xref: /openbmc/linux/fs/btrfs/volumes.c (revision 93032e31)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_root *root,
138 				struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143 
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148 	return &fs_uuids;
149 }
150 
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153 	struct btrfs_fs_devices *fs_devs;
154 
155 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 	if (!fs_devs)
157 		return ERR_PTR(-ENOMEM);
158 
159 	mutex_init(&fs_devs->device_list_mutex);
160 
161 	INIT_LIST_HEAD(&fs_devs->devices);
162 	INIT_LIST_HEAD(&fs_devs->resized_devices);
163 	INIT_LIST_HEAD(&fs_devs->alloc_list);
164 	INIT_LIST_HEAD(&fs_devs->list);
165 
166 	return fs_devs;
167 }
168 
169 /**
170  * alloc_fs_devices - allocate struct btrfs_fs_devices
171  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
172  *		generated.
173  *
174  * Return: a pointer to a new &struct btrfs_fs_devices on success;
175  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
176  * can be destroyed with kfree() right away.
177  */
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180 	struct btrfs_fs_devices *fs_devs;
181 
182 	fs_devs = __alloc_fs_devices();
183 	if (IS_ERR(fs_devs))
184 		return fs_devs;
185 
186 	if (fsid)
187 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 	else
189 		generate_random_uuid(fs_devs->fsid);
190 
191 	return fs_devs;
192 }
193 
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196 	struct btrfs_device *device;
197 	WARN_ON(fs_devices->opened);
198 	while (!list_empty(&fs_devices->devices)) {
199 		device = list_entry(fs_devices->devices.next,
200 				    struct btrfs_device, dev_list);
201 		list_del(&device->dev_list);
202 		rcu_string_free(device->name);
203 		kfree(device);
204 	}
205 	kfree(fs_devices);
206 }
207 
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 				 enum kobject_action action)
210 {
211 	int ret;
212 
213 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 	if (ret)
215 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 			action,
217 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 			&disk_to_dev(bdev->bd_disk)->kobj);
219 }
220 
221 void btrfs_cleanup_fs_uuids(void)
222 {
223 	struct btrfs_fs_devices *fs_devices;
224 
225 	while (!list_empty(&fs_uuids)) {
226 		fs_devices = list_entry(fs_uuids.next,
227 					struct btrfs_fs_devices, list);
228 		list_del(&fs_devices->list);
229 		free_fs_devices(fs_devices);
230 	}
231 }
232 
233 static struct btrfs_device *__alloc_device(void)
234 {
235 	struct btrfs_device *dev;
236 
237 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 	if (!dev)
239 		return ERR_PTR(-ENOMEM);
240 
241 	INIT_LIST_HEAD(&dev->dev_list);
242 	INIT_LIST_HEAD(&dev->dev_alloc_list);
243 	INIT_LIST_HEAD(&dev->resized_list);
244 
245 	spin_lock_init(&dev->io_lock);
246 
247 	spin_lock_init(&dev->reada_lock);
248 	atomic_set(&dev->reada_in_flight, 0);
249 	atomic_set(&dev->dev_stats_ccnt, 0);
250 	btrfs_device_data_ordered_init(dev);
251 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 
254 	return dev;
255 }
256 
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258 						   u64 devid, u8 *uuid)
259 {
260 	struct btrfs_device *dev;
261 
262 	list_for_each_entry(dev, head, dev_list) {
263 		if (dev->devid == devid &&
264 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 			return dev;
266 		}
267 	}
268 	return NULL;
269 }
270 
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273 	struct btrfs_fs_devices *fs_devices;
274 
275 	list_for_each_entry(fs_devices, &fs_uuids, list) {
276 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 			return fs_devices;
278 	}
279 	return NULL;
280 }
281 
282 static int
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 		      int flush, struct block_device **bdev,
285 		      struct buffer_head **bh)
286 {
287 	int ret;
288 
289 	*bdev = blkdev_get_by_path(device_path, flags, holder);
290 
291 	if (IS_ERR(*bdev)) {
292 		ret = PTR_ERR(*bdev);
293 		goto error;
294 	}
295 
296 	if (flush)
297 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 	ret = set_blocksize(*bdev, 4096);
299 	if (ret) {
300 		blkdev_put(*bdev, flags);
301 		goto error;
302 	}
303 	invalidate_bdev(*bdev);
304 	*bh = btrfs_read_dev_super(*bdev);
305 	if (IS_ERR(*bh)) {
306 		ret = PTR_ERR(*bh);
307 		blkdev_put(*bdev, flags);
308 		goto error;
309 	}
310 
311 	return 0;
312 
313 error:
314 	*bdev = NULL;
315 	*bh = NULL;
316 	return ret;
317 }
318 
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 			struct bio *head, struct bio *tail)
321 {
322 
323 	struct bio *old_head;
324 
325 	old_head = pending_bios->head;
326 	pending_bios->head = head;
327 	if (pending_bios->tail)
328 		tail->bi_next = old_head;
329 	else
330 		pending_bios->tail = tail;
331 }
332 
333 /*
334  * we try to collect pending bios for a device so we don't get a large
335  * number of procs sending bios down to the same device.  This greatly
336  * improves the schedulers ability to collect and merge the bios.
337  *
338  * But, it also turns into a long list of bios to process and that is sure
339  * to eventually make the worker thread block.  The solution here is to
340  * make some progress and then put this work struct back at the end of
341  * the list if the block device is congested.  This way, multiple devices
342  * can make progress from a single worker thread.
343  */
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346 	struct bio *pending;
347 	struct backing_dev_info *bdi;
348 	struct btrfs_fs_info *fs_info;
349 	struct btrfs_pending_bios *pending_bios;
350 	struct bio *tail;
351 	struct bio *cur;
352 	int again = 0;
353 	unsigned long num_run;
354 	unsigned long batch_run = 0;
355 	unsigned long limit;
356 	unsigned long last_waited = 0;
357 	int force_reg = 0;
358 	int sync_pending = 0;
359 	struct blk_plug plug;
360 
361 	/*
362 	 * this function runs all the bios we've collected for
363 	 * a particular device.  We don't want to wander off to
364 	 * another device without first sending all of these down.
365 	 * So, setup a plug here and finish it off before we return
366 	 */
367 	blk_start_plug(&plug);
368 
369 	bdi = blk_get_backing_dev_info(device->bdev);
370 	fs_info = device->dev_root->fs_info;
371 	limit = btrfs_async_submit_limit(fs_info);
372 	limit = limit * 2 / 3;
373 
374 loop:
375 	spin_lock(&device->io_lock);
376 
377 loop_lock:
378 	num_run = 0;
379 
380 	/* take all the bios off the list at once and process them
381 	 * later on (without the lock held).  But, remember the
382 	 * tail and other pointers so the bios can be properly reinserted
383 	 * into the list if we hit congestion
384 	 */
385 	if (!force_reg && device->pending_sync_bios.head) {
386 		pending_bios = &device->pending_sync_bios;
387 		force_reg = 1;
388 	} else {
389 		pending_bios = &device->pending_bios;
390 		force_reg = 0;
391 	}
392 
393 	pending = pending_bios->head;
394 	tail = pending_bios->tail;
395 	WARN_ON(pending && !tail);
396 
397 	/*
398 	 * if pending was null this time around, no bios need processing
399 	 * at all and we can stop.  Otherwise it'll loop back up again
400 	 * and do an additional check so no bios are missed.
401 	 *
402 	 * device->running_pending is used to synchronize with the
403 	 * schedule_bio code.
404 	 */
405 	if (device->pending_sync_bios.head == NULL &&
406 	    device->pending_bios.head == NULL) {
407 		again = 0;
408 		device->running_pending = 0;
409 	} else {
410 		again = 1;
411 		device->running_pending = 1;
412 	}
413 
414 	pending_bios->head = NULL;
415 	pending_bios->tail = NULL;
416 
417 	spin_unlock(&device->io_lock);
418 
419 	while (pending) {
420 
421 		rmb();
422 		/* we want to work on both lists, but do more bios on the
423 		 * sync list than the regular list
424 		 */
425 		if ((num_run > 32 &&
426 		    pending_bios != &device->pending_sync_bios &&
427 		    device->pending_sync_bios.head) ||
428 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 		    device->pending_bios.head)) {
430 			spin_lock(&device->io_lock);
431 			requeue_list(pending_bios, pending, tail);
432 			goto loop_lock;
433 		}
434 
435 		cur = pending;
436 		pending = pending->bi_next;
437 		cur->bi_next = NULL;
438 
439 		/*
440 		 * atomic_dec_return implies a barrier for waitqueue_active
441 		 */
442 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443 		    waitqueue_active(&fs_info->async_submit_wait))
444 			wake_up(&fs_info->async_submit_wait);
445 
446 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447 
448 		/*
449 		 * if we're doing the sync list, record that our
450 		 * plug has some sync requests on it
451 		 *
452 		 * If we're doing the regular list and there are
453 		 * sync requests sitting around, unplug before
454 		 * we add more
455 		 */
456 		if (pending_bios == &device->pending_sync_bios) {
457 			sync_pending = 1;
458 		} else if (sync_pending) {
459 			blk_finish_plug(&plug);
460 			blk_start_plug(&plug);
461 			sync_pending = 0;
462 		}
463 
464 		btrfsic_submit_bio(cur);
465 		num_run++;
466 		batch_run++;
467 
468 		cond_resched();
469 
470 		/*
471 		 * we made progress, there is more work to do and the bdi
472 		 * is now congested.  Back off and let other work structs
473 		 * run instead
474 		 */
475 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476 		    fs_info->fs_devices->open_devices > 1) {
477 			struct io_context *ioc;
478 
479 			ioc = current->io_context;
480 
481 			/*
482 			 * the main goal here is that we don't want to
483 			 * block if we're going to be able to submit
484 			 * more requests without blocking.
485 			 *
486 			 * This code does two great things, it pokes into
487 			 * the elevator code from a filesystem _and_
488 			 * it makes assumptions about how batching works.
489 			 */
490 			if (ioc && ioc->nr_batch_requests > 0 &&
491 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 			    (last_waited == 0 ||
493 			     ioc->last_waited == last_waited)) {
494 				/*
495 				 * we want to go through our batch of
496 				 * requests and stop.  So, we copy out
497 				 * the ioc->last_waited time and test
498 				 * against it before looping
499 				 */
500 				last_waited = ioc->last_waited;
501 				cond_resched();
502 				continue;
503 			}
504 			spin_lock(&device->io_lock);
505 			requeue_list(pending_bios, pending, tail);
506 			device->running_pending = 1;
507 
508 			spin_unlock(&device->io_lock);
509 			btrfs_queue_work(fs_info->submit_workers,
510 					 &device->work);
511 			goto done;
512 		}
513 		/* unplug every 64 requests just for good measure */
514 		if (batch_run % 64 == 0) {
515 			blk_finish_plug(&plug);
516 			blk_start_plug(&plug);
517 			sync_pending = 0;
518 		}
519 	}
520 
521 	cond_resched();
522 	if (again)
523 		goto loop;
524 
525 	spin_lock(&device->io_lock);
526 	if (device->pending_bios.head || device->pending_sync_bios.head)
527 		goto loop_lock;
528 	spin_unlock(&device->io_lock);
529 
530 done:
531 	blk_finish_plug(&plug);
532 }
533 
534 static void pending_bios_fn(struct btrfs_work *work)
535 {
536 	struct btrfs_device *device;
537 
538 	device = container_of(work, struct btrfs_device, work);
539 	run_scheduled_bios(device);
540 }
541 
542 
543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544 {
545 	struct btrfs_fs_devices *fs_devs;
546 	struct btrfs_device *dev;
547 
548 	if (!cur_dev->name)
549 		return;
550 
551 	list_for_each_entry(fs_devs, &fs_uuids, list) {
552 		int del = 1;
553 
554 		if (fs_devs->opened)
555 			continue;
556 		if (fs_devs->seeding)
557 			continue;
558 
559 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560 
561 			if (dev == cur_dev)
562 				continue;
563 			if (!dev->name)
564 				continue;
565 
566 			/*
567 			 * Todo: This won't be enough. What if the same device
568 			 * comes back (with new uuid and) with its mapper path?
569 			 * But for now, this does help as mostly an admin will
570 			 * either use mapper or non mapper path throughout.
571 			 */
572 			rcu_read_lock();
573 			del = strcmp(rcu_str_deref(dev->name),
574 						rcu_str_deref(cur_dev->name));
575 			rcu_read_unlock();
576 			if (!del)
577 				break;
578 		}
579 
580 		if (!del) {
581 			/* delete the stale device */
582 			if (fs_devs->num_devices == 1) {
583 				btrfs_sysfs_remove_fsid(fs_devs);
584 				list_del(&fs_devs->list);
585 				free_fs_devices(fs_devs);
586 			} else {
587 				fs_devs->num_devices--;
588 				list_del(&dev->dev_list);
589 				rcu_string_free(dev->name);
590 				kfree(dev);
591 			}
592 			break;
593 		}
594 	}
595 }
596 
597 /*
598  * Add new device to list of registered devices
599  *
600  * Returns:
601  * 1   - first time device is seen
602  * 0   - device already known
603  * < 0 - error
604  */
605 static noinline int device_list_add(const char *path,
606 			   struct btrfs_super_block *disk_super,
607 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608 {
609 	struct btrfs_device *device;
610 	struct btrfs_fs_devices *fs_devices;
611 	struct rcu_string *name;
612 	int ret = 0;
613 	u64 found_transid = btrfs_super_generation(disk_super);
614 
615 	fs_devices = find_fsid(disk_super->fsid);
616 	if (!fs_devices) {
617 		fs_devices = alloc_fs_devices(disk_super->fsid);
618 		if (IS_ERR(fs_devices))
619 			return PTR_ERR(fs_devices);
620 
621 		list_add(&fs_devices->list, &fs_uuids);
622 
623 		device = NULL;
624 	} else {
625 		device = __find_device(&fs_devices->devices, devid,
626 				       disk_super->dev_item.uuid);
627 	}
628 
629 	if (!device) {
630 		if (fs_devices->opened)
631 			return -EBUSY;
632 
633 		device = btrfs_alloc_device(NULL, &devid,
634 					    disk_super->dev_item.uuid);
635 		if (IS_ERR(device)) {
636 			/* we can safely leave the fs_devices entry around */
637 			return PTR_ERR(device);
638 		}
639 
640 		name = rcu_string_strdup(path, GFP_NOFS);
641 		if (!name) {
642 			kfree(device);
643 			return -ENOMEM;
644 		}
645 		rcu_assign_pointer(device->name, name);
646 
647 		mutex_lock(&fs_devices->device_list_mutex);
648 		list_add_rcu(&device->dev_list, &fs_devices->devices);
649 		fs_devices->num_devices++;
650 		mutex_unlock(&fs_devices->device_list_mutex);
651 
652 		ret = 1;
653 		device->fs_devices = fs_devices;
654 	} else if (!device->name || strcmp(device->name->str, path)) {
655 		/*
656 		 * When FS is already mounted.
657 		 * 1. If you are here and if the device->name is NULL that
658 		 *    means this device was missing at time of FS mount.
659 		 * 2. If you are here and if the device->name is different
660 		 *    from 'path' that means either
661 		 *      a. The same device disappeared and reappeared with
662 		 *         different name. or
663 		 *      b. The missing-disk-which-was-replaced, has
664 		 *         reappeared now.
665 		 *
666 		 * We must allow 1 and 2a above. But 2b would be a spurious
667 		 * and unintentional.
668 		 *
669 		 * Further in case of 1 and 2a above, the disk at 'path'
670 		 * would have missed some transaction when it was away and
671 		 * in case of 2a the stale bdev has to be updated as well.
672 		 * 2b must not be allowed at all time.
673 		 */
674 
675 		/*
676 		 * For now, we do allow update to btrfs_fs_device through the
677 		 * btrfs dev scan cli after FS has been mounted.  We're still
678 		 * tracking a problem where systems fail mount by subvolume id
679 		 * when we reject replacement on a mounted FS.
680 		 */
681 		if (!fs_devices->opened && found_transid < device->generation) {
682 			/*
683 			 * That is if the FS is _not_ mounted and if you
684 			 * are here, that means there is more than one
685 			 * disk with same uuid and devid.We keep the one
686 			 * with larger generation number or the last-in if
687 			 * generation are equal.
688 			 */
689 			return -EEXIST;
690 		}
691 
692 		name = rcu_string_strdup(path, GFP_NOFS);
693 		if (!name)
694 			return -ENOMEM;
695 		rcu_string_free(device->name);
696 		rcu_assign_pointer(device->name, name);
697 		if (device->missing) {
698 			fs_devices->missing_devices--;
699 			device->missing = 0;
700 		}
701 	}
702 
703 	/*
704 	 * Unmount does not free the btrfs_device struct but would zero
705 	 * generation along with most of the other members. So just update
706 	 * it back. We need it to pick the disk with largest generation
707 	 * (as above).
708 	 */
709 	if (!fs_devices->opened)
710 		device->generation = found_transid;
711 
712 	/*
713 	 * if there is new btrfs on an already registered device,
714 	 * then remove the stale device entry.
715 	 */
716 	if (ret > 0)
717 		btrfs_free_stale_device(device);
718 
719 	*fs_devices_ret = fs_devices;
720 
721 	return ret;
722 }
723 
724 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725 {
726 	struct btrfs_fs_devices *fs_devices;
727 	struct btrfs_device *device;
728 	struct btrfs_device *orig_dev;
729 
730 	fs_devices = alloc_fs_devices(orig->fsid);
731 	if (IS_ERR(fs_devices))
732 		return fs_devices;
733 
734 	mutex_lock(&orig->device_list_mutex);
735 	fs_devices->total_devices = orig->total_devices;
736 
737 	/* We have held the volume lock, it is safe to get the devices. */
738 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
739 		struct rcu_string *name;
740 
741 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
742 					    orig_dev->uuid);
743 		if (IS_ERR(device))
744 			goto error;
745 
746 		/*
747 		 * This is ok to do without rcu read locked because we hold the
748 		 * uuid mutex so nothing we touch in here is going to disappear.
749 		 */
750 		if (orig_dev->name) {
751 			name = rcu_string_strdup(orig_dev->name->str,
752 					GFP_KERNEL);
753 			if (!name) {
754 				kfree(device);
755 				goto error;
756 			}
757 			rcu_assign_pointer(device->name, name);
758 		}
759 
760 		list_add(&device->dev_list, &fs_devices->devices);
761 		device->fs_devices = fs_devices;
762 		fs_devices->num_devices++;
763 	}
764 	mutex_unlock(&orig->device_list_mutex);
765 	return fs_devices;
766 error:
767 	mutex_unlock(&orig->device_list_mutex);
768 	free_fs_devices(fs_devices);
769 	return ERR_PTR(-ENOMEM);
770 }
771 
772 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
773 {
774 	struct btrfs_device *device, *next;
775 	struct btrfs_device *latest_dev = NULL;
776 
777 	mutex_lock(&uuid_mutex);
778 again:
779 	/* This is the initialized path, it is safe to release the devices. */
780 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
781 		if (device->in_fs_metadata) {
782 			if (!device->is_tgtdev_for_dev_replace &&
783 			    (!latest_dev ||
784 			     device->generation > latest_dev->generation)) {
785 				latest_dev = device;
786 			}
787 			continue;
788 		}
789 
790 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791 			/*
792 			 * In the first step, keep the device which has
793 			 * the correct fsid and the devid that is used
794 			 * for the dev_replace procedure.
795 			 * In the second step, the dev_replace state is
796 			 * read from the device tree and it is known
797 			 * whether the procedure is really active or
798 			 * not, which means whether this device is
799 			 * used or whether it should be removed.
800 			 */
801 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
802 				continue;
803 			}
804 		}
805 		if (device->bdev) {
806 			blkdev_put(device->bdev, device->mode);
807 			device->bdev = NULL;
808 			fs_devices->open_devices--;
809 		}
810 		if (device->writeable) {
811 			list_del_init(&device->dev_alloc_list);
812 			device->writeable = 0;
813 			if (!device->is_tgtdev_for_dev_replace)
814 				fs_devices->rw_devices--;
815 		}
816 		list_del_init(&device->dev_list);
817 		fs_devices->num_devices--;
818 		rcu_string_free(device->name);
819 		kfree(device);
820 	}
821 
822 	if (fs_devices->seed) {
823 		fs_devices = fs_devices->seed;
824 		goto again;
825 	}
826 
827 	fs_devices->latest_bdev = latest_dev->bdev;
828 
829 	mutex_unlock(&uuid_mutex);
830 }
831 
832 static void __free_device(struct work_struct *work)
833 {
834 	struct btrfs_device *device;
835 
836 	device = container_of(work, struct btrfs_device, rcu_work);
837 	rcu_string_free(device->name);
838 	kfree(device);
839 }
840 
841 static void free_device(struct rcu_head *head)
842 {
843 	struct btrfs_device *device;
844 
845 	device = container_of(head, struct btrfs_device, rcu);
846 
847 	INIT_WORK(&device->rcu_work, __free_device);
848 	schedule_work(&device->rcu_work);
849 }
850 
851 static void btrfs_close_bdev(struct btrfs_device *device)
852 {
853 	if (device->bdev && device->writeable) {
854 		sync_blockdev(device->bdev);
855 		invalidate_bdev(device->bdev);
856 	}
857 
858 	if (device->bdev)
859 		blkdev_put(device->bdev, device->mode);
860 }
861 
862 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
863 {
864 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
865 	struct btrfs_device *new_device;
866 	struct rcu_string *name;
867 
868 	if (device->bdev)
869 		fs_devices->open_devices--;
870 
871 	if (device->writeable &&
872 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
873 		list_del_init(&device->dev_alloc_list);
874 		fs_devices->rw_devices--;
875 	}
876 
877 	if (device->missing)
878 		fs_devices->missing_devices--;
879 
880 	new_device = btrfs_alloc_device(NULL, &device->devid,
881 					device->uuid);
882 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
883 
884 	/* Safe because we are under uuid_mutex */
885 	if (device->name) {
886 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
887 		BUG_ON(!name); /* -ENOMEM */
888 		rcu_assign_pointer(new_device->name, name);
889 	}
890 
891 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
892 	new_device->fs_devices = device->fs_devices;
893 }
894 
895 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
896 {
897 	struct btrfs_device *device, *tmp;
898 	struct list_head pending_put;
899 
900 	INIT_LIST_HEAD(&pending_put);
901 
902 	if (--fs_devices->opened > 0)
903 		return 0;
904 
905 	mutex_lock(&fs_devices->device_list_mutex);
906 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
907 		btrfs_prepare_close_one_device(device);
908 		list_add(&device->dev_list, &pending_put);
909 	}
910 	mutex_unlock(&fs_devices->device_list_mutex);
911 
912 	/*
913 	 * btrfs_show_devname() is using the device_list_mutex,
914 	 * sometimes call to blkdev_put() leads vfs calling
915 	 * into this func. So do put outside of device_list_mutex,
916 	 * as of now.
917 	 */
918 	while (!list_empty(&pending_put)) {
919 		device = list_first_entry(&pending_put,
920 				struct btrfs_device, dev_list);
921 		list_del(&device->dev_list);
922 		btrfs_close_bdev(device);
923 		call_rcu(&device->rcu, free_device);
924 	}
925 
926 	WARN_ON(fs_devices->open_devices);
927 	WARN_ON(fs_devices->rw_devices);
928 	fs_devices->opened = 0;
929 	fs_devices->seeding = 0;
930 
931 	return 0;
932 }
933 
934 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
935 {
936 	struct btrfs_fs_devices *seed_devices = NULL;
937 	int ret;
938 
939 	mutex_lock(&uuid_mutex);
940 	ret = __btrfs_close_devices(fs_devices);
941 	if (!fs_devices->opened) {
942 		seed_devices = fs_devices->seed;
943 		fs_devices->seed = NULL;
944 	}
945 	mutex_unlock(&uuid_mutex);
946 
947 	while (seed_devices) {
948 		fs_devices = seed_devices;
949 		seed_devices = fs_devices->seed;
950 		__btrfs_close_devices(fs_devices);
951 		free_fs_devices(fs_devices);
952 	}
953 	/*
954 	 * Wait for rcu kworkers under __btrfs_close_devices
955 	 * to finish all blkdev_puts so device is really
956 	 * free when umount is done.
957 	 */
958 	rcu_barrier();
959 	return ret;
960 }
961 
962 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
963 				fmode_t flags, void *holder)
964 {
965 	struct request_queue *q;
966 	struct block_device *bdev;
967 	struct list_head *head = &fs_devices->devices;
968 	struct btrfs_device *device;
969 	struct btrfs_device *latest_dev = NULL;
970 	struct buffer_head *bh;
971 	struct btrfs_super_block *disk_super;
972 	u64 devid;
973 	int seeding = 1;
974 	int ret = 0;
975 
976 	flags |= FMODE_EXCL;
977 
978 	list_for_each_entry(device, head, dev_list) {
979 		if (device->bdev)
980 			continue;
981 		if (!device->name)
982 			continue;
983 
984 		/* Just open everything we can; ignore failures here */
985 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
986 					    &bdev, &bh))
987 			continue;
988 
989 		disk_super = (struct btrfs_super_block *)bh->b_data;
990 		devid = btrfs_stack_device_id(&disk_super->dev_item);
991 		if (devid != device->devid)
992 			goto error_brelse;
993 
994 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
995 			   BTRFS_UUID_SIZE))
996 			goto error_brelse;
997 
998 		device->generation = btrfs_super_generation(disk_super);
999 		if (!latest_dev ||
1000 		    device->generation > latest_dev->generation)
1001 			latest_dev = device;
1002 
1003 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1004 			device->writeable = 0;
1005 		} else {
1006 			device->writeable = !bdev_read_only(bdev);
1007 			seeding = 0;
1008 		}
1009 
1010 		q = bdev_get_queue(bdev);
1011 		if (blk_queue_discard(q))
1012 			device->can_discard = 1;
1013 
1014 		device->bdev = bdev;
1015 		device->in_fs_metadata = 0;
1016 		device->mode = flags;
1017 
1018 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1019 			fs_devices->rotating = 1;
1020 
1021 		fs_devices->open_devices++;
1022 		if (device->writeable &&
1023 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1024 			fs_devices->rw_devices++;
1025 			list_add(&device->dev_alloc_list,
1026 				 &fs_devices->alloc_list);
1027 		}
1028 		brelse(bh);
1029 		continue;
1030 
1031 error_brelse:
1032 		brelse(bh);
1033 		blkdev_put(bdev, flags);
1034 		continue;
1035 	}
1036 	if (fs_devices->open_devices == 0) {
1037 		ret = -EINVAL;
1038 		goto out;
1039 	}
1040 	fs_devices->seeding = seeding;
1041 	fs_devices->opened = 1;
1042 	fs_devices->latest_bdev = latest_dev->bdev;
1043 	fs_devices->total_rw_bytes = 0;
1044 out:
1045 	return ret;
1046 }
1047 
1048 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1049 		       fmode_t flags, void *holder)
1050 {
1051 	int ret;
1052 
1053 	mutex_lock(&uuid_mutex);
1054 	if (fs_devices->opened) {
1055 		fs_devices->opened++;
1056 		ret = 0;
1057 	} else {
1058 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1059 	}
1060 	mutex_unlock(&uuid_mutex);
1061 	return ret;
1062 }
1063 
1064 void btrfs_release_disk_super(struct page *page)
1065 {
1066 	kunmap(page);
1067 	put_page(page);
1068 }
1069 
1070 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1071 		struct page **page, struct btrfs_super_block **disk_super)
1072 {
1073 	void *p;
1074 	pgoff_t index;
1075 
1076 	/* make sure our super fits in the device */
1077 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1078 		return 1;
1079 
1080 	/* make sure our super fits in the page */
1081 	if (sizeof(**disk_super) > PAGE_SIZE)
1082 		return 1;
1083 
1084 	/* make sure our super doesn't straddle pages on disk */
1085 	index = bytenr >> PAGE_SHIFT;
1086 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1087 		return 1;
1088 
1089 	/* pull in the page with our super */
1090 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1091 				   index, GFP_KERNEL);
1092 
1093 	if (IS_ERR_OR_NULL(*page))
1094 		return 1;
1095 
1096 	p = kmap(*page);
1097 
1098 	/* align our pointer to the offset of the super block */
1099 	*disk_super = p + (bytenr & ~PAGE_MASK);
1100 
1101 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1102 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1103 		btrfs_release_disk_super(*page);
1104 		return 1;
1105 	}
1106 
1107 	if ((*disk_super)->label[0] &&
1108 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1109 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1110 
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Look for a btrfs signature on a device. This may be called out of the mount path
1116  * and we are not allowed to call set_blocksize during the scan. The superblock
1117  * is read via pagecache
1118  */
1119 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1120 			  struct btrfs_fs_devices **fs_devices_ret)
1121 {
1122 	struct btrfs_super_block *disk_super;
1123 	struct block_device *bdev;
1124 	struct page *page;
1125 	int ret = -EINVAL;
1126 	u64 devid;
1127 	u64 transid;
1128 	u64 total_devices;
1129 	u64 bytenr;
1130 
1131 	/*
1132 	 * we would like to check all the supers, but that would make
1133 	 * a btrfs mount succeed after a mkfs from a different FS.
