719 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6720 			bio->bi_opf |= REQ_OP_WRITE;
6721 		}
6722 	}
6723 	btrfs_debug_in_rcu(fs_info,
6724 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6725 		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6726 		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6727 		dev->devid, bio->bi_iter.bi_size);
6728 
6729 	btrfs_bio_counter_inc_noblocked(fs_info);
6730 
6731 	btrfsic_check_bio(bio);
6732 	submit_bio(bio);
6733 }
6734 
6735 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
6736 {
6737 	atomic_inc(&bioc->error);
6738 	if (atomic_dec_and_test(&bioc->stripes_pending)) {
6739 		/* Should be the original bio. */
6740 		WARN_ON(bio != bioc->orig_bio);
6741 
6742 		btrfs_bio(bio)->mirror_num = bioc->mirror_num;
6743 		bio->bi_iter.bi_sector = logical >> 9;
6744 		if (atomic_read(&bioc->error) > bioc->max_errors)
6745 			bio->bi_status = BLK_STS_IOERR;
6746 		else
6747 			bio->bi_status = BLK_STS_OK;
6748 		btrfs_end_bioc(bioc, bio);
6749 	}
6750 }
6751 
6752 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6753 			   int mirror_num)
6754 {
6755 	struct btrfs_device *dev;
6756 	struct bio *first_bio = bio;
6757 	u64 logical = bio->bi_iter.bi_sector << 9;
6758 	u64 length = 0;
6759 	u64 map_length;
6760 	int ret;
6761 	int dev_nr;
6762 	int total_devs;
6763 	struct btrfs_io_context *bioc = NULL;
6764 
6765 	length = bio->bi_iter.bi_size;
6766 	map_length = length;
6767 
6768 	btrfs_bio_counter_inc_blocked(fs_info);
6769 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6770 				&map_length, &bioc, mirror_num, 1);
6771 	if (ret) {
6772 		btrfs_bio_counter_dec(fs_info);
6773 		return errno_to_blk_status(ret);
6774 	}
6775 
6776 	total_devs = bioc->num_stripes;
6777 	bioc->orig_bio = first_bio;
6778 	bioc->private = first_bio->bi_private;
6779 	bioc->end_io = first_bio->bi_end_io;
6780 	atomic_set(&bioc->stripes_pending, bioc->num_stripes);
6781 
6782 	if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6783 	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6784 		/* In this case, map_length has been set to the length of
6785 		   a single stripe; not the whole write */
6786 		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6787 			ret = raid56_parity_write(bio, bioc, map_length);
6788 		} else {
6789 			ret = raid56_parity_recover(bio, bioc, map_length,
6790 						    mirror_num, 1);
6791 		}
6792 
6793 		btrfs_bio_counter_dec(fs_info);
6794 		return errno_to_blk_status(ret);
6795 	}
6796 
6797 	if (map_length < length) {
6798 		btrfs_crit(fs_info,
6799 			   "mapping failed logical %llu bio len %llu len %llu",
6800 			   logical, length, map_length);
6801 		BUG();
6802 	}
6803 
6804 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6805 		dev = bioc->stripes[dev_nr].dev;
6806 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6807 						   &dev->dev_state) ||
6808 		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6809 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6810 			bioc_error(bioc, first_bio, logical);
6811 			continue;
6812 		}
6813 
6814 		if (dev_nr < total_devs - 1) {
6815 			bio = btrfs_bio_clone(dev->bdev, first_bio);
6816 		} else {
6817 			bio = first_bio;
6818 			bio_set_dev(bio, dev->bdev);
6819 		}
6820 
6821 		submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
6822 	}
6823 	btrfs_bio_counter_dec(fs_info);
6824 	return BLK_STS_OK;
6825 }
6826 
6827 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6828 				      const struct btrfs_fs_devices *fs_devices)
6829 {
6830 	if (args->fsid == NULL)
6831 		return true;
6832 	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6833 		return true;
6834 	return false;
6835 }
6836 
6837 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6838 				  const struct btrfs_device *device)
6839 {
6840 	ASSERT((args->devid != (u64)-1) || args->missing);
6841 
6842 	if ((args->devid != (u64)-1) && device->devid != args->devid)
6843 		return false;
6844 	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6845 		return false;
6846 	if (!args->missing)
6847 		return true;
6848 	if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6849 	    !device->bdev)
6850 		return true;
6851 	return false;
6852 }
6853 
6854 /*
6855  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6856  * return NULL.
6857  *
6858  * If devid and uuid are both specified, the match must be exact, otherwise
6859  * only devid is used.
6860  */
6861 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6862 				       const struct btrfs_dev_lookup_args *args)
6863 {
6864 	struct btrfs_device *device;
6865 	struct btrfs_fs_devices *seed_devs;
6866 
6867 	if (dev_args_match_fs_devices(args, fs_devices)) {
6868 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6869 			if (dev_args_match_device(args, device))
6870 				return device;
6871 		}
6872 	}
6873 
6874 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6875 		if (!dev_args_match_fs_devices(args, seed_devs))
6876 			continue;
6877 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6878 			if (dev_args_match_device(args, device))
6879 				return device;
6880 		}
6881 	}
6882 
6883 	return NULL;
6884 }
6885 
6886 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6887 					    u64 devid, u8 *dev_uuid)
6888 {
6889 	struct btrfs_device *device;
6890 	unsigned int nofs_flag;
6891 
6892 	/*
6893 	 * We call this under the chunk_mutex, so we want to use NOFS for this
6894 	 * allocation, however we don't want to change btrfs_alloc_device() to
6895 	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6896 	 * places.
6897 	 */
6898 	nofs_flag = memalloc_nofs_save();
6899 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6900 	memalloc_nofs_restore(nofs_flag);
6901 	if (IS_ERR(device))
6902 		return device;
6903 
6904 	list_add(&device->dev_list, &fs_devices->devices);
6905 	device->fs_devices = fs_devices;
6906 	fs_devices->num_devices++;
6907 
6908 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6909 	fs_devices->missing_devices++;
6910 
6911 	return device;
6912 }
6913 
6914 /**
6915  * btrfs_alloc_device - allocate struct btrfs_device
6916  * @fs_info:	used only for generating a new devid, can be NULL if
6917  *		devid is provided (i.e. @devid != NULL).
6918  * @devid:	a pointer to devid for this device.  If NULL a new devid
6919  *		is generated.
6920  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6921  *		is generated.
