xref: /openbmc/linux/fs/btrfs/volumes.c (revision a17922de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/iocontext.h>
12 #include <linux/capability.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kthread.h>
15 #include <linux/raid/pq.h>
16 #include <linux/semaphore.h>
17 #include <linux/uuid.h>
18 #include <linux/list_sort.h>
19 #include <asm/div64.h>
20 #include "ctree.h"
21 #include "extent_map.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "volumes.h"
26 #include "raid56.h"
27 #include "async-thread.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
30 #include "math.h"
31 #include "dev-replace.h"
32 #include "sysfs.h"
33 
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 	[BTRFS_RAID_RAID10] = {
36 		.sub_stripes	= 2,
37 		.dev_stripes	= 1,
38 		.devs_max	= 0,	/* 0 == as many as possible */
39 		.devs_min	= 4,
40 		.tolerated_failures = 1,
41 		.devs_increment	= 2,
42 		.ncopies	= 2,
43 		.raid_name	= "raid10",
44 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
45 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
46 	},
47 	[BTRFS_RAID_RAID1] = {
48 		.sub_stripes	= 1,
49 		.dev_stripes	= 1,
50 		.devs_max	= 2,
51 		.devs_min	= 2,
52 		.tolerated_failures = 1,
53 		.devs_increment	= 2,
54 		.ncopies	= 2,
55 		.raid_name	= "raid1",
56 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
57 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
58 	},
59 	[BTRFS_RAID_DUP] = {
60 		.sub_stripes	= 1,
61 		.dev_stripes	= 2,
62 		.devs_max	= 1,
63 		.devs_min	= 1,
64 		.tolerated_failures = 0,
65 		.devs_increment	= 1,
66 		.ncopies	= 2,
67 		.raid_name	= "dup",
68 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
69 		.mindev_error	= 0,
70 	},
71 	[BTRFS_RAID_RAID0] = {
72 		.sub_stripes	= 1,
73 		.dev_stripes	= 1,
74 		.devs_max	= 0,
75 		.devs_min	= 2,
76 		.tolerated_failures = 0,
77 		.devs_increment	= 1,
78 		.ncopies	= 1,
79 		.raid_name	= "raid0",
80 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
81 		.mindev_error	= 0,
82 	},
83 	[BTRFS_RAID_SINGLE] = {
84 		.sub_stripes	= 1,
85 		.dev_stripes	= 1,
86 		.devs_max	= 1,
87 		.devs_min	= 1,
88 		.tolerated_failures = 0,
89 		.devs_increment	= 1,
90 		.ncopies	= 1,
91 		.raid_name	= "single",
92 		.bg_flag	= 0,
93 		.mindev_error	= 0,
94 	},
95 	[BTRFS_RAID_RAID5] = {
96 		.sub_stripes	= 1,
97 		.dev_stripes	= 1,
98 		.devs_max	= 0,
99 		.devs_min	= 2,
100 		.tolerated_failures = 1,
101 		.devs_increment	= 1,
102 		.ncopies	= 2,
103 		.raid_name	= "raid5",
104 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
105 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
106 	},
107 	[BTRFS_RAID_RAID6] = {
108 		.sub_stripes	= 1,
109 		.dev_stripes	= 1,
110 		.devs_max	= 0,
111 		.devs_min	= 3,
112 		.tolerated_failures = 2,
113 		.devs_increment	= 1,
114 		.ncopies	= 3,
115 		.raid_name	= "raid6",
116 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
117 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
118 	},
119 };
120 
121 const char *get_raid_name(enum btrfs_raid_types type)
122 {
123 	if (type >= BTRFS_NR_RAID_TYPES)
124 		return NULL;
125 
126 	return btrfs_raid_array[type].raid_name;
127 }
128 
129 static int init_first_rw_device(struct btrfs_trans_handle *trans,
130 				struct btrfs_fs_info *fs_info);
131 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
132 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
133 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
134 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
135 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
136 			     enum btrfs_map_op op,
137 			     u64 logical, u64 *length,
138 			     struct btrfs_bio **bbio_ret,
139 			     int mirror_num, int need_raid_map);
140 
141 /*
142  * Device locking
143  * ==============
144  *
145  * There are several mutexes that protect manipulation of devices and low-level
146  * structures like chunks but not block groups, extents or files
147  *
148  * uuid_mutex (global lock)
149  * ------------------------
150  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
151  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
152  * device) or requested by the device= mount option
153  *
154  * the mutex can be very coarse and can cover long-running operations
155  *
156  * protects: updates to fs_devices counters like missing devices, rw devices,
157  * seeding, structure cloning, openning/closing devices at mount/umount time
158  *
159  * global::fs_devs - add, remove, updates to the global list
160  *
161  * does not protect: manipulation of the fs_devices::devices list!
162  *
163  * btrfs_device::name - renames (write side), read is RCU
164  *
165  * fs_devices::device_list_mutex (per-fs, with RCU)
166  * ------------------------------------------------
167  * protects updates to fs_devices::devices, ie. adding and deleting
168  *
169  * simple list traversal with read-only actions can be done with RCU protection
170  *
171  * may be used to exclude some operations from running concurrently without any
172  * modifications to the list (see write_all_supers)
173  *
174  * balance_mutex
175  * -------------
176  * protects balance structures (status, state) and context accessed from
177  * several places (internally, ioctl)
178  *
179  * chunk_mutex
180  * -----------
181  * protects chunks, adding or removing during allocation, trim or when a new
182  * device is added/removed
183  *
184  * cleaner_mutex
185  * -------------
186  * a big lock that is held by the cleaner thread and prevents running subvolume
187  * cleaning together with relocation or delayed iputs
188  *
189  *
190  * Lock nesting
191  * ============
192  *
193  * uuid_mutex
194  *   volume_mutex
195  *     device_list_mutex
196  *       chunk_mutex
197  *     balance_mutex
198  *
199  *
200  * Exclusive operations, BTRFS_FS_EXCL_OP
201  * ======================================
202  *
203  * Maintains the exclusivity of the following operations that apply to the
204  * whole filesystem and cannot run in parallel.
205  *
206  * - Balance (*)
207  * - Device add
208  * - Device remove
209  * - Device replace (*)
210  * - Resize
211  *
212  * The device operations (as above) can be in one of the following states:
213  *
214  * - Running state
215  * - Paused state
216  * - Completed state
217  *
218  * Only device operations marked with (*) can go into the Paused state for the
219  * following reasons:
220  *
221  * - ioctl (only Balance can be Paused through ioctl)
222  * - filesystem remounted as read-only
223  * - filesystem unmounted and mounted as read-only
224  * - system power-cycle and filesystem mounted as read-only
225  * - filesystem or device errors leading to forced read-only
226  *
227  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
228  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
229  * A device operation in Paused or Running state can be canceled or resumed
230  * either by ioctl (Balance only) or when remounted as read-write.
231  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
232  * completed.
233  */
234 
235 DEFINE_MUTEX(uuid_mutex);
236 static LIST_HEAD(fs_uuids);
237 struct list_head *btrfs_get_fs_uuids(void)
238 {
239 	return &fs_uuids;
240 }
241 
242 /*
243  * alloc_fs_devices - allocate struct btrfs_fs_devices
244  * @fsid:	if not NULL, copy the uuid to fs_devices::fsid
245  *
246  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
247  * The returned struct is not linked onto any lists and can be destroyed with
248  * kfree() right away.
249  */
250 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
251 {
252 	struct btrfs_fs_devices *fs_devs;
253 
254 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
255 	if (!fs_devs)
256 		return ERR_PTR(-ENOMEM);
257 
258 	mutex_init(&fs_devs->device_list_mutex);
259 
260 	INIT_LIST_HEAD(&fs_devs->devices);
261 	INIT_LIST_HEAD(&fs_devs->resized_devices);
262 	INIT_LIST_HEAD(&fs_devs->alloc_list);
263 	INIT_LIST_HEAD(&fs_devs->fs_list);
264 	if (fsid)
265 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
266 
267 	return fs_devs;
268 }
269 
270 void btrfs_free_device(struct btrfs_device *device)
271 {
272 	rcu_string_free(device->name);
273 	bio_put(device->flush_bio);
274 	kfree(device);
275 }
276 
277 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
278 {
279 	struct btrfs_device *device;
280 	WARN_ON(fs_devices->opened);
281 	while (!list_empty(&fs_devices->devices)) {
282 		device = list_entry(fs_devices->devices.next,
283 				    struct btrfs_device, dev_list);
284 		list_del(&device->dev_list);
285 		btrfs_free_device(device);
286 	}
287 	kfree(fs_devices);
288 }
289 
290 static void btrfs_kobject_uevent(struct block_device *bdev,
291 				 enum kobject_action action)
292 {
293 	int ret;
294 
295 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
296 	if (ret)
297 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
298 			action,
299 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
300 			&disk_to_dev(bdev->bd_disk)->kobj);
301 }
302 
303 void __exit btrfs_cleanup_fs_uuids(void)
304 {
305 	struct btrfs_fs_devices *fs_devices;
306 
307 	while (!list_empty(&fs_uuids)) {
308 		fs_devices = list_entry(fs_uuids.next,
309 					struct btrfs_fs_devices, fs_list);
310 		list_del(&fs_devices->fs_list);
311 		free_fs_devices(fs_devices);
312 	}
313 }
314 
315 /*
316  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
317  * Returned struct is not linked onto any lists and must be destroyed using
318  * btrfs_free_device.
319  */
320 static struct btrfs_device *__alloc_device(void)
321 {
322 	struct btrfs_device *dev;
323 
324 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
325 	if (!dev)
326 		return ERR_PTR(-ENOMEM);
327 
328 	/*
329 	 * Preallocate a bio that's always going to be used for flushing device
330 	 * barriers and matches the device lifespan
331 	 */
332 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
333 	if (!dev->flush_bio) {
334 		kfree(dev);
335 		return ERR_PTR(-ENOMEM);
336 	}
337 
338 	INIT_LIST_HEAD(&dev->dev_list);
339 	INIT_LIST_HEAD(&dev->dev_alloc_list);
340 	INIT_LIST_HEAD(&dev->resized_list);
341 
342 	spin_lock_init(&dev->io_lock);
343 
344 	atomic_set(&dev->reada_in_flight, 0);
345 	atomic_set(&dev->dev_stats_ccnt, 0);
346 	btrfs_device_data_ordered_init(dev);
347 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
348 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
349 
350 	return dev;
351 }
352 
353 /*
354  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
355  * return NULL.
356  *
357  * If devid and uuid are both specified, the match must be exact, otherwise
358  * only devid is used.
359  */
360 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
361 		u64 devid, const u8 *uuid)
362 {
363 	struct btrfs_device *dev;
364 
365 	list_for_each_entry(dev, &fs_devices->devices, dev_list) {
366 		if (dev->devid == devid &&
367 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
368 			return dev;
369 		}
370 	}
371 	return NULL;
372 }
373 
374 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
375 {
376 	struct btrfs_fs_devices *fs_devices;
377 
378 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
379 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
380 			return fs_devices;
381 	}
382 	return NULL;
383 }
384 
385 static int
386 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
387 		      int flush, struct block_device **bdev,
388 		      struct buffer_head **bh)
389 {
390 	int ret;
391 
392 	*bdev = blkdev_get_by_path(device_path, flags, holder);
393 
394 	if (IS_ERR(*bdev)) {
395 		ret = PTR_ERR(*bdev);
396 		goto error;
397 	}
398 
399 	if (flush)
400 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
401 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
402 	if (ret) {
403 		blkdev_put(*bdev, flags);
404 		goto error;
405 	}
406 	invalidate_bdev(*bdev);
407 	*bh = btrfs_read_dev_super(*bdev);
408 	if (IS_ERR(*bh)) {
409 		ret = PTR_ERR(*bh);
410 		blkdev_put(*bdev, flags);
411 		goto error;
412 	}
413 
414 	return 0;
415 
416 error:
417 	*bdev = NULL;
418 	*bh = NULL;
419 	return ret;
420 }
421 
422 static void requeue_list(struct btrfs_pending_bios *pending_bios,
423 			struct bio *head, struct bio *tail)
424 {
425 
426 	struct bio *old_head;
427 
428 	old_head = pending_bios->head;
429 	pending_bios->head = head;
430 	if (pending_bios->tail)
431 		tail->bi_next = old_head;
432 	else
433 		pending_bios->tail = tail;
434 }
435 
436 /*
437  * we try to collect pending bios for a device so we don't get a large
438  * number of procs sending bios down to the same device.  This greatly
439  * improves the schedulers ability to collect and merge the bios.
440  *
441  * But, it also turns into a long list of bios to process and that is sure
442  * to eventually make the worker thread block.  The solution here is to
443  * make some progress and then put this work struct back at the end of
444  * the list if the block device is congested.  This way, multiple devices
445  * can make progress from a single worker thread.
446  */
447 static noinline void run_scheduled_bios(struct btrfs_device *device)
448 {
449 	struct btrfs_fs_info *fs_info = device->fs_info;
450 	struct bio *pending;
451 	struct backing_dev_info *bdi;
452 	struct btrfs_pending_bios *pending_bios;
453 	struct bio *tail;
454 	struct bio *cur;
455 	int again = 0;
456 	unsigned long num_run;
457 	unsigned long batch_run = 0;
458 	unsigned long last_waited = 0;
459 	int force_reg = 0;
460 	int sync_pending = 0;
461 	struct blk_plug plug;
462 
463 	/*
464 	 * this function runs all the bios we've collected for
465 	 * a particular device.  We don't want to wander off to
466 	 * another device without first sending all of these down.
467 	 * So, setup a plug here and finish it off before we return
468 	 */
469 	blk_start_plug(&plug);
470 
471 	bdi = device->bdev->bd_bdi;
472 
473 loop:
474 	spin_lock(&device->io_lock);
475 
476 loop_lock:
477 	num_run = 0;
478 
479 	/* take all the bios off the list at once and process them
480 	 * later on (without the lock held).  But, remember the
481 	 * tail and other pointers so the bios can be properly reinserted
482 	 * into the list if we hit congestion
483 	 */
484 	if (!force_reg && device->pending_sync_bios.head) {
485 		pending_bios = &device->pending_sync_bios;
486 		force_reg = 1;
487 	} else {
488 		pending_bios = &device->pending_bios;
489 		force_reg = 0;
490 	}
491 
492 	pending = pending_bios->head;
493 	tail = pending_bios->tail;
494 	WARN_ON(pending && !tail);
495 
496 	/*
497 	 * if pending was null this time around, no bios need processing
498 	 * at all and we can stop.  Otherwise it'll loop back up again
499 	 * and do an additional check so no bios are missed.
500 	 *
501 	 * device->running_pending is used to synchronize with the
502 	 * schedule_bio code.
503 	 */
504 	if (device->pending_sync_bios.head == NULL &&
505 	    device->pending_bios.head == NULL) {
506 		again = 0;
507 		device->running_pending = 0;
508 	} else {
509 		again = 1;
510 		device->running_pending = 1;
511 	}
512 
513 	pending_bios->head = NULL;
514 	pending_bios->tail = NULL;
515 
516 	spin_unlock(&device->io_lock);
517 
518 	while (pending) {
519 
520 		rmb();
521 		/* we want to work on both lists, but do more bios on the
522 		 * sync list than the regular list
523 		 */
524 		if ((num_run > 32 &&
525 		    pending_bios != &device->pending_sync_bios &&
526 		    device->pending_sync_bios.head) ||
527 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
528 		    device->pending_bios.head)) {
529 			spin_lock(&device->io_lock);
530 			requeue_list(pending_bios, pending, tail);
531 			goto loop_lock;
532 		}
533 
534 		cur = pending;
535 		pending = pending->bi_next;
536 		cur->bi_next = NULL;
537 
538 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
539 
540 		/*
541 		 * if we're doing the sync list, record that our
542 		 * plug has some sync requests on it
543 		 *
544 		 * If we're doing the regular list and there are
545 		 * sync requests sitting around, unplug before
546 		 * we add more
547 		 */
548 		if (pending_bios == &device->pending_sync_bios) {
549 			sync_pending = 1;
550 		} else if (sync_pending) {
551 			blk_finish_plug(&plug);
552 			blk_start_plug(&plug);
553 			sync_pending = 0;
554 		}
555 
556 		btrfsic_submit_bio(cur);
557 		num_run++;
558 		batch_run++;
559 
560 		cond_resched();
561 
562 		/*
563 		 * we made progress, there is more work to do and the bdi
564 		 * is now congested.  Back off and let other work structs
565 		 * run instead
566 		 */
567 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
568 		    fs_info->fs_devices->open_devices > 1) {
569 			struct io_context *ioc;
570 
571 			ioc = current->io_context;
572 
573 			/*
574 			 * the main goal here is that we don't want to
575 			 * block if we're going to be able to submit
576 			 * more requests without blocking.
577 			 *
578 			 * This code does two great things, it pokes into
579 			 * the elevator code from a filesystem _and_
580 			 * it makes assumptions about how batching works.
581 			 */
582 			if (ioc && ioc->nr_batch_requests > 0 &&
583 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
584 			    (last_waited == 0 ||
585 			     ioc->last_waited == last_waited)) {
586 				/*
587 				 * we want to go through our batch of
588 				 * requests and stop.  So, we copy out
589 				 * the ioc->last_waited time and test
590 				 * against it before looping
591 				 */
592 				last_waited = ioc->last_waited;
593 				cond_resched();
594 				continue;
595 			}
596 			spin_lock(&device->io_lock);
597 			requeue_list(pending_bios, pending, tail);
598 			device->running_pending = 1;
599 
600 			spin_unlock(&device->io_lock);
601 			btrfs_queue_work(fs_info->submit_workers,
602 					 &device->work);
603 			goto done;
604 		}
605 	}
606 
607 	cond_resched();
608 	if (again)
609 		goto loop;
610 
611 	spin_lock(&device->io_lock);
612 	if (device->pending_bios.head || device->pending_sync_bios.head)
613 		goto loop_lock;
614 	spin_unlock(&device->io_lock);
615 
616 done:
617 	blk_finish_plug(&plug);
618 }
619 
620 static void pending_bios_fn(struct btrfs_work *work)
621 {
622 	struct btrfs_device *device;
623 
624 	device = container_of(work, struct btrfs_device, work);
625 	run_scheduled_bios(device);
626 }
627 
628 /*
629  *  Search and remove all stale (devices which are not mounted) devices.
630  *  When both inputs are NULL, it will search and release all stale devices.
631  *  path:	Optional. When provided will it release all unmounted devices
632  *		matching this path only.
633  *  skip_dev:	Optional. Will skip this device when searching for the stale
634  *		devices.
635  */
636 static void btrfs_free_stale_devices(const char *path,
637 				     struct btrfs_device *skip_dev)
638 {
639 	struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
640 	struct btrfs_device *dev, *tmp_dev;
641 
642 	list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, fs_list) {
643 
644 		if (fs_devs->opened)
645 			continue;
646 
647 		list_for_each_entry_safe(dev, tmp_dev,
648 					 &fs_devs->devices, dev_list) {
649 			int not_found = 0;
650 
651 			if (skip_dev && skip_dev == dev)
652 				continue;
653 			if (path && !dev->name)
654 				continue;
655 
656 			rcu_read_lock();
657 			if (path)
658 				not_found = strcmp(rcu_str_deref(dev->name),
659 						   path);
660 			rcu_read_unlock();
661 			if (not_found)
662 				continue;
663 
664 			/* delete the stale device */
665 			if (fs_devs->num_devices == 1) {
666 				btrfs_sysfs_remove_fsid(fs_devs);
667 				list_del(&fs_devs->fs_list);
668 				free_fs_devices(fs_devs);
669 				break;
670 			} else {
671 				fs_devs->num_devices--;
672 				list_del(&dev->dev_list);
673 				btrfs_free_device(dev);
674 			}
675 		}
676 	}
677 }
678 
679 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
680 			struct btrfs_device *device, fmode_t flags,
681 			void *holder)
682 {
683 	struct request_queue *q;
684 	struct block_device *bdev;
685 	struct buffer_head *bh;
686 	struct btrfs_super_block *disk_super;
687 	u64 devid;
688 	int ret;
689 
690 	if (device->bdev)
691 		return -EINVAL;
692 	if (!device->name)
693 		return -EINVAL;
694 
695 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
696 				    &bdev, &bh);
697 	if (ret)
698 		return ret;
699 
700 	disk_super = (struct btrfs_super_block *)bh->b_data;
701 	devid = btrfs_stack_device_id(&disk_super->dev_item);
702 	if (devid != device->devid)
703 		goto error_brelse;
704 
705 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
706 		goto error_brelse;
707 
708 	device->generation = btrfs_super_generation(disk_super);
709 
710 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
711 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
712 		fs_devices->seeding = 1;
713 	} else {
714 		if (bdev_read_only(bdev))
715 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
716 		else
717 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
718 	}
719 
720 	q = bdev_get_queue(bdev);
721 	if (!blk_queue_nonrot(q))
722 		fs_devices->rotating = 1;
723 
724 	device->bdev = bdev;
725 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
726 	device->mode = flags;
727 
728 	fs_devices->open_devices++;
729 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
730 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
731 		fs_devices->rw_devices++;
732 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
733 	}
734 	brelse(bh);
735 
736 	return 0;
737 
738 error_brelse:
739 	brelse(bh);
740 	blkdev_put(bdev, flags);
741 
742 	return -EINVAL;
743 }
744 
745 /*
746  * Add new device to list of registered devices
747  *
748  * Returns:
749  * device pointer which was just added or updated when successful
750  * error pointer when failed
751  */
752 static noinline struct btrfs_device *device_list_add(const char *path,
753 			   struct btrfs_super_block *disk_super)
754 {
755 	struct btrfs_device *device;
756 	struct btrfs_fs_devices *fs_devices;
757 	struct rcu_string *name;
758 	u64 found_transid = btrfs_super_generation(disk_super);
759 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
760 
761 	fs_devices = find_fsid(disk_super->fsid);
762 	if (!fs_devices) {
763 		fs_devices = alloc_fs_devices(disk_super->fsid);
764 		if (IS_ERR(fs_devices))
765 			return ERR_CAST(fs_devices);
766 
767 		list_add(&fs_devices->fs_list, &fs_uuids);
768 
769 		device = NULL;
770 	} else {
771 		device = find_device(fs_devices, devid,
772 				disk_super->dev_item.uuid);
773 	}
774 
775 	if (!device) {
776 		if (fs_devices->opened)
777 			return ERR_PTR(-EBUSY);
778 
779 		device = btrfs_alloc_device(NULL, &devid,
780 					    disk_super->dev_item.uuid);
781 		if (IS_ERR(device)) {
782 			/* we can safely leave the fs_devices entry around */
783 			return device;
784 		}
785 
786 		name = rcu_string_strdup(path, GFP_NOFS);
787 		if (!name) {
788 			btrfs_free_device(device);
789 			return ERR_PTR(-ENOMEM);
790 		}
791 		rcu_assign_pointer(device->name, name);
792 
793 		mutex_lock(&fs_devices->device_list_mutex);
794 		list_add_rcu(&device->dev_list, &fs_devices->devices);
795 		fs_devices->num_devices++;
796 		mutex_unlock(&fs_devices->device_list_mutex);
797 
798 		device->fs_devices = fs_devices;
799 		btrfs_free_stale_devices(path, device);
800 
801 		if (disk_super->label[0])
802 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
803 				disk_super->label, devid, found_transid, path);
804 		else
805 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
806 				disk_super->fsid, devid, found_transid, path);
807 
808 	} else if (!device->name || strcmp(device->name->str, path)) {
809 		/*
810 		 * When FS is already mounted.
811 		 * 1. If you are here and if the device->name is NULL that
812 		 *    means this device was missing at time of FS mount.
813 		 * 2. If you are here and if the device->name is different
814 		 *    from 'path' that means either
815 		 *      a. The same device disappeared and reappeared with
816 		 *         different name. or
817 		 *      b. The missing-disk-which-was-replaced, has
818 		 *         reappeared now.
819 		 *
820 		 * We must allow 1 and 2a above. But 2b would be a spurious
821 		 * and unintentional.
822 		 *
823 		 * Further in case of 1 and 2a above, the disk at 'path'
824 		 * would have missed some transaction when it was away and
825 		 * in case of 2a the stale bdev has to be updated as well.
826 		 * 2b must not be allowed at all time.
827 		 */
828 
829 		/*
830 		 * For now, we do allow update to btrfs_fs_device through the
831 		 * btrfs dev scan cli after FS has been mounted.  We're still
832 		 * tracking a problem where systems fail mount by subvolume id
833 		 * when we reject replacement on a mounted FS.
834 		 */
835 		if (!fs_devices->opened && found_transid < device->generation) {
836 			/*
837 			 * That is if the FS is _not_ mounted and if you
838 			 * are here, that means there is more than one
839 			 * disk with same uuid and devid.We keep the one
840 			 * with larger generation number or the last-in if
841 			 * generation are equal.
842 			 */
843 			return ERR_PTR(-EEXIST);
844 		}
845 
846 		name = rcu_string_strdup(path, GFP_NOFS);
847 		if (!name)
848 			return ERR_PTR(-ENOMEM);
849 		rcu_string_free(device->name);
850 		rcu_assign_pointer(device->name, name);
851 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
852 			fs_devices->missing_devices--;
853 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
854 		}
855 	}
856 
857 	/*
858 	 * Unmount does not free the btrfs_device struct but would zero
859 	 * generation along with most of the other members. So just update
860 	 * it back. We need it to pick the disk with largest generation
861 	 * (as above).
862 	 */
863 	if (!fs_devices->opened)
864 		device->generation = found_transid;
865 
866 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
867 
868 	return device;
869 }
870 
871 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
872 {
873 	struct btrfs_fs_devices *fs_devices;
874 	struct btrfs_device *device;
875 	struct btrfs_device *orig_dev;
876 
877 	fs_devices = alloc_fs_devices(orig->fsid);
878 	if (IS_ERR(fs_devices))
879 		return fs_devices;
880 
881 	mutex_lock(&orig->device_list_mutex);
882 	fs_devices->total_devices = orig->total_devices;
883 
884 	/* We have held the volume lock, it is safe to get the devices. */
885 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
886 		struct rcu_string *name;
887 
888 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
889 					    orig_dev->uuid);
890 		if (IS_ERR(device))
891 			goto error;
892 
893 		/*
894 		 * This is ok to do without rcu read locked because we hold the
895 		 * uuid mutex so nothing we touch in here is going to disappear.
896 		 */
897 		if (orig_dev->name) {
898 			name = rcu_string_strdup(orig_dev->name->str,
899 					GFP_KERNEL);
900 			if (!name) {
901 				btrfs_free_device(device);
902 				goto error;
903 			}
904 			rcu_assign_pointer(device->name, name);
905 		}
906 
907 		list_add(&device->dev_list, &fs_devices->devices);
908 		device->fs_devices = fs_devices;
909 		fs_devices->num_devices++;
910 	}
911 	mutex_unlock(&orig->device_list_mutex);
912 	return fs_devices;
913 error:
914 	mutex_unlock(&orig->device_list_mutex);
915 	free_fs_devices(fs_devices);
916 	return ERR_PTR(-ENOMEM);
917 }
918 
919 /*
920  * After we have read the system tree and know devids belonging to
921  * this filesystem, remove the device which does not belong there.
922  */
923 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
924 {
925 	struct btrfs_device *device, *next;
926 	struct btrfs_device *latest_dev = NULL;
927 
928 	mutex_lock(&uuid_mutex);
929 again:
930 	/* This is the initialized path, it is safe to release the devices. */
931 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
932 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
933 							&device->dev_state)) {
934 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
935 			     &device->dev_state) &&
936 			     (!latest_dev ||
937 			      device->generation > latest_dev->generation)) {
938 				latest_dev = device;
939 			}
940 			continue;
941 		}
942 
943 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
944 			/*
945 			 * In the first step, keep the device which has
946 			 * the correct fsid and the devid that is used
947 			 * for the dev_replace procedure.
948 			 * In the second step, the dev_replace state is
949 			 * read from the device tree and it is known
950 			 * whether the procedure is really active or
951 			 * not, which means whether this device is
952 			 * used or whether it should be removed.
