xref: /openbmc/linux/fs/btrfs/volumes.c (revision a641f3a6)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 
44 static int init_first_rw_device(struct btrfs_trans_handle *trans,
45 				struct btrfs_root *root,
46 				struct btrfs_device *device);
47 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
48 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
49 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
51 
52 static DEFINE_MUTEX(uuid_mutex);
53 static LIST_HEAD(fs_uuids);
54 
55 static void lock_chunks(struct btrfs_root *root)
56 {
57 	mutex_lock(&root->fs_info->chunk_mutex);
58 }
59 
60 static void unlock_chunks(struct btrfs_root *root)
61 {
62 	mutex_unlock(&root->fs_info->chunk_mutex);
63 }
64 
65 static struct btrfs_fs_devices *__alloc_fs_devices(void)
66 {
67 	struct btrfs_fs_devices *fs_devs;
68 
69 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
70 	if (!fs_devs)
71 		return ERR_PTR(-ENOMEM);
72 
73 	mutex_init(&fs_devs->device_list_mutex);
74 
75 	INIT_LIST_HEAD(&fs_devs->devices);
76 	INIT_LIST_HEAD(&fs_devs->alloc_list);
77 	INIT_LIST_HEAD(&fs_devs->list);
78 
79 	return fs_devs;
80 }
81 
82 /**
83  * alloc_fs_devices - allocate struct btrfs_fs_devices
84  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
85  *		generated.
86  *
87  * Return: a pointer to a new &struct btrfs_fs_devices on success;
88  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
89  * can be destroyed with kfree() right away.
90  */
91 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
92 {
93 	struct btrfs_fs_devices *fs_devs;
94 
95 	fs_devs = __alloc_fs_devices();
96 	if (IS_ERR(fs_devs))
97 		return fs_devs;
98 
99 	if (fsid)
100 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
101 	else
102 		generate_random_uuid(fs_devs->fsid);
103 
104 	return fs_devs;
105 }
106 
107 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
108 {
109 	struct btrfs_device *device;
110 	WARN_ON(fs_devices->opened);
111 	while (!list_empty(&fs_devices->devices)) {
112 		device = list_entry(fs_devices->devices.next,
113 				    struct btrfs_device, dev_list);
114 		list_del(&device->dev_list);
115 		rcu_string_free(device->name);
116 		kfree(device);
117 	}
118 	kfree(fs_devices);
119 }
120 
121 static void btrfs_kobject_uevent(struct block_device *bdev,
122 				 enum kobject_action action)
123 {
124 	int ret;
125 
126 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
127 	if (ret)
128 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
129 			action,
130 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
131 			&disk_to_dev(bdev->bd_disk)->kobj);
132 }
133 
134 void btrfs_cleanup_fs_uuids(void)
135 {
136 	struct btrfs_fs_devices *fs_devices;
137 
138 	while (!list_empty(&fs_uuids)) {
139 		fs_devices = list_entry(fs_uuids.next,
140 					struct btrfs_fs_devices, list);
141 		list_del(&fs_devices->list);
142 		free_fs_devices(fs_devices);
143 	}
144 }
145 
146 static struct btrfs_device *__alloc_device(void)
147 {
148 	struct btrfs_device *dev;
149 
150 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
151 	if (!dev)
152 		return ERR_PTR(-ENOMEM);
153 
154 	INIT_LIST_HEAD(&dev->dev_list);
155 	INIT_LIST_HEAD(&dev->dev_alloc_list);
156 
157 	spin_lock_init(&dev->io_lock);
158 
159 	spin_lock_init(&dev->reada_lock);
160 	atomic_set(&dev->reada_in_flight, 0);
161 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
162 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
163 
164 	return dev;
165 }
166 
167 static noinline struct btrfs_device *__find_device(struct list_head *head,
168 						   u64 devid, u8 *uuid)
169 {
170 	struct btrfs_device *dev;
171 
172 	list_for_each_entry(dev, head, dev_list) {
173 		if (dev->devid == devid &&
174 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
175 			return dev;
176 		}
177 	}
178 	return NULL;
179 }
180 
181 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
182 {
183 	struct btrfs_fs_devices *fs_devices;
184 
185 	list_for_each_entry(fs_devices, &fs_uuids, list) {
186 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
187 			return fs_devices;
188 	}
189 	return NULL;
190 }
191 
192 static int
193 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
194 		      int flush, struct block_device **bdev,
195 		      struct buffer_head **bh)
196 {
197 	int ret;
198 
199 	*bdev = blkdev_get_by_path(device_path, flags, holder);
200 
201 	if (IS_ERR(*bdev)) {
202 		ret = PTR_ERR(*bdev);
203 		printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
204 		goto error;
205 	}
206 
207 	if (flush)
208 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
209 	ret = set_blocksize(*bdev, 4096);
210 	if (ret) {
211 		blkdev_put(*bdev, flags);
212 		goto error;
213 	}
214 	invalidate_bdev(*bdev);
215 	*bh = btrfs_read_dev_super(*bdev);
216 	if (!*bh) {
217 		ret = -EINVAL;
218 		blkdev_put(*bdev, flags);
219 		goto error;
220 	}
221 
222 	return 0;
223 
224 error:
225 	*bdev = NULL;
226 	*bh = NULL;
227 	return ret;
228 }
229 
230 static void requeue_list(struct btrfs_pending_bios *pending_bios,
231 			struct bio *head, struct bio *tail)
232 {
233 
234 	struct bio *old_head;
235 
236 	old_head = pending_bios->head;
237 	pending_bios->head = head;
238 	if (pending_bios->tail)
239 		tail->bi_next = old_head;
240 	else
241 		pending_bios->tail = tail;
242 }
243 
244 /*
245  * we try to collect pending bios for a device so we don't get a large
246  * number of procs sending bios down to the same device.  This greatly
247  * improves the schedulers ability to collect and merge the bios.
248  *
249  * But, it also turns into a long list of bios to process and that is sure
250  * to eventually make the worker thread block.  The solution here is to
251  * make some progress and then put this work struct back at the end of
252  * the list if the block device is congested.  This way, multiple devices
253  * can make progress from a single worker thread.
254  */
255 static noinline void run_scheduled_bios(struct btrfs_device *device)
256 {
257 	struct bio *pending;
258 	struct backing_dev_info *bdi;
259 	struct btrfs_fs_info *fs_info;
260 	struct btrfs_pending_bios *pending_bios;
261 	struct bio *tail;
262 	struct bio *cur;
263 	int again = 0;
264 	unsigned long num_run;
265 	unsigned long batch_run = 0;
266 	unsigned long limit;
267 	unsigned long last_waited = 0;
268 	int force_reg = 0;
269 	int sync_pending = 0;
270 	struct blk_plug plug;
271 
272 	/*
273 	 * this function runs all the bios we've collected for
274 	 * a particular device.  We don't want to wander off to
275 	 * another device without first sending all of these down.
276 	 * So, setup a plug here and finish it off before we return
277 	 */
278 	blk_start_plug(&plug);
279 
280 	bdi = blk_get_backing_dev_info(device->bdev);
281 	fs_info = device->dev_root->fs_info;
282 	limit = btrfs_async_submit_limit(fs_info);
283 	limit = limit * 2 / 3;
284 
285 loop:
286 	spin_lock(&device->io_lock);
287 
288 loop_lock:
289 	num_run = 0;
290 
291 	/* take all the bios off the list at once and process them
292 	 * later on (without the lock held).  But, remember the
293 	 * tail and other pointers so the bios can be properly reinserted
294 	 * into the list if we hit congestion
295 	 */
296 	if (!force_reg && device->pending_sync_bios.head) {
297 		pending_bios = &device->pending_sync_bios;
298 		force_reg = 1;
299 	} else {
300 		pending_bios = &device->pending_bios;
301 		force_reg = 0;
302 	}
303 
304 	pending = pending_bios->head;
305 	tail = pending_bios->tail;
306 	WARN_ON(pending && !tail);
307 
308 	/*
309 	 * if pending was null this time around, no bios need processing
310 	 * at all and we can stop.  Otherwise it'll loop back up again
311 	 * and do an additional check so no bios are missed.
312 	 *
313 	 * device->running_pending is used to synchronize with the
314 	 * schedule_bio code.
315 	 */
316 	if (device->pending_sync_bios.head == NULL &&
317 	    device->pending_bios.head == NULL) {
318 		again = 0;
319 		device->running_pending = 0;
320 	} else {
321 		again = 1;
322 		device->running_pending = 1;
323 	}
324 
325 	pending_bios->head = NULL;
326 	pending_bios->tail = NULL;
327 
328 	spin_unlock(&device->io_lock);
329 
330 	while (pending) {
331 
332 		rmb();
333 		/* we want to work on both lists, but do more bios on the
334 		 * sync list than the regular list
335 		 */
336 		if ((num_run > 32 &&
337 		    pending_bios != &device->pending_sync_bios &&
338 		    device->pending_sync_bios.head) ||
339 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
340 		    device->pending_bios.head)) {
341 			spin_lock(&device->io_lock);
342 			requeue_list(pending_bios, pending, tail);
343 			goto loop_lock;
344 		}
345 
346 		cur = pending;
347 		pending = pending->bi_next;
348 		cur->bi_next = NULL;
349 
350 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
351 		    waitqueue_active(&fs_info->async_submit_wait))
352 			wake_up(&fs_info->async_submit_wait);
353 
354 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
355 
356 		/*
357 		 * if we're doing the sync list, record that our
358 		 * plug has some sync requests on it
359 		 *
360 		 * If we're doing the regular list and there are
361 		 * sync requests sitting around, unplug before
362 		 * we add more
363 		 */
364 		if (pending_bios == &device->pending_sync_bios) {
365 			sync_pending = 1;
366 		} else if (sync_pending) {
367 			blk_finish_plug(&plug);
368 			blk_start_plug(&plug);
369 			sync_pending = 0;
370 		}
371 
372 		btrfsic_submit_bio(cur->bi_rw, cur);
373 		num_run++;
374 		batch_run++;
375 		if (need_resched())
376 			cond_resched();
377 
378 		/*
379 		 * we made progress, there is more work to do and the bdi
380 		 * is now congested.  Back off and let other work structs
381 		 * run instead
382 		 */
383 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
384 		    fs_info->fs_devices->open_devices > 1) {
385 			struct io_context *ioc;
386 
387 			ioc = current->io_context;
388 
389 			/*
390 			 * the main goal here is that we don't want to
391 			 * block if we're going to be able to submit
392 			 * more requests without blocking.
393 			 *
394 			 * This code does two great things, it pokes into
395 			 * the elevator code from a filesystem _and_
396 			 * it makes assumptions about how batching works.
397 			 */
398 			if (ioc && ioc->nr_batch_requests > 0 &&
399 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
400 			    (last_waited == 0 ||
401 			     ioc->last_waited == last_waited)) {
402 				/*
403 				 * we want to go through our batch of
404 				 * requests and stop.  So, we copy out
405 				 * the ioc->last_waited time and test
406 				 * against it before looping
407 				 */
408 				last_waited = ioc->last_waited;
409 				if (need_resched())
410 					cond_resched();
411 				continue;
412 			}
413 			spin_lock(&device->io_lock);
414 			requeue_list(pending_bios, pending, tail);
415 			device->running_pending = 1;
416 
417 			spin_unlock(&device->io_lock);
418 			btrfs_queue_work(fs_info->submit_workers,
419 					 &device->work);
420 			goto done;
421 		}
422 		/* unplug every 64 requests just for good measure */
423 		if (batch_run % 64 == 0) {
424 			blk_finish_plug(&plug);
425 			blk_start_plug(&plug);
426 			sync_pending = 0;
427 		}
428 	}
429 
430 	cond_resched();
431 	if (again)
432 		goto loop;
433 
434 	spin_lock(&device->io_lock);
435 	if (device->pending_bios.head || device->pending_sync_bios.head)
436 		goto loop_lock;
437 	spin_unlock(&device->io_lock);
438 
439 done:
440 	blk_finish_plug(&plug);
441 }
442 
443 static void pending_bios_fn(struct btrfs_work *work)
444 {
445 	struct btrfs_device *device;
446 
447 	device = container_of(work, struct btrfs_device, work);
448 	run_scheduled_bios(device);
449 }
450 
451 /*
452  * Add new device to list of registered devices
453  *
454  * Returns:
455  * 1   - first time device is seen
456  * 0   - device already known
457  * < 0 - error
458  */
459 static noinline int device_list_add(const char *path,
460 			   struct btrfs_super_block *disk_super,
461 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
462 {
463 	struct btrfs_device *device;
464 	struct btrfs_fs_devices *fs_devices;
465 	struct rcu_string *name;
466 	int ret = 0;
467 	u64 found_transid = btrfs_super_generation(disk_super);
468 
469 	fs_devices = find_fsid(disk_super->fsid);
470 	if (!fs_devices) {
471 		fs_devices = alloc_fs_devices(disk_super->fsid);
472 		if (IS_ERR(fs_devices))
473 			return PTR_ERR(fs_devices);
474 
475 		list_add(&fs_devices->list, &fs_uuids);
476 		fs_devices->latest_devid = devid;
477 		fs_devices->latest_trans = found_transid;
478 
479 		device = NULL;
480 	} else {
481 		device = __find_device(&fs_devices->devices, devid,
482 				       disk_super->dev_item.uuid);
483 	}
484 	if (!device) {
485 		if (fs_devices->opened)
486 			return -EBUSY;
487 
488 		device = btrfs_alloc_device(NULL, &devid,
489 					    disk_super->dev_item.uuid);
490 		if (IS_ERR(device)) {
491 			/* we can safely leave the fs_devices entry around */
492 			return PTR_ERR(device);
493 		}
494 
495 		name = rcu_string_strdup(path, GFP_NOFS);
496 		if (!name) {
497 			kfree(device);
498 			return -ENOMEM;
499 		}
500 		rcu_assign_pointer(device->name, name);
501 
502 		mutex_lock(&fs_devices->device_list_mutex);
503 		list_add_rcu(&device->dev_list, &fs_devices->devices);
504 		fs_devices->num_devices++;
505 		mutex_unlock(&fs_devices->device_list_mutex);
506 
507 		ret = 1;
508 		device->fs_devices = fs_devices;
509 	} else if (!device->name || strcmp(device->name->str, path)) {
510 		name = rcu_string_strdup(path, GFP_NOFS);
511 		if (!name)
512 			return -ENOMEM;
513 		rcu_string_free(device->name);
514 		rcu_assign_pointer(device->name, name);
515 		if (device->missing) {
516 			fs_devices->missing_devices--;
517 			device->missing = 0;
518 		}
519 	}
520 
521 	if (found_transid > fs_devices->latest_trans) {
522 		fs_devices->latest_devid = devid;
523 		fs_devices->latest_trans = found_transid;
524 	}
525 	*fs_devices_ret = fs_devices;
526 
527 	return ret;
528 }
529 
530 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
531 {
532 	struct btrfs_fs_devices *fs_devices;
533 	struct btrfs_device *device;
534 	struct btrfs_device *orig_dev;
535 
536 	fs_devices = alloc_fs_devices(orig->fsid);
537 	if (IS_ERR(fs_devices))
538 		return fs_devices;
539 
540 	fs_devices->latest_devid = orig->latest_devid;
541 	fs_devices->latest_trans = orig->latest_trans;
542 	fs_devices->total_devices = orig->total_devices;
543 
544 	/* We have held the volume lock, it is safe to get the devices. */
545 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
546 		struct rcu_string *name;
547 
548 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
549 					    orig_dev->uuid);
550 		if (IS_ERR(device))
551 			goto error;
552 
553 		/*
554 		 * This is ok to do without rcu read locked because we hold the
555 		 * uuid mutex so nothing we touch in here is going to disappear.
556 		 */
557 		name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
558 		if (!name) {
559 			kfree(device);
560 			goto error;
561 		}
562 		rcu_assign_pointer(device->name, name);
563 
564 		list_add(&device->dev_list, &fs_devices->devices);
565 		device->fs_devices = fs_devices;
566 		fs_devices->num_devices++;
567 	}
568 	return fs_devices;
569 error:
570 	free_fs_devices(fs_devices);
571 	return ERR_PTR(-ENOMEM);
572 }
573 
574 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
575 			       struct btrfs_fs_devices *fs_devices, int step)
576 {
577 	struct btrfs_device *device, *next;
578 
579 	struct block_device *latest_bdev = NULL;
580 	u64 latest_devid = 0;
581 	u64 latest_transid = 0;
582 
583 	mutex_lock(&uuid_mutex);
584 again:
585 	/* This is the initialized path, it is safe to release the devices. */
586 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
587 		if (device->in_fs_metadata) {
588 			if (!device->is_tgtdev_for_dev_replace &&
589 			    (!latest_transid ||
590 			     device->generation > latest_transid)) {
591 				latest_devid = device->devid;
592 				latest_transid = device->generation;
593 				latest_bdev = device->bdev;
594 			}
595 			continue;
596 		}
597 
598 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
599 			/*
600 			 * In the first step, keep the device which has
601 			 * the correct fsid and the devid that is used
602 			 * for the dev_replace procedure.
603 			 * In the second step, the dev_replace state is
604 			 * read from the device tree and it is known
605 			 * whether the procedure is really active or
606 			 * not, which means whether this device is
607 			 * used or whether it should be removed.
608 			 */
609 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
610 				continue;
611 			}
612 		}
613 		if (device->bdev) {
614 			blkdev_put(device->bdev, device->mode);
615 			device->bdev = NULL;
616 			fs_devices->open_devices--;
617 		}
618 		if (device->writeable) {
619 			list_del_init(&device->dev_alloc_list);
620 			device->writeable = 0;
621 			if (!device->is_tgtdev_for_dev_replace)
622 				fs_devices->rw_devices--;
623 		}
624 		list_del_init(&device->dev_list);
625 		fs_devices->num_devices--;
626 		rcu_string_free(device->name);
627 		kfree(device);
628 	}
629 
630 	if (fs_devices->seed) {
631 		fs_devices = fs_devices->seed;
632 		goto again;
633 	}
634 
635 	fs_devices->latest_bdev = latest_bdev;
636 	fs_devices->latest_devid = latest_devid;
637 	fs_devices->latest_trans = latest_transid;
638 
639 	mutex_unlock(&uuid_mutex);
640 }
641 
642 static void __free_device(struct work_struct *work)
643 {
644 	struct btrfs_device *device;
645 
646 	device = container_of(work, struct btrfs_device, rcu_work);
647 
648 	if (device->bdev)
649 		blkdev_put(device->bdev, device->mode);
650 
651 	rcu_string_free(device->name);
652 	kfree(device);
653 }
654 
655 static void free_device(struct rcu_head *head)
656 {
657 	struct btrfs_device *device;
658 
659 	device = container_of(head, struct btrfs_device, rcu);
660 
661 	INIT_WORK(&device->rcu_work, __free_device);
662 	schedule_work(&device->rcu_work);
663 }
664 
665 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
666 {
667 	struct btrfs_device *device;
668 
669 	if (--fs_devices->opened > 0)
670 		return 0;
671 
672 	mutex_lock(&fs_devices->device_list_mutex);
673 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
674 		struct btrfs_device *new_device;
675 		struct rcu_string *name;
676 
677 		if (device->bdev)
678 			fs_devices->open_devices--;
679 
680 		if (device->writeable &&
681 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
682 			list_del_init(&device->dev_alloc_list);
683 			fs_devices->rw_devices--;
684 		}
685 
686 		if (device->can_discard)
687 			fs_devices->num_can_discard--;
688 		if (device->missing)
689 			fs_devices->missing_devices--;
690 
691 		new_device = btrfs_alloc_device(NULL, &device->devid,
692 						device->uuid);
693 		BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
694 
695 		/* Safe because we are under uuid_mutex */
696 		if (device->name) {
697 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
698 			BUG_ON(!name); /* -ENOMEM */
699 			rcu_assign_pointer(new_device->name, name);
700 		}
701 
702 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
703 		new_device->fs_devices = device->fs_devices;
704 
705 		call_rcu(&device->rcu, free_device);
706 	}
707 	mutex_unlock(&fs_devices->device_list_mutex);
708 
709 	WARN_ON(fs_devices->open_devices);
710 	WARN_ON(fs_devices->rw_devices);
711 	fs_devices->opened = 0;
712 	fs_devices->seeding = 0;
713 
714 	return 0;
715 }
716 
717 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
718 {
719 	struct btrfs_fs_devices *seed_devices = NULL;
720 	int ret;
721 
722 	mutex_lock(&uuid_mutex);
723 	ret = __btrfs_close_devices(fs_devices);
724 	if (!fs_devices->opened) {
725 		seed_devices = fs_devices->seed;
726 		fs_devices->seed = NULL;
727 	}
728 	mutex_unlock(&uuid_mutex);
729 
730 	while (seed_devices) {
731 		fs_devices = seed_devices;
732 		seed_devices = fs_devices->seed;
733 		__btrfs_close_devices(fs_devices);
734 		free_fs_devices(fs_devices);
735 	}
736 	/*
737 	 * Wait for rcu kworkers under __btrfs_close_devices
738 	 * to finish all blkdev_puts so device is really
739 	 * free when umount is done.
740 	 */
741 	rcu_barrier();
742 	return ret;
743 }
744 
745 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
746 				fmode_t flags, void *holder)
747 {
748 	struct request_queue *q;
749 	struct block_device *bdev;
750 	struct list_head *head = &fs_devices->devices;
751 	struct btrfs_device *device;
752 	struct block_device *latest_bdev = NULL;
753 	struct buffer_head *bh;
754 	struct btrfs_super_block *disk_super;
755 	u64 latest_devid = 0;
756 	u64 latest_transid = 0;
757 	u64 devid;
758 	int seeding = 1;
759 	int ret = 0;
760 
761 	flags |= FMODE_EXCL;
762 
763 	list_for_each_entry(device, head, dev_list) {
764 		if (device->bdev)
765 			continue;
766 		if (!device->name)
767 			continue;
768 
769 		/* Just open everything we can; ignore failures here */
770 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
771 					    &bdev, &bh))
772 			continue;
773 
774 		disk_super = (struct btrfs_super_block *)bh->b_data;
775 		devid = btrfs_stack_device_id(&disk_super->dev_item);
776 		if (devid != device->devid)
777 			goto error_brelse;
778 
779 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
780 			   BTRFS_UUID_SIZE))
781 			goto error_brelse;
782 
783 		device->generation = btrfs_super_generation(disk_super);
784 		if (!latest_transid || device->generation > latest_transid) {
785 			latest_devid = devid;
786 			latest_transid = device->generation;
787 			latest_bdev = bdev;
788 		}
789 
790 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
791 			device->writeable = 0;
792 		} else {
793 			device->writeable = !bdev_read_only(bdev);
794 			seeding = 0;
795 		}
796 
797 		q = bdev_get_queue(bdev);
798 		if (blk_queue_discard(q)) {
799 			device->can_discard = 1;
800 			fs_devices->num_can_discard++;
801 		}
802 
803 		device->bdev = bdev;
804 		device->in_fs_metadata = 0;
805 		device->mode = flags;
806 
807 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
808 			fs_devices->rotating = 1;
809 
810 		fs_devices->open_devices++;
811 		if (device->writeable &&
812 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
813 			fs_devices->rw_devices++;
814 			list_add(&device->dev_alloc_list,
815 				 &fs_devices->alloc_list);
816 		}
817 		brelse(bh);
818 		continue;
819 
820 error_brelse:
821 		brelse(bh);
822 		blkdev_put(bdev, flags);
823 		continue;
824 	}
825 	if (fs_devices->open_devices == 0) {
826 		ret = -EINVAL;
827 		goto out;
828 	}
829 	fs_devices->seeding = seeding;
830 	fs_devices->opened = 1;
831 	fs_devices->latest_bdev = latest_bdev;
832 	fs_devices->latest_devid = latest_devid;
833 	fs_devices->latest_trans = latest_transid;
834 	fs_devices->total_rw_bytes = 0;
835 out:
836 	return ret;
837 }
838 
839 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
840 		       fmode_t flags, void *holder)
841 {
842 	int ret;
843 
844 	mutex_lock(&uuid_mutex);
845 	if (fs_devices->opened) {
846 		fs_devices->opened++;
847 		ret = 0;
848 	} else {
849 		ret = __btrfs_open_devices(fs_devices, flags, holder);
850 	}
851 	mutex_unlock(&uuid_mutex);
852 	return ret;
853 }
854 
855 /*
856  * Look for a btrfs signature on a device. This may be called out of the mount path
857  * and we are not allowed to call set_blocksize during the scan. The superblock
858  * is read via pagecache
859  */
860 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
861 			  struct btrfs_fs_devices **fs_devices_ret)
862 {
863 	struct btrfs_super_block *disk_super;
864 	struct block_device *bdev;
865 	struct page *page;
866 	void *p;
867 	int ret = -EINVAL;
868 	u64 devid;
869 	u64 transid;
870 	u64 total_devices;
871 	u64 bytenr;
872 	pgoff_t index;
873 
874 	/*
875 	 * we would like to check all the supers, but that would make
876 	 * a btrfs mount succeed after a mkfs from a different FS.
