1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/slab.h> 9 #include <linux/ratelimit.h> 10 #include <linux/kthread.h> 11 #include <linux/semaphore.h> 12 #include <linux/uuid.h> 13 #include <linux/list_sort.h> 14 #include <linux/namei.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "extent_map.h" 18 #include "disk-io.h" 19 #include "transaction.h" 20 #include "print-tree.h" 21 #include "volumes.h" 22 #include "raid56.h" 23 #include "rcu-string.h" 24 #include "dev-replace.h" 25 #include "sysfs.h" 26 #include "tree-checker.h" 27 #include "space-info.h" 28 #include "block-group.h" 29 #include "discard.h" 30 #include "zoned.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 #include "super.h" 38 39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 40 BTRFS_BLOCK_GROUP_RAID10 | \ 41 BTRFS_BLOCK_GROUP_RAID56_MASK) 42 43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 44 [BTRFS_RAID_RAID10] = { 45 .sub_stripes = 2, 46 .dev_stripes = 1, 47 .devs_max = 0, /* 0 == as many as possible */ 48 .devs_min = 2, 49 .tolerated_failures = 1, 50 .devs_increment = 2, 51 .ncopies = 2, 52 .nparity = 0, 53 .raid_name = "raid10", 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 56 }, 57 [BTRFS_RAID_RAID1] = { 58 .sub_stripes = 1, 59 .dev_stripes = 1, 60 .devs_max = 2, 61 .devs_min = 2, 62 .tolerated_failures = 1, 63 .devs_increment = 2, 64 .ncopies = 2, 65 .nparity = 0, 66 .raid_name = "raid1", 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 69 }, 70 [BTRFS_RAID_RAID1C3] = { 71 .sub_stripes = 1, 72 .dev_stripes = 1, 73 .devs_max = 3, 74 .devs_min = 3, 75 .tolerated_failures = 2, 76 .devs_increment = 3, 77 .ncopies = 3, 78 .nparity = 0, 79 .raid_name = "raid1c3", 80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 82 }, 83 [BTRFS_RAID_RAID1C4] = { 84 .sub_stripes = 1, 85 .dev_stripes = 1, 86 .devs_max = 4, 87 .devs_min = 4, 88 .tolerated_failures = 3, 89 .devs_increment = 4, 90 .ncopies = 4, 91 .nparity = 0, 92 .raid_name = "raid1c4", 93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 95 }, 96 [BTRFS_RAID_DUP] = { 97 .sub_stripes = 1, 98 .dev_stripes = 2, 99 .devs_max = 1, 100 .devs_min = 1, 101 .tolerated_failures = 0, 102 .devs_increment = 1, 103 .ncopies = 2, 104 .nparity = 0, 105 .raid_name = "dup", 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 107 .mindev_error = 0, 108 }, 109 [BTRFS_RAID_RAID0] = { 110 .sub_stripes = 1, 111 .dev_stripes = 1, 112 .devs_max = 0, 113 .devs_min = 1, 114 .tolerated_failures = 0, 115 .devs_increment = 1, 116 .ncopies = 1, 117 .nparity = 0, 118 .raid_name = "raid0", 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 120 .mindev_error = 0, 121 }, 122 [BTRFS_RAID_SINGLE] = { 123 .sub_stripes = 1, 124 .dev_stripes = 1, 125 .devs_max = 1, 126 .devs_min = 1, 127 .tolerated_failures = 0, 128 .devs_increment = 1, 129 .ncopies = 1, 130 .nparity = 0, 131 .raid_name = "single", 132 .bg_flag = 0, 133 .mindev_error = 0, 134 }, 135 [BTRFS_RAID_RAID5] = { 136 .sub_stripes = 1, 137 .dev_stripes = 1, 138 .devs_max = 0, 139 .devs_min = 2, 140 .tolerated_failures = 1, 141 .devs_increment = 1, 142 .ncopies = 1, 143 .nparity = 1, 144 .raid_name = "raid5", 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 147 }, 148 [BTRFS_RAID_RAID6] = { 149 .sub_stripes = 1, 150 .dev_stripes = 1, 151 .devs_max = 0, 152 .devs_min = 3, 153 .tolerated_failures = 2, 154 .devs_increment = 1, 155 .ncopies = 1, 156 .nparity = 2, 157 .raid_name = "raid6", 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 160 }, 161 }; 162 163 /* 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 165 * can be used as index to access btrfs_raid_array[]. 166 */ 167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 168 { 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 170 171 if (!profile) 172 return BTRFS_RAID_SINGLE; 173 174 return BTRFS_BG_FLAG_TO_INDEX(profile); 175 } 176 177 const char *btrfs_bg_type_to_raid_name(u64 flags) 178 { 179 const int index = btrfs_bg_flags_to_raid_index(flags); 180 181 if (index >= BTRFS_NR_RAID_TYPES) 182 return NULL; 183 184 return btrfs_raid_array[index].raid_name; 185 } 186 187 int btrfs_nr_parity_stripes(u64 type) 188 { 189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 190 191 return btrfs_raid_array[index].nparity; 192 } 193 194 /* 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf 196 * bytes including terminating null byte. 197 */ 198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 199 { 200 int i; 201 int ret; 202 char *bp = buf; 203 u64 flags = bg_flags; 204 u32 size_bp = size_buf; 205 206 if (!flags) { 207 strcpy(bp, "NONE"); 208 return; 209 } 210 211 #define DESCRIBE_FLAG(flag, desc) \ 212 do { \ 213 if (flags & (flag)) { \ 214 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 215 if (ret < 0 || ret >= size_bp) \ 216 goto out_overflow; \ 217 size_bp -= ret; \ 218 bp += ret; \ 219 flags &= ~(flag); \ 220 } \ 221 } while (0) 222 223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 226 227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 230 btrfs_raid_array[i].raid_name); 231 #undef DESCRIBE_FLAG 232 233 if (flags) { 234 ret = snprintf(bp, size_bp, "0x%llx|", flags); 235 size_bp -= ret; 236 } 237 238 if (size_bp < size_buf) 239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 240 241 /* 242 * The text is trimmed, it's up to the caller to provide sufficiently 243 * large buffer 244 */ 245 out_overflow:; 246 } 247 248 static int init_first_rw_device(struct btrfs_trans_handle *trans); 249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 251 252 /* 253 * Device locking 254 * ============== 255 * 256 * There are several mutexes that protect manipulation of devices and low-level 257 * structures like chunks but not block groups, extents or files 258 * 259 * uuid_mutex (global lock) 260 * ------------------------ 261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 263 * device) or requested by the device= mount option 264 * 265 * the mutex can be very coarse and can cover long-running operations 266 * 267 * protects: updates to fs_devices counters like missing devices, rw devices, 268 * seeding, structure cloning, opening/closing devices at mount/umount time 269 * 270 * global::fs_devs - add, remove, updates to the global list 271 * 272 * does not protect: manipulation of the fs_devices::devices list in general 273 * but in mount context it could be used to exclude list modifications by eg. 274 * scan ioctl 275 * 276 * btrfs_device::name - renames (write side), read is RCU 277 * 278 * fs_devices::device_list_mutex (per-fs, with RCU) 279 * ------------------------------------------------ 280 * protects updates to fs_devices::devices, ie. adding and deleting 281 * 282 * simple list traversal with read-only actions can be done with RCU protection 283 * 284 * may be used to exclude some operations from running concurrently without any 285 * modifications to the list (see write_all_supers) 286 * 287 * Is not required at mount and close times, because our device list is 288 * protected by the uuid_mutex at that point. 289 * 290 * balance_mutex 291 * ------------- 292 * protects balance structures (status, state) and context accessed from 293 * several places (internally, ioctl) 294 * 295 * chunk_mutex 296 * ----------- 297 * protects chunks, adding or removing during allocation, trim or when a new 298 * device is added/removed. Additionally it also protects post_commit_list of 299 * individual devices, since they can be added to the transaction's 300 * post_commit_list only with chunk_mutex held. 301 * 302 * cleaner_mutex 303 * ------------- 304 * a big lock that is held by the cleaner thread and prevents running subvolume 305 * cleaning together with relocation or delayed iputs 306 * 307 * 308 * Lock nesting 309 * ============ 310 * 311 * uuid_mutex 312 * device_list_mutex 313 * chunk_mutex 314 * balance_mutex 315 * 316 * 317 * Exclusive operations 318 * ==================== 319 * 320 * Maintains the exclusivity of the following operations that apply to the 321 * whole filesystem and cannot run in parallel. 322 * 323 * - Balance (*) 324 * - Device add 325 * - Device remove 326 * - Device replace (*) 327 * - Resize 328 * 329 * The device operations (as above) can be in one of the following states: 330 * 331 * - Running state 332 * - Paused state 333 * - Completed state 334 * 335 * Only device operations marked with (*) can go into the Paused state for the 336 * following reasons: 337 * 338 * - ioctl (only Balance can be Paused through ioctl) 339 * - filesystem remounted as read-only 340 * - filesystem unmounted and mounted as read-only 341 * - system power-cycle and filesystem mounted as read-only 342 * - filesystem or device errors leading to forced read-only 343 * 344 * The status of exclusive operation is set and cleared atomically. 345 * During the course of Paused state, fs_info::exclusive_operation remains set. 346 * A device operation in Paused or Running state can be canceled or resumed 347 * either by ioctl (Balance only) or when remounted as read-write. 348 * The exclusive status is cleared when the device operation is canceled or 349 * completed. 350 */ 351 352 DEFINE_MUTEX(uuid_mutex); 353 static LIST_HEAD(fs_uuids); 354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 355 { 356 return &fs_uuids; 357 } 358 359 /* 360 * alloc_fs_devices - allocate struct btrfs_fs_devices 361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 363 * 364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 365 * The returned struct is not linked onto any lists and can be destroyed with 366 * kfree() right away. 367 */ 368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 369 const u8 *metadata_fsid) 370 { 371 struct btrfs_fs_devices *fs_devs; 372 373 ASSERT(fsid || !metadata_fsid); 374 375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 376 if (!fs_devs) 377 return ERR_PTR(-ENOMEM); 378 379 mutex_init(&fs_devs->device_list_mutex); 380 381 INIT_LIST_HEAD(&fs_devs->devices); 382 INIT_LIST_HEAD(&fs_devs->alloc_list); 383 INIT_LIST_HEAD(&fs_devs->fs_list); 384 INIT_LIST_HEAD(&fs_devs->seed_list); 385 386 if (fsid) { 387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 388 memcpy(fs_devs->metadata_uuid, 389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE); 390 } 391 392 return fs_devs; 393 } 394 395 static void btrfs_free_device(struct btrfs_device *device) 396 { 397 WARN_ON(!list_empty(&device->post_commit_list)); 398 rcu_string_free(device->name); 399 extent_io_tree_release(&device->alloc_state); 400 btrfs_destroy_dev_zone_info(device); 401 kfree(device); 402 } 403 404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 405 { 406 struct btrfs_device *device; 407 408 WARN_ON(fs_devices->opened); 409 while (!list_empty(&fs_devices->devices)) { 410 device = list_entry(fs_devices->devices.next, 411 struct btrfs_device, dev_list); 412 list_del(&device->dev_list); 413 btrfs_free_device(device); 414 } 415 kfree(fs_devices); 416 } 417 418 void __exit btrfs_cleanup_fs_uuids(void) 419 { 420 struct btrfs_fs_devices *fs_devices; 421 422 while (!list_empty(&fs_uuids)) { 423 fs_devices = list_entry(fs_uuids.next, 424 struct btrfs_fs_devices, fs_list); 425 list_del(&fs_devices->fs_list); 426 free_fs_devices(fs_devices); 427 } 428 } 429 430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, 431 const u8 *fsid, const u8 *metadata_fsid) 432 { 433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) 434 return false; 435 436 if (!metadata_fsid) 437 return true; 438 439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) 440 return false; 441 442 return true; 443 } 444 445 static noinline struct btrfs_fs_devices *find_fsid( 446 const u8 *fsid, const u8 *metadata_fsid) 447 { 448 struct btrfs_fs_devices *fs_devices; 449 450 ASSERT(fsid); 451 452 /* Handle non-split brain cases */ 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) 455 return fs_devices; 456 } 457 return NULL; 458 } 459 460 /* 461 * First check if the metadata_uuid is different from the fsid in the given 462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid 463 * in the fs_devices. If it is, return true; otherwise, return false. 464 */ 465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices, 466 const u8 *fsid) 467 { 468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 469 BTRFS_FSID_SIZE) != 0 && 470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0; 471 } 472 473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 474 struct btrfs_super_block *disk_super) 475 { 476 477 struct btrfs_fs_devices *fs_devices; 478 479 /* 480 * Handle scanned device having completed its fsid change but 481 * belonging to a fs_devices that was created by first scanning 482 * a device which didn't have its fsid/metadata_uuid changed 483 * at all and the CHANGING_FSID_V2 flag set. 484 */ 485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 486 if (!fs_devices->fsid_change) 487 continue; 488 489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid, 490 fs_devices->fsid)) 491 return fs_devices; 492 } 493 494 /* 495 * Handle scanned device having completed its fsid change but 496 * belonging to a fs_devices that was created by a device that 497 * has an outdated pair of fsid/metadata_uuid and 498 * CHANGING_FSID_V2 flag set. 499 */ 500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 501 if (!fs_devices->fsid_change) 502 continue; 503 504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid)) 505 return fs_devices; 506 } 507 508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 509 } 510 511 512 static int 513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, 514 int flush, struct block_device **bdev, 515 struct btrfs_super_block **disk_super) 516 { 517 int ret; 518 519 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL); 520 521 if (IS_ERR(*bdev)) { 522 ret = PTR_ERR(*bdev); 523 goto error; 524 } 525 526 if (flush) 527 sync_blockdev(*bdev); 528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 529 if (ret) { 530 blkdev_put(*bdev, holder); 531 goto error; 532 } 533 invalidate_bdev(*bdev); 534 *disk_super = btrfs_read_dev_super(*bdev); 535 if (IS_ERR(*disk_super)) { 536 ret = PTR_ERR(*disk_super); 537 blkdev_put(*bdev, holder); 538 goto error; 539 } 540 541 return 0; 542 543 error: 544 *bdev = NULL; 545 return ret; 546 } 547 548 /* 549 * Search and remove all stale devices (which are not mounted). When both 550 * inputs are NULL, it will search and release all stale devices. 551 * 552 * @devt: Optional. When provided will it release all unmounted devices 553 * matching this devt only. 554 * @skip_device: Optional. Will skip this device when searching for the stale 555 * devices. 556 * 557 * Return: 0 for success or if @devt is 0. 558 * -EBUSY if @devt is a mounted device. 559 * -ENOENT if @devt does not match any device in the list. 560 */ 561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 562 { 563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 564 struct btrfs_device *device, *tmp_device; 565 int ret = 0; 566 567 lockdep_assert_held(&uuid_mutex); 568 569 if (devt) 570 ret = -ENOENT; 571 572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 573 574 mutex_lock(&fs_devices->device_list_mutex); 575 list_for_each_entry_safe(device, tmp_device, 576 &fs_devices->devices, dev_list) { 577 if (skip_device && skip_device == device) 578 continue; 579 if (devt && devt != device->devt) 580 continue; 581 if (fs_devices->opened) { 582 /* for an already deleted device return 0 */ 583 if (devt && ret != 0) 584 ret = -EBUSY; 585 break; 586 } 587 588 /* delete the stale device */ 589 fs_devices->num_devices--; 590 list_del(&device->dev_list); 591 btrfs_free_device(device); 592 593 ret = 0; 594 } 595 mutex_unlock(&fs_devices->device_list_mutex); 596 597 if (fs_devices->num_devices == 0) { 598 btrfs_sysfs_remove_fsid(fs_devices); 599 list_del(&fs_devices->fs_list); 600 free_fs_devices(fs_devices); 601 } 602 } 603 604 return ret; 605 } 606 607 /* 608 * This is only used on mount, and we are protected from competing things 609 * messing with our fs_devices by the uuid_mutex, thus we do not need the 610 * fs_devices->device_list_mutex here. 611 */ 612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 613 struct btrfs_device *device, blk_mode_t flags, 614 void *holder) 615 { 616 struct block_device *bdev; 617 struct btrfs_super_block *disk_super; 618 u64 devid; 619 int ret; 620 621 if (device->bdev) 622 return -EINVAL; 623 if (!device->name) 624 return -EINVAL; 625 626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 627 &bdev, &disk_super); 628 if (ret) 629 return ret; 630 631 devid = btrfs_stack_device_id(&disk_super->dev_item); 632 if (devid != device->devid) 633 goto error_free_page; 634 635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 636 goto error_free_page; 637 638 device->generation = btrfs_super_generation(disk_super); 639 640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 641 if (btrfs_super_incompat_flags(disk_super) & 642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 643 pr_err( 644 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 645 goto error_free_page; 646 } 647 648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 649 fs_devices->seeding = true; 650 } else { 651 if (bdev_read_only(bdev)) 652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 653 else 654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 655 } 656 657 if (!bdev_nonrot(bdev)) 658 fs_devices->rotating = true; 659 660 if (bdev_max_discard_sectors(bdev)) 661 fs_devices->discardable = true; 662 663 device->bdev = bdev; 664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 665 device->holder = holder; 666 667 fs_devices->open_devices++; 668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 669 device->devid != BTRFS_DEV_REPLACE_DEVID) { 670 fs_devices->rw_devices++; 671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 672 } 673 btrfs_release_disk_super(disk_super); 674 675 return 0; 676 677 error_free_page: 678 btrfs_release_disk_super(disk_super); 679 blkdev_put(bdev, holder); 680 681 return -EINVAL; 682 } 683 684 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) 685 { 686 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & 687 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 688 689 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; 690 } 691 692 /* 693 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 694 * being created with a disk that has already completed its fsid change. Such 695 * disk can belong to an fs which has its FSID changed or to one which doesn't. 696 * Handle both cases here. 697 */ 698 static struct btrfs_fs_devices *find_fsid_inprogress( 699 struct btrfs_super_block *disk_super) 700 { 701 struct btrfs_fs_devices *fs_devices; 702 703 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 704 if (fs_devices->fsid_change) 705 continue; 706 707 if (check_fsid_changed(fs_devices, disk_super->fsid)) 708 return fs_devices; 709 } 710 711 return find_fsid(disk_super->fsid, NULL); 712 } 713 714 static struct btrfs_fs_devices *find_fsid_changed( 715 struct btrfs_super_block *disk_super) 716 { 717 struct btrfs_fs_devices *fs_devices; 718 719 /* 720 * Handles the case where scanned device is part of an fs that had 721 * multiple successful changes of FSID but currently device didn't 722 * observe it. Meaning our fsid will be different than theirs. We need 723 * to handle two subcases : 724 * 1 - The fs still continues to have different METADATA/FSID uuids. 725 * 2 - The fs is switched back to its original FSID (METADATA/FSID 726 * are equal). 727 */ 728 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 729 /* Changed UUIDs */ 730 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) && 731 memcmp(fs_devices->fsid, disk_super->fsid, 732 BTRFS_FSID_SIZE) != 0) 733 return fs_devices; 734 735 /* Unchanged UUIDs */ 736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 737 BTRFS_FSID_SIZE) == 0 && 738 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 739 BTRFS_FSID_SIZE) == 0) 740 return fs_devices; 741 } 742 743 return NULL; 744 } 745 746 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 747 struct btrfs_super_block *disk_super) 748 { 749 struct btrfs_fs_devices *fs_devices; 750 751 /* 752 * Handle the case where the scanned device is part of an fs whose last 753 * metadata UUID change reverted it to the original FSID. At the same 754 * time fs_devices was first created by another constituent device 755 * which didn't fully observe the operation. This results in an 756 * btrfs_fs_devices created with metadata/fsid different AND 757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 758 * fs_devices equal to the FSID of the disk. 759 */ 760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 761 if (!fs_devices->fsid_change) 762 continue; 763 764 if (check_fsid_changed(fs_devices, disk_super->fsid)) 765 return fs_devices; 766 } 767 768 return NULL; 769 } 770 /* 771 * Add new device to list of registered devices 772 * 773 * Returns: 774 * device pointer which was just added or updated when successful 775 * error pointer when failed 776 */ 777 static noinline struct btrfs_device *device_list_add(const char *path, 778 struct btrfs_super_block *disk_super, 779 bool *new_device_added) 780 { 781 struct btrfs_device *device; 782 struct btrfs_fs_devices *fs_devices = NULL; 783 struct rcu_string *name; 784 u64 found_transid = btrfs_super_generation(disk_super); 785 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 786 dev_t path_devt; 787 int error; 788 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 789 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 790 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 791 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 792 793 error = lookup_bdev(path, &path_devt); 794 if (error) { 795 btrfs_err(NULL, "failed to lookup block device for path %s: %d", 796 path, error); 797 return ERR_PTR(error); 798 } 799 800 if (fsid_change_in_progress) { 801 if (!has_metadata_uuid) 802 fs_devices = find_fsid_inprogress(disk_super); 803 else 804 fs_devices = find_fsid_changed(disk_super); 805 } else if (has_metadata_uuid) { 806 fs_devices = find_fsid_with_metadata_uuid(disk_super); 807 } else { 808 fs_devices = find_fsid_reverted_metadata(disk_super); 809 if (!fs_devices) 810 fs_devices = find_fsid(disk_super->fsid, NULL); 811 } 812 813 814 if (!fs_devices) { 815 fs_devices = alloc_fs_devices(disk_super->fsid, 816 has_metadata_uuid ? disk_super->metadata_uuid : NULL); 817 if (IS_ERR(fs_devices)) 818 return ERR_CAST(fs_devices); 819 820 fs_devices->fsid_change = fsid_change_in_progress; 821 822 mutex_lock(&fs_devices->device_list_mutex); 823 list_add(&fs_devices->fs_list, &fs_uuids); 824 825 device = NULL; 826 } else { 827 struct btrfs_dev_lookup_args args = { 828 .devid = devid, 829 .uuid = disk_super->dev_item.uuid, 830 }; 831 832 mutex_lock(&fs_devices->device_list_mutex); 833 device = btrfs_find_device(fs_devices, &args); 834 835 /* 836 * If this disk has been pulled into an fs devices created by 837 * a device which had the CHANGING_FSID_V2 flag then replace the 838 * metadata_uuid/fsid values of the fs_devices. 839 */ 840 if (fs_devices->fsid_change && 841 found_transid > fs_devices->latest_generation) { 842 memcpy(fs_devices->fsid, disk_super->fsid, 843 BTRFS_FSID_SIZE); 844 memcpy(fs_devices->metadata_uuid, 845 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); 846 fs_devices->fsid_change = false; 847 } 848 } 849 850 if (!device) { 851 unsigned int nofs_flag; 852 853 if (fs_devices->opened) { 854 btrfs_err(NULL, 855 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", 856 path, fs_devices->fsid, current->comm, 857 task_pid_nr(current)); 858 mutex_unlock(&fs_devices->device_list_mutex); 859 return ERR_PTR(-EBUSY); 860 } 861 862 nofs_flag = memalloc_nofs_save(); 863 device = btrfs_alloc_device(NULL, &devid, 864 disk_super->dev_item.uuid, path); 865 memalloc_nofs_restore(nofs_flag); 866 if (IS_ERR(device)) { 867 mutex_unlock(&fs_devices->device_list_mutex); 868 /* we can safely leave the fs_devices entry around */ 869 return device; 870 } 871 872 device->devt = path_devt; 873 874 list_add_rcu(&device->dev_list, &fs_devices->devices); 875 fs_devices->num_devices++; 876 877 device->fs_devices = fs_devices; 878 *new_device_added = true; 879 880 if (disk_super->label[0]) 881 pr_info( 882 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 883 disk_super->label, devid, found_transid, path, 884 current->comm, task_pid_nr(current)); 885 else 886 pr_info( 887 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 888 disk_super->fsid, devid, found_transid, path, 889 current->comm, task_pid_nr(current)); 890 891 } else if (!device->name || strcmp(device->name->str, path)) { 892 /* 893 * When FS is already mounted. 894 * 1. If you are here and if the device->name is NULL that 895 * means this device was missing at time of FS mount. 896 * 2. If you are here and if the device->name is different 897 * from 'path' that means either 898 * a. The same device disappeared and reappeared with 899 * different name. or 900 * b. The missing-disk-which-was-replaced, has 901 * reappeared now. 902 * 903 * We must allow 1 and 2a above. But 2b would be a spurious 904 * and unintentional. 905 * 906 * Further in case of 1 and 2a above, the disk at 'path' 907 * would have missed some transaction when it was away and 908 * in case of 2a the stale bdev has to be updated as well. 909 * 2b must not be allowed at all time. 910 */ 911 912 /* 913 * For now, we do allow update to btrfs_fs_device through the 914 * btrfs dev scan cli after FS has been mounted. We're still 915 * tracking a problem where systems fail mount by subvolume id 916 * when we reject replacement on a mounted FS. 917 */ 918 if (!fs_devices->opened && found_transid < device->generation) { 919 /* 920 * That is if the FS is _not_ mounted and if you 921 * are here, that means there is more than one 922 * disk with same uuid and devid.We keep the one 923 * with larger generation number or the last-in if 924 * generation are equal. 925 */ 926 mutex_unlock(&fs_devices->device_list_mutex); 927 btrfs_err(NULL, 928 "device %s already registered with a higher generation, found %llu expect %llu", 929 path, found_transid, device->generation); 930 return ERR_PTR(-EEXIST); 931 } 932 933 /* 934 * We are going to replace the device path for a given devid, 935 * make sure it's the same device if the device is mounted 936 * 937 * NOTE: the device->fs_info may not be reliable here so pass 938 * in a NULL to message helpers instead. This avoids a possible 939 * use-after-free when the fs_info and fs_info->sb are already 940 * torn down. 941 */ 942 if (device->bdev) { 943 if (device->devt != path_devt) { 944 mutex_unlock(&fs_devices->device_list_mutex); 945 btrfs_warn_in_rcu(NULL, 946 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 947 path, devid, found_transid, 948 current->comm, 949 task_pid_nr(current)); 950 return ERR_PTR(-EEXIST); 951 } 952 btrfs_info_in_rcu(NULL, 953 "devid %llu device path %s changed to %s scanned by %s (%d)", 954 devid, btrfs_dev_name(device), 955 path, current->comm, 956 task_pid_nr(current)); 957 } 958 959 name = rcu_string_strdup(path, GFP_NOFS); 960 if (!name) { 961 mutex_unlock(&fs_devices->device_list_mutex); 962 return ERR_PTR(-ENOMEM); 963 } 964 rcu_string_free(device->name); 965 rcu_assign_pointer(device->name, name); 966 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 967 fs_devices->missing_devices--; 968 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 969 } 970 device->devt = path_devt; 971 } 972 973 /* 974 * Unmount does not free the btrfs_device struct but would zero 975 * generation along with most of the other members. So just update 976 * it back. We need it to pick the disk with largest generation 977 * (as above). 978 */ 979 if (!fs_devices->opened) { 980 device->generation = found_transid; 981 fs_devices->latest_generation = max_t(u64, found_transid, 982 fs_devices->latest_generation); 983 } 984 985 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 986 987 mutex_unlock(&fs_devices->device_list_mutex); 988 return device; 989 } 990 991 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 992 { 993 struct btrfs_fs_devices *fs_devices; 994 struct btrfs_device *device; 995 struct btrfs_device *orig_dev; 996 int ret = 0; 997 998 lockdep_assert_held(&uuid_mutex); 999 1000 fs_devices = alloc_fs_devices(orig->fsid, NULL); 1001 if (IS_ERR(fs_devices)) 1002 return fs_devices; 1003 1004 fs_devices->total_devices = orig->total_devices; 1005 1006 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1007 const char *dev_path = NULL; 1008 1009 /* 1010 * This is ok to do without RCU read locked because we hold the 1011 * uuid mutex so nothing we touch in here is going to disappear. 1012 */ 1013 if (orig_dev->name) 1014 dev_path = orig_dev->name->str; 1015 1016 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1017 orig_dev->uuid, dev_path); 1018 if (IS_ERR(device)) { 1019 ret = PTR_ERR(device); 1020 goto error; 1021 } 1022 1023 if (orig_dev->zone_info) { 1024 struct btrfs_zoned_device_info *zone_info; 1025 1026 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1027 if (!zone_info) { 1028 btrfs_free_device(device); 1029 ret = -ENOMEM; 1030 goto error; 1031 } 1032 device->zone_info = zone_info; 1033 } 1034 1035 list_add(&device->dev_list, &fs_devices->devices); 1036 device->fs_devices = fs_devices; 1037 fs_devices->num_devices++; 1038 } 1039 return fs_devices; 1040 error: 1041 free_fs_devices(fs_devices); 1042 return ERR_PTR(ret); 1043 } 1044 1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1046 struct btrfs_device **latest_dev) 1047 { 1048 struct btrfs_device *device, *next; 1049 1050 /* This is the initialized path, it is safe to release the devices. */ 1051 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1052 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1053 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1054 &device->dev_state) && 1055 !test_bit(BTRFS_DEV_STATE_MISSING, 1056 &device->dev_state) && 1057 (!*latest_dev || 1058 device->generation > (*latest_dev)->generation)) { 1059 *latest_dev = device; 1060 } 1061 continue; 1062 } 1063 1064 /* 1065 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1066 * in btrfs_init_dev_replace() so just continue. 