xref: /openbmc/linux/fs/btrfs/volumes.c (revision 8b036556)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52 
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 
56 static struct btrfs_fs_devices *__alloc_fs_devices(void)
57 {
58 	struct btrfs_fs_devices *fs_devs;
59 
60 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
61 	if (!fs_devs)
62 		return ERR_PTR(-ENOMEM);
63 
64 	mutex_init(&fs_devs->device_list_mutex);
65 
66 	INIT_LIST_HEAD(&fs_devs->devices);
67 	INIT_LIST_HEAD(&fs_devs->resized_devices);
68 	INIT_LIST_HEAD(&fs_devs->alloc_list);
69 	INIT_LIST_HEAD(&fs_devs->list);
70 
71 	return fs_devs;
72 }
73 
74 /**
75  * alloc_fs_devices - allocate struct btrfs_fs_devices
76  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
77  *		generated.
78  *
79  * Return: a pointer to a new &struct btrfs_fs_devices on success;
80  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
81  * can be destroyed with kfree() right away.
82  */
83 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
84 {
85 	struct btrfs_fs_devices *fs_devs;
86 
87 	fs_devs = __alloc_fs_devices();
88 	if (IS_ERR(fs_devs))
89 		return fs_devs;
90 
91 	if (fsid)
92 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
93 	else
94 		generate_random_uuid(fs_devs->fsid);
95 
96 	return fs_devs;
97 }
98 
99 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
100 {
101 	struct btrfs_device *device;
102 	WARN_ON(fs_devices->opened);
103 	while (!list_empty(&fs_devices->devices)) {
104 		device = list_entry(fs_devices->devices.next,
105 				    struct btrfs_device, dev_list);
106 		list_del(&device->dev_list);
107 		rcu_string_free(device->name);
108 		kfree(device);
109 	}
110 	kfree(fs_devices);
111 }
112 
113 static void btrfs_kobject_uevent(struct block_device *bdev,
114 				 enum kobject_action action)
115 {
116 	int ret;
117 
118 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
119 	if (ret)
120 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
121 			action,
122 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
123 			&disk_to_dev(bdev->bd_disk)->kobj);
124 }
125 
126 void btrfs_cleanup_fs_uuids(void)
127 {
128 	struct btrfs_fs_devices *fs_devices;
129 
130 	while (!list_empty(&fs_uuids)) {
131 		fs_devices = list_entry(fs_uuids.next,
132 					struct btrfs_fs_devices, list);
133 		list_del(&fs_devices->list);
134 		free_fs_devices(fs_devices);
135 	}
136 }
137 
138 static struct btrfs_device *__alloc_device(void)
139 {
140 	struct btrfs_device *dev;
141 
142 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
143 	if (!dev)
144 		return ERR_PTR(-ENOMEM);
145 
146 	INIT_LIST_HEAD(&dev->dev_list);
147 	INIT_LIST_HEAD(&dev->dev_alloc_list);
148 	INIT_LIST_HEAD(&dev->resized_list);
149 
150 	spin_lock_init(&dev->io_lock);
151 
152 	spin_lock_init(&dev->reada_lock);
153 	atomic_set(&dev->reada_in_flight, 0);
154 	atomic_set(&dev->dev_stats_ccnt, 0);
155 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
156 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
157 
158 	return dev;
159 }
160 
161 static noinline struct btrfs_device *__find_device(struct list_head *head,
162 						   u64 devid, u8 *uuid)
163 {
164 	struct btrfs_device *dev;
165 
166 	list_for_each_entry(dev, head, dev_list) {
167 		if (dev->devid == devid &&
168 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
169 			return dev;
170 		}
171 	}
172 	return NULL;
173 }
174 
175 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
176 {
177 	struct btrfs_fs_devices *fs_devices;
178 
179 	list_for_each_entry(fs_devices, &fs_uuids, list) {
180 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
181 			return fs_devices;
182 	}
183 	return NULL;
184 }
185 
186 static int
187 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
188 		      int flush, struct block_device **bdev,
189 		      struct buffer_head **bh)
190 {
191 	int ret;
192 
193 	*bdev = blkdev_get_by_path(device_path, flags, holder);
194 
195 	if (IS_ERR(*bdev)) {
196 		ret = PTR_ERR(*bdev);
197 		printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
198 		goto error;
199 	}
200 
201 	if (flush)
202 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
203 	ret = set_blocksize(*bdev, 4096);
204 	if (ret) {
205 		blkdev_put(*bdev, flags);
206 		goto error;
207 	}
208 	invalidate_bdev(*bdev);
209 	*bh = btrfs_read_dev_super(*bdev);
210 	if (!*bh) {
211 		ret = -EINVAL;
212 		blkdev_put(*bdev, flags);
213 		goto error;
214 	}
215 
216 	return 0;
217 
218 error:
219 	*bdev = NULL;
220 	*bh = NULL;
221 	return ret;
222 }
223 
224 static void requeue_list(struct btrfs_pending_bios *pending_bios,
225 			struct bio *head, struct bio *tail)
226 {
227 
228 	struct bio *old_head;
229 
230 	old_head = pending_bios->head;
231 	pending_bios->head = head;
232 	if (pending_bios->tail)
233 		tail->bi_next = old_head;
234 	else
235 		pending_bios->tail = tail;
236 }
237 
238 /*
239  * we try to collect pending bios for a device so we don't get a large
240  * number of procs sending bios down to the same device.  This greatly
241  * improves the schedulers ability to collect and merge the bios.
242  *
243  * But, it also turns into a long list of bios to process and that is sure
244  * to eventually make the worker thread block.  The solution here is to
245  * make some progress and then put this work struct back at the end of
246  * the list if the block device is congested.  This way, multiple devices
247  * can make progress from a single worker thread.
248  */
249 static noinline void run_scheduled_bios(struct btrfs_device *device)
250 {
251 	struct bio *pending;
252 	struct backing_dev_info *bdi;
253 	struct btrfs_fs_info *fs_info;
254 	struct btrfs_pending_bios *pending_bios;
255 	struct bio *tail;
256 	struct bio *cur;
257 	int again = 0;
258 	unsigned long num_run;
259 	unsigned long batch_run = 0;
260 	unsigned long limit;
261 	unsigned long last_waited = 0;
262 	int force_reg = 0;
263 	int sync_pending = 0;
264 	struct blk_plug plug;
265 
266 	/*
267 	 * this function runs all the bios we've collected for
268 	 * a particular device.  We don't want to wander off to
269 	 * another device without first sending all of these down.
270 	 * So, setup a plug here and finish it off before we return
271 	 */
272 	blk_start_plug(&plug);
273 
274 	bdi = blk_get_backing_dev_info(device->bdev);
275 	fs_info = device->dev_root->fs_info;
276 	limit = btrfs_async_submit_limit(fs_info);
277 	limit = limit * 2 / 3;
278 
279 loop:
280 	spin_lock(&device->io_lock);
281 
282 loop_lock:
283 	num_run = 0;
284 
285 	/* take all the bios off the list at once and process them
286 	 * later on (without the lock held).  But, remember the
287 	 * tail and other pointers so the bios can be properly reinserted
288 	 * into the list if we hit congestion
289 	 */
290 	if (!force_reg && device->pending_sync_bios.head) {
291 		pending_bios = &device->pending_sync_bios;
292 		force_reg = 1;
293 	} else {
294 		pending_bios = &device->pending_bios;
295 		force_reg = 0;
296 	}
297 
298 	pending = pending_bios->head;
299 	tail = pending_bios->tail;
300 	WARN_ON(pending && !tail);
301 
302 	/*
303 	 * if pending was null this time around, no bios need processing
304 	 * at all and we can stop.  Otherwise it'll loop back up again
305 	 * and do an additional check so no bios are missed.
306 	 *
307 	 * device->running_pending is used to synchronize with the
308 	 * schedule_bio code.
309 	 */
310 	if (device->pending_sync_bios.head == NULL &&
311 	    device->pending_bios.head == NULL) {
312 		again = 0;
313 		device->running_pending = 0;
314 	} else {
315 		again = 1;
316 		device->running_pending = 1;
317 	}
318 
319 	pending_bios->head = NULL;
320 	pending_bios->tail = NULL;
321 
322 	spin_unlock(&device->io_lock);
323 
324 	while (pending) {
325 
326 		rmb();
327 		/* we want to work on both lists, but do more bios on the
328 		 * sync list than the regular list
329 		 */
330 		if ((num_run > 32 &&
331 		    pending_bios != &device->pending_sync_bios &&
332 		    device->pending_sync_bios.head) ||
333 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
334 		    device->pending_bios.head)) {
335 			spin_lock(&device->io_lock);
336 			requeue_list(pending_bios, pending, tail);
337 			goto loop_lock;
338 		}
339 
340 		cur = pending;
341 		pending = pending->bi_next;
342 		cur->bi_next = NULL;
343 
344 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
345 		    waitqueue_active(&fs_info->async_submit_wait))
346 			wake_up(&fs_info->async_submit_wait);
347 
348 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
349 
350 		/*
351 		 * if we're doing the sync list, record that our
352 		 * plug has some sync requests on it
353 		 *
354 		 * If we're doing the regular list and there are
355 		 * sync requests sitting around, unplug before
356 		 * we add more
357 		 */
358 		if (pending_bios == &device->pending_sync_bios) {
359 			sync_pending = 1;
360 		} else if (sync_pending) {
361 			blk_finish_plug(&plug);
362 			blk_start_plug(&plug);
363 			sync_pending = 0;
364 		}
365 
366 		btrfsic_submit_bio(cur->bi_rw, cur);
367 		num_run++;
368 		batch_run++;
369 		if (need_resched())
370 			cond_resched();
371 
372 		/*
373 		 * we made progress, there is more work to do and the bdi
374 		 * is now congested.  Back off and let other work structs
375 		 * run instead
376 		 */
377 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
378 		    fs_info->fs_devices->open_devices > 1) {
379 			struct io_context *ioc;
380 
381 			ioc = current->io_context;
382 
383 			/*
384 			 * the main goal here is that we don't want to
385 			 * block if we're going to be able to submit
386 			 * more requests without blocking.
387 			 *
388 			 * This code does two great things, it pokes into
389 			 * the elevator code from a filesystem _and_
390 			 * it makes assumptions about how batching works.
391 			 */
392 			if (ioc && ioc->nr_batch_requests > 0 &&
393 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
394 			    (last_waited == 0 ||
395 			     ioc->last_waited == last_waited)) {
396 				/*
397 				 * we want to go through our batch of
398 				 * requests and stop.  So, we copy out
399 				 * the ioc->last_waited time and test
400 				 * against it before looping
401 				 */
402 				last_waited = ioc->last_waited;
403 				if (need_resched())
404 					cond_resched();
405 				continue;
406 			}
407 			spin_lock(&device->io_lock);
408 			requeue_list(pending_bios, pending, tail);
409 			device->running_pending = 1;
410 
411 			spin_unlock(&device->io_lock);
412 			btrfs_queue_work(fs_info->submit_workers,
413 					 &device->work);
414 			goto done;
415 		}
416 		/* unplug every 64 requests just for good measure */
417 		if (batch_run % 64 == 0) {
418 			blk_finish_plug(&plug);
419 			blk_start_plug(&plug);
420 			sync_pending = 0;
421 		}
422 	}
423 
424 	cond_resched();
425 	if (again)
426 		goto loop;
427 
428 	spin_lock(&device->io_lock);
429 	if (device->pending_bios.head || device->pending_sync_bios.head)
430 		goto loop_lock;
431 	spin_unlock(&device->io_lock);
432 
433 done:
434 	blk_finish_plug(&plug);
435 }
436 
437 static void pending_bios_fn(struct btrfs_work *work)
438 {
439 	struct btrfs_device *device;
440 
441 	device = container_of(work, struct btrfs_device, work);
442 	run_scheduled_bios(device);
443 }
444 
445 /*
446  * Add new device to list of registered devices
447  *
448  * Returns:
449  * 1   - first time device is seen
450  * 0   - device already known
451  * < 0 - error
452  */
453 static noinline int device_list_add(const char *path,
454 			   struct btrfs_super_block *disk_super,
455 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
456 {
457 	struct btrfs_device *device;
458 	struct btrfs_fs_devices *fs_devices;
459 	struct rcu_string *name;
460 	int ret = 0;
461 	u64 found_transid = btrfs_super_generation(disk_super);
462 
463 	fs_devices = find_fsid(disk_super->fsid);
464 	if (!fs_devices) {
465 		fs_devices = alloc_fs_devices(disk_super->fsid);
466 		if (IS_ERR(fs_devices))
467 			return PTR_ERR(fs_devices);
468 
469 		list_add(&fs_devices->list, &fs_uuids);
470 
471 		device = NULL;
472 	} else {
473 		device = __find_device(&fs_devices->devices, devid,
474 				       disk_super->dev_item.uuid);
475 	}
476 
477 	if (!device) {
478 		if (fs_devices->opened)
479 			return -EBUSY;
480 
481 		device = btrfs_alloc_device(NULL, &devid,
482 					    disk_super->dev_item.uuid);
483 		if (IS_ERR(device)) {
484 			/* we can safely leave the fs_devices entry around */
485 			return PTR_ERR(device);
486 		}
487 
488 		name = rcu_string_strdup(path, GFP_NOFS);
489 		if (!name) {
490 			kfree(device);
491 			return -ENOMEM;
492 		}
493 		rcu_assign_pointer(device->name, name);
494 
495 		mutex_lock(&fs_devices->device_list_mutex);
496 		list_add_rcu(&device->dev_list, &fs_devices->devices);
497 		fs_devices->num_devices++;
498 		mutex_unlock(&fs_devices->device_list_mutex);
499 
500 		ret = 1;
501 		device->fs_devices = fs_devices;
502 	} else if (!device->name || strcmp(device->name->str, path)) {
503 		/*
504 		 * When FS is already mounted.
