1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 46 [BTRFS_RAID_RAID10] = { 47 .sub_stripes = 2, 48 .dev_stripes = 1, 49 .devs_max = 0, /* 0 == as many as possible */ 50 .devs_min = 4, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 }, 64 [BTRFS_RAID_DUP] = { 65 .sub_stripes = 1, 66 .dev_stripes = 2, 67 .devs_max = 1, 68 .devs_min = 1, 69 .tolerated_failures = 0, 70 .devs_increment = 1, 71 .ncopies = 2, 72 }, 73 [BTRFS_RAID_RAID0] = { 74 .sub_stripes = 1, 75 .dev_stripes = 1, 76 .devs_max = 0, 77 .devs_min = 2, 78 .tolerated_failures = 0, 79 .devs_increment = 1, 80 .ncopies = 1, 81 }, 82 [BTRFS_RAID_SINGLE] = { 83 .sub_stripes = 1, 84 .dev_stripes = 1, 85 .devs_max = 1, 86 .devs_min = 1, 87 .tolerated_failures = 0, 88 .devs_increment = 1, 89 .ncopies = 1, 90 }, 91 [BTRFS_RAID_RAID5] = { 92 .sub_stripes = 1, 93 .dev_stripes = 1, 94 .devs_max = 0, 95 .devs_min = 2, 96 .tolerated_failures = 1, 97 .devs_increment = 1, 98 .ncopies = 2, 99 }, 100 [BTRFS_RAID_RAID6] = { 101 .sub_stripes = 1, 102 .dev_stripes = 1, 103 .devs_max = 0, 104 .devs_min = 3, 105 .tolerated_failures = 2, 106 .devs_increment = 1, 107 .ncopies = 3, 108 }, 109 }; 110 111 const u64 const btrfs_raid_group[BTRFS_NR_RAID_TYPES] = { 112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10, 113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1, 114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP, 115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0, 116 [BTRFS_RAID_SINGLE] = 0, 117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5, 118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6, 119 }; 120 121 static int init_first_rw_device(struct btrfs_trans_handle *trans, 122 struct btrfs_root *root, 123 struct btrfs_device *device); 124 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 125 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 127 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 128 129 DEFINE_MUTEX(uuid_mutex); 130 static LIST_HEAD(fs_uuids); 131 struct list_head *btrfs_get_fs_uuids(void) 132 { 133 return &fs_uuids; 134 } 135 136 static struct btrfs_fs_devices *__alloc_fs_devices(void) 137 { 138 struct btrfs_fs_devices *fs_devs; 139 140 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 141 if (!fs_devs) 142 return ERR_PTR(-ENOMEM); 143 144 mutex_init(&fs_devs->device_list_mutex); 145 146 INIT_LIST_HEAD(&fs_devs->devices); 147 INIT_LIST_HEAD(&fs_devs->resized_devices); 148 INIT_LIST_HEAD(&fs_devs->alloc_list); 149 INIT_LIST_HEAD(&fs_devs->list); 150 151 return fs_devs; 152 } 153 154 /** 155 * alloc_fs_devices - allocate struct btrfs_fs_devices 156 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 157 * generated. 158 * 159 * Return: a pointer to a new &struct btrfs_fs_devices on success; 160 * ERR_PTR() on error. Returned struct is not linked onto any lists and 161 * can be destroyed with kfree() right away. 162 */ 163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 164 { 165 struct btrfs_fs_devices *fs_devs; 166 167 fs_devs = __alloc_fs_devices(); 168 if (IS_ERR(fs_devs)) 169 return fs_devs; 170 171 if (fsid) 172 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 173 else 174 generate_random_uuid(fs_devs->fsid); 175 176 return fs_devs; 177 } 178 179 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 180 { 181 struct btrfs_device *device; 182 WARN_ON(fs_devices->opened); 183 while (!list_empty(&fs_devices->devices)) { 184 device = list_entry(fs_devices->devices.next, 185 struct btrfs_device, dev_list); 186 list_del(&device->dev_list); 187 rcu_string_free(device->name); 188 kfree(device); 189 } 190 kfree(fs_devices); 191 } 192 193 static void btrfs_kobject_uevent(struct block_device *bdev, 194 enum kobject_action action) 195 { 196 int ret; 197 198 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 199 if (ret) 200 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 201 action, 202 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 203 &disk_to_dev(bdev->bd_disk)->kobj); 204 } 205 206 void btrfs_cleanup_fs_uuids(void) 207 { 208 struct btrfs_fs_devices *fs_devices; 209 210 while (!list_empty(&fs_uuids)) { 211 fs_devices = list_entry(fs_uuids.next, 212 struct btrfs_fs_devices, list); 213 list_del(&fs_devices->list); 214 free_fs_devices(fs_devices); 215 } 216 } 217 218 static struct btrfs_device *__alloc_device(void) 219 { 220 struct btrfs_device *dev; 221 222 dev = kzalloc(sizeof(*dev), GFP_NOFS); 223 if (!dev) 224 return ERR_PTR(-ENOMEM); 225 226 INIT_LIST_HEAD(&dev->dev_list); 227 INIT_LIST_HEAD(&dev->dev_alloc_list); 228 INIT_LIST_HEAD(&dev->resized_list); 229 230 spin_lock_init(&dev->io_lock); 231 232 spin_lock_init(&dev->reada_lock); 233 atomic_set(&dev->reada_in_flight, 0); 234 atomic_set(&dev->dev_stats_ccnt, 0); 235 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 236 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 237 238 return dev; 239 } 240 241 static noinline struct btrfs_device *__find_device(struct list_head *head, 242 u64 devid, u8 *uuid) 243 { 244 struct btrfs_device *dev; 245 246 list_for_each_entry(dev, head, dev_list) { 247 if (dev->devid == devid && 248 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 249 return dev; 250 } 251 } 252 return NULL; 253 } 254 255 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 256 { 257 struct btrfs_fs_devices *fs_devices; 258 259 list_for_each_entry(fs_devices, &fs_uuids, list) { 260 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 261 return fs_devices; 262 } 263 return NULL; 264 } 265 266 static int 267 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 268 int flush, struct block_device **bdev, 269 struct buffer_head **bh) 270 { 271 int ret; 272 273 *bdev = blkdev_get_by_path(device_path, flags, holder); 274 275 if (IS_ERR(*bdev)) { 276 ret = PTR_ERR(*bdev); 277 goto error; 278 } 279 280 if (flush) 281 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 282 ret = set_blocksize(*bdev, 4096); 283 if (ret) { 284 blkdev_put(*bdev, flags); 285 goto error; 286 } 287 invalidate_bdev(*bdev); 288 *bh = btrfs_read_dev_super(*bdev); 289 if (IS_ERR(*bh)) { 290 ret = PTR_ERR(*bh); 291 blkdev_put(*bdev, flags); 292 goto error; 293 } 294 295 return 0; 296 297 error: 298 *bdev = NULL; 299 *bh = NULL; 300 return ret; 301 } 302 303 static void requeue_list(struct btrfs_pending_bios *pending_bios, 304 struct bio *head, struct bio *tail) 305 { 306 307 struct bio *old_head; 308 309 old_head = pending_bios->head; 310 pending_bios->head = head; 311 if (pending_bios->tail) 312 tail->bi_next = old_head; 313 else 314 pending_bios->tail = tail; 315 } 316 317 /* 318 * we try to collect pending bios for a device so we don't get a large 319 * number of procs sending bios down to the same device. This greatly 320 * improves the schedulers ability to collect and merge the bios. 321 * 322 * But, it also turns into a long list of bios to process and that is sure 323 * to eventually make the worker thread block. The solution here is to 324 * make some progress and then put this work struct back at the end of 325 * the list if the block device is congested. This way, multiple devices 326 * can make progress from a single worker thread. 327 */ 328 static noinline void run_scheduled_bios(struct btrfs_device *device) 329 { 330 struct bio *pending; 331 struct backing_dev_info *bdi; 332 struct btrfs_fs_info *fs_info; 333 struct btrfs_pending_bios *pending_bios; 334 struct bio *tail; 335 struct bio *cur; 336 int again = 0; 337 unsigned long num_run; 338 unsigned long batch_run = 0; 339 unsigned long limit; 340 unsigned long last_waited = 0; 341 int force_reg = 0; 342 int sync_pending = 0; 343 struct blk_plug plug; 344 345 /* 346 * this function runs all the bios we've collected for 347 * a particular device. We don't want to wander off to 348 * another device without first sending all of these down. 349 * So, setup a plug here and finish it off before we return 350 */ 351 blk_start_plug(&plug); 352 353 bdi = blk_get_backing_dev_info(device->bdev); 354 fs_info = device->dev_root->fs_info; 355 limit = btrfs_async_submit_limit(fs_info); 356 limit = limit * 2 / 3; 357 358 loop: 359 spin_lock(&device->io_lock); 360 361 loop_lock: 362 num_run = 0; 363 364 /* take all the bios off the list at once and process them 365 * later on (without the lock held). But, remember the 366 * tail and other pointers so the bios can be properly reinserted 367 * into the list if we hit congestion 368 */ 369 if (!force_reg && device->pending_sync_bios.head) { 370 pending_bios = &device->pending_sync_bios; 371 force_reg = 1; 372 } else { 373 pending_bios = &device->pending_bios; 374 force_reg = 0; 375 } 376 377 pending = pending_bios->head; 378 tail = pending_bios->tail; 379 WARN_ON(pending && !tail); 380 381 /* 382 * if pending was null this time around, no bios need processing 383 * at all and we can stop. Otherwise it'll loop back up again 384 * and do an additional check so no bios are missed. 385 * 386 * device->running_pending is used to synchronize with the 387 * schedule_bio code. 388 */ 389 if (device->pending_sync_bios.head == NULL && 390 device->pending_bios.head == NULL) { 391 again = 0; 392 device->running_pending = 0; 393 } else { 394 again = 1; 395 device->running_pending = 1; 396 } 397 398 pending_bios->head = NULL; 399 pending_bios->tail = NULL; 400 401 spin_unlock(&device->io_lock); 402 403 while (pending) { 404 405 rmb(); 406 /* we want to work on both lists, but do more bios on the 407 * sync list than the regular list 408 */ 409 if ((num_run > 32 && 410 pending_bios != &device->pending_sync_bios && 411 device->pending_sync_bios.head) || 412 (num_run > 64 && pending_bios == &device->pending_sync_bios && 413 device->pending_bios.head)) { 414 spin_lock(&device->io_lock); 415 requeue_list(pending_bios, pending, tail); 416 goto loop_lock; 417 } 418 419 cur = pending; 420 pending = pending->bi_next; 421 cur->bi_next = NULL; 422 423 /* 424 * atomic_dec_return implies a barrier for waitqueue_active 425 */ 426 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 427 waitqueue_active(&fs_info->async_submit_wait)) 428 wake_up(&fs_info->async_submit_wait); 429 430 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 431 432 /* 433 * if we're doing the sync list, record that our 434 * plug has some sync requests on it 435 * 436 * If we're doing the regular list and there are 437 * sync requests sitting around, unplug before 438 * we add more 439 */ 440 if (pending_bios == &device->pending_sync_bios) { 441 sync_pending = 1; 442 } else if (sync_pending) { 443 blk_finish_plug(&plug); 444 blk_start_plug(&plug); 445 sync_pending = 0; 446 } 447 448 btrfsic_submit_bio(cur->bi_rw, cur); 449 num_run++; 450 batch_run++; 451 452 cond_resched(); 453 454 /* 455 * we made progress, there is more work to do and the bdi 456 * is now congested. Back off and let other work structs 457 * run instead 458 */ 459 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 460 fs_info->fs_devices->open_devices > 1) { 461 struct io_context *ioc; 462 463 ioc = current->io_context; 464 465 /* 466 * the main goal here is that we don't want to 467 * block if we're going to be able to submit 468 * more requests without blocking. 469 * 470 * This code does two great things, it pokes into 471 * the elevator code from a filesystem _and_ 472 * it makes assumptions about how batching works. 473 */ 474 if (ioc && ioc->nr_batch_requests > 0 && 475 time_before(jiffies, ioc->last_waited + HZ/50UL) && 476 (last_waited == 0 || 477 ioc->last_waited == last_waited)) { 478 /* 479 * we want to go through our batch of 480 * requests and stop. So, we copy out 481 * the ioc->last_waited time and test 482 * against it before looping 483 */ 484 last_waited = ioc->last_waited; 485 cond_resched(); 486 continue; 487 } 488 spin_lock(&device->io_lock); 489 requeue_list(pending_bios, pending, tail); 490 device->running_pending = 1; 491 492 spin_unlock(&device->io_lock); 493 btrfs_queue_work(fs_info->submit_workers, 494 &device->work); 495 goto done; 496 } 497 /* unplug every 64 requests just for good measure */ 498 if (batch_run % 64 == 0) { 499 blk_finish_plug(&plug); 500 blk_start_plug(&plug); 501 sync_pending = 0; 502 } 503 } 504 505 cond_resched(); 506 if (again) 507 goto loop; 508 509 spin_lock(&device->io_lock); 510 if (device->pending_bios.head || device->pending_sync_bios.head) 511 goto loop_lock; 512 spin_unlock(&device->io_lock); 513 514 done: 515 blk_finish_plug(&plug); 516 } 517 518 static void pending_bios_fn(struct btrfs_work *work) 519 { 520 struct btrfs_device *device; 521 522 device = container_of(work, struct btrfs_device, work); 523 run_scheduled_bios(device); 524 } 525 526 527 void btrfs_free_stale_device(struct btrfs_device *cur_dev) 528 { 529 struct btrfs_fs_devices *fs_devs; 530 struct btrfs_device *dev; 531 532 if (!cur_dev->name) 533 return; 534 535 list_for_each_entry(fs_devs, &fs_uuids, list) { 536 int del = 1; 537 538 if (fs_devs->opened) 539 continue; 540 if (fs_devs->seeding) 541 continue; 542 543 list_for_each_entry(dev, &fs_devs->devices, dev_list) { 544 545 if (dev == cur_dev) 546 continue; 547 if (!dev->name) 548 continue; 549 550 /* 551 * Todo: This won't be enough. What if the same device 552 * comes back (with new uuid and) with its mapper path? 553 * But for now, this does help as mostly an admin will 554 * either use mapper or non mapper path throughout. 555 */ 556 rcu_read_lock(); 557 del = strcmp(rcu_str_deref(dev->name), 558 rcu_str_deref(cur_dev->name)); 559 rcu_read_unlock(); 560 if (!del) 561 break; 562 } 563 564 if (!del) { 565 /* delete the stale device */ 566 if (fs_devs->num_devices == 1) { 567 btrfs_sysfs_remove_fsid(fs_devs); 568 list_del(&fs_devs->list); 569 free_fs_devices(fs_devs); 570 } else { 571 fs_devs->num_devices--; 572 list_del(&dev->dev_list); 573 rcu_string_free(dev->name); 574 kfree(dev); 575 } 576 break; 577 } 578 } 579 } 580 581 /* 582 * Add new device to list of registered devices 583 * 584 * Returns: 585 * 1 - first time device is seen 586 * 0 - device already known 587 * < 0 - error 588 */ 589 static noinline int device_list_add(const char *path, 590 struct btrfs_super_block *disk_super, 591 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 592 { 593 struct btrfs_device *device; 594 struct btrfs_fs_devices *fs_devices; 595 struct rcu_string *name; 596 int ret = 0; 597 u64 found_transid = btrfs_super_generation(disk_super); 598 599 fs_devices = find_fsid(disk_super->fsid); 600 if (!fs_devices) { 601 fs_devices = alloc_fs_devices(disk_super->fsid); 602 if (IS_ERR(fs_devices)) 603 return PTR_ERR(fs_devices); 604 605 list_add(&fs_devices->list, &fs_uuids); 606 607 device = NULL; 608 } else { 609 device = __find_device(&fs_devices->devices, devid, 610 disk_super->dev_item.uuid); 611 } 612 613 if (!device) { 614 if (fs_devices->opened) 615 return -EBUSY; 616 617 device = btrfs_alloc_device(NULL, &devid, 618 disk_super->dev_item.uuid); 619 if (IS_ERR(device)) { 620 /* we can safely leave the fs_devices entry around */ 621 return PTR_ERR(device); 622 } 623 624 name = rcu_string_strdup(path, GFP_NOFS); 625 if (!name) { 626 kfree(device); 627 return -ENOMEM; 628 } 629 rcu_assign_pointer(device->name, name); 630 631 mutex_lock(&fs_devices->device_list_mutex); 632 list_add_rcu(&device->dev_list, &fs_devices->devices); 633 fs_devices->num_devices++; 634 mutex_unlock(&fs_devices->device_list_mutex); 635 636 ret = 1; 637 device->fs_devices = fs_devices; 638 } else if (!device->name || strcmp(device->name->str, path)) { 639 /* 640 * When FS is already mounted. 641 * 1. If you are here and if the device->name is NULL that 642 * means this device was missing at time of FS mount. 643 * 2. If you are here and if the device->name is different 644 * from 'path' that means either 645 * a. The same device disappeared and reappeared with 646 * different name. or 647 * b. The missing-disk-which-was-replaced, has 648 * reappeared now. 649 * 650 * We must allow 1 and 2a above. But 2b would be a spurious 651 * and unintentional. 652 * 653 * Further in case of 1 and 2a above, the disk at 'path' 654 * would have missed some transaction when it was away and 655 * in case of 2a the stale bdev has to be updated as well. 656 * 2b must not be allowed at all time. 657 */ 658 659 /* 660 * For now, we do allow update to btrfs_fs_device through the 661 * btrfs dev scan cli after FS has been mounted. We're still 662 * tracking a problem where systems fail mount by subvolume id 663 * when we reject replacement on a mounted FS. 664 */ 665 if (!fs_devices->opened && found_transid < device->generation) { 666 /* 667 * That is if the FS is _not_ mounted and if you 668 * are here, that means there is more than one 669 * disk with same uuid and devid.We keep the one 670 * with larger generation number or the last-in if 671 * generation are equal. 672 */ 673 return -EEXIST; 674 } 675 676 name = rcu_string_strdup(path, GFP_NOFS); 677 if (!name) 678 return -ENOMEM; 679 rcu_string_free(device->name); 680 rcu_assign_pointer(device->name, name); 681 if (device->missing) { 682 fs_devices->missing_devices--; 683 device->missing = 0; 684 } 685 } 686 687 /* 688 * Unmount does not free the btrfs_device struct but would zero 689 * generation along with most of the other members. So just update 690 * it back. We need it to pick the disk with largest generation 691 * (as above). 692 */ 693 if (!fs_devices->opened) 694 device->generation = found_transid; 695 696 /* 697 * if there is new btrfs on an already registered device, 698 * then remove the stale device entry. 699 */ 700 btrfs_free_stale_device(device); 701 702 *fs_devices_ret = fs_devices; 703 704 return ret; 705 } 706 707 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 708 { 709 struct btrfs_fs_devices *fs_devices; 710 struct btrfs_device *device; 711 struct btrfs_device *orig_dev; 712 713 fs_devices = alloc_fs_devices(orig->fsid); 714 if (IS_ERR(fs_devices)) 715 return fs_devices; 716 717 mutex_lock(&orig->device_list_mutex); 718 fs_devices->total_devices = orig->total_devices; 719 720 /* We have held the volume lock, it is safe to get the devices. */ 721 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 722 struct rcu_string *name; 723 724 device = btrfs_alloc_device(NULL, &orig_dev->devid, 725 orig_dev->uuid); 726 if (IS_ERR(device)) 727 goto error; 728 729 /* 730 * This is ok to do without rcu read locked because we hold the 731 * uuid mutex so nothing we touch in here is going to disappear. 732 */ 733 if (orig_dev->name) { 734 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 735 if (!name) { 736 kfree(device); 737 goto error; 738 } 739 rcu_assign_pointer(device->name, name); 740 } 741 742 list_add(&device->dev_list, &fs_devices->devices); 743 device->fs_devices = fs_devices; 744 fs_devices->num_devices++; 745 } 746 mutex_unlock(&orig->device_list_mutex); 747 return fs_devices; 748 error: 749 mutex_unlock(&orig->device_list_mutex); 750 free_fs_devices(fs_devices); 751 return ERR_PTR(-ENOMEM); 752 } 753 754 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step) 755 { 756 struct btrfs_device *device, *next; 757 struct btrfs_device *latest_dev = NULL; 758 759 mutex_lock(&uuid_mutex); 760 again: 761 /* This is the initialized path, it is safe to release the devices. */ 762 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 763 if (device->in_fs_metadata) { 764 if (!device->is_tgtdev_for_dev_replace && 765 (!latest_dev || 766 device->generation > latest_dev->generation)) { 767 latest_dev = device; 768 } 769 continue; 770 } 771 772 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 773 /* 774 * In the first step, keep the device which has 775 * the correct fsid and the devid that is used 776 * for the dev_replace procedure. 777 * In the second step, the dev_replace state is 778 * read from the device tree and it is known 779 * whether the procedure is really active or 780 * not, which means whether this device is 781 * used or whether it should be removed. 782 */ 783 if (step == 0 || device->is_tgtdev_for_dev_replace) { 784 continue; 785 } 786 } 787 if (device->bdev) { 788 blkdev_put(device->bdev, device->mode); 789 device->bdev = NULL; 790 fs_devices->open_devices--; 791 } 792 if (device->writeable) { 793 list_del_init(&device->dev_alloc_list); 794 device->writeable = 0; 795 if (!device->is_tgtdev_for_dev_replace) 796 fs_devices->rw_devices--; 797 } 798 list_del_init(&device->dev_list); 799 fs_devices->num_devices--; 800 rcu_string_free(device->name); 801 kfree(device); 802 } 803 804 if (fs_devices->seed) { 805 fs_devices = fs_devices->seed; 806 goto again; 807 } 808 809 fs_devices->latest_bdev = latest_dev->bdev; 810 811 mutex_unlock(&uuid_mutex); 812 } 813 814 static void __free_device(struct work_struct *work) 815 { 816 struct btrfs_device *device; 817 818 device = container_of(work, struct btrfs_device, rcu_work); 819 820 if (device->bdev) 821 blkdev_put(device->bdev, device->mode); 822 823 rcu_string_free(device->name); 824 kfree(device); 825 } 826 827 static void free_device(struct rcu_head *head) 828 { 829 struct btrfs_device *device; 830 831 device = container_of(head, struct btrfs_device, rcu); 832 833 INIT_WORK(&device->rcu_work, __free_device); 834 schedule_work(&device->rcu_work); 835 } 836 837 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 838 { 839 struct btrfs_device *device, *tmp; 840 841 if (--fs_devices->opened > 0) 842 return 0; 843 844 mutex_lock(&fs_devices->device_list_mutex); 845 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 846 btrfs_close_one_device(device); 847 } 848 mutex_unlock(&fs_devices->device_list_mutex); 849 850 WARN_ON(fs_devices->open_devices); 851 WARN_ON(fs_devices->rw_devices); 852 fs_devices->opened = 0; 853 fs_devices->seeding = 0; 854 855 return 0; 856 } 857 858 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 859 { 860 struct btrfs_fs_devices *seed_devices = NULL; 861 int ret; 862 863 mutex_lock(&uuid_mutex); 864 ret = __btrfs_close_devices(fs_devices); 865 if (!fs_devices->opened) { 866 seed_devices = fs_devices->seed; 867 fs_devices->seed = NULL; 868 } 869 mutex_unlock(&uuid_mutex); 870 871 while (seed_devices) { 872 fs_devices = seed_devices; 873 seed_devices = fs_devices->seed; 874 __btrfs_close_devices(fs_devices); 875 free_fs_devices(fs_devices); 876 } 877 /* 878 * Wait for rcu kworkers under __btrfs_close_devices 879 * to finish all blkdev_puts so device is really 880 * free when umount is done. 881 */ 882 rcu_barrier(); 883 return ret; 884 } 885 886 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 887 fmode_t flags, void *holder) 888 { 889 struct request_queue *q; 890 struct block_device *bdev; 891 struct list_head *head = &fs_devices->devices; 892 struct btrfs_device *device; 893 struct btrfs_device *latest_dev = NULL; 894 struct buffer_head *bh; 895 struct btrfs_super_block *disk_super; 896 u64 devid; 897 int seeding = 1; 898 int ret = 0; 899 900 flags |= FMODE_EXCL; 901 902 list_for_each_entry(device, head, dev_list) { 903 if (device->bdev) 904 continue; 905 if (!device->name) 906 continue; 907 908 /* Just open everything we can; ignore failures here */ 909 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 910 &bdev, &bh)) 911 continue; 912 913 disk_super = (struct btrfs_super_block *)bh->b_data; 914 devid = btrfs_stack_device_id(&disk_super->dev_item); 915 if (devid != device->devid) 916 goto error_brelse; 917 918 if (memcmp(device->uuid, disk_super->dev_item.uuid, 919 BTRFS_UUID_SIZE)) 920 goto error_brelse; 921 922 device->generation = btrfs_super_generation(disk_super); 923 if (!latest_dev || 924 device->generation > latest_dev->generation) 925 latest_dev = device; 926 927 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 928 device->writeable = 0; 929 } else { 930 device->writeable = !bdev_read_only(bdev); 931 seeding = 0; 932 } 933 934 q = bdev_get_queue(bdev); 935 if (blk_queue_discard(q)) 936 device->can_discard = 1; 937 938 device->bdev = bdev; 939 device->in_fs_metadata = 0; 940 device->mode = flags; 941 942 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 943 fs_devices->rotating = 1; 944 945 fs_devices->open_devices++; 946 if (device->writeable && 947 device->devid != BTRFS_DEV_REPLACE_DEVID) { 948 fs_devices->rw_devices++; 949 list_add(&device->dev_alloc_list, 950 &fs_devices->alloc_list); 951 } 952 brelse(bh); 953 continue; 954 955 error_brelse: 956 brelse(bh); 957 blkdev_put(bdev, flags); 958 continue; 959 } 960 if (fs_devices->open_devices == 0) { 961 ret = -EINVAL; 962 goto out; 963 } 964 fs_devices->seeding = seeding; 965 fs_devices->opened = 1; 966 fs_devices->latest_bdev = latest_dev->bdev; 967 fs_devices->total_rw_bytes = 0; 968 out: 969 return ret; 970 } 971 972 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 973 fmode_t flags, void *holder) 974 { 975 int ret; 976 977 mutex_lock(&uuid_mutex); 978 if (fs_devices->opened) { 979 fs_devices->opened++; 980 ret = 0; 981 } else { 982 ret = __btrfs_open_devices(fs_devices, flags, holder); 983 } 984 mutex_unlock(&uuid_mutex); 985 return ret; 986 } 987 988 /* 989 * Look for a btrfs signature on a device. This may be called out of the mount path 990 * and we are not allowed to call set_blocksize during the scan. The superblock 991 * is read via pagecache 