6922  *
6923  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6924  * on error.  Returned struct is not linked onto any lists and must be
6925  * destroyed with btrfs_free_device.
6926  */
6927 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6928 					const u64 *devid,
6929 					const u8 *uuid)
6930 {
6931 	struct btrfs_device *dev;
6932 	u64 tmp;
6933 
6934 	if (WARN_ON(!devid && !fs_info))
6935 		return ERR_PTR(-EINVAL);
6936 
6937 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6938 	if (!dev)
6939 		return ERR_PTR(-ENOMEM);
6940 
6941 	/*
6942 	 * Preallocate a bio that's always going to be used for flushing device
6943 	 * barriers and matches the device lifespan
6944 	 */
6945 	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6946 	if (!dev->flush_bio) {
6947 		kfree(dev);
6948 		return ERR_PTR(-ENOMEM);
6949 	}
6950 
6951 	INIT_LIST_HEAD(&dev->dev_list);
6952 	INIT_LIST_HEAD(&dev->dev_alloc_list);
6953 	INIT_LIST_HEAD(&dev->post_commit_list);
6954 
6955 	atomic_set(&dev->dev_stats_ccnt, 0);
6956 	btrfs_device_data_ordered_init(dev);
6957 	extent_io_tree_init(fs_info, &dev->alloc_state,
6958 			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
6959 
6960 	if (devid)
6961 		tmp = *devid;
6962 	else {
6963 		int ret;
6964 
6965 		ret = find_next_devid(fs_info, &tmp);
6966 		if (ret) {
6967 			btrfs_free_device(dev);
6968 			return ERR_PTR(ret);
6969 		}
6970 	}
6971 	dev->devid = tmp;
6972 
6973 	if (uuid)
6974 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6975 	else
6976 		generate_random_uuid(dev->uuid);
6977 
6978 	return dev;
6979 }
6980 
6981 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6982 					u64 devid, u8 *uuid, bool error)
6983 {
6984 	if (error)
6985 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6986 			      devid, uuid);
6987 	else
6988 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6989 			      devid, uuid);
6990 }
6991 
6992 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6993 {
6994 	const int data_stripes = calc_data_stripes(type, num_stripes);
6995 
6996 	return div_u64(chunk_len, data_stripes);
6997 }
6998 
6999 #if BITS_PER_LONG == 32
7000 /*
7001  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7002  * can't be accessed on 32bit systems.
7003  *
7004  * This function do mount time check to reject the fs if it already has
7005  * metadata chunk beyond that limit.
7006  */
7007 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7008 				  u64 logical, u64 length, u64 type)
7009 {
7010 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7011 		return 0;
7012 
7013 	if (logical + length < MAX_LFS_FILESIZE)
7014 		return 0;
7015 
7016 	btrfs_err_32bit_limit(fs_info);
7017 	return -EOVERFLOW;
7018 }
7019 
7020 /*
7021  * This is to give early warning for any metadata chunk reaching
7022  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7023  * Although we can still access the metadata, it's not going to be possible
7024  * once the limit is reached.
7025  */
7026 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7027 				  u64 logical, u64 length, u64 type)
7028 {
7029 	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7030 		return;
7031 
7032 	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7033 		return;
7034 
7035 	btrfs_warn_32bit_limit(fs_info);
7036 }
7037 #endif
7038 
7039 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7040 						  u64 devid, u8 *uuid)
7041 {
7042 	struct btrfs_device *dev;
7043 
7044 	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7045 		btrfs_report_missing_device(fs_info, devid, uuid, true);
7046 		return ERR_PTR(-ENOENT);
7047 	}
7048 
7049 	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7050 	if (IS_ERR(dev)) {
7051 		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7052 			  devid, PTR_ERR(dev));
7053 		return dev;
7054 	}
7055 	btrfs_report_missing_device(fs_info, devid, uuid, false);
7056 
7057 	return dev;
7058 }
7059 
7060 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7061 			  struct btrfs_chunk *chunk)
7062 {
7063 	BTRFS_DEV_LOOKUP_ARGS(args);
7064 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7065 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7066 	struct map_lookup *map;
7067 	struct extent_map *em;
7068 	u64 logical;
7069 	u64 length;
7070 	u64 devid;
7071 	u64 type;
7072 	u8 uuid[BTRFS_UUID_SIZE];
7073 	int num_stripes;
7074 	int ret;
7075 	int i;
7076 
7077 	logical = key->offset;
7078 	length = btrfs_chunk_length(leaf, chunk);
7079 	type = btrfs_chunk_type(leaf, chunk);
7080 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7081 
7082 #if BITS_PER_LONG == 32
7083 	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7084 	if (ret < 0)
7085 		return ret;
7086 	warn_32bit_meta_chunk(fs_info, logical, length, type);
7087 #endif
7088 
7089 	/*
7090 	 * Only need to verify chunk item if we're reading from sys chunk array,
7091 	 * as chunk item in tree block is already verified by tree-checker.