505 		 * 1. If you are here and if the device->name is NULL that
506 		 *    means this device was missing at time of FS mount.
507 		 * 2. If you are here and if the device->name is different
508 		 *    from 'path' that means either
509 		 *      a. The same device disappeared and reappeared with
510 		 *         different name. or
511 		 *      b. The missing-disk-which-was-replaced, has
512 		 *         reappeared now.
513 		 *
514 		 * We must allow 1 and 2a above. But 2b would be a spurious
515 		 * and unintentional.
516 		 *
517 		 * Further in case of 1 and 2a above, the disk at 'path'
518 		 * would have missed some transaction when it was away and
519 		 * in case of 2a the stale bdev has to be updated as well.
520 		 * 2b must not be allowed at all time.
521 		 */
522 
523 		/*
524 		 * For now, we do allow update to btrfs_fs_device through the
525 		 * btrfs dev scan cli after FS has been mounted.  We're still
526 		 * tracking a problem where systems fail mount by subvolume id
527 		 * when we reject replacement on a mounted FS.
528 		 */
529 		if (!fs_devices->opened && found_transid < device->generation) {
530 			/*
531 			 * That is if the FS is _not_ mounted and if you
532 			 * are here, that means there is more than one
533 			 * disk with same uuid and devid.We keep the one
534 			 * with larger generation number or the last-in if
535 			 * generation are equal.
536 			 */
537 			return -EEXIST;
538 		}
539 
540 		name = rcu_string_strdup(path, GFP_NOFS);
541 		if (!name)
542 			return -ENOMEM;
543 		rcu_string_free(device->name);
544 		rcu_assign_pointer(device->name, name);
545 		if (device->missing) {
546 			fs_devices->missing_devices--;
547 			device->missing = 0;
548 		}
549 	}
550 
551 	/*
552 	 * Unmount does not free the btrfs_device struct but would zero
553 	 * generation along with most of the other members. So just update
554 	 * it back. We need it to pick the disk with largest generation
555 	 * (as above).
556 	 */
557 	if (!fs_devices->opened)
558 		device->generation = found_transid;
559 
560 	*fs_devices_ret = fs_devices;
561 
562 	return ret;
563 }
564 
565 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
566 {
567 	struct btrfs_fs_devices *fs_devices;
568 	struct btrfs_device *device;
569 	struct btrfs_device *orig_dev;
570 
571 	fs_devices = alloc_fs_devices(orig->fsid);
572 	if (IS_ERR(fs_devices))
573 		return fs_devices;
574 
575 	mutex_lock(&orig->device_list_mutex);
576 	fs_devices->total_devices = orig->total_devices;
577 
578 	/* We have held the volume lock, it is safe to get the devices. */
579 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
580 		struct rcu_string *name;
581 
582 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
583 					    orig_dev->uuid);
584 		if (IS_ERR(device))
585 			goto error;
586 
587 		/*
588 		 * This is ok to do without rcu read locked because we hold the
589 		 * uuid mutex so nothing we touch in here is going to disappear.
590 		 */
591 		if (orig_dev->name) {
592 			name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
593 			if (!name) {
594 				kfree(device);
595 				goto error;
596 			}
597 			rcu_assign_pointer(device->name, name);
598 		}
599 
600 		list_add(&device->dev_list, &fs_devices->devices);
601 		device->fs_devices = fs_devices;
602 		fs_devices->num_devices++;
603 	}
604 	mutex_unlock(&orig->device_list_mutex);
605 	return fs_devices;
606 error:
607 	mutex_unlock(&orig->device_list_mutex);
608 	free_fs_devices(fs_devices);
609 	return ERR_PTR(-ENOMEM);
610 }
611 
612 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
613 			       struct btrfs_fs_devices *fs_devices, int step)
614 {
615 	struct btrfs_device *device, *next;
616 	struct btrfs_device *latest_dev = NULL;
617 
618 	mutex_lock(&uuid_mutex);
619 again:
620 	/* This is the initialized path, it is safe to release the devices. */
621 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
622 		if (device->in_fs_metadata) {
623 			if (!device->is_tgtdev_for_dev_replace &&
624 			    (!latest_dev ||
625 			     device->generation > latest_dev->generation)) {
626 				latest_dev = device;
627 			}
628 			continue;
629 		}
630 
631 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
632 			/*
633 			 * In the first step, keep the device which has
634 			 * the correct fsid and the devid that is used
635 			 * for the dev_replace procedure.
636 			 * In the second step, the dev_replace state is
637 			 * read from the device tree and it is known
638 			 * whether the procedure is really active or
639 			 * not, which means whether this device is
640 			 * used or whether it should be removed.
641 			 */
642 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
643 				continue;
644 			}
645 		}
646 		if (device->bdev) {
647 			blkdev_put(device->bdev, device->mode);
648 			device->bdev = NULL;
649 			fs_devices->open_devices--;
650 		}
651 		if (device->writeable) {
652 			list_del_init(&device->dev_alloc_list);
653 			device->writeable = 0;
654 			if (!device->is_tgtdev_for_dev_replace)
655 				fs_devices->rw_devices--;
656 		}
657 		list_del_init(&device->dev_list);
658 		fs_devices->num_devices--;
659 		rcu_string_free(device->name);
660 		kfree(device);
661 	}
662 
663 	if (fs_devices->seed) {
664 		fs_devices = fs_devices->seed;
665 		goto again;
666 	}
667 
668 	fs_devices->latest_bdev = latest_dev->bdev;
669 
670 	mutex_unlock(&uuid_mutex);
671 }
672 
673 static void __free_device(struct work_struct *work)
674 {
675 	struct btrfs_device *device;
676 
677 	device = container_of(work, struct btrfs_device, rcu_work);
678 
679 	if (device->bdev)
680 		blkdev_put(device->bdev, device->mode);
681 
682 	rcu_string_free(device->name);
683 	kfree(device);
684 }
685 
686 static void free_device(struct rcu_head *head)
687 {
688 	struct btrfs_device *device;
689 
690 	device = container_of(head, struct btrfs_device, rcu);
691 
692 	INIT_WORK(&device->rcu_work, __free_device);
693 	schedule_work(&device->rcu_work);
694 }
695 
696 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
697 {
698 	struct btrfs_device *device;
699 
700 	if (--fs_devices->opened > 0)
701 		return 0;
702 
703 	mutex_lock(&fs_devices->device_list_mutex);
704 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
705 		struct btrfs_device *new_device;
706 		struct rcu_string *name;
707 
708 		if (device->bdev)
709 			fs_devices->open_devices--;
710 
711 		if (device->writeable &&
712 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
713 			list_del_init(&device->dev_alloc_list);
714 			fs_devices->rw_devices--;
715 		}
716 
717 		if (device->missing)
718 			fs_devices->missing_devices--;
719 
720 		new_device = btrfs_alloc_device(NULL, &device->devid,
721 						device->uuid);
722 		BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
723 
724 		/* Safe because we are under uuid_mutex */
725 		if (device->name) {
726 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
727 			BUG_ON(!name); /* -ENOMEM */
728 			rcu_assign_pointer(new_device->name, name);
729 		}
730 
731 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
732 		new_device->fs_devices = device->fs_devices;
733 
734 		call_rcu(&device->rcu, free_device);
735 	}
736 	mutex_unlock(&fs_devices->device_list_mutex);
737 
738 	WARN_ON(fs_devices->open_devices);
739 	WARN_ON(fs_devices->rw_devices);
740 	fs_devices->opened = 0;
741 	fs_devices->seeding = 0;
742 
743 	return 0;
744 }
745 
746 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
747 {
748 	struct btrfs_fs_devices *seed_devices = NULL;
749 	int ret;
750 
751 	mutex_lock(&uuid_mutex);
752 	ret = __btrfs_close_devices(fs_devices);
753 	if (!fs_devices->opened) {
754 		seed_devices = fs_devices->seed;
755 		fs_devices->seed = NULL;
756 	}
757 	mutex_unlock(&uuid_mutex);
758 
759 	while (seed_devices) {
760 		fs_devices = seed_devices;
761 		seed_devices = fs_devices->seed;
762 		__btrfs_close_devices(fs_devices);
763 		free_fs_devices(fs_devices);
764 	}
765 	/*
766 	 * Wait for rcu kworkers under __btrfs_close_devices
767 	 * to finish all blkdev_puts so device is really
768 	 * free when umount is done.
769 	 */
770 	rcu_barrier();
771 	return ret;
772 }
773 
774 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
775 				fmode_t flags, void *holder)
776 {
777 	struct request_queue *q;
778 	struct block_device *bdev;
779 	struct list_head *head = &fs_devices->devices;
780 	struct btrfs_device *device;
781 	struct btrfs_device *latest_dev = NULL;
782 	struct buffer_head *bh;
783 	struct btrfs_super_block *disk_super;
784 	u64 devid;
785 	int seeding = 1;
786 	int ret = 0;
787 
788 	flags |= FMODE_EXCL;
789 
790 	list_for_each_entry(device, head, dev_list) {
791 		if (device->bdev)
792 			continue;
793 		if (!device->name)
794 			continue;
795 
796 		/* Just open everything we can; ignore failures here */
797 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
798 					    &bdev, &bh))
799 			continue;
800 
801 		disk_super = (struct btrfs_super_block *)bh->b_data;
802 		devid = btrfs_stack_device_id(&disk_super->dev_item);
803 		if (devid != device->devid)
804 			goto error_brelse;
805 
806 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
807 			   BTRFS_UUID_SIZE))
808 			goto error_brelse;
809 
810 		device->generation = btrfs_super_generation(disk_super);
811 		if (!latest_dev ||
812 		    device->generation > latest_dev->generation)
813 			latest_dev = device;
814 
815 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
816 			device->writeable = 0;
817 		} else {
818 			device->writeable = !bdev_read_only(bdev);
819 			seeding = 0;
820 		}
821 
822 		q = bdev_get_queue(bdev);
823 		if (blk_queue_discard(q))
824 			device->can_discard = 1;
825 
826 		device->bdev = bdev;
827 		device->in_fs_metadata = 0;
828 		device->mode = flags;
829 
830 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
831 			fs_devices->rotating = 1;
832 
833 		fs_devices->open_devices++;
834 		if (device->writeable &&
835 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
836 			fs_devices->rw_devices++;
837 			list_add(&device->dev_alloc_list,
838 				 &fs_devices->alloc_list);
839 		}
840 		brelse(bh);
841 		continue;
842 
843 error_brelse:
844 		brelse(bh);
845 		blkdev_put(bdev, flags);
846 		continue;
847 	}
848 	if (fs_devices->open_devices == 0) {
849 		ret = -EINVAL;
850 		goto out;
851 	}
852 	fs_devices->seeding = seeding;
853 	fs_devices->opened = 1;
854 	fs_devices->latest_bdev = latest_dev->bdev;
855 	fs_devices->total_rw_bytes = 0;
856 out:
857 	return ret;
858 }
859 
860 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
861 		       fmode_t flags, void *holder)
862 {
863 	int ret;
864 
865 	mutex_lock(&uuid_mutex);
866 	if (fs_devices->opened) {
867 		fs_devices->opened++;
868 		ret = 0;
869 	} else {
870 		ret = __btrfs_open_devices(fs_devices, flags, holder);
871 	}
872 	mutex_unlock(&uuid_mutex);
873 	return ret;
874 }
875 
876 /*
877  * Look for a btrfs signature on a device. This may be called out of the mount path
878  * and we are not allowed to call set_blocksize during the scan. The superblock
879  * is read via pagecache
880  */
881 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
882 			  struct btrfs_fs_devices **fs_devices_ret)
883 {
884 	struct btrfs_super_block *disk_super;
885 	struct block_device *bdev;
886 	struct page *page;
887 	void *p;
888 	int ret = -EINVAL;
889 	u64 devid;
890 	u64 transid;
891 	u64 total_devices;
892 	u64 bytenr;
893 	pgoff_t index;
894 
895 	/*
896 	 * we would like to check all the supers, but that would make
897 	 * a btrfs mount succeed after a mkfs from a different FS.
