1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include <linux/namei.h> 18 #include "misc.h" 19 #include "ctree.h" 20 #include "extent_map.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "async-thread.h" 27 #include "check-integrity.h" 28 #include "rcu-string.h" 29 #include "dev-replace.h" 30 #include "sysfs.h" 31 #include "tree-checker.h" 32 #include "space-info.h" 33 #include "block-group.h" 34 #include "discard.h" 35 #include "zoned.h" 36 37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 38 BTRFS_BLOCK_GROUP_RAID10 | \ 39 BTRFS_BLOCK_GROUP_RAID56_MASK) 40 41 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 42 [BTRFS_RAID_RAID10] = { 43 .sub_stripes = 2, 44 .dev_stripes = 1, 45 .devs_max = 0, /* 0 == as many as possible */ 46 .devs_min = 2, 47 .tolerated_failures = 1, 48 .devs_increment = 2, 49 .ncopies = 2, 50 .nparity = 0, 51 .raid_name = "raid10", 52 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 53 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 54 }, 55 [BTRFS_RAID_RAID1] = { 56 .sub_stripes = 1, 57 .dev_stripes = 1, 58 .devs_max = 2, 59 .devs_min = 2, 60 .tolerated_failures = 1, 61 .devs_increment = 2, 62 .ncopies = 2, 63 .nparity = 0, 64 .raid_name = "raid1", 65 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 66 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 67 }, 68 [BTRFS_RAID_RAID1C3] = { 69 .sub_stripes = 1, 70 .dev_stripes = 1, 71 .devs_max = 3, 72 .devs_min = 3, 73 .tolerated_failures = 2, 74 .devs_increment = 3, 75 .ncopies = 3, 76 .nparity = 0, 77 .raid_name = "raid1c3", 78 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 79 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 80 }, 81 [BTRFS_RAID_RAID1C4] = { 82 .sub_stripes = 1, 83 .dev_stripes = 1, 84 .devs_max = 4, 85 .devs_min = 4, 86 .tolerated_failures = 3, 87 .devs_increment = 4, 88 .ncopies = 4, 89 .nparity = 0, 90 .raid_name = "raid1c4", 91 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 92 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 93 }, 94 [BTRFS_RAID_DUP] = { 95 .sub_stripes = 1, 96 .dev_stripes = 2, 97 .devs_max = 1, 98 .devs_min = 1, 99 .tolerated_failures = 0, 100 .devs_increment = 1, 101 .ncopies = 2, 102 .nparity = 0, 103 .raid_name = "dup", 104 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 105 .mindev_error = 0, 106 }, 107 [BTRFS_RAID_RAID0] = { 108 .sub_stripes = 1, 109 .dev_stripes = 1, 110 .devs_max = 0, 111 .devs_min = 1, 112 .tolerated_failures = 0, 113 .devs_increment = 1, 114 .ncopies = 1, 115 .nparity = 0, 116 .raid_name = "raid0", 117 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 118 .mindev_error = 0, 119 }, 120 [BTRFS_RAID_SINGLE] = { 121 .sub_stripes = 1, 122 .dev_stripes = 1, 123 .devs_max = 1, 124 .devs_min = 1, 125 .tolerated_failures = 0, 126 .devs_increment = 1, 127 .ncopies = 1, 128 .nparity = 0, 129 .raid_name = "single", 130 .bg_flag = 0, 131 .mindev_error = 0, 132 }, 133 [BTRFS_RAID_RAID5] = { 134 .sub_stripes = 1, 135 .dev_stripes = 1, 136 .devs_max = 0, 137 .devs_min = 2, 138 .tolerated_failures = 1, 139 .devs_increment = 1, 140 .ncopies = 1, 141 .nparity = 1, 142 .raid_name = "raid5", 143 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 144 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 145 }, 146 [BTRFS_RAID_RAID6] = { 147 .sub_stripes = 1, 148 .dev_stripes = 1, 149 .devs_max = 0, 150 .devs_min = 3, 151 .tolerated_failures = 2, 152 .devs_increment = 1, 153 .ncopies = 1, 154 .nparity = 2, 155 .raid_name = "raid6", 156 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 157 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 158 }, 159 }; 160 161 /* 162 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 163 * can be used as index to access btrfs_raid_array[]. 164 */ 165 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 166 { 167 if (flags & BTRFS_BLOCK_GROUP_RAID10) 168 return BTRFS_RAID_RAID10; 169 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 170 return BTRFS_RAID_RAID1; 171 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3) 172 return BTRFS_RAID_RAID1C3; 173 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4) 174 return BTRFS_RAID_RAID1C4; 175 else if (flags & BTRFS_BLOCK_GROUP_DUP) 176 return BTRFS_RAID_DUP; 177 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 178 return BTRFS_RAID_RAID0; 179 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 180 return BTRFS_RAID_RAID5; 181 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 182 return BTRFS_RAID_RAID6; 183 184 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 185 } 186 187 const char *btrfs_bg_type_to_raid_name(u64 flags) 188 { 189 const int index = btrfs_bg_flags_to_raid_index(flags); 190 191 if (index >= BTRFS_NR_RAID_TYPES) 192 return NULL; 193 194 return btrfs_raid_array[index].raid_name; 195 } 196 197 /* 198 * Fill @buf with textual description of @bg_flags, no more than @size_buf 199 * bytes including terminating null byte. 200 */ 201 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 202 { 203 int i; 204 int ret; 205 char *bp = buf; 206 u64 flags = bg_flags; 207 u32 size_bp = size_buf; 208 209 if (!flags) { 210 strcpy(bp, "NONE"); 211 return; 212 } 213 214 #define DESCRIBE_FLAG(flag, desc) \ 215 do { \ 216 if (flags & (flag)) { \ 217 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 218 if (ret < 0 || ret >= size_bp) \ 219 goto out_overflow; \ 220 size_bp -= ret; \ 221 bp += ret; \ 222 flags &= ~(flag); \ 223 } \ 224 } while (0) 225 226 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 227 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 228 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 229 230 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 231 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 232 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 233 btrfs_raid_array[i].raid_name); 234 #undef DESCRIBE_FLAG 235 236 if (flags) { 237 ret = snprintf(bp, size_bp, "0x%llx|", flags); 238 size_bp -= ret; 239 } 240 241 if (size_bp < size_buf) 242 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 243 244 /* 245 * The text is trimmed, it's up to the caller to provide sufficiently 246 * large buffer 247 */ 248 out_overflow:; 249 } 250 251 static int init_first_rw_device(struct btrfs_trans_handle *trans); 252 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 253 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 254 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 255 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 256 enum btrfs_map_op op, 257 u64 logical, u64 *length, 258 struct btrfs_io_context **bioc_ret, 259 int mirror_num, int need_raid_map); 260 261 /* 262 * Device locking 263 * ============== 264 * 265 * There are several mutexes that protect manipulation of devices and low-level 266 * structures like chunks but not block groups, extents or files 267 * 268 * uuid_mutex (global lock) 269 * ------------------------ 270 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 271 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 272 * device) or requested by the device= mount option 273 * 274 * the mutex can be very coarse and can cover long-running operations 275 * 276 * protects: updates to fs_devices counters like missing devices, rw devices, 277 * seeding, structure cloning, opening/closing devices at mount/umount time 278 * 279 * global::fs_devs - add, remove, updates to the global list 280 * 281 * does not protect: manipulation of the fs_devices::devices list in general 282 * but in mount context it could be used to exclude list modifications by eg. 283 * scan ioctl 284 * 285 * btrfs_device::name - renames (write side), read is RCU 286 * 287 * fs_devices::device_list_mutex (per-fs, with RCU) 288 * ------------------------------------------------ 289 * protects updates to fs_devices::devices, ie. adding and deleting 290 * 291 * simple list traversal with read-only actions can be done with RCU protection 292 * 293 * may be used to exclude some operations from running concurrently without any 294 * modifications to the list (see write_all_supers) 295 * 296 * Is not required at mount and close times, because our device list is 297 * protected by the uuid_mutex at that point. 298 * 299 * balance_mutex 300 * ------------- 301 * protects balance structures (status, state) and context accessed from 302 * several places (internally, ioctl) 303 * 304 * chunk_mutex 305 * ----------- 306 * protects chunks, adding or removing during allocation, trim or when a new 307 * device is added/removed. Additionally it also protects post_commit_list of 308 * individual devices, since they can be added to the transaction's 309 * post_commit_list only with chunk_mutex held. 310 * 311 * cleaner_mutex 312 * ------------- 313 * a big lock that is held by the cleaner thread and prevents running subvolume 314 * cleaning together with relocation or delayed iputs 315 * 316 * 317 * Lock nesting 318 * ============ 319 * 320 * uuid_mutex 321 * device_list_mutex 322 * chunk_mutex 323 * balance_mutex 324 * 325 * 326 * Exclusive operations 327 * ==================== 328 * 329 * Maintains the exclusivity of the following operations that apply to the 330 * whole filesystem and cannot run in parallel. 331 * 332 * - Balance (*) 333 * - Device add 334 * - Device remove 335 * - Device replace (*) 336 * - Resize 337 * 338 * The device operations (as above) can be in one of the following states: 339 * 340 * - Running state 341 * - Paused state 342 * - Completed state 343 * 344 * Only device operations marked with (*) can go into the Paused state for the 345 * following reasons: 346 * 347 * - ioctl (only Balance can be Paused through ioctl) 348 * - filesystem remounted as read-only 349 * - filesystem unmounted and mounted as read-only 350 * - system power-cycle and filesystem mounted as read-only 351 * - filesystem or device errors leading to forced read-only 352 * 353 * The status of exclusive operation is set and cleared atomically. 354 * During the course of Paused state, fs_info::exclusive_operation remains set. 355 * A device operation in Paused or Running state can be canceled or resumed 356 * either by ioctl (Balance only) or when remounted as read-write. 357 * The exclusive status is cleared when the device operation is canceled or 358 * completed. 359 */ 360 361 DEFINE_MUTEX(uuid_mutex); 362 static LIST_HEAD(fs_uuids); 363 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 364 { 365 return &fs_uuids; 366 } 367 368 /* 369 * alloc_fs_devices - allocate struct btrfs_fs_devices 370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 371 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 372 * 373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 374 * The returned struct is not linked onto any lists and can be destroyed with 375 * kfree() right away. 376 */ 377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 378 const u8 *metadata_fsid) 379 { 380 struct btrfs_fs_devices *fs_devs; 381 382 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 383 if (!fs_devs) 384 return ERR_PTR(-ENOMEM); 385 386 mutex_init(&fs_devs->device_list_mutex); 387 388 INIT_LIST_HEAD(&fs_devs->devices); 389 INIT_LIST_HEAD(&fs_devs->alloc_list); 390 INIT_LIST_HEAD(&fs_devs->fs_list); 391 INIT_LIST_HEAD(&fs_devs->seed_list); 392 if (fsid) 393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 394 395 if (metadata_fsid) 396 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 397 else if (fsid) 398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 399 400 return fs_devs; 401 } 402 403 void btrfs_free_device(struct btrfs_device *device) 404 { 405 WARN_ON(!list_empty(&device->post_commit_list)); 406 rcu_string_free(device->name); 407 extent_io_tree_release(&device->alloc_state); 408 bio_put(device->flush_bio); 409 btrfs_destroy_dev_zone_info(device); 410 kfree(device); 411 } 412 413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 414 { 415 struct btrfs_device *device; 416 WARN_ON(fs_devices->opened); 417 while (!list_empty(&fs_devices->devices)) { 418 device = list_entry(fs_devices->devices.next, 419 struct btrfs_device, dev_list); 420 list_del(&device->dev_list); 421 btrfs_free_device(device); 422 } 423 kfree(fs_devices); 424 } 425 426 void __exit btrfs_cleanup_fs_uuids(void) 427 { 428 struct btrfs_fs_devices *fs_devices; 429 430 while (!list_empty(&fs_uuids)) { 431 fs_devices = list_entry(fs_uuids.next, 432 struct btrfs_fs_devices, fs_list); 433 list_del(&fs_devices->fs_list); 434 free_fs_devices(fs_devices); 435 } 436 } 437 438 static noinline struct btrfs_fs_devices *find_fsid( 439 const u8 *fsid, const u8 *metadata_fsid) 440 { 441 struct btrfs_fs_devices *fs_devices; 442 443 ASSERT(fsid); 444 445 /* Handle non-split brain cases */ 446 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 447 if (metadata_fsid) { 448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 449 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 450 BTRFS_FSID_SIZE) == 0) 451 return fs_devices; 452 } else { 453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 454 return fs_devices; 455 } 456 } 457 return NULL; 458 } 459 460 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 461 struct btrfs_super_block *disk_super) 462 { 463 464 struct btrfs_fs_devices *fs_devices; 465 466 /* 467 * Handle scanned device having completed its fsid change but 468 * belonging to a fs_devices that was created by first scanning 469 * a device which didn't have its fsid/metadata_uuid changed 470 * at all and the CHANGING_FSID_V2 flag set. 471 */ 472 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 473 if (fs_devices->fsid_change && 474 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 475 BTRFS_FSID_SIZE) == 0 && 476 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 477 BTRFS_FSID_SIZE) == 0) { 478 return fs_devices; 479 } 480 } 481 /* 482 * Handle scanned device having completed its fsid change but 483 * belonging to a fs_devices that was created by a device that 484 * has an outdated pair of fsid/metadata_uuid and 485 * CHANGING_FSID_V2 flag set. 486 */ 487 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 488 if (fs_devices->fsid_change && 489 memcmp(fs_devices->metadata_uuid, 490 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 491 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 492 BTRFS_FSID_SIZE) == 0) { 493 return fs_devices; 494 } 495 } 496 497 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 498 } 499 500 501 static int 502 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 503 int flush, struct block_device **bdev, 504 struct btrfs_super_block **disk_super) 505 { 506 int ret; 507 508 *bdev = blkdev_get_by_path(device_path, flags, holder); 509 510 if (IS_ERR(*bdev)) { 511 ret = PTR_ERR(*bdev); 512 goto error; 513 } 514 515 if (flush) 516 sync_blockdev(*bdev); 517 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 518 if (ret) { 519 blkdev_put(*bdev, flags); 520 goto error; 521 } 522 invalidate_bdev(*bdev); 523 *disk_super = btrfs_read_dev_super(*bdev); 524 if (IS_ERR(*disk_super)) { 525 ret = PTR_ERR(*disk_super); 526 blkdev_put(*bdev, flags); 527 goto error; 528 } 529 530 return 0; 531 532 error: 533 *bdev = NULL; 534 return ret; 535 } 536 537 /** 538 * Search and remove all stale devices (which are not mounted). 539 * When both inputs are NULL, it will search and release all stale devices. 540 * 541 * @devt: Optional. When provided will it release all unmounted devices 542 * matching this devt only. 543 * @skip_device: Optional. Will skip this device when searching for the stale 544 * devices. 545 * 546 * Return: 0 for success or if @devt is 0. 547 * -EBUSY if @devt is a mounted device. 548 * -ENOENT if @devt does not match any device in the list. 549 */ 550 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 551 { 552 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 553 struct btrfs_device *device, *tmp_device; 554 int ret = 0; 555 556 lockdep_assert_held(&uuid_mutex); 557 558 if (devt) 559 ret = -ENOENT; 560 561 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 562 563 mutex_lock(&fs_devices->device_list_mutex); 564 list_for_each_entry_safe(device, tmp_device, 565 &fs_devices->devices, dev_list) { 566 if (skip_device && skip_device == device) 567 continue; 568 if (devt && devt != device->devt) 569 continue; 570 if (fs_devices->opened) { 571 /* for an already deleted device return 0 */ 572 if (devt && ret != 0) 573 ret = -EBUSY; 574 break; 575 } 576 577 /* delete the stale device */ 578 fs_devices->num_devices--; 579 list_del(&device->dev_list); 580 btrfs_free_device(device); 581 582 ret = 0; 583 } 584 mutex_unlock(&fs_devices->device_list_mutex); 585 586 if (fs_devices->num_devices == 0) { 587 btrfs_sysfs_remove_fsid(fs_devices); 588 list_del(&fs_devices->fs_list); 589 free_fs_devices(fs_devices); 590 } 591 } 592 593 return ret; 594 } 595 596 /* 597 * This is only used on mount, and we are protected from competing things 598 * messing with our fs_devices by the uuid_mutex, thus we do not need the 599 * fs_devices->device_list_mutex here. 600 */ 601 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 602 struct btrfs_device *device, fmode_t flags, 603 void *holder) 604 { 605 struct block_device *bdev; 606 struct btrfs_super_block *disk_super; 607 u64 devid; 608 int ret; 609 610 if (device->bdev) 611 return -EINVAL; 612 if (!device->name) 613 return -EINVAL; 614 615 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 616 &bdev, &disk_super); 617 if (ret) 618 return ret; 619 620 devid = btrfs_stack_device_id(&disk_super->dev_item); 621 if (devid != device->devid) 622 goto error_free_page; 623 624 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 625 goto error_free_page; 626 627 device->generation = btrfs_super_generation(disk_super); 628 629 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 630 if (btrfs_super_incompat_flags(disk_super) & 631 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 632 pr_err( 633 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 634 goto error_free_page; 635 } 636 637 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 638 fs_devices->seeding = true; 639 } else { 640 if (bdev_read_only(bdev)) 641 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 642 else 643 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 644 } 645 646 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 647 fs_devices->rotating = true; 648 649 device->bdev = bdev; 650 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 651 device->mode = flags; 652 653 fs_devices->open_devices++; 654 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 655 device->devid != BTRFS_DEV_REPLACE_DEVID) { 656 fs_devices->rw_devices++; 657 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 658 } 659 btrfs_release_disk_super(disk_super); 660 661 return 0; 662 663 error_free_page: 664 btrfs_release_disk_super(disk_super); 665 blkdev_put(bdev, flags); 666 667 return -EINVAL; 668 } 669 670 /* 671 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 672 * being created with a disk that has already completed its fsid change. Such 673 * disk can belong to an fs which has its FSID changed or to one which doesn't. 674 * Handle both cases here. 675 */ 676 static struct btrfs_fs_devices *find_fsid_inprogress( 677 struct btrfs_super_block *disk_super) 678 { 679 struct btrfs_fs_devices *fs_devices; 680 681 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 682 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 683 BTRFS_FSID_SIZE) != 0 && 684 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 685 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 686 return fs_devices; 687 } 688 } 689 690 return find_fsid(disk_super->fsid, NULL); 691 } 692 693 694 static struct btrfs_fs_devices *find_fsid_changed( 695 struct btrfs_super_block *disk_super) 696 { 697 struct btrfs_fs_devices *fs_devices; 698 699 /* 700 * Handles the case where scanned device is part of an fs that had 701 * multiple successful changes of FSID but currently device didn't 702 * observe it. Meaning our fsid will be different than theirs. We need 703 * to handle two subcases : 704 * 1 - The fs still continues to have different METADATA/FSID uuids. 705 * 2 - The fs is switched back to its original FSID (METADATA/FSID 706 * are equal). 707 */ 708 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 709 /* Changed UUIDs */ 710 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 711 BTRFS_FSID_SIZE) != 0 && 712 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 713 BTRFS_FSID_SIZE) == 0 && 714 memcmp(fs_devices->fsid, disk_super->fsid, 715 BTRFS_FSID_SIZE) != 0) 716 return fs_devices; 717 718 /* Unchanged UUIDs */ 719 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 720 BTRFS_FSID_SIZE) == 0 && 721 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 722 BTRFS_FSID_SIZE) == 0) 723 return fs_devices; 724 } 725 726 return NULL; 727 } 728 729 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 730 struct btrfs_super_block *disk_super) 731 { 732 struct btrfs_fs_devices *fs_devices; 733 734 /* 735 * Handle the case where the scanned device is part of an fs whose last 736 * metadata UUID change reverted it to the original FSID. At the same 737 * time * fs_devices was first created by another constitutent device 738 * which didn't fully observe the operation. This results in an 739 * btrfs_fs_devices created with metadata/fsid different AND 740 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 741 * fs_devices equal to the FSID of the disk. 742 */ 743 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 744 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 745 BTRFS_FSID_SIZE) != 0 && 746 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 747 BTRFS_FSID_SIZE) == 0 && 748 fs_devices->fsid_change) 749 return fs_devices; 750 } 751 752 return NULL; 753 } 754 /* 755 * Add new device to list of registered devices 756 * 757 * Returns: 758 * device pointer which was just added or updated when successful 759 * error pointer when failed 760 */ 761 static noinline struct btrfs_device *device_list_add(const char *path, 762 struct btrfs_super_block *disk_super, 763 bool *new_device_added) 764 { 765 struct btrfs_device *device; 766 struct btrfs_fs_devices *fs_devices = NULL; 767 struct rcu_string *name; 768 u64 found_transid = btrfs_super_generation(disk_super); 769 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 770 dev_t path_devt; 771 int error; 772 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 773 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 774 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 775 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 776 777 error = lookup_bdev(path, &path_devt); 778 if (error) 779 return ERR_PTR(error); 780 781 if (fsid_change_in_progress) { 782 if (!has_metadata_uuid) 783 fs_devices = find_fsid_inprogress(disk_super); 784 else 785 fs_devices = find_fsid_changed(disk_super); 786 } else if (has_metadata_uuid) { 787 fs_devices = find_fsid_with_metadata_uuid(disk_super); 788 } else { 789 fs_devices = find_fsid_reverted_metadata(disk_super); 790 if (!fs_devices) 791 fs_devices = find_fsid(disk_super->fsid, NULL); 792 } 793 794 795 if (!fs_devices) { 796 if (has_metadata_uuid) 797 fs_devices = alloc_fs_devices(disk_super->fsid, 798 disk_super->metadata_uuid); 799 else 800 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 801 802 if (IS_ERR(fs_devices)) 803 return ERR_CAST(fs_devices); 804 805 fs_devices->fsid_change = fsid_change_in_progress; 806 807 mutex_lock(&fs_devices->device_list_mutex); 808 list_add(&fs_devices->fs_list, &fs_uuids); 809 810 device = NULL; 811 } else { 812 struct btrfs_dev_lookup_args args = { 813 .devid = devid, 814 .uuid = disk_super->dev_item.uuid, 815 }; 816 817 mutex_lock(&fs_devices->device_list_mutex); 818 device = btrfs_find_device(fs_devices, &args); 819 820 /* 821 * If this disk has been pulled into an fs devices created by 822 * a device which had the CHANGING_FSID_V2 flag then replace the 823 * metadata_uuid/fsid values of the fs_devices. 824 */ 825 if (fs_devices->fsid_change && 826 found_transid > fs_devices->latest_generation) { 827 memcpy(fs_devices->fsid, disk_super->fsid, 828 BTRFS_FSID_SIZE); 829 830 if (has_metadata_uuid) 831 memcpy(fs_devices->metadata_uuid, 832 disk_super->metadata_uuid, 833 BTRFS_FSID_SIZE); 834 else 835 memcpy(fs_devices->metadata_uuid, 836 disk_super->fsid, BTRFS_FSID_SIZE); 837 838 fs_devices->fsid_change = false; 839 } 840 } 841 842 if (!device) { 843 if (fs_devices->opened) { 844 mutex_unlock(&fs_devices->device_list_mutex); 845 return ERR_PTR(-EBUSY); 846 } 847 848 device = btrfs_alloc_device(NULL, &devid, 849 disk_super->dev_item.uuid); 850 if (IS_ERR(device)) { 851 mutex_unlock(&fs_devices->device_list_mutex); 852 /* we can safely leave the fs_devices entry around */ 853 return device; 854 } 855 856 name = rcu_string_strdup(path, GFP_NOFS); 857 if (!name) { 858 btrfs_free_device(device); 859 mutex_unlock(&fs_devices->device_list_mutex); 860 return ERR_PTR(-ENOMEM); 861 } 862 rcu_assign_pointer(device->name, name); 863 device->devt = path_devt; 864 865 list_add_rcu(&device->dev_list, &fs_devices->devices); 866 fs_devices->num_devices++; 867 868 device->fs_devices = fs_devices; 869 *new_device_added = true; 870 871 if (disk_super->label[0]) 872 pr_info( 873 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 874 disk_super->label, devid, found_transid, path, 875 current->comm, task_pid_nr(current)); 876 else 877 pr_info( 878 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 879 disk_super->fsid, devid, found_transid, path, 880 current->comm, task_pid_nr(current)); 881 882 } else if (!device->name || strcmp(device->name->str, path)) { 883 /* 884 * When FS is already mounted. 885 * 1. If you are here and if the device->name is NULL that 886 * means this device was missing at time of FS mount. 887 * 2. If you are here and if the device->name is different 888 * from 'path' that means either 889 * a. The same device disappeared and reappeared with 890 * different name. or 891 * b. The missing-disk-which-was-replaced, has 892 * reappeared now. 893 * 894 * We must allow 1 and 2a above. But 2b would be a spurious 895 * and unintentional. 896 * 897 * Further in case of 1 and 2a above, the disk at 'path' 898 * would have missed some transaction when it was away and 899 * in case of 2a the stale bdev has to be updated as well. 900 * 2b must not be allowed at all time. 901 */ 902 903 /* 904 * For now, we do allow update to btrfs_fs_device through the 905 * btrfs dev scan cli after FS has been mounted. We're still 906 * tracking a problem where systems fail mount by subvolume id 907 * when we reject replacement on a mounted FS. 908 */ 909 if (!fs_devices->opened && found_transid < device->generation) { 910 /* 911 * That is if the FS is _not_ mounted and if you 912 * are here, that means there is more than one 913 * disk with same uuid and devid.We keep the one 914 * with larger generation number or the last-in if 915 * generation are equal. 916 */ 917 mutex_unlock(&fs_devices->device_list_mutex); 918 return ERR_PTR(-EEXIST); 919 } 920 921 /* 922 * We are going to replace the device path for a given devid, 923 * make sure it's the same device if the device is mounted 924 * 925 * NOTE: the device->fs_info may not be reliable here so pass 926 * in a NULL to message helpers instead. This avoids a possible 927 * use-after-free when the fs_info and fs_info->sb are already 928 * torn down. 929 */ 930 if (device->bdev) { 931 if (device->devt != path_devt) { 932 mutex_unlock(&fs_devices->device_list_mutex); 933 btrfs_warn_in_rcu(NULL, 934 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 935 path, devid, found_transid, 936 current->comm, 937 task_pid_nr(current)); 938 return ERR_PTR(-EEXIST); 939 } 940 btrfs_info_in_rcu(NULL, 941 "devid %llu device path %s changed to %s scanned by %s (%d)", 942 devid, rcu_str_deref(device->name), 943 path, current->comm, 944 task_pid_nr(current)); 945 } 946 947 name = rcu_string_strdup(path, GFP_NOFS); 948 if (!name) { 949 mutex_unlock(&fs_devices->device_list_mutex); 950 return ERR_PTR(-ENOMEM); 951 } 952 rcu_string_free(device->name); 953 rcu_assign_pointer(device->name, name); 954 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 955 fs_devices->missing_devices--; 956 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 957 } 958 device->devt = path_devt; 959 } 960 961 /* 962 * Unmount does not free the btrfs_device struct but would zero 963 * generation along with most of the other members. So just update 964 * it back. We need it to pick the disk with largest generation 965 * (as above). 966 */ 967 if (!fs_devices->opened) { 968 device->generation = found_transid; 969 fs_devices->latest_generation = max_t(u64, found_transid, 970 fs_devices->latest_generation); 971 } 972 973 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 974 975 mutex_unlock(&fs_devices->device_list_mutex); 976 return device; 977 } 978 979 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 980 { 981 struct btrfs_fs_devices *fs_devices; 982 struct btrfs_device *device; 983 struct btrfs_device *orig_dev; 984 int ret = 0; 985 986 lockdep_assert_held(&uuid_mutex); 987 988 fs_devices = alloc_fs_devices(orig->fsid, NULL); 989 if (IS_ERR(fs_devices)) 990 return fs_devices; 991 992 fs_devices->total_devices = orig->total_devices; 993 994 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 995 struct rcu_string *name; 996 997 device = btrfs_alloc_device(NULL, &orig_dev->devid, 998 orig_dev->uuid); 999 if (IS_ERR(device)) { 1000 ret = PTR_ERR(device); 1001 goto error; 1002 } 1003 1004 /* 1005 * This is ok to do without rcu read locked because we hold the 1006 * uuid mutex so nothing we touch in here is going to disappear. 1007 */ 1008 if (orig_dev->name) { 1009 name = rcu_string_strdup(orig_dev->name->str, 1010 GFP_KERNEL); 1011 if (!name) { 1012 btrfs_free_device(device); 1013 ret = -ENOMEM; 1014 goto error; 1015 } 1016 rcu_assign_pointer(device->name, name); 1017 } 1018 1019 list_add(&device->dev_list, &fs_devices->devices); 1020 device->fs_devices = fs_devices; 1021 fs_devices->num_devices++; 1022 } 1023 return fs_devices; 1024 error: 1025 free_fs_devices(fs_devices); 1026 return ERR_PTR(ret); 1027 } 1028 1029 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1030 struct btrfs_device **latest_dev) 1031 { 1032 struct btrfs_device *device, *next; 1033 1034 /* This is the initialized path, it is safe to release the devices. */ 1035 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1036 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1037 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1038 &device->dev_state) && 1039 !test_bit(BTRFS_DEV_STATE_MISSING, 1040 &device->dev_state) && 1041 (!*latest_dev || 1042 device->generation > (*latest_dev)->generation)) { 1043 *latest_dev = device; 1044 } 1045 continue; 1046 } 1047 1048 /* 1049 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1050 * in btrfs_init_dev_replace() so just continue. 