877 	 * So, we need to add a special mount option to scan for
878 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
879 	 */
880 	bytenr = btrfs_sb_offset(0);
881 	flags |= FMODE_EXCL;
882 	mutex_lock(&uuid_mutex);
883 
884 	bdev = blkdev_get_by_path(path, flags, holder);
885 
886 	if (IS_ERR(bdev)) {
887 		ret = PTR_ERR(bdev);
888 		goto error;
889 	}
890 
891 	/* make sure our super fits in the device */
892 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
893 		goto error_bdev_put;
894 
895 	/* make sure our super fits in the page */
896 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
897 		goto error_bdev_put;
898 
899 	/* make sure our super doesn't straddle pages on disk */
900 	index = bytenr >> PAGE_CACHE_SHIFT;
901 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
902 		goto error_bdev_put;
903 
904 	/* pull in the page with our super */
905 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
906 				   index, GFP_NOFS);
907 
908 	if (IS_ERR_OR_NULL(page))
909 		goto error_bdev_put;
910 
911 	p = kmap(page);
912 
913 	/* align our pointer to the offset of the super block */
914 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
915 
916 	if (btrfs_super_bytenr(disk_super) != bytenr ||
917 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
918 		goto error_unmap;
919 
920 	devid = btrfs_stack_device_id(&disk_super->dev_item);
921 	transid = btrfs_super_generation(disk_super);
922 	total_devices = btrfs_super_num_devices(disk_super);
923 
924 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
925 	if (ret > 0) {
926 		if (disk_super->label[0]) {
927 			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
928 				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
929 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
930 		} else {
931 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
932 		}
933 
934 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
935 		ret = 0;
936 	}
937 	if (!ret && fs_devices_ret)
938 		(*fs_devices_ret)->total_devices = total_devices;
939 
940 error_unmap:
941 	kunmap(page);
942 	page_cache_release(page);
943 
944 error_bdev_put:
945 	blkdev_put(bdev, flags);
946 error:
947 	mutex_unlock(&uuid_mutex);
948 	return ret;
949 }
950 
951 /* helper to account the used device space in the range */
952 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
953 				   u64 end, u64 *length)
954 {
955 	struct btrfs_key key;
956 	struct btrfs_root *root = device->dev_root;
957 	struct btrfs_dev_extent *dev_extent;
958 	struct btrfs_path *path;
959 	u64 extent_end;
960 	int ret;
961 	int slot;
962 	struct extent_buffer *l;
963 
964 	*length = 0;
965 
966 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
967 		return 0;
968 
969 	path = btrfs_alloc_path();
970 	if (!path)
971 		return -ENOMEM;
972 	path->reada = 2;
973 
974 	key.objectid = device->devid;
975 	key.offset = start;
976 	key.type = BTRFS_DEV_EXTENT_KEY;
977 
978 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
979 	if (ret < 0)
980 		goto out;
981 	if (ret > 0) {
982 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
983 		if (ret < 0)
984 			goto out;
985 	}
986 
987 	while (1) {
988 		l = path->nodes[0];
989 		slot = path->slots[0];
990 		if (slot >= btrfs_header_nritems(l)) {
991 			ret = btrfs_next_leaf(root, path);
992 			if (ret == 0)
993 				continue;
994 			if (ret < 0)
995 				goto out;
996 
997 			break;
998 		}
999 		btrfs_item_key_to_cpu(l, &key, slot);
1000 
1001 		if (key.objectid < device->devid)
1002 			goto next;
1003 
1004 		if (key.objectid > device->devid)
1005 			break;
1006 
1007 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1008 			goto next;
1009 
1010 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1011 		extent_end = key.offset + btrfs_dev_extent_length(l,
1012 								  dev_extent);
1013 		if (key.offset <= start && extent_end > end) {
1014 			*length = end - start + 1;
1015 			break;
1016 		} else if (key.offset <= start && extent_end > start)
1017 			*length += extent_end - start;
1018 		else if (key.offset > start && extent_end <= end)
1019 			*length += extent_end - key.offset;
1020 		else if (key.offset > start && key.offset <= end) {
1021 			*length += end - key.offset + 1;
1022 			break;
1023 		} else if (key.offset > end)
1024 			break;
1025 
1026 next:
1027 		path->slots[0]++;
1028 	}
1029 	ret = 0;
1030 out:
1031 	btrfs_free_path(path);
1032 	return ret;
1033 }
1034 
1035 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1036 				   struct btrfs_device *device,
1037 				   u64 *start, u64 len)
1038 {
1039 	struct extent_map *em;
1040 	int ret = 0;
1041 
1042 	list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1043 		struct map_lookup *map;
1044 		int i;
1045 
1046 		map = (struct map_lookup *)em->bdev;
1047 		for (i = 0; i < map->num_stripes; i++) {
1048 			if (map->stripes[i].dev != device)
1049 				continue;
1050 			if (map->stripes[i].physical >= *start + len ||
1051 			    map->stripes[i].physical + em->orig_block_len <=
1052 			    *start)
1053 				continue;
1054 			*start = map->stripes[i].physical +
1055 				em->orig_block_len;
1056 			ret = 1;
1057 		}
1058 	}
1059 
1060 	return ret;
1061 }
1062 
1063 
1064 /*
1065  * find_free_dev_extent - find free space in the specified device
1066  * @device:	the device which we search the free space in
1067  * @num_bytes:	the size of the free space that we need
1068  * @start:	store the start of the free space.
1069  * @len:	the size of the free space. that we find, or the size of the max
1070  * 		free space if we don't find suitable free space
1071  *
1072  * this uses a pretty simple search, the expectation is that it is
1073  * called very infrequently and that a given device has a small number
1074  * of extents
1075  *
1076  * @start is used to store the start of the free space if we find. But if we
1077  * don't find suitable free space, it will be used to store the start position
1078  * of the max free space.
1079  *
1080  * @len is used to store the size of the free space that we find.
1081  * But if we don't find suitable free space, it is used to store the size of
1082  * the max free space.
1083  */
1084 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1085 			 struct btrfs_device *device, u64 num_bytes,
1086 			 u64 *start, u64 *len)
1087 {
1088 	struct btrfs_key key;
1089 	struct btrfs_root *root = device->dev_root;
1090 	struct btrfs_dev_extent *dev_extent;
1091 	struct btrfs_path *path;
1092 	u64 hole_size;
1093 	u64 max_hole_start;
1094 	u64 max_hole_size;
1095 	u64 extent_end;
1096 	u64 search_start;
1097 	u64 search_end = device->total_bytes;
1098 	int ret;
1099 	int slot;
1100 	struct extent_buffer *l;
1101 
1102 	/* FIXME use last free of some kind */
1103 
1104 	/* we don't want to overwrite the superblock on the drive,
1105 	 * so we make sure to start at an offset of at least 1MB
1106 	 */
1107 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1108 
1109 	path = btrfs_alloc_path();
1110 	if (!path)
1111 		return -ENOMEM;
1112 again:
1113 	max_hole_start = search_start;
1114 	max_hole_size = 0;
1115 	hole_size = 0;
1116 
1117 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1118 		ret = -ENOSPC;
1119 		goto out;
1120 	}
1121 
1122 	path->reada = 2;
1123 	path->search_commit_root = 1;
1124 	path->skip_locking = 1;
1125 
1126 	key.objectid = device->devid;
1127 	key.offset = search_start;
1128 	key.type = BTRFS_DEV_EXTENT_KEY;
1129 
1130 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1131 	if (ret < 0)
1132 		goto out;
1133 	if (ret > 0) {
1134 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1135 		if (ret < 0)
1136 			goto out;
1137 	}
1138 
1139 	while (1) {
1140 		l = path->nodes[0];
1141 		slot = path->slots[0];
1142 		if (slot >= btrfs_header_nritems(l)) {
1143 			ret = btrfs_next_leaf(root, path);
1144 			if (ret == 0)
1145 				continue;
1146 			if (ret < 0)
1147 				goto out;
1148 
1149 			break;
1150 		}
1151 		btrfs_item_key_to_cpu(l, &key, slot);
1152 
1153 		if (key.objectid < device->devid)
1154 			goto next;
1155 
1156 		if (key.objectid > device->devid)
1157 			break;
1158 
1159 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1160 			goto next;
1161 
1162 		if (key.offset > search_start) {
1163 			hole_size = key.offset - search_start;
1164 
1165 			/*
1166 			 * Have to check before we set max_hole_start, otherwise
1167 			 * we could end up sending back this offset anyway.
1168 			 */
1169 			if (contains_pending_extent(trans, device,
1170 						    &search_start,
1171 						    hole_size))
1172 				hole_size = 0;
1173 
1174 			if (hole_size > max_hole_size) {
1175 				max_hole_start = search_start;
1176 				max_hole_size = hole_size;
1177 			}
1178 
1179 			/*
1180 			 * If this free space is greater than which we need,
1181 			 * it must be the max free space that we have found
1182 			 * until now, so max_hole_start must point to the start
1183 			 * of this free space and the length of this free space
1184 			 * is stored in max_hole_size. Thus, we return
1185 			 * max_hole_start and max_hole_size and go back to the
1186 			 * caller.
1187 			 */
1188 			if (hole_size >= num_bytes) {
1189 				ret = 0;
1190 				goto out;
1191 			}
1192 		}
1193 
1194 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1195 		extent_end = key.offset + btrfs_dev_extent_length(l,
1196 								  dev_extent);
1197 		if (extent_end > search_start)
1198 			search_start = extent_end;
1199 next:
1200 		path->slots[0]++;
1201 		cond_resched();
1202 	}
1203 
1204 	/*
1205 	 * At this point, search_start should be the end of
1206 	 * allocated dev extents, and when shrinking the device,
1207 	 * search_end may be smaller than search_start.
1208 	 */
1209 	if (search_end > search_start)
1210 		hole_size = search_end - search_start;
1211 
1212 	if (hole_size > max_hole_size) {
1213 		max_hole_start = search_start;
1214 		max_hole_size = hole_size;
1215 	}
1216 
1217 	if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1218 		btrfs_release_path(path);
1219 		goto again;
1220 	}
1221 
1222 	/* See above. */
1223 	if (hole_size < num_bytes)
1224 		ret = -ENOSPC;
1225 	else
1226 		ret = 0;
1227 
1228 out:
1229 	btrfs_free_path(path);
1230 	*start = max_hole_start;
1231 	if (len)
1232 		*len = max_hole_size;
1233 	return ret;
1234 }
1235 
1236 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1237 			  struct btrfs_device *device,
1238 			  u64 start)
1239 {
1240 	int ret;
1241 	struct btrfs_path *path;
1242 	struct btrfs_root *root = device->dev_root;
1243 	struct btrfs_key key;
1244 	struct btrfs_key found_key;
1245 	struct extent_buffer *leaf = NULL;
1246 	struct btrfs_dev_extent *extent = NULL;
1247 
1248 	path = btrfs_alloc_path();
1249 	if (!path)
1250 		return -ENOMEM;
1251 
1252 	key.objectid = device->devid;
1253 	key.offset = start;
1254 	key.type = BTRFS_DEV_EXTENT_KEY;
1255 again:
1256 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1257 	if (ret > 0) {
1258 		ret = btrfs_previous_item(root, path, key.objectid,
1259 					  BTRFS_DEV_EXTENT_KEY);
1260 		if (ret)
1261 			goto out;
1262 		leaf = path->nodes[0];
1263 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1264 		extent = btrfs_item_ptr(leaf, path->slots[0],
1265 					struct btrfs_dev_extent);
1266 		BUG_ON(found_key.offset > start || found_key.offset +
1267 		       btrfs_dev_extent_length(leaf, extent) < start);
1268 		key = found_key;
1269 		btrfs_release_path(path);
1270 		goto again;
1271 	} else if (ret == 0) {
1272 		leaf = path->nodes[0];
1273 		extent = btrfs_item_ptr(leaf, path->slots[0],
1274 					struct btrfs_dev_extent);
1275 	} else {
1276 		btrfs_error(root->fs_info, ret, "Slot search failed");
1277 		goto out;
1278 	}
1279 
1280 	if (device->bytes_used > 0) {
1281 		u64 len = btrfs_dev_extent_length(leaf, extent);
1282 		device->bytes_used -= len;
1283 		spin_lock(&root->fs_info->free_chunk_lock);
1284 		root->fs_info->free_chunk_space += len;
1285 		spin_unlock(&root->fs_info->free_chunk_lock);
1286 	}
1287 	ret = btrfs_del_item(trans, root, path);
1288 	if (ret) {
1289 		btrfs_error(root->fs_info, ret,
1290 			    "Failed to remove dev extent item");
1291 	}
1292 out:
1293 	btrfs_free_path(path);
1294 	return ret;
1295 }
1296 
1297 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1298 				  struct btrfs_device *device,
1299 				  u64 chunk_tree, u64 chunk_objectid,
1300 				  u64 chunk_offset, u64 start, u64 num_bytes)
1301 {
1302 	int ret;
1303 	struct btrfs_path *path;
1304 	struct btrfs_root *root = device->dev_root;
1305 	struct btrfs_dev_extent *extent;
1306 	struct extent_buffer *leaf;
1307 	struct btrfs_key key;
1308 
1309 	WARN_ON(!device->in_fs_metadata);
1310 	WARN_ON(device->is_tgtdev_for_dev_replace);
1311 	path = btrfs_alloc_path();
1312 	if (!path)
1313 		return -ENOMEM;
1314 
1315 	key.objectid = device->devid;
1316 	key.offset = start;
1317 	key.type = BTRFS_DEV_EXTENT_KEY;
1318 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1319 				      sizeof(*extent));
1320 	if (ret)
1321 		goto out;
1322 
1323 	leaf = path->nodes[0];
1324 	extent = btrfs_item_ptr(leaf, path->slots[0],
1325 				struct btrfs_dev_extent);
1326 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1327 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1328 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1329 
1330 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1331 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1332 
1333 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1334 	btrfs_mark_buffer_dirty(leaf);
1335 out:
1336 	btrfs_free_path(path);
1337 	return ret;
1338 }
1339 
1340 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1341 {
1342 	struct extent_map_tree *em_tree;
1343 	struct extent_map *em;
1344 	struct rb_node *n;
1345 	u64 ret = 0;
1346 
1347 	em_tree = &fs_info->mapping_tree.map_tree;
1348 	read_lock(&em_tree->lock);
1349 	n = rb_last(&em_tree->map);
1350 	if (n) {
1351 		em = rb_entry(n, struct extent_map, rb_node);
1352 		ret = em->start + em->len;
1353 	}
1354 	read_unlock(&em_tree->lock);
1355 
1356 	return ret;
1357 }
1358 
1359 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1360 				    u64 *devid_ret)
1361 {
1362 	int ret;
1363 	struct btrfs_key key;
1364 	struct btrfs_key found_key;
1365 	struct btrfs_path *path;
1366 
1367 	path = btrfs_alloc_path();
1368 	if (!path)
1369 		return -ENOMEM;
1370 
1371 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1372 	key.type = BTRFS_DEV_ITEM_KEY;
1373 	key.offset = (u64)-1;
1374 
1375 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1376 	if (ret < 0)
1377 		goto error;
1378 
1379 	BUG_ON(ret == 0); /* Corruption */
1380 
1381 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1382 				  BTRFS_DEV_ITEMS_OBJECTID,
1383 				  BTRFS_DEV_ITEM_KEY);
1384 	if (ret) {
1385 		*devid_ret = 1;
1386 	} else {
1387 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1388 				      path->slots[0]);
1389 		*devid_ret = found_key.offset + 1;
1390 	}
1391 	ret = 0;
1392 error:
1393 	btrfs_free_path(path);
1394 	return ret;
1395 }
1396 
1397 /*
1398  * the device information is stored in the chunk root
1399  * the btrfs_device struct should be fully filled in
1400  */
1401 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1402 			    struct btrfs_root *root,
1403 			    struct btrfs_device *device)
1404 {
1405 	int ret;
1406 	struct btrfs_path *path;
1407 	struct btrfs_dev_item *dev_item;
1408 	struct extent_buffer *leaf;
1409 	struct btrfs_key key;
1410 	unsigned long ptr;
1411 
1412 	root = root->fs_info->chunk_root;
1413 
1414 	path = btrfs_alloc_path();
1415 	if (!path)
1416 		return -ENOMEM;
1417 
1418 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1419 	key.type = BTRFS_DEV_ITEM_KEY;
1420 	key.offset = device->devid;
1421 
1422 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1423 				      sizeof(*dev_item));
1424 	if (ret)
1425 		goto out;
1426 
1427 	leaf = path->nodes[0];
1428 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1429 
1430 	btrfs_set_device_id(leaf, dev_item, device->devid);
1431 	btrfs_set_device_generation(leaf, dev_item, 0);
1432 	btrfs_set_device_type(leaf, dev_item, device->type);
1433 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1434 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1435 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1436 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1437 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1438 	btrfs_set_device_group(leaf, dev_item, 0);
1439 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1440 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1441 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1442 
1443 	ptr = btrfs_device_uuid(dev_item);
1444 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1445 	ptr = btrfs_device_fsid(dev_item);
1446 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1447 	btrfs_mark_buffer_dirty(leaf);
1448 
1449 	ret = 0;
1450 out:
1451 	btrfs_free_path(path);
1452 	return ret;
1453 }
1454 
1455 /*
1456  * Function to update ctime/mtime for a given device path.
1457  * Mainly used for ctime/mtime based probe like libblkid.
1458  */
1459 static void update_dev_time(char *path_name)
1460 {
1461 	struct file *filp;
1462 
1463 	filp = filp_open(path_name, O_RDWR, 0);
1464 	if (!filp)
1465 		return;
1466 	file_update_time(filp);
1467 	filp_close(filp, NULL);
1468 	return;
1469 }
1470 
1471 static int btrfs_rm_dev_item(struct btrfs_root *root,
1472 			     struct btrfs_device *device)
1473 {
1474 	int ret;
1475 	struct btrfs_path *path;
1476 	struct btrfs_key key;
1477 	struct btrfs_trans_handle *trans;
1478 
1479 	root = root->fs_info->chunk_root;
1480 
1481 	path = btrfs_alloc_path();
1482 	if (!path)
1483 		return -ENOMEM;
1484 
1485 	trans = btrfs_start_transaction(root, 0);
1486 	if (IS_ERR(trans)) {
1487 		btrfs_free_path(path);
1488 		return PTR_ERR(trans);
1489 	}
1490 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1491 	key.type = BTRFS_DEV_ITEM_KEY;
1492 	key.offset = device->devid;
1493 	lock_chunks(root);
1494 
1495 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1496 	if (ret < 0)
1497 		goto out;
1498 
1499 	if (ret > 0) {
1500 		ret = -ENOENT;
1501 		goto out;
1502 	}
1503 
1504 	ret = btrfs_del_item(trans, root, path);
1505 	if (ret)
1506 		goto out;
1507 out:
1508 	btrfs_free_path(path);
1509 	unlock_chunks(root);
1510 	btrfs_commit_transaction(trans, root);
1511 	return ret;
1512 }
1513 
1514 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1515 {
1516 	struct btrfs_device *device;
1517 	struct btrfs_device *next_device;
1518 	struct block_device *bdev;
1519 	struct buffer_head *bh = NULL;
1520 	struct btrfs_super_block *disk_super;
1521 	struct btrfs_fs_devices *cur_devices;
1522 	u64 all_avail;
1523 	u64 devid;
1524 	u64 num_devices;
1525 	u8 *dev_uuid;
1526 	unsigned seq;
1527 	int ret = 0;
1528 	bool clear_super = false;
1529 
1530 	mutex_lock(&uuid_mutex);
1531 
1532 	do {
1533 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1534 
1535 		all_avail = root->fs_info->avail_data_alloc_bits |
1536 			    root->fs_info->avail_system_alloc_bits |
1537 			    root->fs_info->avail_metadata_alloc_bits;
1538 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1539 
1540 	num_devices = root->fs_info->fs_devices->num_devices;
1541 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1542 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1543 		WARN_ON(num_devices < 1);
1544 		num_devices--;
1545 	}
1546 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1547 
1548 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1549 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1550 		goto out;
1551 	}
1552 
1553 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1554 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1555 		goto out;
1556 	}
1557 
1558 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1559 	    root->fs_info->fs_devices->rw_devices <= 2) {
1560 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1561 		goto out;
1562 	}
1563 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1564 	    root->fs_info->fs_devices->rw_devices <= 3) {
1565 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1566 		goto out;
1567 	}
1568 
1569 	if (strcmp(device_path, "missing") == 0) {
1570 		struct list_head *devices;
1571 		struct btrfs_device *tmp;
1572 
1573 		device = NULL;
1574 		devices = &root->fs_info->fs_devices->devices;
1575 		/*
1576 		 * It is safe to read the devices since the volume_mutex
1577 		 * is held.
1578 		 */
1579 		list_for_each_entry(tmp, devices, dev_list) {
1580 			if (tmp->in_fs_metadata &&
1581 			    !tmp->is_tgtdev_for_dev_replace &&
1582 			    !tmp->bdev) {
1583 				device = tmp;
1584 				break;
1585 			}
1586 		}
1587 		bdev = NULL;
1588 		bh = NULL;
1589 		disk_super = NULL;
1590 		if (!device) {
1591 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1592 			goto out;
1593 		}
1594 	} else {
1595 		ret = btrfs_get_bdev_and_sb(device_path,
1596 					    FMODE_WRITE | FMODE_EXCL,
1597 					    root->fs_info->bdev_holder, 0,
1598 					    &bdev, &bh);
1599 		if (ret)
1600 			goto out;
1601 		disk_super = (struct btrfs_super_block *)bh->b_data;
1602 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1603 		dev_uuid = disk_super->dev_item.uuid;
1604 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1605 					   disk_super->fsid);
1606 		if (!device) {
1607 			ret = -ENOENT;
1608 			goto error_brelse;
1609 		}
1610 	}
1611 
1612 	if (device->is_tgtdev_for_dev_replace) {
1613 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1614 		goto error_brelse;
1615 	}
1616 
1617 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1618 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1619 		goto error_brelse;
1620 	}
1621 
1622 	if (device->writeable) {
1623 		lock_chunks(root);
1624 		list_del_init(&device->dev_alloc_list);
1625 		unlock_chunks(root);
1626 		root->fs_info->fs_devices->rw_devices--;
1627 		clear_super = true;
1628 	}
1629 
1630 	mutex_unlock(&uuid_mutex);
1631 	ret = btrfs_shrink_device(device, 0);
1632 	mutex_lock(&uuid_mutex);
1633 	if (ret)
1634 		goto error_undo;
1635 
1636 	/*
1637 	 * TODO: the superblock still includes this device in its num_devices
1638 	 * counter although write_all_supers() is not locked out. This
1639 	 * could give a filesystem state which requires a degraded mount.
1640 	 */
1641 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1642 	if (ret)
1643 		goto error_undo;
1644 
1645 	spin_lock(&root->fs_info->free_chunk_lock);
1646 	root->fs_info->free_chunk_space = device->total_bytes -
1647 		device->bytes_used;
1648 	spin_unlock(&root->fs_info->free_chunk_lock);
1649 
1650 	device->in_fs_metadata = 0;
1651 	btrfs_scrub_cancel_dev(root->fs_info, device);
1652 
1653 	/*
1654 	 * the device list mutex makes sure that we don't change
1655 	 * the device list while someone else is writing out all
1656 	 * the device supers. Whoever is writing all supers, should
1657 	 * lock the device list mutex before getting the number of
1658 	 * devices in the super block (super_copy). Conversely,
1659 	 * whoever updates the number of devices in the super block
1660 	 * (super_copy) should hold the device list mutex.