953 			 */
954 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
955 						  &device->dev_state)) {
956 				continue;
957 			}
958 		}
959 		if (device->bdev) {
960 			blkdev_put(device->bdev, device->mode);
961 			device->bdev = NULL;
962 			fs_devices->open_devices--;
963 		}
964 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
965 			list_del_init(&device->dev_alloc_list);
966 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
967 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
968 				      &device->dev_state))
969 				fs_devices->rw_devices--;
970 		}
971 		list_del_init(&device->dev_list);
972 		fs_devices->num_devices--;
973 		btrfs_free_device(device);
974 	}
975 
976 	if (fs_devices->seed) {
977 		fs_devices = fs_devices->seed;
978 		goto again;
979 	}
980 
981 	fs_devices->latest_bdev = latest_dev->bdev;
982 
983 	mutex_unlock(&uuid_mutex);
984 }
985 
986 static void free_device_rcu(struct rcu_head *head)
987 {
988 	struct btrfs_device *device;
989 
990 	device = container_of(head, struct btrfs_device, rcu);
991 	btrfs_free_device(device);
992 }
993 
994 static void btrfs_close_bdev(struct btrfs_device *device)
995 {
996 	if (!device->bdev)
997 		return;
998 
999 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1000 		sync_blockdev(device->bdev);
1001 		invalidate_bdev(device->bdev);
1002 	}
1003 
1004 	blkdev_put(device->bdev, device->mode);
1005 }
1006 
1007 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
1008 {
1009 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1010 	struct btrfs_device *new_device;
1011 	struct rcu_string *name;
1012 
1013 	if (device->bdev)
1014 		fs_devices->open_devices--;
1015 
1016 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1017 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1018 		list_del_init(&device->dev_alloc_list);
1019 		fs_devices->rw_devices--;
1020 	}
1021 
1022 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1023 		fs_devices->missing_devices--;
1024 
1025 	new_device = btrfs_alloc_device(NULL, &device->devid,
1026 					device->uuid);
1027 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1028 
1029 	/* Safe because we are under uuid_mutex */
1030 	if (device->name) {
1031 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1032 		BUG_ON(!name); /* -ENOMEM */
1033 		rcu_assign_pointer(new_device->name, name);
1034 	}
1035 
1036 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1037 	new_device->fs_devices = device->fs_devices;
1038 }
1039 
1040 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1041 {
1042 	struct btrfs_device *device, *tmp;
1043 	struct list_head pending_put;
1044 
1045 	INIT_LIST_HEAD(&pending_put);
1046 
1047 	if (--fs_devices->opened > 0)
1048 		return 0;
1049 
1050 	mutex_lock(&fs_devices->device_list_mutex);
1051 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1052 		btrfs_prepare_close_one_device(device);
1053 		list_add(&device->dev_list, &pending_put);
1054 	}
1055 	mutex_unlock(&fs_devices->device_list_mutex);
1056 
1057 	/*
1058 	 * btrfs_show_devname() is using the device_list_mutex,
1059 	 * sometimes call to blkdev_put() leads vfs calling
1060 	 * into this func. So do put outside of device_list_mutex,
1061 	 * as of now.
1062 	 */
1063 	while (!list_empty(&pending_put)) {
1064 		device = list_first_entry(&pending_put,
1065 				struct btrfs_device, dev_list);
1066 		list_del(&device->dev_list);
1067 		btrfs_close_bdev(device);
1068 		call_rcu(&device->rcu, free_device_rcu);
1069 	}
1070 
1071 	WARN_ON(fs_devices->open_devices);
1072 	WARN_ON(fs_devices->rw_devices);
1073 	fs_devices->opened = 0;
1074 	fs_devices->seeding = 0;
1075 
1076 	return 0;
1077 }
1078 
1079 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1080 {
1081 	struct btrfs_fs_devices *seed_devices = NULL;
1082 	int ret;
1083 
1084 	mutex_lock(&uuid_mutex);
1085 	ret = close_fs_devices(fs_devices);
1086 	if (!fs_devices->opened) {
1087 		seed_devices = fs_devices->seed;
1088 		fs_devices->seed = NULL;
1089 	}
1090 	mutex_unlock(&uuid_mutex);
1091 
1092 	while (seed_devices) {
1093 		fs_devices = seed_devices;
1094 		seed_devices = fs_devices->seed;
1095 		close_fs_devices(fs_devices);
1096 		free_fs_devices(fs_devices);
1097 	}
1098 	return ret;
1099 }
1100 
1101 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1102 				fmode_t flags, void *holder)
1103 {
1104 	struct btrfs_device *device;
1105 	struct btrfs_device *latest_dev = NULL;
1106 	int ret = 0;
1107 
1108 	flags |= FMODE_EXCL;
1109 
1110 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1111 		/* Just open everything we can; ignore failures here */
1112 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1113 			continue;
1114 
1115 		if (!latest_dev ||
1116 		    device->generation > latest_dev->generation)
1117 			latest_dev = device;
1118 	}
1119 	if (fs_devices->open_devices == 0) {
1120 		ret = -EINVAL;
1121 		goto out;
1122 	}
1123 	fs_devices->opened = 1;
1124 	fs_devices->latest_bdev = latest_dev->bdev;
1125 	fs_devices->total_rw_bytes = 0;
1126 out:
1127 	return ret;
1128 }
1129 
1130 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1131 {
1132 	struct btrfs_device *dev1, *dev2;
1133 
1134 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1135 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1136 
1137 	if (dev1->devid < dev2->devid)
1138 		return -1;
1139 	else if (dev1->devid > dev2->devid)
1140 		return 1;
1141 	return 0;
1142 }
1143 
1144 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1145 		       fmode_t flags, void *holder)
1146 {
1147 	int ret;
1148 
1149 	mutex_lock(&uuid_mutex);
1150 	mutex_lock(&fs_devices->device_list_mutex);
1151 	if (fs_devices->opened) {
1152 		fs_devices->opened++;
1153 		ret = 0;
1154 	} else {
1155 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1156 		ret = open_fs_devices(fs_devices, flags, holder);
1157 	}
1158 	mutex_unlock(&fs_devices->device_list_mutex);
1159 	mutex_unlock(&uuid_mutex);
1160 
1161 	return ret;
1162 }
1163 
1164 static void btrfs_release_disk_super(struct page *page)
1165 {
1166 	kunmap(page);
1167 	put_page(page);
1168 }
1169 
1170 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1171 				 struct page **page,
1172 				 struct btrfs_super_block **disk_super)
1173 {
1174 	void *p;
1175 	pgoff_t index;
1176 
1177 	/* make sure our super fits in the device */
1178 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1179 		return 1;
1180 
1181 	/* make sure our super fits in the page */
1182 	if (sizeof(**disk_super) > PAGE_SIZE)
1183 		return 1;
1184 
1185 	/* make sure our super doesn't straddle pages on disk */
1186 	index = bytenr >> PAGE_SHIFT;
1187 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1188 		return 1;
1189 
1190 	/* pull in the page with our super */
1191 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1192 				   index, GFP_KERNEL);
1193 
1194 	if (IS_ERR_OR_NULL(*page))
1195 		return 1;
1196 
1197 	p = kmap(*page);
1198 
1199 	/* align our pointer to the offset of the super block */
1200 	*disk_super = p + (bytenr & ~PAGE_MASK);
1201 
1202 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1203 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1204 		btrfs_release_disk_super(*page);
1205 		return 1;
1206 	}
1207 
1208 	if ((*disk_super)->label[0] &&
1209 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1210 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1211 
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Look for a btrfs signature on a device. This may be called out of the mount path
1217  * and we are not allowed to call set_blocksize during the scan. The superblock
1218  * is read via pagecache
1219  */
1220 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1221 			  struct btrfs_fs_devices **fs_devices_ret)
1222 {
1223 	struct btrfs_super_block *disk_super;
1224 	struct btrfs_device *device;
1225 	struct block_device *bdev;
1226 	struct page *page;
1227 	int ret = 0;
1228 	u64 bytenr;
1229 
1230 	/*
1231 	 * we would like to check all the supers, but that would make
1232 	 * a btrfs mount succeed after a mkfs from a different FS.
1233 	 * So, we need to add a special mount option to scan for
1234 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1235 	 */
1236 	bytenr = btrfs_sb_offset(0);
1237 	flags |= FMODE_EXCL;
1238 
1239 	bdev = blkdev_get_by_path(path, flags, holder);
1240 	if (IS_ERR(bdev))
1241 		return PTR_ERR(bdev);
1242 
1243 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1244 		ret = -EINVAL;
1245 		goto error_bdev_put;
1246 	}
1247 
1248 	mutex_lock(&uuid_mutex);
1249 	device = device_list_add(path, disk_super);
1250 	if (IS_ERR(device))
1251 		ret = PTR_ERR(device);
1252 	else
1253 		*fs_devices_ret = device->fs_devices;
1254 	mutex_unlock(&uuid_mutex);
1255 
1256 	btrfs_release_disk_super(page);
1257 
1258 error_bdev_put:
1259 	blkdev_put(bdev, flags);
1260 
1261 	return ret;
1262 }
1263 
1264 /* helper to account the used device space in the range */
1265 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1266 				   u64 end, u64 *length)
1267 {
1268 	struct btrfs_key key;
1269 	struct btrfs_root *root = device->fs_info->dev_root;
1270 	struct btrfs_dev_extent *dev_extent;
1271 	struct btrfs_path *path;
1272 	u64 extent_end;
1273 	int ret;
1274 	int slot;
1275 	struct extent_buffer *l;
1276 
1277 	*length = 0;
1278 
1279 	if (start >= device->total_bytes ||
1280 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1281 		return 0;
1282 
1283 	path = btrfs_alloc_path();
1284 	if (!path)
1285 		return -ENOMEM;
1286 	path->reada = READA_FORWARD;
1287 
1288 	key.objectid = device->devid;
1289 	key.offset = start;
1290 	key.type = BTRFS_DEV_EXTENT_KEY;
1291 
1292 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1293 	if (ret < 0)
1294 		goto out;
1295 	if (ret > 0) {
1296 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1297 		if (ret < 0)
1298 			goto out;
1299 	}
1300 
1301 	while (1) {
1302 		l = path->nodes[0];
1303 		slot = path->slots[0];
1304 		if (slot >= btrfs_header_nritems(l)) {
1305 			ret = btrfs_next_leaf(root, path);
1306 			if (ret == 0)
1307 				continue;
1308 			if (ret < 0)
1309 				goto out;
1310 
1311 			break;
1312 		}
1313 		btrfs_item_key_to_cpu(l, &key, slot);
1314 
1315 		if (key.objectid < device->devid)
1316 			goto next;
1317 
1318 		if (key.objectid > device->devid)
1319 			break;
1320 
1321 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1322 			goto next;
1323 
1324 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1325 		extent_end = key.offset + btrfs_dev_extent_length(l,
1326 								  dev_extent);
1327 		if (key.offset <= start && extent_end > end) {
1328 			*length = end - start + 1;
1329 			break;
1330 		} else if (key.offset <= start && extent_end > start)
1331 			*length += extent_end - start;
1332 		else if (key.offset > start && extent_end <= end)
1333 			*length += extent_end - key.offset;
1334 		else if (key.offset > start && key.offset <= end) {
1335 			*length += end - key.offset + 1;
1336 			break;
1337 		} else if (key.offset > end)
1338 			break;
1339 
1340 next:
1341 		path->slots[0]++;
1342 	}
1343 	ret = 0;
1344 out:
1345 	btrfs_free_path(path);
1346 	return ret;
1347 }
1348 
1349 static int contains_pending_extent(struct btrfs_transaction *transaction,
1350 				   struct btrfs_device *device,
1351 				   u64 *start, u64 len)
1352 {
1353 	struct btrfs_fs_info *fs_info = device->fs_info;
1354 	struct extent_map *em;
1355 	struct list_head *search_list = &fs_info->pinned_chunks;
1356 	int ret = 0;
1357 	u64 physical_start = *start;
1358 
1359 	if (transaction)
1360 		search_list = &transaction->pending_chunks;
1361 again:
1362 	list_for_each_entry(em, search_list, list) {
1363 		struct map_lookup *map;
1364 		int i;
1365 
1366 		map = em->map_lookup;
1367 		for (i = 0; i < map->num_stripes; i++) {
1368 			u64 end;
1369 
1370 			if (map->stripes[i].dev != device)
1371 				continue;
1372 			if (map->stripes[i].physical >= physical_start + len ||
1373 			    map->stripes[i].physical + em->orig_block_len <=
1374 			    physical_start)
1375 				continue;
1376 			/*
1377 			 * Make sure that while processing the pinned list we do
1378 			 * not override our *start with a lower value, because
1379 			 * we can have pinned chunks that fall within this
1380 			 * device hole and that have lower physical addresses
1381 			 * than the pending chunks we processed before. If we
1382 			 * do not take this special care we can end up getting
1383 			 * 2 pending chunks that start at the same physical
1384 			 * device offsets because the end offset of a pinned
1385 			 * chunk can be equal to the start offset of some
1386 			 * pending chunk.
1387 			 */
1388 			end = map->stripes[i].physical + em->orig_block_len;
1389 			if (end > *start) {
1390 				*start = end;
1391 				ret = 1;
1392 			}
1393 		}
1394 	}
1395 	if (search_list != &fs_info->pinned_chunks) {
1396 		search_list = &fs_info->pinned_chunks;
1397 		goto again;
1398 	}
1399 
1400 	return ret;
1401 }
1402 
1403 
1404 /*
1405  * find_free_dev_extent_start - find free space in the specified device
1406  * @device:	  the device which we search the free space in
1407  * @num_bytes:	  the size of the free space that we need
1408  * @search_start: the position from which to begin the search
1409  * @start:	  store the start of the free space.
1410  * @len:	  the size of the free space. that we find, or the size
1411  *		  of the max free space if we don't find suitable free space
1412  *
1413  * this uses a pretty simple search, the expectation is that it is
1414  * called very infrequently and that a given device has a small number
1415  * of extents
1416  *
1417  * @start is used to store the start of the free space if we find. But if we
1418  * don't find suitable free space, it will be used to store the start position
1419  * of the max free space.
1420  *
1421  * @len is used to store the size of the free space that we find.
1422  * But if we don't find suitable free space, it is used to store the size of
1423  * the max free space.
1424  */
1425 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1426 			       struct btrfs_device *device, u64 num_bytes,
1427 			       u64 search_start, u64 *start, u64 *len)
1428 {
1429 	struct btrfs_fs_info *fs_info = device->fs_info;
1430 	struct btrfs_root *root = fs_info->dev_root;
1431 	struct btrfs_key key;
1432 	struct btrfs_dev_extent *dev_extent;
1433 	struct btrfs_path *path;
1434 	u64 hole_size;
1435 	u64 max_hole_start;
1436 	u64 max_hole_size;
1437 	u64 extent_end;
1438 	u64 search_end = device->total_bytes;
1439 	int ret;
1440 	int slot;
1441 	struct extent_buffer *l;
1442 
1443 	/*
1444 	 * We don't want to overwrite the superblock on the drive nor any area
1445 	 * used by the boot loader (grub for example), so we make sure to start
1446 	 * at an offset of at least 1MB.
1447 	 */
1448 	search_start = max_t(u64, search_start, SZ_1M);
1449 
1450 	path = btrfs_alloc_path();
1451 	if (!path)
1452 		return -ENOMEM;
1453 
1454 	max_hole_start = search_start;
1455 	max_hole_size = 0;
1456 
1457 again:
1458 	if (search_start >= search_end ||
1459 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1460 		ret = -ENOSPC;
1461 		goto out;
1462 	}
1463 
1464 	path->reada = READA_FORWARD;
1465 	path->search_commit_root = 1;
1466 	path->skip_locking = 1;
1467 
1468 	key.objectid = device->devid;
1469 	key.offset = search_start;
1470 	key.type = BTRFS_DEV_EXTENT_KEY;
1471 
1472 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1473 	if (ret < 0)
1474 		goto out;
1475 	if (ret > 0) {
1476 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1477 		if (ret < 0)
1478 			goto out;
1479 	}
1480 
1481 	while (1) {
1482 		l = path->nodes[0];
1483 		slot = path->slots[0];
1484 		if (slot >= btrfs_header_nritems(l)) {
1485 			ret = btrfs_next_leaf(root, path);
1486 			if (ret == 0)
1487 				continue;
1488 			if (ret < 0)
1489 				goto out;
1490 
1491 			break;
1492 		}
1493 		btrfs_item_key_to_cpu(l, &key, slot);
1494 
1495 		if (key.objectid < device->devid)
1496 			goto next;
1497 
1498 		if (key.objectid > device->devid)
1499 			break;
1500 
1501 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1502 			goto next;
1503 
1504 		if (key.offset > search_start) {
1505 			hole_size = key.offset - search_start;
1506 
1507 			/*
1508 			 * Have to check before we set max_hole_start, otherwise
1509 			 * we could end up sending back this offset anyway.
1510 			 */
1511 			if (contains_pending_extent(transaction, device,
1512 						    &search_start,
1513 						    hole_size)) {
1514 				if (key.offset >= search_start) {
1515 					hole_size = key.offset - search_start;
1516 				} else {
1517 					WARN_ON_ONCE(1);
1518 					hole_size = 0;
1519 				}
1520 			}
1521 
1522 			if (hole_size > max_hole_size) {
1523 				max_hole_start = search_start;
1524 				max_hole_size = hole_size;
1525 			}
1526 
1527 			/*
1528 			 * If this free space is greater than which we need,
1529 			 * it must be the max free space that we have found
1530 			 * until now, so max_hole_start must point to the start
1531 			 * of this free space and the length of this free space
1532 			 * is stored in max_hole_size. Thus, we return
1533 			 * max_hole_start and max_hole_size and go back to the
1534 			 * caller.
1535 			 */
1536 			if (hole_size >= num_bytes) {
1537 				ret = 0;
1538 				goto out;
1539 			}
1540 		}
1541 
1542 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1543 		extent_end = key.offset + btrfs_dev_extent_length(l,
1544 								  dev_extent);
1545 		if (extent_end > search_start)
1546 			search_start = extent_end;
1547 next:
1548 		path->slots[0]++;
1549 		cond_resched();
1550 	}
1551 
1552 	/*
1553 	 * At this point, search_start should be the end of
1554 	 * allocated dev extents, and when shrinking the device,
1555 	 * search_end may be smaller than search_start.
1556 	 */
1557 	if (search_end > search_start) {
1558 		hole_size = search_end - search_start;
1559 
1560 		if (contains_pending_extent(transaction, device, &search_start,
1561 					    hole_size)) {
1562 			btrfs_release_path(path);
1563 			goto again;
1564 		}
1565 
1566 		if (hole_size > max_hole_size) {
1567 			max_hole_start = search_start;
1568 			max_hole_size = hole_size;
1569 		}
1570 	}
1571 
1572 	/* See above. */
1573 	if (max_hole_size < num_bytes)
1574 		ret = -ENOSPC;
1575 	else
1576 		ret = 0;
1577 
1578 out:
1579 	btrfs_free_path(path);
1580 	*start = max_hole_start;
1581 	if (len)
1582 		*len = max_hole_size;
1583 	return ret;
1584 }
1585 
1586 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1587 			 struct btrfs_device *device, u64 num_bytes,
1588 			 u64 *start, u64 *len)
1589 {
1590 	/* FIXME use last free of some kind */
1591 	return find_free_dev_extent_start(trans->transaction, device,
1592 					  num_bytes, 0, start, len);
1593 }
1594 
1595 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1596 			  struct btrfs_device *device,
1597 			  u64 start, u64 *dev_extent_len)
1598 {
1599 	struct btrfs_fs_info *fs_info = device->fs_info;
1600 	struct btrfs_root *root = fs_info->dev_root;
1601 	int ret;
1602 	struct btrfs_path *path;
1603 	struct btrfs_key key;
1604 	struct btrfs_key found_key;
1605 	struct extent_buffer *leaf = NULL;
1606 	struct btrfs_dev_extent *extent = NULL;
1607 
1608 	path = btrfs_alloc_path();
1609 	if (!path)
1610 		return -ENOMEM;
1611 
1612 	key.objectid = device->devid;
1613 	key.offset = start;
1614 	key.type = BTRFS_DEV_EXTENT_KEY;
1615 again:
1616 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1617 	if (ret > 0) {
1618 		ret = btrfs_previous_item(root, path, key.objectid,
1619 					  BTRFS_DEV_EXTENT_KEY);
1620 		if (ret)
1621 			goto out;
1622 		leaf = path->nodes[0];
1623 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1624 		extent = btrfs_item_ptr(leaf, path->slots[0],
1625 					struct btrfs_dev_extent);
1626 		BUG_ON(found_key.offset > start || found_key.offset +
1627 		       btrfs_dev_extent_length(leaf, extent) < start);
1628 		key = found_key;
1629 		btrfs_release_path(path);
1630 		goto again;
1631 	} else if (ret == 0) {
1632 		leaf = path->nodes[0];
1633 		extent = btrfs_item_ptr(leaf, path->slots[0],
1634 					struct btrfs_dev_extent);
1635 	} else {
1636 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1637 		goto out;
1638 	}
1639 
1640 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1641 
1642 	ret = btrfs_del_item(trans, root, path);
1643 	if (ret) {
1644 		btrfs_handle_fs_error(fs_info, ret,
1645 				      "Failed to remove dev extent item");
1646 	} else {
1647 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1648 	}
1649 out:
1650 	btrfs_free_path(path);
1651 	return ret;
1652 }
1653 
1654 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1655 				  struct btrfs_device *device,
1656 				  u64 chunk_offset, u64 start, u64 num_bytes)
1657 {
1658 	int ret;
1659 	struct btrfs_path *path;
1660 	struct btrfs_fs_info *fs_info = device->fs_info;
1661 	struct btrfs_root *root = fs_info->dev_root;
1662 	struct btrfs_dev_extent *extent;
1663 	struct extent_buffer *leaf;
1664 	struct btrfs_key key;
1665 
1666 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1667 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1668 	path = btrfs_alloc_path();
1669 	if (!path)
1670 		return -ENOMEM;
1671 
1672 	key.objectid = device->devid;
1673 	key.offset = start;
1674 	key.type = BTRFS_DEV_EXTENT_KEY;
1675 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1676 				      sizeof(*extent));
1677 	if (ret)
1678 		goto out;
1679 
1680 	leaf = path->nodes[0];
1681 	extent = btrfs_item_ptr(leaf, path->slots[0],
1682 				struct btrfs_dev_extent);
1683 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1684 					BTRFS_CHUNK_TREE_OBJECTID);
1685 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1686 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1687 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1688 
1689 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1690 	btrfs_mark_buffer_dirty(leaf);
1691 out:
1692 	btrfs_free_path(path);
1693 	return ret;
1694 }
1695 
1696 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1697 {
1698 	struct extent_map_tree *em_tree;
1699 	struct extent_map *em;
1700 	struct rb_node *n;
1701 	u64 ret = 0;
1702 
1703 	em_tree = &fs_info->mapping_tree.map_tree;
1704 	read_lock(&em_tree->lock);
1705 	n = rb_last(&em_tree->map);
1706 	if (n) {
1707 		em = rb_entry(n, struct extent_map, rb_node);
1708 		ret = em->start + em->len;
1709 	}
1710 	read_unlock(&em_tree->lock);
1711 
1712 	return ret;
1713 }
1714 
1715 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1716 				    u64 *devid_ret)
1717 {
1718 	int ret;
1719 	struct btrfs_key key;
1720 	struct btrfs_key found_key;
1721 	struct btrfs_path *path;
1722 
1723 	path = btrfs_alloc_path();
1724 	if (!path)
1725 		return -ENOMEM;
1726 
1727 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1728 	key.type = BTRFS_DEV_ITEM_KEY;
1729 	key.offset = (u64)-1;
1730 
1731 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1732 	if (ret < 0)
1733 		goto error;
1734 
1735 	BUG_ON(ret == 0); /* Corruption */
1736 
1737 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1738 				  BTRFS_DEV_ITEMS_OBJECTID,
1739 				  BTRFS_DEV_ITEM_KEY);
1740 	if (ret) {
1741 		*devid_ret = 1;
1742 	} else {
1743 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1744 				      path->slots[0]);
1745 		*devid_ret = found_key.offset + 1;
1746 	}
1747 	ret = 0;
1748 error:
1749 	btrfs_free_path(path);
1750 	return ret;
1751 }
1752 
1753 /*
1754  * the device information is stored in the chunk root
1755  * the btrfs_device struct should be fully filled in
1756  */
1757 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1758 			    struct btrfs_fs_info *fs_info,
1759 			    struct btrfs_device *device)
1760 {
1761 	struct btrfs_root *root = fs_info->chunk_root;
1762 	int ret;
1763 	struct btrfs_path *path;
1764 	struct btrfs_dev_item *dev_item;
1765 	struct extent_buffer *leaf;
1766 	struct btrfs_key key;
1767 	unsigned long ptr;
1768 
1769 	path = btrfs_alloc_path();
1770 	if (!path)
1771 		return -ENOMEM;
1772 
1773 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1774 	key.type = BTRFS_DEV_ITEM_KEY;
1775 	key.offset = device->devid;
1776 
1777 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1778 				      sizeof(*dev_item));
1779 	if (ret)
1780 		goto out;
1781 
1782 	leaf = path->nodes[0];
1783 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1784 
1785 	btrfs_set_device_id(leaf, dev_item, device->devid);
1786 	btrfs_set_device_generation(leaf, dev_item, 0);
1787 	btrfs_set_device_type(leaf, dev_item, device->type);
1788 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1789 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1790 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1791 	btrfs_set_device_total_bytes(leaf, dev_item,
1792 				     btrfs_device_get_disk_total_bytes(device));
1793 	btrfs_set_device_bytes_used(leaf, dev_item,
1794 				    btrfs_device_get_bytes_used(device));
1795 	btrfs_set_device_group(leaf, dev_item, 0);
1796 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1797 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1798 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1799 
1800 	ptr = btrfs_device_uuid(dev_item);
1801 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1802 	ptr = btrfs_device_fsid(dev_item);
1803 	write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1804 	btrfs_mark_buffer_dirty(leaf);
1805 
1806 	ret = 0;
1807 out:
1808 	btrfs_free_path(path);
1809 	return ret;
1810 }
1811 
1812 /*
1813  * Function to update ctime/mtime for a given device path.
1814  * Mainly used for ctime/mtime based probe like libblkid.
1815  */
1816 static void update_dev_time(const char *path_name)
1817 {
1818 	struct file *filp;
1819 
1820 	filp = filp_open(path_name, O_RDWR, 0);
1821 	if (IS_ERR(filp))
1822 		return;
1823 	file_update_time(filp);
1824 	filp_close(filp, NULL);
1825 }
1826 
1827 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1828 			     struct btrfs_device *device)
1829 {
1830 	struct btrfs_root *root = fs_info->chunk_root;
1831 	int ret;
1832 	struct btrfs_path *path;
1833 	struct btrfs_key key;
1834 	struct btrfs_trans_handle *trans;
1835 
1836 	path = btrfs_alloc_path();
1837 	if (!path)
1838 		return -ENOMEM;
1839 
1840 	trans = btrfs_start_transaction(root, 0);
1841 	if (IS_ERR(trans)) {
1842 		btrfs_free_path(path);
1843 		return PTR_ERR(trans);
1844 	}
1845 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1846 	key.type = BTRFS_DEV_ITEM_KEY;
1847 	key.offset = device->devid;
1848 
1849 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1850 	if (ret) {
1851 		if (ret > 0)
1852 			ret = -ENOENT;
1853 		btrfs_abort_transaction(trans, ret);
1854 		btrfs_end_transaction(trans);
1855 		goto out;
1856 	}
1857 
1858 	ret = btrfs_del_item(trans, root, path);
1859 	if (ret) {
1860 		btrfs_abort_transaction(trans, ret);
1861 		btrfs_end_transaction(trans);
1862 	}
1863 
1864 out:
1865 	btrfs_free_path(path);
1866 	if (!ret)
1867 		ret = btrfs_commit_transaction(trans);
1868 	return ret;
1869 }
1870 
1871 /*
1872  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1873  * filesystem. It's up to the caller to adjust that number regarding eg. device
1874  * replace.