992 */ 993 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 994 struct btrfs_fs_devices **fs_devices_ret) 995 { 996 struct btrfs_super_block *disk_super; 997 struct block_device *bdev; 998 struct page *page; 999 void *p; 1000 int ret = -EINVAL; 1001 u64 devid; 1002 u64 transid; 1003 u64 total_devices; 1004 u64 bytenr; 1005 pgoff_t index; 1006 1007 /* 1008 * we would like to check all the supers, but that would make 1009 * a btrfs mount succeed after a mkfs from a different FS. 1010 * So, we need to add a special mount option to scan for 1011 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1012 */ 1013 bytenr = btrfs_sb_offset(0); 1014 flags |= FMODE_EXCL; 1015 mutex_lock(&uuid_mutex); 1016 1017 bdev = blkdev_get_by_path(path, flags, holder); 1018 1019 if (IS_ERR(bdev)) { 1020 ret = PTR_ERR(bdev); 1021 goto error; 1022 } 1023 1024 /* make sure our super fits in the device */ 1025 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 1026 goto error_bdev_put; 1027 1028 /* make sure our super fits in the page */ 1029 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 1030 goto error_bdev_put; 1031 1032 /* make sure our super doesn't straddle pages on disk */ 1033 index = bytenr >> PAGE_CACHE_SHIFT; 1034 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 1035 goto error_bdev_put; 1036 1037 /* pull in the page with our super */ 1038 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1039 index, GFP_NOFS); 1040 1041 if (IS_ERR_OR_NULL(page)) 1042 goto error_bdev_put; 1043 1044 p = kmap(page); 1045 1046 /* align our pointer to the offset of the super block */ 1047 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 1048 1049 if (btrfs_super_bytenr(disk_super) != bytenr || 1050 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 1051 goto error_unmap; 1052 1053 devid = btrfs_stack_device_id(&disk_super->dev_item); 1054 transid = btrfs_super_generation(disk_super); 1055 total_devices = btrfs_super_num_devices(disk_super); 1056 1057 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 1058 if (ret > 0) { 1059 if (disk_super->label[0]) { 1060 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 1061 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1062 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 1063 } else { 1064 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 1065 } 1066 1067 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 1068 ret = 0; 1069 } 1070 if (!ret && fs_devices_ret) 1071 (*fs_devices_ret)->total_devices = total_devices; 1072 1073 error_unmap: 1074 kunmap(page); 1075 page_cache_release(page); 1076 1077 error_bdev_put: 1078 blkdev_put(bdev, flags); 1079 error: 1080 mutex_unlock(&uuid_mutex); 1081 return ret; 1082 } 1083 1084 /* helper to account the used device space in the range */ 1085 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1086 u64 end, u64 *length) 1087 { 1088 struct btrfs_key key; 1089 struct btrfs_root *root = device->dev_root; 1090 struct btrfs_dev_extent *dev_extent; 1091 struct btrfs_path *path; 1092 u64 extent_end; 1093 int ret; 1094 int slot; 1095 struct extent_buffer *l; 1096 1097 *length = 0; 1098 1099 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1100 return 0; 1101 1102 path = btrfs_alloc_path(); 1103 if (!path) 1104 return -ENOMEM; 1105 path->reada = 2; 1106 1107 key.objectid = device->devid; 1108 key.offset = start; 1109 key.type = BTRFS_DEV_EXTENT_KEY; 1110 1111 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1112 if (ret < 0) 1113 goto out; 1114 if (ret > 0) { 1115 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1116 if (ret < 0) 1117 goto out; 1118 } 1119 1120 while (1) { 1121 l = path->nodes[0]; 1122 slot = path->slots[0]; 1123 if (slot >= btrfs_header_nritems(l)) { 1124 ret = btrfs_next_leaf(root, path); 1125 if (ret == 0) 1126 continue; 1127 if (ret < 0) 1128 goto out; 1129 1130 break; 1131 } 1132 btrfs_item_key_to_cpu(l, &key, slot); 1133 1134 if (key.objectid < device->devid) 1135 goto next; 1136 1137 if (key.objectid > device->devid) 1138 break; 1139 1140 if (key.type != BTRFS_DEV_EXTENT_KEY) 1141 goto next; 1142 1143 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1144 extent_end = key.offset + btrfs_dev_extent_length(l, 1145 dev_extent); 1146 if (key.offset <= start && extent_end > end) { 1147 *length = end - start + 1; 1148 break; 1149 } else if (key.offset <= start && extent_end > start) 1150 *length += extent_end - start; 1151 else if (key.offset > start && extent_end <= end) 1152 *length += extent_end - key.offset; 1153 else if (key.offset > start && key.offset <= end) { 1154 *length += end - key.offset + 1; 1155 break; 1156 } else if (key.offset > end) 1157 break; 1158 1159 next: 1160 path->slots[0]++; 1161 } 1162 ret = 0; 1163 out: 1164 btrfs_free_path(path); 1165 return ret; 1166 } 1167 1168 static int contains_pending_extent(struct btrfs_transaction *transaction, 1169 struct btrfs_device *device, 1170 u64 *start, u64 len) 1171 { 1172 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 1173 struct extent_map *em; 1174 struct list_head *search_list = &fs_info->pinned_chunks; 1175 int ret = 0; 1176 u64 physical_start = *start; 1177 1178 if (transaction) 1179 search_list = &transaction->pending_chunks; 1180 again: 1181 list_for_each_entry(em, search_list, list) { 1182 struct map_lookup *map; 1183 int i; 1184 1185 map = (struct map_lookup *)em->bdev; 1186 for (i = 0; i < map->num_stripes; i++) { 1187 u64 end; 1188 1189 if (map->stripes[i].dev != device) 1190 continue; 1191 if (map->stripes[i].physical >= physical_start + len || 1192 map->stripes[i].physical + em->orig_block_len <= 1193 physical_start) 1194 continue; 1195 /* 1196 * Make sure that while processing the pinned list we do 1197 * not override our *start with a lower value, because 1198 * we can have pinned chunks that fall within this 1199 * device hole and that have lower physical addresses 1200 * than the pending chunks we processed before. If we 1201 * do not take this special care we can end up getting 1202 * 2 pending chunks that start at the same physical 1203 * device offsets because the end offset of a pinned 1204 * chunk can be equal to the start offset of some 1205 * pending chunk. 1206 */ 1207 end = map->stripes[i].physical + em->orig_block_len; 1208 if (end > *start) { 1209 *start = end; 1210 ret = 1; 1211 } 1212 } 1213 } 1214 if (search_list != &fs_info->pinned_chunks) { 1215 search_list = &fs_info->pinned_chunks; 1216 goto again; 1217 } 1218 1219 return ret; 1220 } 1221 1222 1223 /* 1224 * find_free_dev_extent_start - find free space in the specified device 1225 * @device: the device which we search the free space in 1226 * @num_bytes: the size of the free space that we need 1227 * @search_start: the position from which to begin the search 1228 * @start: store the start of the free space. 1229 * @len: the size of the free space. that we find, or the size 1230 * of the max free space if we don't find suitable free space 1231 * 1232 * this uses a pretty simple search, the expectation is that it is 1233 * called very infrequently and that a given device has a small number 1234 * of extents 1235 * 1236 * @start is used to store the start of the free space if we find. But if we 1237 * don't find suitable free space, it will be used to store the start position 1238 * of the max free space. 1239 * 1240 * @len is used to store the size of the free space that we find. 1241 * But if we don't find suitable free space, it is used to store the size of 1242 * the max free space. 1243 */ 1244 int find_free_dev_extent_start(struct btrfs_transaction *transaction, 1245 struct btrfs_device *device, u64 num_bytes, 1246 u64 search_start, u64 *start, u64 *len) 1247 { 1248 struct btrfs_key key; 1249 struct btrfs_root *root = device->dev_root; 1250 struct btrfs_dev_extent *dev_extent; 1251 struct btrfs_path *path; 1252 u64 hole_size; 1253 u64 max_hole_start; 1254 u64 max_hole_size; 1255 u64 extent_end; 1256 u64 search_end = device->total_bytes; 1257 int ret; 1258 int slot; 1259 struct extent_buffer *l; 1260 1261 path = btrfs_alloc_path(); 1262 if (!path) 1263 return -ENOMEM; 1264 1265 max_hole_start = search_start; 1266 max_hole_size = 0; 1267 1268 again: 1269 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1270 ret = -ENOSPC; 1271 goto out; 1272 } 1273 1274 path->reada = 2; 1275 path->search_commit_root = 1; 1276 path->skip_locking = 1; 1277 1278 key.objectid = device->devid; 1279 key.offset = search_start; 1280 key.type = BTRFS_DEV_EXTENT_KEY; 1281 1282 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1283 if (ret < 0) 1284 goto out; 1285 if (ret > 0) { 1286 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1287 if (ret < 0) 1288 goto out; 1289 } 1290 1291 while (1) { 1292 l = path->nodes[0]; 1293 slot = path->slots[0]; 1294 if (slot >= btrfs_header_nritems(l)) { 1295 ret = btrfs_next_leaf(root, path); 1296 if (ret == 0) 1297 continue; 1298 if (ret < 0) 1299 goto out; 1300 1301 break; 1302 } 1303 btrfs_item_key_to_cpu(l, &key, slot); 1304 1305 if (key.objectid < device->devid) 1306 goto next; 1307 1308 if (key.objectid > device->devid) 1309 break; 1310 1311 if (key.type != BTRFS_DEV_EXTENT_KEY) 1312 goto next; 1313 1314 if (key.offset > search_start) { 1315 hole_size = key.offset - search_start; 1316 1317 /* 1318 * Have to check before we set max_hole_start, otherwise 1319 * we could end up sending back this offset anyway. 1320 */ 1321 if (contains_pending_extent(transaction, device, 1322 &search_start, 1323 hole_size)) { 1324 if (key.offset >= search_start) { 1325 hole_size = key.offset - search_start; 1326 } else { 1327 WARN_ON_ONCE(1); 1328 hole_size = 0; 1329 } 1330 } 1331 1332 if (hole_size > max_hole_size) { 1333 max_hole_start = search_start; 1334 max_hole_size = hole_size; 1335 } 1336 1337 /* 1338 * If this free space is greater than which we need, 1339 * it must be the max free space that we have found 1340 * until now, so max_hole_start must point to the start 1341 * of this free space and the length of this free space 1342 * is stored in max_hole_size. Thus, we return 1343 * max_hole_start and max_hole_size and go back to the 1344 * caller. 1345 */ 1346 if (hole_size >= num_bytes) { 1347 ret = 0; 1348 goto out; 1349 } 1350 } 1351 1352 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1353 extent_end = key.offset + btrfs_dev_extent_length(l, 1354 dev_extent); 1355 if (extent_end > search_start) 1356 search_start = extent_end; 1357 next: 1358 path->slots[0]++; 1359 cond_resched(); 1360 } 1361 1362 /* 1363 * At this point, search_start should be the end of 1364 * allocated dev extents, and when shrinking the device, 1365 * search_end may be smaller than search_start. 1366 */ 1367 if (search_end > search_start) { 1368 hole_size = search_end - search_start; 1369 1370 if (contains_pending_extent(transaction, device, &search_start, 1371 hole_size)) { 1372 btrfs_release_path(path); 1373 goto again; 1374 } 1375 1376 if (hole_size > max_hole_size) { 1377 max_hole_start = search_start; 1378 max_hole_size = hole_size; 1379 } 1380 } 1381 1382 /* See above. */ 1383 if (max_hole_size < num_bytes) 1384 ret = -ENOSPC; 1385 else 1386 ret = 0; 1387 1388 out: 1389 btrfs_free_path(path); 1390 *start = max_hole_start; 1391 if (len) 1392 *len = max_hole_size; 1393 return ret; 1394 } 1395 1396 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1397 struct btrfs_device *device, u64 num_bytes, 1398 u64 *start, u64 *len) 1399 { 1400 struct btrfs_root *root = device->dev_root; 1401 u64 search_start; 1402 1403 /* FIXME use last free of some kind */ 1404 1405 /* 1406 * we don't want to overwrite the superblock on the drive, 1407 * so we make sure to start at an offset of at least 1MB 1408 */ 1409 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1410 return find_free_dev_extent_start(trans->transaction, device, 1411 num_bytes, search_start, start, len); 1412 } 1413 1414 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1415 struct btrfs_device *device, 1416 u64 start, u64 *dev_extent_len) 1417 { 1418 int ret; 1419 struct btrfs_path *path; 1420 struct btrfs_root *root = device->dev_root; 1421 struct btrfs_key key; 1422 struct btrfs_key found_key; 1423 struct extent_buffer *leaf = NULL; 1424 struct btrfs_dev_extent *extent = NULL; 1425 1426 path = btrfs_alloc_path(); 1427 if (!path) 1428 return -ENOMEM; 1429 1430 key.objectid = device->devid; 1431 key.offset = start; 1432 key.type = BTRFS_DEV_EXTENT_KEY; 1433 again: 1434 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1435 if (ret > 0) { 1436 ret = btrfs_previous_item(root, path, key.objectid, 1437 BTRFS_DEV_EXTENT_KEY); 1438 if (ret) 1439 goto out; 1440 leaf = path->nodes[0]; 1441 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1442 extent = btrfs_item_ptr(leaf, path->slots[0], 1443 struct btrfs_dev_extent); 1444 BUG_ON(found_key.offset > start || found_key.offset + 1445 btrfs_dev_extent_length(leaf, extent) < start); 1446 key = found_key; 1447 btrfs_release_path(path); 1448 goto again; 1449 } else if (ret == 0) { 1450 leaf = path->nodes[0]; 1451 extent = btrfs_item_ptr(leaf, path->slots[0], 1452 struct btrfs_dev_extent); 1453 } else { 1454 btrfs_std_error(root->fs_info, ret, "Slot search failed"); 1455 goto out; 1456 } 1457 1458 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1459 1460 ret = btrfs_del_item(trans, root, path); 1461 if (ret) { 1462 btrfs_std_error(root->fs_info, ret, 1463 "Failed to remove dev extent item"); 1464 } else { 1465 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1466 } 1467 out: 1468 btrfs_free_path(path); 1469 return ret; 1470 } 1471 1472 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1473 struct btrfs_device *device, 1474 u64 chunk_tree, u64 chunk_objectid, 1475 u64 chunk_offset, u64 start, u64 num_bytes) 1476 { 1477 int ret; 1478 struct btrfs_path *path; 1479 struct btrfs_root *root = device->dev_root; 1480 struct btrfs_dev_extent *extent; 1481 struct extent_buffer *leaf; 1482 struct btrfs_key key; 1483 1484 WARN_ON(!device->in_fs_metadata); 1485 WARN_ON(device->is_tgtdev_for_dev_replace); 1486 path = btrfs_alloc_path(); 1487 if (!path) 1488 return -ENOMEM; 1489 1490 key.objectid = device->devid; 1491 key.offset = start; 1492 key.type = BTRFS_DEV_EXTENT_KEY; 1493 ret = btrfs_insert_empty_item(trans, root, path, &key, 1494 sizeof(*extent)); 1495 if (ret) 1496 goto out; 1497 1498 leaf = path->nodes[0]; 1499 extent = btrfs_item_ptr(leaf, path->slots[0], 1500 struct btrfs_dev_extent); 1501 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1502 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1503 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1504 1505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1506 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1507 1508 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1509 btrfs_mark_buffer_dirty(leaf); 1510 out: 1511 btrfs_free_path(path); 1512 return ret; 1513 } 1514 1515 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1516 { 1517 struct extent_map_tree *em_tree; 1518 struct extent_map *em; 1519 struct rb_node *n; 1520 u64 ret = 0; 1521 1522 em_tree = &fs_info->mapping_tree.map_tree; 1523 read_lock(&em_tree->lock); 1524 n = rb_last(&em_tree->map); 1525 if (n) { 1526 em = rb_entry(n, struct extent_map, rb_node); 1527 ret = em->start + em->len; 1528 } 1529 read_unlock(&em_tree->lock); 1530 1531 return ret; 1532 } 1533 1534 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1535 u64 *devid_ret) 1536 { 1537 int ret; 1538 struct btrfs_key key; 1539 struct btrfs_key found_key; 1540 struct btrfs_path *path; 1541 1542 path = btrfs_alloc_path(); 1543 if (!path) 1544 return -ENOMEM; 1545 1546 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1547 key.type = BTRFS_DEV_ITEM_KEY; 1548 key.offset = (u64)-1; 1549 1550 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1551 if (ret < 0) 1552 goto error; 1553 1554 BUG_ON(ret == 0); /* Corruption */ 1555 1556 ret = btrfs_previous_item(fs_info->chunk_root, path, 1557 BTRFS_DEV_ITEMS_OBJECTID, 1558 BTRFS_DEV_ITEM_KEY); 1559 if (ret) { 1560 *devid_ret = 1; 1561 } else { 1562 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1563 path->slots[0]); 1564 *devid_ret = found_key.offset + 1; 1565 } 1566 ret = 0; 1567 error: 1568 btrfs_free_path(path); 1569 return ret; 1570 } 1571 1572 /* 1573 * the device information is stored in the chunk root 1574 * the btrfs_device struct should be fully filled in 1575 */ 1576 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1577 struct btrfs_root *root, 1578 struct btrfs_device *device) 1579 { 1580 int ret; 1581 struct btrfs_path *path; 1582 struct btrfs_dev_item *dev_item; 1583 struct extent_buffer *leaf; 1584 struct btrfs_key key; 1585 unsigned long ptr; 1586 1587 root = root->fs_info->chunk_root; 1588 1589 path = btrfs_alloc_path(); 1590 if (!path) 1591 return -ENOMEM; 1592 1593 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1594 key.type = BTRFS_DEV_ITEM_KEY; 1595 key.offset = device->devid; 1596 1597 ret = btrfs_insert_empty_item(trans, root, path, &key, 1598 sizeof(*dev_item)); 1599 if (ret) 1600 goto out; 1601 1602 leaf = path->nodes[0]; 1603 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1604 1605 btrfs_set_device_id(leaf, dev_item, device->devid); 1606 btrfs_set_device_generation(leaf, dev_item, 0); 1607 btrfs_set_device_type(leaf, dev_item, device->type); 1608 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1609 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1610 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1611 btrfs_set_device_total_bytes(leaf, dev_item, 1612 btrfs_device_get_disk_total_bytes(device)); 1613 btrfs_set_device_bytes_used(leaf, dev_item, 1614 btrfs_device_get_bytes_used(device)); 1615 btrfs_set_device_group(leaf, dev_item, 0); 1616 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1617 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1618 btrfs_set_device_start_offset(leaf, dev_item, 0); 1619 1620 ptr = btrfs_device_uuid(dev_item); 1621 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1622 ptr = btrfs_device_fsid(dev_item); 1623 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1624 btrfs_mark_buffer_dirty(leaf); 1625 1626 ret = 0; 1627 out: 1628 btrfs_free_path(path); 1629 return ret; 1630 } 1631 1632 /* 1633 * Function to update ctime/mtime for a given device path. 1634 * Mainly used for ctime/mtime based probe like libblkid. 1635 */ 1636 static void update_dev_time(char *path_name) 1637 { 1638 struct file *filp; 1639 1640 filp = filp_open(path_name, O_RDWR, 0); 1641 if (IS_ERR(filp)) 1642 return; 1643 file_update_time(filp); 1644 filp_close(filp, NULL); 1645 return; 1646 } 1647 1648 static int btrfs_rm_dev_item(struct btrfs_root *root, 1649 struct btrfs_device *device) 1650 { 1651 int ret; 1652 struct btrfs_path *path; 1653 struct btrfs_key key; 1654 struct btrfs_trans_handle *trans; 1655 1656 root = root->fs_info->chunk_root; 1657 1658 path = btrfs_alloc_path(); 1659 if (!path) 1660 return -ENOMEM; 1661 1662 trans = btrfs_start_transaction(root, 0); 1663 if (IS_ERR(trans)) { 1664 btrfs_free_path(path); 1665 return PTR_ERR(trans); 1666 } 1667 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1668 key.type = BTRFS_DEV_ITEM_KEY; 1669 key.offset = device->devid; 1670 1671 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1672 if (ret < 0) 1673 goto out; 1674 1675 if (ret > 0) { 1676 ret = -ENOENT; 1677 goto out; 1678 } 1679 1680 ret = btrfs_del_item(trans, root, path); 1681 if (ret) 1682 goto out; 1683 out: 1684 btrfs_free_path(path); 1685 btrfs_commit_transaction(trans, root); 1686 return ret; 1687 } 1688 1689 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1690 { 1691 struct btrfs_device *device; 1692 struct btrfs_device *next_device; 1693 struct block_device *bdev; 1694 struct buffer_head *bh = NULL; 1695 struct btrfs_super_block *disk_super; 1696 struct btrfs_fs_devices *cur_devices; 1697 u64 all_avail; 1698 u64 devid; 1699 u64 num_devices; 1700 u8 *dev_uuid; 1701 unsigned seq; 1702 int ret = 0; 1703 bool clear_super = false; 1704 1705 mutex_lock(&uuid_mutex); 1706 1707 do { 1708 seq = read_seqbegin(&root->fs_info->profiles_lock); 1709 1710 all_avail = root->fs_info->avail_data_alloc_bits | 1711 root->fs_info->avail_system_alloc_bits | 1712 root->fs_info->avail_metadata_alloc_bits; 1713 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1714 1715 num_devices = root->fs_info->fs_devices->num_devices; 1716 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1717 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1718 WARN_ON(num_devices < 1); 1719 num_devices--; 1720 } 1721 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1722 1723 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1724 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1725 goto out; 1726 } 1727 1728 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1729 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1730 goto out; 1731 } 1732 1733 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1734 root->fs_info->fs_devices->rw_devices <= 2) { 1735 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1736 goto out; 1737 } 1738 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1739 root->fs_info->fs_devices->rw_devices <= 3) { 1740 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1741 goto out; 1742 } 1743 1744 if (strcmp(device_path, "missing") == 0) { 1745 struct list_head *devices; 1746 struct btrfs_device *tmp; 1747 1748 device = NULL; 1749 devices = &root->fs_info->fs_devices->devices; 1750 /* 1751 * It is safe to read the devices since the volume_mutex 1752 * is held. 1753 */ 1754 list_for_each_entry(tmp, devices, dev_list) { 1755 if (tmp->in_fs_metadata && 1756 !tmp->is_tgtdev_for_dev_replace && 1757 !tmp->bdev) { 1758 device = tmp; 1759 break; 1760 } 1761 } 1762 bdev = NULL; 1763 bh = NULL; 1764 disk_super = NULL; 1765 if (!device) { 1766 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1767 goto out; 1768 } 1769 } else { 1770 ret = btrfs_get_bdev_and_sb(device_path, 1771 FMODE_WRITE | FMODE_EXCL, 1772 root->fs_info->bdev_holder, 0, 1773 &bdev, &bh); 1774 if (ret) 1775 goto out; 1776 disk_super = (struct btrfs_super_block *)bh->b_data; 1777 devid = btrfs_stack_device_id(&disk_super->dev_item); 1778 dev_uuid = disk_super->dev_item.uuid; 1779 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1780 disk_super->fsid); 1781 if (!device) { 1782 ret = -ENOENT; 1783 goto error_brelse; 1784 } 1785 } 1786 1787 if (device->is_tgtdev_for_dev_replace) { 1788 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1789 goto error_brelse; 1790 } 1791 1792 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1793 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1794 goto error_brelse; 1795 } 1796 1797 if (device->writeable) { 1798 lock_chunks(root); 1799 list_del_init(&device->dev_alloc_list); 1800 device->fs_devices->rw_devices--; 1801 unlock_chunks(root); 1802 clear_super = true; 1803 } 1804 1805 mutex_unlock(&uuid_mutex); 1806 ret = btrfs_shrink_device(device, 0); 1807 mutex_lock(&uuid_mutex); 1808 if (ret) 1809 goto error_undo; 1810 1811 /* 1812 * TODO: the superblock still includes this device in its num_devices 1813 * counter although write_all_supers() is not locked out. This 1814 * could give a filesystem state which requires a degraded mount. 1815 */ 1816 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1817 if (ret) 1818 goto error_undo; 1819 1820 device->in_fs_metadata = 0; 1821 btrfs_scrub_cancel_dev(root->fs_info, device); 1822 1823 /* 1824 * the device list mutex makes sure that we don't change 1825 * the device list while someone else is writing out all 1826 * the device supers. Whoever is writing all supers, should 1827 * lock the device list mutex before getting the number of 1828 * devices in the super block (super_copy). Conversely, 1829 * whoever updates the number of devices in the super block 1830 * (super_copy) should hold the device list mutex. 