7092 	 */
7093 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7094 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7095 		if (ret)
7096 			return ret;
7097 	}
7098 
7099 	read_lock(&map_tree->lock);
7100 	em = lookup_extent_mapping(map_tree, logical, 1);
7101 	read_unlock(&map_tree->lock);
7102 
7103 	/* already mapped? */
7104 	if (em && em->start <= logical && em->start + em->len > logical) {
7105 		free_extent_map(em);
7106 		return 0;
7107 	} else if (em) {
7108 		free_extent_map(em);
7109 	}
7110 
7111 	em = alloc_extent_map();
7112 	if (!em)
7113 		return -ENOMEM;
7114 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7115 	if (!map) {
7116 		free_extent_map(em);
7117 		return -ENOMEM;
7118 	}
7119 
7120 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7121 	em->map_lookup = map;
7122 	em->start = logical;
7123 	em->len = length;
7124 	em->orig_start = 0;
7125 	em->block_start = 0;
7126 	em->block_len = em->len;
7127 
7128 	map->num_stripes = num_stripes;
7129 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7130 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7131 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7132 	map->type = type;
7133 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7134 	map->verified_stripes = 0;
7135 	em->orig_block_len = calc_stripe_length(type, em->len,
7136 						map->num_stripes);
7137 	for (i = 0; i < num_stripes; i++) {
7138 		map->stripes[i].physical =
7139 			btrfs_stripe_offset_nr(leaf, chunk, i);
7140 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7141 		args.devid = devid;
7142 		read_extent_buffer(leaf, uuid, (unsigned long)
7143 				   btrfs_stripe_dev_uuid_nr(chunk, i),
7144 				   BTRFS_UUID_SIZE);
7145 		args.uuid = uuid;
7146 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7147 		if (!map->stripes[i].dev) {
7148 			map->stripes[i].dev = handle_missing_device(fs_info,
7149 								    devid, uuid);
7150 			if (IS_ERR(map->stripes[i].dev)) {
7151 				free_extent_map(em);
7152 				return PTR_ERR(map->stripes[i].dev);
7153 			}
7154 		}
7155 
7156 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7157 				&(map->stripes[i].dev->dev_state));
7158 	}
7159 
7160 	write_lock(&map_tree->lock);
7161 	ret = add_extent_mapping(map_tree, em, 0);
7162 	write_unlock(&map_tree->lock);
7163 	if (ret < 0) {
7164 		btrfs_err(fs_info,
7165 			  "failed to add chunk map, start=%llu len=%llu: %d",
7166 			  em->start, em->len, ret);
7167 	}
7168 	free_extent_map(em);
7169 
7170 	return ret;
7171 }
7172 
7173 static void fill_device_from_item(struct extent_buffer *leaf,
7174 				 struct btrfs_dev_item *dev_item,
7175 				 struct btrfs_device *device)
7176 {
7177 	unsigned long ptr;
7178 
7179 	device->devid = btrfs_device_id(leaf, dev_item);
7180 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7181 	device->total_bytes = device->disk_total_bytes;
7182 	device->commit_total_bytes = device->disk_total_bytes;
7183 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7184 	device->commit_bytes_used = device->bytes_used;
7185 	device->type = btrfs_device_type(leaf, dev_item);
7186 	device->io_align = btrfs_device_io_align(leaf, dev_item);
7187 	device->io_width = btrfs_device_io_width(leaf, dev_item);
7188 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7189 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7190 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7191 
7192 	ptr = btrfs_device_uuid(dev_item);
7193 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7194 }
7195 
7196 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7197 						  u8 *fsid)
7198 {
7199 	struct btrfs_fs_devices *fs_devices;
7200 	int ret;
7201 
7202 	lockdep_assert_held(&uuid_mutex);
7203 	ASSERT(fsid);
7204 
7205 	/* This will match only for multi-device seed fs */
7206 	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7207 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7208 			return fs_devices;
7209 
7210 
7211 	fs_devices = find_fsid(fsid, NULL);
7212 	if (!fs_devices) {
7213 		if (!btrfs_test_opt(fs_info, DEGRADED))
7214 			return ERR_PTR(-ENOENT);
7215 
7216 		fs_devices = alloc_fs_devices(fsid, NULL);
7217 		if (IS_ERR(fs_devices))
7218 			return fs_devices;
7219 
7220 		fs_devices->seeding = true;
7221 		fs_devices->opened = 1;
7222 		return fs_devices;
7223 	}
7224 
7225 	/*
7226 	 * Upon first call for a seed fs fsid, just create a private copy of the
7227 	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7228 	 */
7229 	fs_devices = clone_fs_devices(fs_devices);
7230 	if (IS_ERR(fs_devices))
7231 		return fs_devices;
7232 
7233 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7234 	if (ret) {
7235 		free_fs_devices(fs_devices);
7236 		return ERR_PTR(ret);
7237 	}
7238 
7239 	if (!fs_devices->seeding) {
7240 		close_fs_devices(fs_devices);
7241 		free_fs_devices(fs_devices);
7242 		return ERR_PTR(-EINVAL);
7243 	}
7244 
7245 	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7246 
7247 	return fs_devices;
7248 }
7249 
7250 static int read_one_dev(struct extent_buffer *leaf,
7251 			struct btrfs_dev_item *dev_item)
7252 {
7253 	BTRFS_DEV_LOOKUP_ARGS(args);
7254 	struct btrfs_fs_info *fs_info = leaf->fs_info;
7255 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7256 	struct btrfs_device *device;
7257 	u64 devid;
7258 	int ret;
7259 	u8 fs_uuid[BTRFS_FSID_SIZE];
7260 	u8 dev_uuid[BTRFS_UUID_SIZE];
7261 
7262 	devid = args.devid = btrfs_device_id(leaf, dev_item);
7263 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7264 			   BTRFS_UUID_SIZE);
7265 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7266 			   BTRFS_FSID_SIZE);
7267 	args.uuid = dev_uuid;
7268 	args.fsid = fs_uuid;
7269 
7270 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7271 		fs_devices = open_seed_devices(fs_info, fs_uuid);
7272 		if (IS_ERR(fs_devices))
7273 			return PTR_ERR(fs_devices);
7274 	}
7275 
7276 	device = btrfs_find_device(fs_info->fs_devices, &args);
7277 	if (!device) {
7278 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7279 			btrfs_report_missing_device(fs_info, devid,
7280 							dev_uuid, true);
7281 			return -ENOENT;
7282 		}
7283 
7284 		device = add_missing_dev(fs_devices, devid, dev_uuid);
7285 		if (IS_ERR(device)) {
7286 			btrfs_err(fs_info,
7287 				"failed to add missing dev %llu: %ld",
7288 				devid, PTR_ERR(device));
7289 			return PTR_ERR(device);
7290 		}
7291 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7292 	} else {
7293 		if (!device->bdev) {
7294 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7295 				btrfs_report_missing_device(fs_info,
7296 						devid, dev_uuid, true);
7297 				return -ENOENT;
7298 			}
7299 			btrfs_report_missing_device(fs_info, devid,
7300 							dev_uuid, false);
7301 		}
7302 
7303 		if (!device->bdev &&
7304 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7305 			/*
7306 			 * this happens when a device that was properly setup
7307 			 * in the device info lists suddenly goes bad.