1875  */
1876 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1877 		u64 num_devices)
1878 {
1879 	u64 all_avail;
1880 	unsigned seq;
1881 	int i;
1882 
1883 	do {
1884 		seq = read_seqbegin(&fs_info->profiles_lock);
1885 
1886 		all_avail = fs_info->avail_data_alloc_bits |
1887 			    fs_info->avail_system_alloc_bits |
1888 			    fs_info->avail_metadata_alloc_bits;
1889 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1890 
1891 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1892 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1893 			continue;
1894 
1895 		if (num_devices < btrfs_raid_array[i].devs_min) {
1896 			int ret = btrfs_raid_array[i].mindev_error;
1897 
1898 			if (ret)
1899 				return ret;
1900 		}
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 static struct btrfs_device * btrfs_find_next_active_device(
1907 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1908 {
1909 	struct btrfs_device *next_device;
1910 
1911 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1912 		if (next_device != device &&
1913 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1914 		    && next_device->bdev)
1915 			return next_device;
1916 	}
1917 
1918 	return NULL;
1919 }
1920 
1921 /*
1922  * Helper function to check if the given device is part of s_bdev / latest_bdev
1923  * and replace it with the provided or the next active device, in the context
1924  * where this function called, there should be always be another device (or
1925  * this_dev) which is active.
1926  */
1927 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1928 		struct btrfs_device *device, struct btrfs_device *this_dev)
1929 {
1930 	struct btrfs_device *next_device;
1931 
1932 	if (this_dev)
1933 		next_device = this_dev;
1934 	else
1935 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1936 								device);
1937 	ASSERT(next_device);
1938 
1939 	if (fs_info->sb->s_bdev &&
1940 			(fs_info->sb->s_bdev == device->bdev))
1941 		fs_info->sb->s_bdev = next_device->bdev;
1942 
1943 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1944 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1945 }
1946 
1947 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1948 		u64 devid)
1949 {
1950 	struct btrfs_device *device;
1951 	struct btrfs_fs_devices *cur_devices;
1952 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1953 	u64 num_devices;
1954 	int ret = 0;
1955 
1956 	mutex_lock(&uuid_mutex);
1957 
1958 	num_devices = fs_devices->num_devices;
1959 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1960 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1961 		WARN_ON(num_devices < 1);
1962 		num_devices--;
1963 	}
1964 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1965 
1966 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1967 	if (ret)
1968 		goto out;
1969 
1970 	ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1971 					   &device);
1972 	if (ret)
1973 		goto out;
1974 
1975 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1976 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1977 		goto out;
1978 	}
1979 
1980 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1981 	    fs_info->fs_devices->rw_devices == 1) {
1982 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1983 		goto out;
1984 	}
1985 
1986 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1987 		mutex_lock(&fs_info->chunk_mutex);
1988 		list_del_init(&device->dev_alloc_list);
1989 		device->fs_devices->rw_devices--;
1990 		mutex_unlock(&fs_info->chunk_mutex);
1991 	}
1992 
1993 	mutex_unlock(&uuid_mutex);
1994 	ret = btrfs_shrink_device(device, 0);
1995 	mutex_lock(&uuid_mutex);
1996 	if (ret)
1997 		goto error_undo;
1998 
1999 	/*
2000 	 * TODO: the superblock still includes this device in its num_devices
2001 	 * counter although write_all_supers() is not locked out. This
2002 	 * could give a filesystem state which requires a degraded mount.
2003 	 */
2004 	ret = btrfs_rm_dev_item(fs_info, device);
2005 	if (ret)
2006 		goto error_undo;
2007 
2008 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2009 	btrfs_scrub_cancel_dev(fs_info, device);
2010 
2011 	/*
2012 	 * the device list mutex makes sure that we don't change
2013 	 * the device list while someone else is writing out all
2014 	 * the device supers. Whoever is writing all supers, should
2015 	 * lock the device list mutex before getting the number of
2016 	 * devices in the super block (super_copy). Conversely,
2017 	 * whoever updates the number of devices in the super block
2018 	 * (super_copy) should hold the device list mutex.
2019 	 */
2020 
2021 	/*
2022 	 * In normal cases the cur_devices == fs_devices. But in case
2023 	 * of deleting a seed device, the cur_devices should point to
2024 	 * its own fs_devices listed under the fs_devices->seed.
2025 	 */
2026 	cur_devices = device->fs_devices;
2027 	mutex_lock(&fs_devices->device_list_mutex);
2028 	list_del_rcu(&device->dev_list);
2029 
2030 	cur_devices->num_devices--;
2031 	cur_devices->total_devices--;
2032 
2033 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2034 		cur_devices->missing_devices--;
2035 
2036 	btrfs_assign_next_active_device(fs_info, device, NULL);
2037 
2038 	if (device->bdev) {
2039 		cur_devices->open_devices--;
2040 		/* remove sysfs entry */
2041 		btrfs_sysfs_rm_device_link(fs_devices, device);
2042 	}
2043 
2044 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2045 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2046 	mutex_unlock(&fs_devices->device_list_mutex);
2047 
2048 	/*
2049 	 * at this point, the device is zero sized and detached from
2050 	 * the devices list.  All that's left is to zero out the old
2051 	 * supers and free the device.
2052 	 */
2053 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2054 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2055 
2056 	btrfs_close_bdev(device);
2057 	call_rcu(&device->rcu, free_device_rcu);
2058 
2059 	if (cur_devices->open_devices == 0) {
2060 		while (fs_devices) {
2061 			if (fs_devices->seed == cur_devices) {
2062 				fs_devices->seed = cur_devices->seed;
2063 				break;
2064 			}
2065 			fs_devices = fs_devices->seed;
2066 		}
2067 		cur_devices->seed = NULL;
2068 		close_fs_devices(cur_devices);
2069 		free_fs_devices(cur_devices);
2070 	}
2071 
2072 out:
2073 	mutex_unlock(&uuid_mutex);
2074 	return ret;
2075 
2076 error_undo:
2077 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2078 		mutex_lock(&fs_info->chunk_mutex);
2079 		list_add(&device->dev_alloc_list,
2080 			 &fs_devices->alloc_list);
2081 		device->fs_devices->rw_devices++;
2082 		mutex_unlock(&fs_info->chunk_mutex);
2083 	}
2084 	goto out;
2085 }
2086 
2087 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2088 					struct btrfs_device *srcdev)
2089 {
2090 	struct btrfs_fs_devices *fs_devices;
2091 
2092 	lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2093 
2094 	/*
2095 	 * in case of fs with no seed, srcdev->fs_devices will point
2096 	 * to fs_devices of fs_info. However when the dev being replaced is
2097 	 * a seed dev it will point to the seed's local fs_devices. In short
2098 	 * srcdev will have its correct fs_devices in both the cases.
2099 	 */
2100 	fs_devices = srcdev->fs_devices;
2101 
2102 	list_del_rcu(&srcdev->dev_list);
2103 	list_del(&srcdev->dev_alloc_list);
2104 	fs_devices->num_devices--;
2105 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2106 		fs_devices->missing_devices--;
2107 
2108 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2109 		fs_devices->rw_devices--;
2110 
2111 	if (srcdev->bdev)
2112 		fs_devices->open_devices--;
2113 }
2114 
2115 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2116 				      struct btrfs_device *srcdev)
2117 {
2118 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2119 
2120 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2121 		/* zero out the old super if it is writable */
2122 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2123 	}
2124 
2125 	btrfs_close_bdev(srcdev);
2126 	call_rcu(&srcdev->rcu, free_device_rcu);
2127 
2128 	/* if this is no devs we rather delete the fs_devices */
2129 	if (!fs_devices->num_devices) {
2130 		struct btrfs_fs_devices *tmp_fs_devices;
2131 
2132 		/*
2133 		 * On a mounted FS, num_devices can't be zero unless it's a
2134 		 * seed. In case of a seed device being replaced, the replace
2135 		 * target added to the sprout FS, so there will be no more
2136 		 * device left under the seed FS.
2137 		 */
2138 		ASSERT(fs_devices->seeding);
2139 
2140 		tmp_fs_devices = fs_info->fs_devices;
2141 		while (tmp_fs_devices) {
2142 			if (tmp_fs_devices->seed == fs_devices) {
2143 				tmp_fs_devices->seed = fs_devices->seed;
2144 				break;
2145 			}
2146 			tmp_fs_devices = tmp_fs_devices->seed;
2147 		}
2148 		fs_devices->seed = NULL;
2149 		close_fs_devices(fs_devices);
2150 		free_fs_devices(fs_devices);
2151 	}
2152 }
2153 
2154 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2155 				      struct btrfs_device *tgtdev)
2156 {
2157 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2158 
2159 	WARN_ON(!tgtdev);
2160 	mutex_lock(&fs_devices->device_list_mutex);
2161 
2162 	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2163 
2164 	if (tgtdev->bdev)
2165 		fs_devices->open_devices--;
2166 
2167 	fs_devices->num_devices--;
2168 
2169 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2170 
2171 	list_del_rcu(&tgtdev->dev_list);
2172 
2173 	mutex_unlock(&fs_devices->device_list_mutex);
2174 
2175 	/*
2176 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2177 	 * may lead to a call to btrfs_show_devname() which will try
2178 	 * to hold device_list_mutex. And here this device
2179 	 * is already out of device list, so we don't have to hold
2180 	 * the device_list_mutex lock.
2181 	 */
2182 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2183 
2184 	btrfs_close_bdev(tgtdev);
2185 	call_rcu(&tgtdev->rcu, free_device_rcu);
2186 }
2187 
2188 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2189 				     const char *device_path,
2190 				     struct btrfs_device **device)
2191 {
2192 	int ret = 0;
2193 	struct btrfs_super_block *disk_super;
2194 	u64 devid;
2195 	u8 *dev_uuid;
2196 	struct block_device *bdev;
2197 	struct buffer_head *bh;
2198 
2199 	*device = NULL;
2200 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2201 				    fs_info->bdev_holder, 0, &bdev, &bh);
2202 	if (ret)
2203 		return ret;
2204 	disk_super = (struct btrfs_super_block *)bh->b_data;
2205 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2206 	dev_uuid = disk_super->dev_item.uuid;
2207 	*device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2208 	brelse(bh);
2209 	if (!*device)
2210 		ret = -ENOENT;
2211 	blkdev_put(bdev, FMODE_READ);
2212 	return ret;
2213 }
2214 
2215 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2216 					 const char *device_path,
2217 					 struct btrfs_device **device)
2218 {
2219 	*device = NULL;
2220 	if (strcmp(device_path, "missing") == 0) {
2221 		struct list_head *devices;
2222 		struct btrfs_device *tmp;
2223 
2224 		devices = &fs_info->fs_devices->devices;
2225 		list_for_each_entry(tmp, devices, dev_list) {
2226 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2227 					&tmp->dev_state) && !tmp->bdev) {
2228 				*device = tmp;
2229 				break;
2230 			}
2231 		}
2232 
2233 		if (!*device)
2234 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2235 
2236 		return 0;
2237 	} else {
2238 		return btrfs_find_device_by_path(fs_info, device_path, device);
2239 	}
2240 }
2241 
2242 /*
2243  * Lookup a device given by device id, or the path if the id is 0.
2244  */
2245 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2246 				 const char *devpath,
2247 				 struct btrfs_device **device)
2248 {
2249 	int ret;
2250 
2251 	if (devid) {
2252 		ret = 0;
2253 		*device = btrfs_find_device(fs_info, devid, NULL, NULL);
2254 		if (!*device)
2255 			ret = -ENOENT;
2256 	} else {
2257 		if (!devpath || !devpath[0])
2258 			return -EINVAL;
2259 
2260 		ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2261 							   device);
2262 	}
2263 	return ret;
2264 }
2265 
2266 /*
2267  * does all the dirty work required for changing file system's UUID.
2268  */
2269 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2270 {
2271 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2272 	struct btrfs_fs_devices *old_devices;
2273 	struct btrfs_fs_devices *seed_devices;
2274 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2275 	struct btrfs_device *device;
2276 	u64 super_flags;
2277 
2278 	lockdep_assert_held(&uuid_mutex);
2279 	if (!fs_devices->seeding)
2280 		return -EINVAL;
2281 
2282 	seed_devices = alloc_fs_devices(NULL);
2283 	if (IS_ERR(seed_devices))
2284 		return PTR_ERR(seed_devices);
2285 
2286 	old_devices = clone_fs_devices(fs_devices);
2287 	if (IS_ERR(old_devices)) {
2288 		kfree(seed_devices);
2289 		return PTR_ERR(old_devices);
2290 	}
2291 
2292 	list_add(&old_devices->fs_list, &fs_uuids);
2293 
2294 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2295 	seed_devices->opened = 1;
2296 	INIT_LIST_HEAD(&seed_devices->devices);
2297 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2298 	mutex_init(&seed_devices->device_list_mutex);
2299 
2300 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2301 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2302 			      synchronize_rcu);
2303 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2304 		device->fs_devices = seed_devices;
2305 
2306 	mutex_lock(&fs_info->chunk_mutex);
2307 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2308 	mutex_unlock(&fs_info->chunk_mutex);
2309 
2310 	fs_devices->seeding = 0;
2311 	fs_devices->num_devices = 0;
2312 	fs_devices->open_devices = 0;
2313 	fs_devices->missing_devices = 0;
2314 	fs_devices->rotating = 0;
2315 	fs_devices->seed = seed_devices;
2316 
2317 	generate_random_uuid(fs_devices->fsid);
2318 	memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2319 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2320 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2321 
2322 	super_flags = btrfs_super_flags(disk_super) &
2323 		      ~BTRFS_SUPER_FLAG_SEEDING;
2324 	btrfs_set_super_flags(disk_super, super_flags);
2325 
2326 	return 0;
2327 }
2328 
2329 /*
2330  * Store the expected generation for seed devices in device items.
2331  */
2332 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2333 			       struct btrfs_fs_info *fs_info)
2334 {
2335 	struct btrfs_root *root = fs_info->chunk_root;
2336 	struct btrfs_path *path;
2337 	struct extent_buffer *leaf;
2338 	struct btrfs_dev_item *dev_item;
2339 	struct btrfs_device *device;
2340 	struct btrfs_key key;
2341 	u8 fs_uuid[BTRFS_FSID_SIZE];
2342 	u8 dev_uuid[BTRFS_UUID_SIZE];
2343 	u64 devid;
2344 	int ret;
2345 
2346 	path = btrfs_alloc_path();
2347 	if (!path)
2348 		return -ENOMEM;
2349 
2350 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2351 	key.offset = 0;
2352 	key.type = BTRFS_DEV_ITEM_KEY;
2353 
2354 	while (1) {
2355 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2356 		if (ret < 0)
2357 			goto error;
2358 
2359 		leaf = path->nodes[0];
2360 next_slot:
2361 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2362 			ret = btrfs_next_leaf(root, path);
2363 			if (ret > 0)
2364 				break;
2365 			if (ret < 0)
2366 				goto error;
2367 			leaf = path->nodes[0];
2368 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2369 			btrfs_release_path(path);
2370 			continue;
2371 		}
2372 
2373 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2374 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2375 		    key.type != BTRFS_DEV_ITEM_KEY)
2376 			break;
2377 
2378 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2379 					  struct btrfs_dev_item);
2380 		devid = btrfs_device_id(leaf, dev_item);
2381 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2382 				   BTRFS_UUID_SIZE);
2383 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2384 				   BTRFS_FSID_SIZE);
2385 		device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2386 		BUG_ON(!device); /* Logic error */
2387 
2388 		if (device->fs_devices->seeding) {
2389 			btrfs_set_device_generation(leaf, dev_item,
2390 						    device->generation);
2391 			btrfs_mark_buffer_dirty(leaf);
2392 		}
2393 
2394 		path->slots[0]++;
2395 		goto next_slot;
2396 	}
2397 	ret = 0;
2398 error:
2399 	btrfs_free_path(path);
2400 	return ret;
2401 }
2402 
2403 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2404 {
2405 	struct btrfs_root *root = fs_info->dev_root;
2406 	struct request_queue *q;
2407 	struct btrfs_trans_handle *trans;
2408 	struct btrfs_device *device;
2409 	struct block_device *bdev;
2410 	struct list_head *devices;
2411 	struct super_block *sb = fs_info->sb;
2412 	struct rcu_string *name;
2413 	u64 tmp;
2414 	int seeding_dev = 0;
2415 	int ret = 0;
2416 	bool unlocked = false;
2417 
2418 	if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2419 		return -EROFS;
2420 
2421 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2422 				  fs_info->bdev_holder);
2423 	if (IS_ERR(bdev))
2424 		return PTR_ERR(bdev);
2425 
2426 	if (fs_info->fs_devices->seeding) {
2427 		seeding_dev = 1;
2428 		down_write(&sb->s_umount);
2429 		mutex_lock(&uuid_mutex);
2430 	}
2431 
2432 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2433 
2434 	devices = &fs_info->fs_devices->devices;
2435 
2436 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2437 	list_for_each_entry(device, devices, dev_list) {
2438 		if (device->bdev == bdev) {
2439 			ret = -EEXIST;
2440 			mutex_unlock(
2441 				&fs_info->fs_devices->device_list_mutex);
2442 			goto error;
2443 		}
2444 	}
2445 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2446 
2447 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2448 	if (IS_ERR(device)) {
2449 		/* we can safely leave the fs_devices entry around */
2450 		ret = PTR_ERR(device);
2451 		goto error;
2452 	}
2453 
2454 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2455 	if (!name) {
2456 		ret = -ENOMEM;
2457 		goto error_free_device;
2458 	}
2459 	rcu_assign_pointer(device->name, name);
2460 
2461 	trans = btrfs_start_transaction(root, 0);
2462 	if (IS_ERR(trans)) {
2463 		ret = PTR_ERR(trans);
2464 		goto error_free_device;
2465 	}
2466 
2467 	q = bdev_get_queue(bdev);
2468 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2469 	device->generation = trans->transid;
2470 	device->io_width = fs_info->sectorsize;
2471 	device->io_align = fs_info->sectorsize;
2472 	device->sector_size = fs_info->sectorsize;
2473 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2474 					 fs_info->sectorsize);
2475 	device->disk_total_bytes = device->total_bytes;
2476 	device->commit_total_bytes = device->total_bytes;
2477 	device->fs_info = fs_info;
2478 	device->bdev = bdev;
2479 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2480 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2481 	device->mode = FMODE_EXCL;
2482 	device->dev_stats_valid = 1;
2483 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2484 
2485 	if (seeding_dev) {
2486 		sb->s_flags &= ~SB_RDONLY;
2487 		ret = btrfs_prepare_sprout(fs_info);
2488 		if (ret) {
2489 			btrfs_abort_transaction(trans, ret);
2490 			goto error_trans;
2491 		}
2492 	}
2493 
2494 	device->fs_devices = fs_info->fs_devices;
2495 
2496 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2497 	mutex_lock(&fs_info->chunk_mutex);
2498 	list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2499 	list_add(&device->dev_alloc_list,
2500 		 &fs_info->fs_devices->alloc_list);
2501 	fs_info->fs_devices->num_devices++;
2502 	fs_info->fs_devices->open_devices++;
2503 	fs_info->fs_devices->rw_devices++;
2504 	fs_info->fs_devices->total_devices++;
2505 	fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2506 
2507 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2508 
2509 	if (!blk_queue_nonrot(q))
2510 		fs_info->fs_devices->rotating = 1;
2511 
2512 	tmp = btrfs_super_total_bytes(fs_info->super_copy);
2513 	btrfs_set_super_total_bytes(fs_info->super_copy,
2514 		round_down(tmp + device->total_bytes, fs_info->sectorsize));
2515 
2516 	tmp = btrfs_super_num_devices(fs_info->super_copy);
2517 	btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2518 
2519 	/* add sysfs device entry */
2520 	btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2521 
2522 	/*
2523 	 * we've got more storage, clear any full flags on the space
2524 	 * infos
2525 	 */
2526 	btrfs_clear_space_info_full(fs_info);
2527 
2528 	mutex_unlock(&fs_info->chunk_mutex);
2529 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2530 
2531 	if (seeding_dev) {
2532 		mutex_lock(&fs_info->chunk_mutex);
2533 		ret = init_first_rw_device(trans, fs_info);
2534 		mutex_unlock(&fs_info->chunk_mutex);
2535 		if (ret) {
2536 			btrfs_abort_transaction(trans, ret);
2537 			goto error_sysfs;
2538 		}
2539 	}
2540 
2541 	ret = btrfs_add_dev_item(trans, fs_info, device);
2542 	if (ret) {
2543 		btrfs_abort_transaction(trans, ret);
2544 		goto error_sysfs;
2545 	}
2546 
2547 	if (seeding_dev) {
2548 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2549 
2550 		ret = btrfs_finish_sprout(trans, fs_info);
2551 		if (ret) {
2552 			btrfs_abort_transaction(trans, ret);
2553 			goto error_sysfs;
2554 		}
2555 
2556 		/* Sprouting would change fsid of the mounted root,
2557 		 * so rename the fsid on the sysfs
2558 		 */
2559 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2560 						fs_info->fsid);
2561 		if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2562 			btrfs_warn(fs_info,
2563 				   "sysfs: failed to create fsid for sprout");
2564 	}
2565 
2566 	ret = btrfs_commit_transaction(trans);
2567 
2568 	if (seeding_dev) {
2569 		mutex_unlock(&uuid_mutex);
2570 		up_write(&sb->s_umount);
2571 		unlocked = true;
2572 
2573 		if (ret) /* transaction commit */
2574 			return ret;
2575 
2576 		ret = btrfs_relocate_sys_chunks(fs_info);
2577 		if (ret < 0)
2578 			btrfs_handle_fs_error(fs_info, ret,
2579 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2580 		trans = btrfs_attach_transaction(root);
2581 		if (IS_ERR(trans)) {
2582 			if (PTR_ERR(trans) == -ENOENT)
2583 				return 0;
2584 			ret = PTR_ERR(trans);
2585 			trans = NULL;
2586 			goto error_sysfs;
2587 		}
2588 		ret = btrfs_commit_transaction(trans);
2589 	}
2590 
2591 	/* Update ctime/mtime for libblkid */
2592 	update_dev_time(device_path);
2593 	return ret;
2594 
2595 error_sysfs:
2596 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2597 error_trans:
2598 	if (seeding_dev)
2599 		sb->s_flags |= SB_RDONLY;
2600 	if (trans)
2601 		btrfs_end_transaction(trans);
2602 error_free_device:
2603 	btrfs_free_device(device);
2604 error:
2605 	blkdev_put(bdev, FMODE_EXCL);
2606 	if (seeding_dev && !unlocked) {
2607 		mutex_unlock(&uuid_mutex);
2608 		up_write(&sb->s_umount);
2609 	}
2610 	return ret;
2611 }
2612 
2613 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2614 					struct btrfs_device *device)
2615 {
2616 	int ret;
2617 	struct btrfs_path *path;
2618 	struct btrfs_root *root = device->fs_info->chunk_root;
2619 	struct btrfs_dev_item *dev_item;
2620 	struct extent_buffer *leaf;
2621 	struct btrfs_key key;
2622 
2623 	path = btrfs_alloc_path();
2624 	if (!path)
2625 		return -ENOMEM;
2626 
2627 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2628 	key.type = BTRFS_DEV_ITEM_KEY;
2629 	key.offset = device->devid;
2630 
2631 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2632 	if (ret < 0)
2633 		goto out;
2634 
2635 	if (ret > 0) {
2636 		ret = -ENOENT;
2637 		goto out;
2638 	}
2639 
2640 	leaf = path->nodes[0];
2641 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2642 
2643 	btrfs_set_device_id(leaf, dev_item, device->devid);
2644 	btrfs_set_device_type(leaf, dev_item, device->type);
2645 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2646 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2647 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2648 	btrfs_set_device_total_bytes(leaf, dev_item,
2649 				     btrfs_device_get_disk_total_bytes(device));
2650 	btrfs_set_device_bytes_used(leaf, dev_item,
2651 				    btrfs_device_get_bytes_used(device));
2652 	btrfs_mark_buffer_dirty(leaf);
2653 
2654 out:
2655 	btrfs_free_path(path);
2656 	return ret;
2657 }
2658 
2659 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2660 		      struct btrfs_device *device, u64 new_size)
2661 {
2662 	struct btrfs_fs_info *fs_info = device->fs_info;
2663 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2664 	struct btrfs_fs_devices *fs_devices;
2665 	u64 old_total;
2666 	u64 diff;
2667 
2668 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2669 		return -EACCES;
2670 
2671 	new_size = round_down(new_size, fs_info->sectorsize);
2672 
2673 	mutex_lock(&fs_info->chunk_mutex);
2674 	old_total = btrfs_super_total_bytes(super_copy);
2675 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2676 
2677 	if (new_size <= device->total_bytes ||
2678 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2679 		mutex_unlock(&fs_info->chunk_mutex);
2680 		return -EINVAL;
2681 	}
2682 
2683 	fs_devices = fs_info->fs_devices;
2684 
2685 	btrfs_set_super_total_bytes(super_copy,
2686 			round_down(old_total + diff, fs_info->sectorsize));
2687 	device->fs_devices->total_rw_bytes += diff;
2688 
2689 	btrfs_device_set_total_bytes(device, new_size);
2690 	btrfs_device_set_disk_total_bytes(device, new_size);
2691 	btrfs_clear_space_info_full(device->fs_info);
2692 	if (list_empty(&device->resized_list))
2693 		list_add_tail(&device->resized_list,
2694 			      &fs_devices->resized_devices);
2695 	mutex_unlock(&fs_info->chunk_mutex);
2696 
2697 	return btrfs_update_device(trans, device);
2698 }
2699 
2700 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2701 			    struct btrfs_fs_info *fs_info, u64 chunk_offset)
2702 {
2703 	struct btrfs_root *root = fs_info->chunk_root;
2704 	int ret;
2705 	struct btrfs_path *path;
2706 	struct btrfs_key key;
2707 
2708 	path = btrfs_alloc_path();
2709 	if (!path)
2710 		return -ENOMEM;
2711 
2712 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2713 	key.offset = chunk_offset;
2714 	key.type = BTRFS_CHUNK_ITEM_KEY;
2715 
2716 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2717 	if (ret < 0)
2718 		goto out;
2719 	else if (ret > 0) { /* Logic error or corruption */
2720 		btrfs_handle_fs_error(fs_info, -ENOENT,
2721 				      "Failed lookup while freeing chunk.");
2722 		ret = -ENOENT;
2723 		goto out;
2724 	}
2725 
2726 	ret = btrfs_del_item(trans, root, path);
2727 	if (ret < 0)
2728 		btrfs_handle_fs_error(fs_info, ret,
2729 				      "Failed to delete chunk item.");
2730 out:
2731 	btrfs_free_path(path);
2732 	return ret;
2733 }
2734 
2735 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2736 {
2737 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2738 	struct btrfs_disk_key *disk_key;
2739 	struct btrfs_chunk *chunk;
2740 	u8 *ptr;
2741 	int ret = 0;
2742 	u32 num_stripes;
2743 	u32 array_size;
2744 	u32 len = 0;
2745 	u32 cur;
2746 	struct btrfs_key key;
2747 
2748 	mutex_lock(&fs_info->chunk_mutex);
2749 	array_size = btrfs_super_sys_array_size(super_copy);
2750 
2751 	ptr = super_copy->sys_chunk_array;
2752 	cur = 0;
2753 
2754 	while (cur < array_size) {
2755 		disk_key = (struct btrfs_disk_key *)ptr;
2756 		btrfs_disk_key_to_cpu(&key, disk_key);
2757 
2758 		len = sizeof(*disk_key);
2759 
2760 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2761 			chunk = (struct btrfs_chunk *)(ptr + len);
2762 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2763 			len += btrfs_chunk_item_size(num_stripes);
2764 		} else {
2765 			ret = -EIO;
2766 			break;
2767 		}
2768 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2769 		    key.offset == chunk_offset) {
2770 			memmove(ptr, ptr + len, array_size - (cur + len));
2771 			array_size -= len;
2772 			btrfs_set_super_sys_array_size(super_copy, array_size);
2773 		} else {
2774 			ptr += len;
2775 			cur += len;
2776 		}
2777 	}
2778 	mutex_unlock(&fs_info->chunk_mutex);
2779 	return ret;
2780 }
2781 
2782 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2783 					u64 logical, u64 length)
2784 {
2785 	struct extent_map_tree *em_tree;
2786 	struct extent_map *em;
2787 
2788 	em_tree = &fs_info->mapping_tree.map_tree;
2789 	read_lock(&em_tree->lock);
2790 	em = lookup_extent_mapping(em_tree, logical, length);
2791 	read_unlock(&em_tree->lock);
2792 
2793 	if (!em) {
2794 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2795 			   logical, length);
2796 		return ERR_PTR(-EINVAL);
2797 	}
2798 
2799 	if (em->start > logical || em->start + em->len < logical) {
2800 		btrfs_crit(fs_info,
2801 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2802 			   logical, length, em->start, em->start + em->len);
2803 		free_extent_map(em);
2804 		return ERR_PTR(-EINVAL);
2805 	}
2806 
2807 	/* callers are responsible for dropping em's ref. */
2808 	return em;
2809 }
2810 
2811 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2812 		       struct btrfs_fs_info *fs_info, u64 chunk_offset)
2813 {
2814 	struct extent_map *em;
2815 	struct map_lookup *map;
2816 	u64 dev_extent_len = 0;
2817 	int i, ret = 0;
2818 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2819 
2820 	em = get_chunk_map(fs_info, chunk_offset, 1);
2821 	if (IS_ERR(em)) {
2822 		/*
2823 		 * This is a logic error, but we don't want to just rely on the
2824 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2825 		 * do anything we still error out.