1067 */ 1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1069 continue; 1070 1071 if (device->bdev) { 1072 blkdev_put(device->bdev, device->holder); 1073 device->bdev = NULL; 1074 fs_devices->open_devices--; 1075 } 1076 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1077 list_del_init(&device->dev_alloc_list); 1078 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1079 fs_devices->rw_devices--; 1080 } 1081 list_del_init(&device->dev_list); 1082 fs_devices->num_devices--; 1083 btrfs_free_device(device); 1084 } 1085 1086 } 1087 1088 /* 1089 * After we have read the system tree and know devids belonging to this 1090 * filesystem, remove the device which does not belong there. 1091 */ 1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1093 { 1094 struct btrfs_device *latest_dev = NULL; 1095 struct btrfs_fs_devices *seed_dev; 1096 1097 mutex_lock(&uuid_mutex); 1098 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1099 1100 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1101 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1102 1103 fs_devices->latest_dev = latest_dev; 1104 1105 mutex_unlock(&uuid_mutex); 1106 } 1107 1108 static void btrfs_close_bdev(struct btrfs_device *device) 1109 { 1110 if (!device->bdev) 1111 return; 1112 1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1114 sync_blockdev(device->bdev); 1115 invalidate_bdev(device->bdev); 1116 } 1117 1118 blkdev_put(device->bdev, device->holder); 1119 } 1120 1121 static void btrfs_close_one_device(struct btrfs_device *device) 1122 { 1123 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1124 1125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1126 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1127 list_del_init(&device->dev_alloc_list); 1128 fs_devices->rw_devices--; 1129 } 1130 1131 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1132 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1133 1134 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1135 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1136 fs_devices->missing_devices--; 1137 } 1138 1139 btrfs_close_bdev(device); 1140 if (device->bdev) { 1141 fs_devices->open_devices--; 1142 device->bdev = NULL; 1143 } 1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1145 btrfs_destroy_dev_zone_info(device); 1146 1147 device->fs_info = NULL; 1148 atomic_set(&device->dev_stats_ccnt, 0); 1149 extent_io_tree_release(&device->alloc_state); 1150 1151 /* 1152 * Reset the flush error record. We might have a transient flush error 1153 * in this mount, and if so we aborted the current transaction and set 1154 * the fs to an error state, guaranteeing no super blocks can be further 1155 * committed. However that error might be transient and if we unmount the 1156 * filesystem and mount it again, we should allow the mount to succeed 1157 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1158 * filesystem again we still get flush errors, then we will again abort 1159 * any transaction and set the error state, guaranteeing no commits of 1160 * unsafe super blocks. 1161 */ 1162 device->last_flush_error = 0; 1163 1164 /* Verify the device is back in a pristine state */ 1165 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1166 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1167 WARN_ON(!list_empty(&device->dev_alloc_list)); 1168 WARN_ON(!list_empty(&device->post_commit_list)); 1169 } 1170 1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1172 { 1173 struct btrfs_device *device, *tmp; 1174 1175 lockdep_assert_held(&uuid_mutex); 1176 1177 if (--fs_devices->opened > 0) 1178 return; 1179 1180 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1181 btrfs_close_one_device(device); 1182 1183 WARN_ON(fs_devices->open_devices); 1184 WARN_ON(fs_devices->rw_devices); 1185 fs_devices->opened = 0; 1186 fs_devices->seeding = false; 1187 fs_devices->fs_info = NULL; 1188 } 1189 1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1191 { 1192 LIST_HEAD(list); 1193 struct btrfs_fs_devices *tmp; 1194 1195 mutex_lock(&uuid_mutex); 1196 close_fs_devices(fs_devices); 1197 if (!fs_devices->opened) { 1198 list_splice_init(&fs_devices->seed_list, &list); 1199 1200 /* 1201 * If the struct btrfs_fs_devices is not assembled with any 1202 * other device, it can be re-initialized during the next mount 1203 * without the needing device-scan step. Therefore, it can be 1204 * fully freed. 1205 */ 1206 if (fs_devices->num_devices == 1) { 1207 list_del(&fs_devices->fs_list); 1208 free_fs_devices(fs_devices); 1209 } 1210 } 1211 1212 1213 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1214 close_fs_devices(fs_devices); 1215 list_del(&fs_devices->seed_list); 1216 free_fs_devices(fs_devices); 1217 } 1218 mutex_unlock(&uuid_mutex); 1219 } 1220 1221 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1222 blk_mode_t flags, void *holder) 1223 { 1224 struct btrfs_device *device; 1225 struct btrfs_device *latest_dev = NULL; 1226 struct btrfs_device *tmp_device; 1227 1228 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1229 dev_list) { 1230 int ret; 1231 1232 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1233 if (ret == 0 && 1234 (!latest_dev || device->generation > latest_dev->generation)) { 1235 latest_dev = device; 1236 } else if (ret == -ENODATA) { 1237 fs_devices->num_devices--; 1238 list_del(&device->dev_list); 1239 btrfs_free_device(device); 1240 } 1241 } 1242 if (fs_devices->open_devices == 0) 1243 return -EINVAL; 1244 1245 fs_devices->opened = 1; 1246 fs_devices->latest_dev = latest_dev; 1247 fs_devices->total_rw_bytes = 0; 1248 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1249 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1250 1251 return 0; 1252 } 1253 1254 static int devid_cmp(void *priv, const struct list_head *a, 1255 const struct list_head *b) 1256 { 1257 const struct btrfs_device *dev1, *dev2; 1258 1259 dev1 = list_entry(a, struct btrfs_device, dev_list); 1260 dev2 = list_entry(b, struct btrfs_device, dev_list); 1261 1262 if (dev1->devid < dev2->devid) 1263 return -1; 1264 else if (dev1->devid > dev2->devid) 1265 return 1; 1266 return 0; 1267 } 1268 1269 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1270 blk_mode_t flags, void *holder) 1271 { 1272 int ret; 1273 1274 lockdep_assert_held(&uuid_mutex); 1275 /* 1276 * The device_list_mutex cannot be taken here in case opening the 1277 * underlying device takes further locks like open_mutex. 1278 * 1279 * We also don't need the lock here as this is called during mount and 1280 * exclusion is provided by uuid_mutex 1281 */ 1282 1283 if (fs_devices->opened) { 1284 fs_devices->opened++; 1285 ret = 0; 1286 } else { 1287 list_sort(NULL, &fs_devices->devices, devid_cmp); 1288 ret = open_fs_devices(fs_devices, flags, holder); 1289 } 1290 1291 return ret; 1292 } 1293 1294 void btrfs_release_disk_super(struct btrfs_super_block *super) 1295 { 1296 struct page *page = virt_to_page(super); 1297 1298 put_page(page); 1299 } 1300 1301 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1302 u64 bytenr, u64 bytenr_orig) 1303 { 1304 struct btrfs_super_block *disk_super; 1305 struct page *page; 1306 void *p; 1307 pgoff_t index; 1308 1309 /* make sure our super fits in the device */ 1310 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1311 return ERR_PTR(-EINVAL); 1312 1313 /* make sure our super fits in the page */ 1314 if (sizeof(*disk_super) > PAGE_SIZE) 1315 return ERR_PTR(-EINVAL); 1316 1317 /* make sure our super doesn't straddle pages on disk */ 1318 index = bytenr >> PAGE_SHIFT; 1319 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1320 return ERR_PTR(-EINVAL); 1321 1322 /* pull in the page with our super */ 1323 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1324 1325 if (IS_ERR(page)) 1326 return ERR_CAST(page); 1327 1328 p = page_address(page); 1329 1330 /* align our pointer to the offset of the super block */ 1331 disk_super = p + offset_in_page(bytenr); 1332 1333 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1334 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1335 btrfs_release_disk_super(p); 1336 return ERR_PTR(-EINVAL); 1337 } 1338 1339 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1340 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1341 1342 return disk_super; 1343 } 1344 1345 int btrfs_forget_devices(dev_t devt) 1346 { 1347 int ret; 1348 1349 mutex_lock(&uuid_mutex); 1350 ret = btrfs_free_stale_devices(devt, NULL); 1351 mutex_unlock(&uuid_mutex); 1352 1353 return ret; 1354 } 1355 1356 /* 1357 * Look for a btrfs signature on a device. This may be called out of the mount path 1358 * and we are not allowed to call set_blocksize during the scan. The superblock 1359 * is read via pagecache 1360 */ 1361 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags) 1362 { 1363 struct btrfs_super_block *disk_super; 1364 bool new_device_added = false; 1365 struct btrfs_device *device = NULL; 1366 struct block_device *bdev; 1367 u64 bytenr, bytenr_orig; 1368 int ret; 1369 1370 lockdep_assert_held(&uuid_mutex); 1371 1372 /* 1373 * we would like to check all the supers, but that would make 1374 * a btrfs mount succeed after a mkfs from a different FS. 1375 * So, we need to add a special mount option to scan for 1376 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1377 */ 1378 1379 /* 1380 * Avoid an exclusive open here, as the systemd-udev may initiate the 1381 * device scan which may race with the user's mount or mkfs command, 1382 * resulting in failure. 1383 * Since the device scan is solely for reading purposes, there is no 1384 * need for an exclusive open. Additionally, the devices are read again 1385 * during the mount process. It is ok to get some inconsistent 1386 * values temporarily, as the device paths of the fsid are the only 1387 * required information for assembling the volume. 1388 */ 1389 bdev = blkdev_get_by_path(path, flags, NULL, NULL); 1390 if (IS_ERR(bdev)) 1391 return ERR_CAST(bdev); 1392 1393 bytenr_orig = btrfs_sb_offset(0); 1394 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1395 if (ret) { 1396 device = ERR_PTR(ret); 1397 goto error_bdev_put; 1398 } 1399 1400 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1401 if (IS_ERR(disk_super)) { 1402 device = ERR_CAST(disk_super); 1403 goto error_bdev_put; 1404 } 1405 1406 device = device_list_add(path, disk_super, &new_device_added); 1407 if (!IS_ERR(device) && new_device_added) 1408 btrfs_free_stale_devices(device->devt, device); 1409 1410 btrfs_release_disk_super(disk_super); 1411 1412 error_bdev_put: 1413 blkdev_put(bdev, NULL); 1414 1415 return device; 1416 } 1417 1418 /* 1419 * Try to find a chunk that intersects [start, start + len] range and when one 1420 * such is found, record the end of it in *start 1421 */ 1422 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1423 u64 len) 1424 { 1425 u64 physical_start, physical_end; 1426 1427 lockdep_assert_held(&device->fs_info->chunk_mutex); 1428 1429 if (find_first_extent_bit(&device->alloc_state, *start, 1430 &physical_start, &physical_end, 1431 CHUNK_ALLOCATED, NULL)) { 1432 1433 if (in_range(physical_start, *start, len) || 1434 in_range(*start, physical_start, 1435 physical_end + 1 - physical_start)) { 1436 *start = physical_end + 1; 1437 return true; 1438 } 1439 } 1440 return false; 1441 } 1442 1443 static u64 dev_extent_search_start(struct btrfs_device *device) 1444 { 1445 switch (device->fs_devices->chunk_alloc_policy) { 1446 case BTRFS_CHUNK_ALLOC_REGULAR: 1447 return BTRFS_DEVICE_RANGE_RESERVED; 1448 case BTRFS_CHUNK_ALLOC_ZONED: 1449 /* 1450 * We don't care about the starting region like regular 1451 * allocator, because we anyway use/reserve the first two zones 1452 * for superblock logging. 1453 */ 1454 return 0; 1455 default: 1456 BUG(); 1457 } 1458 } 1459 1460 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1461 u64 *hole_start, u64 *hole_size, 1462 u64 num_bytes) 1463 { 1464 u64 zone_size = device->zone_info->zone_size; 1465 u64 pos; 1466 int ret; 1467 bool changed = false; 1468 1469 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1470 1471 while (*hole_size > 0) { 1472 pos = btrfs_find_allocatable_zones(device, *hole_start, 1473 *hole_start + *hole_size, 1474 num_bytes); 1475 if (pos != *hole_start) { 1476 *hole_size = *hole_start + *hole_size - pos; 1477 *hole_start = pos; 1478 changed = true; 1479 if (*hole_size < num_bytes) 1480 break; 1481 } 1482 1483 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1484 1485 /* Range is ensured to be empty */ 1486 if (!ret) 1487 return changed; 1488 1489 /* Given hole range was invalid (outside of device) */ 1490 if (ret == -ERANGE) { 1491 *hole_start += *hole_size; 1492 *hole_size = 0; 1493 return true; 1494 } 1495 1496 *hole_start += zone_size; 1497 *hole_size -= zone_size; 1498 changed = true; 1499 } 1500 1501 return changed; 1502 } 1503 1504 /* 1505 * Check if specified hole is suitable for allocation. 1506 * 1507 * @device: the device which we have the hole 1508 * @hole_start: starting position of the hole 1509 * @hole_size: the size of the hole 1510 * @num_bytes: the size of the free space that we need 1511 * 1512 * This function may modify @hole_start and @hole_size to reflect the suitable 1513 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1514 */ 1515 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1516 u64 *hole_size, u64 num_bytes) 1517 { 1518 bool changed = false; 1519 u64 hole_end = *hole_start + *hole_size; 1520 1521 for (;;) { 1522 /* 1523 * Check before we set max_hole_start, otherwise we could end up 1524 * sending back this offset anyway. 1525 */ 1526 if (contains_pending_extent(device, hole_start, *hole_size)) { 1527 if (hole_end >= *hole_start) 1528 *hole_size = hole_end - *hole_start; 1529 else 1530 *hole_size = 0; 1531 changed = true; 1532 } 1533 1534 switch (device->fs_devices->chunk_alloc_policy) { 1535 case BTRFS_CHUNK_ALLOC_REGULAR: 1536 /* No extra check */ 1537 break; 1538 case BTRFS_CHUNK_ALLOC_ZONED: 1539 if (dev_extent_hole_check_zoned(device, hole_start, 1540 hole_size, num_bytes)) { 1541 changed = true; 1542 /* 1543 * The changed hole can contain pending extent. 1544 * Loop again to check that. 1545 */ 1546 continue; 1547 } 1548 break; 1549 default: 1550 BUG(); 1551 } 1552 1553 break; 1554 } 1555 1556 return changed; 1557 } 1558 1559 /* 1560 * Find free space in the specified device. 1561 * 1562 * @device: the device which we search the free space in 1563 * @num_bytes: the size of the free space that we need 1564 * @search_start: the position from which to begin the search 1565 * @start: store the start of the free space. 1566 * @len: the size of the free space. that we find, or the size 1567 * of the max free space if we don't find suitable free space 1568 * 1569 * This does a pretty simple search, the expectation is that it is called very 1570 * infrequently and that a given device has a small number of extents. 1571 * 1572 * @start is used to store the start of the free space if we find. But if we 1573 * don't find suitable free space, it will be used to store the start position 1574 * of the max free space. 1575 * 1576 * @len is used to store the size of the free space that we find. 1577 * But if we don't find suitable free space, it is used to store the size of 1578 * the max free space. 1579 * 1580 * NOTE: This function will search *commit* root of device tree, and does extra 1581 * check to ensure dev extents are not double allocated. 1582 * This makes the function safe to allocate dev extents but may not report 1583 * correct usable device space, as device extent freed in current transaction 1584 * is not reported as available. 1585 */ 1586 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1587 u64 *start, u64 *len) 1588 { 1589 struct btrfs_fs_info *fs_info = device->fs_info; 1590 struct btrfs_root *root = fs_info->dev_root; 1591 struct btrfs_key key; 1592 struct btrfs_dev_extent *dev_extent; 1593 struct btrfs_path *path; 1594 u64 search_start; 1595 u64 hole_size; 1596 u64 max_hole_start; 1597 u64 max_hole_size = 0; 1598 u64 extent_end; 1599 u64 search_end = device->total_bytes; 1600 int ret; 1601 int slot; 1602 struct extent_buffer *l; 1603 1604 search_start = dev_extent_search_start(device); 1605 max_hole_start = search_start; 1606 1607 WARN_ON(device->zone_info && 1608 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1609 1610 path = btrfs_alloc_path(); 1611 if (!path) { 1612 ret = -ENOMEM; 1613 goto out; 1614 } 1615 again: 1616 if (search_start >= search_end || 1617 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1618 ret = -ENOSPC; 1619 goto out; 1620 } 1621 1622 path->reada = READA_FORWARD; 1623 path->search_commit_root = 1; 1624 path->skip_locking = 1; 1625 1626 key.objectid = device->devid; 1627 key.offset = search_start; 1628 key.type = BTRFS_DEV_EXTENT_KEY; 1629 1630 ret = btrfs_search_backwards(root, &key, path); 1631 if (ret < 0) 1632 goto out; 1633 1634 while (search_start < search_end) { 1635 l = path->nodes[0]; 1636 slot = path->slots[0]; 1637 if (slot >= btrfs_header_nritems(l)) { 1638 ret = btrfs_next_leaf(root, path); 1639 if (ret == 0) 1640 continue; 1641 if (ret < 0) 1642 goto out; 1643 1644 break; 1645 } 1646 btrfs_item_key_to_cpu(l, &key, slot); 1647 1648 if (key.objectid < device->devid) 1649 goto next; 1650 1651 if (key.objectid > device->devid) 1652 break; 1653 1654 if (key.type != BTRFS_DEV_EXTENT_KEY) 1655 goto next; 1656 1657 if (key.offset > search_end) 1658 break; 1659 1660 if (key.offset > search_start) { 1661 hole_size = key.offset - search_start; 1662 dev_extent_hole_check(device, &search_start, &hole_size, 1663 num_bytes); 1664 1665 if (hole_size > max_hole_size) { 1666 max_hole_start = search_start; 1667 max_hole_size = hole_size; 1668 } 1669 1670 /* 1671 * If this free space is greater than which we need, 1672 * it must be the max free space that we have found 1673 * until now, so max_hole_start must point to the start 1674 * of this free space and the length of this free space 1675 * is stored in max_hole_size. Thus, we return 1676 * max_hole_start and max_hole_size and go back to the 1677 * caller. 1678 */ 1679 if (hole_size >= num_bytes) { 1680 ret = 0; 1681 goto out; 1682 } 1683 } 1684 1685 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1686 extent_end = key.offset + btrfs_dev_extent_length(l, 1687 dev_extent); 1688 if (extent_end > search_start) 1689 search_start = extent_end; 1690 next: 1691 path->slots[0]++; 1692 cond_resched(); 1693 } 1694 1695 /* 1696 * At this point, search_start should be the end of 1697 * allocated dev extents, and when shrinking the device, 1698 * search_end may be smaller than search_start. 1699 */ 1700 if (search_end > search_start) { 1701 hole_size = search_end - search_start; 1702 if (dev_extent_hole_check(device, &search_start, &hole_size, 1703 num_bytes)) { 1704 btrfs_release_path(path); 1705 goto again; 1706 } 1707 1708 if (hole_size > max_hole_size) { 1709 max_hole_start = search_start; 1710 max_hole_size = hole_size; 1711 } 1712 } 1713 1714 /* See above. */ 1715 if (max_hole_size < num_bytes) 1716 ret = -ENOSPC; 1717 else 1718 ret = 0; 1719 1720 ASSERT(max_hole_start + max_hole_size <= search_end); 1721 out: 1722 btrfs_free_path(path); 1723 *start = max_hole_start; 1724 if (len) 1725 *len = max_hole_size; 1726 return ret; 1727 } 1728 1729 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1730 struct btrfs_device *device, 1731 u64 start, u64 *dev_extent_len) 1732 { 1733 struct btrfs_fs_info *fs_info = device->fs_info; 1734 struct btrfs_root *root = fs_info->dev_root; 1735 int ret; 1736 struct btrfs_path *path; 1737 struct btrfs_key key; 1738 struct btrfs_key found_key; 1739 struct extent_buffer *leaf = NULL; 1740 struct btrfs_dev_extent *extent = NULL; 1741 1742 path = btrfs_alloc_path(); 1743 if (!path) 1744 return -ENOMEM; 1745 1746 key.objectid = device->devid; 1747 key.offset = start; 1748 key.type = BTRFS_DEV_EXTENT_KEY; 1749 again: 1750 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1751 if (ret > 0) { 1752 ret = btrfs_previous_item(root, path, key.objectid, 1753 BTRFS_DEV_EXTENT_KEY); 1754 if (ret) 1755 goto out; 1756 leaf = path->nodes[0]; 1757 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1758 extent = btrfs_item_ptr(leaf, path->slots[0], 1759 struct btrfs_dev_extent); 1760 BUG_ON(found_key.offset > start || found_key.offset + 1761 btrfs_dev_extent_length(leaf, extent) < start); 1762 key = found_key; 1763 btrfs_release_path(path); 1764 goto again; 1765 } else if (ret == 0) { 1766 leaf = path->nodes[0]; 1767 extent = btrfs_item_ptr(leaf, path->slots[0], 1768 struct btrfs_dev_extent); 1769 } else { 1770 goto out; 1771 } 1772 1773 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1774 1775 ret = btrfs_del_item(trans, root, path); 1776 if (ret == 0) 1777 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1778 out: 1779 btrfs_free_path(path); 1780 return ret; 1781 } 1782 1783 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1784 { 1785 struct extent_map_tree *em_tree; 1786 struct extent_map *em; 1787 struct rb_node *n; 1788 u64 ret = 0; 1789 1790 em_tree = &fs_info->mapping_tree; 1791 read_lock(&em_tree->lock); 1792 n = rb_last(&em_tree->map.rb_root); 1793 if (n) { 1794 em = rb_entry(n, struct extent_map, rb_node); 1795 ret = em->start + em->len; 1796 } 1797 read_unlock(&em_tree->lock); 1798 1799 return ret; 1800 } 1801 1802 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1803 u64 *devid_ret) 1804 { 1805 int ret; 1806 struct btrfs_key key; 1807 struct btrfs_key found_key; 1808 struct btrfs_path *path; 1809 1810 path = btrfs_alloc_path(); 1811 if (!path) 1812 return -ENOMEM; 1813 1814 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1815 key.type = BTRFS_DEV_ITEM_KEY; 1816 key.offset = (u64)-1; 1817 1818 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1819 if (ret < 0) 1820 goto error; 1821 1822 if (ret == 0) { 1823 /* Corruption */ 1824 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1825 ret = -EUCLEAN; 1826 goto error; 1827 } 1828 1829 ret = btrfs_previous_item(fs_info->chunk_root, path, 1830 BTRFS_DEV_ITEMS_OBJECTID, 1831 BTRFS_DEV_ITEM_KEY); 1832 if (ret) { 1833 *devid_ret = 1; 1834 } else { 1835 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1836 path->slots[0]); 1837 *devid_ret = found_key.offset + 1; 1838 } 1839 ret = 0; 1840 error: 1841 btrfs_free_path(path); 1842 return ret; 1843 } 1844 1845 /* 1846 * the device information is stored in the chunk root 1847 * the btrfs_device struct should be fully filled in 1848 */ 1849 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1850 struct btrfs_device *device) 1851 { 1852 int ret; 1853 struct btrfs_path *path; 1854 struct btrfs_dev_item *dev_item; 1855 struct extent_buffer *leaf; 1856 struct btrfs_key key; 1857 unsigned long ptr; 1858 1859 path = btrfs_alloc_path(); 1860 if (!path) 1861 return -ENOMEM; 1862 1863 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1864 key.type = BTRFS_DEV_ITEM_KEY; 1865 key.offset = device->devid; 1866 1867 btrfs_reserve_chunk_metadata(trans, true); 1868 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1869 &key, sizeof(*dev_item)); 1870 btrfs_trans_release_chunk_metadata(trans); 1871 if (ret) 1872 goto out; 1873 1874 leaf = path->nodes[0]; 1875 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1876 1877 btrfs_set_device_id(leaf, dev_item, device->devid); 1878 btrfs_set_device_generation(leaf, dev_item, 0); 1879 btrfs_set_device_type(leaf, dev_item, device->type); 1880 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1881 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1882 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1883 btrfs_set_device_total_bytes(leaf, dev_item, 1884 btrfs_device_get_disk_total_bytes(device)); 1885 btrfs_set_device_bytes_used(leaf, dev_item, 1886 btrfs_device_get_bytes_used(device)); 1887 btrfs_set_device_group(leaf, dev_item, 0); 1888 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1889 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1890 btrfs_set_device_start_offset(leaf, dev_item, 0); 1891 1892 ptr = btrfs_device_uuid(dev_item); 1893 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1894 ptr = btrfs_device_fsid(dev_item); 1895 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1896 ptr, BTRFS_FSID_SIZE); 1897 btrfs_mark_buffer_dirty(trans, leaf); 1898 1899 ret = 0; 1900 out: 1901 btrfs_free_path(path); 1902 return ret; 1903 } 1904 1905 /* 1906 * Function to update ctime/mtime for a given device path. 1907 * Mainly used for ctime/mtime based probe like libblkid. 1908 * 1909 * We don't care about errors here, this is just to be kind to userspace. 1910 */ 1911 static void update_dev_time(const char *device_path) 1912 { 1913 struct path path; 1914 int ret; 1915 1916 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1917 if (ret) 1918 return; 1919 1920 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); 1921 path_put(&path); 1922 } 1923 1924 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1925 struct btrfs_device *device) 1926 { 1927 struct btrfs_root *root = device->fs_info->chunk_root; 1928 int ret; 1929 struct btrfs_path *path; 1930 struct btrfs_key key; 1931 1932 path = btrfs_alloc_path(); 1933 if (!path) 1934 return -ENOMEM; 1935 1936 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1937 key.type = BTRFS_DEV_ITEM_KEY; 1938 key.offset = device->devid; 1939 1940 btrfs_reserve_chunk_metadata(trans, false); 1941 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1942 btrfs_trans_release_chunk_metadata(trans); 1943 if (ret) { 1944 if (ret > 0) 1945 ret = -ENOENT; 1946 goto out; 1947 } 1948 1949 ret = btrfs_del_item(trans, root, path); 1950 out: 1951 btrfs_free_path(path); 1952 return ret; 1953 } 1954 1955 /* 1956 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1957 * filesystem. It's up to the caller to adjust that number regarding eg. device 1958 * replace. 1959 */ 1960 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1961 u64 num_devices) 1962 { 1963 u64 all_avail; 1964 unsigned seq; 1965 int i; 1966 1967 do { 1968 seq = read_seqbegin(&fs_info->profiles_lock); 1969 1970 all_avail = fs_info->avail_data_alloc_bits | 1971 fs_info->avail_system_alloc_bits | 1972 fs_info->avail_metadata_alloc_bits; 1973 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1974 1975 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1976 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1977 continue; 1978 1979 if (num_devices < btrfs_raid_array[i].devs_min) 1980 return btrfs_raid_array[i].mindev_error; 1981 } 1982 1983 return 0; 1984 } 1985 1986 static struct btrfs_device * btrfs_find_next_active_device( 1987 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1988 { 1989 struct btrfs_device *next_device; 1990 1991 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1992 if (next_device != device && 1993 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1994 && next_device->bdev) 1995 return next_device; 1996 } 1997 1998 return NULL; 1999 } 2000 2001 /* 2002 * Helper function to check if the given device is part of s_bdev / latest_dev 2003 * and replace it with the provided or the next active device, in the context 2004 * where this function called, there should be always be another device (or 2005 * this_dev) which is active. 2006 */ 2007 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 2008 struct btrfs_device *next_device) 2009 { 2010 struct btrfs_fs_info *fs_info = device->fs_info; 2011 2012 if (!next_device) 2013 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2014 device); 2015 ASSERT(next_device); 2016 2017 if (fs_info->sb->s_bdev && 2018 (fs_info->sb->s_bdev == device->bdev)) 2019 fs_info->sb->s_bdev = next_device->bdev; 2020 2021 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2022 fs_info->fs_devices->latest_dev = next_device; 2023 } 2024 2025 /* 2026 * Return btrfs_fs_devices::num_devices excluding the device that's being 2027 * currently replaced. 