1831 */ 1832 1833 cur_devices = device->fs_devices; 1834 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1835 list_del_rcu(&device->dev_list); 1836 1837 device->fs_devices->num_devices--; 1838 device->fs_devices->total_devices--; 1839 1840 if (device->missing) 1841 device->fs_devices->missing_devices--; 1842 1843 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1844 struct btrfs_device, dev_list); 1845 if (device->bdev == root->fs_info->sb->s_bdev) 1846 root->fs_info->sb->s_bdev = next_device->bdev; 1847 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1848 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1849 1850 if (device->bdev) { 1851 device->fs_devices->open_devices--; 1852 /* remove sysfs entry */ 1853 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device); 1854 } 1855 1856 call_rcu(&device->rcu, free_device); 1857 1858 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1859 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1860 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1861 1862 if (cur_devices->open_devices == 0) { 1863 struct btrfs_fs_devices *fs_devices; 1864 fs_devices = root->fs_info->fs_devices; 1865 while (fs_devices) { 1866 if (fs_devices->seed == cur_devices) { 1867 fs_devices->seed = cur_devices->seed; 1868 break; 1869 } 1870 fs_devices = fs_devices->seed; 1871 } 1872 cur_devices->seed = NULL; 1873 __btrfs_close_devices(cur_devices); 1874 free_fs_devices(cur_devices); 1875 } 1876 1877 root->fs_info->num_tolerated_disk_barrier_failures = 1878 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1879 1880 /* 1881 * at this point, the device is zero sized. We want to 1882 * remove it from the devices list and zero out the old super 1883 */ 1884 if (clear_super && disk_super) { 1885 u64 bytenr; 1886 int i; 1887 1888 /* make sure this device isn't detected as part of 1889 * the FS anymore 1890 */ 1891 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1892 set_buffer_dirty(bh); 1893 sync_dirty_buffer(bh); 1894 1895 /* clear the mirror copies of super block on the disk 1896 * being removed, 0th copy is been taken care above and 1897 * the below would take of the rest 1898 */ 1899 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1900 bytenr = btrfs_sb_offset(i); 1901 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 1902 i_size_read(bdev->bd_inode)) 1903 break; 1904 1905 brelse(bh); 1906 bh = __bread(bdev, bytenr / 4096, 1907 BTRFS_SUPER_INFO_SIZE); 1908 if (!bh) 1909 continue; 1910 1911 disk_super = (struct btrfs_super_block *)bh->b_data; 1912 1913 if (btrfs_super_bytenr(disk_super) != bytenr || 1914 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1915 continue; 1916 } 1917 memset(&disk_super->magic, 0, 1918 sizeof(disk_super->magic)); 1919 set_buffer_dirty(bh); 1920 sync_dirty_buffer(bh); 1921 } 1922 } 1923 1924 ret = 0; 1925 1926 if (bdev) { 1927 /* Notify udev that device has changed */ 1928 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1929 1930 /* Update ctime/mtime for device path for libblkid */ 1931 update_dev_time(device_path); 1932 } 1933 1934 error_brelse: 1935 brelse(bh); 1936 if (bdev) 1937 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1938 out: 1939 mutex_unlock(&uuid_mutex); 1940 return ret; 1941 error_undo: 1942 if (device->writeable) { 1943 lock_chunks(root); 1944 list_add(&device->dev_alloc_list, 1945 &root->fs_info->fs_devices->alloc_list); 1946 device->fs_devices->rw_devices++; 1947 unlock_chunks(root); 1948 } 1949 goto error_brelse; 1950 } 1951 1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info, 1953 struct btrfs_device *srcdev) 1954 { 1955 struct btrfs_fs_devices *fs_devices; 1956 1957 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1958 1959 /* 1960 * in case of fs with no seed, srcdev->fs_devices will point 1961 * to fs_devices of fs_info. However when the dev being replaced is 1962 * a seed dev it will point to the seed's local fs_devices. In short 1963 * srcdev will have its correct fs_devices in both the cases. 1964 */ 1965 fs_devices = srcdev->fs_devices; 1966 1967 list_del_rcu(&srcdev->dev_list); 1968 list_del_rcu(&srcdev->dev_alloc_list); 1969 fs_devices->num_devices--; 1970 if (srcdev->missing) 1971 fs_devices->missing_devices--; 1972 1973 if (srcdev->writeable) { 1974 fs_devices->rw_devices--; 1975 /* zero out the old super if it is writable */ 1976 btrfs_scratch_superblocks(srcdev->bdev, 1977 rcu_str_deref(srcdev->name)); 1978 } 1979 1980 if (srcdev->bdev) 1981 fs_devices->open_devices--; 1982 } 1983 1984 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, 1985 struct btrfs_device *srcdev) 1986 { 1987 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 1988 1989 call_rcu(&srcdev->rcu, free_device); 1990 1991 /* 1992 * unless fs_devices is seed fs, num_devices shouldn't go 1993 * zero 1994 */ 1995 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding); 1996 1997 /* if this is no devs we rather delete the fs_devices */ 1998 if (!fs_devices->num_devices) { 1999 struct btrfs_fs_devices *tmp_fs_devices; 2000 2001 tmp_fs_devices = fs_info->fs_devices; 2002 while (tmp_fs_devices) { 2003 if (tmp_fs_devices->seed == fs_devices) { 2004 tmp_fs_devices->seed = fs_devices->seed; 2005 break; 2006 } 2007 tmp_fs_devices = tmp_fs_devices->seed; 2008 } 2009 fs_devices->seed = NULL; 2010 __btrfs_close_devices(fs_devices); 2011 free_fs_devices(fs_devices); 2012 } 2013 } 2014 2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 2016 struct btrfs_device *tgtdev) 2017 { 2018 struct btrfs_device *next_device; 2019 2020 mutex_lock(&uuid_mutex); 2021 WARN_ON(!tgtdev); 2022 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2023 2024 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev); 2025 2026 if (tgtdev->bdev) { 2027 btrfs_scratch_superblocks(tgtdev->bdev, 2028 rcu_str_deref(tgtdev->name)); 2029 fs_info->fs_devices->open_devices--; 2030 } 2031 fs_info->fs_devices->num_devices--; 2032 2033 next_device = list_entry(fs_info->fs_devices->devices.next, 2034 struct btrfs_device, dev_list); 2035 if (tgtdev->bdev == fs_info->sb->s_bdev) 2036 fs_info->sb->s_bdev = next_device->bdev; 2037 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 2038 fs_info->fs_devices->latest_bdev = next_device->bdev; 2039 list_del_rcu(&tgtdev->dev_list); 2040 2041 call_rcu(&tgtdev->rcu, free_device); 2042 2043 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2044 mutex_unlock(&uuid_mutex); 2045 } 2046 2047 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 2048 struct btrfs_device **device) 2049 { 2050 int ret = 0; 2051 struct btrfs_super_block *disk_super; 2052 u64 devid; 2053 u8 *dev_uuid; 2054 struct block_device *bdev; 2055 struct buffer_head *bh; 2056 2057 *device = NULL; 2058 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2059 root->fs_info->bdev_holder, 0, &bdev, &bh); 2060 if (ret) 2061 return ret; 2062 disk_super = (struct btrfs_super_block *)bh->b_data; 2063 devid = btrfs_stack_device_id(&disk_super->dev_item); 2064 dev_uuid = disk_super->dev_item.uuid; 2065 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2066 disk_super->fsid); 2067 brelse(bh); 2068 if (!*device) 2069 ret = -ENOENT; 2070 blkdev_put(bdev, FMODE_READ); 2071 return ret; 2072 } 2073 2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 2075 char *device_path, 2076 struct btrfs_device **device) 2077 { 2078 *device = NULL; 2079 if (strcmp(device_path, "missing") == 0) { 2080 struct list_head *devices; 2081 struct btrfs_device *tmp; 2082 2083 devices = &root->fs_info->fs_devices->devices; 2084 /* 2085 * It is safe to read the devices since the volume_mutex 2086 * is held by the caller. 2087 */ 2088 list_for_each_entry(tmp, devices, dev_list) { 2089 if (tmp->in_fs_metadata && !tmp->bdev) { 2090 *device = tmp; 2091 break; 2092 } 2093 } 2094 2095 if (!*device) 2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2097 2098 return 0; 2099 } else { 2100 return btrfs_find_device_by_path(root, device_path, device); 2101 } 2102 } 2103 2104 /* 2105 * does all the dirty work required for changing file system's UUID. 2106 */ 2107 static int btrfs_prepare_sprout(struct btrfs_root *root) 2108 { 2109 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2110 struct btrfs_fs_devices *old_devices; 2111 struct btrfs_fs_devices *seed_devices; 2112 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 2113 struct btrfs_device *device; 2114 u64 super_flags; 2115 2116 BUG_ON(!mutex_is_locked(&uuid_mutex)); 2117 if (!fs_devices->seeding) 2118 return -EINVAL; 2119 2120 seed_devices = __alloc_fs_devices(); 2121 if (IS_ERR(seed_devices)) 2122 return PTR_ERR(seed_devices); 2123 2124 old_devices = clone_fs_devices(fs_devices); 2125 if (IS_ERR(old_devices)) { 2126 kfree(seed_devices); 2127 return PTR_ERR(old_devices); 2128 } 2129 2130 list_add(&old_devices->list, &fs_uuids); 2131 2132 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2133 seed_devices->opened = 1; 2134 INIT_LIST_HEAD(&seed_devices->devices); 2135 INIT_LIST_HEAD(&seed_devices->alloc_list); 2136 mutex_init(&seed_devices->device_list_mutex); 2137 2138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2139 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2140 synchronize_rcu); 2141 list_for_each_entry(device, &seed_devices->devices, dev_list) 2142 device->fs_devices = seed_devices; 2143 2144 lock_chunks(root); 2145 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2146 unlock_chunks(root); 2147 2148 fs_devices->seeding = 0; 2149 fs_devices->num_devices = 0; 2150 fs_devices->open_devices = 0; 2151 fs_devices->missing_devices = 0; 2152 fs_devices->rotating = 0; 2153 fs_devices->seed = seed_devices; 2154 2155 generate_random_uuid(fs_devices->fsid); 2156 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2157 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2158 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2159 2160 super_flags = btrfs_super_flags(disk_super) & 2161 ~BTRFS_SUPER_FLAG_SEEDING; 2162 btrfs_set_super_flags(disk_super, super_flags); 2163 2164 return 0; 2165 } 2166 2167 /* 2168 * strore the expected generation for seed devices in device items. 2169 */ 2170 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2171 struct btrfs_root *root) 2172 { 2173 struct btrfs_path *path; 2174 struct extent_buffer *leaf; 2175 struct btrfs_dev_item *dev_item; 2176 struct btrfs_device *device; 2177 struct btrfs_key key; 2178 u8 fs_uuid[BTRFS_UUID_SIZE]; 2179 u8 dev_uuid[BTRFS_UUID_SIZE]; 2180 u64 devid; 2181 int ret; 2182 2183 path = btrfs_alloc_path(); 2184 if (!path) 2185 return -ENOMEM; 2186 2187 root = root->fs_info->chunk_root; 2188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2189 key.offset = 0; 2190 key.type = BTRFS_DEV_ITEM_KEY; 2191 2192 while (1) { 2193 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2194 if (ret < 0) 2195 goto error; 2196 2197 leaf = path->nodes[0]; 2198 next_slot: 2199 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2200 ret = btrfs_next_leaf(root, path); 2201 if (ret > 0) 2202 break; 2203 if (ret < 0) 2204 goto error; 2205 leaf = path->nodes[0]; 2206 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2207 btrfs_release_path(path); 2208 continue; 2209 } 2210 2211 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2212 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2213 key.type != BTRFS_DEV_ITEM_KEY) 2214 break; 2215 2216 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2217 struct btrfs_dev_item); 2218 devid = btrfs_device_id(leaf, dev_item); 2219 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2220 BTRFS_UUID_SIZE); 2221 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2222 BTRFS_UUID_SIZE); 2223 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2224 fs_uuid); 2225 BUG_ON(!device); /* Logic error */ 2226 2227 if (device->fs_devices->seeding) { 2228 btrfs_set_device_generation(leaf, dev_item, 2229 device->generation); 2230 btrfs_mark_buffer_dirty(leaf); 2231 } 2232 2233 path->slots[0]++; 2234 goto next_slot; 2235 } 2236 ret = 0; 2237 error: 2238 btrfs_free_path(path); 2239 return ret; 2240 } 2241 2242 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2243 { 2244 struct request_queue *q; 2245 struct btrfs_trans_handle *trans; 2246 struct btrfs_device *device; 2247 struct block_device *bdev; 2248 struct list_head *devices; 2249 struct super_block *sb = root->fs_info->sb; 2250 struct rcu_string *name; 2251 u64 tmp; 2252 int seeding_dev = 0; 2253 int ret = 0; 2254 2255 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2256 return -EROFS; 2257 2258 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2259 root->fs_info->bdev_holder); 2260 if (IS_ERR(bdev)) 2261 return PTR_ERR(bdev); 2262 2263 if (root->fs_info->fs_devices->seeding) { 2264 seeding_dev = 1; 2265 down_write(&sb->s_umount); 2266 mutex_lock(&uuid_mutex); 2267 } 2268 2269 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2270 2271 devices = &root->fs_info->fs_devices->devices; 2272 2273 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2274 list_for_each_entry(device, devices, dev_list) { 2275 if (device->bdev == bdev) { 2276 ret = -EEXIST; 2277 mutex_unlock( 2278 &root->fs_info->fs_devices->device_list_mutex); 2279 goto error; 2280 } 2281 } 2282 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2283 2284 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2285 if (IS_ERR(device)) { 2286 /* we can safely leave the fs_devices entry around */ 2287 ret = PTR_ERR(device); 2288 goto error; 2289 } 2290 2291 name = rcu_string_strdup(device_path, GFP_NOFS); 2292 if (!name) { 2293 kfree(device); 2294 ret = -ENOMEM; 2295 goto error; 2296 } 2297 rcu_assign_pointer(device->name, name); 2298 2299 trans = btrfs_start_transaction(root, 0); 2300 if (IS_ERR(trans)) { 2301 rcu_string_free(device->name); 2302 kfree(device); 2303 ret = PTR_ERR(trans); 2304 goto error; 2305 } 2306 2307 q = bdev_get_queue(bdev); 2308 if (blk_queue_discard(q)) 2309 device->can_discard = 1; 2310 device->writeable = 1; 2311 device->generation = trans->transid; 2312 device->io_width = root->sectorsize; 2313 device->io_align = root->sectorsize; 2314 device->sector_size = root->sectorsize; 2315 device->total_bytes = i_size_read(bdev->bd_inode); 2316 device->disk_total_bytes = device->total_bytes; 2317 device->commit_total_bytes = device->total_bytes; 2318 device->dev_root = root->fs_info->dev_root; 2319 device->bdev = bdev; 2320 device->in_fs_metadata = 1; 2321 device->is_tgtdev_for_dev_replace = 0; 2322 device->mode = FMODE_EXCL; 2323 device->dev_stats_valid = 1; 2324 set_blocksize(device->bdev, 4096); 2325 2326 if (seeding_dev) { 2327 sb->s_flags &= ~MS_RDONLY; 2328 ret = btrfs_prepare_sprout(root); 2329 BUG_ON(ret); /* -ENOMEM */ 2330 } 2331 2332 device->fs_devices = root->fs_info->fs_devices; 2333 2334 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2335 lock_chunks(root); 2336 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2337 list_add(&device->dev_alloc_list, 2338 &root->fs_info->fs_devices->alloc_list); 2339 root->fs_info->fs_devices->num_devices++; 2340 root->fs_info->fs_devices->open_devices++; 2341 root->fs_info->fs_devices->rw_devices++; 2342 root->fs_info->fs_devices->total_devices++; 2343 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2344 2345 spin_lock(&root->fs_info->free_chunk_lock); 2346 root->fs_info->free_chunk_space += device->total_bytes; 2347 spin_unlock(&root->fs_info->free_chunk_lock); 2348 2349 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2350 root->fs_info->fs_devices->rotating = 1; 2351 2352 tmp = btrfs_super_total_bytes(root->fs_info->super_copy); 2353 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2354 tmp + device->total_bytes); 2355 2356 tmp = btrfs_super_num_devices(root->fs_info->super_copy); 2357 btrfs_set_super_num_devices(root->fs_info->super_copy, 2358 tmp + 1); 2359 2360 /* add sysfs device entry */ 2361 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device); 2362 2363 /* 2364 * we've got more storage, clear any full flags on the space 2365 * infos 2366 */ 2367 btrfs_clear_space_info_full(root->fs_info); 2368 2369 unlock_chunks(root); 2370 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2371 2372 if (seeding_dev) { 2373 lock_chunks(root); 2374 ret = init_first_rw_device(trans, root, device); 2375 unlock_chunks(root); 2376 if (ret) { 2377 btrfs_abort_transaction(trans, root, ret); 2378 goto error_trans; 2379 } 2380 } 2381 2382 ret = btrfs_add_device(trans, root, device); 2383 if (ret) { 2384 btrfs_abort_transaction(trans, root, ret); 2385 goto error_trans; 2386 } 2387 2388 if (seeding_dev) { 2389 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2390 2391 ret = btrfs_finish_sprout(trans, root); 2392 if (ret) { 2393 btrfs_abort_transaction(trans, root, ret); 2394 goto error_trans; 2395 } 2396 2397 /* Sprouting would change fsid of the mounted root, 2398 * so rename the fsid on the sysfs 2399 */ 2400 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2401 root->fs_info->fsid); 2402 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj, 2403 fsid_buf)) 2404 btrfs_warn(root->fs_info, 2405 "sysfs: failed to create fsid for sprout"); 2406 } 2407 2408 root->fs_info->num_tolerated_disk_barrier_failures = 2409 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2410 ret = btrfs_commit_transaction(trans, root); 2411 2412 if (seeding_dev) { 2413 mutex_unlock(&uuid_mutex); 2414 up_write(&sb->s_umount); 2415 2416 if (ret) /* transaction commit */ 2417 return ret; 2418 2419 ret = btrfs_relocate_sys_chunks(root); 2420 if (ret < 0) 2421 btrfs_std_error(root->fs_info, ret, 2422 "Failed to relocate sys chunks after " 2423 "device initialization. This can be fixed " 2424 "using the \"btrfs balance\" command."); 2425 trans = btrfs_attach_transaction(root); 2426 if (IS_ERR(trans)) { 2427 if (PTR_ERR(trans) == -ENOENT) 2428 return 0; 2429 return PTR_ERR(trans); 2430 } 2431 ret = btrfs_commit_transaction(trans, root); 2432 } 2433 2434 /* Update ctime/mtime for libblkid */ 2435 update_dev_time(device_path); 2436 return ret; 2437 2438 error_trans: 2439 btrfs_end_transaction(trans, root); 2440 rcu_string_free(device->name); 2441 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device); 2442 kfree(device); 2443 error: 2444 blkdev_put(bdev, FMODE_EXCL); 2445 if (seeding_dev) { 2446 mutex_unlock(&uuid_mutex); 2447 up_write(&sb->s_umount); 2448 } 2449 return ret; 2450 } 2451 2452 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2453 struct btrfs_device *srcdev, 2454 struct btrfs_device **device_out) 2455 { 2456 struct request_queue *q; 2457 struct btrfs_device *device; 2458 struct block_device *bdev; 2459 struct btrfs_fs_info *fs_info = root->fs_info; 2460 struct list_head *devices; 2461 struct rcu_string *name; 2462 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2463 int ret = 0; 2464 2465 *device_out = NULL; 2466 if (fs_info->fs_devices->seeding) { 2467 btrfs_err(fs_info, "the filesystem is a seed filesystem!"); 2468 return -EINVAL; 2469 } 2470 2471 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2472 fs_info->bdev_holder); 2473 if (IS_ERR(bdev)) { 2474 btrfs_err(fs_info, "target device %s is invalid!", device_path); 2475 return PTR_ERR(bdev); 2476 } 2477 2478 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2479 2480 devices = &fs_info->fs_devices->devices; 2481 list_for_each_entry(device, devices, dev_list) { 2482 if (device->bdev == bdev) { 2483 btrfs_err(fs_info, "target device is in the filesystem!"); 2484 ret = -EEXIST; 2485 goto error; 2486 } 2487 } 2488 2489 2490 if (i_size_read(bdev->bd_inode) < 2491 btrfs_device_get_total_bytes(srcdev)) { 2492 btrfs_err(fs_info, "target device is smaller than source device!"); 2493 ret = -EINVAL; 2494 goto error; 2495 } 2496 2497 2498 device = btrfs_alloc_device(NULL, &devid, NULL); 2499 if (IS_ERR(device)) { 2500 ret = PTR_ERR(device); 2501 goto error; 2502 } 2503 2504 name = rcu_string_strdup(device_path, GFP_NOFS); 2505 if (!name) { 2506 kfree(device); 2507 ret = -ENOMEM; 2508 goto error; 2509 } 2510 rcu_assign_pointer(device->name, name); 2511 2512 q = bdev_get_queue(bdev); 2513 if (blk_queue_discard(q)) 2514 device->can_discard = 1; 2515 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2516 device->writeable = 1; 2517 device->generation = 0; 2518 device->io_width = root->sectorsize; 2519 device->io_align = root->sectorsize; 2520 device->sector_size = root->sectorsize; 2521 device->total_bytes = btrfs_device_get_total_bytes(srcdev); 2522 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev); 2523 device->bytes_used = btrfs_device_get_bytes_used(srcdev); 2524 ASSERT(list_empty(&srcdev->resized_list)); 2525 device->commit_total_bytes = srcdev->commit_total_bytes; 2526 device->commit_bytes_used = device->bytes_used; 2527 device->dev_root = fs_info->dev_root; 2528 device->bdev = bdev; 2529 device->in_fs_metadata = 1; 2530 device->is_tgtdev_for_dev_replace = 1; 2531 device->mode = FMODE_EXCL; 2532 device->dev_stats_valid = 1; 2533 set_blocksize(device->bdev, 4096); 2534 device->fs_devices = fs_info->fs_devices; 2535 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2536 fs_info->fs_devices->num_devices++; 2537 fs_info->fs_devices->open_devices++; 2538 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2539 2540 *device_out = device; 2541 return ret; 2542 2543 error: 2544 blkdev_put(bdev, FMODE_EXCL); 2545 return ret; 2546 } 2547 2548 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2549 struct btrfs_device *tgtdev) 2550 { 2551 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2552 tgtdev->io_width = fs_info->dev_root->sectorsize; 2553 tgtdev->io_align = fs_info->dev_root->sectorsize; 2554 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2555 tgtdev->dev_root = fs_info->dev_root; 2556 tgtdev->in_fs_metadata = 1; 2557 } 2558 2559 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2560 struct btrfs_device *device) 2561 { 2562 int ret; 2563 struct btrfs_path *path; 2564 struct btrfs_root *root; 2565 struct btrfs_dev_item *dev_item; 2566 struct extent_buffer *leaf; 2567 struct btrfs_key key; 2568 2569 root = device->dev_root->fs_info->chunk_root; 2570 2571 path = btrfs_alloc_path(); 2572 if (!path) 2573 return -ENOMEM; 2574 2575 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2576 key.type = BTRFS_DEV_ITEM_KEY; 2577 key.offset = device->devid; 2578 2579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2580 if (ret < 0) 2581 goto out; 2582 2583 if (ret > 0) { 2584 ret = -ENOENT; 2585 goto out; 2586 } 2587 2588 leaf = path->nodes[0]; 2589 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2590 2591 btrfs_set_device_id(leaf, dev_item, device->devid); 2592 btrfs_set_device_type(leaf, dev_item, device->type); 2593 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2594 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2595 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2596 btrfs_set_device_total_bytes(leaf, dev_item, 2597 btrfs_device_get_disk_total_bytes(device)); 2598 btrfs_set_device_bytes_used(leaf, dev_item, 2599 btrfs_device_get_bytes_used(device)); 2600 btrfs_mark_buffer_dirty(leaf); 2601 2602 out: 2603 btrfs_free_path(path); 2604 return ret; 2605 } 2606 2607 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2608 struct btrfs_device *device, u64 new_size) 2609 { 2610 struct btrfs_super_block *super_copy = 2611 device->dev_root->fs_info->super_copy; 2612 struct btrfs_fs_devices *fs_devices; 2613 u64 old_total; 2614 u64 diff; 2615 2616 if (!device->writeable) 2617 return -EACCES; 2618 2619 lock_chunks(device->dev_root); 2620 old_total = btrfs_super_total_bytes(super_copy); 2621 diff = new_size - device->total_bytes; 2622 2623 if (new_size <= device->total_bytes || 2624 device->is_tgtdev_for_dev_replace) { 2625 unlock_chunks(device->dev_root); 2626 return -EINVAL; 2627 } 2628 2629 fs_devices = device->dev_root->fs_info->fs_devices; 2630 2631 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2632 device->fs_devices->total_rw_bytes += diff; 2633 2634 btrfs_device_set_total_bytes(device, new_size); 2635 btrfs_device_set_disk_total_bytes(device, new_size); 2636 btrfs_clear_space_info_full(device->dev_root->fs_info); 2637 if (list_empty(&device->resized_list)) 2638 list_add_tail(&device->resized_list, 2639 &fs_devices->resized_devices); 2640 unlock_chunks(device->dev_root); 2641 2642 return btrfs_update_device(trans, device); 2643 } 2644 2645 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2646 struct btrfs_root *root, u64 chunk_objectid, 2647 u64 chunk_offset) 2648 { 2649 int ret; 2650 struct btrfs_path *path; 2651 struct btrfs_key key; 2652 2653 root = root->fs_info->chunk_root; 2654 path = btrfs_alloc_path(); 2655 if (!path) 2656 return -ENOMEM; 2657 2658 key.objectid = chunk_objectid; 2659 key.offset = chunk_offset; 2660 key.type = BTRFS_CHUNK_ITEM_KEY; 2661 2662 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2663 if (ret < 0) 2664 goto out; 2665 else if (ret > 0) { /* Logic error or corruption */ 2666 btrfs_std_error(root->fs_info, -ENOENT, 2667 "Failed lookup while freeing chunk."); 2668 ret = -ENOENT; 2669 goto out; 2670 } 2671 2672 ret = btrfs_del_item(trans, root, path); 2673 if (ret < 0) 2674 btrfs_std_error(root->fs_info, ret, 2675 "Failed to delete chunk item."); 2676 out: 2677 btrfs_free_path(path); 2678 return ret; 2679 } 2680 2681 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2682 chunk_offset) 2683 { 2684 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2685 struct btrfs_disk_key *disk_key; 2686 struct btrfs_chunk *chunk; 2687 u8 *ptr; 2688 int ret = 0; 2689 u32 num_stripes; 2690 u32 array_size; 2691 u32 len = 0; 2692 u32 cur; 2693 struct btrfs_key key; 2694 2695 lock_chunks(root); 2696 array_size = btrfs_super_sys_array_size(super_copy); 2697 2698 ptr = super_copy->sys_chunk_array; 2699 cur = 0; 2700 2701 while (cur < array_size) { 2702 disk_key = (struct btrfs_disk_key *)ptr; 2703 btrfs_disk_key_to_cpu(&key, disk_key); 2704 2705 len = sizeof(*disk_key); 2706 2707 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2708 chunk = (struct btrfs_chunk *)(ptr + len); 2709 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2710 len += btrfs_chunk_item_size(num_stripes); 2711 } else { 2712 ret = -EIO; 2713 break; 2714 } 2715 if (key.objectid == chunk_objectid && 2716 key.offset == chunk_offset) { 2717 memmove(ptr, ptr + len, array_size - (cur + len)); 2718 array_size -= len; 2719 btrfs_set_super_sys_array_size(super_copy, array_size); 2720 } else { 2721 ptr += len; 2722 cur += len; 2723 } 2724 } 2725 unlock_chunks(root); 2726 return ret; 2727 } 2728 2729 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, 2730 struct btrfs_root *root, u64 chunk_offset) 2731 { 2732 struct extent_map_tree *em_tree; 2733 struct extent_map *em; 2734 struct btrfs_root *extent_root = root->fs_info->extent_root; 2735 struct map_lookup *map; 2736 u64 dev_extent_len = 0; 2737 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2738 int i, ret = 0; 2739 2740 /* Just in case */ 2741 root = root->fs_info->chunk_root; 2742 em_tree = &root->fs_info->mapping_tree.map_tree; 2743 2744 read_lock(&em_tree->lock); 2745 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2746 read_unlock(&em_tree->lock); 2747 2748 if (!em || em->start > chunk_offset || 2749 em->start + em->len < chunk_offset) { 2750 /* 2751 * This is a logic error, but we don't want to just rely on the 2752 * user having built with ASSERT enabled, so if ASSERT doens't 2753 * do anything we still error out. 2754 */ 2755 ASSERT(0); 2756 if (em) 2757 free_extent_map(em); 2758 return -EINVAL; 2759 } 2760 map = (struct map_lookup *)em->bdev; 2761 lock_chunks(root->fs_info->chunk_root); 2762 check_system_chunk(trans, extent_root, map->type); 2763 unlock_chunks(root->fs_info->chunk_root); 2764 2765 for (i = 0; i < map->num_stripes; i++) { 2766 struct btrfs_device *device = map->stripes[i].dev; 2767 ret = btrfs_free_dev_extent(trans, device, 2768 map->stripes[i].physical, 2769 &dev_extent_len); 2770 if (ret) { 2771 btrfs_abort_transaction(trans, root, ret); 2772 goto out; 2773 } 2774 2775 if (device->bytes_used > 0) { 2776 lock_chunks(root); 2777 btrfs_device_set_bytes_used(device, 2778 device->bytes_used - dev_extent_len); 2779 spin_lock(&root->fs_info->free_chunk_lock); 2780 root->fs_info->free_chunk_space += dev_extent_len; 2781 spin_unlock(&root->fs_info->free_chunk_lock); 2782 btrfs_clear_space_info_full(root->fs_info); 2783 unlock_chunks(root); 2784 } 2785 2786 if (map->stripes[i].dev) { 2787 ret = btrfs_update_device(trans, map->stripes[i].dev); 2788 if (ret) { 2789 btrfs_abort_transaction(trans, root, ret); 2790 goto out; 2791 } 2792 } 2793 } 2794 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset); 2795 if (ret) { 2796 btrfs_abort_transaction(trans, root, ret); 2797 goto out; 2798 } 2799 2800 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2801 2802 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2803 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2804 if (ret) { 2805 btrfs_abort_transaction(trans, root, ret); 2806 goto out; 2807 } 2808 } 2809 2810 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em); 2811 if (ret) { 2812 btrfs_abort_transaction(trans, extent_root, ret); 2813 goto out; 2814 } 2815 2816 out: 2817 /* once for us */ 2818 free_extent_map(em); 2819 return ret; 2820 } 2821 2822 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset) 2823 { 2824 struct btrfs_root *extent_root; 2825 struct btrfs_trans_handle *trans; 2826 int ret; 2827 2828 root = root->fs_info->chunk_root; 2829 extent_root = root->fs_info->extent_root; 2830 2831 /* 2832 * Prevent races with automatic removal of unused block groups. 