1051 */ 1052 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1053 continue; 1054 1055 if (device->bdev) { 1056 blkdev_put(device->bdev, device->mode); 1057 device->bdev = NULL; 1058 fs_devices->open_devices--; 1059 } 1060 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1061 list_del_init(&device->dev_alloc_list); 1062 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1063 fs_devices->rw_devices--; 1064 } 1065 list_del_init(&device->dev_list); 1066 fs_devices->num_devices--; 1067 btrfs_free_device(device); 1068 } 1069 1070 } 1071 1072 /* 1073 * After we have read the system tree and know devids belonging to this 1074 * filesystem, remove the device which does not belong there. 1075 */ 1076 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1077 { 1078 struct btrfs_device *latest_dev = NULL; 1079 struct btrfs_fs_devices *seed_dev; 1080 1081 mutex_lock(&uuid_mutex); 1082 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1083 1084 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1085 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1086 1087 fs_devices->latest_dev = latest_dev; 1088 1089 mutex_unlock(&uuid_mutex); 1090 } 1091 1092 static void btrfs_close_bdev(struct btrfs_device *device) 1093 { 1094 if (!device->bdev) 1095 return; 1096 1097 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1098 sync_blockdev(device->bdev); 1099 invalidate_bdev(device->bdev); 1100 } 1101 1102 blkdev_put(device->bdev, device->mode); 1103 } 1104 1105 static void btrfs_close_one_device(struct btrfs_device *device) 1106 { 1107 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1108 1109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1110 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1111 list_del_init(&device->dev_alloc_list); 1112 fs_devices->rw_devices--; 1113 } 1114 1115 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1116 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1117 1118 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1119 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1120 fs_devices->missing_devices--; 1121 } 1122 1123 btrfs_close_bdev(device); 1124 if (device->bdev) { 1125 fs_devices->open_devices--; 1126 device->bdev = NULL; 1127 } 1128 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1129 btrfs_destroy_dev_zone_info(device); 1130 1131 device->fs_info = NULL; 1132 atomic_set(&device->dev_stats_ccnt, 0); 1133 extent_io_tree_release(&device->alloc_state); 1134 1135 /* 1136 * Reset the flush error record. We might have a transient flush error 1137 * in this mount, and if so we aborted the current transaction and set 1138 * the fs to an error state, guaranteeing no super blocks can be further 1139 * committed. However that error might be transient and if we unmount the 1140 * filesystem and mount it again, we should allow the mount to succeed 1141 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1142 * filesystem again we still get flush errors, then we will again abort 1143 * any transaction and set the error state, guaranteeing no commits of 1144 * unsafe super blocks. 1145 */ 1146 device->last_flush_error = 0; 1147 1148 /* Verify the device is back in a pristine state */ 1149 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1150 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1151 ASSERT(list_empty(&device->dev_alloc_list)); 1152 ASSERT(list_empty(&device->post_commit_list)); 1153 } 1154 1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1156 { 1157 struct btrfs_device *device, *tmp; 1158 1159 lockdep_assert_held(&uuid_mutex); 1160 1161 if (--fs_devices->opened > 0) 1162 return; 1163 1164 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1165 btrfs_close_one_device(device); 1166 1167 WARN_ON(fs_devices->open_devices); 1168 WARN_ON(fs_devices->rw_devices); 1169 fs_devices->opened = 0; 1170 fs_devices->seeding = false; 1171 fs_devices->fs_info = NULL; 1172 } 1173 1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1175 { 1176 LIST_HEAD(list); 1177 struct btrfs_fs_devices *tmp; 1178 1179 mutex_lock(&uuid_mutex); 1180 close_fs_devices(fs_devices); 1181 if (!fs_devices->opened) 1182 list_splice_init(&fs_devices->seed_list, &list); 1183 1184 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1185 close_fs_devices(fs_devices); 1186 list_del(&fs_devices->seed_list); 1187 free_fs_devices(fs_devices); 1188 } 1189 mutex_unlock(&uuid_mutex); 1190 } 1191 1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1193 fmode_t flags, void *holder) 1194 { 1195 struct btrfs_device *device; 1196 struct btrfs_device *latest_dev = NULL; 1197 struct btrfs_device *tmp_device; 1198 1199 flags |= FMODE_EXCL; 1200 1201 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1202 dev_list) { 1203 int ret; 1204 1205 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1206 if (ret == 0 && 1207 (!latest_dev || device->generation > latest_dev->generation)) { 1208 latest_dev = device; 1209 } else if (ret == -ENODATA) { 1210 fs_devices->num_devices--; 1211 list_del(&device->dev_list); 1212 btrfs_free_device(device); 1213 } 1214 } 1215 if (fs_devices->open_devices == 0) 1216 return -EINVAL; 1217 1218 fs_devices->opened = 1; 1219 fs_devices->latest_dev = latest_dev; 1220 fs_devices->total_rw_bytes = 0; 1221 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1222 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1223 1224 return 0; 1225 } 1226 1227 static int devid_cmp(void *priv, const struct list_head *a, 1228 const struct list_head *b) 1229 { 1230 const struct btrfs_device *dev1, *dev2; 1231 1232 dev1 = list_entry(a, struct btrfs_device, dev_list); 1233 dev2 = list_entry(b, struct btrfs_device, dev_list); 1234 1235 if (dev1->devid < dev2->devid) 1236 return -1; 1237 else if (dev1->devid > dev2->devid) 1238 return 1; 1239 return 0; 1240 } 1241 1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1243 fmode_t flags, void *holder) 1244 { 1245 int ret; 1246 1247 lockdep_assert_held(&uuid_mutex); 1248 /* 1249 * The device_list_mutex cannot be taken here in case opening the 1250 * underlying device takes further locks like open_mutex. 1251 * 1252 * We also don't need the lock here as this is called during mount and 1253 * exclusion is provided by uuid_mutex 1254 */ 1255 1256 if (fs_devices->opened) { 1257 fs_devices->opened++; 1258 ret = 0; 1259 } else { 1260 list_sort(NULL, &fs_devices->devices, devid_cmp); 1261 ret = open_fs_devices(fs_devices, flags, holder); 1262 } 1263 1264 return ret; 1265 } 1266 1267 void btrfs_release_disk_super(struct btrfs_super_block *super) 1268 { 1269 struct page *page = virt_to_page(super); 1270 1271 put_page(page); 1272 } 1273 1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1275 u64 bytenr, u64 bytenr_orig) 1276 { 1277 struct btrfs_super_block *disk_super; 1278 struct page *page; 1279 void *p; 1280 pgoff_t index; 1281 1282 /* make sure our super fits in the device */ 1283 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1284 return ERR_PTR(-EINVAL); 1285 1286 /* make sure our super fits in the page */ 1287 if (sizeof(*disk_super) > PAGE_SIZE) 1288 return ERR_PTR(-EINVAL); 1289 1290 /* make sure our super doesn't straddle pages on disk */ 1291 index = bytenr >> PAGE_SHIFT; 1292 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1293 return ERR_PTR(-EINVAL); 1294 1295 /* pull in the page with our super */ 1296 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1297 1298 if (IS_ERR(page)) 1299 return ERR_CAST(page); 1300 1301 p = page_address(page); 1302 1303 /* align our pointer to the offset of the super block */ 1304 disk_super = p + offset_in_page(bytenr); 1305 1306 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1307 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1308 btrfs_release_disk_super(p); 1309 return ERR_PTR(-EINVAL); 1310 } 1311 1312 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1313 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1314 1315 return disk_super; 1316 } 1317 1318 int btrfs_forget_devices(dev_t devt) 1319 { 1320 int ret; 1321 1322 mutex_lock(&uuid_mutex); 1323 ret = btrfs_free_stale_devices(devt, NULL); 1324 mutex_unlock(&uuid_mutex); 1325 1326 return ret; 1327 } 1328 1329 /* 1330 * Look for a btrfs signature on a device. This may be called out of the mount path 1331 * and we are not allowed to call set_blocksize during the scan. The superblock 1332 * is read via pagecache 1333 */ 1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1335 void *holder) 1336 { 1337 struct btrfs_super_block *disk_super; 1338 bool new_device_added = false; 1339 struct btrfs_device *device = NULL; 1340 struct block_device *bdev; 1341 u64 bytenr, bytenr_orig; 1342 int ret; 1343 1344 lockdep_assert_held(&uuid_mutex); 1345 1346 /* 1347 * we would like to check all the supers, but that would make 1348 * a btrfs mount succeed after a mkfs from a different FS. 1349 * So, we need to add a special mount option to scan for 1350 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1351 */ 1352 flags |= FMODE_EXCL; 1353 1354 bdev = blkdev_get_by_path(path, flags, holder); 1355 if (IS_ERR(bdev)) 1356 return ERR_CAST(bdev); 1357 1358 bytenr_orig = btrfs_sb_offset(0); 1359 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1360 if (ret) { 1361 device = ERR_PTR(ret); 1362 goto error_bdev_put; 1363 } 1364 1365 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1366 if (IS_ERR(disk_super)) { 1367 device = ERR_CAST(disk_super); 1368 goto error_bdev_put; 1369 } 1370 1371 device = device_list_add(path, disk_super, &new_device_added); 1372 if (!IS_ERR(device) && new_device_added) 1373 btrfs_free_stale_devices(device->devt, device); 1374 1375 btrfs_release_disk_super(disk_super); 1376 1377 error_bdev_put: 1378 blkdev_put(bdev, flags); 1379 1380 return device; 1381 } 1382 1383 /* 1384 * Try to find a chunk that intersects [start, start + len] range and when one 1385 * such is found, record the end of it in *start 1386 */ 1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1388 u64 len) 1389 { 1390 u64 physical_start, physical_end; 1391 1392 lockdep_assert_held(&device->fs_info->chunk_mutex); 1393 1394 if (!find_first_extent_bit(&device->alloc_state, *start, 1395 &physical_start, &physical_end, 1396 CHUNK_ALLOCATED, NULL)) { 1397 1398 if (in_range(physical_start, *start, len) || 1399 in_range(*start, physical_start, 1400 physical_end - physical_start)) { 1401 *start = physical_end + 1; 1402 return true; 1403 } 1404 } 1405 return false; 1406 } 1407 1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1409 { 1410 switch (device->fs_devices->chunk_alloc_policy) { 1411 case BTRFS_CHUNK_ALLOC_REGULAR: 1412 /* 1413 * We don't want to overwrite the superblock on the drive nor 1414 * any area used by the boot loader (grub for example), so we 1415 * make sure to start at an offset of at least 1MB. 1416 */ 1417 return max_t(u64, start, SZ_1M); 1418 case BTRFS_CHUNK_ALLOC_ZONED: 1419 /* 1420 * We don't care about the starting region like regular 1421 * allocator, because we anyway use/reserve the first two zones 1422 * for superblock logging. 1423 */ 1424 return ALIGN(start, device->zone_info->zone_size); 1425 default: 1426 BUG(); 1427 } 1428 } 1429 1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1431 u64 *hole_start, u64 *hole_size, 1432 u64 num_bytes) 1433 { 1434 u64 zone_size = device->zone_info->zone_size; 1435 u64 pos; 1436 int ret; 1437 bool changed = false; 1438 1439 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1440 1441 while (*hole_size > 0) { 1442 pos = btrfs_find_allocatable_zones(device, *hole_start, 1443 *hole_start + *hole_size, 1444 num_bytes); 1445 if (pos != *hole_start) { 1446 *hole_size = *hole_start + *hole_size - pos; 1447 *hole_start = pos; 1448 changed = true; 1449 if (*hole_size < num_bytes) 1450 break; 1451 } 1452 1453 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1454 1455 /* Range is ensured to be empty */ 1456 if (!ret) 1457 return changed; 1458 1459 /* Given hole range was invalid (outside of device) */ 1460 if (ret == -ERANGE) { 1461 *hole_start += *hole_size; 1462 *hole_size = 0; 1463 return true; 1464 } 1465 1466 *hole_start += zone_size; 1467 *hole_size -= zone_size; 1468 changed = true; 1469 } 1470 1471 return changed; 1472 } 1473 1474 /** 1475 * dev_extent_hole_check - check if specified hole is suitable for allocation 1476 * @device: the device which we have the hole 1477 * @hole_start: starting position of the hole 1478 * @hole_size: the size of the hole 1479 * @num_bytes: the size of the free space that we need 1480 * 1481 * This function may modify @hole_start and @hole_size to reflect the suitable 1482 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1483 */ 1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1485 u64 *hole_size, u64 num_bytes) 1486 { 1487 bool changed = false; 1488 u64 hole_end = *hole_start + *hole_size; 1489 1490 for (;;) { 1491 /* 1492 * Check before we set max_hole_start, otherwise we could end up 1493 * sending back this offset anyway. 1494 */ 1495 if (contains_pending_extent(device, hole_start, *hole_size)) { 1496 if (hole_end >= *hole_start) 1497 *hole_size = hole_end - *hole_start; 1498 else 1499 *hole_size = 0; 1500 changed = true; 1501 } 1502 1503 switch (device->fs_devices->chunk_alloc_policy) { 1504 case BTRFS_CHUNK_ALLOC_REGULAR: 1505 /* No extra check */ 1506 break; 1507 case BTRFS_CHUNK_ALLOC_ZONED: 1508 if (dev_extent_hole_check_zoned(device, hole_start, 1509 hole_size, num_bytes)) { 1510 changed = true; 1511 /* 1512 * The changed hole can contain pending extent. 1513 * Loop again to check that. 1514 */ 1515 continue; 1516 } 1517 break; 1518 default: 1519 BUG(); 1520 } 1521 1522 break; 1523 } 1524 1525 return changed; 1526 } 1527 1528 /* 1529 * find_free_dev_extent_start - find free space in the specified device 1530 * @device: the device which we search the free space in 1531 * @num_bytes: the size of the free space that we need 1532 * @search_start: the position from which to begin the search 1533 * @start: store the start of the free space. 1534 * @len: the size of the free space. that we find, or the size 1535 * of the max free space if we don't find suitable free space 1536 * 1537 * this uses a pretty simple search, the expectation is that it is 1538 * called very infrequently and that a given device has a small number 1539 * of extents 1540 * 1541 * @start is used to store the start of the free space if we find. But if we 1542 * don't find suitable free space, it will be used to store the start position 1543 * of the max free space. 1544 * 1545 * @len is used to store the size of the free space that we find. 1546 * But if we don't find suitable free space, it is used to store the size of 1547 * the max free space. 1548 * 1549 * NOTE: This function will search *commit* root of device tree, and does extra 1550 * check to ensure dev extents are not double allocated. 1551 * This makes the function safe to allocate dev extents but may not report 1552 * correct usable device space, as device extent freed in current transaction 1553 * is not reported as available. 1554 */ 1555 static int find_free_dev_extent_start(struct btrfs_device *device, 1556 u64 num_bytes, u64 search_start, u64 *start, 1557 u64 *len) 1558 { 1559 struct btrfs_fs_info *fs_info = device->fs_info; 1560 struct btrfs_root *root = fs_info->dev_root; 1561 struct btrfs_key key; 1562 struct btrfs_dev_extent *dev_extent; 1563 struct btrfs_path *path; 1564 u64 hole_size; 1565 u64 max_hole_start; 1566 u64 max_hole_size; 1567 u64 extent_end; 1568 u64 search_end = device->total_bytes; 1569 int ret; 1570 int slot; 1571 struct extent_buffer *l; 1572 1573 search_start = dev_extent_search_start(device, search_start); 1574 1575 WARN_ON(device->zone_info && 1576 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1577 1578 path = btrfs_alloc_path(); 1579 if (!path) 1580 return -ENOMEM; 1581 1582 max_hole_start = search_start; 1583 max_hole_size = 0; 1584 1585 again: 1586 if (search_start >= search_end || 1587 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1588 ret = -ENOSPC; 1589 goto out; 1590 } 1591 1592 path->reada = READA_FORWARD; 1593 path->search_commit_root = 1; 1594 path->skip_locking = 1; 1595 1596 key.objectid = device->devid; 1597 key.offset = search_start; 1598 key.type = BTRFS_DEV_EXTENT_KEY; 1599 1600 ret = btrfs_search_backwards(root, &key, path); 1601 if (ret < 0) 1602 goto out; 1603 1604 while (1) { 1605 l = path->nodes[0]; 1606 slot = path->slots[0]; 1607 if (slot >= btrfs_header_nritems(l)) { 1608 ret = btrfs_next_leaf(root, path); 1609 if (ret == 0) 1610 continue; 1611 if (ret < 0) 1612 goto out; 1613 1614 break; 1615 } 1616 btrfs_item_key_to_cpu(l, &key, slot); 1617 1618 if (key.objectid < device->devid) 1619 goto next; 1620 1621 if (key.objectid > device->devid) 1622 break; 1623 1624 if (key.type != BTRFS_DEV_EXTENT_KEY) 1625 goto next; 1626 1627 if (key.offset > search_start) { 1628 hole_size = key.offset - search_start; 1629 dev_extent_hole_check(device, &search_start, &hole_size, 1630 num_bytes); 1631 1632 if (hole_size > max_hole_size) { 1633 max_hole_start = search_start; 1634 max_hole_size = hole_size; 1635 } 1636 1637 /* 1638 * If this free space is greater than which we need, 1639 * it must be the max free space that we have found 1640 * until now, so max_hole_start must point to the start 1641 * of this free space and the length of this free space 1642 * is stored in max_hole_size. Thus, we return 1643 * max_hole_start and max_hole_size and go back to the 1644 * caller. 1645 */ 1646 if (hole_size >= num_bytes) { 1647 ret = 0; 1648 goto out; 1649 } 1650 } 1651 1652 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1653 extent_end = key.offset + btrfs_dev_extent_length(l, 1654 dev_extent); 1655 if (extent_end > search_start) 1656 search_start = extent_end; 1657 next: 1658 path->slots[0]++; 1659 cond_resched(); 1660 } 1661 1662 /* 1663 * At this point, search_start should be the end of 1664 * allocated dev extents, and when shrinking the device, 1665 * search_end may be smaller than search_start. 1666 */ 1667 if (search_end > search_start) { 1668 hole_size = search_end - search_start; 1669 if (dev_extent_hole_check(device, &search_start, &hole_size, 1670 num_bytes)) { 1671 btrfs_release_path(path); 1672 goto again; 1673 } 1674 1675 if (hole_size > max_hole_size) { 1676 max_hole_start = search_start; 1677 max_hole_size = hole_size; 1678 } 1679 } 1680 1681 /* See above. */ 1682 if (max_hole_size < num_bytes) 1683 ret = -ENOSPC; 1684 else 1685 ret = 0; 1686 1687 out: 1688 btrfs_free_path(path); 1689 *start = max_hole_start; 1690 if (len) 1691 *len = max_hole_size; 1692 return ret; 1693 } 1694 1695 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1696 u64 *start, u64 *len) 1697 { 1698 /* FIXME use last free of some kind */ 1699 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1700 } 1701 1702 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1703 struct btrfs_device *device, 1704 u64 start, u64 *dev_extent_len) 1705 { 1706 struct btrfs_fs_info *fs_info = device->fs_info; 1707 struct btrfs_root *root = fs_info->dev_root; 1708 int ret; 1709 struct btrfs_path *path; 1710 struct btrfs_key key; 1711 struct btrfs_key found_key; 1712 struct extent_buffer *leaf = NULL; 1713 struct btrfs_dev_extent *extent = NULL; 1714 1715 path = btrfs_alloc_path(); 1716 if (!path) 1717 return -ENOMEM; 1718 1719 key.objectid = device->devid; 1720 key.offset = start; 1721 key.type = BTRFS_DEV_EXTENT_KEY; 1722 again: 1723 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1724 if (ret > 0) { 1725 ret = btrfs_previous_item(root, path, key.objectid, 1726 BTRFS_DEV_EXTENT_KEY); 1727 if (ret) 1728 goto out; 1729 leaf = path->nodes[0]; 1730 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1731 extent = btrfs_item_ptr(leaf, path->slots[0], 1732 struct btrfs_dev_extent); 1733 BUG_ON(found_key.offset > start || found_key.offset + 1734 btrfs_dev_extent_length(leaf, extent) < start); 1735 key = found_key; 1736 btrfs_release_path(path); 1737 goto again; 1738 } else if (ret == 0) { 1739 leaf = path->nodes[0]; 1740 extent = btrfs_item_ptr(leaf, path->slots[0], 1741 struct btrfs_dev_extent); 1742 } else { 1743 goto out; 1744 } 1745 1746 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1747 1748 ret = btrfs_del_item(trans, root, path); 1749 if (ret == 0) 1750 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1751 out: 1752 btrfs_free_path(path); 1753 return ret; 1754 } 1755 1756 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1757 { 1758 struct extent_map_tree *em_tree; 1759 struct extent_map *em; 1760 struct rb_node *n; 1761 u64 ret = 0; 1762 1763 em_tree = &fs_info->mapping_tree; 1764 read_lock(&em_tree->lock); 1765 n = rb_last(&em_tree->map.rb_root); 1766 if (n) { 1767 em = rb_entry(n, struct extent_map, rb_node); 1768 ret = em->start + em->len; 1769 } 1770 read_unlock(&em_tree->lock); 1771 1772 return ret; 1773 } 1774 1775 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1776 u64 *devid_ret) 1777 { 1778 int ret; 1779 struct btrfs_key key; 1780 struct btrfs_key found_key; 1781 struct btrfs_path *path; 1782 1783 path = btrfs_alloc_path(); 1784 if (!path) 1785 return -ENOMEM; 1786 1787 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1788 key.type = BTRFS_DEV_ITEM_KEY; 1789 key.offset = (u64)-1; 1790 1791 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1792 if (ret < 0) 1793 goto error; 1794 1795 if (ret == 0) { 1796 /* Corruption */ 1797 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1798 ret = -EUCLEAN; 1799 goto error; 1800 } 1801 1802 ret = btrfs_previous_item(fs_info->chunk_root, path, 1803 BTRFS_DEV_ITEMS_OBJECTID, 1804 BTRFS_DEV_ITEM_KEY); 1805 if (ret) { 1806 *devid_ret = 1; 1807 } else { 1808 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1809 path->slots[0]); 1810 *devid_ret = found_key.offset + 1; 1811 } 1812 ret = 0; 1813 error: 1814 btrfs_free_path(path); 1815 return ret; 1816 } 1817 1818 /* 1819 * the device information is stored in the chunk root 1820 * the btrfs_device struct should be fully filled in 1821 */ 1822 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1823 struct btrfs_device *device) 1824 { 1825 int ret; 1826 struct btrfs_path *path; 1827 struct btrfs_dev_item *dev_item; 1828 struct extent_buffer *leaf; 1829 struct btrfs_key key; 1830 unsigned long ptr; 1831 1832 path = btrfs_alloc_path(); 1833 if (!path) 1834 return -ENOMEM; 1835 1836 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1837 key.type = BTRFS_DEV_ITEM_KEY; 1838 key.offset = device->devid; 1839 1840 btrfs_reserve_chunk_metadata(trans, true); 1841 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1842 &key, sizeof(*dev_item)); 1843 btrfs_trans_release_chunk_metadata(trans); 1844 if (ret) 1845 goto out; 1846 1847 leaf = path->nodes[0]; 1848 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1849 1850 btrfs_set_device_id(leaf, dev_item, device->devid); 1851 btrfs_set_device_generation(leaf, dev_item, 0); 1852 btrfs_set_device_type(leaf, dev_item, device->type); 1853 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1854 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1855 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1856 btrfs_set_device_total_bytes(leaf, dev_item, 1857 btrfs_device_get_disk_total_bytes(device)); 1858 btrfs_set_device_bytes_used(leaf, dev_item, 1859 btrfs_device_get_bytes_used(device)); 1860 btrfs_set_device_group(leaf, dev_item, 0); 1861 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1862 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1863 btrfs_set_device_start_offset(leaf, dev_item, 0); 1864 1865 ptr = btrfs_device_uuid(dev_item); 1866 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1867 ptr = btrfs_device_fsid(dev_item); 1868 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1869 ptr, BTRFS_FSID_SIZE); 1870 btrfs_mark_buffer_dirty(leaf); 1871 1872 ret = 0; 1873 out: 1874 btrfs_free_path(path); 1875 return ret; 1876 } 1877 1878 /* 1879 * Function to update ctime/mtime for a given device path. 1880 * Mainly used for ctime/mtime based probe like libblkid. 1881 * 1882 * We don't care about errors here, this is just to be kind to userspace. 1883 */ 1884 static void update_dev_time(const char *device_path) 1885 { 1886 struct path path; 1887 struct timespec64 now; 1888 int ret; 1889 1890 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1891 if (ret) 1892 return; 1893 1894 now = current_time(d_inode(path.dentry)); 1895 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME); 1896 path_put(&path); 1897 } 1898 1899 static int btrfs_rm_dev_item(struct btrfs_device *device) 1900 { 1901 struct btrfs_root *root = device->fs_info->chunk_root; 1902 int ret; 1903 struct btrfs_path *path; 1904 struct btrfs_key key; 1905 struct btrfs_trans_handle *trans; 1906 1907 path = btrfs_alloc_path(); 1908 if (!path) 1909 return -ENOMEM; 1910 1911 trans = btrfs_start_transaction(root, 0); 1912 if (IS_ERR(trans)) { 1913 btrfs_free_path(path); 1914 return PTR_ERR(trans); 1915 } 1916 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1917 key.type = BTRFS_DEV_ITEM_KEY; 1918 key.offset = device->devid; 1919 1920 btrfs_reserve_chunk_metadata(trans, false); 1921 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1922 btrfs_trans_release_chunk_metadata(trans); 1923 if (ret) { 1924 if (ret > 0) 1925 ret = -ENOENT; 1926 btrfs_abort_transaction(trans, ret); 1927 btrfs_end_transaction(trans); 1928 goto out; 1929 } 1930 1931 ret = btrfs_del_item(trans, root, path); 1932 if (ret) { 1933 btrfs_abort_transaction(trans, ret); 1934 btrfs_end_transaction(trans); 1935 } 1936 1937 out: 1938 btrfs_free_path(path); 1939 if (!ret) 1940 ret = btrfs_commit_transaction(trans); 1941 return ret; 1942 } 1943 1944 /* 1945 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1946 * filesystem. It's up to the caller to adjust that number regarding eg. device 1947 * replace. 1948 */ 1949 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1950 u64 num_devices) 1951 { 1952 u64 all_avail; 1953 unsigned seq; 1954 int i; 1955 1956 do { 1957 seq = read_seqbegin(&fs_info->profiles_lock); 1958 1959 all_avail = fs_info->avail_data_alloc_bits | 1960 fs_info->avail_system_alloc_bits | 1961 fs_info->avail_metadata_alloc_bits; 1962 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1963 1964 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1965 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1966 continue; 1967 1968 if (num_devices < btrfs_raid_array[i].devs_min) 1969 return btrfs_raid_array[i].mindev_error; 1970 } 1971 1972 return 0; 1973 } 1974 1975 static struct btrfs_device * btrfs_find_next_active_device( 1976 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1977 { 1978 struct btrfs_device *next_device; 1979 1980 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1981 if (next_device != device && 1982 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1983 && next_device->bdev) 1984 return next_device; 1985 } 1986 1987 return NULL; 1988 } 1989 1990 /* 1991 * Helper function to check if the given device is part of s_bdev / latest_dev 1992 * and replace it with the provided or the next active device, in the context 1993 * where this function called, there should be always be another device (or 1994 * this_dev) which is active. 1995 */ 1996 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1997 struct btrfs_device *next_device) 1998 { 1999 struct btrfs_fs_info *fs_info = device->fs_info; 2000 2001 if (!next_device) 2002 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2003 device); 2004 ASSERT(next_device); 2005 2006 if (fs_info->sb->s_bdev && 2007 (fs_info->sb->s_bdev == device->bdev)) 2008 fs_info->sb->s_bdev = next_device->bdev; 2009 2010 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2011 fs_info->fs_devices->latest_dev = next_device; 2012 } 2013 2014 /* 2015 * Return btrfs_fs_devices::num_devices excluding the device that's being 2016 * currently replaced. 2017 */ 2018 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2019 { 2020 u64 num_devices = fs_info->fs_devices->num_devices; 2021 2022 down_read(&fs_info->dev_replace.rwsem); 2023 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2024 ASSERT(num_devices > 1); 2025 num_devices--; 2026 } 2027 up_read(&fs_info->dev_replace.rwsem); 2028 2029 return num_devices; 2030 } 2031 2032 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2033 struct block_device *bdev, 2034 const char *device_path) 2035 { 2036 struct btrfs_super_block *disk_super; 2037 int copy_num; 2038 2039 if (!bdev) 2040 return; 2041 2042 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2043 struct page *page; 2044 int ret; 2045 2046 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2047 if (IS_ERR(disk_super)) 2048 continue; 2049 2050 if (bdev_is_zoned(bdev)) { 2051 btrfs_reset_sb_log_zones(bdev, copy_num); 2052 continue; 2053 } 2054 2055 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2056 2057 page = virt_to_page(disk_super); 2058 set_page_dirty(page); 2059 lock_page(page); 2060 /* write_on_page() unlocks the page */ 2061 ret = write_one_page(page); 2062 if (ret) 2063 btrfs_warn(fs_info, 2064 "error clearing superblock number %d (%d)", 2065 copy_num, ret); 2066 btrfs_release_disk_super(disk_super); 2067 2068 } 2069 2070 /* Notify udev that device has changed */ 2071 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2072 2073 /* Update ctime/mtime for device path for libblkid */ 2074 update_dev_time(device_path); 2075 } 2076 2077 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2078 struct btrfs_dev_lookup_args *args, 2079 struct block_device **bdev, fmode_t *mode) 2080 { 2081 struct btrfs_device *device; 2082 struct btrfs_fs_devices *cur_devices; 2083 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2084 u64 num_devices; 2085 int ret = 0; 2086 2087 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2088 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2089 return -EINVAL; 2090 } 2091 2092 /* 2093 * The device list in fs_devices is accessed without locks (neither 2094 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2095 * filesystem and another device rm cannot run. 2096 */ 2097 num_devices = btrfs_num_devices(fs_info); 2098 2099 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2100 if (ret) 2101 goto out; 2102 2103 device = btrfs_find_device(fs_info->fs_devices, args); 2104 if (!device) { 2105 if (args->missing) 2106 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2107 else 2108 ret = -ENOENT; 2109 goto out; 2110 } 2111 2112 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2113 btrfs_warn_in_rcu(fs_info, 2114 "cannot remove device %s (devid %llu) due to active swapfile", 2115 rcu_str_deref(device->name), device->devid); 2116 ret = -ETXTBSY; 2117 goto out; 2118 } 2119 2120 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2121 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2122 goto out; 2123 } 2124 2125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2126 fs_info->fs_devices->rw_devices == 1) { 2127 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2128 goto out; 2129 } 2130 2131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2132 mutex_lock(&fs_info->chunk_mutex); 2133 list_del_init(&device->dev_alloc_list); 2134 device->fs_devices->rw_devices--; 2135 mutex_unlock(&fs_info->chunk_mutex); 2136 } 2137 2138 ret = btrfs_shrink_device(device, 0); 2139 if (ret) 2140 goto error_undo; 2141 2142 /* 2143 * TODO: the superblock still includes this device in its num_devices 2144 * counter although write_all_supers() is not locked out. This 2145 * could give a filesystem state which requires a degraded mount. 