1134 	 * So, we need to add a special mount option to scan for
1135 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1136 	 */
1137 	bytenr = btrfs_sb_offset(0);
1138 	flags |= FMODE_EXCL;
1139 	mutex_lock(&uuid_mutex);
1140 
1141 	bdev = blkdev_get_by_path(path, flags, holder);
1142 	if (IS_ERR(bdev)) {
1143 		ret = PTR_ERR(bdev);
1144 		goto error;
1145 	}
1146 
1147 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1148 		goto error_bdev_put;
1149 
1150 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1151 	transid = btrfs_super_generation(disk_super);
1152 	total_devices = btrfs_super_num_devices(disk_super);
1153 
1154 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1155 	if (ret > 0) {
1156 		if (disk_super->label[0]) {
1157 			pr_info("BTRFS: device label %s ", disk_super->label);
1158 		} else {
1159 			pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1160 		}
1161 
1162 		pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1163 		ret = 0;
1164 	}
1165 	if (!ret && fs_devices_ret)
1166 		(*fs_devices_ret)->total_devices = total_devices;
1167 
1168 	btrfs_release_disk_super(page);
1169 
1170 error_bdev_put:
1171 	blkdev_put(bdev, flags);
1172 error:
1173 	mutex_unlock(&uuid_mutex);
1174 	return ret;
1175 }
1176 
1177 /* helper to account the used device space in the range */
1178 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1179 				   u64 end, u64 *length)
1180 {
1181 	struct btrfs_key key;
1182 	struct btrfs_root *root = device->dev_root;
1183 	struct btrfs_dev_extent *dev_extent;
1184 	struct btrfs_path *path;
1185 	u64 extent_end;
1186 	int ret;
1187 	int slot;
1188 	struct extent_buffer *l;
1189 
1190 	*length = 0;
1191 
1192 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1193 		return 0;
1194 
1195 	path = btrfs_alloc_path();
1196 	if (!path)
1197 		return -ENOMEM;
1198 	path->reada = READA_FORWARD;
1199 
1200 	key.objectid = device->devid;
1201 	key.offset = start;
1202 	key.type = BTRFS_DEV_EXTENT_KEY;
1203 
1204 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1205 	if (ret < 0)
1206 		goto out;
1207 	if (ret > 0) {
1208 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1209 		if (ret < 0)
1210 			goto out;
1211 	}
1212 
1213 	while (1) {
1214 		l = path->nodes[0];
1215 		slot = path->slots[0];
1216 		if (slot >= btrfs_header_nritems(l)) {
1217 			ret = btrfs_next_leaf(root, path);
1218 			if (ret == 0)
1219 				continue;
1220 			if (ret < 0)
1221 				goto out;
1222 
1223 			break;
1224 		}
1225 		btrfs_item_key_to_cpu(l, &key, slot);
1226 
1227 		if (key.objectid < device->devid)
1228 			goto next;
1229 
1230 		if (key.objectid > device->devid)
1231 			break;
1232 
1233 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1234 			goto next;
1235 
1236 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1237 		extent_end = key.offset + btrfs_dev_extent_length(l,
1238 								  dev_extent);
1239 		if (key.offset <= start && extent_end > end) {
1240 			*length = end - start + 1;
1241 			break;
1242 		} else if (key.offset <= start && extent_end > start)
1243 			*length += extent_end - start;
1244 		else if (key.offset > start && extent_end <= end)
1245 			*length += extent_end - key.offset;
1246 		else if (key.offset > start && key.offset <= end) {
1247 			*length += end - key.offset + 1;
1248 			break;
1249 		} else if (key.offset > end)
1250 			break;
1251 
1252 next:
1253 		path->slots[0]++;
1254 	}
1255 	ret = 0;
1256 out:
1257 	btrfs_free_path(path);
1258 	return ret;
1259 }
1260 
1261 static int contains_pending_extent(struct btrfs_transaction *transaction,
1262 				   struct btrfs_device *device,
1263 				   u64 *start, u64 len)
1264 {
1265 	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1266 	struct extent_map *em;
1267 	struct list_head *search_list = &fs_info->pinned_chunks;
1268 	int ret = 0;
1269 	u64 physical_start = *start;
1270 
1271 	if (transaction)
1272 		search_list = &transaction->pending_chunks;
1273 again:
1274 	list_for_each_entry(em, search_list, list) {
1275 		struct map_lookup *map;
1276 		int i;
1277 
1278 		map = em->map_lookup;
1279 		for (i = 0; i < map->num_stripes; i++) {
1280 			u64 end;
1281 
1282 			if (map->stripes[i].dev != device)
1283 				continue;
1284 			if (map->stripes[i].physical >= physical_start + len ||
1285 			    map->stripes[i].physical + em->orig_block_len <=
1286 			    physical_start)
1287 				continue;
1288 			/*
1289 			 * Make sure that while processing the pinned list we do
1290 			 * not override our *start with a lower value, because
1291 			 * we can have pinned chunks that fall within this
1292 			 * device hole and that have lower physical addresses
1293 			 * than the pending chunks we processed before. If we
1294 			 * do not take this special care we can end up getting
1295 			 * 2 pending chunks that start at the same physical
1296 			 * device offsets because the end offset of a pinned
1297 			 * chunk can be equal to the start offset of some
1298 			 * pending chunk.
1299 			 */
1300 			end = map->stripes[i].physical + em->orig_block_len;
1301 			if (end > *start) {
1302 				*start = end;
1303 				ret = 1;
1304 			}
1305 		}
1306 	}
1307 	if (search_list != &fs_info->pinned_chunks) {
1308 		search_list = &fs_info->pinned_chunks;
1309 		goto again;
1310 	}
1311 
1312 	return ret;
1313 }
1314 
1315 
1316 /*
1317  * find_free_dev_extent_start - find free space in the specified device
1318  * @device:	  the device which we search the free space in
1319  * @num_bytes:	  the size of the free space that we need
1320  * @search_start: the position from which to begin the search
1321  * @start:	  store the start of the free space.
1322  * @len:	  the size of the free space. that we find, or the size
1323  *		  of the max free space if we don't find suitable free space
1324  *
1325  * this uses a pretty simple search, the expectation is that it is
1326  * called very infrequently and that a given device has a small number
1327  * of extents
1328  *
1329  * @start is used to store the start of the free space if we find. But if we
1330  * don't find suitable free space, it will be used to store the start position
1331  * of the max free space.
1332  *
1333  * @len is used to store the size of the free space that we find.
1334  * But if we don't find suitable free space, it is used to store the size of
1335  * the max free space.
1336  */
1337 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1338 			       struct btrfs_device *device, u64 num_bytes,
1339 			       u64 search_start, u64 *start, u64 *len)
1340 {
1341 	struct btrfs_key key;
1342 	struct btrfs_root *root = device->dev_root;
1343 	struct btrfs_dev_extent *dev_extent;
1344 	struct btrfs_path *path;
1345 	u64 hole_size;
1346 	u64 max_hole_start;
1347 	u64 max_hole_size;
1348 	u64 extent_end;
1349 	u64 search_end = device->total_bytes;
1350 	int ret;
1351 	int slot;
1352 	struct extent_buffer *l;
1353 	u64 min_search_start;
1354 
1355 	/*
1356 	 * We don't want to overwrite the superblock on the drive nor any area
1357 	 * used by the boot loader (grub for example), so we make sure to start
1358 	 * at an offset of at least 1MB.
1359 	 */
1360 	min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1361 	search_start = max(search_start, min_search_start);
1362 
1363 	path = btrfs_alloc_path();
1364 	if (!path)
1365 		return -ENOMEM;
1366 
1367 	max_hole_start = search_start;
1368 	max_hole_size = 0;
1369 
1370 again:
1371 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1372 		ret = -ENOSPC;
1373 		goto out;
1374 	}
1375 
1376 	path->reada = READA_FORWARD;
1377 	path->search_commit_root = 1;
1378 	path->skip_locking = 1;
1379 
1380 	key.objectid = device->devid;
1381 	key.offset = search_start;
1382 	key.type = BTRFS_DEV_EXTENT_KEY;
1383 
1384 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1385 	if (ret < 0)
1386 		goto out;
1387 	if (ret > 0) {
1388 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389 		if (ret < 0)
1390 			goto out;
1391 	}
1392 
1393 	while (1) {
1394 		l = path->nodes[0];
1395 		slot = path->slots[0];
1396 		if (slot >= btrfs_header_nritems(l)) {
1397 			ret = btrfs_next_leaf(root, path);
1398 			if (ret == 0)
1399 				continue;
1400 			if (ret < 0)
1401 				goto out;
1402 
1403 			break;
1404 		}
1405 		btrfs_item_key_to_cpu(l, &key, slot);
1406 
1407 		if (key.objectid < device->devid)
1408 			goto next;
1409 
1410 		if (key.objectid > device->devid)
1411 			break;
1412 
1413 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1414 			goto next;
1415 
1416 		if (key.offset > search_start) {
1417 			hole_size = key.offset - search_start;
1418 
1419 			/*
1420 			 * Have to check before we set max_hole_start, otherwise
1421 			 * we could end up sending back this offset anyway.
1422 			 */
1423 			if (contains_pending_extent(transaction, device,
1424 						    &search_start,
1425 						    hole_size)) {
1426 				if (key.offset >= search_start) {
1427 					hole_size = key.offset - search_start;
1428 				} else {
1429 					WARN_ON_ONCE(1);
1430 					hole_size = 0;
1431 				}
1432 			}
1433 
1434 			if (hole_size > max_hole_size) {
1435 				max_hole_start = search_start;
1436 				max_hole_size = hole_size;
1437 			}
1438 
1439 			/*
1440 			 * If this free space is greater than which we need,
1441 			 * it must be the max free space that we have found
1442 			 * until now, so max_hole_start must point to the start
1443 			 * of this free space and the length of this free space
1444 			 * is stored in max_hole_size. Thus, we return
1445 			 * max_hole_start and max_hole_size and go back to the
1446 			 * caller.
1447 			 */
1448 			if (hole_size >= num_bytes) {
1449 				ret = 0;
1450 				goto out;
1451 			}
1452 		}
1453 
1454 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1455 		extent_end = key.offset + btrfs_dev_extent_length(l,
1456 								  dev_extent);
1457 		if (extent_end > search_start)
1458 			search_start = extent_end;
1459 next:
1460 		path->slots[0]++;
1461 		cond_resched();
1462 	}
1463 
1464 	/*
1465 	 * At this point, search_start should be the end of
1466 	 * allocated dev extents, and when shrinking the device,
1467 	 * search_end may be smaller than search_start.
1468 	 */
1469 	if (search_end > search_start) {
1470 		hole_size = search_end - search_start;
1471 
1472 		if (contains_pending_extent(transaction, device, &search_start,
1473 					    hole_size)) {
1474 			btrfs_release_path(path);
1475 			goto again;
1476 		}
1477 
1478 		if (hole_size > max_hole_size) {
1479 			max_hole_start = search_start;
1480 			max_hole_size = hole_size;
1481 		}
1482 	}
1483 
1484 	/* See above. */
1485 	if (max_hole_size < num_bytes)
1486 		ret = -ENOSPC;
1487 	else
1488 		ret = 0;
1489 
1490 out:
1491 	btrfs_free_path(path);
1492 	*start = max_hole_start;
1493 	if (len)
1494 		*len = max_hole_size;
1495 	return ret;
1496 }
1497 
1498 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499 			 struct btrfs_device *device, u64 num_bytes,
1500 			 u64 *start, u64 *len)
1501 {
1502 	/* FIXME use last free of some kind */
1503 	return find_free_dev_extent_start(trans->transaction, device,
1504 					  num_bytes, 0, start, len);
1505 }
1506 
1507 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1508 			  struct btrfs_device *device,
1509 			  u64 start, u64 *dev_extent_len)
1510 {
1511 	int ret;
1512 	struct btrfs_path *path;
1513 	struct btrfs_root *root = device->dev_root;
1514 	struct btrfs_key key;
1515 	struct btrfs_key found_key;
1516 	struct extent_buffer *leaf = NULL;
1517 	struct btrfs_dev_extent *extent = NULL;
1518 
1519 	path = btrfs_alloc_path();
1520 	if (!path)
1521 		return -ENOMEM;
1522 
1523 	key.objectid = device->devid;
1524 	key.offset = start;
1525 	key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528 	if (ret > 0) {
1529 		ret = btrfs_previous_item(root, path, key.objectid,
1530 					  BTRFS_DEV_EXTENT_KEY);
1531 		if (ret)
1532 			goto out;
1533 		leaf = path->nodes[0];
1534 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535 		extent = btrfs_item_ptr(leaf, path->slots[0],
1536 					struct btrfs_dev_extent);
1537 		BUG_ON(found_key.offset > start || found_key.offset +
1538 		       btrfs_dev_extent_length(leaf, extent) < start);
1539 		key = found_key;
1540 		btrfs_release_path(path);
1541 		goto again;
1542 	} else if (ret == 0) {
1543 		leaf = path->nodes[0];
1544 		extent = btrfs_item_ptr(leaf, path->slots[0],
1545 					struct btrfs_dev_extent);
1546 	} else {
1547 		btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1548 		goto out;
1549 	}
1550 
1551 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552 
1553 	ret = btrfs_del_item(trans, root, path);
1554 	if (ret) {
1555 		btrfs_handle_fs_error(root->fs_info, ret,
1556 			    "Failed to remove dev extent item");
1557 	} else {
1558 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559 	}
1560 out:
1561 	btrfs_free_path(path);
1562 	return ret;
1563 }
1564 
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566 				  struct btrfs_device *device,
1567 				  u64 chunk_tree, u64 chunk_objectid,
1568 				  u64 chunk_offset, u64 start, u64 num_bytes)
1569 {
1570 	int ret;
1571 	struct btrfs_path *path;
1572 	struct btrfs_root *root = device->dev_root;
1573 	struct btrfs_dev_extent *extent;
1574 	struct extent_buffer *leaf;
1575 	struct btrfs_key key;
1576 
1577 	WARN_ON(!device->in_fs_metadata);
1578 	WARN_ON(device->is_tgtdev_for_dev_replace);
1579 	path = btrfs_alloc_path();
1580 	if (!path)
1581 		return -ENOMEM;
1582 
1583 	key.objectid = device->devid;
1584 	key.offset = start;
1585 	key.type = BTRFS_DEV_EXTENT_KEY;
1586 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1587 				      sizeof(*extent));
1588 	if (ret)
1589 		goto out;
1590 
1591 	leaf = path->nodes[0];
1592 	extent = btrfs_item_ptr(leaf, path->slots[0],
1593 				struct btrfs_dev_extent);
1594 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1595 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1596 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1597 
1598 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1599 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1600 
1601 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1602 	btrfs_mark_buffer_dirty(leaf);
1603 out:
1604 	btrfs_free_path(path);
1605 	return ret;
1606 }
1607 
1608 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1609 {
1610 	struct extent_map_tree *em_tree;
1611 	struct extent_map *em;
1612 	struct rb_node *n;
1613 	u64 ret = 0;
1614 
1615 	em_tree = &fs_info->mapping_tree.map_tree;
1616 	read_lock(&em_tree->lock);
1617 	n = rb_last(&em_tree->map);
1618 	if (n) {
1619 		em = rb_entry(n, struct extent_map, rb_node);
1620 		ret = em->start + em->len;
1621 	}
1622 	read_unlock(&em_tree->lock);
1623 
1624 	return ret;
1625 }
1626 
1627 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1628 				    u64 *devid_ret)
1629 {
1630 	int ret;
1631 	struct btrfs_key key;
1632 	struct btrfs_key found_key;
1633 	struct btrfs_path *path;
1634 
1635 	path = btrfs_alloc_path();
1636 	if (!path)
1637 		return -ENOMEM;
1638 
1639 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1640 	key.type = BTRFS_DEV_ITEM_KEY;
1641 	key.offset = (u64)-1;
1642 
1643 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1644 	if (ret < 0)
1645 		goto error;
1646 
1647 	BUG_ON(ret == 0); /* Corruption */
1648 
1649 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1650 				  BTRFS_DEV_ITEMS_OBJECTID,
1651 				  BTRFS_DEV_ITEM_KEY);
1652 	if (ret) {
1653 		*devid_ret = 1;
1654 	} else {
1655 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1656 				      path->slots[0]);
1657 		*devid_ret = found_key.offset + 1;
1658 	}
1659 	ret = 0;
1660 error:
1661 	btrfs_free_path(path);
1662 	return ret;
1663 }
1664 
1665 /*
1666  * the device information is stored in the chunk root
1667  * the btrfs_device struct should be fully filled in
1668  */
1669 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1670 			    struct btrfs_root *root,
1671 			    struct btrfs_device *device)
1672 {
1673 	int ret;
1674 	struct btrfs_path *path;
1675 	struct btrfs_dev_item *dev_item;
1676 	struct extent_buffer *leaf;
1677 	struct btrfs_key key;
1678 	unsigned long ptr;
1679 
1680 	root = root->fs_info->chunk_root;
1681 
1682 	path = btrfs_alloc_path();
1683 	if (!path)
1684 		return -ENOMEM;
1685 
1686 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1687 	key.type = BTRFS_DEV_ITEM_KEY;
1688 	key.offset = device->devid;
1689 
1690 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1691 				      sizeof(*dev_item));
1692 	if (ret)
1693 		goto out;
1694 
1695 	leaf = path->nodes[0];
1696 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1697 
1698 	btrfs_set_device_id(leaf, dev_item, device->devid);
1699 	btrfs_set_device_generation(leaf, dev_item, 0);
1700 	btrfs_set_device_type(leaf, dev_item, device->type);
1701 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1702 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1703 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1704 	btrfs_set_device_total_bytes(leaf, dev_item,
1705 				     btrfs_device_get_disk_total_bytes(device));
1706 	btrfs_set_device_bytes_used(leaf, dev_item,
1707 				    btrfs_device_get_bytes_used(device));
1708 	btrfs_set_device_group(leaf, dev_item, 0);
1709 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1710 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1711 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1712 
1713 	ptr = btrfs_device_uuid(dev_item);
1714 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1715 	ptr = btrfs_device_fsid(dev_item);
1716 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1717 	btrfs_mark_buffer_dirty(leaf);
1718 
1719 	ret = 0;
1720 out:
1721 	btrfs_free_path(path);
1722 	return ret;
1723 }
1724 
1725 /*
1726  * Function to update ctime/mtime for a given device path.
1727  * Mainly used for ctime/mtime based probe like libblkid.
1728  */
1729 static void update_dev_time(char *path_name)
1730 {
1731 	struct file *filp;
1732 
1733 	filp = filp_open(path_name, O_RDWR, 0);
1734 	if (IS_ERR(filp))
1735 		return;
1736 	file_update_time(filp);
1737 	filp_close(filp, NULL);
1738 }
1739 
1740 static int btrfs_rm_dev_item(struct btrfs_root *root,
1741 			     struct btrfs_device *device)
1742 {
1743 	int ret;
1744 	struct btrfs_path *path;
1745 	struct btrfs_key key;
1746 	struct btrfs_trans_handle *trans;
1747 
1748 	root = root->fs_info->chunk_root;
1749 
1750 	path = btrfs_alloc_path();
1751 	if (!path)
1752 		return -ENOMEM;
1753 
1754 	trans = btrfs_start_transaction(root, 0);
1755 	if (IS_ERR(trans)) {
1756 		btrfs_free_path(path);
1757 		return PTR_ERR(trans);
1758 	}
1759 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1760 	key.type = BTRFS_DEV_ITEM_KEY;
1761 	key.offset = device->devid;
1762 
1763 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1764 	if (ret < 0)
1765 		goto out;
1766 
1767 	if (ret > 0) {
1768 		ret = -ENOENT;
1769 		goto out;
1770 	}
1771 
1772 	ret = btrfs_del_item(trans, root, path);
1773 	if (ret)
1774 		goto out;
1775 out:
1776 	btrfs_free_path(path);
1777 	btrfs_commit_transaction(trans, root);
1778 	return ret;
1779 }
1780 
1781 /*
1782  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1783  * filesystem. It's up to the caller to adjust that number regarding eg. device
1784  * replace.
1785  */
1786 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1787 		u64 num_devices)
1788 {
1789 	u64 all_avail;
1790 	unsigned seq;
1791 	int i;
1792 
1793 	do {
1794 		seq = read_seqbegin(&fs_info->profiles_lock);
1795 
1796 		all_avail = fs_info->avail_data_alloc_bits |
1797 			    fs_info->avail_system_alloc_bits |
1798 			    fs_info->avail_metadata_alloc_bits;
1799 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1800 
1801 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1802 		if (!(all_avail & btrfs_raid_group[i]))
1803 			continue;
1804 
1805 		if (num_devices < btrfs_raid_array[i].devs_min) {
1806 			int ret = btrfs_raid_mindev_error[i];
1807 
1808 			if (ret)
1809 				return ret;
1810 		}
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1817 					struct btrfs_device *device)
1818 {
1819 	struct btrfs_device *next_device;
1820 
1821 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1822 		if (next_device != device &&
1823 			!next_device->missing && next_device->bdev)
1824 			return next_device;
1825 	}
1826 
1827 	return NULL;
1828 }
1829 
1830 /*
1831  * Helper function to check if the given device is part of s_bdev / latest_bdev
1832  * and replace it with the provided or the next active device, in the context
1833  * where this function called, there should be always be another device (or
1834  * this_dev) which is active.
1835  */
1836 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1837 		struct btrfs_device *device, struct btrfs_device *this_dev)
1838 {
1839 	struct btrfs_device *next_device;
1840 
1841 	if (this_dev)
1842 		next_device = this_dev;
1843 	else
1844 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1845 								device);
1846 	ASSERT(next_device);
1847 
1848 	if (fs_info->sb->s_bdev &&
1849 			(fs_info->sb->s_bdev == device->bdev))
1850 		fs_info->sb->s_bdev = next_device->bdev;
1851 
1852 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1853 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1854 }
1855 
1856 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1857 {
1858 	struct btrfs_device *device;
1859 	struct btrfs_fs_devices *cur_devices;
1860 	u64 num_devices;
1861 	int ret = 0;
1862 	bool clear_super = false;
1863 
1864 	mutex_lock(&uuid_mutex);
1865 
1866 	num_devices = root->fs_info->fs_devices->num_devices;
1867 	btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1868 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1869 		WARN_ON(num_devices < 1);
1870 		num_devices--;
1871 	}
1872 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1873 
1874 	ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1875 	if (ret)
1876 		goto out;
1877 
1878 	ret = btrfs_find_device_by_devspec(root, devid, device_path,
1879 				&device);
1880 	if (ret)
1881 		goto out;
1882 
1883 	if (device->is_tgtdev_for_dev_replace) {
1884 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1885 		goto out;
1886 	}
1887 
1888 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1889 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1890 		goto out;
1891 	}
1892 
1893 	if (device->writeable) {
1894 		lock_chunks(root);
1895 		list_del_init(&device->dev_alloc_list);
1896 		device->fs_devices->rw_devices--;
1897 		unlock_chunks(root);
1898 		clear_super = true;
1899 	}
1900 
1901 	mutex_unlock(&uuid_mutex);
1902 	ret = btrfs_shrink_device(device, 0);
1903 	mutex_lock(&uuid_mutex);
1904 	if (ret)
1905 		goto error_undo;
1906 
1907 	/*
1908 	 * TODO: the superblock still includes this device in its num_devices
1909 	 * counter although write_all_supers() is not locked out. This
1910 	 * could give a filesystem state which requires a degraded mount.
1911 	 */
1912 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1913 	if (ret)
1914 		goto error_undo;
1915 
1916 	device->in_fs_metadata = 0;
1917 	btrfs_scrub_cancel_dev(root->fs_info, device);
1918 
1919 	/*
1920 	 * the device list mutex makes sure that we don't change
1921 	 * the device list while someone else is writing out all
1922 	 * the device supers. Whoever is writing all supers, should
1923 	 * lock the device list mutex before getting the number of
1924 	 * devices in the super block (super_copy). Conversely,
1925 	 * whoever updates the number of devices in the super block
1926 	 * (super_copy) should hold the device list mutex.
1927 	 */
1928 
1929 	cur_devices = device->fs_devices;
1930 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1931 	list_del_rcu(&device->dev_list);
1932 
1933 	device->fs_devices->num_devices--;
1934 	device->fs_devices->total_devices--;
1935 
1936 	if (device->missing)
1937 		device->fs_devices->missing_devices--;
1938 
1939 	btrfs_assign_next_active_device(root->fs_info, device, NULL);
1940 
1941 	if (device->bdev) {
1942 		device->fs_devices->open_devices--;
1943 		/* remove sysfs entry */
1944 		btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1945 	}
1946 
1947 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1948 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1949 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1950 
1951 	/*
1952 	 * at this point, the device is zero sized and detached from
1953 	 * the devices list.  All that's left is to zero out the old
1954 	 * supers and free the device.