898 	 * So, we need to add a special mount option to scan for
899 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
900 	 */
901 	bytenr = btrfs_sb_offset(0);
902 	flags |= FMODE_EXCL;
903 	mutex_lock(&uuid_mutex);
904 
905 	bdev = blkdev_get_by_path(path, flags, holder);
906 
907 	if (IS_ERR(bdev)) {
908 		ret = PTR_ERR(bdev);
909 		goto error;
910 	}
911 
912 	/* make sure our super fits in the device */
913 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
914 		goto error_bdev_put;
915 
916 	/* make sure our super fits in the page */
917 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
918 		goto error_bdev_put;
919 
920 	/* make sure our super doesn't straddle pages on disk */
921 	index = bytenr >> PAGE_CACHE_SHIFT;
922 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
923 		goto error_bdev_put;
924 
925 	/* pull in the page with our super */
926 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
927 				   index, GFP_NOFS);
928 
929 	if (IS_ERR_OR_NULL(page))
930 		goto error_bdev_put;
931 
932 	p = kmap(page);
933 
934 	/* align our pointer to the offset of the super block */
935 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
936 
937 	if (btrfs_super_bytenr(disk_super) != bytenr ||
938 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
939 		goto error_unmap;
940 
941 	devid = btrfs_stack_device_id(&disk_super->dev_item);
942 	transid = btrfs_super_generation(disk_super);
943 	total_devices = btrfs_super_num_devices(disk_super);
944 
945 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
946 	if (ret > 0) {
947 		if (disk_super->label[0]) {
948 			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
949 				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
950 			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
951 		} else {
952 			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
953 		}
954 
955 		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
956 		ret = 0;
957 	}
958 	if (!ret && fs_devices_ret)
959 		(*fs_devices_ret)->total_devices = total_devices;
960 
961 error_unmap:
962 	kunmap(page);
963 	page_cache_release(page);
964 
965 error_bdev_put:
966 	blkdev_put(bdev, flags);
967 error:
968 	mutex_unlock(&uuid_mutex);
969 	return ret;
970 }
971 
972 /* helper to account the used device space in the range */
973 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
974 				   u64 end, u64 *length)
975 {
976 	struct btrfs_key key;
977 	struct btrfs_root *root = device->dev_root;
978 	struct btrfs_dev_extent *dev_extent;
979 	struct btrfs_path *path;
980 	u64 extent_end;
981 	int ret;
982 	int slot;
983 	struct extent_buffer *l;
984 
985 	*length = 0;
986 
987 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
988 		return 0;
989 
990 	path = btrfs_alloc_path();
991 	if (!path)
992 		return -ENOMEM;
993 	path->reada = 2;
994 
995 	key.objectid = device->devid;
996 	key.offset = start;
997 	key.type = BTRFS_DEV_EXTENT_KEY;
998 
999 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1000 	if (ret < 0)
1001 		goto out;
1002 	if (ret > 0) {
1003 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1004 		if (ret < 0)
1005 			goto out;
1006 	}
1007 
1008 	while (1) {
1009 		l = path->nodes[0];
1010 		slot = path->slots[0];
1011 		if (slot >= btrfs_header_nritems(l)) {
1012 			ret = btrfs_next_leaf(root, path);
1013 			if (ret == 0)
1014 				continue;
1015 			if (ret < 0)
1016 				goto out;
1017 
1018 			break;
1019 		}
1020 		btrfs_item_key_to_cpu(l, &key, slot);
1021 
1022 		if (key.objectid < device->devid)
1023 			goto next;
1024 
1025 		if (key.objectid > device->devid)
1026 			break;
1027 
1028 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1029 			goto next;
1030 
1031 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1032 		extent_end = key.offset + btrfs_dev_extent_length(l,
1033 								  dev_extent);
1034 		if (key.offset <= start && extent_end > end) {
1035 			*length = end - start + 1;
1036 			break;
1037 		} else if (key.offset <= start && extent_end > start)
1038 			*length += extent_end - start;
1039 		else if (key.offset > start && extent_end <= end)
1040 			*length += extent_end - key.offset;
1041 		else if (key.offset > start && key.offset <= end) {
1042 			*length += end - key.offset + 1;
1043 			break;
1044 		} else if (key.offset > end)
1045 			break;
1046 
1047 next:
1048 		path->slots[0]++;
1049 	}
1050 	ret = 0;
1051 out:
1052 	btrfs_free_path(path);
1053 	return ret;
1054 }
1055 
1056 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1057 				   struct btrfs_device *device,
1058 				   u64 *start, u64 len)
1059 {
1060 	struct extent_map *em;
1061 	struct list_head *search_list = &trans->transaction->pending_chunks;
1062 	int ret = 0;
1063 
1064 again:
1065 	list_for_each_entry(em, search_list, list) {
1066 		struct map_lookup *map;
1067 		int i;
1068 
1069 		map = (struct map_lookup *)em->bdev;
1070 		for (i = 0; i < map->num_stripes; i++) {
1071 			if (map->stripes[i].dev != device)
1072 				continue;
1073 			if (map->stripes[i].physical >= *start + len ||
1074 			    map->stripes[i].physical + em->orig_block_len <=
1075 			    *start)
1076 				continue;
1077 			*start = map->stripes[i].physical +
1078 				em->orig_block_len;
1079 			ret = 1;
1080 		}
1081 	}
1082 	if (search_list == &trans->transaction->pending_chunks) {
1083 		search_list = &trans->root->fs_info->pinned_chunks;
1084 		goto again;
1085 	}
1086 
1087 	return ret;
1088 }
1089 
1090 
1091 /*
1092  * find_free_dev_extent - find free space in the specified device
1093  * @device:	the device which we search the free space in
1094  * @num_bytes:	the size of the free space that we need
1095  * @start:	store the start of the free space.
1096  * @len:	the size of the free space. that we find, or the size of the max
1097  * 		free space if we don't find suitable free space
1098  *
1099  * this uses a pretty simple search, the expectation is that it is
1100  * called very infrequently and that a given device has a small number
1101  * of extents
1102  *
1103  * @start is used to store the start of the free space if we find. But if we
1104  * don't find suitable free space, it will be used to store the start position
1105  * of the max free space.
1106  *
1107  * @len is used to store the size of the free space that we find.
1108  * But if we don't find suitable free space, it is used to store the size of
1109  * the max free space.
1110  */
1111 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1112 			 struct btrfs_device *device, u64 num_bytes,
1113 			 u64 *start, u64 *len)
1114 {
1115 	struct btrfs_key key;
1116 	struct btrfs_root *root = device->dev_root;
1117 	struct btrfs_dev_extent *dev_extent;
1118 	struct btrfs_path *path;
1119 	u64 hole_size;
1120 	u64 max_hole_start;
1121 	u64 max_hole_size;
1122 	u64 extent_end;
1123 	u64 search_start;
1124 	u64 search_end = device->total_bytes;
1125 	int ret;
1126 	int slot;
1127 	struct extent_buffer *l;
1128 
1129 	/* FIXME use last free of some kind */
1130 
1131 	/* we don't want to overwrite the superblock on the drive,
1132 	 * so we make sure to start at an offset of at least 1MB
1133 	 */
1134 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1135 
1136 	path = btrfs_alloc_path();
1137 	if (!path)
1138 		return -ENOMEM;
1139 again:
1140 	max_hole_start = search_start;
1141 	max_hole_size = 0;
1142 	hole_size = 0;
1143 
1144 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1145 		ret = -ENOSPC;
1146 		goto out;
1147 	}
1148 
1149 	path->reada = 2;
1150 	path->search_commit_root = 1;
1151 	path->skip_locking = 1;
1152 
1153 	key.objectid = device->devid;
1154 	key.offset = search_start;
1155 	key.type = BTRFS_DEV_EXTENT_KEY;
1156 
1157 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1158 	if (ret < 0)
1159 		goto out;
1160 	if (ret > 0) {
1161 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1162 		if (ret < 0)
1163 			goto out;
1164 	}
1165 
1166 	while (1) {
1167 		l = path->nodes[0];
1168 		slot = path->slots[0];
1169 		if (slot >= btrfs_header_nritems(l)) {
1170 			ret = btrfs_next_leaf(root, path);
1171 			if (ret == 0)
1172 				continue;
1173 			if (ret < 0)
1174 				goto out;
1175 
1176 			break;
1177 		}
1178 		btrfs_item_key_to_cpu(l, &key, slot);
1179 
1180 		if (key.objectid < device->devid)
1181 			goto next;
1182 
1183 		if (key.objectid > device->devid)
1184 			break;
1185 
1186 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1187 			goto next;
1188 
1189 		if (key.offset > search_start) {
1190 			hole_size = key.offset - search_start;
1191 
1192 			/*
1193 			 * Have to check before we set max_hole_start, otherwise
1194 			 * we could end up sending back this offset anyway.
1195 			 */
1196 			if (contains_pending_extent(trans, device,
1197 						    &search_start,
1198 						    hole_size))
1199 				hole_size = 0;
1200 
1201 			if (hole_size > max_hole_size) {
1202 				max_hole_start = search_start;
1203 				max_hole_size = hole_size;
1204 			}
1205 
1206 			/*
1207 			 * If this free space is greater than which we need,
1208 			 * it must be the max free space that we have found
1209 			 * until now, so max_hole_start must point to the start
1210 			 * of this free space and the length of this free space
1211 			 * is stored in max_hole_size. Thus, we return
1212 			 * max_hole_start and max_hole_size and go back to the
1213 			 * caller.
1214 			 */
1215 			if (hole_size >= num_bytes) {
1216 				ret = 0;
1217 				goto out;
1218 			}
1219 		}
1220 
1221 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1222 		extent_end = key.offset + btrfs_dev_extent_length(l,
1223 								  dev_extent);
1224 		if (extent_end > search_start)
1225 			search_start = extent_end;
1226 next:
1227 		path->slots[0]++;
1228 		cond_resched();
1229 	}
1230 
1231 	/*
1232 	 * At this point, search_start should be the end of
1233 	 * allocated dev extents, and when shrinking the device,
1234 	 * search_end may be smaller than search_start.
1235 	 */
1236 	if (search_end > search_start)
1237 		hole_size = search_end - search_start;
1238 
1239 	if (hole_size > max_hole_size) {
1240 		max_hole_start = search_start;
1241 		max_hole_size = hole_size;
1242 	}
1243 
1244 	if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1245 		btrfs_release_path(path);
1246 		goto again;
1247 	}
1248 
1249 	/* See above. */
1250 	if (hole_size < num_bytes)
1251 		ret = -ENOSPC;
1252 	else
1253 		ret = 0;
1254 
1255 out:
1256 	btrfs_free_path(path);
1257 	*start = max_hole_start;
1258 	if (len)
1259 		*len = max_hole_size;
1260 	return ret;
1261 }
1262 
1263 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1264 			  struct btrfs_device *device,
1265 			  u64 start, u64 *dev_extent_len)
1266 {
1267 	int ret;
1268 	struct btrfs_path *path;
1269 	struct btrfs_root *root = device->dev_root;
1270 	struct btrfs_key key;
1271 	struct btrfs_key found_key;
1272 	struct extent_buffer *leaf = NULL;
1273 	struct btrfs_dev_extent *extent = NULL;
1274 
1275 	path = btrfs_alloc_path();
1276 	if (!path)
1277 		return -ENOMEM;
1278 
1279 	key.objectid = device->devid;
1280 	key.offset = start;
1281 	key.type = BTRFS_DEV_EXTENT_KEY;
1282 again:
1283 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1284 	if (ret > 0) {
1285 		ret = btrfs_previous_item(root, path, key.objectid,
1286 					  BTRFS_DEV_EXTENT_KEY);
1287 		if (ret)
1288 			goto out;
1289 		leaf = path->nodes[0];
1290 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1291 		extent = btrfs_item_ptr(leaf, path->slots[0],
1292 					struct btrfs_dev_extent);
1293 		BUG_ON(found_key.offset > start || found_key.offset +
1294 		       btrfs_dev_extent_length(leaf, extent) < start);
1295 		key = found_key;
1296 		btrfs_release_path(path);
1297 		goto again;
1298 	} else if (ret == 0) {
1299 		leaf = path->nodes[0];
1300 		extent = btrfs_item_ptr(leaf, path->slots[0],
1301 					struct btrfs_dev_extent);
1302 	} else {
1303 		btrfs_error(root->fs_info, ret, "Slot search failed");
1304 		goto out;
1305 	}
1306 
1307 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1308 
1309 	ret = btrfs_del_item(trans, root, path);
1310 	if (ret) {
1311 		btrfs_error(root->fs_info, ret,
1312 			    "Failed to remove dev extent item");
1313 	} else {
1314 		trans->transaction->have_free_bgs = 1;
1315 	}
1316 out:
1317 	btrfs_free_path(path);
1318 	return ret;
1319 }
1320 
1321 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1322 				  struct btrfs_device *device,
1323 				  u64 chunk_tree, u64 chunk_objectid,
1324 				  u64 chunk_offset, u64 start, u64 num_bytes)
1325 {
1326 	int ret;
1327 	struct btrfs_path *path;
1328 	struct btrfs_root *root = device->dev_root;
1329 	struct btrfs_dev_extent *extent;
1330 	struct extent_buffer *leaf;
1331 	struct btrfs_key key;
1332 
1333 	WARN_ON(!device->in_fs_metadata);
1334 	WARN_ON(device->is_tgtdev_for_dev_replace);
1335 	path = btrfs_alloc_path();
1336 	if (!path)
1337 		return -ENOMEM;
1338 
1339 	key.objectid = device->devid;
1340 	key.offset = start;
1341 	key.type = BTRFS_DEV_EXTENT_KEY;
1342 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1343 				      sizeof(*extent));
1344 	if (ret)
1345 		goto out;
1346 
1347 	leaf = path->nodes[0];
1348 	extent = btrfs_item_ptr(leaf, path->slots[0],
1349 				struct btrfs_dev_extent);
1350 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1351 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1352 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1353 
1354 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1355 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1356 
1357 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1358 	btrfs_mark_buffer_dirty(leaf);
1359 out:
1360 	btrfs_free_path(path);
1361 	return ret;
1362 }
1363 
1364 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1365 {
1366 	struct extent_map_tree *em_tree;
1367 	struct extent_map *em;
1368 	struct rb_node *n;
1369 	u64 ret = 0;
1370 
1371 	em_tree = &fs_info->mapping_tree.map_tree;
1372 	read_lock(&em_tree->lock);
1373 	n = rb_last(&em_tree->map);
1374 	if (n) {
1375 		em = rb_entry(n, struct extent_map, rb_node);
1376 		ret = em->start + em->len;
1377 	}
1378 	read_unlock(&em_tree->lock);
1379 
1380 	return ret;
1381 }
1382 
1383 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1384 				    u64 *devid_ret)
1385 {
1386 	int ret;
1387 	struct btrfs_key key;
1388 	struct btrfs_key found_key;
1389 	struct btrfs_path *path;
1390 
1391 	path = btrfs_alloc_path();
1392 	if (!path)
1393 		return -ENOMEM;
1394 
1395 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1396 	key.type = BTRFS_DEV_ITEM_KEY;
1397 	key.offset = (u64)-1;
1398 
1399 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1400 	if (ret < 0)
1401 		goto error;
1402 
1403 	BUG_ON(ret == 0); /* Corruption */
1404 
1405 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1406 				  BTRFS_DEV_ITEMS_OBJECTID,
1407 				  BTRFS_DEV_ITEM_KEY);
1408 	if (ret) {
1409 		*devid_ret = 1;
1410 	} else {
1411 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1412 				      path->slots[0]);
1413 		*devid_ret = found_key.offset + 1;
1414 	}
1415 	ret = 0;
1416 error:
1417 	btrfs_free_path(path);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * the device information is stored in the chunk root
1423  * the btrfs_device struct should be fully filled in
1424  */
1425 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1426 			    struct btrfs_root *root,
1427 			    struct btrfs_device *device)
1428 {
1429 	int ret;
1430 	struct btrfs_path *path;
1431 	struct btrfs_dev_item *dev_item;
1432 	struct extent_buffer *leaf;
1433 	struct btrfs_key key;
1434 	unsigned long ptr;
1435 
1436 	root = root->fs_info->chunk_root;
1437 
1438 	path = btrfs_alloc_path();
1439 	if (!path)
1440 		return -ENOMEM;
1441 
1442 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1443 	key.type = BTRFS_DEV_ITEM_KEY;
1444 	key.offset = device->devid;
1445 
1446 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1447 				      sizeof(*dev_item));
1448 	if (ret)
1449 		goto out;
1450 
1451 	leaf = path->nodes[0];
1452 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1453 
1454 	btrfs_set_device_id(leaf, dev_item, device->devid);
1455 	btrfs_set_device_generation(leaf, dev_item, 0);
1456 	btrfs_set_device_type(leaf, dev_item, device->type);
1457 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1458 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1459 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1460 	btrfs_set_device_total_bytes(leaf, dev_item,
1461 				     btrfs_device_get_disk_total_bytes(device));
1462 	btrfs_set_device_bytes_used(leaf, dev_item,
1463 				    btrfs_device_get_bytes_used(device));
1464 	btrfs_set_device_group(leaf, dev_item, 0);
1465 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1466 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1467 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1468 
1469 	ptr = btrfs_device_uuid(dev_item);
1470 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1471 	ptr = btrfs_device_fsid(dev_item);
1472 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1473 	btrfs_mark_buffer_dirty(leaf);
1474 
1475 	ret = 0;
1476 out:
1477 	btrfs_free_path(path);
1478 	return ret;
1479 }
1480 
1481 /*
1482  * Function to update ctime/mtime for a given device path.