2826 		 */
2827 		ASSERT(0);
2828 		return PTR_ERR(em);
2829 	}
2830 	map = em->map_lookup;
2831 	mutex_lock(&fs_info->chunk_mutex);
2832 	check_system_chunk(trans, fs_info, map->type);
2833 	mutex_unlock(&fs_info->chunk_mutex);
2834 
2835 	/*
2836 	 * Take the device list mutex to prevent races with the final phase of
2837 	 * a device replace operation that replaces the device object associated
2838 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2839 	 */
2840 	mutex_lock(&fs_devices->device_list_mutex);
2841 	for (i = 0; i < map->num_stripes; i++) {
2842 		struct btrfs_device *device = map->stripes[i].dev;
2843 		ret = btrfs_free_dev_extent(trans, device,
2844 					    map->stripes[i].physical,
2845 					    &dev_extent_len);
2846 		if (ret) {
2847 			mutex_unlock(&fs_devices->device_list_mutex);
2848 			btrfs_abort_transaction(trans, ret);
2849 			goto out;
2850 		}
2851 
2852 		if (device->bytes_used > 0) {
2853 			mutex_lock(&fs_info->chunk_mutex);
2854 			btrfs_device_set_bytes_used(device,
2855 					device->bytes_used - dev_extent_len);
2856 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2857 			btrfs_clear_space_info_full(fs_info);
2858 			mutex_unlock(&fs_info->chunk_mutex);
2859 		}
2860 
2861 		if (map->stripes[i].dev) {
2862 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2863 			if (ret) {
2864 				mutex_unlock(&fs_devices->device_list_mutex);
2865 				btrfs_abort_transaction(trans, ret);
2866 				goto out;
2867 			}
2868 		}
2869 	}
2870 	mutex_unlock(&fs_devices->device_list_mutex);
2871 
2872 	ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2873 	if (ret) {
2874 		btrfs_abort_transaction(trans, ret);
2875 		goto out;
2876 	}
2877 
2878 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2879 
2880 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2881 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2882 		if (ret) {
2883 			btrfs_abort_transaction(trans, ret);
2884 			goto out;
2885 		}
2886 	}
2887 
2888 	ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2889 	if (ret) {
2890 		btrfs_abort_transaction(trans, ret);
2891 		goto out;
2892 	}
2893 
2894 out:
2895 	/* once for us */
2896 	free_extent_map(em);
2897 	return ret;
2898 }
2899 
2900 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2901 {
2902 	struct btrfs_root *root = fs_info->chunk_root;
2903 	struct btrfs_trans_handle *trans;
2904 	int ret;
2905 
2906 	/*
2907 	 * Prevent races with automatic removal of unused block groups.
2908 	 * After we relocate and before we remove the chunk with offset
2909 	 * chunk_offset, automatic removal of the block group can kick in,
2910 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2911 	 *
2912 	 * Make sure to acquire this mutex before doing a tree search (dev
2913 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 	 * we release the path used to search the chunk/dev tree and before
2916 	 * the current task acquires this mutex and calls us.
2917 	 */
2918 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2919 
2920 	ret = btrfs_can_relocate(fs_info, chunk_offset);
2921 	if (ret)
2922 		return -ENOSPC;
2923 
2924 	/* step one, relocate all the extents inside this chunk */
2925 	btrfs_scrub_pause(fs_info);
2926 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2927 	btrfs_scrub_continue(fs_info);
2928 	if (ret)
2929 		return ret;
2930 
2931 	/*
2932 	 * We add the kobjects here (and after forcing data chunk creation)
2933 	 * since relocation is the only place we'll create chunks of a new
2934 	 * type at runtime.  The only place where we'll remove the last
2935 	 * chunk of a type is the call immediately below this one.  Even
2936 	 * so, we're protected against races with the cleaner thread since
2937 	 * we're covered by the delete_unused_bgs_mutex.
2938 	 */
2939 	btrfs_add_raid_kobjects(fs_info);
2940 
2941 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2942 						     chunk_offset);
2943 	if (IS_ERR(trans)) {
2944 		ret = PTR_ERR(trans);
2945 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2946 		return ret;
2947 	}
2948 
2949 	/*
2950 	 * step two, delete the device extents and the
2951 	 * chunk tree entries
2952 	 */
2953 	ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2954 	btrfs_end_transaction(trans);
2955 	return ret;
2956 }
2957 
2958 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2959 {
2960 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2961 	struct btrfs_path *path;
2962 	struct extent_buffer *leaf;
2963 	struct btrfs_chunk *chunk;
2964 	struct btrfs_key key;
2965 	struct btrfs_key found_key;
2966 	u64 chunk_type;
2967 	bool retried = false;
2968 	int failed = 0;
2969 	int ret;
2970 
2971 	path = btrfs_alloc_path();
2972 	if (!path)
2973 		return -ENOMEM;
2974 
2975 again:
2976 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2977 	key.offset = (u64)-1;
2978 	key.type = BTRFS_CHUNK_ITEM_KEY;
2979 
2980 	while (1) {
2981 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
2982 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2983 		if (ret < 0) {
2984 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2985 			goto error;
2986 		}
2987 		BUG_ON(ret == 0); /* Corruption */
2988 
2989 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2990 					  key.type);
2991 		if (ret)
2992 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2993 		if (ret < 0)
2994 			goto error;
2995 		if (ret > 0)
2996 			break;
2997 
2998 		leaf = path->nodes[0];
2999 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3000 
3001 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3002 				       struct btrfs_chunk);
3003 		chunk_type = btrfs_chunk_type(leaf, chunk);
3004 		btrfs_release_path(path);
3005 
3006 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3007 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3008 			if (ret == -ENOSPC)
3009 				failed++;
3010 			else
3011 				BUG_ON(ret);
3012 		}
3013 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3014 
3015 		if (found_key.offset == 0)
3016 			break;
3017 		key.offset = found_key.offset - 1;
3018 	}
3019 	ret = 0;
3020 	if (failed && !retried) {
3021 		failed = 0;
3022 		retried = true;
3023 		goto again;
3024 	} else if (WARN_ON(failed && retried)) {
3025 		ret = -ENOSPC;
3026 	}
3027 error:
3028 	btrfs_free_path(path);
3029 	return ret;
3030 }
3031 
3032 /*
3033  * return 1 : allocate a data chunk successfully,
3034  * return <0: errors during allocating a data chunk,
3035  * return 0 : no need to allocate a data chunk.
3036  */
3037 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3038 				      u64 chunk_offset)
3039 {
3040 	struct btrfs_block_group_cache *cache;
3041 	u64 bytes_used;
3042 	u64 chunk_type;
3043 
3044 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3045 	ASSERT(cache);
3046 	chunk_type = cache->flags;
3047 	btrfs_put_block_group(cache);
3048 
3049 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3050 		spin_lock(&fs_info->data_sinfo->lock);
3051 		bytes_used = fs_info->data_sinfo->bytes_used;
3052 		spin_unlock(&fs_info->data_sinfo->lock);
3053 
3054 		if (!bytes_used) {
3055 			struct btrfs_trans_handle *trans;
3056 			int ret;
3057 
3058 			trans =	btrfs_join_transaction(fs_info->tree_root);
3059 			if (IS_ERR(trans))
3060 				return PTR_ERR(trans);
3061 
3062 			ret = btrfs_force_chunk_alloc(trans, fs_info,
3063 						      BTRFS_BLOCK_GROUP_DATA);
3064 			btrfs_end_transaction(trans);
3065 			if (ret < 0)
3066 				return ret;
3067 
3068 			btrfs_add_raid_kobjects(fs_info);
3069 
3070 			return 1;
3071 		}
3072 	}
3073 	return 0;
3074 }
3075 
3076 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3077 			       struct btrfs_balance_control *bctl)
3078 {
3079 	struct btrfs_root *root = fs_info->tree_root;
3080 	struct btrfs_trans_handle *trans;
3081 	struct btrfs_balance_item *item;
3082 	struct btrfs_disk_balance_args disk_bargs;
3083 	struct btrfs_path *path;
3084 	struct extent_buffer *leaf;
3085 	struct btrfs_key key;
3086 	int ret, err;
3087 
3088 	path = btrfs_alloc_path();
3089 	if (!path)
3090 		return -ENOMEM;
3091 
3092 	trans = btrfs_start_transaction(root, 0);
3093 	if (IS_ERR(trans)) {
3094 		btrfs_free_path(path);
3095 		return PTR_ERR(trans);
3096 	}
3097 
3098 	key.objectid = BTRFS_BALANCE_OBJECTID;
3099 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3100 	key.offset = 0;
3101 
3102 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3103 				      sizeof(*item));
3104 	if (ret)
3105 		goto out;
3106 
3107 	leaf = path->nodes[0];
3108 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3109 
3110 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3111 
3112 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3113 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3114 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3115 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3116 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3117 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3118 
3119 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3120 
3121 	btrfs_mark_buffer_dirty(leaf);
3122 out:
3123 	btrfs_free_path(path);
3124 	err = btrfs_commit_transaction(trans);
3125 	if (err && !ret)
3126 		ret = err;
3127 	return ret;
3128 }
3129 
3130 static int del_balance_item(struct btrfs_fs_info *fs_info)
3131 {
3132 	struct btrfs_root *root = fs_info->tree_root;
3133 	struct btrfs_trans_handle *trans;
3134 	struct btrfs_path *path;
3135 	struct btrfs_key key;
3136 	int ret, err;
3137 
3138 	path = btrfs_alloc_path();
3139 	if (!path)
3140 		return -ENOMEM;
3141 
3142 	trans = btrfs_start_transaction(root, 0);
3143 	if (IS_ERR(trans)) {
3144 		btrfs_free_path(path);
3145 		return PTR_ERR(trans);
3146 	}
3147 
3148 	key.objectid = BTRFS_BALANCE_OBJECTID;
3149 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3150 	key.offset = 0;
3151 
3152 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3153 	if (ret < 0)
3154 		goto out;
3155 	if (ret > 0) {
3156 		ret = -ENOENT;
3157 		goto out;
3158 	}
3159 
3160 	ret = btrfs_del_item(trans, root, path);
3161 out:
3162 	btrfs_free_path(path);
3163 	err = btrfs_commit_transaction(trans);
3164 	if (err && !ret)
3165 		ret = err;
3166 	return ret;
3167 }
3168 
3169 /*
3170  * This is a heuristic used to reduce the number of chunks balanced on
3171  * resume after balance was interrupted.
3172  */
3173 static void update_balance_args(struct btrfs_balance_control *bctl)
3174 {
3175 	/*
3176 	 * Turn on soft mode for chunk types that were being converted.
3177 	 */
3178 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3179 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3180 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3181 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3182 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3183 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3184 
3185 	/*
3186 	 * Turn on usage filter if is not already used.  The idea is
3187 	 * that chunks that we have already balanced should be
3188 	 * reasonably full.  Don't do it for chunks that are being
3189 	 * converted - that will keep us from relocating unconverted
3190 	 * (albeit full) chunks.
3191 	 */
3192 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3193 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3194 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3195 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3196 		bctl->data.usage = 90;
3197 	}
3198 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3199 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3200 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3201 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3202 		bctl->sys.usage = 90;
3203 	}
3204 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3205 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3206 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3207 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3208 		bctl->meta.usage = 90;
3209 	}
3210 }
3211 
3212 /*
3213  * Clear the balance status in fs_info and delete the balance item from disk.
3214  */
3215 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3216 {
3217 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3218 	int ret;
3219 
3220 	BUG_ON(!fs_info->balance_ctl);
3221 
3222 	spin_lock(&fs_info->balance_lock);
3223 	fs_info->balance_ctl = NULL;
3224 	spin_unlock(&fs_info->balance_lock);
3225 
3226 	kfree(bctl);
3227 	ret = del_balance_item(fs_info);
3228 	if (ret)
3229 		btrfs_handle_fs_error(fs_info, ret, NULL);
3230 }
3231 
3232 /*
3233  * Balance filters.  Return 1 if chunk should be filtered out
3234  * (should not be balanced).
3235  */
3236 static int chunk_profiles_filter(u64 chunk_type,
3237 				 struct btrfs_balance_args *bargs)
3238 {
3239 	chunk_type = chunk_to_extended(chunk_type) &
3240 				BTRFS_EXTENDED_PROFILE_MASK;
3241 
3242 	if (bargs->profiles & chunk_type)
3243 		return 0;
3244 
3245 	return 1;
3246 }
3247 
3248 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3249 			      struct btrfs_balance_args *bargs)
3250 {
3251 	struct btrfs_block_group_cache *cache;
3252 	u64 chunk_used;
3253 	u64 user_thresh_min;
3254 	u64 user_thresh_max;
3255 	int ret = 1;
3256 
3257 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3258 	chunk_used = btrfs_block_group_used(&cache->item);
3259 
3260 	if (bargs->usage_min == 0)
3261 		user_thresh_min = 0;
3262 	else
3263 		user_thresh_min = div_factor_fine(cache->key.offset,
3264 					bargs->usage_min);
3265 
3266 	if (bargs->usage_max == 0)
3267 		user_thresh_max = 1;
3268 	else if (bargs->usage_max > 100)
3269 		user_thresh_max = cache->key.offset;
3270 	else
3271 		user_thresh_max = div_factor_fine(cache->key.offset,
3272 					bargs->usage_max);
3273 
3274 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3275 		ret = 0;
3276 
3277 	btrfs_put_block_group(cache);
3278 	return ret;
3279 }
3280 
3281 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3282 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3283 {
3284 	struct btrfs_block_group_cache *cache;
3285 	u64 chunk_used, user_thresh;
3286 	int ret = 1;
3287 
3288 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3289 	chunk_used = btrfs_block_group_used(&cache->item);
3290 
3291 	if (bargs->usage_min == 0)
3292 		user_thresh = 1;
3293 	else if (bargs->usage > 100)
3294 		user_thresh = cache->key.offset;
3295 	else
3296 		user_thresh = div_factor_fine(cache->key.offset,
3297 					      bargs->usage);
3298 
3299 	if (chunk_used < user_thresh)
3300 		ret = 0;
3301 
3302 	btrfs_put_block_group(cache);
3303 	return ret;
3304 }
3305 
3306 static int chunk_devid_filter(struct extent_buffer *leaf,
3307 			      struct btrfs_chunk *chunk,
3308 			      struct btrfs_balance_args *bargs)
3309 {
3310 	struct btrfs_stripe *stripe;
3311 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3312 	int i;
3313 
3314 	for (i = 0; i < num_stripes; i++) {
3315 		stripe = btrfs_stripe_nr(chunk, i);
3316 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3317 			return 0;
3318 	}
3319 
3320 	return 1;
3321 }
3322 
3323 /* [pstart, pend) */
3324 static int chunk_drange_filter(struct extent_buffer *leaf,
3325 			       struct btrfs_chunk *chunk,
3326 			       struct btrfs_balance_args *bargs)
3327 {
3328 	struct btrfs_stripe *stripe;
3329 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3330 	u64 stripe_offset;
3331 	u64 stripe_length;
3332 	int factor;
3333 	int i;
3334 
3335 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3336 		return 0;
3337 
3338 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3339 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3340 		factor = num_stripes / 2;
3341 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3342 		factor = num_stripes - 1;
3343 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3344 		factor = num_stripes - 2;
3345 	} else {
3346 		factor = num_stripes;
3347 	}
3348 
3349 	for (i = 0; i < num_stripes; i++) {
3350 		stripe = btrfs_stripe_nr(chunk, i);
3351 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3352 			continue;
3353 
3354 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3355 		stripe_length = btrfs_chunk_length(leaf, chunk);
3356 		stripe_length = div_u64(stripe_length, factor);
3357 
3358 		if (stripe_offset < bargs->pend &&
3359 		    stripe_offset + stripe_length > bargs->pstart)
3360 			return 0;
3361 	}
3362 
3363 	return 1;
3364 }
3365 
3366 /* [vstart, vend) */
3367 static int chunk_vrange_filter(struct extent_buffer *leaf,
3368 			       struct btrfs_chunk *chunk,
3369 			       u64 chunk_offset,
3370 			       struct btrfs_balance_args *bargs)
3371 {
3372 	if (chunk_offset < bargs->vend &&
3373 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3374 		/* at least part of the chunk is inside this vrange */
3375 		return 0;
3376 
3377 	return 1;
3378 }
3379 
3380 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3381 			       struct btrfs_chunk *chunk,
3382 			       struct btrfs_balance_args *bargs)
3383 {
3384 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3385 
3386 	if (bargs->stripes_min <= num_stripes
3387 			&& num_stripes <= bargs->stripes_max)
3388 		return 0;
3389 
3390 	return 1;
3391 }
3392 
3393 static int chunk_soft_convert_filter(u64 chunk_type,
3394 				     struct btrfs_balance_args *bargs)
3395 {
3396 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3397 		return 0;
3398 
3399 	chunk_type = chunk_to_extended(chunk_type) &
3400 				BTRFS_EXTENDED_PROFILE_MASK;
3401 
3402 	if (bargs->target == chunk_type)
3403 		return 1;
3404 
3405 	return 0;
3406 }
3407 
3408 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3409 				struct extent_buffer *leaf,
3410 				struct btrfs_chunk *chunk, u64 chunk_offset)
3411 {
3412 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3413 	struct btrfs_balance_args *bargs = NULL;
3414 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3415 
3416 	/* type filter */
3417 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3418 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3419 		return 0;
3420 	}
3421 
3422 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3423 		bargs = &bctl->data;
3424 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3425 		bargs = &bctl->sys;
3426 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3427 		bargs = &bctl->meta;
3428 
3429 	/* profiles filter */
3430 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3431 	    chunk_profiles_filter(chunk_type, bargs)) {
3432 		return 0;
3433 	}
3434 
3435 	/* usage filter */
3436 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3437 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3438 		return 0;
3439 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3440 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3441 		return 0;
3442 	}
3443 
3444 	/* devid filter */
3445 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3446 	    chunk_devid_filter(leaf, chunk, bargs)) {
3447 		return 0;
3448 	}
3449 
3450 	/* drange filter, makes sense only with devid filter */
3451 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3452 	    chunk_drange_filter(leaf, chunk, bargs)) {
3453 		return 0;
3454 	}
3455 
3456 	/* vrange filter */
3457 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3458 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3459 		return 0;
3460 	}
3461 
3462 	/* stripes filter */
3463 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3464 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3465 		return 0;
3466 	}
3467 
3468 	/* soft profile changing mode */
3469 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3470 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3471 		return 0;
3472 	}
3473 
3474 	/*
3475 	 * limited by count, must be the last filter
3476 	 */
3477 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3478 		if (bargs->limit == 0)
3479 			return 0;
3480 		else
3481 			bargs->limit--;
3482 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3483 		/*
3484 		 * Same logic as the 'limit' filter; the minimum cannot be
3485 		 * determined here because we do not have the global information
3486 		 * about the count of all chunks that satisfy the filters.
3487 		 */
3488 		if (bargs->limit_max == 0)
3489 			return 0;
3490 		else
3491 			bargs->limit_max--;
3492 	}
3493 
3494 	return 1;
3495 }
3496 
3497 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3498 {
3499 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3500 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3501 	struct btrfs_root *dev_root = fs_info->dev_root;
3502 	struct list_head *devices;
3503 	struct btrfs_device *device;
3504 	u64 old_size;
3505 	u64 size_to_free;
3506 	u64 chunk_type;
3507 	struct btrfs_chunk *chunk;
3508 	struct btrfs_path *path = NULL;
3509 	struct btrfs_key key;
3510 	struct btrfs_key found_key;
3511 	struct btrfs_trans_handle *trans;
3512 	struct extent_buffer *leaf;
3513 	int slot;
3514 	int ret;
3515 	int enospc_errors = 0;
3516 	bool counting = true;
3517 	/* The single value limit and min/max limits use the same bytes in the */
3518 	u64 limit_data = bctl->data.limit;
3519 	u64 limit_meta = bctl->meta.limit;
3520 	u64 limit_sys = bctl->sys.limit;
3521 	u32 count_data = 0;
3522 	u32 count_meta = 0;
3523 	u32 count_sys = 0;
3524 	int chunk_reserved = 0;
3525 
3526 	/* step one make some room on all the devices */
3527 	devices = &fs_info->fs_devices->devices;
3528 	list_for_each_entry(device, devices, dev_list) {
3529 		old_size = btrfs_device_get_total_bytes(device);
3530 		size_to_free = div_factor(old_size, 1);
3531 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3532 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3533 		    btrfs_device_get_total_bytes(device) -
3534 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3535 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3536 			continue;
3537 
3538 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3539 		if (ret == -ENOSPC)
3540 			break;
3541 		if (ret) {
3542 			/* btrfs_shrink_device never returns ret > 0 */
3543 			WARN_ON(ret > 0);
3544 			goto error;
3545 		}
3546 
3547 		trans = btrfs_start_transaction(dev_root, 0);
3548 		if (IS_ERR(trans)) {
3549 			ret = PTR_ERR(trans);
3550 			btrfs_info_in_rcu(fs_info,
3551 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3552 					  rcu_str_deref(device->name), ret,
3553 					  old_size, old_size - size_to_free);
3554 			goto error;
3555 		}
3556 
3557 		ret = btrfs_grow_device(trans, device, old_size);
3558 		if (ret) {
3559 			btrfs_end_transaction(trans);
3560 			/* btrfs_grow_device never returns ret > 0 */
3561 			WARN_ON(ret > 0);
3562 			btrfs_info_in_rcu(fs_info,
3563 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3564 					  rcu_str_deref(device->name), ret,
3565 					  old_size, old_size - size_to_free);
3566 			goto error;
3567 		}
3568 
3569 		btrfs_end_transaction(trans);
3570 	}
3571 
3572 	/* step two, relocate all the chunks */
3573 	path = btrfs_alloc_path();
3574 	if (!path) {
3575 		ret = -ENOMEM;
3576 		goto error;
3577 	}
3578 
3579 	/* zero out stat counters */
3580 	spin_lock(&fs_info->balance_lock);
3581 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3582 	spin_unlock(&fs_info->balance_lock);
3583 again:
3584 	if (!counting) {
3585 		/*
3586 		 * The single value limit and min/max limits use the same bytes
3587 		 * in the
3588 		 */
3589 		bctl->data.limit = limit_data;
3590 		bctl->meta.limit = limit_meta;
3591 		bctl->sys.limit = limit_sys;
3592 	}
3593 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3594 	key.offset = (u64)-1;
3595 	key.type = BTRFS_CHUNK_ITEM_KEY;
3596 
3597 	while (1) {
3598 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3599 		    atomic_read(&fs_info->balance_cancel_req)) {
3600 			ret = -ECANCELED;
3601 			goto error;
3602 		}
3603 
3604 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3605 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3606 		if (ret < 0) {
3607 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3608 			goto error;
3609 		}
3610 
3611 		/*
3612 		 * this shouldn't happen, it means the last relocate
3613 		 * failed
3614 		 */
3615 		if (ret == 0)
3616 			BUG(); /* FIXME break ? */
3617 
3618 		ret = btrfs_previous_item(chunk_root, path, 0,
3619 					  BTRFS_CHUNK_ITEM_KEY);
3620 		if (ret) {
3621 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3622 			ret = 0;
3623 			break;
3624 		}
3625 
3626 		leaf = path->nodes[0];
3627 		slot = path->slots[0];
3628 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3629 
3630 		if (found_key.objectid != key.objectid) {
3631 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3632 			break;
3633 		}
3634 
3635 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3636 		chunk_type = btrfs_chunk_type(leaf, chunk);
3637 
3638 		if (!counting) {
3639 			spin_lock(&fs_info->balance_lock);
3640 			bctl->stat.considered++;
3641 			spin_unlock(&fs_info->balance_lock);
3642 		}
3643 
3644 		ret = should_balance_chunk(fs_info, leaf, chunk,
3645 					   found_key.offset);
3646 
3647 		btrfs_release_path(path);
3648 		if (!ret) {
3649 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3650 			goto loop;
3651 		}
3652 
3653 		if (counting) {
3654 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3655 			spin_lock(&fs_info->balance_lock);
3656 			bctl->stat.expected++;
3657 			spin_unlock(&fs_info->balance_lock);
3658 
3659 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3660 				count_data++;
3661 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3662 				count_sys++;
3663 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3664 				count_meta++;
3665 
3666 			goto loop;
3667 		}
3668 
3669 		/*
3670 		 * Apply limit_min filter, no need to check if the LIMITS
3671 		 * filter is used, limit_min is 0 by default
3672 		 */
3673 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3674 					count_data < bctl->data.limit_min)
3675 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3676 					count_meta < bctl->meta.limit_min)
3677 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3678 					count_sys < bctl->sys.limit_min)) {
3679 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3680 			goto loop;
3681 		}
3682 
3683 		if (!chunk_reserved) {
3684 			/*
3685 			 * We may be relocating the only data chunk we have,
3686 			 * which could potentially end up with losing data's
3687 			 * raid profile, so lets allocate an empty one in
3688 			 * advance.
3689 			 */
3690 			ret = btrfs_may_alloc_data_chunk(fs_info,
3691 							 found_key.offset);
3692 			if (ret < 0) {
3693 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3694 				goto error;
3695 			} else if (ret == 1) {
3696 				chunk_reserved = 1;
3697 			}
3698 		}
3699 
3700 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3701 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3702 		if (ret && ret != -ENOSPC)
3703 			goto error;
3704 		if (ret == -ENOSPC) {
3705 			enospc_errors++;
3706 		} else {
3707 			spin_lock(&fs_info->balance_lock);
3708 			bctl->stat.completed++;
3709 			spin_unlock(&fs_info->balance_lock);
3710 		}
3711 loop:
3712 		if (found_key.offset == 0)
3713 			break;
3714 		key.offset = found_key.offset - 1;
3715 	}
3716 
3717 	if (counting) {
3718 		btrfs_release_path(path);
3719 		counting = false;
3720 		goto again;
3721 	}
3722 error:
3723 	btrfs_free_path(path);
3724 	if (enospc_errors) {
3725 		btrfs_info(fs_info, "%d enospc errors during balance",
3726 			   enospc_errors);
3727 		if (!ret)
3728 			ret = -ENOSPC;
3729 	}
3730 
3731 	return ret;
3732 }
3733 
3734 /**
3735  * alloc_profile_is_valid - see if a given profile is valid and reduced
3736  * @flags: profile to validate
3737  * @extended: if true @flags is treated as an extended profile
3738  */
3739 static int alloc_profile_is_valid(u64 flags, int extended)
3740 {
3741 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3742 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3743 
3744 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3745 
3746 	/* 1) check that all other bits are zeroed */
3747 	if (flags & ~mask)
3748 		return 0;
3749 
3750 	/* 2) see if profile is reduced */
3751 	if (flags == 0)
3752 		return !extended; /* "0" is valid for usual profiles */
3753 
3754 	/* true if exactly one bit set */
3755 	return (flags & (flags - 1)) == 0;
3756 }
3757 
3758 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3759 {
3760 	/* cancel requested || normal exit path */
3761 	return atomic_read(&fs_info->balance_cancel_req) ||
3762 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3763 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3764 }
3765 
3766 /* Non-zero return value signifies invalidity */
3767 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3768 		u64 allowed)
3769 {
3770 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3771 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3772 		 (bctl_arg->target & ~allowed)));
3773 }
3774 
3775 /*
3776  * Should be called with balance mutexe held
3777  */
3778 int btrfs_balance(struct btrfs_fs_info *fs_info,
3779 		  struct btrfs_balance_control *bctl,
3780 		  struct btrfs_ioctl_balance_args *bargs)
3781 {
3782 	u64 meta_target, data_target;
3783 	u64 allowed;
3784 	int mixed = 0;
3785 	int ret;
3786 	u64 num_devices;
3787 	unsigned seq;
3788 
3789 	if (btrfs_fs_closing(fs_info) ||
3790 	    atomic_read(&fs_info->balance_pause_req) ||
3791 	    atomic_read(&fs_info->balance_cancel_req)) {
3792 		ret = -EINVAL;
3793 		goto out;
3794 	}
3795 
3796 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3797 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3798 		mixed = 1;
3799 
3800 	/*
3801 	 * In case of mixed groups both data and meta should be picked,
3802 	 * and identical options should be given for both of them.