2833 * After we relocate and before we remove the chunk with offset 2834 * chunk_offset, automatic removal of the block group can kick in, 2835 * resulting in a failure when calling btrfs_remove_chunk() below. 2836 * 2837 * Make sure to acquire this mutex before doing a tree search (dev 2838 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 2839 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 2840 * we release the path used to search the chunk/dev tree and before 2841 * the current task acquires this mutex and calls us. 2842 */ 2843 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex)); 2844 2845 ret = btrfs_can_relocate(extent_root, chunk_offset); 2846 if (ret) 2847 return -ENOSPC; 2848 2849 /* step one, relocate all the extents inside this chunk */ 2850 btrfs_scrub_pause(root); 2851 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2852 btrfs_scrub_continue(root); 2853 if (ret) 2854 return ret; 2855 2856 trans = btrfs_start_transaction(root, 0); 2857 if (IS_ERR(trans)) { 2858 ret = PTR_ERR(trans); 2859 btrfs_std_error(root->fs_info, ret, NULL); 2860 return ret; 2861 } 2862 2863 /* 2864 * step two, delete the device extents and the 2865 * chunk tree entries 2866 */ 2867 ret = btrfs_remove_chunk(trans, root, chunk_offset); 2868 btrfs_end_transaction(trans, root); 2869 return ret; 2870 } 2871 2872 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2873 { 2874 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2875 struct btrfs_path *path; 2876 struct extent_buffer *leaf; 2877 struct btrfs_chunk *chunk; 2878 struct btrfs_key key; 2879 struct btrfs_key found_key; 2880 u64 chunk_type; 2881 bool retried = false; 2882 int failed = 0; 2883 int ret; 2884 2885 path = btrfs_alloc_path(); 2886 if (!path) 2887 return -ENOMEM; 2888 2889 again: 2890 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2891 key.offset = (u64)-1; 2892 key.type = BTRFS_CHUNK_ITEM_KEY; 2893 2894 while (1) { 2895 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 2896 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2897 if (ret < 0) { 2898 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2899 goto error; 2900 } 2901 BUG_ON(ret == 0); /* Corruption */ 2902 2903 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2904 key.type); 2905 if (ret) 2906 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2907 if (ret < 0) 2908 goto error; 2909 if (ret > 0) 2910 break; 2911 2912 leaf = path->nodes[0]; 2913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2914 2915 chunk = btrfs_item_ptr(leaf, path->slots[0], 2916 struct btrfs_chunk); 2917 chunk_type = btrfs_chunk_type(leaf, chunk); 2918 btrfs_release_path(path); 2919 2920 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2921 ret = btrfs_relocate_chunk(chunk_root, 2922 found_key.offset); 2923 if (ret == -ENOSPC) 2924 failed++; 2925 else 2926 BUG_ON(ret); 2927 } 2928 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 2929 2930 if (found_key.offset == 0) 2931 break; 2932 key.offset = found_key.offset - 1; 2933 } 2934 ret = 0; 2935 if (failed && !retried) { 2936 failed = 0; 2937 retried = true; 2938 goto again; 2939 } else if (WARN_ON(failed && retried)) { 2940 ret = -ENOSPC; 2941 } 2942 error: 2943 btrfs_free_path(path); 2944 return ret; 2945 } 2946 2947 static int insert_balance_item(struct btrfs_root *root, 2948 struct btrfs_balance_control *bctl) 2949 { 2950 struct btrfs_trans_handle *trans; 2951 struct btrfs_balance_item *item; 2952 struct btrfs_disk_balance_args disk_bargs; 2953 struct btrfs_path *path; 2954 struct extent_buffer *leaf; 2955 struct btrfs_key key; 2956 int ret, err; 2957 2958 path = btrfs_alloc_path(); 2959 if (!path) 2960 return -ENOMEM; 2961 2962 trans = btrfs_start_transaction(root, 0); 2963 if (IS_ERR(trans)) { 2964 btrfs_free_path(path); 2965 return PTR_ERR(trans); 2966 } 2967 2968 key.objectid = BTRFS_BALANCE_OBJECTID; 2969 key.type = BTRFS_BALANCE_ITEM_KEY; 2970 key.offset = 0; 2971 2972 ret = btrfs_insert_empty_item(trans, root, path, &key, 2973 sizeof(*item)); 2974 if (ret) 2975 goto out; 2976 2977 leaf = path->nodes[0]; 2978 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2979 2980 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2981 2982 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2983 btrfs_set_balance_data(leaf, item, &disk_bargs); 2984 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2985 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2986 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2987 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2988 2989 btrfs_set_balance_flags(leaf, item, bctl->flags); 2990 2991 btrfs_mark_buffer_dirty(leaf); 2992 out: 2993 btrfs_free_path(path); 2994 err = btrfs_commit_transaction(trans, root); 2995 if (err && !ret) 2996 ret = err; 2997 return ret; 2998 } 2999 3000 static int del_balance_item(struct btrfs_root *root) 3001 { 3002 struct btrfs_trans_handle *trans; 3003 struct btrfs_path *path; 3004 struct btrfs_key key; 3005 int ret, err; 3006 3007 path = btrfs_alloc_path(); 3008 if (!path) 3009 return -ENOMEM; 3010 3011 trans = btrfs_start_transaction(root, 0); 3012 if (IS_ERR(trans)) { 3013 btrfs_free_path(path); 3014 return PTR_ERR(trans); 3015 } 3016 3017 key.objectid = BTRFS_BALANCE_OBJECTID; 3018 key.type = BTRFS_BALANCE_ITEM_KEY; 3019 key.offset = 0; 3020 3021 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3022 if (ret < 0) 3023 goto out; 3024 if (ret > 0) { 3025 ret = -ENOENT; 3026 goto out; 3027 } 3028 3029 ret = btrfs_del_item(trans, root, path); 3030 out: 3031 btrfs_free_path(path); 3032 err = btrfs_commit_transaction(trans, root); 3033 if (err && !ret) 3034 ret = err; 3035 return ret; 3036 } 3037 3038 /* 3039 * This is a heuristic used to reduce the number of chunks balanced on 3040 * resume after balance was interrupted. 3041 */ 3042 static void update_balance_args(struct btrfs_balance_control *bctl) 3043 { 3044 /* 3045 * Turn on soft mode for chunk types that were being converted. 3046 */ 3047 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3048 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3049 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3050 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3051 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3052 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3053 3054 /* 3055 * Turn on usage filter if is not already used. The idea is 3056 * that chunks that we have already balanced should be 3057 * reasonably full. Don't do it for chunks that are being 3058 * converted - that will keep us from relocating unconverted 3059 * (albeit full) chunks. 3060 */ 3061 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3062 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3063 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3064 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3065 bctl->data.usage = 90; 3066 } 3067 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3068 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3069 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3070 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3071 bctl->sys.usage = 90; 3072 } 3073 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3074 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3075 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3076 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3077 bctl->meta.usage = 90; 3078 } 3079 } 3080 3081 /* 3082 * Should be called with both balance and volume mutexes held to 3083 * serialize other volume operations (add_dev/rm_dev/resize) with 3084 * restriper. Same goes for unset_balance_control. 3085 */ 3086 static void set_balance_control(struct btrfs_balance_control *bctl) 3087 { 3088 struct btrfs_fs_info *fs_info = bctl->fs_info; 3089 3090 BUG_ON(fs_info->balance_ctl); 3091 3092 spin_lock(&fs_info->balance_lock); 3093 fs_info->balance_ctl = bctl; 3094 spin_unlock(&fs_info->balance_lock); 3095 } 3096 3097 static void unset_balance_control(struct btrfs_fs_info *fs_info) 3098 { 3099 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3100 3101 BUG_ON(!fs_info->balance_ctl); 3102 3103 spin_lock(&fs_info->balance_lock); 3104 fs_info->balance_ctl = NULL; 3105 spin_unlock(&fs_info->balance_lock); 3106 3107 kfree(bctl); 3108 } 3109 3110 /* 3111 * Balance filters. Return 1 if chunk should be filtered out 3112 * (should not be balanced). 3113 */ 3114 static int chunk_profiles_filter(u64 chunk_type, 3115 struct btrfs_balance_args *bargs) 3116 { 3117 chunk_type = chunk_to_extended(chunk_type) & 3118 BTRFS_EXTENDED_PROFILE_MASK; 3119 3120 if (bargs->profiles & chunk_type) 3121 return 0; 3122 3123 return 1; 3124 } 3125 3126 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3127 struct btrfs_balance_args *bargs) 3128 { 3129 struct btrfs_block_group_cache *cache; 3130 u64 chunk_used; 3131 u64 user_thresh_min; 3132 u64 user_thresh_max; 3133 int ret = 1; 3134 3135 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3136 chunk_used = btrfs_block_group_used(&cache->item); 3137 3138 if (bargs->usage_min == 0) 3139 user_thresh_min = 0; 3140 else 3141 user_thresh_min = div_factor_fine(cache->key.offset, 3142 bargs->usage_min); 3143 3144 if (bargs->usage_max == 0) 3145 user_thresh_max = 1; 3146 else if (bargs->usage_max > 100) 3147 user_thresh_max = cache->key.offset; 3148 else 3149 user_thresh_max = div_factor_fine(cache->key.offset, 3150 bargs->usage_max); 3151 3152 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3153 ret = 0; 3154 3155 btrfs_put_block_group(cache); 3156 return ret; 3157 } 3158 3159 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, 3160 u64 chunk_offset, struct btrfs_balance_args *bargs) 3161 { 3162 struct btrfs_block_group_cache *cache; 3163 u64 chunk_used, user_thresh; 3164 int ret = 1; 3165 3166 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3167 chunk_used = btrfs_block_group_used(&cache->item); 3168 3169 if (bargs->usage_min == 0) 3170 user_thresh = 1; 3171 else if (bargs->usage > 100) 3172 user_thresh = cache->key.offset; 3173 else 3174 user_thresh = div_factor_fine(cache->key.offset, 3175 bargs->usage); 3176 3177 if (chunk_used < user_thresh) 3178 ret = 0; 3179 3180 btrfs_put_block_group(cache); 3181 return ret; 3182 } 3183 3184 static int chunk_devid_filter(struct extent_buffer *leaf, 3185 struct btrfs_chunk *chunk, 3186 struct btrfs_balance_args *bargs) 3187 { 3188 struct btrfs_stripe *stripe; 3189 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3190 int i; 3191 3192 for (i = 0; i < num_stripes; i++) { 3193 stripe = btrfs_stripe_nr(chunk, i); 3194 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3195 return 0; 3196 } 3197 3198 return 1; 3199 } 3200 3201 /* [pstart, pend) */ 3202 static int chunk_drange_filter(struct extent_buffer *leaf, 3203 struct btrfs_chunk *chunk, 3204 u64 chunk_offset, 3205 struct btrfs_balance_args *bargs) 3206 { 3207 struct btrfs_stripe *stripe; 3208 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3209 u64 stripe_offset; 3210 u64 stripe_length; 3211 int factor; 3212 int i; 3213 3214 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3215 return 0; 3216 3217 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3218 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3219 factor = num_stripes / 2; 3220 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3221 factor = num_stripes - 1; 3222 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3223 factor = num_stripes - 2; 3224 } else { 3225 factor = num_stripes; 3226 } 3227 3228 for (i = 0; i < num_stripes; i++) { 3229 stripe = btrfs_stripe_nr(chunk, i); 3230 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3231 continue; 3232 3233 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3234 stripe_length = btrfs_chunk_length(leaf, chunk); 3235 stripe_length = div_u64(stripe_length, factor); 3236 3237 if (stripe_offset < bargs->pend && 3238 stripe_offset + stripe_length > bargs->pstart) 3239 return 0; 3240 } 3241 3242 return 1; 3243 } 3244 3245 /* [vstart, vend) */ 3246 static int chunk_vrange_filter(struct extent_buffer *leaf, 3247 struct btrfs_chunk *chunk, 3248 u64 chunk_offset, 3249 struct btrfs_balance_args *bargs) 3250 { 3251 if (chunk_offset < bargs->vend && 3252 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3253 /* at least part of the chunk is inside this vrange */ 3254 return 0; 3255 3256 return 1; 3257 } 3258 3259 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3260 struct btrfs_chunk *chunk, 3261 struct btrfs_balance_args *bargs) 3262 { 3263 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3264 3265 if (bargs->stripes_min <= num_stripes 3266 && num_stripes <= bargs->stripes_max) 3267 return 0; 3268 3269 return 1; 3270 } 3271 3272 static int chunk_soft_convert_filter(u64 chunk_type, 3273 struct btrfs_balance_args *bargs) 3274 { 3275 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3276 return 0; 3277 3278 chunk_type = chunk_to_extended(chunk_type) & 3279 BTRFS_EXTENDED_PROFILE_MASK; 3280 3281 if (bargs->target == chunk_type) 3282 return 1; 3283 3284 return 0; 3285 } 3286 3287 static int should_balance_chunk(struct btrfs_root *root, 3288 struct extent_buffer *leaf, 3289 struct btrfs_chunk *chunk, u64 chunk_offset) 3290 { 3291 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3292 struct btrfs_balance_args *bargs = NULL; 3293 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3294 3295 /* type filter */ 3296 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3297 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3298 return 0; 3299 } 3300 3301 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3302 bargs = &bctl->data; 3303 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3304 bargs = &bctl->sys; 3305 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3306 bargs = &bctl->meta; 3307 3308 /* profiles filter */ 3309 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3310 chunk_profiles_filter(chunk_type, bargs)) { 3311 return 0; 3312 } 3313 3314 /* usage filter */ 3315 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3316 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3317 return 0; 3318 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3319 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) { 3320 return 0; 3321 } 3322 3323 /* devid filter */ 3324 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3325 chunk_devid_filter(leaf, chunk, bargs)) { 3326 return 0; 3327 } 3328 3329 /* drange filter, makes sense only with devid filter */ 3330 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3331 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3332 return 0; 3333 } 3334 3335 /* vrange filter */ 3336 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3337 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3338 return 0; 3339 } 3340 3341 /* stripes filter */ 3342 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3343 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3344 return 0; 3345 } 3346 3347 /* soft profile changing mode */ 3348 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3349 chunk_soft_convert_filter(chunk_type, bargs)) { 3350 return 0; 3351 } 3352 3353 /* 3354 * limited by count, must be the last filter 3355 */ 3356 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3357 if (bargs->limit == 0) 3358 return 0; 3359 else 3360 bargs->limit--; 3361 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3362 /* 3363 * Same logic as the 'limit' filter; the minimum cannot be 3364 * determined here because we do not have the global informatoin 3365 * about the count of all chunks that satisfy the filters. 3366 */ 3367 if (bargs->limit_max == 0) 3368 return 0; 3369 else 3370 bargs->limit_max--; 3371 } 3372 3373 return 1; 3374 } 3375 3376 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3377 { 3378 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3379 struct btrfs_root *chunk_root = fs_info->chunk_root; 3380 struct btrfs_root *dev_root = fs_info->dev_root; 3381 struct list_head *devices; 3382 struct btrfs_device *device; 3383 u64 old_size; 3384 u64 size_to_free; 3385 u64 chunk_type; 3386 struct btrfs_chunk *chunk; 3387 struct btrfs_path *path; 3388 struct btrfs_key key; 3389 struct btrfs_key found_key; 3390 struct btrfs_trans_handle *trans; 3391 struct extent_buffer *leaf; 3392 int slot; 3393 int ret; 3394 int enospc_errors = 0; 3395 bool counting = true; 3396 /* The single value limit and min/max limits use the same bytes in the */ 3397 u64 limit_data = bctl->data.limit; 3398 u64 limit_meta = bctl->meta.limit; 3399 u64 limit_sys = bctl->sys.limit; 3400 u32 count_data = 0; 3401 u32 count_meta = 0; 3402 u32 count_sys = 0; 3403 int chunk_reserved = 0; 3404 3405 /* step one make some room on all the devices */ 3406 devices = &fs_info->fs_devices->devices; 3407 list_for_each_entry(device, devices, dev_list) { 3408 old_size = btrfs_device_get_total_bytes(device); 3409 size_to_free = div_factor(old_size, 1); 3410 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 3411 if (!device->writeable || 3412 btrfs_device_get_total_bytes(device) - 3413 btrfs_device_get_bytes_used(device) > size_to_free || 3414 device->is_tgtdev_for_dev_replace) 3415 continue; 3416 3417 ret = btrfs_shrink_device(device, old_size - size_to_free); 3418 if (ret == -ENOSPC) 3419 break; 3420 BUG_ON(ret); 3421 3422 trans = btrfs_start_transaction(dev_root, 0); 3423 BUG_ON(IS_ERR(trans)); 3424 3425 ret = btrfs_grow_device(trans, device, old_size); 3426 BUG_ON(ret); 3427 3428 btrfs_end_transaction(trans, dev_root); 3429 } 3430 3431 /* step two, relocate all the chunks */ 3432 path = btrfs_alloc_path(); 3433 if (!path) { 3434 ret = -ENOMEM; 3435 goto error; 3436 } 3437 3438 /* zero out stat counters */ 3439 spin_lock(&fs_info->balance_lock); 3440 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3441 spin_unlock(&fs_info->balance_lock); 3442 again: 3443 if (!counting) { 3444 /* 3445 * The single value limit and min/max limits use the same bytes 3446 * in the 3447 */ 3448 bctl->data.limit = limit_data; 3449 bctl->meta.limit = limit_meta; 3450 bctl->sys.limit = limit_sys; 3451 } 3452 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3453 key.offset = (u64)-1; 3454 key.type = BTRFS_CHUNK_ITEM_KEY; 3455 3456 while (1) { 3457 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3458 atomic_read(&fs_info->balance_cancel_req)) { 3459 ret = -ECANCELED; 3460 goto error; 3461 } 3462 3463 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3464 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3465 if (ret < 0) { 3466 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3467 goto error; 3468 } 3469 3470 /* 3471 * this shouldn't happen, it means the last relocate 3472 * failed 3473 */ 3474 if (ret == 0) 3475 BUG(); /* FIXME break ? */ 3476 3477 ret = btrfs_previous_item(chunk_root, path, 0, 3478 BTRFS_CHUNK_ITEM_KEY); 3479 if (ret) { 3480 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3481 ret = 0; 3482 break; 3483 } 3484 3485 leaf = path->nodes[0]; 3486 slot = path->slots[0]; 3487 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3488 3489 if (found_key.objectid != key.objectid) { 3490 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3491 break; 3492 } 3493 3494 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3495 chunk_type = btrfs_chunk_type(leaf, chunk); 3496 3497 if (!counting) { 3498 spin_lock(&fs_info->balance_lock); 3499 bctl->stat.considered++; 3500 spin_unlock(&fs_info->balance_lock); 3501 } 3502 3503 ret = should_balance_chunk(chunk_root, leaf, chunk, 3504 found_key.offset); 3505 3506 btrfs_release_path(path); 3507 if (!ret) { 3508 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3509 goto loop; 3510 } 3511 3512 if (counting) { 3513 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3514 spin_lock(&fs_info->balance_lock); 3515 bctl->stat.expected++; 3516 spin_unlock(&fs_info->balance_lock); 3517 3518 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3519 count_data++; 3520 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3521 count_sys++; 3522 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3523 count_meta++; 3524 3525 goto loop; 3526 } 3527 3528 /* 3529 * Apply limit_min filter, no need to check if the LIMITS 3530 * filter is used, limit_min is 0 by default 3531 */ 3532 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3533 count_data < bctl->data.limit_min) 3534 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3535 count_meta < bctl->meta.limit_min) 3536 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3537 count_sys < bctl->sys.limit_min)) { 3538 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3539 goto loop; 3540 } 3541 3542 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) { 3543 trans = btrfs_start_transaction(chunk_root, 0); 3544 if (IS_ERR(trans)) { 3545 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3546 ret = PTR_ERR(trans); 3547 goto error; 3548 } 3549 3550 ret = btrfs_force_chunk_alloc(trans, chunk_root, 3551 BTRFS_BLOCK_GROUP_DATA); 3552 if (ret < 0) { 3553 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3554 goto error; 3555 } 3556 3557 btrfs_end_transaction(trans, chunk_root); 3558 chunk_reserved = 1; 3559 } 3560 3561 ret = btrfs_relocate_chunk(chunk_root, 3562 found_key.offset); 3563 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3564 if (ret && ret != -ENOSPC) 3565 goto error; 3566 if (ret == -ENOSPC) { 3567 enospc_errors++; 3568 } else { 3569 spin_lock(&fs_info->balance_lock); 3570 bctl->stat.completed++; 3571 spin_unlock(&fs_info->balance_lock); 3572 } 3573 loop: 3574 if (found_key.offset == 0) 3575 break; 3576 key.offset = found_key.offset - 1; 3577 } 3578 3579 if (counting) { 3580 btrfs_release_path(path); 3581 counting = false; 3582 goto again; 3583 } 3584 error: 3585 btrfs_free_path(path); 3586 if (enospc_errors) { 3587 btrfs_info(fs_info, "%d enospc errors during balance", 3588 enospc_errors); 3589 if (!ret) 3590 ret = -ENOSPC; 3591 } 3592 3593 return ret; 3594 } 3595 3596 /** 3597 * alloc_profile_is_valid - see if a given profile is valid and reduced 3598 * @flags: profile to validate 3599 * @extended: if true @flags is treated as an extended profile 3600 */ 3601 static int alloc_profile_is_valid(u64 flags, int extended) 3602 { 3603 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3604 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3605 3606 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3607 3608 /* 1) check that all other bits are zeroed */ 3609 if (flags & ~mask) 3610 return 0; 3611 3612 /* 2) see if profile is reduced */ 3613 if (flags == 0) 3614 return !extended; /* "0" is valid for usual profiles */ 3615 3616 /* true if exactly one bit set */ 3617 return (flags & (flags - 1)) == 0; 3618 } 3619 3620 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3621 { 3622 /* cancel requested || normal exit path */ 3623 return atomic_read(&fs_info->balance_cancel_req) || 3624 (atomic_read(&fs_info->balance_pause_req) == 0 && 3625 atomic_read(&fs_info->balance_cancel_req) == 0); 3626 } 3627 3628 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3629 { 3630 int ret; 3631 3632 unset_balance_control(fs_info); 3633 ret = del_balance_item(fs_info->tree_root); 3634 if (ret) 3635 btrfs_std_error(fs_info, ret, NULL); 3636 3637 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3638 } 3639 3640 /* Non-zero return value signifies invalidity */ 3641 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3642 u64 allowed) 3643 { 3644 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3645 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3646 (bctl_arg->target & ~allowed))); 3647 } 3648 3649 /* 3650 * Should be called with both balance and volume mutexes held 3651 */ 3652 int btrfs_balance(struct btrfs_balance_control *bctl, 3653 struct btrfs_ioctl_balance_args *bargs) 3654 { 3655 struct btrfs_fs_info *fs_info = bctl->fs_info; 3656 u64 allowed; 3657 int mixed = 0; 3658 int ret; 3659 u64 num_devices; 3660 unsigned seq; 3661 3662 if (btrfs_fs_closing(fs_info) || 3663 atomic_read(&fs_info->balance_pause_req) || 3664 atomic_read(&fs_info->balance_cancel_req)) { 3665 ret = -EINVAL; 3666 goto out; 3667 } 3668 3669 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3670 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3671 mixed = 1; 3672 3673 /* 3674 * In case of mixed groups both data and meta should be picked, 3675 * and identical options should be given for both of them. 3676 */ 3677 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3678 if (mixed && (bctl->flags & allowed)) { 3679 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3680 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3681 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3682 btrfs_err(fs_info, "with mixed groups data and " 3683 "metadata balance options must be the same"); 3684 ret = -EINVAL; 3685 goto out; 3686 } 3687 } 3688 3689 num_devices = fs_info->fs_devices->num_devices; 3690 btrfs_dev_replace_lock(&fs_info->dev_replace); 3691 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3692 BUG_ON(num_devices < 1); 3693 num_devices--; 3694 } 3695 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3696 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3697 if (num_devices == 1) 3698 allowed |= BTRFS_BLOCK_GROUP_DUP; 3699 else if (num_devices > 1) 3700 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3701 if (num_devices > 2) 3702 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3703 if (num_devices > 3) 3704 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3705 BTRFS_BLOCK_GROUP_RAID6); 3706 if (validate_convert_profile(&bctl->data, allowed)) { 3707 btrfs_err(fs_info, "unable to start balance with target " 3708 "data profile %llu", 3709 bctl->data.target); 3710 ret = -EINVAL; 3711 goto out; 3712 } 3713 if (validate_convert_profile(&bctl->meta, allowed)) { 3714 btrfs_err(fs_info, 3715 "unable to start balance with target metadata profile %llu", 3716 bctl->meta.target); 3717 ret = -EINVAL; 3718 goto out; 3719 } 3720 if (validate_convert_profile(&bctl->sys, allowed)) { 3721 btrfs_err(fs_info, 3722 "unable to start balance with target system profile %llu", 3723 bctl->sys.target); 3724 ret = -EINVAL; 3725 goto out; 3726 } 3727 3728 /* allow dup'ed data chunks only in mixed mode */ 3729 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3730 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3731 btrfs_err(fs_info, "dup for data is not allowed"); 3732 ret = -EINVAL; 3733 goto out; 3734 } 3735 3736 /* allow to reduce meta or sys integrity only if force set */ 3737 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3738 BTRFS_BLOCK_GROUP_RAID10 | 3739 BTRFS_BLOCK_GROUP_RAID5 | 3740 BTRFS_BLOCK_GROUP_RAID6; 3741 do { 3742 seq = read_seqbegin(&fs_info->profiles_lock); 3743 3744 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3745 (fs_info->avail_system_alloc_bits & allowed) && 3746 !(bctl->sys.target & allowed)) || 3747 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3748 (fs_info->avail_metadata_alloc_bits & allowed) && 3749 !(bctl->meta.target & allowed))) { 3750 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3751 btrfs_info(fs_info, "force reducing metadata integrity"); 3752 } else { 3753 btrfs_err(fs_info, "balance will reduce metadata " 3754 "integrity, use force if you want this"); 3755 ret = -EINVAL; 3756 goto out; 3757 } 3758 } 3759 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3760 3761 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3762 fs_info->num_tolerated_disk_barrier_failures = min( 3763 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info), 3764 btrfs_get_num_tolerated_disk_barrier_failures( 3765 bctl->sys.target)); 3766 } 3767 3768 ret = insert_balance_item(fs_info->tree_root, bctl); 3769 if (ret && ret != -EEXIST) 3770 goto out; 3771 3772 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3773 BUG_ON(ret == -EEXIST); 3774 set_balance_control(bctl); 3775 } else { 3776 BUG_ON(ret != -EEXIST); 3777 spin_lock(&fs_info->balance_lock); 3778 update_balance_args(bctl); 3779 spin_unlock(&fs_info->balance_lock); 3780 } 3781 3782 atomic_inc(&fs_info->balance_running); 3783 mutex_unlock(&fs_info->balance_mutex); 3784 3785 ret = __btrfs_balance(fs_info); 3786 3787 mutex_lock(&fs_info->balance_mutex); 3788 atomic_dec(&fs_info->balance_running); 3789 3790 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3791 fs_info->num_tolerated_disk_barrier_failures = 3792 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3793 } 3794 3795 if (bargs) { 3796 memset(bargs, 0, sizeof(*bargs)); 3797 update_ioctl_balance_args(fs_info, 0, bargs); 3798 } 3799 3800 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3801 balance_need_close(fs_info)) { 3802 __cancel_balance(fs_info); 3803 } 3804 3805 wake_up(&fs_info->balance_wait_q); 3806 3807 return ret; 3808 out: 3809 if (bctl->flags & BTRFS_BALANCE_RESUME) 3810 __cancel_balance(fs_info); 3811 else { 3812 kfree(bctl); 3813 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3814 } 3815 return ret; 3816 } 3817 3818 static int balance_kthread(void *data) 3819 { 3820 struct btrfs_fs_info *fs_info = data; 3821 int ret = 0; 3822 3823 mutex_lock(&fs_info->volume_mutex); 3824 mutex_lock(&fs_info->balance_mutex); 3825 3826 if (fs_info->balance_ctl) { 3827 btrfs_info(fs_info, "continuing balance"); 3828 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3829 } 3830 3831 mutex_unlock(&fs_info->balance_mutex); 3832 mutex_unlock(&fs_info->volume_mutex); 3833 3834 return ret; 3835 } 3836 3837 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3838 { 3839 struct task_struct *tsk; 3840 3841 spin_lock(&fs_info->balance_lock); 3842 if (!fs_info->balance_ctl) { 3843 spin_unlock(&fs_info->balance_lock); 3844 return 0; 3845 } 3846 spin_unlock(&fs_info->balance_lock); 3847 3848 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3849 btrfs_info(fs_info, "force skipping balance"); 3850 return 0; 3851 } 3852 3853 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3854 return PTR_ERR_OR_ZERO(tsk); 3855 } 3856 3857 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3858 { 3859 struct btrfs_balance_control *bctl; 3860 struct btrfs_balance_item *item; 3861 struct btrfs_disk_balance_args disk_bargs; 3862 struct btrfs_path *path; 3863 struct extent_buffer *leaf; 3864 struct btrfs_key key; 3865 int ret; 3866 3867 path = btrfs_alloc_path(); 3868 if (!path) 3869 return -ENOMEM; 3870 3871 key.objectid = BTRFS_BALANCE_OBJECTID; 3872 key.type = BTRFS_BALANCE_ITEM_KEY; 3873 key.offset = 0; 3874 3875 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3876 if (ret < 0) 3877 goto out; 3878 if (ret > 0) { /* ret = -ENOENT; */ 3879 ret = 0; 3880 goto out; 3881 } 3882 3883 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3884 if (!bctl) { 3885 ret = -ENOMEM; 3886 goto out; 3887 } 3888 3889 leaf = path->nodes[0]; 3890 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3891 3892 bctl->fs_info = fs_info; 3893 bctl->flags = btrfs_balance_flags(leaf, item); 3894 bctl->flags |= BTRFS_BALANCE_RESUME; 3895 3896 btrfs_balance_data(leaf, item, &disk_bargs); 3897 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3898 btrfs_balance_meta(leaf, item, &disk_bargs); 3899 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3900 btrfs_balance_sys(leaf, item, &disk_bargs); 3901 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3902 3903 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3904 3905 mutex_lock(&fs_info->volume_mutex); 3906 mutex_lock(&fs_info->balance_mutex); 3907 3908 set_balance_control(bctl); 3909 3910 mutex_unlock(&fs_info->balance_mutex); 3911 mutex_unlock(&fs_info->volume_mutex); 3912 out: 3913 btrfs_free_path(path); 3914 return ret; 3915 } 3916 3917 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3918 { 3919 int ret = 0; 3920 3921 mutex_lock(&fs_info->balance_mutex); 3922 if (!fs_info->balance_ctl) { 3923 mutex_unlock(&fs_info->balance_mutex); 3924 return -ENOTCONN; 3925 } 3926 3927 if (atomic_read(&fs_info->balance_running)) { 3928 atomic_inc(&fs_info->balance_pause_req); 3929 mutex_unlock(&fs_info->balance_mutex); 3930 3931 wait_event(fs_info->balance_wait_q, 3932 atomic_read(&fs_info->balance_running) == 0); 3933 3934 mutex_lock(&fs_info->balance_mutex); 3935 /* we are good with balance_ctl ripped off from under us */ 3936 BUG_ON(atomic_read(&fs_info->balance_running)); 3937 atomic_dec(&fs_info->balance_pause_req); 3938 } else { 3939 ret = -ENOTCONN; 3940 } 3941 3942 mutex_unlock(&fs_info->balance_mutex); 3943 return ret; 3944 } 3945 3946 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3947 { 3948 if (fs_info->sb->s_flags & MS_RDONLY) 3949 return -EROFS; 3950 3951 mutex_lock(&fs_info->balance_mutex); 3952 if (!fs_info->balance_ctl) { 3953 mutex_unlock(&fs_info->balance_mutex); 3954 return -ENOTCONN; 3955 } 3956 3957 atomic_inc(&fs_info->balance_cancel_req); 3958 /* 3959 * if we are running just wait and return, balance item is 3960 * deleted in btrfs_balance in this case 3961 */ 3962 if (atomic_read(&fs_info->balance_running)) { 3963 mutex_unlock(&fs_info->balance_mutex); 3964 wait_event(fs_info->balance_wait_q, 3965 atomic_read(&fs_info->balance_running) == 0); 3966 mutex_lock(&fs_info->balance_mutex); 3967 } else { 3968 /* __cancel_balance needs volume_mutex */ 3969 mutex_unlock(&fs_info->balance_mutex); 3970 mutex_lock(&fs_info->volume_mutex); 3971 mutex_lock(&fs_info->balance_mutex); 3972 3973 if (fs_info->balance_ctl) 3974 __cancel_balance(fs_info); 3975 3976 mutex_unlock(&fs_info->volume_mutex); 3977 } 3978 3979 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3980 atomic_dec(&fs_info->balance_cancel_req); 3981 mutex_unlock(&fs_info->balance_mutex); 3982 return 0; 3983 } 3984 3985 static int btrfs_uuid_scan_kthread(void *data) 3986 { 3987 struct btrfs_fs_info *fs_info = data; 3988 struct btrfs_root *root = fs_info->tree_root; 3989 struct btrfs_key key; 3990 struct btrfs_key max_key; 3991 struct btrfs_path *path = NULL; 3992 int ret = 0; 3993 struct extent_buffer *eb; 3994 int slot; 3995 struct btrfs_root_item root_item; 3996 u32 item_size; 3997 struct btrfs_trans_handle *trans = NULL; 3998 3999 path = btrfs_alloc_path(); 4000 if (!path) { 4001 ret = -ENOMEM; 4002 goto out; 4003 } 4004 4005 key.objectid = 0; 4006 key.type = BTRFS_ROOT_ITEM_KEY; 4007 key.offset = 0; 4008 4009 max_key.objectid = (u64)-1; 4010 max_key.type = BTRFS_ROOT_ITEM_KEY; 4011 max_key.offset = (u64)-1; 4012 4013 while (1) { 4014 ret = btrfs_search_forward(root, &key, path, 0); 4015 if (ret) { 4016 if (ret > 0) 4017 ret = 0; 4018 break; 4019 } 4020 4021 if (key.type != BTRFS_ROOT_ITEM_KEY || 4022 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4023 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4024 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4025 goto skip; 4026 4027 eb = path->nodes[0]; 4028 slot = path->slots[0]; 4029 item_size = btrfs_item_size_nr(eb, slot); 4030 if (item_size < sizeof(root_item)) 4031 goto skip; 4032 4033 read_extent_buffer(eb, &root_item, 4034 btrfs_item_ptr_offset(eb, slot), 4035 (int)sizeof(root_item)); 4036 if (btrfs_root_refs(&root_item) == 0) 4037 goto skip; 4038 4039 if (!btrfs_is_empty_uuid(root_item.uuid) || 4040 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4041 if (trans) 4042 goto update_tree; 4043 4044 btrfs_release_path(path); 4045 /* 4046 * 1 - subvol uuid item 4047 * 1 - received_subvol uuid item 4048 */ 4049 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4050 if (IS_ERR(trans)) { 4051 ret = PTR_ERR(trans); 4052 break; 4053 } 4054 continue; 4055 } else { 4056 goto skip; 4057 } 4058 update_tree: 4059 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4060 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 4061 root_item.uuid, 4062 BTRFS_UUID_KEY_SUBVOL, 4063 key.objectid); 4064 if (ret < 0) { 4065 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4066 ret); 4067 break; 4068 } 4069 } 4070 4071 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4072 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 4073 root_item.received_uuid, 4074 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4075 key.objectid); 4076 if (ret < 0) { 4077 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4078 ret); 4079 break; 4080 } 4081 } 4082 4083 skip: 4084 if (trans) { 4085 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 4086 trans = NULL; 4087 if (ret) 4088 break; 4089 } 4090 4091 btrfs_release_path(path); 4092 if (key.offset < (u64)-1) { 4093 key.offset++; 4094 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4095 key.offset = 0; 4096 key.type = BTRFS_ROOT_ITEM_KEY; 4097 } else if (key.objectid < (u64)-1) { 4098 key.offset = 0; 4099 key.type = BTRFS_ROOT_ITEM_KEY; 4100 key.objectid++; 4101 } else { 4102 break; 4103 } 4104 cond_resched(); 4105 } 4106 4107 out: 4108 btrfs_free_path(path); 4109 if (trans && !IS_ERR(trans)) 4110 btrfs_end_transaction(trans, fs_info->uuid_root); 4111 if (ret) 4112 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4113 else 4114 fs_info->update_uuid_tree_gen = 1; 4115 up(&fs_info->uuid_tree_rescan_sem); 4116 return 0; 4117 } 4118 4119 /* 4120 * Callback for btrfs_uuid_tree_iterate(). 4121 * returns: 4122 * 0 check succeeded, the entry is not outdated. 4123 * < 0 if an error occured. 4124 * > 0 if the check failed, which means the caller shall remove the entry. 4125 */ 4126 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4127 u8 *uuid, u8 type, u64 subid) 4128 { 4129 struct btrfs_key key; 4130 int ret = 0; 4131 struct btrfs_root *subvol_root; 4132 4133 if (type != BTRFS_UUID_KEY_SUBVOL && 4134 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4135 goto out; 4136 4137 key.objectid = subid; 4138 key.type = BTRFS_ROOT_ITEM_KEY; 4139 key.offset = (u64)-1; 4140 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4141 if (IS_ERR(subvol_root)) { 4142 ret = PTR_ERR(subvol_root); 4143 if (ret == -ENOENT) 4144 ret = 1; 4145 goto out; 4146 } 4147 4148 switch (type) { 4149 case BTRFS_UUID_KEY_SUBVOL: 4150 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4151 ret = 1; 4152 break; 4153 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4154 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4155 BTRFS_UUID_SIZE)) 4156 ret = 1; 4157 break; 4158 } 4159 4160 out: 4161 return ret; 4162 } 4163 4164 static int btrfs_uuid_rescan_kthread(void *data) 4165 { 4166 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4167 int ret; 4168 4169 /* 4170 * 1st step is to iterate through the existing UUID tree and 4171 * to delete all entries that contain outdated data. 4172 * 2nd step is to add all missing entries to the UUID tree. 4173 */ 4174 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4175 if (ret < 0) { 4176 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4177 up(&fs_info->uuid_tree_rescan_sem); 4178 return ret; 4179 } 4180 return btrfs_uuid_scan_kthread(data); 4181 } 4182 4183 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4184 { 4185 struct btrfs_trans_handle *trans; 4186 struct btrfs_root *tree_root = fs_info->tree_root; 4187 struct btrfs_root *uuid_root; 4188 struct task_struct *task; 4189 int ret; 4190 4191 /* 4192 * 1 - root node 4193 * 1 - root item 4194 */ 4195 trans = btrfs_start_transaction(tree_root, 2); 4196 if (IS_ERR(trans)) 4197 return PTR_ERR(trans); 4198 4199 uuid_root = btrfs_create_tree(trans, fs_info, 4200 BTRFS_UUID_TREE_OBJECTID); 4201 if (IS_ERR(uuid_root)) { 4202 ret = PTR_ERR(uuid_root); 4203 btrfs_abort_transaction(trans, tree_root, ret); 4204 return ret; 4205 } 4206 4207 fs_info->uuid_root = uuid_root; 4208 4209 ret = btrfs_commit_transaction(trans, tree_root); 4210 if (ret) 4211 return ret; 4212 4213 down(&fs_info->uuid_tree_rescan_sem); 4214 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4215 if (IS_ERR(task)) { 4216 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4217 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4218 up(&fs_info->uuid_tree_rescan_sem); 4219 return PTR_ERR(task); 4220 } 4221 4222 return 0; 4223 } 4224 4225 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4226 { 4227 struct task_struct *task; 4228 4229 down(&fs_info->uuid_tree_rescan_sem); 4230 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4231 if (IS_ERR(task)) { 4232 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4233 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4234 up(&fs_info->uuid_tree_rescan_sem); 4235 return PTR_ERR(task); 4236 } 4237 4238 return 0; 4239 } 4240 4241 /* 4242 * shrinking a device means finding all of the device extents past 4243 * the new size, and then following the back refs to the chunks. 4244 * The chunk relocation code actually frees the device extent 4245 */ 4246 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4247 { 4248 struct btrfs_trans_handle *trans; 4249 struct btrfs_root *root = device->dev_root; 4250 struct btrfs_dev_extent *dev_extent = NULL; 4251 struct btrfs_path *path; 4252 u64 length; 4253 u64 chunk_offset; 4254 int ret; 4255 int slot; 4256 int failed = 0; 4257 bool retried = false; 4258 bool checked_pending_chunks = false; 4259 struct extent_buffer *l; 4260 struct btrfs_key key; 4261 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4262 u64 old_total = btrfs_super_total_bytes(super_copy); 4263 u64 old_size = btrfs_device_get_total_bytes(device); 4264 u64 diff = old_size - new_size; 4265 4266 if (device->is_tgtdev_for_dev_replace) 4267 return -EINVAL; 4268 4269 path = btrfs_alloc_path(); 4270 if (!path) 4271 return -ENOMEM; 4272 4273 path->reada = 2; 4274 4275 lock_chunks(root); 4276 4277 btrfs_device_set_total_bytes(device, new_size); 4278 if (device->writeable) { 4279 device->fs_devices->total_rw_bytes -= diff; 4280 spin_lock(&root->fs_info->free_chunk_lock); 4281 root->fs_info->free_chunk_space -= diff; 4282 spin_unlock(&root->fs_info->free_chunk_lock); 4283 } 4284 unlock_chunks(root); 4285 4286 again: 4287 key.objectid = device->devid; 4288 key.offset = (u64)-1; 4289 key.type = BTRFS_DEV_EXTENT_KEY; 4290 4291 do { 4292 mutex_lock(&root->fs_info->delete_unused_bgs_mutex); 4293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4294 if (ret < 0) { 4295 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4296 goto done; 4297 } 4298 4299 ret = btrfs_previous_item(root, path, 0, key.type); 4300 if (ret) 4301 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4302 if (ret < 0) 4303 goto done; 4304 if (ret) { 4305 ret = 0; 4306 btrfs_release_path(path); 4307 break; 4308 } 4309 4310 l = path->nodes[0]; 4311 slot = path->slots[0]; 4312 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4313 4314 if (key.objectid != device->devid) { 4315 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4316 btrfs_release_path(path); 4317 break; 4318 } 4319 4320 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4321 length = btrfs_dev_extent_length(l, dev_extent); 4322 4323 if (key.offset + length <= new_size) { 4324 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4325 btrfs_release_path(path); 4326 break; 4327 } 4328 4329 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4330 btrfs_release_path(path); 4331 4332 ret = btrfs_relocate_chunk(root, chunk_offset); 4333 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex); 4334 if (ret && ret != -ENOSPC) 4335 goto done; 4336 if (ret == -ENOSPC) 4337 failed++; 4338 } while (key.offset-- > 0); 4339 4340 if (failed && !retried) { 4341 failed = 0; 4342 retried = true; 4343 goto again; 4344 } else if (failed && retried) { 4345 ret = -ENOSPC; 4346 goto done; 4347 } 4348 4349 /* Shrinking succeeded, else we would be at "done". */ 4350 trans = btrfs_start_transaction(root, 0); 4351 if (IS_ERR(trans)) { 4352 ret = PTR_ERR(trans); 4353 goto done; 4354 } 4355 4356 lock_chunks(root); 4357 4358 /* 4359 * We checked in the above loop all device extents that were already in 4360 * the device tree. However before we have updated the device's 4361 * total_bytes to the new size, we might have had chunk allocations that 4362 * have not complete yet (new block groups attached to transaction 4363 * handles), and therefore their device extents were not yet in the 4364 * device tree and we missed them in the loop above. So if we have any 4365 * pending chunk using a device extent that overlaps the device range 4366 * that we can not use anymore, commit the current transaction and 4367 * repeat the search on the device tree - this way we guarantee we will 4368 * not have chunks using device extents that end beyond 'new_size'. 