1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/bio.h> 8 #include <linux/slab.h> 9 #include <linux/buffer_head.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "ctree.h" 18 #include "extent_map.h" 19 #include "disk-io.h" 20 #include "transaction.h" 21 #include "print-tree.h" 22 #include "volumes.h" 23 #include "raid56.h" 24 #include "async-thread.h" 25 #include "check-integrity.h" 26 #include "rcu-string.h" 27 #include "math.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 32 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 33 [BTRFS_RAID_RAID10] = { 34 .sub_stripes = 2, 35 .dev_stripes = 1, 36 .devs_max = 0, /* 0 == as many as possible */ 37 .devs_min = 4, 38 .tolerated_failures = 1, 39 .devs_increment = 2, 40 .ncopies = 2, 41 .nparity = 0, 42 .raid_name = "raid10", 43 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 44 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 45 }, 46 [BTRFS_RAID_RAID1] = { 47 .sub_stripes = 1, 48 .dev_stripes = 1, 49 .devs_max = 2, 50 .devs_min = 2, 51 .tolerated_failures = 1, 52 .devs_increment = 2, 53 .ncopies = 2, 54 .nparity = 0, 55 .raid_name = "raid1", 56 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 57 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 58 }, 59 [BTRFS_RAID_DUP] = { 60 .sub_stripes = 1, 61 .dev_stripes = 2, 62 .devs_max = 1, 63 .devs_min = 1, 64 .tolerated_failures = 0, 65 .devs_increment = 1, 66 .ncopies = 2, 67 .nparity = 0, 68 .raid_name = "dup", 69 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 70 .mindev_error = 0, 71 }, 72 [BTRFS_RAID_RAID0] = { 73 .sub_stripes = 1, 74 .dev_stripes = 1, 75 .devs_max = 0, 76 .devs_min = 2, 77 .tolerated_failures = 0, 78 .devs_increment = 1, 79 .ncopies = 1, 80 .nparity = 0, 81 .raid_name = "raid0", 82 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 83 .mindev_error = 0, 84 }, 85 [BTRFS_RAID_SINGLE] = { 86 .sub_stripes = 1, 87 .dev_stripes = 1, 88 .devs_max = 1, 89 .devs_min = 1, 90 .tolerated_failures = 0, 91 .devs_increment = 1, 92 .ncopies = 1, 93 .nparity = 0, 94 .raid_name = "single", 95 .bg_flag = 0, 96 .mindev_error = 0, 97 }, 98 [BTRFS_RAID_RAID5] = { 99 .sub_stripes = 1, 100 .dev_stripes = 1, 101 .devs_max = 0, 102 .devs_min = 2, 103 .tolerated_failures = 1, 104 .devs_increment = 1, 105 .ncopies = 1, 106 .nparity = 1, 107 .raid_name = "raid5", 108 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 109 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 110 }, 111 [BTRFS_RAID_RAID6] = { 112 .sub_stripes = 1, 113 .dev_stripes = 1, 114 .devs_max = 0, 115 .devs_min = 3, 116 .tolerated_failures = 2, 117 .devs_increment = 1, 118 .ncopies = 1, 119 .nparity = 2, 120 .raid_name = "raid6", 121 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 122 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 123 }, 124 }; 125 126 const char *get_raid_name(enum btrfs_raid_types type) 127 { 128 if (type >= BTRFS_NR_RAID_TYPES) 129 return NULL; 130 131 return btrfs_raid_array[type].raid_name; 132 } 133 134 /* 135 * Fill @buf with textual description of @bg_flags, no more than @size_buf 136 * bytes including terminating null byte. 137 */ 138 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 139 { 140 int i; 141 int ret; 142 char *bp = buf; 143 u64 flags = bg_flags; 144 u32 size_bp = size_buf; 145 146 if (!flags) { 147 strcpy(bp, "NONE"); 148 return; 149 } 150 151 #define DESCRIBE_FLAG(flag, desc) \ 152 do { \ 153 if (flags & (flag)) { \ 154 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 155 if (ret < 0 || ret >= size_bp) \ 156 goto out_overflow; \ 157 size_bp -= ret; \ 158 bp += ret; \ 159 flags &= ~(flag); \ 160 } \ 161 } while (0) 162 163 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 164 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 165 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 166 167 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 168 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 169 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 170 btrfs_raid_array[i].raid_name); 171 #undef DESCRIBE_FLAG 172 173 if (flags) { 174 ret = snprintf(bp, size_bp, "0x%llx|", flags); 175 size_bp -= ret; 176 } 177 178 if (size_bp < size_buf) 179 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 180 181 /* 182 * The text is trimmed, it's up to the caller to provide sufficiently 183 * large buffer 184 */ 185 out_overflow:; 186 } 187 188 static int init_first_rw_device(struct btrfs_trans_handle *trans); 189 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 190 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 192 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 193 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 194 enum btrfs_map_op op, 195 u64 logical, u64 *length, 196 struct btrfs_bio **bbio_ret, 197 int mirror_num, int need_raid_map); 198 199 /* 200 * Device locking 201 * ============== 202 * 203 * There are several mutexes that protect manipulation of devices and low-level 204 * structures like chunks but not block groups, extents or files 205 * 206 * uuid_mutex (global lock) 207 * ------------------------ 208 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 209 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 210 * device) or requested by the device= mount option 211 * 212 * the mutex can be very coarse and can cover long-running operations 213 * 214 * protects: updates to fs_devices counters like missing devices, rw devices, 215 * seeding, structure cloning, opening/closing devices at mount/umount time 216 * 217 * global::fs_devs - add, remove, updates to the global list 218 * 219 * does not protect: manipulation of the fs_devices::devices list! 220 * 221 * btrfs_device::name - renames (write side), read is RCU 222 * 223 * fs_devices::device_list_mutex (per-fs, with RCU) 224 * ------------------------------------------------ 225 * protects updates to fs_devices::devices, ie. adding and deleting 226 * 227 * simple list traversal with read-only actions can be done with RCU protection 228 * 229 * may be used to exclude some operations from running concurrently without any 230 * modifications to the list (see write_all_supers) 231 * 232 * balance_mutex 233 * ------------- 234 * protects balance structures (status, state) and context accessed from 235 * several places (internally, ioctl) 236 * 237 * chunk_mutex 238 * ----------- 239 * protects chunks, adding or removing during allocation, trim or when a new 240 * device is added/removed 241 * 242 * cleaner_mutex 243 * ------------- 244 * a big lock that is held by the cleaner thread and prevents running subvolume 245 * cleaning together with relocation or delayed iputs 246 * 247 * 248 * Lock nesting 249 * ============ 250 * 251 * uuid_mutex 252 * volume_mutex 253 * device_list_mutex 254 * chunk_mutex 255 * balance_mutex 256 * 257 * 258 * Exclusive operations, BTRFS_FS_EXCL_OP 259 * ====================================== 260 * 261 * Maintains the exclusivity of the following operations that apply to the 262 * whole filesystem and cannot run in parallel. 263 * 264 * - Balance (*) 265 * - Device add 266 * - Device remove 267 * - Device replace (*) 268 * - Resize 269 * 270 * The device operations (as above) can be in one of the following states: 271 * 272 * - Running state 273 * - Paused state 274 * - Completed state 275 * 276 * Only device operations marked with (*) can go into the Paused state for the 277 * following reasons: 278 * 279 * - ioctl (only Balance can be Paused through ioctl) 280 * - filesystem remounted as read-only 281 * - filesystem unmounted and mounted as read-only 282 * - system power-cycle and filesystem mounted as read-only 283 * - filesystem or device errors leading to forced read-only 284 * 285 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. 286 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. 287 * A device operation in Paused or Running state can be canceled or resumed 288 * either by ioctl (Balance only) or when remounted as read-write. 289 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or 290 * completed. 291 */ 292 293 DEFINE_MUTEX(uuid_mutex); 294 static LIST_HEAD(fs_uuids); 295 struct list_head *btrfs_get_fs_uuids(void) 296 { 297 return &fs_uuids; 298 } 299 300 /* 301 * alloc_fs_devices - allocate struct btrfs_fs_devices 302 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 303 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 304 * 305 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 306 * The returned struct is not linked onto any lists and can be destroyed with 307 * kfree() right away. 308 */ 309 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 310 const u8 *metadata_fsid) 311 { 312 struct btrfs_fs_devices *fs_devs; 313 314 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 315 if (!fs_devs) 316 return ERR_PTR(-ENOMEM); 317 318 mutex_init(&fs_devs->device_list_mutex); 319 320 INIT_LIST_HEAD(&fs_devs->devices); 321 INIT_LIST_HEAD(&fs_devs->alloc_list); 322 INIT_LIST_HEAD(&fs_devs->fs_list); 323 if (fsid) 324 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 325 326 if (metadata_fsid) 327 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 328 else if (fsid) 329 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 330 331 return fs_devs; 332 } 333 334 void btrfs_free_device(struct btrfs_device *device) 335 { 336 WARN_ON(!list_empty(&device->post_commit_list)); 337 rcu_string_free(device->name); 338 extent_io_tree_release(&device->alloc_state); 339 bio_put(device->flush_bio); 340 kfree(device); 341 } 342 343 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 344 { 345 struct btrfs_device *device; 346 WARN_ON(fs_devices->opened); 347 while (!list_empty(&fs_devices->devices)) { 348 device = list_entry(fs_devices->devices.next, 349 struct btrfs_device, dev_list); 350 list_del(&device->dev_list); 351 btrfs_free_device(device); 352 } 353 kfree(fs_devices); 354 } 355 356 static void btrfs_kobject_uevent(struct block_device *bdev, 357 enum kobject_action action) 358 { 359 int ret; 360 361 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 362 if (ret) 363 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 364 action, 365 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 366 &disk_to_dev(bdev->bd_disk)->kobj); 367 } 368 369 void __exit btrfs_cleanup_fs_uuids(void) 370 { 371 struct btrfs_fs_devices *fs_devices; 372 373 while (!list_empty(&fs_uuids)) { 374 fs_devices = list_entry(fs_uuids.next, 375 struct btrfs_fs_devices, fs_list); 376 list_del(&fs_devices->fs_list); 377 free_fs_devices(fs_devices); 378 } 379 } 380 381 /* 382 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 383 * Returned struct is not linked onto any lists and must be destroyed using 384 * btrfs_free_device. 385 */ 386 static struct btrfs_device *__alloc_device(void) 387 { 388 struct btrfs_device *dev; 389 390 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 391 if (!dev) 392 return ERR_PTR(-ENOMEM); 393 394 /* 395 * Preallocate a bio that's always going to be used for flushing device 396 * barriers and matches the device lifespan 397 */ 398 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 399 if (!dev->flush_bio) { 400 kfree(dev); 401 return ERR_PTR(-ENOMEM); 402 } 403 404 INIT_LIST_HEAD(&dev->dev_list); 405 INIT_LIST_HEAD(&dev->dev_alloc_list); 406 INIT_LIST_HEAD(&dev->post_commit_list); 407 408 spin_lock_init(&dev->io_lock); 409 410 atomic_set(&dev->reada_in_flight, 0); 411 atomic_set(&dev->dev_stats_ccnt, 0); 412 btrfs_device_data_ordered_init(dev); 413 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 414 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 415 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL); 416 417 return dev; 418 } 419 420 static noinline struct btrfs_fs_devices *find_fsid( 421 const u8 *fsid, const u8 *metadata_fsid) 422 { 423 struct btrfs_fs_devices *fs_devices; 424 425 ASSERT(fsid); 426 427 if (metadata_fsid) { 428 /* 429 * Handle scanned device having completed its fsid change but 430 * belonging to a fs_devices that was created by first scanning 431 * a device which didn't have its fsid/metadata_uuid changed 432 * at all and the CHANGING_FSID_V2 flag set. 433 */ 434 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 435 if (fs_devices->fsid_change && 436 memcmp(metadata_fsid, fs_devices->fsid, 437 BTRFS_FSID_SIZE) == 0 && 438 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 439 BTRFS_FSID_SIZE) == 0) { 440 return fs_devices; 441 } 442 } 443 /* 444 * Handle scanned device having completed its fsid change but 445 * belonging to a fs_devices that was created by a device that 446 * has an outdated pair of fsid/metadata_uuid and 447 * CHANGING_FSID_V2 flag set. 448 */ 449 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 450 if (fs_devices->fsid_change && 451 memcmp(fs_devices->metadata_uuid, 452 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 453 memcmp(metadata_fsid, fs_devices->metadata_uuid, 454 BTRFS_FSID_SIZE) == 0) { 455 return fs_devices; 456 } 457 } 458 } 459 460 /* Handle non-split brain cases */ 461 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 462 if (metadata_fsid) { 463 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 464 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 465 BTRFS_FSID_SIZE) == 0) 466 return fs_devices; 467 } else { 468 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 469 return fs_devices; 470 } 471 } 472 return NULL; 473 } 474 475 static int 476 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 477 int flush, struct block_device **bdev, 478 struct buffer_head **bh) 479 { 480 int ret; 481 482 *bdev = blkdev_get_by_path(device_path, flags, holder); 483 484 if (IS_ERR(*bdev)) { 485 ret = PTR_ERR(*bdev); 486 goto error; 487 } 488 489 if (flush) 490 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 491 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 492 if (ret) { 493 blkdev_put(*bdev, flags); 494 goto error; 495 } 496 invalidate_bdev(*bdev); 497 *bh = btrfs_read_dev_super(*bdev); 498 if (IS_ERR(*bh)) { 499 ret = PTR_ERR(*bh); 500 blkdev_put(*bdev, flags); 501 goto error; 502 } 503 504 return 0; 505 506 error: 507 *bdev = NULL; 508 *bh = NULL; 509 return ret; 510 } 511 512 static void requeue_list(struct btrfs_pending_bios *pending_bios, 513 struct bio *head, struct bio *tail) 514 { 515 516 struct bio *old_head; 517 518 old_head = pending_bios->head; 519 pending_bios->head = head; 520 if (pending_bios->tail) 521 tail->bi_next = old_head; 522 else 523 pending_bios->tail = tail; 524 } 525 526 /* 527 * we try to collect pending bios for a device so we don't get a large 528 * number of procs sending bios down to the same device. This greatly 529 * improves the schedulers ability to collect and merge the bios. 530 * 531 * But, it also turns into a long list of bios to process and that is sure 532 * to eventually make the worker thread block. The solution here is to 533 * make some progress and then put this work struct back at the end of 534 * the list if the block device is congested. This way, multiple devices 535 * can make progress from a single worker thread. 536 */ 537 static noinline void run_scheduled_bios(struct btrfs_device *device) 538 { 539 struct btrfs_fs_info *fs_info = device->fs_info; 540 struct bio *pending; 541 struct backing_dev_info *bdi; 542 struct btrfs_pending_bios *pending_bios; 543 struct bio *tail; 544 struct bio *cur; 545 int again = 0; 546 unsigned long num_run; 547 unsigned long batch_run = 0; 548 unsigned long last_waited = 0; 549 int force_reg = 0; 550 int sync_pending = 0; 551 struct blk_plug plug; 552 553 /* 554 * this function runs all the bios we've collected for 555 * a particular device. We don't want to wander off to 556 * another device without first sending all of these down. 557 * So, setup a plug here and finish it off before we return 558 */ 559 blk_start_plug(&plug); 560 561 bdi = device->bdev->bd_bdi; 562 563 loop: 564 spin_lock(&device->io_lock); 565 566 loop_lock: 567 num_run = 0; 568 569 /* take all the bios off the list at once and process them 570 * later on (without the lock held). But, remember the 571 * tail and other pointers so the bios can be properly reinserted 572 * into the list if we hit congestion 573 */ 574 if (!force_reg && device->pending_sync_bios.head) { 575 pending_bios = &device->pending_sync_bios; 576 force_reg = 1; 577 } else { 578 pending_bios = &device->pending_bios; 579 force_reg = 0; 580 } 581 582 pending = pending_bios->head; 583 tail = pending_bios->tail; 584 WARN_ON(pending && !tail); 585 586 /* 587 * if pending was null this time around, no bios need processing 588 * at all and we can stop. Otherwise it'll loop back up again 589 * and do an additional check so no bios are missed. 590 * 591 * device->running_pending is used to synchronize with the 592 * schedule_bio code. 593 */ 594 if (device->pending_sync_bios.head == NULL && 595 device->pending_bios.head == NULL) { 596 again = 0; 597 device->running_pending = 0; 598 } else { 599 again = 1; 600 device->running_pending = 1; 601 } 602 603 pending_bios->head = NULL; 604 pending_bios->tail = NULL; 605 606 spin_unlock(&device->io_lock); 607 608 while (pending) { 609 610 rmb(); 611 /* we want to work on both lists, but do more bios on the 612 * sync list than the regular list 613 */ 614 if ((num_run > 32 && 615 pending_bios != &device->pending_sync_bios && 616 device->pending_sync_bios.head) || 617 (num_run > 64 && pending_bios == &device->pending_sync_bios && 618 device->pending_bios.head)) { 619 spin_lock(&device->io_lock); 620 requeue_list(pending_bios, pending, tail); 621 goto loop_lock; 622 } 623 624 cur = pending; 625 pending = pending->bi_next; 626 cur->bi_next = NULL; 627 628 BUG_ON(atomic_read(&cur->__bi_cnt) == 0); 629 630 /* 631 * if we're doing the sync list, record that our 632 * plug has some sync requests on it 633 * 634 * If we're doing the regular list and there are 635 * sync requests sitting around, unplug before 636 * we add more 637 */ 638 if (pending_bios == &device->pending_sync_bios) { 639 sync_pending = 1; 640 } else if (sync_pending) { 641 blk_finish_plug(&plug); 642 blk_start_plug(&plug); 643 sync_pending = 0; 644 } 645 646 btrfsic_submit_bio(cur); 647 num_run++; 648 batch_run++; 649 650 cond_resched(); 651 652 /* 653 * we made progress, there is more work to do and the bdi 654 * is now congested. Back off and let other work structs 655 * run instead 656 */ 657 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 658 fs_info->fs_devices->open_devices > 1) { 659 struct io_context *ioc; 660 661 ioc = current->io_context; 662 663 /* 664 * the main goal here is that we don't want to 665 * block if we're going to be able to submit 666 * more requests without blocking. 667 * 668 * This code does two great things, it pokes into 669 * the elevator code from a filesystem _and_ 670 * it makes assumptions about how batching works. 671 */ 672 if (ioc && ioc->nr_batch_requests > 0 && 673 time_before(jiffies, ioc->last_waited + HZ/50UL) && 674 (last_waited == 0 || 675 ioc->last_waited == last_waited)) { 676 /* 677 * we want to go through our batch of 678 * requests and stop. So, we copy out 679 * the ioc->last_waited time and test 680 * against it before looping 681 */ 682 last_waited = ioc->last_waited; 683 cond_resched(); 684 continue; 685 } 686 spin_lock(&device->io_lock); 687 requeue_list(pending_bios, pending, tail); 688 device->running_pending = 1; 689 690 spin_unlock(&device->io_lock); 691 btrfs_queue_work(fs_info->submit_workers, 692 &device->work); 693 goto done; 694 } 695 } 696 697 cond_resched(); 698 if (again) 699 goto loop; 700 701 spin_lock(&device->io_lock); 702 if (device->pending_bios.head || device->pending_sync_bios.head) 703 goto loop_lock; 704 spin_unlock(&device->io_lock); 705 706 done: 707 blk_finish_plug(&plug); 708 } 709 710 static void pending_bios_fn(struct btrfs_work *work) 711 { 712 struct btrfs_device *device; 713 714 device = container_of(work, struct btrfs_device, work); 715 run_scheduled_bios(device); 716 } 717 718 static bool device_path_matched(const char *path, struct btrfs_device *device) 719 { 720 int found; 721 722 rcu_read_lock(); 723 found = strcmp(rcu_str_deref(device->name), path); 724 rcu_read_unlock(); 725 726 return found == 0; 727 } 728 729 /* 730 * Search and remove all stale (devices which are not mounted) devices. 731 * When both inputs are NULL, it will search and release all stale devices. 732 * path: Optional. When provided will it release all unmounted devices 733 * matching this path only. 734 * skip_dev: Optional. Will skip this device when searching for the stale 735 * devices. 736 * Return: 0 for success or if @path is NULL. 737 * -EBUSY if @path is a mounted device. 738 * -ENOENT if @path does not match any device in the list. 739 */ 740 static int btrfs_free_stale_devices(const char *path, 741 struct btrfs_device *skip_device) 742 { 743 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 744 struct btrfs_device *device, *tmp_device; 745 int ret = 0; 746 747 if (path) 748 ret = -ENOENT; 749 750 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 751 752 mutex_lock(&fs_devices->device_list_mutex); 753 list_for_each_entry_safe(device, tmp_device, 754 &fs_devices->devices, dev_list) { 755 if (skip_device && skip_device == device) 756 continue; 757 if (path && !device->name) 758 continue; 759 if (path && !device_path_matched(path, device)) 760 continue; 761 if (fs_devices->opened) { 762 /* for an already deleted device return 0 */ 763 if (path && ret != 0) 764 ret = -EBUSY; 765 break; 766 } 767 768 /* delete the stale device */ 769 fs_devices->num_devices--; 770 list_del(&device->dev_list); 771 btrfs_free_device(device); 772 773 ret = 0; 774 if (fs_devices->num_devices == 0) 775 break; 776 } 777 mutex_unlock(&fs_devices->device_list_mutex); 778 779 if (fs_devices->num_devices == 0) { 780 btrfs_sysfs_remove_fsid(fs_devices); 781 list_del(&fs_devices->fs_list); 782 free_fs_devices(fs_devices); 783 } 784 } 785 786 return ret; 787 } 788 789 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 790 struct btrfs_device *device, fmode_t flags, 791 void *holder) 792 { 793 struct request_queue *q; 794 struct block_device *bdev; 795 struct buffer_head *bh; 796 struct btrfs_super_block *disk_super; 797 u64 devid; 798 int ret; 799 800 if (device->bdev) 801 return -EINVAL; 802 if (!device->name) 803 return -EINVAL; 804 805 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 806 &bdev, &bh); 807 if (ret) 808 return ret; 809 810 disk_super = (struct btrfs_super_block *)bh->b_data; 811 devid = btrfs_stack_device_id(&disk_super->dev_item); 812 if (devid != device->devid) 813 goto error_brelse; 814 815 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 816 goto error_brelse; 817 818 device->generation = btrfs_super_generation(disk_super); 819 820 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 821 if (btrfs_super_incompat_flags(disk_super) & 822 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 823 pr_err( 824 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 825 goto error_brelse; 826 } 827 828 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 829 fs_devices->seeding = 1; 830 } else { 831 if (bdev_read_only(bdev)) 832 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 833 else 834 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 835 } 836 837 q = bdev_get_queue(bdev); 838 if (!blk_queue_nonrot(q)) 839 fs_devices->rotating = 1; 840 841 device->bdev = bdev; 842 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 843 device->mode = flags; 844 845 fs_devices->open_devices++; 846 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 847 device->devid != BTRFS_DEV_REPLACE_DEVID) { 848 fs_devices->rw_devices++; 849 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 850 } 851 brelse(bh); 852 853 return 0; 854 855 error_brelse: 856 brelse(bh); 857 blkdev_put(bdev, flags); 858 859 return -EINVAL; 860 } 861 862 /* 863 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 864 * being created with a disk that has already completed its fsid change. 865 */ 866 static struct btrfs_fs_devices *find_fsid_inprogress( 867 struct btrfs_super_block *disk_super) 868 { 869 struct btrfs_fs_devices *fs_devices; 870 871 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 872 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 873 BTRFS_FSID_SIZE) != 0 && 874 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 875 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 876 return fs_devices; 877 } 878 } 879 880 return NULL; 881 } 882 883 884 static struct btrfs_fs_devices *find_fsid_changed( 885 struct btrfs_super_block *disk_super) 886 { 887 struct btrfs_fs_devices *fs_devices; 888 889 /* 890 * Handles the case where scanned device is part of an fs that had 891 * multiple successful changes of FSID but curently device didn't 892 * observe it. Meaning our fsid will be different than theirs. 893 */ 894 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 895 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 896 BTRFS_FSID_SIZE) != 0 && 897 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 898 BTRFS_FSID_SIZE) == 0 && 899 memcmp(fs_devices->fsid, disk_super->fsid, 900 BTRFS_FSID_SIZE) != 0) { 901 return fs_devices; 902 } 903 } 904 905 return NULL; 906 } 907 /* 908 * Add new device to list of registered devices 909 * 910 * Returns: 911 * device pointer which was just added or updated when successful 912 * error pointer when failed 913 */ 914 static noinline struct btrfs_device *device_list_add(const char *path, 915 struct btrfs_super_block *disk_super, 916 bool *new_device_added) 917 { 918 struct btrfs_device *device; 919 struct btrfs_fs_devices *fs_devices = NULL; 920 struct rcu_string *name; 921 u64 found_transid = btrfs_super_generation(disk_super); 922 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 923 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 924 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 925 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 926 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 927 928 if (fsid_change_in_progress) { 929 if (!has_metadata_uuid) { 930 /* 931 * When we have an image which has CHANGING_FSID_V2 set 932 * it might belong to either a filesystem which has 933 * disks with completed fsid change or it might belong 934 * to fs with no UUID changes in effect, handle both. 935 */ 936 fs_devices = find_fsid_inprogress(disk_super); 937 if (!fs_devices) 938 fs_devices = find_fsid(disk_super->fsid, NULL); 939 } else { 940 fs_devices = find_fsid_changed(disk_super); 941 } 942 } else if (has_metadata_uuid) { 943 fs_devices = find_fsid(disk_super->fsid, 944 disk_super->metadata_uuid); 945 } else { 946 fs_devices = find_fsid(disk_super->fsid, NULL); 947 } 948 949 950 if (!fs_devices) { 951 if (has_metadata_uuid) 952 fs_devices = alloc_fs_devices(disk_super->fsid, 953 disk_super->metadata_uuid); 954 else 955 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 956 957 if (IS_ERR(fs_devices)) 958 return ERR_CAST(fs_devices); 959 960 fs_devices->fsid_change = fsid_change_in_progress; 961 962 mutex_lock(&fs_devices->device_list_mutex); 963 list_add(&fs_devices->fs_list, &fs_uuids); 964 965 device = NULL; 966 } else { 967 mutex_lock(&fs_devices->device_list_mutex); 968 device = btrfs_find_device(fs_devices, devid, 969 disk_super->dev_item.uuid, NULL, false); 970 971 /* 972 * If this disk has been pulled into an fs devices created by 973 * a device which had the CHANGING_FSID_V2 flag then replace the 974 * metadata_uuid/fsid values of the fs_devices. 975 */ 976 if (has_metadata_uuid && fs_devices->fsid_change && 977 found_transid > fs_devices->latest_generation) { 978 memcpy(fs_devices->fsid, disk_super->fsid, 979 BTRFS_FSID_SIZE); 980 memcpy(fs_devices->metadata_uuid, 981 disk_super->metadata_uuid, BTRFS_FSID_SIZE); 982 983 fs_devices->fsid_change = false; 984 } 985 } 986 987 if (!device) { 988 if (fs_devices->opened) { 989 mutex_unlock(&fs_devices->device_list_mutex); 990 return ERR_PTR(-EBUSY); 991 } 992 993 device = btrfs_alloc_device(NULL, &devid, 994 disk_super->dev_item.uuid); 995 if (IS_ERR(device)) { 996 mutex_unlock(&fs_devices->device_list_mutex); 997 /* we can safely leave the fs_devices entry around */ 998 return device; 999 } 1000 1001 name = rcu_string_strdup(path, GFP_NOFS); 1002 if (!name) { 1003 btrfs_free_device(device); 1004 mutex_unlock(&fs_devices->device_list_mutex); 1005 return ERR_PTR(-ENOMEM); 1006 } 1007 rcu_assign_pointer(device->name, name); 1008 1009 list_add_rcu(&device->dev_list, &fs_devices->devices); 1010 fs_devices->num_devices++; 1011 1012 device->fs_devices = fs_devices; 1013 *new_device_added = true; 1014 1015 if (disk_super->label[0]) 1016 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n", 1017 disk_super->label, devid, found_transid, path); 1018 else 1019 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n", 1020 disk_super->fsid, devid, found_transid, path); 1021 1022 } else if (!device->name || strcmp(device->name->str, path)) { 1023 /* 1024 * When FS is already mounted. 