2146 */ 2147 ret = btrfs_rm_dev_item(device); 2148 if (ret) 2149 goto error_undo; 2150 2151 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2152 btrfs_scrub_cancel_dev(device); 2153 2154 /* 2155 * the device list mutex makes sure that we don't change 2156 * the device list while someone else is writing out all 2157 * the device supers. Whoever is writing all supers, should 2158 * lock the device list mutex before getting the number of 2159 * devices in the super block (super_copy). Conversely, 2160 * whoever updates the number of devices in the super block 2161 * (super_copy) should hold the device list mutex. 2162 */ 2163 2164 /* 2165 * In normal cases the cur_devices == fs_devices. But in case 2166 * of deleting a seed device, the cur_devices should point to 2167 * its own fs_devices listed under the fs_devices->seed_list. 2168 */ 2169 cur_devices = device->fs_devices; 2170 mutex_lock(&fs_devices->device_list_mutex); 2171 list_del_rcu(&device->dev_list); 2172 2173 cur_devices->num_devices--; 2174 cur_devices->total_devices--; 2175 /* Update total_devices of the parent fs_devices if it's seed */ 2176 if (cur_devices != fs_devices) 2177 fs_devices->total_devices--; 2178 2179 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2180 cur_devices->missing_devices--; 2181 2182 btrfs_assign_next_active_device(device, NULL); 2183 2184 if (device->bdev) { 2185 cur_devices->open_devices--; 2186 /* remove sysfs entry */ 2187 btrfs_sysfs_remove_device(device); 2188 } 2189 2190 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2191 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2192 mutex_unlock(&fs_devices->device_list_mutex); 2193 2194 /* 2195 * At this point, the device is zero sized and detached from the 2196 * devices list. All that's left is to zero out the old supers and 2197 * free the device. 2198 * 2199 * We cannot call btrfs_close_bdev() here because we're holding the sb 2200 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2201 * block device and it's dependencies. Instead just flush the device 2202 * and let the caller do the final blkdev_put. 2203 */ 2204 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2205 btrfs_scratch_superblocks(fs_info, device->bdev, 2206 device->name->str); 2207 if (device->bdev) { 2208 sync_blockdev(device->bdev); 2209 invalidate_bdev(device->bdev); 2210 } 2211 } 2212 2213 *bdev = device->bdev; 2214 *mode = device->mode; 2215 synchronize_rcu(); 2216 btrfs_free_device(device); 2217 2218 /* 2219 * This can happen if cur_devices is the private seed devices list. We 2220 * cannot call close_fs_devices() here because it expects the uuid_mutex 2221 * to be held, but in fact we don't need that for the private 2222 * seed_devices, we can simply decrement cur_devices->opened and then 2223 * remove it from our list and free the fs_devices. 2224 */ 2225 if (cur_devices->num_devices == 0) { 2226 list_del_init(&cur_devices->seed_list); 2227 ASSERT(cur_devices->opened == 1); 2228 cur_devices->opened--; 2229 free_fs_devices(cur_devices); 2230 } 2231 2232 out: 2233 return ret; 2234 2235 error_undo: 2236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2237 mutex_lock(&fs_info->chunk_mutex); 2238 list_add(&device->dev_alloc_list, 2239 &fs_devices->alloc_list); 2240 device->fs_devices->rw_devices++; 2241 mutex_unlock(&fs_info->chunk_mutex); 2242 } 2243 goto out; 2244 } 2245 2246 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2247 { 2248 struct btrfs_fs_devices *fs_devices; 2249 2250 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2251 2252 /* 2253 * in case of fs with no seed, srcdev->fs_devices will point 2254 * to fs_devices of fs_info. However when the dev being replaced is 2255 * a seed dev it will point to the seed's local fs_devices. In short 2256 * srcdev will have its correct fs_devices in both the cases. 2257 */ 2258 fs_devices = srcdev->fs_devices; 2259 2260 list_del_rcu(&srcdev->dev_list); 2261 list_del(&srcdev->dev_alloc_list); 2262 fs_devices->num_devices--; 2263 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2264 fs_devices->missing_devices--; 2265 2266 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2267 fs_devices->rw_devices--; 2268 2269 if (srcdev->bdev) 2270 fs_devices->open_devices--; 2271 } 2272 2273 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2274 { 2275 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2276 2277 mutex_lock(&uuid_mutex); 2278 2279 btrfs_close_bdev(srcdev); 2280 synchronize_rcu(); 2281 btrfs_free_device(srcdev); 2282 2283 /* if this is no devs we rather delete the fs_devices */ 2284 if (!fs_devices->num_devices) { 2285 /* 2286 * On a mounted FS, num_devices can't be zero unless it's a 2287 * seed. In case of a seed device being replaced, the replace 2288 * target added to the sprout FS, so there will be no more 2289 * device left under the seed FS. 2290 */ 2291 ASSERT(fs_devices->seeding); 2292 2293 list_del_init(&fs_devices->seed_list); 2294 close_fs_devices(fs_devices); 2295 free_fs_devices(fs_devices); 2296 } 2297 mutex_unlock(&uuid_mutex); 2298 } 2299 2300 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2301 { 2302 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2303 2304 mutex_lock(&fs_devices->device_list_mutex); 2305 2306 btrfs_sysfs_remove_device(tgtdev); 2307 2308 if (tgtdev->bdev) 2309 fs_devices->open_devices--; 2310 2311 fs_devices->num_devices--; 2312 2313 btrfs_assign_next_active_device(tgtdev, NULL); 2314 2315 list_del_rcu(&tgtdev->dev_list); 2316 2317 mutex_unlock(&fs_devices->device_list_mutex); 2318 2319 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2320 tgtdev->name->str); 2321 2322 btrfs_close_bdev(tgtdev); 2323 synchronize_rcu(); 2324 btrfs_free_device(tgtdev); 2325 } 2326 2327 /** 2328 * Populate args from device at path 2329 * 2330 * @fs_info: the filesystem 2331 * @args: the args to populate 2332 * @path: the path to the device 2333 * 2334 * This will read the super block of the device at @path and populate @args with 2335 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2336 * lookup a device to operate on, but need to do it before we take any locks. 2337 * This properly handles the special case of "missing" that a user may pass in, 2338 * and does some basic sanity checks. The caller must make sure that @path is 2339 * properly NUL terminated before calling in, and must call 2340 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2341 * uuid buffers. 2342 * 2343 * Return: 0 for success, -errno for failure 2344 */ 2345 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2346 struct btrfs_dev_lookup_args *args, 2347 const char *path) 2348 { 2349 struct btrfs_super_block *disk_super; 2350 struct block_device *bdev; 2351 int ret; 2352 2353 if (!path || !path[0]) 2354 return -EINVAL; 2355 if (!strcmp(path, "missing")) { 2356 args->missing = true; 2357 return 0; 2358 } 2359 2360 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2361 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2362 if (!args->uuid || !args->fsid) { 2363 btrfs_put_dev_args_from_path(args); 2364 return -ENOMEM; 2365 } 2366 2367 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0, 2368 &bdev, &disk_super); 2369 if (ret) 2370 return ret; 2371 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2372 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2373 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2374 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2375 else 2376 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2377 btrfs_release_disk_super(disk_super); 2378 blkdev_put(bdev, FMODE_READ); 2379 return 0; 2380 } 2381 2382 /* 2383 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2384 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2385 * that don't need to be freed. 2386 */ 2387 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2388 { 2389 kfree(args->uuid); 2390 kfree(args->fsid); 2391 args->uuid = NULL; 2392 args->fsid = NULL; 2393 } 2394 2395 struct btrfs_device *btrfs_find_device_by_devspec( 2396 struct btrfs_fs_info *fs_info, u64 devid, 2397 const char *device_path) 2398 { 2399 BTRFS_DEV_LOOKUP_ARGS(args); 2400 struct btrfs_device *device; 2401 int ret; 2402 2403 if (devid) { 2404 args.devid = devid; 2405 device = btrfs_find_device(fs_info->fs_devices, &args); 2406 if (!device) 2407 return ERR_PTR(-ENOENT); 2408 return device; 2409 } 2410 2411 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2412 if (ret) 2413 return ERR_PTR(ret); 2414 device = btrfs_find_device(fs_info->fs_devices, &args); 2415 btrfs_put_dev_args_from_path(&args); 2416 if (!device) 2417 return ERR_PTR(-ENOENT); 2418 return device; 2419 } 2420 2421 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2422 { 2423 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2424 struct btrfs_fs_devices *old_devices; 2425 struct btrfs_fs_devices *seed_devices; 2426 2427 lockdep_assert_held(&uuid_mutex); 2428 if (!fs_devices->seeding) 2429 return ERR_PTR(-EINVAL); 2430 2431 /* 2432 * Private copy of the seed devices, anchored at 2433 * fs_info->fs_devices->seed_list 2434 */ 2435 seed_devices = alloc_fs_devices(NULL, NULL); 2436 if (IS_ERR(seed_devices)) 2437 return seed_devices; 2438 2439 /* 2440 * It's necessary to retain a copy of the original seed fs_devices in 2441 * fs_uuids so that filesystems which have been seeded can successfully 2442 * reference the seed device from open_seed_devices. This also supports 2443 * multiple fs seed. 2444 */ 2445 old_devices = clone_fs_devices(fs_devices); 2446 if (IS_ERR(old_devices)) { 2447 kfree(seed_devices); 2448 return old_devices; 2449 } 2450 2451 list_add(&old_devices->fs_list, &fs_uuids); 2452 2453 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2454 seed_devices->opened = 1; 2455 INIT_LIST_HEAD(&seed_devices->devices); 2456 INIT_LIST_HEAD(&seed_devices->alloc_list); 2457 mutex_init(&seed_devices->device_list_mutex); 2458 2459 return seed_devices; 2460 } 2461 2462 /* 2463 * Splice seed devices into the sprout fs_devices. 2464 * Generate a new fsid for the sprouted read-write filesystem. 2465 */ 2466 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2467 struct btrfs_fs_devices *seed_devices) 2468 { 2469 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2470 struct btrfs_super_block *disk_super = fs_info->super_copy; 2471 struct btrfs_device *device; 2472 u64 super_flags; 2473 2474 /* 2475 * We are updating the fsid, the thread leading to device_list_add() 2476 * could race, so uuid_mutex is needed. 2477 */ 2478 lockdep_assert_held(&uuid_mutex); 2479 2480 /* 2481 * The threads listed below may traverse dev_list but can do that without 2482 * device_list_mutex: 2483 * - All device ops and balance - as we are in btrfs_exclop_start. 2484 * - Various dev_list readers - are using RCU. 2485 * - btrfs_ioctl_fitrim() - is using RCU. 2486 * 2487 * For-read threads as below are using device_list_mutex: 2488 * - Readonly scrub btrfs_scrub_dev() 2489 * - Readonly scrub btrfs_scrub_progress() 2490 * - btrfs_get_dev_stats() 2491 */ 2492 lockdep_assert_held(&fs_devices->device_list_mutex); 2493 2494 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2495 synchronize_rcu); 2496 list_for_each_entry(device, &seed_devices->devices, dev_list) 2497 device->fs_devices = seed_devices; 2498 2499 fs_devices->seeding = false; 2500 fs_devices->num_devices = 0; 2501 fs_devices->open_devices = 0; 2502 fs_devices->missing_devices = 0; 2503 fs_devices->rotating = false; 2504 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2505 2506 generate_random_uuid(fs_devices->fsid); 2507 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2508 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2509 2510 super_flags = btrfs_super_flags(disk_super) & 2511 ~BTRFS_SUPER_FLAG_SEEDING; 2512 btrfs_set_super_flags(disk_super, super_flags); 2513 } 2514 2515 /* 2516 * Store the expected generation for seed devices in device items. 2517 */ 2518 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2519 { 2520 BTRFS_DEV_LOOKUP_ARGS(args); 2521 struct btrfs_fs_info *fs_info = trans->fs_info; 2522 struct btrfs_root *root = fs_info->chunk_root; 2523 struct btrfs_path *path; 2524 struct extent_buffer *leaf; 2525 struct btrfs_dev_item *dev_item; 2526 struct btrfs_device *device; 2527 struct btrfs_key key; 2528 u8 fs_uuid[BTRFS_FSID_SIZE]; 2529 u8 dev_uuid[BTRFS_UUID_SIZE]; 2530 int ret; 2531 2532 path = btrfs_alloc_path(); 2533 if (!path) 2534 return -ENOMEM; 2535 2536 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2537 key.offset = 0; 2538 key.type = BTRFS_DEV_ITEM_KEY; 2539 2540 while (1) { 2541 btrfs_reserve_chunk_metadata(trans, false); 2542 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2543 btrfs_trans_release_chunk_metadata(trans); 2544 if (ret < 0) 2545 goto error; 2546 2547 leaf = path->nodes[0]; 2548 next_slot: 2549 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2550 ret = btrfs_next_leaf(root, path); 2551 if (ret > 0) 2552 break; 2553 if (ret < 0) 2554 goto error; 2555 leaf = path->nodes[0]; 2556 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2557 btrfs_release_path(path); 2558 continue; 2559 } 2560 2561 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2562 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2563 key.type != BTRFS_DEV_ITEM_KEY) 2564 break; 2565 2566 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2567 struct btrfs_dev_item); 2568 args.devid = btrfs_device_id(leaf, dev_item); 2569 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2570 BTRFS_UUID_SIZE); 2571 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2572 BTRFS_FSID_SIZE); 2573 args.uuid = dev_uuid; 2574 args.fsid = fs_uuid; 2575 device = btrfs_find_device(fs_info->fs_devices, &args); 2576 BUG_ON(!device); /* Logic error */ 2577 2578 if (device->fs_devices->seeding) { 2579 btrfs_set_device_generation(leaf, dev_item, 2580 device->generation); 2581 btrfs_mark_buffer_dirty(leaf); 2582 } 2583 2584 path->slots[0]++; 2585 goto next_slot; 2586 } 2587 ret = 0; 2588 error: 2589 btrfs_free_path(path); 2590 return ret; 2591 } 2592 2593 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2594 { 2595 struct btrfs_root *root = fs_info->dev_root; 2596 struct btrfs_trans_handle *trans; 2597 struct btrfs_device *device; 2598 struct block_device *bdev; 2599 struct super_block *sb = fs_info->sb; 2600 struct rcu_string *name; 2601 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2602 struct btrfs_fs_devices *seed_devices; 2603 u64 orig_super_total_bytes; 2604 u64 orig_super_num_devices; 2605 int ret = 0; 2606 bool seeding_dev = false; 2607 bool locked = false; 2608 2609 if (sb_rdonly(sb) && !fs_devices->seeding) 2610 return -EROFS; 2611 2612 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2613 fs_info->bdev_holder); 2614 if (IS_ERR(bdev)) 2615 return PTR_ERR(bdev); 2616 2617 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2618 ret = -EINVAL; 2619 goto error; 2620 } 2621 2622 if (fs_devices->seeding) { 2623 seeding_dev = true; 2624 down_write(&sb->s_umount); 2625 mutex_lock(&uuid_mutex); 2626 locked = true; 2627 } 2628 2629 sync_blockdev(bdev); 2630 2631 rcu_read_lock(); 2632 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2633 if (device->bdev == bdev) { 2634 ret = -EEXIST; 2635 rcu_read_unlock(); 2636 goto error; 2637 } 2638 } 2639 rcu_read_unlock(); 2640 2641 device = btrfs_alloc_device(fs_info, NULL, NULL); 2642 if (IS_ERR(device)) { 2643 /* we can safely leave the fs_devices entry around */ 2644 ret = PTR_ERR(device); 2645 goto error; 2646 } 2647 2648 name = rcu_string_strdup(device_path, GFP_KERNEL); 2649 if (!name) { 2650 ret = -ENOMEM; 2651 goto error_free_device; 2652 } 2653 rcu_assign_pointer(device->name, name); 2654 2655 device->fs_info = fs_info; 2656 device->bdev = bdev; 2657 ret = lookup_bdev(device_path, &device->devt); 2658 if (ret) 2659 goto error_free_device; 2660 2661 ret = btrfs_get_dev_zone_info(device, false); 2662 if (ret) 2663 goto error_free_device; 2664 2665 trans = btrfs_start_transaction(root, 0); 2666 if (IS_ERR(trans)) { 2667 ret = PTR_ERR(trans); 2668 goto error_free_zone; 2669 } 2670 2671 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2672 device->generation = trans->transid; 2673 device->io_width = fs_info->sectorsize; 2674 device->io_align = fs_info->sectorsize; 2675 device->sector_size = fs_info->sectorsize; 2676 device->total_bytes = 2677 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2678 device->disk_total_bytes = device->total_bytes; 2679 device->commit_total_bytes = device->total_bytes; 2680 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2681 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2682 device->mode = FMODE_EXCL; 2683 device->dev_stats_valid = 1; 2684 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2685 2686 if (seeding_dev) { 2687 btrfs_clear_sb_rdonly(sb); 2688 2689 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2690 seed_devices = btrfs_init_sprout(fs_info); 2691 if (IS_ERR(seed_devices)) { 2692 ret = PTR_ERR(seed_devices); 2693 btrfs_abort_transaction(trans, ret); 2694 goto error_trans; 2695 } 2696 } 2697 2698 mutex_lock(&fs_devices->device_list_mutex); 2699 if (seeding_dev) { 2700 btrfs_setup_sprout(fs_info, seed_devices); 2701 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2702 device); 2703 } 2704 2705 device->fs_devices = fs_devices; 2706 2707 mutex_lock(&fs_info->chunk_mutex); 2708 list_add_rcu(&device->dev_list, &fs_devices->devices); 2709 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2710 fs_devices->num_devices++; 2711 fs_devices->open_devices++; 2712 fs_devices->rw_devices++; 2713 fs_devices->total_devices++; 2714 fs_devices->total_rw_bytes += device->total_bytes; 2715 2716 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2717 2718 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2719 fs_devices->rotating = true; 2720 2721 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2722 btrfs_set_super_total_bytes(fs_info->super_copy, 2723 round_down(orig_super_total_bytes + device->total_bytes, 2724 fs_info->sectorsize)); 2725 2726 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2727 btrfs_set_super_num_devices(fs_info->super_copy, 2728 orig_super_num_devices + 1); 2729 2730 /* 2731 * we've got more storage, clear any full flags on the space 2732 * infos 2733 */ 2734 btrfs_clear_space_info_full(fs_info); 2735 2736 mutex_unlock(&fs_info->chunk_mutex); 2737 2738 /* Add sysfs device entry */ 2739 btrfs_sysfs_add_device(device); 2740 2741 mutex_unlock(&fs_devices->device_list_mutex); 2742 2743 if (seeding_dev) { 2744 mutex_lock(&fs_info->chunk_mutex); 2745 ret = init_first_rw_device(trans); 2746 mutex_unlock(&fs_info->chunk_mutex); 2747 if (ret) { 2748 btrfs_abort_transaction(trans, ret); 2749 goto error_sysfs; 2750 } 2751 } 2752 2753 ret = btrfs_add_dev_item(trans, device); 2754 if (ret) { 2755 btrfs_abort_transaction(trans, ret); 2756 goto error_sysfs; 2757 } 2758 2759 if (seeding_dev) { 2760 ret = btrfs_finish_sprout(trans); 2761 if (ret) { 2762 btrfs_abort_transaction(trans, ret); 2763 goto error_sysfs; 2764 } 2765 2766 /* 2767 * fs_devices now represents the newly sprouted filesystem and 2768 * its fsid has been changed by btrfs_sprout_splice(). 2769 */ 2770 btrfs_sysfs_update_sprout_fsid(fs_devices); 2771 } 2772 2773 ret = btrfs_commit_transaction(trans); 2774 2775 if (seeding_dev) { 2776 mutex_unlock(&uuid_mutex); 2777 up_write(&sb->s_umount); 2778 locked = false; 2779 2780 if (ret) /* transaction commit */ 2781 return ret; 2782 2783 ret = btrfs_relocate_sys_chunks(fs_info); 2784 if (ret < 0) 2785 btrfs_handle_fs_error(fs_info, ret, 2786 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2787 trans = btrfs_attach_transaction(root); 2788 if (IS_ERR(trans)) { 2789 if (PTR_ERR(trans) == -ENOENT) 2790 return 0; 2791 ret = PTR_ERR(trans); 2792 trans = NULL; 2793 goto error_sysfs; 2794 } 2795 ret = btrfs_commit_transaction(trans); 2796 } 2797 2798 /* 2799 * Now that we have written a new super block to this device, check all 2800 * other fs_devices list if device_path alienates any other scanned 2801 * device. 2802 * We can ignore the return value as it typically returns -EINVAL and 2803 * only succeeds if the device was an alien. 2804 */ 2805 btrfs_forget_devices(device->devt); 2806 2807 /* Update ctime/mtime for blkid or udev */ 2808 update_dev_time(device_path); 2809 2810 return ret; 2811 2812 error_sysfs: 2813 btrfs_sysfs_remove_device(device); 2814 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2815 mutex_lock(&fs_info->chunk_mutex); 2816 list_del_rcu(&device->dev_list); 2817 list_del(&device->dev_alloc_list); 2818 fs_info->fs_devices->num_devices--; 2819 fs_info->fs_devices->open_devices--; 2820 fs_info->fs_devices->rw_devices--; 2821 fs_info->fs_devices->total_devices--; 2822 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2823 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2824 btrfs_set_super_total_bytes(fs_info->super_copy, 2825 orig_super_total_bytes); 2826 btrfs_set_super_num_devices(fs_info->super_copy, 2827 orig_super_num_devices); 2828 mutex_unlock(&fs_info->chunk_mutex); 2829 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2830 error_trans: 2831 if (seeding_dev) 2832 btrfs_set_sb_rdonly(sb); 2833 if (trans) 2834 btrfs_end_transaction(trans); 2835 error_free_zone: 2836 btrfs_destroy_dev_zone_info(device); 2837 error_free_device: 2838 btrfs_free_device(device); 2839 error: 2840 blkdev_put(bdev, FMODE_EXCL); 2841 if (locked) { 2842 mutex_unlock(&uuid_mutex); 2843 up_write(&sb->s_umount); 2844 } 2845 return ret; 2846 } 2847 2848 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2849 struct btrfs_device *device) 2850 { 2851 int ret; 2852 struct btrfs_path *path; 2853 struct btrfs_root *root = device->fs_info->chunk_root; 2854 struct btrfs_dev_item *dev_item; 2855 struct extent_buffer *leaf; 2856 struct btrfs_key key; 2857 2858 path = btrfs_alloc_path(); 2859 if (!path) 2860 return -ENOMEM; 2861 2862 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2863 key.type = BTRFS_DEV_ITEM_KEY; 2864 key.offset = device->devid; 2865 2866 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2867 if (ret < 0) 2868 goto out; 2869 2870 if (ret > 0) { 2871 ret = -ENOENT; 2872 goto out; 2873 } 2874 2875 leaf = path->nodes[0]; 2876 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2877 2878 btrfs_set_device_id(leaf, dev_item, device->devid); 2879 btrfs_set_device_type(leaf, dev_item, device->type); 2880 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2881 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2882 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2883 btrfs_set_device_total_bytes(leaf, dev_item, 2884 btrfs_device_get_disk_total_bytes(device)); 2885 btrfs_set_device_bytes_used(leaf, dev_item, 2886 btrfs_device_get_bytes_used(device)); 2887 btrfs_mark_buffer_dirty(leaf); 2888 2889 out: 2890 btrfs_free_path(path); 2891 return ret; 2892 } 2893 2894 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2895 struct btrfs_device *device, u64 new_size) 2896 { 2897 struct btrfs_fs_info *fs_info = device->fs_info; 2898 struct btrfs_super_block *super_copy = fs_info->super_copy; 2899 u64 old_total; 2900 u64 diff; 2901 int ret; 2902 2903 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2904 return -EACCES; 2905 2906 new_size = round_down(new_size, fs_info->sectorsize); 2907 2908 mutex_lock(&fs_info->chunk_mutex); 2909 old_total = btrfs_super_total_bytes(super_copy); 2910 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2911 2912 if (new_size <= device->total_bytes || 2913 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2914 mutex_unlock(&fs_info->chunk_mutex); 2915 return -EINVAL; 2916 } 2917 2918 btrfs_set_super_total_bytes(super_copy, 2919 round_down(old_total + diff, fs_info->sectorsize)); 2920 device->fs_devices->total_rw_bytes += diff; 2921 2922 btrfs_device_set_total_bytes(device, new_size); 2923 btrfs_device_set_disk_total_bytes(device, new_size); 2924 btrfs_clear_space_info_full(device->fs_info); 2925 if (list_empty(&device->post_commit_list)) 2926 list_add_tail(&device->post_commit_list, 2927 &trans->transaction->dev_update_list); 2928 mutex_unlock(&fs_info->chunk_mutex); 2929 2930 btrfs_reserve_chunk_metadata(trans, false); 2931 ret = btrfs_update_device(trans, device); 2932 btrfs_trans_release_chunk_metadata(trans); 2933 2934 return ret; 2935 } 2936 2937 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2938 { 2939 struct btrfs_fs_info *fs_info = trans->fs_info; 2940 struct btrfs_root *root = fs_info->chunk_root; 2941 int ret; 2942 struct btrfs_path *path; 2943 struct btrfs_key key; 2944 2945 path = btrfs_alloc_path(); 2946 if (!path) 2947 return -ENOMEM; 2948 2949 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2950 key.offset = chunk_offset; 2951 key.type = BTRFS_CHUNK_ITEM_KEY; 2952 2953 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2954 if (ret < 0) 2955 goto out; 2956 else if (ret > 0) { /* Logic error or corruption */ 2957 btrfs_handle_fs_error(fs_info, -ENOENT, 2958 "Failed lookup while freeing chunk."); 2959 ret = -ENOENT; 2960 goto out; 2961 } 2962 2963 ret = btrfs_del_item(trans, root, path); 2964 if (ret < 0) 2965 btrfs_handle_fs_error(fs_info, ret, 2966 "Failed to delete chunk item."); 2967 out: 2968 btrfs_free_path(path); 2969 return ret; 2970 } 2971 2972 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2973 { 2974 struct btrfs_super_block *super_copy = fs_info->super_copy; 2975 struct btrfs_disk_key *disk_key; 2976 struct btrfs_chunk *chunk; 2977 u8 *ptr; 2978 int ret = 0; 2979 u32 num_stripes; 2980 u32 array_size; 2981 u32 len = 0; 2982 u32 cur; 2983 struct btrfs_key key; 2984 2985 lockdep_assert_held(&fs_info->chunk_mutex); 2986 array_size = btrfs_super_sys_array_size(super_copy); 2987 2988 ptr = super_copy->sys_chunk_array; 2989 cur = 0; 2990 2991 while (cur < array_size) { 2992 disk_key = (struct btrfs_disk_key *)ptr; 2993 btrfs_disk_key_to_cpu(&key, disk_key); 2994 2995 len = sizeof(*disk_key); 2996 2997 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2998 chunk = (struct btrfs_chunk *)(ptr + len); 2999 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3000 len += btrfs_chunk_item_size(num_stripes); 3001 } else { 3002 ret = -EIO; 3003 break; 3004 } 3005 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3006 key.offset == chunk_offset) { 3007 memmove(ptr, ptr + len, array_size - (cur + len)); 3008 array_size -= len; 3009 btrfs_set_super_sys_array_size(super_copy, array_size); 3010 } else { 3011 ptr += len; 3012 cur += len; 3013 } 3014 } 3015 return ret; 3016 } 3017 3018 /* 3019 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 3020 * @logical: Logical block offset in bytes. 3021 * @length: Length of extent in bytes. 3022 * 3023 * Return: Chunk mapping or ERR_PTR. 3024 */ 3025 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3026 u64 logical, u64 length) 3027 { 3028 struct extent_map_tree *em_tree; 3029 struct extent_map *em; 3030 3031 em_tree = &fs_info->mapping_tree; 3032 read_lock(&em_tree->lock); 3033 em = lookup_extent_mapping(em_tree, logical, length); 3034 read_unlock(&em_tree->lock); 3035 3036 if (!em) { 3037 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 3038 logical, length); 3039 return ERR_PTR(-EINVAL); 3040 } 3041 3042 if (em->start > logical || em->start + em->len < logical) { 3043 btrfs_crit(fs_info, 3044 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3045 logical, length, em->start, em->start + em->len); 3046 free_extent_map(em); 3047 return ERR_PTR(-EINVAL); 3048 } 3049 3050 /* callers are responsible for dropping em's ref. */ 3051 return em; 3052 } 3053 3054 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3055 struct map_lookup *map, u64 chunk_offset) 3056 { 3057 int i; 3058 3059 /* 3060 * Removing chunk items and updating the device items in the chunks btree 3061 * requires holding the chunk_mutex. 3062 * See the comment at btrfs_chunk_alloc() for the details. 3063 */ 3064 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3065 3066 for (i = 0; i < map->num_stripes; i++) { 3067 int ret; 3068 3069 ret = btrfs_update_device(trans, map->stripes[i].dev); 3070 if (ret) 3071 return ret; 3072 } 3073 3074 return btrfs_free_chunk(trans, chunk_offset); 3075 } 3076 3077 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3078 { 3079 struct btrfs_fs_info *fs_info = trans->fs_info; 3080 struct extent_map *em; 3081 struct map_lookup *map; 3082 u64 dev_extent_len = 0; 3083 int i, ret = 0; 3084 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3085 3086 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3087 if (IS_ERR(em)) { 3088 /* 3089 * This is a logic error, but we don't want to just rely on the 3090 * user having built with ASSERT enabled, so if ASSERT doesn't 3091 * do anything we still error out. 3092 */ 3093 ASSERT(0); 3094 return PTR_ERR(em); 3095 } 3096 map = em->map_lookup; 3097 3098 /* 3099 * First delete the device extent items from the devices btree. 3100 * We take the device_list_mutex to avoid racing with the finishing phase 3101 * of a device replace operation. See the comment below before acquiring 3102 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3103 * because that can result in a deadlock when deleting the device extent 3104 * items from the devices btree - COWing an extent buffer from the btree 3105 * may result in allocating a new metadata chunk, which would attempt to 3106 * lock again fs_info->chunk_mutex. 3107 */ 3108 mutex_lock(&fs_devices->device_list_mutex); 3109 for (i = 0; i < map->num_stripes; i++) { 3110 struct btrfs_device *device = map->stripes[i].dev; 3111 ret = btrfs_free_dev_extent(trans, device, 3112 map->stripes[i].physical, 3113 &dev_extent_len); 3114 if (ret) { 3115 mutex_unlock(&fs_devices->device_list_mutex); 3116 btrfs_abort_transaction(trans, ret); 3117 goto out; 3118 } 3119 3120 if (device->bytes_used > 0) { 3121 mutex_lock(&fs_info->chunk_mutex); 3122 btrfs_device_set_bytes_used(device, 3123 device->bytes_used - dev_extent_len); 3124 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3125 btrfs_clear_space_info_full(fs_info); 3126 mutex_unlock(&fs_info->chunk_mutex); 3127 } 3128 } 3129 mutex_unlock(&fs_devices->device_list_mutex); 3130 3131 /* 3132 * We acquire fs_info->chunk_mutex for 2 reasons: 3133 * 3134 * 1) Just like with the first phase of the chunk allocation, we must 3135 * reserve system space, do all chunk btree updates and deletions, and 3136 * update the system chunk array in the superblock while holding this 3137 * mutex. This is for similar reasons as explained on the comment at 3138 * the top of btrfs_chunk_alloc(); 3139 * 3140 * 2) Prevent races with the final phase of a device replace operation 3141 * that replaces the device object associated with the map's stripes, 3142 * because the device object's id can change at any time during that 3143 * final phase of the device replace operation 3144 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3145 * replaced device and then see it with an ID of 3146 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3147 * the device item, which does not exists on the chunk btree. 