2028 */ 2029 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2030 { 2031 u64 num_devices = fs_info->fs_devices->num_devices; 2032 2033 down_read(&fs_info->dev_replace.rwsem); 2034 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2035 ASSERT(num_devices > 1); 2036 num_devices--; 2037 } 2038 up_read(&fs_info->dev_replace.rwsem); 2039 2040 return num_devices; 2041 } 2042 2043 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, 2044 struct block_device *bdev, int copy_num) 2045 { 2046 struct btrfs_super_block *disk_super; 2047 const size_t len = sizeof(disk_super->magic); 2048 const u64 bytenr = btrfs_sb_offset(copy_num); 2049 int ret; 2050 2051 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); 2052 if (IS_ERR(disk_super)) 2053 return; 2054 2055 memset(&disk_super->magic, 0, len); 2056 folio_mark_dirty(virt_to_folio(disk_super)); 2057 btrfs_release_disk_super(disk_super); 2058 2059 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); 2060 if (ret) 2061 btrfs_warn(fs_info, "error clearing superblock number %d (%d)", 2062 copy_num, ret); 2063 } 2064 2065 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2066 struct block_device *bdev, 2067 const char *device_path) 2068 { 2069 int copy_num; 2070 2071 if (!bdev) 2072 return; 2073 2074 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2075 if (bdev_is_zoned(bdev)) 2076 btrfs_reset_sb_log_zones(bdev, copy_num); 2077 else 2078 btrfs_scratch_superblock(fs_info, bdev, copy_num); 2079 } 2080 2081 /* Notify udev that device has changed */ 2082 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2083 2084 /* Update ctime/mtime for device path for libblkid */ 2085 update_dev_time(device_path); 2086 } 2087 2088 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2089 struct btrfs_dev_lookup_args *args, 2090 struct block_device **bdev, void **holder) 2091 { 2092 struct btrfs_trans_handle *trans; 2093 struct btrfs_device *device; 2094 struct btrfs_fs_devices *cur_devices; 2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2096 u64 num_devices; 2097 int ret = 0; 2098 2099 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2100 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2101 return -EINVAL; 2102 } 2103 2104 /* 2105 * The device list in fs_devices is accessed without locks (neither 2106 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2107 * filesystem and another device rm cannot run. 2108 */ 2109 num_devices = btrfs_num_devices(fs_info); 2110 2111 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2112 if (ret) 2113 return ret; 2114 2115 device = btrfs_find_device(fs_info->fs_devices, args); 2116 if (!device) { 2117 if (args->missing) 2118 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2119 else 2120 ret = -ENOENT; 2121 return ret; 2122 } 2123 2124 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2125 btrfs_warn_in_rcu(fs_info, 2126 "cannot remove device %s (devid %llu) due to active swapfile", 2127 btrfs_dev_name(device), device->devid); 2128 return -ETXTBSY; 2129 } 2130 2131 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2132 return BTRFS_ERROR_DEV_TGT_REPLACE; 2133 2134 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2135 fs_info->fs_devices->rw_devices == 1) 2136 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2137 2138 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2139 mutex_lock(&fs_info->chunk_mutex); 2140 list_del_init(&device->dev_alloc_list); 2141 device->fs_devices->rw_devices--; 2142 mutex_unlock(&fs_info->chunk_mutex); 2143 } 2144 2145 ret = btrfs_shrink_device(device, 0); 2146 if (ret) 2147 goto error_undo; 2148 2149 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2150 if (IS_ERR(trans)) { 2151 ret = PTR_ERR(trans); 2152 goto error_undo; 2153 } 2154 2155 ret = btrfs_rm_dev_item(trans, device); 2156 if (ret) { 2157 /* Any error in dev item removal is critical */ 2158 btrfs_crit(fs_info, 2159 "failed to remove device item for devid %llu: %d", 2160 device->devid, ret); 2161 btrfs_abort_transaction(trans, ret); 2162 btrfs_end_transaction(trans); 2163 return ret; 2164 } 2165 2166 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2167 btrfs_scrub_cancel_dev(device); 2168 2169 /* 2170 * the device list mutex makes sure that we don't change 2171 * the device list while someone else is writing out all 2172 * the device supers. Whoever is writing all supers, should 2173 * lock the device list mutex before getting the number of 2174 * devices in the super block (super_copy). Conversely, 2175 * whoever updates the number of devices in the super block 2176 * (super_copy) should hold the device list mutex. 2177 */ 2178 2179 /* 2180 * In normal cases the cur_devices == fs_devices. But in case 2181 * of deleting a seed device, the cur_devices should point to 2182 * its own fs_devices listed under the fs_devices->seed_list. 2183 */ 2184 cur_devices = device->fs_devices; 2185 mutex_lock(&fs_devices->device_list_mutex); 2186 list_del_rcu(&device->dev_list); 2187 2188 cur_devices->num_devices--; 2189 cur_devices->total_devices--; 2190 /* Update total_devices of the parent fs_devices if it's seed */ 2191 if (cur_devices != fs_devices) 2192 fs_devices->total_devices--; 2193 2194 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2195 cur_devices->missing_devices--; 2196 2197 btrfs_assign_next_active_device(device, NULL); 2198 2199 if (device->bdev) { 2200 cur_devices->open_devices--; 2201 /* remove sysfs entry */ 2202 btrfs_sysfs_remove_device(device); 2203 } 2204 2205 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2206 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2207 mutex_unlock(&fs_devices->device_list_mutex); 2208 2209 /* 2210 * At this point, the device is zero sized and detached from the 2211 * devices list. All that's left is to zero out the old supers and 2212 * free the device. 2213 * 2214 * We cannot call btrfs_close_bdev() here because we're holding the sb 2215 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2216 * block device and it's dependencies. Instead just flush the device 2217 * and let the caller do the final blkdev_put. 2218 */ 2219 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2220 btrfs_scratch_superblocks(fs_info, device->bdev, 2221 device->name->str); 2222 if (device->bdev) { 2223 sync_blockdev(device->bdev); 2224 invalidate_bdev(device->bdev); 2225 } 2226 } 2227 2228 *bdev = device->bdev; 2229 *holder = device->holder; 2230 synchronize_rcu(); 2231 btrfs_free_device(device); 2232 2233 /* 2234 * This can happen if cur_devices is the private seed devices list. We 2235 * cannot call close_fs_devices() here because it expects the uuid_mutex 2236 * to be held, but in fact we don't need that for the private 2237 * seed_devices, we can simply decrement cur_devices->opened and then 2238 * remove it from our list and free the fs_devices. 2239 */ 2240 if (cur_devices->num_devices == 0) { 2241 list_del_init(&cur_devices->seed_list); 2242 ASSERT(cur_devices->opened == 1); 2243 cur_devices->opened--; 2244 free_fs_devices(cur_devices); 2245 } 2246 2247 ret = btrfs_commit_transaction(trans); 2248 2249 return ret; 2250 2251 error_undo: 2252 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2253 mutex_lock(&fs_info->chunk_mutex); 2254 list_add(&device->dev_alloc_list, 2255 &fs_devices->alloc_list); 2256 device->fs_devices->rw_devices++; 2257 mutex_unlock(&fs_info->chunk_mutex); 2258 } 2259 return ret; 2260 } 2261 2262 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2263 { 2264 struct btrfs_fs_devices *fs_devices; 2265 2266 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2267 2268 /* 2269 * in case of fs with no seed, srcdev->fs_devices will point 2270 * to fs_devices of fs_info. However when the dev being replaced is 2271 * a seed dev it will point to the seed's local fs_devices. In short 2272 * srcdev will have its correct fs_devices in both the cases. 2273 */ 2274 fs_devices = srcdev->fs_devices; 2275 2276 list_del_rcu(&srcdev->dev_list); 2277 list_del(&srcdev->dev_alloc_list); 2278 fs_devices->num_devices--; 2279 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2280 fs_devices->missing_devices--; 2281 2282 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2283 fs_devices->rw_devices--; 2284 2285 if (srcdev->bdev) 2286 fs_devices->open_devices--; 2287 } 2288 2289 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2290 { 2291 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2292 2293 mutex_lock(&uuid_mutex); 2294 2295 btrfs_close_bdev(srcdev); 2296 synchronize_rcu(); 2297 btrfs_free_device(srcdev); 2298 2299 /* if this is no devs we rather delete the fs_devices */ 2300 if (!fs_devices->num_devices) { 2301 /* 2302 * On a mounted FS, num_devices can't be zero unless it's a 2303 * seed. In case of a seed device being replaced, the replace 2304 * target added to the sprout FS, so there will be no more 2305 * device left under the seed FS. 2306 */ 2307 ASSERT(fs_devices->seeding); 2308 2309 list_del_init(&fs_devices->seed_list); 2310 close_fs_devices(fs_devices); 2311 free_fs_devices(fs_devices); 2312 } 2313 mutex_unlock(&uuid_mutex); 2314 } 2315 2316 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2317 { 2318 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2319 2320 mutex_lock(&fs_devices->device_list_mutex); 2321 2322 btrfs_sysfs_remove_device(tgtdev); 2323 2324 if (tgtdev->bdev) 2325 fs_devices->open_devices--; 2326 2327 fs_devices->num_devices--; 2328 2329 btrfs_assign_next_active_device(tgtdev, NULL); 2330 2331 list_del_rcu(&tgtdev->dev_list); 2332 2333 mutex_unlock(&fs_devices->device_list_mutex); 2334 2335 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2336 tgtdev->name->str); 2337 2338 btrfs_close_bdev(tgtdev); 2339 synchronize_rcu(); 2340 btrfs_free_device(tgtdev); 2341 } 2342 2343 /* 2344 * Populate args from device at path. 2345 * 2346 * @fs_info: the filesystem 2347 * @args: the args to populate 2348 * @path: the path to the device 2349 * 2350 * This will read the super block of the device at @path and populate @args with 2351 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2352 * lookup a device to operate on, but need to do it before we take any locks. 2353 * This properly handles the special case of "missing" that a user may pass in, 2354 * and does some basic sanity checks. The caller must make sure that @path is 2355 * properly NUL terminated before calling in, and must call 2356 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2357 * uuid buffers. 2358 * 2359 * Return: 0 for success, -errno for failure 2360 */ 2361 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2362 struct btrfs_dev_lookup_args *args, 2363 const char *path) 2364 { 2365 struct btrfs_super_block *disk_super; 2366 struct block_device *bdev; 2367 int ret; 2368 2369 if (!path || !path[0]) 2370 return -EINVAL; 2371 if (!strcmp(path, "missing")) { 2372 args->missing = true; 2373 return 0; 2374 } 2375 2376 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2377 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2378 if (!args->uuid || !args->fsid) { 2379 btrfs_put_dev_args_from_path(args); 2380 return -ENOMEM; 2381 } 2382 2383 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, 2384 &bdev, &disk_super); 2385 if (ret) { 2386 btrfs_put_dev_args_from_path(args); 2387 return ret; 2388 } 2389 2390 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2391 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2392 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2393 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2394 else 2395 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2396 btrfs_release_disk_super(disk_super); 2397 blkdev_put(bdev, NULL); 2398 return 0; 2399 } 2400 2401 /* 2402 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2403 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2404 * that don't need to be freed. 2405 */ 2406 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2407 { 2408 kfree(args->uuid); 2409 kfree(args->fsid); 2410 args->uuid = NULL; 2411 args->fsid = NULL; 2412 } 2413 2414 struct btrfs_device *btrfs_find_device_by_devspec( 2415 struct btrfs_fs_info *fs_info, u64 devid, 2416 const char *device_path) 2417 { 2418 BTRFS_DEV_LOOKUP_ARGS(args); 2419 struct btrfs_device *device; 2420 int ret; 2421 2422 if (devid) { 2423 args.devid = devid; 2424 device = btrfs_find_device(fs_info->fs_devices, &args); 2425 if (!device) 2426 return ERR_PTR(-ENOENT); 2427 return device; 2428 } 2429 2430 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2431 if (ret) 2432 return ERR_PTR(ret); 2433 device = btrfs_find_device(fs_info->fs_devices, &args); 2434 btrfs_put_dev_args_from_path(&args); 2435 if (!device) 2436 return ERR_PTR(-ENOENT); 2437 return device; 2438 } 2439 2440 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2441 { 2442 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2443 struct btrfs_fs_devices *old_devices; 2444 struct btrfs_fs_devices *seed_devices; 2445 2446 lockdep_assert_held(&uuid_mutex); 2447 if (!fs_devices->seeding) 2448 return ERR_PTR(-EINVAL); 2449 2450 /* 2451 * Private copy of the seed devices, anchored at 2452 * fs_info->fs_devices->seed_list 2453 */ 2454 seed_devices = alloc_fs_devices(NULL, NULL); 2455 if (IS_ERR(seed_devices)) 2456 return seed_devices; 2457 2458 /* 2459 * It's necessary to retain a copy of the original seed fs_devices in 2460 * fs_uuids so that filesystems which have been seeded can successfully 2461 * reference the seed device from open_seed_devices. This also supports 2462 * multiple fs seed. 2463 */ 2464 old_devices = clone_fs_devices(fs_devices); 2465 if (IS_ERR(old_devices)) { 2466 kfree(seed_devices); 2467 return old_devices; 2468 } 2469 2470 list_add(&old_devices->fs_list, &fs_uuids); 2471 2472 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2473 seed_devices->opened = 1; 2474 INIT_LIST_HEAD(&seed_devices->devices); 2475 INIT_LIST_HEAD(&seed_devices->alloc_list); 2476 mutex_init(&seed_devices->device_list_mutex); 2477 2478 return seed_devices; 2479 } 2480 2481 /* 2482 * Splice seed devices into the sprout fs_devices. 2483 * Generate a new fsid for the sprouted read-write filesystem. 2484 */ 2485 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2486 struct btrfs_fs_devices *seed_devices) 2487 { 2488 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2489 struct btrfs_super_block *disk_super = fs_info->super_copy; 2490 struct btrfs_device *device; 2491 u64 super_flags; 2492 2493 /* 2494 * We are updating the fsid, the thread leading to device_list_add() 2495 * could race, so uuid_mutex is needed. 2496 */ 2497 lockdep_assert_held(&uuid_mutex); 2498 2499 /* 2500 * The threads listed below may traverse dev_list but can do that without 2501 * device_list_mutex: 2502 * - All device ops and balance - as we are in btrfs_exclop_start. 2503 * - Various dev_list readers - are using RCU. 2504 * - btrfs_ioctl_fitrim() - is using RCU. 2505 * 2506 * For-read threads as below are using device_list_mutex: 2507 * - Readonly scrub btrfs_scrub_dev() 2508 * - Readonly scrub btrfs_scrub_progress() 2509 * - btrfs_get_dev_stats() 2510 */ 2511 lockdep_assert_held(&fs_devices->device_list_mutex); 2512 2513 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2514 synchronize_rcu); 2515 list_for_each_entry(device, &seed_devices->devices, dev_list) 2516 device->fs_devices = seed_devices; 2517 2518 fs_devices->seeding = false; 2519 fs_devices->num_devices = 0; 2520 fs_devices->open_devices = 0; 2521 fs_devices->missing_devices = 0; 2522 fs_devices->rotating = false; 2523 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2524 2525 generate_random_uuid(fs_devices->fsid); 2526 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2527 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2528 2529 super_flags = btrfs_super_flags(disk_super) & 2530 ~BTRFS_SUPER_FLAG_SEEDING; 2531 btrfs_set_super_flags(disk_super, super_flags); 2532 } 2533 2534 /* 2535 * Store the expected generation for seed devices in device items. 2536 */ 2537 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2538 { 2539 BTRFS_DEV_LOOKUP_ARGS(args); 2540 struct btrfs_fs_info *fs_info = trans->fs_info; 2541 struct btrfs_root *root = fs_info->chunk_root; 2542 struct btrfs_path *path; 2543 struct extent_buffer *leaf; 2544 struct btrfs_dev_item *dev_item; 2545 struct btrfs_device *device; 2546 struct btrfs_key key; 2547 u8 fs_uuid[BTRFS_FSID_SIZE]; 2548 u8 dev_uuid[BTRFS_UUID_SIZE]; 2549 int ret; 2550 2551 path = btrfs_alloc_path(); 2552 if (!path) 2553 return -ENOMEM; 2554 2555 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2556 key.offset = 0; 2557 key.type = BTRFS_DEV_ITEM_KEY; 2558 2559 while (1) { 2560 btrfs_reserve_chunk_metadata(trans, false); 2561 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2562 btrfs_trans_release_chunk_metadata(trans); 2563 if (ret < 0) 2564 goto error; 2565 2566 leaf = path->nodes[0]; 2567 next_slot: 2568 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2569 ret = btrfs_next_leaf(root, path); 2570 if (ret > 0) 2571 break; 2572 if (ret < 0) 2573 goto error; 2574 leaf = path->nodes[0]; 2575 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2576 btrfs_release_path(path); 2577 continue; 2578 } 2579 2580 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2581 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2582 key.type != BTRFS_DEV_ITEM_KEY) 2583 break; 2584 2585 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2586 struct btrfs_dev_item); 2587 args.devid = btrfs_device_id(leaf, dev_item); 2588 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2589 BTRFS_UUID_SIZE); 2590 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2591 BTRFS_FSID_SIZE); 2592 args.uuid = dev_uuid; 2593 args.fsid = fs_uuid; 2594 device = btrfs_find_device(fs_info->fs_devices, &args); 2595 BUG_ON(!device); /* Logic error */ 2596 2597 if (device->fs_devices->seeding) { 2598 btrfs_set_device_generation(leaf, dev_item, 2599 device->generation); 2600 btrfs_mark_buffer_dirty(trans, leaf); 2601 } 2602 2603 path->slots[0]++; 2604 goto next_slot; 2605 } 2606 ret = 0; 2607 error: 2608 btrfs_free_path(path); 2609 return ret; 2610 } 2611 2612 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2613 { 2614 struct btrfs_root *root = fs_info->dev_root; 2615 struct btrfs_trans_handle *trans; 2616 struct btrfs_device *device; 2617 struct block_device *bdev; 2618 struct super_block *sb = fs_info->sb; 2619 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2620 struct btrfs_fs_devices *seed_devices = NULL; 2621 u64 orig_super_total_bytes; 2622 u64 orig_super_num_devices; 2623 int ret = 0; 2624 bool seeding_dev = false; 2625 bool locked = false; 2626 2627 if (sb_rdonly(sb) && !fs_devices->seeding) 2628 return -EROFS; 2629 2630 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE, 2631 fs_info->bdev_holder, NULL); 2632 if (IS_ERR(bdev)) 2633 return PTR_ERR(bdev); 2634 2635 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2636 ret = -EINVAL; 2637 goto error; 2638 } 2639 2640 if (fs_devices->seeding) { 2641 seeding_dev = true; 2642 down_write(&sb->s_umount); 2643 mutex_lock(&uuid_mutex); 2644 locked = true; 2645 } 2646 2647 sync_blockdev(bdev); 2648 2649 rcu_read_lock(); 2650 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2651 if (device->bdev == bdev) { 2652 ret = -EEXIST; 2653 rcu_read_unlock(); 2654 goto error; 2655 } 2656 } 2657 rcu_read_unlock(); 2658 2659 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); 2660 if (IS_ERR(device)) { 2661 /* we can safely leave the fs_devices entry around */ 2662 ret = PTR_ERR(device); 2663 goto error; 2664 } 2665 2666 device->fs_info = fs_info; 2667 device->bdev = bdev; 2668 ret = lookup_bdev(device_path, &device->devt); 2669 if (ret) 2670 goto error_free_device; 2671 2672 ret = btrfs_get_dev_zone_info(device, false); 2673 if (ret) 2674 goto error_free_device; 2675 2676 trans = btrfs_start_transaction(root, 0); 2677 if (IS_ERR(trans)) { 2678 ret = PTR_ERR(trans); 2679 goto error_free_zone; 2680 } 2681 2682 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2683 device->generation = trans->transid; 2684 device->io_width = fs_info->sectorsize; 2685 device->io_align = fs_info->sectorsize; 2686 device->sector_size = fs_info->sectorsize; 2687 device->total_bytes = 2688 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2689 device->disk_total_bytes = device->total_bytes; 2690 device->commit_total_bytes = device->total_bytes; 2691 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2692 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2693 device->holder = fs_info->bdev_holder; 2694 device->dev_stats_valid = 1; 2695 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2696 2697 if (seeding_dev) { 2698 btrfs_clear_sb_rdonly(sb); 2699 2700 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2701 seed_devices = btrfs_init_sprout(fs_info); 2702 if (IS_ERR(seed_devices)) { 2703 ret = PTR_ERR(seed_devices); 2704 btrfs_abort_transaction(trans, ret); 2705 goto error_trans; 2706 } 2707 } 2708 2709 mutex_lock(&fs_devices->device_list_mutex); 2710 if (seeding_dev) { 2711 btrfs_setup_sprout(fs_info, seed_devices); 2712 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2713 device); 2714 } 2715 2716 device->fs_devices = fs_devices; 2717 2718 mutex_lock(&fs_info->chunk_mutex); 2719 list_add_rcu(&device->dev_list, &fs_devices->devices); 2720 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2721 fs_devices->num_devices++; 2722 fs_devices->open_devices++; 2723 fs_devices->rw_devices++; 2724 fs_devices->total_devices++; 2725 fs_devices->total_rw_bytes += device->total_bytes; 2726 2727 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2728 2729 if (!bdev_nonrot(bdev)) 2730 fs_devices->rotating = true; 2731 2732 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2733 btrfs_set_super_total_bytes(fs_info->super_copy, 2734 round_down(orig_super_total_bytes + device->total_bytes, 2735 fs_info->sectorsize)); 2736 2737 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2738 btrfs_set_super_num_devices(fs_info->super_copy, 2739 orig_super_num_devices + 1); 2740 2741 /* 2742 * we've got more storage, clear any full flags on the space 2743 * infos 2744 */ 2745 btrfs_clear_space_info_full(fs_info); 2746 2747 mutex_unlock(&fs_info->chunk_mutex); 2748 2749 /* Add sysfs device entry */ 2750 btrfs_sysfs_add_device(device); 2751 2752 mutex_unlock(&fs_devices->device_list_mutex); 2753 2754 if (seeding_dev) { 2755 mutex_lock(&fs_info->chunk_mutex); 2756 ret = init_first_rw_device(trans); 2757 mutex_unlock(&fs_info->chunk_mutex); 2758 if (ret) { 2759 btrfs_abort_transaction(trans, ret); 2760 goto error_sysfs; 2761 } 2762 } 2763 2764 ret = btrfs_add_dev_item(trans, device); 2765 if (ret) { 2766 btrfs_abort_transaction(trans, ret); 2767 goto error_sysfs; 2768 } 2769 2770 if (seeding_dev) { 2771 ret = btrfs_finish_sprout(trans); 2772 if (ret) { 2773 btrfs_abort_transaction(trans, ret); 2774 goto error_sysfs; 2775 } 2776 2777 /* 2778 * fs_devices now represents the newly sprouted filesystem and 2779 * its fsid has been changed by btrfs_sprout_splice(). 2780 */ 2781 btrfs_sysfs_update_sprout_fsid(fs_devices); 2782 } 2783 2784 ret = btrfs_commit_transaction(trans); 2785 2786 if (seeding_dev) { 2787 mutex_unlock(&uuid_mutex); 2788 up_write(&sb->s_umount); 2789 locked = false; 2790 2791 if (ret) /* transaction commit */ 2792 return ret; 2793 2794 ret = btrfs_relocate_sys_chunks(fs_info); 2795 if (ret < 0) 2796 btrfs_handle_fs_error(fs_info, ret, 2797 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2798 trans = btrfs_attach_transaction(root); 2799 if (IS_ERR(trans)) { 2800 if (PTR_ERR(trans) == -ENOENT) 2801 return 0; 2802 ret = PTR_ERR(trans); 2803 trans = NULL; 2804 goto error_sysfs; 2805 } 2806 ret = btrfs_commit_transaction(trans); 2807 } 2808 2809 /* 2810 * Now that we have written a new super block to this device, check all 2811 * other fs_devices list if device_path alienates any other scanned 2812 * device. 2813 * We can ignore the return value as it typically returns -EINVAL and 2814 * only succeeds if the device was an alien. 2815 */ 2816 btrfs_forget_devices(device->devt); 2817 2818 /* Update ctime/mtime for blkid or udev */ 2819 update_dev_time(device_path); 2820 2821 return ret; 2822 2823 error_sysfs: 2824 btrfs_sysfs_remove_device(device); 2825 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2826 mutex_lock(&fs_info->chunk_mutex); 2827 list_del_rcu(&device->dev_list); 2828 list_del(&device->dev_alloc_list); 2829 fs_info->fs_devices->num_devices--; 2830 fs_info->fs_devices->open_devices--; 2831 fs_info->fs_devices->rw_devices--; 2832 fs_info->fs_devices->total_devices--; 2833 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2834 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2835 btrfs_set_super_total_bytes(fs_info->super_copy, 2836 orig_super_total_bytes); 2837 btrfs_set_super_num_devices(fs_info->super_copy, 2838 orig_super_num_devices); 2839 mutex_unlock(&fs_info->chunk_mutex); 2840 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2841 error_trans: 2842 if (seeding_dev) 2843 btrfs_set_sb_rdonly(sb); 2844 if (trans) 2845 btrfs_end_transaction(trans); 2846 error_free_zone: 2847 btrfs_destroy_dev_zone_info(device); 2848 error_free_device: 2849 btrfs_free_device(device); 2850 error: 2851 blkdev_put(bdev, fs_info->bdev_holder); 2852 if (locked) { 2853 mutex_unlock(&uuid_mutex); 2854 up_write(&sb->s_umount); 2855 } 2856 return ret; 2857 } 2858 2859 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2860 struct btrfs_device *device) 2861 { 2862 int ret; 2863 struct btrfs_path *path; 2864 struct btrfs_root *root = device->fs_info->chunk_root; 2865 struct btrfs_dev_item *dev_item; 2866 struct extent_buffer *leaf; 2867 struct btrfs_key key; 2868 2869 path = btrfs_alloc_path(); 2870 if (!path) 2871 return -ENOMEM; 2872 2873 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2874 key.type = BTRFS_DEV_ITEM_KEY; 2875 key.offset = device->devid; 2876 2877 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2878 if (ret < 0) 2879 goto out; 2880 2881 if (ret > 0) { 2882 ret = -ENOENT; 2883 goto out; 2884 } 2885 2886 leaf = path->nodes[0]; 2887 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2888 2889 btrfs_set_device_id(leaf, dev_item, device->devid); 2890 btrfs_set_device_type(leaf, dev_item, device->type); 2891 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2892 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2893 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2894 btrfs_set_device_total_bytes(leaf, dev_item, 2895 btrfs_device_get_disk_total_bytes(device)); 2896 btrfs_set_device_bytes_used(leaf, dev_item, 2897 btrfs_device_get_bytes_used(device)); 2898 btrfs_mark_buffer_dirty(trans, leaf); 2899 2900 out: 2901 btrfs_free_path(path); 2902 return ret; 2903 } 2904 2905 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2906 struct btrfs_device *device, u64 new_size) 2907 { 2908 struct btrfs_fs_info *fs_info = device->fs_info; 2909 struct btrfs_super_block *super_copy = fs_info->super_copy; 2910 u64 old_total; 2911 u64 diff; 2912 int ret; 2913 2914 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2915 return -EACCES; 2916 2917 new_size = round_down(new_size, fs_info->sectorsize); 2918 2919 mutex_lock(&fs_info->chunk_mutex); 2920 old_total = btrfs_super_total_bytes(super_copy); 2921 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2922 2923 if (new_size <= device->total_bytes || 2924 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2925 mutex_unlock(&fs_info->chunk_mutex); 2926 return -EINVAL; 2927 } 2928 2929 btrfs_set_super_total_bytes(super_copy, 2930 round_down(old_total + diff, fs_info->sectorsize)); 2931 device->fs_devices->total_rw_bytes += diff; 2932 2933 btrfs_device_set_total_bytes(device, new_size); 2934 btrfs_device_set_disk_total_bytes(device, new_size); 2935 btrfs_clear_space_info_full(device->fs_info); 2936 if (list_empty(&device->post_commit_list)) 2937 list_add_tail(&device->post_commit_list, 2938 &trans->transaction->dev_update_list); 2939 mutex_unlock(&fs_info->chunk_mutex); 2940 2941 btrfs_reserve_chunk_metadata(trans, false); 2942 ret = btrfs_update_device(trans, device); 2943 btrfs_trans_release_chunk_metadata(trans); 2944 2945 return ret; 2946 } 2947 2948 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2949 { 2950 struct btrfs_fs_info *fs_info = trans->fs_info; 2951 struct btrfs_root *root = fs_info->chunk_root; 2952 int ret; 2953 struct btrfs_path *path; 2954 struct btrfs_key key; 2955 2956 path = btrfs_alloc_path(); 2957 if (!path) 2958 return -ENOMEM; 2959 2960 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2961 key.offset = chunk_offset; 2962 key.type = BTRFS_CHUNK_ITEM_KEY; 2963 2964 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2965 if (ret < 0) 2966 goto out; 2967 else if (ret > 0) { /* Logic error or corruption */ 2968 btrfs_handle_fs_error(fs_info, -ENOENT, 2969 "Failed lookup while freeing chunk."); 2970 ret = -ENOENT; 2971 goto out; 2972 } 2973 2974 ret = btrfs_del_item(trans, root, path); 2975 if (ret < 0) 2976 btrfs_handle_fs_error(fs_info, ret, 2977 "Failed to delete chunk item."); 2978 out: 2979 btrfs_free_path(path); 2980 return ret; 2981 } 2982 2983 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2984 { 2985 struct btrfs_super_block *super_copy = fs_info->super_copy; 2986 struct btrfs_disk_key *disk_key; 2987 struct btrfs_chunk *chunk; 2988 u8 *ptr; 2989 int ret = 0; 2990 u32 num_stripes; 2991 u32 array_size; 2992 u32 len = 0; 2993 u32 cur; 2994 struct btrfs_key key; 2995 2996 lockdep_assert_held(&fs_info->chunk_mutex); 2997 array_size = btrfs_super_sys_array_size(super_copy); 2998 2999 ptr = super_copy->sys_chunk_array; 3000 cur = 0; 3001 3002 while (cur < array_size) { 3003 disk_key = (struct btrfs_disk_key *)ptr; 3004 btrfs_disk_key_to_cpu(&key, disk_key); 3005 3006 len = sizeof(*disk_key); 3007 3008 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3009 chunk = (struct btrfs_chunk *)(ptr + len); 3010 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3011 len += btrfs_chunk_item_size(num_stripes); 3012 } else { 3013 ret = -EIO; 3014 break; 3015 } 3016 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3017 key.offset == chunk_offset) { 3018 memmove(ptr, ptr + len, array_size - (cur + len)); 3019 array_size -= len; 3020 btrfs_set_super_sys_array_size(super_copy, array_size); 3021 } else { 3022 ptr += len; 3023 cur += len; 3024 } 3025 } 3026 return ret; 3027 } 3028 3029 /* 3030 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 3031 * @logical: Logical block offset in bytes. 3032 * @length: Length of extent in bytes. 3033 * 3034 * Return: Chunk mapping or ERR_PTR. 3035 */ 3036 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3037 u64 logical, u64 length) 3038 { 3039 struct extent_map_tree *em_tree; 3040 struct extent_map *em; 3041 3042 em_tree = &fs_info->mapping_tree; 3043 read_lock(&em_tree->lock); 3044 em = lookup_extent_mapping(em_tree, logical, length); 3045 read_unlock(&em_tree->lock); 3046 3047 if (!em) { 3048 btrfs_crit(fs_info, 3049 "unable to find chunk map for logical %llu length %llu", 3050 logical, length); 3051 return ERR_PTR(-EINVAL); 3052 } 3053 3054 if (em->start > logical || em->start + em->len <= logical) { 3055 btrfs_crit(fs_info, 3056 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu", 3057 logical, logical + length, em->start, em->start + em->len); 3058 free_extent_map(em); 3059 return ERR_PTR(-EINVAL); 3060 } 3061 3062 /* callers are responsible for dropping em's ref. */ 3063 return em; 3064 } 3065 3066 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3067 struct map_lookup *map, u64 chunk_offset) 3068 { 3069 int i; 3070 3071 /* 3072 * Removing chunk items and updating the device items in the chunks btree 3073 * requires holding the chunk_mutex. 3074 * See the comment at btrfs_chunk_alloc() for the details. 3075 */ 3076 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3077 3078 for (i = 0; i < map->num_stripes; i++) { 3079 int ret; 3080 3081 ret = btrfs_update_device(trans, map->stripes[i].dev); 3082 if (ret) 3083 return ret; 3084 } 3085 3086 return btrfs_free_chunk(trans, chunk_offset); 3087 } 3088 3089 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3090 { 3091 struct btrfs_fs_info *fs_info = trans->fs_info; 3092 struct extent_map *em; 3093 struct map_lookup *map; 3094 u64 dev_extent_len = 0; 3095 int i, ret = 0; 3096 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3097 3098 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3099 if (IS_ERR(em)) { 3100 /* 3101 * This is a logic error, but we don't want to just rely on the 3102 * user having built with ASSERT enabled, so if ASSERT doesn't 3103 * do anything we still error out. 3104 */ 3105 ASSERT(0); 3106 return PTR_ERR(em); 3107 } 3108 map = em->map_lookup; 3109 3110 /* 3111 * First delete the device extent items from the devices btree. 