3803 	 */
3804 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3805 	if (mixed && (bctl->flags & allowed)) {
3806 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3807 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3808 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3809 			btrfs_err(fs_info,
3810 	  "balance: mixed groups data and metadata options must be the same");
3811 			ret = -EINVAL;
3812 			goto out;
3813 		}
3814 	}
3815 
3816 	num_devices = fs_info->fs_devices->num_devices;
3817 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3818 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3819 		BUG_ON(num_devices < 1);
3820 		num_devices--;
3821 	}
3822 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3823 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3824 	if (num_devices > 1)
3825 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3826 	if (num_devices > 2)
3827 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3828 	if (num_devices > 3)
3829 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3830 			    BTRFS_BLOCK_GROUP_RAID6);
3831 	if (validate_convert_profile(&bctl->data, allowed)) {
3832 		int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3833 
3834 		btrfs_err(fs_info,
3835 			  "balance: invalid convert data profile %s",
3836 			  get_raid_name(index));
3837 		ret = -EINVAL;
3838 		goto out;
3839 	}
3840 	if (validate_convert_profile(&bctl->meta, allowed)) {
3841 		int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3842 
3843 		btrfs_err(fs_info,
3844 			  "balance: invalid convert metadata profile %s",
3845 			  get_raid_name(index));
3846 		ret = -EINVAL;
3847 		goto out;
3848 	}
3849 	if (validate_convert_profile(&bctl->sys, allowed)) {
3850 		int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3851 
3852 		btrfs_err(fs_info,
3853 			  "balance: invalid convert system profile %s",
3854 			  get_raid_name(index));
3855 		ret = -EINVAL;
3856 		goto out;
3857 	}
3858 
3859 	/* allow to reduce meta or sys integrity only if force set */
3860 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3861 			BTRFS_BLOCK_GROUP_RAID10 |
3862 			BTRFS_BLOCK_GROUP_RAID5 |
3863 			BTRFS_BLOCK_GROUP_RAID6;
3864 	do {
3865 		seq = read_seqbegin(&fs_info->profiles_lock);
3866 
3867 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3868 		     (fs_info->avail_system_alloc_bits & allowed) &&
3869 		     !(bctl->sys.target & allowed)) ||
3870 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3871 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3872 		     !(bctl->meta.target & allowed))) {
3873 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3874 				btrfs_info(fs_info,
3875 				"balance: force reducing metadata integrity");
3876 			} else {
3877 				btrfs_err(fs_info,
3878 	"balance: reduces metadata integrity, use --force if you want this");
3879 				ret = -EINVAL;
3880 				goto out;
3881 			}
3882 		}
3883 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3884 
3885 	/* if we're not converting, the target field is uninitialized */
3886 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3887 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3888 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3889 		bctl->data.target : fs_info->avail_data_alloc_bits;
3890 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3891 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3892 		int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3893 		int data_index = btrfs_bg_flags_to_raid_index(data_target);
3894 
3895 		btrfs_warn(fs_info,
3896 	"balance: metadata profile %s has lower redundancy than data profile %s",
3897 			   get_raid_name(meta_index), get_raid_name(data_index));
3898 	}
3899 
3900 	ret = insert_balance_item(fs_info, bctl);
3901 	if (ret && ret != -EEXIST)
3902 		goto out;
3903 
3904 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3905 		BUG_ON(ret == -EEXIST);
3906 		BUG_ON(fs_info->balance_ctl);
3907 		spin_lock(&fs_info->balance_lock);
3908 		fs_info->balance_ctl = bctl;
3909 		spin_unlock(&fs_info->balance_lock);
3910 	} else {
3911 		BUG_ON(ret != -EEXIST);
3912 		spin_lock(&fs_info->balance_lock);
3913 		update_balance_args(bctl);
3914 		spin_unlock(&fs_info->balance_lock);
3915 	}
3916 
3917 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3918 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3919 	mutex_unlock(&fs_info->balance_mutex);
3920 
3921 	ret = __btrfs_balance(fs_info);
3922 
3923 	mutex_lock(&fs_info->balance_mutex);
3924 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3925 
3926 	if (bargs) {
3927 		memset(bargs, 0, sizeof(*bargs));
3928 		btrfs_update_ioctl_balance_args(fs_info, bargs);
3929 	}
3930 
3931 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3932 	    balance_need_close(fs_info)) {
3933 		reset_balance_state(fs_info);
3934 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3935 	}
3936 
3937 	wake_up(&fs_info->balance_wait_q);
3938 
3939 	return ret;
3940 out:
3941 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3942 		reset_balance_state(fs_info);
3943 	else
3944 		kfree(bctl);
3945 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3946 
3947 	return ret;
3948 }
3949 
3950 static int balance_kthread(void *data)
3951 {
3952 	struct btrfs_fs_info *fs_info = data;
3953 	int ret = 0;
3954 
3955 	mutex_lock(&fs_info->balance_mutex);
3956 	if (fs_info->balance_ctl) {
3957 		btrfs_info(fs_info, "balance: resuming");
3958 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3959 	}
3960 	mutex_unlock(&fs_info->balance_mutex);
3961 
3962 	return ret;
3963 }
3964 
3965 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3966 {
3967 	struct task_struct *tsk;
3968 
3969 	mutex_lock(&fs_info->balance_mutex);
3970 	if (!fs_info->balance_ctl) {
3971 		mutex_unlock(&fs_info->balance_mutex);
3972 		return 0;
3973 	}
3974 	mutex_unlock(&fs_info->balance_mutex);
3975 
3976 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3977 		btrfs_info(fs_info, "balance: resume skipped");
3978 		return 0;
3979 	}
3980 
3981 	/*
3982 	 * A ro->rw remount sequence should continue with the paused balance
3983 	 * regardless of who pauses it, system or the user as of now, so set
3984 	 * the resume flag.
3985 	 */
3986 	spin_lock(&fs_info->balance_lock);
3987 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3988 	spin_unlock(&fs_info->balance_lock);
3989 
3990 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3991 	return PTR_ERR_OR_ZERO(tsk);
3992 }
3993 
3994 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3995 {
3996 	struct btrfs_balance_control *bctl;
3997 	struct btrfs_balance_item *item;
3998 	struct btrfs_disk_balance_args disk_bargs;
3999 	struct btrfs_path *path;
4000 	struct extent_buffer *leaf;
4001 	struct btrfs_key key;
4002 	int ret;
4003 
4004 	path = btrfs_alloc_path();
4005 	if (!path)
4006 		return -ENOMEM;
4007 
4008 	key.objectid = BTRFS_BALANCE_OBJECTID;
4009 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4010 	key.offset = 0;
4011 
4012 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4013 	if (ret < 0)
4014 		goto out;
4015 	if (ret > 0) { /* ret = -ENOENT; */
4016 		ret = 0;
4017 		goto out;
4018 	}
4019 
4020 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4021 	if (!bctl) {
4022 		ret = -ENOMEM;
4023 		goto out;
4024 	}
4025 
4026 	leaf = path->nodes[0];
4027 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4028 
4029 	bctl->flags = btrfs_balance_flags(leaf, item);
4030 	bctl->flags |= BTRFS_BALANCE_RESUME;
4031 
4032 	btrfs_balance_data(leaf, item, &disk_bargs);
4033 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4034 	btrfs_balance_meta(leaf, item, &disk_bargs);
4035 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4036 	btrfs_balance_sys(leaf, item, &disk_bargs);
4037 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4038 
4039 	/*
4040 	 * This should never happen, as the paused balance state is recovered
4041 	 * during mount without any chance of other exclusive ops to collide.
4042 	 *
4043 	 * This gives the exclusive op status to balance and keeps in paused
4044 	 * state until user intervention (cancel or umount). If the ownership
4045 	 * cannot be assigned, show a message but do not fail. The balance
4046 	 * is in a paused state and must have fs_info::balance_ctl properly
4047 	 * set up.
4048 	 */
4049 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4050 		btrfs_warn(fs_info,
4051 	"balance: cannot set exclusive op status, resume manually");
4052 
4053 	mutex_lock(&fs_info->balance_mutex);
4054 	BUG_ON(fs_info->balance_ctl);
4055 	spin_lock(&fs_info->balance_lock);
4056 	fs_info->balance_ctl = bctl;
4057 	spin_unlock(&fs_info->balance_lock);
4058 	mutex_unlock(&fs_info->balance_mutex);
4059 out:
4060 	btrfs_free_path(path);
4061 	return ret;
4062 }
4063 
4064 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4065 {
4066 	int ret = 0;
4067 
4068 	mutex_lock(&fs_info->balance_mutex);
4069 	if (!fs_info->balance_ctl) {
4070 		mutex_unlock(&fs_info->balance_mutex);
4071 		return -ENOTCONN;
4072 	}
4073 
4074 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4075 		atomic_inc(&fs_info->balance_pause_req);
4076 		mutex_unlock(&fs_info->balance_mutex);
4077 
4078 		wait_event(fs_info->balance_wait_q,
4079 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4080 
4081 		mutex_lock(&fs_info->balance_mutex);
4082 		/* we are good with balance_ctl ripped off from under us */
4083 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4084 		atomic_dec(&fs_info->balance_pause_req);
4085 	} else {
4086 		ret = -ENOTCONN;
4087 	}
4088 
4089 	mutex_unlock(&fs_info->balance_mutex);
4090 	return ret;
4091 }
4092 
4093 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4094 {
4095 	mutex_lock(&fs_info->balance_mutex);
4096 	if (!fs_info->balance_ctl) {
4097 		mutex_unlock(&fs_info->balance_mutex);
4098 		return -ENOTCONN;
4099 	}
4100 
4101 	/*
4102 	 * A paused balance with the item stored on disk can be resumed at
4103 	 * mount time if the mount is read-write. Otherwise it's still paused
4104 	 * and we must not allow cancelling as it deletes the item.
4105 	 */
4106 	if (sb_rdonly(fs_info->sb)) {
4107 		mutex_unlock(&fs_info->balance_mutex);
4108 		return -EROFS;
4109 	}
4110 
4111 	atomic_inc(&fs_info->balance_cancel_req);
4112 	/*
4113 	 * if we are running just wait and return, balance item is
4114 	 * deleted in btrfs_balance in this case
4115 	 */
4116 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4117 		mutex_unlock(&fs_info->balance_mutex);
4118 		wait_event(fs_info->balance_wait_q,
4119 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4120 		mutex_lock(&fs_info->balance_mutex);
4121 	} else {
4122 		mutex_unlock(&fs_info->balance_mutex);
4123 		/*
4124 		 * Lock released to allow other waiters to continue, we'll
4125 		 * reexamine the status again.
4126 		 */
4127 		mutex_lock(&fs_info->balance_mutex);
4128 
4129 		if (fs_info->balance_ctl) {
4130 			reset_balance_state(fs_info);
4131 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4132 			btrfs_info(fs_info, "balance: canceled");
4133 		}
4134 	}
4135 
4136 	BUG_ON(fs_info->balance_ctl ||
4137 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4138 	atomic_dec(&fs_info->balance_cancel_req);
4139 	mutex_unlock(&fs_info->balance_mutex);
4140 	return 0;
4141 }
4142 
4143 static int btrfs_uuid_scan_kthread(void *data)
4144 {
4145 	struct btrfs_fs_info *fs_info = data;
4146 	struct btrfs_root *root = fs_info->tree_root;
4147 	struct btrfs_key key;
4148 	struct btrfs_path *path = NULL;
4149 	int ret = 0;
4150 	struct extent_buffer *eb;
4151 	int slot;
4152 	struct btrfs_root_item root_item;
4153 	u32 item_size;
4154 	struct btrfs_trans_handle *trans = NULL;
4155 
4156 	path = btrfs_alloc_path();
4157 	if (!path) {
4158 		ret = -ENOMEM;
4159 		goto out;
4160 	}
4161 
4162 	key.objectid = 0;
4163 	key.type = BTRFS_ROOT_ITEM_KEY;
4164 	key.offset = 0;
4165 
4166 	while (1) {
4167 		ret = btrfs_search_forward(root, &key, path,
4168 				BTRFS_OLDEST_GENERATION);
4169 		if (ret) {
4170 			if (ret > 0)
4171 				ret = 0;
4172 			break;
4173 		}
4174 
4175 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4176 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4177 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4178 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4179 			goto skip;
4180 
4181 		eb = path->nodes[0];
4182 		slot = path->slots[0];
4183 		item_size = btrfs_item_size_nr(eb, slot);
4184 		if (item_size < sizeof(root_item))
4185 			goto skip;
4186 
4187 		read_extent_buffer(eb, &root_item,
4188 				   btrfs_item_ptr_offset(eb, slot),
4189 				   (int)sizeof(root_item));
4190 		if (btrfs_root_refs(&root_item) == 0)
4191 			goto skip;
4192 
4193 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4194 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4195 			if (trans)
4196 				goto update_tree;
4197 
4198 			btrfs_release_path(path);
4199 			/*
4200 			 * 1 - subvol uuid item
4201 			 * 1 - received_subvol uuid item
4202 			 */
4203 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4204 			if (IS_ERR(trans)) {
4205 				ret = PTR_ERR(trans);
4206 				break;
4207 			}
4208 			continue;
4209 		} else {
4210 			goto skip;
4211 		}
4212 update_tree:
4213 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4214 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4215 						  BTRFS_UUID_KEY_SUBVOL,
4216 						  key.objectid);
4217 			if (ret < 0) {
4218 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4219 					ret);
4220 				break;
4221 			}
4222 		}
4223 
4224 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4225 			ret = btrfs_uuid_tree_add(trans,
4226 						  root_item.received_uuid,
4227 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4228 						  key.objectid);
4229 			if (ret < 0) {
4230 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4231 					ret);
4232 				break;
4233 			}
4234 		}
4235 
4236 skip:
4237 		if (trans) {
4238 			ret = btrfs_end_transaction(trans);
4239 			trans = NULL;
4240 			if (ret)
4241 				break;
4242 		}
4243 
4244 		btrfs_release_path(path);
4245 		if (key.offset < (u64)-1) {
4246 			key.offset++;
4247 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4248 			key.offset = 0;
4249 			key.type = BTRFS_ROOT_ITEM_KEY;
4250 		} else if (key.objectid < (u64)-1) {
4251 			key.offset = 0;
4252 			key.type = BTRFS_ROOT_ITEM_KEY;
4253 			key.objectid++;
4254 		} else {
4255 			break;
4256 		}
4257 		cond_resched();
4258 	}
4259 
4260 out:
4261 	btrfs_free_path(path);
4262 	if (trans && !IS_ERR(trans))
4263 		btrfs_end_transaction(trans);
4264 	if (ret)
4265 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4266 	else
4267 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4268 	up(&fs_info->uuid_tree_rescan_sem);
4269 	return 0;
4270 }
4271 
4272 /*
4273  * Callback for btrfs_uuid_tree_iterate().
4274  * returns:
4275  * 0	check succeeded, the entry is not outdated.
4276  * < 0	if an error occurred.
4277  * > 0	if the check failed, which means the caller shall remove the entry.
4278  */
4279 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4280 				       u8 *uuid, u8 type, u64 subid)
4281 {
4282 	struct btrfs_key key;
4283 	int ret = 0;
4284 	struct btrfs_root *subvol_root;
4285 
4286 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4287 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4288 		goto out;
4289 
4290 	key.objectid = subid;
4291 	key.type = BTRFS_ROOT_ITEM_KEY;
4292 	key.offset = (u64)-1;
4293 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4294 	if (IS_ERR(subvol_root)) {
4295 		ret = PTR_ERR(subvol_root);
4296 		if (ret == -ENOENT)
4297 			ret = 1;
4298 		goto out;
4299 	}
4300 
4301 	switch (type) {
4302 	case BTRFS_UUID_KEY_SUBVOL:
4303 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4304 			ret = 1;
4305 		break;
4306 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4307 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4308 			   BTRFS_UUID_SIZE))
4309 			ret = 1;
4310 		break;
4311 	}
4312 
4313 out:
4314 	return ret;
4315 }
4316 
4317 static int btrfs_uuid_rescan_kthread(void *data)
4318 {
4319 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4320 	int ret;
4321 
4322 	/*
4323 	 * 1st step is to iterate through the existing UUID tree and
4324 	 * to delete all entries that contain outdated data.
4325 	 * 2nd step is to add all missing entries to the UUID tree.
4326 	 */
4327 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4328 	if (ret < 0) {
4329 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4330 		up(&fs_info->uuid_tree_rescan_sem);
4331 		return ret;
4332 	}
4333 	return btrfs_uuid_scan_kthread(data);
4334 }
4335 
4336 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4337 {
4338 	struct btrfs_trans_handle *trans;
4339 	struct btrfs_root *tree_root = fs_info->tree_root;
4340 	struct btrfs_root *uuid_root;
4341 	struct task_struct *task;
4342 	int ret;
4343 
4344 	/*
4345 	 * 1 - root node
4346 	 * 1 - root item
4347 	 */
4348 	trans = btrfs_start_transaction(tree_root, 2);
4349 	if (IS_ERR(trans))
4350 		return PTR_ERR(trans);
4351 
4352 	uuid_root = btrfs_create_tree(trans, fs_info,
4353 				      BTRFS_UUID_TREE_OBJECTID);
4354 	if (IS_ERR(uuid_root)) {
4355 		ret = PTR_ERR(uuid_root);
4356 		btrfs_abort_transaction(trans, ret);
4357 		btrfs_end_transaction(trans);
4358 		return ret;
4359 	}
4360 
4361 	fs_info->uuid_root = uuid_root;
4362 
4363 	ret = btrfs_commit_transaction(trans);
4364 	if (ret)
4365 		return ret;
4366 
4367 	down(&fs_info->uuid_tree_rescan_sem);
4368 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4369 	if (IS_ERR(task)) {
4370 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4371 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4372 		up(&fs_info->uuid_tree_rescan_sem);
4373 		return PTR_ERR(task);
4374 	}
4375 
4376 	return 0;
4377 }
4378 
4379 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4380 {
4381 	struct task_struct *task;
4382 
4383 	down(&fs_info->uuid_tree_rescan_sem);
4384 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4385 	if (IS_ERR(task)) {
4386 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4387 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4388 		up(&fs_info->uuid_tree_rescan_sem);
4389 		return PTR_ERR(task);
4390 	}
4391 
4392 	return 0;
4393 }
4394 
4395 /*
4396  * shrinking a device means finding all of the device extents past
4397  * the new size, and then following the back refs to the chunks.
4398  * The chunk relocation code actually frees the device extent
4399  */
4400 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4401 {
4402 	struct btrfs_fs_info *fs_info = device->fs_info;
4403 	struct btrfs_root *root = fs_info->dev_root;
4404 	struct btrfs_trans_handle *trans;
4405 	struct btrfs_dev_extent *dev_extent = NULL;
4406 	struct btrfs_path *path;
4407 	u64 length;
4408 	u64 chunk_offset;
4409 	int ret;
4410 	int slot;
4411 	int failed = 0;
4412 	bool retried = false;
4413 	bool checked_pending_chunks = false;
4414 	struct extent_buffer *l;
4415 	struct btrfs_key key;
4416 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4417 	u64 old_total = btrfs_super_total_bytes(super_copy);
4418 	u64 old_size = btrfs_device_get_total_bytes(device);
4419 	u64 diff;
4420 
4421 	new_size = round_down(new_size, fs_info->sectorsize);
4422 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4423 
4424 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4425 		return -EINVAL;
4426 
4427 	path = btrfs_alloc_path();
4428 	if (!path)
4429 		return -ENOMEM;
4430 
4431 	path->reada = READA_BACK;
4432 
4433 	mutex_lock(&fs_info->chunk_mutex);
4434 
4435 	btrfs_device_set_total_bytes(device, new_size);
4436 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4437 		device->fs_devices->total_rw_bytes -= diff;
4438 		atomic64_sub(diff, &fs_info->free_chunk_space);
4439 	}
4440 	mutex_unlock(&fs_info->chunk_mutex);
4441 
4442 again:
4443 	key.objectid = device->devid;
4444 	key.offset = (u64)-1;
4445 	key.type = BTRFS_DEV_EXTENT_KEY;
4446 
4447 	do {
4448 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4449 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4450 		if (ret < 0) {
4451 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4452 			goto done;
4453 		}
4454 
4455 		ret = btrfs_previous_item(root, path, 0, key.type);
4456 		if (ret)
4457 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4458 		if (ret < 0)
4459 			goto done;
4460 		if (ret) {
4461 			ret = 0;
4462 			btrfs_release_path(path);
4463 			break;
4464 		}
4465 
4466 		l = path->nodes[0];
4467 		slot = path->slots[0];
4468 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4469 
4470 		if (key.objectid != device->devid) {
4471 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4472 			btrfs_release_path(path);
4473 			break;
4474 		}
4475 
4476 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4477 		length = btrfs_dev_extent_length(l, dev_extent);
4478 
4479 		if (key.offset + length <= new_size) {
4480 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4481 			btrfs_release_path(path);
4482 			break;
4483 		}
4484 
4485 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4486 		btrfs_release_path(path);
4487 
4488 		/*
4489 		 * We may be relocating the only data chunk we have,
4490 		 * which could potentially end up with losing data's
4491 		 * raid profile, so lets allocate an empty one in
4492 		 * advance.
4493 		 */
4494 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4495 		if (ret < 0) {
4496 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4497 			goto done;
4498 		}
4499 
4500 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4501 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4502 		if (ret && ret != -ENOSPC)
4503 			goto done;
4504 		if (ret == -ENOSPC)
4505 			failed++;
4506 	} while (key.offset-- > 0);
4507 
4508 	if (failed && !retried) {
4509 		failed = 0;
4510 		retried = true;
4511 		goto again;
4512 	} else if (failed && retried) {
4513 		ret = -ENOSPC;
4514 		goto done;
4515 	}
4516 
4517 	/* Shrinking succeeded, else we would be at "done". */
4518 	trans = btrfs_start_transaction(root, 0);
4519 	if (IS_ERR(trans)) {
4520 		ret = PTR_ERR(trans);
4521 		goto done;
4522 	}
4523 
4524 	mutex_lock(&fs_info->chunk_mutex);
4525 
4526 	/*
4527 	 * We checked in the above loop all device extents that were already in
4528 	 * the device tree. However before we have updated the device's
4529 	 * total_bytes to the new size, we might have had chunk allocations that
4530 	 * have not complete yet (new block groups attached to transaction
4531 	 * handles), and therefore their device extents were not yet in the
4532 	 * device tree and we missed them in the loop above. So if we have any
4533 	 * pending chunk using a device extent that overlaps the device range
4534 	 * that we can not use anymore, commit the current transaction and
4535 	 * repeat the search on the device tree - this way we guarantee we will
4536 	 * not have chunks using device extents that end beyond 'new_size'.
4537 	 */
4538 	if (!checked_pending_chunks) {
4539 		u64 start = new_size;
4540 		u64 len = old_size - new_size;
4541 
4542 		if (contains_pending_extent(trans->transaction, device,
4543 					    &start, len)) {
4544 			mutex_unlock(&fs_info->chunk_mutex);
4545 			checked_pending_chunks = true;
4546 			failed = 0;
4547 			retried = false;
4548 			ret = btrfs_commit_transaction(trans);
4549 			if (ret)
4550 				goto done;
4551 			goto again;
4552 		}
4553 	}
4554 
4555 	btrfs_device_set_disk_total_bytes(device, new_size);
4556 	if (list_empty(&device->resized_list))
4557 		list_add_tail(&device->resized_list,
4558 			      &fs_info->fs_devices->resized_devices);
4559 
4560 	WARN_ON(diff > old_total);
4561 	btrfs_set_super_total_bytes(super_copy,
4562 			round_down(old_total - diff, fs_info->sectorsize));
4563 	mutex_unlock(&fs_info->chunk_mutex);
4564 
4565 	/* Now btrfs_update_device() will change the on-disk size. */
4566 	ret = btrfs_update_device(trans, device);
4567 	btrfs_end_transaction(trans);
4568 done:
4569 	btrfs_free_path(path);
4570 	if (ret) {
4571 		mutex_lock(&fs_info->chunk_mutex);
4572 		btrfs_device_set_total_bytes(device, old_size);
4573 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4574 			device->fs_devices->total_rw_bytes += diff;
4575 		atomic64_add(diff, &fs_info->free_chunk_space);
4576 		mutex_unlock(&fs_info->chunk_mutex);
4577 	}
4578 	return ret;
4579 }
4580 
4581 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4582 			   struct btrfs_key *key,
4583 			   struct btrfs_chunk *chunk, int item_size)
4584 {
4585 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4586 	struct btrfs_disk_key disk_key;
4587 	u32 array_size;
4588 	u8 *ptr;
4589 
4590 	mutex_lock(&fs_info->chunk_mutex);
4591 	array_size = btrfs_super_sys_array_size(super_copy);
4592 	if (array_size + item_size + sizeof(disk_key)
4593 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4594 		mutex_unlock(&fs_info->chunk_mutex);
4595 		return -EFBIG;
4596 	}
4597 
4598 	ptr = super_copy->sys_chunk_array + array_size;
4599 	btrfs_cpu_key_to_disk(&disk_key, key);
4600 	memcpy(ptr, &disk_key, sizeof(disk_key));
4601 	ptr += sizeof(disk_key);
4602 	memcpy(ptr, chunk, item_size);
4603 	item_size += sizeof(disk_key);
4604 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4605 	mutex_unlock(&fs_info->chunk_mutex);
4606 
4607 	return 0;
4608 }
4609 
4610 /*
4611  * sort the devices in descending order by max_avail, total_avail
4612  */
4613 static int btrfs_cmp_device_info(const void *a, const void *b)
4614 {
4615 	const struct btrfs_device_info *di_a = a;
4616 	const struct btrfs_device_info *di_b = b;
4617 
4618 	if (di_a->max_avail > di_b->max_avail)
4619 		return -1;
4620 	if (di_a->max_avail < di_b->max_avail)
4621 		return 1;
4622 	if (di_a->total_avail > di_b->total_avail)
4623 		return -1;
4624 	if (di_a->total_avail < di_b->total_avail)
4625 		return 1;
4626 	return 0;
4627 }
4628 
4629 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4630 {
4631 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4632 		return;
4633 
4634 	btrfs_set_fs_incompat(info, RAID56);
4635 }
4636 
4637 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)	\
4638 			- sizeof(struct btrfs_chunk))		\
4639 			/ sizeof(struct btrfs_stripe) + 1)
4640 
4641 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4642 				- 2 * sizeof(struct btrfs_disk_key)	\
4643 				- 2 * sizeof(struct btrfs_chunk))	\
4644 				/ sizeof(struct btrfs_stripe) + 1)
4645 
4646 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4647 			       u64 start, u64 type)
4648 {
4649 	struct btrfs_fs_info *info = trans->fs_info;
4650 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4651 	struct btrfs_device *device;
4652 	struct map_lookup *map = NULL;
4653 	struct extent_map_tree *em_tree;
4654 	struct extent_map *em;
4655 	struct btrfs_device_info *devices_info = NULL;
4656 	u64 total_avail;
4657 	int num_stripes;	/* total number of stripes to allocate */
4658 	int data_stripes;	/* number of stripes that count for
4659 				   block group size */
4660 	int sub_stripes;	/* sub_stripes info for map */
4661 	int dev_stripes;	/* stripes per dev */
4662 	int devs_max;		/* max devs to use */
4663 	int devs_min;		/* min devs needed */
4664 	int devs_increment;	/* ndevs has to be a multiple of this */
4665 	int ncopies;		/* how many copies to data has */
4666 	int ret;
4667 	u64 max_stripe_size;
4668 	u64 max_chunk_size;
4669 	u64 stripe_size;
4670 	u64 num_bytes;
4671 	int ndevs;
4672 	int i;
4673 	int j;
4674 	int index;
4675 
4676 	BUG_ON(!alloc_profile_is_valid(type, 0));
4677 
4678 	if (list_empty(&fs_devices->alloc_list)) {
4679 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4680 			btrfs_debug(info, "%s: no writable device", __func__);
4681 		return -ENOSPC;
4682 	}
4683 
4684 	index = btrfs_bg_flags_to_raid_index(type);
4685 
4686 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4687 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4688 	devs_max = btrfs_raid_array[index].devs_max;
4689 	devs_min = btrfs_raid_array[index].devs_min;
4690 	devs_increment = btrfs_raid_array[index].devs_increment;
4691 	ncopies = btrfs_raid_array[index].ncopies;
4692 
4693 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4694 		max_stripe_size = SZ_1G;
4695 		max_chunk_size = 10 * max_stripe_size;
4696 		if (!devs_max)
4697 			devs_max = BTRFS_MAX_DEVS(info);
4698 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4699 		/* for larger filesystems, use larger metadata chunks */
4700 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4701 			max_stripe_size = SZ_1G;
4702 		else
4703 			max_stripe_size = SZ_256M;
4704 		max_chunk_size = max_stripe_size;
4705 		if (!devs_max)
4706 			devs_max = BTRFS_MAX_DEVS(info);
4707 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4708 		max_stripe_size = SZ_32M;
4709 		max_chunk_size = 2 * max_stripe_size;
4710 		if (!devs_max)
4711 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4712 	} else {
4713 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4714 		       type);
4715 		BUG_ON(1);
4716 	}
4717 
4718 	/* we don't want a chunk larger than 10% of writeable space */
4719 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4720 			     max_chunk_size);
4721 
4722 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4723 			       GFP_NOFS);
4724 	if (!devices_info)
4725 		return -ENOMEM;
4726 
4727 	/*
4728 	 * in the first pass through the devices list, we gather information
4729 	 * about the available holes on each device.