7308 			 * device->bdev is NULL, and so we have to set
7309 			 * device->missing to one here
7310 			 */
7311 			device->fs_devices->missing_devices++;
7312 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7313 		}
7314 
7315 		/* Move the device to its own fs_devices */
7316 		if (device->fs_devices != fs_devices) {
7317 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7318 							&device->dev_state));
7319 
7320 			list_move(&device->dev_list, &fs_devices->devices);
7321 			device->fs_devices->num_devices--;
7322 			fs_devices->num_devices++;
7323 
7324 			device->fs_devices->missing_devices--;
7325 			fs_devices->missing_devices++;
7326 
7327 			device->fs_devices = fs_devices;
7328 		}
7329 	}
7330 
7331 	if (device->fs_devices != fs_info->fs_devices) {
7332 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7333 		if (device->generation !=
7334 		    btrfs_device_generation(leaf, dev_item))
7335 			return -EINVAL;
7336 	}
7337 
7338 	fill_device_from_item(leaf, dev_item, device);
7339 	if (device->bdev) {
7340 		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7341 
7342 		if (device->total_bytes > max_total_bytes) {
7343 			btrfs_err(fs_info,
7344 			"device total_bytes should be at most %llu but found %llu",
7345 				  max_total_bytes, device->total_bytes);
7346 			return -EINVAL;
7347 		}
7348 	}
7349 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7350 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7351 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7352 		device->fs_devices->total_rw_bytes += device->total_bytes;
7353 		atomic64_add(device->total_bytes - device->bytes_used,
7354 				&fs_info->free_chunk_space);
7355 	}
7356 	ret = 0;
7357 	return ret;
7358 }
7359 
7360 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7361 {
7362 	struct btrfs_super_block *super_copy = fs_info->super_copy;
7363 	struct extent_buffer *sb;
7364 	struct btrfs_disk_key *disk_key;
7365 	struct btrfs_chunk *chunk;
7366 	u8 *array_ptr;
7367 	unsigned long sb_array_offset;
7368 	int ret = 0;
7369 	u32 num_stripes;
7370 	u32 array_size;
7371 	u32 len = 0;
7372 	u32 cur_offset;
7373 	u64 type;
7374 	struct btrfs_key key;
7375 
7376 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7377 
7378 	/*
7379 	 * We allocated a dummy extent, just to use extent buffer accessors.
7380 	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7381 	 * that's fine, we will not go beyond system chunk array anyway.
7382 	 */
7383 	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7384 	if (!sb)
7385 		return -ENOMEM;
7386 	set_extent_buffer_uptodate(sb);
7387 
7388 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7389 	array_size = btrfs_super_sys_array_size(super_copy);
7390 
7391 	array_ptr = super_copy->sys_chunk_array;
7392 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7393 	cur_offset = 0;
7394 
7395 	while (cur_offset < array_size) {
7396 		disk_key = (struct btrfs_disk_key *)array_ptr;
7397 		len = sizeof(*disk_key);
7398 		if (cur_offset + len > array_size)
7399 			goto out_short_read;
7400 
7401 		btrfs_disk_key_to_cpu(&key, disk_key);
7402 
7403 		array_ptr += len;
7404 		sb_array_offset += len;
7405 		cur_offset += len;
7406 
7407 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7408 			btrfs_err(fs_info,
7409 			    "unexpected item type %u in sys_array at offset %u",
7410 				  (u32)key.type, cur_offset);
7411 			ret = -EIO;
7412 			break;
7413 		}
7414 
7415 		chunk = (struct btrfs_chunk *)sb_array_offset;
7416 		/*
7417 		 * At least one btrfs_chunk with one stripe must be present,
7418 		 * exact stripe count check comes afterwards
7419 		 */
7420 		len = btrfs_chunk_item_size(1);
7421 		if (cur_offset + len > array_size)
7422 			goto out_short_read;
7423 
7424 		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7425 		if (!num_stripes) {
7426 			btrfs_err(fs_info,
7427 			"invalid number of stripes %u in sys_array at offset %u",
7428 				  num_stripes, cur_offset);
7429 			ret = -EIO;
7430 			break;
7431 		}
7432 
7433 		type = btrfs_chunk_type(sb, chunk);
7434 		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7435 			btrfs_err(fs_info,
7436 			"invalid chunk type %llu in sys_array at offset %u",
7437 				  type, cur_offset);
7438 			ret = -EIO;
7439 			break;
7440 		}
7441 
7442 		len = btrfs_chunk_item_size(num_stripes);
7443 		if (cur_offset + len > array_size)
7444 			goto out_short_read;
7445 
7446 		ret = read_one_chunk(&key, sb, chunk);
7447 		if (ret)
7448 			break;
7449 
7450 		array_ptr += len;
7451 		sb_array_offset += len;
7452 		cur_offset += len;
7453 	}
7454 	clear_extent_buffer_uptodate(sb);
7455 	free_extent_buffer_stale(sb);
7456 	return ret;
7457 
7458 out_short_read:
7459 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7460 			len, cur_offset);
7461 	clear_extent_buffer_uptodate(sb);
7462 	free_extent_buffer_stale(sb);
7463 	return -EIO;
7464 }
7465 
7466 /*
7467  * Check if all chunks in the fs are OK for read-write degraded mount
7468  *
7469  * If the @failing_dev is specified, it's accounted as missing.
7470  *
7471  * Return true if all chunks meet the minimal RW mount requirements.
7472  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7473  */
7474 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7475 					struct btrfs_device *failing_dev)
7476 {
7477 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7478 	struct extent_map *em;
7479 	u64 next_start = 0;
7480 	bool ret = true;
7481 
7482 	read_lock(&map_tree->lock);
7483 	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7484 	read_unlock(&map_tree->lock);
7485 	/* No chunk at all? Return false anyway */
7486 	if (!em) {
7487 		ret = false;
7488 		goto out;
7489 	}
7490 	while (em) {
7491 		struct map_lookup *map;
7492 		int missing = 0;
7493 		int max_tolerated;
7494 		int i;
7495 
7496 		map = em->map_lookup;
7497 		max_tolerated =
7498 			btrfs_get_num_tolerated_disk_barrier_failures(
7499 					map->type);
7500 		for (i = 0; i < map->num_stripes; i++) {
7501 			struct btrfs_device *dev = map->stripes[i].dev;
7502 
7503 			if (!dev || !dev->bdev ||
7504 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7505 			    dev->last_flush_error)
7506 				missing++;
7507 			else if (failing_dev && failing_dev == dev)
7508 				missing++;
7509 		}
7510 		if (missing > max_tolerated) {
7511 			if (!failing_dev)
7512 				btrfs_warn(fs_info,
7513 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7514 				   em->start, missing, max_tolerated);
7515 			free_extent_map(em);
7516 			ret = false;
7517 			goto out;
7518 		}
7519 		next_start = extent_map_end(em);
7520 		free_extent_map(em);
7521 
7522 		read_lock(&map_tree->lock);
7523 		em = lookup_extent_mapping(map_tree, next_start,
7524 					   (u64)(-1) - next_start);
7525 		read_unlock(&map_tree->lock);
7526 	}
7527 out:
7528 	return ret;
7529 }
7530 
7531 static void readahead_tree_node_children(struct extent_buffer *node)
7532 {
7533 	int i;
7534 	const int nr_items = btrfs_header_nritems(node);
7535 
7536 	for (i = 0; i < nr_items; i++)
7537 		btrfs_readahead_node_child(node, i);
7538 }
7539 
7540 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7541 {
7542 	struct btrfs_root *root = fs_info->chunk_root;
7543 	struct btrfs_path *path;
7544 	struct extent_buffer *leaf;
7545 	struct btrfs_key key;
7546 	struct btrfs_key found_key;
7547 	int ret;
7548 	int slot;
7549 	int iter_ret = 0;
7550 	u64 total_dev = 0;
7551 	u64 last_ra_node = 0;
7552 
7553 	path = btrfs_alloc_path();
7554 	if (!path)
7555 		return -ENOMEM;
7556 
7557 	/*
7558 	 * uuid_mutex is needed only if we are mounting a sprout FS
7559 	 * otherwise we don't need it.