1483  * Mainly used for ctime/mtime based probe like libblkid.
1484  */
1485 static void update_dev_time(char *path_name)
1486 {
1487 	struct file *filp;
1488 
1489 	filp = filp_open(path_name, O_RDWR, 0);
1490 	if (IS_ERR(filp))
1491 		return;
1492 	file_update_time(filp);
1493 	filp_close(filp, NULL);
1494 	return;
1495 }
1496 
1497 static int btrfs_rm_dev_item(struct btrfs_root *root,
1498 			     struct btrfs_device *device)
1499 {
1500 	int ret;
1501 	struct btrfs_path *path;
1502 	struct btrfs_key key;
1503 	struct btrfs_trans_handle *trans;
1504 
1505 	root = root->fs_info->chunk_root;
1506 
1507 	path = btrfs_alloc_path();
1508 	if (!path)
1509 		return -ENOMEM;
1510 
1511 	trans = btrfs_start_transaction(root, 0);
1512 	if (IS_ERR(trans)) {
1513 		btrfs_free_path(path);
1514 		return PTR_ERR(trans);
1515 	}
1516 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1517 	key.type = BTRFS_DEV_ITEM_KEY;
1518 	key.offset = device->devid;
1519 
1520 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1521 	if (ret < 0)
1522 		goto out;
1523 
1524 	if (ret > 0) {
1525 		ret = -ENOENT;
1526 		goto out;
1527 	}
1528 
1529 	ret = btrfs_del_item(trans, root, path);
1530 	if (ret)
1531 		goto out;
1532 out:
1533 	btrfs_free_path(path);
1534 	btrfs_commit_transaction(trans, root);
1535 	return ret;
1536 }
1537 
1538 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1539 {
1540 	struct btrfs_device *device;
1541 	struct btrfs_device *next_device;
1542 	struct block_device *bdev;
1543 	struct buffer_head *bh = NULL;
1544 	struct btrfs_super_block *disk_super;
1545 	struct btrfs_fs_devices *cur_devices;
1546 	u64 all_avail;
1547 	u64 devid;
1548 	u64 num_devices;
1549 	u8 *dev_uuid;
1550 	unsigned seq;
1551 	int ret = 0;
1552 	bool clear_super = false;
1553 
1554 	mutex_lock(&uuid_mutex);
1555 
1556 	do {
1557 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1558 
1559 		all_avail = root->fs_info->avail_data_alloc_bits |
1560 			    root->fs_info->avail_system_alloc_bits |
1561 			    root->fs_info->avail_metadata_alloc_bits;
1562 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1563 
1564 	num_devices = root->fs_info->fs_devices->num_devices;
1565 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1566 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1567 		WARN_ON(num_devices < 1);
1568 		num_devices--;
1569 	}
1570 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1571 
1572 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1573 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1574 		goto out;
1575 	}
1576 
1577 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1578 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1579 		goto out;
1580 	}
1581 
1582 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1583 	    root->fs_info->fs_devices->rw_devices <= 2) {
1584 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1585 		goto out;
1586 	}
1587 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1588 	    root->fs_info->fs_devices->rw_devices <= 3) {
1589 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1590 		goto out;
1591 	}
1592 
1593 	if (strcmp(device_path, "missing") == 0) {
1594 		struct list_head *devices;
1595 		struct btrfs_device *tmp;
1596 
1597 		device = NULL;
1598 		devices = &root->fs_info->fs_devices->devices;
1599 		/*
1600 		 * It is safe to read the devices since the volume_mutex
1601 		 * is held.
1602 		 */
1603 		list_for_each_entry(tmp, devices, dev_list) {
1604 			if (tmp->in_fs_metadata &&
1605 			    !tmp->is_tgtdev_for_dev_replace &&
1606 			    !tmp->bdev) {
1607 				device = tmp;
1608 				break;
1609 			}
1610 		}
1611 		bdev = NULL;
1612 		bh = NULL;
1613 		disk_super = NULL;
1614 		if (!device) {
1615 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1616 			goto out;
1617 		}
1618 	} else {
1619 		ret = btrfs_get_bdev_and_sb(device_path,
1620 					    FMODE_WRITE | FMODE_EXCL,
1621 					    root->fs_info->bdev_holder, 0,
1622 					    &bdev, &bh);
1623 		if (ret)
1624 			goto out;
1625 		disk_super = (struct btrfs_super_block *)bh->b_data;
1626 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1627 		dev_uuid = disk_super->dev_item.uuid;
1628 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1629 					   disk_super->fsid);
1630 		if (!device) {
1631 			ret = -ENOENT;
1632 			goto error_brelse;
1633 		}
1634 	}
1635 
1636 	if (device->is_tgtdev_for_dev_replace) {
1637 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1638 		goto error_brelse;
1639 	}
1640 
1641 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1642 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1643 		goto error_brelse;
1644 	}
1645 
1646 	if (device->writeable) {
1647 		lock_chunks(root);
1648 		list_del_init(&device->dev_alloc_list);
1649 		device->fs_devices->rw_devices--;
1650 		unlock_chunks(root);
1651 		clear_super = true;
1652 	}
1653 
1654 	mutex_unlock(&uuid_mutex);
1655 	ret = btrfs_shrink_device(device, 0);
1656 	mutex_lock(&uuid_mutex);
1657 	if (ret)
1658 		goto error_undo;
1659 
1660 	/*
1661 	 * TODO: the superblock still includes this device in its num_devices
1662 	 * counter although write_all_supers() is not locked out. This
1663 	 * could give a filesystem state which requires a degraded mount.
1664 	 */
1665 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1666 	if (ret)
1667 		goto error_undo;
1668 
1669 	device->in_fs_metadata = 0;
1670 	btrfs_scrub_cancel_dev(root->fs_info, device);
1671 
1672 	/*
1673 	 * the device list mutex makes sure that we don't change
1674 	 * the device list while someone else is writing out all
1675 	 * the device supers. Whoever is writing all supers, should
1676 	 * lock the device list mutex before getting the number of
1677 	 * devices in the super block (super_copy). Conversely,
1678 	 * whoever updates the number of devices in the super block
1679 	 * (super_copy) should hold the device list mutex.
1680 	 */
1681 
1682 	cur_devices = device->fs_devices;
1683 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1684 	list_del_rcu(&device->dev_list);
1685 
1686 	device->fs_devices->num_devices--;
1687 	device->fs_devices->total_devices--;
1688 
1689 	if (device->missing)
1690 		device->fs_devices->missing_devices--;
1691 
1692 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1693 				 struct btrfs_device, dev_list);
1694 	if (device->bdev == root->fs_info->sb->s_bdev)
1695 		root->fs_info->sb->s_bdev = next_device->bdev;
1696 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1697 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1698 
1699 	if (device->bdev) {
1700 		device->fs_devices->open_devices--;
1701 		/* remove sysfs entry */
1702 		btrfs_kobj_rm_device(root->fs_info, device);
1703 	}
1704 
1705 	call_rcu(&device->rcu, free_device);
1706 
1707 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1708 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1709 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1710 
1711 	if (cur_devices->open_devices == 0) {
1712 		struct btrfs_fs_devices *fs_devices;
1713 		fs_devices = root->fs_info->fs_devices;
1714 		while (fs_devices) {
1715 			if (fs_devices->seed == cur_devices) {
1716 				fs_devices->seed = cur_devices->seed;
1717 				break;
1718 			}
1719 			fs_devices = fs_devices->seed;
1720 		}
1721 		cur_devices->seed = NULL;
1722 		__btrfs_close_devices(cur_devices);
1723 		free_fs_devices(cur_devices);
1724 	}
1725 
1726 	root->fs_info->num_tolerated_disk_barrier_failures =
1727 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1728 
1729 	/*
1730 	 * at this point, the device is zero sized.  We want to
1731 	 * remove it from the devices list and zero out the old super
1732 	 */
1733 	if (clear_super && disk_super) {
1734 		u64 bytenr;
1735 		int i;
1736 
1737 		/* make sure this device isn't detected as part of
1738 		 * the FS anymore
1739 		 */
1740 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1741 		set_buffer_dirty(bh);
1742 		sync_dirty_buffer(bh);
1743 
1744 		/* clear the mirror copies of super block on the disk
1745 		 * being removed, 0th copy is been taken care above and
1746 		 * the below would take of the rest
1747 		 */
1748 		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1749 			bytenr = btrfs_sb_offset(i);
1750 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1751 					i_size_read(bdev->bd_inode))
1752 				break;
1753 
1754 			brelse(bh);
1755 			bh = __bread(bdev, bytenr / 4096,
1756 					BTRFS_SUPER_INFO_SIZE);
1757 			if (!bh)
1758 				continue;
1759 
1760 			disk_super = (struct btrfs_super_block *)bh->b_data;
1761 
1762 			if (btrfs_super_bytenr(disk_super) != bytenr ||
1763 				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1764 				continue;
1765 			}
1766 			memset(&disk_super->magic, 0,
1767 						sizeof(disk_super->magic));
1768 			set_buffer_dirty(bh);
1769 			sync_dirty_buffer(bh);
1770 		}
1771 	}
1772 
1773 	ret = 0;
1774 
1775 	if (bdev) {
1776 		/* Notify udev that device has changed */
1777 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1778 
1779 		/* Update ctime/mtime for device path for libblkid */
1780 		update_dev_time(device_path);
1781 	}
1782 
1783 error_brelse:
1784 	brelse(bh);
1785 	if (bdev)
1786 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1787 out:
1788 	mutex_unlock(&uuid_mutex);
1789 	return ret;
1790 error_undo:
1791 	if (device->writeable) {
1792 		lock_chunks(root);
1793 		list_add(&device->dev_alloc_list,
1794 			 &root->fs_info->fs_devices->alloc_list);
1795 		device->fs_devices->rw_devices++;
1796 		unlock_chunks(root);
1797 	}
1798 	goto error_brelse;
1799 }
1800 
1801 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1802 					struct btrfs_device *srcdev)
1803 {
1804 	struct btrfs_fs_devices *fs_devices;
1805 
1806 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1807 
1808 	/*
1809 	 * in case of fs with no seed, srcdev->fs_devices will point
1810 	 * to fs_devices of fs_info. However when the dev being replaced is
1811 	 * a seed dev it will point to the seed's local fs_devices. In short
1812 	 * srcdev will have its correct fs_devices in both the cases.