1025 * 1. If you are here and if the device->name is NULL that 1026 * means this device was missing at time of FS mount. 1027 * 2. If you are here and if the device->name is different 1028 * from 'path' that means either 1029 * a. The same device disappeared and reappeared with 1030 * different name. or 1031 * b. The missing-disk-which-was-replaced, has 1032 * reappeared now. 1033 * 1034 * We must allow 1 and 2a above. But 2b would be a spurious 1035 * and unintentional. 1036 * 1037 * Further in case of 1 and 2a above, the disk at 'path' 1038 * would have missed some transaction when it was away and 1039 * in case of 2a the stale bdev has to be updated as well. 1040 * 2b must not be allowed at all time. 1041 */ 1042 1043 /* 1044 * For now, we do allow update to btrfs_fs_device through the 1045 * btrfs dev scan cli after FS has been mounted. We're still 1046 * tracking a problem where systems fail mount by subvolume id 1047 * when we reject replacement on a mounted FS. 1048 */ 1049 if (!fs_devices->opened && found_transid < device->generation) { 1050 /* 1051 * That is if the FS is _not_ mounted and if you 1052 * are here, that means there is more than one 1053 * disk with same uuid and devid.We keep the one 1054 * with larger generation number or the last-in if 1055 * generation are equal. 1056 */ 1057 mutex_unlock(&fs_devices->device_list_mutex); 1058 return ERR_PTR(-EEXIST); 1059 } 1060 1061 /* 1062 * We are going to replace the device path for a given devid, 1063 * make sure it's the same device if the device is mounted 1064 */ 1065 if (device->bdev) { 1066 struct block_device *path_bdev; 1067 1068 path_bdev = lookup_bdev(path); 1069 if (IS_ERR(path_bdev)) { 1070 mutex_unlock(&fs_devices->device_list_mutex); 1071 return ERR_CAST(path_bdev); 1072 } 1073 1074 if (device->bdev != path_bdev) { 1075 bdput(path_bdev); 1076 mutex_unlock(&fs_devices->device_list_mutex); 1077 btrfs_warn_in_rcu(device->fs_info, 1078 "duplicate device fsid:devid for %pU:%llu old:%s new:%s", 1079 disk_super->fsid, devid, 1080 rcu_str_deref(device->name), path); 1081 return ERR_PTR(-EEXIST); 1082 } 1083 bdput(path_bdev); 1084 btrfs_info_in_rcu(device->fs_info, 1085 "device fsid %pU devid %llu moved old:%s new:%s", 1086 disk_super->fsid, devid, 1087 rcu_str_deref(device->name), path); 1088 } 1089 1090 name = rcu_string_strdup(path, GFP_NOFS); 1091 if (!name) { 1092 mutex_unlock(&fs_devices->device_list_mutex); 1093 return ERR_PTR(-ENOMEM); 1094 } 1095 rcu_string_free(device->name); 1096 rcu_assign_pointer(device->name, name); 1097 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1098 fs_devices->missing_devices--; 1099 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1100 } 1101 } 1102 1103 /* 1104 * Unmount does not free the btrfs_device struct but would zero 1105 * generation along with most of the other members. So just update 1106 * it back. We need it to pick the disk with largest generation 1107 * (as above). 1108 */ 1109 if (!fs_devices->opened) { 1110 device->generation = found_transid; 1111 fs_devices->latest_generation = max_t(u64, found_transid, 1112 fs_devices->latest_generation); 1113 } 1114 1115 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 1116 1117 mutex_unlock(&fs_devices->device_list_mutex); 1118 return device; 1119 } 1120 1121 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 1122 { 1123 struct btrfs_fs_devices *fs_devices; 1124 struct btrfs_device *device; 1125 struct btrfs_device *orig_dev; 1126 1127 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1128 if (IS_ERR(fs_devices)) 1129 return fs_devices; 1130 1131 mutex_lock(&orig->device_list_mutex); 1132 fs_devices->total_devices = orig->total_devices; 1133 1134 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1135 struct rcu_string *name; 1136 1137 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1138 orig_dev->uuid); 1139 if (IS_ERR(device)) 1140 goto error; 1141 1142 /* 1143 * This is ok to do without rcu read locked because we hold the 1144 * uuid mutex so nothing we touch in here is going to disappear. 1145 */ 1146 if (orig_dev->name) { 1147 name = rcu_string_strdup(orig_dev->name->str, 1148 GFP_KERNEL); 1149 if (!name) { 1150 btrfs_free_device(device); 1151 goto error; 1152 } 1153 rcu_assign_pointer(device->name, name); 1154 } 1155 1156 list_add(&device->dev_list, &fs_devices->devices); 1157 device->fs_devices = fs_devices; 1158 fs_devices->num_devices++; 1159 } 1160 mutex_unlock(&orig->device_list_mutex); 1161 return fs_devices; 1162 error: 1163 mutex_unlock(&orig->device_list_mutex); 1164 free_fs_devices(fs_devices); 1165 return ERR_PTR(-ENOMEM); 1166 } 1167 1168 /* 1169 * After we have read the system tree and know devids belonging to 1170 * this filesystem, remove the device which does not belong there. 1171 */ 1172 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1173 { 1174 struct btrfs_device *device, *next; 1175 struct btrfs_device *latest_dev = NULL; 1176 1177 mutex_lock(&uuid_mutex); 1178 again: 1179 /* This is the initialized path, it is safe to release the devices. */ 1180 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1181 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1182 &device->dev_state)) { 1183 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1184 &device->dev_state) && 1185 (!latest_dev || 1186 device->generation > latest_dev->generation)) { 1187 latest_dev = device; 1188 } 1189 continue; 1190 } 1191 1192 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 1193 /* 1194 * In the first step, keep the device which has 1195 * the correct fsid and the devid that is used 1196 * for the dev_replace procedure. 1197 * In the second step, the dev_replace state is 1198 * read from the device tree and it is known 1199 * whether the procedure is really active or 1200 * not, which means whether this device is 1201 * used or whether it should be removed. 1202 */ 1203 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1204 &device->dev_state)) { 1205 continue; 1206 } 1207 } 1208 if (device->bdev) { 1209 blkdev_put(device->bdev, device->mode); 1210 device->bdev = NULL; 1211 fs_devices->open_devices--; 1212 } 1213 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1214 list_del_init(&device->dev_alloc_list); 1215 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1216 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1217 &device->dev_state)) 1218 fs_devices->rw_devices--; 1219 } 1220 list_del_init(&device->dev_list); 1221 fs_devices->num_devices--; 1222 btrfs_free_device(device); 1223 } 1224 1225 if (fs_devices->seed) { 1226 fs_devices = fs_devices->seed; 1227 goto again; 1228 } 1229 1230 fs_devices->latest_bdev = latest_dev->bdev; 1231 1232 mutex_unlock(&uuid_mutex); 1233 } 1234 1235 static void btrfs_close_bdev(struct btrfs_device *device) 1236 { 1237 if (!device->bdev) 1238 return; 1239 1240 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1241 sync_blockdev(device->bdev); 1242 invalidate_bdev(device->bdev); 1243 } 1244 1245 blkdev_put(device->bdev, device->mode); 1246 } 1247 1248 static void btrfs_close_one_device(struct btrfs_device *device) 1249 { 1250 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1251 struct btrfs_device *new_device; 1252 struct rcu_string *name; 1253 1254 if (device->bdev) 1255 fs_devices->open_devices--; 1256 1257 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1258 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1259 list_del_init(&device->dev_alloc_list); 1260 fs_devices->rw_devices--; 1261 } 1262 1263 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1264 fs_devices->missing_devices--; 1265 1266 btrfs_close_bdev(device); 1267 1268 new_device = btrfs_alloc_device(NULL, &device->devid, 1269 device->uuid); 1270 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 1271 1272 /* Safe because we are under uuid_mutex */ 1273 if (device->name) { 1274 name = rcu_string_strdup(device->name->str, GFP_NOFS); 1275 BUG_ON(!name); /* -ENOMEM */ 1276 rcu_assign_pointer(new_device->name, name); 1277 } 1278 1279 list_replace_rcu(&device->dev_list, &new_device->dev_list); 1280 new_device->fs_devices = device->fs_devices; 1281 1282 synchronize_rcu(); 1283 btrfs_free_device(device); 1284 } 1285 1286 static int close_fs_devices(struct btrfs_fs_devices *fs_devices) 1287 { 1288 struct btrfs_device *device, *tmp; 1289 1290 if (--fs_devices->opened > 0) 1291 return 0; 1292 1293 mutex_lock(&fs_devices->device_list_mutex); 1294 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { 1295 btrfs_close_one_device(device); 1296 } 1297 mutex_unlock(&fs_devices->device_list_mutex); 1298 1299 WARN_ON(fs_devices->open_devices); 1300 WARN_ON(fs_devices->rw_devices); 1301 fs_devices->opened = 0; 1302 fs_devices->seeding = 0; 1303 1304 return 0; 1305 } 1306 1307 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1308 { 1309 struct btrfs_fs_devices *seed_devices = NULL; 1310 int ret; 1311 1312 mutex_lock(&uuid_mutex); 1313 ret = close_fs_devices(fs_devices); 1314 if (!fs_devices->opened) { 1315 seed_devices = fs_devices->seed; 1316 fs_devices->seed = NULL; 1317 } 1318 mutex_unlock(&uuid_mutex); 1319 1320 while (seed_devices) { 1321 fs_devices = seed_devices; 1322 seed_devices = fs_devices->seed; 1323 close_fs_devices(fs_devices); 1324 free_fs_devices(fs_devices); 1325 } 1326 return ret; 1327 } 1328 1329 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1330 fmode_t flags, void *holder) 1331 { 1332 struct btrfs_device *device; 1333 struct btrfs_device *latest_dev = NULL; 1334 int ret = 0; 1335 1336 flags |= FMODE_EXCL; 1337 1338 list_for_each_entry(device, &fs_devices->devices, dev_list) { 1339 /* Just open everything we can; ignore failures here */ 1340 if (btrfs_open_one_device(fs_devices, device, flags, holder)) 1341 continue; 1342 1343 if (!latest_dev || 1344 device->generation > latest_dev->generation) 1345 latest_dev = device; 1346 } 1347 if (fs_devices->open_devices == 0) { 1348 ret = -EINVAL; 1349 goto out; 1350 } 1351 fs_devices->opened = 1; 1352 fs_devices->latest_bdev = latest_dev->bdev; 1353 fs_devices->total_rw_bytes = 0; 1354 out: 1355 return ret; 1356 } 1357 1358 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1359 { 1360 struct btrfs_device *dev1, *dev2; 1361 1362 dev1 = list_entry(a, struct btrfs_device, dev_list); 1363 dev2 = list_entry(b, struct btrfs_device, dev_list); 1364 1365 if (dev1->devid < dev2->devid) 1366 return -1; 1367 else if (dev1->devid > dev2->devid) 1368 return 1; 1369 return 0; 1370 } 1371 1372 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1373 fmode_t flags, void *holder) 1374 { 1375 int ret; 1376 1377 lockdep_assert_held(&uuid_mutex); 1378 1379 mutex_lock(&fs_devices->device_list_mutex); 1380 if (fs_devices->opened) { 1381 fs_devices->opened++; 1382 ret = 0; 1383 } else { 1384 list_sort(NULL, &fs_devices->devices, devid_cmp); 1385 ret = open_fs_devices(fs_devices, flags, holder); 1386 } 1387 mutex_unlock(&fs_devices->device_list_mutex); 1388 1389 return ret; 1390 } 1391 1392 static void btrfs_release_disk_super(struct page *page) 1393 { 1394 kunmap(page); 1395 put_page(page); 1396 } 1397 1398 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, 1399 struct page **page, 1400 struct btrfs_super_block **disk_super) 1401 { 1402 void *p; 1403 pgoff_t index; 1404 1405 /* make sure our super fits in the device */ 1406 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1407 return 1; 1408 1409 /* make sure our super fits in the page */ 1410 if (sizeof(**disk_super) > PAGE_SIZE) 1411 return 1; 1412 1413 /* make sure our super doesn't straddle pages on disk */ 1414 index = bytenr >> PAGE_SHIFT; 1415 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) 1416 return 1; 1417 1418 /* pull in the page with our super */ 1419 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 1420 index, GFP_KERNEL); 1421 1422 if (IS_ERR_OR_NULL(*page)) 1423 return 1; 1424 1425 p = kmap(*page); 1426 1427 /* align our pointer to the offset of the super block */ 1428 *disk_super = p + offset_in_page(bytenr); 1429 1430 if (btrfs_super_bytenr(*disk_super) != bytenr || 1431 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { 1432 btrfs_release_disk_super(*page); 1433 return 1; 1434 } 1435 1436 if ((*disk_super)->label[0] && 1437 (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) 1438 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; 1439 1440 return 0; 1441 } 1442 1443 int btrfs_forget_devices(const char *path) 1444 { 1445 int ret; 1446 1447 mutex_lock(&uuid_mutex); 1448 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1449 mutex_unlock(&uuid_mutex); 1450 1451 return ret; 1452 } 1453 1454 /* 1455 * Look for a btrfs signature on a device. This may be called out of the mount path 1456 * and we are not allowed to call set_blocksize during the scan. The superblock 1457 * is read via pagecache 1458 */ 1459 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1460 void *holder) 1461 { 1462 struct btrfs_super_block *disk_super; 1463 bool new_device_added = false; 1464 struct btrfs_device *device = NULL; 1465 struct block_device *bdev; 1466 struct page *page; 1467 u64 bytenr; 1468 1469 lockdep_assert_held(&uuid_mutex); 1470 1471 /* 1472 * we would like to check all the supers, but that would make 1473 * a btrfs mount succeed after a mkfs from a different FS. 1474 * So, we need to add a special mount option to scan for 1475 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1476 */ 1477 bytenr = btrfs_sb_offset(0); 1478 flags |= FMODE_EXCL; 1479 1480 bdev = blkdev_get_by_path(path, flags, holder); 1481 if (IS_ERR(bdev)) 1482 return ERR_CAST(bdev); 1483 1484 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { 1485 device = ERR_PTR(-EINVAL); 1486 goto error_bdev_put; 1487 } 1488 1489 device = device_list_add(path, disk_super, &new_device_added); 1490 if (!IS_ERR(device)) { 1491 if (new_device_added) 1492 btrfs_free_stale_devices(path, device); 1493 } 1494 1495 btrfs_release_disk_super(page); 1496 1497 error_bdev_put: 1498 blkdev_put(bdev, flags); 1499 1500 return device; 1501 } 1502 1503 /* 1504 * Try to find a chunk that intersects [start, start + len] range and when one 1505 * such is found, record the end of it in *start 1506 */ 1507 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1508 u64 len) 1509 { 1510 u64 physical_start, physical_end; 1511 1512 lockdep_assert_held(&device->fs_info->chunk_mutex); 1513 1514 if (!find_first_extent_bit(&device->alloc_state, *start, 1515 &physical_start, &physical_end, 1516 CHUNK_ALLOCATED, NULL)) { 1517 1518 if (in_range(physical_start, *start, len) || 1519 in_range(*start, physical_start, 1520 physical_end - physical_start)) { 1521 *start = physical_end + 1; 1522 return true; 1523 } 1524 } 1525 return false; 1526 } 1527 1528 1529 /* 1530 * find_free_dev_extent_start - find free space in the specified device 1531 * @device: the device which we search the free space in 1532 * @num_bytes: the size of the free space that we need 1533 * @search_start: the position from which to begin the search 1534 * @start: store the start of the free space. 1535 * @len: the size of the free space. that we find, or the size 1536 * of the max free space if we don't find suitable free space 1537 * 1538 * this uses a pretty simple search, the expectation is that it is 1539 * called very infrequently and that a given device has a small number 1540 * of extents 1541 * 1542 * @start is used to store the start of the free space if we find. But if we 1543 * don't find suitable free space, it will be used to store the start position 1544 * of the max free space. 1545 * 1546 * @len is used to store the size of the free space that we find. 1547 * But if we don't find suitable free space, it is used to store the size of 1548 * the max free space. 1549 */ 1550 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes, 1551 u64 search_start, u64 *start, u64 *len) 1552 { 1553 struct btrfs_fs_info *fs_info = device->fs_info; 1554 struct btrfs_root *root = fs_info->dev_root; 1555 struct btrfs_key key; 1556 struct btrfs_dev_extent *dev_extent; 1557 struct btrfs_path *path; 1558 u64 hole_size; 1559 u64 max_hole_start; 1560 u64 max_hole_size; 1561 u64 extent_end; 1562 u64 search_end = device->total_bytes; 1563 int ret; 1564 int slot; 1565 struct extent_buffer *l; 1566 1567 /* 1568 * We don't want to overwrite the superblock on the drive nor any area 1569 * used by the boot loader (grub for example), so we make sure to start 1570 * at an offset of at least 1MB. 1571 */ 1572 search_start = max_t(u64, search_start, SZ_1M); 1573 1574 path = btrfs_alloc_path(); 1575 if (!path) 1576 return -ENOMEM; 1577 1578 max_hole_start = search_start; 1579 max_hole_size = 0; 1580 1581 again: 1582 if (search_start >= search_end || 1583 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1584 ret = -ENOSPC; 1585 goto out; 1586 } 1587 1588 path->reada = READA_FORWARD; 1589 path->search_commit_root = 1; 1590 path->skip_locking = 1; 1591 1592 key.objectid = device->devid; 1593 key.offset = search_start; 1594 key.type = BTRFS_DEV_EXTENT_KEY; 1595 1596 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1597 if (ret < 0) 1598 goto out; 1599 if (ret > 0) { 1600 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1601 if (ret < 0) 1602 goto out; 1603 } 1604 1605 while (1) { 1606 l = path->nodes[0]; 1607 slot = path->slots[0]; 1608 if (slot >= btrfs_header_nritems(l)) { 1609 ret = btrfs_next_leaf(root, path); 1610 if (ret == 0) 1611 continue; 1612 if (ret < 0) 1613 goto out; 1614 1615 break; 1616 } 1617 btrfs_item_key_to_cpu(l, &key, slot); 1618 1619 if (key.objectid < device->devid) 1620 goto next; 1621 1622 if (key.objectid > device->devid) 1623 break; 1624 1625 if (key.type != BTRFS_DEV_EXTENT_KEY) 1626 goto next; 1627 1628 if (key.offset > search_start) { 1629 hole_size = key.offset - search_start; 1630 1631 /* 1632 * Have to check before we set max_hole_start, otherwise 1633 * we could end up sending back this offset anyway. 1634 */ 1635 if (contains_pending_extent(device, &search_start, 1636 hole_size)) { 1637 if (key.offset >= search_start) 1638 hole_size = key.offset - search_start; 1639 else 1640 hole_size = 0; 1641 } 1642 1643 if (hole_size > max_hole_size) { 1644 max_hole_start = search_start; 1645 max_hole_size = hole_size; 1646 } 1647 1648 /* 1649 * If this free space is greater than which we need, 1650 * it must be the max free space that we have found 1651 * until now, so max_hole_start must point to the start 1652 * of this free space and the length of this free space 1653 * is stored in max_hole_size. Thus, we return 1654 * max_hole_start and max_hole_size and go back to the 1655 * caller. 1656 */ 1657 if (hole_size >= num_bytes) { 1658 ret = 0; 1659 goto out; 1660 } 1661 } 1662 1663 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1664 extent_end = key.offset + btrfs_dev_extent_length(l, 1665 dev_extent); 1666 if (extent_end > search_start) 1667 search_start = extent_end; 1668 next: 1669 path->slots[0]++; 1670 cond_resched(); 1671 } 1672 1673 /* 1674 * At this point, search_start should be the end of 1675 * allocated dev extents, and when shrinking the device, 1676 * search_end may be smaller than search_start. 1677 */ 1678 if (search_end > search_start) { 1679 hole_size = search_end - search_start; 1680 1681 if (contains_pending_extent(device, &search_start, hole_size)) { 1682 btrfs_release_path(path); 1683 goto again; 1684 } 1685 1686 if (hole_size > max_hole_size) { 1687 max_hole_start = search_start; 1688 max_hole_size = hole_size; 1689 } 1690 } 1691 1692 /* See above. */ 1693 if (max_hole_size < num_bytes) 1694 ret = -ENOSPC; 1695 else 1696 ret = 0; 1697 1698 out: 1699 btrfs_free_path(path); 1700 *start = max_hole_start; 1701 if (len) 1702 *len = max_hole_size; 1703 return ret; 1704 } 1705 1706 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1707 u64 *start, u64 *len) 1708 { 1709 /* FIXME use last free of some kind */ 1710 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1711 } 1712 1713 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1714 struct btrfs_device *device, 1715 u64 start, u64 *dev_extent_len) 1716 { 1717 struct btrfs_fs_info *fs_info = device->fs_info; 1718 struct btrfs_root *root = fs_info->dev_root; 1719 int ret; 1720 struct btrfs_path *path; 1721 struct btrfs_key key; 1722 struct btrfs_key found_key; 1723 struct extent_buffer *leaf = NULL; 1724 struct btrfs_dev_extent *extent = NULL; 1725 1726 path = btrfs_alloc_path(); 1727 if (!path) 1728 return -ENOMEM; 1729 1730 key.objectid = device->devid; 1731 key.offset = start; 1732 key.type = BTRFS_DEV_EXTENT_KEY; 1733 again: 1734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1735 if (ret > 0) { 1736 ret = btrfs_previous_item(root, path, key.objectid, 1737 BTRFS_DEV_EXTENT_KEY); 1738 if (ret) 1739 goto out; 1740 leaf = path->nodes[0]; 1741 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1742 extent = btrfs_item_ptr(leaf, path->slots[0], 1743 struct btrfs_dev_extent); 1744 BUG_ON(found_key.offset > start || found_key.offset + 1745 btrfs_dev_extent_length(leaf, extent) < start); 1746 key = found_key; 1747 btrfs_release_path(path); 1748 goto again; 1749 } else if (ret == 0) { 1750 leaf = path->nodes[0]; 1751 extent = btrfs_item_ptr(leaf, path->slots[0], 1752 struct btrfs_dev_extent); 1753 } else { 1754 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1755 goto out; 1756 } 1757 1758 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1759 1760 ret = btrfs_del_item(trans, root, path); 1761 if (ret) { 1762 btrfs_handle_fs_error(fs_info, ret, 1763 "Failed to remove dev extent item"); 1764 } else { 1765 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1766 } 1767 out: 1768 btrfs_free_path(path); 1769 return ret; 1770 } 1771 1772 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1773 struct btrfs_device *device, 1774 u64 chunk_offset, u64 start, u64 num_bytes) 1775 { 1776 int ret; 1777 struct btrfs_path *path; 1778 struct btrfs_fs_info *fs_info = device->fs_info; 1779 struct btrfs_root *root = fs_info->dev_root; 1780 struct btrfs_dev_extent *extent; 1781 struct extent_buffer *leaf; 1782 struct btrfs_key key; 1783 1784 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1785 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1786 path = btrfs_alloc_path(); 1787 if (!path) 1788 return -ENOMEM; 1789 1790 key.objectid = device->devid; 1791 key.offset = start; 1792 key.type = BTRFS_DEV_EXTENT_KEY; 1793 ret = btrfs_insert_empty_item(trans, root, path, &key, 1794 sizeof(*extent)); 1795 if (ret) 1796 goto out; 1797 1798 leaf = path->nodes[0]; 1799 extent = btrfs_item_ptr(leaf, path->slots[0], 1800 struct btrfs_dev_extent); 1801 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1802 BTRFS_CHUNK_TREE_OBJECTID); 1803 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1804 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1805 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1806 1807 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1808 btrfs_mark_buffer_dirty(leaf); 1809 out: 1810 btrfs_free_path(path); 1811 return ret; 1812 } 1813 1814 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1815 { 1816 struct extent_map_tree *em_tree; 1817 struct extent_map *em; 1818 struct rb_node *n; 1819 u64 ret = 0; 1820 1821 em_tree = &fs_info->mapping_tree.map_tree; 1822 read_lock(&em_tree->lock); 1823 n = rb_last(&em_tree->map.rb_root); 1824 if (n) { 1825 em = rb_entry(n, struct extent_map, rb_node); 1826 ret = em->start + em->len; 1827 } 1828 read_unlock(&em_tree->lock); 1829 1830 return ret; 1831 } 1832 1833 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1834 u64 *devid_ret) 1835 { 1836 int ret; 1837 struct btrfs_key key; 1838 struct btrfs_key found_key; 1839 struct btrfs_path *path; 1840 1841 path = btrfs_alloc_path(); 1842 if (!path) 1843 return -ENOMEM; 1844 1845 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1846 key.type = BTRFS_DEV_ITEM_KEY; 1847 key.offset = (u64)-1; 1848 1849 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1850 if (ret < 0) 1851 goto error; 1852 1853 BUG_ON(ret == 0); /* Corruption */ 1854 1855 ret = btrfs_previous_item(fs_info->chunk_root, path, 1856 BTRFS_DEV_ITEMS_OBJECTID, 1857 BTRFS_DEV_ITEM_KEY); 1858 if (ret) { 1859 *devid_ret = 1; 1860 } else { 1861 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1862 path->slots[0]); 1863 *devid_ret = found_key.offset + 1; 1864 } 1865 ret = 0; 1866 error: 1867 btrfs_free_path(path); 1868 return ret; 1869 } 1870 1871 /* 1872 * the device information is stored in the chunk root 1873 * the btrfs_device struct should be fully filled in 1874 */ 1875 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1876 struct btrfs_device *device) 1877 { 1878 int ret; 1879 struct btrfs_path *path; 1880 struct btrfs_dev_item *dev_item; 1881 struct extent_buffer *leaf; 1882 struct btrfs_key key; 1883 unsigned long ptr; 1884 1885 path = btrfs_alloc_path(); 1886 if (!path) 1887 return -ENOMEM; 1888 1889 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1890 key.type = BTRFS_DEV_ITEM_KEY; 1891 key.offset = device->devid; 1892 1893 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1894 &key, sizeof(*dev_item)); 1895 if (ret) 1896 goto out; 1897 1898 leaf = path->nodes[0]; 1899 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1900 1901 btrfs_set_device_id(leaf, dev_item, device->devid); 1902 btrfs_set_device_generation(leaf, dev_item, 0); 1903 btrfs_set_device_type(leaf, dev_item, device->type); 1904 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1905 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1906 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1907 btrfs_set_device_total_bytes(leaf, dev_item, 1908 btrfs_device_get_disk_total_bytes(device)); 1909 btrfs_set_device_bytes_used(leaf, dev_item, 1910 btrfs_device_get_bytes_used(device)); 1911 btrfs_set_device_group(leaf, dev_item, 0); 1912 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1913 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1914 btrfs_set_device_start_offset(leaf, dev_item, 0); 1915 1916 ptr = btrfs_device_uuid(dev_item); 1917 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1918 ptr = btrfs_device_fsid(dev_item); 1919 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1920 ptr, BTRFS_FSID_SIZE); 1921 btrfs_mark_buffer_dirty(leaf); 1922 1923 ret = 0; 1924 out: 1925 btrfs_free_path(path); 1926 return ret; 1927 } 1928 1929 /* 1930 * Function to update ctime/mtime for a given device path. 1931 * Mainly used for ctime/mtime based probe like libblkid. 1932 */ 1933 static void update_dev_time(const char *path_name) 1934 { 1935 struct file *filp; 1936 1937 filp = filp_open(path_name, O_RDWR, 0); 1938 if (IS_ERR(filp)) 1939 return; 1940 file_update_time(filp); 1941 filp_close(filp, NULL); 1942 } 1943 1944 static int btrfs_rm_dev_item(struct btrfs_device *device) 1945 { 1946 struct btrfs_root *root = device->fs_info->chunk_root; 1947 int ret; 1948 struct btrfs_path *path; 1949 struct btrfs_key key; 1950 struct btrfs_trans_handle *trans; 1951 1952 path = btrfs_alloc_path(); 1953 if (!path) 1954 return -ENOMEM; 1955 1956 trans = btrfs_start_transaction(root, 0); 1957 if (IS_ERR(trans)) { 1958 btrfs_free_path(path); 1959 return PTR_ERR(trans); 1960 } 1961 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1962 key.type = BTRFS_DEV_ITEM_KEY; 1963 key.offset = device->devid; 1964 1965 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1966 if (ret) { 1967 if (ret > 0) 1968 ret = -ENOENT; 1969 btrfs_abort_transaction(trans, ret); 1970 btrfs_end_transaction(trans); 1971 goto out; 1972 } 1973 1974 ret = btrfs_del_item(trans, root, path); 1975 if (ret) { 1976 btrfs_abort_transaction(trans, ret); 1977 btrfs_end_transaction(trans); 1978 } 1979 1980 out: 1981 btrfs_free_path(path); 1982 if (!ret) 1983 ret = btrfs_commit_transaction(trans); 1984 return ret; 1985 } 1986 1987 /* 1988 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1989 * filesystem. It's up to the caller to adjust that number regarding eg. device 1990 * replace. 