7560 	 */
7561 	mutex_lock(&uuid_mutex);
7562 
7563 	/*
7564 	 * It is possible for mount and umount to race in such a way that
7565 	 * we execute this code path, but open_fs_devices failed to clear
7566 	 * total_rw_bytes. We certainly want it cleared before reading the
7567 	 * device items, so clear it here.
7568 	 */
7569 	fs_info->fs_devices->total_rw_bytes = 0;
7570 
7571 	/*
7572 	 * Lockdep complains about possible circular locking dependency between
7573 	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7574 	 * used for freeze procection of a fs (struct super_block.s_writers),
7575 	 * which we take when starting a transaction, and extent buffers of the
7576 	 * chunk tree if we call read_one_dev() while holding a lock on an
7577 	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7578 	 * and at this point there can't be any concurrent task modifying the
7579 	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7580 	 */
7581 	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7582 	path->skip_locking = 1;
7583 
7584 	/*
7585 	 * Read all device items, and then all the chunk items. All
7586 	 * device items are found before any chunk item (their object id
7587 	 * is smaller than the lowest possible object id for a chunk
7588 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7589 	 */
7590 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7591 	key.offset = 0;
7592 	key.type = 0;
7593 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7594 		struct extent_buffer *node = path->nodes[1];
7595 
7596 		leaf = path->nodes[0];
7597 		slot = path->slots[0];
7598 
7599 		if (node) {
7600 			if (last_ra_node != node->start) {
7601 				readahead_tree_node_children(node);
7602 				last_ra_node = node->start;
7603 			}
7604 		}
7605 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7606 			struct btrfs_dev_item *dev_item;
7607 			dev_item = btrfs_item_ptr(leaf, slot,
7608 						  struct btrfs_dev_item);
7609 			ret = read_one_dev(leaf, dev_item);
7610 			if (ret)
7611 				goto error;
7612 			total_dev++;
7613 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7614 			struct btrfs_chunk *chunk;
7615 
7616 			/*
7617 			 * We are only called at mount time, so no need to take
7618 			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7619 			 * we always lock first fs_info->chunk_mutex before
7620 			 * acquiring any locks on the chunk tree. This is a
7621 			 * requirement for chunk allocation, see the comment on
7622 			 * top of btrfs_chunk_alloc() for details.
7623 			 */
7624 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7625 			ret = read_one_chunk(&found_key, leaf, chunk);
7626 			if (ret)
7627 				goto error;
7628 		}
7629 	}
7630 	/* Catch error found during iteration */
7631 	if (iter_ret < 0) {
7632 		ret = iter_ret;
7633 		goto error;
7634 	}
7635 
7636 	/*
7637 	 * After loading chunk tree, we've got all device information,
7638 	 * do another round of validation checks.
7639 	 */
7640 	if (total_dev != fs_info->fs_devices->total_devices) {
7641 		btrfs_warn(fs_info,
7642 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7643 			  btrfs_super_num_devices(fs_info->super_copy),
7644 			  total_dev);
7645 		fs_info->fs_devices->total_devices = total_dev;
7646 		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7647 	}
7648 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7649 	    fs_info->fs_devices->total_rw_bytes) {
7650 		btrfs_err(fs_info,
7651 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7652 			  btrfs_super_total_bytes(fs_info->super_copy),
7653 			  fs_info->fs_devices->total_rw_bytes);
7654 		ret = -EINVAL;
7655 		goto error;
7656 	}
7657 	ret = 0;
7658 error:
7659 	mutex_unlock(&uuid_mutex);
7660 
7661 	btrfs_free_path(path);
7662 	return ret;
7663 }
7664 
7665 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7666 {
7667 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7668 	struct btrfs_device *device;
7669 
7670 	fs_devices->fs_info = fs_info;
7671 
7672 	mutex_lock(&fs_devices->device_list_mutex);
7673 	list_for_each_entry(device, &fs_devices->devices, dev_list)
7674 		device->fs_info = fs_info;
7675 
7676 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7677 		list_for_each_entry(device, &seed_devs->devices, dev_list)
7678 			device->fs_info = fs_info;
7679 
7680 		seed_devs->fs_info = fs_info;
7681 	}
7682 	mutex_unlock(&fs_devices->device_list_mutex);
7683 }
7684 
7685 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7686 				 const struct btrfs_dev_stats_item *ptr,
7687 				 int index)
7688 {
7689 	u64 val;
7690 
7691 	read_extent_buffer(eb, &val,
7692 			   offsetof(struct btrfs_dev_stats_item, values) +
7693 			    ((unsigned long)ptr) + (index * sizeof(u64)),
7694 			   sizeof(val));
7695 	return val;
7696 }
7697 
7698 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7699 				      struct btrfs_dev_stats_item *ptr,
7700 				      int index, u64 val)
7701 {
7702 	write_extent_buffer(eb, &val,
7703 			    offsetof(struct btrfs_dev_stats_item, values) +
7704 			     ((unsigned long)ptr) + (index * sizeof(u64)),
7705 			    sizeof(val));
7706 }
7707 
7708 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7709 				       struct btrfs_path *path)
7710 {
7711 	struct btrfs_dev_stats_item *ptr;
7712 	struct extent_buffer *eb;
7713 	struct btrfs_key key;
7714 	int item_size;
7715 	int i, ret, slot;
7716 
7717 	if (!device->fs_info->dev_root)
7718 		return 0;
7719 
7720 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7721 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7722 	key.offset = device->devid;
7723 	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7724 	if (ret) {
7725 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7726 			btrfs_dev_stat_set(device, i, 0);
7727 		device->dev_stats_valid = 1;
7728 		btrfs_release_path(path);
7729 		return ret < 0 ? ret : 0;
7730 	}
7731 	slot = path->slots[0];
7732 	eb = path->nodes[0];
7733 	item_size = btrfs_item_size(eb, slot);
7734 
7735 	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7736 
7737 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7738 		if (item_size >= (1 + i) * sizeof(__le64))
7739 			btrfs_dev_stat_set(device, i,
7740 					   btrfs_dev_stats_value(eb, ptr, i));
7741 		else
7742 			btrfs_dev_stat_set(device, i, 0);
7743 	}
7744 
7745 	device->dev_stats_valid = 1;
7746 	btrfs_dev_stat_print_on_load(device);
7747 	btrfs_release_path(path);
7748 
7749 	return 0;
7750 }
7751 
7752 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7753 {
7754 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7755 	struct btrfs_device *device;
7756 	struct btrfs_path *path = NULL;
7757 	int ret = 0;
7758 
7759 	path = btrfs_alloc_path();
7760 	if (!path)
7761 		return -ENOMEM;
7762 
7763 	mutex_lock(&fs_devices->device_list_mutex);