4369 */ 4370 if (!checked_pending_chunks) { 4371 u64 start = new_size; 4372 u64 len = old_size - new_size; 4373 4374 if (contains_pending_extent(trans->transaction, device, 4375 &start, len)) { 4376 unlock_chunks(root); 4377 checked_pending_chunks = true; 4378 failed = 0; 4379 retried = false; 4380 ret = btrfs_commit_transaction(trans, root); 4381 if (ret) 4382 goto done; 4383 goto again; 4384 } 4385 } 4386 4387 btrfs_device_set_disk_total_bytes(device, new_size); 4388 if (list_empty(&device->resized_list)) 4389 list_add_tail(&device->resized_list, 4390 &root->fs_info->fs_devices->resized_devices); 4391 4392 WARN_ON(diff > old_total); 4393 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4394 unlock_chunks(root); 4395 4396 /* Now btrfs_update_device() will change the on-disk size. */ 4397 ret = btrfs_update_device(trans, device); 4398 btrfs_end_transaction(trans, root); 4399 done: 4400 btrfs_free_path(path); 4401 if (ret) { 4402 lock_chunks(root); 4403 btrfs_device_set_total_bytes(device, old_size); 4404 if (device->writeable) 4405 device->fs_devices->total_rw_bytes += diff; 4406 spin_lock(&root->fs_info->free_chunk_lock); 4407 root->fs_info->free_chunk_space += diff; 4408 spin_unlock(&root->fs_info->free_chunk_lock); 4409 unlock_chunks(root); 4410 } 4411 return ret; 4412 } 4413 4414 static int btrfs_add_system_chunk(struct btrfs_root *root, 4415 struct btrfs_key *key, 4416 struct btrfs_chunk *chunk, int item_size) 4417 { 4418 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4419 struct btrfs_disk_key disk_key; 4420 u32 array_size; 4421 u8 *ptr; 4422 4423 lock_chunks(root); 4424 array_size = btrfs_super_sys_array_size(super_copy); 4425 if (array_size + item_size + sizeof(disk_key) 4426 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4427 unlock_chunks(root); 4428 return -EFBIG; 4429 } 4430 4431 ptr = super_copy->sys_chunk_array + array_size; 4432 btrfs_cpu_key_to_disk(&disk_key, key); 4433 memcpy(ptr, &disk_key, sizeof(disk_key)); 4434 ptr += sizeof(disk_key); 4435 memcpy(ptr, chunk, item_size); 4436 item_size += sizeof(disk_key); 4437 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4438 unlock_chunks(root); 4439 4440 return 0; 4441 } 4442 4443 /* 4444 * sort the devices in descending order by max_avail, total_avail 4445 */ 4446 static int btrfs_cmp_device_info(const void *a, const void *b) 4447 { 4448 const struct btrfs_device_info *di_a = a; 4449 const struct btrfs_device_info *di_b = b; 4450 4451 if (di_a->max_avail > di_b->max_avail) 4452 return -1; 4453 if (di_a->max_avail < di_b->max_avail) 4454 return 1; 4455 if (di_a->total_avail > di_b->total_avail) 4456 return -1; 4457 if (di_a->total_avail < di_b->total_avail) 4458 return 1; 4459 return 0; 4460 } 4461 4462 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4463 { 4464 /* TODO allow them to set a preferred stripe size */ 4465 return 64 * 1024; 4466 } 4467 4468 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4469 { 4470 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4471 return; 4472 4473 btrfs_set_fs_incompat(info, RAID56); 4474 } 4475 4476 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ 4477 - sizeof(struct btrfs_item) \ 4478 - sizeof(struct btrfs_chunk)) \ 4479 / sizeof(struct btrfs_stripe) + 1) 4480 4481 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4482 - 2 * sizeof(struct btrfs_disk_key) \ 4483 - 2 * sizeof(struct btrfs_chunk)) \ 4484 / sizeof(struct btrfs_stripe) + 1) 4485 4486 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4487 struct btrfs_root *extent_root, u64 start, 4488 u64 type) 4489 { 4490 struct btrfs_fs_info *info = extent_root->fs_info; 4491 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4492 struct list_head *cur; 4493 struct map_lookup *map = NULL; 4494 struct extent_map_tree *em_tree; 4495 struct extent_map *em; 4496 struct btrfs_device_info *devices_info = NULL; 4497 u64 total_avail; 4498 int num_stripes; /* total number of stripes to allocate */ 4499 int data_stripes; /* number of stripes that count for 4500 block group size */ 4501 int sub_stripes; /* sub_stripes info for map */ 4502 int dev_stripes; /* stripes per dev */ 4503 int devs_max; /* max devs to use */ 4504 int devs_min; /* min devs needed */ 4505 int devs_increment; /* ndevs has to be a multiple of this */ 4506 int ncopies; /* how many copies to data has */ 4507 int ret; 4508 u64 max_stripe_size; 4509 u64 max_chunk_size; 4510 u64 stripe_size; 4511 u64 num_bytes; 4512 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4513 int ndevs; 4514 int i; 4515 int j; 4516 int index; 4517 4518 BUG_ON(!alloc_profile_is_valid(type, 0)); 4519 4520 if (list_empty(&fs_devices->alloc_list)) 4521 return -ENOSPC; 4522 4523 index = __get_raid_index(type); 4524 4525 sub_stripes = btrfs_raid_array[index].sub_stripes; 4526 dev_stripes = btrfs_raid_array[index].dev_stripes; 4527 devs_max = btrfs_raid_array[index].devs_max; 4528 devs_min = btrfs_raid_array[index].devs_min; 4529 devs_increment = btrfs_raid_array[index].devs_increment; 4530 ncopies = btrfs_raid_array[index].ncopies; 4531 4532 if (type & BTRFS_BLOCK_GROUP_DATA) { 4533 max_stripe_size = 1024 * 1024 * 1024; 4534 max_chunk_size = 10 * max_stripe_size; 4535 if (!devs_max) 4536 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4537 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4538 /* for larger filesystems, use larger metadata chunks */ 4539 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4540 max_stripe_size = 1024 * 1024 * 1024; 4541 else 4542 max_stripe_size = 256 * 1024 * 1024; 4543 max_chunk_size = max_stripe_size; 4544 if (!devs_max) 4545 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4546 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4547 max_stripe_size = 32 * 1024 * 1024; 4548 max_chunk_size = 2 * max_stripe_size; 4549 if (!devs_max) 4550 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4551 } else { 4552 btrfs_err(info, "invalid chunk type 0x%llx requested", 4553 type); 4554 BUG_ON(1); 4555 } 4556 4557 /* we don't want a chunk larger than 10% of writeable space */ 4558 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4559 max_chunk_size); 4560 4561 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4562 GFP_NOFS); 4563 if (!devices_info) 4564 return -ENOMEM; 4565 4566 cur = fs_devices->alloc_list.next; 4567 4568 /* 4569 * in the first pass through the devices list, we gather information 4570 * about the available holes on each device. 4571 */ 4572 ndevs = 0; 4573 while (cur != &fs_devices->alloc_list) { 4574 struct btrfs_device *device; 4575 u64 max_avail; 4576 u64 dev_offset; 4577 4578 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4579 4580 cur = cur->next; 4581 4582 if (!device->writeable) { 4583 WARN(1, KERN_ERR 4584 "BTRFS: read-only device in alloc_list\n"); 4585 continue; 4586 } 4587 4588 if (!device->in_fs_metadata || 4589 device->is_tgtdev_for_dev_replace) 4590 continue; 4591 4592 if (device->total_bytes > device->bytes_used) 4593 total_avail = device->total_bytes - device->bytes_used; 4594 else 4595 total_avail = 0; 4596 4597 /* If there is no space on this device, skip it. */ 4598 if (total_avail == 0) 4599 continue; 4600 4601 ret = find_free_dev_extent(trans, device, 4602 max_stripe_size * dev_stripes, 4603 &dev_offset, &max_avail); 4604 if (ret && ret != -ENOSPC) 4605 goto error; 4606 4607 if (ret == 0) 4608 max_avail = max_stripe_size * dev_stripes; 4609 4610 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4611 continue; 4612 4613 if (ndevs == fs_devices->rw_devices) { 4614 WARN(1, "%s: found more than %llu devices\n", 4615 __func__, fs_devices->rw_devices); 4616 break; 4617 } 4618 devices_info[ndevs].dev_offset = dev_offset; 4619 devices_info[ndevs].max_avail = max_avail; 4620 devices_info[ndevs].total_avail = total_avail; 4621 devices_info[ndevs].dev = device; 4622 ++ndevs; 4623 } 4624 4625 /* 4626 * now sort the devices by hole size / available space 4627 */ 4628 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4629 btrfs_cmp_device_info, NULL); 4630 4631 /* round down to number of usable stripes */ 4632 ndevs -= ndevs % devs_increment; 4633 4634 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4635 ret = -ENOSPC; 4636 goto error; 4637 } 4638 4639 if (devs_max && ndevs > devs_max) 4640 ndevs = devs_max; 4641 /* 4642 * the primary goal is to maximize the number of stripes, so use as many 4643 * devices as possible, even if the stripes are not maximum sized. 4644 */ 4645 stripe_size = devices_info[ndevs-1].max_avail; 4646 num_stripes = ndevs * dev_stripes; 4647 4648 /* 4649 * this will have to be fixed for RAID1 and RAID10 over 4650 * more drives 4651 */ 4652 data_stripes = num_stripes / ncopies; 4653 4654 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4655 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4656 btrfs_super_stripesize(info->super_copy)); 4657 data_stripes = num_stripes - 1; 4658 } 4659 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4660 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4661 btrfs_super_stripesize(info->super_copy)); 4662 data_stripes = num_stripes - 2; 4663 } 4664 4665 /* 4666 * Use the number of data stripes to figure out how big this chunk 4667 * is really going to be in terms of logical address space, 4668 * and compare that answer with the max chunk size 4669 */ 4670 if (stripe_size * data_stripes > max_chunk_size) { 4671 u64 mask = (1ULL << 24) - 1; 4672 4673 stripe_size = div_u64(max_chunk_size, data_stripes); 4674 4675 /* bump the answer up to a 16MB boundary */ 4676 stripe_size = (stripe_size + mask) & ~mask; 4677 4678 /* but don't go higher than the limits we found 4679 * while searching for free extents 4680 */ 4681 if (stripe_size > devices_info[ndevs-1].max_avail) 4682 stripe_size = devices_info[ndevs-1].max_avail; 4683 } 4684 4685 stripe_size = div_u64(stripe_size, dev_stripes); 4686 4687 /* align to BTRFS_STRIPE_LEN */ 4688 stripe_size = div_u64(stripe_size, raid_stripe_len); 4689 stripe_size *= raid_stripe_len; 4690 4691 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4692 if (!map) { 4693 ret = -ENOMEM; 4694 goto error; 4695 } 4696 map->num_stripes = num_stripes; 4697 4698 for (i = 0; i < ndevs; ++i) { 4699 for (j = 0; j < dev_stripes; ++j) { 4700 int s = i * dev_stripes + j; 4701 map->stripes[s].dev = devices_info[i].dev; 4702 map->stripes[s].physical = devices_info[i].dev_offset + 4703 j * stripe_size; 4704 } 4705 } 4706 map->sector_size = extent_root->sectorsize; 4707 map->stripe_len = raid_stripe_len; 4708 map->io_align = raid_stripe_len; 4709 map->io_width = raid_stripe_len; 4710 map->type = type; 4711 map->sub_stripes = sub_stripes; 4712 4713 num_bytes = stripe_size * data_stripes; 4714 4715 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4716 4717 em = alloc_extent_map(); 4718 if (!em) { 4719 kfree(map); 4720 ret = -ENOMEM; 4721 goto error; 4722 } 4723 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4724 em->bdev = (struct block_device *)map; 4725 em->start = start; 4726 em->len = num_bytes; 4727 em->block_start = 0; 4728 em->block_len = em->len; 4729 em->orig_block_len = stripe_size; 4730 4731 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4732 write_lock(&em_tree->lock); 4733 ret = add_extent_mapping(em_tree, em, 0); 4734 if (!ret) { 4735 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4736 atomic_inc(&em->refs); 4737 } 4738 write_unlock(&em_tree->lock); 4739 if (ret) { 4740 free_extent_map(em); 4741 goto error; 4742 } 4743 4744 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4745 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4746 start, num_bytes); 4747 if (ret) 4748 goto error_del_extent; 4749 4750 for (i = 0; i < map->num_stripes; i++) { 4751 num_bytes = map->stripes[i].dev->bytes_used + stripe_size; 4752 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); 4753 } 4754 4755 spin_lock(&extent_root->fs_info->free_chunk_lock); 4756 extent_root->fs_info->free_chunk_space -= (stripe_size * 4757 map->num_stripes); 4758 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4759 4760 free_extent_map(em); 4761 check_raid56_incompat_flag(extent_root->fs_info, type); 4762 4763 kfree(devices_info); 4764 return 0; 4765 4766 error_del_extent: 4767 write_lock(&em_tree->lock); 4768 remove_extent_mapping(em_tree, em); 4769 write_unlock(&em_tree->lock); 4770 4771 /* One for our allocation */ 4772 free_extent_map(em); 4773 /* One for the tree reference */ 4774 free_extent_map(em); 4775 /* One for the pending_chunks list reference */ 4776 free_extent_map(em); 4777 error: 4778 kfree(devices_info); 4779 return ret; 4780 } 4781 4782 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4783 struct btrfs_root *extent_root, 4784 u64 chunk_offset, u64 chunk_size) 4785 { 4786 struct btrfs_key key; 4787 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4788 struct btrfs_device *device; 4789 struct btrfs_chunk *chunk; 4790 struct btrfs_stripe *stripe; 4791 struct extent_map_tree *em_tree; 4792 struct extent_map *em; 4793 struct map_lookup *map; 4794 size_t item_size; 4795 u64 dev_offset; 4796 u64 stripe_size; 4797 int i = 0; 4798 int ret; 4799 4800 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4801 read_lock(&em_tree->lock); 4802 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4803 read_unlock(&em_tree->lock); 4804 4805 if (!em) { 4806 btrfs_crit(extent_root->fs_info, "unable to find logical " 4807 "%Lu len %Lu", chunk_offset, chunk_size); 4808 return -EINVAL; 4809 } 4810 4811 if (em->start != chunk_offset || em->len != chunk_size) { 4812 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4813 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4814 chunk_size, em->start, em->len); 4815 free_extent_map(em); 4816 return -EINVAL; 4817 } 4818 4819 map = (struct map_lookup *)em->bdev; 4820 item_size = btrfs_chunk_item_size(map->num_stripes); 4821 stripe_size = em->orig_block_len; 4822 4823 chunk = kzalloc(item_size, GFP_NOFS); 4824 if (!chunk) { 4825 ret = -ENOMEM; 4826 goto out; 4827 } 4828 4829 for (i = 0; i < map->num_stripes; i++) { 4830 device = map->stripes[i].dev; 4831 dev_offset = map->stripes[i].physical; 4832 4833 ret = btrfs_update_device(trans, device); 4834 if (ret) 4835 goto out; 4836 ret = btrfs_alloc_dev_extent(trans, device, 4837 chunk_root->root_key.objectid, 4838 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4839 chunk_offset, dev_offset, 4840 stripe_size); 4841 if (ret) 4842 goto out; 4843 } 4844 4845 stripe = &chunk->stripe; 4846 for (i = 0; i < map->num_stripes; i++) { 4847 device = map->stripes[i].dev; 4848 dev_offset = map->stripes[i].physical; 4849 4850 btrfs_set_stack_stripe_devid(stripe, device->devid); 4851 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4852 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4853 stripe++; 4854 } 4855 4856 btrfs_set_stack_chunk_length(chunk, chunk_size); 4857 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4858 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4859 btrfs_set_stack_chunk_type(chunk, map->type); 4860 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4861 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4862 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4863 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4864 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4865 4866 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4867 key.type = BTRFS_CHUNK_ITEM_KEY; 4868 key.offset = chunk_offset; 4869 4870 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4871 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4872 /* 4873 * TODO: Cleanup of inserted chunk root in case of 4874 * failure. 4875 */ 4876 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4877 item_size); 4878 } 4879 4880 out: 4881 kfree(chunk); 4882 free_extent_map(em); 4883 return ret; 4884 } 4885 4886 /* 4887 * Chunk allocation falls into two parts. The first part does works 4888 * that make the new allocated chunk useable, but not do any operation 4889 * that modifies the chunk tree. The second part does the works that 4890 * require modifying the chunk tree. This division is important for the 4891 * bootstrap process of adding storage to a seed btrfs. 4892 */ 4893 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4894 struct btrfs_root *extent_root, u64 type) 4895 { 4896 u64 chunk_offset; 4897 4898 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex)); 4899 chunk_offset = find_next_chunk(extent_root->fs_info); 4900 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4901 } 4902 4903 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4904 struct btrfs_root *root, 4905 struct btrfs_device *device) 4906 { 4907 u64 chunk_offset; 4908 u64 sys_chunk_offset; 4909 u64 alloc_profile; 4910 struct btrfs_fs_info *fs_info = root->fs_info; 4911 struct btrfs_root *extent_root = fs_info->extent_root; 4912 int ret; 4913 4914 chunk_offset = find_next_chunk(fs_info); 4915 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4916 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4917 alloc_profile); 4918 if (ret) 4919 return ret; 4920 4921 sys_chunk_offset = find_next_chunk(root->fs_info); 4922 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4923 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4924 alloc_profile); 4925 return ret; 4926 } 4927 4928 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 4929 { 4930 int max_errors; 4931 4932 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 4933 BTRFS_BLOCK_GROUP_RAID10 | 4934 BTRFS_BLOCK_GROUP_RAID5 | 4935 BTRFS_BLOCK_GROUP_DUP)) { 4936 max_errors = 1; 4937 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 4938 max_errors = 2; 4939 } else { 4940 max_errors = 0; 4941 } 4942 4943 return max_errors; 4944 } 4945 4946 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4947 { 4948 struct extent_map *em; 4949 struct map_lookup *map; 4950 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4951 int readonly = 0; 4952 int miss_ndevs = 0; 4953 int i; 4954 4955 read_lock(&map_tree->map_tree.lock); 4956 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4957 read_unlock(&map_tree->map_tree.lock); 4958 if (!em) 4959 return 1; 4960 4961 map = (struct map_lookup *)em->bdev; 4962 for (i = 0; i < map->num_stripes; i++) { 4963 if (map->stripes[i].dev->missing) { 4964 miss_ndevs++; 4965 continue; 4966 } 4967 4968 if (!map->stripes[i].dev->writeable) { 4969 readonly = 1; 4970 goto end; 4971 } 4972 } 4973 4974 /* 4975 * If the number of missing devices is larger than max errors, 4976 * we can not write the data into that chunk successfully, so 4977 * set it readonly. 4978 */ 4979 if (miss_ndevs > btrfs_chunk_max_errors(map)) 4980 readonly = 1; 4981 end: 4982 free_extent_map(em); 4983 return readonly; 4984 } 4985 4986 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4987 { 4988 extent_map_tree_init(&tree->map_tree); 4989 } 4990 4991 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4992 { 4993 struct extent_map *em; 4994 4995 while (1) { 4996 write_lock(&tree->map_tree.lock); 4997 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4998 if (em) 4999 remove_extent_mapping(&tree->map_tree, em); 5000 write_unlock(&tree->map_tree.lock); 5001 if (!em) 5002 break; 5003 /* once for us */ 5004 free_extent_map(em); 5005 /* once for the tree */ 5006 free_extent_map(em); 5007 } 5008 } 5009 5010 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5011 { 5012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5013 struct extent_map *em; 5014 struct map_lookup *map; 5015 struct extent_map_tree *em_tree = &map_tree->map_tree; 5016 int ret; 5017 5018 read_lock(&em_tree->lock); 5019 em = lookup_extent_mapping(em_tree, logical, len); 5020 read_unlock(&em_tree->lock); 5021 5022 /* 5023 * We could return errors for these cases, but that could get ugly and 5024 * we'd probably do the same thing which is just not do anything else 5025 * and exit, so return 1 so the callers don't try to use other copies. 5026 */ 5027 if (!em) { 5028 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 5029 logical+len); 5030 return 1; 5031 } 5032 5033 if (em->start > logical || em->start + em->len < logical) { 5034 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 5035 "%Lu-%Lu", logical, logical+len, em->start, 5036 em->start + em->len); 5037 free_extent_map(em); 5038 return 1; 5039 } 5040 5041 map = (struct map_lookup *)em->bdev; 5042 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5043 ret = map->num_stripes; 5044 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5045 ret = map->sub_stripes; 5046 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5047 ret = 2; 5048 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5049 ret = 3; 5050 else 5051 ret = 1; 5052 free_extent_map(em); 5053 5054 btrfs_dev_replace_lock(&fs_info->dev_replace); 5055 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 5056 ret++; 5057 btrfs_dev_replace_unlock(&fs_info->dev_replace); 5058 5059 return ret; 5060 } 5061 5062 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 5063 struct btrfs_mapping_tree *map_tree, 5064 u64 logical) 5065 { 5066 struct extent_map *em; 5067 struct map_lookup *map; 5068 struct extent_map_tree *em_tree = &map_tree->map_tree; 5069 unsigned long len = root->sectorsize; 5070 5071 read_lock(&em_tree->lock); 5072 em = lookup_extent_mapping(em_tree, logical, len); 5073 read_unlock(&em_tree->lock); 5074 BUG_ON(!em); 5075 5076 BUG_ON(em->start > logical || em->start + em->len < logical); 5077 map = (struct map_lookup *)em->bdev; 5078 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5079 len = map->stripe_len * nr_data_stripes(map); 5080 free_extent_map(em); 5081 return len; 5082 } 5083 5084 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 5085 u64 logical, u64 len, int mirror_num) 5086 { 5087 struct extent_map *em; 5088 struct map_lookup *map; 5089 struct extent_map_tree *em_tree = &map_tree->map_tree; 5090 int ret = 0; 5091 5092 read_lock(&em_tree->lock); 5093 em = lookup_extent_mapping(em_tree, logical, len); 5094 read_unlock(&em_tree->lock); 5095 BUG_ON(!em); 5096 5097 BUG_ON(em->start > logical || em->start + em->len < logical); 5098 map = (struct map_lookup *)em->bdev; 5099 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5100 ret = 1; 5101 free_extent_map(em); 5102 return ret; 5103 } 5104 5105 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5106 struct map_lookup *map, int first, int num, 5107 int optimal, int dev_replace_is_ongoing) 5108 { 5109 int i; 5110 int tolerance; 5111 struct btrfs_device *srcdev; 5112 5113 if (dev_replace_is_ongoing && 5114 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5115 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5116 srcdev = fs_info->dev_replace.srcdev; 5117 else 5118 srcdev = NULL; 5119 5120 /* 5121 * try to avoid the drive that is the source drive for a 5122 * dev-replace procedure, only choose it if no other non-missing 5123 * mirror is available 5124 */ 5125 for (tolerance = 0; tolerance < 2; tolerance++) { 5126 if (map->stripes[optimal].dev->bdev && 5127 (tolerance || map->stripes[optimal].dev != srcdev)) 5128 return optimal; 5129 for (i = first; i < first + num; i++) { 5130 if (map->stripes[i].dev->bdev && 5131 (tolerance || map->stripes[i].dev != srcdev)) 5132 return i; 5133 } 5134 } 5135 5136 /* we couldn't find one that doesn't fail. Just return something 5137 * and the io error handling code will clean up eventually 5138 */ 5139 return optimal; 5140 } 5141 5142 static inline int parity_smaller(u64 a, u64 b) 5143 { 5144 return a > b; 5145 } 5146 5147 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5148 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5149 { 5150 struct btrfs_bio_stripe s; 5151 int i; 5152 u64 l; 5153 int again = 1; 5154 5155 while (again) { 5156 again = 0; 5157 for (i = 0; i < num_stripes - 1; i++) { 5158 if (parity_smaller(bbio->raid_map[i], 5159 bbio->raid_map[i+1])) { 5160 s = bbio->stripes[i]; 5161 l = bbio->raid_map[i]; 5162 bbio->stripes[i] = bbio->stripes[i+1]; 5163 bbio->raid_map[i] = bbio->raid_map[i+1]; 5164 bbio->stripes[i+1] = s; 5165 bbio->raid_map[i+1] = l; 5166 5167 again = 1; 5168 } 5169 } 5170 } 5171 } 5172 5173 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5174 { 5175 struct btrfs_bio *bbio = kzalloc( 5176 /* the size of the btrfs_bio */ 5177 sizeof(struct btrfs_bio) + 5178 /* plus the variable array for the stripes */ 5179 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5180 /* plus the variable array for the tgt dev */ 5181 sizeof(int) * (real_stripes) + 5182 /* 5183 * plus the raid_map, which includes both the tgt dev 5184 * and the stripes 5185 */ 5186 sizeof(u64) * (total_stripes), 5187 GFP_NOFS|__GFP_NOFAIL); 5188 5189 atomic_set(&bbio->error, 0); 5190 atomic_set(&bbio->refs, 1); 5191 5192 return bbio; 5193 } 5194 5195 void btrfs_get_bbio(struct btrfs_bio *bbio) 5196 { 5197 WARN_ON(!atomic_read(&bbio->refs)); 5198 atomic_inc(&bbio->refs); 5199 } 5200 5201 void btrfs_put_bbio(struct btrfs_bio *bbio) 5202 { 5203 if (!bbio) 5204 return; 5205 if (atomic_dec_and_test(&bbio->refs)) 5206 kfree(bbio); 5207 } 5208 5209 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5210 u64 logical, u64 *length, 5211 struct btrfs_bio **bbio_ret, 5212 int mirror_num, int need_raid_map) 5213 { 5214 struct extent_map *em; 5215 struct map_lookup *map; 5216 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 5217 struct extent_map_tree *em_tree = &map_tree->map_tree; 5218 u64 offset; 5219 u64 stripe_offset; 5220 u64 stripe_end_offset; 5221 u64 stripe_nr; 5222 u64 stripe_nr_orig; 5223 u64 stripe_nr_end; 5224 u64 stripe_len; 5225 u32 stripe_index; 5226 int i; 5227 int ret = 0; 5228 int num_stripes; 5229 int max_errors = 0; 5230 int tgtdev_indexes = 0; 5231 struct btrfs_bio *bbio = NULL; 5232 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5233 int dev_replace_is_ongoing = 0; 5234 int num_alloc_stripes; 5235 int patch_the_first_stripe_for_dev_replace = 0; 5236 u64 physical_to_patch_in_first_stripe = 0; 5237 u64 raid56_full_stripe_start = (u64)-1; 5238 5239 read_lock(&em_tree->lock); 5240 em = lookup_extent_mapping(em_tree, logical, *length); 5241 read_unlock(&em_tree->lock); 5242 5243 if (!em) { 5244 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 5245 logical, *length); 5246 return -EINVAL; 5247 } 5248 5249 if (em->start > logical || em->start + em->len < logical) { 5250 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 5251 "found %Lu-%Lu", logical, em->start, 5252 em->start + em->len); 5253 free_extent_map(em); 5254 return -EINVAL; 5255 } 5256 5257 map = (struct map_lookup *)em->bdev; 5258 offset = logical - em->start; 5259 5260 stripe_len = map->stripe_len; 5261 stripe_nr = offset; 5262 /* 5263 * stripe_nr counts the total number of stripes we have to stride 5264 * to get to this block 5265 */ 5266 stripe_nr = div64_u64(stripe_nr, stripe_len); 5267 5268 stripe_offset = stripe_nr * stripe_len; 5269 BUG_ON(offset < stripe_offset); 5270 5271 /* stripe_offset is the offset of this block in its stripe*/ 5272 stripe_offset = offset - stripe_offset; 5273 5274 /* if we're here for raid56, we need to know the stripe aligned start */ 5275 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5276 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5277 raid56_full_stripe_start = offset; 5278 5279 /* allow a write of a full stripe, but make sure we don't 5280 * allow straddling of stripes 5281 */ 5282 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5283 full_stripe_len); 5284 raid56_full_stripe_start *= full_stripe_len; 5285 } 5286 5287 if (rw & REQ_DISCARD) { 5288 /* we don't discard raid56 yet */ 5289 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5290 ret = -EOPNOTSUPP; 5291 goto out; 5292 } 5293 *length = min_t(u64, em->len - offset, *length); 5294 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5295 u64 max_len; 5296 /* For writes to RAID[56], allow a full stripeset across all disks. 