1661 	 */
1662 
1663 	cur_devices = device->fs_devices;
1664 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1665 	list_del_rcu(&device->dev_list);
1666 
1667 	device->fs_devices->num_devices--;
1668 	device->fs_devices->total_devices--;
1669 
1670 	if (device->missing)
1671 		root->fs_info->fs_devices->missing_devices--;
1672 
1673 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1674 				 struct btrfs_device, dev_list);
1675 	if (device->bdev == root->fs_info->sb->s_bdev)
1676 		root->fs_info->sb->s_bdev = next_device->bdev;
1677 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1678 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1679 
1680 	if (device->bdev)
1681 		device->fs_devices->open_devices--;
1682 
1683 	call_rcu(&device->rcu, free_device);
1684 
1685 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1686 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1687 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1688 
1689 	if (cur_devices->open_devices == 0) {
1690 		struct btrfs_fs_devices *fs_devices;
1691 		fs_devices = root->fs_info->fs_devices;
1692 		while (fs_devices) {
1693 			if (fs_devices->seed == cur_devices) {
1694 				fs_devices->seed = cur_devices->seed;
1695 				break;
1696 			}
1697 			fs_devices = fs_devices->seed;
1698 		}
1699 		cur_devices->seed = NULL;
1700 		lock_chunks(root);
1701 		__btrfs_close_devices(cur_devices);
1702 		unlock_chunks(root);
1703 		free_fs_devices(cur_devices);
1704 	}
1705 
1706 	root->fs_info->num_tolerated_disk_barrier_failures =
1707 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1708 
1709 	/*
1710 	 * at this point, the device is zero sized.  We want to
1711 	 * remove it from the devices list and zero out the old super
1712 	 */
1713 	if (clear_super && disk_super) {
1714 		u64 bytenr;
1715 		int i;
1716 
1717 		/* make sure this device isn't detected as part of
1718 		 * the FS anymore
1719 		 */
1720 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1721 		set_buffer_dirty(bh);
1722 		sync_dirty_buffer(bh);
1723 
1724 		/* clear the mirror copies of super block on the disk
1725 		 * being removed, 0th copy is been taken care above and
1726 		 * the below would take of the rest
1727 		 */
1728 		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1729 			bytenr = btrfs_sb_offset(i);
1730 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1731 					i_size_read(bdev->bd_inode))
1732 				break;
1733 
1734 			brelse(bh);
1735 			bh = __bread(bdev, bytenr / 4096,
1736 					BTRFS_SUPER_INFO_SIZE);
1737 			if (!bh)
1738 				continue;
1739 
1740 			disk_super = (struct btrfs_super_block *)bh->b_data;
1741 
1742 			if (btrfs_super_bytenr(disk_super) != bytenr ||
1743 				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1744 				continue;
1745 			}
1746 			memset(&disk_super->magic, 0,
1747 						sizeof(disk_super->magic));
1748 			set_buffer_dirty(bh);
1749 			sync_dirty_buffer(bh);
1750 		}
1751 	}
1752 
1753 	ret = 0;
1754 
1755 	if (bdev) {
1756 		/* Notify udev that device has changed */
1757 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1758 
1759 		/* Update ctime/mtime for device path for libblkid */
1760 		update_dev_time(device_path);
1761 	}
1762 
1763 error_brelse:
1764 	brelse(bh);
1765 	if (bdev)
1766 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1767 out:
1768 	mutex_unlock(&uuid_mutex);
1769 	return ret;
1770 error_undo:
1771 	if (device->writeable) {
1772 		lock_chunks(root);
1773 		list_add(&device->dev_alloc_list,
1774 			 &root->fs_info->fs_devices->alloc_list);
1775 		unlock_chunks(root);
1776 		root->fs_info->fs_devices->rw_devices++;
1777 	}
1778 	goto error_brelse;
1779 }
1780 
1781 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1782 				 struct btrfs_device *srcdev)
1783 {
1784 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1785 
1786 	list_del_rcu(&srcdev->dev_list);
1787 	list_del_rcu(&srcdev->dev_alloc_list);
1788 	fs_info->fs_devices->num_devices--;
1789 	if (srcdev->missing) {
1790 		fs_info->fs_devices->missing_devices--;
1791 		fs_info->fs_devices->rw_devices++;
1792 	}
1793 	if (srcdev->can_discard)
1794 		fs_info->fs_devices->num_can_discard--;
1795 	if (srcdev->bdev) {
1796 		fs_info->fs_devices->open_devices--;
1797 
1798 		/* zero out the old super */
1799 		btrfs_scratch_superblock(srcdev);
1800 	}
1801 
1802 	call_rcu(&srcdev->rcu, free_device);
1803 }
1804 
1805 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1806 				      struct btrfs_device *tgtdev)
1807 {
1808 	struct btrfs_device *next_device;
1809 
1810 	WARN_ON(!tgtdev);
1811 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1812 	if (tgtdev->bdev) {
1813 		btrfs_scratch_superblock(tgtdev);
1814 		fs_info->fs_devices->open_devices--;
1815 	}
1816 	fs_info->fs_devices->num_devices--;
1817 	if (tgtdev->can_discard)
1818 		fs_info->fs_devices->num_can_discard++;
1819 
1820 	next_device = list_entry(fs_info->fs_devices->devices.next,
1821 				 struct btrfs_device, dev_list);
1822 	if (tgtdev->bdev == fs_info->sb->s_bdev)
1823 		fs_info->sb->s_bdev = next_device->bdev;
1824 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1825 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1826 	list_del_rcu(&tgtdev->dev_list);
1827 
1828 	call_rcu(&tgtdev->rcu, free_device);
1829 
1830 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1831 }
1832 
1833 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1834 				     struct btrfs_device **device)
1835 {
1836 	int ret = 0;
1837 	struct btrfs_super_block *disk_super;
1838 	u64 devid;
1839 	u8 *dev_uuid;
1840 	struct block_device *bdev;
1841 	struct buffer_head *bh;
1842 
1843 	*device = NULL;
1844 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1845 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
1846 	if (ret)
1847 		return ret;
1848 	disk_super = (struct btrfs_super_block *)bh->b_data;
1849 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1850 	dev_uuid = disk_super->dev_item.uuid;
1851 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1852 				    disk_super->fsid);
1853 	brelse(bh);
1854 	if (!*device)
1855 		ret = -ENOENT;
1856 	blkdev_put(bdev, FMODE_READ);
1857 	return ret;
1858 }
1859 
1860 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1861 					 char *device_path,
1862 					 struct btrfs_device **device)
1863 {
1864 	*device = NULL;
1865 	if (strcmp(device_path, "missing") == 0) {
1866 		struct list_head *devices;
1867 		struct btrfs_device *tmp;
1868 
1869 		devices = &root->fs_info->fs_devices->devices;
1870 		/*
1871 		 * It is safe to read the devices since the volume_mutex
1872 		 * is held by the caller.
1873 		 */
1874 		list_for_each_entry(tmp, devices, dev_list) {
1875 			if (tmp->in_fs_metadata && !tmp->bdev) {
1876 				*device = tmp;
1877 				break;
1878 			}
1879 		}
1880 
1881 		if (!*device) {
1882 			btrfs_err(root->fs_info, "no missing device found");
1883 			return -ENOENT;
1884 		}
1885 
1886 		return 0;
1887 	} else {
1888 		return btrfs_find_device_by_path(root, device_path, device);
1889 	}
1890 }
1891 
1892 /*
1893  * does all the dirty work required for changing file system's UUID.
1894  */
1895 static int btrfs_prepare_sprout(struct btrfs_root *root)
1896 {
1897 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1898 	struct btrfs_fs_devices *old_devices;
1899 	struct btrfs_fs_devices *seed_devices;
1900 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1901 	struct btrfs_device *device;
1902 	u64 super_flags;
1903 
1904 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1905 	if (!fs_devices->seeding)
1906 		return -EINVAL;
1907 
1908 	seed_devices = __alloc_fs_devices();
1909 	if (IS_ERR(seed_devices))
1910 		return PTR_ERR(seed_devices);
1911 
1912 	old_devices = clone_fs_devices(fs_devices);
1913 	if (IS_ERR(old_devices)) {
1914 		kfree(seed_devices);
1915 		return PTR_ERR(old_devices);
1916 	}
1917 
1918 	list_add(&old_devices->list, &fs_uuids);
1919 
1920 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1921 	seed_devices->opened = 1;
1922 	INIT_LIST_HEAD(&seed_devices->devices);
1923 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1924 	mutex_init(&seed_devices->device_list_mutex);
1925 
1926 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1927 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1928 			      synchronize_rcu);
1929 
1930 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1931 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1932 		device->fs_devices = seed_devices;
1933 	}
1934 
1935 	fs_devices->seeding = 0;
1936 	fs_devices->num_devices = 0;
1937 	fs_devices->open_devices = 0;
1938 	fs_devices->seed = seed_devices;
1939 
1940 	generate_random_uuid(fs_devices->fsid);
1941 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1942 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1943 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1944 
1945 	super_flags = btrfs_super_flags(disk_super) &
1946 		      ~BTRFS_SUPER_FLAG_SEEDING;
1947 	btrfs_set_super_flags(disk_super, super_flags);
1948 
1949 	return 0;
1950 }
1951 
1952 /*
1953  * strore the expected generation for seed devices in device items.
1954  */
1955 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1956 			       struct btrfs_root *root)
1957 {
1958 	struct btrfs_path *path;
1959 	struct extent_buffer *leaf;
1960 	struct btrfs_dev_item *dev_item;
1961 	struct btrfs_device *device;
1962 	struct btrfs_key key;
1963 	u8 fs_uuid[BTRFS_UUID_SIZE];
1964 	u8 dev_uuid[BTRFS_UUID_SIZE];
1965 	u64 devid;
1966 	int ret;
1967 
1968 	path = btrfs_alloc_path();
1969 	if (!path)
1970 		return -ENOMEM;
1971 
1972 	root = root->fs_info->chunk_root;
1973 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1974 	key.offset = 0;
1975 	key.type = BTRFS_DEV_ITEM_KEY;
1976 
1977 	while (1) {
1978 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1979 		if (ret < 0)
1980 			goto error;
1981 
1982 		leaf = path->nodes[0];
1983 next_slot:
1984 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1985 			ret = btrfs_next_leaf(root, path);
1986 			if (ret > 0)
1987 				break;
1988 			if (ret < 0)
1989 				goto error;
1990 			leaf = path->nodes[0];
1991 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1992 			btrfs_release_path(path);
1993 			continue;
1994 		}
1995 
1996 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1997 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1998 		    key.type != BTRFS_DEV_ITEM_KEY)
1999 			break;
2000 
2001 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2002 					  struct btrfs_dev_item);
2003 		devid = btrfs_device_id(leaf, dev_item);
2004 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2005 				   BTRFS_UUID_SIZE);
2006 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2007 				   BTRFS_UUID_SIZE);
2008 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2009 					   fs_uuid);
2010 		BUG_ON(!device); /* Logic error */
2011 
2012 		if (device->fs_devices->seeding) {
2013 			btrfs_set_device_generation(leaf, dev_item,
2014 						    device->generation);
2015 			btrfs_mark_buffer_dirty(leaf);
2016 		}
2017 
2018 		path->slots[0]++;
2019 		goto next_slot;
2020 	}
2021 	ret = 0;
2022 error:
2023 	btrfs_free_path(path);
2024 	return ret;
2025 }
2026 
2027 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2028 {
2029 	struct request_queue *q;
2030 	struct btrfs_trans_handle *trans;
2031 	struct btrfs_device *device;
2032 	struct block_device *bdev;
2033 	struct list_head *devices;
2034 	struct super_block *sb = root->fs_info->sb;
2035 	struct rcu_string *name;
2036 	u64 total_bytes;
2037 	int seeding_dev = 0;
2038 	int ret = 0;
2039 
2040 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2041 		return -EROFS;
2042 
2043 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2044 				  root->fs_info->bdev_holder);
2045 	if (IS_ERR(bdev))
2046 		return PTR_ERR(bdev);
2047 
2048 	if (root->fs_info->fs_devices->seeding) {
2049 		seeding_dev = 1;
2050 		down_write(&sb->s_umount);
2051 		mutex_lock(&uuid_mutex);
2052 	}
2053 
2054 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2055 
2056 	devices = &root->fs_info->fs_devices->devices;
2057 
2058 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2059 	list_for_each_entry(device, devices, dev_list) {
2060 		if (device->bdev == bdev) {
2061 			ret = -EEXIST;
2062 			mutex_unlock(
2063 				&root->fs_info->fs_devices->device_list_mutex);
2064 			goto error;
2065 		}
2066 	}
2067 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2068 
2069 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2070 	if (IS_ERR(device)) {
2071 		/* we can safely leave the fs_devices entry around */
2072 		ret = PTR_ERR(device);
2073 		goto error;
2074 	}
2075 
2076 	name = rcu_string_strdup(device_path, GFP_NOFS);
2077 	if (!name) {
2078 		kfree(device);
2079 		ret = -ENOMEM;
2080 		goto error;
2081 	}
2082 	rcu_assign_pointer(device->name, name);
2083 
2084 	trans = btrfs_start_transaction(root, 0);
2085 	if (IS_ERR(trans)) {
2086 		rcu_string_free(device->name);
2087 		kfree(device);
2088 		ret = PTR_ERR(trans);
2089 		goto error;
2090 	}
2091 
2092 	lock_chunks(root);
2093 
2094 	q = bdev_get_queue(bdev);
2095 	if (blk_queue_discard(q))
2096 		device->can_discard = 1;
2097 	device->writeable = 1;
2098 	device->generation = trans->transid;
2099 	device->io_width = root->sectorsize;
2100 	device->io_align = root->sectorsize;
2101 	device->sector_size = root->sectorsize;
2102 	device->total_bytes = i_size_read(bdev->bd_inode);
2103 	device->disk_total_bytes = device->total_bytes;
2104 	device->dev_root = root->fs_info->dev_root;
2105 	device->bdev = bdev;
2106 	device->in_fs_metadata = 1;
2107 	device->is_tgtdev_for_dev_replace = 0;
2108 	device->mode = FMODE_EXCL;
2109 	device->dev_stats_valid = 1;
2110 	set_blocksize(device->bdev, 4096);
2111 
2112 	if (seeding_dev) {
2113 		sb->s_flags &= ~MS_RDONLY;
2114 		ret = btrfs_prepare_sprout(root);
2115 		BUG_ON(ret); /* -ENOMEM */
2116 	}
2117 
2118 	device->fs_devices = root->fs_info->fs_devices;
2119 
2120 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2121 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2122 	list_add(&device->dev_alloc_list,
2123 		 &root->fs_info->fs_devices->alloc_list);
2124 	root->fs_info->fs_devices->num_devices++;
2125 	root->fs_info->fs_devices->open_devices++;
2126 	root->fs_info->fs_devices->rw_devices++;
2127 	root->fs_info->fs_devices->total_devices++;
2128 	if (device->can_discard)
2129 		root->fs_info->fs_devices->num_can_discard++;
2130 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2131 
2132 	spin_lock(&root->fs_info->free_chunk_lock);
2133 	root->fs_info->free_chunk_space += device->total_bytes;
2134 	spin_unlock(&root->fs_info->free_chunk_lock);
2135 
2136 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2137 		root->fs_info->fs_devices->rotating = 1;
2138 
2139 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2140 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2141 				    total_bytes + device->total_bytes);
2142 
2143 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2144 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2145 				    total_bytes + 1);
2146 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2147 
2148 	if (seeding_dev) {
2149 		ret = init_first_rw_device(trans, root, device);
2150 		if (ret) {
2151 			btrfs_abort_transaction(trans, root, ret);
2152 			goto error_trans;
2153 		}
2154 		ret = btrfs_finish_sprout(trans, root);
2155 		if (ret) {
2156 			btrfs_abort_transaction(trans, root, ret);
2157 			goto error_trans;
2158 		}
2159 	} else {
2160 		ret = btrfs_add_device(trans, root, device);
2161 		if (ret) {
2162 			btrfs_abort_transaction(trans, root, ret);
2163 			goto error_trans;
2164 		}
2165 	}
2166 
2167 	/*
2168 	 * we've got more storage, clear any full flags on the space
2169 	 * infos
2170 	 */
2171 	btrfs_clear_space_info_full(root->fs_info);
2172 
2173 	unlock_chunks(root);
2174 	root->fs_info->num_tolerated_disk_barrier_failures =
2175 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2176 	ret = btrfs_commit_transaction(trans, root);
2177 
2178 	if (seeding_dev) {
2179 		mutex_unlock(&uuid_mutex);
2180 		up_write(&sb->s_umount);
2181 
2182 		if (ret) /* transaction commit */
2183 			return ret;
2184 
2185 		ret = btrfs_relocate_sys_chunks(root);
2186 		if (ret < 0)
2187 			btrfs_error(root->fs_info, ret,
2188 				    "Failed to relocate sys chunks after "
2189 				    "device initialization. This can be fixed "
2190 				    "using the \"btrfs balance\" command.");
2191 		trans = btrfs_attach_transaction(root);
2192 		if (IS_ERR(trans)) {
2193 			if (PTR_ERR(trans) == -ENOENT)
2194 				return 0;
2195 			return PTR_ERR(trans);
2196 		}
2197 		ret = btrfs_commit_transaction(trans, root);
2198 	}
2199 
2200 	/* Update ctime/mtime for libblkid */
2201 	update_dev_time(device_path);
2202 	return ret;
2203 
2204 error_trans:
2205 	unlock_chunks(root);
2206 	btrfs_end_transaction(trans, root);
2207 	rcu_string_free(device->name);
2208 	kfree(device);
2209 error:
2210 	blkdev_put(bdev, FMODE_EXCL);
2211 	if (seeding_dev) {
2212 		mutex_unlock(&uuid_mutex);
2213 		up_write(&sb->s_umount);
2214 	}
2215 	return ret;
2216 }
2217 
2218 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2219 				  struct btrfs_device **device_out)
2220 {
2221 	struct request_queue *q;
2222 	struct btrfs_device *device;
2223 	struct block_device *bdev;
2224 	struct btrfs_fs_info *fs_info = root->fs_info;
2225 	struct list_head *devices;
2226 	struct rcu_string *name;
2227 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2228 	int ret = 0;
2229 
2230 	*device_out = NULL;
2231 	if (fs_info->fs_devices->seeding)
2232 		return -EINVAL;
2233 
2234 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2235 				  fs_info->bdev_holder);
2236 	if (IS_ERR(bdev))
2237 		return PTR_ERR(bdev);
2238 
2239 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2240 
2241 	devices = &fs_info->fs_devices->devices;
2242 	list_for_each_entry(device, devices, dev_list) {
2243 		if (device->bdev == bdev) {
2244 			ret = -EEXIST;
2245 			goto error;
2246 		}
2247 	}
2248 
2249 	device = btrfs_alloc_device(NULL, &devid, NULL);
2250 	if (IS_ERR(device)) {
2251 		ret = PTR_ERR(device);
2252 		goto error;
2253 	}
2254 
2255 	name = rcu_string_strdup(device_path, GFP_NOFS);
2256 	if (!name) {
2257 		kfree(device);
2258 		ret = -ENOMEM;
2259 		goto error;
2260 	}
2261 	rcu_assign_pointer(device->name, name);
2262 
2263 	q = bdev_get_queue(bdev);
2264 	if (blk_queue_discard(q))
2265 		device->can_discard = 1;
2266 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2267 	device->writeable = 1;
2268 	device->generation = 0;
2269 	device->io_width = root->sectorsize;
2270 	device->io_align = root->sectorsize;
2271 	device->sector_size = root->sectorsize;
2272 	device->total_bytes = i_size_read(bdev->bd_inode);
2273 	device->disk_total_bytes = device->total_bytes;
2274 	device->dev_root = fs_info->dev_root;
2275 	device->bdev = bdev;
2276 	device->in_fs_metadata = 1;
2277 	device->is_tgtdev_for_dev_replace = 1;
2278 	device->mode = FMODE_EXCL;
2279 	device->dev_stats_valid = 1;
2280 	set_blocksize(device->bdev, 4096);
2281 	device->fs_devices = fs_info->fs_devices;
2282 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2283 	fs_info->fs_devices->num_devices++;
2284 	fs_info->fs_devices->open_devices++;
2285 	if (device->can_discard)
2286 		fs_info->fs_devices->num_can_discard++;
2287 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2288 
2289 	*device_out = device;
2290 	return ret;
2291 
2292 error:
2293 	blkdev_put(bdev, FMODE_EXCL);
2294 	return ret;
2295 }
2296 
2297 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2298 					      struct btrfs_device *tgtdev)
2299 {
2300 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2301 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2302 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2303 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2304 	tgtdev->dev_root = fs_info->dev_root;
2305 	tgtdev->in_fs_metadata = 1;
2306 }
2307 
2308 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2309 					struct btrfs_device *device)
2310 {
2311 	int ret;
2312 	struct btrfs_path *path;
2313 	struct btrfs_root *root;
2314 	struct btrfs_dev_item *dev_item;
2315 	struct extent_buffer *leaf;
2316 	struct btrfs_key key;
2317 
2318 	root = device->dev_root->fs_info->chunk_root;
2319 
2320 	path = btrfs_alloc_path();
2321 	if (!path)
2322 		return -ENOMEM;
2323 
2324 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2325 	key.type = BTRFS_DEV_ITEM_KEY;
2326 	key.offset = device->devid;
2327 
2328 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2329 	if (ret < 0)
2330 		goto out;
2331 
2332 	if (ret > 0) {
2333 		ret = -ENOENT;
2334 		goto out;
2335 	}
2336 
2337 	leaf = path->nodes[0];
2338 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2339 
2340 	btrfs_set_device_id(leaf, dev_item, device->devid);
2341 	btrfs_set_device_type(leaf, dev_item, device->type);
2342 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2343 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2344 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2345 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2346 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2347 	btrfs_mark_buffer_dirty(leaf);
2348 
2349 out:
2350 	btrfs_free_path(path);
2351 	return ret;
2352 }
2353 
2354 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2355 		      struct btrfs_device *device, u64 new_size)
2356 {
2357 	struct btrfs_super_block *super_copy =
2358 		device->dev_root->fs_info->super_copy;
2359 	u64 old_total = btrfs_super_total_bytes(super_copy);
2360 	u64 diff = new_size - device->total_bytes;
2361 
2362 	if (!device->writeable)
2363 		return -EACCES;
2364 	if (new_size <= device->total_bytes ||
2365 	    device->is_tgtdev_for_dev_replace)
2366 		return -EINVAL;
2367 
2368 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2369 	device->fs_devices->total_rw_bytes += diff;
2370 
2371 	device->total_bytes = new_size;
2372 	device->disk_total_bytes = new_size;
2373 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2374 
2375 	return btrfs_update_device(trans, device);
2376 }
2377 
2378 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2379 		      struct btrfs_device *device, u64 new_size)
2380 {
2381 	int ret;
2382 	lock_chunks(device->dev_root);
2383 	ret = __btrfs_grow_device(trans, device, new_size);
2384 	unlock_chunks(device->dev_root);
2385 	return ret;
2386 }
2387 
2388 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2389 			    struct btrfs_root *root,
2390 			    u64 chunk_tree, u64 chunk_objectid,
2391 			    u64 chunk_offset)
2392 {
2393 	int ret;
2394 	struct btrfs_path *path;
2395 	struct btrfs_key key;
2396 
2397 	root = root->fs_info->chunk_root;
2398 	path = btrfs_alloc_path();
2399 	if (!path)
2400 		return -ENOMEM;
2401 
2402 	key.objectid = chunk_objectid;
2403 	key.offset = chunk_offset;
2404 	key.type = BTRFS_CHUNK_ITEM_KEY;
2405 
2406 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2407 	if (ret < 0)
2408 		goto out;
2409 	else if (ret > 0) { /* Logic error or corruption */
2410 		btrfs_error(root->fs_info, -ENOENT,
2411 			    "Failed lookup while freeing chunk.");
2412 		ret = -ENOENT;
2413 		goto out;
2414 	}
2415 