1813 	 */
1814 	fs_devices = srcdev->fs_devices;
1815 
1816 	list_del_rcu(&srcdev->dev_list);
1817 	list_del_rcu(&srcdev->dev_alloc_list);
1818 	fs_devices->num_devices--;
1819 	if (srcdev->missing)
1820 		fs_devices->missing_devices--;
1821 
1822 	if (srcdev->writeable) {
1823 		fs_devices->rw_devices--;
1824 		/* zero out the old super if it is writable */
1825 		btrfs_scratch_superblock(srcdev);
1826 	}
1827 
1828 	if (srcdev->bdev)
1829 		fs_devices->open_devices--;
1830 }
1831 
1832 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1833 				      struct btrfs_device *srcdev)
1834 {
1835 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1836 
1837 	call_rcu(&srcdev->rcu, free_device);
1838 
1839 	/*
1840 	 * unless fs_devices is seed fs, num_devices shouldn't go
1841 	 * zero
1842 	 */
1843 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1844 
1845 	/* if this is no devs we rather delete the fs_devices */
1846 	if (!fs_devices->num_devices) {
1847 		struct btrfs_fs_devices *tmp_fs_devices;
1848 
1849 		tmp_fs_devices = fs_info->fs_devices;
1850 		while (tmp_fs_devices) {
1851 			if (tmp_fs_devices->seed == fs_devices) {
1852 				tmp_fs_devices->seed = fs_devices->seed;
1853 				break;
1854 			}
1855 			tmp_fs_devices = tmp_fs_devices->seed;
1856 		}
1857 		fs_devices->seed = NULL;
1858 		__btrfs_close_devices(fs_devices);
1859 		free_fs_devices(fs_devices);
1860 	}
1861 }
1862 
1863 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1864 				      struct btrfs_device *tgtdev)
1865 {
1866 	struct btrfs_device *next_device;
1867 
1868 	mutex_lock(&uuid_mutex);
1869 	WARN_ON(!tgtdev);
1870 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1871 	if (tgtdev->bdev) {
1872 		btrfs_scratch_superblock(tgtdev);
1873 		fs_info->fs_devices->open_devices--;
1874 	}
1875 	fs_info->fs_devices->num_devices--;
1876 
1877 	next_device = list_entry(fs_info->fs_devices->devices.next,
1878 				 struct btrfs_device, dev_list);
1879 	if (tgtdev->bdev == fs_info->sb->s_bdev)
1880 		fs_info->sb->s_bdev = next_device->bdev;
1881 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1882 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1883 	list_del_rcu(&tgtdev->dev_list);
1884 
1885 	call_rcu(&tgtdev->rcu, free_device);
1886 
1887 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1888 	mutex_unlock(&uuid_mutex);
1889 }
1890 
1891 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1892 				     struct btrfs_device **device)
1893 {
1894 	int ret = 0;
1895 	struct btrfs_super_block *disk_super;
1896 	u64 devid;
1897 	u8 *dev_uuid;
1898 	struct block_device *bdev;
1899 	struct buffer_head *bh;
1900 
1901 	*device = NULL;
1902 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1903 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
1904 	if (ret)
1905 		return ret;
1906 	disk_super = (struct btrfs_super_block *)bh->b_data;
1907 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1908 	dev_uuid = disk_super->dev_item.uuid;
1909 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1910 				    disk_super->fsid);
1911 	brelse(bh);
1912 	if (!*device)
1913 		ret = -ENOENT;
1914 	blkdev_put(bdev, FMODE_READ);
1915 	return ret;
1916 }
1917 
1918 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1919 					 char *device_path,
1920 					 struct btrfs_device **device)
1921 {
1922 	*device = NULL;
1923 	if (strcmp(device_path, "missing") == 0) {
1924 		struct list_head *devices;
1925 		struct btrfs_device *tmp;
1926 
1927 		devices = &root->fs_info->fs_devices->devices;
1928 		/*
1929 		 * It is safe to read the devices since the volume_mutex
1930 		 * is held by the caller.
1931 		 */
1932 		list_for_each_entry(tmp, devices, dev_list) {
1933 			if (tmp->in_fs_metadata && !tmp->bdev) {
1934 				*device = tmp;
1935 				break;
1936 			}
1937 		}
1938 
1939 		if (!*device) {
1940 			btrfs_err(root->fs_info, "no missing device found");
1941 			return -ENOENT;
1942 		}
1943 
1944 		return 0;
1945 	} else {
1946 		return btrfs_find_device_by_path(root, device_path, device);
1947 	}
1948 }
1949 
1950 /*
1951  * does all the dirty work required for changing file system's UUID.
1952  */
1953 static int btrfs_prepare_sprout(struct btrfs_root *root)
1954 {
1955 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1956 	struct btrfs_fs_devices *old_devices;
1957 	struct btrfs_fs_devices *seed_devices;
1958 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1959 	struct btrfs_device *device;
1960 	u64 super_flags;
1961 
1962 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1963 	if (!fs_devices->seeding)
1964 		return -EINVAL;
1965 
1966 	seed_devices = __alloc_fs_devices();
1967 	if (IS_ERR(seed_devices))
1968 		return PTR_ERR(seed_devices);
1969 
1970 	old_devices = clone_fs_devices(fs_devices);
1971 	if (IS_ERR(old_devices)) {
1972 		kfree(seed_devices);
1973 		return PTR_ERR(old_devices);
1974 	}
1975 
1976 	list_add(&old_devices->list, &fs_uuids);
1977 
1978 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1979 	seed_devices->opened = 1;
1980 	INIT_LIST_HEAD(&seed_devices->devices);
1981 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1982 	mutex_init(&seed_devices->device_list_mutex);
1983 
1984 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1985 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1986 			      synchronize_rcu);
1987 	list_for_each_entry(device, &seed_devices->devices, dev_list)
1988 		device->fs_devices = seed_devices;
1989 
1990 	lock_chunks(root);
1991 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1992 	unlock_chunks(root);
1993 
1994 	fs_devices->seeding = 0;
1995 	fs_devices->num_devices = 0;
1996 	fs_devices->open_devices = 0;
1997 	fs_devices->missing_devices = 0;
1998 	fs_devices->rotating = 0;
1999 	fs_devices->seed = seed_devices;
2000 
2001 	generate_random_uuid(fs_devices->fsid);
2002 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2003 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2004 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2005 
2006 	super_flags = btrfs_super_flags(disk_super) &
2007 		      ~BTRFS_SUPER_FLAG_SEEDING;
2008 	btrfs_set_super_flags(disk_super, super_flags);
2009 
2010 	return 0;
2011 }
2012 
2013 /*
2014  * strore the expected generation for seed devices in device items.
2015  */
2016 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2017 			       struct btrfs_root *root)
2018 {
2019 	struct btrfs_path *path;
2020 	struct extent_buffer *leaf;
2021 	struct btrfs_dev_item *dev_item;
2022 	struct btrfs_device *device;
2023 	struct btrfs_key key;
2024 	u8 fs_uuid[BTRFS_UUID_SIZE];
2025 	u8 dev_uuid[BTRFS_UUID_SIZE];
2026 	u64 devid;
2027 	int ret;
2028 
2029 	path = btrfs_alloc_path();
2030 	if (!path)
2031 		return -ENOMEM;
2032 
2033 	root = root->fs_info->chunk_root;
2034 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2035 	key.offset = 0;
2036 	key.type = BTRFS_DEV_ITEM_KEY;
2037 
2038 	while (1) {
2039 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2040 		if (ret < 0)
2041 			goto error;
2042 
2043 		leaf = path->nodes[0];
2044 next_slot:
2045 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2046 			ret = btrfs_next_leaf(root, path);
2047 			if (ret > 0)
2048 				break;
2049 			if (ret < 0)
2050 				goto error;
2051 			leaf = path->nodes[0];
2052 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2053 			btrfs_release_path(path);
2054 			continue;
2055 		}
2056 
2057 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2058 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2059 		    key.type != BTRFS_DEV_ITEM_KEY)
2060 			break;
2061 
2062 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2063 					  struct btrfs_dev_item);
2064 		devid = btrfs_device_id(leaf, dev_item);
2065 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2066 				   BTRFS_UUID_SIZE);
2067 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2068 				   BTRFS_UUID_SIZE);
2069 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2070 					   fs_uuid);
2071 		BUG_ON(!device); /* Logic error */
2072 
2073 		if (device->fs_devices->seeding) {
2074 			btrfs_set_device_generation(leaf, dev_item,
2075 						    device->generation);
2076 			btrfs_mark_buffer_dirty(leaf);
2077 		}
2078 
2079 		path->slots[0]++;
2080 		goto next_slot;
2081 	}
2082 	ret = 0;
2083 error:
2084 	btrfs_free_path(path);
2085 	return ret;
2086 }
2087 
2088 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2089 {
2090 	struct request_queue *q;
2091 	struct btrfs_trans_handle *trans;
2092 	struct btrfs_device *device;
2093 	struct block_device *bdev;
2094 	struct list_head *devices;
2095 	struct super_block *sb = root->fs_info->sb;
2096 	struct rcu_string *name;
2097 	u64 tmp;
2098 	int seeding_dev = 0;
2099 	int ret = 0;
2100 
2101 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2102 		return -EROFS;
2103 
2104 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2105 				  root->fs_info->bdev_holder);
2106 	if (IS_ERR(bdev))
2107 		return PTR_ERR(bdev);
2108 
2109 	if (root->fs_info->fs_devices->seeding) {
2110 		seeding_dev = 1;
2111 		down_write(&sb->s_umount);
2112 		mutex_lock(&uuid_mutex);
2113 	}
2114 
2115 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2116 
2117 	devices = &root->fs_info->fs_devices->devices;
2118 
2119 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2120 	list_for_each_entry(device, devices, dev_list) {
2121 		if (device->bdev == bdev) {
2122 			ret = -EEXIST;
2123 			mutex_unlock(
2124 				&root->fs_info->fs_devices->device_list_mutex);
2125 			goto error;
2126 		}
2127 	}
2128 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2129 
2130 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2131 	if (IS_ERR(device)) {
2132 		/* we can safely leave the fs_devices entry around */
2133 		ret = PTR_ERR(device);
2134 		goto error;
2135 	}
2136 
2137 	name = rcu_string_strdup(device_path, GFP_NOFS);
2138 	if (!name) {
2139 		kfree(device);
2140 		ret = -ENOMEM;
2141 		goto error;
2142 	}
2143 	rcu_assign_pointer(device->name, name);
2144 
2145 	trans = btrfs_start_transaction(root, 0);
2146 	if (IS_ERR(trans)) {
2147 		rcu_string_free(device->name);
2148 		kfree(device);
2149 		ret = PTR_ERR(trans);
2150 		goto error;
2151 	}
2152 
2153 	q = bdev_get_queue(bdev);
2154 	if (blk_queue_discard(q))
2155 		device->can_discard = 1;
2156 	device->writeable = 1;
2157 	device->generation = trans->transid;
2158 	device->io_width = root->sectorsize;
2159 	device->io_align = root->sectorsize;
2160 	device->sector_size = root->sectorsize;
2161 	device->total_bytes = i_size_read(bdev->bd_inode);
2162 	device->disk_total_bytes = device->total_bytes;
2163 	device->commit_total_bytes = device->total_bytes;
2164 	device->dev_root = root->fs_info->dev_root;
2165 	device->bdev = bdev;
2166 	device->in_fs_metadata = 1;
2167 	device->is_tgtdev_for_dev_replace = 0;
2168 	device->mode = FMODE_EXCL;
2169 	device->dev_stats_valid = 1;
2170 	set_blocksize(device->bdev, 4096);
2171 
2172 	if (seeding_dev) {
2173 		sb->s_flags &= ~MS_RDONLY;
2174 		ret = btrfs_prepare_sprout(root);
2175 		BUG_ON(ret); /* -ENOMEM */
2176 	}
2177 
2178 	device->fs_devices = root->fs_info->fs_devices;
2179 
2180 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2181 	lock_chunks(root);
2182 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2183 	list_add(&device->dev_alloc_list,
2184 		 &root->fs_info->fs_devices->alloc_list);
2185 	root->fs_info->fs_devices->num_devices++;
2186 	root->fs_info->fs_devices->open_devices++;
2187 	root->fs_info->fs_devices->rw_devices++;
2188 	root->fs_info->fs_devices->total_devices++;
2189 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2190 
2191 	spin_lock(&root->fs_info->free_chunk_lock);
2192 	root->fs_info->free_chunk_space += device->total_bytes;
2193 	spin_unlock(&root->fs_info->free_chunk_lock);
2194 
2195 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2196 		root->fs_info->fs_devices->rotating = 1;
2197 
2198 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2199 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2200 				    tmp + device->total_bytes);
2201 
2202 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2203 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2204 				    tmp + 1);