4730 	 */
4731 	ndevs = 0;
4732 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4733 		u64 max_avail;
4734 		u64 dev_offset;
4735 
4736 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4737 			WARN(1, KERN_ERR
4738 			       "BTRFS: read-only device in alloc_list\n");
4739 			continue;
4740 		}
4741 
4742 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4743 					&device->dev_state) ||
4744 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4745 			continue;
4746 
4747 		if (device->total_bytes > device->bytes_used)
4748 			total_avail = device->total_bytes - device->bytes_used;
4749 		else
4750 			total_avail = 0;
4751 
4752 		/* If there is no space on this device, skip it. */
4753 		if (total_avail == 0)
4754 			continue;
4755 
4756 		ret = find_free_dev_extent(trans, device,
4757 					   max_stripe_size * dev_stripes,
4758 					   &dev_offset, &max_avail);
4759 		if (ret && ret != -ENOSPC)
4760 			goto error;
4761 
4762 		if (ret == 0)
4763 			max_avail = max_stripe_size * dev_stripes;
4764 
4765 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4766 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
4767 				btrfs_debug(info,
4768 			"%s: devid %llu has no free space, have=%llu want=%u",
4769 					    __func__, device->devid, max_avail,
4770 					    BTRFS_STRIPE_LEN * dev_stripes);
4771 			continue;
4772 		}
4773 
4774 		if (ndevs == fs_devices->rw_devices) {
4775 			WARN(1, "%s: found more than %llu devices\n",
4776 			     __func__, fs_devices->rw_devices);
4777 			break;
4778 		}
4779 		devices_info[ndevs].dev_offset = dev_offset;
4780 		devices_info[ndevs].max_avail = max_avail;
4781 		devices_info[ndevs].total_avail = total_avail;
4782 		devices_info[ndevs].dev = device;
4783 		++ndevs;
4784 	}
4785 
4786 	/*
4787 	 * now sort the devices by hole size / available space
4788 	 */
4789 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4790 	     btrfs_cmp_device_info, NULL);
4791 
4792 	/* round down to number of usable stripes */
4793 	ndevs = round_down(ndevs, devs_increment);
4794 
4795 	if (ndevs < devs_min) {
4796 		ret = -ENOSPC;
4797 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4798 			btrfs_debug(info,
4799 	"%s: not enough devices with free space: have=%d minimum required=%d",
4800 				    __func__, ndevs, devs_min);
4801 		}
4802 		goto error;
4803 	}
4804 
4805 	ndevs = min(ndevs, devs_max);
4806 
4807 	/*
4808 	 * The primary goal is to maximize the number of stripes, so use as
4809 	 * many devices as possible, even if the stripes are not maximum sized.
4810 	 *
4811 	 * The DUP profile stores more than one stripe per device, the
4812 	 * max_avail is the total size so we have to adjust.
4813 	 */
4814 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4815 	num_stripes = ndevs * dev_stripes;
4816 
4817 	/*
4818 	 * this will have to be fixed for RAID1 and RAID10 over
4819 	 * more drives
4820 	 */
4821 	data_stripes = num_stripes / ncopies;
4822 
4823 	if (type & BTRFS_BLOCK_GROUP_RAID5)
4824 		data_stripes = num_stripes - 1;
4825 
4826 	if (type & BTRFS_BLOCK_GROUP_RAID6)
4827 		data_stripes = num_stripes - 2;
4828 
4829 	/*
4830 	 * Use the number of data stripes to figure out how big this chunk
4831 	 * is really going to be in terms of logical address space,
4832 	 * and compare that answer with the max chunk size
4833 	 */
4834 	if (stripe_size * data_stripes > max_chunk_size) {
4835 		stripe_size = div_u64(max_chunk_size, data_stripes);
4836 
4837 		/* bump the answer up to a 16MB boundary */
4838 		stripe_size = round_up(stripe_size, SZ_16M);
4839 
4840 		/*
4841 		 * But don't go higher than the limits we found while searching
4842 		 * for free extents
4843 		 */
4844 		stripe_size = min(devices_info[ndevs - 1].max_avail,
4845 				  stripe_size);
4846 	}
4847 
4848 	/* align to BTRFS_STRIPE_LEN */
4849 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4850 
4851 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4852 	if (!map) {
4853 		ret = -ENOMEM;
4854 		goto error;
4855 	}
4856 	map->num_stripes = num_stripes;
4857 
4858 	for (i = 0; i < ndevs; ++i) {
4859 		for (j = 0; j < dev_stripes; ++j) {
4860 			int s = i * dev_stripes + j;
4861 			map->stripes[s].dev = devices_info[i].dev;
4862 			map->stripes[s].physical = devices_info[i].dev_offset +
4863 						   j * stripe_size;
4864 		}
4865 	}
4866 	map->stripe_len = BTRFS_STRIPE_LEN;
4867 	map->io_align = BTRFS_STRIPE_LEN;
4868 	map->io_width = BTRFS_STRIPE_LEN;
4869 	map->type = type;
4870 	map->sub_stripes = sub_stripes;
4871 
4872 	num_bytes = stripe_size * data_stripes;
4873 
4874 	trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4875 
4876 	em = alloc_extent_map();
4877 	if (!em) {
4878 		kfree(map);
4879 		ret = -ENOMEM;
4880 		goto error;
4881 	}
4882 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4883 	em->map_lookup = map;
4884 	em->start = start;
4885 	em->len = num_bytes;
4886 	em->block_start = 0;
4887 	em->block_len = em->len;
4888 	em->orig_block_len = stripe_size;
4889 
4890 	em_tree = &info->mapping_tree.map_tree;
4891 	write_lock(&em_tree->lock);
4892 	ret = add_extent_mapping(em_tree, em, 0);
4893 	if (ret) {
4894 		write_unlock(&em_tree->lock);
4895 		free_extent_map(em);
4896 		goto error;
4897 	}
4898 
4899 	list_add_tail(&em->list, &trans->transaction->pending_chunks);
4900 	refcount_inc(&em->refs);
4901 	write_unlock(&em_tree->lock);
4902 
4903 	ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4904 	if (ret)
4905 		goto error_del_extent;
4906 
4907 	for (i = 0; i < map->num_stripes; i++) {
4908 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4909 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4910 	}
4911 
4912 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4913 
4914 	free_extent_map(em);
4915 	check_raid56_incompat_flag(info, type);
4916 
4917 	kfree(devices_info);
4918 	return 0;
4919 
4920 error_del_extent:
4921 	write_lock(&em_tree->lock);
4922 	remove_extent_mapping(em_tree, em);
4923 	write_unlock(&em_tree->lock);
4924 
4925 	/* One for our allocation */
4926 	free_extent_map(em);
4927 	/* One for the tree reference */
4928 	free_extent_map(em);
4929 	/* One for the pending_chunks list reference */
4930 	free_extent_map(em);
4931 error:
4932 	kfree(devices_info);
4933 	return ret;
4934 }
4935 
4936 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4937 				struct btrfs_fs_info *fs_info,
4938 				u64 chunk_offset, u64 chunk_size)
4939 {
4940 	struct btrfs_root *extent_root = fs_info->extent_root;
4941 	struct btrfs_root *chunk_root = fs_info->chunk_root;
4942 	struct btrfs_key key;
4943 	struct btrfs_device *device;
4944 	struct btrfs_chunk *chunk;
4945 	struct btrfs_stripe *stripe;
4946 	struct extent_map *em;
4947 	struct map_lookup *map;
4948 	size_t item_size;
4949 	u64 dev_offset;
4950 	u64 stripe_size;
4951 	int i = 0;
4952 	int ret = 0;
4953 
4954 	em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4955 	if (IS_ERR(em))
4956 		return PTR_ERR(em);
4957 
4958 	map = em->map_lookup;
4959 	item_size = btrfs_chunk_item_size(map->num_stripes);
4960 	stripe_size = em->orig_block_len;
4961 
4962 	chunk = kzalloc(item_size, GFP_NOFS);
4963 	if (!chunk) {
4964 		ret = -ENOMEM;
4965 		goto out;
4966 	}
4967 
4968 	/*
4969 	 * Take the device list mutex to prevent races with the final phase of
4970 	 * a device replace operation that replaces the device object associated
4971 	 * with the map's stripes, because the device object's id can change
4972 	 * at any time during that final phase of the device replace operation
4973 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4974 	 */
4975 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4976 	for (i = 0; i < map->num_stripes; i++) {
4977 		device = map->stripes[i].dev;
4978 		dev_offset = map->stripes[i].physical;
4979 
4980 		ret = btrfs_update_device(trans, device);
4981 		if (ret)
4982 			break;
4983 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4984 					     dev_offset, stripe_size);
4985 		if (ret)
4986 			break;
4987 	}
4988 	if (ret) {
4989 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4990 		goto out;
4991 	}
4992 
4993 	stripe = &chunk->stripe;
4994 	for (i = 0; i < map->num_stripes; i++) {
4995 		device = map->stripes[i].dev;
4996 		dev_offset = map->stripes[i].physical;
4997 
4998 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4999 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5000 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5001 		stripe++;
5002 	}
5003 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5004 
5005 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5006 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5007 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5008 	btrfs_set_stack_chunk_type(chunk, map->type);
5009 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5010 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5011 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5012 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5013 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5014 
5015 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5016 	key.type = BTRFS_CHUNK_ITEM_KEY;
5017 	key.offset = chunk_offset;
5018 
5019 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5020 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5021 		/*
5022 		 * TODO: Cleanup of inserted chunk root in case of
5023 		 * failure.
5024 		 */
5025 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5026 	}
5027 
5028 out:
5029 	kfree(chunk);
5030 	free_extent_map(em);
5031 	return ret;
5032 }
5033 
5034 /*
5035  * Chunk allocation falls into two parts. The first part does works
5036  * that make the new allocated chunk useable, but not do any operation
5037  * that modifies the chunk tree. The second part does the works that
5038  * require modifying the chunk tree. This division is important for the
5039  * bootstrap process of adding storage to a seed btrfs.
5040  */
5041 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5042 		      struct btrfs_fs_info *fs_info, u64 type)
5043 {
5044 	u64 chunk_offset;
5045 
5046 	lockdep_assert_held(&fs_info->chunk_mutex);
5047 	chunk_offset = find_next_chunk(fs_info);
5048 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5049 }
5050 
5051 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5052 					 struct btrfs_fs_info *fs_info)
5053 {
5054 	u64 chunk_offset;
5055 	u64 sys_chunk_offset;
5056 	u64 alloc_profile;
5057 	int ret;
5058 
5059 	chunk_offset = find_next_chunk(fs_info);
5060 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5061 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5062 	if (ret)
5063 		return ret;
5064 
5065 	sys_chunk_offset = find_next_chunk(fs_info);
5066 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5067 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5068 	return ret;
5069 }
5070 
5071 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5072 {
5073 	int max_errors;
5074 
5075 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5076 			 BTRFS_BLOCK_GROUP_RAID10 |
5077 			 BTRFS_BLOCK_GROUP_RAID5 |
5078 			 BTRFS_BLOCK_GROUP_DUP)) {
5079 		max_errors = 1;
5080 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5081 		max_errors = 2;
5082 	} else {
5083 		max_errors = 0;
5084 	}
5085 
5086 	return max_errors;
5087 }
5088 
5089 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5090 {
5091 	struct extent_map *em;
5092 	struct map_lookup *map;
5093 	int readonly = 0;
5094 	int miss_ndevs = 0;
5095 	int i;
5096 
5097 	em = get_chunk_map(fs_info, chunk_offset, 1);
5098 	if (IS_ERR(em))
5099 		return 1;
5100 
5101 	map = em->map_lookup;
5102 	for (i = 0; i < map->num_stripes; i++) {
5103 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5104 					&map->stripes[i].dev->dev_state)) {
5105 			miss_ndevs++;
5106 			continue;
5107 		}
5108 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5109 					&map->stripes[i].dev->dev_state)) {
5110 			readonly = 1;
5111 			goto end;
5112 		}
5113 	}
5114 
5115 	/*
5116 	 * If the number of missing devices is larger than max errors,
5117 	 * we can not write the data into that chunk successfully, so
5118 	 * set it readonly.
5119 	 */
5120 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5121 		readonly = 1;
5122 end:
5123 	free_extent_map(em);
5124 	return readonly;
5125 }
5126 
5127 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5128 {
5129 	extent_map_tree_init(&tree->map_tree);
5130 }
5131 
5132 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5133 {
5134 	struct extent_map *em;
5135 
5136 	while (1) {
5137 		write_lock(&tree->map_tree.lock);
5138 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5139 		if (em)
5140 			remove_extent_mapping(&tree->map_tree, em);
5141 		write_unlock(&tree->map_tree.lock);
5142 		if (!em)
5143 			break;
5144 		/* once for us */
5145 		free_extent_map(em);
5146 		/* once for the tree */
5147 		free_extent_map(em);
5148 	}
5149 }
5150 
5151 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5152 {
5153 	struct extent_map *em;
5154 	struct map_lookup *map;
5155 	int ret;
5156 
5157 	em = get_chunk_map(fs_info, logical, len);
5158 	if (IS_ERR(em))
5159 		/*
5160 		 * We could return errors for these cases, but that could get
5161 		 * ugly and we'd probably do the same thing which is just not do
5162 		 * anything else and exit, so return 1 so the callers don't try
5163 		 * to use other copies.
5164 		 */
5165 		return 1;
5166 
5167 	map = em->map_lookup;
5168 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5169 		ret = map->num_stripes;
5170 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5171 		ret = map->sub_stripes;
5172 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5173 		ret = 2;
5174 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5175 		/*
5176 		 * There could be two corrupted data stripes, we need
5177 		 * to loop retry in order to rebuild the correct data.
5178 		 *
5179 		 * Fail a stripe at a time on every retry except the
5180 		 * stripe under reconstruction.
5181 		 */
5182 		ret = map->num_stripes;
5183 	else
5184 		ret = 1;
5185 	free_extent_map(em);
5186 
5187 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5188 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5189 	    fs_info->dev_replace.tgtdev)
5190 		ret++;
5191 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5192 
5193 	return ret;
5194 }
5195 
5196 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5197 				    u64 logical)
5198 {
5199 	struct extent_map *em;
5200 	struct map_lookup *map;
5201 	unsigned long len = fs_info->sectorsize;
5202 
5203 	em = get_chunk_map(fs_info, logical, len);
5204 
5205 	if (!WARN_ON(IS_ERR(em))) {
5206 		map = em->map_lookup;
5207 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5208 			len = map->stripe_len * nr_data_stripes(map);
5209 		free_extent_map(em);
5210 	}
5211 	return len;
5212 }
5213 
5214 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5215 {
5216 	struct extent_map *em;
5217 	struct map_lookup *map;
5218 	int ret = 0;
5219 
5220 	em = get_chunk_map(fs_info, logical, len);
5221 
5222 	if(!WARN_ON(IS_ERR(em))) {
5223 		map = em->map_lookup;
5224 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5225 			ret = 1;
5226 		free_extent_map(em);
5227 	}
5228 	return ret;
5229 }
5230 
5231 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5232 			    struct map_lookup *map, int first,
5233 			    int dev_replace_is_ongoing)
5234 {
5235 	int i;
5236 	int num_stripes;
5237 	int preferred_mirror;
5238 	int tolerance;
5239 	struct btrfs_device *srcdev;
5240 
5241 	ASSERT((map->type &
5242 		 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5243 
5244 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5245 		num_stripes = map->sub_stripes;
5246 	else
5247 		num_stripes = map->num_stripes;
5248 
5249 	preferred_mirror = first + current->pid % num_stripes;
5250 
5251 	if (dev_replace_is_ongoing &&
5252 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5253 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5254 		srcdev = fs_info->dev_replace.srcdev;
5255 	else
5256 		srcdev = NULL;
5257 
5258 	/*
5259 	 * try to avoid the drive that is the source drive for a
5260 	 * dev-replace procedure, only choose it if no other non-missing
5261 	 * mirror is available
5262 	 */
5263 	for (tolerance = 0; tolerance < 2; tolerance++) {
5264 		if (map->stripes[preferred_mirror].dev->bdev &&
5265 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5266 			return preferred_mirror;
5267 		for (i = first; i < first + num_stripes; i++) {
5268 			if (map->stripes[i].dev->bdev &&
5269 			    (tolerance || map->stripes[i].dev != srcdev))
5270 				return i;
5271 		}
5272 	}
5273 
5274 	/* we couldn't find one that doesn't fail.  Just return something
5275 	 * and the io error handling code will clean up eventually
5276 	 */
5277 	return preferred_mirror;
5278 }
5279 
5280 static inline int parity_smaller(u64 a, u64 b)
5281 {
5282 	return a > b;
5283 }
5284 
5285 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5286 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5287 {
5288 	struct btrfs_bio_stripe s;
5289 	int i;
5290 	u64 l;
5291 	int again = 1;
5292 
5293 	while (again) {
5294 		again = 0;
5295 		for (i = 0; i < num_stripes - 1; i++) {
5296 			if (parity_smaller(bbio->raid_map[i],
5297 					   bbio->raid_map[i+1])) {
5298 				s = bbio->stripes[i];
5299 				l = bbio->raid_map[i];
5300 				bbio->stripes[i] = bbio->stripes[i+1];
5301 				bbio->raid_map[i] = bbio->raid_map[i+1];
5302 				bbio->stripes[i+1] = s;
5303 				bbio->raid_map[i+1] = l;
5304 
5305 				again = 1;
5306 			}
5307 		}
5308 	}
5309 }
5310 
5311 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5312 {
5313 	struct btrfs_bio *bbio = kzalloc(
5314 		 /* the size of the btrfs_bio */
5315 		sizeof(struct btrfs_bio) +
5316 		/* plus the variable array for the stripes */
5317 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5318 		/* plus the variable array for the tgt dev */
5319 		sizeof(int) * (real_stripes) +
5320 		/*
5321 		 * plus the raid_map, which includes both the tgt dev
5322 		 * and the stripes
5323 		 */
5324 		sizeof(u64) * (total_stripes),
5325 		GFP_NOFS|__GFP_NOFAIL);
5326 
5327 	atomic_set(&bbio->error, 0);
5328 	refcount_set(&bbio->refs, 1);
5329 
5330 	return bbio;
5331 }
5332 
5333 void btrfs_get_bbio(struct btrfs_bio *bbio)
5334 {
5335 	WARN_ON(!refcount_read(&bbio->refs));
5336 	refcount_inc(&bbio->refs);
5337 }
5338 
5339 void btrfs_put_bbio(struct btrfs_bio *bbio)
5340 {
5341 	if (!bbio)
5342 		return;
5343 	if (refcount_dec_and_test(&bbio->refs))
5344 		kfree(bbio);
5345 }
5346 
5347 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5348 /*
5349  * Please note that, discard won't be sent to target device of device
5350  * replace.
5351  */
5352 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5353 					 u64 logical, u64 length,
5354 					 struct btrfs_bio **bbio_ret)
5355 {
5356 	struct extent_map *em;
5357 	struct map_lookup *map;
5358 	struct btrfs_bio *bbio;
5359 	u64 offset;
5360 	u64 stripe_nr;
5361 	u64 stripe_nr_end;
5362 	u64 stripe_end_offset;
5363 	u64 stripe_cnt;
5364 	u64 stripe_len;
5365 	u64 stripe_offset;
5366 	u64 num_stripes;
5367 	u32 stripe_index;
5368 	u32 factor = 0;
5369 	u32 sub_stripes = 0;
5370 	u64 stripes_per_dev = 0;
5371 	u32 remaining_stripes = 0;
5372 	u32 last_stripe = 0;
5373 	int ret = 0;
5374 	int i;
5375 
5376 	/* discard always return a bbio */
5377 	ASSERT(bbio_ret);
5378 
5379 	em = get_chunk_map(fs_info, logical, length);
5380 	if (IS_ERR(em))
5381 		return PTR_ERR(em);
5382 
5383 	map = em->map_lookup;
5384 	/* we don't discard raid56 yet */
5385 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5386 		ret = -EOPNOTSUPP;
5387 		goto out;
5388 	}
5389 
5390 	offset = logical - em->start;
5391 	length = min_t(u64, em->len - offset, length);
5392 
5393 	stripe_len = map->stripe_len;
5394 	/*
5395 	 * stripe_nr counts the total number of stripes we have to stride
5396 	 * to get to this block
5397 	 */
5398 	stripe_nr = div64_u64(offset, stripe_len);
5399 
5400 	/* stripe_offset is the offset of this block in its stripe */
5401 	stripe_offset = offset - stripe_nr * stripe_len;
5402 
5403 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5404 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5405 	stripe_cnt = stripe_nr_end - stripe_nr;
5406 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5407 			    (offset + length);
5408 	/*
5409 	 * after this, stripe_nr is the number of stripes on this
5410 	 * device we have to walk to find the data, and stripe_index is
5411 	 * the number of our device in the stripe array
5412 	 */
5413 	num_stripes = 1;
5414 	stripe_index = 0;
5415 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5416 			 BTRFS_BLOCK_GROUP_RAID10)) {
5417 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5418 			sub_stripes = 1;
5419 		else
5420 			sub_stripes = map->sub_stripes;
5421 
5422 		factor = map->num_stripes / sub_stripes;
5423 		num_stripes = min_t(u64, map->num_stripes,
5424 				    sub_stripes * stripe_cnt);
5425 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5426 		stripe_index *= sub_stripes;
5427 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5428 					      &remaining_stripes);
5429 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5430 		last_stripe *= sub_stripes;
5431 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5432 				BTRFS_BLOCK_GROUP_DUP)) {
5433 		num_stripes = map->num_stripes;
5434 	} else {
5435 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5436 					&stripe_index);
5437 	}
5438 
5439 	bbio = alloc_btrfs_bio(num_stripes, 0);
5440 	if (!bbio) {
5441 		ret = -ENOMEM;
5442 		goto out;
5443 	}
5444 
5445 	for (i = 0; i < num_stripes; i++) {
5446 		bbio->stripes[i].physical =
5447 			map->stripes[stripe_index].physical +
5448 			stripe_offset + stripe_nr * map->stripe_len;
5449 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5450 
5451 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5452 				 BTRFS_BLOCK_GROUP_RAID10)) {
5453 			bbio->stripes[i].length = stripes_per_dev *
5454 				map->stripe_len;
5455 
5456 			if (i / sub_stripes < remaining_stripes)
5457 				bbio->stripes[i].length +=
5458 					map->stripe_len;
5459 
5460 			/*
5461 			 * Special for the first stripe and
5462 			 * the last stripe:
5463 			 *
5464 			 * |-------|...|-------|
5465 			 *     |----------|
5466 			 *    off     end_off
5467 			 */
5468 			if (i < sub_stripes)
5469 				bbio->stripes[i].length -=
5470 					stripe_offset;
5471 
5472 			if (stripe_index >= last_stripe &&
5473 			    stripe_index <= (last_stripe +
5474 					     sub_stripes - 1))
5475 				bbio->stripes[i].length -=
5476 					stripe_end_offset;
5477 
5478 			if (i == sub_stripes - 1)
5479 				stripe_offset = 0;
5480 		} else {
5481 			bbio->stripes[i].length = length;
5482 		}
5483 
5484 		stripe_index++;
5485 		if (stripe_index == map->num_stripes) {
5486 			stripe_index = 0;
5487 			stripe_nr++;
5488 		}
5489 	}
5490 
5491 	*bbio_ret = bbio;
5492 	bbio->map_type = map->type;
5493 	bbio->num_stripes = num_stripes;
5494 out:
5495 	free_extent_map(em);
5496 	return ret;
5497 }
5498 
5499 /*
5500  * In dev-replace case, for repair case (that's the only case where the mirror
5501  * is selected explicitly when calling btrfs_map_block), blocks left of the
5502  * left cursor can also be read from the target drive.
5503  *
5504  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5505  * array of stripes.
5506  * For READ, it also needs to be supported using the same mirror number.
5507  *
5508  * If the requested block is not left of the left cursor, EIO is returned. This
5509  * can happen because btrfs_num_copies() returns one more in the dev-replace
5510  * case.
5511  */
5512 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5513 					 u64 logical, u64 length,
5514 					 u64 srcdev_devid, int *mirror_num,
5515 					 u64 *physical)
5516 {
5517 	struct btrfs_bio *bbio = NULL;
5518 	int num_stripes;
5519 	int index_srcdev = 0;
5520 	int found = 0;
5521 	u64 physical_of_found = 0;
5522 	int i;
5523 	int ret = 0;
5524 
5525 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5526 				logical, &length, &bbio, 0, 0);
5527 	if (ret) {
5528 		ASSERT(bbio == NULL);
5529 		return ret;
5530 	}
5531 
5532 	num_stripes = bbio->num_stripes;
5533 	if (*mirror_num > num_stripes) {
5534 		/*
5535 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5536 		 * that means that the requested area is not left of the left
5537 		 * cursor
5538 		 */
5539 		btrfs_put_bbio(bbio);
5540 		return -EIO;
5541 	}
5542 
5543 	/*
5544 	 * process the rest of the function using the mirror_num of the source
5545 	 * drive. Therefore look it up first.  At the end, patch the device
5546 	 * pointer to the one of the target drive.