1991 */ 1992 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1993 u64 num_devices) 1994 { 1995 u64 all_avail; 1996 unsigned seq; 1997 int i; 1998 1999 do { 2000 seq = read_seqbegin(&fs_info->profiles_lock); 2001 2002 all_avail = fs_info->avail_data_alloc_bits | 2003 fs_info->avail_system_alloc_bits | 2004 fs_info->avail_metadata_alloc_bits; 2005 } while (read_seqretry(&fs_info->profiles_lock, seq)); 2006 2007 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2008 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 2009 continue; 2010 2011 if (num_devices < btrfs_raid_array[i].devs_min) { 2012 int ret = btrfs_raid_array[i].mindev_error; 2013 2014 if (ret) 2015 return ret; 2016 } 2017 } 2018 2019 return 0; 2020 } 2021 2022 static struct btrfs_device * btrfs_find_next_active_device( 2023 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 2024 { 2025 struct btrfs_device *next_device; 2026 2027 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 2028 if (next_device != device && 2029 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 2030 && next_device->bdev) 2031 return next_device; 2032 } 2033 2034 return NULL; 2035 } 2036 2037 /* 2038 * Helper function to check if the given device is part of s_bdev / latest_bdev 2039 * and replace it with the provided or the next active device, in the context 2040 * where this function called, there should be always be another device (or 2041 * this_dev) which is active. 2042 */ 2043 void btrfs_assign_next_active_device(struct btrfs_device *device, 2044 struct btrfs_device *this_dev) 2045 { 2046 struct btrfs_fs_info *fs_info = device->fs_info; 2047 struct btrfs_device *next_device; 2048 2049 if (this_dev) 2050 next_device = this_dev; 2051 else 2052 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2053 device); 2054 ASSERT(next_device); 2055 2056 if (fs_info->sb->s_bdev && 2057 (fs_info->sb->s_bdev == device->bdev)) 2058 fs_info->sb->s_bdev = next_device->bdev; 2059 2060 if (fs_info->fs_devices->latest_bdev == device->bdev) 2061 fs_info->fs_devices->latest_bdev = next_device->bdev; 2062 } 2063 2064 /* 2065 * Return btrfs_fs_devices::num_devices excluding the device that's being 2066 * currently replaced. 2067 */ 2068 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2069 { 2070 u64 num_devices = fs_info->fs_devices->num_devices; 2071 2072 down_read(&fs_info->dev_replace.rwsem); 2073 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2074 ASSERT(num_devices > 1); 2075 num_devices--; 2076 } 2077 up_read(&fs_info->dev_replace.rwsem); 2078 2079 return num_devices; 2080 } 2081 2082 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2083 u64 devid) 2084 { 2085 struct btrfs_device *device; 2086 struct btrfs_fs_devices *cur_devices; 2087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2088 u64 num_devices; 2089 int ret = 0; 2090 2091 mutex_lock(&uuid_mutex); 2092 2093 num_devices = btrfs_num_devices(fs_info); 2094 2095 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2096 if (ret) 2097 goto out; 2098 2099 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2100 2101 if (IS_ERR(device)) { 2102 if (PTR_ERR(device) == -ENOENT && 2103 strcmp(device_path, "missing") == 0) 2104 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2105 else 2106 ret = PTR_ERR(device); 2107 goto out; 2108 } 2109 2110 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2111 btrfs_warn_in_rcu(fs_info, 2112 "cannot remove device %s (devid %llu) due to active swapfile", 2113 rcu_str_deref(device->name), device->devid); 2114 ret = -ETXTBSY; 2115 goto out; 2116 } 2117 2118 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2119 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2120 goto out; 2121 } 2122 2123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2124 fs_info->fs_devices->rw_devices == 1) { 2125 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2126 goto out; 2127 } 2128 2129 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2130 mutex_lock(&fs_info->chunk_mutex); 2131 list_del_init(&device->dev_alloc_list); 2132 device->fs_devices->rw_devices--; 2133 mutex_unlock(&fs_info->chunk_mutex); 2134 } 2135 2136 mutex_unlock(&uuid_mutex); 2137 ret = btrfs_shrink_device(device, 0); 2138 mutex_lock(&uuid_mutex); 2139 if (ret) 2140 goto error_undo; 2141 2142 /* 2143 * TODO: the superblock still includes this device in its num_devices 2144 * counter although write_all_supers() is not locked out. This 2145 * could give a filesystem state which requires a degraded mount. 2146 */ 2147 ret = btrfs_rm_dev_item(device); 2148 if (ret) 2149 goto error_undo; 2150 2151 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2152 btrfs_scrub_cancel_dev(device); 2153 2154 /* 2155 * the device list mutex makes sure that we don't change 2156 * the device list while someone else is writing out all 2157 * the device supers. Whoever is writing all supers, should 2158 * lock the device list mutex before getting the number of 2159 * devices in the super block (super_copy). Conversely, 2160 * whoever updates the number of devices in the super block 2161 * (super_copy) should hold the device list mutex. 2162 */ 2163 2164 /* 2165 * In normal cases the cur_devices == fs_devices. But in case 2166 * of deleting a seed device, the cur_devices should point to 2167 * its own fs_devices listed under the fs_devices->seed. 2168 */ 2169 cur_devices = device->fs_devices; 2170 mutex_lock(&fs_devices->device_list_mutex); 2171 list_del_rcu(&device->dev_list); 2172 2173 cur_devices->num_devices--; 2174 cur_devices->total_devices--; 2175 /* Update total_devices of the parent fs_devices if it's seed */ 2176 if (cur_devices != fs_devices) 2177 fs_devices->total_devices--; 2178 2179 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2180 cur_devices->missing_devices--; 2181 2182 btrfs_assign_next_active_device(device, NULL); 2183 2184 if (device->bdev) { 2185 cur_devices->open_devices--; 2186 /* remove sysfs entry */ 2187 btrfs_sysfs_rm_device_link(fs_devices, device); 2188 } 2189 2190 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2191 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2192 mutex_unlock(&fs_devices->device_list_mutex); 2193 2194 /* 2195 * at this point, the device is zero sized and detached from 2196 * the devices list. All that's left is to zero out the old 2197 * supers and free the device. 2198 */ 2199 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2200 btrfs_scratch_superblocks(device->bdev, device->name->str); 2201 2202 btrfs_close_bdev(device); 2203 synchronize_rcu(); 2204 btrfs_free_device(device); 2205 2206 if (cur_devices->open_devices == 0) { 2207 while (fs_devices) { 2208 if (fs_devices->seed == cur_devices) { 2209 fs_devices->seed = cur_devices->seed; 2210 break; 2211 } 2212 fs_devices = fs_devices->seed; 2213 } 2214 cur_devices->seed = NULL; 2215 close_fs_devices(cur_devices); 2216 free_fs_devices(cur_devices); 2217 } 2218 2219 out: 2220 mutex_unlock(&uuid_mutex); 2221 return ret; 2222 2223 error_undo: 2224 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2225 mutex_lock(&fs_info->chunk_mutex); 2226 list_add(&device->dev_alloc_list, 2227 &fs_devices->alloc_list); 2228 device->fs_devices->rw_devices++; 2229 mutex_unlock(&fs_info->chunk_mutex); 2230 } 2231 goto out; 2232 } 2233 2234 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2235 { 2236 struct btrfs_fs_devices *fs_devices; 2237 2238 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2239 2240 /* 2241 * in case of fs with no seed, srcdev->fs_devices will point 2242 * to fs_devices of fs_info. However when the dev being replaced is 2243 * a seed dev it will point to the seed's local fs_devices. In short 2244 * srcdev will have its correct fs_devices in both the cases. 2245 */ 2246 fs_devices = srcdev->fs_devices; 2247 2248 list_del_rcu(&srcdev->dev_list); 2249 list_del(&srcdev->dev_alloc_list); 2250 fs_devices->num_devices--; 2251 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2252 fs_devices->missing_devices--; 2253 2254 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2255 fs_devices->rw_devices--; 2256 2257 if (srcdev->bdev) 2258 fs_devices->open_devices--; 2259 } 2260 2261 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2262 { 2263 struct btrfs_fs_info *fs_info = srcdev->fs_info; 2264 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2265 2266 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { 2267 /* zero out the old super if it is writable */ 2268 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); 2269 } 2270 2271 btrfs_close_bdev(srcdev); 2272 synchronize_rcu(); 2273 btrfs_free_device(srcdev); 2274 2275 /* if this is no devs we rather delete the fs_devices */ 2276 if (!fs_devices->num_devices) { 2277 struct btrfs_fs_devices *tmp_fs_devices; 2278 2279 /* 2280 * On a mounted FS, num_devices can't be zero unless it's a 2281 * seed. In case of a seed device being replaced, the replace 2282 * target added to the sprout FS, so there will be no more 2283 * device left under the seed FS. 2284 */ 2285 ASSERT(fs_devices->seeding); 2286 2287 tmp_fs_devices = fs_info->fs_devices; 2288 while (tmp_fs_devices) { 2289 if (tmp_fs_devices->seed == fs_devices) { 2290 tmp_fs_devices->seed = fs_devices->seed; 2291 break; 2292 } 2293 tmp_fs_devices = tmp_fs_devices->seed; 2294 } 2295 fs_devices->seed = NULL; 2296 close_fs_devices(fs_devices); 2297 free_fs_devices(fs_devices); 2298 } 2299 } 2300 2301 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2302 { 2303 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2304 2305 WARN_ON(!tgtdev); 2306 mutex_lock(&fs_devices->device_list_mutex); 2307 2308 btrfs_sysfs_rm_device_link(fs_devices, tgtdev); 2309 2310 if (tgtdev->bdev) 2311 fs_devices->open_devices--; 2312 2313 fs_devices->num_devices--; 2314 2315 btrfs_assign_next_active_device(tgtdev, NULL); 2316 2317 list_del_rcu(&tgtdev->dev_list); 2318 2319 mutex_unlock(&fs_devices->device_list_mutex); 2320 2321 /* 2322 * The update_dev_time() with in btrfs_scratch_superblocks() 2323 * may lead to a call to btrfs_show_devname() which will try 2324 * to hold device_list_mutex. And here this device 2325 * is already out of device list, so we don't have to hold 2326 * the device_list_mutex lock. 2327 */ 2328 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); 2329 2330 btrfs_close_bdev(tgtdev); 2331 synchronize_rcu(); 2332 btrfs_free_device(tgtdev); 2333 } 2334 2335 static struct btrfs_device *btrfs_find_device_by_path( 2336 struct btrfs_fs_info *fs_info, const char *device_path) 2337 { 2338 int ret = 0; 2339 struct btrfs_super_block *disk_super; 2340 u64 devid; 2341 u8 *dev_uuid; 2342 struct block_device *bdev; 2343 struct buffer_head *bh; 2344 struct btrfs_device *device; 2345 2346 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2347 fs_info->bdev_holder, 0, &bdev, &bh); 2348 if (ret) 2349 return ERR_PTR(ret); 2350 disk_super = (struct btrfs_super_block *)bh->b_data; 2351 devid = btrfs_stack_device_id(&disk_super->dev_item); 2352 dev_uuid = disk_super->dev_item.uuid; 2353 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2354 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2355 disk_super->metadata_uuid, true); 2356 else 2357 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2358 disk_super->fsid, true); 2359 2360 brelse(bh); 2361 if (!device) 2362 device = ERR_PTR(-ENOENT); 2363 blkdev_put(bdev, FMODE_READ); 2364 return device; 2365 } 2366 2367 /* 2368 * Lookup a device given by device id, or the path if the id is 0. 2369 */ 2370 struct btrfs_device *btrfs_find_device_by_devspec( 2371 struct btrfs_fs_info *fs_info, u64 devid, 2372 const char *device_path) 2373 { 2374 struct btrfs_device *device; 2375 2376 if (devid) { 2377 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2378 NULL, true); 2379 if (!device) 2380 return ERR_PTR(-ENOENT); 2381 return device; 2382 } 2383 2384 if (!device_path || !device_path[0]) 2385 return ERR_PTR(-EINVAL); 2386 2387 if (strcmp(device_path, "missing") == 0) { 2388 /* Find first missing device */ 2389 list_for_each_entry(device, &fs_info->fs_devices->devices, 2390 dev_list) { 2391 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2392 &device->dev_state) && !device->bdev) 2393 return device; 2394 } 2395 return ERR_PTR(-ENOENT); 2396 } 2397 2398 return btrfs_find_device_by_path(fs_info, device_path); 2399 } 2400 2401 /* 2402 * does all the dirty work required for changing file system's UUID. 2403 */ 2404 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2405 { 2406 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2407 struct btrfs_fs_devices *old_devices; 2408 struct btrfs_fs_devices *seed_devices; 2409 struct btrfs_super_block *disk_super = fs_info->super_copy; 2410 struct btrfs_device *device; 2411 u64 super_flags; 2412 2413 lockdep_assert_held(&uuid_mutex); 2414 if (!fs_devices->seeding) 2415 return -EINVAL; 2416 2417 seed_devices = alloc_fs_devices(NULL, NULL); 2418 if (IS_ERR(seed_devices)) 2419 return PTR_ERR(seed_devices); 2420 2421 old_devices = clone_fs_devices(fs_devices); 2422 if (IS_ERR(old_devices)) { 2423 kfree(seed_devices); 2424 return PTR_ERR(old_devices); 2425 } 2426 2427 list_add(&old_devices->fs_list, &fs_uuids); 2428 2429 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2430 seed_devices->opened = 1; 2431 INIT_LIST_HEAD(&seed_devices->devices); 2432 INIT_LIST_HEAD(&seed_devices->alloc_list); 2433 mutex_init(&seed_devices->device_list_mutex); 2434 2435 mutex_lock(&fs_devices->device_list_mutex); 2436 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2437 synchronize_rcu); 2438 list_for_each_entry(device, &seed_devices->devices, dev_list) 2439 device->fs_devices = seed_devices; 2440 2441 mutex_lock(&fs_info->chunk_mutex); 2442 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 2443 mutex_unlock(&fs_info->chunk_mutex); 2444 2445 fs_devices->seeding = 0; 2446 fs_devices->num_devices = 0; 2447 fs_devices->open_devices = 0; 2448 fs_devices->missing_devices = 0; 2449 fs_devices->rotating = 0; 2450 fs_devices->seed = seed_devices; 2451 2452 generate_random_uuid(fs_devices->fsid); 2453 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2454 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2455 mutex_unlock(&fs_devices->device_list_mutex); 2456 2457 super_flags = btrfs_super_flags(disk_super) & 2458 ~BTRFS_SUPER_FLAG_SEEDING; 2459 btrfs_set_super_flags(disk_super, super_flags); 2460 2461 return 0; 2462 } 2463 2464 /* 2465 * Store the expected generation for seed devices in device items. 2466 */ 2467 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2468 { 2469 struct btrfs_fs_info *fs_info = trans->fs_info; 2470 struct btrfs_root *root = fs_info->chunk_root; 2471 struct btrfs_path *path; 2472 struct extent_buffer *leaf; 2473 struct btrfs_dev_item *dev_item; 2474 struct btrfs_device *device; 2475 struct btrfs_key key; 2476 u8 fs_uuid[BTRFS_FSID_SIZE]; 2477 u8 dev_uuid[BTRFS_UUID_SIZE]; 2478 u64 devid; 2479 int ret; 2480 2481 path = btrfs_alloc_path(); 2482 if (!path) 2483 return -ENOMEM; 2484 2485 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2486 key.offset = 0; 2487 key.type = BTRFS_DEV_ITEM_KEY; 2488 2489 while (1) { 2490 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2491 if (ret < 0) 2492 goto error; 2493 2494 leaf = path->nodes[0]; 2495 next_slot: 2496 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2497 ret = btrfs_next_leaf(root, path); 2498 if (ret > 0) 2499 break; 2500 if (ret < 0) 2501 goto error; 2502 leaf = path->nodes[0]; 2503 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2504 btrfs_release_path(path); 2505 continue; 2506 } 2507 2508 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2509 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2510 key.type != BTRFS_DEV_ITEM_KEY) 2511 break; 2512 2513 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2514 struct btrfs_dev_item); 2515 devid = btrfs_device_id(leaf, dev_item); 2516 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2517 BTRFS_UUID_SIZE); 2518 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2519 BTRFS_FSID_SIZE); 2520 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2521 fs_uuid, true); 2522 BUG_ON(!device); /* Logic error */ 2523 2524 if (device->fs_devices->seeding) { 2525 btrfs_set_device_generation(leaf, dev_item, 2526 device->generation); 2527 btrfs_mark_buffer_dirty(leaf); 2528 } 2529 2530 path->slots[0]++; 2531 goto next_slot; 2532 } 2533 ret = 0; 2534 error: 2535 btrfs_free_path(path); 2536 return ret; 2537 } 2538 2539 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2540 { 2541 struct btrfs_root *root = fs_info->dev_root; 2542 struct request_queue *q; 2543 struct btrfs_trans_handle *trans; 2544 struct btrfs_device *device; 2545 struct block_device *bdev; 2546 struct super_block *sb = fs_info->sb; 2547 struct rcu_string *name; 2548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2549 u64 orig_super_total_bytes; 2550 u64 orig_super_num_devices; 2551 int seeding_dev = 0; 2552 int ret = 0; 2553 bool unlocked = false; 2554 2555 if (sb_rdonly(sb) && !fs_devices->seeding) 2556 return -EROFS; 2557 2558 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2559 fs_info->bdev_holder); 2560 if (IS_ERR(bdev)) 2561 return PTR_ERR(bdev); 2562 2563 if (fs_devices->seeding) { 2564 seeding_dev = 1; 2565 down_write(&sb->s_umount); 2566 mutex_lock(&uuid_mutex); 2567 } 2568 2569 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2570 2571 mutex_lock(&fs_devices->device_list_mutex); 2572 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2573 if (device->bdev == bdev) { 2574 ret = -EEXIST; 2575 mutex_unlock( 2576 &fs_devices->device_list_mutex); 2577 goto error; 2578 } 2579 } 2580 mutex_unlock(&fs_devices->device_list_mutex); 2581 2582 device = btrfs_alloc_device(fs_info, NULL, NULL); 2583 if (IS_ERR(device)) { 2584 /* we can safely leave the fs_devices entry around */ 2585 ret = PTR_ERR(device); 2586 goto error; 2587 } 2588 2589 name = rcu_string_strdup(device_path, GFP_KERNEL); 2590 if (!name) { 2591 ret = -ENOMEM; 2592 goto error_free_device; 2593 } 2594 rcu_assign_pointer(device->name, name); 2595 2596 trans = btrfs_start_transaction(root, 0); 2597 if (IS_ERR(trans)) { 2598 ret = PTR_ERR(trans); 2599 goto error_free_device; 2600 } 2601 2602 q = bdev_get_queue(bdev); 2603 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2604 device->generation = trans->transid; 2605 device->io_width = fs_info->sectorsize; 2606 device->io_align = fs_info->sectorsize; 2607 device->sector_size = fs_info->sectorsize; 2608 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2609 fs_info->sectorsize); 2610 device->disk_total_bytes = device->total_bytes; 2611 device->commit_total_bytes = device->total_bytes; 2612 device->fs_info = fs_info; 2613 device->bdev = bdev; 2614 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2615 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2616 device->mode = FMODE_EXCL; 2617 device->dev_stats_valid = 1; 2618 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2619 2620 if (seeding_dev) { 2621 sb->s_flags &= ~SB_RDONLY; 2622 ret = btrfs_prepare_sprout(fs_info); 2623 if (ret) { 2624 btrfs_abort_transaction(trans, ret); 2625 goto error_trans; 2626 } 2627 } 2628 2629 device->fs_devices = fs_devices; 2630 2631 mutex_lock(&fs_devices->device_list_mutex); 2632 mutex_lock(&fs_info->chunk_mutex); 2633 list_add_rcu(&device->dev_list, &fs_devices->devices); 2634 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2635 fs_devices->num_devices++; 2636 fs_devices->open_devices++; 2637 fs_devices->rw_devices++; 2638 fs_devices->total_devices++; 2639 fs_devices->total_rw_bytes += device->total_bytes; 2640 2641 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2642 2643 if (!blk_queue_nonrot(q)) 2644 fs_devices->rotating = 1; 2645 2646 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2647 btrfs_set_super_total_bytes(fs_info->super_copy, 2648 round_down(orig_super_total_bytes + device->total_bytes, 2649 fs_info->sectorsize)); 2650 2651 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2652 btrfs_set_super_num_devices(fs_info->super_copy, 2653 orig_super_num_devices + 1); 2654 2655 /* add sysfs device entry */ 2656 btrfs_sysfs_add_device_link(fs_devices, device); 2657 2658 /* 2659 * we've got more storage, clear any full flags on the space 2660 * infos 2661 */ 2662 btrfs_clear_space_info_full(fs_info); 2663 2664 mutex_unlock(&fs_info->chunk_mutex); 2665 mutex_unlock(&fs_devices->device_list_mutex); 2666 2667 if (seeding_dev) { 2668 mutex_lock(&fs_info->chunk_mutex); 2669 ret = init_first_rw_device(trans); 2670 mutex_unlock(&fs_info->chunk_mutex); 2671 if (ret) { 2672 btrfs_abort_transaction(trans, ret); 2673 goto error_sysfs; 2674 } 2675 } 2676 2677 ret = btrfs_add_dev_item(trans, device); 2678 if (ret) { 2679 btrfs_abort_transaction(trans, ret); 2680 goto error_sysfs; 2681 } 2682 2683 if (seeding_dev) { 2684 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2685 2686 ret = btrfs_finish_sprout(trans); 2687 if (ret) { 2688 btrfs_abort_transaction(trans, ret); 2689 goto error_sysfs; 2690 } 2691 2692 /* Sprouting would change fsid of the mounted root, 2693 * so rename the fsid on the sysfs 2694 */ 2695 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2696 fs_info->fs_devices->fsid); 2697 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf)) 2698 btrfs_warn(fs_info, 2699 "sysfs: failed to create fsid for sprout"); 2700 } 2701 2702 ret = btrfs_commit_transaction(trans); 2703 2704 if (seeding_dev) { 2705 mutex_unlock(&uuid_mutex); 2706 up_write(&sb->s_umount); 2707 unlocked = true; 2708 2709 if (ret) /* transaction commit */ 2710 return ret; 2711 2712 ret = btrfs_relocate_sys_chunks(fs_info); 2713 if (ret < 0) 2714 btrfs_handle_fs_error(fs_info, ret, 2715 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2716 trans = btrfs_attach_transaction(root); 2717 if (IS_ERR(trans)) { 2718 if (PTR_ERR(trans) == -ENOENT) 2719 return 0; 2720 ret = PTR_ERR(trans); 2721 trans = NULL; 2722 goto error_sysfs; 2723 } 2724 ret = btrfs_commit_transaction(trans); 2725 } 2726 2727 /* Update ctime/mtime for libblkid */ 2728 update_dev_time(device_path); 2729 return ret; 2730 2731 error_sysfs: 2732 btrfs_sysfs_rm_device_link(fs_devices, device); 2733 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2734 mutex_lock(&fs_info->chunk_mutex); 2735 list_del_rcu(&device->dev_list); 2736 list_del(&device->dev_alloc_list); 2737 fs_info->fs_devices->num_devices--; 2738 fs_info->fs_devices->open_devices--; 2739 fs_info->fs_devices->rw_devices--; 2740 fs_info->fs_devices->total_devices--; 2741 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2742 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2743 btrfs_set_super_total_bytes(fs_info->super_copy, 2744 orig_super_total_bytes); 2745 btrfs_set_super_num_devices(fs_info->super_copy, 2746 orig_super_num_devices); 2747 mutex_unlock(&fs_info->chunk_mutex); 2748 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2749 error_trans: 2750 if (seeding_dev) 2751 sb->s_flags |= SB_RDONLY; 2752 if (trans) 2753 btrfs_end_transaction(trans); 2754 error_free_device: 2755 btrfs_free_device(device); 2756 error: 2757 blkdev_put(bdev, FMODE_EXCL); 2758 if (seeding_dev && !unlocked) { 2759 mutex_unlock(&uuid_mutex); 2760 up_write(&sb->s_umount); 2761 } 2762 return ret; 2763 } 2764 2765 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2766 struct btrfs_device *device) 2767 { 2768 int ret; 2769 struct btrfs_path *path; 2770 struct btrfs_root *root = device->fs_info->chunk_root; 2771 struct btrfs_dev_item *dev_item; 2772 struct extent_buffer *leaf; 2773 struct btrfs_key key; 2774 2775 path = btrfs_alloc_path(); 2776 if (!path) 2777 return -ENOMEM; 2778 2779 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2780 key.type = BTRFS_DEV_ITEM_KEY; 2781 key.offset = device->devid; 2782 2783 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2784 if (ret < 0) 2785 goto out; 2786 2787 if (ret > 0) { 2788 ret = -ENOENT; 2789 goto out; 2790 } 2791 2792 leaf = path->nodes[0]; 2793 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2794 2795 btrfs_set_device_id(leaf, dev_item, device->devid); 2796 btrfs_set_device_type(leaf, dev_item, device->type); 2797 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2798 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2799 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2800 btrfs_set_device_total_bytes(leaf, dev_item, 2801 btrfs_device_get_disk_total_bytes(device)); 2802 btrfs_set_device_bytes_used(leaf, dev_item, 2803 btrfs_device_get_bytes_used(device)); 2804 btrfs_mark_buffer_dirty(leaf); 2805 2806 out: 2807 btrfs_free_path(path); 2808 return ret; 2809 } 2810 2811 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2812 struct btrfs_device *device, u64 new_size) 2813 { 2814 struct btrfs_fs_info *fs_info = device->fs_info; 2815 struct btrfs_super_block *super_copy = fs_info->super_copy; 2816 u64 old_total; 2817 u64 diff; 2818 2819 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2820 return -EACCES; 2821 2822 new_size = round_down(new_size, fs_info->sectorsize); 2823 2824 mutex_lock(&fs_info->chunk_mutex); 2825 old_total = btrfs_super_total_bytes(super_copy); 2826 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2827 2828 if (new_size <= device->total_bytes || 2829 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2830 mutex_unlock(&fs_info->chunk_mutex); 2831 return -EINVAL; 2832 } 2833 2834 btrfs_set_super_total_bytes(super_copy, 2835 round_down(old_total + diff, fs_info->sectorsize)); 2836 device->fs_devices->total_rw_bytes += diff; 2837 2838 btrfs_device_set_total_bytes(device, new_size); 2839 btrfs_device_set_disk_total_bytes(device, new_size); 2840 btrfs_clear_space_info_full(device->fs_info); 2841 if (list_empty(&device->post_commit_list)) 2842 list_add_tail(&device->post_commit_list, 2843 &trans->transaction->dev_update_list); 2844 mutex_unlock(&fs_info->chunk_mutex); 2845 2846 return btrfs_update_device(trans, device); 2847 } 2848 2849 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2850 { 2851 struct btrfs_fs_info *fs_info = trans->fs_info; 2852 struct btrfs_root *root = fs_info->chunk_root; 2853 int ret; 2854 struct btrfs_path *path; 2855 struct btrfs_key key; 2856 2857 path = btrfs_alloc_path(); 2858 if (!path) 2859 return -ENOMEM; 2860 2861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2862 key.offset = chunk_offset; 2863 key.type = BTRFS_CHUNK_ITEM_KEY; 2864 2865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2866 if (ret < 0) 2867 goto out; 2868 else if (ret > 0) { /* Logic error or corruption */ 2869 btrfs_handle_fs_error(fs_info, -ENOENT, 2870 "Failed lookup while freeing chunk."); 2871 ret = -ENOENT; 2872 goto out; 2873 } 2874 2875 ret = btrfs_del_item(trans, root, path); 2876 if (ret < 0) 2877 btrfs_handle_fs_error(fs_info, ret, 2878 "Failed to delete chunk item."); 2879 out: 2880 btrfs_free_path(path); 2881 return ret; 2882 } 2883 2884 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2885 { 2886 struct btrfs_super_block *super_copy = fs_info->super_copy; 2887 struct btrfs_disk_key *disk_key; 2888 struct btrfs_chunk *chunk; 2889 u8 *ptr; 2890 int ret = 0; 2891 u32 num_stripes; 2892 u32 array_size; 2893 u32 len = 0; 2894 u32 cur; 2895 struct btrfs_key key; 2896 2897 mutex_lock(&fs_info->chunk_mutex); 2898 array_size = btrfs_super_sys_array_size(super_copy); 2899 2900 ptr = super_copy->sys_chunk_array; 2901 cur = 0; 2902 2903 while (cur < array_size) { 2904 disk_key = (struct btrfs_disk_key *)ptr; 2905 btrfs_disk_key_to_cpu(&key, disk_key); 2906 2907 len = sizeof(*disk_key); 2908 2909 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2910 chunk = (struct btrfs_chunk *)(ptr + len); 2911 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2912 len += btrfs_chunk_item_size(num_stripes); 2913 } else { 2914 ret = -EIO; 2915 break; 2916 } 2917 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2918 key.offset == chunk_offset) { 2919 memmove(ptr, ptr + len, array_size - (cur + len)); 2920 array_size -= len; 2921 btrfs_set_super_sys_array_size(super_copy, array_size); 2922 } else { 2923 ptr += len; 2924 cur += len; 2925 } 2926 } 2927 mutex_unlock(&fs_info->chunk_mutex); 2928 return ret; 2929 } 2930 2931 /* 2932 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2933 * @logical: Logical block offset in bytes. 2934 * @length: Length of extent in bytes. 