7764 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7765 		ret = btrfs_device_init_dev_stats(device, path);
7766 		if (ret)
7767 			goto out;
7768 	}
7769 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7770 		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7771 			ret = btrfs_device_init_dev_stats(device, path);
7772 			if (ret)
7773 				goto out;
7774 		}
7775 	}
7776 out:
7777 	mutex_unlock(&fs_devices->device_list_mutex);
7778 
7779 	btrfs_free_path(path);
7780 	return ret;
7781 }
7782 
7783 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7784 				struct btrfs_device *device)
7785 {
7786 	struct btrfs_fs_info *fs_info = trans->fs_info;
7787 	struct btrfs_root *dev_root = fs_info->dev_root;
7788 	struct btrfs_path *path;
7789 	struct btrfs_key key;
7790 	struct extent_buffer *eb;
7791 	struct btrfs_dev_stats_item *ptr;
7792 	int ret;
7793 	int i;
7794 
7795 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7796 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7797 	key.offset = device->devid;
7798 
7799 	path = btrfs_alloc_path();
7800 	if (!path)
7801 		return -ENOMEM;
7802 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7803 	if (ret < 0) {
7804 		btrfs_warn_in_rcu(fs_info,
7805 			"error %d while searching for dev_stats item for device %s",
7806 			      ret, rcu_str_deref(device->name));
7807 		goto out;
7808 	}
7809 
7810 	if (ret == 0 &&
7811 	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7812 		/* need to delete old one and insert a new one */
7813 		ret = btrfs_del_item(trans, dev_root, path);
7814 		if (ret != 0) {
7815 			btrfs_warn_in_rcu(fs_info,
7816 				"delete too small dev_stats item for device %s failed %d",
7817 				      rcu_str_deref(device->name), ret);
7818 			goto out;
7819 		}
7820 		ret = 1;
7821 	}
7822 
7823 	if (ret == 1) {
7824 		/* need to insert a new item */
7825 		btrfs_release_path(path);
7826 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7827 					      &key, sizeof(*ptr));
7828 		if (ret < 0) {
7829 			btrfs_warn_in_rcu(fs_info,
7830 				"insert dev_stats item for device %s failed %d",
7831 				rcu_str_deref(device->name), ret);
7832 			goto out;
7833 		}
7834 	}
7835 
7836 	eb = path->nodes[0];
7837 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7838 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7839 		btrfs_set_dev_stats_value(eb, ptr, i,
7840 					  btrfs_dev_stat_read(device, i));
7841 	btrfs_mark_buffer_dirty(eb);
7842 
7843 out:
7844 	btrfs_free_path(path);
7845 	return ret;
7846 }
7847 
7848 /*
7849  * called from commit_transaction. Writes all changed device stats to disk.
7850  */
7851 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7852 {
7853 	struct btrfs_fs_info *fs_info = trans->fs_info;
7854 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7855 	struct btrfs_device *device;
7856 	int stats_cnt;
7857 	int ret = 0;
7858 
7859 	mutex_lock(&fs_devices->device_list_mutex);
7860 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7861 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7862 		if (!device->dev_stats_valid || stats_cnt == 0)
7863 			continue;
7864 
7865 
7866 		/*
7867 		 * There is a LOAD-LOAD control dependency between the value of
7868 		 * dev_stats_ccnt and updating the on-disk values which requires
7869 		 * reading the in-memory counters. Such control dependencies
7870 		 * require explicit read memory barriers.
7871 		 *
7872 		 * This memory barriers pairs with smp_mb__before_atomic in
7873 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7874 		 * barrier implied by atomic_xchg in
7875 		 * btrfs_dev_stats_read_and_reset
7876 		 */
7877 		smp_rmb();
7878 
7879 		ret = update_dev_stat_item(trans, device);
7880 		if (!ret)
7881 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7882 	}
7883 	mutex_unlock(&fs_devices->device_list_mutex);
7884 
7885 	return ret;
7886 }
7887 
7888 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7889 {
7890 	btrfs_dev_stat_inc(dev, index);
7891 	btrfs_dev_stat_print_on_error(dev);
7892 }
7893 
7894 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7895 {
7896 	if (!dev->dev_stats_valid)
7897 		return;
7898 	btrfs_err_rl_in_rcu(dev->fs_info,
7899 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7900 			   rcu_str_deref(dev->name),
7901 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7902 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7903 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7904 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7905 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7906 }
7907 
7908 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7909 {
7910 	int i;
7911 
7912 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7913 		if (btrfs_dev_stat_read(dev, i) != 0)
7914 			break;
7915 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7916 		return; /* all values == 0, suppress message */
7917 
7918 	btrfs_info_in_rcu(dev->fs_info,
7919 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7920 	       rcu_str_deref(dev->name),
7921 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7922 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7923 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7924 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7925 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7926 }
7927 
7928 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7929 			struct btrfs_ioctl_get_dev_stats *stats)
7930 {
7931 	BTRFS_DEV_LOOKUP_ARGS(args);
7932 	struct btrfs_device *dev;
7933 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7934 	int i;
7935 
7936 	mutex_lock(&fs_devices->device_list_mutex);
7937 	args.devid = stats->devid;
7938 	dev = btrfs_find_device(fs_info->fs_devices, &args);
7939 	mutex_unlock(&fs_devices->device_list_mutex);
7940 
7941 	if (!dev) {
7942 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7943 		return -ENODEV;
7944 	} else if (!dev->dev_stats_valid) {
7945 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7946 		return -ENODEV;
7947 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7948 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7949 			if (stats->nr_items > i)
7950 				stats->values[i] =
7951 					btrfs_dev_stat_read_and_reset(dev, i);
7952 			else
7953 				btrfs_dev_stat_set(dev, i, 0);
7954 		}
7955 		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7956 			   current->comm, task_pid_nr(current));
7957 	} else {
7958 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7959 			if (stats->nr_items > i)
7960 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7961 	}
7962 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7963 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7964 	return 0;
7965 }
7966 
7967 /*
7968  * Update the size and bytes used for each device where it changed.  This is
7969  * delayed since we would otherwise get errors while writing out the
7970  * superblocks.