2416 	ret = btrfs_del_item(trans, root, path);
2417 	if (ret < 0)
2418 		btrfs_error(root->fs_info, ret,
2419 			    "Failed to delete chunk item.");
2420 out:
2421 	btrfs_free_path(path);
2422 	return ret;
2423 }
2424 
2425 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2426 			chunk_offset)
2427 {
2428 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2429 	struct btrfs_disk_key *disk_key;
2430 	struct btrfs_chunk *chunk;
2431 	u8 *ptr;
2432 	int ret = 0;
2433 	u32 num_stripes;
2434 	u32 array_size;
2435 	u32 len = 0;
2436 	u32 cur;
2437 	struct btrfs_key key;
2438 
2439 	array_size = btrfs_super_sys_array_size(super_copy);
2440 
2441 	ptr = super_copy->sys_chunk_array;
2442 	cur = 0;
2443 
2444 	while (cur < array_size) {
2445 		disk_key = (struct btrfs_disk_key *)ptr;
2446 		btrfs_disk_key_to_cpu(&key, disk_key);
2447 
2448 		len = sizeof(*disk_key);
2449 
2450 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2451 			chunk = (struct btrfs_chunk *)(ptr + len);
2452 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2453 			len += btrfs_chunk_item_size(num_stripes);
2454 		} else {
2455 			ret = -EIO;
2456 			break;
2457 		}
2458 		if (key.objectid == chunk_objectid &&
2459 		    key.offset == chunk_offset) {
2460 			memmove(ptr, ptr + len, array_size - (cur + len));
2461 			array_size -= len;
2462 			btrfs_set_super_sys_array_size(super_copy, array_size);
2463 		} else {
2464 			ptr += len;
2465 			cur += len;
2466 		}
2467 	}
2468 	return ret;
2469 }
2470 
2471 static int btrfs_relocate_chunk(struct btrfs_root *root,
2472 			 u64 chunk_tree, u64 chunk_objectid,
2473 			 u64 chunk_offset)
2474 {
2475 	struct extent_map_tree *em_tree;
2476 	struct btrfs_root *extent_root;
2477 	struct btrfs_trans_handle *trans;
2478 	struct extent_map *em;
2479 	struct map_lookup *map;
2480 	int ret;
2481 	int i;
2482 
2483 	root = root->fs_info->chunk_root;
2484 	extent_root = root->fs_info->extent_root;
2485 	em_tree = &root->fs_info->mapping_tree.map_tree;
2486 
2487 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2488 	if (ret)
2489 		return -ENOSPC;
2490 
2491 	/* step one, relocate all the extents inside this chunk */
2492 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2493 	if (ret)
2494 		return ret;
2495 
2496 	trans = btrfs_start_transaction(root, 0);
2497 	if (IS_ERR(trans)) {
2498 		ret = PTR_ERR(trans);
2499 		btrfs_std_error(root->fs_info, ret);
2500 		return ret;
2501 	}
2502 
2503 	lock_chunks(root);
2504 
2505 	/*
2506 	 * step two, delete the device extents and the
2507 	 * chunk tree entries
2508 	 */
2509 	read_lock(&em_tree->lock);
2510 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2511 	read_unlock(&em_tree->lock);
2512 
2513 	BUG_ON(!em || em->start > chunk_offset ||
2514 	       em->start + em->len < chunk_offset);
2515 	map = (struct map_lookup *)em->bdev;
2516 
2517 	for (i = 0; i < map->num_stripes; i++) {
2518 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2519 					    map->stripes[i].physical);
2520 		BUG_ON(ret);
2521 
2522 		if (map->stripes[i].dev) {
2523 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2524 			BUG_ON(ret);
2525 		}
2526 	}
2527 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2528 			       chunk_offset);
2529 
2530 	BUG_ON(ret);
2531 
2532 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2533 
2534 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2535 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2536 		BUG_ON(ret);
2537 	}
2538 
2539 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2540 	BUG_ON(ret);
2541 
2542 	write_lock(&em_tree->lock);
2543 	remove_extent_mapping(em_tree, em);
2544 	write_unlock(&em_tree->lock);
2545 
2546 	kfree(map);
2547 	em->bdev = NULL;
2548 
2549 	/* once for the tree */
2550 	free_extent_map(em);
2551 	/* once for us */
2552 	free_extent_map(em);
2553 
2554 	unlock_chunks(root);
2555 	btrfs_end_transaction(trans, root);
2556 	return 0;
2557 }
2558 
2559 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2560 {
2561 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2562 	struct btrfs_path *path;
2563 	struct extent_buffer *leaf;
2564 	struct btrfs_chunk *chunk;
2565 	struct btrfs_key key;
2566 	struct btrfs_key found_key;
2567 	u64 chunk_tree = chunk_root->root_key.objectid;
2568 	u64 chunk_type;
2569 	bool retried = false;
2570 	int failed = 0;
2571 	int ret;
2572 
2573 	path = btrfs_alloc_path();
2574 	if (!path)
2575 		return -ENOMEM;
2576 
2577 again:
2578 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2579 	key.offset = (u64)-1;
2580 	key.type = BTRFS_CHUNK_ITEM_KEY;
2581 
2582 	while (1) {
2583 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2584 		if (ret < 0)
2585 			goto error;
2586 		BUG_ON(ret == 0); /* Corruption */
2587 
2588 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2589 					  key.type);
2590 		if (ret < 0)
2591 			goto error;
2592 		if (ret > 0)
2593 			break;
2594 
2595 		leaf = path->nodes[0];
2596 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2597 
2598 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2599 				       struct btrfs_chunk);
2600 		chunk_type = btrfs_chunk_type(leaf, chunk);
2601 		btrfs_release_path(path);
2602 
2603 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2604 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2605 						   found_key.objectid,
2606 						   found_key.offset);
2607 			if (ret == -ENOSPC)
2608 				failed++;
2609 			else if (ret)
2610 				BUG();
2611 		}
2612 
2613 		if (found_key.offset == 0)
2614 			break;
2615 		key.offset = found_key.offset - 1;
2616 	}
2617 	ret = 0;
2618 	if (failed && !retried) {
2619 		failed = 0;
2620 		retried = true;
2621 		goto again;
2622 	} else if (WARN_ON(failed && retried)) {
2623 		ret = -ENOSPC;
2624 	}
2625 error:
2626 	btrfs_free_path(path);
2627 	return ret;
2628 }
2629 
2630 static int insert_balance_item(struct btrfs_root *root,
2631 			       struct btrfs_balance_control *bctl)
2632 {
2633 	struct btrfs_trans_handle *trans;
2634 	struct btrfs_balance_item *item;
2635 	struct btrfs_disk_balance_args disk_bargs;
2636 	struct btrfs_path *path;
2637 	struct extent_buffer *leaf;
2638 	struct btrfs_key key;
2639 	int ret, err;
2640 
2641 	path = btrfs_alloc_path();
2642 	if (!path)
2643 		return -ENOMEM;
2644 
2645 	trans = btrfs_start_transaction(root, 0);
2646 	if (IS_ERR(trans)) {
2647 		btrfs_free_path(path);
2648 		return PTR_ERR(trans);
2649 	}
2650 
2651 	key.objectid = BTRFS_BALANCE_OBJECTID;
2652 	key.type = BTRFS_BALANCE_ITEM_KEY;
2653 	key.offset = 0;
2654 
2655 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2656 				      sizeof(*item));
2657 	if (ret)
2658 		goto out;
2659 
2660 	leaf = path->nodes[0];
2661 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2662 
2663 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2664 
2665 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2666 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2667 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2668 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2669 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2670 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2671 
2672 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2673 
2674 	btrfs_mark_buffer_dirty(leaf);
2675 out:
2676 	btrfs_free_path(path);
2677 	err = btrfs_commit_transaction(trans, root);
2678 	if (err && !ret)
2679 		ret = err;
2680 	return ret;
2681 }
2682 
2683 static int del_balance_item(struct btrfs_root *root)
2684 {
2685 	struct btrfs_trans_handle *trans;
2686 	struct btrfs_path *path;
2687 	struct btrfs_key key;
2688 	int ret, err;
2689 
2690 	path = btrfs_alloc_path();
2691 	if (!path)
2692 		return -ENOMEM;
2693 
2694 	trans = btrfs_start_transaction(root, 0);
2695 	if (IS_ERR(trans)) {
2696 		btrfs_free_path(path);
2697 		return PTR_ERR(trans);
2698 	}
2699 
2700 	key.objectid = BTRFS_BALANCE_OBJECTID;
2701 	key.type = BTRFS_BALANCE_ITEM_KEY;
2702 	key.offset = 0;
2703 
2704 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2705 	if (ret < 0)
2706 		goto out;
2707 	if (ret > 0) {
2708 		ret = -ENOENT;
2709 		goto out;
2710 	}
2711 
2712 	ret = btrfs_del_item(trans, root, path);
2713 out:
2714 	btrfs_free_path(path);
2715 	err = btrfs_commit_transaction(trans, root);
2716 	if (err && !ret)
2717 		ret = err;
2718 	return ret;
2719 }
2720 
2721 /*
2722  * This is a heuristic used to reduce the number of chunks balanced on
2723  * resume after balance was interrupted.
2724  */
2725 static void update_balance_args(struct btrfs_balance_control *bctl)
2726 {
2727 	/*
2728 	 * Turn on soft mode for chunk types that were being converted.
2729 	 */
2730 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2731 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2732 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2733 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2734 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2735 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2736 
2737 	/*
2738 	 * Turn on usage filter if is not already used.  The idea is
2739 	 * that chunks that we have already balanced should be
2740 	 * reasonably full.  Don't do it for chunks that are being
2741 	 * converted - that will keep us from relocating unconverted
2742 	 * (albeit full) chunks.
2743 	 */
2744 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2745 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2746 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2747 		bctl->data.usage = 90;
2748 	}
2749 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2750 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2751 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2752 		bctl->sys.usage = 90;
2753 	}
2754 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2755 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2756 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2757 		bctl->meta.usage = 90;
2758 	}
2759 }
2760 
2761 /*
2762  * Should be called with both balance and volume mutexes held to
2763  * serialize other volume operations (add_dev/rm_dev/resize) with
2764  * restriper.  Same goes for unset_balance_control.
2765  */
2766 static void set_balance_control(struct btrfs_balance_control *bctl)
2767 {
2768 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2769 
2770 	BUG_ON(fs_info->balance_ctl);
2771 
2772 	spin_lock(&fs_info->balance_lock);
2773 	fs_info->balance_ctl = bctl;
2774 	spin_unlock(&fs_info->balance_lock);
2775 }
2776 
2777 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2778 {
2779 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2780 
2781 	BUG_ON(!fs_info->balance_ctl);
2782 
2783 	spin_lock(&fs_info->balance_lock);
2784 	fs_info->balance_ctl = NULL;
2785 	spin_unlock(&fs_info->balance_lock);
2786 
2787 	kfree(bctl);
2788 }
2789 
2790 /*
2791  * Balance filters.  Return 1 if chunk should be filtered out
2792  * (should not be balanced).
2793  */
2794 static int chunk_profiles_filter(u64 chunk_type,
2795 				 struct btrfs_balance_args *bargs)
2796 {
2797 	chunk_type = chunk_to_extended(chunk_type) &
2798 				BTRFS_EXTENDED_PROFILE_MASK;
2799 
2800 	if (bargs->profiles & chunk_type)
2801 		return 0;
2802 
2803 	return 1;
2804 }
2805 
2806 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2807 			      struct btrfs_balance_args *bargs)
2808 {
2809 	struct btrfs_block_group_cache *cache;
2810 	u64 chunk_used, user_thresh;
2811 	int ret = 1;
2812 
2813 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2814 	chunk_used = btrfs_block_group_used(&cache->item);
2815 
2816 	if (bargs->usage == 0)
2817 		user_thresh = 1;
2818 	else if (bargs->usage > 100)
2819 		user_thresh = cache->key.offset;
2820 	else
2821 		user_thresh = div_factor_fine(cache->key.offset,
2822 					      bargs->usage);
2823 
2824 	if (chunk_used < user_thresh)
2825 		ret = 0;
2826 
2827 	btrfs_put_block_group(cache);
2828 	return ret;
2829 }
2830 
2831 static int chunk_devid_filter(struct extent_buffer *leaf,
2832 			      struct btrfs_chunk *chunk,
2833 			      struct btrfs_balance_args *bargs)
2834 {
2835 	struct btrfs_stripe *stripe;
2836 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2837 	int i;
2838 
2839 	for (i = 0; i < num_stripes; i++) {
2840 		stripe = btrfs_stripe_nr(chunk, i);
2841 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2842 			return 0;
2843 	}
2844 
2845 	return 1;
2846 }
2847 
2848 /* [pstart, pend) */
2849 static int chunk_drange_filter(struct extent_buffer *leaf,
2850 			       struct btrfs_chunk *chunk,
2851 			       u64 chunk_offset,
2852 			       struct btrfs_balance_args *bargs)
2853 {
2854 	struct btrfs_stripe *stripe;
2855 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2856 	u64 stripe_offset;
2857 	u64 stripe_length;
2858 	int factor;
2859 	int i;
2860 
2861 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2862 		return 0;
2863 
2864 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2865 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2866 		factor = num_stripes / 2;
2867 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2868 		factor = num_stripes - 1;
2869 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2870 		factor = num_stripes - 2;
2871 	} else {
2872 		factor = num_stripes;
2873 	}
2874 
2875 	for (i = 0; i < num_stripes; i++) {
2876 		stripe = btrfs_stripe_nr(chunk, i);
2877 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2878 			continue;
2879 
2880 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
2881 		stripe_length = btrfs_chunk_length(leaf, chunk);
2882 		do_div(stripe_length, factor);
2883 
2884 		if (stripe_offset < bargs->pend &&
2885 		    stripe_offset + stripe_length > bargs->pstart)
2886 			return 0;
2887 	}
2888 
2889 	return 1;
2890 }
2891 
2892 /* [vstart, vend) */
2893 static int chunk_vrange_filter(struct extent_buffer *leaf,
2894 			       struct btrfs_chunk *chunk,
2895 			       u64 chunk_offset,
2896 			       struct btrfs_balance_args *bargs)
2897 {
2898 	if (chunk_offset < bargs->vend &&
2899 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2900 		/* at least part of the chunk is inside this vrange */
2901 		return 0;
2902 
2903 	return 1;
2904 }
2905 
2906 static int chunk_soft_convert_filter(u64 chunk_type,
2907 				     struct btrfs_balance_args *bargs)
2908 {
2909 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2910 		return 0;
2911 
2912 	chunk_type = chunk_to_extended(chunk_type) &
2913 				BTRFS_EXTENDED_PROFILE_MASK;
2914 
2915 	if (bargs->target == chunk_type)
2916 		return 1;
2917 
2918 	return 0;
2919 }
2920 
2921 static int should_balance_chunk(struct btrfs_root *root,
2922 				struct extent_buffer *leaf,
2923 				struct btrfs_chunk *chunk, u64 chunk_offset)
2924 {
2925 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2926 	struct btrfs_balance_args *bargs = NULL;
2927 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2928 
2929 	/* type filter */
2930 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2931 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2932 		return 0;
2933 	}
2934 
2935 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2936 		bargs = &bctl->data;
2937 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2938 		bargs = &bctl->sys;
2939 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2940 		bargs = &bctl->meta;
2941 
2942 	/* profiles filter */
2943 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2944 	    chunk_profiles_filter(chunk_type, bargs)) {
2945 		return 0;
2946 	}
2947 
2948 	/* usage filter */
2949 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2950 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2951 		return 0;
2952 	}
2953 
2954 	/* devid filter */
2955 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2956 	    chunk_devid_filter(leaf, chunk, bargs)) {
2957 		return 0;
2958 	}
2959 
2960 	/* drange filter, makes sense only with devid filter */
2961 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2962 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2963 		return 0;
2964 	}
2965 
2966 	/* vrange filter */
2967 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2968 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2969 		return 0;
2970 	}
2971 
2972 	/* soft profile changing mode */
2973 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2974 	    chunk_soft_convert_filter(chunk_type, bargs)) {
2975 		return 0;
2976 	}
2977 
2978 	/*
2979 	 * limited by count, must be the last filter
2980 	 */
2981 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
2982 		if (bargs->limit == 0)
2983 			return 0;
2984 		else
2985 			bargs->limit--;
2986 	}
2987 
2988 	return 1;
2989 }
2990 
2991 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2992 {
2993 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2994 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2995 	struct btrfs_root *dev_root = fs_info->dev_root;
2996 	struct list_head *devices;
2997 	struct btrfs_device *device;
2998 	u64 old_size;
2999 	u64 size_to_free;
3000 	struct btrfs_chunk *chunk;
3001 	struct btrfs_path *path;
3002 	struct btrfs_key key;
3003 	struct btrfs_key found_key;
3004 	struct btrfs_trans_handle *trans;
3005 	struct extent_buffer *leaf;
3006 	int slot;
3007 	int ret;
3008 	int enospc_errors = 0;
3009 	bool counting = true;
3010 	u64 limit_data = bctl->data.limit;
3011 	u64 limit_meta = bctl->meta.limit;
3012 	u64 limit_sys = bctl->sys.limit;
3013 
3014 	/* step one make some room on all the devices */
3015 	devices = &fs_info->fs_devices->devices;
3016 	list_for_each_entry(device, devices, dev_list) {
3017 		old_size = device->total_bytes;
3018 		size_to_free = div_factor(old_size, 1);
3019 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3020 		if (!device->writeable ||
3021 		    device->total_bytes - device->bytes_used > size_to_free ||
3022 		    device->is_tgtdev_for_dev_replace)
3023 			continue;
3024 
3025 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3026 		if (ret == -ENOSPC)
3027 			break;
3028 		BUG_ON(ret);
3029 
3030 		trans = btrfs_start_transaction(dev_root, 0);
3031 		BUG_ON(IS_ERR(trans));
3032 
3033 		ret = btrfs_grow_device(trans, device, old_size);
3034 		BUG_ON(ret);
3035 
3036 		btrfs_end_transaction(trans, dev_root);
3037 	}
3038 
3039 	/* step two, relocate all the chunks */
3040 	path = btrfs_alloc_path();
3041 	if (!path) {
3042 		ret = -ENOMEM;
3043 		goto error;
3044 	}
3045 
3046 	/* zero out stat counters */
3047 	spin_lock(&fs_info->balance_lock);
3048 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3049 	spin_unlock(&fs_info->balance_lock);
3050 again:
3051 	if (!counting) {
3052 		bctl->data.limit = limit_data;
3053 		bctl->meta.limit = limit_meta;
3054 		bctl->sys.limit = limit_sys;
3055 	}
3056 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3057 	key.offset = (u64)-1;
3058 	key.type = BTRFS_CHUNK_ITEM_KEY;
3059 
3060 	while (1) {
3061 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3062 		    atomic_read(&fs_info->balance_cancel_req)) {
3063 			ret = -ECANCELED;
3064 			goto error;
3065 		}
3066 
3067 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3068 		if (ret < 0)
3069 			goto error;
3070 
3071 		/*
3072 		 * this shouldn't happen, it means the last relocate
3073 		 * failed
3074 		 */
3075 		if (ret == 0)
3076 			BUG(); /* FIXME break ? */
3077 
3078 		ret = btrfs_previous_item(chunk_root, path, 0,
3079 					  BTRFS_CHUNK_ITEM_KEY);
3080 		if (ret) {
3081 			ret = 0;
3082 			break;
3083 		}
3084 
3085 		leaf = path->nodes[0];
3086 		slot = path->slots[0];
3087 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3088 
3089 		if (found_key.objectid != key.objectid)
3090 			break;
3091 
3092 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3093 
3094 		if (!counting) {
3095 			spin_lock(&fs_info->balance_lock);
3096 			bctl->stat.considered++;
3097 			spin_unlock(&fs_info->balance_lock);
3098 		}
3099 
3100 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3101 					   found_key.offset);
3102 		btrfs_release_path(path);
3103 		if (!ret)
3104 			goto loop;
3105 
3106 		if (counting) {
3107 			spin_lock(&fs_info->balance_lock);
3108 			bctl->stat.expected++;
3109 			spin_unlock(&fs_info->balance_lock);
3110 			goto loop;
3111 		}
3112 
3113 		ret = btrfs_relocate_chunk(chunk_root,
3114 					   chunk_root->root_key.objectid,
3115 					   found_key.objectid,
3116 					   found_key.offset);
3117 		if (ret && ret != -ENOSPC)
3118 			goto error;
3119 		if (ret == -ENOSPC) {
3120 			enospc_errors++;
3121 		} else {
3122 			spin_lock(&fs_info->balance_lock);
3123 			bctl->stat.completed++;
3124 			spin_unlock(&fs_info->balance_lock);
3125 		}
3126 loop:
3127 		if (found_key.offset == 0)
3128 			break;
3129 		key.offset = found_key.offset - 1;
3130 	}
3131 
3132 	if (counting) {
3133 		btrfs_release_path(path);
3134 		counting = false;
3135 		goto again;
3136 	}
3137 error:
3138 	btrfs_free_path(path);
3139 	if (enospc_errors) {
3140 		btrfs_info(fs_info, "%d enospc errors during balance",
3141 		       enospc_errors);
3142 		if (!ret)
3143 			ret = -ENOSPC;
3144 	}
3145 
3146 	return ret;
3147 }
3148 
3149 /**
3150  * alloc_profile_is_valid - see if a given profile is valid and reduced
3151  * @flags: profile to validate
3152  * @extended: if true @flags is treated as an extended profile
3153  */
3154 static int alloc_profile_is_valid(u64 flags, int extended)
3155 {
3156 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3157 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3158 
3159 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3160 
3161 	/* 1) check that all other bits are zeroed */
3162 	if (flags & ~mask)
3163 		return 0;
3164 
3165 	/* 2) see if profile is reduced */
3166 	if (flags == 0)
3167 		return !extended; /* "0" is valid for usual profiles */
3168 
3169 	/* true if exactly one bit set */
3170 	return (flags & (flags - 1)) == 0;
3171 }
3172 
3173 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3174 {
3175 	/* cancel requested || normal exit path */
3176 	return atomic_read(&fs_info->balance_cancel_req) ||
3177 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3178 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3179 }
3180 
3181 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3182 {
3183 	int ret;
3184 
3185 	unset_balance_control(fs_info);
3186 	ret = del_balance_item(fs_info->tree_root);
3187 	if (ret)
3188 		btrfs_std_error(fs_info, ret);
3189 
3190 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3191 }
3192 
3193 /*
3194  * Should be called with both balance and volume mutexes held
3195  */
3196 int btrfs_balance(struct btrfs_balance_control *bctl,
3197 		  struct btrfs_ioctl_balance_args *bargs)
3198 {
3199 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3200 	u64 allowed;
3201 	int mixed = 0;
3202 	int ret;
3203 	u64 num_devices;
3204 	unsigned seq;
3205 
3206 	if (btrfs_fs_closing(fs_info) ||
3207 	    atomic_read(&fs_info->balance_pause_req) ||
3208 	    atomic_read(&fs_info->balance_cancel_req)) {
3209 		ret = -EINVAL;
3210 		goto out;
3211 	}
3212 
3213 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3214 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3215 		mixed = 1;
3216 
3217 	/*
3218 	 * In case of mixed groups both data and meta should be picked,
3219 	 * and identical options should be given for both of them.