2935 * 2936 * Return: Chunk mapping or ERR_PTR. 2937 */ 2938 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2939 u64 logical, u64 length) 2940 { 2941 struct extent_map_tree *em_tree; 2942 struct extent_map *em; 2943 2944 em_tree = &fs_info->mapping_tree.map_tree; 2945 read_lock(&em_tree->lock); 2946 em = lookup_extent_mapping(em_tree, logical, length); 2947 read_unlock(&em_tree->lock); 2948 2949 if (!em) { 2950 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2951 logical, length); 2952 return ERR_PTR(-EINVAL); 2953 } 2954 2955 if (em->start > logical || em->start + em->len < logical) { 2956 btrfs_crit(fs_info, 2957 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2958 logical, length, em->start, em->start + em->len); 2959 free_extent_map(em); 2960 return ERR_PTR(-EINVAL); 2961 } 2962 2963 /* callers are responsible for dropping em's ref. */ 2964 return em; 2965 } 2966 2967 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2968 { 2969 struct btrfs_fs_info *fs_info = trans->fs_info; 2970 struct extent_map *em; 2971 struct map_lookup *map; 2972 u64 dev_extent_len = 0; 2973 int i, ret = 0; 2974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2975 2976 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2977 if (IS_ERR(em)) { 2978 /* 2979 * This is a logic error, but we don't want to just rely on the 2980 * user having built with ASSERT enabled, so if ASSERT doesn't 2981 * do anything we still error out. 2982 */ 2983 ASSERT(0); 2984 return PTR_ERR(em); 2985 } 2986 map = em->map_lookup; 2987 mutex_lock(&fs_info->chunk_mutex); 2988 check_system_chunk(trans, map->type); 2989 mutex_unlock(&fs_info->chunk_mutex); 2990 2991 /* 2992 * Take the device list mutex to prevent races with the final phase of 2993 * a device replace operation that replaces the device object associated 2994 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2995 */ 2996 mutex_lock(&fs_devices->device_list_mutex); 2997 for (i = 0; i < map->num_stripes; i++) { 2998 struct btrfs_device *device = map->stripes[i].dev; 2999 ret = btrfs_free_dev_extent(trans, device, 3000 map->stripes[i].physical, 3001 &dev_extent_len); 3002 if (ret) { 3003 mutex_unlock(&fs_devices->device_list_mutex); 3004 btrfs_abort_transaction(trans, ret); 3005 goto out; 3006 } 3007 3008 if (device->bytes_used > 0) { 3009 mutex_lock(&fs_info->chunk_mutex); 3010 btrfs_device_set_bytes_used(device, 3011 device->bytes_used - dev_extent_len); 3012 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3013 btrfs_clear_space_info_full(fs_info); 3014 mutex_unlock(&fs_info->chunk_mutex); 3015 } 3016 3017 ret = btrfs_update_device(trans, device); 3018 if (ret) { 3019 mutex_unlock(&fs_devices->device_list_mutex); 3020 btrfs_abort_transaction(trans, ret); 3021 goto out; 3022 } 3023 } 3024 mutex_unlock(&fs_devices->device_list_mutex); 3025 3026 ret = btrfs_free_chunk(trans, chunk_offset); 3027 if (ret) { 3028 btrfs_abort_transaction(trans, ret); 3029 goto out; 3030 } 3031 3032 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3033 3034 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3035 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3036 if (ret) { 3037 btrfs_abort_transaction(trans, ret); 3038 goto out; 3039 } 3040 } 3041 3042 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3043 if (ret) { 3044 btrfs_abort_transaction(trans, ret); 3045 goto out; 3046 } 3047 3048 out: 3049 /* once for us */ 3050 free_extent_map(em); 3051 return ret; 3052 } 3053 3054 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3055 { 3056 struct btrfs_root *root = fs_info->chunk_root; 3057 struct btrfs_trans_handle *trans; 3058 int ret; 3059 3060 /* 3061 * Prevent races with automatic removal of unused block groups. 3062 * After we relocate and before we remove the chunk with offset 3063 * chunk_offset, automatic removal of the block group can kick in, 3064 * resulting in a failure when calling btrfs_remove_chunk() below. 3065 * 3066 * Make sure to acquire this mutex before doing a tree search (dev 3067 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3068 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3069 * we release the path used to search the chunk/dev tree and before 3070 * the current task acquires this mutex and calls us. 3071 */ 3072 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3073 3074 ret = btrfs_can_relocate(fs_info, chunk_offset); 3075 if (ret) 3076 return -ENOSPC; 3077 3078 /* step one, relocate all the extents inside this chunk */ 3079 btrfs_scrub_pause(fs_info); 3080 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3081 btrfs_scrub_continue(fs_info); 3082 if (ret) 3083 return ret; 3084 3085 /* 3086 * We add the kobjects here (and after forcing data chunk creation) 3087 * since relocation is the only place we'll create chunks of a new 3088 * type at runtime. The only place where we'll remove the last 3089 * chunk of a type is the call immediately below this one. Even 3090 * so, we're protected against races with the cleaner thread since 3091 * we're covered by the delete_unused_bgs_mutex. 3092 */ 3093 btrfs_add_raid_kobjects(fs_info); 3094 3095 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3096 chunk_offset); 3097 if (IS_ERR(trans)) { 3098 ret = PTR_ERR(trans); 3099 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3100 return ret; 3101 } 3102 3103 /* 3104 * step two, delete the device extents and the 3105 * chunk tree entries 3106 */ 3107 ret = btrfs_remove_chunk(trans, chunk_offset); 3108 btrfs_end_transaction(trans); 3109 return ret; 3110 } 3111 3112 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3113 { 3114 struct btrfs_root *chunk_root = fs_info->chunk_root; 3115 struct btrfs_path *path; 3116 struct extent_buffer *leaf; 3117 struct btrfs_chunk *chunk; 3118 struct btrfs_key key; 3119 struct btrfs_key found_key; 3120 u64 chunk_type; 3121 bool retried = false; 3122 int failed = 0; 3123 int ret; 3124 3125 path = btrfs_alloc_path(); 3126 if (!path) 3127 return -ENOMEM; 3128 3129 again: 3130 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3131 key.offset = (u64)-1; 3132 key.type = BTRFS_CHUNK_ITEM_KEY; 3133 3134 while (1) { 3135 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3136 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3137 if (ret < 0) { 3138 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3139 goto error; 3140 } 3141 BUG_ON(ret == 0); /* Corruption */ 3142 3143 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3144 key.type); 3145 if (ret) 3146 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3147 if (ret < 0) 3148 goto error; 3149 if (ret > 0) 3150 break; 3151 3152 leaf = path->nodes[0]; 3153 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3154 3155 chunk = btrfs_item_ptr(leaf, path->slots[0], 3156 struct btrfs_chunk); 3157 chunk_type = btrfs_chunk_type(leaf, chunk); 3158 btrfs_release_path(path); 3159 3160 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3161 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3162 if (ret == -ENOSPC) 3163 failed++; 3164 else 3165 BUG_ON(ret); 3166 } 3167 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3168 3169 if (found_key.offset == 0) 3170 break; 3171 key.offset = found_key.offset - 1; 3172 } 3173 ret = 0; 3174 if (failed && !retried) { 3175 failed = 0; 3176 retried = true; 3177 goto again; 3178 } else if (WARN_ON(failed && retried)) { 3179 ret = -ENOSPC; 3180 } 3181 error: 3182 btrfs_free_path(path); 3183 return ret; 3184 } 3185 3186 /* 3187 * return 1 : allocate a data chunk successfully, 3188 * return <0: errors during allocating a data chunk, 3189 * return 0 : no need to allocate a data chunk. 3190 */ 3191 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3192 u64 chunk_offset) 3193 { 3194 struct btrfs_block_group_cache *cache; 3195 u64 bytes_used; 3196 u64 chunk_type; 3197 3198 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3199 ASSERT(cache); 3200 chunk_type = cache->flags; 3201 btrfs_put_block_group(cache); 3202 3203 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) { 3204 spin_lock(&fs_info->data_sinfo->lock); 3205 bytes_used = fs_info->data_sinfo->bytes_used; 3206 spin_unlock(&fs_info->data_sinfo->lock); 3207 3208 if (!bytes_used) { 3209 struct btrfs_trans_handle *trans; 3210 int ret; 3211 3212 trans = btrfs_join_transaction(fs_info->tree_root); 3213 if (IS_ERR(trans)) 3214 return PTR_ERR(trans); 3215 3216 ret = btrfs_force_chunk_alloc(trans, 3217 BTRFS_BLOCK_GROUP_DATA); 3218 btrfs_end_transaction(trans); 3219 if (ret < 0) 3220 return ret; 3221 3222 btrfs_add_raid_kobjects(fs_info); 3223 3224 return 1; 3225 } 3226 } 3227 return 0; 3228 } 3229 3230 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3231 struct btrfs_balance_control *bctl) 3232 { 3233 struct btrfs_root *root = fs_info->tree_root; 3234 struct btrfs_trans_handle *trans; 3235 struct btrfs_balance_item *item; 3236 struct btrfs_disk_balance_args disk_bargs; 3237 struct btrfs_path *path; 3238 struct extent_buffer *leaf; 3239 struct btrfs_key key; 3240 int ret, err; 3241 3242 path = btrfs_alloc_path(); 3243 if (!path) 3244 return -ENOMEM; 3245 3246 trans = btrfs_start_transaction(root, 0); 3247 if (IS_ERR(trans)) { 3248 btrfs_free_path(path); 3249 return PTR_ERR(trans); 3250 } 3251 3252 key.objectid = BTRFS_BALANCE_OBJECTID; 3253 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3254 key.offset = 0; 3255 3256 ret = btrfs_insert_empty_item(trans, root, path, &key, 3257 sizeof(*item)); 3258 if (ret) 3259 goto out; 3260 3261 leaf = path->nodes[0]; 3262 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3263 3264 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3265 3266 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3267 btrfs_set_balance_data(leaf, item, &disk_bargs); 3268 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3269 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3270 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3271 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3272 3273 btrfs_set_balance_flags(leaf, item, bctl->flags); 3274 3275 btrfs_mark_buffer_dirty(leaf); 3276 out: 3277 btrfs_free_path(path); 3278 err = btrfs_commit_transaction(trans); 3279 if (err && !ret) 3280 ret = err; 3281 return ret; 3282 } 3283 3284 static int del_balance_item(struct btrfs_fs_info *fs_info) 3285 { 3286 struct btrfs_root *root = fs_info->tree_root; 3287 struct btrfs_trans_handle *trans; 3288 struct btrfs_path *path; 3289 struct btrfs_key key; 3290 int ret, err; 3291 3292 path = btrfs_alloc_path(); 3293 if (!path) 3294 return -ENOMEM; 3295 3296 trans = btrfs_start_transaction(root, 0); 3297 if (IS_ERR(trans)) { 3298 btrfs_free_path(path); 3299 return PTR_ERR(trans); 3300 } 3301 3302 key.objectid = BTRFS_BALANCE_OBJECTID; 3303 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3304 key.offset = 0; 3305 3306 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3307 if (ret < 0) 3308 goto out; 3309 if (ret > 0) { 3310 ret = -ENOENT; 3311 goto out; 3312 } 3313 3314 ret = btrfs_del_item(trans, root, path); 3315 out: 3316 btrfs_free_path(path); 3317 err = btrfs_commit_transaction(trans); 3318 if (err && !ret) 3319 ret = err; 3320 return ret; 3321 } 3322 3323 /* 3324 * This is a heuristic used to reduce the number of chunks balanced on 3325 * resume after balance was interrupted. 3326 */ 3327 static void update_balance_args(struct btrfs_balance_control *bctl) 3328 { 3329 /* 3330 * Turn on soft mode for chunk types that were being converted. 3331 */ 3332 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3333 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3334 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3335 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3336 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3337 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3338 3339 /* 3340 * Turn on usage filter if is not already used. The idea is 3341 * that chunks that we have already balanced should be 3342 * reasonably full. Don't do it for chunks that are being 3343 * converted - that will keep us from relocating unconverted 3344 * (albeit full) chunks. 3345 */ 3346 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3347 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3348 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3349 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3350 bctl->data.usage = 90; 3351 } 3352 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3353 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3354 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3355 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3356 bctl->sys.usage = 90; 3357 } 3358 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3359 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3360 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3361 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3362 bctl->meta.usage = 90; 3363 } 3364 } 3365 3366 /* 3367 * Clear the balance status in fs_info and delete the balance item from disk. 3368 */ 3369 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3370 { 3371 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3372 int ret; 3373 3374 BUG_ON(!fs_info->balance_ctl); 3375 3376 spin_lock(&fs_info->balance_lock); 3377 fs_info->balance_ctl = NULL; 3378 spin_unlock(&fs_info->balance_lock); 3379 3380 kfree(bctl); 3381 ret = del_balance_item(fs_info); 3382 if (ret) 3383 btrfs_handle_fs_error(fs_info, ret, NULL); 3384 } 3385 3386 /* 3387 * Balance filters. Return 1 if chunk should be filtered out 3388 * (should not be balanced). 3389 */ 3390 static int chunk_profiles_filter(u64 chunk_type, 3391 struct btrfs_balance_args *bargs) 3392 { 3393 chunk_type = chunk_to_extended(chunk_type) & 3394 BTRFS_EXTENDED_PROFILE_MASK; 3395 3396 if (bargs->profiles & chunk_type) 3397 return 0; 3398 3399 return 1; 3400 } 3401 3402 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3403 struct btrfs_balance_args *bargs) 3404 { 3405 struct btrfs_block_group_cache *cache; 3406 u64 chunk_used; 3407 u64 user_thresh_min; 3408 u64 user_thresh_max; 3409 int ret = 1; 3410 3411 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3412 chunk_used = btrfs_block_group_used(&cache->item); 3413 3414 if (bargs->usage_min == 0) 3415 user_thresh_min = 0; 3416 else 3417 user_thresh_min = div_factor_fine(cache->key.offset, 3418 bargs->usage_min); 3419 3420 if (bargs->usage_max == 0) 3421 user_thresh_max = 1; 3422 else if (bargs->usage_max > 100) 3423 user_thresh_max = cache->key.offset; 3424 else 3425 user_thresh_max = div_factor_fine(cache->key.offset, 3426 bargs->usage_max); 3427 3428 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3429 ret = 0; 3430 3431 btrfs_put_block_group(cache); 3432 return ret; 3433 } 3434 3435 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3436 u64 chunk_offset, struct btrfs_balance_args *bargs) 3437 { 3438 struct btrfs_block_group_cache *cache; 3439 u64 chunk_used, user_thresh; 3440 int ret = 1; 3441 3442 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3443 chunk_used = btrfs_block_group_used(&cache->item); 3444 3445 if (bargs->usage_min == 0) 3446 user_thresh = 1; 3447 else if (bargs->usage > 100) 3448 user_thresh = cache->key.offset; 3449 else 3450 user_thresh = div_factor_fine(cache->key.offset, 3451 bargs->usage); 3452 3453 if (chunk_used < user_thresh) 3454 ret = 0; 3455 3456 btrfs_put_block_group(cache); 3457 return ret; 3458 } 3459 3460 static int chunk_devid_filter(struct extent_buffer *leaf, 3461 struct btrfs_chunk *chunk, 3462 struct btrfs_balance_args *bargs) 3463 { 3464 struct btrfs_stripe *stripe; 3465 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3466 int i; 3467 3468 for (i = 0; i < num_stripes; i++) { 3469 stripe = btrfs_stripe_nr(chunk, i); 3470 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3471 return 0; 3472 } 3473 3474 return 1; 3475 } 3476 3477 /* [pstart, pend) */ 3478 static int chunk_drange_filter(struct extent_buffer *leaf, 3479 struct btrfs_chunk *chunk, 3480 struct btrfs_balance_args *bargs) 3481 { 3482 struct btrfs_stripe *stripe; 3483 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3484 u64 stripe_offset; 3485 u64 stripe_length; 3486 int factor; 3487 int i; 3488 3489 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3490 return 0; 3491 3492 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 3493 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 3494 factor = num_stripes / 2; 3495 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 3496 factor = num_stripes - 1; 3497 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 3498 factor = num_stripes - 2; 3499 } else { 3500 factor = num_stripes; 3501 } 3502 3503 for (i = 0; i < num_stripes; i++) { 3504 stripe = btrfs_stripe_nr(chunk, i); 3505 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3506 continue; 3507 3508 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3509 stripe_length = btrfs_chunk_length(leaf, chunk); 3510 stripe_length = div_u64(stripe_length, factor); 3511 3512 if (stripe_offset < bargs->pend && 3513 stripe_offset + stripe_length > bargs->pstart) 3514 return 0; 3515 } 3516 3517 return 1; 3518 } 3519 3520 /* [vstart, vend) */ 3521 static int chunk_vrange_filter(struct extent_buffer *leaf, 3522 struct btrfs_chunk *chunk, 3523 u64 chunk_offset, 3524 struct btrfs_balance_args *bargs) 3525 { 3526 if (chunk_offset < bargs->vend && 3527 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3528 /* at least part of the chunk is inside this vrange */ 3529 return 0; 3530 3531 return 1; 3532 } 3533 3534 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3535 struct btrfs_chunk *chunk, 3536 struct btrfs_balance_args *bargs) 3537 { 3538 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3539 3540 if (bargs->stripes_min <= num_stripes 3541 && num_stripes <= bargs->stripes_max) 3542 return 0; 3543 3544 return 1; 3545 } 3546 3547 static int chunk_soft_convert_filter(u64 chunk_type, 3548 struct btrfs_balance_args *bargs) 3549 { 3550 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3551 return 0; 3552 3553 chunk_type = chunk_to_extended(chunk_type) & 3554 BTRFS_EXTENDED_PROFILE_MASK; 3555 3556 if (bargs->target == chunk_type) 3557 return 1; 3558 3559 return 0; 3560 } 3561 3562 static int should_balance_chunk(struct extent_buffer *leaf, 3563 struct btrfs_chunk *chunk, u64 chunk_offset) 3564 { 3565 struct btrfs_fs_info *fs_info = leaf->fs_info; 3566 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3567 struct btrfs_balance_args *bargs = NULL; 3568 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3569 3570 /* type filter */ 3571 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3572 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3573 return 0; 3574 } 3575 3576 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3577 bargs = &bctl->data; 3578 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3579 bargs = &bctl->sys; 3580 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3581 bargs = &bctl->meta; 3582 3583 /* profiles filter */ 3584 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3585 chunk_profiles_filter(chunk_type, bargs)) { 3586 return 0; 3587 } 3588 3589 /* usage filter */ 3590 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3591 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3592 return 0; 3593 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3594 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3595 return 0; 3596 } 3597 3598 /* devid filter */ 3599 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3600 chunk_devid_filter(leaf, chunk, bargs)) { 3601 return 0; 3602 } 3603 3604 /* drange filter, makes sense only with devid filter */ 3605 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3606 chunk_drange_filter(leaf, chunk, bargs)) { 3607 return 0; 3608 } 3609 3610 /* vrange filter */ 3611 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3612 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3613 return 0; 3614 } 3615 3616 /* stripes filter */ 3617 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3618 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3619 return 0; 3620 } 3621 3622 /* soft profile changing mode */ 3623 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3624 chunk_soft_convert_filter(chunk_type, bargs)) { 3625 return 0; 3626 } 3627 3628 /* 3629 * limited by count, must be the last filter 3630 */ 3631 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3632 if (bargs->limit == 0) 3633 return 0; 3634 else 3635 bargs->limit--; 3636 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3637 /* 3638 * Same logic as the 'limit' filter; the minimum cannot be 3639 * determined here because we do not have the global information 3640 * about the count of all chunks that satisfy the filters. 3641 */ 3642 if (bargs->limit_max == 0) 3643 return 0; 3644 else 3645 bargs->limit_max--; 3646 } 3647 3648 return 1; 3649 } 3650 3651 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3652 { 3653 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3654 struct btrfs_root *chunk_root = fs_info->chunk_root; 3655 u64 chunk_type; 3656 struct btrfs_chunk *chunk; 3657 struct btrfs_path *path = NULL; 3658 struct btrfs_key key; 3659 struct btrfs_key found_key; 3660 struct extent_buffer *leaf; 3661 int slot; 3662 int ret; 3663 int enospc_errors = 0; 3664 bool counting = true; 3665 /* The single value limit and min/max limits use the same bytes in the */ 3666 u64 limit_data = bctl->data.limit; 3667 u64 limit_meta = bctl->meta.limit; 3668 u64 limit_sys = bctl->sys.limit; 3669 u32 count_data = 0; 3670 u32 count_meta = 0; 3671 u32 count_sys = 0; 3672 int chunk_reserved = 0; 3673 3674 path = btrfs_alloc_path(); 3675 if (!path) { 3676 ret = -ENOMEM; 3677 goto error; 3678 } 3679 3680 /* zero out stat counters */ 3681 spin_lock(&fs_info->balance_lock); 3682 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3683 spin_unlock(&fs_info->balance_lock); 3684 again: 3685 if (!counting) { 3686 /* 3687 * The single value limit and min/max limits use the same bytes 3688 * in the 3689 */ 3690 bctl->data.limit = limit_data; 3691 bctl->meta.limit = limit_meta; 3692 bctl->sys.limit = limit_sys; 3693 } 3694 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3695 key.offset = (u64)-1; 3696 key.type = BTRFS_CHUNK_ITEM_KEY; 3697 3698 while (1) { 3699 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3700 atomic_read(&fs_info->balance_cancel_req)) { 3701 ret = -ECANCELED; 3702 goto error; 3703 } 3704 3705 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3706 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3707 if (ret < 0) { 3708 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3709 goto error; 3710 } 3711 3712 /* 3713 * this shouldn't happen, it means the last relocate 3714 * failed 3715 */ 3716 if (ret == 0) 3717 BUG(); /* FIXME break ? */ 3718 3719 ret = btrfs_previous_item(chunk_root, path, 0, 3720 BTRFS_CHUNK_ITEM_KEY); 3721 if (ret) { 3722 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3723 ret = 0; 3724 break; 3725 } 3726 3727 leaf = path->nodes[0]; 3728 slot = path->slots[0]; 3729 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3730 3731 if (found_key.objectid != key.objectid) { 3732 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3733 break; 3734 } 3735 3736 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3737 chunk_type = btrfs_chunk_type(leaf, chunk); 3738 3739 if (!counting) { 3740 spin_lock(&fs_info->balance_lock); 3741 bctl->stat.considered++; 3742 spin_unlock(&fs_info->balance_lock); 3743 } 3744 3745 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3746 3747 btrfs_release_path(path); 3748 if (!ret) { 3749 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3750 goto loop; 3751 } 3752 3753 if (counting) { 3754 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3755 spin_lock(&fs_info->balance_lock); 3756 bctl->stat.expected++; 3757 spin_unlock(&fs_info->balance_lock); 3758 3759 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3760 count_data++; 3761 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3762 count_sys++; 3763 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3764 count_meta++; 3765 3766 goto loop; 3767 } 3768 3769 /* 3770 * Apply limit_min filter, no need to check if the LIMITS 3771 * filter is used, limit_min is 0 by default 3772 */ 3773 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3774 count_data < bctl->data.limit_min) 3775 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3776 count_meta < bctl->meta.limit_min) 3777 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3778 count_sys < bctl->sys.limit_min)) { 3779 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3780 goto loop; 3781 } 3782 3783 if (!chunk_reserved) { 3784 /* 3785 * We may be relocating the only data chunk we have, 3786 * which could potentially end up with losing data's 3787 * raid profile, so lets allocate an empty one in 3788 * advance. 3789 */ 3790 ret = btrfs_may_alloc_data_chunk(fs_info, 3791 found_key.offset); 3792 if (ret < 0) { 3793 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3794 goto error; 3795 } else if (ret == 1) { 3796 chunk_reserved = 1; 3797 } 3798 } 3799 3800 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3801 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3802 if (ret == -ENOSPC) { 3803 enospc_errors++; 3804 } else if (ret == -ETXTBSY) { 3805 btrfs_info(fs_info, 3806 "skipping relocation of block group %llu due to active swapfile", 3807 found_key.offset); 3808 ret = 0; 3809 } else if (ret) { 3810 goto error; 3811 } else { 3812 spin_lock(&fs_info->balance_lock); 3813 bctl->stat.completed++; 3814 spin_unlock(&fs_info->balance_lock); 3815 } 3816 loop: 3817 if (found_key.offset == 0) 3818 break; 3819 key.offset = found_key.offset - 1; 3820 } 3821 3822 if (counting) { 3823 btrfs_release_path(path); 3824 counting = false; 3825 goto again; 3826 } 3827 error: 3828 btrfs_free_path(path); 3829 if (enospc_errors) { 3830 btrfs_info(fs_info, "%d enospc errors during balance", 3831 enospc_errors); 3832 if (!ret) 3833 ret = -ENOSPC; 3834 } 3835 3836 return ret; 3837 } 3838 3839 /** 3840 * alloc_profile_is_valid - see if a given profile is valid and reduced 3841 * @flags: profile to validate 3842 * @extended: if true @flags is treated as an extended profile 3843 */ 3844 static int alloc_profile_is_valid(u64 flags, int extended) 3845 { 3846 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3847 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3848 3849 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3850 3851 /* 1) check that all other bits are zeroed */ 3852 if (flags & ~mask) 3853 return 0; 3854 3855 /* 2) see if profile is reduced */ 3856 if (flags == 0) 3857 return !extended; /* "0" is valid for usual profiles */ 3858 3859 /* true if exactly one bit set */ 3860 return is_power_of_2(flags); 3861 } 3862 3863 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3864 { 3865 /* cancel requested || normal exit path */ 3866 return atomic_read(&fs_info->balance_cancel_req) || 3867 (atomic_read(&fs_info->balance_pause_req) == 0 && 3868 atomic_read(&fs_info->balance_cancel_req) == 0); 3869 } 3870 3871 /* Non-zero return value signifies invalidity */ 3872 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, 3873 u64 allowed) 3874 { 3875 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && 3876 (!alloc_profile_is_valid(bctl_arg->target, 1) || 3877 (bctl_arg->target & ~allowed))); 3878 } 3879 3880 /* 3881 * Fill @buf with textual description of balance filter flags @bargs, up to 3882 * @size_buf including the terminating null. The output may be trimmed if it 3883 * does not fit into the provided buffer. 3884 */ 3885 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3886 u32 size_buf) 3887 { 3888 int ret; 3889 u32 size_bp = size_buf; 3890 char *bp = buf; 3891 u64 flags = bargs->flags; 3892 char tmp_buf[128] = {'\0'}; 3893 3894 if (!flags) 3895 return; 3896 3897 #define CHECK_APPEND_NOARG(a) \ 3898 do { \ 3899 ret = snprintf(bp, size_bp, (a)); \ 3900 if (ret < 0 || ret >= size_bp) \ 3901 goto out_overflow; \ 3902 size_bp -= ret; \ 3903 bp += ret; \ 3904 } while (0) 3905 3906 #define CHECK_APPEND_1ARG(a, v1) \ 3907 do { \ 3908 ret = snprintf(bp, size_bp, (a), (v1)); \ 3909 if (ret < 0 || ret >= size_bp) \ 3910 goto out_overflow; \ 3911 size_bp -= ret; \ 3912 bp += ret; \ 3913 } while (0) 3914 3915 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3916 do { \ 3917 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3918 if (ret < 0 || ret >= size_bp) \ 3919 goto out_overflow; \ 3920 size_bp -= ret; \ 3921 bp += ret; \ 3922 } while (0) 3923 3924 if (flags & BTRFS_BALANCE_ARGS_CONVERT) { 3925 int index = btrfs_bg_flags_to_raid_index(bargs->target); 3926 3927 CHECK_APPEND_1ARG("convert=%s,", get_raid_name(index)); 3928 } 3929 3930 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3931 CHECK_APPEND_NOARG("soft,"); 3932 3933 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3934 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3935 sizeof(tmp_buf)); 3936 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3937 } 3938 3939 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3940 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3941 3942 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3943 CHECK_APPEND_2ARG("usage=%u..%u,", 3944 bargs->usage_min, bargs->usage_max); 3945 3946 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3947 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3948 3949 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3950 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3951 bargs->pstart, bargs->pend); 3952 3953 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3954 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3955 bargs->vstart, bargs->vend); 3956 3957 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3958 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3959 3960 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3961 CHECK_APPEND_2ARG("limit=%u..