7971  *
7972  * Must be invoked during transaction commit.
7973  */
7974 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7975 {
7976 	struct btrfs_device *curr, *next;
7977 
7978 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7979 
7980 	if (list_empty(&trans->dev_update_list))
7981 		return;
7982 
7983 	/*
7984 	 * We don't need the device_list_mutex here.  This list is owned by the
7985 	 * transaction and the transaction must complete before the device is
7986 	 * released.
7987 	 */
7988 	mutex_lock(&trans->fs_info->chunk_mutex);
7989 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7990 				 post_commit_list) {
7991 		list_del_init(&curr->post_commit_list);
7992 		curr->commit_total_bytes = curr->disk_total_bytes;
7993 		curr->commit_bytes_used = curr->bytes_used;
7994 	}
7995 	mutex_unlock(&trans->fs_info->chunk_mutex);
7996 }
7997 
7998 /*
7999  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8000  */
8001 int btrfs_bg_type_to_factor(u64 flags)
8002 {
8003 	const int index = btrfs_bg_flags_to_raid_index(flags);
8004 
8005 	return btrfs_raid_array[index].ncopies;
8006 }
8007 
8008 
8009 
8010 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8011 				 u64 chunk_offset, u64 devid,
8012 				 u64 physical_offset, u64 physical_len)
8013 {
8014 	struct btrfs_dev_lookup_args args = { .devid = devid };
8015 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8016 	struct extent_map *em;
8017 	struct map_lookup *map;
8018 	struct btrfs_device *dev;
8019 	u64 stripe_len;
8020 	bool found = false;
8021 	int ret = 0;
8022 	int i;
8023 
8024 	read_lock(&em_tree->lock);
8025 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8026 	read_unlock(&em_tree->lock);
8027 
8028 	if (!em) {
8029 		btrfs_err(fs_info,
8030 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8031 			  physical_offset, devid);
8032 		ret = -EUCLEAN;
8033 		goto out;
8034 	}
8035 
8036 	map = em->map_lookup;
8037 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8038 	if (physical_len != stripe_len) {
8039 		btrfs_err(fs_info,
8040 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8041 			  physical_offset, devid, em->start, physical_len,
8042 			  stripe_len);
8043 		ret = -EUCLEAN;
8044 		goto out;
8045 	}
8046 
8047 	for (i = 0; i < map->num_stripes; i++) {
8048 		if (map->stripes[i].dev->devid == devid &&
8049 		    map->stripes[i].physical == physical_offset) {
8050 			found = true;
8051 			if (map->verified_stripes >= map->num_stripes) {
8052 				btrfs_err(fs_info,
8053 				"too many dev extents for chunk %llu found",
8054 					  em->start);
8055 				ret = -EUCLEAN;
8056 				goto out;
8057 			}
8058 			map->verified_stripes++;
8059 			break;
8060 		}
8061 	}
8062 	if (!found) {
8063 		btrfs_err(fs_info,
8064 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8065 			physical_offset, devid);
8066 		ret = -EUCLEAN;
8067 	}
8068 
8069 	/* Make sure no dev extent is beyond device boundary */
8070 	dev = btrfs_find_device(fs_info->fs_devices, &args);
8071 	if (!dev) {
8072 		btrfs_err(fs_info, "failed to find devid %llu", devid);
8073 		ret = -EUCLEAN;
8074 		goto out;
8075 	}
8076 
8077 	if (physical_offset + physical_len > dev->disk_total_bytes) {
8078 		btrfs_err(fs_info,
8079 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8080 			  devid, physical_offset, physical_len,
8081 			  dev->disk_total_bytes);
8082 		ret = -EUCLEAN;
8083 		goto out;
8084 	}
8085 
8086 	if (dev->zone_info) {
8087 		u64 zone_size = dev->zone_info->zone_size;
8088 
8089 		if (!IS_ALIGNED(physical_offset, zone_size) ||
8090 		    !IS_ALIGNED(physical_len, zone_size)) {
8091 			btrfs_err(fs_info,
8092 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8093 				  devid, physical_offset, physical_len);
8094 			ret = -EUCLEAN;
8095 			goto out;
8096 		}
8097 	}
8098 
8099 out:
8100 	free_extent_map(em);
8101 	return ret;
8102 }
8103 
8104 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8105 {
8106 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8107 	struct extent_map *em;
8108 	struct rb_node *node;
8109 	int ret = 0;
8110 
8111 	read_lock(&em_tree->lock);
8112 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8113 		em = rb_entry(node, struct extent_map, rb_node);
8114 		if (em->map_lookup->num_stripes !=
8115 		    em->map_lookup->verified_stripes) {
8116 			btrfs_err(fs_info,
8117 			"chunk %llu has missing dev extent, have %d expect %d",
8118 				  em->start, em->map_lookup->verified_stripes,
8119 				  em->map_lookup->num_stripes);
8120 			ret = -EUCLEAN;
8121 			goto out;
8122 		}
8123 	}
8124 out:
8125 	read_unlock(&em_tree->lock);
8126 	return ret;
8127 }
8128 
8129 /*
8130  * Ensure that all dev extents are mapped to correct chunk, otherwise
8131  * later chunk allocation/free would cause unexpected behavior.
8132  *
8133  * NOTE: This will iterate through the whole device tree, which should be of
8134  * the same size level as the chunk tree.  This slightly increases mount time.