3220 	 */
3221 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3222 	if (mixed && (bctl->flags & allowed)) {
3223 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3224 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3225 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3226 			btrfs_err(fs_info, "with mixed groups data and "
3227 				   "metadata balance options must be the same");
3228 			ret = -EINVAL;
3229 			goto out;
3230 		}
3231 	}
3232 
3233 	num_devices = fs_info->fs_devices->num_devices;
3234 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3235 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3236 		BUG_ON(num_devices < 1);
3237 		num_devices--;
3238 	}
3239 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3240 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3241 	if (num_devices == 1)
3242 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3243 	else if (num_devices > 1)
3244 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3245 	if (num_devices > 2)
3246 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3247 	if (num_devices > 3)
3248 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3249 			    BTRFS_BLOCK_GROUP_RAID6);
3250 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3251 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
3252 	     (bctl->data.target & ~allowed))) {
3253 		btrfs_err(fs_info, "unable to start balance with target "
3254 			   "data profile %llu",
3255 		       bctl->data.target);
3256 		ret = -EINVAL;
3257 		goto out;
3258 	}
3259 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3260 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3261 	     (bctl->meta.target & ~allowed))) {
3262 		btrfs_err(fs_info,
3263 			   "unable to start balance with target metadata profile %llu",
3264 		       bctl->meta.target);
3265 		ret = -EINVAL;
3266 		goto out;
3267 	}
3268 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3269 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3270 	     (bctl->sys.target & ~allowed))) {
3271 		btrfs_err(fs_info,
3272 			   "unable to start balance with target system profile %llu",
3273 		       bctl->sys.target);
3274 		ret = -EINVAL;
3275 		goto out;
3276 	}
3277 
3278 	/* allow dup'ed data chunks only in mixed mode */
3279 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3280 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3281 		btrfs_err(fs_info, "dup for data is not allowed");
3282 		ret = -EINVAL;
3283 		goto out;
3284 	}
3285 
3286 	/* allow to reduce meta or sys integrity only if force set */
3287 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3288 			BTRFS_BLOCK_GROUP_RAID10 |
3289 			BTRFS_BLOCK_GROUP_RAID5 |
3290 			BTRFS_BLOCK_GROUP_RAID6;
3291 	do {
3292 		seq = read_seqbegin(&fs_info->profiles_lock);
3293 
3294 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3295 		     (fs_info->avail_system_alloc_bits & allowed) &&
3296 		     !(bctl->sys.target & allowed)) ||
3297 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3298 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3299 		     !(bctl->meta.target & allowed))) {
3300 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3301 				btrfs_info(fs_info, "force reducing metadata integrity");
3302 			} else {
3303 				btrfs_err(fs_info, "balance will reduce metadata "
3304 					   "integrity, use force if you want this");
3305 				ret = -EINVAL;
3306 				goto out;
3307 			}
3308 		}
3309 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3310 
3311 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3312 		int num_tolerated_disk_barrier_failures;
3313 		u64 target = bctl->sys.target;
3314 
3315 		num_tolerated_disk_barrier_failures =
3316 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3317 		if (num_tolerated_disk_barrier_failures > 0 &&
3318 		    (target &
3319 		     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3320 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3321 			num_tolerated_disk_barrier_failures = 0;
3322 		else if (num_tolerated_disk_barrier_failures > 1 &&
3323 			 (target &
3324 			  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3325 			num_tolerated_disk_barrier_failures = 1;
3326 
3327 		fs_info->num_tolerated_disk_barrier_failures =
3328 			num_tolerated_disk_barrier_failures;
3329 	}
3330 
3331 	ret = insert_balance_item(fs_info->tree_root, bctl);
3332 	if (ret && ret != -EEXIST)
3333 		goto out;
3334 
3335 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3336 		BUG_ON(ret == -EEXIST);
3337 		set_balance_control(bctl);
3338 	} else {
3339 		BUG_ON(ret != -EEXIST);
3340 		spin_lock(&fs_info->balance_lock);
3341 		update_balance_args(bctl);
3342 		spin_unlock(&fs_info->balance_lock);
3343 	}
3344 
3345 	atomic_inc(&fs_info->balance_running);
3346 	mutex_unlock(&fs_info->balance_mutex);
3347 
3348 	ret = __btrfs_balance(fs_info);
3349 
3350 	mutex_lock(&fs_info->balance_mutex);
3351 	atomic_dec(&fs_info->balance_running);
3352 
3353 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3354 		fs_info->num_tolerated_disk_barrier_failures =
3355 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3356 	}
3357 
3358 	if (bargs) {
3359 		memset(bargs, 0, sizeof(*bargs));
3360 		update_ioctl_balance_args(fs_info, 0, bargs);
3361 	}
3362 
3363 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3364 	    balance_need_close(fs_info)) {
3365 		__cancel_balance(fs_info);
3366 	}
3367 
3368 	wake_up(&fs_info->balance_wait_q);
3369 
3370 	return ret;
3371 out:
3372 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3373 		__cancel_balance(fs_info);
3374 	else {
3375 		kfree(bctl);
3376 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3377 	}
3378 	return ret;
3379 }
3380 
3381 static int balance_kthread(void *data)
3382 {
3383 	struct btrfs_fs_info *fs_info = data;
3384 	int ret = 0;
3385 
3386 	mutex_lock(&fs_info->volume_mutex);
3387 	mutex_lock(&fs_info->balance_mutex);
3388 
3389 	if (fs_info->balance_ctl) {
3390 		btrfs_info(fs_info, "continuing balance");
3391 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3392 	}
3393 
3394 	mutex_unlock(&fs_info->balance_mutex);
3395 	mutex_unlock(&fs_info->volume_mutex);
3396 
3397 	return ret;
3398 }
3399 
3400 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3401 {
3402 	struct task_struct *tsk;
3403 
3404 	spin_lock(&fs_info->balance_lock);
3405 	if (!fs_info->balance_ctl) {
3406 		spin_unlock(&fs_info->balance_lock);
3407 		return 0;
3408 	}
3409 	spin_unlock(&fs_info->balance_lock);
3410 
3411 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3412 		btrfs_info(fs_info, "force skipping balance");
3413 		return 0;
3414 	}
3415 
3416 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3417 	return PTR_ERR_OR_ZERO(tsk);
3418 }
3419 
3420 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3421 {
3422 	struct btrfs_balance_control *bctl;
3423 	struct btrfs_balance_item *item;
3424 	struct btrfs_disk_balance_args disk_bargs;
3425 	struct btrfs_path *path;
3426 	struct extent_buffer *leaf;
3427 	struct btrfs_key key;
3428 	int ret;
3429 
3430 	path = btrfs_alloc_path();
3431 	if (!path)
3432 		return -ENOMEM;
3433 
3434 	key.objectid = BTRFS_BALANCE_OBJECTID;
3435 	key.type = BTRFS_BALANCE_ITEM_KEY;
3436 	key.offset = 0;
3437 
3438 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3439 	if (ret < 0)
3440 		goto out;
3441 	if (ret > 0) { /* ret = -ENOENT; */
3442 		ret = 0;
3443 		goto out;
3444 	}
3445 
3446 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3447 	if (!bctl) {
3448 		ret = -ENOMEM;
3449 		goto out;
3450 	}
3451 
3452 	leaf = path->nodes[0];
3453 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3454 
3455 	bctl->fs_info = fs_info;
3456 	bctl->flags = btrfs_balance_flags(leaf, item);
3457 	bctl->flags |= BTRFS_BALANCE_RESUME;
3458 
3459 	btrfs_balance_data(leaf, item, &disk_bargs);
3460 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3461 	btrfs_balance_meta(leaf, item, &disk_bargs);
3462 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3463 	btrfs_balance_sys(leaf, item, &disk_bargs);
3464 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3465 
3466 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3467 
3468 	mutex_lock(&fs_info->volume_mutex);
3469 	mutex_lock(&fs_info->balance_mutex);
3470 
3471 	set_balance_control(bctl);
3472 
3473 	mutex_unlock(&fs_info->balance_mutex);
3474 	mutex_unlock(&fs_info->volume_mutex);
3475 out:
3476 	btrfs_free_path(path);
3477 	return ret;
3478 }
3479 
3480 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3481 {
3482 	int ret = 0;
3483 
3484 	mutex_lock(&fs_info->balance_mutex);
3485 	if (!fs_info->balance_ctl) {
3486 		mutex_unlock(&fs_info->balance_mutex);
3487 		return -ENOTCONN;
3488 	}
3489 
3490 	if (atomic_read(&fs_info->balance_running)) {
3491 		atomic_inc(&fs_info->balance_pause_req);
3492 		mutex_unlock(&fs_info->balance_mutex);
3493 
3494 		wait_event(fs_info->balance_wait_q,
3495 			   atomic_read(&fs_info->balance_running) == 0);
3496 
3497 		mutex_lock(&fs_info->balance_mutex);
3498 		/* we are good with balance_ctl ripped off from under us */
3499 		BUG_ON(atomic_read(&fs_info->balance_running));
3500 		atomic_dec(&fs_info->balance_pause_req);
3501 	} else {
3502 		ret = -ENOTCONN;
3503 	}
3504 
3505 	mutex_unlock(&fs_info->balance_mutex);
3506 	return ret;
3507 }
3508 
3509 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3510 {
3511 	if (fs_info->sb->s_flags & MS_RDONLY)
3512 		return -EROFS;
3513 
3514 	mutex_lock(&fs_info->balance_mutex);
3515 	if (!fs_info->balance_ctl) {
3516 		mutex_unlock(&fs_info->balance_mutex);
3517 		return -ENOTCONN;
3518 	}
3519 
3520 	atomic_inc(&fs_info->balance_cancel_req);
3521 	/*
3522 	 * if we are running just wait and return, balance item is
3523 	 * deleted in btrfs_balance in this case
3524 	 */
3525 	if (atomic_read(&fs_info->balance_running)) {
3526 		mutex_unlock(&fs_info->balance_mutex);
3527 		wait_event(fs_info->balance_wait_q,
3528 			   atomic_read(&fs_info->balance_running) == 0);
3529 		mutex_lock(&fs_info->balance_mutex);
3530 	} else {
3531 		/* __cancel_balance needs volume_mutex */
3532 		mutex_unlock(&fs_info->balance_mutex);
3533 		mutex_lock(&fs_info->volume_mutex);
3534 		mutex_lock(&fs_info->balance_mutex);
3535 
3536 		if (fs_info->balance_ctl)
3537 			__cancel_balance(fs_info);
3538 
3539 		mutex_unlock(&fs_info->volume_mutex);
3540 	}
3541 
3542 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3543 	atomic_dec(&fs_info->balance_cancel_req);
3544 	mutex_unlock(&fs_info->balance_mutex);
3545 	return 0;
3546 }
3547 
3548 static int btrfs_uuid_scan_kthread(void *data)
3549 {
3550 	struct btrfs_fs_info *fs_info = data;
3551 	struct btrfs_root *root = fs_info->tree_root;
3552 	struct btrfs_key key;
3553 	struct btrfs_key max_key;
3554 	struct btrfs_path *path = NULL;
3555 	int ret = 0;
3556 	struct extent_buffer *eb;
3557 	int slot;
3558 	struct btrfs_root_item root_item;
3559 	u32 item_size;
3560 	struct btrfs_trans_handle *trans = NULL;
3561 
3562 	path = btrfs_alloc_path();
3563 	if (!path) {
3564 		ret = -ENOMEM;
3565 		goto out;
3566 	}
3567 
3568 	key.objectid = 0;
3569 	key.type = BTRFS_ROOT_ITEM_KEY;
3570 	key.offset = 0;
3571 
3572 	max_key.objectid = (u64)-1;
3573 	max_key.type = BTRFS_ROOT_ITEM_KEY;
3574 	max_key.offset = (u64)-1;
3575 
3576 	path->keep_locks = 1;
3577 
3578 	while (1) {
3579 		ret = btrfs_search_forward(root, &key, path, 0);
3580 		if (ret) {
3581 			if (ret > 0)
3582 				ret = 0;
3583 			break;
3584 		}
3585 
3586 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
3587 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3588 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3589 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3590 			goto skip;
3591 
3592 		eb = path->nodes[0];
3593 		slot = path->slots[0];
3594 		item_size = btrfs_item_size_nr(eb, slot);
3595 		if (item_size < sizeof(root_item))
3596 			goto skip;
3597 
3598 		read_extent_buffer(eb, &root_item,
3599 				   btrfs_item_ptr_offset(eb, slot),
3600 				   (int)sizeof(root_item));
3601 		if (btrfs_root_refs(&root_item) == 0)
3602 			goto skip;
3603 
3604 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
3605 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3606 			if (trans)
3607 				goto update_tree;
3608 
3609 			btrfs_release_path(path);
3610 			/*
3611 			 * 1 - subvol uuid item
3612 			 * 1 - received_subvol uuid item
3613 			 */
3614 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3615 			if (IS_ERR(trans)) {
3616 				ret = PTR_ERR(trans);
3617 				break;
3618 			}
3619 			continue;
3620 		} else {
3621 			goto skip;
3622 		}
3623 update_tree:
3624 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3625 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3626 						  root_item.uuid,
3627 						  BTRFS_UUID_KEY_SUBVOL,
3628 						  key.objectid);
3629 			if (ret < 0) {
3630 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3631 					ret);
3632 				break;
3633 			}
3634 		}
3635 
3636 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3637 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3638 						  root_item.received_uuid,
3639 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3640 						  key.objectid);
3641 			if (ret < 0) {
3642 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3643 					ret);
3644 				break;
3645 			}
3646 		}
3647 
3648 skip:
3649 		if (trans) {
3650 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3651 			trans = NULL;
3652 			if (ret)
3653 				break;
3654 		}
3655 
3656 		btrfs_release_path(path);
3657 		if (key.offset < (u64)-1) {
3658 			key.offset++;
3659 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3660 			key.offset = 0;
3661 			key.type = BTRFS_ROOT_ITEM_KEY;
3662 		} else if (key.objectid < (u64)-1) {
3663 			key.offset = 0;
3664 			key.type = BTRFS_ROOT_ITEM_KEY;
3665 			key.objectid++;
3666 		} else {
3667 			break;
3668 		}
3669 		cond_resched();
3670 	}
3671 
3672 out:
3673 	btrfs_free_path(path);
3674 	if (trans && !IS_ERR(trans))
3675 		btrfs_end_transaction(trans, fs_info->uuid_root);
3676 	if (ret)
3677 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3678 	else
3679 		fs_info->update_uuid_tree_gen = 1;
3680 	up(&fs_info->uuid_tree_rescan_sem);
3681 	return 0;
3682 }
3683 
3684 /*
3685  * Callback for btrfs_uuid_tree_iterate().
3686  * returns:
3687  * 0	check succeeded, the entry is not outdated.
3688  * < 0	if an error occured.
3689  * > 0	if the check failed, which means the caller shall remove the entry.
3690  */
3691 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3692 				       u8 *uuid, u8 type, u64 subid)
3693 {
3694 	struct btrfs_key key;
3695 	int ret = 0;
3696 	struct btrfs_root *subvol_root;
3697 
3698 	if (type != BTRFS_UUID_KEY_SUBVOL &&
3699 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3700 		goto out;
3701 
3702 	key.objectid = subid;
3703 	key.type = BTRFS_ROOT_ITEM_KEY;
3704 	key.offset = (u64)-1;
3705 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3706 	if (IS_ERR(subvol_root)) {
3707 		ret = PTR_ERR(subvol_root);
3708 		if (ret == -ENOENT)
3709 			ret = 1;
3710 		goto out;
3711 	}
3712 
3713 	switch (type) {
3714 	case BTRFS_UUID_KEY_SUBVOL:
3715 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3716 			ret = 1;
3717 		break;
3718 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3719 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
3720 			   BTRFS_UUID_SIZE))
3721 			ret = 1;
3722 		break;
3723 	}
3724 
3725 out:
3726 	return ret;
3727 }
3728 
3729 static int btrfs_uuid_rescan_kthread(void *data)
3730 {
3731 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3732 	int ret;
3733 
3734 	/*
3735 	 * 1st step is to iterate through the existing UUID tree and
3736 	 * to delete all entries that contain outdated data.
3737 	 * 2nd step is to add all missing entries to the UUID tree.
3738 	 */
3739 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3740 	if (ret < 0) {
3741 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3742 		up(&fs_info->uuid_tree_rescan_sem);
3743 		return ret;
3744 	}
3745 	return btrfs_uuid_scan_kthread(data);
3746 }
3747 
3748 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3749 {
3750 	struct btrfs_trans_handle *trans;
3751 	struct btrfs_root *tree_root = fs_info->tree_root;
3752 	struct btrfs_root *uuid_root;
3753 	struct task_struct *task;
3754 	int ret;
3755 
3756 	/*
3757 	 * 1 - root node
3758 	 * 1 - root item
3759 	 */
3760 	trans = btrfs_start_transaction(tree_root, 2);
3761 	if (IS_ERR(trans))
3762 		return PTR_ERR(trans);
3763 
3764 	uuid_root = btrfs_create_tree(trans, fs_info,
3765 				      BTRFS_UUID_TREE_OBJECTID);
3766 	if (IS_ERR(uuid_root)) {
3767 		btrfs_abort_transaction(trans, tree_root,
3768 					PTR_ERR(uuid_root));
3769 		return PTR_ERR(uuid_root);
3770 	}
3771 
3772 	fs_info->uuid_root = uuid_root;
3773 
3774 	ret = btrfs_commit_transaction(trans, tree_root);
3775 	if (ret)
3776 		return ret;
3777 
3778 	down(&fs_info->uuid_tree_rescan_sem);
3779 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3780 	if (IS_ERR(task)) {
3781 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3782 		btrfs_warn(fs_info, "failed to start uuid_scan task");
3783 		up(&fs_info->uuid_tree_rescan_sem);
3784 		return PTR_ERR(task);
3785 	}
3786 
3787 	return 0;
3788 }
3789 
3790 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3791 {
3792 	struct task_struct *task;
3793 
3794 	down(&fs_info->uuid_tree_rescan_sem);
3795 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3796 	if (IS_ERR(task)) {
3797 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3798 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3799 		up(&fs_info->uuid_tree_rescan_sem);
3800 		return PTR_ERR(task);
3801 	}
3802 
3803 	return 0;
3804 }
3805 
3806 /*
3807  * shrinking a device means finding all of the device extents past
3808  * the new size, and then following the back refs to the chunks.
3809  * The chunk relocation code actually frees the device extent
3810  */
3811 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3812 {
3813 	struct btrfs_trans_handle *trans;
3814 	struct btrfs_root *root = device->dev_root;
3815 	struct btrfs_dev_extent *dev_extent = NULL;
3816 	struct btrfs_path *path;
3817 	u64 length;
3818 	u64 chunk_tree;
3819 	u64 chunk_objectid;
3820 	u64 chunk_offset;
3821 	int ret;
3822 	int slot;
3823 	int failed = 0;
3824 	bool retried = false;
3825 	struct extent_buffer *l;
3826 	struct btrfs_key key;
3827 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3828 	u64 old_total = btrfs_super_total_bytes(super_copy);
3829 	u64 old_size = device->total_bytes;
3830 	u64 diff = device->total_bytes - new_size;
3831 
3832 	if (device->is_tgtdev_for_dev_replace)
3833 		return -EINVAL;
3834 
3835 	path = btrfs_alloc_path();
3836 	if (!path)
3837 		return -ENOMEM;
3838 
3839 	path->reada = 2;
3840 
3841 	lock_chunks(root);
3842 
3843 	device->total_bytes = new_size;
3844 	if (device->writeable) {
3845 		device->fs_devices->total_rw_bytes -= diff;
3846 		spin_lock(&root->fs_info->free_chunk_lock);
3847 		root->fs_info->free_chunk_space -= diff;
3848 		spin_unlock(&root->fs_info->free_chunk_lock);
3849 	}
3850 	unlock_chunks(root);
3851 
3852 again:
3853 	key.objectid = device->devid;
3854 	key.offset = (u64)-1;
3855 	key.type = BTRFS_DEV_EXTENT_KEY;
3856 
3857 	do {
3858 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3859 		if (ret < 0)
3860 			goto done;
3861 
3862 		ret = btrfs_previous_item(root, path, 0, key.type);
3863 		if (ret < 0)
3864 			goto done;
3865 		if (ret) {
3866 			ret = 0;
3867 			btrfs_release_path(path);
3868 			break;
3869 		}
3870 
3871 		l = path->nodes[0];
3872 		slot = path->slots[0];
3873 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3874 
3875 		if (key.objectid != device->devid) {
3876 			btrfs_release_path(path);
3877 			break;
3878 		}
3879 
3880 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3881 		length = btrfs_dev_extent_length(l, dev_extent);
3882 
3883 		if (key.offset + length <= new_size) {
3884 			btrfs_release_path(path);
3885 			break;
3886 		}
3887 
3888 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3889 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3890 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3891 		btrfs_release_path(path);
3892 
3893 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3894 					   chunk_offset);
3895 		if (ret && ret != -ENOSPC)
3896 			goto done;
3897 		if (ret == -ENOSPC)
3898 			failed++;
3899 	} while (key.offset-- > 0);
3900 
3901 	if (failed && !retried) {
3902 		failed = 0;
3903 		retried = true;
3904 		goto again;
3905 	} else if (failed && retried) {
3906 		ret = -ENOSPC;
3907 		lock_chunks(root);
3908 
3909 		device->total_bytes = old_size;
3910 		if (device->writeable)
3911 			device->fs_devices->total_rw_bytes += diff;
3912 		spin_lock(&root->fs_info->free_chunk_lock);
3913 		root->fs_info->free_chunk_space += diff;
3914 		spin_unlock(&root->fs_info->free_chunk_lock);
3915 		unlock_chunks(root);
3916 		goto done;
3917 	}
3918 
3919 	/* Shrinking succeeded, else we would be at "done". */
3920 	trans = btrfs_start_transaction(root, 0);
3921 	if (IS_ERR(trans)) {
3922 		ret = PTR_ERR(trans);
3923 		goto done;
3924 	}
3925 
3926 	lock_chunks(root);
3927 
3928 	device->disk_total_bytes = new_size;
3929 	/* Now btrfs_update_device() will change the on-disk size. */
3930 	ret = btrfs_update_device(trans, device);
3931 	if (ret) {
3932 		unlock_chunks(root);
3933 		btrfs_end_transaction(trans, root);
3934 		goto done;
3935 	}
3936 	WARN_ON(diff > old_total);
3937 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
3938 	unlock_chunks(root);
3939 	btrfs_end_transaction(trans, root);
3940 done:
3941 	btrfs_free_path(path);
3942 	return ret;
3943 }
3944 
3945 static int btrfs_add_system_chunk(struct btrfs_root *root,
3946 			   struct btrfs_key *key,
3947 			   struct btrfs_chunk *chunk, int item_size)
3948 {
3949 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3950 	struct btrfs_disk_key disk_key;
3951 	u32 array_size;
3952 	u8 *ptr;
3953 
3954 	array_size = btrfs_super_sys_array_size(super_copy);
3955 	if (array_size + item_size + sizeof(disk_key)
3956 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3957 		return -EFBIG;
3958 
3959 	ptr = super_copy->sys_chunk_array + array_size;
3960 	btrfs_cpu_key_to_disk(&disk_key, key);
3961 	memcpy(ptr, &disk_key, sizeof(disk_key));
3962 	ptr += sizeof(disk_key);
3963 	memcpy(ptr, chunk, item_size);
3964 	item_size += sizeof(disk_key);
3965 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3966 	return 0;
3967 }
3968 
3969 /*
3970  * sort the devices in descending order by max_avail, total_avail
3971  */
3972 static int btrfs_cmp_device_info(const void *a, const void *b)
3973 {
3974 	const struct btrfs_device_info *di_a = a;
3975 	const struct btrfs_device_info *di_b = b;
3976 
3977 	if (di_a->max_avail > di_b->max_avail)
3978 		return -1;
3979 	if (di_a->max_avail < di_b->max_avail)
3980 		return 1;
3981 	if (di_a->total_avail > di_b->total_avail)
3982 		return -1;
3983 	if (di_a->total_avail < di_b->total_avail)
3984 		return 1;
3985 	return 0;
3986 }
3987 
3988 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3989 	[BTRFS_RAID_RAID10] = {
3990 		.sub_stripes	= 2,
3991 		.dev_stripes	= 1,
3992 		.devs_max	= 0,	/* 0 == as many as possible */
3993 		.devs_min	= 4,
3994 		.devs_increment	= 2,
3995 		.ncopies	= 2,
3996 	},
3997 	[BTRFS_RAID_RAID1] = {
3998 		.sub_stripes	= 1,
3999 		.dev_stripes	= 1,
4000 		.devs_max	= 2,
4001 		.devs_min	= 2,
4002 		.devs_increment	= 2,
4003 		.ncopies	= 2,
4004 	},
4005 	[BTRFS_RAID_DUP] = {
4006 		.sub_stripes	= 1,
4007 		.dev_stripes	= 2,
4008 		.devs_max	= 1,
4009 		.devs_min	= 1,
4010 		.devs_increment	= 1,
4011 		.ncopies	= 2,
4012 	},
4013 	[BTRFS_RAID_RAID0] = {
4014 		.sub_stripes	= 1,
4015 		.dev_stripes	= 1,
4016 		.devs_max	= 0,
4017 		.devs_min	= 2,
4018 		.devs_increment	= 1,
4019 		.ncopies	= 1,
4020 	},
4021 	[BTRFS_RAID_SINGLE] = {
4022 		.sub_stripes	= 1,
4023 		.dev_stripes	= 1,
4024 		.devs_max	= 1,
4025 		.devs_min	= 1,
4026 		.devs_increment	= 1,
4027 		.ncopies	= 1,
4028 	},
4029 	[BTRFS_RAID_RAID5] = {
4030 		.sub_stripes	= 1,
4031 		.dev_stripes	= 1,
4032 		.devs_max	= 0,
4033 		.devs_min	= 2,
4034 		.devs_increment	= 1,
4035 		.ncopies	= 2,
4036 	},
4037 	[BTRFS_RAID_RAID6] = {
4038 		.sub_stripes	= 1,
4039 		.dev_stripes	= 1,
4040 		.devs_max	= 0,
4041 		.devs_min	= 3,
4042 		.devs_increment	= 1,
4043 		.ncopies	= 3,
4044 	},
4045 };
4046 
4047 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4048 {
4049 	/* TODO allow them to set a preferred stripe size */
4050 	return 64 * 1024;
4051 }
4052 
4053 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4054 {
4055 	if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4056 		return;
4057 
4058 	btrfs_set_fs_incompat(info, RAID56);
4059 }
4060 
4061 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4062 			- sizeof(struct btrfs_item)		\
4063 			- sizeof(struct btrfs_chunk))		\
4064 			/ sizeof(struct btrfs_stripe) + 1)
4065 
4066 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4067 				- 2 * sizeof(struct btrfs_disk_key)	\
4068 				- 2 * sizeof(struct btrfs_chunk))	\
4069 				/ sizeof(struct btrfs_stripe) + 1)
4070 
4071 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4072 			       struct btrfs_root *extent_root, u64 start,
4073 			       u64 type)
4074 {
4075 	struct btrfs_fs_info *info = extent_root->fs_info;
4076 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4077 	struct list_head *cur;
4078 	struct map_lookup *map = NULL;
4079 	struct extent_map_tree *em_tree;
4080 	struct extent_map *em;
4081 	struct btrfs_device_info *devices_info = NULL;
4082 	u64 total_avail;
4083 	int num_stripes;	/* total number of stripes to allocate */
4084 	int data_stripes;	/* number of stripes that count for
4085 				   block group size */
4086 	int sub_stripes;	/* sub_stripes info for map */
4087 	int dev_stripes;	/* stripes per dev */
4088 	int devs_max;		/* max devs to use */
4089 	int devs_min;		/* min devs needed */
4090 	int devs_increment;	/* ndevs has to be a multiple of this */
4091 	int ncopies;		/* how many copies to data has */
4092 	int ret;
4093 	u64 max_stripe_size;
4094 	u64 max_chunk_size;
4095 	u64 stripe_size;
4096 	u64 num_bytes;
4097 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4098 	int ndevs;
4099 	int i;
4100 	int j;
4101 	int index;
4102 
4103 	BUG_ON(!alloc_profile_is_valid(type, 0));
4104 
4105 	if (list_empty(&fs_devices->alloc_list))
4106 		return -ENOSPC;
4107 
4108 	index = __get_raid_index(type);
4109 
4110 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4111 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4112 	devs_max = btrfs_raid_array[index].devs_max;
4113 	devs_min = btrfs_raid_array[index].devs_min;
4114 	devs_increment = btrfs_raid_array[index].devs_increment;
4115 	ncopies = btrfs_raid_array[index].ncopies;
4116 
4117 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4118 		max_stripe_size = 1024 * 1024 * 1024;
4119 		max_chunk_size = 10 * max_stripe_size;
4120 		if (!devs_max)
4121 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4122 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4123 		/* for larger filesystems, use larger metadata chunks */
4124 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4125 			max_stripe_size = 1024 * 1024 * 1024;
4126 		else
4127 			max_stripe_size = 256 * 1024 * 1024;
4128 		max_chunk_size = max_stripe_size;
4129 		if (!devs_max)
4130 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4131 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4132 		max_stripe_size = 32 * 1024 * 1024;
4133 		max_chunk_size = 2 * max_stripe_size;
4134 		if (!devs_max)
4135 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4136 	} else {
4137 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4138 		       type);
4139 		BUG_ON(1);
4140 	}
4141 
4142 	/* we don't want a chunk larger than 10% of writeable space */
4143 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4144 			     max_chunk_size);
4145 
4146 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4147 			       GFP_NOFS);
4148 	if (!devices_info)
4149 		return -ENOMEM;
4150 
4151 	cur = fs_devices->alloc_list.next;
4152 
4153 	/*
4154 	 * in the first pass through the devices list, we gather information
4155 	 * about the available holes on each device.