3112 * We take the device_list_mutex to avoid racing with the finishing phase 3113 * of a device replace operation. See the comment below before acquiring 3114 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3115 * because that can result in a deadlock when deleting the device extent 3116 * items from the devices btree - COWing an extent buffer from the btree 3117 * may result in allocating a new metadata chunk, which would attempt to 3118 * lock again fs_info->chunk_mutex. 3119 */ 3120 mutex_lock(&fs_devices->device_list_mutex); 3121 for (i = 0; i < map->num_stripes; i++) { 3122 struct btrfs_device *device = map->stripes[i].dev; 3123 ret = btrfs_free_dev_extent(trans, device, 3124 map->stripes[i].physical, 3125 &dev_extent_len); 3126 if (ret) { 3127 mutex_unlock(&fs_devices->device_list_mutex); 3128 btrfs_abort_transaction(trans, ret); 3129 goto out; 3130 } 3131 3132 if (device->bytes_used > 0) { 3133 mutex_lock(&fs_info->chunk_mutex); 3134 btrfs_device_set_bytes_used(device, 3135 device->bytes_used - dev_extent_len); 3136 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3137 btrfs_clear_space_info_full(fs_info); 3138 mutex_unlock(&fs_info->chunk_mutex); 3139 } 3140 } 3141 mutex_unlock(&fs_devices->device_list_mutex); 3142 3143 /* 3144 * We acquire fs_info->chunk_mutex for 2 reasons: 3145 * 3146 * 1) Just like with the first phase of the chunk allocation, we must 3147 * reserve system space, do all chunk btree updates and deletions, and 3148 * update the system chunk array in the superblock while holding this 3149 * mutex. This is for similar reasons as explained on the comment at 3150 * the top of btrfs_chunk_alloc(); 3151 * 3152 * 2) Prevent races with the final phase of a device replace operation 3153 * that replaces the device object associated with the map's stripes, 3154 * because the device object's id can change at any time during that 3155 * final phase of the device replace operation 3156 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3157 * replaced device and then see it with an ID of 3158 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3159 * the device item, which does not exists on the chunk btree. 3160 * The finishing phase of device replace acquires both the 3161 * device_list_mutex and the chunk_mutex, in that order, so we are 3162 * safe by just acquiring the chunk_mutex. 3163 */ 3164 trans->removing_chunk = true; 3165 mutex_lock(&fs_info->chunk_mutex); 3166 3167 check_system_chunk(trans, map->type); 3168 3169 ret = remove_chunk_item(trans, map, chunk_offset); 3170 /* 3171 * Normally we should not get -ENOSPC since we reserved space before 3172 * through the call to check_system_chunk(). 3173 * 3174 * Despite our system space_info having enough free space, we may not 3175 * be able to allocate extents from its block groups, because all have 3176 * an incompatible profile, which will force us to allocate a new system 3177 * block group with the right profile, or right after we called 3178 * check_system_space() above, a scrub turned the only system block group 3179 * with enough free space into RO mode. 3180 * This is explained with more detail at do_chunk_alloc(). 3181 * 3182 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3183 */ 3184 if (ret == -ENOSPC) { 3185 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3186 struct btrfs_block_group *sys_bg; 3187 3188 sys_bg = btrfs_create_chunk(trans, sys_flags); 3189 if (IS_ERR(sys_bg)) { 3190 ret = PTR_ERR(sys_bg); 3191 btrfs_abort_transaction(trans, ret); 3192 goto out; 3193 } 3194 3195 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3196 if (ret) { 3197 btrfs_abort_transaction(trans, ret); 3198 goto out; 3199 } 3200 3201 ret = remove_chunk_item(trans, map, chunk_offset); 3202 if (ret) { 3203 btrfs_abort_transaction(trans, ret); 3204 goto out; 3205 } 3206 } else if (ret) { 3207 btrfs_abort_transaction(trans, ret); 3208 goto out; 3209 } 3210 3211 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3212 3213 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3214 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3215 if (ret) { 3216 btrfs_abort_transaction(trans, ret); 3217 goto out; 3218 } 3219 } 3220 3221 mutex_unlock(&fs_info->chunk_mutex); 3222 trans->removing_chunk = false; 3223 3224 /* 3225 * We are done with chunk btree updates and deletions, so release the 3226 * system space we previously reserved (with check_system_chunk()). 3227 */ 3228 btrfs_trans_release_chunk_metadata(trans); 3229 3230 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3231 if (ret) { 3232 btrfs_abort_transaction(trans, ret); 3233 goto out; 3234 } 3235 3236 out: 3237 if (trans->removing_chunk) { 3238 mutex_unlock(&fs_info->chunk_mutex); 3239 trans->removing_chunk = false; 3240 } 3241 /* once for us */ 3242 free_extent_map(em); 3243 return ret; 3244 } 3245 3246 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3247 { 3248 struct btrfs_root *root = fs_info->chunk_root; 3249 struct btrfs_trans_handle *trans; 3250 struct btrfs_block_group *block_group; 3251 u64 length; 3252 int ret; 3253 3254 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3255 btrfs_err(fs_info, 3256 "relocate: not supported on extent tree v2 yet"); 3257 return -EINVAL; 3258 } 3259 3260 /* 3261 * Prevent races with automatic removal of unused block groups. 3262 * After we relocate and before we remove the chunk with offset 3263 * chunk_offset, automatic removal of the block group can kick in, 3264 * resulting in a failure when calling btrfs_remove_chunk() below. 3265 * 3266 * Make sure to acquire this mutex before doing a tree search (dev 3267 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3268 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3269 * we release the path used to search the chunk/dev tree and before 3270 * the current task acquires this mutex and calls us. 3271 */ 3272 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3273 3274 /* step one, relocate all the extents inside this chunk */ 3275 btrfs_scrub_pause(fs_info); 3276 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3277 btrfs_scrub_continue(fs_info); 3278 if (ret) { 3279 /* 3280 * If we had a transaction abort, stop all running scrubs. 3281 * See transaction.c:cleanup_transaction() why we do it here. 3282 */ 3283 if (BTRFS_FS_ERROR(fs_info)) 3284 btrfs_scrub_cancel(fs_info); 3285 return ret; 3286 } 3287 3288 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3289 if (!block_group) 3290 return -ENOENT; 3291 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3292 length = block_group->length; 3293 btrfs_put_block_group(block_group); 3294 3295 /* 3296 * On a zoned file system, discard the whole block group, this will 3297 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3298 * resetting the zone fails, don't treat it as a fatal problem from the 3299 * filesystem's point of view. 3300 */ 3301 if (btrfs_is_zoned(fs_info)) { 3302 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3303 if (ret) 3304 btrfs_info(fs_info, 3305 "failed to reset zone %llu after relocation", 3306 chunk_offset); 3307 } 3308 3309 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3310 chunk_offset); 3311 if (IS_ERR(trans)) { 3312 ret = PTR_ERR(trans); 3313 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3314 return ret; 3315 } 3316 3317 /* 3318 * step two, delete the device extents and the 3319 * chunk tree entries 3320 */ 3321 ret = btrfs_remove_chunk(trans, chunk_offset); 3322 btrfs_end_transaction(trans); 3323 return ret; 3324 } 3325 3326 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3327 { 3328 struct btrfs_root *chunk_root = fs_info->chunk_root; 3329 struct btrfs_path *path; 3330 struct extent_buffer *leaf; 3331 struct btrfs_chunk *chunk; 3332 struct btrfs_key key; 3333 struct btrfs_key found_key; 3334 u64 chunk_type; 3335 bool retried = false; 3336 int failed = 0; 3337 int ret; 3338 3339 path = btrfs_alloc_path(); 3340 if (!path) 3341 return -ENOMEM; 3342 3343 again: 3344 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3345 key.offset = (u64)-1; 3346 key.type = BTRFS_CHUNK_ITEM_KEY; 3347 3348 while (1) { 3349 mutex_lock(&fs_info->reclaim_bgs_lock); 3350 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3351 if (ret < 0) { 3352 mutex_unlock(&fs_info->reclaim_bgs_lock); 3353 goto error; 3354 } 3355 if (ret == 0) { 3356 /* 3357 * On the first search we would find chunk tree with 3358 * offset -1, which is not possible. On subsequent 3359 * loops this would find an existing item on an invalid 3360 * offset (one less than the previous one, wrong 3361 * alignment and size). 3362 */ 3363 ret = -EUCLEAN; 3364 goto error; 3365 } 3366 3367 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3368 key.type); 3369 if (ret) 3370 mutex_unlock(&fs_info->reclaim_bgs_lock); 3371 if (ret < 0) 3372 goto error; 3373 if (ret > 0) 3374 break; 3375 3376 leaf = path->nodes[0]; 3377 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3378 3379 chunk = btrfs_item_ptr(leaf, path->slots[0], 3380 struct btrfs_chunk); 3381 chunk_type = btrfs_chunk_type(leaf, chunk); 3382 btrfs_release_path(path); 3383 3384 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3385 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3386 if (ret == -ENOSPC) 3387 failed++; 3388 else 3389 BUG_ON(ret); 3390 } 3391 mutex_unlock(&fs_info->reclaim_bgs_lock); 3392 3393 if (found_key.offset == 0) 3394 break; 3395 key.offset = found_key.offset - 1; 3396 } 3397 ret = 0; 3398 if (failed && !retried) { 3399 failed = 0; 3400 retried = true; 3401 goto again; 3402 } else if (WARN_ON(failed && retried)) { 3403 ret = -ENOSPC; 3404 } 3405 error: 3406 btrfs_free_path(path); 3407 return ret; 3408 } 3409 3410 /* 3411 * return 1 : allocate a data chunk successfully, 3412 * return <0: errors during allocating a data chunk, 3413 * return 0 : no need to allocate a data chunk. 3414 */ 3415 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3416 u64 chunk_offset) 3417 { 3418 struct btrfs_block_group *cache; 3419 u64 bytes_used; 3420 u64 chunk_type; 3421 3422 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3423 ASSERT(cache); 3424 chunk_type = cache->flags; 3425 btrfs_put_block_group(cache); 3426 3427 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3428 return 0; 3429 3430 spin_lock(&fs_info->data_sinfo->lock); 3431 bytes_used = fs_info->data_sinfo->bytes_used; 3432 spin_unlock(&fs_info->data_sinfo->lock); 3433 3434 if (!bytes_used) { 3435 struct btrfs_trans_handle *trans; 3436 int ret; 3437 3438 trans = btrfs_join_transaction(fs_info->tree_root); 3439 if (IS_ERR(trans)) 3440 return PTR_ERR(trans); 3441 3442 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3443 btrfs_end_transaction(trans); 3444 if (ret < 0) 3445 return ret; 3446 return 1; 3447 } 3448 3449 return 0; 3450 } 3451 3452 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3453 struct btrfs_balance_control *bctl) 3454 { 3455 struct btrfs_root *root = fs_info->tree_root; 3456 struct btrfs_trans_handle *trans; 3457 struct btrfs_balance_item *item; 3458 struct btrfs_disk_balance_args disk_bargs; 3459 struct btrfs_path *path; 3460 struct extent_buffer *leaf; 3461 struct btrfs_key key; 3462 int ret, err; 3463 3464 path = btrfs_alloc_path(); 3465 if (!path) 3466 return -ENOMEM; 3467 3468 trans = btrfs_start_transaction(root, 0); 3469 if (IS_ERR(trans)) { 3470 btrfs_free_path(path); 3471 return PTR_ERR(trans); 3472 } 3473 3474 key.objectid = BTRFS_BALANCE_OBJECTID; 3475 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3476 key.offset = 0; 3477 3478 ret = btrfs_insert_empty_item(trans, root, path, &key, 3479 sizeof(*item)); 3480 if (ret) 3481 goto out; 3482 3483 leaf = path->nodes[0]; 3484 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3485 3486 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3487 3488 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3489 btrfs_set_balance_data(leaf, item, &disk_bargs); 3490 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3491 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3492 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3493 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3494 3495 btrfs_set_balance_flags(leaf, item, bctl->flags); 3496 3497 btrfs_mark_buffer_dirty(trans, leaf); 3498 out: 3499 btrfs_free_path(path); 3500 err = btrfs_commit_transaction(trans); 3501 if (err && !ret) 3502 ret = err; 3503 return ret; 3504 } 3505 3506 static int del_balance_item(struct btrfs_fs_info *fs_info) 3507 { 3508 struct btrfs_root *root = fs_info->tree_root; 3509 struct btrfs_trans_handle *trans; 3510 struct btrfs_path *path; 3511 struct btrfs_key key; 3512 int ret, err; 3513 3514 path = btrfs_alloc_path(); 3515 if (!path) 3516 return -ENOMEM; 3517 3518 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3519 if (IS_ERR(trans)) { 3520 btrfs_free_path(path); 3521 return PTR_ERR(trans); 3522 } 3523 3524 key.objectid = BTRFS_BALANCE_OBJECTID; 3525 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3526 key.offset = 0; 3527 3528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3529 if (ret < 0) 3530 goto out; 3531 if (ret > 0) { 3532 ret = -ENOENT; 3533 goto out; 3534 } 3535 3536 ret = btrfs_del_item(trans, root, path); 3537 out: 3538 btrfs_free_path(path); 3539 err = btrfs_commit_transaction(trans); 3540 if (err && !ret) 3541 ret = err; 3542 return ret; 3543 } 3544 3545 /* 3546 * This is a heuristic used to reduce the number of chunks balanced on 3547 * resume after balance was interrupted. 3548 */ 3549 static void update_balance_args(struct btrfs_balance_control *bctl) 3550 { 3551 /* 3552 * Turn on soft mode for chunk types that were being converted. 3553 */ 3554 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3555 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3556 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3557 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3558 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3559 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3560 3561 /* 3562 * Turn on usage filter if is not already used. The idea is 3563 * that chunks that we have already balanced should be 3564 * reasonably full. Don't do it for chunks that are being 3565 * converted - that will keep us from relocating unconverted 3566 * (albeit full) chunks. 3567 */ 3568 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3569 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3570 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3571 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3572 bctl->data.usage = 90; 3573 } 3574 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3575 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3576 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3577 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3578 bctl->sys.usage = 90; 3579 } 3580 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3581 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3582 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3583 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3584 bctl->meta.usage = 90; 3585 } 3586 } 3587 3588 /* 3589 * Clear the balance status in fs_info and delete the balance item from disk. 3590 */ 3591 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3592 { 3593 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3594 int ret; 3595 3596 BUG_ON(!fs_info->balance_ctl); 3597 3598 spin_lock(&fs_info->balance_lock); 3599 fs_info->balance_ctl = NULL; 3600 spin_unlock(&fs_info->balance_lock); 3601 3602 kfree(bctl); 3603 ret = del_balance_item(fs_info); 3604 if (ret) 3605 btrfs_handle_fs_error(fs_info, ret, NULL); 3606 } 3607 3608 /* 3609 * Balance filters. Return 1 if chunk should be filtered out 3610 * (should not be balanced). 3611 */ 3612 static int chunk_profiles_filter(u64 chunk_type, 3613 struct btrfs_balance_args *bargs) 3614 { 3615 chunk_type = chunk_to_extended(chunk_type) & 3616 BTRFS_EXTENDED_PROFILE_MASK; 3617 3618 if (bargs->profiles & chunk_type) 3619 return 0; 3620 3621 return 1; 3622 } 3623 3624 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3625 struct btrfs_balance_args *bargs) 3626 { 3627 struct btrfs_block_group *cache; 3628 u64 chunk_used; 3629 u64 user_thresh_min; 3630 u64 user_thresh_max; 3631 int ret = 1; 3632 3633 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3634 chunk_used = cache->used; 3635 3636 if (bargs->usage_min == 0) 3637 user_thresh_min = 0; 3638 else 3639 user_thresh_min = mult_perc(cache->length, bargs->usage_min); 3640 3641 if (bargs->usage_max == 0) 3642 user_thresh_max = 1; 3643 else if (bargs->usage_max > 100) 3644 user_thresh_max = cache->length; 3645 else 3646 user_thresh_max = mult_perc(cache->length, bargs->usage_max); 3647 3648 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3649 ret = 0; 3650 3651 btrfs_put_block_group(cache); 3652 return ret; 3653 } 3654 3655 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3656 u64 chunk_offset, struct btrfs_balance_args *bargs) 3657 { 3658 struct btrfs_block_group *cache; 3659 u64 chunk_used, user_thresh; 3660 int ret = 1; 3661 3662 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3663 chunk_used = cache->used; 3664 3665 if (bargs->usage_min == 0) 3666 user_thresh = 1; 3667 else if (bargs->usage > 100) 3668 user_thresh = cache->length; 3669 else 3670 user_thresh = mult_perc(cache->length, bargs->usage); 3671 3672 if (chunk_used < user_thresh) 3673 ret = 0; 3674 3675 btrfs_put_block_group(cache); 3676 return ret; 3677 } 3678 3679 static int chunk_devid_filter(struct extent_buffer *leaf, 3680 struct btrfs_chunk *chunk, 3681 struct btrfs_balance_args *bargs) 3682 { 3683 struct btrfs_stripe *stripe; 3684 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3685 int i; 3686 3687 for (i = 0; i < num_stripes; i++) { 3688 stripe = btrfs_stripe_nr(chunk, i); 3689 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3690 return 0; 3691 } 3692 3693 return 1; 3694 } 3695 3696 static u64 calc_data_stripes(u64 type, int num_stripes) 3697 { 3698 const int index = btrfs_bg_flags_to_raid_index(type); 3699 const int ncopies = btrfs_raid_array[index].ncopies; 3700 const int nparity = btrfs_raid_array[index].nparity; 3701 3702 return (num_stripes - nparity) / ncopies; 3703 } 3704 3705 /* [pstart, pend) */ 3706 static int chunk_drange_filter(struct extent_buffer *leaf, 3707 struct btrfs_chunk *chunk, 3708 struct btrfs_balance_args *bargs) 3709 { 3710 struct btrfs_stripe *stripe; 3711 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3712 u64 stripe_offset; 3713 u64 stripe_length; 3714 u64 type; 3715 int factor; 3716 int i; 3717 3718 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3719 return 0; 3720 3721 type = btrfs_chunk_type(leaf, chunk); 3722 factor = calc_data_stripes(type, num_stripes); 3723 3724 for (i = 0; i < num_stripes; i++) { 3725 stripe = btrfs_stripe_nr(chunk, i); 3726 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3727 continue; 3728 3729 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3730 stripe_length = btrfs_chunk_length(leaf, chunk); 3731 stripe_length = div_u64(stripe_length, factor); 3732 3733 if (stripe_offset < bargs->pend && 3734 stripe_offset + stripe_length > bargs->pstart) 3735 return 0; 3736 } 3737 3738 return 1; 3739 } 3740 3741 /* [vstart, vend) */ 3742 static int chunk_vrange_filter(struct extent_buffer *leaf, 3743 struct btrfs_chunk *chunk, 3744 u64 chunk_offset, 3745 struct btrfs_balance_args *bargs) 3746 { 3747 if (chunk_offset < bargs->vend && 3748 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3749 /* at least part of the chunk is inside this vrange */ 3750 return 0; 3751 3752 return 1; 3753 } 3754 3755 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3756 struct btrfs_chunk *chunk, 3757 struct btrfs_balance_args *bargs) 3758 { 3759 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3760 3761 if (bargs->stripes_min <= num_stripes 3762 && num_stripes <= bargs->stripes_max) 3763 return 0; 3764 3765 return 1; 3766 } 3767 3768 static int chunk_soft_convert_filter(u64 chunk_type, 3769 struct btrfs_balance_args *bargs) 3770 { 3771 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3772 return 0; 3773 3774 chunk_type = chunk_to_extended(chunk_type) & 3775 BTRFS_EXTENDED_PROFILE_MASK; 3776 3777 if (bargs->target == chunk_type) 3778 return 1; 3779 3780 return 0; 3781 } 3782 3783 static int should_balance_chunk(struct extent_buffer *leaf, 3784 struct btrfs_chunk *chunk, u64 chunk_offset) 3785 { 3786 struct btrfs_fs_info *fs_info = leaf->fs_info; 3787 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3788 struct btrfs_balance_args *bargs = NULL; 3789 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3790 3791 /* type filter */ 3792 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3793 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3794 return 0; 3795 } 3796 3797 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3798 bargs = &bctl->data; 3799 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3800 bargs = &bctl->sys; 3801 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3802 bargs = &bctl->meta; 3803 3804 /* profiles filter */ 3805 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3806 chunk_profiles_filter(chunk_type, bargs)) { 3807 return 0; 3808 } 3809 3810 /* usage filter */ 3811 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3812 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3813 return 0; 3814 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3815 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3816 return 0; 3817 } 3818 3819 /* devid filter */ 3820 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3821 chunk_devid_filter(leaf, chunk, bargs)) { 3822 return 0; 3823 } 3824 3825 /* drange filter, makes sense only with devid filter */ 3826 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3827 chunk_drange_filter(leaf, chunk, bargs)) { 3828 return 0; 3829 } 3830 3831 /* vrange filter */ 3832 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3833 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3834 return 0; 3835 } 3836 3837 /* stripes filter */ 3838 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3839 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3840 return 0; 3841 } 3842 3843 /* soft profile changing mode */ 3844 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3845 chunk_soft_convert_filter(chunk_type, bargs)) { 3846 return 0; 3847 } 3848 3849 /* 3850 * limited by count, must be the last filter 3851 */ 3852 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3853 if (bargs->limit == 0) 3854 return 0; 3855 else 3856 bargs->limit--; 3857 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3858 /* 3859 * Same logic as the 'limit' filter; the minimum cannot be 3860 * determined here because we do not have the global information 3861 * about the count of all chunks that satisfy the filters. 3862 */ 3863 if (bargs->limit_max == 0) 3864 return 0; 3865 else 3866 bargs->limit_max--; 3867 } 3868 3869 return 1; 3870 } 3871 3872 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3873 { 3874 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3875 struct btrfs_root *chunk_root = fs_info->chunk_root; 3876 u64 chunk_type; 3877 struct btrfs_chunk *chunk; 3878 struct btrfs_path *path = NULL; 3879 struct btrfs_key key; 3880 struct btrfs_key found_key; 3881 struct extent_buffer *leaf; 3882 int slot; 3883 int ret; 3884 int enospc_errors = 0; 3885 bool counting = true; 3886 /* The single value limit and min/max limits use the same bytes in the */ 3887 u64 limit_data = bctl->data.limit; 3888 u64 limit_meta = bctl->meta.limit; 3889 u64 limit_sys = bctl->sys.limit; 3890 u32 count_data = 0; 3891 u32 count_meta = 0; 3892 u32 count_sys = 0; 3893 int chunk_reserved = 0; 3894 3895 path = btrfs_alloc_path(); 3896 if (!path) { 3897 ret = -ENOMEM; 3898 goto error; 3899 } 3900 3901 /* zero out stat counters */ 3902 spin_lock(&fs_info->balance_lock); 3903 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3904 spin_unlock(&fs_info->balance_lock); 3905 again: 3906 if (!counting) { 3907 /* 3908 * The single value limit and min/max limits use the same bytes 3909 * in the 3910 */ 3911 bctl->data.limit = limit_data; 3912 bctl->meta.limit = limit_meta; 3913 bctl->sys.limit = limit_sys; 3914 } 3915 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3916 key.offset = (u64)-1; 3917 key.type = BTRFS_CHUNK_ITEM_KEY; 3918 3919 while (1) { 3920 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3921 atomic_read(&fs_info->balance_cancel_req)) { 3922 ret = -ECANCELED; 3923 goto error; 3924 } 3925 3926 mutex_lock(&fs_info->reclaim_bgs_lock); 3927 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3928 if (ret < 0) { 3929 mutex_unlock(&fs_info->reclaim_bgs_lock); 3930 goto error; 3931 } 3932 3933 /* 3934 * this shouldn't happen, it means the last relocate 3935 * failed 3936 */ 3937 if (ret == 0) 3938 BUG(); /* FIXME break ? */ 3939 3940 ret = btrfs_previous_item(chunk_root, path, 0, 3941 BTRFS_CHUNK_ITEM_KEY); 3942 if (ret) { 3943 mutex_unlock(&fs_info->reclaim_bgs_lock); 3944 ret = 0; 3945 break; 3946 } 3947 3948 leaf = path->nodes[0]; 3949 slot = path->slots[0]; 3950 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3951 3952 if (found_key.objectid != key.objectid) { 3953 mutex_unlock(&fs_info->reclaim_bgs_lock); 3954 break; 3955 } 3956 3957 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3958 chunk_type = btrfs_chunk_type(leaf, chunk); 3959 3960 if (!counting) { 3961 spin_lock(&fs_info->balance_lock); 3962 bctl->stat.considered++; 3963 spin_unlock(&fs_info->balance_lock); 3964 } 3965 3966 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3967 3968 btrfs_release_path(path); 3969 if (!ret) { 3970 mutex_unlock(&fs_info->reclaim_bgs_lock); 3971 goto loop; 3972 } 3973 3974 if (counting) { 3975 mutex_unlock(&fs_info->reclaim_bgs_lock); 3976 spin_lock(&fs_info->balance_lock); 3977 bctl->stat.expected++; 3978 spin_unlock(&fs_info->balance_lock); 3979 3980 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3981 count_data++; 3982 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3983 count_sys++; 3984 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3985 count_meta++; 3986 3987 goto loop; 3988 } 3989 3990 /* 3991 * Apply limit_min filter, no need to check if the LIMITS 3992 * filter is used, limit_min is 0 by default 3993 */ 3994 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3995 count_data < bctl->data.limit_min) 3996 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3997 count_meta < bctl->meta.limit_min) 3998 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3999 count_sys < bctl->sys.limit_min)) { 4000 mutex_unlock(&fs_info->reclaim_bgs_lock); 4001 goto loop; 4002 } 4003 4004 if (!chunk_reserved) { 4005 /* 4006 * We may be relocating the only data chunk we have, 4007 * which could potentially end up with losing data's 4008 * raid profile, so lets allocate an empty one in 4009 * advance. 4010 */ 4011 ret = btrfs_may_alloc_data_chunk(fs_info, 4012 found_key.offset); 4013 if (ret < 0) { 4014 mutex_unlock(&fs_info->reclaim_bgs_lock); 4015 goto error; 4016 } else if (ret == 1) { 4017 chunk_reserved = 1; 4018 } 4019 } 4020 4021 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4022 mutex_unlock(&fs_info->reclaim_bgs_lock); 4023 if (ret == -ENOSPC) { 4024 enospc_errors++; 4025 } else if (ret == -ETXTBSY) { 4026 btrfs_info(fs_info, 4027 "skipping relocation of block group %llu due to active swapfile", 4028 found_key.offset); 4029 ret = 0; 4030 } else if (ret) { 4031 goto error; 4032 } else { 4033 spin_lock(&fs_info->balance_lock); 4034 bctl->stat.completed++; 4035 spin_unlock(&fs_info->balance_lock); 4036 } 4037 loop: 4038 if (found_key.offset == 0) 4039 break; 4040 key.offset = found_key.offset - 1; 4041 } 4042 4043 if (counting) { 4044 btrfs_release_path(path); 4045 counting = false; 4046 goto again; 4047 } 4048 error: 4049 btrfs_free_path(path); 4050 if (enospc_errors) { 4051 btrfs_info(fs_info, "%d enospc errors during balance", 4052 enospc_errors); 4053 if (!ret) 4054 ret = -ENOSPC; 4055 } 4056 4057 return ret; 4058 } 4059 4060 /* 4061 * See if a given profile is valid and reduced. 4062 * 4063 * @flags: profile to validate 4064 * @extended: if true @flags is treated as an extended profile 4065 */ 4066 static int alloc_profile_is_valid(u64 flags, int extended) 4067 { 4068 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4069 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4070 4071 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4072 4073 /* 1) check that all other bits are zeroed */ 4074 if (flags & ~mask) 4075 return 0; 4076 4077 /* 2) see if profile is reduced */ 4078 if (flags == 0) 4079 return !extended; /* "0" is valid for usual profiles */ 4080 4081 return has_single_bit_set(flags); 4082 } 4083 4084 /* 4085 * Validate target profile against allowed profiles and return true if it's OK. 4086 * Otherwise print the error message and return false. 4087 */ 4088 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4089 const struct btrfs_balance_args *bargs, 4090 u64 allowed, const char *type) 4091 { 4092 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4093 return true; 4094 4095 /* Profile is valid and does not have bits outside of the allowed set */ 4096 if (alloc_profile_is_valid(bargs->target, 1) && 4097 (bargs->target & ~allowed) == 0) 4098 return true; 4099 4100 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4101 type, btrfs_bg_type_to_raid_name(bargs->target)); 4102 return false; 4103 } 4104 4105 /* 4106 * Fill @buf with textual description of balance filter flags @bargs, up to 4107 * @size_buf including the terminating null. The output may be trimmed if it 4108 * does not fit into the provided buffer. 