1955 	 */
1956 	if (device->writeable)
1957 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1958 
1959 	btrfs_close_bdev(device);
1960 	call_rcu(&device->rcu, free_device);
1961 
1962 	if (cur_devices->open_devices == 0) {
1963 		struct btrfs_fs_devices *fs_devices;
1964 		fs_devices = root->fs_info->fs_devices;
1965 		while (fs_devices) {
1966 			if (fs_devices->seed == cur_devices) {
1967 				fs_devices->seed = cur_devices->seed;
1968 				break;
1969 			}
1970 			fs_devices = fs_devices->seed;
1971 		}
1972 		cur_devices->seed = NULL;
1973 		__btrfs_close_devices(cur_devices);
1974 		free_fs_devices(cur_devices);
1975 	}
1976 
1977 	root->fs_info->num_tolerated_disk_barrier_failures =
1978 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1979 
1980 out:
1981 	mutex_unlock(&uuid_mutex);
1982 	return ret;
1983 
1984 error_undo:
1985 	if (device->writeable) {
1986 		lock_chunks(root);
1987 		list_add(&device->dev_alloc_list,
1988 			 &root->fs_info->fs_devices->alloc_list);
1989 		device->fs_devices->rw_devices++;
1990 		unlock_chunks(root);
1991 	}
1992 	goto out;
1993 }
1994 
1995 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1996 					struct btrfs_device *srcdev)
1997 {
1998 	struct btrfs_fs_devices *fs_devices;
1999 
2000 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2001 
2002 	/*
2003 	 * in case of fs with no seed, srcdev->fs_devices will point
2004 	 * to fs_devices of fs_info. However when the dev being replaced is
2005 	 * a seed dev it will point to the seed's local fs_devices. In short
2006 	 * srcdev will have its correct fs_devices in both the cases.
2007 	 */
2008 	fs_devices = srcdev->fs_devices;
2009 
2010 	list_del_rcu(&srcdev->dev_list);
2011 	list_del_rcu(&srcdev->dev_alloc_list);
2012 	fs_devices->num_devices--;
2013 	if (srcdev->missing)
2014 		fs_devices->missing_devices--;
2015 
2016 	if (srcdev->writeable)
2017 		fs_devices->rw_devices--;
2018 
2019 	if (srcdev->bdev)
2020 		fs_devices->open_devices--;
2021 }
2022 
2023 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2024 				      struct btrfs_device *srcdev)
2025 {
2026 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2027 
2028 	if (srcdev->writeable) {
2029 		/* zero out the old super if it is writable */
2030 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2031 	}
2032 
2033 	btrfs_close_bdev(srcdev);
2034 
2035 	call_rcu(&srcdev->rcu, free_device);
2036 
2037 	/*
2038 	 * unless fs_devices is seed fs, num_devices shouldn't go
2039 	 * zero
2040 	 */
2041 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2042 
2043 	/* if this is no devs we rather delete the fs_devices */
2044 	if (!fs_devices->num_devices) {
2045 		struct btrfs_fs_devices *tmp_fs_devices;
2046 
2047 		tmp_fs_devices = fs_info->fs_devices;
2048 		while (tmp_fs_devices) {
2049 			if (tmp_fs_devices->seed == fs_devices) {
2050 				tmp_fs_devices->seed = fs_devices->seed;
2051 				break;
2052 			}
2053 			tmp_fs_devices = tmp_fs_devices->seed;
2054 		}
2055 		fs_devices->seed = NULL;
2056 		__btrfs_close_devices(fs_devices);
2057 		free_fs_devices(fs_devices);
2058 	}
2059 }
2060 
2061 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2062 				      struct btrfs_device *tgtdev)
2063 {
2064 	mutex_lock(&uuid_mutex);
2065 	WARN_ON(!tgtdev);
2066 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2067 
2068 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2069 
2070 	if (tgtdev->bdev)
2071 		fs_info->fs_devices->open_devices--;
2072 
2073 	fs_info->fs_devices->num_devices--;
2074 
2075 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2076 
2077 	list_del_rcu(&tgtdev->dev_list);
2078 
2079 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2080 	mutex_unlock(&uuid_mutex);
2081 
2082 	/*
2083 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2084 	 * may lead to a call to btrfs_show_devname() which will try
2085 	 * to hold device_list_mutex. And here this device
2086 	 * is already out of device list, so we don't have to hold
2087 	 * the device_list_mutex lock.
2088 	 */
2089 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2090 
2091 	btrfs_close_bdev(tgtdev);
2092 	call_rcu(&tgtdev->rcu, free_device);
2093 }
2094 
2095 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2096 				     struct btrfs_device **device)
2097 {
2098 	int ret = 0;
2099 	struct btrfs_super_block *disk_super;
2100 	u64 devid;
2101 	u8 *dev_uuid;
2102 	struct block_device *bdev;
2103 	struct buffer_head *bh;
2104 
2105 	*device = NULL;
2106 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2107 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
2108 	if (ret)
2109 		return ret;
2110 	disk_super = (struct btrfs_super_block *)bh->b_data;
2111 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2112 	dev_uuid = disk_super->dev_item.uuid;
2113 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2114 				    disk_super->fsid);
2115 	brelse(bh);
2116 	if (!*device)
2117 		ret = -ENOENT;
2118 	blkdev_put(bdev, FMODE_READ);
2119 	return ret;
2120 }
2121 
2122 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2123 					 char *device_path,
2124 					 struct btrfs_device **device)
2125 {
2126 	*device = NULL;
2127 	if (strcmp(device_path, "missing") == 0) {
2128 		struct list_head *devices;
2129 		struct btrfs_device *tmp;
2130 
2131 		devices = &root->fs_info->fs_devices->devices;
2132 		/*
2133 		 * It is safe to read the devices since the volume_mutex
2134 		 * is held by the caller.
2135 		 */
2136 		list_for_each_entry(tmp, devices, dev_list) {
2137 			if (tmp->in_fs_metadata && !tmp->bdev) {
2138 				*device = tmp;
2139 				break;
2140 			}
2141 		}
2142 
2143 		if (!*device)
2144 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2145 
2146 		return 0;
2147 	} else {
2148 		return btrfs_find_device_by_path(root, device_path, device);
2149 	}
2150 }
2151 
2152 /*
2153  * Lookup a device given by device id, or the path if the id is 0.
2154  */
2155 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2156 					 char *devpath,
2157 					 struct btrfs_device **device)
2158 {
2159 	int ret;
2160 
2161 	if (devid) {
2162 		ret = 0;
2163 		*device = btrfs_find_device(root->fs_info, devid, NULL,
2164 					    NULL);
2165 		if (!*device)
2166 			ret = -ENOENT;
2167 	} else {
2168 		if (!devpath || !devpath[0])
2169 			return -EINVAL;
2170 
2171 		ret = btrfs_find_device_missing_or_by_path(root, devpath,
2172 							   device);
2173 	}
2174 	return ret;
2175 }
2176 
2177 /*
2178  * does all the dirty work required for changing file system's UUID.
2179  */
2180 static int btrfs_prepare_sprout(struct btrfs_root *root)
2181 {
2182 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2183 	struct btrfs_fs_devices *old_devices;
2184 	struct btrfs_fs_devices *seed_devices;
2185 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2186 	struct btrfs_device *device;
2187 	u64 super_flags;
2188 
2189 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2190 	if (!fs_devices->seeding)
2191 		return -EINVAL;
2192 
2193 	seed_devices = __alloc_fs_devices();
2194 	if (IS_ERR(seed_devices))
2195 		return PTR_ERR(seed_devices);
2196 
2197 	old_devices = clone_fs_devices(fs_devices);
2198 	if (IS_ERR(old_devices)) {
2199 		kfree(seed_devices);
2200 		return PTR_ERR(old_devices);
2201 	}
2202 
2203 	list_add(&old_devices->list, &fs_uuids);
2204 
2205 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2206 	seed_devices->opened = 1;
2207 	INIT_LIST_HEAD(&seed_devices->devices);
2208 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2209 	mutex_init(&seed_devices->device_list_mutex);
2210 
2211 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2212 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2213 			      synchronize_rcu);
2214 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2215 		device->fs_devices = seed_devices;
2216 
2217 	lock_chunks(root);
2218 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2219 	unlock_chunks(root);
2220 
2221 	fs_devices->seeding = 0;
2222 	fs_devices->num_devices = 0;
2223 	fs_devices->open_devices = 0;
2224 	fs_devices->missing_devices = 0;
2225 	fs_devices->rotating = 0;
2226 	fs_devices->seed = seed_devices;
2227 
2228 	generate_random_uuid(fs_devices->fsid);
2229 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2232 
2233 	super_flags = btrfs_super_flags(disk_super) &
2234 		      ~BTRFS_SUPER_FLAG_SEEDING;
2235 	btrfs_set_super_flags(disk_super, super_flags);
2236 
2237 	return 0;
2238 }
2239 
2240 /*
2241  * Store the expected generation for seed devices in device items.
2242  */
2243 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2244 			       struct btrfs_root *root)
2245 {
2246 	struct btrfs_path *path;
2247 	struct extent_buffer *leaf;
2248 	struct btrfs_dev_item *dev_item;
2249 	struct btrfs_device *device;
2250 	struct btrfs_key key;
2251 	u8 fs_uuid[BTRFS_UUID_SIZE];
2252 	u8 dev_uuid[BTRFS_UUID_SIZE];
2253 	u64 devid;
2254 	int ret;
2255 
2256 	path = btrfs_alloc_path();
2257 	if (!path)
2258 		return -ENOMEM;
2259 
2260 	root = root->fs_info->chunk_root;
2261 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2262 	key.offset = 0;
2263 	key.type = BTRFS_DEV_ITEM_KEY;
2264 
2265 	while (1) {
2266 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2267 		if (ret < 0)
2268 			goto error;
2269 
2270 		leaf = path->nodes[0];
2271 next_slot:
2272 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2273 			ret = btrfs_next_leaf(root, path);
2274 			if (ret > 0)
2275 				break;
2276 			if (ret < 0)
2277 				goto error;
2278 			leaf = path->nodes[0];
2279 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2280 			btrfs_release_path(path);
2281 			continue;
2282 		}
2283 
2284 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2285 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2286 		    key.type != BTRFS_DEV_ITEM_KEY)
2287 			break;
2288 
2289 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2290 					  struct btrfs_dev_item);
2291 		devid = btrfs_device_id(leaf, dev_item);
2292 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2293 				   BTRFS_UUID_SIZE);
2294 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2295 				   BTRFS_UUID_SIZE);
2296 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2297 					   fs_uuid);
2298 		BUG_ON(!device); /* Logic error */
2299 
2300 		if (device->fs_devices->seeding) {
2301 			btrfs_set_device_generation(leaf, dev_item,
2302 						    device->generation);
2303 			btrfs_mark_buffer_dirty(leaf);
2304 		}
2305 
2306 		path->slots[0]++;
2307 		goto next_slot;
2308 	}
2309 	ret = 0;
2310 error:
2311 	btrfs_free_path(path);
2312 	return ret;
2313 }
2314 
2315 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2316 {
2317 	struct request_queue *q;
2318 	struct btrfs_trans_handle *trans;
2319 	struct btrfs_device *device;
2320 	struct block_device *bdev;
2321 	struct list_head *devices;
2322 	struct super_block *sb = root->fs_info->sb;
2323 	struct rcu_string *name;
2324 	u64 tmp;
2325 	int seeding_dev = 0;
2326 	int ret = 0;
2327 
2328 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2329 		return -EROFS;
2330 
2331 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2332 				  root->fs_info->bdev_holder);
2333 	if (IS_ERR(bdev))
2334 		return PTR_ERR(bdev);
2335 
2336 	if (root->fs_info->fs_devices->seeding) {
2337 		seeding_dev = 1;
2338 		down_write(&sb->s_umount);
2339 		mutex_lock(&uuid_mutex);
2340 	}
2341 
2342 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2343 
2344 	devices = &root->fs_info->fs_devices->devices;
2345 
2346 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2347 	list_for_each_entry(device, devices, dev_list) {
2348 		if (device->bdev == bdev) {
2349 			ret = -EEXIST;
2350 			mutex_unlock(
2351 				&root->fs_info->fs_devices->device_list_mutex);
2352 			goto error;
2353 		}
2354 	}
2355 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2356 
2357 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2358 	if (IS_ERR(device)) {
2359 		/* we can safely leave the fs_devices entry around */
2360 		ret = PTR_ERR(device);
2361 		goto error;
2362 	}
2363 
2364 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2365 	if (!name) {
2366 		kfree(device);
2367 		ret = -ENOMEM;
2368 		goto error;
2369 	}
2370 	rcu_assign_pointer(device->name, name);
2371 
2372 	trans = btrfs_start_transaction(root, 0);
2373 	if (IS_ERR(trans)) {
2374 		rcu_string_free(device->name);
2375 		kfree(device);
2376 		ret = PTR_ERR(trans);
2377 		goto error;
2378 	}
2379 
2380 	q = bdev_get_queue(bdev);
2381 	if (blk_queue_discard(q))
2382 		device->can_discard = 1;
2383 	device->writeable = 1;
2384 	device->generation = trans->transid;
2385 	device->io_width = root->sectorsize;
2386 	device->io_align = root->sectorsize;
2387 	device->sector_size = root->sectorsize;
2388 	device->total_bytes = i_size_read(bdev->bd_inode);
2389 	device->disk_total_bytes = device->total_bytes;
2390 	device->commit_total_bytes = device->total_bytes;
2391 	device->dev_root = root->fs_info->dev_root;
2392 	device->bdev = bdev;
2393 	device->in_fs_metadata = 1;
2394 	device->is_tgtdev_for_dev_replace = 0;
2395 	device->mode = FMODE_EXCL;
2396 	device->dev_stats_valid = 1;
2397 	set_blocksize(device->bdev, 4096);
2398 
2399 	if (seeding_dev) {
2400 		sb->s_flags &= ~MS_RDONLY;
2401 		ret = btrfs_prepare_sprout(root);
2402 		BUG_ON(ret); /* -ENOMEM */
2403 	}
2404 
2405 	device->fs_devices = root->fs_info->fs_devices;
2406 
2407 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2408 	lock_chunks(root);
2409 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2410 	list_add(&device->dev_alloc_list,
2411 		 &root->fs_info->fs_devices->alloc_list);
2412 	root->fs_info->fs_devices->num_devices++;
2413 	root->fs_info->fs_devices->open_devices++;
2414 	root->fs_info->fs_devices->rw_devices++;
2415 	root->fs_info->fs_devices->total_devices++;
2416 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2417 
2418 	spin_lock(&root->fs_info->free_chunk_lock);
2419 	root->fs_info->free_chunk_space += device->total_bytes;
2420 	spin_unlock(&root->fs_info->free_chunk_lock);
2421 
2422 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2423 		root->fs_info->fs_devices->rotating = 1;
2424 
2425 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2426 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2427 				    tmp + device->total_bytes);
2428 
2429 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2430 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2431 				    tmp + 1);
2432 
2433 	/* add sysfs device entry */
2434 	btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2435 
2436 	/*
2437 	 * we've got more storage, clear any full flags on the space
2438 	 * infos
2439 	 */
2440 	btrfs_clear_space_info_full(root->fs_info);
2441 
2442 	unlock_chunks(root);
2443 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2444 
2445 	if (seeding_dev) {
2446 		lock_chunks(root);
2447 		ret = init_first_rw_device(trans, root, device);
2448 		unlock_chunks(root);
2449 		if (ret) {
2450 			btrfs_abort_transaction(trans, ret);
2451 			goto error_trans;
2452 		}
2453 	}
2454 
2455 	ret = btrfs_add_device(trans, root, device);
2456 	if (ret) {
2457 		btrfs_abort_transaction(trans, ret);
2458 		goto error_trans;
2459 	}
2460 
2461 	if (seeding_dev) {
2462 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2463 
2464 		ret = btrfs_finish_sprout(trans, root);
2465 		if (ret) {
2466 			btrfs_abort_transaction(trans, ret);
2467 			goto error_trans;
2468 		}
2469 
2470 		/* Sprouting would change fsid of the mounted root,
2471 		 * so rename the fsid on the sysfs
2472 		 */
2473 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2474 						root->fs_info->fsid);
2475 		if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2476 								fsid_buf))
2477 			btrfs_warn(root->fs_info,
2478 				"sysfs: failed to create fsid for sprout");
2479 	}
2480 
2481 	root->fs_info->num_tolerated_disk_barrier_failures =
2482 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2483 	ret = btrfs_commit_transaction(trans, root);
2484 
2485 	if (seeding_dev) {
2486 		mutex_unlock(&uuid_mutex);
2487 		up_write(&sb->s_umount);
2488 
2489 		if (ret) /* transaction commit */
2490 			return ret;
2491 
2492 		ret = btrfs_relocate_sys_chunks(root);
2493 		if (ret < 0)
2494 			btrfs_handle_fs_error(root->fs_info, ret,
2495 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2496 		trans = btrfs_attach_transaction(root);
2497 		if (IS_ERR(trans)) {
2498 			if (PTR_ERR(trans) == -ENOENT)
2499 				return 0;
2500 			return PTR_ERR(trans);
2501 		}
2502 		ret = btrfs_commit_transaction(trans, root);
2503 	}
2504 
2505 	/* Update ctime/mtime for libblkid */
2506 	update_dev_time(device_path);
2507 	return ret;
2508 
2509 error_trans:
2510 	btrfs_end_transaction(trans, root);
2511 	rcu_string_free(device->name);
2512 	btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2513 	kfree(device);
2514 error:
2515 	blkdev_put(bdev, FMODE_EXCL);
2516 	if (seeding_dev) {
2517 		mutex_unlock(&uuid_mutex);
2518 		up_write(&sb->s_umount);
2519 	}
2520 	return ret;
2521 }
2522 
2523 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2524 				  struct btrfs_device *srcdev,
2525 				  struct btrfs_device **device_out)
2526 {
2527 	struct request_queue *q;
2528 	struct btrfs_device *device;
2529 	struct block_device *bdev;
2530 	struct btrfs_fs_info *fs_info = root->fs_info;
2531 	struct list_head *devices;
2532 	struct rcu_string *name;
2533 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2534 	int ret = 0;
2535 
2536 	*device_out = NULL;
2537 	if (fs_info->fs_devices->seeding) {
2538 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2539 		return -EINVAL;
2540 	}
2541 
2542 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2543 				  fs_info->bdev_holder);
2544 	if (IS_ERR(bdev)) {
2545 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2546 		return PTR_ERR(bdev);
2547 	}
2548 
2549 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2550 
2551 	devices = &fs_info->fs_devices->devices;
2552 	list_for_each_entry(device, devices, dev_list) {
2553 		if (device->bdev == bdev) {
2554 			btrfs_err(fs_info,
2555 				  "target device is in the filesystem!");
2556 			ret = -EEXIST;
2557 			goto error;
2558 		}
2559 	}
2560 
2561 
2562 	if (i_size_read(bdev->bd_inode) <
2563 	    btrfs_device_get_total_bytes(srcdev)) {
2564 		btrfs_err(fs_info,
2565 			  "target device is smaller than source device!");
2566 		ret = -EINVAL;
2567 		goto error;
2568 	}
2569 
2570 
2571 	device = btrfs_alloc_device(NULL, &devid, NULL);
2572 	if (IS_ERR(device)) {
2573 		ret = PTR_ERR(device);
2574 		goto error;
2575 	}
2576 
2577 	name = rcu_string_strdup(device_path, GFP_NOFS);
2578 	if (!name) {
2579 		kfree(device);
2580 		ret = -ENOMEM;
2581 		goto error;
2582 	}
2583 	rcu_assign_pointer(device->name, name);
2584 
2585 	q = bdev_get_queue(bdev);
2586 	if (blk_queue_discard(q))
2587 		device->can_discard = 1;
2588 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2589 	device->writeable = 1;
2590 	device->generation = 0;
2591 	device->io_width = root->sectorsize;
2592 	device->io_align = root->sectorsize;
2593 	device->sector_size = root->sectorsize;
2594 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2595 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2596 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2597 	ASSERT(list_empty(&srcdev->resized_list));
2598 	device->commit_total_bytes = srcdev->commit_total_bytes;
2599 	device->commit_bytes_used = device->bytes_used;
2600 	device->dev_root = fs_info->dev_root;
2601 	device->bdev = bdev;
2602 	device->in_fs_metadata = 1;
2603 	device->is_tgtdev_for_dev_replace = 1;
2604 	device->mode = FMODE_EXCL;
2605 	device->dev_stats_valid = 1;
2606 	set_blocksize(device->bdev, 4096);
2607 	device->fs_devices = fs_info->fs_devices;
2608 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2609 	fs_info->fs_devices->num_devices++;
2610 	fs_info->fs_devices->open_devices++;
2611 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2612 
2613 	*device_out = device;
2614 	return ret;
2615 
2616 error:
2617 	blkdev_put(bdev, FMODE_EXCL);
2618 	return ret;
2619 }
2620 
2621 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2622 					      struct btrfs_device *tgtdev)
2623 {
2624 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2625 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2626 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2627 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2628 	tgtdev->dev_root = fs_info->dev_root;
2629 	tgtdev->in_fs_metadata = 1;
2630 }
2631 
2632 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2633 					struct btrfs_device *device)
2634 {
2635 	int ret;
2636 	struct btrfs_path *path;
2637 	struct btrfs_root *root;
2638 	struct btrfs_dev_item *dev_item;
2639 	struct extent_buffer *leaf;
2640 	struct btrfs_key key;
2641 
2642 	root = device->dev_root->fs_info->chunk_root;
2643 
2644 	path = btrfs_alloc_path();
2645 	if (!path)
2646 		return -ENOMEM;
2647 
2648 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2649 	key.type = BTRFS_DEV_ITEM_KEY;
2650 	key.offset = device->devid;
2651 
2652 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2653 	if (ret < 0)
2654 		goto out;
2655 
2656 	if (ret > 0) {
2657 		ret = -ENOENT;
2658 		goto out;
2659 	}
2660 
2661 	leaf = path->nodes[0];
2662 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2663 
2664 	btrfs_set_device_id(leaf, dev_item, device->devid);
2665 	btrfs_set_device_type(leaf, dev_item, device->type);
2666 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2667 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2668 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2669 	btrfs_set_device_total_bytes(leaf, dev_item,
2670 				     btrfs_device_get_disk_total_bytes(device));
2671 	btrfs_set_device_bytes_used(leaf, dev_item,
2672 				    btrfs_device_get_bytes_used(device));
2673 	btrfs_mark_buffer_dirty(leaf);
2674 
2675 out:
2676 	btrfs_free_path(path);
2677 	return ret;
2678 }
2679 
2680 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2681 		      struct btrfs_device *device, u64 new_size)
2682 {
2683 	struct btrfs_super_block *super_copy =
2684 		device->dev_root->fs_info->super_copy;
2685 	struct btrfs_fs_devices *fs_devices;
2686 	u64 old_total;
2687 	u64 diff;
2688 
2689 	if (!device->writeable)
2690 		return -EACCES;
2691 
2692 	lock_chunks(device->dev_root);
2693 	old_total = btrfs_super_total_bytes(super_copy);
2694 	diff = new_size - device->total_bytes;
2695 
2696 	if (new_size <= device->total_bytes ||
2697 	    device->is_tgtdev_for_dev_replace) {
2698 		unlock_chunks(device->dev_root);
2699 		return -EINVAL;
2700 	}
2701 
2702 	fs_devices = device->dev_root->fs_info->fs_devices;
2703 
2704 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2705 	device->fs_devices->total_rw_bytes += diff;
2706 
2707 	btrfs_device_set_total_bytes(device, new_size);
2708 	btrfs_device_set_disk_total_bytes(device, new_size);
2709 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2710 	if (list_empty(&device->resized_list))
2711 		list_add_tail(&device->resized_list,
2712 			      &fs_devices->resized_devices);
2713 	unlock_chunks(device->dev_root);
2714 
2715 	return btrfs_update_device(trans, device);
2716 }
2717 
2718 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2719 			    struct btrfs_root *root, u64 chunk_objectid,
2720 			    u64 chunk_offset)
2721 {
2722 	int ret;
2723 	struct btrfs_path *path;
2724 	struct btrfs_key key;
2725 
2726 	root = root->fs_info->chunk_root;
2727 	path = btrfs_alloc_path();
2728 	if (!path)
2729 		return -ENOMEM;
2730 
2731 	key.objectid = chunk_objectid;
2732 	key.offset = chunk_offset;
2733 	key.type = BTRFS_CHUNK_ITEM_KEY;
2734 
2735 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2736 	if (ret < 0)
2737 		goto out;
2738 	else if (ret > 0) { /* Logic error or corruption */
2739 		btrfs_handle_fs_error(root->fs_info, -ENOENT,
2740 			    "Failed lookup while freeing chunk.");
2741 		ret = -ENOENT;
2742 		goto out;
2743 	}
2744 
2745 	ret = btrfs_del_item(trans, root, path);
2746 	if (ret < 0)
2747 		btrfs_handle_fs_error(root->fs_info, ret,
2748 			    "Failed to delete chunk item.");
2749 out:
2750 	btrfs_free_path(path);
2751 	return ret;
2752 }
2753 
2754 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2755 			chunk_offset)
2756 {
2757 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2758 	struct btrfs_disk_key *disk_key;
2759 	struct btrfs_chunk *chunk;
2760 	u8 *ptr;
2761 	int ret = 0;
2762 	u32 num_stripes;
2763 	u32 array_size;
2764 	u32 len = 0;
2765 	u32 cur;
2766 	struct btrfs_key key;
2767 
2768 	lock_chunks(root);
2769 	array_size = btrfs_super_sys_array_size(super_copy);
2770 
2771 	ptr = super_copy->sys_chunk_array;
2772 	cur = 0;
2773 
2774 	while (cur < array_size) {
2775 		disk_key = (struct btrfs_disk_key *)ptr;
2776 		btrfs_disk_key_to_cpu(&key, disk_key);
2777 
2778 		len = sizeof(*disk_key);
2779 
2780 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2781 			chunk = (struct btrfs_chunk *)(ptr + len);
2782 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2783 			len += btrfs_chunk_item_size(num_stripes);
2784 		} else {
2785 			ret = -EIO;
2786 			break;
2787 		}
2788 		if (key.objectid == chunk_objectid &&
2789 		    key.offset == chunk_offset) {
2790 			memmove(ptr, ptr + len, array_size - (cur + len));
2791 			array_size -= len;
2792 			btrfs_set_super_sys_array_size(super_copy, array_size);
2793 		} else {
2794 			ptr += len;
2795 			cur += len;
2796 		}
2797 	}
2798 	unlock_chunks(root);
2799 	return ret;
2800 }
2801 
2802 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2803 		       struct btrfs_root *root, u64 chunk_offset)
2804 {
2805 	struct extent_map_tree *em_tree;
2806 	struct extent_map *em;
2807 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2808 	struct map_lookup *map;
2809 	u64 dev_extent_len = 0;
2810 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2811 	int i, ret = 0;
2812 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2813 
2814 	/* Just in case */
2815 	root = root->fs_info->chunk_root;
2816 	em_tree = &root->fs_info->mapping_tree.map_tree;
2817 
2818 	read_lock(&em_tree->lock);
2819 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2820 	read_unlock(&em_tree->lock);
2821 
2822 	if (!em || em->start > chunk_offset ||
2823 	    em->start + em->len < chunk_offset) {
2824 		/*
2825 		 * This is a logic error, but we don't want to just rely on the
2826 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2827 		 * do anything we still error out.