%u,", 3962 bargs->limit_min, bargs->limit_max); 3963 3964 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3965 CHECK_APPEND_2ARG("stripes=%u..%u,", 3966 bargs->stripes_min, bargs->stripes_max); 3967 3968 #undef CHECK_APPEND_2ARG 3969 #undef CHECK_APPEND_1ARG 3970 #undef CHECK_APPEND_NOARG 3971 3972 out_overflow: 3973 3974 if (size_bp < size_buf) 3975 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3976 else 3977 buf[0] = '\0'; 3978 } 3979 3980 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3981 { 3982 u32 size_buf = 1024; 3983 char tmp_buf[192] = {'\0'}; 3984 char *buf; 3985 char *bp; 3986 u32 size_bp = size_buf; 3987 int ret; 3988 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3989 3990 buf = kzalloc(size_buf, GFP_KERNEL); 3991 if (!buf) 3992 return; 3993 3994 bp = buf; 3995 3996 #define CHECK_APPEND_1ARG(a, v1) \ 3997 do { \ 3998 ret = snprintf(bp, size_bp, (a), (v1)); \ 3999 if (ret < 0 || ret >= size_bp) \ 4000 goto out_overflow; \ 4001 size_bp -= ret; \ 4002 bp += ret; \ 4003 } while (0) 4004 4005 if (bctl->flags & BTRFS_BALANCE_FORCE) 4006 CHECK_APPEND_1ARG("%s", "-f "); 4007 4008 if (bctl->flags & BTRFS_BALANCE_DATA) { 4009 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4010 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4011 } 4012 4013 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4014 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4015 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4016 } 4017 4018 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4019 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4020 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4021 } 4022 4023 #undef CHECK_APPEND_1ARG 4024 4025 out_overflow: 4026 4027 if (size_bp < size_buf) 4028 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4029 btrfs_info(fs_info, "balance: %s %s", 4030 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4031 "resume" : "start", buf); 4032 4033 kfree(buf); 4034 } 4035 4036 /* 4037 * Should be called with balance mutexe held 4038 */ 4039 int btrfs_balance(struct btrfs_fs_info *fs_info, 4040 struct btrfs_balance_control *bctl, 4041 struct btrfs_ioctl_balance_args *bargs) 4042 { 4043 u64 meta_target, data_target; 4044 u64 allowed; 4045 int mixed = 0; 4046 int ret; 4047 u64 num_devices; 4048 unsigned seq; 4049 bool reducing_integrity; 4050 4051 if (btrfs_fs_closing(fs_info) || 4052 atomic_read(&fs_info->balance_pause_req) || 4053 atomic_read(&fs_info->balance_cancel_req)) { 4054 ret = -EINVAL; 4055 goto out; 4056 } 4057 4058 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4059 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4060 mixed = 1; 4061 4062 /* 4063 * In case of mixed groups both data and meta should be picked, 4064 * and identical options should be given for both of them. 4065 */ 4066 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4067 if (mixed && (bctl->flags & allowed)) { 4068 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4069 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4070 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4071 btrfs_err(fs_info, 4072 "balance: mixed groups data and metadata options must be the same"); 4073 ret = -EINVAL; 4074 goto out; 4075 } 4076 } 4077 4078 num_devices = btrfs_num_devices(fs_info); 4079 4080 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; 4081 if (num_devices > 1) 4082 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 4083 if (num_devices > 2) 4084 allowed |= BTRFS_BLOCK_GROUP_RAID5; 4085 if (num_devices > 3) 4086 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 4087 BTRFS_BLOCK_GROUP_RAID6); 4088 if (validate_convert_profile(&bctl->data, allowed)) { 4089 int index = btrfs_bg_flags_to_raid_index(bctl->data.target); 4090 4091 btrfs_err(fs_info, 4092 "balance: invalid convert data profile %s", 4093 get_raid_name(index)); 4094 ret = -EINVAL; 4095 goto out; 4096 } 4097 if (validate_convert_profile(&bctl->meta, allowed)) { 4098 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target); 4099 4100 btrfs_err(fs_info, 4101 "balance: invalid convert metadata profile %s", 4102 get_raid_name(index)); 4103 ret = -EINVAL; 4104 goto out; 4105 } 4106 if (validate_convert_profile(&bctl->sys, allowed)) { 4107 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target); 4108 4109 btrfs_err(fs_info, 4110 "balance: invalid convert system profile %s", 4111 get_raid_name(index)); 4112 ret = -EINVAL; 4113 goto out; 4114 } 4115 4116 /* allow to reduce meta or sys integrity only if force set */ 4117 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4118 BTRFS_BLOCK_GROUP_RAID10 | 4119 BTRFS_BLOCK_GROUP_RAID5 | 4120 BTRFS_BLOCK_GROUP_RAID6; 4121 do { 4122 seq = read_seqbegin(&fs_info->profiles_lock); 4123 4124 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4125 (fs_info->avail_system_alloc_bits & allowed) && 4126 !(bctl->sys.target & allowed)) || 4127 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4128 (fs_info->avail_metadata_alloc_bits & allowed) && 4129 !(bctl->meta.target & allowed))) 4130 reducing_integrity = true; 4131 else 4132 reducing_integrity = false; 4133 4134 /* if we're not converting, the target field is uninitialized */ 4135 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4136 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4137 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4138 bctl->data.target : fs_info->avail_data_alloc_bits; 4139 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4140 4141 if (reducing_integrity) { 4142 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4143 btrfs_info(fs_info, 4144 "balance: force reducing metadata integrity"); 4145 } else { 4146 btrfs_err(fs_info, 4147 "balance: reduces metadata integrity, use --force if you want this"); 4148 ret = -EINVAL; 4149 goto out; 4150 } 4151 } 4152 4153 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4154 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4155 int meta_index = btrfs_bg_flags_to_raid_index(meta_target); 4156 int data_index = btrfs_bg_flags_to_raid_index(data_target); 4157 4158 btrfs_warn(fs_info, 4159 "balance: metadata profile %s has lower redundancy than data profile %s", 4160 get_raid_name(meta_index), get_raid_name(data_index)); 4161 } 4162 4163 ret = insert_balance_item(fs_info, bctl); 4164 if (ret && ret != -EEXIST) 4165 goto out; 4166 4167 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4168 BUG_ON(ret == -EEXIST); 4169 BUG_ON(fs_info->balance_ctl); 4170 spin_lock(&fs_info->balance_lock); 4171 fs_info->balance_ctl = bctl; 4172 spin_unlock(&fs_info->balance_lock); 4173 } else { 4174 BUG_ON(ret != -EEXIST); 4175 spin_lock(&fs_info->balance_lock); 4176 update_balance_args(bctl); 4177 spin_unlock(&fs_info->balance_lock); 4178 } 4179 4180 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4181 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4182 describe_balance_start_or_resume(fs_info); 4183 mutex_unlock(&fs_info->balance_mutex); 4184 4185 ret = __btrfs_balance(fs_info); 4186 4187 mutex_lock(&fs_info->balance_mutex); 4188 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4189 btrfs_info(fs_info, "balance: paused"); 4190 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req)) 4191 btrfs_info(fs_info, "balance: canceled"); 4192 else 4193 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4194 4195 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4196 4197 if (bargs) { 4198 memset(bargs, 0, sizeof(*bargs)); 4199 btrfs_update_ioctl_balance_args(fs_info, bargs); 4200 } 4201 4202 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4203 balance_need_close(fs_info)) { 4204 reset_balance_state(fs_info); 4205 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4206 } 4207 4208 wake_up(&fs_info->balance_wait_q); 4209 4210 return ret; 4211 out: 4212 if (bctl->flags & BTRFS_BALANCE_RESUME) 4213 reset_balance_state(fs_info); 4214 else 4215 kfree(bctl); 4216 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4217 4218 return ret; 4219 } 4220 4221 static int balance_kthread(void *data) 4222 { 4223 struct btrfs_fs_info *fs_info = data; 4224 int ret = 0; 4225 4226 mutex_lock(&fs_info->balance_mutex); 4227 if (fs_info->balance_ctl) 4228 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4229 mutex_unlock(&fs_info->balance_mutex); 4230 4231 return ret; 4232 } 4233 4234 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4235 { 4236 struct task_struct *tsk; 4237 4238 mutex_lock(&fs_info->balance_mutex); 4239 if (!fs_info->balance_ctl) { 4240 mutex_unlock(&fs_info->balance_mutex); 4241 return 0; 4242 } 4243 mutex_unlock(&fs_info->balance_mutex); 4244 4245 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4246 btrfs_info(fs_info, "balance: resume skipped"); 4247 return 0; 4248 } 4249 4250 /* 4251 * A ro->rw remount sequence should continue with the paused balance 4252 * regardless of who pauses it, system or the user as of now, so set 4253 * the resume flag. 4254 */ 4255 spin_lock(&fs_info->balance_lock); 4256 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4257 spin_unlock(&fs_info->balance_lock); 4258 4259 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4260 return PTR_ERR_OR_ZERO(tsk); 4261 } 4262 4263 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4264 { 4265 struct btrfs_balance_control *bctl; 4266 struct btrfs_balance_item *item; 4267 struct btrfs_disk_balance_args disk_bargs; 4268 struct btrfs_path *path; 4269 struct extent_buffer *leaf; 4270 struct btrfs_key key; 4271 int ret; 4272 4273 path = btrfs_alloc_path(); 4274 if (!path) 4275 return -ENOMEM; 4276 4277 key.objectid = BTRFS_BALANCE_OBJECTID; 4278 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4279 key.offset = 0; 4280 4281 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4282 if (ret < 0) 4283 goto out; 4284 if (ret > 0) { /* ret = -ENOENT; */ 4285 ret = 0; 4286 goto out; 4287 } 4288 4289 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4290 if (!bctl) { 4291 ret = -ENOMEM; 4292 goto out; 4293 } 4294 4295 leaf = path->nodes[0]; 4296 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4297 4298 bctl->flags = btrfs_balance_flags(leaf, item); 4299 bctl->flags |= BTRFS_BALANCE_RESUME; 4300 4301 btrfs_balance_data(leaf, item, &disk_bargs); 4302 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4303 btrfs_balance_meta(leaf, item, &disk_bargs); 4304 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4305 btrfs_balance_sys(leaf, item, &disk_bargs); 4306 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4307 4308 /* 4309 * This should never happen, as the paused balance state is recovered 4310 * during mount without any chance of other exclusive ops to collide. 4311 * 4312 * This gives the exclusive op status to balance and keeps in paused 4313 * state until user intervention (cancel or umount). If the ownership 4314 * cannot be assigned, show a message but do not fail. The balance 4315 * is in a paused state and must have fs_info::balance_ctl properly 4316 * set up. 4317 */ 4318 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 4319 btrfs_warn(fs_info, 4320 "balance: cannot set exclusive op status, resume manually"); 4321 4322 mutex_lock(&fs_info->balance_mutex); 4323 BUG_ON(fs_info->balance_ctl); 4324 spin_lock(&fs_info->balance_lock); 4325 fs_info->balance_ctl = bctl; 4326 spin_unlock(&fs_info->balance_lock); 4327 mutex_unlock(&fs_info->balance_mutex); 4328 out: 4329 btrfs_free_path(path); 4330 return ret; 4331 } 4332 4333 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4334 { 4335 int ret = 0; 4336 4337 mutex_lock(&fs_info->balance_mutex); 4338 if (!fs_info->balance_ctl) { 4339 mutex_unlock(&fs_info->balance_mutex); 4340 return -ENOTCONN; 4341 } 4342 4343 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4344 atomic_inc(&fs_info->balance_pause_req); 4345 mutex_unlock(&fs_info->balance_mutex); 4346 4347 wait_event(fs_info->balance_wait_q, 4348 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4349 4350 mutex_lock(&fs_info->balance_mutex); 4351 /* we are good with balance_ctl ripped off from under us */ 4352 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4353 atomic_dec(&fs_info->balance_pause_req); 4354 } else { 4355 ret = -ENOTCONN; 4356 } 4357 4358 mutex_unlock(&fs_info->balance_mutex); 4359 return ret; 4360 } 4361 4362 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4363 { 4364 mutex_lock(&fs_info->balance_mutex); 4365 if (!fs_info->balance_ctl) { 4366 mutex_unlock(&fs_info->balance_mutex); 4367 return -ENOTCONN; 4368 } 4369 4370 /* 4371 * A paused balance with the item stored on disk can be resumed at 4372 * mount time if the mount is read-write. Otherwise it's still paused 4373 * and we must not allow cancelling as it deletes the item. 4374 */ 4375 if (sb_rdonly(fs_info->sb)) { 4376 mutex_unlock(&fs_info->balance_mutex); 4377 return -EROFS; 4378 } 4379 4380 atomic_inc(&fs_info->balance_cancel_req); 4381 /* 4382 * if we are running just wait and return, balance item is 4383 * deleted in btrfs_balance in this case 4384 */ 4385 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4386 mutex_unlock(&fs_info->balance_mutex); 4387 wait_event(fs_info->balance_wait_q, 4388 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4389 mutex_lock(&fs_info->balance_mutex); 4390 } else { 4391 mutex_unlock(&fs_info->balance_mutex); 4392 /* 4393 * Lock released to allow other waiters to continue, we'll 4394 * reexamine the status again. 4395 */ 4396 mutex_lock(&fs_info->balance_mutex); 4397 4398 if (fs_info->balance_ctl) { 4399 reset_balance_state(fs_info); 4400 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4401 btrfs_info(fs_info, "balance: canceled"); 4402 } 4403 } 4404 4405 BUG_ON(fs_info->balance_ctl || 4406 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4407 atomic_dec(&fs_info->balance_cancel_req); 4408 mutex_unlock(&fs_info->balance_mutex); 4409 return 0; 4410 } 4411 4412 static int btrfs_uuid_scan_kthread(void *data) 4413 { 4414 struct btrfs_fs_info *fs_info = data; 4415 struct btrfs_root *root = fs_info->tree_root; 4416 struct btrfs_key key; 4417 struct btrfs_path *path = NULL; 4418 int ret = 0; 4419 struct extent_buffer *eb; 4420 int slot; 4421 struct btrfs_root_item root_item; 4422 u32 item_size; 4423 struct btrfs_trans_handle *trans = NULL; 4424 4425 path = btrfs_alloc_path(); 4426 if (!path) { 4427 ret = -ENOMEM; 4428 goto out; 4429 } 4430 4431 key.objectid = 0; 4432 key.type = BTRFS_ROOT_ITEM_KEY; 4433 key.offset = 0; 4434 4435 while (1) { 4436 ret = btrfs_search_forward(root, &key, path, 4437 BTRFS_OLDEST_GENERATION); 4438 if (ret) { 4439 if (ret > 0) 4440 ret = 0; 4441 break; 4442 } 4443 4444 if (key.type != BTRFS_ROOT_ITEM_KEY || 4445 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4446 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4447 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4448 goto skip; 4449 4450 eb = path->nodes[0]; 4451 slot = path->slots[0]; 4452 item_size = btrfs_item_size_nr(eb, slot); 4453 if (item_size < sizeof(root_item)) 4454 goto skip; 4455 4456 read_extent_buffer(eb, &root_item, 4457 btrfs_item_ptr_offset(eb, slot), 4458 (int)sizeof(root_item)); 4459 if (btrfs_root_refs(&root_item) == 0) 4460 goto skip; 4461 4462 if (!btrfs_is_empty_uuid(root_item.uuid) || 4463 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4464 if (trans) 4465 goto update_tree; 4466 4467 btrfs_release_path(path); 4468 /* 4469 * 1 - subvol uuid item 4470 * 1 - received_subvol uuid item 4471 */ 4472 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4473 if (IS_ERR(trans)) { 4474 ret = PTR_ERR(trans); 4475 break; 4476 } 4477 continue; 4478 } else { 4479 goto skip; 4480 } 4481 update_tree: 4482 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4483 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4484 BTRFS_UUID_KEY_SUBVOL, 4485 key.objectid); 4486 if (ret < 0) { 4487 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4488 ret); 4489 break; 4490 } 4491 } 4492 4493 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4494 ret = btrfs_uuid_tree_add(trans, 4495 root_item.received_uuid, 4496 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4497 key.objectid); 4498 if (ret < 0) { 4499 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4500 ret); 4501 break; 4502 } 4503 } 4504 4505 skip: 4506 if (trans) { 4507 ret = btrfs_end_transaction(trans); 4508 trans = NULL; 4509 if (ret) 4510 break; 4511 } 4512 4513 btrfs_release_path(path); 4514 if (key.offset < (u64)-1) { 4515 key.offset++; 4516 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4517 key.offset = 0; 4518 key.type = BTRFS_ROOT_ITEM_KEY; 4519 } else if (key.objectid < (u64)-1) { 4520 key.offset = 0; 4521 key.type = BTRFS_ROOT_ITEM_KEY; 4522 key.objectid++; 4523 } else { 4524 break; 4525 } 4526 cond_resched(); 4527 } 4528 4529 out: 4530 btrfs_free_path(path); 4531 if (trans && !IS_ERR(trans)) 4532 btrfs_end_transaction(trans); 4533 if (ret) 4534 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4535 else 4536 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4537 up(&fs_info->uuid_tree_rescan_sem); 4538 return 0; 4539 } 4540 4541 /* 4542 * Callback for btrfs_uuid_tree_iterate(). 4543 * returns: 4544 * 0 check succeeded, the entry is not outdated. 4545 * < 0 if an error occurred. 4546 * > 0 if the check failed, which means the caller shall remove the entry. 4547 */ 4548 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 4549 u8 *uuid, u8 type, u64 subid) 4550 { 4551 struct btrfs_key key; 4552 int ret = 0; 4553 struct btrfs_root *subvol_root; 4554 4555 if (type != BTRFS_UUID_KEY_SUBVOL && 4556 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 4557 goto out; 4558 4559 key.objectid = subid; 4560 key.type = BTRFS_ROOT_ITEM_KEY; 4561 key.offset = (u64)-1; 4562 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 4563 if (IS_ERR(subvol_root)) { 4564 ret = PTR_ERR(subvol_root); 4565 if (ret == -ENOENT) 4566 ret = 1; 4567 goto out; 4568 } 4569 4570 switch (type) { 4571 case BTRFS_UUID_KEY_SUBVOL: 4572 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 4573 ret = 1; 4574 break; 4575 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 4576 if (memcmp(uuid, subvol_root->root_item.received_uuid, 4577 BTRFS_UUID_SIZE)) 4578 ret = 1; 4579 break; 4580 } 4581 4582 out: 4583 return ret; 4584 } 4585 4586 static int btrfs_uuid_rescan_kthread(void *data) 4587 { 4588 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 4589 int ret; 4590 4591 /* 4592 * 1st step is to iterate through the existing UUID tree and 4593 * to delete all entries that contain outdated data. 4594 * 2nd step is to add all missing entries to the UUID tree. 4595 */ 4596 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 4597 if (ret < 0) { 4598 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 4599 up(&fs_info->uuid_tree_rescan_sem); 4600 return ret; 4601 } 4602 return btrfs_uuid_scan_kthread(data); 4603 } 4604 4605 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4606 { 4607 struct btrfs_trans_handle *trans; 4608 struct btrfs_root *tree_root = fs_info->tree_root; 4609 struct btrfs_root *uuid_root; 4610 struct task_struct *task; 4611 int ret; 4612 4613 /* 4614 * 1 - root node 4615 * 1 - root item 4616 */ 4617 trans = btrfs_start_transaction(tree_root, 2); 4618 if (IS_ERR(trans)) 4619 return PTR_ERR(trans); 4620 4621 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4622 if (IS_ERR(uuid_root)) { 4623 ret = PTR_ERR(uuid_root); 4624 btrfs_abort_transaction(trans, ret); 4625 btrfs_end_transaction(trans); 4626 return ret; 4627 } 4628 4629 fs_info->uuid_root = uuid_root; 4630 4631 ret = btrfs_commit_transaction(trans); 4632 if (ret) 4633 return ret; 4634 4635 down(&fs_info->uuid_tree_rescan_sem); 4636 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4637 if (IS_ERR(task)) { 4638 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4639 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4640 up(&fs_info->uuid_tree_rescan_sem); 4641 return PTR_ERR(task); 4642 } 4643 4644 return 0; 4645 } 4646 4647 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 4648 { 4649 struct task_struct *task; 4650 4651 down(&fs_info->uuid_tree_rescan_sem); 4652 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 4653 if (IS_ERR(task)) { 4654 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4655 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 4656 up(&fs_info->uuid_tree_rescan_sem); 4657 return PTR_ERR(task); 4658 } 4659 4660 return 0; 4661 } 4662 4663 /* 4664 * shrinking a device means finding all of the device extents past 4665 * the new size, and then following the back refs to the chunks. 4666 * The chunk relocation code actually frees the device extent 4667 */ 4668 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4669 { 4670 struct btrfs_fs_info *fs_info = device->fs_info; 4671 struct btrfs_root *root = fs_info->dev_root; 4672 struct btrfs_trans_handle *trans; 4673 struct btrfs_dev_extent *dev_extent = NULL; 4674 struct btrfs_path *path; 4675 u64 length; 4676 u64 chunk_offset; 4677 int ret; 4678 int slot; 4679 int failed = 0; 4680 bool retried = false; 4681 struct extent_buffer *l; 4682 struct btrfs_key key; 4683 struct btrfs_super_block *super_copy = fs_info->super_copy; 4684 u64 old_total = btrfs_super_total_bytes(super_copy); 4685 u64 old_size = btrfs_device_get_total_bytes(device); 4686 u64 diff; 4687 u64 start; 4688 4689 new_size = round_down(new_size, fs_info->sectorsize); 4690 start = new_size; 4691 diff = round_down(old_size - new_size, fs_info->sectorsize); 4692 4693 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4694 return -EINVAL; 4695 4696 path = btrfs_alloc_path(); 4697 if (!path) 4698 return -ENOMEM; 4699 4700 path->reada = READA_BACK; 4701 4702 trans = btrfs_start_transaction(root, 0); 4703 if (IS_ERR(trans)) { 4704 btrfs_free_path(path); 4705 return PTR_ERR(trans); 4706 } 4707 4708 mutex_lock(&fs_info->chunk_mutex); 4709 4710 btrfs_device_set_total_bytes(device, new_size); 4711 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4712 device->fs_devices->total_rw_bytes -= diff; 4713 atomic64_sub(diff, &fs_info->free_chunk_space); 4714 } 4715 4716 /* 4717 * Once the device's size has been set to the new size, ensure all 4718 * in-memory chunks are synced to disk so that the loop below sees them 4719 * and relocates them accordingly. 4720 */ 4721 if (contains_pending_extent(device, &start, diff)) { 4722 mutex_unlock(&fs_info->chunk_mutex); 4723 ret = btrfs_commit_transaction(trans); 4724 if (ret) 4725 goto done; 4726 } else { 4727 mutex_unlock(&fs_info->chunk_mutex); 4728 btrfs_end_transaction(trans); 4729 } 4730 4731 again: 4732 key.objectid = device->devid; 4733 key.offset = (u64)-1; 4734 key.type = BTRFS_DEV_EXTENT_KEY; 4735 4736 do { 4737 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4739 if (ret < 0) { 4740 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4741 goto done; 4742 } 4743 4744 ret = btrfs_previous_item(root, path, 0, key.type); 4745 if (ret) 4746 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4747 if (ret < 0) 4748 goto done; 4749 if (ret) { 4750 ret = 0; 4751 btrfs_release_path(path); 4752 break; 4753 } 4754 4755 l = path->nodes[0]; 4756 slot = path->slots[0]; 4757 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4758 4759 if (key.objectid != device->devid) { 4760 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4761 btrfs_release_path(path); 4762 break; 4763 } 4764 4765 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4766 length = btrfs_dev_extent_length(l, dev_extent); 4767 4768 if (key.offset + length <= new_size) { 4769 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4770 btrfs_release_path(path); 4771 break; 4772 } 4773 4774 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4775 btrfs_release_path(path); 4776 4777 /* 4778 * We may be relocating the only data chunk we have, 4779 * which could potentially end up with losing data's 4780 * raid profile, so lets allocate an empty one in 4781 * advance. 4782 */ 4783 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4784 if (ret < 0) { 4785 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4786 goto done; 4787 } 4788 4789 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4790 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4791 if (ret == -ENOSPC) { 4792 failed++; 4793 } else if (ret) { 4794 if (ret == -ETXTBSY) { 4795 btrfs_warn(fs_info, 4796 "could not shrink block group %llu due to active swapfile", 4797 chunk_offset); 4798 } 4799 goto done; 4800 } 4801 } while (key.offset-- > 0); 4802 4803 if (failed && !retried) { 4804 failed = 0; 4805 retried = true; 4806 goto again; 4807 } else if (failed && retried) { 4808 ret = -ENOSPC; 4809 goto done; 4810 } 4811 4812 /* Shrinking succeeded, else we would be at "done". */ 4813 trans = btrfs_start_transaction(root, 0); 4814 if (IS_ERR(trans)) { 4815 ret = PTR_ERR(trans); 4816 goto done; 4817 } 4818 4819 mutex_lock(&fs_info->chunk_mutex); 4820 btrfs_device_set_disk_total_bytes(device, new_size); 4821 if (list_empty(&device->post_commit_list)) 4822 list_add_tail(&device->post_commit_list, 4823 &trans->transaction->dev_update_list); 4824 4825 WARN_ON(diff > old_total); 4826 btrfs_set_super_total_bytes(super_copy, 4827 round_down(old_total - diff, fs_info->sectorsize)); 4828 mutex_unlock(&fs_info->chunk_mutex); 4829 4830 /* Now btrfs_update_device() will change the on-disk size. */ 4831 ret = btrfs_update_device(trans, device); 4832 if (ret < 0) { 4833 btrfs_abort_transaction(trans, ret); 4834 btrfs_end_transaction(trans); 4835 } else { 4836 ret = btrfs_commit_transaction(trans); 4837 } 4838 done: 4839 btrfs_free_path(path); 4840 if (ret) { 4841 mutex_lock(&fs_info->chunk_mutex); 4842 btrfs_device_set_total_bytes(device, old_size); 4843 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4844 device->fs_devices->total_rw_bytes += diff; 4845 atomic64_add(diff, &fs_info->free_chunk_space); 4846 mutex_unlock(&fs_info->chunk_mutex); 4847 } 4848 return ret; 4849 } 4850 4851 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4852 struct btrfs_key *key, 4853 struct btrfs_chunk *chunk, int item_size) 4854 { 4855 struct btrfs_super_block *super_copy = fs_info->super_copy; 4856 struct btrfs_disk_key disk_key; 4857 u32 array_size; 4858 u8 *ptr; 4859 4860 mutex_lock(&fs_info->chunk_mutex); 4861 array_size = btrfs_super_sys_array_size(super_copy); 4862 if (array_size + item_size + sizeof(disk_key) 4863 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4864 mutex_unlock(&fs_info->chunk_mutex); 4865 return -EFBIG; 4866 } 4867 4868 ptr = super_copy->sys_chunk_array + array_size; 4869 btrfs_cpu_key_to_disk(&disk_key, key); 4870 memcpy(ptr, &disk_key, sizeof(disk_key)); 4871 ptr += sizeof(disk_key); 4872 memcpy(ptr, chunk, item_size); 4873 item_size += sizeof(disk_key); 4874 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4875 mutex_unlock(&fs_info->chunk_mutex); 4876 4877 return 0; 4878 } 4879 4880 /* 4881 * sort the devices in descending order by max_avail, total_avail 4882 */ 4883 static int btrfs_cmp_device_info(const void *a, const void *b) 4884 { 4885 const struct btrfs_device_info *di_a = a; 4886 const struct btrfs_device_info *di_b = b; 4887 4888 if (di_a->max_avail > di_b->max_avail) 4889 return -1; 4890 if (di_a->max_avail < di_b->max_avail) 4891 return 1; 4892 if (di_a->total_avail > di_b->total_avail) 4893 return -1; 4894 if (di_a->total_avail < di_b->total_avail) 4895 return 1; 4896 return 0; 4897 } 4898 4899 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4900 { 4901 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4902 return; 4903 4904 btrfs_set_fs_incompat(info, RAID56); 4905 } 4906 4907 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4908 u64 start, u64 type) 4909 { 4910 struct btrfs_fs_info *info = trans->fs_info; 4911 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4912 struct btrfs_device *device; 4913 struct map_lookup *map = NULL; 4914 struct extent_map_tree *em_tree; 4915 struct extent_map *em; 4916 struct btrfs_device_info *devices_info = NULL; 4917 u64 total_avail; 4918 int num_stripes; /* total number of stripes to allocate */ 4919 int data_stripes; /* number of stripes that count for 4920 block group size */ 4921 int sub_stripes; /* sub_stripes info for map */ 4922 int dev_stripes; /* stripes per dev */ 4923 int devs_max; /* max devs to use */ 4924 int devs_min; /* min devs needed */ 4925 int devs_increment; /* ndevs has to be a multiple of this */ 4926 int ncopies; /* how many copies to data has */ 4927 int nparity; /* number of stripes worth of bytes to 4928 store parity information */ 4929 int ret; 4930 u64 max_stripe_size; 4931 u64 max_chunk_size; 4932 u64 stripe_size; 4933 u64 chunk_size; 4934 int ndevs; 4935 int i; 4936 int j; 4937 int index; 4938 4939 BUG_ON(!alloc_profile_is_valid(type, 0)); 4940 4941 if (list_empty(&fs_devices->alloc_list)) { 4942 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4943 btrfs_debug(info, "%s: no writable device", __func__); 4944 return -ENOSPC; 4945 } 4946 4947 index = btrfs_bg_flags_to_raid_index(type); 4948 4949 sub_stripes = btrfs_raid_array[index].sub_stripes; 4950 dev_stripes = btrfs_raid_array[index].dev_stripes; 4951 devs_max = btrfs_raid_array[index].devs_max; 4952 devs_min = btrfs_raid_array[index].devs_min; 4953 devs_increment = btrfs_raid_array[index].devs_increment; 4954 ncopies = btrfs_raid_array[index].ncopies; 4955 nparity = btrfs_raid_array[index].nparity; 4956 4957 if (type & BTRFS_BLOCK_GROUP_DATA) { 4958 max_stripe_size = SZ_1G; 4959 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4960 if (!devs_max) 4961 devs_max = BTRFS_MAX_DEVS(info); 4962 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4963 /* for larger filesystems, use larger metadata chunks */ 4964 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4965 max_stripe_size = SZ_1G; 4966 else 4967 max_stripe_size = SZ_256M; 4968 max_chunk_size = max_stripe_size; 4969 if (!devs_max) 4970 devs_max = BTRFS_MAX_DEVS(info); 4971 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4972 max_stripe_size = SZ_32M; 4973 max_chunk_size = 2 * max_stripe_size; 4974 if (!devs_max) 4975 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4976 } else { 4977 btrfs_err(info, "invalid chunk type 0x%llx requested", 4978 type); 4979 BUG(); 4980 } 4981 4982 /* We don't want a chunk larger than 10% of writable space */ 4983 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4984 max_chunk_size); 4985 4986 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 4987 GFP_NOFS); 4988 if (!devices_info) 4989 return -ENOMEM; 4990 4991 /* 4992 * in the first pass through the devices list, we gather information 4993 * about the available holes on each device. 