4109 */ 4110 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4111 u32 size_buf) 4112 { 4113 int ret; 4114 u32 size_bp = size_buf; 4115 char *bp = buf; 4116 u64 flags = bargs->flags; 4117 char tmp_buf[128] = {'\0'}; 4118 4119 if (!flags) 4120 return; 4121 4122 #define CHECK_APPEND_NOARG(a) \ 4123 do { \ 4124 ret = snprintf(bp, size_bp, (a)); \ 4125 if (ret < 0 || ret >= size_bp) \ 4126 goto out_overflow; \ 4127 size_bp -= ret; \ 4128 bp += ret; \ 4129 } while (0) 4130 4131 #define CHECK_APPEND_1ARG(a, v1) \ 4132 do { \ 4133 ret = snprintf(bp, size_bp, (a), (v1)); \ 4134 if (ret < 0 || ret >= size_bp) \ 4135 goto out_overflow; \ 4136 size_bp -= ret; \ 4137 bp += ret; \ 4138 } while (0) 4139 4140 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4141 do { \ 4142 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4143 if (ret < 0 || ret >= size_bp) \ 4144 goto out_overflow; \ 4145 size_bp -= ret; \ 4146 bp += ret; \ 4147 } while (0) 4148 4149 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4150 CHECK_APPEND_1ARG("convert=%s,", 4151 btrfs_bg_type_to_raid_name(bargs->target)); 4152 4153 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4154 CHECK_APPEND_NOARG("soft,"); 4155 4156 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4157 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4158 sizeof(tmp_buf)); 4159 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4160 } 4161 4162 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4163 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4164 4165 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4166 CHECK_APPEND_2ARG("usage=%u..%u,", 4167 bargs->usage_min, bargs->usage_max); 4168 4169 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4170 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4171 4172 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4173 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4174 bargs->pstart, bargs->pend); 4175 4176 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4177 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4178 bargs->vstart, bargs->vend); 4179 4180 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4181 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4182 4183 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4184 CHECK_APPEND_2ARG("limit=%u..%u,", 4185 bargs->limit_min, bargs->limit_max); 4186 4187 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4188 CHECK_APPEND_2ARG("stripes=%u..%u,", 4189 bargs->stripes_min, bargs->stripes_max); 4190 4191 #undef CHECK_APPEND_2ARG 4192 #undef CHECK_APPEND_1ARG 4193 #undef CHECK_APPEND_NOARG 4194 4195 out_overflow: 4196 4197 if (size_bp < size_buf) 4198 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4199 else 4200 buf[0] = '\0'; 4201 } 4202 4203 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4204 { 4205 u32 size_buf = 1024; 4206 char tmp_buf[192] = {'\0'}; 4207 char *buf; 4208 char *bp; 4209 u32 size_bp = size_buf; 4210 int ret; 4211 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4212 4213 buf = kzalloc(size_buf, GFP_KERNEL); 4214 if (!buf) 4215 return; 4216 4217 bp = buf; 4218 4219 #define CHECK_APPEND_1ARG(a, v1) \ 4220 do { \ 4221 ret = snprintf(bp, size_bp, (a), (v1)); \ 4222 if (ret < 0 || ret >= size_bp) \ 4223 goto out_overflow; \ 4224 size_bp -= ret; \ 4225 bp += ret; \ 4226 } while (0) 4227 4228 if (bctl->flags & BTRFS_BALANCE_FORCE) 4229 CHECK_APPEND_1ARG("%s", "-f "); 4230 4231 if (bctl->flags & BTRFS_BALANCE_DATA) { 4232 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4233 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4234 } 4235 4236 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4237 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4238 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4239 } 4240 4241 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4242 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4243 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4244 } 4245 4246 #undef CHECK_APPEND_1ARG 4247 4248 out_overflow: 4249 4250 if (size_bp < size_buf) 4251 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4252 btrfs_info(fs_info, "balance: %s %s", 4253 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4254 "resume" : "start", buf); 4255 4256 kfree(buf); 4257 } 4258 4259 /* 4260 * Should be called with balance mutexe held 4261 */ 4262 int btrfs_balance(struct btrfs_fs_info *fs_info, 4263 struct btrfs_balance_control *bctl, 4264 struct btrfs_ioctl_balance_args *bargs) 4265 { 4266 u64 meta_target, data_target; 4267 u64 allowed; 4268 int mixed = 0; 4269 int ret; 4270 u64 num_devices; 4271 unsigned seq; 4272 bool reducing_redundancy; 4273 bool paused = false; 4274 int i; 4275 4276 if (btrfs_fs_closing(fs_info) || 4277 atomic_read(&fs_info->balance_pause_req) || 4278 btrfs_should_cancel_balance(fs_info)) { 4279 ret = -EINVAL; 4280 goto out; 4281 } 4282 4283 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4284 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4285 mixed = 1; 4286 4287 /* 4288 * In case of mixed groups both data and meta should be picked, 4289 * and identical options should be given for both of them. 4290 */ 4291 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4292 if (mixed && (bctl->flags & allowed)) { 4293 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4294 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4295 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4296 btrfs_err(fs_info, 4297 "balance: mixed groups data and metadata options must be the same"); 4298 ret = -EINVAL; 4299 goto out; 4300 } 4301 } 4302 4303 /* 4304 * rw_devices will not change at the moment, device add/delete/replace 4305 * are exclusive 4306 */ 4307 num_devices = fs_info->fs_devices->rw_devices; 4308 4309 /* 4310 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4311 * special bit for it, to make it easier to distinguish. Thus we need 4312 * to set it manually, or balance would refuse the profile. 4313 */ 4314 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4315 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4316 if (num_devices >= btrfs_raid_array[i].devs_min) 4317 allowed |= btrfs_raid_array[i].bg_flag; 4318 4319 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4320 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4321 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4322 ret = -EINVAL; 4323 goto out; 4324 } 4325 4326 /* 4327 * Allow to reduce metadata or system integrity only if force set for 4328 * profiles with redundancy (copies, parity) 4329 */ 4330 allowed = 0; 4331 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4332 if (btrfs_raid_array[i].ncopies >= 2 || 4333 btrfs_raid_array[i].tolerated_failures >= 1) 4334 allowed |= btrfs_raid_array[i].bg_flag; 4335 } 4336 do { 4337 seq = read_seqbegin(&fs_info->profiles_lock); 4338 4339 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4340 (fs_info->avail_system_alloc_bits & allowed) && 4341 !(bctl->sys.target & allowed)) || 4342 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4343 (fs_info->avail_metadata_alloc_bits & allowed) && 4344 !(bctl->meta.target & allowed))) 4345 reducing_redundancy = true; 4346 else 4347 reducing_redundancy = false; 4348 4349 /* if we're not converting, the target field is uninitialized */ 4350 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4351 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4352 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4353 bctl->data.target : fs_info->avail_data_alloc_bits; 4354 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4355 4356 if (reducing_redundancy) { 4357 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4358 btrfs_info(fs_info, 4359 "balance: force reducing metadata redundancy"); 4360 } else { 4361 btrfs_err(fs_info, 4362 "balance: reduces metadata redundancy, use --force if you want this"); 4363 ret = -EINVAL; 4364 goto out; 4365 } 4366 } 4367 4368 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4369 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4370 btrfs_warn(fs_info, 4371 "balance: metadata profile %s has lower redundancy than data profile %s", 4372 btrfs_bg_type_to_raid_name(meta_target), 4373 btrfs_bg_type_to_raid_name(data_target)); 4374 } 4375 4376 ret = insert_balance_item(fs_info, bctl); 4377 if (ret && ret != -EEXIST) 4378 goto out; 4379 4380 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4381 BUG_ON(ret == -EEXIST); 4382 BUG_ON(fs_info->balance_ctl); 4383 spin_lock(&fs_info->balance_lock); 4384 fs_info->balance_ctl = bctl; 4385 spin_unlock(&fs_info->balance_lock); 4386 } else { 4387 BUG_ON(ret != -EEXIST); 4388 spin_lock(&fs_info->balance_lock); 4389 update_balance_args(bctl); 4390 spin_unlock(&fs_info->balance_lock); 4391 } 4392 4393 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4394 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4395 describe_balance_start_or_resume(fs_info); 4396 mutex_unlock(&fs_info->balance_mutex); 4397 4398 ret = __btrfs_balance(fs_info); 4399 4400 mutex_lock(&fs_info->balance_mutex); 4401 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4402 btrfs_info(fs_info, "balance: paused"); 4403 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4404 paused = true; 4405 } 4406 /* 4407 * Balance can be canceled by: 4408 * 4409 * - Regular cancel request 4410 * Then ret == -ECANCELED and balance_cancel_req > 0 4411 * 4412 * - Fatal signal to "btrfs" process 4413 * Either the signal caught by wait_reserve_ticket() and callers 4414 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4415 * got -ECANCELED. 4416 * Either way, in this case balance_cancel_req = 0, and 4417 * ret == -EINTR or ret == -ECANCELED. 4418 * 4419 * So here we only check the return value to catch canceled balance. 4420 */ 4421 else if (ret == -ECANCELED || ret == -EINTR) 4422 btrfs_info(fs_info, "balance: canceled"); 4423 else 4424 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4425 4426 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4427 4428 if (bargs) { 4429 memset(bargs, 0, sizeof(*bargs)); 4430 btrfs_update_ioctl_balance_args(fs_info, bargs); 4431 } 4432 4433 /* We didn't pause, we can clean everything up. */ 4434 if (!paused) { 4435 reset_balance_state(fs_info); 4436 btrfs_exclop_finish(fs_info); 4437 } 4438 4439 wake_up(&fs_info->balance_wait_q); 4440 4441 return ret; 4442 out: 4443 if (bctl->flags & BTRFS_BALANCE_RESUME) 4444 reset_balance_state(fs_info); 4445 else 4446 kfree(bctl); 4447 btrfs_exclop_finish(fs_info); 4448 4449 return ret; 4450 } 4451 4452 static int balance_kthread(void *data) 4453 { 4454 struct btrfs_fs_info *fs_info = data; 4455 int ret = 0; 4456 4457 sb_start_write(fs_info->sb); 4458 mutex_lock(&fs_info->balance_mutex); 4459 if (fs_info->balance_ctl) 4460 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4461 mutex_unlock(&fs_info->balance_mutex); 4462 sb_end_write(fs_info->sb); 4463 4464 return ret; 4465 } 4466 4467 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4468 { 4469 struct task_struct *tsk; 4470 4471 mutex_lock(&fs_info->balance_mutex); 4472 if (!fs_info->balance_ctl) { 4473 mutex_unlock(&fs_info->balance_mutex); 4474 return 0; 4475 } 4476 mutex_unlock(&fs_info->balance_mutex); 4477 4478 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4479 btrfs_info(fs_info, "balance: resume skipped"); 4480 return 0; 4481 } 4482 4483 spin_lock(&fs_info->super_lock); 4484 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4485 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4486 spin_unlock(&fs_info->super_lock); 4487 /* 4488 * A ro->rw remount sequence should continue with the paused balance 4489 * regardless of who pauses it, system or the user as of now, so set 4490 * the resume flag. 4491 */ 4492 spin_lock(&fs_info->balance_lock); 4493 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4494 spin_unlock(&fs_info->balance_lock); 4495 4496 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4497 return PTR_ERR_OR_ZERO(tsk); 4498 } 4499 4500 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4501 { 4502 struct btrfs_balance_control *bctl; 4503 struct btrfs_balance_item *item; 4504 struct btrfs_disk_balance_args disk_bargs; 4505 struct btrfs_path *path; 4506 struct extent_buffer *leaf; 4507 struct btrfs_key key; 4508 int ret; 4509 4510 path = btrfs_alloc_path(); 4511 if (!path) 4512 return -ENOMEM; 4513 4514 key.objectid = BTRFS_BALANCE_OBJECTID; 4515 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4516 key.offset = 0; 4517 4518 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4519 if (ret < 0) 4520 goto out; 4521 if (ret > 0) { /* ret = -ENOENT; */ 4522 ret = 0; 4523 goto out; 4524 } 4525 4526 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4527 if (!bctl) { 4528 ret = -ENOMEM; 4529 goto out; 4530 } 4531 4532 leaf = path->nodes[0]; 4533 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4534 4535 bctl->flags = btrfs_balance_flags(leaf, item); 4536 bctl->flags |= BTRFS_BALANCE_RESUME; 4537 4538 btrfs_balance_data(leaf, item, &disk_bargs); 4539 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4540 btrfs_balance_meta(leaf, item, &disk_bargs); 4541 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4542 btrfs_balance_sys(leaf, item, &disk_bargs); 4543 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4544 4545 /* 4546 * This should never happen, as the paused balance state is recovered 4547 * during mount without any chance of other exclusive ops to collide. 4548 * 4549 * This gives the exclusive op status to balance and keeps in paused 4550 * state until user intervention (cancel or umount). If the ownership 4551 * cannot be assigned, show a message but do not fail. The balance 4552 * is in a paused state and must have fs_info::balance_ctl properly 4553 * set up. 4554 */ 4555 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4556 btrfs_warn(fs_info, 4557 "balance: cannot set exclusive op status, resume manually"); 4558 4559 btrfs_release_path(path); 4560 4561 mutex_lock(&fs_info->balance_mutex); 4562 BUG_ON(fs_info->balance_ctl); 4563 spin_lock(&fs_info->balance_lock); 4564 fs_info->balance_ctl = bctl; 4565 spin_unlock(&fs_info->balance_lock); 4566 mutex_unlock(&fs_info->balance_mutex); 4567 out: 4568 btrfs_free_path(path); 4569 return ret; 4570 } 4571 4572 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4573 { 4574 int ret = 0; 4575 4576 mutex_lock(&fs_info->balance_mutex); 4577 if (!fs_info->balance_ctl) { 4578 mutex_unlock(&fs_info->balance_mutex); 4579 return -ENOTCONN; 4580 } 4581 4582 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4583 atomic_inc(&fs_info->balance_pause_req); 4584 mutex_unlock(&fs_info->balance_mutex); 4585 4586 wait_event(fs_info->balance_wait_q, 4587 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4588 4589 mutex_lock(&fs_info->balance_mutex); 4590 /* we are good with balance_ctl ripped off from under us */ 4591 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4592 atomic_dec(&fs_info->balance_pause_req); 4593 } else { 4594 ret = -ENOTCONN; 4595 } 4596 4597 mutex_unlock(&fs_info->balance_mutex); 4598 return ret; 4599 } 4600 4601 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4602 { 4603 mutex_lock(&fs_info->balance_mutex); 4604 if (!fs_info->balance_ctl) { 4605 mutex_unlock(&fs_info->balance_mutex); 4606 return -ENOTCONN; 4607 } 4608 4609 /* 4610 * A paused balance with the item stored on disk can be resumed at 4611 * mount time if the mount is read-write. Otherwise it's still paused 4612 * and we must not allow cancelling as it deletes the item. 4613 */ 4614 if (sb_rdonly(fs_info->sb)) { 4615 mutex_unlock(&fs_info->balance_mutex); 4616 return -EROFS; 4617 } 4618 4619 atomic_inc(&fs_info->balance_cancel_req); 4620 /* 4621 * if we are running just wait and return, balance item is 4622 * deleted in btrfs_balance in this case 4623 */ 4624 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4625 mutex_unlock(&fs_info->balance_mutex); 4626 wait_event(fs_info->balance_wait_q, 4627 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4628 mutex_lock(&fs_info->balance_mutex); 4629 } else { 4630 mutex_unlock(&fs_info->balance_mutex); 4631 /* 4632 * Lock released to allow other waiters to continue, we'll 4633 * reexamine the status again. 4634 */ 4635 mutex_lock(&fs_info->balance_mutex); 4636 4637 if (fs_info->balance_ctl) { 4638 reset_balance_state(fs_info); 4639 btrfs_exclop_finish(fs_info); 4640 btrfs_info(fs_info, "balance: canceled"); 4641 } 4642 } 4643 4644 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4645 atomic_dec(&fs_info->balance_cancel_req); 4646 mutex_unlock(&fs_info->balance_mutex); 4647 return 0; 4648 } 4649 4650 int btrfs_uuid_scan_kthread(void *data) 4651 { 4652 struct btrfs_fs_info *fs_info = data; 4653 struct btrfs_root *root = fs_info->tree_root; 4654 struct btrfs_key key; 4655 struct btrfs_path *path = NULL; 4656 int ret = 0; 4657 struct extent_buffer *eb; 4658 int slot; 4659 struct btrfs_root_item root_item; 4660 u32 item_size; 4661 struct btrfs_trans_handle *trans = NULL; 4662 bool closing = false; 4663 4664 path = btrfs_alloc_path(); 4665 if (!path) { 4666 ret = -ENOMEM; 4667 goto out; 4668 } 4669 4670 key.objectid = 0; 4671 key.type = BTRFS_ROOT_ITEM_KEY; 4672 key.offset = 0; 4673 4674 while (1) { 4675 if (btrfs_fs_closing(fs_info)) { 4676 closing = true; 4677 break; 4678 } 4679 ret = btrfs_search_forward(root, &key, path, 4680 BTRFS_OLDEST_GENERATION); 4681 if (ret) { 4682 if (ret > 0) 4683 ret = 0; 4684 break; 4685 } 4686 4687 if (key.type != BTRFS_ROOT_ITEM_KEY || 4688 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4689 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4690 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4691 goto skip; 4692 4693 eb = path->nodes[0]; 4694 slot = path->slots[0]; 4695 item_size = btrfs_item_size(eb, slot); 4696 if (item_size < sizeof(root_item)) 4697 goto skip; 4698 4699 read_extent_buffer(eb, &root_item, 4700 btrfs_item_ptr_offset(eb, slot), 4701 (int)sizeof(root_item)); 4702 if (btrfs_root_refs(&root_item) == 0) 4703 goto skip; 4704 4705 if (!btrfs_is_empty_uuid(root_item.uuid) || 4706 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4707 if (trans) 4708 goto update_tree; 4709 4710 btrfs_release_path(path); 4711 /* 4712 * 1 - subvol uuid item 4713 * 1 - received_subvol uuid item 4714 */ 4715 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4716 if (IS_ERR(trans)) { 4717 ret = PTR_ERR(trans); 4718 break; 4719 } 4720 continue; 4721 } else { 4722 goto skip; 4723 } 4724 update_tree: 4725 btrfs_release_path(path); 4726 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4727 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4728 BTRFS_UUID_KEY_SUBVOL, 4729 key.objectid); 4730 if (ret < 0) { 4731 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4732 ret); 4733 break; 4734 } 4735 } 4736 4737 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4738 ret = btrfs_uuid_tree_add(trans, 4739 root_item.received_uuid, 4740 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4741 key.objectid); 4742 if (ret < 0) { 4743 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4744 ret); 4745 break; 4746 } 4747 } 4748 4749 skip: 4750 btrfs_release_path(path); 4751 if (trans) { 4752 ret = btrfs_end_transaction(trans); 4753 trans = NULL; 4754 if (ret) 4755 break; 4756 } 4757 4758 if (key.offset < (u64)-1) { 4759 key.offset++; 4760 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4761 key.offset = 0; 4762 key.type = BTRFS_ROOT_ITEM_KEY; 4763 } else if (key.objectid < (u64)-1) { 4764 key.offset = 0; 4765 key.type = BTRFS_ROOT_ITEM_KEY; 4766 key.objectid++; 4767 } else { 4768 break; 4769 } 4770 cond_resched(); 4771 } 4772 4773 out: 4774 btrfs_free_path(path); 4775 if (trans && !IS_ERR(trans)) 4776 btrfs_end_transaction(trans); 4777 if (ret) 4778 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4779 else if (!closing) 4780 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4781 up(&fs_info->uuid_tree_rescan_sem); 4782 return 0; 4783 } 4784 4785 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4786 { 4787 struct btrfs_trans_handle *trans; 4788 struct btrfs_root *tree_root = fs_info->tree_root; 4789 struct btrfs_root *uuid_root; 4790 struct task_struct *task; 4791 int ret; 4792 4793 /* 4794 * 1 - root node 4795 * 1 - root item 4796 */ 4797 trans = btrfs_start_transaction(tree_root, 2); 4798 if (IS_ERR(trans)) 4799 return PTR_ERR(trans); 4800 4801 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4802 if (IS_ERR(uuid_root)) { 4803 ret = PTR_ERR(uuid_root); 4804 btrfs_abort_transaction(trans, ret); 4805 btrfs_end_transaction(trans); 4806 return ret; 4807 } 4808 4809 fs_info->uuid_root = uuid_root; 4810 4811 ret = btrfs_commit_transaction(trans); 4812 if (ret) 4813 return ret; 4814 4815 down(&fs_info->uuid_tree_rescan_sem); 4816 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4817 if (IS_ERR(task)) { 4818 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4819 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4820 up(&fs_info->uuid_tree_rescan_sem); 4821 return PTR_ERR(task); 4822 } 4823 4824 return 0; 4825 } 4826 4827 /* 4828 * shrinking a device means finding all of the device extents past 4829 * the new size, and then following the back refs to the chunks. 4830 * The chunk relocation code actually frees the device extent 4831 */ 4832 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4833 { 4834 struct btrfs_fs_info *fs_info = device->fs_info; 4835 struct btrfs_root *root = fs_info->dev_root; 4836 struct btrfs_trans_handle *trans; 4837 struct btrfs_dev_extent *dev_extent = NULL; 4838 struct btrfs_path *path; 4839 u64 length; 4840 u64 chunk_offset; 4841 int ret; 4842 int slot; 4843 int failed = 0; 4844 bool retried = false; 4845 struct extent_buffer *l; 4846 struct btrfs_key key; 4847 struct btrfs_super_block *super_copy = fs_info->super_copy; 4848 u64 old_total = btrfs_super_total_bytes(super_copy); 4849 u64 old_size = btrfs_device_get_total_bytes(device); 4850 u64 diff; 4851 u64 start; 4852 4853 new_size = round_down(new_size, fs_info->sectorsize); 4854 start = new_size; 4855 diff = round_down(old_size - new_size, fs_info->sectorsize); 4856 4857 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4858 return -EINVAL; 4859 4860 path = btrfs_alloc_path(); 4861 if (!path) 4862 return -ENOMEM; 4863 4864 path->reada = READA_BACK; 4865 4866 trans = btrfs_start_transaction(root, 0); 4867 if (IS_ERR(trans)) { 4868 btrfs_free_path(path); 4869 return PTR_ERR(trans); 4870 } 4871 4872 mutex_lock(&fs_info->chunk_mutex); 4873 4874 btrfs_device_set_total_bytes(device, new_size); 4875 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4876 device->fs_devices->total_rw_bytes -= diff; 4877 atomic64_sub(diff, &fs_info->free_chunk_space); 4878 } 4879 4880 /* 4881 * Once the device's size has been set to the new size, ensure all 4882 * in-memory chunks are synced to disk so that the loop below sees them 4883 * and relocates them accordingly. 4884 */ 4885 if (contains_pending_extent(device, &start, diff)) { 4886 mutex_unlock(&fs_info->chunk_mutex); 4887 ret = btrfs_commit_transaction(trans); 4888 if (ret) 4889 goto done; 4890 } else { 4891 mutex_unlock(&fs_info->chunk_mutex); 4892 btrfs_end_transaction(trans); 4893 } 4894 4895 again: 4896 key.objectid = device->devid; 4897 key.offset = (u64)-1; 4898 key.type = BTRFS_DEV_EXTENT_KEY; 4899 4900 do { 4901 mutex_lock(&fs_info->reclaim_bgs_lock); 4902 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4903 if (ret < 0) { 4904 mutex_unlock(&fs_info->reclaim_bgs_lock); 4905 goto done; 4906 } 4907 4908 ret = btrfs_previous_item(root, path, 0, key.type); 4909 if (ret) { 4910 mutex_unlock(&fs_info->reclaim_bgs_lock); 4911 if (ret < 0) 4912 goto done; 4913 ret = 0; 4914 btrfs_release_path(path); 4915 break; 4916 } 4917 4918 l = path->nodes[0]; 4919 slot = path->slots[0]; 4920 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4921 4922 if (key.objectid != device->devid) { 4923 mutex_unlock(&fs_info->reclaim_bgs_lock); 4924 btrfs_release_path(path); 4925 break; 4926 } 4927 4928 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4929 length = btrfs_dev_extent_length(l, dev_extent); 4930 4931 if (key.offset + length <= new_size) { 4932 mutex_unlock(&fs_info->reclaim_bgs_lock); 4933 btrfs_release_path(path); 4934 break; 4935 } 4936 4937 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4938 btrfs_release_path(path); 4939 4940 /* 4941 * We may be relocating the only data chunk we have, 4942 * which could potentially end up with losing data's 4943 * raid profile, so lets allocate an empty one in 4944 * advance. 4945 */ 4946 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4947 if (ret < 0) { 4948 mutex_unlock(&fs_info->reclaim_bgs_lock); 4949 goto done; 4950 } 4951 4952 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4953 mutex_unlock(&fs_info->reclaim_bgs_lock); 4954 if (ret == -ENOSPC) { 4955 failed++; 4956 } else if (ret) { 4957 if (ret == -ETXTBSY) { 4958 btrfs_warn(fs_info, 4959 "could not shrink block group %llu due to active swapfile", 4960 chunk_offset); 4961 } 4962 goto done; 4963 } 4964 } while (key.offset-- > 0); 4965 4966 if (failed && !retried) { 4967 failed = 0; 4968 retried = true; 4969 goto again; 4970 } else if (failed && retried) { 4971 ret = -ENOSPC; 4972 goto done; 4973 } 4974 4975 /* Shrinking succeeded, else we would be at "done". */ 4976 trans = btrfs_start_transaction(root, 0); 4977 if (IS_ERR(trans)) { 4978 ret = PTR_ERR(trans); 4979 goto done; 4980 } 4981 4982 mutex_lock(&fs_info->chunk_mutex); 4983 /* Clear all state bits beyond the shrunk device size */ 4984 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4985 CHUNK_STATE_MASK); 4986 4987 btrfs_device_set_disk_total_bytes(device, new_size); 4988 if (list_empty(&device->post_commit_list)) 4989 list_add_tail(&device->post_commit_list, 4990 &trans->transaction->dev_update_list); 4991 4992 WARN_ON(diff > old_total); 4993 btrfs_set_super_total_bytes(super_copy, 4994 round_down(old_total - diff, fs_info->sectorsize)); 4995 mutex_unlock(&fs_info->chunk_mutex); 4996 4997 btrfs_reserve_chunk_metadata(trans, false); 4998 /* Now btrfs_update_device() will change the on-disk size. */ 4999 ret = btrfs_update_device(trans, device); 5000 btrfs_trans_release_chunk_metadata(trans); 5001 if (ret < 0) { 5002 btrfs_abort_transaction(trans, ret); 5003 btrfs_end_transaction(trans); 5004 } else { 5005 ret = btrfs_commit_transaction(trans); 5006 } 5007 done: 5008 btrfs_free_path(path); 5009 if (ret) { 5010 mutex_lock(&fs_info->chunk_mutex); 5011 btrfs_device_set_total_bytes(device, old_size); 5012 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5013 device->fs_devices->total_rw_bytes += diff; 5014 atomic64_add(diff, &fs_info->free_chunk_space); 5015 mutex_unlock(&fs_info->chunk_mutex); 5016 } 5017 return ret; 5018 } 5019 5020 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5021 struct btrfs_key *key, 5022 struct btrfs_chunk *chunk, int item_size) 5023 { 5024 struct btrfs_super_block *super_copy = fs_info->super_copy; 5025 struct btrfs_disk_key disk_key; 5026 u32 array_size; 5027 u8 *ptr; 5028 5029 lockdep_assert_held(&fs_info->chunk_mutex); 5030 5031 array_size = btrfs_super_sys_array_size(super_copy); 5032 if (array_size + item_size + sizeof(disk_key) 5033 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5034 return -EFBIG; 5035 5036 ptr = super_copy->sys_chunk_array + array_size; 5037 btrfs_cpu_key_to_disk(&disk_key, key); 5038 memcpy(ptr, &disk_key, sizeof(disk_key)); 5039 ptr += sizeof(disk_key); 5040 memcpy(ptr, chunk, item_size); 5041 item_size += sizeof(disk_key); 5042 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5043 5044 return 0; 5045 } 5046 5047 /* 5048 * sort the devices in descending order by max_avail, total_avail 5049 */ 5050 static int btrfs_cmp_device_info(const void *a, const void *b) 5051 { 5052 const struct btrfs_device_info *di_a = a; 5053 const struct btrfs_device_info *di_b = b; 5054 5055 if (di_a->max_avail > di_b->max_avail) 5056 return -1; 5057 if (di_a->max_avail < di_b->max_avail) 5058 return 1; 5059 if (di_a->total_avail > di_b->total_avail) 5060 return -1; 5061 if (di_a->total_avail < di_b->total_avail) 5062 return 1; 5063 return 0; 5064 } 5065 5066 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5067 { 5068 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5069 return; 5070 5071 btrfs_set_fs_incompat(info, RAID56); 5072 } 5073 5074 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5075 { 5076 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5077 return; 5078 5079 btrfs_set_fs_incompat(info, RAID1C34); 5080 } 5081 5082 /* 5083 * Structure used internally for btrfs_create_chunk() function. 5084 * Wraps needed parameters. 