3148 * The finishing phase of device replace acquires both the 3149 * device_list_mutex and the chunk_mutex, in that order, so we are 3150 * safe by just acquiring the chunk_mutex. 3151 */ 3152 trans->removing_chunk = true; 3153 mutex_lock(&fs_info->chunk_mutex); 3154 3155 check_system_chunk(trans, map->type); 3156 3157 ret = remove_chunk_item(trans, map, chunk_offset); 3158 /* 3159 * Normally we should not get -ENOSPC since we reserved space before 3160 * through the call to check_system_chunk(). 3161 * 3162 * Despite our system space_info having enough free space, we may not 3163 * be able to allocate extents from its block groups, because all have 3164 * an incompatible profile, which will force us to allocate a new system 3165 * block group with the right profile, or right after we called 3166 * check_system_space() above, a scrub turned the only system block group 3167 * with enough free space into RO mode. 3168 * This is explained with more detail at do_chunk_alloc(). 3169 * 3170 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3171 */ 3172 if (ret == -ENOSPC) { 3173 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3174 struct btrfs_block_group *sys_bg; 3175 3176 sys_bg = btrfs_create_chunk(trans, sys_flags); 3177 if (IS_ERR(sys_bg)) { 3178 ret = PTR_ERR(sys_bg); 3179 btrfs_abort_transaction(trans, ret); 3180 goto out; 3181 } 3182 3183 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3184 if (ret) { 3185 btrfs_abort_transaction(trans, ret); 3186 goto out; 3187 } 3188 3189 ret = remove_chunk_item(trans, map, chunk_offset); 3190 if (ret) { 3191 btrfs_abort_transaction(trans, ret); 3192 goto out; 3193 } 3194 } else if (ret) { 3195 btrfs_abort_transaction(trans, ret); 3196 goto out; 3197 } 3198 3199 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3200 3201 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3202 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3203 if (ret) { 3204 btrfs_abort_transaction(trans, ret); 3205 goto out; 3206 } 3207 } 3208 3209 mutex_unlock(&fs_info->chunk_mutex); 3210 trans->removing_chunk = false; 3211 3212 /* 3213 * We are done with chunk btree updates and deletions, so release the 3214 * system space we previously reserved (with check_system_chunk()). 3215 */ 3216 btrfs_trans_release_chunk_metadata(trans); 3217 3218 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3219 if (ret) { 3220 btrfs_abort_transaction(trans, ret); 3221 goto out; 3222 } 3223 3224 out: 3225 if (trans->removing_chunk) { 3226 mutex_unlock(&fs_info->chunk_mutex); 3227 trans->removing_chunk = false; 3228 } 3229 /* once for us */ 3230 free_extent_map(em); 3231 return ret; 3232 } 3233 3234 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3235 { 3236 struct btrfs_root *root = fs_info->chunk_root; 3237 struct btrfs_trans_handle *trans; 3238 struct btrfs_block_group *block_group; 3239 u64 length; 3240 int ret; 3241 3242 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3243 btrfs_err(fs_info, 3244 "relocate: not supported on extent tree v2 yet"); 3245 return -EINVAL; 3246 } 3247 3248 /* 3249 * Prevent races with automatic removal of unused block groups. 3250 * After we relocate and before we remove the chunk with offset 3251 * chunk_offset, automatic removal of the block group can kick in, 3252 * resulting in a failure when calling btrfs_remove_chunk() below. 3253 * 3254 * Make sure to acquire this mutex before doing a tree search (dev 3255 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3256 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3257 * we release the path used to search the chunk/dev tree and before 3258 * the current task acquires this mutex and calls us. 3259 */ 3260 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3261 3262 /* step one, relocate all the extents inside this chunk */ 3263 btrfs_scrub_pause(fs_info); 3264 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3265 btrfs_scrub_continue(fs_info); 3266 if (ret) 3267 return ret; 3268 3269 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3270 if (!block_group) 3271 return -ENOENT; 3272 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3273 length = block_group->length; 3274 btrfs_put_block_group(block_group); 3275 3276 /* 3277 * On a zoned file system, discard the whole block group, this will 3278 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3279 * resetting the zone fails, don't treat it as a fatal problem from the 3280 * filesystem's point of view. 3281 */ 3282 if (btrfs_is_zoned(fs_info)) { 3283 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3284 if (ret) 3285 btrfs_info(fs_info, 3286 "failed to reset zone %llu after relocation", 3287 chunk_offset); 3288 } 3289 3290 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3291 chunk_offset); 3292 if (IS_ERR(trans)) { 3293 ret = PTR_ERR(trans); 3294 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3295 return ret; 3296 } 3297 3298 /* 3299 * step two, delete the device extents and the 3300 * chunk tree entries 3301 */ 3302 ret = btrfs_remove_chunk(trans, chunk_offset); 3303 btrfs_end_transaction(trans); 3304 return ret; 3305 } 3306 3307 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3308 { 3309 struct btrfs_root *chunk_root = fs_info->chunk_root; 3310 struct btrfs_path *path; 3311 struct extent_buffer *leaf; 3312 struct btrfs_chunk *chunk; 3313 struct btrfs_key key; 3314 struct btrfs_key found_key; 3315 u64 chunk_type; 3316 bool retried = false; 3317 int failed = 0; 3318 int ret; 3319 3320 path = btrfs_alloc_path(); 3321 if (!path) 3322 return -ENOMEM; 3323 3324 again: 3325 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3326 key.offset = (u64)-1; 3327 key.type = BTRFS_CHUNK_ITEM_KEY; 3328 3329 while (1) { 3330 mutex_lock(&fs_info->reclaim_bgs_lock); 3331 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3332 if (ret < 0) { 3333 mutex_unlock(&fs_info->reclaim_bgs_lock); 3334 goto error; 3335 } 3336 BUG_ON(ret == 0); /* Corruption */ 3337 3338 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3339 key.type); 3340 if (ret) 3341 mutex_unlock(&fs_info->reclaim_bgs_lock); 3342 if (ret < 0) 3343 goto error; 3344 if (ret > 0) 3345 break; 3346 3347 leaf = path->nodes[0]; 3348 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3349 3350 chunk = btrfs_item_ptr(leaf, path->slots[0], 3351 struct btrfs_chunk); 3352 chunk_type = btrfs_chunk_type(leaf, chunk); 3353 btrfs_release_path(path); 3354 3355 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3356 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3357 if (ret == -ENOSPC) 3358 failed++; 3359 else 3360 BUG_ON(ret); 3361 } 3362 mutex_unlock(&fs_info->reclaim_bgs_lock); 3363 3364 if (found_key.offset == 0) 3365 break; 3366 key.offset = found_key.offset - 1; 3367 } 3368 ret = 0; 3369 if (failed && !retried) { 3370 failed = 0; 3371 retried = true; 3372 goto again; 3373 } else if (WARN_ON(failed && retried)) { 3374 ret = -ENOSPC; 3375 } 3376 error: 3377 btrfs_free_path(path); 3378 return ret; 3379 } 3380 3381 /* 3382 * return 1 : allocate a data chunk successfully, 3383 * return <0: errors during allocating a data chunk, 3384 * return 0 : no need to allocate a data chunk. 3385 */ 3386 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3387 u64 chunk_offset) 3388 { 3389 struct btrfs_block_group *cache; 3390 u64 bytes_used; 3391 u64 chunk_type; 3392 3393 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3394 ASSERT(cache); 3395 chunk_type = cache->flags; 3396 btrfs_put_block_group(cache); 3397 3398 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3399 return 0; 3400 3401 spin_lock(&fs_info->data_sinfo->lock); 3402 bytes_used = fs_info->data_sinfo->bytes_used; 3403 spin_unlock(&fs_info->data_sinfo->lock); 3404 3405 if (!bytes_used) { 3406 struct btrfs_trans_handle *trans; 3407 int ret; 3408 3409 trans = btrfs_join_transaction(fs_info->tree_root); 3410 if (IS_ERR(trans)) 3411 return PTR_ERR(trans); 3412 3413 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3414 btrfs_end_transaction(trans); 3415 if (ret < 0) 3416 return ret; 3417 return 1; 3418 } 3419 3420 return 0; 3421 } 3422 3423 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3424 struct btrfs_balance_control *bctl) 3425 { 3426 struct btrfs_root *root = fs_info->tree_root; 3427 struct btrfs_trans_handle *trans; 3428 struct btrfs_balance_item *item; 3429 struct btrfs_disk_balance_args disk_bargs; 3430 struct btrfs_path *path; 3431 struct extent_buffer *leaf; 3432 struct btrfs_key key; 3433 int ret, err; 3434 3435 path = btrfs_alloc_path(); 3436 if (!path) 3437 return -ENOMEM; 3438 3439 trans = btrfs_start_transaction(root, 0); 3440 if (IS_ERR(trans)) { 3441 btrfs_free_path(path); 3442 return PTR_ERR(trans); 3443 } 3444 3445 key.objectid = BTRFS_BALANCE_OBJECTID; 3446 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3447 key.offset = 0; 3448 3449 ret = btrfs_insert_empty_item(trans, root, path, &key, 3450 sizeof(*item)); 3451 if (ret) 3452 goto out; 3453 3454 leaf = path->nodes[0]; 3455 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3456 3457 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3458 3459 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3460 btrfs_set_balance_data(leaf, item, &disk_bargs); 3461 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3462 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3463 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3464 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3465 3466 btrfs_set_balance_flags(leaf, item, bctl->flags); 3467 3468 btrfs_mark_buffer_dirty(leaf); 3469 out: 3470 btrfs_free_path(path); 3471 err = btrfs_commit_transaction(trans); 3472 if (err && !ret) 3473 ret = err; 3474 return ret; 3475 } 3476 3477 static int del_balance_item(struct btrfs_fs_info *fs_info) 3478 { 3479 struct btrfs_root *root = fs_info->tree_root; 3480 struct btrfs_trans_handle *trans; 3481 struct btrfs_path *path; 3482 struct btrfs_key key; 3483 int ret, err; 3484 3485 path = btrfs_alloc_path(); 3486 if (!path) 3487 return -ENOMEM; 3488 3489 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3490 if (IS_ERR(trans)) { 3491 btrfs_free_path(path); 3492 return PTR_ERR(trans); 3493 } 3494 3495 key.objectid = BTRFS_BALANCE_OBJECTID; 3496 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3497 key.offset = 0; 3498 3499 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3500 if (ret < 0) 3501 goto out; 3502 if (ret > 0) { 3503 ret = -ENOENT; 3504 goto out; 3505 } 3506 3507 ret = btrfs_del_item(trans, root, path); 3508 out: 3509 btrfs_free_path(path); 3510 err = btrfs_commit_transaction(trans); 3511 if (err && !ret) 3512 ret = err; 3513 return ret; 3514 } 3515 3516 /* 3517 * This is a heuristic used to reduce the number of chunks balanced on 3518 * resume after balance was interrupted. 3519 */ 3520 static void update_balance_args(struct btrfs_balance_control *bctl) 3521 { 3522 /* 3523 * Turn on soft mode for chunk types that were being converted. 3524 */ 3525 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3526 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3527 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3528 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3529 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3530 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3531 3532 /* 3533 * Turn on usage filter if is not already used. The idea is 3534 * that chunks that we have already balanced should be 3535 * reasonably full. Don't do it for chunks that are being 3536 * converted - that will keep us from relocating unconverted 3537 * (albeit full) chunks. 3538 */ 3539 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3540 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3541 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3542 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3543 bctl->data.usage = 90; 3544 } 3545 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3546 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3547 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3548 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3549 bctl->sys.usage = 90; 3550 } 3551 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3552 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3553 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3554 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3555 bctl->meta.usage = 90; 3556 } 3557 } 3558 3559 /* 3560 * Clear the balance status in fs_info and delete the balance item from disk. 3561 */ 3562 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3563 { 3564 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3565 int ret; 3566 3567 BUG_ON(!fs_info->balance_ctl); 3568 3569 spin_lock(&fs_info->balance_lock); 3570 fs_info->balance_ctl = NULL; 3571 spin_unlock(&fs_info->balance_lock); 3572 3573 kfree(bctl); 3574 ret = del_balance_item(fs_info); 3575 if (ret) 3576 btrfs_handle_fs_error(fs_info, ret, NULL); 3577 } 3578 3579 /* 3580 * Balance filters. Return 1 if chunk should be filtered out 3581 * (should not be balanced). 3582 */ 3583 static int chunk_profiles_filter(u64 chunk_type, 3584 struct btrfs_balance_args *bargs) 3585 { 3586 chunk_type = chunk_to_extended(chunk_type) & 3587 BTRFS_EXTENDED_PROFILE_MASK; 3588 3589 if (bargs->profiles & chunk_type) 3590 return 0; 3591 3592 return 1; 3593 } 3594 3595 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3596 struct btrfs_balance_args *bargs) 3597 { 3598 struct btrfs_block_group *cache; 3599 u64 chunk_used; 3600 u64 user_thresh_min; 3601 u64 user_thresh_max; 3602 int ret = 1; 3603 3604 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3605 chunk_used = cache->used; 3606 3607 if (bargs->usage_min == 0) 3608 user_thresh_min = 0; 3609 else 3610 user_thresh_min = div_factor_fine(cache->length, 3611 bargs->usage_min); 3612 3613 if (bargs->usage_max == 0) 3614 user_thresh_max = 1; 3615 else if (bargs->usage_max > 100) 3616 user_thresh_max = cache->length; 3617 else 3618 user_thresh_max = div_factor_fine(cache->length, 3619 bargs->usage_max); 3620 3621 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3622 ret = 0; 3623 3624 btrfs_put_block_group(cache); 3625 return ret; 3626 } 3627 3628 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3629 u64 chunk_offset, struct btrfs_balance_args *bargs) 3630 { 3631 struct btrfs_block_group *cache; 3632 u64 chunk_used, user_thresh; 3633 int ret = 1; 3634 3635 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3636 chunk_used = cache->used; 3637 3638 if (bargs->usage_min == 0) 3639 user_thresh = 1; 3640 else if (bargs->usage > 100) 3641 user_thresh = cache->length; 3642 else 3643 user_thresh = div_factor_fine(cache->length, bargs->usage); 3644 3645 if (chunk_used < user_thresh) 3646 ret = 0; 3647 3648 btrfs_put_block_group(cache); 3649 return ret; 3650 } 3651 3652 static int chunk_devid_filter(struct extent_buffer *leaf, 3653 struct btrfs_chunk *chunk, 3654 struct btrfs_balance_args *bargs) 3655 { 3656 struct btrfs_stripe *stripe; 3657 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3658 int i; 3659 3660 for (i = 0; i < num_stripes; i++) { 3661 stripe = btrfs_stripe_nr(chunk, i); 3662 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3663 return 0; 3664 } 3665 3666 return 1; 3667 } 3668 3669 static u64 calc_data_stripes(u64 type, int num_stripes) 3670 { 3671 const int index = btrfs_bg_flags_to_raid_index(type); 3672 const int ncopies = btrfs_raid_array[index].ncopies; 3673 const int nparity = btrfs_raid_array[index].nparity; 3674 3675 return (num_stripes - nparity) / ncopies; 3676 } 3677 3678 /* [pstart, pend) */ 3679 static int chunk_drange_filter(struct extent_buffer *leaf, 3680 struct btrfs_chunk *chunk, 3681 struct btrfs_balance_args *bargs) 3682 { 3683 struct btrfs_stripe *stripe; 3684 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3685 u64 stripe_offset; 3686 u64 stripe_length; 3687 u64 type; 3688 int factor; 3689 int i; 3690 3691 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3692 return 0; 3693 3694 type = btrfs_chunk_type(leaf, chunk); 3695 factor = calc_data_stripes(type, num_stripes); 3696 3697 for (i = 0; i < num_stripes; i++) { 3698 stripe = btrfs_stripe_nr(chunk, i); 3699 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3700 continue; 3701 3702 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3703 stripe_length = btrfs_chunk_length(leaf, chunk); 3704 stripe_length = div_u64(stripe_length, factor); 3705 3706 if (stripe_offset < bargs->pend && 3707 stripe_offset + stripe_length > bargs->pstart) 3708 return 0; 3709 } 3710 3711 return 1; 3712 } 3713 3714 /* [vstart, vend) */ 3715 static int chunk_vrange_filter(struct extent_buffer *leaf, 3716 struct btrfs_chunk *chunk, 3717 u64 chunk_offset, 3718 struct btrfs_balance_args *bargs) 3719 { 3720 if (chunk_offset < bargs->vend && 3721 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3722 /* at least part of the chunk is inside this vrange */ 3723 return 0; 3724 3725 return 1; 3726 } 3727 3728 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3729 struct btrfs_chunk *chunk, 3730 struct btrfs_balance_args *bargs) 3731 { 3732 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3733 3734 if (bargs->stripes_min <= num_stripes 3735 && num_stripes <= bargs->stripes_max) 3736 return 0; 3737 3738 return 1; 3739 } 3740 3741 static int chunk_soft_convert_filter(u64 chunk_type, 3742 struct btrfs_balance_args *bargs) 3743 { 3744 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3745 return 0; 3746 3747 chunk_type = chunk_to_extended(chunk_type) & 3748 BTRFS_EXTENDED_PROFILE_MASK; 3749 3750 if (bargs->target == chunk_type) 3751 return 1; 3752 3753 return 0; 3754 } 3755 3756 static int should_balance_chunk(struct extent_buffer *leaf, 3757 struct btrfs_chunk *chunk, u64 chunk_offset) 3758 { 3759 struct btrfs_fs_info *fs_info = leaf->fs_info; 3760 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3761 struct btrfs_balance_args *bargs = NULL; 3762 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3763 3764 /* type filter */ 3765 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3766 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3767 return 0; 3768 } 3769 3770 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3771 bargs = &bctl->data; 3772 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3773 bargs = &bctl->sys; 3774 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3775 bargs = &bctl->meta; 3776 3777 /* profiles filter */ 3778 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3779 chunk_profiles_filter(chunk_type, bargs)) { 3780 return 0; 3781 } 3782 3783 /* usage filter */ 3784 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3785 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3786 return 0; 3787 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3788 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3789 return 0; 3790 } 3791 3792 /* devid filter */ 3793 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3794 chunk_devid_filter(leaf, chunk, bargs)) { 3795 return 0; 3796 } 3797 3798 /* drange filter, makes sense only with devid filter */ 3799 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3800 chunk_drange_filter(leaf, chunk, bargs)) { 3801 return 0; 3802 } 3803 3804 /* vrange filter */ 3805 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3806 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3807 return 0; 3808 } 3809 3810 /* stripes filter */ 3811 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3812 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3813 return 0; 3814 } 3815 3816 /* soft profile changing mode */ 3817 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3818 chunk_soft_convert_filter(chunk_type, bargs)) { 3819 return 0; 3820 } 3821 3822 /* 3823 * limited by count, must be the last filter 3824 */ 3825 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3826 if (bargs->limit == 0) 3827 return 0; 3828 else 3829 bargs->limit--; 3830 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3831 /* 3832 * Same logic as the 'limit' filter; the minimum cannot be 3833 * determined here because we do not have the global information 3834 * about the count of all chunks that satisfy the filters. 3835 */ 3836 if (bargs->limit_max == 0) 3837 return 0; 3838 else 3839 bargs->limit_max--; 3840 } 3841 3842 return 1; 3843 } 3844 3845 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3846 { 3847 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3848 struct btrfs_root *chunk_root = fs_info->chunk_root; 3849 u64 chunk_type; 3850 struct btrfs_chunk *chunk; 3851 struct btrfs_path *path = NULL; 3852 struct btrfs_key key; 3853 struct btrfs_key found_key; 3854 struct extent_buffer *leaf; 3855 int slot; 3856 int ret; 3857 int enospc_errors = 0; 3858 bool counting = true; 3859 /* The single value limit and min/max limits use the same bytes in the */ 3860 u64 limit_data = bctl->data.limit; 3861 u64 limit_meta = bctl->meta.limit; 3862 u64 limit_sys = bctl->sys.limit; 3863 u32 count_data = 0; 3864 u32 count_meta = 0; 3865 u32 count_sys = 0; 3866 int chunk_reserved = 0; 3867 3868 path = btrfs_alloc_path(); 3869 if (!path) { 3870 ret = -ENOMEM; 3871 goto error; 3872 } 3873 3874 /* zero out stat counters */ 3875 spin_lock(&fs_info->balance_lock); 3876 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3877 spin_unlock(&fs_info->balance_lock); 3878 again: 3879 if (!counting) { 3880 /* 3881 * The single value limit and min/max limits use the same bytes 3882 * in the 3883 */ 3884 bctl->data.limit = limit_data; 3885 bctl->meta.limit = limit_meta; 3886 bctl->sys.limit = limit_sys; 3887 } 3888 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3889 key.offset = (u64)-1; 3890 key.type = BTRFS_CHUNK_ITEM_KEY; 3891 3892 while (1) { 3893 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3894 atomic_read(&fs_info->balance_cancel_req)) { 3895 ret = -ECANCELED; 3896 goto error; 3897 } 3898 3899 mutex_lock(&fs_info->reclaim_bgs_lock); 3900 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3901 if (ret < 0) { 3902 mutex_unlock(&fs_info->reclaim_bgs_lock); 3903 goto error; 3904 } 3905 3906 /* 3907 * this shouldn't happen, it means the last relocate 3908 * failed 3909 */ 3910 if (ret == 0) 3911 BUG(); /* FIXME break ? */ 3912 3913 ret = btrfs_previous_item(chunk_root, path, 0, 3914 BTRFS_CHUNK_ITEM_KEY); 3915 if (ret) { 3916 mutex_unlock(&fs_info->reclaim_bgs_lock); 3917 ret = 0; 3918 break; 3919 } 3920 3921 leaf = path->nodes[0]; 3922 slot = path->slots[0]; 3923 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3924 3925 if (found_key.objectid != key.objectid) { 3926 mutex_unlock(&fs_info->reclaim_bgs_lock); 3927 break; 3928 } 3929 3930 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3931 chunk_type = btrfs_chunk_type(leaf, chunk); 3932 3933 if (!counting) { 3934 spin_lock(&fs_info->balance_lock); 3935 bctl->stat.considered++; 3936 spin_unlock(&fs_info->balance_lock); 3937 } 3938 3939 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3940 3941 btrfs_release_path(path); 3942 if (!ret) { 3943 mutex_unlock(&fs_info->reclaim_bgs_lock); 3944 goto loop; 3945 } 3946 3947 if (counting) { 3948 mutex_unlock(&fs_info->reclaim_bgs_lock); 3949 spin_lock(&fs_info->balance_lock); 3950 bctl->stat.expected++; 3951 spin_unlock(&fs_info->balance_lock); 3952 3953 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3954 count_data++; 3955 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3956 count_sys++; 3957 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3958 count_meta++; 3959 3960 goto loop; 3961 } 3962 3963 /* 3964 * Apply limit_min filter, no need to check if the LIMITS 3965 * filter is used, limit_min is 0 by default 3966 */ 3967 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3968 count_data < bctl->data.limit_min) 3969 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3970 count_meta < bctl->meta.limit_min) 3971 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3972 count_sys < bctl->sys.limit_min)) { 3973 mutex_unlock(&fs_info->reclaim_bgs_lock); 3974 goto loop; 3975 } 3976 3977 if (!chunk_reserved) { 3978 /* 3979 * We may be relocating the only data chunk we have, 3980 * which could potentially end up with losing data's 3981 * raid profile, so lets allocate an empty one in 3982 * advance. 3983 */ 3984 ret = btrfs_may_alloc_data_chunk(fs_info, 3985 found_key.offset); 3986 if (ret < 0) { 3987 mutex_unlock(&fs_info->reclaim_bgs_lock); 3988 goto error; 3989 } else if (ret == 1) { 3990 chunk_reserved = 1; 3991 } 3992 } 3993 3994 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3995 mutex_unlock(&fs_info->reclaim_bgs_lock); 3996 if (ret == -ENOSPC) { 3997 enospc_errors++; 3998 } else if (ret == -ETXTBSY) { 3999 btrfs_info(fs_info, 4000 "skipping relocation of block group %llu due to active swapfile", 4001 found_key.offset); 4002 ret = 0; 4003 } else if (ret) { 4004 goto error; 4005 } else { 4006 spin_lock(&fs_info->balance_lock); 4007 bctl->stat.completed++; 4008 spin_unlock(&fs_info->balance_lock); 4009 } 4010 loop: 4011 if (found_key.offset == 0) 4012 break; 4013 key.offset = found_key.offset - 1; 4014 } 4015 4016 if (counting) { 4017 btrfs_release_path(path); 4018 counting = false; 4019 goto again; 4020 } 4021 error: 4022 btrfs_free_path(path); 4023 if (enospc_errors) { 4024 btrfs_info(fs_info, "%d enospc errors during balance", 4025 enospc_errors); 4026 if (!ret) 4027 ret = -ENOSPC; 4028 } 4029 4030 return ret; 4031 } 4032 4033 /** 4034 * alloc_profile_is_valid - see if a given profile is valid and reduced 4035 * @flags: profile to validate 4036 * @extended: if true @flags is treated as an extended profile 4037 */ 4038 static int alloc_profile_is_valid(u64 flags, int extended) 4039 { 4040 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4041 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4042 4043 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4044 4045 /* 1) check that all other bits are zeroed */ 4046 if (flags & ~mask) 4047 return 0; 4048 4049 /* 2) see if profile is reduced */ 4050 if (flags == 0) 4051 return !extended; /* "0" is valid for usual profiles */ 4052 4053 return has_single_bit_set(flags); 4054 } 4055 4056 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 4057 { 4058 /* cancel requested || normal exit path */ 4059 return atomic_read(&fs_info->balance_cancel_req) || 4060 (atomic_read(&fs_info->balance_pause_req) == 0 && 4061 atomic_read(&fs_info->balance_cancel_req) == 0); 4062 } 4063 4064 /* 4065 * Validate target profile against allowed profiles and return true if it's OK. 4066 * Otherwise print the error message and return false. 4067 */ 4068 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4069 const struct btrfs_balance_args *bargs, 4070 u64 allowed, const char *type) 4071 { 4072 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4073 return true; 4074 4075 if (fs_info->sectorsize < PAGE_SIZE && 4076 bargs->target & BTRFS_BLOCK_GROUP_RAID56_MASK) { 4077 btrfs_err(fs_info, 4078 "RAID56 is not yet supported for sectorsize %u with page size %lu", 4079 fs_info->sectorsize, PAGE_SIZE); 4080 return false; 4081 } 4082 /* Profile is valid and does not have bits outside of the allowed set */ 4083 if (alloc_profile_is_valid(bargs->target, 1) && 4084 (bargs->target & ~allowed) == 0) 4085 return true; 4086 4087 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4088 type, btrfs_bg_type_to_raid_name(bargs->target)); 4089 return false; 4090 } 4091 4092 /* 4093 * Fill @buf with textual description of balance filter flags @bargs, up to 4094 * @size_buf including the terminating null. The output may be trimmed if it 4095 * does not fit into the provided buffer. 4096 */ 4097 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4098 u32 size_buf) 4099 { 4100 int ret; 4101 u32 size_bp = size_buf; 4102 char *bp = buf; 4103 u64 flags = bargs->flags; 4104 char tmp_buf[128] = {'\0'}; 4105 4106 if (!flags) 4107 return; 4108 4109 #define CHECK_APPEND_NOARG(a) \ 4110 do { \ 4111 ret = snprintf(bp, size_bp, (a)); \ 4112 if (ret < 0 || ret >= size_bp) \ 4113 goto out_overflow; \ 4114 size_bp -= ret; \ 4115 bp += ret; \ 4116 } while (0) 4117 4118 #define CHECK_APPEND_1ARG(a, v1) \ 4119 do { \ 4120 ret = snprintf(bp, size_bp, (a), (v1)); \ 4121 if (ret < 0 || ret >= size_bp) \ 4122 goto out_overflow; \ 4123 size_bp -= ret; \ 4124 bp += ret; \ 4125 } while (0) 4126 4127 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4128 do { \ 4129 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4130 if (ret < 0 || ret >= size_bp) \ 4131 goto out_overflow; \ 4132 size_bp -= ret; \ 4133 bp += ret; \ 4134 } while (0) 4135 4136 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4137 CHECK_APPEND_1ARG("convert=%s,", 4138 btrfs_bg_type_to_raid_name(bargs->target)); 4139 4140 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4141 CHECK_APPEND_NOARG("soft,"); 4142 4143 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4144 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4145 sizeof(tmp_buf)); 4146 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4147 } 4148 4149 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4150 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4151 4152 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4153 CHECK_APPEND_2ARG("usage=%u..%u,", 4154 bargs->usage_min, bargs->usage_max); 4155 4156 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4157 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4158 4159 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4160 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4161 bargs->pstart, bargs->pend); 4162 4163 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4164 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4165 bargs->vstart, bargs->vend); 4166 4167 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4168 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4169 4170 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4171 CHECK_APPEND_2ARG("limit=%u..%u,", 4172 bargs->limit_min, bargs->limit_max); 4173 4174 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4175 CHECK_APPEND_2ARG("stripes=%u..