2828 		 */
2829 		ASSERT(0);
2830 		if (em)
2831 			free_extent_map(em);
2832 		return -EINVAL;
2833 	}
2834 	map = em->map_lookup;
2835 	lock_chunks(root->fs_info->chunk_root);
2836 	check_system_chunk(trans, extent_root, map->type);
2837 	unlock_chunks(root->fs_info->chunk_root);
2838 
2839 	/*
2840 	 * Take the device list mutex to prevent races with the final phase of
2841 	 * a device replace operation that replaces the device object associated
2842 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2843 	 */
2844 	mutex_lock(&fs_devices->device_list_mutex);
2845 	for (i = 0; i < map->num_stripes; i++) {
2846 		struct btrfs_device *device = map->stripes[i].dev;
2847 		ret = btrfs_free_dev_extent(trans, device,
2848 					    map->stripes[i].physical,
2849 					    &dev_extent_len);
2850 		if (ret) {
2851 			mutex_unlock(&fs_devices->device_list_mutex);
2852 			btrfs_abort_transaction(trans, ret);
2853 			goto out;
2854 		}
2855 
2856 		if (device->bytes_used > 0) {
2857 			lock_chunks(root);
2858 			btrfs_device_set_bytes_used(device,
2859 					device->bytes_used - dev_extent_len);
2860 			spin_lock(&root->fs_info->free_chunk_lock);
2861 			root->fs_info->free_chunk_space += dev_extent_len;
2862 			spin_unlock(&root->fs_info->free_chunk_lock);
2863 			btrfs_clear_space_info_full(root->fs_info);
2864 			unlock_chunks(root);
2865 		}
2866 
2867 		if (map->stripes[i].dev) {
2868 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2869 			if (ret) {
2870 				mutex_unlock(&fs_devices->device_list_mutex);
2871 				btrfs_abort_transaction(trans, ret);
2872 				goto out;
2873 			}
2874 		}
2875 	}
2876 	mutex_unlock(&fs_devices->device_list_mutex);
2877 
2878 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2879 	if (ret) {
2880 		btrfs_abort_transaction(trans, ret);
2881 		goto out;
2882 	}
2883 
2884 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2885 
2886 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2887 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2888 		if (ret) {
2889 			btrfs_abort_transaction(trans, ret);
2890 			goto out;
2891 		}
2892 	}
2893 
2894 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2895 	if (ret) {
2896 		btrfs_abort_transaction(trans, ret);
2897 		goto out;
2898 	}
2899 
2900 out:
2901 	/* once for us */
2902 	free_extent_map(em);
2903 	return ret;
2904 }
2905 
2906 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2907 {
2908 	struct btrfs_root *extent_root;
2909 	struct btrfs_trans_handle *trans;
2910 	int ret;
2911 
2912 	root = root->fs_info->chunk_root;
2913 	extent_root = root->fs_info->extent_root;
2914 
2915 	/*
2916 	 * Prevent races with automatic removal of unused block groups.
2917 	 * After we relocate and before we remove the chunk with offset
2918 	 * chunk_offset, automatic removal of the block group can kick in,
2919 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2920 	 *
2921 	 * Make sure to acquire this mutex before doing a tree search (dev
2922 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2923 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2924 	 * we release the path used to search the chunk/dev tree and before
2925 	 * the current task acquires this mutex and calls us.
2926 	 */
2927 	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2928 
2929 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2930 	if (ret)
2931 		return -ENOSPC;
2932 
2933 	/* step one, relocate all the extents inside this chunk */
2934 	btrfs_scrub_pause(root);
2935 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2936 	btrfs_scrub_continue(root);
2937 	if (ret)
2938 		return ret;
2939 
2940 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2941 						     chunk_offset);
2942 	if (IS_ERR(trans)) {
2943 		ret = PTR_ERR(trans);
2944 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2945 		return ret;
2946 	}
2947 
2948 	/*
2949 	 * step two, delete the device extents and the
2950 	 * chunk tree entries
2951 	 */
2952 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2953 	btrfs_end_transaction(trans, extent_root);
2954 	return ret;
2955 }
2956 
2957 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2958 {
2959 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2960 	struct btrfs_path *path;
2961 	struct extent_buffer *leaf;
2962 	struct btrfs_chunk *chunk;
2963 	struct btrfs_key key;
2964 	struct btrfs_key found_key;
2965 	u64 chunk_type;
2966 	bool retried = false;
2967 	int failed = 0;
2968 	int ret;
2969 
2970 	path = btrfs_alloc_path();
2971 	if (!path)
2972 		return -ENOMEM;
2973 
2974 again:
2975 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2976 	key.offset = (u64)-1;
2977 	key.type = BTRFS_CHUNK_ITEM_KEY;
2978 
2979 	while (1) {
2980 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2981 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2982 		if (ret < 0) {
2983 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2984 			goto error;
2985 		}
2986 		BUG_ON(ret == 0); /* Corruption */
2987 
2988 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2989 					  key.type);
2990 		if (ret)
2991 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2992 		if (ret < 0)
2993 			goto error;
2994 		if (ret > 0)
2995 			break;
2996 
2997 		leaf = path->nodes[0];
2998 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2999 
3000 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3001 				       struct btrfs_chunk);
3002 		chunk_type = btrfs_chunk_type(leaf, chunk);
3003 		btrfs_release_path(path);
3004 
3005 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3006 			ret = btrfs_relocate_chunk(chunk_root,
3007 						   found_key.offset);
3008 			if (ret == -ENOSPC)
3009 				failed++;
3010 			else
3011 				BUG_ON(ret);
3012 		}
3013 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3014 
3015 		if (found_key.offset == 0)
3016 			break;
3017 		key.offset = found_key.offset - 1;
3018 	}
3019 	ret = 0;
3020 	if (failed && !retried) {
3021 		failed = 0;
3022 		retried = true;
3023 		goto again;
3024 	} else if (WARN_ON(failed && retried)) {
3025 		ret = -ENOSPC;
3026 	}
3027 error:
3028 	btrfs_free_path(path);
3029 	return ret;
3030 }
3031 
3032 static int insert_balance_item(struct btrfs_root *root,
3033 			       struct btrfs_balance_control *bctl)
3034 {
3035 	struct btrfs_trans_handle *trans;
3036 	struct btrfs_balance_item *item;
3037 	struct btrfs_disk_balance_args disk_bargs;
3038 	struct btrfs_path *path;
3039 	struct extent_buffer *leaf;
3040 	struct btrfs_key key;
3041 	int ret, err;
3042 
3043 	path = btrfs_alloc_path();
3044 	if (!path)
3045 		return -ENOMEM;
3046 
3047 	trans = btrfs_start_transaction(root, 0);
3048 	if (IS_ERR(trans)) {
3049 		btrfs_free_path(path);
3050 		return PTR_ERR(trans);
3051 	}
3052 
3053 	key.objectid = BTRFS_BALANCE_OBJECTID;
3054 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3055 	key.offset = 0;
3056 
3057 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3058 				      sizeof(*item));
3059 	if (ret)
3060 		goto out;
3061 
3062 	leaf = path->nodes[0];
3063 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3064 
3065 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3066 
3067 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3068 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3069 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3070 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3071 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3072 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3073 
3074 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3075 
3076 	btrfs_mark_buffer_dirty(leaf);
3077 out:
3078 	btrfs_free_path(path);
3079 	err = btrfs_commit_transaction(trans, root);
3080 	if (err && !ret)
3081 		ret = err;
3082 	return ret;
3083 }
3084 
3085 static int del_balance_item(struct btrfs_root *root)
3086 {
3087 	struct btrfs_trans_handle *trans;
3088 	struct btrfs_path *path;
3089 	struct btrfs_key key;
3090 	int ret, err;
3091 
3092 	path = btrfs_alloc_path();
3093 	if (!path)
3094 		return -ENOMEM;
3095 
3096 	trans = btrfs_start_transaction(root, 0);
3097 	if (IS_ERR(trans)) {
3098 		btrfs_free_path(path);
3099 		return PTR_ERR(trans);
3100 	}
3101 
3102 	key.objectid = BTRFS_BALANCE_OBJECTID;
3103 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3104 	key.offset = 0;
3105 
3106 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3107 	if (ret < 0)
3108 		goto out;
3109 	if (ret > 0) {
3110 		ret = -ENOENT;
3111 		goto out;
3112 	}
3113 
3114 	ret = btrfs_del_item(trans, root, path);
3115 out:
3116 	btrfs_free_path(path);
3117 	err = btrfs_commit_transaction(trans, root);
3118 	if (err && !ret)
3119 		ret = err;
3120 	return ret;
3121 }
3122 
3123 /*
3124  * This is a heuristic used to reduce the number of chunks balanced on
3125  * resume after balance was interrupted.
3126  */
3127 static void update_balance_args(struct btrfs_balance_control *bctl)
3128 {
3129 	/*
3130 	 * Turn on soft mode for chunk types that were being converted.
3131 	 */
3132 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3133 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3134 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138 
3139 	/*
3140 	 * Turn on usage filter if is not already used.  The idea is
3141 	 * that chunks that we have already balanced should be
3142 	 * reasonably full.  Don't do it for chunks that are being
3143 	 * converted - that will keep us from relocating unconverted
3144 	 * (albeit full) chunks.
3145 	 */
3146 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3147 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3148 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3149 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3150 		bctl->data.usage = 90;
3151 	}
3152 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3153 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3154 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3155 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3156 		bctl->sys.usage = 90;
3157 	}
3158 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3159 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3160 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3161 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3162 		bctl->meta.usage = 90;
3163 	}
3164 }
3165 
3166 /*
3167  * Should be called with both balance and volume mutexes held to
3168  * serialize other volume operations (add_dev/rm_dev/resize) with
3169  * restriper.  Same goes for unset_balance_control.
3170  */
3171 static void set_balance_control(struct btrfs_balance_control *bctl)
3172 {
3173 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3174 
3175 	BUG_ON(fs_info->balance_ctl);
3176 
3177 	spin_lock(&fs_info->balance_lock);
3178 	fs_info->balance_ctl = bctl;
3179 	spin_unlock(&fs_info->balance_lock);
3180 }
3181 
3182 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3183 {
3184 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3185 
3186 	BUG_ON(!fs_info->balance_ctl);
3187 
3188 	spin_lock(&fs_info->balance_lock);
3189 	fs_info->balance_ctl = NULL;
3190 	spin_unlock(&fs_info->balance_lock);
3191 
3192 	kfree(bctl);
3193 }
3194 
3195 /*
3196  * Balance filters.  Return 1 if chunk should be filtered out
3197  * (should not be balanced).
3198  */
3199 static int chunk_profiles_filter(u64 chunk_type,
3200 				 struct btrfs_balance_args *bargs)
3201 {
3202 	chunk_type = chunk_to_extended(chunk_type) &
3203 				BTRFS_EXTENDED_PROFILE_MASK;
3204 
3205 	if (bargs->profiles & chunk_type)
3206 		return 0;
3207 
3208 	return 1;
3209 }
3210 
3211 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3212 			      struct btrfs_balance_args *bargs)
3213 {
3214 	struct btrfs_block_group_cache *cache;
3215 	u64 chunk_used;
3216 	u64 user_thresh_min;
3217 	u64 user_thresh_max;
3218 	int ret = 1;
3219 
3220 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3221 	chunk_used = btrfs_block_group_used(&cache->item);
3222 
3223 	if (bargs->usage_min == 0)
3224 		user_thresh_min = 0;
3225 	else
3226 		user_thresh_min = div_factor_fine(cache->key.offset,
3227 					bargs->usage_min);
3228 
3229 	if (bargs->usage_max == 0)
3230 		user_thresh_max = 1;
3231 	else if (bargs->usage_max > 100)
3232 		user_thresh_max = cache->key.offset;
3233 	else
3234 		user_thresh_max = div_factor_fine(cache->key.offset,
3235 					bargs->usage_max);
3236 
3237 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3238 		ret = 0;
3239 
3240 	btrfs_put_block_group(cache);
3241 	return ret;
3242 }
3243 
3244 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3245 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3246 {
3247 	struct btrfs_block_group_cache *cache;
3248 	u64 chunk_used, user_thresh;
3249 	int ret = 1;
3250 
3251 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3252 	chunk_used = btrfs_block_group_used(&cache->item);
3253 
3254 	if (bargs->usage_min == 0)
3255 		user_thresh = 1;
3256 	else if (bargs->usage > 100)
3257 		user_thresh = cache->key.offset;
3258 	else
3259 		user_thresh = div_factor_fine(cache->key.offset,
3260 					      bargs->usage);
3261 
3262 	if (chunk_used < user_thresh)
3263 		ret = 0;
3264 
3265 	btrfs_put_block_group(cache);
3266 	return ret;
3267 }
3268 
3269 static int chunk_devid_filter(struct extent_buffer *leaf,
3270 			      struct btrfs_chunk *chunk,
3271 			      struct btrfs_balance_args *bargs)
3272 {
3273 	struct btrfs_stripe *stripe;
3274 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3275 	int i;
3276 
3277 	for (i = 0; i < num_stripes; i++) {
3278 		stripe = btrfs_stripe_nr(chunk, i);
3279 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3280 			return 0;
3281 	}
3282 
3283 	return 1;
3284 }
3285 
3286 /* [pstart, pend) */
3287 static int chunk_drange_filter(struct extent_buffer *leaf,
3288 			       struct btrfs_chunk *chunk,
3289 			       u64 chunk_offset,
3290 			       struct btrfs_balance_args *bargs)
3291 {
3292 	struct btrfs_stripe *stripe;
3293 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3294 	u64 stripe_offset;
3295 	u64 stripe_length;
3296 	int factor;
3297 	int i;
3298 
3299 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3300 		return 0;
3301 
3302 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3303 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3304 		factor = num_stripes / 2;
3305 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3306 		factor = num_stripes - 1;
3307 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3308 		factor = num_stripes - 2;
3309 	} else {
3310 		factor = num_stripes;
3311 	}
3312 
3313 	for (i = 0; i < num_stripes; i++) {
3314 		stripe = btrfs_stripe_nr(chunk, i);
3315 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3316 			continue;
3317 
3318 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3319 		stripe_length = btrfs_chunk_length(leaf, chunk);
3320 		stripe_length = div_u64(stripe_length, factor);
3321 
3322 		if (stripe_offset < bargs->pend &&
3323 		    stripe_offset + stripe_length > bargs->pstart)
3324 			return 0;
3325 	}
3326 
3327 	return 1;
3328 }
3329 
3330 /* [vstart, vend) */
3331 static int chunk_vrange_filter(struct extent_buffer *leaf,
3332 			       struct btrfs_chunk *chunk,
3333 			       u64 chunk_offset,
3334 			       struct btrfs_balance_args *bargs)
3335 {
3336 	if (chunk_offset < bargs->vend &&
3337 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3338 		/* at least part of the chunk is inside this vrange */
3339 		return 0;
3340 
3341 	return 1;
3342 }
3343 
3344 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3345 			       struct btrfs_chunk *chunk,
3346 			       struct btrfs_balance_args *bargs)
3347 {
3348 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3349 
3350 	if (bargs->stripes_min <= num_stripes
3351 			&& num_stripes <= bargs->stripes_max)
3352 		return 0;
3353 
3354 	return 1;
3355 }
3356 
3357 static int chunk_soft_convert_filter(u64 chunk_type,
3358 				     struct btrfs_balance_args *bargs)
3359 {
3360 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3361 		return 0;
3362 
3363 	chunk_type = chunk_to_extended(chunk_type) &
3364 				BTRFS_EXTENDED_PROFILE_MASK;
3365 
3366 	if (bargs->target == chunk_type)
3367 		return 1;
3368 
3369 	return 0;
3370 }
3371 
3372 static int should_balance_chunk(struct btrfs_root *root,
3373 				struct extent_buffer *leaf,
3374 				struct btrfs_chunk *chunk, u64 chunk_offset)
3375 {
3376 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3377 	struct btrfs_balance_args *bargs = NULL;
3378 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3379 
3380 	/* type filter */
3381 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3382 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3383 		return 0;
3384 	}
3385 
3386 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3387 		bargs = &bctl->data;
3388 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3389 		bargs = &bctl->sys;
3390 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3391 		bargs = &bctl->meta;
3392 
3393 	/* profiles filter */
3394 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3395 	    chunk_profiles_filter(chunk_type, bargs)) {
3396 		return 0;
3397 	}
3398 
3399 	/* usage filter */
3400 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3401 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3402 		return 0;
3403 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3404 	    chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3405 		return 0;
3406 	}
3407 
3408 	/* devid filter */
3409 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3410 	    chunk_devid_filter(leaf, chunk, bargs)) {
3411 		return 0;
3412 	}
3413 
3414 	/* drange filter, makes sense only with devid filter */
3415 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3416 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3417 		return 0;
3418 	}
3419 
3420 	/* vrange filter */
3421 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3422 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3423 		return 0;
3424 	}
3425 
3426 	/* stripes filter */
3427 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3428 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3429 		return 0;
3430 	}
3431 
3432 	/* soft profile changing mode */
3433 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3434 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3435 		return 0;
3436 	}
3437 
3438 	/*
3439 	 * limited by count, must be the last filter
3440 	 */
3441 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3442 		if (bargs->limit == 0)
3443 			return 0;
3444 		else
3445 			bargs->limit--;
3446 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3447 		/*
3448 		 * Same logic as the 'limit' filter; the minimum cannot be
3449 		 * determined here because we do not have the global information
3450 		 * about the count of all chunks that satisfy the filters.
3451 		 */
3452 		if (bargs->limit_max == 0)
3453 			return 0;
3454 		else
3455 			bargs->limit_max--;
3456 	}
3457 
3458 	return 1;
3459 }
3460 
3461 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3462 {
3463 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3464 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3465 	struct btrfs_root *dev_root = fs_info->dev_root;
3466 	struct list_head *devices;
3467 	struct btrfs_device *device;
3468 	u64 old_size;
3469 	u64 size_to_free;
3470 	u64 chunk_type;
3471 	struct btrfs_chunk *chunk;
3472 	struct btrfs_path *path = NULL;
3473 	struct btrfs_key key;
3474 	struct btrfs_key found_key;
3475 	struct btrfs_trans_handle *trans;
3476 	struct extent_buffer *leaf;
3477 	int slot;
3478 	int ret;
3479 	int enospc_errors = 0;
3480 	bool counting = true;
3481 	/* The single value limit and min/max limits use the same bytes in the */
3482 	u64 limit_data = bctl->data.limit;
3483 	u64 limit_meta = bctl->meta.limit;
3484 	u64 limit_sys = bctl->sys.limit;
3485 	u32 count_data = 0;
3486 	u32 count_meta = 0;
3487 	u32 count_sys = 0;
3488 	int chunk_reserved = 0;
3489 	u64 bytes_used = 0;
3490 
3491 	/* step one make some room on all the devices */
3492 	devices = &fs_info->fs_devices->devices;
3493 	list_for_each_entry(device, devices, dev_list) {
3494 		old_size = btrfs_device_get_total_bytes(device);
3495 		size_to_free = div_factor(old_size, 1);
3496 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3497 		if (!device->writeable ||
3498 		    btrfs_device_get_total_bytes(device) -
3499 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3500 		    device->is_tgtdev_for_dev_replace)
3501 			continue;
3502 
3503 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3504 		if (ret == -ENOSPC)
3505 			break;
3506 		if (ret) {
3507 			/* btrfs_shrink_device never returns ret > 0 */
3508 			WARN_ON(ret > 0);
3509 			goto error;
3510 		}
3511 
3512 		trans = btrfs_start_transaction(dev_root, 0);
3513 		if (IS_ERR(trans)) {
3514 			ret = PTR_ERR(trans);
3515 			btrfs_info_in_rcu(fs_info,
3516 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3517 					  rcu_str_deref(device->name), ret,
3518 					  old_size, old_size - size_to_free);
3519 			goto error;
3520 		}
3521 
3522 		ret = btrfs_grow_device(trans, device, old_size);
3523 		if (ret) {
3524 			btrfs_end_transaction(trans, dev_root);
3525 			/* btrfs_grow_device never returns ret > 0 */
3526 			WARN_ON(ret > 0);
3527 			btrfs_info_in_rcu(fs_info,
3528 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3529 					  rcu_str_deref(device->name), ret,
3530 					  old_size, old_size - size_to_free);
3531 			goto error;
3532 		}
3533 
3534 		btrfs_end_transaction(trans, dev_root);
3535 	}
3536 
3537 	/* step two, relocate all the chunks */
3538 	path = btrfs_alloc_path();
3539 	if (!path) {
3540 		ret = -ENOMEM;
3541 		goto error;
3542 	}
3543 
3544 	/* zero out stat counters */
3545 	spin_lock(&fs_info->balance_lock);
3546 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3547 	spin_unlock(&fs_info->balance_lock);
3548 again:
3549 	if (!counting) {
3550 		/*
3551 		 * The single value limit and min/max limits use the same bytes
3552 		 * in the
3553 		 */
3554 		bctl->data.limit = limit_data;
3555 		bctl->meta.limit = limit_meta;
3556 		bctl->sys.limit = limit_sys;
3557 	}
3558 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3559 	key.offset = (u64)-1;
3560 	key.type = BTRFS_CHUNK_ITEM_KEY;
3561 
3562 	while (1) {
3563 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3564 		    atomic_read(&fs_info->balance_cancel_req)) {
3565 			ret = -ECANCELED;
3566 			goto error;
3567 		}
3568 
3569 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3570 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3571 		if (ret < 0) {
3572 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3573 			goto error;
3574 		}
3575 
3576 		/*
3577 		 * this shouldn't happen, it means the last relocate
3578 		 * failed
3579 		 */
3580 		if (ret == 0)
3581 			BUG(); /* FIXME break ? */
3582 
3583 		ret = btrfs_previous_item(chunk_root, path, 0,
3584 					  BTRFS_CHUNK_ITEM_KEY);
3585 		if (ret) {
3586 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3587 			ret = 0;
3588 			break;
3589 		}
3590 
3591 		leaf = path->nodes[0];
3592 		slot = path->slots[0];
3593 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3594 
3595 		if (found_key.objectid != key.objectid) {
3596 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3597 			break;
3598 		}
3599 
3600 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3601 		chunk_type = btrfs_chunk_type(leaf, chunk);
3602 
3603 		if (!counting) {
3604 			spin_lock(&fs_info->balance_lock);
3605 			bctl->stat.considered++;
3606 			spin_unlock(&fs_info->balance_lock);
3607 		}
3608 
3609 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3610 					   found_key.offset);
3611 
3612 		btrfs_release_path(path);
3613 		if (!ret) {
3614 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3615 			goto loop;
3616 		}
3617 
3618 		if (counting) {
3619 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3620 			spin_lock(&fs_info->balance_lock);
3621 			bctl->stat.expected++;
3622 			spin_unlock(&fs_info->balance_lock);
3623 
3624 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3625 				count_data++;
3626 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3627 				count_sys++;
3628 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3629 				count_meta++;
3630 
3631 			goto loop;
3632 		}
3633 
3634 		/*
3635 		 * Apply limit_min filter, no need to check if the LIMITS
3636 		 * filter is used, limit_min is 0 by default
3637 		 */
3638 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3639 					count_data < bctl->data.limit_min)
3640 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3641 					count_meta < bctl->meta.limit_min)
3642 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3643 					count_sys < bctl->sys.limit_min)) {
3644 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3645 			goto loop;
3646 		}
3647 
3648 		ASSERT(fs_info->data_sinfo);
3649 		spin_lock(&fs_info->data_sinfo->lock);
3650 		bytes_used = fs_info->data_sinfo->bytes_used;
3651 		spin_unlock(&fs_info->data_sinfo->lock);
3652 
3653 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3654 		    !chunk_reserved && !bytes_used) {
3655 			trans = btrfs_start_transaction(chunk_root, 0);
3656 			if (IS_ERR(trans)) {
3657 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658 				ret = PTR_ERR(trans);
3659 				goto error;
3660 			}
3661 
3662 			ret = btrfs_force_chunk_alloc(trans, chunk_root,
3663 						      BTRFS_BLOCK_GROUP_DATA);
3664 			btrfs_end_transaction(trans, chunk_root);
3665 			if (ret < 0) {
3666 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3667 				goto error;
3668 			}
3669 			chunk_reserved = 1;
3670 		}
3671 
3672 		ret = btrfs_relocate_chunk(chunk_root,
3673 					   found_key.offset);
3674 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675 		if (ret && ret != -ENOSPC)
3676 			goto error;
3677 		if (ret == -ENOSPC) {
3678 			enospc_errors++;
3679 		} else {
3680 			spin_lock(&fs_info->balance_lock);
3681 			bctl->stat.completed++;
3682 			spin_unlock(&fs_info->balance_lock);
3683 		}
3684 loop:
3685 		if (found_key.offset == 0)
3686 			break;
3687 		key.offset = found_key.offset - 1;
3688 	}
3689 
3690 	if (counting) {
3691 		btrfs_release_path(path);
3692 		counting = false;
3693 		goto again;
3694 	}
3695 error:
3696 	btrfs_free_path(path);
3697 	if (enospc_errors) {
3698 		btrfs_info(fs_info, "%d enospc errors during balance",
3699 			   enospc_errors);
3700 		if (!ret)
3701 			ret = -ENOSPC;
3702 	}
3703 
3704 	return ret;
3705 }
3706 
3707 /**
3708  * alloc_profile_is_valid - see if a given profile is valid and reduced
3709  * @flags: profile to validate
3710  * @extended: if true @flags is treated as an extended profile
3711  */
3712 static int alloc_profile_is_valid(u64 flags, int extended)
3713 {
3714 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3715 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3716 
3717 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3718 
3719 	/* 1) check that all other bits are zeroed */
3720 	if (flags & ~mask)
3721 		return 0;
3722 
3723 	/* 2) see if profile is reduced */
3724 	if (flags == 0)
3725 		return !extended; /* "0" is valid for usual profiles */
3726 
3727 	/* true if exactly one bit set */
3728 	return (flags & (flags - 1)) == 0;
3729 }
3730 
3731 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3732 {
3733 	/* cancel requested || normal exit path */
3734 	return atomic_read(&fs_info->balance_cancel_req) ||
3735 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3736 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3737 }
3738 
3739 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3740 {
3741 	int ret;
3742 
3743 	unset_balance_control(fs_info);
3744 	ret = del_balance_item(fs_info->tree_root);
3745 	if (ret)
3746 		btrfs_handle_fs_error(fs_info, ret, NULL);
3747 
3748 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3749 }
3750 
3751 /* Non-zero return value signifies invalidity */
3752 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3753 		u64 allowed)
3754 {
3755 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3756 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3757 		 (bctl_arg->target & ~allowed)));
3758 }
3759 
3760 /*
3761  * Should be called with both balance and volume mutexes held
3762  */
3763 int btrfs_balance(struct btrfs_balance_control *bctl,
3764 		  struct btrfs_ioctl_balance_args *bargs)
3765 {
3766 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3767 	u64 allowed;
3768 	int mixed = 0;
3769 	int ret;
3770 	u64 num_devices;
3771 	unsigned seq;
3772 
3773 	if (btrfs_fs_closing(fs_info) ||
3774 	    atomic_read(&fs_info->balance_pause_req) ||
3775 	    atomic_read(&fs_info->balance_cancel_req)) {
3776 		ret = -EINVAL;
3777 		goto out;
3778 	}
3779 
3780 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3781 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3782 		mixed = 1;
3783 
3784 	/*
3785 	 * In case of mixed groups both data and meta should be picked,
3786 	 * and identical options should be given for both of them.