5085 */ 5086 struct alloc_chunk_ctl { 5087 u64 start; 5088 u64 type; 5089 /* Total number of stripes to allocate */ 5090 int num_stripes; 5091 /* sub_stripes info for map */ 5092 int sub_stripes; 5093 /* Stripes per device */ 5094 int dev_stripes; 5095 /* Maximum number of devices to use */ 5096 int devs_max; 5097 /* Minimum number of devices to use */ 5098 int devs_min; 5099 /* ndevs has to be a multiple of this */ 5100 int devs_increment; 5101 /* Number of copies */ 5102 int ncopies; 5103 /* Number of stripes worth of bytes to store parity information */ 5104 int nparity; 5105 u64 max_stripe_size; 5106 u64 max_chunk_size; 5107 u64 dev_extent_min; 5108 u64 stripe_size; 5109 u64 chunk_size; 5110 int ndevs; 5111 }; 5112 5113 static void init_alloc_chunk_ctl_policy_regular( 5114 struct btrfs_fs_devices *fs_devices, 5115 struct alloc_chunk_ctl *ctl) 5116 { 5117 struct btrfs_space_info *space_info; 5118 5119 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5120 ASSERT(space_info); 5121 5122 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5123 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G); 5124 5125 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5126 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5127 5128 /* We don't want a chunk larger than 10% of writable space */ 5129 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), 5130 ctl->max_chunk_size); 5131 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); 5132 } 5133 5134 static void init_alloc_chunk_ctl_policy_zoned( 5135 struct btrfs_fs_devices *fs_devices, 5136 struct alloc_chunk_ctl *ctl) 5137 { 5138 u64 zone_size = fs_devices->fs_info->zone_size; 5139 u64 limit; 5140 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5141 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5142 u64 min_chunk_size = min_data_stripes * zone_size; 5143 u64 type = ctl->type; 5144 5145 ctl->max_stripe_size = zone_size; 5146 if (type & BTRFS_BLOCK_GROUP_DATA) { 5147 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5148 zone_size); 5149 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5150 ctl->max_chunk_size = ctl->max_stripe_size; 5151 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5152 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5153 ctl->devs_max = min_t(int, ctl->devs_max, 5154 BTRFS_MAX_DEVS_SYS_CHUNK); 5155 } else { 5156 BUG(); 5157 } 5158 5159 /* We don't want a chunk larger than 10% of writable space */ 5160 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), 5161 zone_size), 5162 min_chunk_size); 5163 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5164 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5165 } 5166 5167 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5168 struct alloc_chunk_ctl *ctl) 5169 { 5170 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5171 5172 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5173 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5174 ctl->devs_max = btrfs_raid_array[index].devs_max; 5175 if (!ctl->devs_max) 5176 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5177 ctl->devs_min = btrfs_raid_array[index].devs_min; 5178 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5179 ctl->ncopies = btrfs_raid_array[index].ncopies; 5180 ctl->nparity = btrfs_raid_array[index].nparity; 5181 ctl->ndevs = 0; 5182 5183 switch (fs_devices->chunk_alloc_policy) { 5184 case BTRFS_CHUNK_ALLOC_REGULAR: 5185 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5186 break; 5187 case BTRFS_CHUNK_ALLOC_ZONED: 5188 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5189 break; 5190 default: 5191 BUG(); 5192 } 5193 } 5194 5195 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5196 struct alloc_chunk_ctl *ctl, 5197 struct btrfs_device_info *devices_info) 5198 { 5199 struct btrfs_fs_info *info = fs_devices->fs_info; 5200 struct btrfs_device *device; 5201 u64 total_avail; 5202 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5203 int ret; 5204 int ndevs = 0; 5205 u64 max_avail; 5206 u64 dev_offset; 5207 5208 /* 5209 * in the first pass through the devices list, we gather information 5210 * about the available holes on each device. 5211 */ 5212 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5213 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5214 WARN(1, KERN_ERR 5215 "BTRFS: read-only device in alloc_list\n"); 5216 continue; 5217 } 5218 5219 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5220 &device->dev_state) || 5221 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5222 continue; 5223 5224 if (device->total_bytes > device->bytes_used) 5225 total_avail = device->total_bytes - device->bytes_used; 5226 else 5227 total_avail = 0; 5228 5229 /* If there is no space on this device, skip it. */ 5230 if (total_avail < ctl->dev_extent_min) 5231 continue; 5232 5233 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5234 &max_avail); 5235 if (ret && ret != -ENOSPC) 5236 return ret; 5237 5238 if (ret == 0) 5239 max_avail = dev_extent_want; 5240 5241 if (max_avail < ctl->dev_extent_min) { 5242 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5243 btrfs_debug(info, 5244 "%s: devid %llu has no free space, have=%llu want=%llu", 5245 __func__, device->devid, max_avail, 5246 ctl->dev_extent_min); 5247 continue; 5248 } 5249 5250 if (ndevs == fs_devices->rw_devices) { 5251 WARN(1, "%s: found more than %llu devices\n", 5252 __func__, fs_devices->rw_devices); 5253 break; 5254 } 5255 devices_info[ndevs].dev_offset = dev_offset; 5256 devices_info[ndevs].max_avail = max_avail; 5257 devices_info[ndevs].total_avail = total_avail; 5258 devices_info[ndevs].dev = device; 5259 ++ndevs; 5260 } 5261 ctl->ndevs = ndevs; 5262 5263 /* 5264 * now sort the devices by hole size / available space 5265 */ 5266 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5267 btrfs_cmp_device_info, NULL); 5268 5269 return 0; 5270 } 5271 5272 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5273 struct btrfs_device_info *devices_info) 5274 { 5275 /* Number of stripes that count for block group size */ 5276 int data_stripes; 5277 5278 /* 5279 * The primary goal is to maximize the number of stripes, so use as 5280 * many devices as possible, even if the stripes are not maximum sized. 5281 * 5282 * The DUP profile stores more than one stripe per device, the 5283 * max_avail is the total size so we have to adjust. 5284 */ 5285 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5286 ctl->dev_stripes); 5287 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5288 5289 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5290 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5291 5292 /* 5293 * Use the number of data stripes to figure out how big this chunk is 5294 * really going to be in terms of logical address space, and compare 5295 * that answer with the max chunk size. If it's higher, we try to 5296 * reduce stripe_size. 5297 */ 5298 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5299 /* 5300 * Reduce stripe_size, round it up to a 16MB boundary again and 5301 * then use it, unless it ends up being even bigger than the 5302 * previous value we had already. 5303 */ 5304 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5305 data_stripes), SZ_16M), 5306 ctl->stripe_size); 5307 } 5308 5309 /* Stripe size should not go beyond 1G. */ 5310 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5311 5312 /* Align to BTRFS_STRIPE_LEN */ 5313 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5314 ctl->chunk_size = ctl->stripe_size * data_stripes; 5315 5316 return 0; 5317 } 5318 5319 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5320 struct btrfs_device_info *devices_info) 5321 { 5322 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5323 /* Number of stripes that count for block group size */ 5324 int data_stripes; 5325 5326 /* 5327 * It should hold because: 5328 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5329 */ 5330 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5331 5332 ctl->stripe_size = zone_size; 5333 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5334 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5335 5336 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5337 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5338 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5339 ctl->stripe_size) + ctl->nparity, 5340 ctl->dev_stripes); 5341 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5342 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5343 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5344 } 5345 5346 ctl->chunk_size = ctl->stripe_size * data_stripes; 5347 5348 return 0; 5349 } 5350 5351 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5352 struct alloc_chunk_ctl *ctl, 5353 struct btrfs_device_info *devices_info) 5354 { 5355 struct btrfs_fs_info *info = fs_devices->fs_info; 5356 5357 /* 5358 * Round down to number of usable stripes, devs_increment can be any 5359 * number so we can't use round_down() that requires power of 2, while 5360 * rounddown is safe. 5361 */ 5362 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5363 5364 if (ctl->ndevs < ctl->devs_min) { 5365 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5366 btrfs_debug(info, 5367 "%s: not enough devices with free space: have=%d minimum required=%d", 5368 __func__, ctl->ndevs, ctl->devs_min); 5369 } 5370 return -ENOSPC; 5371 } 5372 5373 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5374 5375 switch (fs_devices->chunk_alloc_policy) { 5376 case BTRFS_CHUNK_ALLOC_REGULAR: 5377 return decide_stripe_size_regular(ctl, devices_info); 5378 case BTRFS_CHUNK_ALLOC_ZONED: 5379 return decide_stripe_size_zoned(ctl, devices_info); 5380 default: 5381 BUG(); 5382 } 5383 } 5384 5385 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5386 struct alloc_chunk_ctl *ctl, 5387 struct btrfs_device_info *devices_info) 5388 { 5389 struct btrfs_fs_info *info = trans->fs_info; 5390 struct map_lookup *map = NULL; 5391 struct extent_map_tree *em_tree; 5392 struct btrfs_block_group *block_group; 5393 struct extent_map *em; 5394 u64 start = ctl->start; 5395 u64 type = ctl->type; 5396 int ret; 5397 int i; 5398 int j; 5399 5400 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5401 if (!map) 5402 return ERR_PTR(-ENOMEM); 5403 map->num_stripes = ctl->num_stripes; 5404 5405 for (i = 0; i < ctl->ndevs; ++i) { 5406 for (j = 0; j < ctl->dev_stripes; ++j) { 5407 int s = i * ctl->dev_stripes + j; 5408 map->stripes[s].dev = devices_info[i].dev; 5409 map->stripes[s].physical = devices_info[i].dev_offset + 5410 j * ctl->stripe_size; 5411 } 5412 } 5413 map->io_align = BTRFS_STRIPE_LEN; 5414 map->io_width = BTRFS_STRIPE_LEN; 5415 map->type = type; 5416 map->sub_stripes = ctl->sub_stripes; 5417 5418 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5419 5420 em = alloc_extent_map(); 5421 if (!em) { 5422 kfree(map); 5423 return ERR_PTR(-ENOMEM); 5424 } 5425 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5426 em->map_lookup = map; 5427 em->start = start; 5428 em->len = ctl->chunk_size; 5429 em->block_start = 0; 5430 em->block_len = em->len; 5431 em->orig_block_len = ctl->stripe_size; 5432 5433 em_tree = &info->mapping_tree; 5434 write_lock(&em_tree->lock); 5435 ret = add_extent_mapping(em_tree, em, 0); 5436 if (ret) { 5437 write_unlock(&em_tree->lock); 5438 free_extent_map(em); 5439 return ERR_PTR(ret); 5440 } 5441 write_unlock(&em_tree->lock); 5442 5443 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); 5444 if (IS_ERR(block_group)) 5445 goto error_del_extent; 5446 5447 for (i = 0; i < map->num_stripes; i++) { 5448 struct btrfs_device *dev = map->stripes[i].dev; 5449 5450 btrfs_device_set_bytes_used(dev, 5451 dev->bytes_used + ctl->stripe_size); 5452 if (list_empty(&dev->post_commit_list)) 5453 list_add_tail(&dev->post_commit_list, 5454 &trans->transaction->dev_update_list); 5455 } 5456 5457 atomic64_sub(ctl->stripe_size * map->num_stripes, 5458 &info->free_chunk_space); 5459 5460 free_extent_map(em); 5461 check_raid56_incompat_flag(info, type); 5462 check_raid1c34_incompat_flag(info, type); 5463 5464 return block_group; 5465 5466 error_del_extent: 5467 write_lock(&em_tree->lock); 5468 remove_extent_mapping(em_tree, em); 5469 write_unlock(&em_tree->lock); 5470 5471 /* One for our allocation */ 5472 free_extent_map(em); 5473 /* One for the tree reference */ 5474 free_extent_map(em); 5475 5476 return block_group; 5477 } 5478 5479 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5480 u64 type) 5481 { 5482 struct btrfs_fs_info *info = trans->fs_info; 5483 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5484 struct btrfs_device_info *devices_info = NULL; 5485 struct alloc_chunk_ctl ctl; 5486 struct btrfs_block_group *block_group; 5487 int ret; 5488 5489 lockdep_assert_held(&info->chunk_mutex); 5490 5491 if (!alloc_profile_is_valid(type, 0)) { 5492 ASSERT(0); 5493 return ERR_PTR(-EINVAL); 5494 } 5495 5496 if (list_empty(&fs_devices->alloc_list)) { 5497 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5498 btrfs_debug(info, "%s: no writable device", __func__); 5499 return ERR_PTR(-ENOSPC); 5500 } 5501 5502 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5503 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5504 ASSERT(0); 5505 return ERR_PTR(-EINVAL); 5506 } 5507 5508 ctl.start = find_next_chunk(info); 5509 ctl.type = type; 5510 init_alloc_chunk_ctl(fs_devices, &ctl); 5511 5512 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5513 GFP_NOFS); 5514 if (!devices_info) 5515 return ERR_PTR(-ENOMEM); 5516 5517 ret = gather_device_info(fs_devices, &ctl, devices_info); 5518 if (ret < 0) { 5519 block_group = ERR_PTR(ret); 5520 goto out; 5521 } 5522 5523 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5524 if (ret < 0) { 5525 block_group = ERR_PTR(ret); 5526 goto out; 5527 } 5528 5529 block_group = create_chunk(trans, &ctl, devices_info); 5530 5531 out: 5532 kfree(devices_info); 5533 return block_group; 5534 } 5535 5536 /* 5537 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5538 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5539 * chunks. 5540 * 5541 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5542 * phases. 5543 */ 5544 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5545 struct btrfs_block_group *bg) 5546 { 5547 struct btrfs_fs_info *fs_info = trans->fs_info; 5548 struct btrfs_root *chunk_root = fs_info->chunk_root; 5549 struct btrfs_key key; 5550 struct btrfs_chunk *chunk; 5551 struct btrfs_stripe *stripe; 5552 struct extent_map *em; 5553 struct map_lookup *map; 5554 size_t item_size; 5555 int i; 5556 int ret; 5557 5558 /* 5559 * We take the chunk_mutex for 2 reasons: 5560 * 5561 * 1) Updates and insertions in the chunk btree must be done while holding 5562 * the chunk_mutex, as well as updating the system chunk array in the 5563 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5564 * details; 5565 * 5566 * 2) To prevent races with the final phase of a device replace operation 5567 * that replaces the device object associated with the map's stripes, 5568 * because the device object's id can change at any time during that 5569 * final phase of the device replace operation 5570 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5571 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5572 * which would cause a failure when updating the device item, which does 5573 * not exists, or persisting a stripe of the chunk item with such ID. 5574 * Here we can't use the device_list_mutex because our caller already 5575 * has locked the chunk_mutex, and the final phase of device replace 5576 * acquires both mutexes - first the device_list_mutex and then the 5577 * chunk_mutex. Using any of those two mutexes protects us from a 5578 * concurrent device replace. 5579 */ 5580 lockdep_assert_held(&fs_info->chunk_mutex); 5581 5582 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5583 if (IS_ERR(em)) { 5584 ret = PTR_ERR(em); 5585 btrfs_abort_transaction(trans, ret); 5586 return ret; 5587 } 5588 5589 map = em->map_lookup; 5590 item_size = btrfs_chunk_item_size(map->num_stripes); 5591 5592 chunk = kzalloc(item_size, GFP_NOFS); 5593 if (!chunk) { 5594 ret = -ENOMEM; 5595 btrfs_abort_transaction(trans, ret); 5596 goto out; 5597 } 5598 5599 for (i = 0; i < map->num_stripes; i++) { 5600 struct btrfs_device *device = map->stripes[i].dev; 5601 5602 ret = btrfs_update_device(trans, device); 5603 if (ret) 5604 goto out; 5605 } 5606 5607 stripe = &chunk->stripe; 5608 for (i = 0; i < map->num_stripes; i++) { 5609 struct btrfs_device *device = map->stripes[i].dev; 5610 const u64 dev_offset = map->stripes[i].physical; 5611 5612 btrfs_set_stack_stripe_devid(stripe, device->devid); 5613 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5614 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5615 stripe++; 5616 } 5617 5618 btrfs_set_stack_chunk_length(chunk, bg->length); 5619 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5620 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); 5621 btrfs_set_stack_chunk_type(chunk, map->type); 5622 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5623 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); 5624 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); 5625 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5626 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5627 5628 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5629 key.type = BTRFS_CHUNK_ITEM_KEY; 5630 key.offset = bg->start; 5631 5632 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5633 if (ret) 5634 goto out; 5635 5636 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5637 5638 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5639 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5640 if (ret) 5641 goto out; 5642 } 5643 5644 out: 5645 kfree(chunk); 5646 free_extent_map(em); 5647 return ret; 5648 } 5649 5650 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5651 { 5652 struct btrfs_fs_info *fs_info = trans->fs_info; 5653 u64 alloc_profile; 5654 struct btrfs_block_group *meta_bg; 5655 struct btrfs_block_group *sys_bg; 5656 5657 /* 5658 * When adding a new device for sprouting, the seed device is read-only 5659 * so we must first allocate a metadata and a system chunk. But before 5660 * adding the block group items to the extent, device and chunk btrees, 5661 * we must first: 5662 * 5663 * 1) Create both chunks without doing any changes to the btrees, as 5664 * otherwise we would get -ENOSPC since the block groups from the 5665 * seed device are read-only; 5666 * 5667 * 2) Add the device item for the new sprout device - finishing the setup 5668 * of a new block group requires updating the device item in the chunk 5669 * btree, so it must exist when we attempt to do it. The previous step 5670 * ensures this does not fail with -ENOSPC. 5671 * 5672 * After that we can add the block group items to their btrees: 5673 * update existing device item in the chunk btree, add a new block group 5674 * item to the extent btree, add a new chunk item to the chunk btree and 5675 * finally add the new device extent items to the devices btree. 5676 */ 5677 5678 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5679 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5680 if (IS_ERR(meta_bg)) 5681 return PTR_ERR(meta_bg); 5682 5683 alloc_profile = btrfs_system_alloc_profile(fs_info); 5684 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5685 if (IS_ERR(sys_bg)) 5686 return PTR_ERR(sys_bg); 5687 5688 return 0; 5689 } 5690 5691 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5692 { 5693 const int index = btrfs_bg_flags_to_raid_index(map->type); 5694 5695 return btrfs_raid_array[index].tolerated_failures; 5696 } 5697 5698 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5699 { 5700 struct extent_map *em; 5701 struct map_lookup *map; 5702 int miss_ndevs = 0; 5703 int i; 5704 bool ret = true; 5705 5706 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5707 if (IS_ERR(em)) 5708 return false; 5709 5710 map = em->map_lookup; 5711 for (i = 0; i < map->num_stripes; i++) { 5712 if (test_bit(BTRFS_DEV_STATE_MISSING, 5713 &map->stripes[i].dev->dev_state)) { 5714 miss_ndevs++; 5715 continue; 5716 } 5717 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5718 &map->stripes[i].dev->dev_state)) { 5719 ret = false; 5720 goto end; 5721 } 5722 } 5723 5724 /* 5725 * If the number of missing devices is larger than max errors, we can 5726 * not write the data into that chunk successfully. 5727 */ 5728 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5729 ret = false; 5730 end: 5731 free_extent_map(em); 5732 return ret; 5733 } 5734 5735 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5736 { 5737 struct extent_map *em; 5738 5739 while (1) { 5740 write_lock(&tree->lock); 5741 em = lookup_extent_mapping(tree, 0, (u64)-1); 5742 if (em) 5743 remove_extent_mapping(tree, em); 5744 write_unlock(&tree->lock); 5745 if (!em) 5746 break; 5747 /* once for us */ 5748 free_extent_map(em); 5749 /* once for the tree */ 5750 free_extent_map(em); 5751 } 5752 } 5753 5754 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5755 { 5756 struct extent_map *em; 5757 struct map_lookup *map; 5758 enum btrfs_raid_types index; 5759 int ret = 1; 5760 5761 em = btrfs_get_chunk_map(fs_info, logical, len); 5762 if (IS_ERR(em)) 5763 /* 5764 * We could return errors for these cases, but that could get 5765 * ugly and we'd probably do the same thing which is just not do 5766 * anything else and exit, so return 1 so the callers don't try 5767 * to use other copies. 5768 */ 5769 return 1; 5770 5771 map = em->map_lookup; 5772 index = btrfs_bg_flags_to_raid_index(map->type); 5773 5774 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5775 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5776 ret = btrfs_raid_array[index].ncopies; 5777 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5778 ret = 2; 5779 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5780 /* 5781 * There could be two corrupted data stripes, we need 5782 * to loop retry in order to rebuild the correct data. 5783 * 5784 * Fail a stripe at a time on every retry except the 5785 * stripe under reconstruction. 5786 */ 5787 ret = map->num_stripes; 5788 free_extent_map(em); 5789 return ret; 5790 } 5791 5792 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5793 u64 logical) 5794 { 5795 struct extent_map *em; 5796 struct map_lookup *map; 5797 unsigned long len = fs_info->sectorsize; 5798 5799 if (!btrfs_fs_incompat(fs_info, RAID56)) 5800 return len; 5801 5802 em = btrfs_get_chunk_map(fs_info, logical, len); 5803 5804 if (!WARN_ON(IS_ERR(em))) { 5805 map = em->map_lookup; 5806 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5807 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 5808 free_extent_map(em); 5809 } 5810 return len; 5811 } 5812 5813 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5814 { 5815 struct extent_map *em; 5816 struct map_lookup *map; 5817 int ret = 0; 5818 5819 if (!btrfs_fs_incompat(fs_info, RAID56)) 5820 return 0; 5821 5822 em = btrfs_get_chunk_map(fs_info, logical, len); 5823 5824 if(!WARN_ON(IS_ERR(em))) { 5825 map = em->map_lookup; 5826 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5827 ret = 1; 5828 free_extent_map(em); 5829 } 5830 return ret; 5831 } 5832 5833 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5834 struct map_lookup *map, int first, 5835 int dev_replace_is_ongoing) 5836 { 5837 int i; 5838 int num_stripes; 5839 int preferred_mirror; 5840 int tolerance; 5841 struct btrfs_device *srcdev; 5842 5843 ASSERT((map->type & 5844 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5845 5846 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5847 num_stripes = map->sub_stripes; 5848 else 5849 num_stripes = map->num_stripes; 5850 5851 switch (fs_info->fs_devices->read_policy) { 5852 default: 5853 /* Shouldn't happen, just warn and use pid instead of failing */ 5854 btrfs_warn_rl(fs_info, 5855 "unknown read_policy type %u, reset to pid", 5856 fs_info->fs_devices->read_policy); 5857 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5858 fallthrough; 5859 case BTRFS_READ_POLICY_PID: 5860 preferred_mirror = first + (current->pid % num_stripes); 5861 break; 5862 } 5863 5864 if (dev_replace_is_ongoing && 5865 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5866 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5867 srcdev = fs_info->dev_replace.srcdev; 5868 else 5869 srcdev = NULL; 5870 5871 /* 5872 * try to avoid the drive that is the source drive for a 5873 * dev-replace procedure, only choose it if no other non-missing 5874 * mirror is available 5875 */ 5876 for (tolerance = 0; tolerance < 2; tolerance++) { 5877 if (map->stripes[preferred_mirror].dev->bdev && 5878 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5879 return preferred_mirror; 5880 for (i = first; i < first + num_stripes; i++) { 5881 if (map->stripes[i].dev->bdev && 5882 (tolerance || map->stripes[i].dev != srcdev)) 5883 return i; 5884 } 5885 } 5886 5887 /* we couldn't find one that doesn't fail. Just return something 5888 * and the io error handling code will clean up eventually 5889 */ 5890 return preferred_mirror; 5891 } 5892 5893 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5894 u16 total_stripes) 5895 { 5896 struct btrfs_io_context *bioc; 5897 5898 bioc = kzalloc( 5899 /* The size of btrfs_io_context */ 5900 sizeof(struct btrfs_io_context) + 5901 /* Plus the variable array for the stripes */ 5902 sizeof(struct btrfs_io_stripe) * (total_stripes), 5903 GFP_NOFS); 5904 5905 if (!bioc) 5906 return NULL; 5907 5908 refcount_set(&bioc->refs, 1); 5909 5910 bioc->fs_info = fs_info; 5911 bioc->replace_stripe_src = -1; 5912 bioc->full_stripe_logical = (u64)-1; 5913 5914 return bioc; 5915 } 5916 5917 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5918 { 5919 WARN_ON(!refcount_read(&bioc->refs)); 5920 refcount_inc(&bioc->refs); 5921 } 5922 5923 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5924 { 5925 if (!bioc) 5926 return; 5927 if (refcount_dec_and_test(&bioc->refs)) 5928 kfree(bioc); 5929 } 5930 5931 /* 5932 * Please note that, discard won't be sent to target device of device 5933 * replace. 5934 */ 5935 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 5936 u64 logical, u64 *length_ret, 5937 u32 *num_stripes) 5938 { 5939 struct extent_map *em; 5940 struct map_lookup *map; 5941 struct btrfs_discard_stripe *stripes; 5942 u64 length = *length_ret; 5943 u64 offset; 5944 u32 stripe_nr; 5945 u32 stripe_nr_end; 5946 u32 stripe_cnt; 5947 u64 stripe_end_offset; 5948 u64 stripe_offset; 5949 u32 stripe_index; 5950 u32 factor = 0; 5951 u32 sub_stripes = 0; 5952 u32 stripes_per_dev = 0; 5953 u32 remaining_stripes = 0; 5954 u32 last_stripe = 0; 5955 int ret; 5956 int i; 5957 5958 em = btrfs_get_chunk_map(fs_info, logical, length); 5959 if (IS_ERR(em)) 5960 return ERR_CAST(em); 5961 5962 map = em->map_lookup; 5963 5964 /* we don't discard raid56 yet */ 5965 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5966 ret = -EOPNOTSUPP; 5967 goto out_free_map; 5968 } 5969 5970 offset = logical - em->start; 5971 length = min_t(u64, em->start + em->len - logical, length); 5972 *length_ret = length; 5973 5974 /* 5975 * stripe_nr counts the total number of stripes we have to stride 5976 * to get to this block 5977 */ 5978 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 5979 5980 /* stripe_offset is the offset of this block in its stripe */ 5981 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); 5982 5983 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> 5984 BTRFS_STRIPE_LEN_SHIFT; 5985 stripe_cnt = stripe_nr_end - stripe_nr; 5986 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - 5987 (offset + length); 5988 /* 5989 * after this, stripe_nr is the number of stripes on this 5990 * device we have to walk to find the data, and stripe_index is 5991 * the number of our device in the stripe array 5992 */ 5993 *num_stripes = 1; 5994 stripe_index = 0; 5995 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5996 BTRFS_BLOCK_GROUP_RAID10)) { 5997 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5998 sub_stripes = 1; 5999 else 6000 sub_stripes = map->sub_stripes; 6001 6002 factor = map->num_stripes / sub_stripes; 6003 *num_stripes = min_t(u64, map->num_stripes, 6004 sub_stripes * stripe_cnt); 6005 stripe_index = stripe_nr % factor; 6006 stripe_nr /= factor; 6007 stripe_index *= sub_stripes; 6008 6009 remaining_stripes = stripe_cnt % factor; 6010 stripes_per_dev = stripe_cnt / factor; 6011 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; 6012 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6013 BTRFS_BLOCK_GROUP_DUP)) { 6014 *num_stripes = map->num_stripes; 6015 } else { 6016 stripe_index = stripe_nr % map->num_stripes; 6017 stripe_nr /= map->num_stripes; 6018 } 6019 6020 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6021 if (!stripes) { 6022 ret = -ENOMEM; 6023 goto out_free_map; 6024 } 6025 6026 for (i = 0; i < *num_stripes; i++) { 6027 stripes[i].physical = 6028 map->stripes[stripe_index].physical + 6029 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6030 stripes[i].dev = map->stripes[stripe_index].dev; 6031 6032 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6033 BTRFS_BLOCK_GROUP_RAID10)) { 6034 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); 6035 6036 if (i / sub_stripes < remaining_stripes) 6037 stripes[i].length += BTRFS_STRIPE_LEN; 6038 6039 /* 6040 * Special for the first stripe and 6041 * the last stripe: 6042 * 6043 * |-------|...|-------| 6044 * |----------| 6045 * off end_off 6046 */ 6047 if (i < sub_stripes) 6048 stripes[i].length -= stripe_offset; 6049 6050 if (stripe_index >= last_stripe && 6051 stripe_index <= (last_stripe + 6052 sub_stripes - 1)) 6053 stripes[i].length -= stripe_end_offset; 6054 6055 if (i == sub_stripes - 1) 6056 stripe_offset = 0; 6057 } else { 6058 stripes[i].length = length; 6059 } 6060 6061 stripe_index++; 6062 if (stripe_index == map->num_stripes) { 6063 stripe_index = 0; 6064 stripe_nr++; 6065 } 6066 } 6067 6068 free_extent_map(em); 6069 return stripes; 6070 out_free_map: 6071 free_extent_map(em); 6072 return ERR_PTR(ret); 6073 } 6074 6075 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6076 { 6077 struct btrfs_block_group *cache; 6078 bool ret; 6079 6080 /* Non zoned filesystem does not use "to_copy" flag */ 6081 if (!btrfs_is_zoned(fs_info)) 6082 return false; 6083 6084 cache = btrfs_lookup_block_group(fs_info, logical); 6085 6086 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6087 6088 btrfs_put_block_group(cache); 6089 return ret; 6090 } 6091 6092 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6093 struct btrfs_io_context *bioc, 6094 struct btrfs_dev_replace *dev_replace, 6095 u64 logical, 6096 int *num_stripes_ret, int *max_errors_ret) 6097 { 6098 u64 srcdev_devid = dev_replace->srcdev->devid; 6099 /* 6100 * At this stage, num_stripes is still the real number of stripes, 6101 * excluding the duplicated stripes. 6102 */ 6103 int num_stripes = *num_stripes_ret; 6104 int nr_extra_stripes = 0; 6105 int max_errors = *max_errors_ret; 6106 int i; 6107 6108 /* 6109 * A block group which has "to_copy" set will eventually be copied by 6110 * the dev-replace process. We can avoid cloning IO here. 6111 */ 6112 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6113 return; 6114 6115 /* 6116 * Duplicate the write operations while the dev-replace procedure is 6117 * running. Since the copying of the old disk to the new disk takes 6118 * place at run time while the filesystem is mounted writable, the 6119 * regular write operations to the old disk have to be duplicated to go 6120 * to the new disk as well. 6121 * 6122 * Note that device->missing is handled by the caller, and that the 6123 * write to the old disk is already set up in the stripes array. 