%u,", 4176 bargs->stripes_min, bargs->stripes_max); 4177 4178 #undef CHECK_APPEND_2ARG 4179 #undef CHECK_APPEND_1ARG 4180 #undef CHECK_APPEND_NOARG 4181 4182 out_overflow: 4183 4184 if (size_bp < size_buf) 4185 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4186 else 4187 buf[0] = '\0'; 4188 } 4189 4190 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4191 { 4192 u32 size_buf = 1024; 4193 char tmp_buf[192] = {'\0'}; 4194 char *buf; 4195 char *bp; 4196 u32 size_bp = size_buf; 4197 int ret; 4198 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4199 4200 buf = kzalloc(size_buf, GFP_KERNEL); 4201 if (!buf) 4202 return; 4203 4204 bp = buf; 4205 4206 #define CHECK_APPEND_1ARG(a, v1) \ 4207 do { \ 4208 ret = snprintf(bp, size_bp, (a), (v1)); \ 4209 if (ret < 0 || ret >= size_bp) \ 4210 goto out_overflow; \ 4211 size_bp -= ret; \ 4212 bp += ret; \ 4213 } while (0) 4214 4215 if (bctl->flags & BTRFS_BALANCE_FORCE) 4216 CHECK_APPEND_1ARG("%s", "-f "); 4217 4218 if (bctl->flags & BTRFS_BALANCE_DATA) { 4219 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4220 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4221 } 4222 4223 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4224 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4225 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4226 } 4227 4228 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4229 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4230 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4231 } 4232 4233 #undef CHECK_APPEND_1ARG 4234 4235 out_overflow: 4236 4237 if (size_bp < size_buf) 4238 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4239 btrfs_info(fs_info, "balance: %s %s", 4240 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4241 "resume" : "start", buf); 4242 4243 kfree(buf); 4244 } 4245 4246 /* 4247 * Should be called with balance mutexe held 4248 */ 4249 int btrfs_balance(struct btrfs_fs_info *fs_info, 4250 struct btrfs_balance_control *bctl, 4251 struct btrfs_ioctl_balance_args *bargs) 4252 { 4253 u64 meta_target, data_target; 4254 u64 allowed; 4255 int mixed = 0; 4256 int ret; 4257 u64 num_devices; 4258 unsigned seq; 4259 bool reducing_redundancy; 4260 int i; 4261 4262 if (btrfs_fs_closing(fs_info) || 4263 atomic_read(&fs_info->balance_pause_req) || 4264 btrfs_should_cancel_balance(fs_info)) { 4265 ret = -EINVAL; 4266 goto out; 4267 } 4268 4269 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4270 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4271 mixed = 1; 4272 4273 /* 4274 * In case of mixed groups both data and meta should be picked, 4275 * and identical options should be given for both of them. 4276 */ 4277 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4278 if (mixed && (bctl->flags & allowed)) { 4279 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4280 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4281 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4282 btrfs_err(fs_info, 4283 "balance: mixed groups data and metadata options must be the same"); 4284 ret = -EINVAL; 4285 goto out; 4286 } 4287 } 4288 4289 /* 4290 * rw_devices will not change at the moment, device add/delete/replace 4291 * are exclusive 4292 */ 4293 num_devices = fs_info->fs_devices->rw_devices; 4294 4295 /* 4296 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4297 * special bit for it, to make it easier to distinguish. Thus we need 4298 * to set it manually, or balance would refuse the profile. 4299 */ 4300 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4301 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4302 if (num_devices >= btrfs_raid_array[i].devs_min) 4303 allowed |= btrfs_raid_array[i].bg_flag; 4304 4305 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4306 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4307 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4308 ret = -EINVAL; 4309 goto out; 4310 } 4311 4312 /* 4313 * Allow to reduce metadata or system integrity only if force set for 4314 * profiles with redundancy (copies, parity) 4315 */ 4316 allowed = 0; 4317 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4318 if (btrfs_raid_array[i].ncopies >= 2 || 4319 btrfs_raid_array[i].tolerated_failures >= 1) 4320 allowed |= btrfs_raid_array[i].bg_flag; 4321 } 4322 do { 4323 seq = read_seqbegin(&fs_info->profiles_lock); 4324 4325 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4326 (fs_info->avail_system_alloc_bits & allowed) && 4327 !(bctl->sys.target & allowed)) || 4328 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4329 (fs_info->avail_metadata_alloc_bits & allowed) && 4330 !(bctl->meta.target & allowed))) 4331 reducing_redundancy = true; 4332 else 4333 reducing_redundancy = false; 4334 4335 /* if we're not converting, the target field is uninitialized */ 4336 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4337 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4338 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4339 bctl->data.target : fs_info->avail_data_alloc_bits; 4340 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4341 4342 if (reducing_redundancy) { 4343 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4344 btrfs_info(fs_info, 4345 "balance: force reducing metadata redundancy"); 4346 } else { 4347 btrfs_err(fs_info, 4348 "balance: reduces metadata redundancy, use --force if you want this"); 4349 ret = -EINVAL; 4350 goto out; 4351 } 4352 } 4353 4354 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4355 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4356 btrfs_warn(fs_info, 4357 "balance: metadata profile %s has lower redundancy than data profile %s", 4358 btrfs_bg_type_to_raid_name(meta_target), 4359 btrfs_bg_type_to_raid_name(data_target)); 4360 } 4361 4362 ret = insert_balance_item(fs_info, bctl); 4363 if (ret && ret != -EEXIST) 4364 goto out; 4365 4366 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4367 BUG_ON(ret == -EEXIST); 4368 BUG_ON(fs_info->balance_ctl); 4369 spin_lock(&fs_info->balance_lock); 4370 fs_info->balance_ctl = bctl; 4371 spin_unlock(&fs_info->balance_lock); 4372 } else { 4373 BUG_ON(ret != -EEXIST); 4374 spin_lock(&fs_info->balance_lock); 4375 update_balance_args(bctl); 4376 spin_unlock(&fs_info->balance_lock); 4377 } 4378 4379 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4380 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4381 describe_balance_start_or_resume(fs_info); 4382 mutex_unlock(&fs_info->balance_mutex); 4383 4384 ret = __btrfs_balance(fs_info); 4385 4386 mutex_lock(&fs_info->balance_mutex); 4387 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4388 btrfs_info(fs_info, "balance: paused"); 4389 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4390 } 4391 /* 4392 * Balance can be canceled by: 4393 * 4394 * - Regular cancel request 4395 * Then ret == -ECANCELED and balance_cancel_req > 0 4396 * 4397 * - Fatal signal to "btrfs" process 4398 * Either the signal caught by wait_reserve_ticket() and callers 4399 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4400 * got -ECANCELED. 4401 * Either way, in this case balance_cancel_req = 0, and 4402 * ret == -EINTR or ret == -ECANCELED. 4403 * 4404 * So here we only check the return value to catch canceled balance. 4405 */ 4406 else if (ret == -ECANCELED || ret == -EINTR) 4407 btrfs_info(fs_info, "balance: canceled"); 4408 else 4409 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4410 4411 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4412 4413 if (bargs) { 4414 memset(bargs, 0, sizeof(*bargs)); 4415 btrfs_update_ioctl_balance_args(fs_info, bargs); 4416 } 4417 4418 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4419 balance_need_close(fs_info)) { 4420 reset_balance_state(fs_info); 4421 btrfs_exclop_finish(fs_info); 4422 } 4423 4424 wake_up(&fs_info->balance_wait_q); 4425 4426 return ret; 4427 out: 4428 if (bctl->flags & BTRFS_BALANCE_RESUME) 4429 reset_balance_state(fs_info); 4430 else 4431 kfree(bctl); 4432 btrfs_exclop_finish(fs_info); 4433 4434 return ret; 4435 } 4436 4437 static int balance_kthread(void *data) 4438 { 4439 struct btrfs_fs_info *fs_info = data; 4440 int ret = 0; 4441 4442 mutex_lock(&fs_info->balance_mutex); 4443 if (fs_info->balance_ctl) 4444 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4445 mutex_unlock(&fs_info->balance_mutex); 4446 4447 return ret; 4448 } 4449 4450 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4451 { 4452 struct task_struct *tsk; 4453 4454 mutex_lock(&fs_info->balance_mutex); 4455 if (!fs_info->balance_ctl) { 4456 mutex_unlock(&fs_info->balance_mutex); 4457 return 0; 4458 } 4459 mutex_unlock(&fs_info->balance_mutex); 4460 4461 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4462 btrfs_info(fs_info, "balance: resume skipped"); 4463 return 0; 4464 } 4465 4466 spin_lock(&fs_info->super_lock); 4467 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4468 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4469 spin_unlock(&fs_info->super_lock); 4470 /* 4471 * A ro->rw remount sequence should continue with the paused balance 4472 * regardless of who pauses it, system or the user as of now, so set 4473 * the resume flag. 4474 */ 4475 spin_lock(&fs_info->balance_lock); 4476 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4477 spin_unlock(&fs_info->balance_lock); 4478 4479 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4480 return PTR_ERR_OR_ZERO(tsk); 4481 } 4482 4483 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4484 { 4485 struct btrfs_balance_control *bctl; 4486 struct btrfs_balance_item *item; 4487 struct btrfs_disk_balance_args disk_bargs; 4488 struct btrfs_path *path; 4489 struct extent_buffer *leaf; 4490 struct btrfs_key key; 4491 int ret; 4492 4493 path = btrfs_alloc_path(); 4494 if (!path) 4495 return -ENOMEM; 4496 4497 key.objectid = BTRFS_BALANCE_OBJECTID; 4498 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4499 key.offset = 0; 4500 4501 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4502 if (ret < 0) 4503 goto out; 4504 if (ret > 0) { /* ret = -ENOENT; */ 4505 ret = 0; 4506 goto out; 4507 } 4508 4509 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4510 if (!bctl) { 4511 ret = -ENOMEM; 4512 goto out; 4513 } 4514 4515 leaf = path->nodes[0]; 4516 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4517 4518 bctl->flags = btrfs_balance_flags(leaf, item); 4519 bctl->flags |= BTRFS_BALANCE_RESUME; 4520 4521 btrfs_balance_data(leaf, item, &disk_bargs); 4522 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4523 btrfs_balance_meta(leaf, item, &disk_bargs); 4524 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4525 btrfs_balance_sys(leaf, item, &disk_bargs); 4526 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4527 4528 /* 4529 * This should never happen, as the paused balance state is recovered 4530 * during mount without any chance of other exclusive ops to collide. 4531 * 4532 * This gives the exclusive op status to balance and keeps in paused 4533 * state until user intervention (cancel or umount). If the ownership 4534 * cannot be assigned, show a message but do not fail. The balance 4535 * is in a paused state and must have fs_info::balance_ctl properly 4536 * set up. 4537 */ 4538 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4539 btrfs_warn(fs_info, 4540 "balance: cannot set exclusive op status, resume manually"); 4541 4542 btrfs_release_path(path); 4543 4544 mutex_lock(&fs_info->balance_mutex); 4545 BUG_ON(fs_info->balance_ctl); 4546 spin_lock(&fs_info->balance_lock); 4547 fs_info->balance_ctl = bctl; 4548 spin_unlock(&fs_info->balance_lock); 4549 mutex_unlock(&fs_info->balance_mutex); 4550 out: 4551 btrfs_free_path(path); 4552 return ret; 4553 } 4554 4555 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4556 { 4557 int ret = 0; 4558 4559 mutex_lock(&fs_info->balance_mutex); 4560 if (!fs_info->balance_ctl) { 4561 mutex_unlock(&fs_info->balance_mutex); 4562 return -ENOTCONN; 4563 } 4564 4565 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4566 atomic_inc(&fs_info->balance_pause_req); 4567 mutex_unlock(&fs_info->balance_mutex); 4568 4569 wait_event(fs_info->balance_wait_q, 4570 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4571 4572 mutex_lock(&fs_info->balance_mutex); 4573 /* we are good with balance_ctl ripped off from under us */ 4574 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4575 atomic_dec(&fs_info->balance_pause_req); 4576 } else { 4577 ret = -ENOTCONN; 4578 } 4579 4580 mutex_unlock(&fs_info->balance_mutex); 4581 return ret; 4582 } 4583 4584 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4585 { 4586 mutex_lock(&fs_info->balance_mutex); 4587 if (!fs_info->balance_ctl) { 4588 mutex_unlock(&fs_info->balance_mutex); 4589 return -ENOTCONN; 4590 } 4591 4592 /* 4593 * A paused balance with the item stored on disk can be resumed at 4594 * mount time if the mount is read-write. Otherwise it's still paused 4595 * and we must not allow cancelling as it deletes the item. 4596 */ 4597 if (sb_rdonly(fs_info->sb)) { 4598 mutex_unlock(&fs_info->balance_mutex); 4599 return -EROFS; 4600 } 4601 4602 atomic_inc(&fs_info->balance_cancel_req); 4603 /* 4604 * if we are running just wait and return, balance item is 4605 * deleted in btrfs_balance in this case 4606 */ 4607 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4608 mutex_unlock(&fs_info->balance_mutex); 4609 wait_event(fs_info->balance_wait_q, 4610 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4611 mutex_lock(&fs_info->balance_mutex); 4612 } else { 4613 mutex_unlock(&fs_info->balance_mutex); 4614 /* 4615 * Lock released to allow other waiters to continue, we'll 4616 * reexamine the status again. 4617 */ 4618 mutex_lock(&fs_info->balance_mutex); 4619 4620 if (fs_info->balance_ctl) { 4621 reset_balance_state(fs_info); 4622 btrfs_exclop_finish(fs_info); 4623 btrfs_info(fs_info, "balance: canceled"); 4624 } 4625 } 4626 4627 BUG_ON(fs_info->balance_ctl || 4628 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4629 atomic_dec(&fs_info->balance_cancel_req); 4630 mutex_unlock(&fs_info->balance_mutex); 4631 return 0; 4632 } 4633 4634 int btrfs_uuid_scan_kthread(void *data) 4635 { 4636 struct btrfs_fs_info *fs_info = data; 4637 struct btrfs_root *root = fs_info->tree_root; 4638 struct btrfs_key key; 4639 struct btrfs_path *path = NULL; 4640 int ret = 0; 4641 struct extent_buffer *eb; 4642 int slot; 4643 struct btrfs_root_item root_item; 4644 u32 item_size; 4645 struct btrfs_trans_handle *trans = NULL; 4646 bool closing = false; 4647 4648 path = btrfs_alloc_path(); 4649 if (!path) { 4650 ret = -ENOMEM; 4651 goto out; 4652 } 4653 4654 key.objectid = 0; 4655 key.type = BTRFS_ROOT_ITEM_KEY; 4656 key.offset = 0; 4657 4658 while (1) { 4659 if (btrfs_fs_closing(fs_info)) { 4660 closing = true; 4661 break; 4662 } 4663 ret = btrfs_search_forward(root, &key, path, 4664 BTRFS_OLDEST_GENERATION); 4665 if (ret) { 4666 if (ret > 0) 4667 ret = 0; 4668 break; 4669 } 4670 4671 if (key.type != BTRFS_ROOT_ITEM_KEY || 4672 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4673 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4674 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4675 goto skip; 4676 4677 eb = path->nodes[0]; 4678 slot = path->slots[0]; 4679 item_size = btrfs_item_size(eb, slot); 4680 if (item_size < sizeof(root_item)) 4681 goto skip; 4682 4683 read_extent_buffer(eb, &root_item, 4684 btrfs_item_ptr_offset(eb, slot), 4685 (int)sizeof(root_item)); 4686 if (btrfs_root_refs(&root_item) == 0) 4687 goto skip; 4688 4689 if (!btrfs_is_empty_uuid(root_item.uuid) || 4690 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4691 if (trans) 4692 goto update_tree; 4693 4694 btrfs_release_path(path); 4695 /* 4696 * 1 - subvol uuid item 4697 * 1 - received_subvol uuid item 4698 */ 4699 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4700 if (IS_ERR(trans)) { 4701 ret = PTR_ERR(trans); 4702 break; 4703 } 4704 continue; 4705 } else { 4706 goto skip; 4707 } 4708 update_tree: 4709 btrfs_release_path(path); 4710 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4711 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4712 BTRFS_UUID_KEY_SUBVOL, 4713 key.objectid); 4714 if (ret < 0) { 4715 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4716 ret); 4717 break; 4718 } 4719 } 4720 4721 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4722 ret = btrfs_uuid_tree_add(trans, 4723 root_item.received_uuid, 4724 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4725 key.objectid); 4726 if (ret < 0) { 4727 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4728 ret); 4729 break; 4730 } 4731 } 4732 4733 skip: 4734 btrfs_release_path(path); 4735 if (trans) { 4736 ret = btrfs_end_transaction(trans); 4737 trans = NULL; 4738 if (ret) 4739 break; 4740 } 4741 4742 if (key.offset < (u64)-1) { 4743 key.offset++; 4744 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4745 key.offset = 0; 4746 key.type = BTRFS_ROOT_ITEM_KEY; 4747 } else if (key.objectid < (u64)-1) { 4748 key.offset = 0; 4749 key.type = BTRFS_ROOT_ITEM_KEY; 4750 key.objectid++; 4751 } else { 4752 break; 4753 } 4754 cond_resched(); 4755 } 4756 4757 out: 4758 btrfs_free_path(path); 4759 if (trans && !IS_ERR(trans)) 4760 btrfs_end_transaction(trans); 4761 if (ret) 4762 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4763 else if (!closing) 4764 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4765 up(&fs_info->uuid_tree_rescan_sem); 4766 return 0; 4767 } 4768 4769 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4770 { 4771 struct btrfs_trans_handle *trans; 4772 struct btrfs_root *tree_root = fs_info->tree_root; 4773 struct btrfs_root *uuid_root; 4774 struct task_struct *task; 4775 int ret; 4776 4777 /* 4778 * 1 - root node 4779 * 1 - root item 4780 */ 4781 trans = btrfs_start_transaction(tree_root, 2); 4782 if (IS_ERR(trans)) 4783 return PTR_ERR(trans); 4784 4785 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4786 if (IS_ERR(uuid_root)) { 4787 ret = PTR_ERR(uuid_root); 4788 btrfs_abort_transaction(trans, ret); 4789 btrfs_end_transaction(trans); 4790 return ret; 4791 } 4792 4793 fs_info->uuid_root = uuid_root; 4794 4795 ret = btrfs_commit_transaction(trans); 4796 if (ret) 4797 return ret; 4798 4799 down(&fs_info->uuid_tree_rescan_sem); 4800 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4801 if (IS_ERR(task)) { 4802 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4803 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4804 up(&fs_info->uuid_tree_rescan_sem); 4805 return PTR_ERR(task); 4806 } 4807 4808 return 0; 4809 } 4810 4811 /* 4812 * shrinking a device means finding all of the device extents past 4813 * the new size, and then following the back refs to the chunks. 4814 * The chunk relocation code actually frees the device extent 4815 */ 4816 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4817 { 4818 struct btrfs_fs_info *fs_info = device->fs_info; 4819 struct btrfs_root *root = fs_info->dev_root; 4820 struct btrfs_trans_handle *trans; 4821 struct btrfs_dev_extent *dev_extent = NULL; 4822 struct btrfs_path *path; 4823 u64 length; 4824 u64 chunk_offset; 4825 int ret; 4826 int slot; 4827 int failed = 0; 4828 bool retried = false; 4829 struct extent_buffer *l; 4830 struct btrfs_key key; 4831 struct btrfs_super_block *super_copy = fs_info->super_copy; 4832 u64 old_total = btrfs_super_total_bytes(super_copy); 4833 u64 old_size = btrfs_device_get_total_bytes(device); 4834 u64 diff; 4835 u64 start; 4836 4837 new_size = round_down(new_size, fs_info->sectorsize); 4838 start = new_size; 4839 diff = round_down(old_size - new_size, fs_info->sectorsize); 4840 4841 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4842 return -EINVAL; 4843 4844 path = btrfs_alloc_path(); 4845 if (!path) 4846 return -ENOMEM; 4847 4848 path->reada = READA_BACK; 4849 4850 trans = btrfs_start_transaction(root, 0); 4851 if (IS_ERR(trans)) { 4852 btrfs_free_path(path); 4853 return PTR_ERR(trans); 4854 } 4855 4856 mutex_lock(&fs_info->chunk_mutex); 4857 4858 btrfs_device_set_total_bytes(device, new_size); 4859 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4860 device->fs_devices->total_rw_bytes -= diff; 4861 atomic64_sub(diff, &fs_info->free_chunk_space); 4862 } 4863 4864 /* 4865 * Once the device's size has been set to the new size, ensure all 4866 * in-memory chunks are synced to disk so that the loop below sees them 4867 * and relocates them accordingly. 4868 */ 4869 if (contains_pending_extent(device, &start, diff)) { 4870 mutex_unlock(&fs_info->chunk_mutex); 4871 ret = btrfs_commit_transaction(trans); 4872 if (ret) 4873 goto done; 4874 } else { 4875 mutex_unlock(&fs_info->chunk_mutex); 4876 btrfs_end_transaction(trans); 4877 } 4878 4879 again: 4880 key.objectid = device->devid; 4881 key.offset = (u64)-1; 4882 key.type = BTRFS_DEV_EXTENT_KEY; 4883 4884 do { 4885 mutex_lock(&fs_info->reclaim_bgs_lock); 4886 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4887 if (ret < 0) { 4888 mutex_unlock(&fs_info->reclaim_bgs_lock); 4889 goto done; 4890 } 4891 4892 ret = btrfs_previous_item(root, path, 0, key.type); 4893 if (ret) { 4894 mutex_unlock(&fs_info->reclaim_bgs_lock); 4895 if (ret < 0) 4896 goto done; 4897 ret = 0; 4898 btrfs_release_path(path); 4899 break; 4900 } 4901 4902 l = path->nodes[0]; 4903 slot = path->slots[0]; 4904 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4905 4906 if (key.objectid != device->devid) { 4907 mutex_unlock(&fs_info->reclaim_bgs_lock); 4908 btrfs_release_path(path); 4909 break; 4910 } 4911 4912 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4913 length = btrfs_dev_extent_length(l, dev_extent); 4914 4915 if (key.offset + length <= new_size) { 4916 mutex_unlock(&fs_info->reclaim_bgs_lock); 4917 btrfs_release_path(path); 4918 break; 4919 } 4920 4921 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4922 btrfs_release_path(path); 4923 4924 /* 4925 * We may be relocating the only data chunk we have, 4926 * which could potentially end up with losing data's 4927 * raid profile, so lets allocate an empty one in 4928 * advance. 4929 */ 4930 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4931 if (ret < 0) { 4932 mutex_unlock(&fs_info->reclaim_bgs_lock); 4933 goto done; 4934 } 4935 4936 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4937 mutex_unlock(&fs_info->reclaim_bgs_lock); 4938 if (ret == -ENOSPC) { 4939 failed++; 4940 } else if (ret) { 4941 if (ret == -ETXTBSY) { 4942 btrfs_warn(fs_info, 4943 "could not shrink block group %llu due to active swapfile", 4944 chunk_offset); 4945 } 4946 goto done; 4947 } 4948 } while (key.offset-- > 0); 4949 4950 if (failed && !retried) { 4951 failed = 0; 4952 retried = true; 4953 goto again; 4954 } else if (failed && retried) { 4955 ret = -ENOSPC; 4956 goto done; 4957 } 4958 4959 /* Shrinking succeeded, else we would be at "done". */ 4960 trans = btrfs_start_transaction(root, 0); 4961 if (IS_ERR(trans)) { 4962 ret = PTR_ERR(trans); 4963 goto done; 4964 } 4965 4966 mutex_lock(&fs_info->chunk_mutex); 4967 /* Clear all state bits beyond the shrunk device size */ 4968 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4969 CHUNK_STATE_MASK); 4970 4971 btrfs_device_set_disk_total_bytes(device, new_size); 4972 if (list_empty(&device->post_commit_list)) 4973 list_add_tail(&device->post_commit_list, 4974 &trans->transaction->dev_update_list); 4975 4976 WARN_ON(diff > old_total); 4977 btrfs_set_super_total_bytes(super_copy, 4978 round_down(old_total - diff, fs_info->sectorsize)); 4979 mutex_unlock(&fs_info->chunk_mutex); 4980 4981 btrfs_reserve_chunk_metadata(trans, false); 4982 /* Now btrfs_update_device() will change the on-disk size. */ 4983 ret = btrfs_update_device(trans, device); 4984 btrfs_trans_release_chunk_metadata(trans); 4985 if (ret < 0) { 4986 btrfs_abort_transaction(trans, ret); 4987 btrfs_end_transaction(trans); 4988 } else { 4989 ret = btrfs_commit_transaction(trans); 4990 } 4991 done: 4992 btrfs_free_path(path); 4993 if (ret) { 4994 mutex_lock(&fs_info->chunk_mutex); 4995 btrfs_device_set_total_bytes(device, old_size); 4996 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4997 device->fs_devices->total_rw_bytes += diff; 4998 atomic64_add(diff, &fs_info->free_chunk_space); 4999 mutex_unlock(&fs_info->chunk_mutex); 5000 } 5001 return ret; 5002 } 5003 5004 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5005 struct btrfs_key *key, 5006 struct btrfs_chunk *chunk, int item_size) 5007 { 5008 struct btrfs_super_block *super_copy = fs_info->super_copy; 5009 struct btrfs_disk_key disk_key; 5010 u32 array_size; 5011 u8 *ptr; 5012 5013 lockdep_assert_held(&fs_info->chunk_mutex); 5014 5015 array_size = btrfs_super_sys_array_size(super_copy); 5016 if (array_size + item_size + sizeof(disk_key) 5017 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5018 return -EFBIG; 5019 5020 ptr = super_copy->sys_chunk_array + array_size; 5021 btrfs_cpu_key_to_disk(&disk_key, key); 5022 memcpy(ptr, &disk_key, sizeof(disk_key)); 5023 ptr += sizeof(disk_key); 5024 memcpy(ptr, chunk, item_size); 5025 item_size += sizeof(disk_key); 5026 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5027 5028 return 0; 5029 } 5030 5031 /* 5032 * sort the devices in descending order by max_avail, total_avail 5033 */ 5034 static int btrfs_cmp_device_info(const void *a, const void *b) 5035 { 5036 const struct btrfs_device_info *di_a = a; 5037 const struct btrfs_device_info *di_b = b; 5038 5039 if (di_a->max_avail > di_b->max_avail) 5040 return -1; 5041 if (di_a->max_avail < di_b->max_avail) 5042 return 1; 5043 if (di_a->total_avail > di_b->total_avail) 5044 return -1; 5045 if (di_a->total_avail < di_b->total_avail) 5046 return 1; 5047 return 0; 5048 } 5049 5050 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5051 { 5052 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5053 return; 5054 5055 btrfs_set_fs_incompat(info, RAID56); 5056 } 5057 5058 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5059 { 5060 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5061 return; 5062 5063 btrfs_set_fs_incompat(info, RAID1C34); 5064 } 5065 5066 /* 5067 * Structure used internally for btrfs_create_chunk() function. 5068 * Wraps needed parameters. 5069 */ 5070 struct alloc_chunk_ctl { 5071 u64 start; 5072 u64 type; 5073 /* Total number of stripes to allocate */ 5074 int num_stripes; 5075 /* sub_stripes info for map */ 5076 int sub_stripes; 5077 /* Stripes per device */ 5078 int dev_stripes; 5079 /* Maximum number of devices to use */ 5080 int devs_max; 5081 /* Minimum number of devices to use */ 5082 int devs_min; 5083 /* ndevs has to be a multiple of this */ 5084 int devs_increment; 5085 /* Number of copies */ 5086 int ncopies; 5087 /* Number of stripes worth of bytes to store parity information */ 5088 int nparity; 5089 u64 max_stripe_size; 5090 u64 max_chunk_size; 5091 u64 dev_extent_min; 5092 u64 stripe_size; 5093 u64 chunk_size; 5094 int ndevs; 5095 }; 5096 5097 static void init_alloc_chunk_ctl_policy_regular( 5098 struct btrfs_fs_devices *fs_devices, 5099 struct alloc_chunk_ctl *ctl) 5100 { 5101 u64 type = ctl->type; 5102 5103 if (type & BTRFS_BLOCK_GROUP_DATA) { 5104 ctl->max_stripe_size = SZ_1G; 5105 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 5106 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5107 /* For larger filesystems, use larger metadata chunks */ 5108 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 5109 ctl->max_stripe_size = SZ_1G; 5110 else 5111 ctl->max_stripe_size = SZ_256M; 5112 ctl->max_chunk_size = ctl->max_stripe_size; 5113 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5114 ctl->max_stripe_size = SZ_32M; 5115 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5116 ctl->devs_max = min_t(int, ctl->devs_max, 5117 BTRFS_MAX_DEVS_SYS_CHUNK); 5118 } else { 5119 BUG(); 5120 } 5121 5122 /* We don't want a chunk larger than 10% of writable space */ 5123 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 5124 ctl->max_chunk_size); 5125 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 5126 } 5127 5128 static void init_alloc_chunk_ctl_policy_zoned( 5129 struct btrfs_fs_devices *fs_devices, 5130 struct alloc_chunk_ctl *ctl) 5131 { 5132 u64 zone_size = fs_devices->fs_info->zone_size; 5133 u64 limit; 5134 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5135 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5136 u64 min_chunk_size = min_data_stripes * zone_size; 5137 u64 type = ctl->type; 5138 5139 ctl->max_stripe_size = zone_size; 5140 if (type & BTRFS_BLOCK_GROUP_DATA) { 5141 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5142 zone_size); 5143 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5144 ctl->max_chunk_size = ctl->max_stripe_size; 5145 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5146 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5147 ctl->devs_max = min_t(int, ctl->devs_max, 5148 BTRFS_MAX_DEVS_SYS_CHUNK); 5149 } else { 5150 BUG(); 5151 } 5152 5153 /* We don't want a chunk larger than 10% of writable space */ 5154 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1), 5155 zone_size), 5156 min_chunk_size); 5157 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5158 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5159 } 5160 5161 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5162 struct alloc_chunk_ctl *ctl) 5163 { 5164 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5165 5166 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5167 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5168 ctl->devs_max = btrfs_raid_array[index].devs_max; 5169 if (!ctl->devs_max) 5170 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5171 ctl->devs_min = btrfs_raid_array[index].devs_min; 5172 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5173 ctl->ncopies = btrfs_raid_array[index].ncopies; 5174 ctl->nparity = btrfs_raid_array[index].nparity; 5175 ctl->ndevs = 0; 5176 5177 switch (fs_devices->chunk_alloc_policy) { 5178 case BTRFS_CHUNK_ALLOC_REGULAR: 5179 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5180 break; 5181 case BTRFS_CHUNK_ALLOC_ZONED: 5182 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5183 break; 5184 default: 5185 BUG(); 5186 } 5187 } 5188 5189 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5190 struct alloc_chunk_ctl *ctl, 5191 struct btrfs_device_info *devices_info) 5192 { 5193 struct btrfs_fs_info *info = fs_devices->fs_info; 5194 struct btrfs_device *device; 5195 u64 total_avail; 5196 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5197 int ret; 5198 int ndevs = 0; 5199 u64 max_avail; 5200 u64 dev_offset; 5201 5202 /* 5203 * in the first pass through the devices list, we gather information 5204 * about the available holes on each device. 5205 */ 5206 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5207 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5208 WARN(1, KERN_ERR 5209 "BTRFS: read-only device in alloc_list\n"); 5210 continue; 5211 } 5212 5213 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5214 &device->dev_state) || 5215 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5216 continue; 5217 5218 if (device->total_bytes > device->bytes_used) 5219 total_avail = device->total_bytes - device->bytes_used; 5220 else 5221 total_avail = 0; 5222 5223 /* If there is no space on this device, skip it. */ 5224 if (total_avail < ctl->dev_extent_min) 5225 continue; 5226 5227 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5228 &max_avail); 5229 if (ret && ret != -ENOSPC) 5230 return ret; 5231 5232 if (ret == 0) 5233 max_avail = dev_extent_want; 5234 5235 if (max_avail < ctl->dev_extent_min) { 5236 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5237 btrfs_debug(info, 5238 "%s: devid %llu has no free space, have=%llu want=%llu", 5239 __func__, device->devid, max_avail, 5240 ctl->dev_extent_min); 5241 continue; 5242 } 5243 5244 if (ndevs == fs_devices->rw_devices) { 5245 WARN(1, "%s: found more than %llu devices\n", 5246 __func__, fs_devices->rw_devices); 5247 break; 5248 } 5249 devices_info[ndevs].dev_offset = dev_offset; 5250 devices_info[ndevs].max_avail = max_avail; 5251 devices_info[ndevs].total_avail = total_avail; 5252 devices_info[ndevs].dev = device; 5253 ++ndevs; 5254 } 5255 ctl->ndevs = ndevs; 5256 5257 /* 5258 * now sort the devices by hole size / available space 5259 */ 5260 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5261 btrfs_cmp_device_info, NULL); 5262 5263 return 0; 5264 } 5265 5266 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5267 struct btrfs_device_info *devices_info) 5268 { 5269 /* Number of stripes that count for block group size */ 5270 int data_stripes; 5271 5272 /* 5273 * The primary goal is to maximize the number of stripes, so use as 5274 * many devices as possible, even if the stripes are not maximum sized. 