4994 */ 4995 ndevs = 0; 4996 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4997 u64 max_avail; 4998 u64 dev_offset; 4999 5000 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5001 WARN(1, KERN_ERR 5002 "BTRFS: read-only device in alloc_list\n"); 5003 continue; 5004 } 5005 5006 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5007 &device->dev_state) || 5008 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5009 continue; 5010 5011 if (device->total_bytes > device->bytes_used) 5012 total_avail = device->total_bytes - device->bytes_used; 5013 else 5014 total_avail = 0; 5015 5016 /* If there is no space on this device, skip it. */ 5017 if (total_avail == 0) 5018 continue; 5019 5020 ret = find_free_dev_extent(device, 5021 max_stripe_size * dev_stripes, 5022 &dev_offset, &max_avail); 5023 if (ret && ret != -ENOSPC) 5024 goto error; 5025 5026 if (ret == 0) 5027 max_avail = max_stripe_size * dev_stripes; 5028 5029 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) { 5030 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5031 btrfs_debug(info, 5032 "%s: devid %llu has no free space, have=%llu want=%u", 5033 __func__, device->devid, max_avail, 5034 BTRFS_STRIPE_LEN * dev_stripes); 5035 continue; 5036 } 5037 5038 if (ndevs == fs_devices->rw_devices) { 5039 WARN(1, "%s: found more than %llu devices\n", 5040 __func__, fs_devices->rw_devices); 5041 break; 5042 } 5043 devices_info[ndevs].dev_offset = dev_offset; 5044 devices_info[ndevs].max_avail = max_avail; 5045 devices_info[ndevs].total_avail = total_avail; 5046 devices_info[ndevs].dev = device; 5047 ++ndevs; 5048 } 5049 5050 /* 5051 * now sort the devices by hole size / available space 5052 */ 5053 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5054 btrfs_cmp_device_info, NULL); 5055 5056 /* round down to number of usable stripes */ 5057 ndevs = round_down(ndevs, devs_increment); 5058 5059 if (ndevs < devs_min) { 5060 ret = -ENOSPC; 5061 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5062 btrfs_debug(info, 5063 "%s: not enough devices with free space: have=%d minimum required=%d", 5064 __func__, ndevs, devs_min); 5065 } 5066 goto error; 5067 } 5068 5069 ndevs = min(ndevs, devs_max); 5070 5071 /* 5072 * The primary goal is to maximize the number of stripes, so use as 5073 * many devices as possible, even if the stripes are not maximum sized. 5074 * 5075 * The DUP profile stores more than one stripe per device, the 5076 * max_avail is the total size so we have to adjust. 5077 */ 5078 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); 5079 num_stripes = ndevs * dev_stripes; 5080 5081 /* 5082 * this will have to be fixed for RAID1 and RAID10 over 5083 * more drives 5084 */ 5085 data_stripes = (num_stripes - nparity) / ncopies; 5086 5087 /* 5088 * Use the number of data stripes to figure out how big this chunk 5089 * is really going to be in terms of logical address space, 5090 * and compare that answer with the max chunk size. If it's higher, 5091 * we try to reduce stripe_size. 5092 */ 5093 if (stripe_size * data_stripes > max_chunk_size) { 5094 /* 5095 * Reduce stripe_size, round it up to a 16MB boundary again and 5096 * then use it, unless it ends up being even bigger than the 5097 * previous value we had already. 5098 */ 5099 stripe_size = min(round_up(div_u64(max_chunk_size, 5100 data_stripes), SZ_16M), 5101 stripe_size); 5102 } 5103 5104 /* align to BTRFS_STRIPE_LEN */ 5105 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); 5106 5107 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 5108 if (!map) { 5109 ret = -ENOMEM; 5110 goto error; 5111 } 5112 map->num_stripes = num_stripes; 5113 5114 for (i = 0; i < ndevs; ++i) { 5115 for (j = 0; j < dev_stripes; ++j) { 5116 int s = i * dev_stripes + j; 5117 map->stripes[s].dev = devices_info[i].dev; 5118 map->stripes[s].physical = devices_info[i].dev_offset + 5119 j * stripe_size; 5120 } 5121 } 5122 map->stripe_len = BTRFS_STRIPE_LEN; 5123 map->io_align = BTRFS_STRIPE_LEN; 5124 map->io_width = BTRFS_STRIPE_LEN; 5125 map->type = type; 5126 map->sub_stripes = sub_stripes; 5127 5128 chunk_size = stripe_size * data_stripes; 5129 5130 trace_btrfs_chunk_alloc(info, map, start, chunk_size); 5131 5132 em = alloc_extent_map(); 5133 if (!em) { 5134 kfree(map); 5135 ret = -ENOMEM; 5136 goto error; 5137 } 5138 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5139 em->map_lookup = map; 5140 em->start = start; 5141 em->len = chunk_size; 5142 em->block_start = 0; 5143 em->block_len = em->len; 5144 em->orig_block_len = stripe_size; 5145 5146 em_tree = &info->mapping_tree.map_tree; 5147 write_lock(&em_tree->lock); 5148 ret = add_extent_mapping(em_tree, em, 0); 5149 if (ret) { 5150 write_unlock(&em_tree->lock); 5151 free_extent_map(em); 5152 goto error; 5153 } 5154 write_unlock(&em_tree->lock); 5155 5156 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size); 5157 if (ret) 5158 goto error_del_extent; 5159 5160 for (i = 0; i < map->num_stripes; i++) { 5161 struct btrfs_device *dev = map->stripes[i].dev; 5162 5163 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size); 5164 if (list_empty(&dev->post_commit_list)) 5165 list_add_tail(&dev->post_commit_list, 5166 &trans->transaction->dev_update_list); 5167 } 5168 5169 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); 5170 5171 free_extent_map(em); 5172 check_raid56_incompat_flag(info, type); 5173 5174 kfree(devices_info); 5175 return 0; 5176 5177 error_del_extent: 5178 write_lock(&em_tree->lock); 5179 remove_extent_mapping(em_tree, em); 5180 write_unlock(&em_tree->lock); 5181 5182 /* One for our allocation */ 5183 free_extent_map(em); 5184 /* One for the tree reference */ 5185 free_extent_map(em); 5186 error: 5187 kfree(devices_info); 5188 return ret; 5189 } 5190 5191 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5192 u64 chunk_offset, u64 chunk_size) 5193 { 5194 struct btrfs_fs_info *fs_info = trans->fs_info; 5195 struct btrfs_root *extent_root = fs_info->extent_root; 5196 struct btrfs_root *chunk_root = fs_info->chunk_root; 5197 struct btrfs_key key; 5198 struct btrfs_device *device; 5199 struct btrfs_chunk *chunk; 5200 struct btrfs_stripe *stripe; 5201 struct extent_map *em; 5202 struct map_lookup *map; 5203 size_t item_size; 5204 u64 dev_offset; 5205 u64 stripe_size; 5206 int i = 0; 5207 int ret = 0; 5208 5209 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5210 if (IS_ERR(em)) 5211 return PTR_ERR(em); 5212 5213 map = em->map_lookup; 5214 item_size = btrfs_chunk_item_size(map->num_stripes); 5215 stripe_size = em->orig_block_len; 5216 5217 chunk = kzalloc(item_size, GFP_NOFS); 5218 if (!chunk) { 5219 ret = -ENOMEM; 5220 goto out; 5221 } 5222 5223 /* 5224 * Take the device list mutex to prevent races with the final phase of 5225 * a device replace operation that replaces the device object associated 5226 * with the map's stripes, because the device object's id can change 5227 * at any time during that final phase of the device replace operation 5228 * (dev-replace.c:btrfs_dev_replace_finishing()). 5229 */ 5230 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5231 for (i = 0; i < map->num_stripes; i++) { 5232 device = map->stripes[i].dev; 5233 dev_offset = map->stripes[i].physical; 5234 5235 ret = btrfs_update_device(trans, device); 5236 if (ret) 5237 break; 5238 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5239 dev_offset, stripe_size); 5240 if (ret) 5241 break; 5242 } 5243 if (ret) { 5244 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5245 goto out; 5246 } 5247 5248 stripe = &chunk->stripe; 5249 for (i = 0; i < map->num_stripes; i++) { 5250 device = map->stripes[i].dev; 5251 dev_offset = map->stripes[i].physical; 5252 5253 btrfs_set_stack_stripe_devid(stripe, device->devid); 5254 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5255 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5256 stripe++; 5257 } 5258 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5259 5260 btrfs_set_stack_chunk_length(chunk, chunk_size); 5261 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5262 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5263 btrfs_set_stack_chunk_type(chunk, map->type); 5264 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5265 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5266 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5267 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5268 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5269 5270 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5271 key.type = BTRFS_CHUNK_ITEM_KEY; 5272 key.offset = chunk_offset; 5273 5274 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5275 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5276 /* 5277 * TODO: Cleanup of inserted chunk root in case of 5278 * failure. 5279 */ 5280 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5281 } 5282 5283 out: 5284 kfree(chunk); 5285 free_extent_map(em); 5286 return ret; 5287 } 5288 5289 /* 5290 * Chunk allocation falls into two parts. The first part does work 5291 * that makes the new allocated chunk usable, but does not do any operation 5292 * that modifies the chunk tree. The second part does the work that 5293 * requires modifying the chunk tree. This division is important for the 5294 * bootstrap process of adding storage to a seed btrfs. 5295 */ 5296 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5297 { 5298 u64 chunk_offset; 5299 5300 lockdep_assert_held(&trans->fs_info->chunk_mutex); 5301 chunk_offset = find_next_chunk(trans->fs_info); 5302 return __btrfs_alloc_chunk(trans, chunk_offset, type); 5303 } 5304 5305 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5306 { 5307 struct btrfs_fs_info *fs_info = trans->fs_info; 5308 u64 chunk_offset; 5309 u64 sys_chunk_offset; 5310 u64 alloc_profile; 5311 int ret; 5312 5313 chunk_offset = find_next_chunk(fs_info); 5314 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5315 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); 5316 if (ret) 5317 return ret; 5318 5319 sys_chunk_offset = find_next_chunk(fs_info); 5320 alloc_profile = btrfs_system_alloc_profile(fs_info); 5321 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); 5322 return ret; 5323 } 5324 5325 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5326 { 5327 int max_errors; 5328 5329 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5330 BTRFS_BLOCK_GROUP_RAID10 | 5331 BTRFS_BLOCK_GROUP_RAID5 | 5332 BTRFS_BLOCK_GROUP_DUP)) { 5333 max_errors = 1; 5334 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5335 max_errors = 2; 5336 } else { 5337 max_errors = 0; 5338 } 5339 5340 return max_errors; 5341 } 5342 5343 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5344 { 5345 struct extent_map *em; 5346 struct map_lookup *map; 5347 int readonly = 0; 5348 int miss_ndevs = 0; 5349 int i; 5350 5351 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5352 if (IS_ERR(em)) 5353 return 1; 5354 5355 map = em->map_lookup; 5356 for (i = 0; i < map->num_stripes; i++) { 5357 if (test_bit(BTRFS_DEV_STATE_MISSING, 5358 &map->stripes[i].dev->dev_state)) { 5359 miss_ndevs++; 5360 continue; 5361 } 5362 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5363 &map->stripes[i].dev->dev_state)) { 5364 readonly = 1; 5365 goto end; 5366 } 5367 } 5368 5369 /* 5370 * If the number of missing devices is larger than max errors, 5371 * we can not write the data into that chunk successfully, so 5372 * set it readonly. 5373 */ 5374 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5375 readonly = 1; 5376 end: 5377 free_extent_map(em); 5378 return readonly; 5379 } 5380 5381 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 5382 { 5383 extent_map_tree_init(&tree->map_tree); 5384 } 5385 5386 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 5387 { 5388 struct extent_map *em; 5389 5390 while (1) { 5391 write_lock(&tree->map_tree.lock); 5392 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 5393 if (em) 5394 remove_extent_mapping(&tree->map_tree, em); 5395 write_unlock(&tree->map_tree.lock); 5396 if (!em) 5397 break; 5398 /* once for us */ 5399 free_extent_map(em); 5400 /* once for the tree */ 5401 free_extent_map(em); 5402 } 5403 } 5404 5405 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5406 { 5407 struct extent_map *em; 5408 struct map_lookup *map; 5409 int ret; 5410 5411 em = btrfs_get_chunk_map(fs_info, logical, len); 5412 if (IS_ERR(em)) 5413 /* 5414 * We could return errors for these cases, but that could get 5415 * ugly and we'd probably do the same thing which is just not do 5416 * anything else and exit, so return 1 so the callers don't try 5417 * to use other copies. 5418 */ 5419 return 1; 5420 5421 map = em->map_lookup; 5422 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 5423 ret = map->num_stripes; 5424 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5425 ret = map->sub_stripes; 5426 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5427 ret = 2; 5428 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5429 /* 5430 * There could be two corrupted data stripes, we need 5431 * to loop retry in order to rebuild the correct data. 5432 * 5433 * Fail a stripe at a time on every retry except the 5434 * stripe under reconstruction. 5435 */ 5436 ret = map->num_stripes; 5437 else 5438 ret = 1; 5439 free_extent_map(em); 5440 5441 down_read(&fs_info->dev_replace.rwsem); 5442 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5443 fs_info->dev_replace.tgtdev) 5444 ret++; 5445 up_read(&fs_info->dev_replace.rwsem); 5446 5447 return ret; 5448 } 5449 5450 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5451 u64 logical) 5452 { 5453 struct extent_map *em; 5454 struct map_lookup *map; 5455 unsigned long len = fs_info->sectorsize; 5456 5457 em = btrfs_get_chunk_map(fs_info, logical, len); 5458 5459 if (!WARN_ON(IS_ERR(em))) { 5460 map = em->map_lookup; 5461 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5462 len = map->stripe_len * nr_data_stripes(map); 5463 free_extent_map(em); 5464 } 5465 return len; 5466 } 5467 5468 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5469 { 5470 struct extent_map *em; 5471 struct map_lookup *map; 5472 int ret = 0; 5473 5474 em = btrfs_get_chunk_map(fs_info, logical, len); 5475 5476 if(!WARN_ON(IS_ERR(em))) { 5477 map = em->map_lookup; 5478 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5479 ret = 1; 5480 free_extent_map(em); 5481 } 5482 return ret; 5483 } 5484 5485 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5486 struct map_lookup *map, int first, 5487 int dev_replace_is_ongoing) 5488 { 5489 int i; 5490 int num_stripes; 5491 int preferred_mirror; 5492 int tolerance; 5493 struct btrfs_device *srcdev; 5494 5495 ASSERT((map->type & 5496 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))); 5497 5498 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5499 num_stripes = map->sub_stripes; 5500 else 5501 num_stripes = map->num_stripes; 5502 5503 preferred_mirror = first + current->pid % num_stripes; 5504 5505 if (dev_replace_is_ongoing && 5506 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5507 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5508 srcdev = fs_info->dev_replace.srcdev; 5509 else 5510 srcdev = NULL; 5511 5512 /* 5513 * try to avoid the drive that is the source drive for a 5514 * dev-replace procedure, only choose it if no other non-missing 5515 * mirror is available 5516 */ 5517 for (tolerance = 0; tolerance < 2; tolerance++) { 5518 if (map->stripes[preferred_mirror].dev->bdev && 5519 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5520 return preferred_mirror; 5521 for (i = first; i < first + num_stripes; i++) { 5522 if (map->stripes[i].dev->bdev && 5523 (tolerance || map->stripes[i].dev != srcdev)) 5524 return i; 5525 } 5526 } 5527 5528 /* we couldn't find one that doesn't fail. Just return something 5529 * and the io error handling code will clean up eventually 5530 */ 5531 return preferred_mirror; 5532 } 5533 5534 static inline int parity_smaller(u64 a, u64 b) 5535 { 5536 return a > b; 5537 } 5538 5539 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5540 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5541 { 5542 struct btrfs_bio_stripe s; 5543 int i; 5544 u64 l; 5545 int again = 1; 5546 5547 while (again) { 5548 again = 0; 5549 for (i = 0; i < num_stripes - 1; i++) { 5550 if (parity_smaller(bbio->raid_map[i], 5551 bbio->raid_map[i+1])) { 5552 s = bbio->stripes[i]; 5553 l = bbio->raid_map[i]; 5554 bbio->stripes[i] = bbio->stripes[i+1]; 5555 bbio->raid_map[i] = bbio->raid_map[i+1]; 5556 bbio->stripes[i+1] = s; 5557 bbio->raid_map[i+1] = l; 5558 5559 again = 1; 5560 } 5561 } 5562 } 5563 } 5564 5565 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5566 { 5567 struct btrfs_bio *bbio = kzalloc( 5568 /* the size of the btrfs_bio */ 5569 sizeof(struct btrfs_bio) + 5570 /* plus the variable array for the stripes */ 5571 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5572 /* plus the variable array for the tgt dev */ 5573 sizeof(int) * (real_stripes) + 5574 /* 5575 * plus the raid_map, which includes both the tgt dev 5576 * and the stripes 5577 */ 5578 sizeof(u64) * (total_stripes), 5579 GFP_NOFS|__GFP_NOFAIL); 5580 5581 atomic_set(&bbio->error, 0); 5582 refcount_set(&bbio->refs, 1); 5583 5584 return bbio; 5585 } 5586 5587 void btrfs_get_bbio(struct btrfs_bio *bbio) 5588 { 5589 WARN_ON(!refcount_read(&bbio->refs)); 5590 refcount_inc(&bbio->refs); 5591 } 5592 5593 void btrfs_put_bbio(struct btrfs_bio *bbio) 5594 { 5595 if (!bbio) 5596 return; 5597 if (refcount_dec_and_test(&bbio->refs)) 5598 kfree(bbio); 5599 } 5600 5601 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5602 /* 5603 * Please note that, discard won't be sent to target device of device 5604 * replace. 5605 */ 5606 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5607 u64 logical, u64 length, 5608 struct btrfs_bio **bbio_ret) 5609 { 5610 struct extent_map *em; 5611 struct map_lookup *map; 5612 struct btrfs_bio *bbio; 5613 u64 offset; 5614 u64 stripe_nr; 5615 u64 stripe_nr_end; 5616 u64 stripe_end_offset; 5617 u64 stripe_cnt; 5618 u64 stripe_len; 5619 u64 stripe_offset; 5620 u64 num_stripes; 5621 u32 stripe_index; 5622 u32 factor = 0; 5623 u32 sub_stripes = 0; 5624 u64 stripes_per_dev = 0; 5625 u32 remaining_stripes = 0; 5626 u32 last_stripe = 0; 5627 int ret = 0; 5628 int i; 5629 5630 /* discard always return a bbio */ 5631 ASSERT(bbio_ret); 5632 5633 em = btrfs_get_chunk_map(fs_info, logical, length); 5634 if (IS_ERR(em)) 5635 return PTR_ERR(em); 5636 5637 map = em->map_lookup; 5638 /* we don't discard raid56 yet */ 5639 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5640 ret = -EOPNOTSUPP; 5641 goto out; 5642 } 5643 5644 offset = logical - em->start; 5645 length = min_t(u64, em->len - offset, length); 5646 5647 stripe_len = map->stripe_len; 5648 /* 5649 * stripe_nr counts the total number of stripes we have to stride 5650 * to get to this block 5651 */ 5652 stripe_nr = div64_u64(offset, stripe_len); 5653 5654 /* stripe_offset is the offset of this block in its stripe */ 5655 stripe_offset = offset - stripe_nr * stripe_len; 5656 5657 stripe_nr_end = round_up(offset + length, map->stripe_len); 5658 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5659 stripe_cnt = stripe_nr_end - stripe_nr; 5660 stripe_end_offset = stripe_nr_end * map->stripe_len - 5661 (offset + length); 5662 /* 5663 * after this, stripe_nr is the number of stripes on this 5664 * device we have to walk to find the data, and stripe_index is 5665 * the number of our device in the stripe array 5666 */ 5667 num_stripes = 1; 5668 stripe_index = 0; 5669 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5670 BTRFS_BLOCK_GROUP_RAID10)) { 5671 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5672 sub_stripes = 1; 5673 else 5674 sub_stripes = map->sub_stripes; 5675 5676 factor = map->num_stripes / sub_stripes; 5677 num_stripes = min_t(u64, map->num_stripes, 5678 sub_stripes * stripe_cnt); 5679 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5680 stripe_index *= sub_stripes; 5681 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5682 &remaining_stripes); 5683 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5684 last_stripe *= sub_stripes; 5685 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5686 BTRFS_BLOCK_GROUP_DUP)) { 5687 num_stripes = map->num_stripes; 5688 } else { 5689 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5690 &stripe_index); 5691 } 5692 5693 bbio = alloc_btrfs_bio(num_stripes, 0); 5694 if (!bbio) { 5695 ret = -ENOMEM; 5696 goto out; 5697 } 5698 5699 for (i = 0; i < num_stripes; i++) { 5700 bbio->stripes[i].physical = 5701 map->stripes[stripe_index].physical + 5702 stripe_offset + stripe_nr * map->stripe_len; 5703 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5704 5705 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5706 BTRFS_BLOCK_GROUP_RAID10)) { 5707 bbio->stripes[i].length = stripes_per_dev * 5708 map->stripe_len; 5709 5710 if (i / sub_stripes < remaining_stripes) 5711 bbio->stripes[i].length += 5712 map->stripe_len; 5713 5714 /* 5715 * Special for the first stripe and 5716 * the last stripe: 5717 * 5718 * |-------|...|-------| 5719 * |----------| 5720 * off end_off 5721 */ 5722 if (i < sub_stripes) 5723 bbio->stripes[i].length -= 5724 stripe_offset; 5725 5726 if (stripe_index >= last_stripe && 5727 stripe_index <= (last_stripe + 5728 sub_stripes - 1)) 5729 bbio->stripes[i].length -= 5730 stripe_end_offset; 5731 5732 if (i == sub_stripes - 1) 5733 stripe_offset = 0; 5734 } else { 5735 bbio->stripes[i].length = length; 5736 } 5737 5738 stripe_index++; 5739 if (stripe_index == map->num_stripes) { 5740 stripe_index = 0; 5741 stripe_nr++; 5742 } 5743 } 5744 5745 *bbio_ret = bbio; 5746 bbio->map_type = map->type; 5747 bbio->num_stripes = num_stripes; 5748 out: 5749 free_extent_map(em); 5750 return ret; 5751 } 5752 5753 /* 5754 * In dev-replace case, for repair case (that's the only case where the mirror 5755 * is selected explicitly when calling btrfs_map_block), blocks left of the 5756 * left cursor can also be read from the target drive. 5757 * 5758 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5759 * array of stripes. 5760 * For READ, it also needs to be supported using the same mirror number. 5761 * 5762 * If the requested block is not left of the left cursor, EIO is returned. This 5763 * can happen because btrfs_num_copies() returns one more in the dev-replace 5764 * case. 5765 */ 5766 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5767 u64 logical, u64 length, 5768 u64 srcdev_devid, int *mirror_num, 5769 u64 *physical) 5770 { 5771 struct btrfs_bio *bbio = NULL; 5772 int num_stripes; 5773 int index_srcdev = 0; 5774 int found = 0; 5775 u64 physical_of_found = 0; 5776 int i; 5777 int ret = 0; 5778 5779 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5780 logical, &length, &bbio, 0, 0); 5781 if (ret) { 5782 ASSERT(bbio == NULL); 5783 return ret; 5784 } 5785 5786 num_stripes = bbio->num_stripes; 5787 if (*mirror_num > num_stripes) { 5788 /* 5789 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5790 * that means that the requested area is not left of the left 5791 * cursor 5792 */ 5793 btrfs_put_bbio(bbio); 5794 return -EIO; 5795 } 5796 5797 /* 5798 * process the rest of the function using the mirror_num of the source 5799 * drive. Therefore look it up first. At the end, patch the device 5800 * pointer to the one of the target drive. 5801 */ 5802 for (i = 0; i < num_stripes; i++) { 5803 if (bbio->stripes[i].dev->devid != srcdev_devid) 5804 continue; 5805 5806 /* 5807 * In case of DUP, in order to keep it simple, only add the 5808 * mirror with the lowest physical address 5809 */ 5810 if (found && 5811 physical_of_found <= bbio->stripes[i].physical) 5812 continue; 5813 5814 index_srcdev = i; 5815 found = 1; 5816 physical_of_found = bbio->stripes[i].physical; 5817 } 5818 5819 btrfs_put_bbio(bbio); 5820 5821 ASSERT(found); 5822 if (!found) 5823 return -EIO; 5824 5825 *mirror_num = index_srcdev + 1; 5826 *physical = physical_of_found; 5827 return ret; 5828 } 5829 5830 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5831 struct btrfs_bio **bbio_ret, 5832 struct btrfs_dev_replace *dev_replace, 5833 int *num_stripes_ret, int *max_errors_ret) 5834 { 5835 struct btrfs_bio *bbio = *bbio_ret; 5836 u64 srcdev_devid = dev_replace->srcdev->devid; 5837 int tgtdev_indexes = 0; 5838 int num_stripes = *num_stripes_ret; 5839 int max_errors = *max_errors_ret; 5840 int i; 5841 5842 if (op == BTRFS_MAP_WRITE) { 5843 int index_where_to_add; 5844 5845 /* 5846 * duplicate the write operations while the dev replace 5847 * procedure is running. Since the copying of the old disk to 5848 * the new disk takes place at run time while the filesystem is 5849 * mounted writable, the regular write operations to the old 5850 * disk have to be duplicated to go to the new disk as well. 5851 * 5852 * Note that device->missing is handled by the caller, and that 5853 * the write to the old disk is already set up in the stripes 5854 * array. 5855 */ 5856 index_where_to_add = num_stripes; 5857 for (i = 0; i < num_stripes; i++) { 5858 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5859 /* write to new disk, too */ 5860 struct btrfs_bio_stripe *new = 5861 bbio->stripes + index_where_to_add; 5862 struct btrfs_bio_stripe *old = 5863 bbio->stripes + i; 5864 5865 new->physical = old->physical; 5866 new->length = old->length; 5867 new->dev = dev_replace->tgtdev; 5868 bbio->tgtdev_map[i] = index_where_to_add; 5869 index_where_to_add++; 5870 max_errors++; 5871 tgtdev_indexes++; 5872 } 5873 } 5874 num_stripes = index_where_to_add; 5875 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5876 int index_srcdev = 0; 5877 int found = 0; 5878 u64 physical_of_found = 0; 5879 5880 /* 5881 * During the dev-replace procedure, the target drive can also 5882 * be used to read data in case it is needed to repair a corrupt 5883 * block elsewhere. This is possible if the requested area is 5884 * left of the left cursor. In this area, the target drive is a 5885 * full copy of the source drive. 