2205 
2206 	/* add sysfs device entry */
2207 	btrfs_kobj_add_device(root->fs_info, device);
2208 
2209 	/*
2210 	 * we've got more storage, clear any full flags on the space
2211 	 * infos
2212 	 */
2213 	btrfs_clear_space_info_full(root->fs_info);
2214 
2215 	unlock_chunks(root);
2216 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2217 
2218 	if (seeding_dev) {
2219 		lock_chunks(root);
2220 		ret = init_first_rw_device(trans, root, device);
2221 		unlock_chunks(root);
2222 		if (ret) {
2223 			btrfs_abort_transaction(trans, root, ret);
2224 			goto error_trans;
2225 		}
2226 	}
2227 
2228 	ret = btrfs_add_device(trans, root, device);
2229 	if (ret) {
2230 		btrfs_abort_transaction(trans, root, ret);
2231 		goto error_trans;
2232 	}
2233 
2234 	if (seeding_dev) {
2235 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2236 
2237 		ret = btrfs_finish_sprout(trans, root);
2238 		if (ret) {
2239 			btrfs_abort_transaction(trans, root, ret);
2240 			goto error_trans;
2241 		}
2242 
2243 		/* Sprouting would change fsid of the mounted root,
2244 		 * so rename the fsid on the sysfs
2245 		 */
2246 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2247 						root->fs_info->fsid);
2248 		if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2249 			goto error_trans;
2250 	}
2251 
2252 	root->fs_info->num_tolerated_disk_barrier_failures =
2253 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2254 	ret = btrfs_commit_transaction(trans, root);
2255 
2256 	if (seeding_dev) {
2257 		mutex_unlock(&uuid_mutex);
2258 		up_write(&sb->s_umount);
2259 
2260 		if (ret) /* transaction commit */
2261 			return ret;
2262 
2263 		ret = btrfs_relocate_sys_chunks(root);
2264 		if (ret < 0)
2265 			btrfs_error(root->fs_info, ret,
2266 				    "Failed to relocate sys chunks after "
2267 				    "device initialization. This can be fixed "
2268 				    "using the \"btrfs balance\" command.");
2269 		trans = btrfs_attach_transaction(root);
2270 		if (IS_ERR(trans)) {
2271 			if (PTR_ERR(trans) == -ENOENT)
2272 				return 0;
2273 			return PTR_ERR(trans);
2274 		}
2275 		ret = btrfs_commit_transaction(trans, root);
2276 	}
2277 
2278 	/* Update ctime/mtime for libblkid */
2279 	update_dev_time(device_path);
2280 	return ret;
2281 
2282 error_trans:
2283 	btrfs_end_transaction(trans, root);
2284 	rcu_string_free(device->name);
2285 	btrfs_kobj_rm_device(root->fs_info, device);
2286 	kfree(device);
2287 error:
2288 	blkdev_put(bdev, FMODE_EXCL);
2289 	if (seeding_dev) {
2290 		mutex_unlock(&uuid_mutex);
2291 		up_write(&sb->s_umount);
2292 	}
2293 	return ret;
2294 }
2295 
2296 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2297 				  struct btrfs_device *srcdev,
2298 				  struct btrfs_device **device_out)
2299 {
2300 	struct request_queue *q;
2301 	struct btrfs_device *device;
2302 	struct block_device *bdev;
2303 	struct btrfs_fs_info *fs_info = root->fs_info;
2304 	struct list_head *devices;
2305 	struct rcu_string *name;
2306 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2307 	int ret = 0;
2308 
2309 	*device_out = NULL;
2310 	if (fs_info->fs_devices->seeding) {
2311 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2312 		return -EINVAL;
2313 	}
2314 
2315 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2316 				  fs_info->bdev_holder);
2317 	if (IS_ERR(bdev)) {
2318 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2319 		return PTR_ERR(bdev);
2320 	}
2321 
2322 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2323 
2324 	devices = &fs_info->fs_devices->devices;
2325 	list_for_each_entry(device, devices, dev_list) {
2326 		if (device->bdev == bdev) {
2327 			btrfs_err(fs_info, "target device is in the filesystem!");
2328 			ret = -EEXIST;
2329 			goto error;
2330 		}
2331 	}
2332 
2333 
2334 	if (i_size_read(bdev->bd_inode) <
2335 	    btrfs_device_get_total_bytes(srcdev)) {
2336 		btrfs_err(fs_info, "target device is smaller than source device!");
2337 		ret = -EINVAL;
2338 		goto error;
2339 	}
2340 
2341 
2342 	device = btrfs_alloc_device(NULL, &devid, NULL);
2343 	if (IS_ERR(device)) {
2344 		ret = PTR_ERR(device);
2345 		goto error;
2346 	}
2347 
2348 	name = rcu_string_strdup(device_path, GFP_NOFS);
2349 	if (!name) {
2350 		kfree(device);
2351 		ret = -ENOMEM;
2352 		goto error;
2353 	}
2354 	rcu_assign_pointer(device->name, name);
2355 
2356 	q = bdev_get_queue(bdev);
2357 	if (blk_queue_discard(q))
2358 		device->can_discard = 1;
2359 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2360 	device->writeable = 1;
2361 	device->generation = 0;
2362 	device->io_width = root->sectorsize;
2363 	device->io_align = root->sectorsize;
2364 	device->sector_size = root->sectorsize;
2365 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2366 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2367 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2368 	ASSERT(list_empty(&srcdev->resized_list));
2369 	device->commit_total_bytes = srcdev->commit_total_bytes;
2370 	device->commit_bytes_used = device->bytes_used;
2371 	device->dev_root = fs_info->dev_root;
2372 	device->bdev = bdev;
2373 	device->in_fs_metadata = 1;
2374 	device->is_tgtdev_for_dev_replace = 1;
2375 	device->mode = FMODE_EXCL;
2376 	device->dev_stats_valid = 1;
2377 	set_blocksize(device->bdev, 4096);
2378 	device->fs_devices = fs_info->fs_devices;
2379 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2380 	fs_info->fs_devices->num_devices++;
2381 	fs_info->fs_devices->open_devices++;
2382 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2383 
2384 	*device_out = device;
2385 	return ret;
2386 
2387 error:
2388 	blkdev_put(bdev, FMODE_EXCL);
2389 	return ret;
2390 }
2391 
2392 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2393 					      struct btrfs_device *tgtdev)
2394 {
2395 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2396 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2397 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2398 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2399 	tgtdev->dev_root = fs_info->dev_root;
2400 	tgtdev->in_fs_metadata = 1;
2401 }
2402 
2403 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2404 					struct btrfs_device *device)
2405 {
2406 	int ret;
2407 	struct btrfs_path *path;
2408 	struct btrfs_root *root;
2409 	struct btrfs_dev_item *dev_item;
2410 	struct extent_buffer *leaf;
2411 	struct btrfs_key key;
2412 
2413 	root = device->dev_root->fs_info->chunk_root;
2414 
2415 	path = btrfs_alloc_path();
2416 	if (!path)
2417 		return -ENOMEM;
2418 
2419 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2420 	key.type = BTRFS_DEV_ITEM_KEY;
2421 	key.offset = device->devid;
2422 
2423 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2424 	if (ret < 0)
2425 		goto out;
2426 
2427 	if (ret > 0) {
2428 		ret = -ENOENT;
2429 		goto out;
2430 	}
2431 
2432 	leaf = path->nodes[0];
2433 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2434 
2435 	btrfs_set_device_id(leaf, dev_item, device->devid);
2436 	btrfs_set_device_type(leaf, dev_item, device->type);
2437 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2438 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2439 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2440 	btrfs_set_device_total_bytes(leaf, dev_item,
2441 				     btrfs_device_get_disk_total_bytes(device));
2442 	btrfs_set_device_bytes_used(leaf, dev_item,
2443 				    btrfs_device_get_bytes_used(device));
2444 	btrfs_mark_buffer_dirty(leaf);
2445 
2446 out:
2447 	btrfs_free_path(path);
2448 	return ret;
2449 }
2450 
2451 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2452 		      struct btrfs_device *device, u64 new_size)
2453 {
2454 	struct btrfs_super_block *super_copy =
2455 		device->dev_root->fs_info->super_copy;
2456 	struct btrfs_fs_devices *fs_devices;
2457 	u64 old_total;
2458 	u64 diff;
2459 
2460 	if (!device->writeable)
2461 		return -EACCES;
2462 
2463 	lock_chunks(device->dev_root);
2464 	old_total = btrfs_super_total_bytes(super_copy);
2465 	diff = new_size - device->total_bytes;
2466 
2467 	if (new_size <= device->total_bytes ||
2468 	    device->is_tgtdev_for_dev_replace) {
2469 		unlock_chunks(device->dev_root);
2470 		return -EINVAL;
2471 	}
2472 
2473 	fs_devices = device->dev_root->fs_info->fs_devices;
2474 
2475 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2476 	device->fs_devices->total_rw_bytes += diff;
2477 
2478 	btrfs_device_set_total_bytes(device, new_size);
2479 	btrfs_device_set_disk_total_bytes(device, new_size);
2480 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2481 	if (list_empty(&device->resized_list))
2482 		list_add_tail(&device->resized_list,
2483 			      &fs_devices->resized_devices);
2484 	unlock_chunks(device->dev_root);
2485 
2486 	return btrfs_update_device(trans, device);
2487 }
2488 
2489 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2490 			    struct btrfs_root *root,
2491 			    u64 chunk_tree, u64 chunk_objectid,
2492 			    u64 chunk_offset)
2493 {
2494 	int ret;
2495 	struct btrfs_path *path;
2496 	struct btrfs_key key;
2497 
2498 	root = root->fs_info->chunk_root;
2499 	path = btrfs_alloc_path();
2500 	if (!path)
2501 		return -ENOMEM;
2502 
2503 	key.objectid = chunk_objectid;
2504 	key.offset = chunk_offset;
2505 	key.type = BTRFS_CHUNK_ITEM_KEY;
2506 
2507 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2508 	if (ret < 0)
2509 		goto out;
2510 	else if (ret > 0) { /* Logic error or corruption */
2511 		btrfs_error(root->fs_info, -ENOENT,
2512 			    "Failed lookup while freeing chunk.");
2513 		ret = -ENOENT;
2514 		goto out;
2515 	}
2516 
2517 	ret = btrfs_del_item(trans, root, path);
2518 	if (ret < 0)
2519 		btrfs_error(root->fs_info, ret,
2520 			    "Failed to delete chunk item.");
2521 out:
2522 	btrfs_free_path(path);
2523 	return ret;
2524 }
2525 
2526 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2527 			chunk_offset)
2528 {
2529 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2530 	struct btrfs_disk_key *disk_key;
2531 	struct btrfs_chunk *chunk;
2532 	u8 *ptr;
2533 	int ret = 0;
2534 	u32 num_stripes;
2535 	u32 array_size;
2536 	u32 len = 0;
2537 	u32 cur;
2538 	struct btrfs_key key;
2539 
2540 	lock_chunks(root);
2541 	array_size = btrfs_super_sys_array_size(super_copy);
2542 
2543 	ptr = super_copy->sys_chunk_array;
2544 	cur = 0;
2545 
2546 	while (cur < array_size) {
2547 		disk_key = (struct btrfs_disk_key *)ptr;
2548 		btrfs_disk_key_to_cpu(&key, disk_key);
2549 
2550 		len = sizeof(*disk_key);
2551 
2552 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2553 			chunk = (struct btrfs_chunk *)(ptr + len);
2554 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2555 			len += btrfs_chunk_item_size(num_stripes);
2556 		} else {
2557 			ret = -EIO;
2558 			break;
2559 		}
2560 		if (key.objectid == chunk_objectid &&
2561 		    key.offset == chunk_offset) {
2562 			memmove(ptr, ptr + len, array_size - (cur + len));
2563 			array_size -= len;
2564 			btrfs_set_super_sys_array_size(super_copy, array_size);
2565 		} else {
2566 			ptr += len;
2567 			cur += len;
2568 		}
2569 	}
2570 	unlock_chunks(root);
2571 	return ret;
2572 }
2573 
2574 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2575 		       struct btrfs_root *root, u64 chunk_offset)
2576 {
2577 	struct extent_map_tree *em_tree;
2578 	struct extent_map *em;
2579 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2580 	struct map_lookup *map;
2581 	u64 dev_extent_len = 0;
2582 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2583 	u64 chunk_tree = root->fs_info->chunk_root->objectid;
2584 	int i, ret = 0;
2585 
2586 	/* Just in case */
2587 	root = root->fs_info->chunk_root;
2588 	em_tree = &root->fs_info->mapping_tree.map_tree;
2589 
2590 	read_lock(&em_tree->lock);
2591 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2592 	read_unlock(&em_tree->lock);
2593 
2594 	if (!em || em->start > chunk_offset ||
2595 	    em->start + em->len < chunk_offset) {
2596 		/*
2597 		 * This is a logic error, but we don't want to just rely on the
2598 		 * user having built with ASSERT enabled, so if ASSERT doens't
2599 		 * do anything we still error out.