5275 * 5276 * The DUP profile stores more than one stripe per device, the 5277 * max_avail is the total size so we have to adjust. 5278 */ 5279 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5280 ctl->dev_stripes); 5281 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5282 5283 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5284 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5285 5286 /* 5287 * Use the number of data stripes to figure out how big this chunk is 5288 * really going to be in terms of logical address space, and compare 5289 * that answer with the max chunk size. If it's higher, we try to 5290 * reduce stripe_size. 5291 */ 5292 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5293 /* 5294 * Reduce stripe_size, round it up to a 16MB boundary again and 5295 * then use it, unless it ends up being even bigger than the 5296 * previous value we had already. 5297 */ 5298 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5299 data_stripes), SZ_16M), 5300 ctl->stripe_size); 5301 } 5302 5303 /* Align to BTRFS_STRIPE_LEN */ 5304 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5305 ctl->chunk_size = ctl->stripe_size * data_stripes; 5306 5307 return 0; 5308 } 5309 5310 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5311 struct btrfs_device_info *devices_info) 5312 { 5313 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5314 /* Number of stripes that count for block group size */ 5315 int data_stripes; 5316 5317 /* 5318 * It should hold because: 5319 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5320 */ 5321 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5322 5323 ctl->stripe_size = zone_size; 5324 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5325 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5326 5327 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5328 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5329 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5330 ctl->stripe_size) + ctl->nparity, 5331 ctl->dev_stripes); 5332 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5333 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5334 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5335 } 5336 5337 ctl->chunk_size = ctl->stripe_size * data_stripes; 5338 5339 return 0; 5340 } 5341 5342 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5343 struct alloc_chunk_ctl *ctl, 5344 struct btrfs_device_info *devices_info) 5345 { 5346 struct btrfs_fs_info *info = fs_devices->fs_info; 5347 5348 /* 5349 * Round down to number of usable stripes, devs_increment can be any 5350 * number so we can't use round_down() that requires power of 2, while 5351 * rounddown is safe. 5352 */ 5353 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5354 5355 if (ctl->ndevs < ctl->devs_min) { 5356 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5357 btrfs_debug(info, 5358 "%s: not enough devices with free space: have=%d minimum required=%d", 5359 __func__, ctl->ndevs, ctl->devs_min); 5360 } 5361 return -ENOSPC; 5362 } 5363 5364 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5365 5366 switch (fs_devices->chunk_alloc_policy) { 5367 case BTRFS_CHUNK_ALLOC_REGULAR: 5368 return decide_stripe_size_regular(ctl, devices_info); 5369 case BTRFS_CHUNK_ALLOC_ZONED: 5370 return decide_stripe_size_zoned(ctl, devices_info); 5371 default: 5372 BUG(); 5373 } 5374 } 5375 5376 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5377 struct alloc_chunk_ctl *ctl, 5378 struct btrfs_device_info *devices_info) 5379 { 5380 struct btrfs_fs_info *info = trans->fs_info; 5381 struct map_lookup *map = NULL; 5382 struct extent_map_tree *em_tree; 5383 struct btrfs_block_group *block_group; 5384 struct extent_map *em; 5385 u64 start = ctl->start; 5386 u64 type = ctl->type; 5387 int ret; 5388 int i; 5389 int j; 5390 5391 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5392 if (!map) 5393 return ERR_PTR(-ENOMEM); 5394 map->num_stripes = ctl->num_stripes; 5395 5396 for (i = 0; i < ctl->ndevs; ++i) { 5397 for (j = 0; j < ctl->dev_stripes; ++j) { 5398 int s = i * ctl->dev_stripes + j; 5399 map->stripes[s].dev = devices_info[i].dev; 5400 map->stripes[s].physical = devices_info[i].dev_offset + 5401 j * ctl->stripe_size; 5402 } 5403 } 5404 map->stripe_len = BTRFS_STRIPE_LEN; 5405 map->io_align = BTRFS_STRIPE_LEN; 5406 map->io_width = BTRFS_STRIPE_LEN; 5407 map->type = type; 5408 map->sub_stripes = ctl->sub_stripes; 5409 5410 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5411 5412 em = alloc_extent_map(); 5413 if (!em) { 5414 kfree(map); 5415 return ERR_PTR(-ENOMEM); 5416 } 5417 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5418 em->map_lookup = map; 5419 em->start = start; 5420 em->len = ctl->chunk_size; 5421 em->block_start = 0; 5422 em->block_len = em->len; 5423 em->orig_block_len = ctl->stripe_size; 5424 5425 em_tree = &info->mapping_tree; 5426 write_lock(&em_tree->lock); 5427 ret = add_extent_mapping(em_tree, em, 0); 5428 if (ret) { 5429 write_unlock(&em_tree->lock); 5430 free_extent_map(em); 5431 return ERR_PTR(ret); 5432 } 5433 write_unlock(&em_tree->lock); 5434 5435 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5436 if (IS_ERR(block_group)) 5437 goto error_del_extent; 5438 5439 for (i = 0; i < map->num_stripes; i++) { 5440 struct btrfs_device *dev = map->stripes[i].dev; 5441 5442 btrfs_device_set_bytes_used(dev, 5443 dev->bytes_used + ctl->stripe_size); 5444 if (list_empty(&dev->post_commit_list)) 5445 list_add_tail(&dev->post_commit_list, 5446 &trans->transaction->dev_update_list); 5447 } 5448 5449 atomic64_sub(ctl->stripe_size * map->num_stripes, 5450 &info->free_chunk_space); 5451 5452 free_extent_map(em); 5453 check_raid56_incompat_flag(info, type); 5454 check_raid1c34_incompat_flag(info, type); 5455 5456 return block_group; 5457 5458 error_del_extent: 5459 write_lock(&em_tree->lock); 5460 remove_extent_mapping(em_tree, em); 5461 write_unlock(&em_tree->lock); 5462 5463 /* One for our allocation */ 5464 free_extent_map(em); 5465 /* One for the tree reference */ 5466 free_extent_map(em); 5467 5468 return block_group; 5469 } 5470 5471 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5472 u64 type) 5473 { 5474 struct btrfs_fs_info *info = trans->fs_info; 5475 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5476 struct btrfs_device_info *devices_info = NULL; 5477 struct alloc_chunk_ctl ctl; 5478 struct btrfs_block_group *block_group; 5479 int ret; 5480 5481 lockdep_assert_held(&info->chunk_mutex); 5482 5483 if (!alloc_profile_is_valid(type, 0)) { 5484 ASSERT(0); 5485 return ERR_PTR(-EINVAL); 5486 } 5487 5488 if (list_empty(&fs_devices->alloc_list)) { 5489 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5490 btrfs_debug(info, "%s: no writable device", __func__); 5491 return ERR_PTR(-ENOSPC); 5492 } 5493 5494 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5495 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5496 ASSERT(0); 5497 return ERR_PTR(-EINVAL); 5498 } 5499 5500 ctl.start = find_next_chunk(info); 5501 ctl.type = type; 5502 init_alloc_chunk_ctl(fs_devices, &ctl); 5503 5504 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5505 GFP_NOFS); 5506 if (!devices_info) 5507 return ERR_PTR(-ENOMEM); 5508 5509 ret = gather_device_info(fs_devices, &ctl, devices_info); 5510 if (ret < 0) { 5511 block_group = ERR_PTR(ret); 5512 goto out; 5513 } 5514 5515 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5516 if (ret < 0) { 5517 block_group = ERR_PTR(ret); 5518 goto out; 5519 } 5520 5521 block_group = create_chunk(trans, &ctl, devices_info); 5522 5523 out: 5524 kfree(devices_info); 5525 return block_group; 5526 } 5527 5528 /* 5529 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5530 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5531 * chunks. 5532 * 5533 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5534 * phases. 5535 */ 5536 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5537 struct btrfs_block_group *bg) 5538 { 5539 struct btrfs_fs_info *fs_info = trans->fs_info; 5540 struct btrfs_root *chunk_root = fs_info->chunk_root; 5541 struct btrfs_key key; 5542 struct btrfs_chunk *chunk; 5543 struct btrfs_stripe *stripe; 5544 struct extent_map *em; 5545 struct map_lookup *map; 5546 size_t item_size; 5547 int i; 5548 int ret; 5549 5550 /* 5551 * We take the chunk_mutex for 2 reasons: 5552 * 5553 * 1) Updates and insertions in the chunk btree must be done while holding 5554 * the chunk_mutex, as well as updating the system chunk array in the 5555 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5556 * details; 5557 * 5558 * 2) To prevent races with the final phase of a device replace operation 5559 * that replaces the device object associated with the map's stripes, 5560 * because the device object's id can change at any time during that 5561 * final phase of the device replace operation 5562 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5563 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5564 * which would cause a failure when updating the device item, which does 5565 * not exists, or persisting a stripe of the chunk item with such ID. 5566 * Here we can't use the device_list_mutex because our caller already 5567 * has locked the chunk_mutex, and the final phase of device replace 5568 * acquires both mutexes - first the device_list_mutex and then the 5569 * chunk_mutex. Using any of those two mutexes protects us from a 5570 * concurrent device replace. 5571 */ 5572 lockdep_assert_held(&fs_info->chunk_mutex); 5573 5574 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5575 if (IS_ERR(em)) { 5576 ret = PTR_ERR(em); 5577 btrfs_abort_transaction(trans, ret); 5578 return ret; 5579 } 5580 5581 map = em->map_lookup; 5582 item_size = btrfs_chunk_item_size(map->num_stripes); 5583 5584 chunk = kzalloc(item_size, GFP_NOFS); 5585 if (!chunk) { 5586 ret = -ENOMEM; 5587 btrfs_abort_transaction(trans, ret); 5588 goto out; 5589 } 5590 5591 for (i = 0; i < map->num_stripes; i++) { 5592 struct btrfs_device *device = map->stripes[i].dev; 5593 5594 ret = btrfs_update_device(trans, device); 5595 if (ret) 5596 goto out; 5597 } 5598 5599 stripe = &chunk->stripe; 5600 for (i = 0; i < map->num_stripes; i++) { 5601 struct btrfs_device *device = map->stripes[i].dev; 5602 const u64 dev_offset = map->stripes[i].physical; 5603 5604 btrfs_set_stack_stripe_devid(stripe, device->devid); 5605 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5606 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5607 stripe++; 5608 } 5609 5610 btrfs_set_stack_chunk_length(chunk, bg->length); 5611 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5612 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5613 btrfs_set_stack_chunk_type(chunk, map->type); 5614 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5615 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5616 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5617 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5618 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5619 5620 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5621 key.type = BTRFS_CHUNK_ITEM_KEY; 5622 key.offset = bg->start; 5623 5624 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5625 if (ret) 5626 goto out; 5627 5628 bg->chunk_item_inserted = 1; 5629 5630 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5631 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5632 if (ret) 5633 goto out; 5634 } 5635 5636 out: 5637 kfree(chunk); 5638 free_extent_map(em); 5639 return ret; 5640 } 5641 5642 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5643 { 5644 struct btrfs_fs_info *fs_info = trans->fs_info; 5645 u64 alloc_profile; 5646 struct btrfs_block_group *meta_bg; 5647 struct btrfs_block_group *sys_bg; 5648 5649 /* 5650 * When adding a new device for sprouting, the seed device is read-only 5651 * so we must first allocate a metadata and a system chunk. But before 5652 * adding the block group items to the extent, device and chunk btrees, 5653 * we must first: 5654 * 5655 * 1) Create both chunks without doing any changes to the btrees, as 5656 * otherwise we would get -ENOSPC since the block groups from the 5657 * seed device are read-only; 5658 * 5659 * 2) Add the device item for the new sprout device - finishing the setup 5660 * of a new block group requires updating the device item in the chunk 5661 * btree, so it must exist when we attempt to do it. The previous step 5662 * ensures this does not fail with -ENOSPC. 5663 * 5664 * After that we can add the block group items to their btrees: 5665 * update existing device item in the chunk btree, add a new block group 5666 * item to the extent btree, add a new chunk item to the chunk btree and 5667 * finally add the new device extent items to the devices btree. 5668 */ 5669 5670 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5671 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5672 if (IS_ERR(meta_bg)) 5673 return PTR_ERR(meta_bg); 5674 5675 alloc_profile = btrfs_system_alloc_profile(fs_info); 5676 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5677 if (IS_ERR(sys_bg)) 5678 return PTR_ERR(sys_bg); 5679 5680 return 0; 5681 } 5682 5683 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5684 { 5685 const int index = btrfs_bg_flags_to_raid_index(map->type); 5686 5687 return btrfs_raid_array[index].tolerated_failures; 5688 } 5689 5690 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5691 { 5692 struct extent_map *em; 5693 struct map_lookup *map; 5694 int miss_ndevs = 0; 5695 int i; 5696 bool ret = true; 5697 5698 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5699 if (IS_ERR(em)) 5700 return false; 5701 5702 map = em->map_lookup; 5703 for (i = 0; i < map->num_stripes; i++) { 5704 if (test_bit(BTRFS_DEV_STATE_MISSING, 5705 &map->stripes[i].dev->dev_state)) { 5706 miss_ndevs++; 5707 continue; 5708 } 5709 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5710 &map->stripes[i].dev->dev_state)) { 5711 ret = false; 5712 goto end; 5713 } 5714 } 5715 5716 /* 5717 * If the number of missing devices is larger than max errors, we can 5718 * not write the data into that chunk successfully. 5719 */ 5720 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5721 ret = false; 5722 end: 5723 free_extent_map(em); 5724 return ret; 5725 } 5726 5727 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5728 { 5729 struct extent_map *em; 5730 5731 while (1) { 5732 write_lock(&tree->lock); 5733 em = lookup_extent_mapping(tree, 0, (u64)-1); 5734 if (em) 5735 remove_extent_mapping(tree, em); 5736 write_unlock(&tree->lock); 5737 if (!em) 5738 break; 5739 /* once for us */ 5740 free_extent_map(em); 5741 /* once for the tree */ 5742 free_extent_map(em); 5743 } 5744 } 5745 5746 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5747 { 5748 struct extent_map *em; 5749 struct map_lookup *map; 5750 int ret; 5751 5752 em = btrfs_get_chunk_map(fs_info, logical, len); 5753 if (IS_ERR(em)) 5754 /* 5755 * We could return errors for these cases, but that could get 5756 * ugly and we'd probably do the same thing which is just not do 5757 * anything else and exit, so return 1 so the callers don't try 5758 * to use other copies. 5759 */ 5760 return 1; 5761 5762 map = em->map_lookup; 5763 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5764 ret = map->num_stripes; 5765 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5766 ret = map->sub_stripes; 5767 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5768 ret = 2; 5769 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5770 /* 5771 * There could be two corrupted data stripes, we need 5772 * to loop retry in order to rebuild the correct data. 5773 * 5774 * Fail a stripe at a time on every retry except the 5775 * stripe under reconstruction. 5776 */ 5777 ret = map->num_stripes; 5778 else 5779 ret = 1; 5780 free_extent_map(em); 5781 5782 down_read(&fs_info->dev_replace.rwsem); 5783 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5784 fs_info->dev_replace.tgtdev) 5785 ret++; 5786 up_read(&fs_info->dev_replace.rwsem); 5787 5788 return ret; 5789 } 5790 5791 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5792 u64 logical) 5793 { 5794 struct extent_map *em; 5795 struct map_lookup *map; 5796 unsigned long len = fs_info->sectorsize; 5797 5798 em = btrfs_get_chunk_map(fs_info, logical, len); 5799 5800 if (!WARN_ON(IS_ERR(em))) { 5801 map = em->map_lookup; 5802 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5803 len = map->stripe_len * nr_data_stripes(map); 5804 free_extent_map(em); 5805 } 5806 return len; 5807 } 5808 5809 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5810 { 5811 struct extent_map *em; 5812 struct map_lookup *map; 5813 int ret = 0; 5814 5815 em = btrfs_get_chunk_map(fs_info, logical, len); 5816 5817 if(!WARN_ON(IS_ERR(em))) { 5818 map = em->map_lookup; 5819 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5820 ret = 1; 5821 free_extent_map(em); 5822 } 5823 return ret; 5824 } 5825 5826 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5827 struct map_lookup *map, int first, 5828 int dev_replace_is_ongoing) 5829 { 5830 int i; 5831 int num_stripes; 5832 int preferred_mirror; 5833 int tolerance; 5834 struct btrfs_device *srcdev; 5835 5836 ASSERT((map->type & 5837 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5838 5839 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5840 num_stripes = map->sub_stripes; 5841 else 5842 num_stripes = map->num_stripes; 5843 5844 switch (fs_info->fs_devices->read_policy) { 5845 default: 5846 /* Shouldn't happen, just warn and use pid instead of failing */ 5847 btrfs_warn_rl(fs_info, 5848 "unknown read_policy type %u, reset to pid", 5849 fs_info->fs_devices->read_policy); 5850 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5851 fallthrough; 5852 case BTRFS_READ_POLICY_PID: 5853 preferred_mirror = first + (current->pid % num_stripes); 5854 break; 5855 } 5856 5857 if (dev_replace_is_ongoing && 5858 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5859 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5860 srcdev = fs_info->dev_replace.srcdev; 5861 else 5862 srcdev = NULL; 5863 5864 /* 5865 * try to avoid the drive that is the source drive for a 5866 * dev-replace procedure, only choose it if no other non-missing 5867 * mirror is available 5868 */ 5869 for (tolerance = 0; tolerance < 2; tolerance++) { 5870 if (map->stripes[preferred_mirror].dev->bdev && 5871 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5872 return preferred_mirror; 5873 for (i = first; i < first + num_stripes; i++) { 5874 if (map->stripes[i].dev->bdev && 5875 (tolerance || map->stripes[i].dev != srcdev)) 5876 return i; 5877 } 5878 } 5879 5880 /* we couldn't find one that doesn't fail. Just return something 5881 * and the io error handling code will clean up eventually 5882 */ 5883 return preferred_mirror; 5884 } 5885 5886 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5887 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes) 5888 { 5889 int i; 5890 int again = 1; 5891 5892 while (again) { 5893 again = 0; 5894 for (i = 0; i < num_stripes - 1; i++) { 5895 /* Swap if parity is on a smaller index */ 5896 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) { 5897 swap(bioc->stripes[i], bioc->stripes[i + 1]); 5898 swap(bioc->raid_map[i], bioc->raid_map[i + 1]); 5899 again = 1; 5900 } 5901 } 5902 } 5903 } 5904 5905 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5906 int total_stripes, 5907 int real_stripes) 5908 { 5909 struct btrfs_io_context *bioc = kzalloc( 5910 /* The size of btrfs_io_context */ 5911 sizeof(struct btrfs_io_context) + 5912 /* Plus the variable array for the stripes */ 5913 sizeof(struct btrfs_io_stripe) * (total_stripes) + 5914 /* Plus the variable array for the tgt dev */ 5915 sizeof(int) * (real_stripes) + 5916 /* 5917 * Plus the raid_map, which includes both the tgt dev 5918 * and the stripes. 5919 */ 5920 sizeof(u64) * (total_stripes), 5921 GFP_NOFS|__GFP_NOFAIL); 5922 5923 atomic_set(&bioc->error, 0); 5924 refcount_set(&bioc->refs, 1); 5925 5926 bioc->fs_info = fs_info; 5927 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes); 5928 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes); 5929 5930 return bioc; 5931 } 5932 5933 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5934 { 5935 WARN_ON(!refcount_read(&bioc->refs)); 5936 refcount_inc(&bioc->refs); 5937 } 5938 5939 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5940 { 5941 if (!bioc) 5942 return; 5943 if (refcount_dec_and_test(&bioc->refs)) 5944 kfree(bioc); 5945 } 5946 5947 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5948 /* 5949 * Please note that, discard won't be sent to target device of device 5950 * replace. 5951 */ 5952 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5953 u64 logical, u64 *length_ret, 5954 struct btrfs_io_context **bioc_ret) 5955 { 5956 struct extent_map *em; 5957 struct map_lookup *map; 5958 struct btrfs_io_context *bioc; 5959 u64 length = *length_ret; 5960 u64 offset; 5961 u64 stripe_nr; 5962 u64 stripe_nr_end; 5963 u64 stripe_end_offset; 5964 u64 stripe_cnt; 5965 u64 stripe_len; 5966 u64 stripe_offset; 5967 u64 num_stripes; 5968 u32 stripe_index; 5969 u32 factor = 0; 5970 u32 sub_stripes = 0; 5971 u64 stripes_per_dev = 0; 5972 u32 remaining_stripes = 0; 5973 u32 last_stripe = 0; 5974 int ret = 0; 5975 int i; 5976 5977 /* Discard always returns a bioc. */ 5978 ASSERT(bioc_ret); 5979 5980 em = btrfs_get_chunk_map(fs_info, logical, length); 5981 if (IS_ERR(em)) 5982 return PTR_ERR(em); 5983 5984 map = em->map_lookup; 5985 /* we don't discard raid56 yet */ 5986 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5987 ret = -EOPNOTSUPP; 5988 goto out; 5989 } 5990 5991 offset = logical - em->start; 5992 length = min_t(u64, em->start + em->len - logical, length); 5993 *length_ret = length; 5994 5995 stripe_len = map->stripe_len; 5996 /* 5997 * stripe_nr counts the total number of stripes we have to stride 5998 * to get to this block 5999 */ 6000 stripe_nr = div64_u64(offset, stripe_len); 6001 6002 /* stripe_offset is the offset of this block in its stripe */ 6003 stripe_offset = offset - stripe_nr * stripe_len; 6004 6005 stripe_nr_end = round_up(offset + length, map->stripe_len); 6006 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 6007 stripe_cnt = stripe_nr_end - stripe_nr; 6008 stripe_end_offset = stripe_nr_end * map->stripe_len - 6009 (offset + length); 6010 /* 6011 * after this, stripe_nr is the number of stripes on this 6012 * device we have to walk to find the data, and stripe_index is 6013 * the number of our device in the stripe array 6014 */ 6015 num_stripes = 1; 6016 stripe_index = 0; 6017 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6018 BTRFS_BLOCK_GROUP_RAID10)) { 6019 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6020 sub_stripes = 1; 6021 else 6022 sub_stripes = map->sub_stripes; 6023 6024 factor = map->num_stripes / sub_stripes; 6025 num_stripes = min_t(u64, map->num_stripes, 6026 sub_stripes * stripe_cnt); 6027 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6028 stripe_index *= sub_stripes; 6029 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 6030 &remaining_stripes); 6031 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 6032 last_stripe *= sub_stripes; 6033 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6034 BTRFS_BLOCK_GROUP_DUP)) { 6035 num_stripes = map->num_stripes; 6036 } else { 6037 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6038 &stripe_index); 6039 } 6040 6041 bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0); 6042 if (!bioc) { 6043 ret = -ENOMEM; 6044 goto out; 6045 } 6046 6047 for (i = 0; i < num_stripes; i++) { 6048 bioc->stripes[i].physical = 6049 map->stripes[stripe_index].physical + 6050 stripe_offset + stripe_nr * map->stripe_len; 6051 bioc->stripes[i].dev = map->stripes[stripe_index].dev; 6052 6053 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6054 BTRFS_BLOCK_GROUP_RAID10)) { 6055 bioc->stripes[i].length = stripes_per_dev * 6056 map->stripe_len; 6057 6058 if (i / sub_stripes < remaining_stripes) 6059 bioc->stripes[i].length += map->stripe_len; 6060 6061 /* 6062 * Special for the first stripe and 6063 * the last stripe: 6064 * 6065 * |-------|...|-------| 6066 * |----------| 6067 * off end_off 6068 */ 6069 if (i < sub_stripes) 6070 bioc->stripes[i].length -= stripe_offset; 6071 6072 if (stripe_index >= last_stripe && 6073 stripe_index <= (last_stripe + 6074 sub_stripes - 1)) 6075 bioc->stripes[i].length -= stripe_end_offset; 6076 6077 if (i == sub_stripes - 1) 6078 stripe_offset = 0; 6079 } else { 6080 bioc->stripes[i].length = length; 6081 } 6082 6083 stripe_index++; 6084 if (stripe_index == map->num_stripes) { 6085 stripe_index = 0; 6086 stripe_nr++; 6087 } 6088 } 6089 6090 *bioc_ret = bioc; 6091 bioc->map_type = map->type; 6092 bioc->num_stripes = num_stripes; 6093 out: 6094 free_extent_map(em); 6095 return ret; 6096 } 6097 6098 /* 6099 * In dev-replace case, for repair case (that's the only case where the mirror 6100 * is selected explicitly when calling btrfs_map_block), blocks left of the 6101 * left cursor can also be read from the target drive. 6102 * 6103 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 6104 * array of stripes. 6105 * For READ, it also needs to be supported using the same mirror number. 6106 * 6107 * If the requested block is not left of the left cursor, EIO is returned. This 6108 * can happen because btrfs_num_copies() returns one more in the dev-replace 6109 * case. 6110 */ 6111 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 6112 u64 logical, u64 length, 6113 u64 srcdev_devid, int *mirror_num, 6114 u64 *physical) 6115 { 6116 struct btrfs_io_context *bioc = NULL; 6117 int num_stripes; 6118 int index_srcdev = 0; 6119 int found = 0; 6120 u64 physical_of_found = 0; 6121 int i; 6122 int ret = 0; 6123 6124 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 6125 logical, &length, &bioc, 0, 0); 6126 if (ret) { 6127 ASSERT(bioc == NULL); 6128 return ret; 6129 } 6130 6131 num_stripes = bioc->num_stripes; 6132 if (*mirror_num > num_stripes) { 6133 /* 6134 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 6135 * that means that the requested area is not left of the left 6136 * cursor 6137 */ 6138 btrfs_put_bioc(bioc); 6139 return -EIO; 6140 } 6141 6142 /* 6143 * process the rest of the function using the mirror_num of the source 6144 * drive. Therefore look it up first. At the end, patch the device 6145 * pointer to the one of the target drive. 6146 */ 6147 for (i = 0; i < num_stripes; i++) { 6148 if (bioc->stripes[i].dev->devid != srcdev_devid) 6149 continue; 6150 6151 /* 6152 * In case of DUP, in order to keep it simple, only add the 6153 * mirror with the lowest physical address 6154 */ 6155 if (found && 6156 physical_of_found <= bioc->stripes[i].physical) 6157 continue; 6158 6159 index_srcdev = i; 6160 found = 1; 6161 physical_of_found = bioc->stripes[i].physical; 6162 } 6163 6164 btrfs_put_bioc(bioc); 6165 6166 ASSERT(found); 6167 if (!found) 6168 return -EIO; 6169 6170 *mirror_num = index_srcdev + 1; 6171 *physical = physical_of_found; 6172 return ret; 6173 } 6174 6175 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6176 { 6177 struct btrfs_block_group *cache; 6178 bool ret; 6179 6180 /* Non zoned filesystem does not use "to_copy" flag */ 6181 if (!btrfs_is_zoned(fs_info)) 6182 return false; 6183 6184 cache = btrfs_lookup_block_group(fs_info, logical); 6185 6186 spin_lock(&cache->lock); 6187 ret = cache->to_copy; 6188 spin_unlock(&cache->lock); 6189 6190 btrfs_put_block_group(cache); 6191 return ret; 6192 } 6193 6194 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6195 struct btrfs_io_context **bioc_ret, 6196 struct btrfs_dev_replace *dev_replace, 6197 u64 logical, 6198 int *num_stripes_ret, int *max_errors_ret) 6199 { 6200 struct btrfs_io_context *bioc = *bioc_ret; 6201 u64 srcdev_devid = dev_replace->srcdev->devid; 6202 int tgtdev_indexes = 0; 6203 int num_stripes = *num_stripes_ret; 6204 int max_errors = *max_errors_ret; 6205 int i; 6206 6207 if (op == BTRFS_MAP_WRITE) { 6208 int index_where_to_add; 6209 6210 /* 6211 * A block group which have "to_copy" set will eventually 6212 * copied by dev-replace process. We can avoid cloning IO here. 6213 */ 6214 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6215 return; 6216 6217 /* 6218 * duplicate the write operations while the dev replace 6219 * procedure is running. Since the copying of the old disk to 6220 * the new disk takes place at run time while the filesystem is 6221 * mounted writable, the regular write operations to the old 6222 * disk have to be duplicated to go to the new disk as well. 6223 * 6224 * Note that device->missing is handled by the caller, and that 6225 * the write to the old disk is already set up in the stripes 6226 * array. 6227 */ 6228 index_where_to_add = num_stripes; 6229 for (i = 0; i < num_stripes; i++) { 6230 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6231 /* write to new disk, too */ 6232 struct btrfs_io_stripe *new = 6233 bioc->stripes + index_where_to_add; 6234 struct btrfs_io_stripe *old = 6235 bioc->stripes + i; 6236 6237 new->physical = old->physical; 6238 new->length = old->length; 6239 new->dev = dev_replace->tgtdev; 6240 bioc->tgtdev_map[i] = index_where_to_add; 6241 index_where_to_add++; 6242 max_errors++; 6243 tgtdev_indexes++; 6244 } 6245 } 6246 num_stripes = index_where_to_add; 6247 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 6248 int index_srcdev = 0; 6249 int found = 0; 6250 u64 physical_of_found = 0; 6251 6252 /* 6253 * During the dev-replace procedure, the target drive can also 6254 * be used to read data in case it is needed to repair a corrupt 6255 * block elsewhere. This is possible if the requested area is 6256 * left of the left cursor. In this area, the target drive is a 6257 * full copy of the source drive. 6258 */ 6259 for (i = 0; i < num_stripes; i++) { 6260 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6261 /* 6262 * In case of DUP, in order to keep it simple, 6263 * only add the mirror with the lowest physical 6264 * address 6265 */ 6266 if (found && 6267 physical_of_found <= bioc->stripes[i].physical) 6268 continue; 6269 index_srcdev = i; 6270 found = 1; 6271 physical_of_found = bioc->stripes[i].physical; 6272 } 6273 } 6274 if (found) { 6275 struct btrfs_io_stripe *tgtdev_stripe = 6276 bioc->stripes + num_stripes; 6277 6278 tgtdev_stripe->physical = physical_of_found; 6279 tgtdev_stripe->length = 6280 bioc->stripes[index_srcdev].length; 6281 tgtdev_stripe->dev = dev_replace->tgtdev; 6282 bioc->tgtdev_map[index_srcdev] = num_stripes; 6283 6284 tgtdev_indexes++; 6285 num_stripes++; 6286 } 6287 } 6288 6289 *num_stripes_ret = num_stripes; 6290 *max_errors_ret = max_errors; 6291 bioc->num_tgtdevs = tgtdev_indexes; 6292 *bioc_ret = bioc; 6293 } 6294 6295 static bool need_full_stripe(enum btrfs_map_op op) 6296 { 6297 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 6298 } 6299 6300 /* 6301 * Calculate the geometry of a particular (address, len) tuple. This 6302 * information is used to calculate how big a particular bio can get before it 6303 * straddles a stripe. 