4156 	 */
4157 	ndevs = 0;
4158 	while (cur != &fs_devices->alloc_list) {
4159 		struct btrfs_device *device;
4160 		u64 max_avail;
4161 		u64 dev_offset;
4162 
4163 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4164 
4165 		cur = cur->next;
4166 
4167 		if (!device->writeable) {
4168 			WARN(1, KERN_ERR
4169 			       "BTRFS: read-only device in alloc_list\n");
4170 			continue;
4171 		}
4172 
4173 		if (!device->in_fs_metadata ||
4174 		    device->is_tgtdev_for_dev_replace)
4175 			continue;
4176 
4177 		if (device->total_bytes > device->bytes_used)
4178 			total_avail = device->total_bytes - device->bytes_used;
4179 		else
4180 			total_avail = 0;
4181 
4182 		/* If there is no space on this device, skip it. */
4183 		if (total_avail == 0)
4184 			continue;
4185 
4186 		ret = find_free_dev_extent(trans, device,
4187 					   max_stripe_size * dev_stripes,
4188 					   &dev_offset, &max_avail);
4189 		if (ret && ret != -ENOSPC)
4190 			goto error;
4191 
4192 		if (ret == 0)
4193 			max_avail = max_stripe_size * dev_stripes;
4194 
4195 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4196 			continue;
4197 
4198 		if (ndevs == fs_devices->rw_devices) {
4199 			WARN(1, "%s: found more than %llu devices\n",
4200 			     __func__, fs_devices->rw_devices);
4201 			break;
4202 		}
4203 		devices_info[ndevs].dev_offset = dev_offset;
4204 		devices_info[ndevs].max_avail = max_avail;
4205 		devices_info[ndevs].total_avail = total_avail;
4206 		devices_info[ndevs].dev = device;
4207 		++ndevs;
4208 	}
4209 
4210 	/*
4211 	 * now sort the devices by hole size / available space
4212 	 */
4213 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4214 	     btrfs_cmp_device_info, NULL);
4215 
4216 	/* round down to number of usable stripes */
4217 	ndevs -= ndevs % devs_increment;
4218 
4219 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4220 		ret = -ENOSPC;
4221 		goto error;
4222 	}
4223 
4224 	if (devs_max && ndevs > devs_max)
4225 		ndevs = devs_max;
4226 	/*
4227 	 * the primary goal is to maximize the number of stripes, so use as many
4228 	 * devices as possible, even if the stripes are not maximum sized.
4229 	 */
4230 	stripe_size = devices_info[ndevs-1].max_avail;
4231 	num_stripes = ndevs * dev_stripes;
4232 
4233 	/*
4234 	 * this will have to be fixed for RAID1 and RAID10 over
4235 	 * more drives
4236 	 */
4237 	data_stripes = num_stripes / ncopies;
4238 
4239 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4240 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4241 				 btrfs_super_stripesize(info->super_copy));
4242 		data_stripes = num_stripes - 1;
4243 	}
4244 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4245 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4246 				 btrfs_super_stripesize(info->super_copy));
4247 		data_stripes = num_stripes - 2;
4248 	}
4249 
4250 	/*
4251 	 * Use the number of data stripes to figure out how big this chunk
4252 	 * is really going to be in terms of logical address space,
4253 	 * and compare that answer with the max chunk size
4254 	 */
4255 	if (stripe_size * data_stripes > max_chunk_size) {
4256 		u64 mask = (1ULL << 24) - 1;
4257 		stripe_size = max_chunk_size;
4258 		do_div(stripe_size, data_stripes);
4259 
4260 		/* bump the answer up to a 16MB boundary */
4261 		stripe_size = (stripe_size + mask) & ~mask;
4262 
4263 		/* but don't go higher than the limits we found
4264 		 * while searching for free extents
4265 		 */
4266 		if (stripe_size > devices_info[ndevs-1].max_avail)
4267 			stripe_size = devices_info[ndevs-1].max_avail;
4268 	}
4269 
4270 	do_div(stripe_size, dev_stripes);
4271 
4272 	/* align to BTRFS_STRIPE_LEN */
4273 	do_div(stripe_size, raid_stripe_len);
4274 	stripe_size *= raid_stripe_len;
4275 
4276 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4277 	if (!map) {
4278 		ret = -ENOMEM;
4279 		goto error;
4280 	}
4281 	map->num_stripes = num_stripes;
4282 
4283 	for (i = 0; i < ndevs; ++i) {
4284 		for (j = 0; j < dev_stripes; ++j) {
4285 			int s = i * dev_stripes + j;
4286 			map->stripes[s].dev = devices_info[i].dev;
4287 			map->stripes[s].physical = devices_info[i].dev_offset +
4288 						   j * stripe_size;
4289 		}
4290 	}
4291 	map->sector_size = extent_root->sectorsize;
4292 	map->stripe_len = raid_stripe_len;
4293 	map->io_align = raid_stripe_len;
4294 	map->io_width = raid_stripe_len;
4295 	map->type = type;
4296 	map->sub_stripes = sub_stripes;
4297 
4298 	num_bytes = stripe_size * data_stripes;
4299 
4300 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4301 
4302 	em = alloc_extent_map();
4303 	if (!em) {
4304 		ret = -ENOMEM;
4305 		goto error;
4306 	}
4307 	em->bdev = (struct block_device *)map;
4308 	em->start = start;
4309 	em->len = num_bytes;
4310 	em->block_start = 0;
4311 	em->block_len = em->len;
4312 	em->orig_block_len = stripe_size;
4313 
4314 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4315 	write_lock(&em_tree->lock);
4316 	ret = add_extent_mapping(em_tree, em, 0);
4317 	if (!ret) {
4318 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4319 		atomic_inc(&em->refs);
4320 	}
4321 	write_unlock(&em_tree->lock);
4322 	if (ret) {
4323 		free_extent_map(em);
4324 		goto error;
4325 	}
4326 
4327 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4328 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4329 				     start, num_bytes);
4330 	if (ret)
4331 		goto error_del_extent;
4332 
4333 	free_extent_map(em);
4334 	check_raid56_incompat_flag(extent_root->fs_info, type);
4335 
4336 	kfree(devices_info);
4337 	return 0;
4338 
4339 error_del_extent:
4340 	write_lock(&em_tree->lock);
4341 	remove_extent_mapping(em_tree, em);
4342 	write_unlock(&em_tree->lock);
4343 
4344 	/* One for our allocation */
4345 	free_extent_map(em);
4346 	/* One for the tree reference */
4347 	free_extent_map(em);
4348 error:
4349 	kfree(map);
4350 	kfree(devices_info);
4351 	return ret;
4352 }
4353 
4354 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4355 				struct btrfs_root *extent_root,
4356 				u64 chunk_offset, u64 chunk_size)
4357 {
4358 	struct btrfs_key key;
4359 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4360 	struct btrfs_device *device;
4361 	struct btrfs_chunk *chunk;
4362 	struct btrfs_stripe *stripe;
4363 	struct extent_map_tree *em_tree;
4364 	struct extent_map *em;
4365 	struct map_lookup *map;
4366 	size_t item_size;
4367 	u64 dev_offset;
4368 	u64 stripe_size;
4369 	int i = 0;
4370 	int ret;
4371 
4372 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4373 	read_lock(&em_tree->lock);
4374 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4375 	read_unlock(&em_tree->lock);
4376 
4377 	if (!em) {
4378 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4379 			   "%Lu len %Lu", chunk_offset, chunk_size);
4380 		return -EINVAL;
4381 	}
4382 
4383 	if (em->start != chunk_offset || em->len != chunk_size) {
4384 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4385 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4386 			  chunk_size, em->start, em->len);
4387 		free_extent_map(em);
4388 		return -EINVAL;
4389 	}
4390 
4391 	map = (struct map_lookup *)em->bdev;
4392 	item_size = btrfs_chunk_item_size(map->num_stripes);
4393 	stripe_size = em->orig_block_len;
4394 
4395 	chunk = kzalloc(item_size, GFP_NOFS);
4396 	if (!chunk) {
4397 		ret = -ENOMEM;
4398 		goto out;
4399 	}
4400 
4401 	for (i = 0; i < map->num_stripes; i++) {
4402 		device = map->stripes[i].dev;
4403 		dev_offset = map->stripes[i].physical;
4404 
4405 		device->bytes_used += stripe_size;
4406 		ret = btrfs_update_device(trans, device);
4407 		if (ret)
4408 			goto out;
4409 		ret = btrfs_alloc_dev_extent(trans, device,
4410 					     chunk_root->root_key.objectid,
4411 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4412 					     chunk_offset, dev_offset,
4413 					     stripe_size);
4414 		if (ret)
4415 			goto out;
4416 	}
4417 
4418 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4419 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4420 						   map->num_stripes);
4421 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4422 
4423 	stripe = &chunk->stripe;
4424 	for (i = 0; i < map->num_stripes; i++) {
4425 		device = map->stripes[i].dev;
4426 		dev_offset = map->stripes[i].physical;
4427 
4428 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4429 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4430 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4431 		stripe++;
4432 	}
4433 
4434 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4435 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4436 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4437 	btrfs_set_stack_chunk_type(chunk, map->type);
4438 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4439 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4440 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4441 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4442 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4443 
4444 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4445 	key.type = BTRFS_CHUNK_ITEM_KEY;
4446 	key.offset = chunk_offset;
4447 
4448 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4449 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4450 		/*
4451 		 * TODO: Cleanup of inserted chunk root in case of
4452 		 * failure.
4453 		 */
4454 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4455 					     item_size);
4456 	}
4457 
4458 out:
4459 	kfree(chunk);
4460 	free_extent_map(em);
4461 	return ret;
4462 }
4463 
4464 /*
4465  * Chunk allocation falls into two parts. The first part does works
4466  * that make the new allocated chunk useable, but not do any operation
4467  * that modifies the chunk tree. The second part does the works that
4468  * require modifying the chunk tree. This division is important for the
4469  * bootstrap process of adding storage to a seed btrfs.
4470  */
4471 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4472 		      struct btrfs_root *extent_root, u64 type)
4473 {
4474 	u64 chunk_offset;
4475 
4476 	chunk_offset = find_next_chunk(extent_root->fs_info);
4477 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4478 }
4479 
4480 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4481 					 struct btrfs_root *root,
4482 					 struct btrfs_device *device)
4483 {
4484 	u64 chunk_offset;
4485 	u64 sys_chunk_offset;
4486 	u64 alloc_profile;
4487 	struct btrfs_fs_info *fs_info = root->fs_info;
4488 	struct btrfs_root *extent_root = fs_info->extent_root;
4489 	int ret;
4490 
4491 	chunk_offset = find_next_chunk(fs_info);
4492 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4493 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4494 				  alloc_profile);
4495 	if (ret)
4496 		return ret;
4497 
4498 	sys_chunk_offset = find_next_chunk(root->fs_info);
4499 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4500 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4501 				  alloc_profile);
4502 	if (ret) {
4503 		btrfs_abort_transaction(trans, root, ret);
4504 		goto out;
4505 	}
4506 
4507 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4508 	if (ret)
4509 		btrfs_abort_transaction(trans, root, ret);
4510 out:
4511 	return ret;
4512 }
4513 
4514 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4515 {
4516 	struct extent_map *em;
4517 	struct map_lookup *map;
4518 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4519 	int readonly = 0;
4520 	int i;
4521 
4522 	read_lock(&map_tree->map_tree.lock);
4523 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4524 	read_unlock(&map_tree->map_tree.lock);
4525 	if (!em)
4526 		return 1;
4527 
4528 	if (btrfs_test_opt(root, DEGRADED)) {
4529 		free_extent_map(em);
4530 		return 0;
4531 	}
4532 
4533 	map = (struct map_lookup *)em->bdev;
4534 	for (i = 0; i < map->num_stripes; i++) {
4535 		if (!map->stripes[i].dev->writeable) {
4536 			readonly = 1;
4537 			break;
4538 		}
4539 	}
4540 	free_extent_map(em);
4541 	return readonly;
4542 }
4543 
4544 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4545 {
4546 	extent_map_tree_init(&tree->map_tree);
4547 }
4548 
4549 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4550 {
4551 	struct extent_map *em;
4552 
4553 	while (1) {
4554 		write_lock(&tree->map_tree.lock);
4555 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4556 		if (em)
4557 			remove_extent_mapping(&tree->map_tree, em);
4558 		write_unlock(&tree->map_tree.lock);
4559 		if (!em)
4560 			break;
4561 		kfree(em->bdev);
4562 		/* once for us */
4563 		free_extent_map(em);
4564 		/* once for the tree */
4565 		free_extent_map(em);
4566 	}
4567 }
4568 
4569 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4570 {
4571 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4572 	struct extent_map *em;
4573 	struct map_lookup *map;
4574 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4575 	int ret;
4576 
4577 	read_lock(&em_tree->lock);
4578 	em = lookup_extent_mapping(em_tree, logical, len);
4579 	read_unlock(&em_tree->lock);
4580 
4581 	/*
4582 	 * We could return errors for these cases, but that could get ugly and
4583 	 * we'd probably do the same thing which is just not do anything else
4584 	 * and exit, so return 1 so the callers don't try to use other copies.
4585 	 */
4586 	if (!em) {
4587 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4588 			    logical+len);
4589 		return 1;
4590 	}
4591 
4592 	if (em->start > logical || em->start + em->len < logical) {
4593 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4594 			    "%Lu-%Lu", logical, logical+len, em->start,
4595 			    em->start + em->len);
4596 		free_extent_map(em);
4597 		return 1;
4598 	}
4599 
4600 	map = (struct map_lookup *)em->bdev;
4601 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4602 		ret = map->num_stripes;
4603 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4604 		ret = map->sub_stripes;
4605 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4606 		ret = 2;
4607 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4608 		ret = 3;
4609 	else
4610 		ret = 1;
4611 	free_extent_map(em);
4612 
4613 	btrfs_dev_replace_lock(&fs_info->dev_replace);
4614 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4615 		ret++;
4616 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
4617 
4618 	return ret;
4619 }
4620 
4621 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4622 				    struct btrfs_mapping_tree *map_tree,
4623 				    u64 logical)
4624 {
4625 	struct extent_map *em;
4626 	struct map_lookup *map;
4627 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4628 	unsigned long len = root->sectorsize;
4629 
4630 	read_lock(&em_tree->lock);
4631 	em = lookup_extent_mapping(em_tree, logical, len);
4632 	read_unlock(&em_tree->lock);
4633 	BUG_ON(!em);
4634 
4635 	BUG_ON(em->start > logical || em->start + em->len < logical);
4636 	map = (struct map_lookup *)em->bdev;
4637 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4638 			 BTRFS_BLOCK_GROUP_RAID6)) {
4639 		len = map->stripe_len * nr_data_stripes(map);
4640 	}
4641 	free_extent_map(em);
4642 	return len;
4643 }
4644 
4645 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4646 			   u64 logical, u64 len, int mirror_num)
4647 {
4648 	struct extent_map *em;
4649 	struct map_lookup *map;
4650 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4651 	int ret = 0;
4652 
4653 	read_lock(&em_tree->lock);
4654 	em = lookup_extent_mapping(em_tree, logical, len);
4655 	read_unlock(&em_tree->lock);
4656 	BUG_ON(!em);
4657 
4658 	BUG_ON(em->start > logical || em->start + em->len < logical);
4659 	map = (struct map_lookup *)em->bdev;
4660 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4661 			 BTRFS_BLOCK_GROUP_RAID6))
4662 		ret = 1;
4663 	free_extent_map(em);
4664 	return ret;
4665 }
4666 
4667 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4668 			    struct map_lookup *map, int first, int num,
4669 			    int optimal, int dev_replace_is_ongoing)
4670 {
4671 	int i;
4672 	int tolerance;
4673 	struct btrfs_device *srcdev;
4674 
4675 	if (dev_replace_is_ongoing &&
4676 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4677 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4678 		srcdev = fs_info->dev_replace.srcdev;
4679 	else
4680 		srcdev = NULL;
4681 
4682 	/*
4683 	 * try to avoid the drive that is the source drive for a
4684 	 * dev-replace procedure, only choose it if no other non-missing
4685 	 * mirror is available
4686 	 */
4687 	for (tolerance = 0; tolerance < 2; tolerance++) {
4688 		if (map->stripes[optimal].dev->bdev &&
4689 		    (tolerance || map->stripes[optimal].dev != srcdev))
4690 			return optimal;
4691 		for (i = first; i < first + num; i++) {
4692 			if (map->stripes[i].dev->bdev &&
4693 			    (tolerance || map->stripes[i].dev != srcdev))
4694 				return i;
4695 		}
4696 	}
4697 
4698 	/* we couldn't find one that doesn't fail.  Just return something
4699 	 * and the io error handling code will clean up eventually
4700 	 */
4701 	return optimal;
4702 }
4703 
4704 static inline int parity_smaller(u64 a, u64 b)
4705 {
4706 	return a > b;
4707 }
4708 
4709 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4710 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4711 {
4712 	struct btrfs_bio_stripe s;
4713 	int i;
4714 	u64 l;
4715 	int again = 1;
4716 
4717 	while (again) {
4718 		again = 0;
4719 		for (i = 0; i < bbio->num_stripes - 1; i++) {
4720 			if (parity_smaller(raid_map[i], raid_map[i+1])) {
4721 				s = bbio->stripes[i];
4722 				l = raid_map[i];
4723 				bbio->stripes[i] = bbio->stripes[i+1];
4724 				raid_map[i] = raid_map[i+1];
4725 				bbio->stripes[i+1] = s;
4726 				raid_map[i+1] = l;
4727 				again = 1;
4728 			}
4729 		}
4730 	}
4731 }
4732 
4733 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4734 			     u64 logical, u64 *length,
4735 			     struct btrfs_bio **bbio_ret,
4736 			     int mirror_num, u64 **raid_map_ret)
4737 {
4738 	struct extent_map *em;
4739 	struct map_lookup *map;
4740 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4741 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4742 	u64 offset;
4743 	u64 stripe_offset;
4744 	u64 stripe_end_offset;
4745 	u64 stripe_nr;
4746 	u64 stripe_nr_orig;
4747 	u64 stripe_nr_end;
4748 	u64 stripe_len;
4749 	u64 *raid_map = NULL;
4750 	int stripe_index;
4751 	int i;
4752 	int ret = 0;
4753 	int num_stripes;
4754 	int max_errors = 0;
4755 	struct btrfs_bio *bbio = NULL;
4756 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4757 	int dev_replace_is_ongoing = 0;
4758 	int num_alloc_stripes;
4759 	int patch_the_first_stripe_for_dev_replace = 0;
4760 	u64 physical_to_patch_in_first_stripe = 0;
4761 	u64 raid56_full_stripe_start = (u64)-1;
4762 
4763 	read_lock(&em_tree->lock);
4764 	em = lookup_extent_mapping(em_tree, logical, *length);
4765 	read_unlock(&em_tree->lock);
4766 
4767 	if (!em) {
4768 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4769 			logical, *length);
4770 		return -EINVAL;
4771 	}
4772 
4773 	if (em->start > logical || em->start + em->len < logical) {
4774 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4775 			   "found %Lu-%Lu", logical, em->start,
4776 			   em->start + em->len);
4777 		free_extent_map(em);
4778 		return -EINVAL;
4779 	}
4780 
4781 	map = (struct map_lookup *)em->bdev;
4782 	offset = logical - em->start;
4783 
4784 	stripe_len = map->stripe_len;
4785 	stripe_nr = offset;
4786 	/*
4787 	 * stripe_nr counts the total number of stripes we have to stride
4788 	 * to get to this block
4789 	 */
4790 	do_div(stripe_nr, stripe_len);
4791 
4792 	stripe_offset = stripe_nr * stripe_len;
4793 	BUG_ON(offset < stripe_offset);
4794 
4795 	/* stripe_offset is the offset of this block in its stripe*/
4796 	stripe_offset = offset - stripe_offset;
4797 
4798 	/* if we're here for raid56, we need to know the stripe aligned start */
4799 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4800 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4801 		raid56_full_stripe_start = offset;
4802 
4803 		/* allow a write of a full stripe, but make sure we don't
4804 		 * allow straddling of stripes
4805 		 */
4806 		do_div(raid56_full_stripe_start, full_stripe_len);
4807 		raid56_full_stripe_start *= full_stripe_len;
4808 	}
4809 
4810 	if (rw & REQ_DISCARD) {
4811 		/* we don't discard raid56 yet */
4812 		if (map->type &
4813 		    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4814 			ret = -EOPNOTSUPP;
4815 			goto out;
4816 		}
4817 		*length = min_t(u64, em->len - offset, *length);
4818 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4819 		u64 max_len;
4820 		/* For writes to RAID[56], allow a full stripeset across all disks.
4821 		   For other RAID types and for RAID[56] reads, just allow a single
4822 		   stripe (on a single disk). */
4823 		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4824 		    (rw & REQ_WRITE)) {
4825 			max_len = stripe_len * nr_data_stripes(map) -
4826 				(offset - raid56_full_stripe_start);
4827 		} else {
4828 			/* we limit the length of each bio to what fits in a stripe */
4829 			max_len = stripe_len - stripe_offset;
4830 		}
4831 		*length = min_t(u64, em->len - offset, max_len);
4832 	} else {
4833 		*length = em->len - offset;
4834 	}
4835 
4836 	/* This is for when we're called from btrfs_merge_bio_hook() and all
4837 	   it cares about is the length */
4838 	if (!bbio_ret)
4839 		goto out;
4840 
4841 	btrfs_dev_replace_lock(dev_replace);
4842 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4843 	if (!dev_replace_is_ongoing)
4844 		btrfs_dev_replace_unlock(dev_replace);
4845 
4846 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4847 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4848 	    dev_replace->tgtdev != NULL) {
4849 		/*
4850 		 * in dev-replace case, for repair case (that's the only
4851 		 * case where the mirror is selected explicitly when
4852 		 * calling btrfs_map_block), blocks left of the left cursor
4853 		 * can also be read from the target drive.
4854 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
4855 		 * the last one to the array of stripes. For READ, it also
4856 		 * needs to be supported using the same mirror number.
4857 		 * If the requested block is not left of the left cursor,
4858 		 * EIO is returned. This can happen because btrfs_num_copies()
4859 		 * returns one more in the dev-replace case.