5297 For other RAID types and for RAID[56] reads, just allow a single 5298 stripe (on a single disk). */ 5299 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 5300 (rw & REQ_WRITE)) { 5301 max_len = stripe_len * nr_data_stripes(map) - 5302 (offset - raid56_full_stripe_start); 5303 } else { 5304 /* we limit the length of each bio to what fits in a stripe */ 5305 max_len = stripe_len - stripe_offset; 5306 } 5307 *length = min_t(u64, em->len - offset, max_len); 5308 } else { 5309 *length = em->len - offset; 5310 } 5311 5312 /* This is for when we're called from btrfs_merge_bio_hook() and all 5313 it cares about is the length */ 5314 if (!bbio_ret) 5315 goto out; 5316 5317 btrfs_dev_replace_lock(dev_replace); 5318 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 5319 if (!dev_replace_is_ongoing) 5320 btrfs_dev_replace_unlock(dev_replace); 5321 5322 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 5323 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 5324 dev_replace->tgtdev != NULL) { 5325 /* 5326 * in dev-replace case, for repair case (that's the only 5327 * case where the mirror is selected explicitly when 5328 * calling btrfs_map_block), blocks left of the left cursor 5329 * can also be read from the target drive. 5330 * For REQ_GET_READ_MIRRORS, the target drive is added as 5331 * the last one to the array of stripes. For READ, it also 5332 * needs to be supported using the same mirror number. 5333 * If the requested block is not left of the left cursor, 5334 * EIO is returned. This can happen because btrfs_num_copies() 5335 * returns one more in the dev-replace case. 5336 */ 5337 u64 tmp_length = *length; 5338 struct btrfs_bio *tmp_bbio = NULL; 5339 int tmp_num_stripes; 5340 u64 srcdev_devid = dev_replace->srcdev->devid; 5341 int index_srcdev = 0; 5342 int found = 0; 5343 u64 physical_of_found = 0; 5344 5345 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 5346 logical, &tmp_length, &tmp_bbio, 0, 0); 5347 if (ret) { 5348 WARN_ON(tmp_bbio != NULL); 5349 goto out; 5350 } 5351 5352 tmp_num_stripes = tmp_bbio->num_stripes; 5353 if (mirror_num > tmp_num_stripes) { 5354 /* 5355 * REQ_GET_READ_MIRRORS does not contain this 5356 * mirror, that means that the requested area 5357 * is not left of the left cursor 5358 */ 5359 ret = -EIO; 5360 btrfs_put_bbio(tmp_bbio); 5361 goto out; 5362 } 5363 5364 /* 5365 * process the rest of the function using the mirror_num 5366 * of the source drive. Therefore look it up first. 5367 * At the end, patch the device pointer to the one of the 5368 * target drive. 5369 */ 5370 for (i = 0; i < tmp_num_stripes; i++) { 5371 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 5372 /* 5373 * In case of DUP, in order to keep it 5374 * simple, only add the mirror with the 5375 * lowest physical address 5376 */ 5377 if (found && 5378 physical_of_found <= 5379 tmp_bbio->stripes[i].physical) 5380 continue; 5381 index_srcdev = i; 5382 found = 1; 5383 physical_of_found = 5384 tmp_bbio->stripes[i].physical; 5385 } 5386 } 5387 5388 if (found) { 5389 mirror_num = index_srcdev + 1; 5390 patch_the_first_stripe_for_dev_replace = 1; 5391 physical_to_patch_in_first_stripe = physical_of_found; 5392 } else { 5393 WARN_ON(1); 5394 ret = -EIO; 5395 btrfs_put_bbio(tmp_bbio); 5396 goto out; 5397 } 5398 5399 btrfs_put_bbio(tmp_bbio); 5400 } else if (mirror_num > map->num_stripes) { 5401 mirror_num = 0; 5402 } 5403 5404 num_stripes = 1; 5405 stripe_index = 0; 5406 stripe_nr_orig = stripe_nr; 5407 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5408 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len); 5409 stripe_end_offset = stripe_nr_end * map->stripe_len - 5410 (offset + *length); 5411 5412 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5413 if (rw & REQ_DISCARD) 5414 num_stripes = min_t(u64, map->num_stripes, 5415 stripe_nr_end - stripe_nr_orig); 5416 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5417 &stripe_index); 5418 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))) 5419 mirror_num = 1; 5420 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5421 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 5422 num_stripes = map->num_stripes; 5423 else if (mirror_num) 5424 stripe_index = mirror_num - 1; 5425 else { 5426 stripe_index = find_live_mirror(fs_info, map, 0, 5427 map->num_stripes, 5428 current->pid % map->num_stripes, 5429 dev_replace_is_ongoing); 5430 mirror_num = stripe_index + 1; 5431 } 5432 5433 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5434 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 5435 num_stripes = map->num_stripes; 5436 } else if (mirror_num) { 5437 stripe_index = mirror_num - 1; 5438 } else { 5439 mirror_num = 1; 5440 } 5441 5442 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5443 u32 factor = map->num_stripes / map->sub_stripes; 5444 5445 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5446 stripe_index *= map->sub_stripes; 5447 5448 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5449 num_stripes = map->sub_stripes; 5450 else if (rw & REQ_DISCARD) 5451 num_stripes = min_t(u64, map->sub_stripes * 5452 (stripe_nr_end - stripe_nr_orig), 5453 map->num_stripes); 5454 else if (mirror_num) 5455 stripe_index += mirror_num - 1; 5456 else { 5457 int old_stripe_index = stripe_index; 5458 stripe_index = find_live_mirror(fs_info, map, 5459 stripe_index, 5460 map->sub_stripes, stripe_index + 5461 current->pid % map->sub_stripes, 5462 dev_replace_is_ongoing); 5463 mirror_num = stripe_index - old_stripe_index + 1; 5464 } 5465 5466 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5467 if (need_raid_map && 5468 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5469 mirror_num > 1)) { 5470 /* push stripe_nr back to the start of the full stripe */ 5471 stripe_nr = div_u64(raid56_full_stripe_start, 5472 stripe_len * nr_data_stripes(map)); 5473 5474 /* RAID[56] write or recovery. Return all stripes */ 5475 num_stripes = map->num_stripes; 5476 max_errors = nr_parity_stripes(map); 5477 5478 *length = map->stripe_len; 5479 stripe_index = 0; 5480 stripe_offset = 0; 5481 } else { 5482 /* 5483 * Mirror #0 or #1 means the original data block. 5484 * Mirror #2 is RAID5 parity block. 5485 * Mirror #3 is RAID6 Q block. 5486 */ 5487 stripe_nr = div_u64_rem(stripe_nr, 5488 nr_data_stripes(map), &stripe_index); 5489 if (mirror_num > 1) 5490 stripe_index = nr_data_stripes(map) + 5491 mirror_num - 2; 5492 5493 /* We distribute the parity blocks across stripes */ 5494 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 5495 &stripe_index); 5496 if (!(rw & (REQ_WRITE | REQ_DISCARD | 5497 REQ_GET_READ_MIRRORS)) && mirror_num <= 1) 5498 mirror_num = 1; 5499 } 5500 } else { 5501 /* 5502 * after this, stripe_nr is the number of stripes on this 5503 * device we have to walk to find the data, and stripe_index is 5504 * the number of our device in the stripe array 5505 */ 5506 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5507 &stripe_index); 5508 mirror_num = stripe_index + 1; 5509 } 5510 BUG_ON(stripe_index >= map->num_stripes); 5511 5512 num_alloc_stripes = num_stripes; 5513 if (dev_replace_is_ongoing) { 5514 if (rw & (REQ_WRITE | REQ_DISCARD)) 5515 num_alloc_stripes <<= 1; 5516 if (rw & REQ_GET_READ_MIRRORS) 5517 num_alloc_stripes++; 5518 tgtdev_indexes = num_stripes; 5519 } 5520 5521 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 5522 if (!bbio) { 5523 ret = -ENOMEM; 5524 goto out; 5525 } 5526 if (dev_replace_is_ongoing) 5527 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 5528 5529 /* build raid_map */ 5530 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && 5531 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) || 5532 mirror_num > 1)) { 5533 u64 tmp; 5534 unsigned rot; 5535 5536 bbio->raid_map = (u64 *)((void *)bbio->stripes + 5537 sizeof(struct btrfs_bio_stripe) * 5538 num_alloc_stripes + 5539 sizeof(int) * tgtdev_indexes); 5540 5541 /* Work out the disk rotation on this stripe-set */ 5542 div_u64_rem(stripe_nr, num_stripes, &rot); 5543 5544 /* Fill in the logical address of each stripe */ 5545 tmp = stripe_nr * nr_data_stripes(map); 5546 for (i = 0; i < nr_data_stripes(map); i++) 5547 bbio->raid_map[(i+rot) % num_stripes] = 5548 em->start + (tmp + i) * map->stripe_len; 5549 5550 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5551 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5552 bbio->raid_map[(i+rot+1) % num_stripes] = 5553 RAID6_Q_STRIPE; 5554 } 5555 5556 if (rw & REQ_DISCARD) { 5557 u32 factor = 0; 5558 u32 sub_stripes = 0; 5559 u64 stripes_per_dev = 0; 5560 u32 remaining_stripes = 0; 5561 u32 last_stripe = 0; 5562 5563 if (map->type & 5564 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5565 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5566 sub_stripes = 1; 5567 else 5568 sub_stripes = map->sub_stripes; 5569 5570 factor = map->num_stripes / sub_stripes; 5571 stripes_per_dev = div_u64_rem(stripe_nr_end - 5572 stripe_nr_orig, 5573 factor, 5574 &remaining_stripes); 5575 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5576 last_stripe *= sub_stripes; 5577 } 5578 5579 for (i = 0; i < num_stripes; i++) { 5580 bbio->stripes[i].physical = 5581 map->stripes[stripe_index].physical + 5582 stripe_offset + stripe_nr * map->stripe_len; 5583 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5584 5585 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5586 BTRFS_BLOCK_GROUP_RAID10)) { 5587 bbio->stripes[i].length = stripes_per_dev * 5588 map->stripe_len; 5589 5590 if (i / sub_stripes < remaining_stripes) 5591 bbio->stripes[i].length += 5592 map->stripe_len; 5593 5594 /* 5595 * Special for the first stripe and 5596 * the last stripe: 5597 * 5598 * |-------|...|-------| 5599 * |----------| 5600 * off end_off 5601 */ 5602 if (i < sub_stripes) 5603 bbio->stripes[i].length -= 5604 stripe_offset; 5605 5606 if (stripe_index >= last_stripe && 5607 stripe_index <= (last_stripe + 5608 sub_stripes - 1)) 5609 bbio->stripes[i].length -= 5610 stripe_end_offset; 5611 5612 if (i == sub_stripes - 1) 5613 stripe_offset = 0; 5614 } else 5615 bbio->stripes[i].length = *length; 5616 5617 stripe_index++; 5618 if (stripe_index == map->num_stripes) { 5619 /* This could only happen for RAID0/10 */ 5620 stripe_index = 0; 5621 stripe_nr++; 5622 } 5623 } 5624 } else { 5625 for (i = 0; i < num_stripes; i++) { 5626 bbio->stripes[i].physical = 5627 map->stripes[stripe_index].physical + 5628 stripe_offset + 5629 stripe_nr * map->stripe_len; 5630 bbio->stripes[i].dev = 5631 map->stripes[stripe_index].dev; 5632 stripe_index++; 5633 } 5634 } 5635 5636 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5637 max_errors = btrfs_chunk_max_errors(map); 5638 5639 if (bbio->raid_map) 5640 sort_parity_stripes(bbio, num_stripes); 5641 5642 tgtdev_indexes = 0; 5643 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5644 dev_replace->tgtdev != NULL) { 5645 int index_where_to_add; 5646 u64 srcdev_devid = dev_replace->srcdev->devid; 5647 5648 /* 5649 * duplicate the write operations while the dev replace 5650 * procedure is running. Since the copying of the old disk 5651 * to the new disk takes place at run time while the 5652 * filesystem is mounted writable, the regular write 5653 * operations to the old disk have to be duplicated to go 5654 * to the new disk as well. 5655 * Note that device->missing is handled by the caller, and 5656 * that the write to the old disk is already set up in the 5657 * stripes array. 5658 */ 5659 index_where_to_add = num_stripes; 5660 for (i = 0; i < num_stripes; i++) { 5661 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5662 /* write to new disk, too */ 5663 struct btrfs_bio_stripe *new = 5664 bbio->stripes + index_where_to_add; 5665 struct btrfs_bio_stripe *old = 5666 bbio->stripes + i; 5667 5668 new->physical = old->physical; 5669 new->length = old->length; 5670 new->dev = dev_replace->tgtdev; 5671 bbio->tgtdev_map[i] = index_where_to_add; 5672 index_where_to_add++; 5673 max_errors++; 5674 tgtdev_indexes++; 5675 } 5676 } 5677 num_stripes = index_where_to_add; 5678 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5679 dev_replace->tgtdev != NULL) { 5680 u64 srcdev_devid = dev_replace->srcdev->devid; 5681 int index_srcdev = 0; 5682 int found = 0; 5683 u64 physical_of_found = 0; 5684 5685 /* 5686 * During the dev-replace procedure, the target drive can 5687 * also be used to read data in case it is needed to repair 5688 * a corrupt block elsewhere. This is possible if the 5689 * requested area is left of the left cursor. In this area, 5690 * the target drive is a full copy of the source drive. 5691 */ 5692 for (i = 0; i < num_stripes; i++) { 5693 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5694 /* 5695 * In case of DUP, in order to keep it 5696 * simple, only add the mirror with the 5697 * lowest physical address 5698 */ 5699 if (found && 5700 physical_of_found <= 5701 bbio->stripes[i].physical) 5702 continue; 5703 index_srcdev = i; 5704 found = 1; 5705 physical_of_found = bbio->stripes[i].physical; 5706 } 5707 } 5708 if (found) { 5709 if (physical_of_found + map->stripe_len <= 5710 dev_replace->cursor_left) { 5711 struct btrfs_bio_stripe *tgtdev_stripe = 5712 bbio->stripes + num_stripes; 5713 5714 tgtdev_stripe->physical = physical_of_found; 5715 tgtdev_stripe->length = 5716 bbio->stripes[index_srcdev].length; 5717 tgtdev_stripe->dev = dev_replace->tgtdev; 5718 bbio->tgtdev_map[index_srcdev] = num_stripes; 5719 5720 tgtdev_indexes++; 5721 num_stripes++; 5722 } 5723 } 5724 } 5725 5726 *bbio_ret = bbio; 5727 bbio->map_type = map->type; 5728 bbio->num_stripes = num_stripes; 5729 bbio->max_errors = max_errors; 5730 bbio->mirror_num = mirror_num; 5731 bbio->num_tgtdevs = tgtdev_indexes; 5732 5733 /* 5734 * this is the case that REQ_READ && dev_replace_is_ongoing && 5735 * mirror_num == num_stripes + 1 && dev_replace target drive is 5736 * available as a mirror 5737 */ 5738 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5739 WARN_ON(num_stripes > 1); 5740 bbio->stripes[0].dev = dev_replace->tgtdev; 5741 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5742 bbio->mirror_num = map->num_stripes + 1; 5743 } 5744 out: 5745 if (dev_replace_is_ongoing) 5746 btrfs_dev_replace_unlock(dev_replace); 5747 free_extent_map(em); 5748 return ret; 5749 } 5750 5751 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5752 u64 logical, u64 *length, 5753 struct btrfs_bio **bbio_ret, int mirror_num) 5754 { 5755 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5756 mirror_num, 0); 5757 } 5758 5759 /* For Scrub/replace */ 5760 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw, 5761 u64 logical, u64 *length, 5762 struct btrfs_bio **bbio_ret, int mirror_num, 5763 int need_raid_map) 5764 { 5765 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5766 mirror_num, need_raid_map); 5767 } 5768 5769 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5770 u64 chunk_start, u64 physical, u64 devid, 5771 u64 **logical, int *naddrs, int *stripe_len) 5772 { 5773 struct extent_map_tree *em_tree = &map_tree->map_tree; 5774 struct extent_map *em; 5775 struct map_lookup *map; 5776 u64 *buf; 5777 u64 bytenr; 5778 u64 length; 5779 u64 stripe_nr; 5780 u64 rmap_len; 5781 int i, j, nr = 0; 5782 5783 read_lock(&em_tree->lock); 5784 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5785 read_unlock(&em_tree->lock); 5786 5787 if (!em) { 5788 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5789 chunk_start); 5790 return -EIO; 5791 } 5792 5793 if (em->start != chunk_start) { 5794 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5795 em->start, chunk_start); 5796 free_extent_map(em); 5797 return -EIO; 5798 } 5799 map = (struct map_lookup *)em->bdev; 5800 5801 length = em->len; 5802 rmap_len = map->stripe_len; 5803 5804 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5805 length = div_u64(length, map->num_stripes / map->sub_stripes); 5806 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5807 length = div_u64(length, map->num_stripes); 5808 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5809 length = div_u64(length, nr_data_stripes(map)); 5810 rmap_len = map->stripe_len * nr_data_stripes(map); 5811 } 5812 5813 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 5814 BUG_ON(!buf); /* -ENOMEM */ 5815 5816 for (i = 0; i < map->num_stripes; i++) { 5817 if (devid && map->stripes[i].dev->devid != devid) 5818 continue; 5819 if (map->stripes[i].physical > physical || 5820 map->stripes[i].physical + length <= physical) 5821 continue; 5822 5823 stripe_nr = physical - map->stripes[i].physical; 5824 stripe_nr = div_u64(stripe_nr, map->stripe_len); 5825 5826 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5827 stripe_nr = stripe_nr * map->num_stripes + i; 5828 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 5829 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5830 stripe_nr = stripe_nr * map->num_stripes + i; 5831 } /* else if RAID[56], multiply by nr_data_stripes(). 5832 * Alternatively, just use rmap_len below instead of 5833 * map->stripe_len */ 5834 5835 bytenr = chunk_start + stripe_nr * rmap_len; 5836 WARN_ON(nr >= map->num_stripes); 5837 for (j = 0; j < nr; j++) { 5838 if (buf[j] == bytenr) 5839 break; 5840 } 5841 if (j == nr) { 5842 WARN_ON(nr >= map->num_stripes); 5843 buf[nr++] = bytenr; 5844 } 5845 } 5846 5847 *logical = buf; 5848 *naddrs = nr; 5849 *stripe_len = rmap_len; 5850 5851 free_extent_map(em); 5852 return 0; 5853 } 5854 5855 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 5856 { 5857 bio->bi_private = bbio->private; 5858 bio->bi_end_io = bbio->end_io; 5859 bio_endio(bio); 5860 5861 btrfs_put_bbio(bbio); 5862 } 5863 5864 static void btrfs_end_bio(struct bio *bio) 5865 { 5866 struct btrfs_bio *bbio = bio->bi_private; 5867 int is_orig_bio = 0; 5868 5869 if (bio->bi_error) { 5870 atomic_inc(&bbio->error); 5871 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) { 5872 unsigned int stripe_index = 5873 btrfs_io_bio(bio)->stripe_index; 5874 struct btrfs_device *dev; 5875 5876 BUG_ON(stripe_index >= bbio->num_stripes); 5877 dev = bbio->stripes[stripe_index].dev; 5878 if (dev->bdev) { 5879 if (bio->bi_rw & WRITE) 5880 btrfs_dev_stat_inc(dev, 5881 BTRFS_DEV_STAT_WRITE_ERRS); 5882 else 5883 btrfs_dev_stat_inc(dev, 5884 BTRFS_DEV_STAT_READ_ERRS); 5885 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5886 btrfs_dev_stat_inc(dev, 5887 BTRFS_DEV_STAT_FLUSH_ERRS); 5888 btrfs_dev_stat_print_on_error(dev); 5889 } 5890 } 5891 } 5892 5893 if (bio == bbio->orig_bio) 5894 is_orig_bio = 1; 5895 5896 btrfs_bio_counter_dec(bbio->fs_info); 5897 5898 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5899 if (!is_orig_bio) { 5900 bio_put(bio); 5901 bio = bbio->orig_bio; 5902 } 5903 5904 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5905 /* only send an error to the higher layers if it is 5906 * beyond the tolerance of the btrfs bio 5907 */ 5908 if (atomic_read(&bbio->error) > bbio->max_errors) { 5909 bio->bi_error = -EIO; 5910 } else { 5911 /* 5912 * this bio is actually up to date, we didn't 5913 * go over the max number of errors 5914 */ 5915 bio->bi_error = 0; 5916 } 5917 5918 btrfs_end_bbio(bbio, bio); 5919 } else if (!is_orig_bio) { 5920 bio_put(bio); 5921 } 5922 } 5923 5924 /* 5925 * see run_scheduled_bios for a description of why bios are collected for 5926 * async submit. 5927 * 5928 * This will add one bio to the pending list for a device and make sure 5929 * the work struct is scheduled. 5930 */ 5931 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5932 struct btrfs_device *device, 5933 int rw, struct bio *bio) 5934 { 5935 int should_queue = 1; 5936 struct btrfs_pending_bios *pending_bios; 5937 5938 if (device->missing || !device->bdev) { 5939 bio_io_error(bio); 5940 return; 5941 } 5942 5943 /* don't bother with additional async steps for reads, right now */ 5944 if (!(rw & REQ_WRITE)) { 5945 bio_get(bio); 5946 btrfsic_submit_bio(rw, bio); 5947 bio_put(bio); 5948 return; 5949 } 5950 5951 /* 5952 * nr_async_bios allows us to reliably return congestion to the 5953 * higher layers. Otherwise, the async bio makes it appear we have 5954 * made progress against dirty pages when we've really just put it 5955 * on a queue for later 5956 */ 5957 atomic_inc(&root->fs_info->nr_async_bios); 5958 WARN_ON(bio->bi_next); 5959 bio->bi_next = NULL; 5960 bio->bi_rw |= rw; 5961 5962 spin_lock(&device->io_lock); 5963 if (bio->bi_rw & REQ_SYNC) 5964 pending_bios = &device->pending_sync_bios; 5965 else 5966 pending_bios = &device->pending_bios; 5967 5968 if (pending_bios->tail) 5969 pending_bios->tail->bi_next = bio; 5970 5971 pending_bios->tail = bio; 5972 if (!pending_bios->head) 5973 pending_bios->head = bio; 5974 if (device->running_pending) 5975 should_queue = 0; 5976 5977 spin_unlock(&device->io_lock); 5978 5979 if (should_queue) 5980 btrfs_queue_work(root->fs_info->submit_workers, 5981 &device->work); 5982 } 5983 5984 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5985 struct bio *bio, u64 physical, int dev_nr, 5986 int rw, int async) 5987 { 5988 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5989 5990 bio->bi_private = bbio; 5991 btrfs_io_bio(bio)->stripe_index = dev_nr; 5992 bio->bi_end_io = btrfs_end_bio; 5993 bio->bi_iter.bi_sector = physical >> 9; 5994 #ifdef DEBUG 5995 { 5996 struct rcu_string *name; 5997 5998 rcu_read_lock(); 5999 name = rcu_dereference(dev->name); 6000 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 6001 "(%s id %llu), size=%u\n", rw, 6002 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev, 6003 name->str, dev->devid, bio->bi_iter.bi_size); 6004 rcu_read_unlock(); 6005 } 6006 #endif 6007 bio->bi_bdev = dev->bdev; 6008 6009 btrfs_bio_counter_inc_noblocked(root->fs_info); 6010 6011 if (async) 6012 btrfs_schedule_bio(root, dev, rw, bio); 6013 else 6014 btrfsic_submit_bio(rw, bio); 6015 } 6016 6017 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6018 { 6019 atomic_inc(&bbio->error); 6020 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6021 /* Shoud be the original bio. */ 6022 WARN_ON(bio != bbio->orig_bio); 6023 6024 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6025 bio->bi_iter.bi_sector = logical >> 9; 6026 bio->bi_error = -EIO; 6027 btrfs_end_bbio(bbio, bio); 6028 } 6029 } 6030 6031 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 6032 int mirror_num, int async_submit) 6033 { 6034 struct btrfs_device *dev; 6035 struct bio *first_bio = bio; 6036 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6037 u64 length = 0; 6038 u64 map_length; 6039 int ret; 6040 int dev_nr; 6041 int total_devs; 6042 struct btrfs_bio *bbio = NULL; 6043 6044 length = bio->bi_iter.bi_size; 6045 map_length = length; 6046 6047 btrfs_bio_counter_inc_blocked(root->fs_info); 6048 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 6049 mirror_num, 1); 6050 if (ret) { 6051 btrfs_bio_counter_dec(root->fs_info); 6052 return ret; 6053 } 6054 6055 total_devs = bbio->num_stripes; 6056 bbio->orig_bio = first_bio; 6057 bbio->private = first_bio->bi_private; 6058 bbio->end_io = first_bio->bi_end_io; 6059 bbio->fs_info = root->fs_info; 6060 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6061 6062 if (bbio->raid_map) { 6063 /* In this case, map_length has been set to the length of 6064 a single stripe; not the whole write */ 6065 if (rw & WRITE) { 6066 ret = raid56_parity_write(root, bio, bbio, map_length); 6067 } else { 6068 ret = raid56_parity_recover(root, bio, bbio, map_length, 6069 mirror_num, 1); 6070 } 6071 6072 btrfs_bio_counter_dec(root->fs_info); 6073 return ret; 6074 } 6075 6076 if (map_length < length) { 6077 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 6078 logical, length, map_length); 6079 BUG(); 6080 } 6081 6082 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6083 dev = bbio->stripes[dev_nr].dev; 6084 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 6085 bbio_error(bbio, first_bio, logical); 6086 continue; 6087 } 6088 6089 if (dev_nr < total_devs - 1) { 6090 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 6091 BUG_ON(!bio); /* -ENOMEM */ 6092 } else 6093 bio = first_bio; 6094 6095 submit_stripe_bio(root, bbio, bio, 6096 bbio->stripes[dev_nr].physical, dev_nr, rw, 6097 async_submit); 6098 } 6099 btrfs_bio_counter_dec(root->fs_info); 6100 return 0; 6101 } 6102 6103 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 6104 u8 *uuid, u8 *fsid) 6105 { 6106 struct btrfs_device *device; 6107 struct btrfs_fs_devices *cur_devices; 6108 6109 cur_devices = fs_info->fs_devices; 6110 while (cur_devices) { 6111 if (!fsid || 6112 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 6113 device = __find_device(&cur_devices->devices, 6114 devid, uuid); 6115 if (device) 6116 return device; 6117 } 6118 cur_devices = cur_devices->seed; 6119 } 6120 return NULL; 6121 } 6122 6123 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 6124 struct btrfs_fs_devices *fs_devices, 6125 u64 devid, u8 *dev_uuid) 6126 { 6127 struct btrfs_device *device; 6128 6129 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6130 if (IS_ERR(device)) 6131 return NULL; 6132 6133 list_add(&device->dev_list, &fs_devices->devices); 6134 device->fs_devices = fs_devices; 6135 fs_devices->num_devices++; 6136 6137 device->missing = 1; 6138 fs_devices->missing_devices++; 6139 6140 return device; 6141 } 6142 6143 /** 6144 * btrfs_alloc_device - allocate struct btrfs_device 6145 * @fs_info: used only for generating a new devid, can be NULL if 6146 * devid is provided (i.e. @devid != NULL). 