8135  */
8136 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8137 {
8138 	struct btrfs_path *path;
8139 	struct btrfs_root *root = fs_info->dev_root;
8140 	struct btrfs_key key;
8141 	u64 prev_devid = 0;
8142 	u64 prev_dev_ext_end = 0;
8143 	int ret = 0;
8144 
8145 	/*
8146 	 * We don't have a dev_root because we mounted with ignorebadroots and
8147 	 * failed to load the root, so we want to skip the verification in this
8148 	 * case for sure.
8149 	 *
8150 	 * However if the dev root is fine, but the tree itself is corrupted
8151 	 * we'd still fail to mount.  This verification is only to make sure
8152 	 * writes can happen safely, so instead just bypass this check
8153 	 * completely in the case of IGNOREBADROOTS.
8154 	 */
8155 	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8156 		return 0;
8157 
8158 	key.objectid = 1;
8159 	key.type = BTRFS_DEV_EXTENT_KEY;
8160 	key.offset = 0;
8161 
8162 	path = btrfs_alloc_path();
8163 	if (!path)
8164 		return -ENOMEM;
8165 
8166 	path->reada = READA_FORWARD;
8167 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8168 	if (ret < 0)
8169 		goto out;
8170 
8171 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8172 		ret = btrfs_next_leaf(root, path);
8173 		if (ret < 0)
8174 			goto out;
8175 		/* No dev extents at all? Not good */
8176 		if (ret > 0) {
8177 			ret = -EUCLEAN;
8178 			goto out;
8179 		}
8180 	}
8181 	while (1) {
8182 		struct extent_buffer *leaf = path->nodes[0];
8183 		struct btrfs_dev_extent *dext;
8184 		int slot = path->slots[0];
8185 		u64 chunk_offset;
8186 		u64 physical_offset;
8187 		u64 physical_len;
8188 		u64 devid;
8189 
8190 		btrfs_item_key_to_cpu(leaf, &key, slot);
8191 		if (key.type != BTRFS_DEV_EXTENT_KEY)
8192 			break;
8193 		devid = key.objectid;
8194 		physical_offset = key.offset;
8195 
8196 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8197 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8198 		physical_len = btrfs_dev_extent_length(leaf, dext);
8199 
8200 		/* Check if this dev extent overlaps with the previous one */
8201 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8202 			btrfs_err(fs_info,
8203 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8204 				  devid, physical_offset, prev_dev_ext_end);
8205 			ret = -EUCLEAN;
8206 			goto out;
8207 		}
8208 
8209 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8210 					    physical_offset, physical_len);
8211 		if (ret < 0)
8212 			goto out;
8213 		prev_devid = devid;
8214 		prev_dev_ext_end = physical_offset + physical_len;
8215 
8216 		ret = btrfs_next_item(root, path);
8217 		if (ret < 0)
8218 			goto out;
8219 		if (ret > 0) {
8220 			ret = 0;
8221 			break;
8222 		}
8223 	}
8224 
8225 	/* Ensure all chunks have corresponding dev extents */
8226 	ret = verify_chunk_dev_extent_mapping(fs_info);
8227 out:
8228 	btrfs_free_path(path);
8229 	return ret;
8230 }
8231 
8232 /*
8233  * Check whether the given block group or device is pinned by any inode being
8234  * used as a swapfile.
8235  */
8236 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8237 {
8238 	struct btrfs_swapfile_pin *sp;
8239 	struct rb_node *node;
8240 
8241 	spin_lock(&fs_info->swapfile_pins_lock);
8242 	node = fs_info->swapfile_pins.rb_node;
8243 	while (node) {
8244 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8245 		if (ptr < sp->ptr)
8246 			node = node->rb_left;
8247 		else if (ptr > sp->ptr)
8248 			node = node->rb_right;
8249 		else
8250 			break;
8251 	}
8252 	spin_unlock(&fs_info->swapfile_pins_lock);
8253 	return node != NULL;
8254 }
8255 
8256 static int relocating_repair_kthread(void *data)
8257 {
8258 	struct btrfs_block_group *cache = data;
8259 	struct btrfs_fs_info *fs_info = cache->fs_info;
8260 	u64 target;
8261 	int ret = 0;
8262 
8263 	target = cache->start;
8264 	btrfs_put_block_group(cache);
8265 
8266 	sb_start_write(fs_info->sb);
8267 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8268 		btrfs_info(fs_info,
8269 			   "zoned: skip relocating block group %llu to repair: EBUSY",
8270 			   target);
8271 		sb_end_write(fs_info->sb);
8272 		return -EBUSY;
8273 	}
8274 
8275 	mutex_lock(&fs_info->reclaim_bgs_lock);
8276 
8277 	/* Ensure block group still exists */
8278 	cache = btrfs_lookup_block_group(fs_info, target);
8279 	if (!cache)
8280 		goto out;
8281 
8282 	if (!cache->relocating_repair)
8283 		goto out;
8284 
8285 	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8286 	if (ret < 0)
8287 		goto out;
8288 
8289 	btrfs_info(fs_info,
8290 		   "zoned: relocating block group %llu to repair IO failure",
8291 		   target);
8292 	ret = btrfs_relocate_chunk(fs_info, target);
8293 
8294 out:
8295 	if (cache)
8296 		btrfs_put_block_group(cache);
8297 	mutex_unlock(&fs_info->reclaim_bgs_lock);
8298 	btrfs_exclop_finish(fs_info);
8299 	sb_end_write(fs_info->sb);
8300 
8301 	return ret;
8302 }
8303 
8304 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8305 {
8306 	struct btrfs_block_group *cache;
8307 
8308 	if (!btrfs_is_zoned(fs_info))
8309 		return false;
8310 
8311 	/* Do not attempt to repair in degraded state */
8312 	if (btrfs_test_opt(fs_info, DEGRADED))
8313 		return true;
8314 
8315 	cache = btrfs_lookup_block_group(fs_info, logical);
8316 	if (!cache)
8317 		return true;
8318 
8319 	spin_lock(&cache->lock);
8320 	if (cache->relocating_repair) {
8321 		spin_unlock(&cache->lock);
8322 		btrfs_put_block_group(cache);
8323 		return true;
8324 	}
8325 	cache->relocating_repair = 1;
8326 	spin_unlock(&cache->lock);
8327 
8328 	kthread_run(relocating_repair_kthread, cache,
8329 		    "btrfs-relocating-repair");
8330 
8331 	return true;
8332 }
8333