6124 */ 6125 for (i = 0; i < num_stripes; i++) { 6126 struct btrfs_io_stripe *old = &bioc->stripes[i]; 6127 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; 6128 6129 if (old->dev->devid != srcdev_devid) 6130 continue; 6131 6132 new->physical = old->physical; 6133 new->dev = dev_replace->tgtdev; 6134 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 6135 bioc->replace_stripe_src = i; 6136 nr_extra_stripes++; 6137 } 6138 6139 /* We can only have at most 2 extra nr_stripes (for DUP). */ 6140 ASSERT(nr_extra_stripes <= 2); 6141 /* 6142 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for 6143 * replace. 6144 * If we have 2 extra stripes, only choose the one with smaller physical. 6145 */ 6146 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { 6147 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; 6148 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; 6149 6150 /* Only DUP can have two extra stripes. */ 6151 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); 6152 6153 /* 6154 * Swap the last stripe stripes and reduce @nr_extra_stripes. 6155 * The extra stripe would still be there, but won't be accessed. 6156 */ 6157 if (first->physical > second->physical) { 6158 swap(second->physical, first->physical); 6159 swap(second->dev, first->dev); 6160 nr_extra_stripes--; 6161 } 6162 } 6163 6164 *num_stripes_ret = num_stripes + nr_extra_stripes; 6165 *max_errors_ret = max_errors + nr_extra_stripes; 6166 bioc->replace_nr_stripes = nr_extra_stripes; 6167 } 6168 6169 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op, 6170 u64 offset, u32 *stripe_nr, u64 *stripe_offset, 6171 u64 *full_stripe_start) 6172 { 6173 /* 6174 * Stripe_nr is the stripe where this block falls. stripe_offset is 6175 * the offset of this block in its stripe. 6176 */ 6177 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; 6178 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; 6179 ASSERT(*stripe_offset < U32_MAX); 6180 6181 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6182 unsigned long full_stripe_len = 6183 btrfs_stripe_nr_to_offset(nr_data_stripes(map)); 6184 6185 /* 6186 * For full stripe start, we use previously calculated 6187 * @stripe_nr. Align it to nr_data_stripes, then multiply with 6188 * STRIPE_LEN. 6189 * 6190 * By this we can avoid u64 division completely. And we have 6191 * to go rounddown(), not round_down(), as nr_data_stripes is 6192 * not ensured to be power of 2. 6193 */ 6194 *full_stripe_start = 6195 btrfs_stripe_nr_to_offset( 6196 rounddown(*stripe_nr, nr_data_stripes(map))); 6197 6198 ASSERT(*full_stripe_start + full_stripe_len > offset); 6199 ASSERT(*full_stripe_start <= offset); 6200 /* 6201 * For writes to RAID56, allow to write a full stripe set, but 6202 * no straddling of stripe sets. 6203 */ 6204 if (op == BTRFS_MAP_WRITE) 6205 return full_stripe_len - (offset - *full_stripe_start); 6206 } 6207 6208 /* 6209 * For other RAID types and for RAID56 reads, allow a single stripe (on 6210 * a single disk). 6211 */ 6212 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) 6213 return BTRFS_STRIPE_LEN - *stripe_offset; 6214 return U64_MAX; 6215 } 6216 6217 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map, 6218 u32 stripe_index, u64 stripe_offset, u32 stripe_nr) 6219 { 6220 dst->dev = map->stripes[stripe_index].dev; 6221 dst->physical = map->stripes[stripe_index].physical + 6222 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); 6223 } 6224 6225 /* 6226 * Map one logical range to one or more physical ranges. 6227 * 6228 * @length: (Mandatory) mapped length of this run. 6229 * One logical range can be split into different segments 6230 * due to factors like zones and RAID0/5/6/10 stripe 6231 * boundaries. 6232 * 6233 * @bioc_ret: (Mandatory) returned btrfs_io_context structure. 6234 * which has one or more physical ranges (btrfs_io_stripe) 6235 * recorded inside. 6236 * Caller should call btrfs_put_bioc() to free it after use. 6237 * 6238 * @smap: (Optional) single physical range optimization. 6239 * If the map request can be fulfilled by one single 6240 * physical range, and this is parameter is not NULL, 6241 * then @bioc_ret would be NULL, and @smap would be 6242 * updated. 6243 * 6244 * @mirror_num_ret: (Mandatory) returned mirror number if the original 6245 * value is 0. 6246 * 6247 * Mirror number 0 means to choose any live mirrors. 6248 * 6249 * For non-RAID56 profiles, non-zero mirror_num means 6250 * the Nth mirror. (e.g. mirror_num 1 means the first 6251 * copy). 6252 * 6253 * For RAID56 profile, mirror 1 means rebuild from P and 6254 * the remaining data stripes. 6255 * 6256 * For RAID6 profile, mirror > 2 means mark another 6257 * data/P stripe error and rebuild from the remaining 6258 * stripes.. 6259 * 6260 * @need_raid_map: (Used only for integrity checker) whether the map wants 6261 * a full stripe map (including all data and P/Q stripes) 6262 * for RAID56. Should always be 1 except integrity checker. 6263 */ 6264 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6265 u64 logical, u64 *length, 6266 struct btrfs_io_context **bioc_ret, 6267 struct btrfs_io_stripe *smap, int *mirror_num_ret, 6268 int need_raid_map) 6269 { 6270 struct extent_map *em; 6271 struct map_lookup *map; 6272 u64 map_offset; 6273 u64 stripe_offset; 6274 u32 stripe_nr; 6275 u32 stripe_index; 6276 int data_stripes; 6277 int i; 6278 int ret = 0; 6279 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6280 int num_stripes; 6281 int num_copies; 6282 int max_errors = 0; 6283 struct btrfs_io_context *bioc = NULL; 6284 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6285 int dev_replace_is_ongoing = 0; 6286 u16 num_alloc_stripes; 6287 u64 raid56_full_stripe_start = (u64)-1; 6288 u64 max_len; 6289 6290 ASSERT(bioc_ret); 6291 6292 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); 6293 if (mirror_num > num_copies) 6294 return -EINVAL; 6295 6296 em = btrfs_get_chunk_map(fs_info, logical, *length); 6297 if (IS_ERR(em)) 6298 return PTR_ERR(em); 6299 6300 map = em->map_lookup; 6301 data_stripes = nr_data_stripes(map); 6302 6303 map_offset = logical - em->start; 6304 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr, 6305 &stripe_offset, &raid56_full_stripe_start); 6306 *length = min_t(u64, em->len - map_offset, max_len); 6307 6308 down_read(&dev_replace->rwsem); 6309 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6310 /* 6311 * Hold the semaphore for read during the whole operation, write is 6312 * requested at commit time but must wait. 6313 */ 6314 if (!dev_replace_is_ongoing) 6315 up_read(&dev_replace->rwsem); 6316 6317 num_stripes = 1; 6318 stripe_index = 0; 6319 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6320 stripe_index = stripe_nr % map->num_stripes; 6321 stripe_nr /= map->num_stripes; 6322 if (op == BTRFS_MAP_READ) 6323 mirror_num = 1; 6324 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6325 if (op != BTRFS_MAP_READ) { 6326 num_stripes = map->num_stripes; 6327 } else if (mirror_num) { 6328 stripe_index = mirror_num - 1; 6329 } else { 6330 stripe_index = find_live_mirror(fs_info, map, 0, 6331 dev_replace_is_ongoing); 6332 mirror_num = stripe_index + 1; 6333 } 6334 6335 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6336 if (op != BTRFS_MAP_READ) { 6337 num_stripes = map->num_stripes; 6338 } else if (mirror_num) { 6339 stripe_index = mirror_num - 1; 6340 } else { 6341 mirror_num = 1; 6342 } 6343 6344 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6345 u32 factor = map->num_stripes / map->sub_stripes; 6346 6347 stripe_index = (stripe_nr % factor) * map->sub_stripes; 6348 stripe_nr /= factor; 6349 6350 if (op != BTRFS_MAP_READ) 6351 num_stripes = map->sub_stripes; 6352 else if (mirror_num) 6353 stripe_index += mirror_num - 1; 6354 else { 6355 int old_stripe_index = stripe_index; 6356 stripe_index = find_live_mirror(fs_info, map, 6357 stripe_index, 6358 dev_replace_is_ongoing); 6359 mirror_num = stripe_index - old_stripe_index + 1; 6360 } 6361 6362 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6363 if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) { 6364 /* 6365 * Push stripe_nr back to the start of the full stripe 6366 * For those cases needing a full stripe, @stripe_nr 6367 * is the full stripe number. 6368 * 6369 * Originally we go raid56_full_stripe_start / full_stripe_len, 6370 * but that can be expensive. Here we just divide 6371 * @stripe_nr with @data_stripes. 6372 */ 6373 stripe_nr /= data_stripes; 6374 6375 /* RAID[56] write or recovery. Return all stripes */ 6376 num_stripes = map->num_stripes; 6377 max_errors = btrfs_chunk_max_errors(map); 6378 6379 /* Return the length to the full stripe end */ 6380 *length = min(logical + *length, 6381 raid56_full_stripe_start + em->start + 6382 btrfs_stripe_nr_to_offset(data_stripes)) - 6383 logical; 6384 stripe_index = 0; 6385 stripe_offset = 0; 6386 } else { 6387 /* 6388 * Mirror #0 or #1 means the original data block. 6389 * Mirror #2 is RAID5 parity block. 6390 * Mirror #3 is RAID6 Q block. 6391 */ 6392 stripe_index = stripe_nr % data_stripes; 6393 stripe_nr /= data_stripes; 6394 if (mirror_num > 1) 6395 stripe_index = data_stripes + mirror_num - 2; 6396 6397 /* We distribute the parity blocks across stripes */ 6398 stripe_index = (stripe_nr + stripe_index) % map->num_stripes; 6399 if (op == BTRFS_MAP_READ && mirror_num <= 1) 6400 mirror_num = 1; 6401 } 6402 } else { 6403 /* 6404 * After this, stripe_nr is the number of stripes on this 6405 * device we have to walk to find the data, and stripe_index is 6406 * the number of our device in the stripe array 6407 */ 6408 stripe_index = stripe_nr % map->num_stripes; 6409 stripe_nr /= map->num_stripes; 6410 mirror_num = stripe_index + 1; 6411 } 6412 if (stripe_index >= map->num_stripes) { 6413 btrfs_crit(fs_info, 6414 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6415 stripe_index, map->num_stripes); 6416 ret = -EINVAL; 6417 goto out; 6418 } 6419 6420 num_alloc_stripes = num_stripes; 6421 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6422 op != BTRFS_MAP_READ) 6423 /* 6424 * For replace case, we need to add extra stripes for extra 6425 * duplicated stripes. 6426 * 6427 * For both WRITE and GET_READ_MIRRORS, we may have at most 6428 * 2 more stripes (DUP types, otherwise 1). 6429 */ 6430 num_alloc_stripes += 2; 6431 6432 /* 6433 * If this I/O maps to a single device, try to return the device and 6434 * physical block information on the stack instead of allocating an 6435 * I/O context structure. 6436 */ 6437 if (smap && num_alloc_stripes == 1 && 6438 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) { 6439 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr); 6440 if (mirror_num_ret) 6441 *mirror_num_ret = mirror_num; 6442 *bioc_ret = NULL; 6443 ret = 0; 6444 goto out; 6445 } 6446 6447 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes); 6448 if (!bioc) { 6449 ret = -ENOMEM; 6450 goto out; 6451 } 6452 bioc->map_type = map->type; 6453 6454 /* 6455 * For RAID56 full map, we need to make sure the stripes[] follows the 6456 * rule that data stripes are all ordered, then followed with P and Q 6457 * (if we have). 6458 * 6459 * It's still mostly the same as other profiles, just with extra rotation. 6460 */ 6461 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6462 (op != BTRFS_MAP_READ || mirror_num > 1)) { 6463 /* 6464 * For RAID56 @stripe_nr is already the number of full stripes 6465 * before us, which is also the rotation value (needs to modulo 6466 * with num_stripes). 6467 * 6468 * In this case, we just add @stripe_nr with @i, then do the 6469 * modulo, to reduce one modulo call. 6470 */ 6471 bioc->full_stripe_logical = em->start + 6472 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes); 6473 for (i = 0; i < num_stripes; i++) 6474 set_io_stripe(&bioc->stripes[i], map, 6475 (i + stripe_nr) % num_stripes, 6476 stripe_offset, stripe_nr); 6477 } else { 6478 /* 6479 * For all other non-RAID56 profiles, just copy the target 6480 * stripe into the bioc. 6481 */ 6482 for (i = 0; i < num_stripes; i++) { 6483 set_io_stripe(&bioc->stripes[i], map, stripe_index, 6484 stripe_offset, stripe_nr); 6485 stripe_index++; 6486 } 6487 } 6488 6489 if (op != BTRFS_MAP_READ) 6490 max_errors = btrfs_chunk_max_errors(map); 6491 6492 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6493 op != BTRFS_MAP_READ) { 6494 handle_ops_on_dev_replace(op, bioc, dev_replace, logical, 6495 &num_stripes, &max_errors); 6496 } 6497 6498 *bioc_ret = bioc; 6499 bioc->num_stripes = num_stripes; 6500 bioc->max_errors = max_errors; 6501 bioc->mirror_num = mirror_num; 6502 6503 out: 6504 if (dev_replace_is_ongoing) { 6505 lockdep_assert_held(&dev_replace->rwsem); 6506 /* Unlock and let waiting writers proceed */ 6507 up_read(&dev_replace->rwsem); 6508 } 6509 free_extent_map(em); 6510 return ret; 6511 } 6512 6513 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6514 const struct btrfs_fs_devices *fs_devices) 6515 { 6516 if (args->fsid == NULL) 6517 return true; 6518 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6519 return true; 6520 return false; 6521 } 6522 6523 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6524 const struct btrfs_device *device) 6525 { 6526 if (args->missing) { 6527 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6528 !device->bdev) 6529 return true; 6530 return false; 6531 } 6532 6533 if (device->devid != args->devid) 6534 return false; 6535 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6536 return false; 6537 return true; 6538 } 6539 6540 /* 6541 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6542 * return NULL. 6543 * 6544 * If devid and uuid are both specified, the match must be exact, otherwise 6545 * only devid is used. 6546 */ 6547 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6548 const struct btrfs_dev_lookup_args *args) 6549 { 6550 struct btrfs_device *device; 6551 struct btrfs_fs_devices *seed_devs; 6552 6553 if (dev_args_match_fs_devices(args, fs_devices)) { 6554 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6555 if (dev_args_match_device(args, device)) 6556 return device; 6557 } 6558 } 6559 6560 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6561 if (!dev_args_match_fs_devices(args, seed_devs)) 6562 continue; 6563 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6564 if (dev_args_match_device(args, device)) 6565 return device; 6566 } 6567 } 6568 6569 return NULL; 6570 } 6571 6572 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6573 u64 devid, u8 *dev_uuid) 6574 { 6575 struct btrfs_device *device; 6576 unsigned int nofs_flag; 6577 6578 /* 6579 * We call this under the chunk_mutex, so we want to use NOFS for this 6580 * allocation, however we don't want to change btrfs_alloc_device() to 6581 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6582 * places. 6583 */ 6584 6585 nofs_flag = memalloc_nofs_save(); 6586 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); 6587 memalloc_nofs_restore(nofs_flag); 6588 if (IS_ERR(device)) 6589 return device; 6590 6591 list_add(&device->dev_list, &fs_devices->devices); 6592 device->fs_devices = fs_devices; 6593 fs_devices->num_devices++; 6594 6595 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6596 fs_devices->missing_devices++; 6597 6598 return device; 6599 } 6600 6601 /* 6602 * Allocate new device struct, set up devid and UUID. 6603 * 6604 * @fs_info: used only for generating a new devid, can be NULL if 6605 * devid is provided (i.e. @devid != NULL). 6606 * @devid: a pointer to devid for this device. If NULL a new devid 6607 * is generated. 6608 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6609 * is generated. 6610 * @path: a pointer to device path if available, NULL otherwise. 6611 * 6612 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6613 * on error. Returned struct is not linked onto any lists and must be 6614 * destroyed with btrfs_free_device. 6615 */ 6616 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6617 const u64 *devid, const u8 *uuid, 6618 const char *path) 6619 { 6620 struct btrfs_device *dev; 6621 u64 tmp; 6622 6623 if (WARN_ON(!devid && !fs_info)) 6624 return ERR_PTR(-EINVAL); 6625 6626 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6627 if (!dev) 6628 return ERR_PTR(-ENOMEM); 6629 6630 INIT_LIST_HEAD(&dev->dev_list); 6631 INIT_LIST_HEAD(&dev->dev_alloc_list); 6632 INIT_LIST_HEAD(&dev->post_commit_list); 6633 6634 atomic_set(&dev->dev_stats_ccnt, 0); 6635 btrfs_device_data_ordered_init(dev); 6636 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); 6637 6638 if (devid) 6639 tmp = *devid; 6640 else { 6641 int ret; 6642 6643 ret = find_next_devid(fs_info, &tmp); 6644 if (ret) { 6645 btrfs_free_device(dev); 6646 return ERR_PTR(ret); 6647 } 6648 } 6649 dev->devid = tmp; 6650 6651 if (uuid) 6652 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6653 else 6654 generate_random_uuid(dev->uuid); 6655 6656 if (path) { 6657 struct rcu_string *name; 6658 6659 name = rcu_string_strdup(path, GFP_KERNEL); 6660 if (!name) { 6661 btrfs_free_device(dev); 6662 return ERR_PTR(-ENOMEM); 6663 } 6664 rcu_assign_pointer(dev->name, name); 6665 } 6666 6667 return dev; 6668 } 6669 6670 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6671 u64 devid, u8 *uuid, bool error) 6672 { 6673 if (error) 6674 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6675 devid, uuid); 6676 else 6677 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6678 devid, uuid); 6679 } 6680 6681 u64 btrfs_calc_stripe_length(const struct extent_map *em) 6682 { 6683 const struct map_lookup *map = em->map_lookup; 6684 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 6685 6686 return div_u64(em->len, data_stripes); 6687 } 6688 6689 #if BITS_PER_LONG == 32 6690 /* 6691 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 6692 * can't be accessed on 32bit systems. 6693 * 6694 * This function do mount time check to reject the fs if it already has 6695 * metadata chunk beyond that limit. 6696 */ 6697 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6698 u64 logical, u64 length, u64 type) 6699 { 6700 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6701 return 0; 6702 6703 if (logical + length < MAX_LFS_FILESIZE) 6704 return 0; 6705 6706 btrfs_err_32bit_limit(fs_info); 6707 return -EOVERFLOW; 6708 } 6709 6710 /* 6711 * This is to give early warning for any metadata chunk reaching 6712 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 6713 * Although we can still access the metadata, it's not going to be possible 6714 * once the limit is reached. 6715 */ 6716 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 6717 u64 logical, u64 length, u64 type) 6718 { 6719 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 6720 return; 6721 6722 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 6723 return; 6724 6725 btrfs_warn_32bit_limit(fs_info); 6726 } 6727 #endif 6728 6729 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 6730 u64 devid, u8 *uuid) 6731 { 6732 struct btrfs_device *dev; 6733 6734 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6735 btrfs_report_missing_device(fs_info, devid, uuid, true); 6736 return ERR_PTR(-ENOENT); 6737 } 6738 6739 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 6740 if (IS_ERR(dev)) { 6741 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 6742 devid, PTR_ERR(dev)); 6743 return dev; 6744 } 6745 btrfs_report_missing_device(fs_info, devid, uuid, false); 6746 6747 return dev; 6748 } 6749 6750 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6751 struct btrfs_chunk *chunk) 6752 { 6753 BTRFS_DEV_LOOKUP_ARGS(args); 6754 struct btrfs_fs_info *fs_info = leaf->fs_info; 6755 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6756 struct map_lookup *map; 6757 struct extent_map *em; 6758 u64 logical; 6759 u64 length; 6760 u64 devid; 6761 u64 type; 6762 u8 uuid[BTRFS_UUID_SIZE]; 6763 int index; 6764 int num_stripes; 6765 int ret; 6766 int i; 6767 6768 logical = key->offset; 6769 length = btrfs_chunk_length(leaf, chunk); 6770 type = btrfs_chunk_type(leaf, chunk); 6771 index = btrfs_bg_flags_to_raid_index(type); 6772 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6773 6774 #if BITS_PER_LONG == 32 6775 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 6776 if (ret < 0) 6777 return ret; 6778 warn_32bit_meta_chunk(fs_info, logical, length, type); 6779 #endif 6780 6781 /* 6782 * Only need to verify chunk item if we're reading from sys chunk array, 6783 * as chunk item in tree block is already verified by tree-checker. 6784 */ 6785 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6786 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6787 if (ret) 6788 return ret; 6789 } 6790 6791 read_lock(&map_tree->lock); 6792 em = lookup_extent_mapping(map_tree, logical, 1); 6793 read_unlock(&map_tree->lock); 6794 6795 /* already mapped? */ 6796 if (em && em->start <= logical && em->start + em->len > logical) { 6797 free_extent_map(em); 6798 return 0; 6799 } else if (em) { 6800 free_extent_map(em); 6801 } 6802 6803 em = alloc_extent_map(); 6804 if (!em) 6805 return -ENOMEM; 6806 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6807 if (!map) { 6808 free_extent_map(em); 6809 return -ENOMEM; 6810 } 6811 6812 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6813 em->map_lookup = map; 6814 em->start = logical; 6815 em->len = length; 6816 em->orig_start = 0; 6817 em->block_start = 0; 6818 em->block_len = em->len; 6819 6820 map->num_stripes = num_stripes; 6821 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6822 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6823 map->type = type; 6824 /* 6825 * We can't use the sub_stripes value, as for profiles other than 6826 * RAID10, they may have 0 as sub_stripes for filesystems created by 6827 * older mkfs (<v5.4). 6828 * In that case, it can cause divide-by-zero errors later. 6829 * Since currently sub_stripes is fixed for each profile, let's 6830 * use the trusted value instead. 6831 */ 6832 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 6833 map->verified_stripes = 0; 6834 em->orig_block_len = btrfs_calc_stripe_length(em); 6835 for (i = 0; i < num_stripes; i++) { 6836 map->stripes[i].physical = 6837 btrfs_stripe_offset_nr(leaf, chunk, i); 6838 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6839 args.devid = devid; 6840 read_extent_buffer(leaf, uuid, (unsigned long) 6841 btrfs_stripe_dev_uuid_nr(chunk, i), 6842 BTRFS_UUID_SIZE); 6843 args.uuid = uuid; 6844 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 6845 if (!map->stripes[i].dev) { 6846 map->stripes[i].dev = handle_missing_device(fs_info, 6847 devid, uuid); 6848 if (IS_ERR(map->stripes[i].dev)) { 6849 ret = PTR_ERR(map->stripes[i].dev); 6850 free_extent_map(em); 6851 return ret; 6852 } 6853 } 6854 6855 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6856 &(map->stripes[i].dev->dev_state)); 6857 } 6858 6859 write_lock(&map_tree->lock); 6860 ret = add_extent_mapping(map_tree, em, 0); 6861 write_unlock(&map_tree->lock); 6862 if (ret < 0) { 6863 btrfs_err(fs_info, 6864 "failed to add chunk map, start=%llu len=%llu: %d", 6865 em->start, em->len, ret); 6866 } 6867 free_extent_map(em); 6868 6869 return ret; 6870 } 6871 6872 static void fill_device_from_item(struct extent_buffer *leaf, 6873 struct btrfs_dev_item *dev_item, 6874 struct btrfs_device *device) 6875 { 6876 unsigned long ptr; 6877 6878 device->devid = btrfs_device_id(leaf, dev_item); 6879 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6880 device->total_bytes = device->disk_total_bytes; 6881 device->commit_total_bytes = device->disk_total_bytes; 6882 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6883 device->commit_bytes_used = device->bytes_used; 6884 device->type = btrfs_device_type(leaf, dev_item); 6885 device->io_align = btrfs_device_io_align(leaf, dev_item); 6886 device->io_width = btrfs_device_io_width(leaf, dev_item); 6887 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6888 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6889 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6890 6891 ptr = btrfs_device_uuid(dev_item); 6892 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6893 } 6894 6895 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6896 u8 *fsid) 6897 { 6898 struct btrfs_fs_devices *fs_devices; 6899 int ret; 6900 6901 lockdep_assert_held(&uuid_mutex); 6902 ASSERT(fsid); 6903 6904 /* This will match only for multi-device seed fs */ 6905 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6906 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6907 return fs_devices; 6908 6909 6910 fs_devices = find_fsid(fsid, NULL); 6911 if (!fs_devices) { 6912 if (!btrfs_test_opt(fs_info, DEGRADED)) 6913 return ERR_PTR(-ENOENT); 6914 6915 fs_devices = alloc_fs_devices(fsid, NULL); 6916 if (IS_ERR(fs_devices)) 6917 return fs_devices; 6918 6919 fs_devices->seeding = true; 6920 fs_devices->opened = 1; 6921 return fs_devices; 6922 } 6923 6924 /* 6925 * Upon first call for a seed fs fsid, just create a private copy of the 6926 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6927 */ 6928 fs_devices = clone_fs_devices(fs_devices); 6929 if (IS_ERR(fs_devices)) 6930 return fs_devices; 6931 6932 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); 6933 if (ret) { 6934 free_fs_devices(fs_devices); 6935 return ERR_PTR(ret); 6936 } 6937 6938 if (!fs_devices->seeding) { 6939 close_fs_devices(fs_devices); 6940 free_fs_devices(fs_devices); 6941 return ERR_PTR(-EINVAL); 6942 } 6943 6944 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6945 6946 return fs_devices; 6947 } 6948 6949 static int read_one_dev(struct extent_buffer *leaf, 6950 struct btrfs_dev_item *dev_item) 6951 { 6952 BTRFS_DEV_LOOKUP_ARGS(args); 6953 struct btrfs_fs_info *fs_info = leaf->fs_info; 6954 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6955 struct btrfs_device *device; 6956 u64 devid; 6957 int ret; 6958 u8 fs_uuid[BTRFS_FSID_SIZE]; 6959 u8 dev_uuid[BTRFS_UUID_SIZE]; 6960 6961 devid = btrfs_device_id(leaf, dev_item); 6962 args.devid = devid; 6963 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6964 BTRFS_UUID_SIZE); 6965 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6966 BTRFS_FSID_SIZE); 6967 args.uuid = dev_uuid; 6968 args.fsid = fs_uuid; 6969 6970 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6971 fs_devices = open_seed_devices(fs_info, fs_uuid); 6972 if (IS_ERR(fs_devices)) 6973 return PTR_ERR(fs_devices); 6974 } 6975 6976 device = btrfs_find_device(fs_info->fs_devices, &args); 6977 if (!device) { 6978 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6979 btrfs_report_missing_device(fs_info, devid, 6980 dev_uuid, true); 6981 return -ENOENT; 6982 } 6983 6984 device = add_missing_dev(fs_devices, devid, dev_uuid); 6985 if (IS_ERR(device)) { 6986 btrfs_err(fs_info, 6987 "failed to add missing dev %llu: %ld", 6988 devid, PTR_ERR(device)); 6989 return PTR_ERR(device); 6990 } 6991 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6992 } else { 6993 if (!device->bdev) { 6994 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6995 btrfs_report_missing_device(fs_info, 6996 devid, dev_uuid, true); 6997 return -ENOENT; 6998 } 6999 btrfs_report_missing_device(fs_info, devid, 7000 dev_uuid, false); 7001 } 7002 7003 if (!device->bdev && 7004 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7005 /* 7006 * this happens when a device that was properly setup 7007 * in the device info lists suddenly goes bad. 7008 * device->bdev is NULL, and so we have to set 7009 * device->missing to one here 7010 */ 7011 device->fs_devices->missing_devices++; 7012 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7013 } 7014 7015 /* Move the device to its own fs_devices */ 7016 if (device->fs_devices != fs_devices) { 7017 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7018 &device->dev_state)); 7019 7020 list_move(&device->dev_list, &fs_devices->devices); 7021 device->fs_devices->num_devices--; 7022 fs_devices->num_devices++; 7023 7024 device->fs_devices->missing_devices--; 7025 fs_devices->missing_devices++; 7026 7027 device->fs_devices = fs_devices; 7028 } 7029 } 7030 7031 if (device->fs_devices != fs_info->fs_devices) { 7032 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7033 if (device->generation != 7034 btrfs_device_generation(leaf, dev_item)) 7035 return -EINVAL; 7036 } 7037 7038 fill_device_from_item(leaf, dev_item, device); 7039 if (device->bdev) { 7040 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7041 7042 if (device->total_bytes > max_total_bytes) { 7043 btrfs_err(fs_info, 7044 "device total_bytes should be at most %llu but found %llu", 7045 max_total_bytes, device->total_bytes); 7046 return -EINVAL; 7047 } 7048 } 7049 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7050 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7051 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7052 device->fs_devices->total_rw_bytes += device->total_bytes; 7053 atomic64_add(device->total_bytes - device->bytes_used, 7054 &fs_info->free_chunk_space); 7055 } 7056 ret = 0; 7057 return ret; 7058 } 7059 7060 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7061 { 7062 struct btrfs_super_block *super_copy = fs_info->super_copy; 7063 struct extent_buffer *sb; 7064 struct btrfs_disk_key *disk_key; 7065 struct btrfs_chunk *chunk; 7066 u8 *array_ptr; 7067 unsigned long sb_array_offset; 7068 int ret = 0; 7069 u32 num_stripes; 7070 u32 array_size; 7071 u32 len = 0; 7072 u32 cur_offset; 7073 u64 type; 7074 struct btrfs_key key; 7075 7076 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7077 7078 /* 7079 * We allocated a dummy extent, just to use extent buffer accessors. 7080 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7081 * that's fine, we will not go beyond system chunk array anyway. 