5886 */ 5887 for (i = 0; i < num_stripes; i++) { 5888 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5889 /* 5890 * In case of DUP, in order to keep it simple, 5891 * only add the mirror with the lowest physical 5892 * address 5893 */ 5894 if (found && 5895 physical_of_found <= 5896 bbio->stripes[i].physical) 5897 continue; 5898 index_srcdev = i; 5899 found = 1; 5900 physical_of_found = bbio->stripes[i].physical; 5901 } 5902 } 5903 if (found) { 5904 struct btrfs_bio_stripe *tgtdev_stripe = 5905 bbio->stripes + num_stripes; 5906 5907 tgtdev_stripe->physical = physical_of_found; 5908 tgtdev_stripe->length = 5909 bbio->stripes[index_srcdev].length; 5910 tgtdev_stripe->dev = dev_replace->tgtdev; 5911 bbio->tgtdev_map[index_srcdev] = num_stripes; 5912 5913 tgtdev_indexes++; 5914 num_stripes++; 5915 } 5916 } 5917 5918 *num_stripes_ret = num_stripes; 5919 *max_errors_ret = max_errors; 5920 bbio->num_tgtdevs = tgtdev_indexes; 5921 *bbio_ret = bbio; 5922 } 5923 5924 static bool need_full_stripe(enum btrfs_map_op op) 5925 { 5926 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5927 } 5928 5929 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5930 enum btrfs_map_op op, 5931 u64 logical, u64 *length, 5932 struct btrfs_bio **bbio_ret, 5933 int mirror_num, int need_raid_map) 5934 { 5935 struct extent_map *em; 5936 struct map_lookup *map; 5937 u64 offset; 5938 u64 stripe_offset; 5939 u64 stripe_nr; 5940 u64 stripe_len; 5941 u32 stripe_index; 5942 int i; 5943 int ret = 0; 5944 int num_stripes; 5945 int max_errors = 0; 5946 int tgtdev_indexes = 0; 5947 struct btrfs_bio *bbio = NULL; 5948 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 5949 int dev_replace_is_ongoing = 0; 5950 int num_alloc_stripes; 5951 int patch_the_first_stripe_for_dev_replace = 0; 5952 u64 physical_to_patch_in_first_stripe = 0; 5953 u64 raid56_full_stripe_start = (u64)-1; 5954 5955 if (op == BTRFS_MAP_DISCARD) 5956 return __btrfs_map_block_for_discard(fs_info, logical, 5957 *length, bbio_ret); 5958 5959 em = btrfs_get_chunk_map(fs_info, logical, *length); 5960 if (IS_ERR(em)) 5961 return PTR_ERR(em); 5962 5963 map = em->map_lookup; 5964 offset = logical - em->start; 5965 5966 stripe_len = map->stripe_len; 5967 stripe_nr = offset; 5968 /* 5969 * stripe_nr counts the total number of stripes we have to stride 5970 * to get to this block 5971 */ 5972 stripe_nr = div64_u64(stripe_nr, stripe_len); 5973 5974 stripe_offset = stripe_nr * stripe_len; 5975 if (offset < stripe_offset) { 5976 btrfs_crit(fs_info, 5977 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu", 5978 stripe_offset, offset, em->start, logical, 5979 stripe_len); 5980 free_extent_map(em); 5981 return -EINVAL; 5982 } 5983 5984 /* stripe_offset is the offset of this block in its stripe*/ 5985 stripe_offset = offset - stripe_offset; 5986 5987 /* if we're here for raid56, we need to know the stripe aligned start */ 5988 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5989 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 5990 raid56_full_stripe_start = offset; 5991 5992 /* allow a write of a full stripe, but make sure we don't 5993 * allow straddling of stripes 5994 */ 5995 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5996 full_stripe_len); 5997 raid56_full_stripe_start *= full_stripe_len; 5998 } 5999 6000 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6001 u64 max_len; 6002 /* For writes to RAID[56], allow a full stripeset across all disks. 6003 For other RAID types and for RAID[56] reads, just allow a single 6004 stripe (on a single disk). */ 6005 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6006 (op == BTRFS_MAP_WRITE)) { 6007 max_len = stripe_len * nr_data_stripes(map) - 6008 (offset - raid56_full_stripe_start); 6009 } else { 6010 /* we limit the length of each bio to what fits in a stripe */ 6011 max_len = stripe_len - stripe_offset; 6012 } 6013 *length = min_t(u64, em->len - offset, max_len); 6014 } else { 6015 *length = em->len - offset; 6016 } 6017 6018 /* 6019 * This is for when we're called from btrfs_bio_fits_in_stripe and all 6020 * it cares about is the length 6021 */ 6022 if (!bbio_ret) 6023 goto out; 6024 6025 down_read(&dev_replace->rwsem); 6026 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6027 /* 6028 * Hold the semaphore for read during the whole operation, write is 6029 * requested at commit time but must wait. 6030 */ 6031 if (!dev_replace_is_ongoing) 6032 up_read(&dev_replace->rwsem); 6033 6034 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6035 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6036 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6037 dev_replace->srcdev->devid, 6038 &mirror_num, 6039 &physical_to_patch_in_first_stripe); 6040 if (ret) 6041 goto out; 6042 else 6043 patch_the_first_stripe_for_dev_replace = 1; 6044 } else if (mirror_num > map->num_stripes) { 6045 mirror_num = 0; 6046 } 6047 6048 num_stripes = 1; 6049 stripe_index = 0; 6050 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6051 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6052 &stripe_index); 6053 if (!need_full_stripe(op)) 6054 mirror_num = 1; 6055 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 6056 if (need_full_stripe(op)) 6057 num_stripes = map->num_stripes; 6058 else if (mirror_num) 6059 stripe_index = mirror_num - 1; 6060 else { 6061 stripe_index = find_live_mirror(fs_info, map, 0, 6062 dev_replace_is_ongoing); 6063 mirror_num = stripe_index + 1; 6064 } 6065 6066 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6067 if (need_full_stripe(op)) { 6068 num_stripes = map->num_stripes; 6069 } else if (mirror_num) { 6070 stripe_index = mirror_num - 1; 6071 } else { 6072 mirror_num = 1; 6073 } 6074 6075 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6076 u32 factor = map->num_stripes / map->sub_stripes; 6077 6078 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6079 stripe_index *= map->sub_stripes; 6080 6081 if (need_full_stripe(op)) 6082 num_stripes = map->sub_stripes; 6083 else if (mirror_num) 6084 stripe_index += mirror_num - 1; 6085 else { 6086 int old_stripe_index = stripe_index; 6087 stripe_index = find_live_mirror(fs_info, map, 6088 stripe_index, 6089 dev_replace_is_ongoing); 6090 mirror_num = stripe_index - old_stripe_index + 1; 6091 } 6092 6093 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6094 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6095 /* push stripe_nr back to the start of the full stripe */ 6096 stripe_nr = div64_u64(raid56_full_stripe_start, 6097 stripe_len * nr_data_stripes(map)); 6098 6099 /* RAID[56] write or recovery. Return all stripes */ 6100 num_stripes = map->num_stripes; 6101 max_errors = nr_parity_stripes(map); 6102 6103 *length = map->stripe_len; 6104 stripe_index = 0; 6105 stripe_offset = 0; 6106 } else { 6107 /* 6108 * Mirror #0 or #1 means the original data block. 6109 * Mirror #2 is RAID5 parity block. 6110 * Mirror #3 is RAID6 Q block. 6111 */ 6112 stripe_nr = div_u64_rem(stripe_nr, 6113 nr_data_stripes(map), &stripe_index); 6114 if (mirror_num > 1) 6115 stripe_index = nr_data_stripes(map) + 6116 mirror_num - 2; 6117 6118 /* We distribute the parity blocks across stripes */ 6119 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6120 &stripe_index); 6121 if (!need_full_stripe(op) && mirror_num <= 1) 6122 mirror_num = 1; 6123 } 6124 } else { 6125 /* 6126 * after this, stripe_nr is the number of stripes on this 6127 * device we have to walk to find the data, and stripe_index is 6128 * the number of our device in the stripe array 6129 */ 6130 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6131 &stripe_index); 6132 mirror_num = stripe_index + 1; 6133 } 6134 if (stripe_index >= map->num_stripes) { 6135 btrfs_crit(fs_info, 6136 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6137 stripe_index, map->num_stripes); 6138 ret = -EINVAL; 6139 goto out; 6140 } 6141 6142 num_alloc_stripes = num_stripes; 6143 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6144 if (op == BTRFS_MAP_WRITE) 6145 num_alloc_stripes <<= 1; 6146 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6147 num_alloc_stripes++; 6148 tgtdev_indexes = num_stripes; 6149 } 6150 6151 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6152 if (!bbio) { 6153 ret = -ENOMEM; 6154 goto out; 6155 } 6156 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 6157 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); 6158 6159 /* build raid_map */ 6160 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6161 (need_full_stripe(op) || mirror_num > 1)) { 6162 u64 tmp; 6163 unsigned rot; 6164 6165 bbio->raid_map = (u64 *)((void *)bbio->stripes + 6166 sizeof(struct btrfs_bio_stripe) * 6167 num_alloc_stripes + 6168 sizeof(int) * tgtdev_indexes); 6169 6170 /* Work out the disk rotation on this stripe-set */ 6171 div_u64_rem(stripe_nr, num_stripes, &rot); 6172 6173 /* Fill in the logical address of each stripe */ 6174 tmp = stripe_nr * nr_data_stripes(map); 6175 for (i = 0; i < nr_data_stripes(map); i++) 6176 bbio->raid_map[(i+rot) % num_stripes] = 6177 em->start + (tmp + i) * map->stripe_len; 6178 6179 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6180 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6181 bbio->raid_map[(i+rot+1) % num_stripes] = 6182 RAID6_Q_STRIPE; 6183 } 6184 6185 6186 for (i = 0; i < num_stripes; i++) { 6187 bbio->stripes[i].physical = 6188 map->stripes[stripe_index].physical + 6189 stripe_offset + 6190 stripe_nr * map->stripe_len; 6191 bbio->stripes[i].dev = 6192 map->stripes[stripe_index].dev; 6193 stripe_index++; 6194 } 6195 6196 if (need_full_stripe(op)) 6197 max_errors = btrfs_chunk_max_errors(map); 6198 6199 if (bbio->raid_map) 6200 sort_parity_stripes(bbio, num_stripes); 6201 6202 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6203 need_full_stripe(op)) { 6204 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6205 &max_errors); 6206 } 6207 6208 *bbio_ret = bbio; 6209 bbio->map_type = map->type; 6210 bbio->num_stripes = num_stripes; 6211 bbio->max_errors = max_errors; 6212 bbio->mirror_num = mirror_num; 6213 6214 /* 6215 * this is the case that REQ_READ && dev_replace_is_ongoing && 6216 * mirror_num == num_stripes + 1 && dev_replace target drive is 6217 * available as a mirror 6218 */ 6219 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6220 WARN_ON(num_stripes > 1); 6221 bbio->stripes[0].dev = dev_replace->tgtdev; 6222 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6223 bbio->mirror_num = map->num_stripes + 1; 6224 } 6225 out: 6226 if (dev_replace_is_ongoing) { 6227 lockdep_assert_held(&dev_replace->rwsem); 6228 /* Unlock and let waiting writers proceed */ 6229 up_read(&dev_replace->rwsem); 6230 } 6231 free_extent_map(em); 6232 return ret; 6233 } 6234 6235 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6236 u64 logical, u64 *length, 6237 struct btrfs_bio **bbio_ret, int mirror_num) 6238 { 6239 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6240 mirror_num, 0); 6241 } 6242 6243 /* For Scrub/replace */ 6244 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6245 u64 logical, u64 *length, 6246 struct btrfs_bio **bbio_ret) 6247 { 6248 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6249 } 6250 6251 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, 6252 u64 physical, u64 **logical, int *naddrs, int *stripe_len) 6253 { 6254 struct extent_map *em; 6255 struct map_lookup *map; 6256 u64 *buf; 6257 u64 bytenr; 6258 u64 length; 6259 u64 stripe_nr; 6260 u64 rmap_len; 6261 int i, j, nr = 0; 6262 6263 em = btrfs_get_chunk_map(fs_info, chunk_start, 1); 6264 if (IS_ERR(em)) 6265 return -EIO; 6266 6267 map = em->map_lookup; 6268 length = em->len; 6269 rmap_len = map->stripe_len; 6270 6271 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 6272 length = div_u64(length, map->num_stripes / map->sub_stripes); 6273 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6274 length = div_u64(length, map->num_stripes); 6275 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6276 length = div_u64(length, nr_data_stripes(map)); 6277 rmap_len = map->stripe_len * nr_data_stripes(map); 6278 } 6279 6280 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); 6281 BUG_ON(!buf); /* -ENOMEM */ 6282 6283 for (i = 0; i < map->num_stripes; i++) { 6284 if (map->stripes[i].physical > physical || 6285 map->stripes[i].physical + length <= physical) 6286 continue; 6287 6288 stripe_nr = physical - map->stripes[i].physical; 6289 stripe_nr = div64_u64(stripe_nr, map->stripe_len); 6290 6291 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6292 stripe_nr = stripe_nr * map->num_stripes + i; 6293 stripe_nr = div_u64(stripe_nr, map->sub_stripes); 6294 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6295 stripe_nr = stripe_nr * map->num_stripes + i; 6296 } /* else if RAID[56], multiply by nr_data_stripes(). 6297 * Alternatively, just use rmap_len below instead of 6298 * map->stripe_len */ 6299 6300 bytenr = chunk_start + stripe_nr * rmap_len; 6301 WARN_ON(nr >= map->num_stripes); 6302 for (j = 0; j < nr; j++) { 6303 if (buf[j] == bytenr) 6304 break; 6305 } 6306 if (j == nr) { 6307 WARN_ON(nr >= map->num_stripes); 6308 buf[nr++] = bytenr; 6309 } 6310 } 6311 6312 *logical = buf; 6313 *naddrs = nr; 6314 *stripe_len = rmap_len; 6315 6316 free_extent_map(em); 6317 return 0; 6318 } 6319 6320 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6321 { 6322 bio->bi_private = bbio->private; 6323 bio->bi_end_io = bbio->end_io; 6324 bio_endio(bio); 6325 6326 btrfs_put_bbio(bbio); 6327 } 6328 6329 static void btrfs_end_bio(struct bio *bio) 6330 { 6331 struct btrfs_bio *bbio = bio->bi_private; 6332 int is_orig_bio = 0; 6333 6334 if (bio->bi_status) { 6335 atomic_inc(&bbio->error); 6336 if (bio->bi_status == BLK_STS_IOERR || 6337 bio->bi_status == BLK_STS_TARGET) { 6338 unsigned int stripe_index = 6339 btrfs_io_bio(bio)->stripe_index; 6340 struct btrfs_device *dev; 6341 6342 BUG_ON(stripe_index >= bbio->num_stripes); 6343 dev = bbio->stripes[stripe_index].dev; 6344 if (dev->bdev) { 6345 if (bio_op(bio) == REQ_OP_WRITE) 6346 btrfs_dev_stat_inc_and_print(dev, 6347 BTRFS_DEV_STAT_WRITE_ERRS); 6348 else if (!(bio->bi_opf & REQ_RAHEAD)) 6349 btrfs_dev_stat_inc_and_print(dev, 6350 BTRFS_DEV_STAT_READ_ERRS); 6351 if (bio->bi_opf & REQ_PREFLUSH) 6352 btrfs_dev_stat_inc_and_print(dev, 6353 BTRFS_DEV_STAT_FLUSH_ERRS); 6354 } 6355 } 6356 } 6357 6358 if (bio == bbio->orig_bio) 6359 is_orig_bio = 1; 6360 6361 btrfs_bio_counter_dec(bbio->fs_info); 6362 6363 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6364 if (!is_orig_bio) { 6365 bio_put(bio); 6366 bio = bbio->orig_bio; 6367 } 6368 6369 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6370 /* only send an error to the higher layers if it is 6371 * beyond the tolerance of the btrfs bio 6372 */ 6373 if (atomic_read(&bbio->error) > bbio->max_errors) { 6374 bio->bi_status = BLK_STS_IOERR; 6375 } else { 6376 /* 6377 * this bio is actually up to date, we didn't 6378 * go over the max number of errors 6379 */ 6380 bio->bi_status = BLK_STS_OK; 6381 } 6382 6383 btrfs_end_bbio(bbio, bio); 6384 } else if (!is_orig_bio) { 6385 bio_put(bio); 6386 } 6387 } 6388 6389 /* 6390 * see run_scheduled_bios for a description of why bios are collected for 6391 * async submit. 6392 * 6393 * This will add one bio to the pending list for a device and make sure 6394 * the work struct is scheduled. 6395 */ 6396 static noinline void btrfs_schedule_bio(struct btrfs_device *device, 6397 struct bio *bio) 6398 { 6399 struct btrfs_fs_info *fs_info = device->fs_info; 6400 int should_queue = 1; 6401 struct btrfs_pending_bios *pending_bios; 6402 6403 /* don't bother with additional async steps for reads, right now */ 6404 if (bio_op(bio) == REQ_OP_READ) { 6405 btrfsic_submit_bio(bio); 6406 return; 6407 } 6408 6409 WARN_ON(bio->bi_next); 6410 bio->bi_next = NULL; 6411 6412 spin_lock(&device->io_lock); 6413 if (op_is_sync(bio->bi_opf)) 6414 pending_bios = &device->pending_sync_bios; 6415 else 6416 pending_bios = &device->pending_bios; 6417 6418 if (pending_bios->tail) 6419 pending_bios->tail->bi_next = bio; 6420 6421 pending_bios->tail = bio; 6422 if (!pending_bios->head) 6423 pending_bios->head = bio; 6424 if (device->running_pending) 6425 should_queue = 0; 6426 6427 spin_unlock(&device->io_lock); 6428 6429 if (should_queue) 6430 btrfs_queue_work(fs_info->submit_workers, &device->work); 6431 } 6432 6433 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6434 u64 physical, int dev_nr, int async) 6435 { 6436 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 6437 struct btrfs_fs_info *fs_info = bbio->fs_info; 6438 6439 bio->bi_private = bbio; 6440 btrfs_io_bio(bio)->stripe_index = dev_nr; 6441 bio->bi_end_io = btrfs_end_bio; 6442 bio->bi_iter.bi_sector = physical >> 9; 6443 btrfs_debug_in_rcu(fs_info, 6444 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6445 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6446 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid, 6447 bio->bi_iter.bi_size); 6448 bio_set_dev(bio, dev->bdev); 6449 6450 btrfs_bio_counter_inc_noblocked(fs_info); 6451 6452 if (async) 6453 btrfs_schedule_bio(dev, bio); 6454 else 6455 btrfsic_submit_bio(bio); 6456 } 6457 6458 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6459 { 6460 atomic_inc(&bbio->error); 6461 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6462 /* Should be the original bio. */ 6463 WARN_ON(bio != bbio->orig_bio); 6464 6465 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6466 bio->bi_iter.bi_sector = logical >> 9; 6467 if (atomic_read(&bbio->error) > bbio->max_errors) 6468 bio->bi_status = BLK_STS_IOERR; 6469 else 6470 bio->bi_status = BLK_STS_OK; 6471 btrfs_end_bbio(bbio, bio); 6472 } 6473 } 6474 6475 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6476 int mirror_num, int async_submit) 6477 { 6478 struct btrfs_device *dev; 6479 struct bio *first_bio = bio; 6480 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6481 u64 length = 0; 6482 u64 map_length; 6483 int ret; 6484 int dev_nr; 6485 int total_devs; 6486 struct btrfs_bio *bbio = NULL; 6487 6488 length = bio->bi_iter.bi_size; 6489 map_length = length; 6490 6491 btrfs_bio_counter_inc_blocked(fs_info); 6492 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6493 &map_length, &bbio, mirror_num, 1); 6494 if (ret) { 6495 btrfs_bio_counter_dec(fs_info); 6496 return errno_to_blk_status(ret); 6497 } 6498 6499 total_devs = bbio->num_stripes; 6500 bbio->orig_bio = first_bio; 6501 bbio->private = first_bio->bi_private; 6502 bbio->end_io = first_bio->bi_end_io; 6503 bbio->fs_info = fs_info; 6504 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6505 6506 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6507 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6508 /* In this case, map_length has been set to the length of 6509 a single stripe; not the whole write */ 6510 if (bio_op(bio) == REQ_OP_WRITE) { 6511 ret = raid56_parity_write(fs_info, bio, bbio, 6512 map_length); 6513 } else { 6514 ret = raid56_parity_recover(fs_info, bio, bbio, 6515 map_length, mirror_num, 1); 6516 } 6517 6518 btrfs_bio_counter_dec(fs_info); 6519 return errno_to_blk_status(ret); 6520 } 6521 6522 if (map_length < length) { 6523 btrfs_crit(fs_info, 6524 "mapping failed logical %llu bio len %llu len %llu", 6525 logical, length, map_length); 6526 BUG(); 6527 } 6528 6529 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6530 dev = bbio->stripes[dev_nr].dev; 6531 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6532 &dev->dev_state) || 6533 (bio_op(first_bio) == REQ_OP_WRITE && 6534 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6535 bbio_error(bbio, first_bio, logical); 6536 continue; 6537 } 6538 6539 if (dev_nr < total_devs - 1) 6540 bio = btrfs_bio_clone(first_bio); 6541 else 6542 bio = first_bio; 6543 6544 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, 6545 dev_nr, async_submit); 6546 } 6547 btrfs_bio_counter_dec(fs_info); 6548 return BLK_STS_OK; 6549 } 6550 6551 /* 6552 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6553 * return NULL. 6554 * 6555 * If devid and uuid are both specified, the match must be exact, otherwise 6556 * only devid is used. 6557 * 6558 * If @seed is true, traverse through the seed devices. 6559 */ 6560 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6561 u64 devid, u8 *uuid, u8 *fsid, 6562 bool seed) 6563 { 6564 struct btrfs_device *device; 6565 6566 while (fs_devices) { 6567 if (!fsid || 6568 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6569 list_for_each_entry(device, &fs_devices->devices, 6570 dev_list) { 6571 if (device->devid == devid && 6572 (!uuid || memcmp(device->uuid, uuid, 6573 BTRFS_UUID_SIZE) == 0)) 6574 return device; 6575 } 6576 } 6577 if (seed) 6578 fs_devices = fs_devices->seed; 6579 else 6580 return NULL; 6581 } 6582 return NULL; 6583 } 6584 6585 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6586 u64 devid, u8 *dev_uuid) 6587 { 6588 struct btrfs_device *device; 6589 6590 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6591 if (IS_ERR(device)) 6592 return device; 6593 6594 list_add(&device->dev_list, &fs_devices->devices); 6595 device->fs_devices = fs_devices; 6596 fs_devices->num_devices++; 6597 6598 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6599 fs_devices->missing_devices++; 6600 6601 return device; 6602 } 6603 6604 /** 6605 * btrfs_alloc_device - allocate struct btrfs_device 6606 * @fs_info: used only for generating a new devid, can be NULL if 6607 * devid is provided (i.e. @devid != NULL). 6608 * @devid: a pointer to devid for this device. If NULL a new devid 6609 * is generated. 6610 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6611 * is generated. 6612 * 6613 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6614 * on error. Returned struct is not linked onto any lists and must be 6615 * destroyed with btrfs_free_device. 6616 */ 6617 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6618 const u64 *devid, 6619 const u8 *uuid) 6620 { 6621 struct btrfs_device *dev; 6622 u64 tmp; 6623 6624 if (WARN_ON(!devid && !fs_info)) 6625 return ERR_PTR(-EINVAL); 6626 6627 dev = __alloc_device(); 6628 if (IS_ERR(dev)) 6629 return dev; 6630 6631 if (devid) 6632 tmp = *devid; 6633 else { 6634 int ret; 6635 6636 ret = find_next_devid(fs_info, &tmp); 6637 if (ret) { 6638 btrfs_free_device(dev); 6639 return ERR_PTR(ret); 6640 } 6641 } 6642 dev->devid = tmp; 6643 6644 if (uuid) 6645 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6646 else 6647 generate_random_uuid(dev->uuid); 6648 6649 btrfs_init_work(&dev->work, btrfs_submit_helper, 6650 pending_bios_fn, NULL, NULL); 6651 6652 return dev; 6653 } 6654 6655 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6656 u64 devid, u8 *uuid, bool error) 6657 { 6658 if (error) 6659 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6660 devid, uuid); 6661 else 6662 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6663 devid, uuid); 6664 } 6665 6666 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6667 { 6668 int index = btrfs_bg_flags_to_raid_index(type); 6669 int ncopies = btrfs_raid_array[index].ncopies; 6670 int data_stripes; 6671 6672 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 6673 case BTRFS_BLOCK_GROUP_RAID5: 6674 data_stripes = num_stripes - 1; 6675 break; 6676 case BTRFS_BLOCK_GROUP_RAID6: 6677 data_stripes = num_stripes - 2; 6678 break; 6679 default: 6680 data_stripes = num_stripes / ncopies; 6681 break; 6682 } 6683 return div_u64(chunk_len, data_stripes); 6684 } 6685 6686 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6687 struct btrfs_chunk *chunk) 6688 { 6689 struct btrfs_fs_info *fs_info = leaf->fs_info; 6690 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 6691 struct map_lookup *map; 6692 struct extent_map *em; 6693 u64 logical; 6694 u64 length; 6695 u64 devid; 6696 u8 uuid[BTRFS_UUID_SIZE]; 6697 int num_stripes; 6698 int ret; 6699 int i; 6700 6701 logical = key->offset; 6702 length = btrfs_chunk_length(leaf, chunk); 6703 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6704 6705 /* 6706 * Only need to verify chunk item if we're reading from sys chunk array, 6707 * as chunk item in tree block is already verified by tree-checker. 6708 */ 6709 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6710 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6711 if (ret) 6712 return ret; 6713 } 6714 6715 read_lock(&map_tree->map_tree.lock); 6716 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 6717 read_unlock(&map_tree->map_tree.lock); 6718 6719 /* already mapped? */ 6720 if (em && em->start <= logical && em->start + em->len > logical) { 6721 free_extent_map(em); 6722 return 0; 6723 } else if (em) { 6724 free_extent_map(em); 6725 } 6726 6727 em = alloc_extent_map(); 6728 if (!em) 6729 return -ENOMEM; 6730 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6731 if (!map) { 6732 free_extent_map(em); 6733 return -ENOMEM; 6734 } 6735 6736 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6737 em->map_lookup = map; 6738 em->start = logical; 6739 em->len = length; 6740 em->orig_start = 0; 6741 em->block_start = 0; 6742 em->block_len = em->len; 6743 6744 map->num_stripes = num_stripes; 6745 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6746 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6747 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6748 map->type = btrfs_chunk_type(leaf, chunk); 6749 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6750 map->verified_stripes = 0; 6751 em->orig_block_len = calc_stripe_length(map->type, em->len, 6752 map->num_stripes); 6753 for (i = 0; i < num_stripes; i++) { 6754 map->stripes[i].physical = 6755 btrfs_stripe_offset_nr(leaf, chunk, i); 6756 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6757 read_extent_buffer(leaf, uuid, (unsigned long) 6758 btrfs_stripe_dev_uuid_nr(chunk, i), 6759 BTRFS_UUID_SIZE); 6760 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6761 devid, uuid, NULL, true); 6762 if (!map->stripes[i].dev && 6763 !btrfs_test_opt(fs_info, DEGRADED)) { 6764 free_extent_map(em); 6765 btrfs_report_missing_device(fs_info, devid, uuid, true); 6766 return -ENOENT; 6767 } 6768 if (!map->stripes[i].dev) { 6769 map->stripes[i].dev = 6770 add_missing_dev(fs_info->fs_devices, devid, 6771 uuid); 6772 if (IS_ERR(map->stripes[i].dev)) { 6773 free_extent_map(em); 6774 btrfs_err(fs_info, 6775 "failed to init missing dev %llu: %ld", 6776 devid, PTR_ERR(map->stripes[i].dev)); 6777 return PTR_ERR(map->stripes[i].dev); 6778 } 6779 btrfs_report_missing_device(fs_info, devid, uuid, false); 6780 } 6781 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6782 &(map->stripes[i].dev->dev_state)); 6783 6784 } 6785 6786 write_lock(&map_tree->map_tree.lock); 6787 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 6788 write_unlock(&map_tree->map_tree.lock); 6789 if (ret < 0) { 6790 btrfs_err(fs_info, 6791 "failed to add chunk map, start=%llu len=%llu: %d", 6792 em->start, em->len, ret); 6793 } 6794 free_extent_map(em); 6795 6796 return ret; 6797 } 6798 6799 static void fill_device_from_item(struct extent_buffer *leaf, 6800 struct btrfs_dev_item *dev_item, 6801 struct btrfs_device *device) 6802 { 6803 unsigned long ptr; 6804 6805 device->devid = btrfs_device_id(leaf, dev_item); 6806 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6807 device->total_bytes = device->disk_total_bytes; 6808 device->commit_total_bytes = device->disk_total_bytes; 6809 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6810 device->commit_bytes_used = device->bytes_used; 6811 device->type = btrfs_device_type(leaf, dev_item); 6812 device->io_align = btrfs_device_io_align(leaf, dev_item); 6813 device->io_width = btrfs_device_io_width(leaf, dev_item); 6814 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6815 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6816 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6817 6818 ptr = btrfs_device_uuid(dev_item); 6819 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6820 } 6821 6822 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6823 u8 *fsid) 6824 { 6825 struct btrfs_fs_devices *fs_devices; 6826 int ret; 6827 6828 lockdep_assert_held(&uuid_mutex); 6829 ASSERT(fsid); 6830 6831 fs_devices = fs_info->fs_devices->seed; 6832 while (fs_devices) { 6833 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6834 return fs_devices; 6835 6836 fs_devices = fs_devices->seed; 6837 } 6838 6839 fs_devices = find_fsid(fsid, NULL); 6840 if (!fs_devices) { 6841 if (!btrfs_test_opt(fs_info, DEGRADED)) 6842 return ERR_PTR(-ENOENT); 6843 6844 fs_devices = alloc_fs_devices(fsid, NULL); 6845 if (IS_ERR(fs_devices)) 6846 return fs_devices; 6847 6848 fs_devices->seeding = 1; 6849 fs_devices->opened = 1; 6850 return fs_devices; 6851 } 6852 6853 fs_devices = clone_fs_devices(fs_devices); 6854 if (IS_ERR(fs_devices)) 6855 return fs_devices; 6856 6857 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6858 if (ret) { 6859 free_fs_devices(fs_devices); 6860 fs_devices = ERR_PTR(ret); 6861 goto out; 6862 } 6863 6864 if (!fs_devices->seeding) { 6865 close_fs_devices(fs_devices); 6866 free_fs_devices(fs_devices); 6867 fs_devices = ERR_PTR(-EINVAL); 6868 goto out; 6869 } 6870 6871 fs_devices->seed = fs_info->fs_devices->seed; 6872 fs_info->fs_devices->seed = fs_devices; 6873 out: 6874 return fs_devices; 6875 } 6876 6877 static int read_one_dev(struct extent_buffer *leaf, 6878 struct btrfs_dev_item *dev_item) 6879 { 6880 struct btrfs_fs_info *fs_info = leaf->fs_info; 6881 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6882 struct btrfs_device *device; 6883 u64 devid; 6884 int ret; 6885 u8 fs_uuid[BTRFS_FSID_SIZE]; 6886 u8 dev_uuid[BTRFS_UUID_SIZE]; 6887 6888 devid = btrfs_device_id(leaf, dev_item); 6889 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6890 BTRFS_UUID_SIZE); 6891 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6892 BTRFS_FSID_SIZE); 6893 6894 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6895 fs_devices = open_seed_devices(fs_info, fs_uuid); 6896 if (IS_ERR(fs_devices)) 6897 return PTR_ERR(fs_devices); 6898 } 6899 6900 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6901 fs_uuid, true); 6902 if (!device) { 6903 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6904 btrfs_report_missing_device(fs_info, devid, 6905 dev_uuid, true); 6906 return -ENOENT; 6907 } 6908 6909 device = add_missing_dev(fs_devices, devid, dev_uuid); 6910 if (IS_ERR(device)) { 6911 btrfs_err(fs_info, 6912 "failed to add missing dev %llu: %ld", 6913 devid, PTR_ERR(device)); 6914 return PTR_ERR(device); 6915 } 6916 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6917 } else { 6918 if (!device->bdev) { 6919 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6920 btrfs_report_missing_device(fs_info, 6921 devid, dev_uuid, true); 6922 return -ENOENT; 6923 } 6924 btrfs_report_missing_device(fs_info, devid, 6925 dev_uuid, false); 6926 } 6927 6928 if (!device->bdev && 6929 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6930 /* 6931 * this happens when a device that was properly setup 6932 * in the device info lists suddenly goes bad. 6933 * device->bdev is NULL, and so we have to set 6934 * device->missing to one here 6935 */ 6936 device->fs_devices->missing_devices++; 6937 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6938 } 6939 6940 /* Move the device to its own fs_devices */ 6941 if (device->fs_devices != fs_devices) { 6942 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6943 &device->dev_state)); 6944 6945 list_move(&device->dev_list, &fs_devices->devices); 6946 device->fs_devices->num_devices--; 6947 fs_devices->num_devices++; 6948 6949 device->fs_devices->missing_devices--; 6950 fs_devices->missing_devices++; 6951 6952 device->fs_devices = fs_devices; 6953 } 6954 } 6955 6956 if (device->fs_devices != fs_info->fs_devices) { 6957 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6958 if (device->generation != 6959 btrfs_device_generation(leaf, dev_item)) 6960 return -EINVAL; 6961 } 6962 6963 fill_device_from_item(leaf, dev_item, device); 6964 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6965 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6966 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6967 device->fs_devices->total_rw_bytes += device->total_bytes; 6968 atomic64_add(device->total_bytes - device->bytes_used, 6969 &fs_info->free_chunk_space); 6970 } 6971 ret = 0; 6972 return ret; 6973 } 6974 6975 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6976 { 6977 struct btrfs_root *root = fs_info->tree_root; 6978 struct btrfs_super_block *super_copy = fs_info->super_copy; 6979 struct extent_buffer *sb; 6980 struct btrfs_disk_key *disk_key; 6981 struct btrfs_chunk *chunk; 6982 u8 *array_ptr; 6983 unsigned long sb_array_offset; 6984 int ret = 0; 6985 u32 num_stripes; 6986 u32 array_size; 6987 u32 len = 0; 6988 u32 cur_offset; 6989 u64 type; 6990 struct btrfs_key key; 6991 6992 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6993 /* 6994 * This will create extent buffer of nodesize, superblock size is 6995 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6996 * overallocate but we can keep it as-is, only the first page is used. 6997 */ 6998 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6999 if (IS_ERR(sb)) 7000 return PTR_ERR(sb); 7001 set_extent_buffer_uptodate(sb); 7002 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 7003 /* 7004 * The sb extent buffer is artificial and just used to read the system array. 