6304 * 6305 * @fs_info: the filesystem 6306 * @em: mapping containing the logical extent 6307 * @op: type of operation - write or read 6308 * @logical: address that we want to figure out the geometry of 6309 * @io_geom: pointer used to return values 6310 * 6311 * Returns < 0 in case a chunk for the given logical address cannot be found, 6312 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 6313 */ 6314 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em, 6315 enum btrfs_map_op op, u64 logical, 6316 struct btrfs_io_geometry *io_geom) 6317 { 6318 struct map_lookup *map; 6319 u64 len; 6320 u64 offset; 6321 u64 stripe_offset; 6322 u64 stripe_nr; 6323 u64 stripe_len; 6324 u64 raid56_full_stripe_start = (u64)-1; 6325 int data_stripes; 6326 6327 ASSERT(op != BTRFS_MAP_DISCARD); 6328 6329 map = em->map_lookup; 6330 /* Offset of this logical address in the chunk */ 6331 offset = logical - em->start; 6332 /* Len of a stripe in a chunk */ 6333 stripe_len = map->stripe_len; 6334 /* Stripe where this block falls in */ 6335 stripe_nr = div64_u64(offset, stripe_len); 6336 /* Offset of stripe in the chunk */ 6337 stripe_offset = stripe_nr * stripe_len; 6338 if (offset < stripe_offset) { 6339 btrfs_crit(fs_info, 6340 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 6341 stripe_offset, offset, em->start, logical, stripe_len); 6342 return -EINVAL; 6343 } 6344 6345 /* stripe_offset is the offset of this block in its stripe */ 6346 stripe_offset = offset - stripe_offset; 6347 data_stripes = nr_data_stripes(map); 6348 6349 /* Only stripe based profiles needs to check against stripe length. */ 6350 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) { 6351 u64 max_len = stripe_len - stripe_offset; 6352 6353 /* 6354 * In case of raid56, we need to know the stripe aligned start 6355 */ 6356 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6357 unsigned long full_stripe_len = stripe_len * data_stripes; 6358 raid56_full_stripe_start = offset; 6359 6360 /* 6361 * Allow a write of a full stripe, but make sure we 6362 * don't allow straddling of stripes 6363 */ 6364 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6365 full_stripe_len); 6366 raid56_full_stripe_start *= full_stripe_len; 6367 6368 /* 6369 * For writes to RAID[56], allow a full stripeset across 6370 * all disks. For other RAID types and for RAID[56] 6371 * reads, just allow a single stripe (on a single disk). 6372 */ 6373 if (op == BTRFS_MAP_WRITE) { 6374 max_len = stripe_len * data_stripes - 6375 (offset - raid56_full_stripe_start); 6376 } 6377 } 6378 len = min_t(u64, em->len - offset, max_len); 6379 } else { 6380 len = em->len - offset; 6381 } 6382 6383 io_geom->len = len; 6384 io_geom->offset = offset; 6385 io_geom->stripe_len = stripe_len; 6386 io_geom->stripe_nr = stripe_nr; 6387 io_geom->stripe_offset = stripe_offset; 6388 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6389 6390 return 0; 6391 } 6392 6393 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6394 enum btrfs_map_op op, 6395 u64 logical, u64 *length, 6396 struct btrfs_io_context **bioc_ret, 6397 int mirror_num, int need_raid_map) 6398 { 6399 struct extent_map *em; 6400 struct map_lookup *map; 6401 u64 stripe_offset; 6402 u64 stripe_nr; 6403 u64 stripe_len; 6404 u32 stripe_index; 6405 int data_stripes; 6406 int i; 6407 int ret = 0; 6408 int num_stripes; 6409 int max_errors = 0; 6410 int tgtdev_indexes = 0; 6411 struct btrfs_io_context *bioc = NULL; 6412 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6413 int dev_replace_is_ongoing = 0; 6414 int num_alloc_stripes; 6415 int patch_the_first_stripe_for_dev_replace = 0; 6416 u64 physical_to_patch_in_first_stripe = 0; 6417 u64 raid56_full_stripe_start = (u64)-1; 6418 struct btrfs_io_geometry geom; 6419 6420 ASSERT(bioc_ret); 6421 ASSERT(op != BTRFS_MAP_DISCARD); 6422 6423 em = btrfs_get_chunk_map(fs_info, logical, *length); 6424 ASSERT(!IS_ERR(em)); 6425 6426 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom); 6427 if (ret < 0) 6428 return ret; 6429 6430 map = em->map_lookup; 6431 6432 *length = geom.len; 6433 stripe_len = geom.stripe_len; 6434 stripe_nr = geom.stripe_nr; 6435 stripe_offset = geom.stripe_offset; 6436 raid56_full_stripe_start = geom.raid56_stripe_offset; 6437 data_stripes = nr_data_stripes(map); 6438 6439 down_read(&dev_replace->rwsem); 6440 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6441 /* 6442 * Hold the semaphore for read during the whole operation, write is 6443 * requested at commit time but must wait. 6444 */ 6445 if (!dev_replace_is_ongoing) 6446 up_read(&dev_replace->rwsem); 6447 6448 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6449 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6450 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6451 dev_replace->srcdev->devid, 6452 &mirror_num, 6453 &physical_to_patch_in_first_stripe); 6454 if (ret) 6455 goto out; 6456 else 6457 patch_the_first_stripe_for_dev_replace = 1; 6458 } else if (mirror_num > map->num_stripes) { 6459 mirror_num = 0; 6460 } 6461 6462 num_stripes = 1; 6463 stripe_index = 0; 6464 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6465 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6466 &stripe_index); 6467 if (!need_full_stripe(op)) 6468 mirror_num = 1; 6469 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6470 if (need_full_stripe(op)) 6471 num_stripes = map->num_stripes; 6472 else if (mirror_num) 6473 stripe_index = mirror_num - 1; 6474 else { 6475 stripe_index = find_live_mirror(fs_info, map, 0, 6476 dev_replace_is_ongoing); 6477 mirror_num = stripe_index + 1; 6478 } 6479 6480 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6481 if (need_full_stripe(op)) { 6482 num_stripes = map->num_stripes; 6483 } else if (mirror_num) { 6484 stripe_index = mirror_num - 1; 6485 } else { 6486 mirror_num = 1; 6487 } 6488 6489 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6490 u32 factor = map->num_stripes / map->sub_stripes; 6491 6492 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6493 stripe_index *= map->sub_stripes; 6494 6495 if (need_full_stripe(op)) 6496 num_stripes = map->sub_stripes; 6497 else if (mirror_num) 6498 stripe_index += mirror_num - 1; 6499 else { 6500 int old_stripe_index = stripe_index; 6501 stripe_index = find_live_mirror(fs_info, map, 6502 stripe_index, 6503 dev_replace_is_ongoing); 6504 mirror_num = stripe_index - old_stripe_index + 1; 6505 } 6506 6507 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6508 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6509 /* push stripe_nr back to the start of the full stripe */ 6510 stripe_nr = div64_u64(raid56_full_stripe_start, 6511 stripe_len * data_stripes); 6512 6513 /* RAID[56] write or recovery. Return all stripes */ 6514 num_stripes = map->num_stripes; 6515 max_errors = nr_parity_stripes(map); 6516 6517 *length = map->stripe_len; 6518 stripe_index = 0; 6519 stripe_offset = 0; 6520 } else { 6521 /* 6522 * Mirror #0 or #1 means the original data block. 6523 * Mirror #2 is RAID5 parity block. 6524 * Mirror #3 is RAID6 Q block. 6525 */ 6526 stripe_nr = div_u64_rem(stripe_nr, 6527 data_stripes, &stripe_index); 6528 if (mirror_num > 1) 6529 stripe_index = data_stripes + mirror_num - 2; 6530 6531 /* We distribute the parity blocks across stripes */ 6532 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6533 &stripe_index); 6534 if (!need_full_stripe(op) && mirror_num <= 1) 6535 mirror_num = 1; 6536 } 6537 } else { 6538 /* 6539 * after this, stripe_nr is the number of stripes on this 6540 * device we have to walk to find the data, and stripe_index is 6541 * the number of our device in the stripe array 6542 */ 6543 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6544 &stripe_index); 6545 mirror_num = stripe_index + 1; 6546 } 6547 if (stripe_index >= map->num_stripes) { 6548 btrfs_crit(fs_info, 6549 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6550 stripe_index, map->num_stripes); 6551 ret = -EINVAL; 6552 goto out; 6553 } 6554 6555 num_alloc_stripes = num_stripes; 6556 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6557 if (op == BTRFS_MAP_WRITE) 6558 num_alloc_stripes <<= 1; 6559 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6560 num_alloc_stripes++; 6561 tgtdev_indexes = num_stripes; 6562 } 6563 6564 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes); 6565 if (!bioc) { 6566 ret = -ENOMEM; 6567 goto out; 6568 } 6569 6570 for (i = 0; i < num_stripes; i++) { 6571 bioc->stripes[i].physical = map->stripes[stripe_index].physical + 6572 stripe_offset + stripe_nr * map->stripe_len; 6573 bioc->stripes[i].dev = map->stripes[stripe_index].dev; 6574 stripe_index++; 6575 } 6576 6577 /* Build raid_map */ 6578 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6579 (need_full_stripe(op) || mirror_num > 1)) { 6580 u64 tmp; 6581 unsigned rot; 6582 6583 /* Work out the disk rotation on this stripe-set */ 6584 div_u64_rem(stripe_nr, num_stripes, &rot); 6585 6586 /* Fill in the logical address of each stripe */ 6587 tmp = stripe_nr * data_stripes; 6588 for (i = 0; i < data_stripes; i++) 6589 bioc->raid_map[(i + rot) % num_stripes] = 6590 em->start + (tmp + i) * map->stripe_len; 6591 6592 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE; 6593 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6594 bioc->raid_map[(i + rot + 1) % num_stripes] = 6595 RAID6_Q_STRIPE; 6596 6597 sort_parity_stripes(bioc, num_stripes); 6598 } 6599 6600 if (need_full_stripe(op)) 6601 max_errors = btrfs_chunk_max_errors(map); 6602 6603 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6604 need_full_stripe(op)) { 6605 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical, 6606 &num_stripes, &max_errors); 6607 } 6608 6609 *bioc_ret = bioc; 6610 bioc->map_type = map->type; 6611 bioc->num_stripes = num_stripes; 6612 bioc->max_errors = max_errors; 6613 bioc->mirror_num = mirror_num; 6614 6615 /* 6616 * this is the case that REQ_READ && dev_replace_is_ongoing && 6617 * mirror_num == num_stripes + 1 && dev_replace target drive is 6618 * available as a mirror 6619 */ 6620 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6621 WARN_ON(num_stripes > 1); 6622 bioc->stripes[0].dev = dev_replace->tgtdev; 6623 bioc->stripes[0].physical = physical_to_patch_in_first_stripe; 6624 bioc->mirror_num = map->num_stripes + 1; 6625 } 6626 out: 6627 if (dev_replace_is_ongoing) { 6628 lockdep_assert_held(&dev_replace->rwsem); 6629 /* Unlock and let waiting writers proceed */ 6630 up_read(&dev_replace->rwsem); 6631 } 6632 free_extent_map(em); 6633 return ret; 6634 } 6635 6636 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6637 u64 logical, u64 *length, 6638 struct btrfs_io_context **bioc_ret, int mirror_num) 6639 { 6640 if (op == BTRFS_MAP_DISCARD) 6641 return __btrfs_map_block_for_discard(fs_info, logical, 6642 length, bioc_ret); 6643 6644 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 6645 mirror_num, 0); 6646 } 6647 6648 /* For Scrub/replace */ 6649 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6650 u64 logical, u64 *length, 6651 struct btrfs_io_context **bioc_ret) 6652 { 6653 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1); 6654 } 6655 6656 static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio) 6657 { 6658 bio->bi_private = bioc->private; 6659 bio->bi_end_io = bioc->end_io; 6660 bio_endio(bio); 6661 6662 btrfs_put_bioc(bioc); 6663 } 6664 6665 static void btrfs_end_bio(struct bio *bio) 6666 { 6667 struct btrfs_io_context *bioc = bio->bi_private; 6668 int is_orig_bio = 0; 6669 6670 if (bio->bi_status) { 6671 atomic_inc(&bioc->error); 6672 if (bio->bi_status == BLK_STS_IOERR || 6673 bio->bi_status == BLK_STS_TARGET) { 6674 struct btrfs_device *dev = btrfs_bio(bio)->device; 6675 6676 ASSERT(dev->bdev); 6677 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 6678 btrfs_dev_stat_inc_and_print(dev, 6679 BTRFS_DEV_STAT_WRITE_ERRS); 6680 else if (!(bio->bi_opf & REQ_RAHEAD)) 6681 btrfs_dev_stat_inc_and_print(dev, 6682 BTRFS_DEV_STAT_READ_ERRS); 6683 if (bio->bi_opf & REQ_PREFLUSH) 6684 btrfs_dev_stat_inc_and_print(dev, 6685 BTRFS_DEV_STAT_FLUSH_ERRS); 6686 } 6687 } 6688 6689 if (bio == bioc->orig_bio) 6690 is_orig_bio = 1; 6691 6692 btrfs_bio_counter_dec(bioc->fs_info); 6693 6694 if (atomic_dec_and_test(&bioc->stripes_pending)) { 6695 if (!is_orig_bio) { 6696 bio_put(bio); 6697 bio = bioc->orig_bio; 6698 } 6699 6700 btrfs_bio(bio)->mirror_num = bioc->mirror_num; 6701 /* only send an error to the higher layers if it is 6702 * beyond the tolerance of the btrfs bio 6703 */ 6704 if (atomic_read(&bioc->error) > bioc->max_errors) { 6705 bio->bi_status = BLK_STS_IOERR; 6706 } else { 6707 /* 6708 * this bio is actually up to date, we didn't 6709 * go over the max number of errors 6710 */ 6711 bio->bi_status = BLK_STS_OK; 6712 } 6713 6714 btrfs_end_bioc(bioc, bio); 6715 } else if (!is_orig_bio) { 6716 bio_put(bio); 6717 } 6718 } 6719 6720 static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio, 6721 u64 physical, struct btrfs_device *dev) 6722 { 6723 struct btrfs_fs_info *fs_info = bioc->fs_info; 6724 6725 bio->bi_private = bioc; 6726 btrfs_bio(bio)->device = dev; 6727 bio->bi_end_io = btrfs_end_bio; 6728 bio->bi_iter.bi_sector = physical >> 9; 6729 /* 6730 * For zone append writing, bi_sector must point the beginning of the 6731 * zone 6732 */ 6733 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 6734 if (btrfs_dev_is_sequential(dev, physical)) { 6735 u64 zone_start = round_down(physical, fs_info->zone_size); 6736 6737 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 6738 } else { 6739 bio->bi_opf &= ~REQ_OP_ZONE_APPEND; 6740 bio->bi_opf |= REQ_OP_WRITE; 6741 } 6742 } 6743 btrfs_debug_in_rcu(fs_info, 6744 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6745 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 6746 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6747 dev->devid, bio->bi_iter.bi_size); 6748 bio_set_dev(bio, dev->bdev); 6749 6750 btrfs_bio_counter_inc_noblocked(fs_info); 6751 6752 btrfsic_submit_bio(bio); 6753 } 6754 6755 static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical) 6756 { 6757 atomic_inc(&bioc->error); 6758 if (atomic_dec_and_test(&bioc->stripes_pending)) { 6759 /* Should be the original bio. */ 6760 WARN_ON(bio != bioc->orig_bio); 6761 6762 btrfs_bio(bio)->mirror_num = bioc->mirror_num; 6763 bio->bi_iter.bi_sector = logical >> 9; 6764 if (atomic_read(&bioc->error) > bioc->max_errors) 6765 bio->bi_status = BLK_STS_IOERR; 6766 else 6767 bio->bi_status = BLK_STS_OK; 6768 btrfs_end_bioc(bioc, bio); 6769 } 6770 } 6771 6772 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6773 int mirror_num) 6774 { 6775 struct btrfs_device *dev; 6776 struct bio *first_bio = bio; 6777 u64 logical = bio->bi_iter.bi_sector << 9; 6778 u64 length = 0; 6779 u64 map_length; 6780 int ret; 6781 int dev_nr; 6782 int total_devs; 6783 struct btrfs_io_context *bioc = NULL; 6784 6785 length = bio->bi_iter.bi_size; 6786 map_length = length; 6787 6788 btrfs_bio_counter_inc_blocked(fs_info); 6789 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6790 &map_length, &bioc, mirror_num, 1); 6791 if (ret) { 6792 btrfs_bio_counter_dec(fs_info); 6793 return errno_to_blk_status(ret); 6794 } 6795 6796 total_devs = bioc->num_stripes; 6797 bioc->orig_bio = first_bio; 6798 bioc->private = first_bio->bi_private; 6799 bioc->end_io = first_bio->bi_end_io; 6800 atomic_set(&bioc->stripes_pending, bioc->num_stripes); 6801 6802 if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6803 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) { 6804 /* In this case, map_length has been set to the length of 6805 a single stripe; not the whole write */ 6806 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 6807 ret = raid56_parity_write(bio, bioc, map_length); 6808 } else { 6809 ret = raid56_parity_recover(bio, bioc, map_length, 6810 mirror_num, 1); 6811 } 6812 6813 btrfs_bio_counter_dec(fs_info); 6814 return errno_to_blk_status(ret); 6815 } 6816 6817 if (map_length < length) { 6818 btrfs_crit(fs_info, 6819 "mapping failed logical %llu bio len %llu len %llu", 6820 logical, length, map_length); 6821 BUG(); 6822 } 6823 6824 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6825 dev = bioc->stripes[dev_nr].dev; 6826 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6827 &dev->dev_state) || 6828 (btrfs_op(first_bio) == BTRFS_MAP_WRITE && 6829 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6830 bioc_error(bioc, first_bio, logical); 6831 continue; 6832 } 6833 6834 if (dev_nr < total_devs - 1) 6835 bio = btrfs_bio_clone(first_bio); 6836 else 6837 bio = first_bio; 6838 6839 submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev); 6840 } 6841 btrfs_bio_counter_dec(fs_info); 6842 return BLK_STS_OK; 6843 } 6844 6845 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6846 const struct btrfs_fs_devices *fs_devices) 6847 { 6848 if (args->fsid == NULL) 6849 return true; 6850 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6851 return true; 6852 return false; 6853 } 6854 6855 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6856 const struct btrfs_device *device) 6857 { 6858 ASSERT((args->devid != (u64)-1) || args->missing); 6859 6860 if ((args->devid != (u64)-1) && device->devid != args->devid) 6861 return false; 6862 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6863 return false; 6864 if (!args->missing) 6865 return true; 6866 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6867 !device->bdev) 6868 return true; 6869 return false; 6870 } 6871 6872 /* 6873 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6874 * return NULL. 6875 * 6876 * If devid and uuid are both specified, the match must be exact, otherwise 6877 * only devid is used. 6878 */ 6879 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6880 const struct btrfs_dev_lookup_args *args) 6881 { 6882 struct btrfs_device *device; 6883 struct btrfs_fs_devices *seed_devs; 6884 6885 if (dev_args_match_fs_devices(args, fs_devices)) { 6886 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6887 if (dev_args_match_device(args, device)) 6888 return device; 6889 } 6890 } 6891 6892 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6893 if (!dev_args_match_fs_devices(args, seed_devs)) 6894 continue; 6895 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6896 if (dev_args_match_device(args, device)) 6897 return device; 6898 } 6899 } 6900 6901 return NULL; 6902 } 6903 6904 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6905 u64 devid, u8 *dev_uuid) 6906 { 6907 struct btrfs_device *device; 6908 unsigned int nofs_flag; 6909 6910 /* 6911 * We call this under the chunk_mutex, so we want to use NOFS for this 6912 * allocation, however we don't want to change btrfs_alloc_device() to 6913 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6914 * places. 6915 */ 6916 nofs_flag = memalloc_nofs_save(); 6917 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6918 memalloc_nofs_restore(nofs_flag); 6919 if (IS_ERR(device)) 6920 return device; 6921 6922 list_add(&device->dev_list, &fs_devices->devices); 6923 device->fs_devices = fs_devices; 6924 fs_devices->num_devices++; 6925 6926 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6927 fs_devices->missing_devices++; 6928 6929 return device; 6930 } 6931 6932 /** 6933 * btrfs_alloc_device - allocate struct btrfs_device 6934 * @fs_info: used only for generating a new devid, can be NULL if 6935 * devid is provided (i.e. @devid != NULL). 6936 * @devid: a pointer to devid for this device. If NULL a new devid 6937 * is generated. 6938 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6939 * is generated. 6940 * 6941 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6942 * on error. Returned struct is not linked onto any lists and must be 6943 * destroyed with btrfs_free_device. 6944 */ 6945 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6946 const u64 *devid, 6947 const u8 *uuid) 6948 { 6949 struct btrfs_device *dev; 6950 u64 tmp; 6951 6952 if (WARN_ON(!devid && !fs_info)) 6953 return ERR_PTR(-EINVAL); 6954 6955 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 6956 if (!dev) 6957 return ERR_PTR(-ENOMEM); 6958 6959 /* 6960 * Preallocate a bio that's always going to be used for flushing device 6961 * barriers and matches the device lifespan 6962 */ 6963 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0); 6964 if (!dev->flush_bio) { 6965 kfree(dev); 6966 return ERR_PTR(-ENOMEM); 6967 } 6968 6969 INIT_LIST_HEAD(&dev->dev_list); 6970 INIT_LIST_HEAD(&dev->dev_alloc_list); 6971 INIT_LIST_HEAD(&dev->post_commit_list); 6972 6973 atomic_set(&dev->dev_stats_ccnt, 0); 6974 btrfs_device_data_ordered_init(dev); 6975 extent_io_tree_init(fs_info, &dev->alloc_state, 6976 IO_TREE_DEVICE_ALLOC_STATE, NULL); 6977 6978 if (devid) 6979 tmp = *devid; 6980 else { 6981 int ret; 6982 6983 ret = find_next_devid(fs_info, &tmp); 6984 if (ret) { 6985 btrfs_free_device(dev); 6986 return ERR_PTR(ret); 6987 } 6988 } 6989 dev->devid = tmp; 6990 6991 if (uuid) 6992 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6993 else 6994 generate_random_uuid(dev->uuid); 6995 6996 return dev; 6997 } 6998 6999 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 7000 u64 devid, u8 *uuid, bool error) 7001 { 7002 if (error) 7003 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 7004 devid, uuid); 7005 else 7006 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 7007 devid, uuid); 7008 } 7009 7010 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 7011 { 7012 const int data_stripes = calc_data_stripes(type, num_stripes); 7013 7014 return div_u64(chunk_len, data_stripes); 7015 } 7016 7017 #if BITS_PER_LONG == 32 7018 /* 7019 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 7020 * can't be accessed on 32bit systems. 7021 * 7022 * This function do mount time check to reject the fs if it already has 7023 * metadata chunk beyond that limit. 7024 */ 7025 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7026 u64 logical, u64 length, u64 type) 7027 { 7028 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7029 return 0; 7030 7031 if (logical + length < MAX_LFS_FILESIZE) 7032 return 0; 7033 7034 btrfs_err_32bit_limit(fs_info); 7035 return -EOVERFLOW; 7036 } 7037 7038 /* 7039 * This is to give early warning for any metadata chunk reaching 7040 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7041 * Although we can still access the metadata, it's not going to be possible 7042 * once the limit is reached. 7043 */ 7044 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7045 u64 logical, u64 length, u64 type) 7046 { 7047 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7048 return; 7049 7050 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7051 return; 7052 7053 btrfs_warn_32bit_limit(fs_info); 7054 } 7055 #endif 7056 7057 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7058 u64 devid, u8 *uuid) 7059 { 7060 struct btrfs_device *dev; 7061 7062 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7063 btrfs_report_missing_device(fs_info, devid, uuid, true); 7064 return ERR_PTR(-ENOENT); 7065 } 7066 7067 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7068 if (IS_ERR(dev)) { 7069 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7070 devid, PTR_ERR(dev)); 7071 return dev; 7072 } 7073 btrfs_report_missing_device(fs_info, devid, uuid, false); 7074 7075 return dev; 7076 } 7077 7078 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7079 struct btrfs_chunk *chunk) 7080 { 7081 BTRFS_DEV_LOOKUP_ARGS(args); 7082 struct btrfs_fs_info *fs_info = leaf->fs_info; 7083 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7084 struct map_lookup *map; 7085 struct extent_map *em; 7086 u64 logical; 7087 u64 length; 7088 u64 devid; 7089 u64 type; 7090 u8 uuid[BTRFS_UUID_SIZE]; 7091 int num_stripes; 7092 int ret; 7093 int i; 7094 7095 logical = key->offset; 7096 length = btrfs_chunk_length(leaf, chunk); 7097 type = btrfs_chunk_type(leaf, chunk); 7098 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7099 7100 #if BITS_PER_LONG == 32 7101 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7102 if (ret < 0) 7103 return ret; 7104 warn_32bit_meta_chunk(fs_info, logical, length, type); 7105 #endif 7106 7107 /* 7108 * Only need to verify chunk item if we're reading from sys chunk array, 7109 * as chunk item in tree block is already verified by tree-checker. 7110 */ 7111 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 7112 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 7113 if (ret) 7114 return ret; 7115 } 7116 7117 read_lock(&map_tree->lock); 7118 em = lookup_extent_mapping(map_tree, logical, 1); 7119 read_unlock(&map_tree->lock); 7120 7121 /* already mapped? */ 7122 if (em && em->start <= logical && em->start + em->len > logical) { 7123 free_extent_map(em); 7124 return 0; 7125 } else if (em) { 7126 free_extent_map(em); 7127 } 7128 7129 em = alloc_extent_map(); 7130 if (!em) 7131 return -ENOMEM; 7132 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 7133 if (!map) { 7134 free_extent_map(em); 7135 return -ENOMEM; 7136 } 7137 7138 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 7139 em->map_lookup = map; 7140 em->start = logical; 7141 em->len = length; 7142 em->orig_start = 0; 7143 em->block_start = 0; 7144 em->block_len = em->len; 7145 7146 map->num_stripes = num_stripes; 7147 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7148 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7149 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 7150 map->type = type; 7151 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 7152 map->verified_stripes = 0; 7153 em->orig_block_len = calc_stripe_length(type, em->len, 7154 map->num_stripes); 7155 for (i = 0; i < num_stripes; i++) { 7156 map->stripes[i].physical = 7157 btrfs_stripe_offset_nr(leaf, chunk, i); 7158 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7159 args.devid = devid; 7160 read_extent_buffer(leaf, uuid, (unsigned long) 7161 btrfs_stripe_dev_uuid_nr(chunk, i), 7162 BTRFS_UUID_SIZE); 7163 args.uuid = uuid; 7164 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7165 if (!map->stripes[i].dev) { 7166 map->stripes[i].dev = handle_missing_device(fs_info, 7167 devid, uuid); 7168 if (IS_ERR(map->stripes[i].dev)) { 7169 free_extent_map(em); 7170 return PTR_ERR(map->stripes[i].dev); 7171 } 7172 } 7173 7174 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7175 &(map->stripes[i].dev->dev_state)); 7176 } 7177 7178 write_lock(&map_tree->lock); 7179 ret = add_extent_mapping(map_tree, em, 0); 7180 write_unlock(&map_tree->lock); 7181 if (ret < 0) { 7182 btrfs_err(fs_info, 7183 "failed to add chunk map, start=%llu len=%llu: %d", 7184 em->start, em->len, ret); 7185 } 7186 free_extent_map(em); 7187 7188 return ret; 7189 } 7190 7191 static void fill_device_from_item(struct extent_buffer *leaf, 7192 struct btrfs_dev_item *dev_item, 7193 struct btrfs_device *device) 7194 { 7195 unsigned long ptr; 7196 7197 device->devid = btrfs_device_id(leaf, dev_item); 7198 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7199 device->total_bytes = device->disk_total_bytes; 7200 device->commit_total_bytes = device->disk_total_bytes; 7201 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7202 device->commit_bytes_used = device->bytes_used; 7203 device->type = btrfs_device_type(leaf, dev_item); 7204 device->io_align = btrfs_device_io_align(leaf, dev_item); 7205 device->io_width = btrfs_device_io_width(leaf, dev_item); 7206 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7207 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7208 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7209 7210 ptr = btrfs_device_uuid(dev_item); 7211 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7212 } 7213 7214 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7215 u8 *fsid) 7216 { 7217 struct btrfs_fs_devices *fs_devices; 7218 int ret; 7219 7220 lockdep_assert_held(&uuid_mutex); 7221 ASSERT(fsid); 7222 7223 /* This will match only for multi-device seed fs */ 7224 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7225 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7226 return fs_devices; 7227 7228 7229 fs_devices = find_fsid(fsid, NULL); 7230 if (!fs_devices) { 7231 if (!btrfs_test_opt(fs_info, DEGRADED)) 7232 return ERR_PTR(-ENOENT); 7233 7234 fs_devices = alloc_fs_devices(fsid, NULL); 7235 if (IS_ERR(fs_devices)) 7236 return fs_devices; 7237 7238 fs_devices->seeding = true; 7239 fs_devices->opened = 1; 7240 return fs_devices; 7241 } 7242 7243 /* 7244 * Upon first call for a seed fs fsid, just create a private copy of the 7245 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7246 */ 7247 fs_devices = clone_fs_devices(fs_devices); 7248 if (IS_ERR(fs_devices)) 7249 return fs_devices; 7250 7251 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 7252 if (ret) { 7253 free_fs_devices(fs_devices); 7254 return ERR_PTR(ret); 7255 } 7256 7257 if (!fs_devices->seeding) { 7258 close_fs_devices(fs_devices); 7259 free_fs_devices(fs_devices); 7260 return ERR_PTR(-EINVAL); 7261 } 7262 7263 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7264 7265 return fs_devices; 7266 } 7267 7268 static int read_one_dev(struct extent_buffer *leaf, 7269 struct btrfs_dev_item *dev_item) 7270 { 7271 BTRFS_DEV_LOOKUP_ARGS(args); 7272 struct btrfs_fs_info *fs_info = leaf->fs_info; 7273 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7274 struct btrfs_device *device; 7275 u64 devid; 7276 int ret; 7277 u8 fs_uuid[BTRFS_FSID_SIZE]; 7278 u8 dev_uuid[BTRFS_UUID_SIZE]; 7279 7280 devid = args.devid = btrfs_device_id(leaf, dev_item); 7281 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7282 BTRFS_UUID_SIZE); 7283 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7284 BTRFS_FSID_SIZE); 7285 args.uuid = dev_uuid; 7286 args.fsid = fs_uuid; 7287 7288 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7289 fs_devices = open_seed_devices(fs_info, fs_uuid); 7290 if (IS_ERR(fs_devices)) 7291 return PTR_ERR(fs_devices); 7292 } 7293 7294 device = btrfs_find_device(fs_info->fs_devices, &args); 7295 if (!device) { 7296 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7297 btrfs_report_missing_device(fs_info, devid, 7298 dev_uuid, true); 7299 return -ENOENT; 7300 } 7301 7302 device = add_missing_dev(fs_devices, devid, dev_uuid); 7303 if (IS_ERR(device)) { 7304 btrfs_err(fs_info, 7305 "failed to add missing dev %llu: %ld", 7306 devid, PTR_ERR(device)); 7307 return PTR_ERR(device); 7308 } 7309 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7310 } else { 7311 if (!device->bdev) { 7312 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7313 btrfs_report_missing_device(fs_info, 7314 devid, dev_uuid, true); 7315 return -ENOENT; 7316 } 7317 btrfs_report_missing_device(fs_info, devid, 7318 dev_uuid, false); 7319 } 7320 7321 if (!device->bdev && 7322 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7323 /* 7324 * this happens when a device that was properly setup 7325 * in the device info lists suddenly goes bad. 7326 * device->bdev is NULL, and so we have to set 7327 * device->missing to one here 7328 */ 7329 device->fs_devices->missing_devices++; 7330 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7331 } 7332 7333 /* Move the device to its own fs_devices */ 7334 if (device->fs_devices != fs_devices) { 7335 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7336 &device->dev_state)); 7337 7338 list_move(&device->dev_list, &fs_devices->devices); 7339 device->fs_devices->num_devices--; 7340 fs_devices->num_devices++; 7341 7342 device->fs_devices->missing_devices--; 7343 fs_devices->missing_devices++; 7344 7345 device->fs_devices = fs_devices; 7346 } 7347 } 7348 7349 if (device->fs_devices != fs_info->fs_devices) { 7350 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7351 if (device->generation != 7352 btrfs_device_generation(leaf, dev_item)) 7353 return -EINVAL; 7354 } 7355 7356 fill_device_from_item(leaf, dev_item, device); 7357 if (device->bdev) { 7358 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7359 7360 if (device->total_bytes > max_total_bytes) { 7361 btrfs_err(fs_info, 7362 "device total_bytes should be at most %llu but found %llu", 7363 max_total_bytes, device->total_bytes); 7364 return -EINVAL; 7365 } 7366 } 7367 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7368 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7369 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7370 device->fs_devices->total_rw_bytes += device->total_bytes; 7371 atomic64_add(device->total_bytes - device->bytes_used, 7372 &fs_info->free_chunk_space); 7373 } 7374 ret = 0; 7375 return ret; 7376 } 7377 7378 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7379 { 7380 struct btrfs_root *root = fs_info->tree_root; 7381 struct btrfs_super_block *super_copy = fs_info->super_copy; 7382 struct extent_buffer *sb; 7383 struct btrfs_disk_key *disk_key; 7384 struct btrfs_chunk *chunk; 7385 u8 *array_ptr; 7386 unsigned long sb_array_offset; 7387 int ret = 0; 7388 u32 num_stripes; 7389 u32 array_size; 7390 u32 len = 0; 7391 u32 cur_offset; 7392 u64 type; 7393 struct btrfs_key key; 7394 7395 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7396 /* 7397 * This will create extent buffer of nodesize, superblock size is 7398 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 7399 * overallocate but we can keep it as-is, only the first page is used. 7400 */ 7401 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET, 7402 root->root_key.objectid, 0); 7403 if (IS_ERR(sb)) 7404 return PTR_ERR(sb); 7405 set_extent_buffer_uptodate(sb); 7406 /* 7407 * The sb extent buffer is artificial and just used to read the system array. 