7082 */ 7083 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7084 if (!sb) 7085 return -ENOMEM; 7086 set_extent_buffer_uptodate(sb); 7087 7088 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7089 array_size = btrfs_super_sys_array_size(super_copy); 7090 7091 array_ptr = super_copy->sys_chunk_array; 7092 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7093 cur_offset = 0; 7094 7095 while (cur_offset < array_size) { 7096 disk_key = (struct btrfs_disk_key *)array_ptr; 7097 len = sizeof(*disk_key); 7098 if (cur_offset + len > array_size) 7099 goto out_short_read; 7100 7101 btrfs_disk_key_to_cpu(&key, disk_key); 7102 7103 array_ptr += len; 7104 sb_array_offset += len; 7105 cur_offset += len; 7106 7107 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7108 btrfs_err(fs_info, 7109 "unexpected item type %u in sys_array at offset %u", 7110 (u32)key.type, cur_offset); 7111 ret = -EIO; 7112 break; 7113 } 7114 7115 chunk = (struct btrfs_chunk *)sb_array_offset; 7116 /* 7117 * At least one btrfs_chunk with one stripe must be present, 7118 * exact stripe count check comes afterwards 7119 */ 7120 len = btrfs_chunk_item_size(1); 7121 if (cur_offset + len > array_size) 7122 goto out_short_read; 7123 7124 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7125 if (!num_stripes) { 7126 btrfs_err(fs_info, 7127 "invalid number of stripes %u in sys_array at offset %u", 7128 num_stripes, cur_offset); 7129 ret = -EIO; 7130 break; 7131 } 7132 7133 type = btrfs_chunk_type(sb, chunk); 7134 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7135 btrfs_err(fs_info, 7136 "invalid chunk type %llu in sys_array at offset %u", 7137 type, cur_offset); 7138 ret = -EIO; 7139 break; 7140 } 7141 7142 len = btrfs_chunk_item_size(num_stripes); 7143 if (cur_offset + len > array_size) 7144 goto out_short_read; 7145 7146 ret = read_one_chunk(&key, sb, chunk); 7147 if (ret) 7148 break; 7149 7150 array_ptr += len; 7151 sb_array_offset += len; 7152 cur_offset += len; 7153 } 7154 clear_extent_buffer_uptodate(sb); 7155 free_extent_buffer_stale(sb); 7156 return ret; 7157 7158 out_short_read: 7159 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7160 len, cur_offset); 7161 clear_extent_buffer_uptodate(sb); 7162 free_extent_buffer_stale(sb); 7163 return -EIO; 7164 } 7165 7166 /* 7167 * Check if all chunks in the fs are OK for read-write degraded mount 7168 * 7169 * If the @failing_dev is specified, it's accounted as missing. 7170 * 7171 * Return true if all chunks meet the minimal RW mount requirements. 7172 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7173 */ 7174 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7175 struct btrfs_device *failing_dev) 7176 { 7177 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7178 struct extent_map *em; 7179 u64 next_start = 0; 7180 bool ret = true; 7181 7182 read_lock(&map_tree->lock); 7183 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7184 read_unlock(&map_tree->lock); 7185 /* No chunk at all? Return false anyway */ 7186 if (!em) { 7187 ret = false; 7188 goto out; 7189 } 7190 while (em) { 7191 struct map_lookup *map; 7192 int missing = 0; 7193 int max_tolerated; 7194 int i; 7195 7196 map = em->map_lookup; 7197 max_tolerated = 7198 btrfs_get_num_tolerated_disk_barrier_failures( 7199 map->type); 7200 for (i = 0; i < map->num_stripes; i++) { 7201 struct btrfs_device *dev = map->stripes[i].dev; 7202 7203 if (!dev || !dev->bdev || 7204 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7205 dev->last_flush_error) 7206 missing++; 7207 else if (failing_dev && failing_dev == dev) 7208 missing++; 7209 } 7210 if (missing > max_tolerated) { 7211 if (!failing_dev) 7212 btrfs_warn(fs_info, 7213 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7214 em->start, missing, max_tolerated); 7215 free_extent_map(em); 7216 ret = false; 7217 goto out; 7218 } 7219 next_start = extent_map_end(em); 7220 free_extent_map(em); 7221 7222 read_lock(&map_tree->lock); 7223 em = lookup_extent_mapping(map_tree, next_start, 7224 (u64)(-1) - next_start); 7225 read_unlock(&map_tree->lock); 7226 } 7227 out: 7228 return ret; 7229 } 7230 7231 static void readahead_tree_node_children(struct extent_buffer *node) 7232 { 7233 int i; 7234 const int nr_items = btrfs_header_nritems(node); 7235 7236 for (i = 0; i < nr_items; i++) 7237 btrfs_readahead_node_child(node, i); 7238 } 7239 7240 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7241 { 7242 struct btrfs_root *root = fs_info->chunk_root; 7243 struct btrfs_path *path; 7244 struct extent_buffer *leaf; 7245 struct btrfs_key key; 7246 struct btrfs_key found_key; 7247 int ret; 7248 int slot; 7249 int iter_ret = 0; 7250 u64 total_dev = 0; 7251 u64 last_ra_node = 0; 7252 7253 path = btrfs_alloc_path(); 7254 if (!path) 7255 return -ENOMEM; 7256 7257 /* 7258 * uuid_mutex is needed only if we are mounting a sprout FS 7259 * otherwise we don't need it. 7260 */ 7261 mutex_lock(&uuid_mutex); 7262 7263 /* 7264 * It is possible for mount and umount to race in such a way that 7265 * we execute this code path, but open_fs_devices failed to clear 7266 * total_rw_bytes. We certainly want it cleared before reading the 7267 * device items, so clear it here. 7268 */ 7269 fs_info->fs_devices->total_rw_bytes = 0; 7270 7271 /* 7272 * Lockdep complains about possible circular locking dependency between 7273 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7274 * used for freeze procection of a fs (struct super_block.s_writers), 7275 * which we take when starting a transaction, and extent buffers of the 7276 * chunk tree if we call read_one_dev() while holding a lock on an 7277 * extent buffer of the chunk tree. Since we are mounting the filesystem 7278 * and at this point there can't be any concurrent task modifying the 7279 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7280 */ 7281 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7282 path->skip_locking = 1; 7283 7284 /* 7285 * Read all device items, and then all the chunk items. All 7286 * device items are found before any chunk item (their object id 7287 * is smaller than the lowest possible object id for a chunk 7288 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7289 */ 7290 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7291 key.offset = 0; 7292 key.type = 0; 7293 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7294 struct extent_buffer *node = path->nodes[1]; 7295 7296 leaf = path->nodes[0]; 7297 slot = path->slots[0]; 7298 7299 if (node) { 7300 if (last_ra_node != node->start) { 7301 readahead_tree_node_children(node); 7302 last_ra_node = node->start; 7303 } 7304 } 7305 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7306 struct btrfs_dev_item *dev_item; 7307 dev_item = btrfs_item_ptr(leaf, slot, 7308 struct btrfs_dev_item); 7309 ret = read_one_dev(leaf, dev_item); 7310 if (ret) 7311 goto error; 7312 total_dev++; 7313 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7314 struct btrfs_chunk *chunk; 7315 7316 /* 7317 * We are only called at mount time, so no need to take 7318 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7319 * we always lock first fs_info->chunk_mutex before 7320 * acquiring any locks on the chunk tree. This is a 7321 * requirement for chunk allocation, see the comment on 7322 * top of btrfs_chunk_alloc() for details. 7323 */ 7324 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7325 ret = read_one_chunk(&found_key, leaf, chunk); 7326 if (ret) 7327 goto error; 7328 } 7329 } 7330 /* Catch error found during iteration */ 7331 if (iter_ret < 0) { 7332 ret = iter_ret; 7333 goto error; 7334 } 7335 7336 /* 7337 * After loading chunk tree, we've got all device information, 7338 * do another round of validation checks. 7339 */ 7340 if (total_dev != fs_info->fs_devices->total_devices) { 7341 btrfs_warn(fs_info, 7342 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7343 btrfs_super_num_devices(fs_info->super_copy), 7344 total_dev); 7345 fs_info->fs_devices->total_devices = total_dev; 7346 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7347 } 7348 if (btrfs_super_total_bytes(fs_info->super_copy) < 7349 fs_info->fs_devices->total_rw_bytes) { 7350 btrfs_err(fs_info, 7351 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7352 btrfs_super_total_bytes(fs_info->super_copy), 7353 fs_info->fs_devices->total_rw_bytes); 7354 ret = -EINVAL; 7355 goto error; 7356 } 7357 ret = 0; 7358 error: 7359 mutex_unlock(&uuid_mutex); 7360 7361 btrfs_free_path(path); 7362 return ret; 7363 } 7364 7365 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7366 { 7367 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7368 struct btrfs_device *device; 7369 int ret = 0; 7370 7371 fs_devices->fs_info = fs_info; 7372 7373 mutex_lock(&fs_devices->device_list_mutex); 7374 list_for_each_entry(device, &fs_devices->devices, dev_list) 7375 device->fs_info = fs_info; 7376 7377 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7378 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7379 device->fs_info = fs_info; 7380 ret = btrfs_get_dev_zone_info(device, false); 7381 if (ret) 7382 break; 7383 } 7384 7385 seed_devs->fs_info = fs_info; 7386 } 7387 mutex_unlock(&fs_devices->device_list_mutex); 7388 7389 return ret; 7390 } 7391 7392 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7393 const struct btrfs_dev_stats_item *ptr, 7394 int index) 7395 { 7396 u64 val; 7397 7398 read_extent_buffer(eb, &val, 7399 offsetof(struct btrfs_dev_stats_item, values) + 7400 ((unsigned long)ptr) + (index * sizeof(u64)), 7401 sizeof(val)); 7402 return val; 7403 } 7404 7405 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7406 struct btrfs_dev_stats_item *ptr, 7407 int index, u64 val) 7408 { 7409 write_extent_buffer(eb, &val, 7410 offsetof(struct btrfs_dev_stats_item, values) + 7411 ((unsigned long)ptr) + (index * sizeof(u64)), 7412 sizeof(val)); 7413 } 7414 7415 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7416 struct btrfs_path *path) 7417 { 7418 struct btrfs_dev_stats_item *ptr; 7419 struct extent_buffer *eb; 7420 struct btrfs_key key; 7421 int item_size; 7422 int i, ret, slot; 7423 7424 if (!device->fs_info->dev_root) 7425 return 0; 7426 7427 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7428 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7429 key.offset = device->devid; 7430 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7431 if (ret) { 7432 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7433 btrfs_dev_stat_set(device, i, 0); 7434 device->dev_stats_valid = 1; 7435 btrfs_release_path(path); 7436 return ret < 0 ? ret : 0; 7437 } 7438 slot = path->slots[0]; 7439 eb = path->nodes[0]; 7440 item_size = btrfs_item_size(eb, slot); 7441 7442 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7443 7444 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7445 if (item_size >= (1 + i) * sizeof(__le64)) 7446 btrfs_dev_stat_set(device, i, 7447 btrfs_dev_stats_value(eb, ptr, i)); 7448 else 7449 btrfs_dev_stat_set(device, i, 0); 7450 } 7451 7452 device->dev_stats_valid = 1; 7453 btrfs_dev_stat_print_on_load(device); 7454 btrfs_release_path(path); 7455 7456 return 0; 7457 } 7458 7459 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7460 { 7461 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7462 struct btrfs_device *device; 7463 struct btrfs_path *path = NULL; 7464 int ret = 0; 7465 7466 path = btrfs_alloc_path(); 7467 if (!path) 7468 return -ENOMEM; 7469 7470 mutex_lock(&fs_devices->device_list_mutex); 7471 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7472 ret = btrfs_device_init_dev_stats(device, path); 7473 if (ret) 7474 goto out; 7475 } 7476 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7477 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7478 ret = btrfs_device_init_dev_stats(device, path); 7479 if (ret) 7480 goto out; 7481 } 7482 } 7483 out: 7484 mutex_unlock(&fs_devices->device_list_mutex); 7485 7486 btrfs_free_path(path); 7487 return ret; 7488 } 7489 7490 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7491 struct btrfs_device *device) 7492 { 7493 struct btrfs_fs_info *fs_info = trans->fs_info; 7494 struct btrfs_root *dev_root = fs_info->dev_root; 7495 struct btrfs_path *path; 7496 struct btrfs_key key; 7497 struct extent_buffer *eb; 7498 struct btrfs_dev_stats_item *ptr; 7499 int ret; 7500 int i; 7501 7502 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7503 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7504 key.offset = device->devid; 7505 7506 path = btrfs_alloc_path(); 7507 if (!path) 7508 return -ENOMEM; 7509 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7510 if (ret < 0) { 7511 btrfs_warn_in_rcu(fs_info, 7512 "error %d while searching for dev_stats item for device %s", 7513 ret, btrfs_dev_name(device)); 7514 goto out; 7515 } 7516 7517 if (ret == 0 && 7518 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7519 /* need to delete old one and insert a new one */ 7520 ret = btrfs_del_item(trans, dev_root, path); 7521 if (ret != 0) { 7522 btrfs_warn_in_rcu(fs_info, 7523 "delete too small dev_stats item for device %s failed %d", 7524 btrfs_dev_name(device), ret); 7525 goto out; 7526 } 7527 ret = 1; 7528 } 7529 7530 if (ret == 1) { 7531 /* need to insert a new item */ 7532 btrfs_release_path(path); 7533 ret = btrfs_insert_empty_item(trans, dev_root, path, 7534 &key, sizeof(*ptr)); 7535 if (ret < 0) { 7536 btrfs_warn_in_rcu(fs_info, 7537 "insert dev_stats item for device %s failed %d", 7538 btrfs_dev_name(device), ret); 7539 goto out; 7540 } 7541 } 7542 7543 eb = path->nodes[0]; 7544 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7545 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7546 btrfs_set_dev_stats_value(eb, ptr, i, 7547 btrfs_dev_stat_read(device, i)); 7548 btrfs_mark_buffer_dirty(trans, eb); 7549 7550 out: 7551 btrfs_free_path(path); 7552 return ret; 7553 } 7554 7555 /* 7556 * called from commit_transaction. Writes all changed device stats to disk. 7557 */ 7558 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7559 { 7560 struct btrfs_fs_info *fs_info = trans->fs_info; 7561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7562 struct btrfs_device *device; 7563 int stats_cnt; 7564 int ret = 0; 7565 7566 mutex_lock(&fs_devices->device_list_mutex); 7567 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7568 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7569 if (!device->dev_stats_valid || stats_cnt == 0) 7570 continue; 7571 7572 7573 /* 7574 * There is a LOAD-LOAD control dependency between the value of 7575 * dev_stats_ccnt and updating the on-disk values which requires 7576 * reading the in-memory counters. Such control dependencies 7577 * require explicit read memory barriers. 7578 * 7579 * This memory barriers pairs with smp_mb__before_atomic in 7580 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7581 * barrier implied by atomic_xchg in 7582 * btrfs_dev_stats_read_and_reset 7583 */ 7584 smp_rmb(); 7585 7586 ret = update_dev_stat_item(trans, device); 7587 if (!ret) 7588 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7589 } 7590 mutex_unlock(&fs_devices->device_list_mutex); 7591 7592 return ret; 7593 } 7594 7595 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7596 { 7597 btrfs_dev_stat_inc(dev, index); 7598 7599 if (!dev->dev_stats_valid) 7600 return; 7601 btrfs_err_rl_in_rcu(dev->fs_info, 7602 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7603 btrfs_dev_name(dev), 7604 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7605 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7606 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7607 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7608 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7609 } 7610 7611 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7612 { 7613 int i; 7614 7615 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7616 if (btrfs_dev_stat_read(dev, i) != 0) 7617 break; 7618 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7619 return; /* all values == 0, suppress message */ 7620 7621 btrfs_info_in_rcu(dev->fs_info, 7622 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7623 btrfs_dev_name(dev), 7624 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7625 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7626 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7627 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7628 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7629 } 7630 7631 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7632 struct btrfs_ioctl_get_dev_stats *stats) 7633 { 7634 BTRFS_DEV_LOOKUP_ARGS(args); 7635 struct btrfs_device *dev; 7636 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7637 int i; 7638 7639 mutex_lock(&fs_devices->device_list_mutex); 7640 args.devid = stats->devid; 7641 dev = btrfs_find_device(fs_info->fs_devices, &args); 7642 mutex_unlock(&fs_devices->device_list_mutex); 7643 7644 if (!dev) { 7645 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7646 return -ENODEV; 7647 } else if (!dev->dev_stats_valid) { 7648 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7649 return -ENODEV; 7650 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7651 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7652 if (stats->nr_items > i) 7653 stats->values[i] = 7654 btrfs_dev_stat_read_and_reset(dev, i); 7655 else 7656 btrfs_dev_stat_set(dev, i, 0); 7657 } 7658 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7659 current->comm, task_pid_nr(current)); 7660 } else { 7661 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7662 if (stats->nr_items > i) 7663 stats->values[i] = btrfs_dev_stat_read(dev, i); 7664 } 7665 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7666 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7667 return 0; 7668 } 7669 7670 /* 7671 * Update the size and bytes used for each device where it changed. This is 7672 * delayed since we would otherwise get errors while writing out the 7673 * superblocks. 7674 * 7675 * Must be invoked during transaction commit. 7676 */ 7677 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7678 { 7679 struct btrfs_device *curr, *next; 7680 7681 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7682 7683 if (list_empty(&trans->dev_update_list)) 7684 return; 7685 7686 /* 7687 * We don't need the device_list_mutex here. This list is owned by the 7688 * transaction and the transaction must complete before the device is 7689 * released. 7690 */ 7691 mutex_lock(&trans->fs_info->chunk_mutex); 7692 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7693 post_commit_list) { 7694 list_del_init(&curr->post_commit_list); 7695 curr->commit_total_bytes = curr->disk_total_bytes; 7696 curr->commit_bytes_used = curr->bytes_used; 7697 } 7698 mutex_unlock(&trans->fs_info->chunk_mutex); 7699 } 7700 7701 /* 7702 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7703 */ 7704 int btrfs_bg_type_to_factor(u64 flags) 7705 { 7706 const int index = btrfs_bg_flags_to_raid_index(flags); 7707 7708 return btrfs_raid_array[index].ncopies; 7709 } 7710 7711 7712 7713 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7714 u64 chunk_offset, u64 devid, 7715 u64 physical_offset, u64 physical_len) 7716 { 7717 struct btrfs_dev_lookup_args args = { .devid = devid }; 7718 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7719 struct extent_map *em; 7720 struct map_lookup *map; 7721 struct btrfs_device *dev; 7722 u64 stripe_len; 7723 bool found = false; 7724 int ret = 0; 7725 int i; 7726 7727 read_lock(&em_tree->lock); 7728 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7729 read_unlock(&em_tree->lock); 7730 7731 if (!em) { 7732 btrfs_err(fs_info, 7733 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7734 physical_offset, devid); 7735 ret = -EUCLEAN; 7736 goto out; 7737 } 7738 7739 map = em->map_lookup; 7740 stripe_len = btrfs_calc_stripe_length(em); 7741 if (physical_len != stripe_len) { 7742 btrfs_err(fs_info, 7743 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7744 physical_offset, devid, em->start, physical_len, 7745 stripe_len); 7746 ret = -EUCLEAN; 7747 goto out; 7748 } 7749 7750 /* 7751 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 7752 * space. Although kernel can handle it without problem, better to warn 7753 * the users. 7754 */ 7755 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 7756 btrfs_warn(fs_info, 7757 "devid %llu physical %llu len %llu inside the reserved space", 7758 devid, physical_offset, physical_len); 7759 7760 for (i = 0; i < map->num_stripes; i++) { 7761 if (map->stripes[i].dev->devid == devid && 7762 map->stripes[i].physical == physical_offset) { 7763 found = true; 7764 if (map->verified_stripes >= map->num_stripes) { 7765 btrfs_err(fs_info, 7766 "too many dev extents for chunk %llu found", 7767 em->start); 7768 ret = -EUCLEAN; 7769 goto out; 7770 } 7771 map->verified_stripes++; 7772 break; 7773 } 7774 } 7775 if (!found) { 7776 btrfs_err(fs_info, 7777 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7778 physical_offset, devid); 7779 ret = -EUCLEAN; 7780 } 7781 7782 /* Make sure no dev extent is beyond device boundary */ 7783 dev = btrfs_find_device(fs_info->fs_devices, &args); 7784 if (!dev) { 7785 btrfs_err(fs_info, "failed to find devid %llu", devid); 7786 ret = -EUCLEAN; 7787 goto out; 7788 } 7789 7790 if (physical_offset + physical_len > dev->disk_total_bytes) { 7791 btrfs_err(fs_info, 7792 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7793 devid, physical_offset, physical_len, 7794 dev->disk_total_bytes); 7795 ret = -EUCLEAN; 7796 goto out; 7797 } 7798 7799 if (dev->zone_info) { 7800 u64 zone_size = dev->zone_info->zone_size; 7801 7802 if (!IS_ALIGNED(physical_offset, zone_size) || 7803 !IS_ALIGNED(physical_len, zone_size)) { 7804 btrfs_err(fs_info, 7805 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 7806 devid, physical_offset, physical_len); 7807 ret = -EUCLEAN; 7808 goto out; 7809 } 7810 } 7811 7812 out: 7813 free_extent_map(em); 7814 return ret; 7815 } 7816 7817 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7818 { 7819 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7820 struct extent_map *em; 7821 struct rb_node *node; 7822 int ret = 0; 7823 7824 read_lock(&em_tree->lock); 7825 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7826 em = rb_entry(node, struct extent_map, rb_node); 7827 if (em->map_lookup->num_stripes != 7828 em->map_lookup->verified_stripes) { 7829 btrfs_err(fs_info, 7830 "chunk %llu has missing dev extent, have %d expect %d", 7831 em->start, em->map_lookup->verified_stripes, 7832 em->map_lookup->num_stripes); 7833 ret = -EUCLEAN; 7834 goto out; 7835 } 7836 } 7837 out: 7838 read_unlock(&em_tree->lock); 7839 return ret; 7840 } 7841 7842 /* 7843 * Ensure that all dev extents are mapped to correct chunk, otherwise 7844 * later chunk allocation/free would cause unexpected behavior. 7845 * 7846 * NOTE: This will iterate through the whole device tree, which should be of 7847 * the same size level as the chunk tree. This slightly increases mount time. 7848 */ 7849 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7850 { 7851 struct btrfs_path *path; 7852 struct btrfs_root *root = fs_info->dev_root; 7853 struct btrfs_key key; 7854 u64 prev_devid = 0; 7855 u64 prev_dev_ext_end = 0; 7856 int ret = 0; 7857 7858 /* 7859 * We don't have a dev_root because we mounted with ignorebadroots and 7860 * failed to load the root, so we want to skip the verification in this 7861 * case for sure. 7862 * 7863 * However if the dev root is fine, but the tree itself is corrupted 7864 * we'd still fail to mount. This verification is only to make sure 7865 * writes can happen safely, so instead just bypass this check 7866 * completely in the case of IGNOREBADROOTS. 7867 */ 7868 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 7869 return 0; 7870 7871 key.objectid = 1; 7872 key.type = BTRFS_DEV_EXTENT_KEY; 7873 key.offset = 0; 7874 7875 path = btrfs_alloc_path(); 7876 if (!path) 7877 return -ENOMEM; 7878 7879 path->reada = READA_FORWARD; 7880 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7881 if (ret < 0) 7882 goto out; 7883 7884 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7885 ret = btrfs_next_leaf(root, path); 7886 if (ret < 0) 7887 goto out; 7888 /* No dev extents at all? Not good */ 7889 if (ret > 0) { 7890 ret = -EUCLEAN; 7891 goto out; 7892 } 7893 } 7894 while (1) { 7895 struct extent_buffer *leaf = path->nodes[0]; 7896 struct btrfs_dev_extent *dext; 7897 int slot = path->slots[0]; 7898 u64 chunk_offset; 7899 u64 physical_offset; 7900 u64 physical_len; 7901 u64 devid; 7902 7903 btrfs_item_key_to_cpu(leaf, &key, slot); 7904 if (key.type != BTRFS_DEV_EXTENT_KEY) 7905 break; 7906 devid = key.objectid; 7907 physical_offset = key.offset; 7908 7909 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7910 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7911 physical_len = btrfs_dev_extent_length(leaf, dext); 7912 7913 /* Check if this dev extent overlaps with the previous one */ 7914 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7915 btrfs_err(fs_info, 7916 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7917 devid, physical_offset, prev_dev_ext_end); 7918 ret = -EUCLEAN; 7919 goto out; 7920 } 7921 7922 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7923 physical_offset, physical_len); 7924 if (ret < 0) 7925 goto out; 7926 prev_devid = devid; 7927 prev_dev_ext_end = physical_offset + physical_len; 7928 7929 ret = btrfs_next_item(root, path); 7930 if (ret < 0) 7931 goto out; 7932 if (ret > 0) { 7933 ret = 0; 7934 break; 7935 } 7936 } 7937 7938 /* Ensure all chunks have corresponding dev extents */ 7939 ret = verify_chunk_dev_extent_mapping(fs_info); 7940 out: 7941 btrfs_free_path(path); 7942 return ret; 7943 } 7944 7945 /* 7946 * Check whether the given block group or device is pinned by any inode being 7947 * used as a swapfile. 7948 */ 7949 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7950 { 7951 struct btrfs_swapfile_pin *sp; 7952 struct rb_node *node; 7953 7954 spin_lock(&fs_info->swapfile_pins_lock); 7955 node = fs_info->swapfile_pins.rb_node; 7956 while (node) { 7957 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7958 if (ptr < sp->ptr) 7959 node = node->rb_left; 7960 else if (ptr > sp->ptr) 7961 node = node->rb_right; 7962 else 7963 break; 7964 } 7965 spin_unlock(&fs_info->swapfile_pins_lock); 7966 return node != NULL; 7967 } 7968 7969 static int relocating_repair_kthread(void *data) 7970 { 7971 struct btrfs_block_group *cache = data; 7972 struct btrfs_fs_info *fs_info = cache->fs_info; 7973 u64 target; 7974 int ret = 0; 7975 7976 target = cache->start; 7977 btrfs_put_block_group(cache); 7978 7979 sb_start_write(fs_info->sb); 7980 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 7981 btrfs_info(fs_info, 7982 "zoned: skip relocating block group %llu to repair: EBUSY", 7983 target); 7984 sb_end_write(fs_info->sb); 7985 return -EBUSY; 7986 } 7987 7988 mutex_lock(&fs_info->reclaim_bgs_lock); 7989 7990 /* Ensure block group still exists */ 7991 cache = btrfs_lookup_block_group(fs_info, target); 7992 if (!cache) 7993 goto out; 7994 7995 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 7996 goto out; 7997 7998 ret = btrfs_may_alloc_data_chunk(fs_info, target); 7999 if (ret < 0) 8000 goto out; 8001 8002 btrfs_info(fs_info, 8003 "zoned: relocating block group %llu to repair IO failure", 8004 target); 8005 ret = btrfs_relocate_chunk(fs_info, target); 8006 8007 out: 8008 if (cache) 8009 btrfs_put_block_group(cache); 8010 mutex_unlock(&fs_info->reclaim_bgs_lock); 8011 btrfs_exclop_finish(fs_info); 8012 sb_end_write(fs_info->sb); 8013 8014 return ret; 8015 } 8016 8017 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8018 { 8019 struct btrfs_block_group *cache; 8020 8021 if (!btrfs_is_zoned(fs_info)) 8022 return false; 8023 8024 /* Do not attempt to repair in degraded state */ 8025 if (btrfs_test_opt(fs_info, DEGRADED)) 8026 return true; 8027 8028 cache = btrfs_lookup_block_group(fs_info, logical); 8029 if (!cache) 8030 return true; 8031 8032 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8033 btrfs_put_block_group(cache); 8034 return true; 8035 } 8036 8037 kthread_run(relocating_repair_kthread, cache, 8038 "btrfs-relocating-repair"); 8039 8040 return true; 8041 } 8042 8043 static void map_raid56_repair_block(struct btrfs_io_context *bioc, 8044 struct btrfs_io_stripe *smap, 8045 u64 logical) 8046 { 8047 int data_stripes = nr_bioc_data_stripes(bioc); 8048 int i; 8049 8050 for (i = 0; i < data_stripes; i++) { 8051 u64 stripe_start = bioc->full_stripe_logical + 8052 btrfs_stripe_nr_to_offset(i); 8053 8054 if (logical >= stripe_start && 8055 logical < stripe_start + BTRFS_STRIPE_LEN) 8056 break; 8057 } 8058 ASSERT(i < data_stripes); 8059 smap->dev = bioc->stripes[i].dev; 8060 smap->physical = bioc->stripes[i].physical + 8061 ((logical - bioc->full_stripe_logical) & 8062 BTRFS_STRIPE_LEN_MASK); 8063 } 8064 8065 /* 8066 * Map a repair write into a single device. 8067 * 8068 * A repair write is triggered by read time repair or scrub, which would only 8069 * update the contents of a single device. 8070 * Not update any other mirrors nor go through RMW path. 8071 * 8072 * Callers should ensure: 8073 * 8074 * - Call btrfs_bio_counter_inc_blocked() first 8075 * - The range does not cross stripe boundary 8076 * - Has a valid @mirror_num passed in. 8077 */ 8078 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 8079 struct btrfs_io_stripe *smap, u64 logical, 8080 u32 length, int mirror_num) 8081 { 8082 struct btrfs_io_context *bioc = NULL; 8083 u64 map_length = length; 8084 int mirror_ret = mirror_num; 8085 int ret; 8086 8087 ASSERT(mirror_num > 0); 8088 8089 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, 8090 &bioc, smap, &mirror_ret, true); 8091 if (ret < 0) 8092 return ret; 8093 8094 /* The map range should not cross stripe boundary. */ 8095 ASSERT(map_length >= length); 8096 8097 /* Already mapped to single stripe. */ 8098 if (!bioc) 8099 goto out; 8100 8101 /* Map the RAID56 multi-stripe writes to a single one. */ 8102 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 8103 map_raid56_repair_block(bioc, smap, logical); 8104 goto out; 8105 } 8106 8107 ASSERT(mirror_num <= bioc->num_stripes); 8108 smap->dev = bioc->stripes[mirror_num - 1].dev; 8109 smap->physical = bioc->stripes[mirror_num - 1].physical; 8110 out: 8111 btrfs_put_bioc(bioc); 8112 ASSERT(smap->dev); 8113 return 0; 8114 } 8115