2600 		 */
2601 		ASSERT(0);
2602 		if (em)
2603 			free_extent_map(em);
2604 		return -EINVAL;
2605 	}
2606 	map = (struct map_lookup *)em->bdev;
2607 
2608 	for (i = 0; i < map->num_stripes; i++) {
2609 		struct btrfs_device *device = map->stripes[i].dev;
2610 		ret = btrfs_free_dev_extent(trans, device,
2611 					    map->stripes[i].physical,
2612 					    &dev_extent_len);
2613 		if (ret) {
2614 			btrfs_abort_transaction(trans, root, ret);
2615 			goto out;
2616 		}
2617 
2618 		if (device->bytes_used > 0) {
2619 			lock_chunks(root);
2620 			btrfs_device_set_bytes_used(device,
2621 					device->bytes_used - dev_extent_len);
2622 			spin_lock(&root->fs_info->free_chunk_lock);
2623 			root->fs_info->free_chunk_space += dev_extent_len;
2624 			spin_unlock(&root->fs_info->free_chunk_lock);
2625 			btrfs_clear_space_info_full(root->fs_info);
2626 			unlock_chunks(root);
2627 		}
2628 
2629 		if (map->stripes[i].dev) {
2630 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2631 			if (ret) {
2632 				btrfs_abort_transaction(trans, root, ret);
2633 				goto out;
2634 			}
2635 		}
2636 	}
2637 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2638 			       chunk_offset);
2639 	if (ret) {
2640 		btrfs_abort_transaction(trans, root, ret);
2641 		goto out;
2642 	}
2643 
2644 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2645 
2646 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2647 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2648 		if (ret) {
2649 			btrfs_abort_transaction(trans, root, ret);
2650 			goto out;
2651 		}
2652 	}
2653 
2654 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2655 	if (ret) {
2656 		btrfs_abort_transaction(trans, extent_root, ret);
2657 		goto out;
2658 	}
2659 
2660 out:
2661 	/* once for us */
2662 	free_extent_map(em);
2663 	return ret;
2664 }
2665 
2666 static int btrfs_relocate_chunk(struct btrfs_root *root,
2667 			 u64 chunk_tree, u64 chunk_objectid,
2668 			 u64 chunk_offset)
2669 {
2670 	struct btrfs_root *extent_root;
2671 	struct btrfs_trans_handle *trans;
2672 	int ret;
2673 
2674 	root = root->fs_info->chunk_root;
2675 	extent_root = root->fs_info->extent_root;
2676 
2677 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2678 	if (ret)
2679 		return -ENOSPC;
2680 
2681 	/* step one, relocate all the extents inside this chunk */
2682 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2683 	if (ret)
2684 		return ret;
2685 
2686 	trans = btrfs_start_transaction(root, 0);
2687 	if (IS_ERR(trans)) {
2688 		ret = PTR_ERR(trans);
2689 		btrfs_std_error(root->fs_info, ret);
2690 		return ret;
2691 	}
2692 
2693 	/*
2694 	 * step two, delete the device extents and the
2695 	 * chunk tree entries
2696 	 */
2697 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2698 	btrfs_end_transaction(trans, root);
2699 	return ret;
2700 }
2701 
2702 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2703 {
2704 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2705 	struct btrfs_path *path;
2706 	struct extent_buffer *leaf;
2707 	struct btrfs_chunk *chunk;
2708 	struct btrfs_key key;
2709 	struct btrfs_key found_key;
2710 	u64 chunk_tree = chunk_root->root_key.objectid;
2711 	u64 chunk_type;
2712 	bool retried = false;
2713 	int failed = 0;
2714 	int ret;
2715 
2716 	path = btrfs_alloc_path();
2717 	if (!path)
2718 		return -ENOMEM;
2719 
2720 again:
2721 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2722 	key.offset = (u64)-1;
2723 	key.type = BTRFS_CHUNK_ITEM_KEY;
2724 
2725 	while (1) {
2726 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2727 		if (ret < 0)
2728 			goto error;
2729 		BUG_ON(ret == 0); /* Corruption */
2730 
2731 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2732 					  key.type);
2733 		if (ret < 0)
2734 			goto error;
2735 		if (ret > 0)
2736 			break;
2737 
2738 		leaf = path->nodes[0];
2739 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2740 
2741 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2742 				       struct btrfs_chunk);
2743 		chunk_type = btrfs_chunk_type(leaf, chunk);
2744 		btrfs_release_path(path);
2745 
2746 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2747 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2748 						   found_key.objectid,
2749 						   found_key.offset);
2750 			if (ret == -ENOSPC)
2751 				failed++;
2752 			else
2753 				BUG_ON(ret);
2754 		}
2755 
2756 		if (found_key.offset == 0)
2757 			break;
2758 		key.offset = found_key.offset - 1;
2759 	}
2760 	ret = 0;
2761 	if (failed && !retried) {
2762 		failed = 0;
2763 		retried = true;
2764 		goto again;
2765 	} else if (WARN_ON(failed && retried)) {
2766 		ret = -ENOSPC;
2767 	}
2768 error:
2769 	btrfs_free_path(path);
2770 	return ret;
2771 }
2772 
2773 static int insert_balance_item(struct btrfs_root *root,
2774 			       struct btrfs_balance_control *bctl)
2775 {
2776 	struct btrfs_trans_handle *trans;
2777 	struct btrfs_balance_item *item;
2778 	struct btrfs_disk_balance_args disk_bargs;
2779 	struct btrfs_path *path;
2780 	struct extent_buffer *leaf;
2781 	struct btrfs_key key;
2782 	int ret, err;
2783 
2784 	path = btrfs_alloc_path();
2785 	if (!path)
2786 		return -ENOMEM;
2787 
2788 	trans = btrfs_start_transaction(root, 0);
2789 	if (IS_ERR(trans)) {
2790 		btrfs_free_path(path);
2791 		return PTR_ERR(trans);
2792 	}
2793 
2794 	key.objectid = BTRFS_BALANCE_OBJECTID;
2795 	key.type = BTRFS_BALANCE_ITEM_KEY;
2796 	key.offset = 0;
2797 
2798 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2799 				      sizeof(*item));
2800 	if (ret)
2801 		goto out;
2802 
2803 	leaf = path->nodes[0];
2804 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2805 
2806 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2807 
2808 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2809 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2810 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2811 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2812 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2813 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2814 
2815 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2816 
2817 	btrfs_mark_buffer_dirty(leaf);
2818 out:
2819 	btrfs_free_path(path);
2820 	err = btrfs_commit_transaction(trans, root);
2821 	if (err && !ret)
2822 		ret = err;
2823 	return ret;
2824 }
2825 
2826 static int del_balance_item(struct btrfs_root *root)
2827 {
2828 	struct btrfs_trans_handle *trans;
2829 	struct btrfs_path *path;
2830 	struct btrfs_key key;
2831 	int ret, err;
2832 
2833 	path = btrfs_alloc_path();
2834 	if (!path)
2835 		return -ENOMEM;
2836 
2837 	trans = btrfs_start_transaction(root, 0);
2838 	if (IS_ERR(trans)) {
2839 		btrfs_free_path(path);
2840 		return PTR_ERR(trans);
2841 	}
2842 
2843 	key.objectid = BTRFS_BALANCE_OBJECTID;
2844 	key.type = BTRFS_BALANCE_ITEM_KEY;
2845 	key.offset = 0;
2846 
2847 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2848 	if (ret < 0)
2849 		goto out;
2850 	if (ret > 0) {
2851 		ret = -ENOENT;
2852 		goto out;
2853 	}
2854 
2855 	ret = btrfs_del_item(trans, root, path);
2856 out:
2857 	btrfs_free_path(path);
2858 	err = btrfs_commit_transaction(trans, root);
2859 	if (err && !ret)
2860 		ret = err;
2861 	return ret;
2862 }
2863 
2864 /*
2865  * This is a heuristic used to reduce the number of chunks balanced on
2866  * resume after balance was interrupted.
2867  */
2868 static void update_balance_args(struct btrfs_balance_control *bctl)
2869 {
2870 	/*
2871 	 * Turn on soft mode for chunk types that were being converted.
2872 	 */
2873 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2874 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2875 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2876 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2877 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2878 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2879 
2880 	/*
2881 	 * Turn on usage filter if is not already used.  The idea is
2882 	 * that chunks that we have already balanced should be
2883 	 * reasonably full.  Don't do it for chunks that are being
2884 	 * converted - that will keep us from relocating unconverted
2885 	 * (albeit full) chunks.
2886 	 */
2887 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2888 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2889 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2890 		bctl->data.usage = 90;
2891 	}
2892 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2893 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2894 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2895 		bctl->sys.usage = 90;
2896 	}
2897 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2898 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2899 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2900 		bctl->meta.usage = 90;
2901 	}
2902 }
2903 
2904 /*
2905  * Should be called with both balance and volume mutexes held to
2906  * serialize other volume operations (add_dev/rm_dev/resize) with
2907  * restriper.  Same goes for unset_balance_control.
2908  */
2909 static void set_balance_control(struct btrfs_balance_control *bctl)
2910 {
2911 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2912 
2913 	BUG_ON(fs_info->balance_ctl);
2914 
2915 	spin_lock(&fs_info->balance_lock);
2916 	fs_info->balance_ctl = bctl;
2917 	spin_unlock(&fs_info->balance_lock);
2918 }
2919 
2920 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2921 {
2922 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2923 
2924 	BUG_ON(!fs_info->balance_ctl);
2925 
2926 	spin_lock(&fs_info->balance_lock);
2927 	fs_info->balance_ctl = NULL;
2928 	spin_unlock(&fs_info->balance_lock);
2929 
2930 	kfree(bctl);
2931 }
2932 
2933 /*
2934  * Balance filters.  Return 1 if chunk should be filtered out
2935  * (should not be balanced).
2936  */
2937 static int chunk_profiles_filter(u64 chunk_type,
2938 				 struct btrfs_balance_args *bargs)
2939 {
2940 	chunk_type = chunk_to_extended(chunk_type) &
2941 				BTRFS_EXTENDED_PROFILE_MASK;
2942 
2943 	if (bargs->profiles & chunk_type)
2944 		return 0;
2945 
2946 	return 1;
2947 }
2948 
2949 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2950 			      struct btrfs_balance_args *bargs)
2951 {
2952 	struct btrfs_block_group_cache *cache;
2953 	u64 chunk_used, user_thresh;
2954 	int ret = 1;
2955 
2956 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2957 	chunk_used = btrfs_block_group_used(&cache->item);
2958 
2959 	if (bargs->usage == 0)
2960 		user_thresh = 1;
2961 	else if (bargs->usage > 100)
2962 		user_thresh = cache->key.offset;
2963 	else
2964 		user_thresh = div_factor_fine(cache->key.offset,
2965 					      bargs->usage);
2966 
2967 	if (chunk_used < user_thresh)
2968 		ret = 0;
2969 
2970 	btrfs_put_block_group(cache);
2971 	return ret;
2972 }
2973 
2974 static int chunk_devid_filter(struct extent_buffer *leaf,
2975 			      struct btrfs_chunk *chunk,
2976 			      struct btrfs_balance_args *bargs)
2977 {
2978 	struct btrfs_stripe *stripe;
2979 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2980 	int i;
2981 
2982 	for (i = 0; i < num_stripes; i++) {
2983 		stripe = btrfs_stripe_nr(chunk, i);
2984 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2985 			return 0;
2986 	}
2987 
2988 	return 1;
2989 }
2990 
2991 /* [pstart, pend) */
2992 static int chunk_drange_filter(struct extent_buffer *leaf,
2993 			       struct btrfs_chunk *chunk,
2994 			       u64 chunk_offset,
2995 			       struct btrfs_balance_args *bargs)
2996 {
2997 	struct btrfs_stripe *stripe;
2998 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2999 	u64 stripe_offset;
3000 	u64 stripe_length;
3001 	int factor;
3002 	int i;
3003 
3004 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3005 		return 0;
3006 
3007 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3008 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3009 		factor = num_stripes / 2;
3010 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3011 		factor = num_stripes - 1;
3012 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3013 		factor = num_stripes - 2;
3014 	} else {
3015 		factor = num_stripes;
3016 	}
3017 
3018 	for (i = 0; i < num_stripes; i++) {
3019 		stripe = btrfs_stripe_nr(chunk, i);
3020 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3021 			continue;
3022 
3023 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3024 		stripe_length = btrfs_chunk_length(leaf, chunk);
3025 		do_div(stripe_length, factor);
3026 
3027 		if (stripe_offset < bargs->pend &&
3028 		    stripe_offset + stripe_length > bargs->pstart)
3029 			return 0;
3030 	}
3031 
3032 	return 1;
3033 }
3034 
3035 /* [vstart, vend) */
3036 static int chunk_vrange_filter(struct extent_buffer *leaf,
3037 			       struct btrfs_chunk *chunk,
3038 			       u64 chunk_offset,
3039 			       struct btrfs_balance_args *bargs)
3040 {
3041 	if (chunk_offset < bargs->vend &&
3042 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3043 		/* at least part of the chunk is inside this vrange */
3044 		return 0;
3045 
3046 	return 1;
3047 }
3048 
3049 static int chunk_soft_convert_filter(u64 chunk_type,
3050 				     struct btrfs_balance_args *bargs)
3051 {
3052 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3053 		return 0;
3054 
3055 	chunk_type = chunk_to_extended(chunk_type) &
3056 				BTRFS_EXTENDED_PROFILE_MASK;
3057 
3058 	if (bargs->target == chunk_type)
3059 		return 1;
3060 
3061 	return 0;
3062 }
3063 
3064 static int should_balance_chunk(struct btrfs_root *root,
3065 				struct extent_buffer *leaf,
3066 				struct btrfs_chunk *chunk, u64 chunk_offset)
3067 {
3068 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3069 	struct btrfs_balance_args *bargs = NULL;
3070 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3071 
3072 	/* type filter */
3073 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3074 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3075 		return 0;
3076 	}
3077 
3078 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3079 		bargs = &bctl->data;
3080 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3081 		bargs = &bctl->sys;
3082 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3083 		bargs = &bctl->meta;
3084 
3085 	/* profiles filter */
3086 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3087 	    chunk_profiles_filter(chunk_type, bargs)) {
3088 		return 0;
3089 	}
3090 
3091 	/* usage filter */
3092 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3093 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3094 		return 0;
3095 	}
3096 
3097 	/* devid filter */
3098 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3099 	    chunk_devid_filter(leaf, chunk, bargs)) {
3100 		return 0;
3101 	}
3102 
3103 	/* drange filter, makes sense only with devid filter */
3104 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3105 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3106 		return 0;
3107 	}
3108 
3109 	/* vrange filter */
3110 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3111 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3112 		return 0;
3113 	}
3114 
3115 	/* soft profile changing mode */
3116 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3117 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3118 		return 0;
3119 	}
3120 
3121 	/*
3122 	 * limited by count, must be the last filter
3123 	 */
3124 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3125 		if (bargs->limit == 0)
3126 			return 0;
3127 		else
3128 			bargs->limit--;
3129 	}
3130 
3131 	return 1;
3132 }
3133 
3134 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3135 {
3136 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3137 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3138 	struct btrfs_root *dev_root = fs_info->dev_root;
3139 	struct list_head *devices;
3140 	struct btrfs_device *device;
3141 	u64 old_size;
3142 	u64 size_to_free;