5547 	 */
5548 	for (i = 0; i < num_stripes; i++) {
5549 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5550 			continue;
5551 
5552 		/*
5553 		 * In case of DUP, in order to keep it simple, only add the
5554 		 * mirror with the lowest physical address
5555 		 */
5556 		if (found &&
5557 		    physical_of_found <= bbio->stripes[i].physical)
5558 			continue;
5559 
5560 		index_srcdev = i;
5561 		found = 1;
5562 		physical_of_found = bbio->stripes[i].physical;
5563 	}
5564 
5565 	btrfs_put_bbio(bbio);
5566 
5567 	ASSERT(found);
5568 	if (!found)
5569 		return -EIO;
5570 
5571 	*mirror_num = index_srcdev + 1;
5572 	*physical = physical_of_found;
5573 	return ret;
5574 }
5575 
5576 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5577 				      struct btrfs_bio **bbio_ret,
5578 				      struct btrfs_dev_replace *dev_replace,
5579 				      int *num_stripes_ret, int *max_errors_ret)
5580 {
5581 	struct btrfs_bio *bbio = *bbio_ret;
5582 	u64 srcdev_devid = dev_replace->srcdev->devid;
5583 	int tgtdev_indexes = 0;
5584 	int num_stripes = *num_stripes_ret;
5585 	int max_errors = *max_errors_ret;
5586 	int i;
5587 
5588 	if (op == BTRFS_MAP_WRITE) {
5589 		int index_where_to_add;
5590 
5591 		/*
5592 		 * duplicate the write operations while the dev replace
5593 		 * procedure is running. Since the copying of the old disk to
5594 		 * the new disk takes place at run time while the filesystem is
5595 		 * mounted writable, the regular write operations to the old
5596 		 * disk have to be duplicated to go to the new disk as well.
5597 		 *
5598 		 * Note that device->missing is handled by the caller, and that
5599 		 * the write to the old disk is already set up in the stripes
5600 		 * array.
5601 		 */
5602 		index_where_to_add = num_stripes;
5603 		for (i = 0; i < num_stripes; i++) {
5604 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5605 				/* write to new disk, too */
5606 				struct btrfs_bio_stripe *new =
5607 					bbio->stripes + index_where_to_add;
5608 				struct btrfs_bio_stripe *old =
5609 					bbio->stripes + i;
5610 
5611 				new->physical = old->physical;
5612 				new->length = old->length;
5613 				new->dev = dev_replace->tgtdev;
5614 				bbio->tgtdev_map[i] = index_where_to_add;
5615 				index_where_to_add++;
5616 				max_errors++;
5617 				tgtdev_indexes++;
5618 			}
5619 		}
5620 		num_stripes = index_where_to_add;
5621 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5622 		int index_srcdev = 0;
5623 		int found = 0;
5624 		u64 physical_of_found = 0;
5625 
5626 		/*
5627 		 * During the dev-replace procedure, the target drive can also
5628 		 * be used to read data in case it is needed to repair a corrupt
5629 		 * block elsewhere. This is possible if the requested area is
5630 		 * left of the left cursor. In this area, the target drive is a
5631 		 * full copy of the source drive.
5632 		 */
5633 		for (i = 0; i < num_stripes; i++) {
5634 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5635 				/*
5636 				 * In case of DUP, in order to keep it simple,
5637 				 * only add the mirror with the lowest physical
5638 				 * address
5639 				 */
5640 				if (found &&
5641 				    physical_of_found <=
5642 				     bbio->stripes[i].physical)
5643 					continue;
5644 				index_srcdev = i;
5645 				found = 1;
5646 				physical_of_found = bbio->stripes[i].physical;
5647 			}
5648 		}
5649 		if (found) {
5650 			struct btrfs_bio_stripe *tgtdev_stripe =
5651 				bbio->stripes + num_stripes;
5652 
5653 			tgtdev_stripe->physical = physical_of_found;
5654 			tgtdev_stripe->length =
5655 				bbio->stripes[index_srcdev].length;
5656 			tgtdev_stripe->dev = dev_replace->tgtdev;
5657 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5658 
5659 			tgtdev_indexes++;
5660 			num_stripes++;
5661 		}
5662 	}
5663 
5664 	*num_stripes_ret = num_stripes;
5665 	*max_errors_ret = max_errors;
5666 	bbio->num_tgtdevs = tgtdev_indexes;
5667 	*bbio_ret = bbio;
5668 }
5669 
5670 static bool need_full_stripe(enum btrfs_map_op op)
5671 {
5672 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5673 }
5674 
5675 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5676 			     enum btrfs_map_op op,
5677 			     u64 logical, u64 *length,
5678 			     struct btrfs_bio **bbio_ret,
5679 			     int mirror_num, int need_raid_map)
5680 {
5681 	struct extent_map *em;
5682 	struct map_lookup *map;
5683 	u64 offset;
5684 	u64 stripe_offset;
5685 	u64 stripe_nr;
5686 	u64 stripe_len;
5687 	u32 stripe_index;
5688 	int i;
5689 	int ret = 0;
5690 	int num_stripes;
5691 	int max_errors = 0;
5692 	int tgtdev_indexes = 0;
5693 	struct btrfs_bio *bbio = NULL;
5694 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5695 	int dev_replace_is_ongoing = 0;
5696 	int num_alloc_stripes;
5697 	int patch_the_first_stripe_for_dev_replace = 0;
5698 	u64 physical_to_patch_in_first_stripe = 0;
5699 	u64 raid56_full_stripe_start = (u64)-1;
5700 
5701 	if (op == BTRFS_MAP_DISCARD)
5702 		return __btrfs_map_block_for_discard(fs_info, logical,
5703 						     *length, bbio_ret);
5704 
5705 	em = get_chunk_map(fs_info, logical, *length);
5706 	if (IS_ERR(em))
5707 		return PTR_ERR(em);
5708 
5709 	map = em->map_lookup;
5710 	offset = logical - em->start;
5711 
5712 	stripe_len = map->stripe_len;
5713 	stripe_nr = offset;
5714 	/*
5715 	 * stripe_nr counts the total number of stripes we have to stride
5716 	 * to get to this block
5717 	 */
5718 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5719 
5720 	stripe_offset = stripe_nr * stripe_len;
5721 	if (offset < stripe_offset) {
5722 		btrfs_crit(fs_info,
5723 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5724 			   stripe_offset, offset, em->start, logical,
5725 			   stripe_len);
5726 		free_extent_map(em);
5727 		return -EINVAL;
5728 	}
5729 
5730 	/* stripe_offset is the offset of this block in its stripe*/
5731 	stripe_offset = offset - stripe_offset;
5732 
5733 	/* if we're here for raid56, we need to know the stripe aligned start */
5734 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5735 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5736 		raid56_full_stripe_start = offset;
5737 
5738 		/* allow a write of a full stripe, but make sure we don't
5739 		 * allow straddling of stripes
5740 		 */
5741 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5742 				full_stripe_len);
5743 		raid56_full_stripe_start *= full_stripe_len;
5744 	}
5745 
5746 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5747 		u64 max_len;
5748 		/* For writes to RAID[56], allow a full stripeset across all disks.
5749 		   For other RAID types and for RAID[56] reads, just allow a single
5750 		   stripe (on a single disk). */
5751 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5752 		    (op == BTRFS_MAP_WRITE)) {
5753 			max_len = stripe_len * nr_data_stripes(map) -
5754 				(offset - raid56_full_stripe_start);
5755 		} else {
5756 			/* we limit the length of each bio to what fits in a stripe */
5757 			max_len = stripe_len - stripe_offset;
5758 		}
5759 		*length = min_t(u64, em->len - offset, max_len);
5760 	} else {
5761 		*length = em->len - offset;
5762 	}
5763 
5764 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5765 	   it cares about is the length */
5766 	if (!bbio_ret)
5767 		goto out;
5768 
5769 	btrfs_dev_replace_read_lock(dev_replace);
5770 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5771 	if (!dev_replace_is_ongoing)
5772 		btrfs_dev_replace_read_unlock(dev_replace);
5773 	else
5774 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5775 
5776 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5777 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5778 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5779 						    dev_replace->srcdev->devid,
5780 						    &mirror_num,
5781 					    &physical_to_patch_in_first_stripe);
5782 		if (ret)
5783 			goto out;
5784 		else
5785 			patch_the_first_stripe_for_dev_replace = 1;
5786 	} else if (mirror_num > map->num_stripes) {
5787 		mirror_num = 0;
5788 	}
5789 
5790 	num_stripes = 1;
5791 	stripe_index = 0;
5792 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5793 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5794 				&stripe_index);
5795 		if (!need_full_stripe(op))
5796 			mirror_num = 1;
5797 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5798 		if (need_full_stripe(op))
5799 			num_stripes = map->num_stripes;
5800 		else if (mirror_num)
5801 			stripe_index = mirror_num - 1;
5802 		else {
5803 			stripe_index = find_live_mirror(fs_info, map, 0,
5804 					    dev_replace_is_ongoing);
5805 			mirror_num = stripe_index + 1;
5806 		}
5807 
5808 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5809 		if (need_full_stripe(op)) {
5810 			num_stripes = map->num_stripes;
5811 		} else if (mirror_num) {
5812 			stripe_index = mirror_num - 1;
5813 		} else {
5814 			mirror_num = 1;
5815 		}
5816 
5817 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5818 		u32 factor = map->num_stripes / map->sub_stripes;
5819 
5820 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5821 		stripe_index *= map->sub_stripes;
5822 
5823 		if (need_full_stripe(op))
5824 			num_stripes = map->sub_stripes;
5825 		else if (mirror_num)
5826 			stripe_index += mirror_num - 1;
5827 		else {
5828 			int old_stripe_index = stripe_index;
5829 			stripe_index = find_live_mirror(fs_info, map,
5830 					      stripe_index,
5831 					      dev_replace_is_ongoing);
5832 			mirror_num = stripe_index - old_stripe_index + 1;
5833 		}
5834 
5835 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5836 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5837 			/* push stripe_nr back to the start of the full stripe */
5838 			stripe_nr = div64_u64(raid56_full_stripe_start,
5839 					stripe_len * nr_data_stripes(map));
5840 
5841 			/* RAID[56] write or recovery. Return all stripes */
5842 			num_stripes = map->num_stripes;
5843 			max_errors = nr_parity_stripes(map);
5844 
5845 			*length = map->stripe_len;
5846 			stripe_index = 0;
5847 			stripe_offset = 0;
5848 		} else {
5849 			/*
5850 			 * Mirror #0 or #1 means the original data block.
5851 			 * Mirror #2 is RAID5 parity block.
5852 			 * Mirror #3 is RAID6 Q block.
5853 			 */
5854 			stripe_nr = div_u64_rem(stripe_nr,
5855 					nr_data_stripes(map), &stripe_index);
5856 			if (mirror_num > 1)
5857 				stripe_index = nr_data_stripes(map) +
5858 						mirror_num - 2;
5859 
5860 			/* We distribute the parity blocks across stripes */
5861 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5862 					&stripe_index);
5863 			if (!need_full_stripe(op) && mirror_num <= 1)
5864 				mirror_num = 1;
5865 		}
5866 	} else {
5867 		/*
5868 		 * after this, stripe_nr is the number of stripes on this
5869 		 * device we have to walk to find the data, and stripe_index is
5870 		 * the number of our device in the stripe array
5871 		 */
5872 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5873 				&stripe_index);
5874 		mirror_num = stripe_index + 1;
5875 	}
5876 	if (stripe_index >= map->num_stripes) {
5877 		btrfs_crit(fs_info,
5878 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5879 			   stripe_index, map->num_stripes);
5880 		ret = -EINVAL;
5881 		goto out;
5882 	}
5883 
5884 	num_alloc_stripes = num_stripes;
5885 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5886 		if (op == BTRFS_MAP_WRITE)
5887 			num_alloc_stripes <<= 1;
5888 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
5889 			num_alloc_stripes++;
5890 		tgtdev_indexes = num_stripes;
5891 	}
5892 
5893 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5894 	if (!bbio) {
5895 		ret = -ENOMEM;
5896 		goto out;
5897 	}
5898 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5899 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5900 
5901 	/* build raid_map */
5902 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5903 	    (need_full_stripe(op) || mirror_num > 1)) {
5904 		u64 tmp;
5905 		unsigned rot;
5906 
5907 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5908 				 sizeof(struct btrfs_bio_stripe) *
5909 				 num_alloc_stripes +
5910 				 sizeof(int) * tgtdev_indexes);
5911 
5912 		/* Work out the disk rotation on this stripe-set */
5913 		div_u64_rem(stripe_nr, num_stripes, &rot);
5914 
5915 		/* Fill in the logical address of each stripe */
5916 		tmp = stripe_nr * nr_data_stripes(map);
5917 		for (i = 0; i < nr_data_stripes(map); i++)
5918 			bbio->raid_map[(i+rot) % num_stripes] =
5919 				em->start + (tmp + i) * map->stripe_len;
5920 
5921 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5922 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5923 			bbio->raid_map[(i+rot+1) % num_stripes] =
5924 				RAID6_Q_STRIPE;
5925 	}
5926 
5927 
5928 	for (i = 0; i < num_stripes; i++) {
5929 		bbio->stripes[i].physical =
5930 			map->stripes[stripe_index].physical +
5931 			stripe_offset +
5932 			stripe_nr * map->stripe_len;
5933 		bbio->stripes[i].dev =
5934 			map->stripes[stripe_index].dev;
5935 		stripe_index++;
5936 	}
5937 
5938 	if (need_full_stripe(op))
5939 		max_errors = btrfs_chunk_max_errors(map);
5940 
5941 	if (bbio->raid_map)
5942 		sort_parity_stripes(bbio, num_stripes);
5943 
5944 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5945 	    need_full_stripe(op)) {
5946 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5947 					  &max_errors);
5948 	}
5949 
5950 	*bbio_ret = bbio;
5951 	bbio->map_type = map->type;
5952 	bbio->num_stripes = num_stripes;
5953 	bbio->max_errors = max_errors;
5954 	bbio->mirror_num = mirror_num;
5955 
5956 	/*
5957 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5958 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5959 	 * available as a mirror
5960 	 */
5961 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5962 		WARN_ON(num_stripes > 1);
5963 		bbio->stripes[0].dev = dev_replace->tgtdev;
5964 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5965 		bbio->mirror_num = map->num_stripes + 1;
5966 	}
5967 out:
5968 	if (dev_replace_is_ongoing) {
5969 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5970 		btrfs_dev_replace_read_unlock(dev_replace);
5971 	}
5972 	free_extent_map(em);
5973 	return ret;
5974 }
5975 
5976 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5977 		      u64 logical, u64 *length,
5978 		      struct btrfs_bio **bbio_ret, int mirror_num)
5979 {
5980 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5981 				 mirror_num, 0);
5982 }
5983 
5984 /* For Scrub/replace */
5985 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5986 		     u64 logical, u64 *length,
5987 		     struct btrfs_bio **bbio_ret)
5988 {
5989 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5990 }
5991 
5992 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5993 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5994 {
5995 	struct extent_map *em;
5996 	struct map_lookup *map;
5997 	u64 *buf;
5998 	u64 bytenr;
5999 	u64 length;
6000 	u64 stripe_nr;
6001 	u64 rmap_len;
6002 	int i, j, nr = 0;
6003 
6004 	em = get_chunk_map(fs_info, chunk_start, 1);
6005 	if (IS_ERR(em))
6006 		return -EIO;
6007 
6008 	map = em->map_lookup;
6009 	length = em->len;
6010 	rmap_len = map->stripe_len;
6011 
6012 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6013 		length = div_u64(length, map->num_stripes / map->sub_stripes);
6014 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6015 		length = div_u64(length, map->num_stripes);
6016 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6017 		length = div_u64(length, nr_data_stripes(map));
6018 		rmap_len = map->stripe_len * nr_data_stripes(map);
6019 	}
6020 
6021 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6022 	BUG_ON(!buf); /* -ENOMEM */
6023 
6024 	for (i = 0; i < map->num_stripes; i++) {
6025 		if (map->stripes[i].physical > physical ||
6026 		    map->stripes[i].physical + length <= physical)
6027 			continue;
6028 
6029 		stripe_nr = physical - map->stripes[i].physical;
6030 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6031 
6032 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6033 			stripe_nr = stripe_nr * map->num_stripes + i;
6034 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6035 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6036 			stripe_nr = stripe_nr * map->num_stripes + i;
6037 		} /* else if RAID[56], multiply by nr_data_stripes().
6038 		   * Alternatively, just use rmap_len below instead of
6039 		   * map->stripe_len */
6040 
6041 		bytenr = chunk_start + stripe_nr * rmap_len;
6042 		WARN_ON(nr >= map->num_stripes);
6043 		for (j = 0; j < nr; j++) {
6044 			if (buf[j] == bytenr)
6045 				break;
6046 		}
6047 		if (j == nr) {
6048 			WARN_ON(nr >= map->num_stripes);
6049 			buf[nr++] = bytenr;
6050 		}
6051 	}
6052 
6053 	*logical = buf;
6054 	*naddrs = nr;
6055 	*stripe_len = rmap_len;
6056 
6057 	free_extent_map(em);
6058 	return 0;
6059 }
6060 
6061 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6062 {
6063 	bio->bi_private = bbio->private;
6064 	bio->bi_end_io = bbio->end_io;
6065 	bio_endio(bio);
6066 
6067 	btrfs_put_bbio(bbio);
6068 }
6069 
6070 static void btrfs_end_bio(struct bio *bio)
6071 {
6072 	struct btrfs_bio *bbio = bio->bi_private;
6073 	int is_orig_bio = 0;
6074 
6075 	if (bio->bi_status) {
6076 		atomic_inc(&bbio->error);
6077 		if (bio->bi_status == BLK_STS_IOERR ||
6078 		    bio->bi_status == BLK_STS_TARGET) {
6079 			unsigned int stripe_index =
6080 				btrfs_io_bio(bio)->stripe_index;
6081 			struct btrfs_device *dev;
6082 
6083 			BUG_ON(stripe_index >= bbio->num_stripes);
6084 			dev = bbio->stripes[stripe_index].dev;
6085 			if (dev->bdev) {
6086 				if (bio_op(bio) == REQ_OP_WRITE)
6087 					btrfs_dev_stat_inc_and_print(dev,
6088 						BTRFS_DEV_STAT_WRITE_ERRS);
6089 				else
6090 					btrfs_dev_stat_inc_and_print(dev,
6091 						BTRFS_DEV_STAT_READ_ERRS);
6092 				if (bio->bi_opf & REQ_PREFLUSH)
6093 					btrfs_dev_stat_inc_and_print(dev,
6094 						BTRFS_DEV_STAT_FLUSH_ERRS);
6095 			}
6096 		}
6097 	}
6098 
6099 	if (bio == bbio->orig_bio)
6100 		is_orig_bio = 1;
6101 
6102 	btrfs_bio_counter_dec(bbio->fs_info);
6103 
6104 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6105 		if (!is_orig_bio) {
6106 			bio_put(bio);
6107 			bio = bbio->orig_bio;
6108 		}
6109 
6110 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6111 		/* only send an error to the higher layers if it is
6112 		 * beyond the tolerance of the btrfs bio
6113 		 */
6114 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6115 			bio->bi_status = BLK_STS_IOERR;
6116 		} else {
6117 			/*
6118 			 * this bio is actually up to date, we didn't
6119 			 * go over the max number of errors
6120 			 */
6121 			bio->bi_status = BLK_STS_OK;
6122 		}
6123 
6124 		btrfs_end_bbio(bbio, bio);
6125 	} else if (!is_orig_bio) {
6126 		bio_put(bio);
6127 	}
6128 }
6129 
6130 /*
6131  * see run_scheduled_bios for a description of why bios are collected for
6132  * async submit.
6133  *
6134  * This will add one bio to the pending list for a device and make sure
6135  * the work struct is scheduled.
6136  */
6137 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6138 					struct bio *bio)
6139 {
6140 	struct btrfs_fs_info *fs_info = device->fs_info;
6141 	int should_queue = 1;
6142 	struct btrfs_pending_bios *pending_bios;
6143 
6144 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6145 	    !device->bdev) {
6146 		bio_io_error(bio);
6147 		return;
6148 	}
6149 
6150 	/* don't bother with additional async steps for reads, right now */
6151 	if (bio_op(bio) == REQ_OP_READ) {
6152 		btrfsic_submit_bio(bio);
6153 		return;
6154 	}
6155 
6156 	WARN_ON(bio->bi_next);
6157 	bio->bi_next = NULL;
6158 
6159 	spin_lock(&device->io_lock);
6160 	if (op_is_sync(bio->bi_opf))
6161 		pending_bios = &device->pending_sync_bios;
6162 	else
6163 		pending_bios = &device->pending_bios;
6164 
6165 	if (pending_bios->tail)
6166 		pending_bios->tail->bi_next = bio;
6167 
6168 	pending_bios->tail = bio;
6169 	if (!pending_bios->head)
6170 		pending_bios->head = bio;
6171 	if (device->running_pending)
6172 		should_queue = 0;
6173 
6174 	spin_unlock(&device->io_lock);
6175 
6176 	if (should_queue)
6177 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6178 }
6179 
6180 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6181 			      u64 physical, int dev_nr, int async)
6182 {
6183 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6184 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6185 
6186 	bio->bi_private = bbio;
6187 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6188 	bio->bi_end_io = btrfs_end_bio;
6189 	bio->bi_iter.bi_sector = physical >> 9;
6190 #ifdef DEBUG
6191 	{
6192 		struct rcu_string *name;
6193 
6194 		rcu_read_lock();
6195 		name = rcu_dereference(dev->name);
6196 		btrfs_debug(fs_info,
6197 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6198 			bio_op(bio), bio->bi_opf,
6199 			(u64)bio->bi_iter.bi_sector,
6200 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6201 			bio->bi_iter.bi_size);
6202 		rcu_read_unlock();
6203 	}
6204 #endif
6205 	bio_set_dev(bio, dev->bdev);
6206 
6207 	btrfs_bio_counter_inc_noblocked(fs_info);
6208 
6209 	if (async)
6210 		btrfs_schedule_bio(dev, bio);
6211 	else
6212 		btrfsic_submit_bio(bio);
6213 }
6214 
6215 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6216 {
6217 	atomic_inc(&bbio->error);
6218 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6219 		/* Should be the original bio. */
6220 		WARN_ON(bio != bbio->orig_bio);
6221 
6222 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6223 		bio->bi_iter.bi_sector = logical >> 9;
6224 		if (atomic_read(&bbio->error) > bbio->max_errors)
6225 			bio->bi_status = BLK_STS_IOERR;
6226 		else
6227 			bio->bi_status = BLK_STS_OK;
6228 		btrfs_end_bbio(bbio, bio);
6229 	}
6230 }
6231 
6232 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6233 			   int mirror_num, int async_submit)
6234 {
6235 	struct btrfs_device *dev;
6236 	struct bio *first_bio = bio;
6237 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6238 	u64 length = 0;
6239 	u64 map_length;
6240 	int ret;
6241 	int dev_nr;
6242 	int total_devs;
6243 	struct btrfs_bio *bbio = NULL;
6244 
6245 	length = bio->bi_iter.bi_size;
6246 	map_length = length;
6247 
6248 	btrfs_bio_counter_inc_blocked(fs_info);
6249 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6250 				&map_length, &bbio, mirror_num, 1);
6251 	if (ret) {
6252 		btrfs_bio_counter_dec(fs_info);
6253 		return errno_to_blk_status(ret);
6254 	}
6255 
6256 	total_devs = bbio->num_stripes;
6257 	bbio->orig_bio = first_bio;
6258 	bbio->private = first_bio->bi_private;
6259 	bbio->end_io = first_bio->bi_end_io;
6260 	bbio->fs_info = fs_info;
6261 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6262 
6263 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6264 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6265 		/* In this case, map_length has been set to the length of
6266 		   a single stripe; not the whole write */
6267 		if (bio_op(bio) == REQ_OP_WRITE) {
6268 			ret = raid56_parity_write(fs_info, bio, bbio,
6269 						  map_length);
6270 		} else {
6271 			ret = raid56_parity_recover(fs_info, bio, bbio,
6272 						    map_length, mirror_num, 1);
6273 		}
6274 
6275 		btrfs_bio_counter_dec(fs_info);
6276 		return errno_to_blk_status(ret);
6277 	}
6278 
6279 	if (map_length < length) {
6280 		btrfs_crit(fs_info,
6281 			   "mapping failed logical %llu bio len %llu len %llu",
6282 			   logical, length, map_length);
6283 		BUG();
6284 	}
6285 
6286 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6287 		dev = bbio->stripes[dev_nr].dev;
6288 		if (!dev || !dev->bdev ||
6289 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6290 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6291 			bbio_error(bbio, first_bio, logical);
6292 			continue;
6293 		}
6294 
6295 		if (dev_nr < total_devs - 1)
6296 			bio = btrfs_bio_clone(first_bio);
6297 		else
6298 			bio = first_bio;
6299 
6300 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6301 				  dev_nr, async_submit);
6302 	}
6303 	btrfs_bio_counter_dec(fs_info);
6304 	return BLK_STS_OK;
6305 }
6306 
6307 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6308 				       u8 *uuid, u8 *fsid)
6309 {
6310 	struct btrfs_device *device;
6311 	struct btrfs_fs_devices *cur_devices;
6312 
6313 	cur_devices = fs_info->fs_devices;
6314 	while (cur_devices) {
6315 		if (!fsid ||
6316 		    !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6317 			device = find_device(cur_devices, devid, uuid);
6318 			if (device)
6319 				return device;
6320 		}
6321 		cur_devices = cur_devices->seed;
6322 	}
6323 	return NULL;
6324 }
6325 
6326 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6327 					    u64 devid, u8 *dev_uuid)
6328 {
6329 	struct btrfs_device *device;
6330 
6331 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6332 	if (IS_ERR(device))
6333 		return device;
6334 
6335 	list_add(&device->dev_list, &fs_devices->devices);
6336 	device->fs_devices = fs_devices;
6337 	fs_devices->num_devices++;
6338 
6339 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6340 	fs_devices->missing_devices++;
6341 
6342 	return device;
6343 }
6344 
6345 /**
6346  * btrfs_alloc_device - allocate struct btrfs_device
6347  * @fs_info:	used only for generating a new devid, can be NULL if
6348  *		devid is provided (i.e. @devid != NULL).
6349  * @devid:	a pointer to devid for this device.  If NULL a new devid
6350  *		is generated.
6351  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6352  *		is generated.
6353  *
6354  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6355  * on error.  Returned struct is not linked onto any lists and must be
6356  * destroyed with btrfs_free_device.