3787 	 */
3788 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3789 	if (mixed && (bctl->flags & allowed)) {
3790 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3791 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3792 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3793 			btrfs_err(fs_info,
3794 				  "with mixed groups data and metadata balance options must be the same");
3795 			ret = -EINVAL;
3796 			goto out;
3797 		}
3798 	}
3799 
3800 	num_devices = fs_info->fs_devices->num_devices;
3801 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3802 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3803 		BUG_ON(num_devices < 1);
3804 		num_devices--;
3805 	}
3806 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3807 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3808 	if (num_devices > 1)
3809 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3810 	if (num_devices > 2)
3811 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3812 	if (num_devices > 3)
3813 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3814 			    BTRFS_BLOCK_GROUP_RAID6);
3815 	if (validate_convert_profile(&bctl->data, allowed)) {
3816 		btrfs_err(fs_info,
3817 			  "unable to start balance with target data profile %llu",
3818 			  bctl->data.target);
3819 		ret = -EINVAL;
3820 		goto out;
3821 	}
3822 	if (validate_convert_profile(&bctl->meta, allowed)) {
3823 		btrfs_err(fs_info,
3824 			  "unable to start balance with target metadata profile %llu",
3825 			  bctl->meta.target);
3826 		ret = -EINVAL;
3827 		goto out;
3828 	}
3829 	if (validate_convert_profile(&bctl->sys, allowed)) {
3830 		btrfs_err(fs_info,
3831 			  "unable to start balance with target system profile %llu",
3832 			  bctl->sys.target);
3833 		ret = -EINVAL;
3834 		goto out;
3835 	}
3836 
3837 	/* allow to reduce meta or sys integrity only if force set */
3838 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3839 			BTRFS_BLOCK_GROUP_RAID10 |
3840 			BTRFS_BLOCK_GROUP_RAID5 |
3841 			BTRFS_BLOCK_GROUP_RAID6;
3842 	do {
3843 		seq = read_seqbegin(&fs_info->profiles_lock);
3844 
3845 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3846 		     (fs_info->avail_system_alloc_bits & allowed) &&
3847 		     !(bctl->sys.target & allowed)) ||
3848 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3850 		     !(bctl->meta.target & allowed))) {
3851 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3852 				btrfs_info(fs_info,
3853 					   "force reducing metadata integrity");
3854 			} else {
3855 				btrfs_err(fs_info,
3856 					  "balance will reduce metadata integrity, use force if you want this");
3857 				ret = -EINVAL;
3858 				goto out;
3859 			}
3860 		}
3861 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3862 
3863 	if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3864 		btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3865 		btrfs_warn(fs_info,
3866 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3867 			   bctl->meta.target, bctl->data.target);
3868 	}
3869 
3870 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3871 		fs_info->num_tolerated_disk_barrier_failures = min(
3872 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3873 			btrfs_get_num_tolerated_disk_barrier_failures(
3874 				bctl->sys.target));
3875 	}
3876 
3877 	ret = insert_balance_item(fs_info->tree_root, bctl);
3878 	if (ret && ret != -EEXIST)
3879 		goto out;
3880 
3881 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3882 		BUG_ON(ret == -EEXIST);
3883 		set_balance_control(bctl);
3884 	} else {
3885 		BUG_ON(ret != -EEXIST);
3886 		spin_lock(&fs_info->balance_lock);
3887 		update_balance_args(bctl);
3888 		spin_unlock(&fs_info->balance_lock);
3889 	}
3890 
3891 	atomic_inc(&fs_info->balance_running);
3892 	mutex_unlock(&fs_info->balance_mutex);
3893 
3894 	ret = __btrfs_balance(fs_info);
3895 
3896 	mutex_lock(&fs_info->balance_mutex);
3897 	atomic_dec(&fs_info->balance_running);
3898 
3899 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3900 		fs_info->num_tolerated_disk_barrier_failures =
3901 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3902 	}
3903 
3904 	if (bargs) {
3905 		memset(bargs, 0, sizeof(*bargs));
3906 		update_ioctl_balance_args(fs_info, 0, bargs);
3907 	}
3908 
3909 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3910 	    balance_need_close(fs_info)) {
3911 		__cancel_balance(fs_info);
3912 	}
3913 
3914 	wake_up(&fs_info->balance_wait_q);
3915 
3916 	return ret;
3917 out:
3918 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3919 		__cancel_balance(fs_info);
3920 	else {
3921 		kfree(bctl);
3922 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3923 	}
3924 	return ret;
3925 }
3926 
3927 static int balance_kthread(void *data)
3928 {
3929 	struct btrfs_fs_info *fs_info = data;
3930 	int ret = 0;
3931 
3932 	mutex_lock(&fs_info->volume_mutex);
3933 	mutex_lock(&fs_info->balance_mutex);
3934 
3935 	if (fs_info->balance_ctl) {
3936 		btrfs_info(fs_info, "continuing balance");
3937 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3938 	}
3939 
3940 	mutex_unlock(&fs_info->balance_mutex);
3941 	mutex_unlock(&fs_info->volume_mutex);
3942 
3943 	return ret;
3944 }
3945 
3946 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3947 {
3948 	struct task_struct *tsk;
3949 
3950 	spin_lock(&fs_info->balance_lock);
3951 	if (!fs_info->balance_ctl) {
3952 		spin_unlock(&fs_info->balance_lock);
3953 		return 0;
3954 	}
3955 	spin_unlock(&fs_info->balance_lock);
3956 
3957 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3958 		btrfs_info(fs_info, "force skipping balance");
3959 		return 0;
3960 	}
3961 
3962 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3963 	return PTR_ERR_OR_ZERO(tsk);
3964 }
3965 
3966 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3967 {
3968 	struct btrfs_balance_control *bctl;
3969 	struct btrfs_balance_item *item;
3970 	struct btrfs_disk_balance_args disk_bargs;
3971 	struct btrfs_path *path;
3972 	struct extent_buffer *leaf;
3973 	struct btrfs_key key;
3974 	int ret;
3975 
3976 	path = btrfs_alloc_path();
3977 	if (!path)
3978 		return -ENOMEM;
3979 
3980 	key.objectid = BTRFS_BALANCE_OBJECTID;
3981 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3982 	key.offset = 0;
3983 
3984 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3985 	if (ret < 0)
3986 		goto out;
3987 	if (ret > 0) { /* ret = -ENOENT; */
3988 		ret = 0;
3989 		goto out;
3990 	}
3991 
3992 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3993 	if (!bctl) {
3994 		ret = -ENOMEM;
3995 		goto out;
3996 	}
3997 
3998 	leaf = path->nodes[0];
3999 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4000 
4001 	bctl->fs_info = fs_info;
4002 	bctl->flags = btrfs_balance_flags(leaf, item);
4003 	bctl->flags |= BTRFS_BALANCE_RESUME;
4004 
4005 	btrfs_balance_data(leaf, item, &disk_bargs);
4006 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4007 	btrfs_balance_meta(leaf, item, &disk_bargs);
4008 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4009 	btrfs_balance_sys(leaf, item, &disk_bargs);
4010 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4011 
4012 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4013 
4014 	mutex_lock(&fs_info->volume_mutex);
4015 	mutex_lock(&fs_info->balance_mutex);
4016 
4017 	set_balance_control(bctl);
4018 
4019 	mutex_unlock(&fs_info->balance_mutex);
4020 	mutex_unlock(&fs_info->volume_mutex);
4021 out:
4022 	btrfs_free_path(path);
4023 	return ret;
4024 }
4025 
4026 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4027 {
4028 	int ret = 0;
4029 
4030 	mutex_lock(&fs_info->balance_mutex);
4031 	if (!fs_info->balance_ctl) {
4032 		mutex_unlock(&fs_info->balance_mutex);
4033 		return -ENOTCONN;
4034 	}
4035 
4036 	if (atomic_read(&fs_info->balance_running)) {
4037 		atomic_inc(&fs_info->balance_pause_req);
4038 		mutex_unlock(&fs_info->balance_mutex);
4039 
4040 		wait_event(fs_info->balance_wait_q,
4041 			   atomic_read(&fs_info->balance_running) == 0);
4042 
4043 		mutex_lock(&fs_info->balance_mutex);
4044 		/* we are good with balance_ctl ripped off from under us */
4045 		BUG_ON(atomic_read(&fs_info->balance_running));
4046 		atomic_dec(&fs_info->balance_pause_req);
4047 	} else {
4048 		ret = -ENOTCONN;
4049 	}
4050 
4051 	mutex_unlock(&fs_info->balance_mutex);
4052 	return ret;
4053 }
4054 
4055 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4056 {
4057 	if (fs_info->sb->s_flags & MS_RDONLY)
4058 		return -EROFS;
4059 
4060 	mutex_lock(&fs_info->balance_mutex);
4061 	if (!fs_info->balance_ctl) {
4062 		mutex_unlock(&fs_info->balance_mutex);
4063 		return -ENOTCONN;
4064 	}
4065 
4066 	atomic_inc(&fs_info->balance_cancel_req);
4067 	/*
4068 	 * if we are running just wait and return, balance item is
4069 	 * deleted in btrfs_balance in this case
4070 	 */
4071 	if (atomic_read(&fs_info->balance_running)) {
4072 		mutex_unlock(&fs_info->balance_mutex);
4073 		wait_event(fs_info->balance_wait_q,
4074 			   atomic_read(&fs_info->balance_running) == 0);
4075 		mutex_lock(&fs_info->balance_mutex);
4076 	} else {
4077 		/* __cancel_balance needs volume_mutex */
4078 		mutex_unlock(&fs_info->balance_mutex);
4079 		mutex_lock(&fs_info->volume_mutex);
4080 		mutex_lock(&fs_info->balance_mutex);
4081 
4082 		if (fs_info->balance_ctl)
4083 			__cancel_balance(fs_info);
4084 
4085 		mutex_unlock(&fs_info->volume_mutex);
4086 	}
4087 
4088 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4089 	atomic_dec(&fs_info->balance_cancel_req);
4090 	mutex_unlock(&fs_info->balance_mutex);
4091 	return 0;
4092 }
4093 
4094 static int btrfs_uuid_scan_kthread(void *data)
4095 {
4096 	struct btrfs_fs_info *fs_info = data;
4097 	struct btrfs_root *root = fs_info->tree_root;
4098 	struct btrfs_key key;
4099 	struct btrfs_key max_key;
4100 	struct btrfs_path *path = NULL;
4101 	int ret = 0;
4102 	struct extent_buffer *eb;
4103 	int slot;
4104 	struct btrfs_root_item root_item;
4105 	u32 item_size;
4106 	struct btrfs_trans_handle *trans = NULL;
4107 
4108 	path = btrfs_alloc_path();
4109 	if (!path) {
4110 		ret = -ENOMEM;
4111 		goto out;
4112 	}
4113 
4114 	key.objectid = 0;
4115 	key.type = BTRFS_ROOT_ITEM_KEY;
4116 	key.offset = 0;
4117 
4118 	max_key.objectid = (u64)-1;
4119 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4120 	max_key.offset = (u64)-1;
4121 
4122 	while (1) {
4123 		ret = btrfs_search_forward(root, &key, path, 0);
4124 		if (ret) {
4125 			if (ret > 0)
4126 				ret = 0;
4127 			break;
4128 		}
4129 
4130 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4131 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4132 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4133 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4134 			goto skip;
4135 
4136 		eb = path->nodes[0];
4137 		slot = path->slots[0];
4138 		item_size = btrfs_item_size_nr(eb, slot);
4139 		if (item_size < sizeof(root_item))
4140 			goto skip;
4141 
4142 		read_extent_buffer(eb, &root_item,
4143 				   btrfs_item_ptr_offset(eb, slot),
4144 				   (int)sizeof(root_item));
4145 		if (btrfs_root_refs(&root_item) == 0)
4146 			goto skip;
4147 
4148 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4149 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4150 			if (trans)
4151 				goto update_tree;
4152 
4153 			btrfs_release_path(path);
4154 			/*
4155 			 * 1 - subvol uuid item
4156 			 * 1 - received_subvol uuid item
4157 			 */
4158 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4159 			if (IS_ERR(trans)) {
4160 				ret = PTR_ERR(trans);
4161 				break;
4162 			}
4163 			continue;
4164 		} else {
4165 			goto skip;
4166 		}
4167 update_tree:
4168 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4169 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4170 						  root_item.uuid,
4171 						  BTRFS_UUID_KEY_SUBVOL,
4172 						  key.objectid);
4173 			if (ret < 0) {
4174 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4175 					ret);
4176 				break;
4177 			}
4178 		}
4179 
4180 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4181 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4182 						  root_item.received_uuid,
4183 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4184 						  key.objectid);
4185 			if (ret < 0) {
4186 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4187 					ret);
4188 				break;
4189 			}
4190 		}
4191 
4192 skip:
4193 		if (trans) {
4194 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4195 			trans = NULL;
4196 			if (ret)
4197 				break;
4198 		}
4199 
4200 		btrfs_release_path(path);
4201 		if (key.offset < (u64)-1) {
4202 			key.offset++;
4203 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4204 			key.offset = 0;
4205 			key.type = BTRFS_ROOT_ITEM_KEY;
4206 		} else if (key.objectid < (u64)-1) {
4207 			key.offset = 0;
4208 			key.type = BTRFS_ROOT_ITEM_KEY;
4209 			key.objectid++;
4210 		} else {
4211 			break;
4212 		}
4213 		cond_resched();
4214 	}
4215 
4216 out:
4217 	btrfs_free_path(path);
4218 	if (trans && !IS_ERR(trans))
4219 		btrfs_end_transaction(trans, fs_info->uuid_root);
4220 	if (ret)
4221 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4222 	else
4223 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4224 	up(&fs_info->uuid_tree_rescan_sem);
4225 	return 0;
4226 }
4227 
4228 /*
4229  * Callback for btrfs_uuid_tree_iterate().
4230  * returns:
4231  * 0	check succeeded, the entry is not outdated.
4232  * < 0	if an error occurred.
4233  * > 0	if the check failed, which means the caller shall remove the entry.
4234  */
4235 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4236 				       u8 *uuid, u8 type, u64 subid)
4237 {
4238 	struct btrfs_key key;
4239 	int ret = 0;
4240 	struct btrfs_root *subvol_root;
4241 
4242 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4243 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4244 		goto out;
4245 
4246 	key.objectid = subid;
4247 	key.type = BTRFS_ROOT_ITEM_KEY;
4248 	key.offset = (u64)-1;
4249 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4250 	if (IS_ERR(subvol_root)) {
4251 		ret = PTR_ERR(subvol_root);
4252 		if (ret == -ENOENT)
4253 			ret = 1;
4254 		goto out;
4255 	}
4256 
4257 	switch (type) {
4258 	case BTRFS_UUID_KEY_SUBVOL:
4259 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4260 			ret = 1;
4261 		break;
4262 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4263 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4264 			   BTRFS_UUID_SIZE))
4265 			ret = 1;
4266 		break;
4267 	}
4268 
4269 out:
4270 	return ret;
4271 }
4272 
4273 static int btrfs_uuid_rescan_kthread(void *data)
4274 {
4275 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4276 	int ret;
4277 
4278 	/*
4279 	 * 1st step is to iterate through the existing UUID tree and
4280 	 * to delete all entries that contain outdated data.
4281 	 * 2nd step is to add all missing entries to the UUID tree.
4282 	 */
4283 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4284 	if (ret < 0) {
4285 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4286 		up(&fs_info->uuid_tree_rescan_sem);
4287 		return ret;
4288 	}
4289 	return btrfs_uuid_scan_kthread(data);
4290 }
4291 
4292 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4293 {
4294 	struct btrfs_trans_handle *trans;
4295 	struct btrfs_root *tree_root = fs_info->tree_root;
4296 	struct btrfs_root *uuid_root;
4297 	struct task_struct *task;
4298 	int ret;
4299 
4300 	/*
4301 	 * 1 - root node
4302 	 * 1 - root item
4303 	 */
4304 	trans = btrfs_start_transaction(tree_root, 2);
4305 	if (IS_ERR(trans))
4306 		return PTR_ERR(trans);
4307 
4308 	uuid_root = btrfs_create_tree(trans, fs_info,
4309 				      BTRFS_UUID_TREE_OBJECTID);
4310 	if (IS_ERR(uuid_root)) {
4311 		ret = PTR_ERR(uuid_root);
4312 		btrfs_abort_transaction(trans, ret);
4313 		btrfs_end_transaction(trans, tree_root);
4314 		return ret;
4315 	}
4316 
4317 	fs_info->uuid_root = uuid_root;
4318 
4319 	ret = btrfs_commit_transaction(trans, tree_root);
4320 	if (ret)
4321 		return ret;
4322 
4323 	down(&fs_info->uuid_tree_rescan_sem);
4324 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4325 	if (IS_ERR(task)) {
4326 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4327 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4328 		up(&fs_info->uuid_tree_rescan_sem);
4329 		return PTR_ERR(task);
4330 	}
4331 
4332 	return 0;
4333 }
4334 
4335 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4336 {
4337 	struct task_struct *task;
4338 
4339 	down(&fs_info->uuid_tree_rescan_sem);
4340 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4341 	if (IS_ERR(task)) {
4342 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4343 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4344 		up(&fs_info->uuid_tree_rescan_sem);
4345 		return PTR_ERR(task);
4346 	}
4347 
4348 	return 0;
4349 }
4350 
4351 /*
4352  * shrinking a device means finding all of the device extents past
4353  * the new size, and then following the back refs to the chunks.
4354  * The chunk relocation code actually frees the device extent
4355  */
4356 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4357 {
4358 	struct btrfs_trans_handle *trans;
4359 	struct btrfs_root *root = device->dev_root;
4360 	struct btrfs_dev_extent *dev_extent = NULL;
4361 	struct btrfs_path *path;
4362 	u64 length;
4363 	u64 chunk_offset;
4364 	int ret;
4365 	int slot;
4366 	int failed = 0;
4367 	bool retried = false;
4368 	bool checked_pending_chunks = false;
4369 	struct extent_buffer *l;
4370 	struct btrfs_key key;
4371 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4372 	u64 old_total = btrfs_super_total_bytes(super_copy);
4373 	u64 old_size = btrfs_device_get_total_bytes(device);
4374 	u64 diff = old_size - new_size;
4375 
4376 	if (device->is_tgtdev_for_dev_replace)
4377 		return -EINVAL;
4378 
4379 	path = btrfs_alloc_path();
4380 	if (!path)
4381 		return -ENOMEM;
4382 
4383 	path->reada = READA_FORWARD;
4384 
4385 	lock_chunks(root);
4386 
4387 	btrfs_device_set_total_bytes(device, new_size);
4388 	if (device->writeable) {
4389 		device->fs_devices->total_rw_bytes -= diff;
4390 		spin_lock(&root->fs_info->free_chunk_lock);
4391 		root->fs_info->free_chunk_space -= diff;
4392 		spin_unlock(&root->fs_info->free_chunk_lock);
4393 	}
4394 	unlock_chunks(root);
4395 
4396 again:
4397 	key.objectid = device->devid;
4398 	key.offset = (u64)-1;
4399 	key.type = BTRFS_DEV_EXTENT_KEY;
4400 
4401 	do {
4402 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4403 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4404 		if (ret < 0) {
4405 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4406 			goto done;
4407 		}
4408 
4409 		ret = btrfs_previous_item(root, path, 0, key.type);
4410 		if (ret)
4411 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4412 		if (ret < 0)
4413 			goto done;
4414 		if (ret) {
4415 			ret = 0;
4416 			btrfs_release_path(path);
4417 			break;
4418 		}
4419 
4420 		l = path->nodes[0];
4421 		slot = path->slots[0];
4422 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4423 
4424 		if (key.objectid != device->devid) {
4425 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4426 			btrfs_release_path(path);
4427 			break;
4428 		}
4429 
4430 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4431 		length = btrfs_dev_extent_length(l, dev_extent);
4432 
4433 		if (key.offset + length <= new_size) {
4434 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4435 			btrfs_release_path(path);
4436 			break;
4437 		}
4438 
4439 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4440 		btrfs_release_path(path);
4441 
4442 		ret = btrfs_relocate_chunk(root, chunk_offset);
4443 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4444 		if (ret && ret != -ENOSPC)
4445 			goto done;
4446 		if (ret == -ENOSPC)
4447 			failed++;
4448 	} while (key.offset-- > 0);
4449 
4450 	if (failed && !retried) {
4451 		failed = 0;
4452 		retried = true;
4453 		goto again;
4454 	} else if (failed && retried) {
4455 		ret = -ENOSPC;
4456 		goto done;
4457 	}
4458 
4459 	/* Shrinking succeeded, else we would be at "done". */
4460 	trans = btrfs_start_transaction(root, 0);
4461 	if (IS_ERR(trans)) {
4462 		ret = PTR_ERR(trans);
4463 		goto done;
4464 	}
4465 
4466 	lock_chunks(root);
4467 
4468 	/*
4469 	 * We checked in the above loop all device extents that were already in
4470 	 * the device tree. However before we have updated the device's
4471 	 * total_bytes to the new size, we might have had chunk allocations that
4472 	 * have not complete yet (new block groups attached to transaction
4473 	 * handles), and therefore their device extents were not yet in the
4474 	 * device tree and we missed them in the loop above. So if we have any
4475 	 * pending chunk using a device extent that overlaps the device range
4476 	 * that we can not use anymore, commit the current transaction and
4477 	 * repeat the search on the device tree - this way we guarantee we will
4478 	 * not have chunks using device extents that end beyond 'new_size'.
4479 	 */
4480 	if (!checked_pending_chunks) {
4481 		u64 start = new_size;
4482 		u64 len = old_size - new_size;
4483 
4484 		if (contains_pending_extent(trans->transaction, device,
4485 					    &start, len)) {
4486 			unlock_chunks(root);
4487 			checked_pending_chunks = true;
4488 			failed = 0;
4489 			retried = false;
4490 			ret = btrfs_commit_transaction(trans, root);
4491 			if (ret)
4492 				goto done;
4493 			goto again;
4494 		}
4495 	}
4496 
4497 	btrfs_device_set_disk_total_bytes(device, new_size);
4498 	if (list_empty(&device->resized_list))
4499 		list_add_tail(&device->resized_list,
4500 			      &root->fs_info->fs_devices->resized_devices);
4501 
4502 	WARN_ON(diff > old_total);
4503 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4504 	unlock_chunks(root);
4505 
4506 	/* Now btrfs_update_device() will change the on-disk size. */
4507 	ret = btrfs_update_device(trans, device);
4508 	btrfs_end_transaction(trans, root);
4509 done:
4510 	btrfs_free_path(path);
4511 	if (ret) {
4512 		lock_chunks(root);
4513 		btrfs_device_set_total_bytes(device, old_size);
4514 		if (device->writeable)
4515 			device->fs_devices->total_rw_bytes += diff;
4516 		spin_lock(&root->fs_info->free_chunk_lock);
4517 		root->fs_info->free_chunk_space += diff;
4518 		spin_unlock(&root->fs_info->free_chunk_lock);
4519 		unlock_chunks(root);
4520 	}
4521 	return ret;
4522 }
4523 
4524 static int btrfs_add_system_chunk(struct btrfs_root *root,
4525 			   struct btrfs_key *key,
4526 			   struct btrfs_chunk *chunk, int item_size)
4527 {
4528 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4529 	struct btrfs_disk_key disk_key;
4530 	u32 array_size;
4531 	u8 *ptr;
4532 
4533 	lock_chunks(root);
4534 	array_size = btrfs_super_sys_array_size(super_copy);
4535 	if (array_size + item_size + sizeof(disk_key)
4536 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4537 		unlock_chunks(root);
4538 		return -EFBIG;
4539 	}
4540 
4541 	ptr = super_copy->sys_chunk_array + array_size;
4542 	btrfs_cpu_key_to_disk(&disk_key, key);
4543 	memcpy(ptr, &disk_key, sizeof(disk_key));
4544 	ptr += sizeof(disk_key);
4545 	memcpy(ptr, chunk, item_size);
4546 	item_size += sizeof(disk_key);
4547 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4548 	unlock_chunks(root);
4549 
4550 	return 0;
4551 }
4552 
4553 /*
4554  * sort the devices in descending order by max_avail, total_avail
4555  */
4556 static int btrfs_cmp_device_info(const void *a, const void *b)
4557 {
4558 	const struct btrfs_device_info *di_a = a;
4559 	const struct btrfs_device_info *di_b = b;
4560 
4561 	if (di_a->max_avail > di_b->max_avail)
4562 		return -1;
4563 	if (di_a->max_avail < di_b->max_avail)
4564 		return 1;
4565 	if (di_a->total_avail > di_b->total_avail)
4566 		return -1;
4567 	if (di_a->total_avail < di_b->total_avail)
4568 		return 1;
4569 	return 0;
4570 }
4571 
4572 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4573 {
4574 	/* TODO allow them to set a preferred stripe size */
4575 	return SZ_64K;
4576 }
4577 
4578 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4579 {
4580 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4581 		return;
4582 
4583 	btrfs_set_fs_incompat(info, RAID56);
4584 }
4585 
4586 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r)		\
4587 			- sizeof(struct btrfs_chunk))		\
4588 			/ sizeof(struct btrfs_stripe) + 1)
4589 
4590 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4591 				- 2 * sizeof(struct btrfs_disk_key)	\
4592 				- 2 * sizeof(struct btrfs_chunk))	\
4593 				/ sizeof(struct btrfs_stripe) + 1)
4594 
4595 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4596 			       struct btrfs_root *extent_root, u64 start,
4597 			       u64 type)
4598 {
4599 	struct btrfs_fs_info *info = extent_root->fs_info;
4600 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4601 	struct list_head *cur;
4602 	struct map_lookup *map = NULL;
4603 	struct extent_map_tree *em_tree;
4604 	struct extent_map *em;
4605 	struct btrfs_device_info *devices_info = NULL;
4606 	u64 total_avail;
4607 	int num_stripes;	/* total number of stripes to allocate */
4608 	int data_stripes;	/* number of stripes that count for
4609 				   block group size */
4610 	int sub_stripes;	/* sub_stripes info for map */
4611 	int dev_stripes;	/* stripes per dev */
4612 	int devs_max;		/* max devs to use */
4613 	int devs_min;		/* min devs needed */
4614 	int devs_increment;	/* ndevs has to be a multiple of this */
4615 	int ncopies;		/* how many copies to data has */
4616 	int ret;
4617 	u64 max_stripe_size;
4618 	u64 max_chunk_size;
4619 	u64 stripe_size;
4620 	u64 num_bytes;
4621 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4622 	int ndevs;
4623 	int i;
4624 	int j;
4625 	int index;
4626 
4627 	BUG_ON(!alloc_profile_is_valid(type, 0));
4628 
4629 	if (list_empty(&fs_devices->alloc_list))
4630 		return -ENOSPC;
4631 
4632 	index = __get_raid_index(type);
4633 
4634 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4635 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4636 	devs_max = btrfs_raid_array[index].devs_max;
4637 	devs_min = btrfs_raid_array[index].devs_min;
4638 	devs_increment = btrfs_raid_array[index].devs_increment;
4639 	ncopies = btrfs_raid_array[index].ncopies;
4640 
4641 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4642 		max_stripe_size = SZ_1G;
4643 		max_chunk_size = 10 * max_stripe_size;
4644 		if (!devs_max)
4645 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4646 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4647 		/* for larger filesystems, use larger metadata chunks */
4648 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4649 			max_stripe_size = SZ_1G;
4650 		else
4651 			max_stripe_size = SZ_256M;
4652 		max_chunk_size = max_stripe_size;
4653 		if (!devs_max)
4654 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4655 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4656 		max_stripe_size = SZ_32M;
4657 		max_chunk_size = 2 * max_stripe_size;
4658 		if (!devs_max)
4659 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4660 	} else {
4661 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4662 		       type);
4663 		BUG_ON(1);
4664 	}
4665 
4666 	/* we don't want a chunk larger than 10% of writeable space */
4667 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4668 			     max_chunk_size);
4669 
4670 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4671 			       GFP_NOFS);
4672 	if (!devices_info)
4673 		return -ENOMEM;
4674 
4675 	cur = fs_devices->alloc_list.next;
4676 
4677 	/*
4678 	 * in the first pass through the devices list, we gather information
4679 	 * about the available holes on each device.