7408 * set_extent_buffer_uptodate() call does not properly mark all it's 7409 * pages up-to-date when the page is larger: extent does not cover the 7410 * whole page and consequently check_page_uptodate does not find all 7411 * the page's extents up-to-date (the hole beyond sb), 7412 * write_extent_buffer then triggers a WARN_ON. 7413 * 7414 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 7415 * but sb spans only this function. Add an explicit SetPageUptodate call 7416 * to silence the warning eg. on PowerPC 64. 7417 */ 7418 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 7419 SetPageUptodate(sb->pages[0]); 7420 7421 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7422 array_size = btrfs_super_sys_array_size(super_copy); 7423 7424 array_ptr = super_copy->sys_chunk_array; 7425 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7426 cur_offset = 0; 7427 7428 while (cur_offset < array_size) { 7429 disk_key = (struct btrfs_disk_key *)array_ptr; 7430 len = sizeof(*disk_key); 7431 if (cur_offset + len > array_size) 7432 goto out_short_read; 7433 7434 btrfs_disk_key_to_cpu(&key, disk_key); 7435 7436 array_ptr += len; 7437 sb_array_offset += len; 7438 cur_offset += len; 7439 7440 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7441 btrfs_err(fs_info, 7442 "unexpected item type %u in sys_array at offset %u", 7443 (u32)key.type, cur_offset); 7444 ret = -EIO; 7445 break; 7446 } 7447 7448 chunk = (struct btrfs_chunk *)sb_array_offset; 7449 /* 7450 * At least one btrfs_chunk with one stripe must be present, 7451 * exact stripe count check comes afterwards 7452 */ 7453 len = btrfs_chunk_item_size(1); 7454 if (cur_offset + len > array_size) 7455 goto out_short_read; 7456 7457 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7458 if (!num_stripes) { 7459 btrfs_err(fs_info, 7460 "invalid number of stripes %u in sys_array at offset %u", 7461 num_stripes, cur_offset); 7462 ret = -EIO; 7463 break; 7464 } 7465 7466 type = btrfs_chunk_type(sb, chunk); 7467 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7468 btrfs_err(fs_info, 7469 "invalid chunk type %llu in sys_array at offset %u", 7470 type, cur_offset); 7471 ret = -EIO; 7472 break; 7473 } 7474 7475 len = btrfs_chunk_item_size(num_stripes); 7476 if (cur_offset + len > array_size) 7477 goto out_short_read; 7478 7479 ret = read_one_chunk(&key, sb, chunk); 7480 if (ret) 7481 break; 7482 7483 array_ptr += len; 7484 sb_array_offset += len; 7485 cur_offset += len; 7486 } 7487 clear_extent_buffer_uptodate(sb); 7488 free_extent_buffer_stale(sb); 7489 return ret; 7490 7491 out_short_read: 7492 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7493 len, cur_offset); 7494 clear_extent_buffer_uptodate(sb); 7495 free_extent_buffer_stale(sb); 7496 return -EIO; 7497 } 7498 7499 /* 7500 * Check if all chunks in the fs are OK for read-write degraded mount 7501 * 7502 * If the @failing_dev is specified, it's accounted as missing. 7503 * 7504 * Return true if all chunks meet the minimal RW mount requirements. 7505 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7506 */ 7507 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7508 struct btrfs_device *failing_dev) 7509 { 7510 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7511 struct extent_map *em; 7512 u64 next_start = 0; 7513 bool ret = true; 7514 7515 read_lock(&map_tree->lock); 7516 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7517 read_unlock(&map_tree->lock); 7518 /* No chunk at all? Return false anyway */ 7519 if (!em) { 7520 ret = false; 7521 goto out; 7522 } 7523 while (em) { 7524 struct map_lookup *map; 7525 int missing = 0; 7526 int max_tolerated; 7527 int i; 7528 7529 map = em->map_lookup; 7530 max_tolerated = 7531 btrfs_get_num_tolerated_disk_barrier_failures( 7532 map->type); 7533 for (i = 0; i < map->num_stripes; i++) { 7534 struct btrfs_device *dev = map->stripes[i].dev; 7535 7536 if (!dev || !dev->bdev || 7537 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7538 dev->last_flush_error) 7539 missing++; 7540 else if (failing_dev && failing_dev == dev) 7541 missing++; 7542 } 7543 if (missing > max_tolerated) { 7544 if (!failing_dev) 7545 btrfs_warn(fs_info, 7546 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7547 em->start, missing, max_tolerated); 7548 free_extent_map(em); 7549 ret = false; 7550 goto out; 7551 } 7552 next_start = extent_map_end(em); 7553 free_extent_map(em); 7554 7555 read_lock(&map_tree->lock); 7556 em = lookup_extent_mapping(map_tree, next_start, 7557 (u64)(-1) - next_start); 7558 read_unlock(&map_tree->lock); 7559 } 7560 out: 7561 return ret; 7562 } 7563 7564 static void readahead_tree_node_children(struct extent_buffer *node) 7565 { 7566 int i; 7567 const int nr_items = btrfs_header_nritems(node); 7568 7569 for (i = 0; i < nr_items; i++) 7570 btrfs_readahead_node_child(node, i); 7571 } 7572 7573 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7574 { 7575 struct btrfs_root *root = fs_info->chunk_root; 7576 struct btrfs_path *path; 7577 struct extent_buffer *leaf; 7578 struct btrfs_key key; 7579 struct btrfs_key found_key; 7580 int ret; 7581 int slot; 7582 u64 total_dev = 0; 7583 u64 last_ra_node = 0; 7584 7585 path = btrfs_alloc_path(); 7586 if (!path) 7587 return -ENOMEM; 7588 7589 /* 7590 * uuid_mutex is needed only if we are mounting a sprout FS 7591 * otherwise we don't need it. 7592 */ 7593 mutex_lock(&uuid_mutex); 7594 7595 /* 7596 * It is possible for mount and umount to race in such a way that 7597 * we execute this code path, but open_fs_devices failed to clear 7598 * total_rw_bytes. We certainly want it cleared before reading the 7599 * device items, so clear it here. 7600 */ 7601 fs_info->fs_devices->total_rw_bytes = 0; 7602 7603 /* 7604 * Lockdep complains about possible circular locking dependency between 7605 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7606 * used for freeze procection of a fs (struct super_block.s_writers), 7607 * which we take when starting a transaction, and extent buffers of the 7608 * chunk tree if we call read_one_dev() while holding a lock on an 7609 * extent buffer of the chunk tree. Since we are mounting the filesystem 7610 * and at this point there can't be any concurrent task modifying the 7611 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7612 */ 7613 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7614 path->skip_locking = 1; 7615 7616 /* 7617 * Read all device items, and then all the chunk items. All 7618 * device items are found before any chunk item (their object id 7619 * is smaller than the lowest possible object id for a chunk 7620 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7621 */ 7622 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7623 key.offset = 0; 7624 key.type = 0; 7625 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7626 if (ret < 0) 7627 goto error; 7628 while (1) { 7629 struct extent_buffer *node; 7630 7631 leaf = path->nodes[0]; 7632 slot = path->slots[0]; 7633 if (slot >= btrfs_header_nritems(leaf)) { 7634 ret = btrfs_next_leaf(root, path); 7635 if (ret == 0) 7636 continue; 7637 if (ret < 0) 7638 goto error; 7639 break; 7640 } 7641 node = path->nodes[1]; 7642 if (node) { 7643 if (last_ra_node != node->start) { 7644 readahead_tree_node_children(node); 7645 last_ra_node = node->start; 7646 } 7647 } 7648 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7649 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7650 struct btrfs_dev_item *dev_item; 7651 dev_item = btrfs_item_ptr(leaf, slot, 7652 struct btrfs_dev_item); 7653 ret = read_one_dev(leaf, dev_item); 7654 if (ret) 7655 goto error; 7656 total_dev++; 7657 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7658 struct btrfs_chunk *chunk; 7659 7660 /* 7661 * We are only called at mount time, so no need to take 7662 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7663 * we always lock first fs_info->chunk_mutex before 7664 * acquiring any locks on the chunk tree. This is a 7665 * requirement for chunk allocation, see the comment on 7666 * top of btrfs_chunk_alloc() for details. 7667 */ 7668 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7669 ret = read_one_chunk(&found_key, leaf, chunk); 7670 if (ret) 7671 goto error; 7672 } 7673 path->slots[0]++; 7674 } 7675 7676 /* 7677 * After loading chunk tree, we've got all device information, 7678 * do another round of validation checks. 7679 */ 7680 if (total_dev != fs_info->fs_devices->total_devices) { 7681 btrfs_err(fs_info, 7682 "super_num_devices %llu mismatch with num_devices %llu found here", 7683 btrfs_super_num_devices(fs_info->super_copy), 7684 total_dev); 7685 ret = -EINVAL; 7686 goto error; 7687 } 7688 if (btrfs_super_total_bytes(fs_info->super_copy) < 7689 fs_info->fs_devices->total_rw_bytes) { 7690 btrfs_err(fs_info, 7691 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7692 btrfs_super_total_bytes(fs_info->super_copy), 7693 fs_info->fs_devices->total_rw_bytes); 7694 ret = -EINVAL; 7695 goto error; 7696 } 7697 ret = 0; 7698 error: 7699 mutex_unlock(&uuid_mutex); 7700 7701 btrfs_free_path(path); 7702 return ret; 7703 } 7704 7705 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7706 { 7707 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7708 struct btrfs_device *device; 7709 7710 fs_devices->fs_info = fs_info; 7711 7712 mutex_lock(&fs_devices->device_list_mutex); 7713 list_for_each_entry(device, &fs_devices->devices, dev_list) 7714 device->fs_info = fs_info; 7715 7716 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7717 list_for_each_entry(device, &seed_devs->devices, dev_list) 7718 device->fs_info = fs_info; 7719 7720 seed_devs->fs_info = fs_info; 7721 } 7722 mutex_unlock(&fs_devices->device_list_mutex); 7723 } 7724 7725 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7726 const struct btrfs_dev_stats_item *ptr, 7727 int index) 7728 { 7729 u64 val; 7730 7731 read_extent_buffer(eb, &val, 7732 offsetof(struct btrfs_dev_stats_item, values) + 7733 ((unsigned long)ptr) + (index * sizeof(u64)), 7734 sizeof(val)); 7735 return val; 7736 } 7737 7738 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7739 struct btrfs_dev_stats_item *ptr, 7740 int index, u64 val) 7741 { 7742 write_extent_buffer(eb, &val, 7743 offsetof(struct btrfs_dev_stats_item, values) + 7744 ((unsigned long)ptr) + (index * sizeof(u64)), 7745 sizeof(val)); 7746 } 7747 7748 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7749 struct btrfs_path *path) 7750 { 7751 struct btrfs_dev_stats_item *ptr; 7752 struct extent_buffer *eb; 7753 struct btrfs_key key; 7754 int item_size; 7755 int i, ret, slot; 7756 7757 if (!device->fs_info->dev_root) 7758 return 0; 7759 7760 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7761 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7762 key.offset = device->devid; 7763 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7764 if (ret) { 7765 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7766 btrfs_dev_stat_set(device, i, 0); 7767 device->dev_stats_valid = 1; 7768 btrfs_release_path(path); 7769 return ret < 0 ? ret : 0; 7770 } 7771 slot = path->slots[0]; 7772 eb = path->nodes[0]; 7773 item_size = btrfs_item_size(eb, slot); 7774 7775 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7776 7777 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7778 if (item_size >= (1 + i) * sizeof(__le64)) 7779 btrfs_dev_stat_set(device, i, 7780 btrfs_dev_stats_value(eb, ptr, i)); 7781 else 7782 btrfs_dev_stat_set(device, i, 0); 7783 } 7784 7785 device->dev_stats_valid = 1; 7786 btrfs_dev_stat_print_on_load(device); 7787 btrfs_release_path(path); 7788 7789 return 0; 7790 } 7791 7792 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7793 { 7794 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7795 struct btrfs_device *device; 7796 struct btrfs_path *path = NULL; 7797 int ret = 0; 7798 7799 path = btrfs_alloc_path(); 7800 if (!path) 7801 return -ENOMEM; 7802 7803 mutex_lock(&fs_devices->device_list_mutex); 7804 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7805 ret = btrfs_device_init_dev_stats(device, path); 7806 if (ret) 7807 goto out; 7808 } 7809 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7810 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7811 ret = btrfs_device_init_dev_stats(device, path); 7812 if (ret) 7813 goto out; 7814 } 7815 } 7816 out: 7817 mutex_unlock(&fs_devices->device_list_mutex); 7818 7819 btrfs_free_path(path); 7820 return ret; 7821 } 7822 7823 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7824 struct btrfs_device *device) 7825 { 7826 struct btrfs_fs_info *fs_info = trans->fs_info; 7827 struct btrfs_root *dev_root = fs_info->dev_root; 7828 struct btrfs_path *path; 7829 struct btrfs_key key; 7830 struct extent_buffer *eb; 7831 struct btrfs_dev_stats_item *ptr; 7832 int ret; 7833 int i; 7834 7835 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7836 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7837 key.offset = device->devid; 7838 7839 path = btrfs_alloc_path(); 7840 if (!path) 7841 return -ENOMEM; 7842 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7843 if (ret < 0) { 7844 btrfs_warn_in_rcu(fs_info, 7845 "error %d while searching for dev_stats item for device %s", 7846 ret, rcu_str_deref(device->name)); 7847 goto out; 7848 } 7849 7850 if (ret == 0 && 7851 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7852 /* need to delete old one and insert a new one */ 7853 ret = btrfs_del_item(trans, dev_root, path); 7854 if (ret != 0) { 7855 btrfs_warn_in_rcu(fs_info, 7856 "delete too small dev_stats item for device %s failed %d", 7857 rcu_str_deref(device->name), ret); 7858 goto out; 7859 } 7860 ret = 1; 7861 } 7862 7863 if (ret == 1) { 7864 /* need to insert a new item */ 7865 btrfs_release_path(path); 7866 ret = btrfs_insert_empty_item(trans, dev_root, path, 7867 &key, sizeof(*ptr)); 7868 if (ret < 0) { 7869 btrfs_warn_in_rcu(fs_info, 7870 "insert dev_stats item for device %s failed %d", 7871 rcu_str_deref(device->name), ret); 7872 goto out; 7873 } 7874 } 7875 7876 eb = path->nodes[0]; 7877 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7878 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7879 btrfs_set_dev_stats_value(eb, ptr, i, 7880 btrfs_dev_stat_read(device, i)); 7881 btrfs_mark_buffer_dirty(eb); 7882 7883 out: 7884 btrfs_free_path(path); 7885 return ret; 7886 } 7887 7888 /* 7889 * called from commit_transaction. Writes all changed device stats to disk. 7890 */ 7891 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7892 { 7893 struct btrfs_fs_info *fs_info = trans->fs_info; 7894 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7895 struct btrfs_device *device; 7896 int stats_cnt; 7897 int ret = 0; 7898 7899 mutex_lock(&fs_devices->device_list_mutex); 7900 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7901 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7902 if (!device->dev_stats_valid || stats_cnt == 0) 7903 continue; 7904 7905 7906 /* 7907 * There is a LOAD-LOAD control dependency between the value of 7908 * dev_stats_ccnt and updating the on-disk values which requires 7909 * reading the in-memory counters. Such control dependencies 7910 * require explicit read memory barriers. 7911 * 7912 * This memory barriers pairs with smp_mb__before_atomic in 7913 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7914 * barrier implied by atomic_xchg in 7915 * btrfs_dev_stats_read_and_reset 7916 */ 7917 smp_rmb(); 7918 7919 ret = update_dev_stat_item(trans, device); 7920 if (!ret) 7921 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7922 } 7923 mutex_unlock(&fs_devices->device_list_mutex); 7924 7925 return ret; 7926 } 7927 7928 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7929 { 7930 btrfs_dev_stat_inc(dev, index); 7931 btrfs_dev_stat_print_on_error(dev); 7932 } 7933 7934 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7935 { 7936 if (!dev->dev_stats_valid) 7937 return; 7938 btrfs_err_rl_in_rcu(dev->fs_info, 7939 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7940 rcu_str_deref(dev->name), 7941 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7942 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7943 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7944 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7945 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7946 } 7947 7948 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7949 { 7950 int i; 7951 7952 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7953 if (btrfs_dev_stat_read(dev, i) != 0) 7954 break; 7955 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7956 return; /* all values == 0, suppress message */ 7957 7958 btrfs_info_in_rcu(dev->fs_info, 7959 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7960 rcu_str_deref(dev->name), 7961 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7962 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7963 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7964 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7965 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7966 } 7967 7968 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7969 struct btrfs_ioctl_get_dev_stats *stats) 7970 { 7971 BTRFS_DEV_LOOKUP_ARGS(args); 7972 struct btrfs_device *dev; 7973 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7974 int i; 7975 7976 mutex_lock(&fs_devices->device_list_mutex); 7977 args.devid = stats->devid; 7978 dev = btrfs_find_device(fs_info->fs_devices, &args); 7979 mutex_unlock(&fs_devices->device_list_mutex); 7980 7981 if (!dev) { 7982 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7983 return -ENODEV; 7984 } else if (!dev->dev_stats_valid) { 7985 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7986 return -ENODEV; 7987 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7988 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7989 if (stats->nr_items > i) 7990 stats->values[i] = 7991 btrfs_dev_stat_read_and_reset(dev, i); 7992 else 7993 btrfs_dev_stat_set(dev, i, 0); 7994 } 7995 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7996 current->comm, task_pid_nr(current)); 7997 } else { 7998 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7999 if (stats->nr_items > i) 8000 stats->values[i] = btrfs_dev_stat_read(dev, i); 8001 } 8002 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 8003 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 8004 return 0; 8005 } 8006 8007 /* 8008 * Update the size and bytes used for each device where it changed. This is 8009 * delayed since we would otherwise get errors while writing out the 8010 * superblocks. 8011 * 8012 * Must be invoked during transaction commit. 8013 */ 8014 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 8015 { 8016 struct btrfs_device *curr, *next; 8017 8018 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 8019 8020 if (list_empty(&trans->dev_update_list)) 8021 return; 8022 8023 /* 8024 * We don't need the device_list_mutex here. This list is owned by the 8025 * transaction and the transaction must complete before the device is 8026 * released. 8027 */ 8028 mutex_lock(&trans->fs_info->chunk_mutex); 8029 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 8030 post_commit_list) { 8031 list_del_init(&curr->post_commit_list); 8032 curr->commit_total_bytes = curr->disk_total_bytes; 8033 curr->commit_bytes_used = curr->bytes_used; 8034 } 8035 mutex_unlock(&trans->fs_info->chunk_mutex); 8036 } 8037 8038 /* 8039 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 8040 */ 8041 int btrfs_bg_type_to_factor(u64 flags) 8042 { 8043 const int index = btrfs_bg_flags_to_raid_index(flags); 8044 8045 return btrfs_raid_array[index].ncopies; 8046 } 8047 8048 8049 8050 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 8051 u64 chunk_offset, u64 devid, 8052 u64 physical_offset, u64 physical_len) 8053 { 8054 struct btrfs_dev_lookup_args args = { .devid = devid }; 8055 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8056 struct extent_map *em; 8057 struct map_lookup *map; 8058 struct btrfs_device *dev; 8059 u64 stripe_len; 8060 bool found = false; 8061 int ret = 0; 8062 int i; 8063 8064 read_lock(&em_tree->lock); 8065 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 8066 read_unlock(&em_tree->lock); 8067 8068 if (!em) { 8069 btrfs_err(fs_info, 8070 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 8071 physical_offset, devid); 8072 ret = -EUCLEAN; 8073 goto out; 8074 } 8075 8076 map = em->map_lookup; 8077 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 8078 if (physical_len != stripe_len) { 8079 btrfs_err(fs_info, 8080 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 8081 physical_offset, devid, em->start, physical_len, 8082 stripe_len); 8083 ret = -EUCLEAN; 8084 goto out; 8085 } 8086 8087 for (i = 0; i < map->num_stripes; i++) { 8088 if (map->stripes[i].dev->devid == devid && 8089 map->stripes[i].physical == physical_offset) { 8090 found = true; 8091 if (map->verified_stripes >= map->num_stripes) { 8092 btrfs_err(fs_info, 8093 "too many dev extents for chunk %llu found", 8094 em->start); 8095 ret = -EUCLEAN; 8096 goto out; 8097 } 8098 map->verified_stripes++; 8099 break; 8100 } 8101 } 8102 if (!found) { 8103 btrfs_err(fs_info, 8104 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8105 physical_offset, devid); 8106 ret = -EUCLEAN; 8107 } 8108 8109 /* Make sure no dev extent is beyond device boundary */ 8110 dev = btrfs_find_device(fs_info->fs_devices, &args); 8111 if (!dev) { 8112 btrfs_err(fs_info, "failed to find devid %llu", devid); 8113 ret = -EUCLEAN; 8114 goto out; 8115 } 8116 8117 if (physical_offset + physical_len > dev->disk_total_bytes) { 8118 btrfs_err(fs_info, 8119 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8120 devid, physical_offset, physical_len, 8121 dev->disk_total_bytes); 8122 ret = -EUCLEAN; 8123 goto out; 8124 } 8125 8126 if (dev->zone_info) { 8127 u64 zone_size = dev->zone_info->zone_size; 8128 8129 if (!IS_ALIGNED(physical_offset, zone_size) || 8130 !IS_ALIGNED(physical_len, zone_size)) { 8131 btrfs_err(fs_info, 8132 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8133 devid, physical_offset, physical_len); 8134 ret = -EUCLEAN; 8135 goto out; 8136 } 8137 } 8138 8139 out: 8140 free_extent_map(em); 8141 return ret; 8142 } 8143 8144 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8145 { 8146 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8147 struct extent_map *em; 8148 struct rb_node *node; 8149 int ret = 0; 8150 8151 read_lock(&em_tree->lock); 8152 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 8153 em = rb_entry(node, struct extent_map, rb_node); 8154 if (em->map_lookup->num_stripes != 8155 em->map_lookup->verified_stripes) { 8156 btrfs_err(fs_info, 8157 "chunk %llu has missing dev extent, have %d expect %d", 8158 em->start, em->map_lookup->verified_stripes, 8159 em->map_lookup->num_stripes); 8160 ret = -EUCLEAN; 8161 goto out; 8162 } 8163 } 8164 out: 8165 read_unlock(&em_tree->lock); 8166 return ret; 8167 } 8168 8169 /* 8170 * Ensure that all dev extents are mapped to correct chunk, otherwise 8171 * later chunk allocation/free would cause unexpected behavior. 8172 * 8173 * NOTE: This will iterate through the whole device tree, which should be of 8174 * the same size level as the chunk tree. This slightly increases mount time. 8175 */ 8176 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8177 { 8178 struct btrfs_path *path; 8179 struct btrfs_root *root = fs_info->dev_root; 8180 struct btrfs_key key; 8181 u64 prev_devid = 0; 8182 u64 prev_dev_ext_end = 0; 8183 int ret = 0; 8184 8185 /* 8186 * We don't have a dev_root because we mounted with ignorebadroots and 8187 * failed to load the root, so we want to skip the verification in this 8188 * case for sure. 8189 * 8190 * However if the dev root is fine, but the tree itself is corrupted 8191 * we'd still fail to mount. This verification is only to make sure 8192 * writes can happen safely, so instead just bypass this check 8193 * completely in the case of IGNOREBADROOTS. 8194 */ 8195 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8196 return 0; 8197 8198 key.objectid = 1; 8199 key.type = BTRFS_DEV_EXTENT_KEY; 8200 key.offset = 0; 8201 8202 path = btrfs_alloc_path(); 8203 if (!path) 8204 return -ENOMEM; 8205 8206 path->reada = READA_FORWARD; 8207 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8208 if (ret < 0) 8209 goto out; 8210 8211 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8212 ret = btrfs_next_leaf(root, path); 8213 if (ret < 0) 8214 goto out; 8215 /* No dev extents at all? Not good */ 8216 if (ret > 0) { 8217 ret = -EUCLEAN; 8218 goto out; 8219 } 8220 } 8221 while (1) { 8222 struct extent_buffer *leaf = path->nodes[0]; 8223 struct btrfs_dev_extent *dext; 8224 int slot = path->slots[0]; 8225 u64 chunk_offset; 8226 u64 physical_offset; 8227 u64 physical_len; 8228 u64 devid; 8229 8230 btrfs_item_key_to_cpu(leaf, &key, slot); 8231 if (key.type != BTRFS_DEV_EXTENT_KEY) 8232 break; 8233 devid = key.objectid; 8234 physical_offset = key.offset; 8235 8236 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8237 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8238 physical_len = btrfs_dev_extent_length(leaf, dext); 8239 8240 /* Check if this dev extent overlaps with the previous one */ 8241 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8242 btrfs_err(fs_info, 8243 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8244 devid, physical_offset, prev_dev_ext_end); 8245 ret = -EUCLEAN; 8246 goto out; 8247 } 8248 8249 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8250 physical_offset, physical_len); 8251 if (ret < 0) 8252 goto out; 8253 prev_devid = devid; 8254 prev_dev_ext_end = physical_offset + physical_len; 8255 8256 ret = btrfs_next_item(root, path); 8257 if (ret < 0) 8258 goto out; 8259 if (ret > 0) { 8260 ret = 0; 8261 break; 8262 } 8263 } 8264 8265 /* Ensure all chunks have corresponding dev extents */ 8266 ret = verify_chunk_dev_extent_mapping(fs_info); 8267 out: 8268 btrfs_free_path(path); 8269 return ret; 8270 } 8271 8272 /* 8273 * Check whether the given block group or device is pinned by any inode being 8274 * used as a swapfile. 8275 */ 8276 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8277 { 8278 struct btrfs_swapfile_pin *sp; 8279 struct rb_node *node; 8280 8281 spin_lock(&fs_info->swapfile_pins_lock); 8282 node = fs_info->swapfile_pins.rb_node; 8283 while (node) { 8284 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8285 if (ptr < sp->ptr) 8286 node = node->rb_left; 8287 else if (ptr > sp->ptr) 8288 node = node->rb_right; 8289 else 8290 break; 8291 } 8292 spin_unlock(&fs_info->swapfile_pins_lock); 8293 return node != NULL; 8294 } 8295 8296 static int relocating_repair_kthread(void *data) 8297 { 8298 struct btrfs_block_group *cache = (struct btrfs_block_group *)data; 8299 struct btrfs_fs_info *fs_info = cache->fs_info; 8300 u64 target; 8301 int ret = 0; 8302 8303 target = cache->start; 8304 btrfs_put_block_group(cache); 8305 8306 sb_start_write(fs_info->sb); 8307 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8308 btrfs_info(fs_info, 8309 "zoned: skip relocating block group %llu to repair: EBUSY", 8310 target); 8311 sb_end_write(fs_info->sb); 8312 return -EBUSY; 8313 } 8314 8315 mutex_lock(&fs_info->reclaim_bgs_lock); 8316 8317 /* Ensure block group still exists */ 8318 cache = btrfs_lookup_block_group(fs_info, target); 8319 if (!cache) 8320 goto out; 8321 8322 if (!cache->relocating_repair) 8323 goto out; 8324 8325 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8326 if (ret < 0) 8327 goto out; 8328 8329 btrfs_info(fs_info, 8330 "zoned: relocating block group %llu to repair IO failure", 8331 target); 8332 ret = btrfs_relocate_chunk(fs_info, target); 8333 8334 out: 8335 if (cache) 8336 btrfs_put_block_group(cache); 8337 mutex_unlock(&fs_info->reclaim_bgs_lock); 8338 btrfs_exclop_finish(fs_info); 8339 sb_end_write(fs_info->sb); 8340 8341 return ret; 8342 } 8343 8344 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8345 { 8346 struct btrfs_block_group *cache; 8347 8348 if (!btrfs_is_zoned(fs_info)) 8349 return false; 8350 8351 /* Do not attempt to repair in degraded state */ 8352 if (btrfs_test_opt(fs_info, DEGRADED)) 8353 return true; 8354 8355 cache = btrfs_lookup_block_group(fs_info, logical); 8356 if (!cache) 8357 return true; 8358 8359 spin_lock(&cache->lock); 8360 if (cache->relocating_repair) { 8361 spin_unlock(&cache->lock); 8362 btrfs_put_block_group(cache); 8363 return true; 8364 } 8365 cache->relocating_repair = 1; 8366 spin_unlock(&cache->lock); 8367 8368 kthread_run(relocating_repair_kthread, cache, 8369 "btrfs-relocating-repair"); 8370 8371 return true; 8372 } 8373