6357  */
6358 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6359 					const u64 *devid,
6360 					const u8 *uuid)
6361 {
6362 	struct btrfs_device *dev;
6363 	u64 tmp;
6364 
6365 	if (WARN_ON(!devid && !fs_info))
6366 		return ERR_PTR(-EINVAL);
6367 
6368 	dev = __alloc_device();
6369 	if (IS_ERR(dev))
6370 		return dev;
6371 
6372 	if (devid)
6373 		tmp = *devid;
6374 	else {
6375 		int ret;
6376 
6377 		ret = find_next_devid(fs_info, &tmp);
6378 		if (ret) {
6379 			btrfs_free_device(dev);
6380 			return ERR_PTR(ret);
6381 		}
6382 	}
6383 	dev->devid = tmp;
6384 
6385 	if (uuid)
6386 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6387 	else
6388 		generate_random_uuid(dev->uuid);
6389 
6390 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6391 			pending_bios_fn, NULL, NULL);
6392 
6393 	return dev;
6394 }
6395 
6396 /* Return -EIO if any error, otherwise return 0. */
6397 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6398 				   struct extent_buffer *leaf,
6399 				   struct btrfs_chunk *chunk, u64 logical)
6400 {
6401 	u64 length;
6402 	u64 stripe_len;
6403 	u16 num_stripes;
6404 	u16 sub_stripes;
6405 	u64 type;
6406 
6407 	length = btrfs_chunk_length(leaf, chunk);
6408 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6409 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6410 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6411 	type = btrfs_chunk_type(leaf, chunk);
6412 
6413 	if (!num_stripes) {
6414 		btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6415 			  num_stripes);
6416 		return -EIO;
6417 	}
6418 	if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6419 		btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6420 		return -EIO;
6421 	}
6422 	if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6423 		btrfs_err(fs_info, "invalid chunk sectorsize %u",
6424 			  btrfs_chunk_sector_size(leaf, chunk));
6425 		return -EIO;
6426 	}
6427 	if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6428 		btrfs_err(fs_info, "invalid chunk length %llu", length);
6429 		return -EIO;
6430 	}
6431 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6432 		btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6433 			  stripe_len);
6434 		return -EIO;
6435 	}
6436 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6437 	    type) {
6438 		btrfs_err(fs_info, "unrecognized chunk type: %llu",
6439 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6440 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6441 			  btrfs_chunk_type(leaf, chunk));
6442 		return -EIO;
6443 	}
6444 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6445 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6446 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6447 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6448 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6449 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6450 	     num_stripes != 1)) {
6451 		btrfs_err(fs_info,
6452 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6453 			num_stripes, sub_stripes,
6454 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6455 		return -EIO;
6456 	}
6457 
6458 	return 0;
6459 }
6460 
6461 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6462 					u64 devid, u8 *uuid, bool error)
6463 {
6464 	if (error)
6465 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6466 			      devid, uuid);
6467 	else
6468 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6469 			      devid, uuid);
6470 }
6471 
6472 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6473 			  struct extent_buffer *leaf,
6474 			  struct btrfs_chunk *chunk)
6475 {
6476 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6477 	struct map_lookup *map;
6478 	struct extent_map *em;
6479 	u64 logical;
6480 	u64 length;
6481 	u64 devid;
6482 	u8 uuid[BTRFS_UUID_SIZE];
6483 	int num_stripes;
6484 	int ret;
6485 	int i;
6486 
6487 	logical = key->offset;
6488 	length = btrfs_chunk_length(leaf, chunk);
6489 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6490 
6491 	ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6492 	if (ret)
6493 		return ret;
6494 
6495 	read_lock(&map_tree->map_tree.lock);
6496 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6497 	read_unlock(&map_tree->map_tree.lock);
6498 
6499 	/* already mapped? */
6500 	if (em && em->start <= logical && em->start + em->len > logical) {
6501 		free_extent_map(em);
6502 		return 0;
6503 	} else if (em) {
6504 		free_extent_map(em);
6505 	}
6506 
6507 	em = alloc_extent_map();
6508 	if (!em)
6509 		return -ENOMEM;
6510 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6511 	if (!map) {
6512 		free_extent_map(em);
6513 		return -ENOMEM;
6514 	}
6515 
6516 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6517 	em->map_lookup = map;
6518 	em->start = logical;
6519 	em->len = length;
6520 	em->orig_start = 0;
6521 	em->block_start = 0;
6522 	em->block_len = em->len;
6523 
6524 	map->num_stripes = num_stripes;
6525 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6526 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6527 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6528 	map->type = btrfs_chunk_type(leaf, chunk);
6529 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6530 	for (i = 0; i < num_stripes; i++) {
6531 		map->stripes[i].physical =
6532 			btrfs_stripe_offset_nr(leaf, chunk, i);
6533 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6534 		read_extent_buffer(leaf, uuid, (unsigned long)
6535 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6536 				   BTRFS_UUID_SIZE);
6537 		map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6538 							uuid, NULL);
6539 		if (!map->stripes[i].dev &&
6540 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6541 			free_extent_map(em);
6542 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6543 			return -ENOENT;
6544 		}
6545 		if (!map->stripes[i].dev) {
6546 			map->stripes[i].dev =
6547 				add_missing_dev(fs_info->fs_devices, devid,
6548 						uuid);
6549 			if (IS_ERR(map->stripes[i].dev)) {
6550 				free_extent_map(em);
6551 				btrfs_err(fs_info,
6552 					"failed to init missing dev %llu: %ld",
6553 					devid, PTR_ERR(map->stripes[i].dev));
6554 				return PTR_ERR(map->stripes[i].dev);
6555 			}
6556 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6557 		}
6558 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6559 				&(map->stripes[i].dev->dev_state));
6560 
6561 	}
6562 
6563 	write_lock(&map_tree->map_tree.lock);
6564 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6565 	write_unlock(&map_tree->map_tree.lock);
6566 	BUG_ON(ret); /* Tree corruption */
6567 	free_extent_map(em);
6568 
6569 	return 0;
6570 }
6571 
6572 static void fill_device_from_item(struct extent_buffer *leaf,
6573 				 struct btrfs_dev_item *dev_item,
6574 				 struct btrfs_device *device)
6575 {
6576 	unsigned long ptr;
6577 
6578 	device->devid = btrfs_device_id(leaf, dev_item);
6579 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6580 	device->total_bytes = device->disk_total_bytes;
6581 	device->commit_total_bytes = device->disk_total_bytes;
6582 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6583 	device->commit_bytes_used = device->bytes_used;
6584 	device->type = btrfs_device_type(leaf, dev_item);
6585 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6586 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6587 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6588 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6589 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6590 
6591 	ptr = btrfs_device_uuid(dev_item);
6592 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6593 }
6594 
6595 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6596 						  u8 *fsid)
6597 {
6598 	struct btrfs_fs_devices *fs_devices;
6599 	int ret;
6600 
6601 	lockdep_assert_held(&uuid_mutex);
6602 	ASSERT(fsid);
6603 
6604 	fs_devices = fs_info->fs_devices->seed;
6605 	while (fs_devices) {
6606 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6607 			return fs_devices;
6608 
6609 		fs_devices = fs_devices->seed;
6610 	}
6611 
6612 	fs_devices = find_fsid(fsid);
6613 	if (!fs_devices) {
6614 		if (!btrfs_test_opt(fs_info, DEGRADED))
6615 			return ERR_PTR(-ENOENT);
6616 
6617 		fs_devices = alloc_fs_devices(fsid);
6618 		if (IS_ERR(fs_devices))
6619 			return fs_devices;
6620 
6621 		fs_devices->seeding = 1;
6622 		fs_devices->opened = 1;
6623 		return fs_devices;
6624 	}
6625 
6626 	fs_devices = clone_fs_devices(fs_devices);
6627 	if (IS_ERR(fs_devices))
6628 		return fs_devices;
6629 
6630 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6631 	if (ret) {
6632 		free_fs_devices(fs_devices);
6633 		fs_devices = ERR_PTR(ret);
6634 		goto out;
6635 	}
6636 
6637 	if (!fs_devices->seeding) {
6638 		close_fs_devices(fs_devices);
6639 		free_fs_devices(fs_devices);
6640 		fs_devices = ERR_PTR(-EINVAL);
6641 		goto out;
6642 	}
6643 
6644 	fs_devices->seed = fs_info->fs_devices->seed;
6645 	fs_info->fs_devices->seed = fs_devices;
6646 out:
6647 	return fs_devices;
6648 }
6649 
6650 static int read_one_dev(struct btrfs_fs_info *fs_info,
6651 			struct extent_buffer *leaf,
6652 			struct btrfs_dev_item *dev_item)
6653 {
6654 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6655 	struct btrfs_device *device;
6656 	u64 devid;
6657 	int ret;
6658 	u8 fs_uuid[BTRFS_FSID_SIZE];
6659 	u8 dev_uuid[BTRFS_UUID_SIZE];
6660 
6661 	devid = btrfs_device_id(leaf, dev_item);
6662 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6663 			   BTRFS_UUID_SIZE);
6664 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6665 			   BTRFS_FSID_SIZE);
6666 
6667 	if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6668 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6669 		if (IS_ERR(fs_devices))
6670 			return PTR_ERR(fs_devices);
6671 	}
6672 
6673 	device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6674 	if (!device) {
6675 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6676 			btrfs_report_missing_device(fs_info, devid,
6677 							dev_uuid, true);
6678 			return -ENOENT;
6679 		}
6680 
6681 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6682 		if (IS_ERR(device)) {
6683 			btrfs_err(fs_info,
6684 				"failed to add missing dev %llu: %ld",
6685 				devid, PTR_ERR(device));
6686 			return PTR_ERR(device);
6687 		}
6688 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6689 	} else {
6690 		if (!device->bdev) {
6691 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6692 				btrfs_report_missing_device(fs_info,
6693 						devid, dev_uuid, true);
6694 				return -ENOENT;
6695 			}
6696 			btrfs_report_missing_device(fs_info, devid,
6697 							dev_uuid, false);
6698 		}
6699 
6700 		if (!device->bdev &&
6701 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6702 			/*
6703 			 * this happens when a device that was properly setup
6704 			 * in the device info lists suddenly goes bad.
6705 			 * device->bdev is NULL, and so we have to set
6706 			 * device->missing to one here
6707 			 */
6708 			device->fs_devices->missing_devices++;
6709 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6710 		}
6711 
6712 		/* Move the device to its own fs_devices */
6713 		if (device->fs_devices != fs_devices) {
6714 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6715 							&device->dev_state));
6716 
6717 			list_move(&device->dev_list, &fs_devices->devices);
6718 			device->fs_devices->num_devices--;
6719 			fs_devices->num_devices++;
6720 
6721 			device->fs_devices->missing_devices--;
6722 			fs_devices->missing_devices++;
6723 
6724 			device->fs_devices = fs_devices;
6725 		}
6726 	}
6727 
6728 	if (device->fs_devices != fs_info->fs_devices) {
6729 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6730 		if (device->generation !=
6731 		    btrfs_device_generation(leaf, dev_item))
6732 			return -EINVAL;
6733 	}
6734 
6735 	fill_device_from_item(leaf, dev_item, device);
6736 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6737 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6738 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6739 		device->fs_devices->total_rw_bytes += device->total_bytes;
6740 		atomic64_add(device->total_bytes - device->bytes_used,
6741 				&fs_info->free_chunk_space);
6742 	}
6743 	ret = 0;
6744 	return ret;
6745 }
6746 
6747 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6748 {
6749 	struct btrfs_root *root = fs_info->tree_root;
6750 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6751 	struct extent_buffer *sb;
6752 	struct btrfs_disk_key *disk_key;
6753 	struct btrfs_chunk *chunk;
6754 	u8 *array_ptr;
6755 	unsigned long sb_array_offset;
6756 	int ret = 0;
6757 	u32 num_stripes;
6758 	u32 array_size;
6759 	u32 len = 0;
6760 	u32 cur_offset;
6761 	u64 type;
6762 	struct btrfs_key key;
6763 
6764 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6765 	/*
6766 	 * This will create extent buffer of nodesize, superblock size is
6767 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6768 	 * overallocate but we can keep it as-is, only the first page is used.
6769 	 */
6770 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6771 	if (IS_ERR(sb))
6772 		return PTR_ERR(sb);
6773 	set_extent_buffer_uptodate(sb);
6774 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6775 	/*
6776 	 * The sb extent buffer is artificial and just used to read the system array.
6777 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6778 	 * pages up-to-date when the page is larger: extent does not cover the
6779 	 * whole page and consequently check_page_uptodate does not find all
6780 	 * the page's extents up-to-date (the hole beyond sb),
6781 	 * write_extent_buffer then triggers a WARN_ON.
6782 	 *
6783 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6784 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6785 	 * to silence the warning eg. on PowerPC 64.
6786 	 */
6787 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6788 		SetPageUptodate(sb->pages[0]);
6789 
6790 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6791 	array_size = btrfs_super_sys_array_size(super_copy);
6792 
6793 	array_ptr = super_copy->sys_chunk_array;
6794 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6795 	cur_offset = 0;
6796 
6797 	while (cur_offset < array_size) {
6798 		disk_key = (struct btrfs_disk_key *)array_ptr;
6799 		len = sizeof(*disk_key);
6800 		if (cur_offset + len > array_size)
6801 			goto out_short_read;
6802 
6803 		btrfs_disk_key_to_cpu(&key, disk_key);
6804 
6805 		array_ptr += len;
6806 		sb_array_offset += len;
6807 		cur_offset += len;
6808 
6809 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6810 			chunk = (struct btrfs_chunk *)sb_array_offset;
6811 			/*
6812 			 * At least one btrfs_chunk with one stripe must be
6813 			 * present, exact stripe count check comes afterwards
6814 			 */
6815 			len = btrfs_chunk_item_size(1);
6816 			if (cur_offset + len > array_size)
6817 				goto out_short_read;
6818 
6819 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6820 			if (!num_stripes) {
6821 				btrfs_err(fs_info,
6822 					"invalid number of stripes %u in sys_array at offset %u",
6823 					num_stripes, cur_offset);
6824 				ret = -EIO;
6825 				break;
6826 			}
6827 
6828 			type = btrfs_chunk_type(sb, chunk);
6829 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6830 				btrfs_err(fs_info,
6831 			    "invalid chunk type %llu in sys_array at offset %u",
6832 					type, cur_offset);
6833 				ret = -EIO;
6834 				break;
6835 			}
6836 
6837 			len = btrfs_chunk_item_size(num_stripes);
6838 			if (cur_offset + len > array_size)
6839 				goto out_short_read;
6840 
6841 			ret = read_one_chunk(fs_info, &key, sb, chunk);
6842 			if (ret)
6843 				break;
6844 		} else {
6845 			btrfs_err(fs_info,
6846 			    "unexpected item type %u in sys_array at offset %u",
6847 				  (u32)key.type, cur_offset);
6848 			ret = -EIO;
6849 			break;
6850 		}
6851 		array_ptr += len;
6852 		sb_array_offset += len;
6853 		cur_offset += len;
6854 	}
6855 	clear_extent_buffer_uptodate(sb);
6856 	free_extent_buffer_stale(sb);
6857 	return ret;
6858 
6859 out_short_read:
6860 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6861 			len, cur_offset);
6862 	clear_extent_buffer_uptodate(sb);
6863 	free_extent_buffer_stale(sb);
6864 	return -EIO;
6865 }
6866 
6867 /*
6868  * Check if all chunks in the fs are OK for read-write degraded mount
6869  *
6870  * If the @failing_dev is specified, it's accounted as missing.
6871  *
6872  * Return true if all chunks meet the minimal RW mount requirements.
6873  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6874  */
6875 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6876 					struct btrfs_device *failing_dev)
6877 {
6878 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6879 	struct extent_map *em;
6880 	u64 next_start = 0;
6881 	bool ret = true;
6882 
6883 	read_lock(&map_tree->map_tree.lock);
6884 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6885 	read_unlock(&map_tree->map_tree.lock);
6886 	/* No chunk at all? Return false anyway */
6887 	if (!em) {
6888 		ret = false;
6889 		goto out;
6890 	}
6891 	while (em) {
6892 		struct map_lookup *map;
6893 		int missing = 0;
6894 		int max_tolerated;
6895 		int i;
6896 
6897 		map = em->map_lookup;
6898 		max_tolerated =
6899 			btrfs_get_num_tolerated_disk_barrier_failures(
6900 					map->type);
6901 		for (i = 0; i < map->num_stripes; i++) {
6902 			struct btrfs_device *dev = map->stripes[i].dev;
6903 
6904 			if (!dev || !dev->bdev ||
6905 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6906 			    dev->last_flush_error)
6907 				missing++;
6908 			else if (failing_dev && failing_dev == dev)
6909 				missing++;
6910 		}
6911 		if (missing > max_tolerated) {
6912 			if (!failing_dev)
6913 				btrfs_warn(fs_info,
6914 	"chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6915 				   em->start, missing, max_tolerated);
6916 			free_extent_map(em);
6917 			ret = false;
6918 			goto out;
6919 		}
6920 		next_start = extent_map_end(em);
6921 		free_extent_map(em);
6922 
6923 		read_lock(&map_tree->map_tree.lock);
6924 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6925 					   (u64)(-1) - next_start);
6926 		read_unlock(&map_tree->map_tree.lock);
6927 	}
6928 out:
6929 	return ret;
6930 }
6931 
6932 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6933 {
6934 	struct btrfs_root *root = fs_info->chunk_root;
6935 	struct btrfs_path *path;
6936 	struct extent_buffer *leaf;
6937 	struct btrfs_key key;
6938 	struct btrfs_key found_key;
6939 	int ret;
6940 	int slot;
6941 	u64 total_dev = 0;
6942 
6943 	path = btrfs_alloc_path();
6944 	if (!path)
6945 		return -ENOMEM;
6946 
6947 	/*
6948 	 * uuid_mutex is needed only if we are mounting a sprout FS
6949 	 * otherwise we don't need it.
6950 	 */
6951 	mutex_lock(&uuid_mutex);
6952 	mutex_lock(&fs_info->chunk_mutex);
6953 
6954 	/*
6955 	 * Read all device items, and then all the chunk items. All
6956 	 * device items are found before any chunk item (their object id
6957 	 * is smaller than the lowest possible object id for a chunk
6958 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6959 	 */
6960 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6961 	key.offset = 0;
6962 	key.type = 0;
6963 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6964 	if (ret < 0)
6965 		goto error;
6966 	while (1) {
6967 		leaf = path->nodes[0];
6968 		slot = path->slots[0];
6969 		if (slot >= btrfs_header_nritems(leaf)) {
6970 			ret = btrfs_next_leaf(root, path);
6971 			if (ret == 0)
6972 				continue;
6973 			if (ret < 0)
6974 				goto error;
6975 			break;
6976 		}
6977 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6978 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6979 			struct btrfs_dev_item *dev_item;
6980 			dev_item = btrfs_item_ptr(leaf, slot,
6981 						  struct btrfs_dev_item);
6982 			ret = read_one_dev(fs_info, leaf, dev_item);
6983 			if (ret)
6984 				goto error;
6985 			total_dev++;
6986 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6987 			struct btrfs_chunk *chunk;
6988 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6989 			ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6990 			if (ret)
6991 				goto error;
6992 		}
6993 		path->slots[0]++;
6994 	}
6995 
6996 	/*
6997 	 * After loading chunk tree, we've got all device information,
6998 	 * do another round of validation checks.
6999 	 */
7000 	if (total_dev != fs_info->fs_devices->total_devices) {
7001 		btrfs_err(fs_info,
7002 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7003 			  btrfs_super_num_devices(fs_info->super_copy),
7004 			  total_dev);
7005 		ret = -EINVAL;
7006 		goto error;
7007 	}
7008 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7009 	    fs_info->fs_devices->total_rw_bytes) {
7010 		btrfs_err(fs_info,
7011 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7012 			  btrfs_super_total_bytes(fs_info->super_copy),
7013 			  fs_info->fs_devices->total_rw_bytes);
7014 		ret = -EINVAL;
7015 		goto error;
7016 	}
7017 	ret = 0;
7018 error:
7019 	mutex_unlock(&fs_info->chunk_mutex);
7020 	mutex_unlock(&uuid_mutex);
7021 
7022 	btrfs_free_path(path);
7023 	return ret;
7024 }
7025 
7026 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7027 {
7028 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7029 	struct btrfs_device *device;
7030 
7031 	while (fs_devices) {
7032 		mutex_lock(&fs_devices->device_list_mutex);
7033 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7034 			device->fs_info = fs_info;
7035 		mutex_unlock(&fs_devices->device_list_mutex);
7036 
7037 		fs_devices = fs_devices->seed;
7038 	}
7039 }
7040 
7041 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7042 {
7043 	int i;
7044 
7045 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7046 		btrfs_dev_stat_reset(dev, i);
7047 }
7048 
7049 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7050 {
7051 	struct btrfs_key key;
7052 	struct btrfs_key found_key;
7053 	struct btrfs_root *dev_root = fs_info->dev_root;
7054 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7055 	struct extent_buffer *eb;
7056 	int slot;
7057 	int ret = 0;
7058 	struct btrfs_device *device;
7059 	struct btrfs_path *path = NULL;
7060 	int i;
7061 
7062 	path = btrfs_alloc_path();
7063 	if (!path) {
7064 		ret = -ENOMEM;
7065 		goto out;
7066 	}
7067 
7068 	mutex_lock(&fs_devices->device_list_mutex);
7069 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7070 		int item_size;
7071 		struct btrfs_dev_stats_item *ptr;
7072 
7073 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7074 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7075 		key.offset = device->devid;
7076 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7077 		if (ret) {
7078 			__btrfs_reset_dev_stats(device);
7079 			device->dev_stats_valid = 1;
7080 			btrfs_release_path(path);
7081 			continue;
7082 		}
7083 		slot = path->slots[0];
7084 		eb = path->nodes[0];
7085 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7086 		item_size = btrfs_item_size_nr(eb, slot);
7087 
7088 		ptr = btrfs_item_ptr(eb, slot,
7089 				     struct btrfs_dev_stats_item);
7090 
7091 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7092 			if (item_size >= (1 + i) * sizeof(__le64))
7093 				btrfs_dev_stat_set(device, i,
7094 					btrfs_dev_stats_value(eb, ptr, i));
7095 			else
7096 				btrfs_dev_stat_reset(device, i);
7097 		}
7098 
7099 		device->dev_stats_valid = 1;
7100 		btrfs_dev_stat_print_on_load(device);
7101 		btrfs_release_path(path);
7102 	}
7103 	mutex_unlock(&fs_devices->device_list_mutex);
7104 
7105 out:
7106 	btrfs_free_path(path);
7107 	return ret < 0 ? ret : 0;
7108 }
7109 
7110 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7111 				struct btrfs_fs_info *fs_info,
7112 				struct btrfs_device *device)
7113 {
7114 	struct btrfs_root *dev_root = fs_info->dev_root;
7115 	struct btrfs_path *path;
7116 	struct btrfs_key key;
7117 	struct extent_buffer *eb;
7118 	struct btrfs_dev_stats_item *ptr;
7119 	int ret;
7120 	int i;
7121 
7122 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7123 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7124 	key.offset = device->devid;
7125 
7126 	path = btrfs_alloc_path();
7127 	if (!path)
7128 		return -ENOMEM;
7129 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7130 	if (ret < 0) {
7131 		btrfs_warn_in_rcu(fs_info,
7132 			"error %d while searching for dev_stats item for device %s",
7133 			      ret, rcu_str_deref(device->name));
7134 		goto out;
7135 	}
7136 
7137 	if (ret == 0 &&
7138 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7139 		/* need to delete old one and insert a new one */
7140 		ret = btrfs_del_item(trans, dev_root, path);
7141 		if (ret != 0) {
7142 			btrfs_warn_in_rcu(fs_info,
7143 				"delete too small dev_stats item for device %s failed %d",
7144 				      rcu_str_deref(device->name), ret);
7145 			goto out;
7146 		}
7147 		ret = 1;
7148 	}
7149 
7150 	if (ret == 1) {
7151 		/* need to insert a new item */
7152 		btrfs_release_path(path);
7153 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7154 					      &key, sizeof(*ptr));
7155 		if (ret < 0) {
7156 			btrfs_warn_in_rcu(fs_info,
7157 				"insert dev_stats item for device %s failed %d",
7158 				rcu_str_deref(device->name), ret);
7159 			goto out;
7160 		}
7161 	}
7162 
7163 	eb = path->nodes[0];
7164 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7165 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7166 		btrfs_set_dev_stats_value(eb, ptr, i,
7167 					  btrfs_dev_stat_read(device, i));
7168 	btrfs_mark_buffer_dirty(eb);
7169 
7170 out:
7171 	btrfs_free_path(path);
7172 	return ret;
7173 }
7174 
7175 /*
7176  * called from commit_transaction. Writes all changed device stats to disk.
7177  */
7178 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7179 			struct btrfs_fs_info *fs_info)
7180 {
7181 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7182 	struct btrfs_device *device;
7183 	int stats_cnt;
7184 	int ret = 0;
7185 
7186 	mutex_lock(&fs_devices->device_list_mutex);
7187 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7188 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7189 		if (!device->dev_stats_valid || stats_cnt == 0)
7190 			continue;
7191 
7192 
7193 		/*
7194 		 * There is a LOAD-LOAD control dependency between the value of
7195 		 * dev_stats_ccnt and updating the on-disk values which requires
7196 		 * reading the in-memory counters. Such control dependencies
7197 		 * require explicit read memory barriers.
7198 		 *
7199 		 * This memory barriers pairs with smp_mb__before_atomic in
7200 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7201 		 * barrier implied by atomic_xchg in
7202 		 * btrfs_dev_stats_read_and_reset
7203 		 */
7204 		smp_rmb();
7205 
7206 		ret = update_dev_stat_item(trans, fs_info, device);
7207 		if (!ret)
7208 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7209 	}
7210 	mutex_unlock(&fs_devices->device_list_mutex);
7211 
7212 	return ret;
7213 }
7214 
7215 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7216 {
7217 	btrfs_dev_stat_inc(dev, index);
7218 	btrfs_dev_stat_print_on_error(dev);
7219 }
7220 
7221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7222 {
7223 	if (!dev->dev_stats_valid)
7224 		return;
7225 	btrfs_err_rl_in_rcu(dev->fs_info,
7226 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7227 			   rcu_str_deref(dev->name),
7228 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7229 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7230 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7231 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7232 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7233 }
7234 
7235 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7236 {
7237 	int i;
7238 
7239 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7240 		if (btrfs_dev_stat_read(dev, i) != 0)
7241 			break;
7242 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7243 		return; /* all values == 0, suppress message */
7244 
7245 	btrfs_info_in_rcu(dev->fs_info,
7246 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7247 	       rcu_str_deref(dev->name),
7248 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7249 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7250 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7251 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7252 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7253 }
7254 
7255 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7256 			struct btrfs_ioctl_get_dev_stats *stats)
7257 {
7258 	struct btrfs_device *dev;
7259 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7260 	int i;
7261 
7262 	mutex_lock(&fs_devices->device_list_mutex);
7263 	dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7264 	mutex_unlock(&fs_devices->device_list_mutex);
7265 
7266 	if (!dev) {
7267 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7268 		return -ENODEV;
7269 	} else if (!dev->dev_stats_valid) {
7270 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7271 		return -ENODEV;
7272 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7273 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7274 			if (stats->nr_items > i)
7275 				stats->values[i] =
7276 					btrfs_dev_stat_read_and_reset(dev, i);
7277 			else
7278 				btrfs_dev_stat_reset(dev, i);
7279 		}
7280 	} else {
7281 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7282 			if (stats->nr_items > i)
7283 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7284 	}
7285 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7286 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7287 	return 0;
7288 }
7289 
7290 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7291 {
7292 	struct buffer_head *bh;
7293 	struct btrfs_super_block *disk_super;
7294 	int copy_num;
7295 
7296 	if (!bdev)
7297 		return;
7298 
7299 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7300 		copy_num++) {
7301 
7302 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7303 			continue;
7304 
7305 		disk_super = (struct btrfs_super_block *)bh->b_data;
7306 
7307 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7308 		set_buffer_dirty(bh);
7309 		sync_dirty_buffer(bh);
7310 		brelse(bh);
7311 	}
7312 
7313 	/* Notify udev that device has changed */
7314 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7315 
7316 	/* Update ctime/mtime for device path for libblkid */
7317 	update_dev_time(device_path);
7318 }
7319 
7320 /*
7321  * Update the size of all devices, which is used for writing out the
7322  * super blocks.
7323  */
7324 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7325 {
7326 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7327 	struct btrfs_device *curr, *next;
7328 
7329 	if (list_empty(&fs_devices->resized_devices))
7330 		return;
7331 
7332 	mutex_lock(&fs_devices->device_list_mutex);
7333 	mutex_lock(&fs_info->chunk_mutex);
7334 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7335 				 resized_list) {
7336 		list_del_init(&curr->resized_list);
7337 		curr->commit_total_bytes = curr->disk_total_bytes;
7338 	}
7339 	mutex_unlock(&fs_info->chunk_mutex);
7340 	mutex_unlock(&fs_devices->device_list_mutex);
7341 }
7342 
7343 /* Must be invoked during the transaction commit */
7344 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7345 {
7346 	struct btrfs_fs_info *fs_info = trans->fs_info;
7347 	struct extent_map *em;
7348 	struct map_lookup *map;
7349 	struct btrfs_device *dev;
7350 	int i;
7351 
7352 	if (list_empty(&trans->pending_chunks))
7353 		return;
7354 
7355 	/* In order to kick the device replace finish process */
7356 	mutex_lock(&fs_info->chunk_mutex);
7357 	list_for_each_entry(em, &trans->pending_chunks, list) {
7358 		map = em->map_lookup;
7359 
7360 		for (i = 0; i < map->num_stripes; i++) {
7361 			dev = map->stripes[i].dev;
7362 			dev->commit_bytes_used = dev->bytes_used;
7363 		}
7364 	}
7365 	mutex_unlock(&fs_info->chunk_mutex);
7366 }
7367 
7368 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7369 {
7370 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7371 	while (fs_devices) {
7372 		fs_devices->fs_info = fs_info;
7373 		fs_devices = fs_devices->seed;
7374 	}
7375 }
7376 
7377 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7378 {
7379 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7380 	while (fs_devices) {
7381 		fs_devices->fs_info = NULL;
7382 		fs_devices = fs_devices->seed;
7383 	}
7384 }
7385