4680 	 */
4681 	ndevs = 0;
4682 	while (cur != &fs_devices->alloc_list) {
4683 		struct btrfs_device *device;
4684 		u64 max_avail;
4685 		u64 dev_offset;
4686 
4687 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4688 
4689 		cur = cur->next;
4690 
4691 		if (!device->writeable) {
4692 			WARN(1, KERN_ERR
4693 			       "BTRFS: read-only device in alloc_list\n");
4694 			continue;
4695 		}
4696 
4697 		if (!device->in_fs_metadata ||
4698 		    device->is_tgtdev_for_dev_replace)
4699 			continue;
4700 
4701 		if (device->total_bytes > device->bytes_used)
4702 			total_avail = device->total_bytes - device->bytes_used;
4703 		else
4704 			total_avail = 0;
4705 
4706 		/* If there is no space on this device, skip it. */
4707 		if (total_avail == 0)
4708 			continue;
4709 
4710 		ret = find_free_dev_extent(trans, device,
4711 					   max_stripe_size * dev_stripes,
4712 					   &dev_offset, &max_avail);
4713 		if (ret && ret != -ENOSPC)
4714 			goto error;
4715 
4716 		if (ret == 0)
4717 			max_avail = max_stripe_size * dev_stripes;
4718 
4719 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4720 			continue;
4721 
4722 		if (ndevs == fs_devices->rw_devices) {
4723 			WARN(1, "%s: found more than %llu devices\n",
4724 			     __func__, fs_devices->rw_devices);
4725 			break;
4726 		}
4727 		devices_info[ndevs].dev_offset = dev_offset;
4728 		devices_info[ndevs].max_avail = max_avail;
4729 		devices_info[ndevs].total_avail = total_avail;
4730 		devices_info[ndevs].dev = device;
4731 		++ndevs;
4732 	}
4733 
4734 	/*
4735 	 * now sort the devices by hole size / available space
4736 	 */
4737 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4738 	     btrfs_cmp_device_info, NULL);
4739 
4740 	/* round down to number of usable stripes */
4741 	ndevs -= ndevs % devs_increment;
4742 
4743 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4744 		ret = -ENOSPC;
4745 		goto error;
4746 	}
4747 
4748 	if (devs_max && ndevs > devs_max)
4749 		ndevs = devs_max;
4750 	/*
4751 	 * the primary goal is to maximize the number of stripes, so use as many
4752 	 * devices as possible, even if the stripes are not maximum sized.
4753 	 */
4754 	stripe_size = devices_info[ndevs-1].max_avail;
4755 	num_stripes = ndevs * dev_stripes;
4756 
4757 	/*
4758 	 * this will have to be fixed for RAID1 and RAID10 over
4759 	 * more drives
4760 	 */
4761 	data_stripes = num_stripes / ncopies;
4762 
4763 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4764 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4765 						extent_root->stripesize);
4766 		data_stripes = num_stripes - 1;
4767 	}
4768 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4769 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4770 						extent_root->stripesize);
4771 		data_stripes = num_stripes - 2;
4772 	}
4773 
4774 	/*
4775 	 * Use the number of data stripes to figure out how big this chunk
4776 	 * is really going to be in terms of logical address space,
4777 	 * and compare that answer with the max chunk size
4778 	 */
4779 	if (stripe_size * data_stripes > max_chunk_size) {
4780 		u64 mask = (1ULL << 24) - 1;
4781 
4782 		stripe_size = div_u64(max_chunk_size, data_stripes);
4783 
4784 		/* bump the answer up to a 16MB boundary */
4785 		stripe_size = (stripe_size + mask) & ~mask;
4786 
4787 		/* but don't go higher than the limits we found
4788 		 * while searching for free extents
4789 		 */
4790 		if (stripe_size > devices_info[ndevs-1].max_avail)
4791 			stripe_size = devices_info[ndevs-1].max_avail;
4792 	}
4793 
4794 	stripe_size = div_u64(stripe_size, dev_stripes);
4795 
4796 	/* align to BTRFS_STRIPE_LEN */
4797 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4798 	stripe_size *= raid_stripe_len;
4799 
4800 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4801 	if (!map) {
4802 		ret = -ENOMEM;
4803 		goto error;
4804 	}
4805 	map->num_stripes = num_stripes;
4806 
4807 	for (i = 0; i < ndevs; ++i) {
4808 		for (j = 0; j < dev_stripes; ++j) {
4809 			int s = i * dev_stripes + j;
4810 			map->stripes[s].dev = devices_info[i].dev;
4811 			map->stripes[s].physical = devices_info[i].dev_offset +
4812 						   j * stripe_size;
4813 		}
4814 	}
4815 	map->sector_size = extent_root->sectorsize;
4816 	map->stripe_len = raid_stripe_len;
4817 	map->io_align = raid_stripe_len;
4818 	map->io_width = raid_stripe_len;
4819 	map->type = type;
4820 	map->sub_stripes = sub_stripes;
4821 
4822 	num_bytes = stripe_size * data_stripes;
4823 
4824 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4825 
4826 	em = alloc_extent_map();
4827 	if (!em) {
4828 		kfree(map);
4829 		ret = -ENOMEM;
4830 		goto error;
4831 	}
4832 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4833 	em->map_lookup = map;
4834 	em->start = start;
4835 	em->len = num_bytes;
4836 	em->block_start = 0;
4837 	em->block_len = em->len;
4838 	em->orig_block_len = stripe_size;
4839 
4840 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4841 	write_lock(&em_tree->lock);
4842 	ret = add_extent_mapping(em_tree, em, 0);
4843 	if (!ret) {
4844 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4845 		atomic_inc(&em->refs);
4846 	}
4847 	write_unlock(&em_tree->lock);
4848 	if (ret) {
4849 		free_extent_map(em);
4850 		goto error;
4851 	}
4852 
4853 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4854 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4855 				     start, num_bytes);
4856 	if (ret)
4857 		goto error_del_extent;
4858 
4859 	for (i = 0; i < map->num_stripes; i++) {
4860 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4861 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4862 	}
4863 
4864 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4865 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4866 						   map->num_stripes);
4867 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4868 
4869 	free_extent_map(em);
4870 	check_raid56_incompat_flag(extent_root->fs_info, type);
4871 
4872 	kfree(devices_info);
4873 	return 0;
4874 
4875 error_del_extent:
4876 	write_lock(&em_tree->lock);
4877 	remove_extent_mapping(em_tree, em);
4878 	write_unlock(&em_tree->lock);
4879 
4880 	/* One for our allocation */
4881 	free_extent_map(em);
4882 	/* One for the tree reference */
4883 	free_extent_map(em);
4884 	/* One for the pending_chunks list reference */
4885 	free_extent_map(em);
4886 error:
4887 	kfree(devices_info);
4888 	return ret;
4889 }
4890 
4891 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4892 				struct btrfs_root *extent_root,
4893 				u64 chunk_offset, u64 chunk_size)
4894 {
4895 	struct btrfs_key key;
4896 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4897 	struct btrfs_device *device;
4898 	struct btrfs_chunk *chunk;
4899 	struct btrfs_stripe *stripe;
4900 	struct extent_map_tree *em_tree;
4901 	struct extent_map *em;
4902 	struct map_lookup *map;
4903 	size_t item_size;
4904 	u64 dev_offset;
4905 	u64 stripe_size;
4906 	int i = 0;
4907 	int ret = 0;
4908 
4909 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4910 	read_lock(&em_tree->lock);
4911 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4912 	read_unlock(&em_tree->lock);
4913 
4914 	if (!em) {
4915 		btrfs_crit(extent_root->fs_info,
4916 			   "unable to find logical %Lu len %Lu",
4917 			   chunk_offset, chunk_size);
4918 		return -EINVAL;
4919 	}
4920 
4921 	if (em->start != chunk_offset || em->len != chunk_size) {
4922 		btrfs_crit(extent_root->fs_info,
4923 			   "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4924 			    chunk_offset, chunk_size, em->start, em->len);
4925 		free_extent_map(em);
4926 		return -EINVAL;
4927 	}
4928 
4929 	map = em->map_lookup;
4930 	item_size = btrfs_chunk_item_size(map->num_stripes);
4931 	stripe_size = em->orig_block_len;
4932 
4933 	chunk = kzalloc(item_size, GFP_NOFS);
4934 	if (!chunk) {
4935 		ret = -ENOMEM;
4936 		goto out;
4937 	}
4938 
4939 	/*
4940 	 * Take the device list mutex to prevent races with the final phase of
4941 	 * a device replace operation that replaces the device object associated
4942 	 * with the map's stripes, because the device object's id can change
4943 	 * at any time during that final phase of the device replace operation
4944 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4945 	 */
4946 	mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4947 	for (i = 0; i < map->num_stripes; i++) {
4948 		device = map->stripes[i].dev;
4949 		dev_offset = map->stripes[i].physical;
4950 
4951 		ret = btrfs_update_device(trans, device);
4952 		if (ret)
4953 			break;
4954 		ret = btrfs_alloc_dev_extent(trans, device,
4955 					     chunk_root->root_key.objectid,
4956 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4957 					     chunk_offset, dev_offset,
4958 					     stripe_size);
4959 		if (ret)
4960 			break;
4961 	}
4962 	if (ret) {
4963 		mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4964 		goto out;
4965 	}
4966 
4967 	stripe = &chunk->stripe;
4968 	for (i = 0; i < map->num_stripes; i++) {
4969 		device = map->stripes[i].dev;
4970 		dev_offset = map->stripes[i].physical;
4971 
4972 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4973 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4974 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4975 		stripe++;
4976 	}
4977 	mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4978 
4979 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4980 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4981 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4982 	btrfs_set_stack_chunk_type(chunk, map->type);
4983 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4984 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4985 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4986 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4987 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4988 
4989 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4990 	key.type = BTRFS_CHUNK_ITEM_KEY;
4991 	key.offset = chunk_offset;
4992 
4993 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4994 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4995 		/*
4996 		 * TODO: Cleanup of inserted chunk root in case of
4997 		 * failure.
4998 		 */
4999 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
5000 					     item_size);
5001 	}
5002 
5003 out:
5004 	kfree(chunk);
5005 	free_extent_map(em);
5006 	return ret;
5007 }
5008 
5009 /*
5010  * Chunk allocation falls into two parts. The first part does works
5011  * that make the new allocated chunk useable, but not do any operation
5012  * that modifies the chunk tree. The second part does the works that
5013  * require modifying the chunk tree. This division is important for the
5014  * bootstrap process of adding storage to a seed btrfs.
5015  */
5016 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5017 		      struct btrfs_root *extent_root, u64 type)
5018 {
5019 	u64 chunk_offset;
5020 
5021 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5022 	chunk_offset = find_next_chunk(extent_root->fs_info);
5023 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5024 }
5025 
5026 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5027 					 struct btrfs_root *root,
5028 					 struct btrfs_device *device)
5029 {
5030 	u64 chunk_offset;
5031 	u64 sys_chunk_offset;
5032 	u64 alloc_profile;
5033 	struct btrfs_fs_info *fs_info = root->fs_info;
5034 	struct btrfs_root *extent_root = fs_info->extent_root;
5035 	int ret;
5036 
5037 	chunk_offset = find_next_chunk(fs_info);
5038 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5039 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5040 				  alloc_profile);
5041 	if (ret)
5042 		return ret;
5043 
5044 	sys_chunk_offset = find_next_chunk(root->fs_info);
5045 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5046 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5047 				  alloc_profile);
5048 	return ret;
5049 }
5050 
5051 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5052 {
5053 	int max_errors;
5054 
5055 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5056 			 BTRFS_BLOCK_GROUP_RAID10 |
5057 			 BTRFS_BLOCK_GROUP_RAID5 |
5058 			 BTRFS_BLOCK_GROUP_DUP)) {
5059 		max_errors = 1;
5060 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5061 		max_errors = 2;
5062 	} else {
5063 		max_errors = 0;
5064 	}
5065 
5066 	return max_errors;
5067 }
5068 
5069 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5070 {
5071 	struct extent_map *em;
5072 	struct map_lookup *map;
5073 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5074 	int readonly = 0;
5075 	int miss_ndevs = 0;
5076 	int i;
5077 
5078 	read_lock(&map_tree->map_tree.lock);
5079 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5080 	read_unlock(&map_tree->map_tree.lock);
5081 	if (!em)
5082 		return 1;
5083 
5084 	map = em->map_lookup;
5085 	for (i = 0; i < map->num_stripes; i++) {
5086 		if (map->stripes[i].dev->missing) {
5087 			miss_ndevs++;
5088 			continue;
5089 		}
5090 
5091 		if (!map->stripes[i].dev->writeable) {
5092 			readonly = 1;
5093 			goto end;
5094 		}
5095 	}
5096 
5097 	/*
5098 	 * If the number of missing devices is larger than max errors,
5099 	 * we can not write the data into that chunk successfully, so
5100 	 * set it readonly.
5101 	 */
5102 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5103 		readonly = 1;
5104 end:
5105 	free_extent_map(em);
5106 	return readonly;
5107 }
5108 
5109 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5110 {
5111 	extent_map_tree_init(&tree->map_tree);
5112 }
5113 
5114 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5115 {
5116 	struct extent_map *em;
5117 
5118 	while (1) {
5119 		write_lock(&tree->map_tree.lock);
5120 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5121 		if (em)
5122 			remove_extent_mapping(&tree->map_tree, em);
5123 		write_unlock(&tree->map_tree.lock);
5124 		if (!em)
5125 			break;
5126 		/* once for us */
5127 		free_extent_map(em);
5128 		/* once for the tree */
5129 		free_extent_map(em);
5130 	}
5131 }
5132 
5133 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5134 {
5135 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5136 	struct extent_map *em;
5137 	struct map_lookup *map;
5138 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5139 	int ret;
5140 
5141 	read_lock(&em_tree->lock);
5142 	em = lookup_extent_mapping(em_tree, logical, len);
5143 	read_unlock(&em_tree->lock);
5144 
5145 	/*
5146 	 * We could return errors for these cases, but that could get ugly and
5147 	 * we'd probably do the same thing which is just not do anything else
5148 	 * and exit, so return 1 so the callers don't try to use other copies.
5149 	 */
5150 	if (!em) {
5151 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5152 			    logical+len);
5153 		return 1;
5154 	}
5155 
5156 	if (em->start > logical || em->start + em->len < logical) {
5157 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5158 			   logical, logical+len, em->start,
5159 			   em->start + em->len);
5160 		free_extent_map(em);
5161 		return 1;
5162 	}
5163 
5164 	map = em->map_lookup;
5165 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5166 		ret = map->num_stripes;
5167 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5168 		ret = map->sub_stripes;
5169 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5170 		ret = 2;
5171 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5172 		ret = 3;
5173 	else
5174 		ret = 1;
5175 	free_extent_map(em);
5176 
5177 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5178 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5179 		ret++;
5180 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5181 
5182 	return ret;
5183 }
5184 
5185 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5186 				    struct btrfs_mapping_tree *map_tree,
5187 				    u64 logical)
5188 {
5189 	struct extent_map *em;
5190 	struct map_lookup *map;
5191 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5192 	unsigned long len = root->sectorsize;
5193 
5194 	read_lock(&em_tree->lock);
5195 	em = lookup_extent_mapping(em_tree, logical, len);
5196 	read_unlock(&em_tree->lock);
5197 	BUG_ON(!em);
5198 
5199 	BUG_ON(em->start > logical || em->start + em->len < logical);
5200 	map = em->map_lookup;
5201 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5202 		len = map->stripe_len * nr_data_stripes(map);
5203 	free_extent_map(em);
5204 	return len;
5205 }
5206 
5207 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5208 			   u64 logical, u64 len, int mirror_num)
5209 {
5210 	struct extent_map *em;
5211 	struct map_lookup *map;
5212 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5213 	int ret = 0;
5214 
5215 	read_lock(&em_tree->lock);
5216 	em = lookup_extent_mapping(em_tree, logical, len);
5217 	read_unlock(&em_tree->lock);
5218 	BUG_ON(!em);
5219 
5220 	BUG_ON(em->start > logical || em->start + em->len < logical);
5221 	map = em->map_lookup;
5222 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5223 		ret = 1;
5224 	free_extent_map(em);
5225 	return ret;
5226 }
5227 
5228 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5229 			    struct map_lookup *map, int first, int num,
5230 			    int optimal, int dev_replace_is_ongoing)
5231 {
5232 	int i;
5233 	int tolerance;
5234 	struct btrfs_device *srcdev;
5235 
5236 	if (dev_replace_is_ongoing &&
5237 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5238 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5239 		srcdev = fs_info->dev_replace.srcdev;
5240 	else
5241 		srcdev = NULL;
5242 
5243 	/*
5244 	 * try to avoid the drive that is the source drive for a
5245 	 * dev-replace procedure, only choose it if no other non-missing
5246 	 * mirror is available
5247 	 */
5248 	for (tolerance = 0; tolerance < 2; tolerance++) {
5249 		if (map->stripes[optimal].dev->bdev &&
5250 		    (tolerance || map->stripes[optimal].dev != srcdev))
5251 			return optimal;
5252 		for (i = first; i < first + num; i++) {
5253 			if (map->stripes[i].dev->bdev &&
5254 			    (tolerance || map->stripes[i].dev != srcdev))
5255 				return i;
5256 		}
5257 	}
5258 
5259 	/* we couldn't find one that doesn't fail.  Just return something
5260 	 * and the io error handling code will clean up eventually
5261 	 */
5262 	return optimal;
5263 }
5264 
5265 static inline int parity_smaller(u64 a, u64 b)
5266 {
5267 	return a > b;
5268 }
5269 
5270 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5271 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5272 {
5273 	struct btrfs_bio_stripe s;
5274 	int i;
5275 	u64 l;
5276 	int again = 1;
5277 
5278 	while (again) {
5279 		again = 0;
5280 		for (i = 0; i < num_stripes - 1; i++) {
5281 			if (parity_smaller(bbio->raid_map[i],
5282 					   bbio->raid_map[i+1])) {
5283 				s = bbio->stripes[i];
5284 				l = bbio->raid_map[i];
5285 				bbio->stripes[i] = bbio->stripes[i+1];
5286 				bbio->raid_map[i] = bbio->raid_map[i+1];
5287 				bbio->stripes[i+1] = s;
5288 				bbio->raid_map[i+1] = l;
5289 
5290 				again = 1;
5291 			}
5292 		}
5293 	}
5294 }
5295 
5296 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5297 {
5298 	struct btrfs_bio *bbio = kzalloc(
5299 		 /* the size of the btrfs_bio */
5300 		sizeof(struct btrfs_bio) +
5301 		/* plus the variable array for the stripes */
5302 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5303 		/* plus the variable array for the tgt dev */
5304 		sizeof(int) * (real_stripes) +
5305 		/*
5306 		 * plus the raid_map, which includes both the tgt dev
5307 		 * and the stripes
5308 		 */
5309 		sizeof(u64) * (total_stripes),
5310 		GFP_NOFS|__GFP_NOFAIL);
5311 
5312 	atomic_set(&bbio->error, 0);
5313 	atomic_set(&bbio->refs, 1);
5314 
5315 	return bbio;
5316 }
5317 
5318 void btrfs_get_bbio(struct btrfs_bio *bbio)
5319 {
5320 	WARN_ON(!atomic_read(&bbio->refs));
5321 	atomic_inc(&bbio->refs);
5322 }
5323 
5324 void btrfs_put_bbio(struct btrfs_bio *bbio)
5325 {
5326 	if (!bbio)
5327 		return;
5328 	if (atomic_dec_and_test(&bbio->refs))
5329 		kfree(bbio);
5330 }
5331 
5332 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5333 			     u64 logical, u64 *length,
5334 			     struct btrfs_bio **bbio_ret,
5335 			     int mirror_num, int need_raid_map)
5336 {
5337 	struct extent_map *em;
5338 	struct map_lookup *map;
5339 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5340 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5341 	u64 offset;
5342 	u64 stripe_offset;
5343 	u64 stripe_end_offset;
5344 	u64 stripe_nr;
5345 	u64 stripe_nr_orig;
5346 	u64 stripe_nr_end;
5347 	u64 stripe_len;
5348 	u32 stripe_index;
5349 	int i;
5350 	int ret = 0;
5351 	int num_stripes;
5352 	int max_errors = 0;
5353 	int tgtdev_indexes = 0;
5354 	struct btrfs_bio *bbio = NULL;
5355 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5356 	int dev_replace_is_ongoing = 0;
5357 	int num_alloc_stripes;
5358 	int patch_the_first_stripe_for_dev_replace = 0;
5359 	u64 physical_to_patch_in_first_stripe = 0;
5360 	u64 raid56_full_stripe_start = (u64)-1;
5361 
5362 	read_lock(&em_tree->lock);
5363 	em = lookup_extent_mapping(em_tree, logical, *length);
5364 	read_unlock(&em_tree->lock);
5365 
5366 	if (!em) {
5367 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5368 			logical, *length);
5369 		return -EINVAL;
5370 	}
5371 
5372 	if (em->start > logical || em->start + em->len < logical) {
5373 		btrfs_crit(fs_info,
5374 			   "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5375 			   logical, em->start, em->start + em->len);
5376 		free_extent_map(em);
5377 		return -EINVAL;
5378 	}
5379 
5380 	map = em->map_lookup;
5381 	offset = logical - em->start;
5382 
5383 	stripe_len = map->stripe_len;
5384 	stripe_nr = offset;
5385 	/*
5386 	 * stripe_nr counts the total number of stripes we have to stride
5387 	 * to get to this block
5388 	 */
5389 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5390 
5391 	stripe_offset = stripe_nr * stripe_len;
5392 	if (offset < stripe_offset) {
5393 		btrfs_crit(fs_info,
5394 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5395 			   stripe_offset, offset, em->start, logical,
5396 			   stripe_len);
5397 		free_extent_map(em);
5398 		return -EINVAL;
5399 	}
5400 
5401 	/* stripe_offset is the offset of this block in its stripe*/
5402 	stripe_offset = offset - stripe_offset;
5403 
5404 	/* if we're here for raid56, we need to know the stripe aligned start */
5405 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5406 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5407 		raid56_full_stripe_start = offset;
5408 
5409 		/* allow a write of a full stripe, but make sure we don't
5410 		 * allow straddling of stripes
5411 		 */
5412 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5413 				full_stripe_len);
5414 		raid56_full_stripe_start *= full_stripe_len;
5415 	}
5416 
5417 	if (op == REQ_OP_DISCARD) {
5418 		/* we don't discard raid56 yet */
5419 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5420 			ret = -EOPNOTSUPP;
5421 			goto out;
5422 		}
5423 		*length = min_t(u64, em->len - offset, *length);
5424 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5425 		u64 max_len;
5426 		/* For writes to RAID[56], allow a full stripeset across all disks.
5427 		   For other RAID types and for RAID[56] reads, just allow a single
5428 		   stripe (on a single disk). */
5429 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5430 		    (op == REQ_OP_WRITE)) {
5431 			max_len = stripe_len * nr_data_stripes(map) -
5432 				(offset - raid56_full_stripe_start);
5433 		} else {
5434 			/* we limit the length of each bio to what fits in a stripe */
5435 			max_len = stripe_len - stripe_offset;
5436 		}
5437 		*length = min_t(u64, em->len - offset, max_len);
5438 	} else {
5439 		*length = em->len - offset;
5440 	}
5441 
5442 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5443 	   it cares about is the length */
5444 	if (!bbio_ret)
5445 		goto out;
5446 
5447 	btrfs_dev_replace_lock(dev_replace, 0);
5448 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5449 	if (!dev_replace_is_ongoing)
5450 		btrfs_dev_replace_unlock(dev_replace, 0);
5451 	else
5452 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5453 
5454 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5455 	    op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5456 	    op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5457 		/*
5458 		 * in dev-replace case, for repair case (that's the only
5459 		 * case where the mirror is selected explicitly when
5460 		 * calling btrfs_map_block), blocks left of the left cursor
5461 		 * can also be read from the target drive.
5462 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5463 		 * the last one to the array of stripes. For READ, it also
5464 		 * needs to be supported using the same mirror number.
5465 		 * If the requested block is not left of the left cursor,
5466 		 * EIO is returned. This can happen because btrfs_num_copies()
5467 		 * returns one more in the dev-replace case.
5468 		 */
5469 		u64 tmp_length = *length;
5470 		struct btrfs_bio *tmp_bbio = NULL;
5471 		int tmp_num_stripes;
5472 		u64 srcdev_devid = dev_replace->srcdev->devid;
5473 		int index_srcdev = 0;
5474 		int found = 0;
5475 		u64 physical_of_found = 0;
5476 
5477 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5478 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5479 		if (ret) {
5480 			WARN_ON(tmp_bbio != NULL);
5481 			goto out;
5482 		}
5483 
5484 		tmp_num_stripes = tmp_bbio->num_stripes;
5485 		if (mirror_num > tmp_num_stripes) {
5486 			/*
5487 			 * REQ_GET_READ_MIRRORS does not contain this
5488 			 * mirror, that means that the requested area
5489 			 * is not left of the left cursor
5490 			 */
5491 			ret = -EIO;
5492 			btrfs_put_bbio(tmp_bbio);
5493 			goto out;
5494 		}
5495 
5496 		/*
5497 		 * process the rest of the function using the mirror_num
5498 		 * of the source drive. Therefore look it up first.