7005 * set_extent_buffer_uptodate() call does not properly mark all it's 7006 * pages up-to-date when the page is larger: extent does not cover the 7007 * whole page and consequently check_page_uptodate does not find all 7008 * the page's extents up-to-date (the hole beyond sb), 7009 * write_extent_buffer then triggers a WARN_ON. 7010 * 7011 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7012 * but sb spans only this function. Add an explicit SetPageUptodate call 7013 * to silence the warning eg. on PowerPC 64. 7014 */ 7015 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7016 SetPageUptodate(sb->pages[0]); 7017 7018 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7019 array_size = btrfs_super_sys_array_size(super_copy); 7020 7021 array_ptr = super_copy->sys_chunk_array; 7022 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7023 cur_offset = 0; 7024 7025 while (cur_offset < array_size) { 7026 disk_key = (struct btrfs_disk_key *)array_ptr; 7027 len = sizeof(*disk_key); 7028 if (cur_offset + len > array_size) 7029 goto out_short_read; 7030 7031 btrfs_disk_key_to_cpu(&key, disk_key); 7032 7033 array_ptr += len; 7034 sb_array_offset += len; 7035 cur_offset += len; 7036 7037 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 7038 chunk = (struct btrfs_chunk *)sb_array_offset; 7039 /* 7040 * At least one btrfs_chunk with one stripe must be 7041 * present, exact stripe count check comes afterwards 7042 */ 7043 len = btrfs_chunk_item_size(1); 7044 if (cur_offset + len > array_size) 7045 goto out_short_read; 7046 7047 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7048 if (!num_stripes) { 7049 btrfs_err(fs_info, 7050 "invalid number of stripes %u in sys_array at offset %u", 7051 num_stripes, cur_offset); 7052 ret = -EIO; 7053 break; 7054 } 7055 7056 type = btrfs_chunk_type(sb, chunk); 7057 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7058 btrfs_err(fs_info, 7059 "invalid chunk type %llu in sys_array at offset %u", 7060 type, cur_offset); 7061 ret = -EIO; 7062 break; 7063 } 7064 7065 len = btrfs_chunk_item_size(num_stripes); 7066 if (cur_offset + len > array_size) 7067 goto out_short_read; 7068 7069 ret = read_one_chunk(&key, sb, chunk); 7070 if (ret) 7071 break; 7072 } else { 7073 btrfs_err(fs_info, 7074 "unexpected item type %u in sys_array at offset %u", 7075 (u32)key.type, cur_offset); 7076 ret = -EIO; 7077 break; 7078 } 7079 array_ptr += len; 7080 sb_array_offset += len; 7081 cur_offset += len; 7082 } 7083 clear_extent_buffer_uptodate(sb); 7084 free_extent_buffer_stale(sb); 7085 return ret; 7086 7087 out_short_read: 7088 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7089 len, cur_offset); 7090 clear_extent_buffer_uptodate(sb); 7091 free_extent_buffer_stale(sb); 7092 return -EIO; 7093 } 7094 7095 /* 7096 * Check if all chunks in the fs are OK for read-write degraded mount 7097 * 7098 * If the @failing_dev is specified, it's accounted as missing. 7099 * 7100 * Return true if all chunks meet the minimal RW mount requirements. 7101 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7102 */ 7103 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7104 struct btrfs_device *failing_dev) 7105 { 7106 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 7107 struct extent_map *em; 7108 u64 next_start = 0; 7109 bool ret = true; 7110 7111 read_lock(&map_tree->map_tree.lock); 7112 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1); 7113 read_unlock(&map_tree->map_tree.lock); 7114 /* No chunk at all? Return false anyway */ 7115 if (!em) { 7116 ret = false; 7117 goto out; 7118 } 7119 while (em) { 7120 struct map_lookup *map; 7121 int missing = 0; 7122 int max_tolerated; 7123 int i; 7124 7125 map = em->map_lookup; 7126 max_tolerated = 7127 btrfs_get_num_tolerated_disk_barrier_failures( 7128 map->type); 7129 for (i = 0; i < map->num_stripes; i++) { 7130 struct btrfs_device *dev = map->stripes[i].dev; 7131 7132 if (!dev || !dev->bdev || 7133 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7134 dev->last_flush_error) 7135 missing++; 7136 else if (failing_dev && failing_dev == dev) 7137 missing++; 7138 } 7139 if (missing > max_tolerated) { 7140 if (!failing_dev) 7141 btrfs_warn(fs_info, 7142 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7143 em->start, missing, max_tolerated); 7144 free_extent_map(em); 7145 ret = false; 7146 goto out; 7147 } 7148 next_start = extent_map_end(em); 7149 free_extent_map(em); 7150 7151 read_lock(&map_tree->map_tree.lock); 7152 em = lookup_extent_mapping(&map_tree->map_tree, next_start, 7153 (u64)(-1) - next_start); 7154 read_unlock(&map_tree->map_tree.lock); 7155 } 7156 out: 7157 return ret; 7158 } 7159 7160 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7161 { 7162 struct btrfs_root *root = fs_info->chunk_root; 7163 struct btrfs_path *path; 7164 struct extent_buffer *leaf; 7165 struct btrfs_key key; 7166 struct btrfs_key found_key; 7167 int ret; 7168 int slot; 7169 u64 total_dev = 0; 7170 7171 path = btrfs_alloc_path(); 7172 if (!path) 7173 return -ENOMEM; 7174 7175 /* 7176 * uuid_mutex is needed only if we are mounting a sprout FS 7177 * otherwise we don't need it. 7178 */ 7179 mutex_lock(&uuid_mutex); 7180 mutex_lock(&fs_info->chunk_mutex); 7181 7182 /* 7183 * Read all device items, and then all the chunk items. All 7184 * device items are found before any chunk item (their object id 7185 * is smaller than the lowest possible object id for a chunk 7186 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7187 */ 7188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7189 key.offset = 0; 7190 key.type = 0; 7191 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7192 if (ret < 0) 7193 goto error; 7194 while (1) { 7195 leaf = path->nodes[0]; 7196 slot = path->slots[0]; 7197 if (slot >= btrfs_header_nritems(leaf)) { 7198 ret = btrfs_next_leaf(root, path); 7199 if (ret == 0) 7200 continue; 7201 if (ret < 0) 7202 goto error; 7203 break; 7204 } 7205 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7206 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7207 struct btrfs_dev_item *dev_item; 7208 dev_item = btrfs_item_ptr(leaf, slot, 7209 struct btrfs_dev_item); 7210 ret = read_one_dev(leaf, dev_item); 7211 if (ret) 7212 goto error; 7213 total_dev++; 7214 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7215 struct btrfs_chunk *chunk; 7216 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7217 ret = read_one_chunk(&found_key, leaf, chunk); 7218 if (ret) 7219 goto error; 7220 } 7221 path->slots[0]++; 7222 } 7223 7224 /* 7225 * After loading chunk tree, we've got all device information, 7226 * do another round of validation checks. 7227 */ 7228 if (total_dev != fs_info->fs_devices->total_devices) { 7229 btrfs_err(fs_info, 7230 "super_num_devices %llu mismatch with num_devices %llu found here", 7231 btrfs_super_num_devices(fs_info->super_copy), 7232 total_dev); 7233 ret = -EINVAL; 7234 goto error; 7235 } 7236 if (btrfs_super_total_bytes(fs_info->super_copy) < 7237 fs_info->fs_devices->total_rw_bytes) { 7238 btrfs_err(fs_info, 7239 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7240 btrfs_super_total_bytes(fs_info->super_copy), 7241 fs_info->fs_devices->total_rw_bytes); 7242 ret = -EINVAL; 7243 goto error; 7244 } 7245 ret = 0; 7246 error: 7247 mutex_unlock(&fs_info->chunk_mutex); 7248 mutex_unlock(&uuid_mutex); 7249 7250 btrfs_free_path(path); 7251 return ret; 7252 } 7253 7254 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7255 { 7256 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7257 struct btrfs_device *device; 7258 7259 while (fs_devices) { 7260 mutex_lock(&fs_devices->device_list_mutex); 7261 list_for_each_entry(device, &fs_devices->devices, dev_list) 7262 device->fs_info = fs_info; 7263 mutex_unlock(&fs_devices->device_list_mutex); 7264 7265 fs_devices = fs_devices->seed; 7266 } 7267 } 7268 7269 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 7270 { 7271 int i; 7272 7273 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7274 btrfs_dev_stat_reset(dev, i); 7275 } 7276 7277 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7278 { 7279 struct btrfs_key key; 7280 struct btrfs_key found_key; 7281 struct btrfs_root *dev_root = fs_info->dev_root; 7282 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7283 struct extent_buffer *eb; 7284 int slot; 7285 int ret = 0; 7286 struct btrfs_device *device; 7287 struct btrfs_path *path = NULL; 7288 int i; 7289 7290 path = btrfs_alloc_path(); 7291 if (!path) { 7292 ret = -ENOMEM; 7293 goto out; 7294 } 7295 7296 mutex_lock(&fs_devices->device_list_mutex); 7297 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7298 int item_size; 7299 struct btrfs_dev_stats_item *ptr; 7300 7301 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7302 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7303 key.offset = device->devid; 7304 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 7305 if (ret) { 7306 __btrfs_reset_dev_stats(device); 7307 device->dev_stats_valid = 1; 7308 btrfs_release_path(path); 7309 continue; 7310 } 7311 slot = path->slots[0]; 7312 eb = path->nodes[0]; 7313 btrfs_item_key_to_cpu(eb, &found_key, slot); 7314 item_size = btrfs_item_size_nr(eb, slot); 7315 7316 ptr = btrfs_item_ptr(eb, slot, 7317 struct btrfs_dev_stats_item); 7318 7319 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7320 if (item_size >= (1 + i) * sizeof(__le64)) 7321 btrfs_dev_stat_set(device, i, 7322 btrfs_dev_stats_value(eb, ptr, i)); 7323 else 7324 btrfs_dev_stat_reset(device, i); 7325 } 7326 7327 device->dev_stats_valid = 1; 7328 btrfs_dev_stat_print_on_load(device); 7329 btrfs_release_path(path); 7330 } 7331 mutex_unlock(&fs_devices->device_list_mutex); 7332 7333 out: 7334 btrfs_free_path(path); 7335 return ret < 0 ? ret : 0; 7336 } 7337 7338 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7339 struct btrfs_device *device) 7340 { 7341 struct btrfs_fs_info *fs_info = trans->fs_info; 7342 struct btrfs_root *dev_root = fs_info->dev_root; 7343 struct btrfs_path *path; 7344 struct btrfs_key key; 7345 struct extent_buffer *eb; 7346 struct btrfs_dev_stats_item *ptr; 7347 int ret; 7348 int i; 7349 7350 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7351 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7352 key.offset = device->devid; 7353 7354 path = btrfs_alloc_path(); 7355 if (!path) 7356 return -ENOMEM; 7357 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7358 if (ret < 0) { 7359 btrfs_warn_in_rcu(fs_info, 7360 "error %d while searching for dev_stats item for device %s", 7361 ret, rcu_str_deref(device->name)); 7362 goto out; 7363 } 7364 7365 if (ret == 0 && 7366 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7367 /* need to delete old one and insert a new one */ 7368 ret = btrfs_del_item(trans, dev_root, path); 7369 if (ret != 0) { 7370 btrfs_warn_in_rcu(fs_info, 7371 "delete too small dev_stats item for device %s failed %d", 7372 rcu_str_deref(device->name), ret); 7373 goto out; 7374 } 7375 ret = 1; 7376 } 7377 7378 if (ret == 1) { 7379 /* need to insert a new item */ 7380 btrfs_release_path(path); 7381 ret = btrfs_insert_empty_item(trans, dev_root, path, 7382 &key, sizeof(*ptr)); 7383 if (ret < 0) { 7384 btrfs_warn_in_rcu(fs_info, 7385 "insert dev_stats item for device %s failed %d", 7386 rcu_str_deref(device->name), ret); 7387 goto out; 7388 } 7389 } 7390 7391 eb = path->nodes[0]; 7392 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7393 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7394 btrfs_set_dev_stats_value(eb, ptr, i, 7395 btrfs_dev_stat_read(device, i)); 7396 btrfs_mark_buffer_dirty(eb); 7397 7398 out: 7399 btrfs_free_path(path); 7400 return ret; 7401 } 7402 7403 /* 7404 * called from commit_transaction. Writes all changed device stats to disk. 7405 */ 7406 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7407 { 7408 struct btrfs_fs_info *fs_info = trans->fs_info; 7409 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7410 struct btrfs_device *device; 7411 int stats_cnt; 7412 int ret = 0; 7413 7414 mutex_lock(&fs_devices->device_list_mutex); 7415 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7416 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7417 if (!device->dev_stats_valid || stats_cnt == 0) 7418 continue; 7419 7420 7421 /* 7422 * There is a LOAD-LOAD control dependency between the value of 7423 * dev_stats_ccnt and updating the on-disk values which requires 7424 * reading the in-memory counters. Such control dependencies 7425 * require explicit read memory barriers. 7426 * 7427 * This memory barriers pairs with smp_mb__before_atomic in 7428 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7429 * barrier implied by atomic_xchg in 7430 * btrfs_dev_stats_read_and_reset 7431 */ 7432 smp_rmb(); 7433 7434 ret = update_dev_stat_item(trans, device); 7435 if (!ret) 7436 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7437 } 7438 mutex_unlock(&fs_devices->device_list_mutex); 7439 7440 return ret; 7441 } 7442 7443 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7444 { 7445 btrfs_dev_stat_inc(dev, index); 7446 btrfs_dev_stat_print_on_error(dev); 7447 } 7448 7449 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7450 { 7451 if (!dev->dev_stats_valid) 7452 return; 7453 btrfs_err_rl_in_rcu(dev->fs_info, 7454 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7455 rcu_str_deref(dev->name), 7456 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7457 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7458 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7459 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7460 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7461 } 7462 7463 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7464 { 7465 int i; 7466 7467 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7468 if (btrfs_dev_stat_read(dev, i) != 0) 7469 break; 7470 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7471 return; /* all values == 0, suppress message */ 7472 7473 btrfs_info_in_rcu(dev->fs_info, 7474 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7475 rcu_str_deref(dev->name), 7476 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7477 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7478 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7479 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7480 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7481 } 7482 7483 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7484 struct btrfs_ioctl_get_dev_stats *stats) 7485 { 7486 struct btrfs_device *dev; 7487 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7488 int i; 7489 7490 mutex_lock(&fs_devices->device_list_mutex); 7491 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7492 true); 7493 mutex_unlock(&fs_devices->device_list_mutex); 7494 7495 if (!dev) { 7496 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7497 return -ENODEV; 7498 } else if (!dev->dev_stats_valid) { 7499 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7500 return -ENODEV; 7501 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7502 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7503 if (stats->nr_items > i) 7504 stats->values[i] = 7505 btrfs_dev_stat_read_and_reset(dev, i); 7506 else 7507 btrfs_dev_stat_reset(dev, i); 7508 } 7509 } else { 7510 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7511 if (stats->nr_items > i) 7512 stats->values[i] = btrfs_dev_stat_read(dev, i); 7513 } 7514 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7515 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7516 return 0; 7517 } 7518 7519 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) 7520 { 7521 struct buffer_head *bh; 7522 struct btrfs_super_block *disk_super; 7523 int copy_num; 7524 7525 if (!bdev) 7526 return; 7527 7528 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; 7529 copy_num++) { 7530 7531 if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) 7532 continue; 7533 7534 disk_super = (struct btrfs_super_block *)bh->b_data; 7535 7536 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 7537 set_buffer_dirty(bh); 7538 sync_dirty_buffer(bh); 7539 brelse(bh); 7540 } 7541 7542 /* Notify udev that device has changed */ 7543 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 7544 7545 /* Update ctime/mtime for device path for libblkid */ 7546 update_dev_time(device_path); 7547 } 7548 7549 /* 7550 * Update the size and bytes used for each device where it changed. This is 7551 * delayed since we would otherwise get errors while writing out the 7552 * superblocks. 7553 * 7554 * Must be invoked during transaction commit. 7555 */ 7556 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7557 { 7558 struct btrfs_device *curr, *next; 7559 7560 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7561 7562 if (list_empty(&trans->dev_update_list)) 7563 return; 7564 7565 /* 7566 * We don't need the device_list_mutex here. This list is owned by the 7567 * transaction and the transaction must complete before the device is 7568 * released. 7569 */ 7570 mutex_lock(&trans->fs_info->chunk_mutex); 7571 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7572 post_commit_list) { 7573 list_del_init(&curr->post_commit_list); 7574 curr->commit_total_bytes = curr->disk_total_bytes; 7575 curr->commit_bytes_used = curr->bytes_used; 7576 } 7577 mutex_unlock(&trans->fs_info->chunk_mutex); 7578 } 7579 7580 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) 7581 { 7582 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7583 while (fs_devices) { 7584 fs_devices->fs_info = fs_info; 7585 fs_devices = fs_devices->seed; 7586 } 7587 } 7588 7589 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) 7590 { 7591 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7592 while (fs_devices) { 7593 fs_devices->fs_info = NULL; 7594 fs_devices = fs_devices->seed; 7595 } 7596 } 7597 7598 /* 7599 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7600 */ 7601 int btrfs_bg_type_to_factor(u64 flags) 7602 { 7603 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 7604 BTRFS_BLOCK_GROUP_RAID10)) 7605 return 2; 7606 return 1; 7607 } 7608 7609 7610 7611 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7612 u64 chunk_offset, u64 devid, 7613 u64 physical_offset, u64 physical_len) 7614 { 7615 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 7616 struct extent_map *em; 7617 struct map_lookup *map; 7618 struct btrfs_device *dev; 7619 u64 stripe_len; 7620 bool found = false; 7621 int ret = 0; 7622 int i; 7623 7624 read_lock(&em_tree->lock); 7625 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7626 read_unlock(&em_tree->lock); 7627 7628 if (!em) { 7629 btrfs_err(fs_info, 7630 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7631 physical_offset, devid); 7632 ret = -EUCLEAN; 7633 goto out; 7634 } 7635 7636 map = em->map_lookup; 7637 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7638 if (physical_len != stripe_len) { 7639 btrfs_err(fs_info, 7640 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7641 physical_offset, devid, em->start, physical_len, 7642 stripe_len); 7643 ret = -EUCLEAN; 7644 goto out; 7645 } 7646 7647 for (i = 0; i < map->num_stripes; i++) { 7648 if (map->stripes[i].dev->devid == devid && 7649 map->stripes[i].physical == physical_offset) { 7650 found = true; 7651 if (map->verified_stripes >= map->num_stripes) { 7652 btrfs_err(fs_info, 7653 "too many dev extents for chunk %llu found", 7654 em->start); 7655 ret = -EUCLEAN; 7656 goto out; 7657 } 7658 map->verified_stripes++; 7659 break; 7660 } 7661 } 7662 if (!found) { 7663 btrfs_err(fs_info, 7664 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7665 physical_offset, devid); 7666 ret = -EUCLEAN; 7667 } 7668 7669 /* Make sure no dev extent is beyond device bondary */ 7670 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7671 if (!dev) { 7672 btrfs_err(fs_info, "failed to find devid %llu", devid); 7673 ret = -EUCLEAN; 7674 goto out; 7675 } 7676 7677 /* It's possible this device is a dummy for seed device */ 7678 if (dev->disk_total_bytes == 0) { 7679 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL, 7680 NULL, false); 7681 if (!dev) { 7682 btrfs_err(fs_info, "failed to find seed devid %llu", 7683 devid); 7684 ret = -EUCLEAN; 7685 goto out; 7686 } 7687 } 7688 7689 if (physical_offset + physical_len > dev->disk_total_bytes) { 7690 btrfs_err(fs_info, 7691 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7692 devid, physical_offset, physical_len, 7693 dev->disk_total_bytes); 7694 ret = -EUCLEAN; 7695 goto out; 7696 } 7697 out: 7698 free_extent_map(em); 7699 return ret; 7700 } 7701 7702 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7703 { 7704 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 7705 struct extent_map *em; 7706 struct rb_node *node; 7707 int ret = 0; 7708 7709 read_lock(&em_tree->lock); 7710 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7711 em = rb_entry(node, struct extent_map, rb_node); 7712 if (em->map_lookup->num_stripes != 7713 em->map_lookup->verified_stripes) { 7714 btrfs_err(fs_info, 7715 "chunk %llu has missing dev extent, have %d expect %d", 7716 em->start, em->map_lookup->verified_stripes, 7717 em->map_lookup->num_stripes); 7718 ret = -EUCLEAN; 7719 goto out; 7720 } 7721 } 7722 out: 7723 read_unlock(&em_tree->lock); 7724 return ret; 7725 } 7726 7727 /* 7728 * Ensure that all dev extents are mapped to correct chunk, otherwise 7729 * later chunk allocation/free would cause unexpected behavior. 7730 * 7731 * NOTE: This will iterate through the whole device tree, which should be of 7732 * the same size level as the chunk tree. This slightly increases mount time. 7733 */ 7734 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7735 { 7736 struct btrfs_path *path; 7737 struct btrfs_root *root = fs_info->dev_root; 7738 struct btrfs_key key; 7739 u64 prev_devid = 0; 7740 u64 prev_dev_ext_end = 0; 7741 int ret = 0; 7742 7743 key.objectid = 1; 7744 key.type = BTRFS_DEV_EXTENT_KEY; 7745 key.offset = 0; 7746 7747 path = btrfs_alloc_path(); 7748 if (!path) 7749 return -ENOMEM; 7750 7751 path->reada = READA_FORWARD; 7752 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7753 if (ret < 0) 7754 goto out; 7755 7756 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7757 ret = btrfs_next_item(root, path); 7758 if (ret < 0) 7759 goto out; 7760 /* No dev extents at all? Not good */ 7761 if (ret > 0) { 7762 ret = -EUCLEAN; 7763 goto out; 7764 } 7765 } 7766 while (1) { 7767 struct extent_buffer *leaf = path->nodes[0]; 7768 struct btrfs_dev_extent *dext; 7769 int slot = path->slots[0]; 7770 u64 chunk_offset; 7771 u64 physical_offset; 7772 u64 physical_len; 7773 u64 devid; 7774 7775 btrfs_item_key_to_cpu(leaf, &key, slot); 7776 if (key.type != BTRFS_DEV_EXTENT_KEY) 7777 break; 7778 devid = key.objectid; 7779 physical_offset = key.offset; 7780 7781 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7782 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7783 physical_len = btrfs_dev_extent_length(leaf, dext); 7784 7785 /* Check if this dev extent overlaps with the previous one */ 7786 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7787 btrfs_err(fs_info, 7788 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7789 devid, physical_offset, prev_dev_ext_end); 7790 ret = -EUCLEAN; 7791 goto out; 7792 } 7793 7794 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7795 physical_offset, physical_len); 7796 if (ret < 0) 7797 goto out; 7798 prev_devid = devid; 7799 prev_dev_ext_end = physical_offset + physical_len; 7800 7801 ret = btrfs_next_item(root, path); 7802 if (ret < 0) 7803 goto out; 7804 if (ret > 0) { 7805 ret = 0; 7806 break; 7807 } 7808 } 7809 7810 /* Ensure all chunks have corresponding dev extents */ 7811 ret = verify_chunk_dev_extent_mapping(fs_info); 7812 out: 7813 btrfs_free_path(path); 7814 return ret; 7815 } 7816 7817 /* 7818 * Check whether the given block group or device is pinned by any inode being 7819 * used as a swapfile. 7820 */ 7821 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7822 { 7823 struct btrfs_swapfile_pin *sp; 7824 struct rb_node *node; 7825 7826 spin_lock(&fs_info->swapfile_pins_lock); 7827 node = fs_info->swapfile_pins.rb_node; 7828 while (node) { 7829 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7830 if (ptr < sp->ptr) 7831 node = node->rb_left; 7832 else if (ptr > sp->ptr) 7833 node = node->rb_right; 7834 else 7835 break; 7836 } 7837 spin_unlock(&fs_info->swapfile_pins_lock); 7838 return node != NULL; 7839 } 7840