4860 		 */
4861 		u64 tmp_length = *length;
4862 		struct btrfs_bio *tmp_bbio = NULL;
4863 		int tmp_num_stripes;
4864 		u64 srcdev_devid = dev_replace->srcdev->devid;
4865 		int index_srcdev = 0;
4866 		int found = 0;
4867 		u64 physical_of_found = 0;
4868 
4869 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4870 			     logical, &tmp_length, &tmp_bbio, 0, NULL);
4871 		if (ret) {
4872 			WARN_ON(tmp_bbio != NULL);
4873 			goto out;
4874 		}
4875 
4876 		tmp_num_stripes = tmp_bbio->num_stripes;
4877 		if (mirror_num > tmp_num_stripes) {
4878 			/*
4879 			 * REQ_GET_READ_MIRRORS does not contain this
4880 			 * mirror, that means that the requested area
4881 			 * is not left of the left cursor
4882 			 */
4883 			ret = -EIO;
4884 			kfree(tmp_bbio);
4885 			goto out;
4886 		}
4887 
4888 		/*
4889 		 * process the rest of the function using the mirror_num
4890 		 * of the source drive. Therefore look it up first.
4891 		 * At the end, patch the device pointer to the one of the
4892 		 * target drive.
4893 		 */
4894 		for (i = 0; i < tmp_num_stripes; i++) {
4895 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4896 				/*
4897 				 * In case of DUP, in order to keep it
4898 				 * simple, only add the mirror with the
4899 				 * lowest physical address
4900 				 */
4901 				if (found &&
4902 				    physical_of_found <=
4903 				     tmp_bbio->stripes[i].physical)
4904 					continue;
4905 				index_srcdev = i;
4906 				found = 1;
4907 				physical_of_found =
4908 					tmp_bbio->stripes[i].physical;
4909 			}
4910 		}
4911 
4912 		if (found) {
4913 			mirror_num = index_srcdev + 1;
4914 			patch_the_first_stripe_for_dev_replace = 1;
4915 			physical_to_patch_in_first_stripe = physical_of_found;
4916 		} else {
4917 			WARN_ON(1);
4918 			ret = -EIO;
4919 			kfree(tmp_bbio);
4920 			goto out;
4921 		}
4922 
4923 		kfree(tmp_bbio);
4924 	} else if (mirror_num > map->num_stripes) {
4925 		mirror_num = 0;
4926 	}
4927 
4928 	num_stripes = 1;
4929 	stripe_index = 0;
4930 	stripe_nr_orig = stripe_nr;
4931 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4932 	do_div(stripe_nr_end, map->stripe_len);
4933 	stripe_end_offset = stripe_nr_end * map->stripe_len -
4934 			    (offset + *length);
4935 
4936 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4937 		if (rw & REQ_DISCARD)
4938 			num_stripes = min_t(u64, map->num_stripes,
4939 					    stripe_nr_end - stripe_nr_orig);
4940 		stripe_index = do_div(stripe_nr, map->num_stripes);
4941 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4942 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4943 			num_stripes = map->num_stripes;
4944 		else if (mirror_num)
4945 			stripe_index = mirror_num - 1;
4946 		else {
4947 			stripe_index = find_live_mirror(fs_info, map, 0,
4948 					    map->num_stripes,
4949 					    current->pid % map->num_stripes,
4950 					    dev_replace_is_ongoing);
4951 			mirror_num = stripe_index + 1;
4952 		}
4953 
4954 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4955 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4956 			num_stripes = map->num_stripes;
4957 		} else if (mirror_num) {
4958 			stripe_index = mirror_num - 1;
4959 		} else {
4960 			mirror_num = 1;
4961 		}
4962 
4963 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4964 		int factor = map->num_stripes / map->sub_stripes;
4965 
4966 		stripe_index = do_div(stripe_nr, factor);
4967 		stripe_index *= map->sub_stripes;
4968 
4969 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4970 			num_stripes = map->sub_stripes;
4971 		else if (rw & REQ_DISCARD)
4972 			num_stripes = min_t(u64, map->sub_stripes *
4973 					    (stripe_nr_end - stripe_nr_orig),
4974 					    map->num_stripes);
4975 		else if (mirror_num)
4976 			stripe_index += mirror_num - 1;
4977 		else {
4978 			int old_stripe_index = stripe_index;
4979 			stripe_index = find_live_mirror(fs_info, map,
4980 					      stripe_index,
4981 					      map->sub_stripes, stripe_index +
4982 					      current->pid % map->sub_stripes,
4983 					      dev_replace_is_ongoing);
4984 			mirror_num = stripe_index - old_stripe_index + 1;
4985 		}
4986 
4987 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4988 				BTRFS_BLOCK_GROUP_RAID6)) {
4989 		u64 tmp;
4990 
4991 		if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4992 		    && raid_map_ret) {
4993 			int i, rot;
4994 
4995 			/* push stripe_nr back to the start of the full stripe */
4996 			stripe_nr = raid56_full_stripe_start;
4997 			do_div(stripe_nr, stripe_len);
4998 
4999 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5000 
5001 			/* RAID[56] write or recovery. Return all stripes */
5002 			num_stripes = map->num_stripes;
5003 			max_errors = nr_parity_stripes(map);
5004 
5005 			raid_map = kmalloc_array(num_stripes, sizeof(u64),
5006 					   GFP_NOFS);
5007 			if (!raid_map) {
5008 				ret = -ENOMEM;
5009 				goto out;
5010 			}
5011 
5012 			/* Work out the disk rotation on this stripe-set */
5013 			tmp = stripe_nr;
5014 			rot = do_div(tmp, num_stripes);
5015 
5016 			/* Fill in the logical address of each stripe */
5017 			tmp = stripe_nr * nr_data_stripes(map);
5018 			for (i = 0; i < nr_data_stripes(map); i++)
5019 				raid_map[(i+rot) % num_stripes] =
5020 					em->start + (tmp + i) * map->stripe_len;
5021 
5022 			raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5023 			if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5024 				raid_map[(i+rot+1) % num_stripes] =
5025 					RAID6_Q_STRIPE;
5026 
5027 			*length = map->stripe_len;
5028 			stripe_index = 0;
5029 			stripe_offset = 0;
5030 		} else {
5031 			/*
5032 			 * Mirror #0 or #1 means the original data block.
5033 			 * Mirror #2 is RAID5 parity block.
5034 			 * Mirror #3 is RAID6 Q block.
5035 			 */
5036 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5037 			if (mirror_num > 1)
5038 				stripe_index = nr_data_stripes(map) +
5039 						mirror_num - 2;
5040 
5041 			/* We distribute the parity blocks across stripes */
5042 			tmp = stripe_nr + stripe_index;
5043 			stripe_index = do_div(tmp, map->num_stripes);
5044 		}
5045 	} else {
5046 		/*
5047 		 * after this do_div call, stripe_nr is the number of stripes
5048 		 * on this device we have to walk to find the data, and
5049 		 * stripe_index is the number of our device in the stripe array
5050 		 */
5051 		stripe_index = do_div(stripe_nr, map->num_stripes);
5052 		mirror_num = stripe_index + 1;
5053 	}
5054 	BUG_ON(stripe_index >= map->num_stripes);
5055 
5056 	num_alloc_stripes = num_stripes;
5057 	if (dev_replace_is_ongoing) {
5058 		if (rw & (REQ_WRITE | REQ_DISCARD))
5059 			num_alloc_stripes <<= 1;
5060 		if (rw & REQ_GET_READ_MIRRORS)
5061 			num_alloc_stripes++;
5062 	}
5063 	bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
5064 	if (!bbio) {
5065 		kfree(raid_map);
5066 		ret = -ENOMEM;
5067 		goto out;
5068 	}
5069 	atomic_set(&bbio->error, 0);
5070 
5071 	if (rw & REQ_DISCARD) {
5072 		int factor = 0;
5073 		int sub_stripes = 0;
5074 		u64 stripes_per_dev = 0;
5075 		u32 remaining_stripes = 0;
5076 		u32 last_stripe = 0;
5077 
5078 		if (map->type &
5079 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5080 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5081 				sub_stripes = 1;
5082 			else
5083 				sub_stripes = map->sub_stripes;
5084 
5085 			factor = map->num_stripes / sub_stripes;
5086 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5087 						      stripe_nr_orig,
5088 						      factor,
5089 						      &remaining_stripes);
5090 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5091 			last_stripe *= sub_stripes;
5092 		}
5093 
5094 		for (i = 0; i < num_stripes; i++) {
5095 			bbio->stripes[i].physical =
5096 				map->stripes[stripe_index].physical +
5097 				stripe_offset + stripe_nr * map->stripe_len;
5098 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5099 
5100 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5101 					 BTRFS_BLOCK_GROUP_RAID10)) {
5102 				bbio->stripes[i].length = stripes_per_dev *
5103 							  map->stripe_len;
5104 
5105 				if (i / sub_stripes < remaining_stripes)
5106 					bbio->stripes[i].length +=
5107 						map->stripe_len;
5108 
5109 				/*
5110 				 * Special for the first stripe and
5111 				 * the last stripe:
5112 				 *
5113 				 * |-------|...|-------|
5114 				 *     |----------|
5115 				 *    off     end_off
5116 				 */
5117 				if (i < sub_stripes)
5118 					bbio->stripes[i].length -=
5119 						stripe_offset;
5120 
5121 				if (stripe_index >= last_stripe &&
5122 				    stripe_index <= (last_stripe +
5123 						     sub_stripes - 1))
5124 					bbio->stripes[i].length -=
5125 						stripe_end_offset;
5126 
5127 				if (i == sub_stripes - 1)
5128 					stripe_offset = 0;
5129 			} else
5130 				bbio->stripes[i].length = *length;
5131 
5132 			stripe_index++;
5133 			if (stripe_index == map->num_stripes) {
5134 				/* This could only happen for RAID0/10 */
5135 				stripe_index = 0;
5136 				stripe_nr++;
5137 			}
5138 		}
5139 	} else {
5140 		for (i = 0; i < num_stripes; i++) {
5141 			bbio->stripes[i].physical =
5142 				map->stripes[stripe_index].physical +
5143 				stripe_offset +
5144 				stripe_nr * map->stripe_len;
5145 			bbio->stripes[i].dev =
5146 				map->stripes[stripe_index].dev;
5147 			stripe_index++;
5148 		}
5149 	}
5150 
5151 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5152 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5153 				 BTRFS_BLOCK_GROUP_RAID10 |
5154 				 BTRFS_BLOCK_GROUP_RAID5 |
5155 				 BTRFS_BLOCK_GROUP_DUP)) {
5156 			max_errors = 1;
5157 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5158 			max_errors = 2;
5159 		}
5160 	}
5161 
5162 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5163 	    dev_replace->tgtdev != NULL) {
5164 		int index_where_to_add;
5165 		u64 srcdev_devid = dev_replace->srcdev->devid;
5166 
5167 		/*
5168 		 * duplicate the write operations while the dev replace
5169 		 * procedure is running. Since the copying of the old disk
5170 		 * to the new disk takes place at run time while the
5171 		 * filesystem is mounted writable, the regular write
5172 		 * operations to the old disk have to be duplicated to go
5173 		 * to the new disk as well.
5174 		 * Note that device->missing is handled by the caller, and
5175 		 * that the write to the old disk is already set up in the
5176 		 * stripes array.
5177 		 */
5178 		index_where_to_add = num_stripes;
5179 		for (i = 0; i < num_stripes; i++) {
5180 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5181 				/* write to new disk, too */
5182 				struct btrfs_bio_stripe *new =
5183 					bbio->stripes + index_where_to_add;
5184 				struct btrfs_bio_stripe *old =
5185 					bbio->stripes + i;
5186 
5187 				new->physical = old->physical;
5188 				new->length = old->length;
5189 				new->dev = dev_replace->tgtdev;
5190 				index_where_to_add++;
5191 				max_errors++;
5192 			}
5193 		}
5194 		num_stripes = index_where_to_add;
5195 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5196 		   dev_replace->tgtdev != NULL) {
5197 		u64 srcdev_devid = dev_replace->srcdev->devid;
5198 		int index_srcdev = 0;
5199 		int found = 0;
5200 		u64 physical_of_found = 0;
5201 
5202 		/*
5203 		 * During the dev-replace procedure, the target drive can
5204 		 * also be used to read data in case it is needed to repair
5205 		 * a corrupt block elsewhere. This is possible if the
5206 		 * requested area is left of the left cursor. In this area,
5207 		 * the target drive is a full copy of the source drive.
5208 		 */
5209 		for (i = 0; i < num_stripes; i++) {
5210 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5211 				/*
5212 				 * In case of DUP, in order to keep it
5213 				 * simple, only add the mirror with the
5214 				 * lowest physical address
5215 				 */
5216 				if (found &&
5217 				    physical_of_found <=
5218 				     bbio->stripes[i].physical)
5219 					continue;
5220 				index_srcdev = i;
5221 				found = 1;
5222 				physical_of_found = bbio->stripes[i].physical;
5223 			}
5224 		}
5225 		if (found) {
5226 			u64 length = map->stripe_len;
5227 
5228 			if (physical_of_found + length <=
5229 			    dev_replace->cursor_left) {
5230 				struct btrfs_bio_stripe *tgtdev_stripe =
5231 					bbio->stripes + num_stripes;
5232 
5233 				tgtdev_stripe->physical = physical_of_found;
5234 				tgtdev_stripe->length =
5235 					bbio->stripes[index_srcdev].length;
5236 				tgtdev_stripe->dev = dev_replace->tgtdev;
5237 
5238 				num_stripes++;
5239 			}
5240 		}
5241 	}
5242 
5243 	*bbio_ret = bbio;
5244 	bbio->num_stripes = num_stripes;
5245 	bbio->max_errors = max_errors;
5246 	bbio->mirror_num = mirror_num;
5247 
5248 	/*
5249 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5250 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5251 	 * available as a mirror
5252 	 */
5253 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5254 		WARN_ON(num_stripes > 1);
5255 		bbio->stripes[0].dev = dev_replace->tgtdev;
5256 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5257 		bbio->mirror_num = map->num_stripes + 1;
5258 	}
5259 	if (raid_map) {
5260 		sort_parity_stripes(bbio, raid_map);
5261 		*raid_map_ret = raid_map;
5262 	}
5263 out:
5264 	if (dev_replace_is_ongoing)
5265 		btrfs_dev_replace_unlock(dev_replace);
5266 	free_extent_map(em);
5267 	return ret;
5268 }
5269 
5270 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5271 		      u64 logical, u64 *length,
5272 		      struct btrfs_bio **bbio_ret, int mirror_num)
5273 {
5274 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5275 				 mirror_num, NULL);
5276 }
5277 
5278 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5279 		     u64 chunk_start, u64 physical, u64 devid,
5280 		     u64 **logical, int *naddrs, int *stripe_len)
5281 {
5282 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5283 	struct extent_map *em;
5284 	struct map_lookup *map;
5285 	u64 *buf;
5286 	u64 bytenr;
5287 	u64 length;
5288 	u64 stripe_nr;
5289 	u64 rmap_len;
5290 	int i, j, nr = 0;
5291 
5292 	read_lock(&em_tree->lock);
5293 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5294 	read_unlock(&em_tree->lock);
5295 
5296 	if (!em) {
5297 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5298 		       chunk_start);
5299 		return -EIO;
5300 	}
5301 
5302 	if (em->start != chunk_start) {
5303 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5304 		       em->start, chunk_start);
5305 		free_extent_map(em);
5306 		return -EIO;
5307 	}
5308 	map = (struct map_lookup *)em->bdev;
5309 
5310 	length = em->len;
5311 	rmap_len = map->stripe_len;
5312 
5313 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5314 		do_div(length, map->num_stripes / map->sub_stripes);
5315 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5316 		do_div(length, map->num_stripes);
5317 	else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5318 			      BTRFS_BLOCK_GROUP_RAID6)) {
5319 		do_div(length, nr_data_stripes(map));
5320 		rmap_len = map->stripe_len * nr_data_stripes(map);
5321 	}
5322 
5323 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5324 	BUG_ON(!buf); /* -ENOMEM */
5325 
5326 	for (i = 0; i < map->num_stripes; i++) {
5327 		if (devid && map->stripes[i].dev->devid != devid)
5328 			continue;
5329 		if (map->stripes[i].physical > physical ||
5330 		    map->stripes[i].physical + length <= physical)
5331 			continue;
5332 
5333 		stripe_nr = physical - map->stripes[i].physical;
5334 		do_div(stripe_nr, map->stripe_len);
5335 
5336 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5337 			stripe_nr = stripe_nr * map->num_stripes + i;
5338 			do_div(stripe_nr, map->sub_stripes);
5339 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5340 			stripe_nr = stripe_nr * map->num_stripes + i;
5341 		} /* else if RAID[56], multiply by nr_data_stripes().
5342 		   * Alternatively, just use rmap_len below instead of
5343 		   * map->stripe_len */
5344 
5345 		bytenr = chunk_start + stripe_nr * rmap_len;
5346 		WARN_ON(nr >= map->num_stripes);
5347 		for (j = 0; j < nr; j++) {
5348 			if (buf[j] == bytenr)
5349 				break;
5350 		}
5351 		if (j == nr) {
5352 			WARN_ON(nr >= map->num_stripes);
5353 			buf[nr++] = bytenr;
5354 		}
5355 	}
5356 
5357 	*logical = buf;
5358 	*naddrs = nr;
5359 	*stripe_len = rmap_len;
5360 
5361 	free_extent_map(em);
5362 	return 0;
5363 }
5364 
5365 static void btrfs_end_bio(struct bio *bio, int err)
5366 {
5367 	struct btrfs_bio *bbio = bio->bi_private;
5368 	struct btrfs_device *dev = bbio->stripes[0].dev;
5369 	int is_orig_bio = 0;
5370 
5371 	if (err) {
5372 		atomic_inc(&bbio->error);
5373 		if (err == -EIO || err == -EREMOTEIO) {
5374 			unsigned int stripe_index =
5375 				btrfs_io_bio(bio)->stripe_index;
5376 
5377 			BUG_ON(stripe_index >= bbio->num_stripes);
5378 			dev = bbio->stripes[stripe_index].dev;
5379 			if (dev->bdev) {
5380 				if (bio->bi_rw & WRITE)
5381 					btrfs_dev_stat_inc(dev,
5382 						BTRFS_DEV_STAT_WRITE_ERRS);
5383 				else
5384 					btrfs_dev_stat_inc(dev,
5385 						BTRFS_DEV_STAT_READ_ERRS);
5386 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5387 					btrfs_dev_stat_inc(dev,
5388 						BTRFS_DEV_STAT_FLUSH_ERRS);
5389 				btrfs_dev_stat_print_on_error(dev);
5390 			}
5391 		}
5392 	}
5393 
5394 	if (bio == bbio->orig_bio)
5395 		is_orig_bio = 1;
5396 
5397 	btrfs_bio_counter_dec(bbio->fs_info);
5398 
5399 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5400 		if (!is_orig_bio) {
5401 			bio_put(bio);
5402 			bio = bbio->orig_bio;
5403 		}
5404 
5405  		/*
5406 		 * We have original bio now. So increment bi_remaining to
5407 		 * account for it in endio
5408 		 */
5409 		atomic_inc(&bio->bi_remaining);
5410 
5411 		bio->bi_private = bbio->private;
5412 		bio->bi_end_io = bbio->end_io;
5413 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5414 		/* only send an error to the higher layers if it is
5415 		 * beyond the tolerance of the btrfs bio
5416 		 */
5417 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5418 			err = -EIO;
5419 		} else {
5420 			/*
5421 			 * this bio is actually up to date, we didn't
5422 			 * go over the max number of errors
5423 			 */
5424 			set_bit(BIO_UPTODATE, &bio->bi_flags);
5425 			err = 0;
5426 		}
5427 		kfree(bbio);
5428 
5429 		bio_endio(bio, err);
5430 	} else if (!is_orig_bio) {
5431 		bio_put(bio);
5432 	}
5433 }
5434 
5435 /*
5436  * see run_scheduled_bios for a description of why bios are collected for
5437  * async submit.
5438  *
5439  * This will add one bio to the pending list for a device and make sure
5440  * the work struct is scheduled.
5441  */
5442 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5443 					struct btrfs_device *device,
5444 					int rw, struct bio *bio)
5445 {
5446 	int should_queue = 1;
5447 	struct btrfs_pending_bios *pending_bios;
5448 
5449 	if (device->missing || !device->bdev) {
5450 		bio_endio(bio, -EIO);
5451 		return;
5452 	}
5453 
5454 	/* don't bother with additional async steps for reads, right now */
5455 	if (!(rw & REQ_WRITE)) {
5456 		bio_get(bio);
5457 		btrfsic_submit_bio(rw, bio);
5458 		bio_put(bio);
5459 		return;
5460 	}
5461 
5462 	/*
5463 	 * nr_async_bios allows us to reliably return congestion to the
5464 	 * higher layers.  Otherwise, the async bio makes it appear we have
5465 	 * made progress against dirty pages when we've really just put it
5466 	 * on a queue for later
5467 	 */
5468 	atomic_inc(&root->fs_info->nr_async_bios);
5469 	WARN_ON(bio->bi_next);
5470 	bio->bi_next = NULL;
5471 	bio->bi_rw |= rw;
5472 
5473 	spin_lock(&device->io_lock);
5474 	if (bio->bi_rw & REQ_SYNC)
5475 		pending_bios = &device->pending_sync_bios;
5476 	else
5477 		pending_bios = &device->pending_bios;
5478 
5479 	if (pending_bios->tail)
5480 		pending_bios->tail->bi_next = bio;
5481 
5482 	pending_bios->tail = bio;
5483 	if (!pending_bios->head)
5484 		pending_bios->head = bio;
5485 	if (device->running_pending)
5486 		should_queue = 0;
5487 
5488 	spin_unlock(&device->io_lock);
5489 
5490 	if (should_queue)
5491 		btrfs_queue_work(root->fs_info->submit_workers,
5492 				 &device->work);
5493 }
5494 
5495 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5496 		       sector_t sector)
5497 {
5498 	struct bio_vec *prev;
5499 	struct request_queue *q = bdev_get_queue(bdev);
5500 	unsigned int max_sectors = queue_max_sectors(q);
5501 	struct bvec_merge_data bvm = {
5502 		.bi_bdev = bdev,
5503 		.bi_sector = sector,
5504 		.bi_rw = bio->bi_rw,
5505 	};
5506 
5507 	if (WARN_ON(bio->bi_vcnt == 0))
5508 		return 1;
5509 
5510 	prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5511 	if (bio_sectors(bio) > max_sectors)
5512 		return 0;
5513 
5514 	if (!q->merge_bvec_fn)
5515 		return 1;
5516 
5517 	bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5518 	if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5519 		return 0;
5520 	return 1;
5521 }
5522 
5523 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5524 			      struct bio *bio, u64 physical, int dev_nr,
5525 			      int rw, int async)
5526 {
5527 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5528 
5529 	bio->bi_private = bbio;
5530 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5531 	bio->bi_end_io = btrfs_end_bio;
5532 	bio->bi_iter.bi_sector = physical >> 9;
5533 #ifdef DEBUG
5534 	{
5535 		struct rcu_string *name;
5536 
5537 		rcu_read_lock();
5538 		name = rcu_dereference(dev->name);
5539 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5540 			 "(%s id %llu), size=%u\n", rw,
5541 			 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5542 			 name->str, dev->devid, bio->bi_size);
5543 		rcu_read_unlock();
5544 	}
5545 #endif
5546 	bio->bi_bdev = dev->bdev;
5547 
5548 	btrfs_bio_counter_inc_noblocked(root->fs_info);
5549 
5550 	if (async)
5551 		btrfs_schedule_bio(root, dev, rw, bio);
5552 	else
5553 		btrfsic_submit_bio(rw, bio);
5554 }
5555 
5556 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5557 			      struct bio *first_bio, struct btrfs_device *dev,
5558 			      int dev_nr, int rw, int async)
5559 {
5560 	struct bio_vec *bvec = first_bio->bi_io_vec;
5561 	struct bio *bio;
5562 	int nr_vecs = bio_get_nr_vecs(dev->bdev);
5563 	u64 physical = bbio->stripes[dev_nr].physical;
5564 
5565 again:
5566 	bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5567 	if (!bio)
5568 		return -ENOMEM;
5569 
5570 	while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5571 		if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5572 				 bvec->bv_offset) < bvec->bv_len) {
5573 			u64 len = bio->bi_iter.bi_size;
5574 
5575 			atomic_inc(&bbio->stripes_pending);
5576 			submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5577 					  rw, async);
5578 			physical += len;
5579 			goto again;
5580 		}
5581 		bvec++;
5582 	}
5583 
5584 	submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5585 	return 0;
5586 }
5587 
5588 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5589 {
5590 	atomic_inc(&bbio->error);
5591 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5592 		bio->bi_private = bbio->private;
5593 		bio->bi_end_io = bbio->end_io;
5594 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5595 		bio->bi_iter.bi_sector = logical >> 9;
5596 		kfree(bbio);
5597 		bio_endio(bio, -EIO);
5598 	}
5599 }
5600 
5601 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5602 		  int mirror_num, int async_submit)
5603 {
5604 	struct btrfs_device *dev;
5605 	struct bio *first_bio = bio;
5606 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5607 	u64 length = 0;
5608 	u64 map_length;
5609 	u64 *raid_map = NULL;
5610 	int ret;
5611 	int dev_nr = 0;
5612 	int total_devs = 1;
5613 	struct btrfs_bio *bbio = NULL;
5614 
5615 	length = bio->bi_iter.bi_size;
5616 	map_length = length;
5617 
5618 	btrfs_bio_counter_inc_blocked(root->fs_info);
5619 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5620 			      mirror_num, &raid_map);
5621 	if (ret) {
5622 		btrfs_bio_counter_dec(root->fs_info);
5623 		return ret;
5624 	}
5625 
5626 	total_devs = bbio->num_stripes;
5627 	bbio->orig_bio = first_bio;
5628 	bbio->private = first_bio->bi_private;
5629 	bbio->end_io = first_bio->bi_end_io;
5630 	bbio->fs_info = root->fs_info;
5631 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5632 
5633 	if (raid_map) {
5634 		/* In this case, map_length has been set to the length of
5635 		   a single stripe; not the whole write */
5636 		if (rw & WRITE) {
5637 			ret = raid56_parity_write(root, bio, bbio,
5638 						  raid_map, map_length);
5639 		} else {
5640 			ret = raid56_parity_recover(root, bio, bbio,
5641 						    raid_map, map_length,
5642 						    mirror_num);
5643 		}
5644 		/*
5645 		 * FIXME, replace dosen't support raid56 yet, please fix
5646 		 * it in the future.