5499 		 * At the end, patch the device pointer to the one of the
5500 		 * target drive.
5501 		 */
5502 		for (i = 0; i < tmp_num_stripes; i++) {
5503 			if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5504 				continue;
5505 
5506 			/*
5507 			 * In case of DUP, in order to keep it simple, only add
5508 			 * the mirror with the lowest physical address
5509 			 */
5510 			if (found &&
5511 			    physical_of_found <= tmp_bbio->stripes[i].physical)
5512 				continue;
5513 
5514 			index_srcdev = i;
5515 			found = 1;
5516 			physical_of_found = tmp_bbio->stripes[i].physical;
5517 		}
5518 
5519 		btrfs_put_bbio(tmp_bbio);
5520 
5521 		if (!found) {
5522 			WARN_ON(1);
5523 			ret = -EIO;
5524 			goto out;
5525 		}
5526 
5527 		mirror_num = index_srcdev + 1;
5528 		patch_the_first_stripe_for_dev_replace = 1;
5529 		physical_to_patch_in_first_stripe = physical_of_found;
5530 	} else if (mirror_num > map->num_stripes) {
5531 		mirror_num = 0;
5532 	}
5533 
5534 	num_stripes = 1;
5535 	stripe_index = 0;
5536 	stripe_nr_orig = stripe_nr;
5537 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5538 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5539 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5540 			    (offset + *length);
5541 
5542 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5543 		if (op == REQ_OP_DISCARD)
5544 			num_stripes = min_t(u64, map->num_stripes,
5545 					    stripe_nr_end - stripe_nr_orig);
5546 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5547 				&stripe_index);
5548 		if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5549 		    op != REQ_GET_READ_MIRRORS)
5550 			mirror_num = 1;
5551 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5552 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5553 		    op == REQ_GET_READ_MIRRORS)
5554 			num_stripes = map->num_stripes;
5555 		else if (mirror_num)
5556 			stripe_index = mirror_num - 1;
5557 		else {
5558 			stripe_index = find_live_mirror(fs_info, map, 0,
5559 					    map->num_stripes,
5560 					    current->pid % map->num_stripes,
5561 					    dev_replace_is_ongoing);
5562 			mirror_num = stripe_index + 1;
5563 		}
5564 
5565 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5566 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5567 		    op == REQ_GET_READ_MIRRORS) {
5568 			num_stripes = map->num_stripes;
5569 		} else if (mirror_num) {
5570 			stripe_index = mirror_num - 1;
5571 		} else {
5572 			mirror_num = 1;
5573 		}
5574 
5575 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5576 		u32 factor = map->num_stripes / map->sub_stripes;
5577 
5578 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5579 		stripe_index *= map->sub_stripes;
5580 
5581 		if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5582 			num_stripes = map->sub_stripes;
5583 		else if (op == REQ_OP_DISCARD)
5584 			num_stripes = min_t(u64, map->sub_stripes *
5585 					    (stripe_nr_end - stripe_nr_orig),
5586 					    map->num_stripes);
5587 		else if (mirror_num)
5588 			stripe_index += mirror_num - 1;
5589 		else {
5590 			int old_stripe_index = stripe_index;
5591 			stripe_index = find_live_mirror(fs_info, map,
5592 					      stripe_index,
5593 					      map->sub_stripes, stripe_index +
5594 					      current->pid % map->sub_stripes,
5595 					      dev_replace_is_ongoing);
5596 			mirror_num = stripe_index - old_stripe_index + 1;
5597 		}
5598 
5599 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5600 		if (need_raid_map &&
5601 		    (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5602 		     mirror_num > 1)) {
5603 			/* push stripe_nr back to the start of the full stripe */
5604 			stripe_nr = div_u64(raid56_full_stripe_start,
5605 					stripe_len * nr_data_stripes(map));
5606 
5607 			/* RAID[56] write or recovery. Return all stripes */
5608 			num_stripes = map->num_stripes;
5609 			max_errors = nr_parity_stripes(map);
5610 
5611 			*length = map->stripe_len;
5612 			stripe_index = 0;
5613 			stripe_offset = 0;
5614 		} else {
5615 			/*
5616 			 * Mirror #0 or #1 means the original data block.
5617 			 * Mirror #2 is RAID5 parity block.
5618 			 * Mirror #3 is RAID6 Q block.
5619 			 */
5620 			stripe_nr = div_u64_rem(stripe_nr,
5621 					nr_data_stripes(map), &stripe_index);
5622 			if (mirror_num > 1)
5623 				stripe_index = nr_data_stripes(map) +
5624 						mirror_num - 2;
5625 
5626 			/* We distribute the parity blocks across stripes */
5627 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5628 					&stripe_index);
5629 			if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5630 			    op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5631 				mirror_num = 1;
5632 		}
5633 	} else {
5634 		/*
5635 		 * after this, stripe_nr is the number of stripes on this
5636 		 * device we have to walk to find the data, and stripe_index is
5637 		 * the number of our device in the stripe array
5638 		 */
5639 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5640 				&stripe_index);
5641 		mirror_num = stripe_index + 1;
5642 	}
5643 	if (stripe_index >= map->num_stripes) {
5644 		btrfs_crit(fs_info,
5645 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5646 			   stripe_index, map->num_stripes);
5647 		ret = -EINVAL;
5648 		goto out;
5649 	}
5650 
5651 	num_alloc_stripes = num_stripes;
5652 	if (dev_replace_is_ongoing) {
5653 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5654 			num_alloc_stripes <<= 1;
5655 		if (op == REQ_GET_READ_MIRRORS)
5656 			num_alloc_stripes++;
5657 		tgtdev_indexes = num_stripes;
5658 	}
5659 
5660 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5661 	if (!bbio) {
5662 		ret = -ENOMEM;
5663 		goto out;
5664 	}
5665 	if (dev_replace_is_ongoing)
5666 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5667 
5668 	/* build raid_map */
5669 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5670 	    need_raid_map &&
5671 	    ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5672 	    mirror_num > 1)) {
5673 		u64 tmp;
5674 		unsigned rot;
5675 
5676 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5677 				 sizeof(struct btrfs_bio_stripe) *
5678 				 num_alloc_stripes +
5679 				 sizeof(int) * tgtdev_indexes);
5680 
5681 		/* Work out the disk rotation on this stripe-set */
5682 		div_u64_rem(stripe_nr, num_stripes, &rot);
5683 
5684 		/* Fill in the logical address of each stripe */
5685 		tmp = stripe_nr * nr_data_stripes(map);
5686 		for (i = 0; i < nr_data_stripes(map); i++)
5687 			bbio->raid_map[(i+rot) % num_stripes] =
5688 				em->start + (tmp + i) * map->stripe_len;
5689 
5690 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5691 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5692 			bbio->raid_map[(i+rot+1) % num_stripes] =
5693 				RAID6_Q_STRIPE;
5694 	}
5695 
5696 	if (op == REQ_OP_DISCARD) {
5697 		u32 factor = 0;
5698 		u32 sub_stripes = 0;
5699 		u64 stripes_per_dev = 0;
5700 		u32 remaining_stripes = 0;
5701 		u32 last_stripe = 0;
5702 
5703 		if (map->type &
5704 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5705 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5706 				sub_stripes = 1;
5707 			else
5708 				sub_stripes = map->sub_stripes;
5709 
5710 			factor = map->num_stripes / sub_stripes;
5711 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5712 						      stripe_nr_orig,
5713 						      factor,
5714 						      &remaining_stripes);
5715 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5716 			last_stripe *= sub_stripes;
5717 		}
5718 
5719 		for (i = 0; i < num_stripes; i++) {
5720 			bbio->stripes[i].physical =
5721 				map->stripes[stripe_index].physical +
5722 				stripe_offset + stripe_nr * map->stripe_len;
5723 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5724 
5725 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5726 					 BTRFS_BLOCK_GROUP_RAID10)) {
5727 				bbio->stripes[i].length = stripes_per_dev *
5728 							  map->stripe_len;
5729 
5730 				if (i / sub_stripes < remaining_stripes)
5731 					bbio->stripes[i].length +=
5732 						map->stripe_len;
5733 
5734 				/*
5735 				 * Special for the first stripe and
5736 				 * the last stripe:
5737 				 *
5738 				 * |-------|...|-------|
5739 				 *     |----------|
5740 				 *    off     end_off
5741 				 */
5742 				if (i < sub_stripes)
5743 					bbio->stripes[i].length -=
5744 						stripe_offset;
5745 
5746 				if (stripe_index >= last_stripe &&
5747 				    stripe_index <= (last_stripe +
5748 						     sub_stripes - 1))
5749 					bbio->stripes[i].length -=
5750 						stripe_end_offset;
5751 
5752 				if (i == sub_stripes - 1)
5753 					stripe_offset = 0;
5754 			} else
5755 				bbio->stripes[i].length = *length;
5756 
5757 			stripe_index++;
5758 			if (stripe_index == map->num_stripes) {
5759 				/* This could only happen for RAID0/10 */
5760 				stripe_index = 0;
5761 				stripe_nr++;
5762 			}
5763 		}
5764 	} else {
5765 		for (i = 0; i < num_stripes; i++) {
5766 			bbio->stripes[i].physical =
5767 				map->stripes[stripe_index].physical +
5768 				stripe_offset +
5769 				stripe_nr * map->stripe_len;
5770 			bbio->stripes[i].dev =
5771 				map->stripes[stripe_index].dev;
5772 			stripe_index++;
5773 		}
5774 	}
5775 
5776 	if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5777 		max_errors = btrfs_chunk_max_errors(map);
5778 
5779 	if (bbio->raid_map)
5780 		sort_parity_stripes(bbio, num_stripes);
5781 
5782 	tgtdev_indexes = 0;
5783 	if (dev_replace_is_ongoing &&
5784 	   (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5785 	    dev_replace->tgtdev != NULL) {
5786 		int index_where_to_add;
5787 		u64 srcdev_devid = dev_replace->srcdev->devid;
5788 
5789 		/*
5790 		 * duplicate the write operations while the dev replace
5791 		 * procedure is running. Since the copying of the old disk
5792 		 * to the new disk takes place at run time while the
5793 		 * filesystem is mounted writable, the regular write
5794 		 * operations to the old disk have to be duplicated to go
5795 		 * to the new disk as well.
5796 		 * Note that device->missing is handled by the caller, and
5797 		 * that the write to the old disk is already set up in the
5798 		 * stripes array.
5799 		 */
5800 		index_where_to_add = num_stripes;
5801 		for (i = 0; i < num_stripes; i++) {
5802 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5803 				/* write to new disk, too */
5804 				struct btrfs_bio_stripe *new =
5805 					bbio->stripes + index_where_to_add;
5806 				struct btrfs_bio_stripe *old =
5807 					bbio->stripes + i;
5808 
5809 				new->physical = old->physical;
5810 				new->length = old->length;
5811 				new->dev = dev_replace->tgtdev;
5812 				bbio->tgtdev_map[i] = index_where_to_add;
5813 				index_where_to_add++;
5814 				max_errors++;
5815 				tgtdev_indexes++;
5816 			}
5817 		}
5818 		num_stripes = index_where_to_add;
5819 	} else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5820 		   dev_replace->tgtdev != NULL) {
5821 		u64 srcdev_devid = dev_replace->srcdev->devid;
5822 		int index_srcdev = 0;
5823 		int found = 0;
5824 		u64 physical_of_found = 0;
5825 
5826 		/*
5827 		 * During the dev-replace procedure, the target drive can
5828 		 * also be used to read data in case it is needed to repair
5829 		 * a corrupt block elsewhere. This is possible if the
5830 		 * requested area is left of the left cursor. In this area,
5831 		 * the target drive is a full copy of the source drive.
5832 		 */
5833 		for (i = 0; i < num_stripes; i++) {
5834 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5835 				/*
5836 				 * In case of DUP, in order to keep it
5837 				 * simple, only add the mirror with the
5838 				 * lowest physical address
5839 				 */
5840 				if (found &&
5841 				    physical_of_found <=
5842 				     bbio->stripes[i].physical)
5843 					continue;
5844 				index_srcdev = i;
5845 				found = 1;
5846 				physical_of_found = bbio->stripes[i].physical;
5847 			}
5848 		}
5849 		if (found) {
5850 			struct btrfs_bio_stripe *tgtdev_stripe =
5851 				bbio->stripes + num_stripes;
5852 
5853 			tgtdev_stripe->physical = physical_of_found;
5854 			tgtdev_stripe->length =
5855 				bbio->stripes[index_srcdev].length;
5856 			tgtdev_stripe->dev = dev_replace->tgtdev;
5857 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5858 
5859 			tgtdev_indexes++;
5860 			num_stripes++;
5861 		}
5862 	}
5863 
5864 	*bbio_ret = bbio;
5865 	bbio->map_type = map->type;
5866 	bbio->num_stripes = num_stripes;
5867 	bbio->max_errors = max_errors;
5868 	bbio->mirror_num = mirror_num;
5869 	bbio->num_tgtdevs = tgtdev_indexes;
5870 
5871 	/*
5872 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5873 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5874 	 * available as a mirror
5875 	 */
5876 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5877 		WARN_ON(num_stripes > 1);
5878 		bbio->stripes[0].dev = dev_replace->tgtdev;
5879 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5880 		bbio->mirror_num = map->num_stripes + 1;
5881 	}
5882 out:
5883 	if (dev_replace_is_ongoing) {
5884 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5885 		btrfs_dev_replace_unlock(dev_replace, 0);
5886 	}
5887 	free_extent_map(em);
5888 	return ret;
5889 }
5890 
5891 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5892 		      u64 logical, u64 *length,
5893 		      struct btrfs_bio **bbio_ret, int mirror_num)
5894 {
5895 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5896 				 mirror_num, 0);
5897 }
5898 
5899 /* For Scrub/replace */
5900 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5901 		     u64 logical, u64 *length,
5902 		     struct btrfs_bio **bbio_ret, int mirror_num,
5903 		     int need_raid_map)
5904 {
5905 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5906 				 mirror_num, need_raid_map);
5907 }
5908 
5909 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5910 		     u64 chunk_start, u64 physical, u64 devid,
5911 		     u64 **logical, int *naddrs, int *stripe_len)
5912 {
5913 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5914 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5915 	struct extent_map *em;
5916 	struct map_lookup *map;
5917 	u64 *buf;
5918 	u64 bytenr;
5919 	u64 length;
5920 	u64 stripe_nr;
5921 	u64 rmap_len;
5922 	int i, j, nr = 0;
5923 
5924 	read_lock(&em_tree->lock);
5925 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5926 	read_unlock(&em_tree->lock);
5927 
5928 	if (!em) {
5929 		btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5930 			chunk_start);
5931 		return -EIO;
5932 	}
5933 
5934 	if (em->start != chunk_start) {
5935 		btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5936 		       em->start, chunk_start);
5937 		free_extent_map(em);
5938 		return -EIO;
5939 	}
5940 	map = em->map_lookup;
5941 
5942 	length = em->len;
5943 	rmap_len = map->stripe_len;
5944 
5945 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5946 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5947 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5948 		length = div_u64(length, map->num_stripes);
5949 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5950 		length = div_u64(length, nr_data_stripes(map));
5951 		rmap_len = map->stripe_len * nr_data_stripes(map);
5952 	}
5953 
5954 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5955 	BUG_ON(!buf); /* -ENOMEM */
5956 
5957 	for (i = 0; i < map->num_stripes; i++) {
5958 		if (devid && map->stripes[i].dev->devid != devid)
5959 			continue;
5960 		if (map->stripes[i].physical > physical ||
5961 		    map->stripes[i].physical + length <= physical)
5962 			continue;
5963 
5964 		stripe_nr = physical - map->stripes[i].physical;
5965 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5966 
5967 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5968 			stripe_nr = stripe_nr * map->num_stripes + i;
5969 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5970 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5971 			stripe_nr = stripe_nr * map->num_stripes + i;
5972 		} /* else if RAID[56], multiply by nr_data_stripes().
5973 		   * Alternatively, just use rmap_len below instead of
5974 		   * map->stripe_len */
5975 
5976 		bytenr = chunk_start + stripe_nr * rmap_len;
5977 		WARN_ON(nr >= map->num_stripes);
5978 		for (j = 0; j < nr; j++) {
5979 			if (buf[j] == bytenr)
5980 				break;
5981 		}
5982 		if (j == nr) {
5983 			WARN_ON(nr >= map->num_stripes);
5984 			buf[nr++] = bytenr;
5985 		}
5986 	}
5987 
5988 	*logical = buf;
5989 	*naddrs = nr;
5990 	*stripe_len = rmap_len;
5991 
5992 	free_extent_map(em);
5993 	return 0;
5994 }
5995 
5996 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5997 {
5998 	bio->bi_private = bbio->private;
5999 	bio->bi_end_io = bbio->end_io;
6000 	bio_endio(bio);
6001 
6002 	btrfs_put_bbio(bbio);
6003 }
6004 
6005 static void btrfs_end_bio(struct bio *bio)
6006 {
6007 	struct btrfs_bio *bbio = bio->bi_private;
6008 	int is_orig_bio = 0;
6009 
6010 	if (bio->bi_error) {
6011 		atomic_inc(&bbio->error);
6012 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6013 			unsigned int stripe_index =
6014 				btrfs_io_bio(bio)->stripe_index;
6015 			struct btrfs_device *dev;
6016 
6017 			BUG_ON(stripe_index >= bbio->num_stripes);
6018 			dev = bbio->stripes[stripe_index].dev;
6019 			if (dev->bdev) {
6020 				if (bio_op(bio) == REQ_OP_WRITE)
6021 					btrfs_dev_stat_inc(dev,
6022 						BTRFS_DEV_STAT_WRITE_ERRS);
6023 				else
6024 					btrfs_dev_stat_inc(dev,
6025 						BTRFS_DEV_STAT_READ_ERRS);
6026 				if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6027 					btrfs_dev_stat_inc(dev,
6028 						BTRFS_DEV_STAT_FLUSH_ERRS);
6029 				btrfs_dev_stat_print_on_error(dev);
6030 			}
6031 		}
6032 	}
6033 
6034 	if (bio == bbio->orig_bio)
6035 		is_orig_bio = 1;
6036 
6037 	btrfs_bio_counter_dec(bbio->fs_info);
6038 
6039 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6040 		if (!is_orig_bio) {
6041 			bio_put(bio);
6042 			bio = bbio->orig_bio;
6043 		}
6044 
6045 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6046 		/* only send an error to the higher layers if it is
6047 		 * beyond the tolerance of the btrfs bio
6048 		 */
6049 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6050 			bio->bi_error = -EIO;
6051 		} else {
6052 			/*
6053 			 * this bio is actually up to date, we didn't
6054 			 * go over the max number of errors
6055 			 */
6056 			bio->bi_error = 0;
6057 		}
6058 
6059 		btrfs_end_bbio(bbio, bio);
6060 	} else if (!is_orig_bio) {
6061 		bio_put(bio);
6062 	}
6063 }
6064 
6065 /*
6066  * see run_scheduled_bios for a description of why bios are collected for
6067  * async submit.
6068  *
6069  * This will add one bio to the pending list for a device and make sure
6070  * the work struct is scheduled.
6071  */
6072 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6073 					struct btrfs_device *device,
6074 					struct bio *bio)
6075 {
6076 	int should_queue = 1;
6077 	struct btrfs_pending_bios *pending_bios;
6078 
6079 	if (device->missing || !device->bdev) {
6080 		bio_io_error(bio);
6081 		return;
6082 	}
6083 
6084 	/* don't bother with additional async steps for reads, right now */
6085 	if (bio_op(bio) == REQ_OP_READ) {
6086 		bio_get(bio);
6087 		btrfsic_submit_bio(bio);
6088 		bio_put(bio);
6089 		return;
6090 	}
6091 
6092 	/*
6093 	 * nr_async_bios allows us to reliably return congestion to the
6094 	 * higher layers.  Otherwise, the async bio makes it appear we have
6095 	 * made progress against dirty pages when we've really just put it
6096 	 * on a queue for later
6097 	 */
6098 	atomic_inc(&root->fs_info->nr_async_bios);
6099 	WARN_ON(bio->bi_next);
6100 	bio->bi_next = NULL;
6101 
6102 	spin_lock(&device->io_lock);
6103 	if (bio->bi_opf & REQ_SYNC)
6104 		pending_bios = &device->pending_sync_bios;
6105 	else
6106 		pending_bios = &device->pending_bios;
6107 
6108 	if (pending_bios->tail)
6109 		pending_bios->tail->bi_next = bio;
6110 
6111 	pending_bios->tail = bio;
6112 	if (!pending_bios->head)
6113 		pending_bios->head = bio;
6114 	if (device->running_pending)
6115 		should_queue = 0;
6116 
6117 	spin_unlock(&device->io_lock);
6118 
6119 	if (should_queue)
6120 		btrfs_queue_work(root->fs_info->submit_workers,
6121 				 &device->work);
6122 }
6123 
6124 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6125 			      struct bio *bio, u64 physical, int dev_nr,
6126 			      int async)
6127 {
6128 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6129 
6130 	bio->bi_private = bbio;
6131 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6132 	bio->bi_end_io = btrfs_end_bio;
6133 	bio->bi_iter.bi_sector = physical >> 9;
6134 #ifdef DEBUG
6135 	{
6136 		struct rcu_string *name;
6137 
6138 		rcu_read_lock();
6139 		name = rcu_dereference(dev->name);
6140 		btrfs_debug(fs_info,
6141 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6142 			bio_op(bio), bio->bi_opf,
6143 			(u64)bio->bi_iter.bi_sector,
6144 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6145 			bio->bi_iter.bi_size);
6146 		rcu_read_unlock();
6147 	}
6148 #endif
6149 	bio->bi_bdev = dev->bdev;
6150 
6151 	btrfs_bio_counter_inc_noblocked(root->fs_info);
6152 
6153 	if (async)
6154 		btrfs_schedule_bio(root, dev, bio);
6155 	else
6156 		btrfsic_submit_bio(bio);
6157 }
6158 
6159 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6160 {
6161 	atomic_inc(&bbio->error);
6162 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6163 		/* Should be the original bio. */
6164 		WARN_ON(bio != bbio->orig_bio);
6165 
6166 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6167 		bio->bi_iter.bi_sector = logical >> 9;
6168 		bio->bi_error = -EIO;
6169 		btrfs_end_bbio(bbio, bio);
6170 	}
6171 }
6172 
6173 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6174 		  int mirror_num, int async_submit)
6175 {
6176 	struct btrfs_device *dev;
6177 	struct bio *first_bio = bio;
6178 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6179 	u64 length = 0;
6180 	u64 map_length;
6181 	int ret;
6182 	int dev_nr;
6183 	int total_devs;
6184 	struct btrfs_bio *bbio = NULL;
6185 
6186 	length = bio->bi_iter.bi_size;
6187 	map_length = length;
6188 
6189 	btrfs_bio_counter_inc_blocked(root->fs_info);
6190 	ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6191 				&map_length, &bbio, mirror_num, 1);
6192 	if (ret) {
6193 		btrfs_bio_counter_dec(root->fs_info);
6194 		return ret;
6195 	}
6196 
6197 	total_devs = bbio->num_stripes;
6198 	bbio->orig_bio = first_bio;
6199 	bbio->private = first_bio->bi_private;
6200 	bbio->end_io = first_bio->bi_end_io;
6201 	bbio->fs_info = root->fs_info;
6202 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6203 
6204 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6205 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6206 		/* In this case, map_length has been set to the length of
6207 		   a single stripe; not the whole write */
6208 		if (bio_op(bio) == REQ_OP_WRITE) {
6209 			ret = raid56_parity_write(root, bio, bbio, map_length);
6210 		} else {
6211 			ret = raid56_parity_recover(root, bio, bbio, map_length,
6212 						    mirror_num, 1);
6213 		}
6214 
6215 		btrfs_bio_counter_dec(root->fs_info);
6216 		return ret;
6217 	}
6218 
6219 	if (map_length < length) {
6220 		btrfs_crit(root->fs_info,
6221 			   "mapping failed logical %llu bio len %llu len %llu",
6222 			   logical, length, map_length);
6223 		BUG();
6224 	}
6225 
6226 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6227 		dev = bbio->stripes[dev_nr].dev;
6228 		if (!dev || !dev->bdev ||
6229 		    (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
6230 			bbio_error(bbio, first_bio, logical);
6231 			continue;
6232 		}
6233 
6234 		if (dev_nr < total_devs - 1) {
6235 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6236 			BUG_ON(!bio); /* -ENOMEM */
6237 		} else
6238 			bio = first_bio;
6239 
6240 		submit_stripe_bio(root, bbio, bio,
6241 				  bbio->stripes[dev_nr].physical, dev_nr,
6242 				  async_submit);
6243 	}
6244 	btrfs_bio_counter_dec(root->fs_info);
6245 	return 0;
6246 }
6247 
6248 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6249 				       u8 *uuid, u8 *fsid)
6250 {
6251 	struct btrfs_device *device;
6252 	struct btrfs_fs_devices *cur_devices;
6253 
6254 	cur_devices = fs_info->fs_devices;
6255 	while (cur_devices) {
6256 		if (!fsid ||
6257 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6258 			device = __find_device(&cur_devices->devices,
6259 					       devid, uuid);
6260 			if (device)
6261 				return device;
6262 		}
6263 		cur_devices = cur_devices->seed;
6264 	}
6265 	return NULL;
6266 }
6267 
6268 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6269 					    struct btrfs_fs_devices *fs_devices,
6270 					    u64 devid, u8 *dev_uuid)
6271 {
6272 	struct btrfs_device *device;
6273 
6274 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6275 	if (IS_ERR(device))
6276 		return NULL;
6277 
6278 	list_add(&device->dev_list, &fs_devices->devices);
6279 	device->fs_devices = fs_devices;
6280 	fs_devices->num_devices++;
6281 
6282 	device->missing = 1;
6283 	fs_devices->missing_devices++;
6284 
6285 	return device;
6286 }
6287 
6288 /**
6289  * btrfs_alloc_device - allocate struct btrfs_device
6290  * @fs_info:	used only for generating a new devid, can be NULL if
6291  *		devid is provided (i.e. @devid != NULL).
6292  * @devid:	a pointer to devid for this device.  If NULL a new devid
6293  *		is generated.
6294  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6295  *		is generated.
6296  *
6297  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6298  * on error.  Returned struct is not linked onto any lists and can be
6299  * destroyed with kfree() right away.