6147 * @devid: a pointer to devid for this device. If NULL a new devid 6148 * is generated. 6149 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6150 * is generated. 6151 * 6152 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6153 * on error. Returned struct is not linked onto any lists and can be 6154 * destroyed with kfree() right away. 6155 */ 6156 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6157 const u64 *devid, 6158 const u8 *uuid) 6159 { 6160 struct btrfs_device *dev; 6161 u64 tmp; 6162 6163 if (WARN_ON(!devid && !fs_info)) 6164 return ERR_PTR(-EINVAL); 6165 6166 dev = __alloc_device(); 6167 if (IS_ERR(dev)) 6168 return dev; 6169 6170 if (devid) 6171 tmp = *devid; 6172 else { 6173 int ret; 6174 6175 ret = find_next_devid(fs_info, &tmp); 6176 if (ret) { 6177 kfree(dev); 6178 return ERR_PTR(ret); 6179 } 6180 } 6181 dev->devid = tmp; 6182 6183 if (uuid) 6184 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6185 else 6186 generate_random_uuid(dev->uuid); 6187 6188 btrfs_init_work(&dev->work, btrfs_submit_helper, 6189 pending_bios_fn, NULL, NULL); 6190 6191 return dev; 6192 } 6193 6194 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 6195 struct extent_buffer *leaf, 6196 struct btrfs_chunk *chunk) 6197 { 6198 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6199 struct map_lookup *map; 6200 struct extent_map *em; 6201 u64 logical; 6202 u64 length; 6203 u64 devid; 6204 u8 uuid[BTRFS_UUID_SIZE]; 6205 int num_stripes; 6206 int ret; 6207 int i; 6208 6209 logical = key->offset; 6210 length = btrfs_chunk_length(leaf, chunk); 6211 6212 read_lock(&map_tree->map_tree.lock); 6213 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6214 read_unlock(&map_tree->map_tree.lock); 6215 6216 /* already mapped? */ 6217 if (em && em->start <= logical && em->start + em->len > logical) { 6218 free_extent_map(em); 6219 return 0; 6220 } else if (em) { 6221 free_extent_map(em); 6222 } 6223 6224 em = alloc_extent_map(); 6225 if (!em) 6226 return -ENOMEM; 6227 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6228 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6229 if (!map) { 6230 free_extent_map(em); 6231 return -ENOMEM; 6232 } 6233 6234 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6235 em->bdev = (struct block_device *)map; 6236 em->start = logical; 6237 em->len = length; 6238 em->orig_start = 0; 6239 em->block_start = 0; 6240 em->block_len = em->len; 6241 6242 map->num_stripes = num_stripes; 6243 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6244 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6245 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 6246 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6247 map->type = btrfs_chunk_type(leaf, chunk); 6248 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6249 for (i = 0; i < num_stripes; i++) { 6250 map->stripes[i].physical = 6251 btrfs_stripe_offset_nr(leaf, chunk, i); 6252 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6253 read_extent_buffer(leaf, uuid, (unsigned long) 6254 btrfs_stripe_dev_uuid_nr(chunk, i), 6255 BTRFS_UUID_SIZE); 6256 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 6257 uuid, NULL); 6258 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 6259 free_extent_map(em); 6260 return -EIO; 6261 } 6262 if (!map->stripes[i].dev) { 6263 map->stripes[i].dev = 6264 add_missing_dev(root, root->fs_info->fs_devices, 6265 devid, uuid); 6266 if (!map->stripes[i].dev) { 6267 free_extent_map(em); 6268 return -EIO; 6269 } 6270 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing", 6271 devid, uuid); 6272 } 6273 map->stripes[i].dev->in_fs_metadata = 1; 6274 } 6275 6276 write_lock(&map_tree->map_tree.lock); 6277 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6278 write_unlock(&map_tree->map_tree.lock); 6279 BUG_ON(ret); /* Tree corruption */ 6280 free_extent_map(em); 6281 6282 return 0; 6283 } 6284 6285 static void fill_device_from_item(struct extent_buffer *leaf, 6286 struct btrfs_dev_item *dev_item, 6287 struct btrfs_device *device) 6288 { 6289 unsigned long ptr; 6290 6291 device->devid = btrfs_device_id(leaf, dev_item); 6292 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6293 device->total_bytes = device->disk_total_bytes; 6294 device->commit_total_bytes = device->disk_total_bytes; 6295 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6296 device->commit_bytes_used = device->bytes_used; 6297 device->type = btrfs_device_type(leaf, dev_item); 6298 device->io_align = btrfs_device_io_align(leaf, dev_item); 6299 device->io_width = btrfs_device_io_width(leaf, dev_item); 6300 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6301 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6302 device->is_tgtdev_for_dev_replace = 0; 6303 6304 ptr = btrfs_device_uuid(dev_item); 6305 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6306 } 6307 6308 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root, 6309 u8 *fsid) 6310 { 6311 struct btrfs_fs_devices *fs_devices; 6312 int ret; 6313 6314 BUG_ON(!mutex_is_locked(&uuid_mutex)); 6315 6316 fs_devices = root->fs_info->fs_devices->seed; 6317 while (fs_devices) { 6318 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) 6319 return fs_devices; 6320 6321 fs_devices = fs_devices->seed; 6322 } 6323 6324 fs_devices = find_fsid(fsid); 6325 if (!fs_devices) { 6326 if (!btrfs_test_opt(root, DEGRADED)) 6327 return ERR_PTR(-ENOENT); 6328 6329 fs_devices = alloc_fs_devices(fsid); 6330 if (IS_ERR(fs_devices)) 6331 return fs_devices; 6332 6333 fs_devices->seeding = 1; 6334 fs_devices->opened = 1; 6335 return fs_devices; 6336 } 6337 6338 fs_devices = clone_fs_devices(fs_devices); 6339 if (IS_ERR(fs_devices)) 6340 return fs_devices; 6341 6342 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6343 root->fs_info->bdev_holder); 6344 if (ret) { 6345 free_fs_devices(fs_devices); 6346 fs_devices = ERR_PTR(ret); 6347 goto out; 6348 } 6349 6350 if (!fs_devices->seeding) { 6351 __btrfs_close_devices(fs_devices); 6352 free_fs_devices(fs_devices); 6353 fs_devices = ERR_PTR(-EINVAL); 6354 goto out; 6355 } 6356 6357 fs_devices->seed = root->fs_info->fs_devices->seed; 6358 root->fs_info->fs_devices->seed = fs_devices; 6359 out: 6360 return fs_devices; 6361 } 6362 6363 static int read_one_dev(struct btrfs_root *root, 6364 struct extent_buffer *leaf, 6365 struct btrfs_dev_item *dev_item) 6366 { 6367 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6368 struct btrfs_device *device; 6369 u64 devid; 6370 int ret; 6371 u8 fs_uuid[BTRFS_UUID_SIZE]; 6372 u8 dev_uuid[BTRFS_UUID_SIZE]; 6373 6374 devid = btrfs_device_id(leaf, dev_item); 6375 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6376 BTRFS_UUID_SIZE); 6377 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6378 BTRFS_UUID_SIZE); 6379 6380 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6381 fs_devices = open_seed_devices(root, fs_uuid); 6382 if (IS_ERR(fs_devices)) 6383 return PTR_ERR(fs_devices); 6384 } 6385 6386 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6387 if (!device) { 6388 if (!btrfs_test_opt(root, DEGRADED)) 6389 return -EIO; 6390 6391 device = add_missing_dev(root, fs_devices, devid, dev_uuid); 6392 if (!device) 6393 return -ENOMEM; 6394 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing", 6395 devid, dev_uuid); 6396 } else { 6397 if (!device->bdev && !btrfs_test_opt(root, DEGRADED)) 6398 return -EIO; 6399 6400 if(!device->bdev && !device->missing) { 6401 /* 6402 * this happens when a device that was properly setup 6403 * in the device info lists suddenly goes bad. 6404 * device->bdev is NULL, and so we have to set 6405 * device->missing to one here 6406 */ 6407 device->fs_devices->missing_devices++; 6408 device->missing = 1; 6409 } 6410 6411 /* Move the device to its own fs_devices */ 6412 if (device->fs_devices != fs_devices) { 6413 ASSERT(device->missing); 6414 6415 list_move(&device->dev_list, &fs_devices->devices); 6416 device->fs_devices->num_devices--; 6417 fs_devices->num_devices++; 6418 6419 device->fs_devices->missing_devices--; 6420 fs_devices->missing_devices++; 6421 6422 device->fs_devices = fs_devices; 6423 } 6424 } 6425 6426 if (device->fs_devices != root->fs_info->fs_devices) { 6427 BUG_ON(device->writeable); 6428 if (device->generation != 6429 btrfs_device_generation(leaf, dev_item)) 6430 return -EINVAL; 6431 } 6432 6433 fill_device_from_item(leaf, dev_item, device); 6434 device->in_fs_metadata = 1; 6435 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6436 device->fs_devices->total_rw_bytes += device->total_bytes; 6437 spin_lock(&root->fs_info->free_chunk_lock); 6438 root->fs_info->free_chunk_space += device->total_bytes - 6439 device->bytes_used; 6440 spin_unlock(&root->fs_info->free_chunk_lock); 6441 } 6442 ret = 0; 6443 return ret; 6444 } 6445 6446 int btrfs_read_sys_array(struct btrfs_root *root) 6447 { 6448 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6449 struct extent_buffer *sb; 6450 struct btrfs_disk_key *disk_key; 6451 struct btrfs_chunk *chunk; 6452 u8 *array_ptr; 6453 unsigned long sb_array_offset; 6454 int ret = 0; 6455 u32 num_stripes; 6456 u32 array_size; 6457 u32 len = 0; 6458 u32 cur_offset; 6459 struct btrfs_key key; 6460 6461 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize); 6462 /* 6463 * This will create extent buffer of nodesize, superblock size is 6464 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6465 * overallocate but we can keep it as-is, only the first page is used. 6466 */ 6467 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET); 6468 if (!sb) 6469 return -ENOMEM; 6470 btrfs_set_buffer_uptodate(sb); 6471 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6472 /* 6473 * The sb extent buffer is artifical and just used to read the system array. 6474 * btrfs_set_buffer_uptodate() call does not properly mark all it's 6475 * pages up-to-date when the page is larger: extent does not cover the 6476 * whole page and consequently check_page_uptodate does not find all 6477 * the page's extents up-to-date (the hole beyond sb), 6478 * write_extent_buffer then triggers a WARN_ON. 6479 * 6480 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6481 * but sb spans only this function. Add an explicit SetPageUptodate call 6482 * to silence the warning eg. on PowerPC 64. 6483 */ 6484 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 6485 SetPageUptodate(sb->pages[0]); 6486 6487 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6488 array_size = btrfs_super_sys_array_size(super_copy); 6489 6490 array_ptr = super_copy->sys_chunk_array; 6491 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6492 cur_offset = 0; 6493 6494 while (cur_offset < array_size) { 6495 disk_key = (struct btrfs_disk_key *)array_ptr; 6496 len = sizeof(*disk_key); 6497 if (cur_offset + len > array_size) 6498 goto out_short_read; 6499 6500 btrfs_disk_key_to_cpu(&key, disk_key); 6501 6502 array_ptr += len; 6503 sb_array_offset += len; 6504 cur_offset += len; 6505 6506 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6507 chunk = (struct btrfs_chunk *)sb_array_offset; 6508 /* 6509 * At least one btrfs_chunk with one stripe must be 6510 * present, exact stripe count check comes afterwards 6511 */ 6512 len = btrfs_chunk_item_size(1); 6513 if (cur_offset + len > array_size) 6514 goto out_short_read; 6515 6516 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6517 len = btrfs_chunk_item_size(num_stripes); 6518 if (cur_offset + len > array_size) 6519 goto out_short_read; 6520 6521 ret = read_one_chunk(root, &key, sb, chunk); 6522 if (ret) 6523 break; 6524 } else { 6525 ret = -EIO; 6526 break; 6527 } 6528 array_ptr += len; 6529 sb_array_offset += len; 6530 cur_offset += len; 6531 } 6532 free_extent_buffer(sb); 6533 return ret; 6534 6535 out_short_read: 6536 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n", 6537 len, cur_offset); 6538 free_extent_buffer(sb); 6539 return -EIO; 6540 } 6541 6542 int btrfs_read_chunk_tree(struct btrfs_root *root) 6543 { 6544 struct btrfs_path *path; 6545 struct extent_buffer *leaf; 6546 struct btrfs_key key; 6547 struct btrfs_key found_key; 6548 int ret; 6549 int slot; 6550 6551 root = root->fs_info->chunk_root; 6552 6553 path = btrfs_alloc_path(); 6554 if (!path) 6555 return -ENOMEM; 6556 6557 mutex_lock(&uuid_mutex); 6558 lock_chunks(root); 6559 6560 /* 6561 * Read all device items, and then all the chunk items. All 6562 * device items are found before any chunk item (their object id 6563 * is smaller than the lowest possible object id for a chunk 6564 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6565 */ 6566 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6567 key.offset = 0; 6568 key.type = 0; 6569 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6570 if (ret < 0) 6571 goto error; 6572 while (1) { 6573 leaf = path->nodes[0]; 6574 slot = path->slots[0]; 6575 if (slot >= btrfs_header_nritems(leaf)) { 6576 ret = btrfs_next_leaf(root, path); 6577 if (ret == 0) 6578 continue; 6579 if (ret < 0) 6580 goto error; 6581 break; 6582 } 6583 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6584 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6585 struct btrfs_dev_item *dev_item; 6586 dev_item = btrfs_item_ptr(leaf, slot, 6587 struct btrfs_dev_item); 6588 ret = read_one_dev(root, leaf, dev_item); 6589 if (ret) 6590 goto error; 6591 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6592 struct btrfs_chunk *chunk; 6593 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6594 ret = read_one_chunk(root, &found_key, leaf, chunk); 6595 if (ret) 6596 goto error; 6597 } 6598 path->slots[0]++; 6599 } 6600 ret = 0; 6601 error: 6602 unlock_chunks(root); 6603 mutex_unlock(&uuid_mutex); 6604 6605 btrfs_free_path(path); 6606 return ret; 6607 } 6608 6609 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6610 { 6611 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6612 struct btrfs_device *device; 6613 6614 while (fs_devices) { 6615 mutex_lock(&fs_devices->device_list_mutex); 6616 list_for_each_entry(device, &fs_devices->devices, dev_list) 6617 device->dev_root = fs_info->dev_root; 6618 mutex_unlock(&fs_devices->device_list_mutex); 6619 6620 fs_devices = fs_devices->seed; 6621 } 6622 } 6623 6624 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6625 { 6626 int i; 6627 6628 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6629 btrfs_dev_stat_reset(dev, i); 6630 } 6631 6632 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6633 { 6634 struct btrfs_key key; 6635 struct btrfs_key found_key; 6636 struct btrfs_root *dev_root = fs_info->dev_root; 6637 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6638 struct extent_buffer *eb; 6639 int slot; 6640 int ret = 0; 6641 struct btrfs_device *device; 6642 struct btrfs_path *path = NULL; 6643 int i; 6644 6645 path = btrfs_alloc_path(); 6646 if (!path) { 6647 ret = -ENOMEM; 6648 goto out; 6649 } 6650 6651 mutex_lock(&fs_devices->device_list_mutex); 6652 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6653 int item_size; 6654 struct btrfs_dev_stats_item *ptr; 6655 6656 key.objectid = 0; 6657 key.type = BTRFS_DEV_STATS_KEY; 6658 key.offset = device->devid; 6659 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6660 if (ret) { 6661 __btrfs_reset_dev_stats(device); 6662 device->dev_stats_valid = 1; 6663 btrfs_release_path(path); 6664 continue; 6665 } 6666 slot = path->slots[0]; 6667 eb = path->nodes[0]; 6668 btrfs_item_key_to_cpu(eb, &found_key, slot); 6669 item_size = btrfs_item_size_nr(eb, slot); 6670 6671 ptr = btrfs_item_ptr(eb, slot, 6672 struct btrfs_dev_stats_item); 6673 6674 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6675 if (item_size >= (1 + i) * sizeof(__le64)) 6676 btrfs_dev_stat_set(device, i, 6677 btrfs_dev_stats_value(eb, ptr, i)); 6678 else 6679 btrfs_dev_stat_reset(device, i); 6680 } 6681 6682 device->dev_stats_valid = 1; 6683 btrfs_dev_stat_print_on_load(device); 6684 btrfs_release_path(path); 6685 } 6686 mutex_unlock(&fs_devices->device_list_mutex); 6687 6688 out: 6689 btrfs_free_path(path); 6690 return ret < 0 ? ret : 0; 6691 } 6692 6693 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6694 struct btrfs_root *dev_root, 6695 struct btrfs_device *device) 6696 { 6697 struct btrfs_path *path; 6698 struct btrfs_key key; 6699 struct extent_buffer *eb; 6700 struct btrfs_dev_stats_item *ptr; 6701 int ret; 6702 int i; 6703 6704 key.objectid = 0; 6705 key.type = BTRFS_DEV_STATS_KEY; 6706 key.offset = device->devid; 6707 6708 path = btrfs_alloc_path(); 6709 BUG_ON(!path); 6710 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6711 if (ret < 0) { 6712 btrfs_warn_in_rcu(dev_root->fs_info, 6713 "error %d while searching for dev_stats item for device %s", 6714 ret, rcu_str_deref(device->name)); 6715 goto out; 6716 } 6717 6718 if (ret == 0 && 6719 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6720 /* need to delete old one and insert a new one */ 6721 ret = btrfs_del_item(trans, dev_root, path); 6722 if (ret != 0) { 6723 btrfs_warn_in_rcu(dev_root->fs_info, 6724 "delete too small dev_stats item for device %s failed %d", 6725 rcu_str_deref(device->name), ret); 6726 goto out; 6727 } 6728 ret = 1; 6729 } 6730 6731 if (ret == 1) { 6732 /* need to insert a new item */ 6733 btrfs_release_path(path); 6734 ret = btrfs_insert_empty_item(trans, dev_root, path, 6735 &key, sizeof(*ptr)); 6736 if (ret < 0) { 6737 btrfs_warn_in_rcu(dev_root->fs_info, 6738 "insert dev_stats item for device %s failed %d", 6739 rcu_str_deref(device->name), ret); 6740 goto out; 6741 } 6742 } 6743 6744 eb = path->nodes[0]; 6745 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6746 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6747 btrfs_set_dev_stats_value(eb, ptr, i, 6748 btrfs_dev_stat_read(device, i)); 6749 btrfs_mark_buffer_dirty(eb); 6750 6751 out: 6752 btrfs_free_path(path); 6753 return ret; 6754 } 6755 6756 /* 6757 * called from commit_transaction. Writes all changed device stats to disk. 6758 */ 6759 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6760 struct btrfs_fs_info *fs_info) 6761 { 6762 struct btrfs_root *dev_root = fs_info->dev_root; 6763 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6764 struct btrfs_device *device; 6765 int stats_cnt; 6766 int ret = 0; 6767 6768 mutex_lock(&fs_devices->device_list_mutex); 6769 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6770 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device)) 6771 continue; 6772 6773 stats_cnt = atomic_read(&device->dev_stats_ccnt); 6774 ret = update_dev_stat_item(trans, dev_root, device); 6775 if (!ret) 6776 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 6777 } 6778 mutex_unlock(&fs_devices->device_list_mutex); 6779 6780 return ret; 6781 } 6782 6783 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6784 { 6785 btrfs_dev_stat_inc(dev, index); 6786 btrfs_dev_stat_print_on_error(dev); 6787 } 6788 6789 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6790 { 6791 if (!dev->dev_stats_valid) 6792 return; 6793 btrfs_err_rl_in_rcu(dev->dev_root->fs_info, 6794 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 6795 rcu_str_deref(dev->name), 6796 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6797 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6798 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6799 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6800 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6801 } 6802 6803 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6804 { 6805 int i; 6806 6807 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6808 if (btrfs_dev_stat_read(dev, i) != 0) 6809 break; 6810 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6811 return; /* all values == 0, suppress message */ 6812 6813 btrfs_info_in_rcu(dev->dev_root->fs_info, 6814 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 6815 rcu_str_deref(dev->name), 6816 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6817 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6818 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6819 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6820 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6821 } 6822 6823 int btrfs_get_dev_stats(struct btrfs_root *root, 6824 struct btrfs_ioctl_get_dev_stats *stats) 6825 { 6826 struct btrfs_device *dev; 6827 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6828 int i; 6829 6830 mutex_lock(&fs_devices->device_list_mutex); 6831 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6832 mutex_unlock(&fs_devices->device_list_mutex); 6833 6834 if (!dev) { 6835 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 6836 return -ENODEV; 6837 } else if (!dev->dev_stats_valid) { 6838 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 6839 return -ENODEV; 6840 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6841 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6842 if (stats->nr_items > i) 6843 stats->values[i] = 6844 btrfs_dev_stat_read_and_reset(dev, i); 6845 else 6846 btrfs_dev_stat_reset(dev, i); 6847 } 6848 } else { 6849 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6850 if (stats->nr_items > i) 6851 stats->values[i] = btrfs_dev_stat_read(dev, i); 6852 } 6853 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6854 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6855 return 0; 6856 } 6857 6858 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path) 6859 { 6860 struct buffer_head *bh; 6861 struct btrfs_super_block *disk_super; 6862 int copy_num; 6863 6864 if (!bdev) 6865 return; 6866 6867 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 6868 copy_num++) { 6869 6870 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 6871 continue; 6872 6873 disk_super = (struct btrfs_super_block *)bh->b_data; 6874 6875 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6876 set_buffer_dirty(bh); 6877 sync_dirty_buffer(bh); 6878 brelse(bh); 6879 } 6880 6881 /* Notify udev that device has changed */ 6882 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 6883 6884 /* Update ctime/mtime for device path for libblkid */ 6885 update_dev_time(device_path); 6886 } 6887 6888 /* 6889 * Update the size of all devices, which is used for writing out the 6890 * super blocks. 6891 */ 6892 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) 6893 { 6894 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6895 struct btrfs_device *curr, *next; 6896 6897 if (list_empty(&fs_devices->resized_devices)) 6898 return; 6899 6900 mutex_lock(&fs_devices->device_list_mutex); 6901 lock_chunks(fs_info->dev_root); 6902 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, 6903 resized_list) { 6904 list_del_init(&curr->resized_list); 6905 curr->commit_total_bytes = curr->disk_total_bytes; 6906 } 6907 unlock_chunks(fs_info->dev_root); 6908 mutex_unlock(&fs_devices->device_list_mutex); 6909 } 6910 6911 /* Must be invoked during the transaction commit */ 6912 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root, 6913 struct btrfs_transaction *transaction) 6914 { 6915 struct extent_map *em; 6916 struct map_lookup *map; 6917 struct btrfs_device *dev; 6918 int i; 6919 6920 if (list_empty(&transaction->pending_chunks)) 6921 return; 6922 6923 /* In order to kick the device replace finish process */ 6924 lock_chunks(root); 6925 list_for_each_entry(em, &transaction->pending_chunks, list) { 6926 map = (struct map_lookup *)em->bdev; 6927 6928 for (i = 0; i < map->num_stripes; i++) { 6929 dev = map->stripes[i].dev; 6930 dev->commit_bytes_used = dev->bytes_used; 6931 } 6932 } 6933 unlock_chunks(root); 6934 } 6935 6936 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 6937 { 6938 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6939 while (fs_devices) { 6940 fs_devices->fs_info = fs_info; 6941 fs_devices = fs_devices->seed; 6942 } 6943 } 6944 6945 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 6946 { 6947 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6948 while (fs_devices) { 6949 fs_devices->fs_info = NULL; 6950 fs_devices = fs_devices->seed; 6951 } 6952 } 6953 6954 void btrfs_close_one_device(struct btrfs_device *device) 6955 { 6956 struct btrfs_fs_devices *fs_devices = device->fs_devices; 6957 struct btrfs_device *new_device; 6958 struct rcu_string *name; 6959 6960 if (device->bdev) 6961 fs_devices->open_devices--; 6962 6963 if (device->writeable && 6964 device->devid != BTRFS_DEV_REPLACE_DEVID) { 6965 list_del_init(&device->dev_alloc_list); 6966 fs_devices->rw_devices--; 6967 } 6968 6969 if (device->missing) 6970 fs_devices->missing_devices--; 6971 6972 new_device = btrfs_alloc_device(NULL, &device->devid, 6973 device->uuid); 6974 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 6975 6976 /* Safe because we are under uuid_mutex */ 6977 if (device->name) { 6978 name = rcu_string_strdup(device->name->str, GFP_NOFS); 6979 BUG_ON(!name); /* -ENOMEM */ 6980 rcu_assign_pointer(new_device->name, name); 6981 } 6982 6983 list_replace_rcu(&device->dev_list, &new_device->dev_list); 6984 new_device->fs_devices = device->fs_devices; 6985 6986 call_rcu(&device->rcu, free_device); 6987 } 6988