5647 		 */
5648 		btrfs_bio_counter_dec(root->fs_info);
5649 		return ret;
5650 	}
5651 
5652 	if (map_length < length) {
5653 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5654 			logical, length, map_length);
5655 		BUG();
5656 	}
5657 
5658 	while (dev_nr < total_devs) {
5659 		dev = bbio->stripes[dev_nr].dev;
5660 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5661 			bbio_error(bbio, first_bio, logical);
5662 			dev_nr++;
5663 			continue;
5664 		}
5665 
5666 		/*
5667 		 * Check and see if we're ok with this bio based on it's size
5668 		 * and offset with the given device.
5669 		 */
5670 		if (!bio_size_ok(dev->bdev, first_bio,
5671 				 bbio->stripes[dev_nr].physical >> 9)) {
5672 			ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5673 						 dev_nr, rw, async_submit);
5674 			BUG_ON(ret);
5675 			dev_nr++;
5676 			continue;
5677 		}
5678 
5679 		if (dev_nr < total_devs - 1) {
5680 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5681 			BUG_ON(!bio); /* -ENOMEM */
5682 		} else {
5683 			bio = first_bio;
5684 		}
5685 
5686 		submit_stripe_bio(root, bbio, bio,
5687 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
5688 				  async_submit);
5689 		dev_nr++;
5690 	}
5691 	btrfs_bio_counter_dec(root->fs_info);
5692 	return 0;
5693 }
5694 
5695 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5696 				       u8 *uuid, u8 *fsid)
5697 {
5698 	struct btrfs_device *device;
5699 	struct btrfs_fs_devices *cur_devices;
5700 
5701 	cur_devices = fs_info->fs_devices;
5702 	while (cur_devices) {
5703 		if (!fsid ||
5704 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5705 			device = __find_device(&cur_devices->devices,
5706 					       devid, uuid);
5707 			if (device)
5708 				return device;
5709 		}
5710 		cur_devices = cur_devices->seed;
5711 	}
5712 	return NULL;
5713 }
5714 
5715 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5716 					    u64 devid, u8 *dev_uuid)
5717 {
5718 	struct btrfs_device *device;
5719 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5720 
5721 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5722 	if (IS_ERR(device))
5723 		return NULL;
5724 
5725 	list_add(&device->dev_list, &fs_devices->devices);
5726 	device->fs_devices = fs_devices;
5727 	fs_devices->num_devices++;
5728 
5729 	device->missing = 1;
5730 	fs_devices->missing_devices++;
5731 
5732 	return device;
5733 }
5734 
5735 /**
5736  * btrfs_alloc_device - allocate struct btrfs_device
5737  * @fs_info:	used only for generating a new devid, can be NULL if
5738  *		devid is provided (i.e. @devid != NULL).
5739  * @devid:	a pointer to devid for this device.  If NULL a new devid
5740  *		is generated.
5741  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
5742  *		is generated.
5743  *
5744  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5745  * on error.  Returned struct is not linked onto any lists and can be
5746  * destroyed with kfree() right away.
5747  */
5748 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5749 					const u64 *devid,
5750 					const u8 *uuid)
5751 {
5752 	struct btrfs_device *dev;
5753 	u64 tmp;
5754 
5755 	if (WARN_ON(!devid && !fs_info))
5756 		return ERR_PTR(-EINVAL);
5757 
5758 	dev = __alloc_device();
5759 	if (IS_ERR(dev))
5760 		return dev;
5761 
5762 	if (devid)
5763 		tmp = *devid;
5764 	else {
5765 		int ret;
5766 
5767 		ret = find_next_devid(fs_info, &tmp);
5768 		if (ret) {
5769 			kfree(dev);
5770 			return ERR_PTR(ret);
5771 		}
5772 	}
5773 	dev->devid = tmp;
5774 
5775 	if (uuid)
5776 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5777 	else
5778 		generate_random_uuid(dev->uuid);
5779 
5780 	btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
5781 
5782 	return dev;
5783 }
5784 
5785 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5786 			  struct extent_buffer *leaf,
5787 			  struct btrfs_chunk *chunk)
5788 {
5789 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5790 	struct map_lookup *map;
5791 	struct extent_map *em;
5792 	u64 logical;
5793 	u64 length;
5794 	u64 devid;
5795 	u8 uuid[BTRFS_UUID_SIZE];
5796 	int num_stripes;
5797 	int ret;
5798 	int i;
5799 
5800 	logical = key->offset;
5801 	length = btrfs_chunk_length(leaf, chunk);
5802 
5803 	read_lock(&map_tree->map_tree.lock);
5804 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5805 	read_unlock(&map_tree->map_tree.lock);
5806 
5807 	/* already mapped? */
5808 	if (em && em->start <= logical && em->start + em->len > logical) {
5809 		free_extent_map(em);
5810 		return 0;
5811 	} else if (em) {
5812 		free_extent_map(em);
5813 	}
5814 
5815 	em = alloc_extent_map();
5816 	if (!em)
5817 		return -ENOMEM;
5818 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5819 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5820 	if (!map) {
5821 		free_extent_map(em);
5822 		return -ENOMEM;
5823 	}
5824 
5825 	em->bdev = (struct block_device *)map;
5826 	em->start = logical;
5827 	em->len = length;
5828 	em->orig_start = 0;
5829 	em->block_start = 0;
5830 	em->block_len = em->len;
5831 
5832 	map->num_stripes = num_stripes;
5833 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
5834 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
5835 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5836 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5837 	map->type = btrfs_chunk_type(leaf, chunk);
5838 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5839 	for (i = 0; i < num_stripes; i++) {
5840 		map->stripes[i].physical =
5841 			btrfs_stripe_offset_nr(leaf, chunk, i);
5842 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5843 		read_extent_buffer(leaf, uuid, (unsigned long)
5844 				   btrfs_stripe_dev_uuid_nr(chunk, i),
5845 				   BTRFS_UUID_SIZE);
5846 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5847 							uuid, NULL);
5848 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5849 			kfree(map);
5850 			free_extent_map(em);
5851 			return -EIO;
5852 		}
5853 		if (!map->stripes[i].dev) {
5854 			map->stripes[i].dev =
5855 				add_missing_dev(root, devid, uuid);
5856 			if (!map->stripes[i].dev) {
5857 				kfree(map);
5858 				free_extent_map(em);
5859 				return -EIO;
5860 			}
5861 		}
5862 		map->stripes[i].dev->in_fs_metadata = 1;
5863 	}
5864 
5865 	write_lock(&map_tree->map_tree.lock);
5866 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5867 	write_unlock(&map_tree->map_tree.lock);
5868 	BUG_ON(ret); /* Tree corruption */
5869 	free_extent_map(em);
5870 
5871 	return 0;
5872 }
5873 
5874 static void fill_device_from_item(struct extent_buffer *leaf,
5875 				 struct btrfs_dev_item *dev_item,
5876 				 struct btrfs_device *device)
5877 {
5878 	unsigned long ptr;
5879 
5880 	device->devid = btrfs_device_id(leaf, dev_item);
5881 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5882 	device->total_bytes = device->disk_total_bytes;
5883 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5884 	device->type = btrfs_device_type(leaf, dev_item);
5885 	device->io_align = btrfs_device_io_align(leaf, dev_item);
5886 	device->io_width = btrfs_device_io_width(leaf, dev_item);
5887 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5888 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5889 	device->is_tgtdev_for_dev_replace = 0;
5890 
5891 	ptr = btrfs_device_uuid(dev_item);
5892 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5893 }
5894 
5895 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5896 {
5897 	struct btrfs_fs_devices *fs_devices;
5898 	int ret;
5899 
5900 	BUG_ON(!mutex_is_locked(&uuid_mutex));
5901 
5902 	fs_devices = root->fs_info->fs_devices->seed;
5903 	while (fs_devices) {
5904 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5905 			ret = 0;
5906 			goto out;
5907 		}
5908 		fs_devices = fs_devices->seed;
5909 	}
5910 
5911 	fs_devices = find_fsid(fsid);
5912 	if (!fs_devices) {
5913 		ret = -ENOENT;
5914 		goto out;
5915 	}
5916 
5917 	fs_devices = clone_fs_devices(fs_devices);
5918 	if (IS_ERR(fs_devices)) {
5919 		ret = PTR_ERR(fs_devices);
5920 		goto out;
5921 	}
5922 
5923 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5924 				   root->fs_info->bdev_holder);
5925 	if (ret) {
5926 		free_fs_devices(fs_devices);
5927 		goto out;
5928 	}
5929 
5930 	if (!fs_devices->seeding) {
5931 		__btrfs_close_devices(fs_devices);
5932 		free_fs_devices(fs_devices);
5933 		ret = -EINVAL;
5934 		goto out;
5935 	}
5936 
5937 	fs_devices->seed = root->fs_info->fs_devices->seed;
5938 	root->fs_info->fs_devices->seed = fs_devices;
5939 out:
5940 	return ret;
5941 }
5942 
5943 static int read_one_dev(struct btrfs_root *root,
5944 			struct extent_buffer *leaf,
5945 			struct btrfs_dev_item *dev_item)
5946 {
5947 	struct btrfs_device *device;
5948 	u64 devid;
5949 	int ret;
5950 	u8 fs_uuid[BTRFS_UUID_SIZE];
5951 	u8 dev_uuid[BTRFS_UUID_SIZE];
5952 
5953 	devid = btrfs_device_id(leaf, dev_item);
5954 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
5955 			   BTRFS_UUID_SIZE);
5956 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
5957 			   BTRFS_UUID_SIZE);
5958 
5959 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5960 		ret = open_seed_devices(root, fs_uuid);
5961 		if (ret && !btrfs_test_opt(root, DEGRADED))
5962 			return ret;
5963 	}
5964 
5965 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5966 	if (!device || !device->bdev) {
5967 		if (!btrfs_test_opt(root, DEGRADED))
5968 			return -EIO;
5969 
5970 		if (!device) {
5971 			btrfs_warn(root->fs_info, "devid %llu missing", devid);
5972 			device = add_missing_dev(root, devid, dev_uuid);
5973 			if (!device)
5974 				return -ENOMEM;
5975 		} else if (!device->missing) {
5976 			/*
5977 			 * this happens when a device that was properly setup
5978 			 * in the device info lists suddenly goes bad.
5979 			 * device->bdev is NULL, and so we have to set
5980 			 * device->missing to one here
5981 			 */
5982 			root->fs_info->fs_devices->missing_devices++;
5983 			device->missing = 1;
5984 		}
5985 	}
5986 
5987 	if (device->fs_devices != root->fs_info->fs_devices) {
5988 		BUG_ON(device->writeable);
5989 		if (device->generation !=
5990 		    btrfs_device_generation(leaf, dev_item))
5991 			return -EINVAL;
5992 	}
5993 
5994 	fill_device_from_item(leaf, dev_item, device);
5995 	device->in_fs_metadata = 1;
5996 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5997 		device->fs_devices->total_rw_bytes += device->total_bytes;
5998 		spin_lock(&root->fs_info->free_chunk_lock);
5999 		root->fs_info->free_chunk_space += device->total_bytes -
6000 			device->bytes_used;
6001 		spin_unlock(&root->fs_info->free_chunk_lock);
6002 	}
6003 	ret = 0;
6004 	return ret;
6005 }
6006 
6007 int btrfs_read_sys_array(struct btrfs_root *root)
6008 {
6009 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6010 	struct extent_buffer *sb;
6011 	struct btrfs_disk_key *disk_key;
6012 	struct btrfs_chunk *chunk;
6013 	u8 *ptr;
6014 	unsigned long sb_ptr;
6015 	int ret = 0;
6016 	u32 num_stripes;
6017 	u32 array_size;
6018 	u32 len = 0;
6019 	u32 cur;
6020 	struct btrfs_key key;
6021 
6022 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
6023 					  BTRFS_SUPER_INFO_SIZE);
6024 	if (!sb)
6025 		return -ENOMEM;
6026 	btrfs_set_buffer_uptodate(sb);
6027 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6028 	/*
6029 	 * The sb extent buffer is artifical and just used to read the system array.
6030 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6031 	 * pages up-to-date when the page is larger: extent does not cover the
6032 	 * whole page and consequently check_page_uptodate does not find all
6033 	 * the page's extents up-to-date (the hole beyond sb),
6034 	 * write_extent_buffer then triggers a WARN_ON.
6035 	 *
6036 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6037 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6038 	 * to silence the warning eg. on PowerPC 64.
6039 	 */
6040 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6041 		SetPageUptodate(sb->pages[0]);
6042 
6043 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6044 	array_size = btrfs_super_sys_array_size(super_copy);
6045 
6046 	ptr = super_copy->sys_chunk_array;
6047 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6048 	cur = 0;
6049 
6050 	while (cur < array_size) {
6051 		disk_key = (struct btrfs_disk_key *)ptr;
6052 		btrfs_disk_key_to_cpu(&key, disk_key);
6053 
6054 		len = sizeof(*disk_key); ptr += len;
6055 		sb_ptr += len;
6056 		cur += len;
6057 
6058 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6059 			chunk = (struct btrfs_chunk *)sb_ptr;
6060 			ret = read_one_chunk(root, &key, sb, chunk);
6061 			if (ret)
6062 				break;
6063 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6064 			len = btrfs_chunk_item_size(num_stripes);
6065 		} else {
6066 			ret = -EIO;
6067 			break;
6068 		}
6069 		ptr += len;
6070 		sb_ptr += len;
6071 		cur += len;
6072 	}
6073 	free_extent_buffer(sb);
6074 	return ret;
6075 }
6076 
6077 int btrfs_read_chunk_tree(struct btrfs_root *root)
6078 {
6079 	struct btrfs_path *path;
6080 	struct extent_buffer *leaf;
6081 	struct btrfs_key key;
6082 	struct btrfs_key found_key;
6083 	int ret;
6084 	int slot;
6085 
6086 	root = root->fs_info->chunk_root;
6087 
6088 	path = btrfs_alloc_path();
6089 	if (!path)
6090 		return -ENOMEM;
6091 
6092 	mutex_lock(&uuid_mutex);
6093 	lock_chunks(root);
6094 
6095 	/*
6096 	 * Read all device items, and then all the chunk items. All
6097 	 * device items are found before any chunk item (their object id
6098 	 * is smaller than the lowest possible object id for a chunk
6099 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6100 	 */
6101 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6102 	key.offset = 0;
6103 	key.type = 0;
6104 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6105 	if (ret < 0)
6106 		goto error;
6107 	while (1) {
6108 		leaf = path->nodes[0];
6109 		slot = path->slots[0];
6110 		if (slot >= btrfs_header_nritems(leaf)) {
6111 			ret = btrfs_next_leaf(root, path);
6112 			if (ret == 0)
6113 				continue;
6114 			if (ret < 0)
6115 				goto error;
6116 			break;
6117 		}
6118 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6119 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6120 			struct btrfs_dev_item *dev_item;
6121 			dev_item = btrfs_item_ptr(leaf, slot,
6122 						  struct btrfs_dev_item);
6123 			ret = read_one_dev(root, leaf, dev_item);
6124 			if (ret)
6125 				goto error;
6126 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6127 			struct btrfs_chunk *chunk;
6128 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6129 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6130 			if (ret)
6131 				goto error;
6132 		}
6133 		path->slots[0]++;
6134 	}
6135 	ret = 0;
6136 error:
6137 	unlock_chunks(root);
6138 	mutex_unlock(&uuid_mutex);
6139 
6140 	btrfs_free_path(path);
6141 	return ret;
6142 }
6143 
6144 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6145 {
6146 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6147 	struct btrfs_device *device;
6148 
6149 	while (fs_devices) {
6150 		mutex_lock(&fs_devices->device_list_mutex);
6151 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6152 			device->dev_root = fs_info->dev_root;
6153 		mutex_unlock(&fs_devices->device_list_mutex);
6154 
6155 		fs_devices = fs_devices->seed;
6156 	}
6157 }
6158 
6159 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6160 {
6161 	int i;
6162 
6163 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6164 		btrfs_dev_stat_reset(dev, i);
6165 }
6166 
6167 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6168 {
6169 	struct btrfs_key key;
6170 	struct btrfs_key found_key;
6171 	struct btrfs_root *dev_root = fs_info->dev_root;
6172 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6173 	struct extent_buffer *eb;
6174 	int slot;
6175 	int ret = 0;
6176 	struct btrfs_device *device;
6177 	struct btrfs_path *path = NULL;
6178 	int i;
6179 
6180 	path = btrfs_alloc_path();
6181 	if (!path) {
6182 		ret = -ENOMEM;
6183 		goto out;
6184 	}
6185 
6186 	mutex_lock(&fs_devices->device_list_mutex);
6187 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6188 		int item_size;
6189 		struct btrfs_dev_stats_item *ptr;
6190 
6191 		key.objectid = 0;
6192 		key.type = BTRFS_DEV_STATS_KEY;
6193 		key.offset = device->devid;
6194 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6195 		if (ret) {
6196 			__btrfs_reset_dev_stats(device);
6197 			device->dev_stats_valid = 1;
6198 			btrfs_release_path(path);
6199 			continue;
6200 		}
6201 		slot = path->slots[0];
6202 		eb = path->nodes[0];
6203 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6204 		item_size = btrfs_item_size_nr(eb, slot);
6205 
6206 		ptr = btrfs_item_ptr(eb, slot,
6207 				     struct btrfs_dev_stats_item);
6208 
6209 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6210 			if (item_size >= (1 + i) * sizeof(__le64))
6211 				btrfs_dev_stat_set(device, i,
6212 					btrfs_dev_stats_value(eb, ptr, i));
6213 			else
6214 				btrfs_dev_stat_reset(device, i);
6215 		}
6216 
6217 		device->dev_stats_valid = 1;
6218 		btrfs_dev_stat_print_on_load(device);
6219 		btrfs_release_path(path);
6220 	}
6221 	mutex_unlock(&fs_devices->device_list_mutex);
6222 
6223 out:
6224 	btrfs_free_path(path);
6225 	return ret < 0 ? ret : 0;
6226 }
6227 
6228 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6229 				struct btrfs_root *dev_root,
6230 				struct btrfs_device *device)
6231 {
6232 	struct btrfs_path *path;
6233 	struct btrfs_key key;
6234 	struct extent_buffer *eb;
6235 	struct btrfs_dev_stats_item *ptr;
6236 	int ret;
6237 	int i;
6238 
6239 	key.objectid = 0;
6240 	key.type = BTRFS_DEV_STATS_KEY;
6241 	key.offset = device->devid;
6242 
6243 	path = btrfs_alloc_path();
6244 	BUG_ON(!path);
6245 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6246 	if (ret < 0) {
6247 		printk_in_rcu(KERN_WARNING "BTRFS: "
6248 			"error %d while searching for dev_stats item for device %s!\n",
6249 			      ret, rcu_str_deref(device->name));
6250 		goto out;
6251 	}
6252 
6253 	if (ret == 0 &&
6254 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6255 		/* need to delete old one and insert a new one */
6256 		ret = btrfs_del_item(trans, dev_root, path);
6257 		if (ret != 0) {
6258 			printk_in_rcu(KERN_WARNING "BTRFS: "
6259 				"delete too small dev_stats item for device %s failed %d!\n",
6260 				      rcu_str_deref(device->name), ret);
6261 			goto out;
6262 		}
6263 		ret = 1;
6264 	}
6265 
6266 	if (ret == 1) {
6267 		/* need to insert a new item */
6268 		btrfs_release_path(path);
6269 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6270 					      &key, sizeof(*ptr));
6271 		if (ret < 0) {
6272 			printk_in_rcu(KERN_WARNING "BTRFS: "
6273 					  "insert dev_stats item for device %s failed %d!\n",
6274 				      rcu_str_deref(device->name), ret);
6275 			goto out;
6276 		}
6277 	}
6278 
6279 	eb = path->nodes[0];
6280 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6281 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6282 		btrfs_set_dev_stats_value(eb, ptr, i,
6283 					  btrfs_dev_stat_read(device, i));
6284 	btrfs_mark_buffer_dirty(eb);
6285 
6286 out:
6287 	btrfs_free_path(path);
6288 	return ret;
6289 }
6290 
6291 /*
6292  * called from commit_transaction. Writes all changed device stats to disk.
6293  */
6294 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6295 			struct btrfs_fs_info *fs_info)
6296 {
6297 	struct btrfs_root *dev_root = fs_info->dev_root;
6298 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6299 	struct btrfs_device *device;
6300 	int ret = 0;
6301 
6302 	mutex_lock(&fs_devices->device_list_mutex);
6303 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6304 		if (!device->dev_stats_valid || !device->dev_stats_dirty)
6305 			continue;
6306 
6307 		ret = update_dev_stat_item(trans, dev_root, device);
6308 		if (!ret)
6309 			device->dev_stats_dirty = 0;
6310 	}
6311 	mutex_unlock(&fs_devices->device_list_mutex);
6312 
6313 	return ret;
6314 }
6315 
6316 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6317 {
6318 	btrfs_dev_stat_inc(dev, index);
6319 	btrfs_dev_stat_print_on_error(dev);
6320 }
6321 
6322 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6323 {
6324 	if (!dev->dev_stats_valid)
6325 		return;
6326 	printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6327 			   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6328 			   rcu_str_deref(dev->name),
6329 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6330 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6331 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6332 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6333 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6334 }
6335 
6336 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6337 {
6338 	int i;
6339 
6340 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6341 		if (btrfs_dev_stat_read(dev, i) != 0)
6342 			break;
6343 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6344 		return; /* all values == 0, suppress message */
6345 
6346 	printk_in_rcu(KERN_INFO "BTRFS: "
6347 		   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6348 	       rcu_str_deref(dev->name),
6349 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6350 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6351 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6352 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6353 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6354 }
6355 
6356 int btrfs_get_dev_stats(struct btrfs_root *root,
6357 			struct btrfs_ioctl_get_dev_stats *stats)
6358 {
6359 	struct btrfs_device *dev;
6360 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6361 	int i;
6362 
6363 	mutex_lock(&fs_devices->device_list_mutex);
6364 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6365 	mutex_unlock(&fs_devices->device_list_mutex);
6366 
6367 	if (!dev) {
6368 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6369 		return -ENODEV;
6370 	} else if (!dev->dev_stats_valid) {
6371 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6372 		return -ENODEV;
6373 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6374 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6375 			if (stats->nr_items > i)
6376 				stats->values[i] =
6377 					btrfs_dev_stat_read_and_reset(dev, i);
6378 			else
6379 				btrfs_dev_stat_reset(dev, i);
6380 		}
6381 	} else {
6382 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6383 			if (stats->nr_items > i)
6384 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6385 	}
6386 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6387 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6388 	return 0;
6389 }
6390 
6391 int btrfs_scratch_superblock(struct btrfs_device *device)
6392 {
6393 	struct buffer_head *bh;
6394 	struct btrfs_super_block *disk_super;
6395 
6396 	bh = btrfs_read_dev_super(device->bdev);
6397 	if (!bh)
6398 		return -EINVAL;
6399 	disk_super = (struct btrfs_super_block *)bh->b_data;
6400 
6401 	memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6402 	set_buffer_dirty(bh);
6403 	sync_dirty_buffer(bh);
6404 	brelse(bh);
6405 
6406 	return 0;
6407 }
6408