6300  */
6301 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6302 					const u64 *devid,
6303 					const u8 *uuid)
6304 {
6305 	struct btrfs_device *dev;
6306 	u64 tmp;
6307 
6308 	if (WARN_ON(!devid && !fs_info))
6309 		return ERR_PTR(-EINVAL);
6310 
6311 	dev = __alloc_device();
6312 	if (IS_ERR(dev))
6313 		return dev;
6314 
6315 	if (devid)
6316 		tmp = *devid;
6317 	else {
6318 		int ret;
6319 
6320 		ret = find_next_devid(fs_info, &tmp);
6321 		if (ret) {
6322 			kfree(dev);
6323 			return ERR_PTR(ret);
6324 		}
6325 	}
6326 	dev->devid = tmp;
6327 
6328 	if (uuid)
6329 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6330 	else
6331 		generate_random_uuid(dev->uuid);
6332 
6333 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6334 			pending_bios_fn, NULL, NULL);
6335 
6336 	return dev;
6337 }
6338 
6339 /* Return -EIO if any error, otherwise return 0. */
6340 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6341 				   struct extent_buffer *leaf,
6342 				   struct btrfs_chunk *chunk, u64 logical)
6343 {
6344 	u64 length;
6345 	u64 stripe_len;
6346 	u16 num_stripes;
6347 	u16 sub_stripes;
6348 	u64 type;
6349 
6350 	length = btrfs_chunk_length(leaf, chunk);
6351 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6352 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6353 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6354 	type = btrfs_chunk_type(leaf, chunk);
6355 
6356 	if (!num_stripes) {
6357 		btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6358 			  num_stripes);
6359 		return -EIO;
6360 	}
6361 	if (!IS_ALIGNED(logical, root->sectorsize)) {
6362 		btrfs_err(root->fs_info,
6363 			  "invalid chunk logical %llu", logical);
6364 		return -EIO;
6365 	}
6366 	if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6367 		btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6368 			  btrfs_chunk_sector_size(leaf, chunk));
6369 		return -EIO;
6370 	}
6371 	if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6372 		btrfs_err(root->fs_info,
6373 			"invalid chunk length %llu", length);
6374 		return -EIO;
6375 	}
6376 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6377 		btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6378 			  stripe_len);
6379 		return -EIO;
6380 	}
6381 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6382 	    type) {
6383 		btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6384 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6385 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6386 			  btrfs_chunk_type(leaf, chunk));
6387 		return -EIO;
6388 	}
6389 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6390 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6391 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6392 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6393 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6394 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6395 	     num_stripes != 1)) {
6396 		btrfs_err(root->fs_info,
6397 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6398 			num_stripes, sub_stripes,
6399 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6400 		return -EIO;
6401 	}
6402 
6403 	return 0;
6404 }
6405 
6406 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6407 			  struct extent_buffer *leaf,
6408 			  struct btrfs_chunk *chunk)
6409 {
6410 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6411 	struct map_lookup *map;
6412 	struct extent_map *em;
6413 	u64 logical;
6414 	u64 length;
6415 	u64 stripe_len;
6416 	u64 devid;
6417 	u8 uuid[BTRFS_UUID_SIZE];
6418 	int num_stripes;
6419 	int ret;
6420 	int i;
6421 
6422 	logical = key->offset;
6423 	length = btrfs_chunk_length(leaf, chunk);
6424 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6425 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6426 
6427 	ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6428 	if (ret)
6429 		return ret;
6430 
6431 	read_lock(&map_tree->map_tree.lock);
6432 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6433 	read_unlock(&map_tree->map_tree.lock);
6434 
6435 	/* already mapped? */
6436 	if (em && em->start <= logical && em->start + em->len > logical) {
6437 		free_extent_map(em);
6438 		return 0;
6439 	} else if (em) {
6440 		free_extent_map(em);
6441 	}
6442 
6443 	em = alloc_extent_map();
6444 	if (!em)
6445 		return -ENOMEM;
6446 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6447 	if (!map) {
6448 		free_extent_map(em);
6449 		return -ENOMEM;
6450 	}
6451 
6452 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6453 	em->map_lookup = map;
6454 	em->start = logical;
6455 	em->len = length;
6456 	em->orig_start = 0;
6457 	em->block_start = 0;
6458 	em->block_len = em->len;
6459 
6460 	map->num_stripes = num_stripes;
6461 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6462 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6463 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6464 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6465 	map->type = btrfs_chunk_type(leaf, chunk);
6466 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6467 	for (i = 0; i < num_stripes; i++) {
6468 		map->stripes[i].physical =
6469 			btrfs_stripe_offset_nr(leaf, chunk, i);
6470 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6471 		read_extent_buffer(leaf, uuid, (unsigned long)
6472 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6473 				   BTRFS_UUID_SIZE);
6474 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6475 							uuid, NULL);
6476 		if (!map->stripes[i].dev &&
6477 		    !btrfs_test_opt(root->fs_info, DEGRADED)) {
6478 			free_extent_map(em);
6479 			return -EIO;
6480 		}
6481 		if (!map->stripes[i].dev) {
6482 			map->stripes[i].dev =
6483 				add_missing_dev(root, root->fs_info->fs_devices,
6484 						devid, uuid);
6485 			if (!map->stripes[i].dev) {
6486 				free_extent_map(em);
6487 				return -EIO;
6488 			}
6489 			btrfs_warn(root->fs_info,
6490 				   "devid %llu uuid %pU is missing",
6491 				   devid, uuid);
6492 		}
6493 		map->stripes[i].dev->in_fs_metadata = 1;
6494 	}
6495 
6496 	write_lock(&map_tree->map_tree.lock);
6497 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6498 	write_unlock(&map_tree->map_tree.lock);
6499 	BUG_ON(ret); /* Tree corruption */
6500 	free_extent_map(em);
6501 
6502 	return 0;
6503 }
6504 
6505 static void fill_device_from_item(struct extent_buffer *leaf,
6506 				 struct btrfs_dev_item *dev_item,
6507 				 struct btrfs_device *device)
6508 {
6509 	unsigned long ptr;
6510 
6511 	device->devid = btrfs_device_id(leaf, dev_item);
6512 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6513 	device->total_bytes = device->disk_total_bytes;
6514 	device->commit_total_bytes = device->disk_total_bytes;
6515 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6516 	device->commit_bytes_used = device->bytes_used;
6517 	device->type = btrfs_device_type(leaf, dev_item);
6518 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6519 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6520 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6521 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6522 	device->is_tgtdev_for_dev_replace = 0;
6523 
6524 	ptr = btrfs_device_uuid(dev_item);
6525 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6526 }
6527 
6528 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6529 						  u8 *fsid)
6530 {
6531 	struct btrfs_fs_devices *fs_devices;
6532 	int ret;
6533 
6534 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6535 
6536 	fs_devices = root->fs_info->fs_devices->seed;
6537 	while (fs_devices) {
6538 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6539 			return fs_devices;
6540 
6541 		fs_devices = fs_devices->seed;
6542 	}
6543 
6544 	fs_devices = find_fsid(fsid);
6545 	if (!fs_devices) {
6546 		if (!btrfs_test_opt(root->fs_info, DEGRADED))
6547 			return ERR_PTR(-ENOENT);
6548 
6549 		fs_devices = alloc_fs_devices(fsid);
6550 		if (IS_ERR(fs_devices))
6551 			return fs_devices;
6552 
6553 		fs_devices->seeding = 1;
6554 		fs_devices->opened = 1;
6555 		return fs_devices;
6556 	}
6557 
6558 	fs_devices = clone_fs_devices(fs_devices);
6559 	if (IS_ERR(fs_devices))
6560 		return fs_devices;
6561 
6562 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6563 				   root->fs_info->bdev_holder);
6564 	if (ret) {
6565 		free_fs_devices(fs_devices);
6566 		fs_devices = ERR_PTR(ret);
6567 		goto out;
6568 	}
6569 
6570 	if (!fs_devices->seeding) {
6571 		__btrfs_close_devices(fs_devices);
6572 		free_fs_devices(fs_devices);
6573 		fs_devices = ERR_PTR(-EINVAL);
6574 		goto out;
6575 	}
6576 
6577 	fs_devices->seed = root->fs_info->fs_devices->seed;
6578 	root->fs_info->fs_devices->seed = fs_devices;
6579 out:
6580 	return fs_devices;
6581 }
6582 
6583 static int read_one_dev(struct btrfs_root *root,
6584 			struct extent_buffer *leaf,
6585 			struct btrfs_dev_item *dev_item)
6586 {
6587 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6588 	struct btrfs_device *device;
6589 	u64 devid;
6590 	int ret;
6591 	u8 fs_uuid[BTRFS_UUID_SIZE];
6592 	u8 dev_uuid[BTRFS_UUID_SIZE];
6593 
6594 	devid = btrfs_device_id(leaf, dev_item);
6595 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6596 			   BTRFS_UUID_SIZE);
6597 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6598 			   BTRFS_UUID_SIZE);
6599 
6600 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6601 		fs_devices = open_seed_devices(root, fs_uuid);
6602 		if (IS_ERR(fs_devices))
6603 			return PTR_ERR(fs_devices);
6604 	}
6605 
6606 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6607 	if (!device) {
6608 		if (!btrfs_test_opt(root->fs_info, DEGRADED))
6609 			return -EIO;
6610 
6611 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6612 		if (!device)
6613 			return -ENOMEM;
6614 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6615 				devid, dev_uuid);
6616 	} else {
6617 		if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6618 			return -EIO;
6619 
6620 		if(!device->bdev && !device->missing) {
6621 			/*
6622 			 * this happens when a device that was properly setup
6623 			 * in the device info lists suddenly goes bad.
6624 			 * device->bdev is NULL, and so we have to set
6625 			 * device->missing to one here
6626 			 */
6627 			device->fs_devices->missing_devices++;
6628 			device->missing = 1;
6629 		}
6630 
6631 		/* Move the device to its own fs_devices */
6632 		if (device->fs_devices != fs_devices) {
6633 			ASSERT(device->missing);
6634 
6635 			list_move(&device->dev_list, &fs_devices->devices);
6636 			device->fs_devices->num_devices--;
6637 			fs_devices->num_devices++;
6638 
6639 			device->fs_devices->missing_devices--;
6640 			fs_devices->missing_devices++;
6641 
6642 			device->fs_devices = fs_devices;
6643 		}
6644 	}
6645 
6646 	if (device->fs_devices != root->fs_info->fs_devices) {
6647 		BUG_ON(device->writeable);
6648 		if (device->generation !=
6649 		    btrfs_device_generation(leaf, dev_item))
6650 			return -EINVAL;
6651 	}
6652 
6653 	fill_device_from_item(leaf, dev_item, device);
6654 	device->in_fs_metadata = 1;
6655 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6656 		device->fs_devices->total_rw_bytes += device->total_bytes;
6657 		spin_lock(&root->fs_info->free_chunk_lock);
6658 		root->fs_info->free_chunk_space += device->total_bytes -
6659 			device->bytes_used;
6660 		spin_unlock(&root->fs_info->free_chunk_lock);
6661 	}
6662 	ret = 0;
6663 	return ret;
6664 }
6665 
6666 int btrfs_read_sys_array(struct btrfs_root *root)
6667 {
6668 	struct btrfs_fs_info *fs_info = root->fs_info;
6669 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6670 	struct extent_buffer *sb;
6671 	struct btrfs_disk_key *disk_key;
6672 	struct btrfs_chunk *chunk;
6673 	u8 *array_ptr;
6674 	unsigned long sb_array_offset;
6675 	int ret = 0;
6676 	u32 num_stripes;
6677 	u32 array_size;
6678 	u32 len = 0;
6679 	u32 cur_offset;
6680 	u64 type;
6681 	struct btrfs_key key;
6682 
6683 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6684 	/*
6685 	 * This will create extent buffer of nodesize, superblock size is
6686 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6687 	 * overallocate but we can keep it as-is, only the first page is used.
6688 	 */
6689 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6690 	if (IS_ERR(sb))
6691 		return PTR_ERR(sb);
6692 	set_extent_buffer_uptodate(sb);
6693 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6694 	/*
6695 	 * The sb extent buffer is artificial and just used to read the system array.
6696 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6697 	 * pages up-to-date when the page is larger: extent does not cover the
6698 	 * whole page and consequently check_page_uptodate does not find all
6699 	 * the page's extents up-to-date (the hole beyond sb),
6700 	 * write_extent_buffer then triggers a WARN_ON.
6701 	 *
6702 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6703 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6704 	 * to silence the warning eg. on PowerPC 64.
6705 	 */
6706 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6707 		SetPageUptodate(sb->pages[0]);
6708 
6709 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6710 	array_size = btrfs_super_sys_array_size(super_copy);
6711 
6712 	array_ptr = super_copy->sys_chunk_array;
6713 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6714 	cur_offset = 0;
6715 
6716 	while (cur_offset < array_size) {
6717 		disk_key = (struct btrfs_disk_key *)array_ptr;
6718 		len = sizeof(*disk_key);
6719 		if (cur_offset + len > array_size)
6720 			goto out_short_read;
6721 
6722 		btrfs_disk_key_to_cpu(&key, disk_key);
6723 
6724 		array_ptr += len;
6725 		sb_array_offset += len;
6726 		cur_offset += len;
6727 
6728 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6729 			chunk = (struct btrfs_chunk *)sb_array_offset;
6730 			/*
6731 			 * At least one btrfs_chunk with one stripe must be
6732 			 * present, exact stripe count check comes afterwards
6733 			 */
6734 			len = btrfs_chunk_item_size(1);
6735 			if (cur_offset + len > array_size)
6736 				goto out_short_read;
6737 
6738 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6739 			if (!num_stripes) {
6740 				btrfs_err(fs_info,
6741 					"invalid number of stripes %u in sys_array at offset %u",
6742 					num_stripes, cur_offset);
6743 				ret = -EIO;
6744 				break;
6745 			}
6746 
6747 			type = btrfs_chunk_type(sb, chunk);
6748 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6749 				btrfs_err(fs_info,
6750 			    "invalid chunk type %llu in sys_array at offset %u",
6751 					type, cur_offset);
6752 				ret = -EIO;
6753 				break;
6754 			}
6755 
6756 			len = btrfs_chunk_item_size(num_stripes);
6757 			if (cur_offset + len > array_size)
6758 				goto out_short_read;
6759 
6760 			ret = read_one_chunk(root, &key, sb, chunk);
6761 			if (ret)
6762 				break;
6763 		} else {
6764 			btrfs_err(fs_info,
6765 			    "unexpected item type %u in sys_array at offset %u",
6766 				  (u32)key.type, cur_offset);
6767 			ret = -EIO;
6768 			break;
6769 		}
6770 		array_ptr += len;
6771 		sb_array_offset += len;
6772 		cur_offset += len;
6773 	}
6774 	clear_extent_buffer_uptodate(sb);
6775 	free_extent_buffer_stale(sb);
6776 	return ret;
6777 
6778 out_short_read:
6779 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6780 			len, cur_offset);
6781 	clear_extent_buffer_uptodate(sb);
6782 	free_extent_buffer_stale(sb);
6783 	return -EIO;
6784 }
6785 
6786 int btrfs_read_chunk_tree(struct btrfs_root *root)
6787 {
6788 	struct btrfs_path *path;
6789 	struct extent_buffer *leaf;
6790 	struct btrfs_key key;
6791 	struct btrfs_key found_key;
6792 	int ret;
6793 	int slot;
6794 	u64 total_dev = 0;
6795 
6796 	root = root->fs_info->chunk_root;
6797 
6798 	path = btrfs_alloc_path();
6799 	if (!path)
6800 		return -ENOMEM;
6801 
6802 	mutex_lock(&uuid_mutex);
6803 	lock_chunks(root);
6804 
6805 	/*
6806 	 * Read all device items, and then all the chunk items. All
6807 	 * device items are found before any chunk item (their object id
6808 	 * is smaller than the lowest possible object id for a chunk
6809 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6810 	 */
6811 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6812 	key.offset = 0;
6813 	key.type = 0;
6814 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6815 	if (ret < 0)
6816 		goto error;
6817 	while (1) {
6818 		leaf = path->nodes[0];
6819 		slot = path->slots[0];
6820 		if (slot >= btrfs_header_nritems(leaf)) {
6821 			ret = btrfs_next_leaf(root, path);
6822 			if (ret == 0)
6823 				continue;
6824 			if (ret < 0)
6825 				goto error;
6826 			break;
6827 		}
6828 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6829 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6830 			struct btrfs_dev_item *dev_item;
6831 			dev_item = btrfs_item_ptr(leaf, slot,
6832 						  struct btrfs_dev_item);
6833 			ret = read_one_dev(root, leaf, dev_item);
6834 			if (ret)
6835 				goto error;
6836 			total_dev++;
6837 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6838 			struct btrfs_chunk *chunk;
6839 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6840 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6841 			if (ret)
6842 				goto error;
6843 		}
6844 		path->slots[0]++;
6845 	}
6846 
6847 	/*
6848 	 * After loading chunk tree, we've got all device information,
6849 	 * do another round of validation checks.
6850 	 */
6851 	if (total_dev != root->fs_info->fs_devices->total_devices) {
6852 		btrfs_err(root->fs_info,
6853 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6854 			  btrfs_super_num_devices(root->fs_info->super_copy),
6855 			  total_dev);
6856 		ret = -EINVAL;
6857 		goto error;
6858 	}
6859 	if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6860 	    root->fs_info->fs_devices->total_rw_bytes) {
6861 		btrfs_err(root->fs_info,
6862 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6863 			  btrfs_super_total_bytes(root->fs_info->super_copy),
6864 			  root->fs_info->fs_devices->total_rw_bytes);
6865 		ret = -EINVAL;
6866 		goto error;
6867 	}
6868 	ret = 0;
6869 error:
6870 	unlock_chunks(root);
6871 	mutex_unlock(&uuid_mutex);
6872 
6873 	btrfs_free_path(path);
6874 	return ret;
6875 }
6876 
6877 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6878 {
6879 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6880 	struct btrfs_device *device;
6881 
6882 	while (fs_devices) {
6883 		mutex_lock(&fs_devices->device_list_mutex);
6884 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6885 			device->dev_root = fs_info->dev_root;
6886 		mutex_unlock(&fs_devices->device_list_mutex);
6887 
6888 		fs_devices = fs_devices->seed;
6889 	}
6890 }
6891 
6892 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6893 {
6894 	int i;
6895 
6896 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6897 		btrfs_dev_stat_reset(dev, i);
6898 }
6899 
6900 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6901 {
6902 	struct btrfs_key key;
6903 	struct btrfs_key found_key;
6904 	struct btrfs_root *dev_root = fs_info->dev_root;
6905 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6906 	struct extent_buffer *eb;
6907 	int slot;
6908 	int ret = 0;
6909 	struct btrfs_device *device;
6910 	struct btrfs_path *path = NULL;
6911 	int i;
6912 
6913 	path = btrfs_alloc_path();
6914 	if (!path) {
6915 		ret = -ENOMEM;
6916 		goto out;
6917 	}
6918 
6919 	mutex_lock(&fs_devices->device_list_mutex);
6920 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6921 		int item_size;
6922 		struct btrfs_dev_stats_item *ptr;
6923 
6924 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6925 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6926 		key.offset = device->devid;
6927 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6928 		if (ret) {
6929 			__btrfs_reset_dev_stats(device);
6930 			device->dev_stats_valid = 1;
6931 			btrfs_release_path(path);
6932 			continue;
6933 		}
6934 		slot = path->slots[0];
6935 		eb = path->nodes[0];
6936 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6937 		item_size = btrfs_item_size_nr(eb, slot);
6938 
6939 		ptr = btrfs_item_ptr(eb, slot,
6940 				     struct btrfs_dev_stats_item);
6941 
6942 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6943 			if (item_size >= (1 + i) * sizeof(__le64))
6944 				btrfs_dev_stat_set(device, i,
6945 					btrfs_dev_stats_value(eb, ptr, i));
6946 			else
6947 				btrfs_dev_stat_reset(device, i);
6948 		}
6949 
6950 		device->dev_stats_valid = 1;
6951 		btrfs_dev_stat_print_on_load(device);
6952 		btrfs_release_path(path);
6953 	}
6954 	mutex_unlock(&fs_devices->device_list_mutex);
6955 
6956 out:
6957 	btrfs_free_path(path);
6958 	return ret < 0 ? ret : 0;
6959 }
6960 
6961 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6962 				struct btrfs_root *dev_root,
6963 				struct btrfs_device *device)
6964 {
6965 	struct btrfs_path *path;
6966 	struct btrfs_key key;
6967 	struct extent_buffer *eb;
6968 	struct btrfs_dev_stats_item *ptr;
6969 	int ret;
6970 	int i;
6971 
6972 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
6973 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
6974 	key.offset = device->devid;
6975 
6976 	path = btrfs_alloc_path();
6977 	BUG_ON(!path);
6978 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6979 	if (ret < 0) {
6980 		btrfs_warn_in_rcu(dev_root->fs_info,
6981 			"error %d while searching for dev_stats item for device %s",
6982 			      ret, rcu_str_deref(device->name));
6983 		goto out;
6984 	}
6985 
6986 	if (ret == 0 &&
6987 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6988 		/* need to delete old one and insert a new one */
6989 		ret = btrfs_del_item(trans, dev_root, path);
6990 		if (ret != 0) {
6991 			btrfs_warn_in_rcu(dev_root->fs_info,
6992 				"delete too small dev_stats item for device %s failed %d",
6993 				      rcu_str_deref(device->name), ret);
6994 			goto out;
6995 		}
6996 		ret = 1;
6997 	}
6998 
6999 	if (ret == 1) {
7000 		/* need to insert a new item */
7001 		btrfs_release_path(path);
7002 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7003 					      &key, sizeof(*ptr));
7004 		if (ret < 0) {
7005 			btrfs_warn_in_rcu(dev_root->fs_info,
7006 				"insert dev_stats item for device %s failed %d",
7007 				rcu_str_deref(device->name), ret);
7008 			goto out;
7009 		}
7010 	}
7011 
7012 	eb = path->nodes[0];
7013 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7014 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7015 		btrfs_set_dev_stats_value(eb, ptr, i,
7016 					  btrfs_dev_stat_read(device, i));
7017 	btrfs_mark_buffer_dirty(eb);
7018 
7019 out:
7020 	btrfs_free_path(path);
7021 	return ret;
7022 }
7023 
7024 /*
7025  * called from commit_transaction. Writes all changed device stats to disk.
7026  */
7027 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7028 			struct btrfs_fs_info *fs_info)
7029 {
7030 	struct btrfs_root *dev_root = fs_info->dev_root;
7031 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7032 	struct btrfs_device *device;
7033 	int stats_cnt;
7034 	int ret = 0;
7035 
7036 	mutex_lock(&fs_devices->device_list_mutex);
7037 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7038 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7039 			continue;
7040 
7041 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7042 		ret = update_dev_stat_item(trans, dev_root, device);
7043 		if (!ret)
7044 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7045 	}
7046 	mutex_unlock(&fs_devices->device_list_mutex);
7047 
7048 	return ret;
7049 }
7050 
7051 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7052 {
7053 	btrfs_dev_stat_inc(dev, index);
7054 	btrfs_dev_stat_print_on_error(dev);
7055 }
7056 
7057 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7058 {
7059 	if (!dev->dev_stats_valid)
7060 		return;
7061 	btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7062 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7063 			   rcu_str_deref(dev->name),
7064 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7065 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7066 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7067 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7068 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7069 }
7070 
7071 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7072 {
7073 	int i;
7074 
7075 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7076 		if (btrfs_dev_stat_read(dev, i) != 0)
7077 			break;
7078 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7079 		return; /* all values == 0, suppress message */
7080 
7081 	btrfs_info_in_rcu(dev->dev_root->fs_info,
7082 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7083 	       rcu_str_deref(dev->name),
7084 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7085 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7086 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7087 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7088 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7089 }
7090 
7091 int btrfs_get_dev_stats(struct btrfs_root *root,
7092 			struct btrfs_ioctl_get_dev_stats *stats)
7093 {
7094 	struct btrfs_device *dev;
7095 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7096 	int i;
7097 
7098 	mutex_lock(&fs_devices->device_list_mutex);
7099 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7100 	mutex_unlock(&fs_devices->device_list_mutex);
7101 
7102 	if (!dev) {
7103 		btrfs_warn(root->fs_info,
7104 			   "get dev_stats failed, device not found");
7105 		return -ENODEV;
7106 	} else if (!dev->dev_stats_valid) {
7107 		btrfs_warn(root->fs_info,
7108 			   "get dev_stats failed, not yet valid");
7109 		return -ENODEV;
7110 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7111 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7112 			if (stats->nr_items > i)
7113 				stats->values[i] =
7114 					btrfs_dev_stat_read_and_reset(dev, i);
7115 			else
7116 				btrfs_dev_stat_reset(dev, i);
7117 		}
7118 	} else {
7119 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7120 			if (stats->nr_items > i)
7121 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7122 	}
7123 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7124 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7125 	return 0;
7126 }
7127 
7128 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7129 {
7130 	struct buffer_head *bh;
7131 	struct btrfs_super_block *disk_super;
7132 	int copy_num;
7133 
7134 	if (!bdev)
7135 		return;
7136 
7137 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7138 		copy_num++) {
7139 
7140 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7141 			continue;
7142 
7143 		disk_super = (struct btrfs_super_block *)bh->b_data;
7144 
7145 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7146 		set_buffer_dirty(bh);
7147 		sync_dirty_buffer(bh);
7148 		brelse(bh);
7149 	}
7150 
7151 	/* Notify udev that device has changed */
7152 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7153 
7154 	/* Update ctime/mtime for device path for libblkid */
7155 	update_dev_time(device_path);
7156 }
7157 
7158 /*
7159  * Update the size of all devices, which is used for writing out the
7160  * super blocks.
7161  */
7162 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7163 {
7164 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7165 	struct btrfs_device *curr, *next;
7166 
7167 	if (list_empty(&fs_devices->resized_devices))
7168 		return;
7169 
7170 	mutex_lock(&fs_devices->device_list_mutex);
7171 	lock_chunks(fs_info->dev_root);
7172 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7173 				 resized_list) {
7174 		list_del_init(&curr->resized_list);
7175 		curr->commit_total_bytes = curr->disk_total_bytes;
7176 	}
7177 	unlock_chunks(fs_info->dev_root);
7178 	mutex_unlock(&fs_devices->device_list_mutex);
7179 }
7180 
7181 /* Must be invoked during the transaction commit */
7182 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7183 					struct btrfs_transaction *transaction)
7184 {
7185 	struct extent_map *em;
7186 	struct map_lookup *map;
7187 	struct btrfs_device *dev;
7188 	int i;
7189 
7190 	if (list_empty(&transaction->pending_chunks))
7191 		return;
7192 
7193 	/* In order to kick the device replace finish process */
7194 	lock_chunks(root);
7195 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7196 		map = em->map_lookup;
7197 
7198 		for (i = 0; i < map->num_stripes; i++) {
7199 			dev = map->stripes[i].dev;
7200 			dev->commit_bytes_used = dev->bytes_used;
7201 		}
7202 	}
7203 	unlock_chunks(root);
7204 }
7205 
7206 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7207 {
7208 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7209 	while (fs_devices) {
7210 		fs_devices->fs_info = fs_info;
7211 		fs_devices = fs_devices->seed;
7212 	}
7213 }
7214 
7215 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7216 {
7217 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7218 	while (fs_devices) {
7219 		fs_devices->fs_info = NULL;
7220 		fs_devices = fs_devices->seed;
7221 	}
7222 }
7223