3143 	struct btrfs_chunk *chunk;
3144 	struct btrfs_path *path;
3145 	struct btrfs_key key;
3146 	struct btrfs_key found_key;
3147 	struct btrfs_trans_handle *trans;
3148 	struct extent_buffer *leaf;
3149 	int slot;
3150 	int ret;
3151 	int enospc_errors = 0;
3152 	bool counting = true;
3153 	u64 limit_data = bctl->data.limit;
3154 	u64 limit_meta = bctl->meta.limit;
3155 	u64 limit_sys = bctl->sys.limit;
3156 
3157 	/* step one make some room on all the devices */
3158 	devices = &fs_info->fs_devices->devices;
3159 	list_for_each_entry(device, devices, dev_list) {
3160 		old_size = btrfs_device_get_total_bytes(device);
3161 		size_to_free = div_factor(old_size, 1);
3162 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3163 		if (!device->writeable ||
3164 		    btrfs_device_get_total_bytes(device) -
3165 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3166 		    device->is_tgtdev_for_dev_replace)
3167 			continue;
3168 
3169 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3170 		if (ret == -ENOSPC)
3171 			break;
3172 		BUG_ON(ret);
3173 
3174 		trans = btrfs_start_transaction(dev_root, 0);
3175 		BUG_ON(IS_ERR(trans));
3176 
3177 		ret = btrfs_grow_device(trans, device, old_size);
3178 		BUG_ON(ret);
3179 
3180 		btrfs_end_transaction(trans, dev_root);
3181 	}
3182 
3183 	/* step two, relocate all the chunks */
3184 	path = btrfs_alloc_path();
3185 	if (!path) {
3186 		ret = -ENOMEM;
3187 		goto error;
3188 	}
3189 
3190 	/* zero out stat counters */
3191 	spin_lock(&fs_info->balance_lock);
3192 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3193 	spin_unlock(&fs_info->balance_lock);
3194 again:
3195 	if (!counting) {
3196 		bctl->data.limit = limit_data;
3197 		bctl->meta.limit = limit_meta;
3198 		bctl->sys.limit = limit_sys;
3199 	}
3200 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3201 	key.offset = (u64)-1;
3202 	key.type = BTRFS_CHUNK_ITEM_KEY;
3203 
3204 	while (1) {
3205 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3206 		    atomic_read(&fs_info->balance_cancel_req)) {
3207 			ret = -ECANCELED;
3208 			goto error;
3209 		}
3210 
3211 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3212 		if (ret < 0)
3213 			goto error;
3214 
3215 		/*
3216 		 * this shouldn't happen, it means the last relocate
3217 		 * failed
3218 		 */
3219 		if (ret == 0)
3220 			BUG(); /* FIXME break ? */
3221 
3222 		ret = btrfs_previous_item(chunk_root, path, 0,
3223 					  BTRFS_CHUNK_ITEM_KEY);
3224 		if (ret) {
3225 			ret = 0;
3226 			break;
3227 		}
3228 
3229 		leaf = path->nodes[0];
3230 		slot = path->slots[0];
3231 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3232 
3233 		if (found_key.objectid != key.objectid)
3234 			break;
3235 
3236 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3237 
3238 		if (!counting) {
3239 			spin_lock(&fs_info->balance_lock);
3240 			bctl->stat.considered++;
3241 			spin_unlock(&fs_info->balance_lock);
3242 		}
3243 
3244 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3245 					   found_key.offset);
3246 		btrfs_release_path(path);
3247 		if (!ret)
3248 			goto loop;
3249 
3250 		if (counting) {
3251 			spin_lock(&fs_info->balance_lock);
3252 			bctl->stat.expected++;
3253 			spin_unlock(&fs_info->balance_lock);
3254 			goto loop;
3255 		}
3256 
3257 		ret = btrfs_relocate_chunk(chunk_root,
3258 					   chunk_root->root_key.objectid,
3259 					   found_key.objectid,
3260 					   found_key.offset);
3261 		if (ret && ret != -ENOSPC)
3262 			goto error;
3263 		if (ret == -ENOSPC) {
3264 			enospc_errors++;
3265 		} else {
3266 			spin_lock(&fs_info->balance_lock);
3267 			bctl->stat.completed++;
3268 			spin_unlock(&fs_info->balance_lock);
3269 		}
3270 loop:
3271 		if (found_key.offset == 0)
3272 			break;
3273 		key.offset = found_key.offset - 1;
3274 	}
3275 
3276 	if (counting) {
3277 		btrfs_release_path(path);
3278 		counting = false;
3279 		goto again;
3280 	}
3281 error:
3282 	btrfs_free_path(path);
3283 	if (enospc_errors) {
3284 		btrfs_info(fs_info, "%d enospc errors during balance",
3285 		       enospc_errors);
3286 		if (!ret)
3287 			ret = -ENOSPC;
3288 	}
3289 
3290 	return ret;
3291 }
3292 
3293 /**
3294  * alloc_profile_is_valid - see if a given profile is valid and reduced
3295  * @flags: profile to validate
3296  * @extended: if true @flags is treated as an extended profile
3297  */
3298 static int alloc_profile_is_valid(u64 flags, int extended)
3299 {
3300 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3301 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3302 
3303 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3304 
3305 	/* 1) check that all other bits are zeroed */
3306 	if (flags & ~mask)
3307 		return 0;
3308 
3309 	/* 2) see if profile is reduced */
3310 	if (flags == 0)
3311 		return !extended; /* "0" is valid for usual profiles */
3312 
3313 	/* true if exactly one bit set */
3314 	return (flags & (flags - 1)) == 0;
3315 }
3316 
3317 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3318 {
3319 	/* cancel requested || normal exit path */
3320 	return atomic_read(&fs_info->balance_cancel_req) ||
3321 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3322 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3323 }
3324 
3325 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3326 {
3327 	int ret;
3328 
3329 	unset_balance_control(fs_info);
3330 	ret = del_balance_item(fs_info->tree_root);
3331 	if (ret)
3332 		btrfs_std_error(fs_info, ret);
3333 
3334 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3335 }
3336 
3337 /*
3338  * Should be called with both balance and volume mutexes held
3339  */
3340 int btrfs_balance(struct btrfs_balance_control *bctl,
3341 		  struct btrfs_ioctl_balance_args *bargs)
3342 {
3343 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3344 	u64 allowed;
3345 	int mixed = 0;
3346 	int ret;
3347 	u64 num_devices;
3348 	unsigned seq;
3349 
3350 	if (btrfs_fs_closing(fs_info) ||
3351 	    atomic_read(&fs_info->balance_pause_req) ||
3352 	    atomic_read(&fs_info->balance_cancel_req)) {
3353 		ret = -EINVAL;
3354 		goto out;
3355 	}
3356 
3357 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3358 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3359 		mixed = 1;
3360 
3361 	/*
3362 	 * In case of mixed groups both data and meta should be picked,
3363 	 * and identical options should be given for both of them.
3364 	 */
3365 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3366 	if (mixed && (bctl->flags & allowed)) {
3367 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3368 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3369 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3370 			btrfs_err(fs_info, "with mixed groups data and "
3371 				   "metadata balance options must be the same");
3372 			ret = -EINVAL;
3373 			goto out;
3374 		}
3375 	}
3376 
3377 	num_devices = fs_info->fs_devices->num_devices;
3378 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3379 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3380 		BUG_ON(num_devices < 1);
3381 		num_devices--;
3382 	}
3383 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3384 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3385 	if (num_devices == 1)
3386 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3387 	else if (num_devices > 1)
3388 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3389 	if (num_devices > 2)
3390 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3391 	if (num_devices > 3)
3392 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3393 			    BTRFS_BLOCK_GROUP_RAID6);
3394 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3395 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
3396 	     (bctl->data.target & ~allowed))) {
3397 		btrfs_err(fs_info, "unable to start balance with target "
3398 			   "data profile %llu",
3399 		       bctl->data.target);
3400 		ret = -EINVAL;
3401 		goto out;
3402 	}
3403 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3404 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3405 	     (bctl->meta.target & ~allowed))) {
3406 		btrfs_err(fs_info,
3407 			   "unable to start balance with target metadata profile %llu",
3408 		       bctl->meta.target);
3409 		ret = -EINVAL;
3410 		goto out;
3411 	}
3412 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3413 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3414 	     (bctl->sys.target & ~allowed))) {
3415 		btrfs_err(fs_info,
3416 			   "unable to start balance with target system profile %llu",
3417 		       bctl->sys.target);
3418 		ret = -EINVAL;
3419 		goto out;
3420 	}
3421 
3422 	/* allow dup'ed data chunks only in mixed mode */
3423 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3424 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3425 		btrfs_err(fs_info, "dup for data is not allowed");
3426 		ret = -EINVAL;
3427 		goto out;
3428 	}
3429 
3430 	/* allow to reduce meta or sys integrity only if force set */
3431 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3432 			BTRFS_BLOCK_GROUP_RAID10 |
3433 			BTRFS_BLOCK_GROUP_RAID5 |
3434 			BTRFS_BLOCK_GROUP_RAID6;
3435 	do {
3436 		seq = read_seqbegin(&fs_info->profiles_lock);
3437 
3438 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3439 		     (fs_info->avail_system_alloc_bits & allowed) &&
3440 		     !(bctl->sys.target & allowed)) ||
3441 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3442 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3443 		     !(bctl->meta.target & allowed))) {
3444 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3445 				btrfs_info(fs_info, "force reducing metadata integrity");
3446 			} else {
3447 				btrfs_err(fs_info, "balance will reduce metadata "
3448 					   "integrity, use force if you want this");
3449 				ret = -EINVAL;
3450 				goto out;
3451 			}
3452 		}
3453 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3454 
3455 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3456 		int num_tolerated_disk_barrier_failures;
3457 		u64 target = bctl->sys.target;
3458 
3459 		num_tolerated_disk_barrier_failures =
3460 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3461 		if (num_tolerated_disk_barrier_failures > 0 &&
3462 		    (target &
3463 		     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3464 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3465 			num_tolerated_disk_barrier_failures = 0;
3466 		else if (num_tolerated_disk_barrier_failures > 1 &&
3467 			 (target &
3468 			  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3469 			num_tolerated_disk_barrier_failures = 1;
3470 
3471 		fs_info->num_tolerated_disk_barrier_failures =
3472 			num_tolerated_disk_barrier_failures;
3473 	}
3474 
3475 	ret = insert_balance_item(fs_info->tree_root, bctl);
3476 	if (ret && ret != -EEXIST)
3477 		goto out;
3478 
3479 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3480 		BUG_ON(ret == -EEXIST);
3481 		set_balance_control(bctl);
3482 	} else {
3483 		BUG_ON(ret != -EEXIST);
3484 		spin_lock(&fs_info->balance_lock);
3485 		update_balance_args(bctl);
3486 		spin_unlock(&fs_info->balance_lock);
3487 	}
3488 
3489 	atomic_inc(&fs_info->balance_running);
3490 	mutex_unlock(&fs_info->balance_mutex);
3491 
3492 	ret = __btrfs_balance(fs_info);
3493 
3494 	mutex_lock(&fs_info->balance_mutex);
3495 	atomic_dec(&fs_info->balance_running);
3496 
3497 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3498 		fs_info->num_tolerated_disk_barrier_failures =
3499 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3500 	}
3501 
3502 	if (bargs) {
3503 		memset(bargs, 0, sizeof(*bargs));
3504 		update_ioctl_balance_args(fs_info, 0, bargs);
3505 	}
3506 
3507 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3508 	    balance_need_close(fs_info)) {
3509 		__cancel_balance(fs_info);
3510 	}
3511 
3512 	wake_up(&fs_info->balance_wait_q);
3513 
3514 	return ret;
3515 out:
3516 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3517 		__cancel_balance(fs_info);
3518 	else {
3519 		kfree(bctl);
3520 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3521 	}
3522 	return ret;
3523 }
3524 
3525 static int balance_kthread(void *data)
3526 {
3527 	struct btrfs_fs_info *fs_info = data;
3528 	int ret = 0;
3529 
3530 	mutex_lock(&fs_info->volume_mutex);
3531 	mutex_lock(&fs_info->balance_mutex);
3532 
3533 	if (fs_info->balance_ctl) {
3534 		btrfs_info(fs_info, "continuing balance");
3535 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3536 	}
3537 
3538 	mutex_unlock(&fs_info->balance_mutex);
3539 	mutex_unlock(&fs_info->volume_mutex);
3540 
3541 	return ret;
3542 }
3543 
3544 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3545 {
3546 	struct task_struct *tsk;
3547 
3548 	spin_lock(&fs_info->balance_lock);
3549 	if (!fs_info->balance_ctl) {
3550 		spin_unlock(&fs_info->balance_lock);
3551 		return 0;
3552 	}
3553 	spin_unlock(&fs_info->balance_lock);
3554 
3555 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3556 		btrfs_info(fs_info, "force skipping balance");
3557 		return 0;
3558 	}
3559 
3560 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3561 	return PTR_ERR_OR_ZERO(tsk);
3562 }
3563 
3564 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3565 {
3566 	struct btrfs_balance_control *bctl;
3567 	struct btrfs_balance_item *item;
3568 	struct btrfs_disk_balance_args disk_bargs;
3569 	struct btrfs_path *path;
3570 	struct extent_buffer *leaf;
3571 	struct btrfs_key key;
3572 	int ret;
3573 
3574 	path = btrfs_alloc_path();
3575 	if (!path)
3576 		return -ENOMEM;
3577 
3578 	key.objectid = BTRFS_BALANCE_OBJECTID;
3579 	key.type = BTRFS_BALANCE_ITEM_KEY;
3580 	key.offset = 0;
3581 
3582 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3583 	if (ret < 0)
3584 		goto out;
3585 	if (ret > 0) { /* ret = -ENOENT; */
3586 		ret = 0;
3587 		goto out;
3588 	}
3589 
3590 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3591 	if (!bctl) {
3592 		ret = -ENOMEM;
3593 		goto out;
3594 	}
3595 
3596 	leaf = path->nodes[0];
3597 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3598 
3599 	bctl->fs_info = fs_info;
3600 	bctl->flags = btrfs_balance_flags(leaf, item);
3601 	bctl->flags |= BTRFS_BALANCE_RESUME;
3602 
3603 	btrfs_balance_data(leaf, item, &disk_bargs);
3604 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3605 	btrfs_balance_meta(leaf, item, &disk_bargs);
3606 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3607 	btrfs_balance_sys(leaf, item, &disk_bargs);
3608 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3609 
3610 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3611 
3612 	mutex_lock(&fs_info->volume_mutex);
3613 	mutex_lock(&fs_info->balance_mutex);
3614 
3615 	set_balance_control(bctl);
3616 
3617 	mutex_unlock(&fs_info->balance_mutex);
3618 	mutex_unlock(&fs_info->volume_mutex);
3619 out:
3620 	btrfs_free_path(path);
3621 	return ret;
3622 }
3623 
3624 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3625 {
3626 	int ret = 0;
3627 
3628 	mutex_lock(&fs_info->balance_mutex);
3629 	if (!fs_info->balance_ctl) {
3630 		mutex_unlock(&fs_info->balance_mutex);
3631 		return -ENOTCONN;
3632 	}
3633 
3634 	if (atomic_read(&fs_info->balance_running)) {
3635 		atomic_inc(&fs_info->balance_pause_req);
3636 		mutex_unlock(&fs_info->balance_mutex);
3637 
3638 		wait_event(fs_info->balance_wait_q,
3639 			   atomic_read(&fs_info->balance_running) == 0);
3640 
3641 		mutex_lock(&fs_info->balance_mutex);
3642 		/* we are good with balance_ctl ripped off from under us */
3643 		BUG_ON(atomic_read(&fs_info->balance_running));
3644 		atomic_dec(&fs_info->balance_pause_req);
3645 	} else {
3646 		ret = -ENOTCONN;
3647 	}
3648 
3649 	mutex_unlock(&fs_info->balance_mutex);
3650 	return ret;
3651 }
3652 
3653 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3654 {
3655 	if (fs_info->sb->s_flags & MS_RDONLY)
3656 		return -EROFS;
3657 
3658 	mutex_lock(&fs_info->balance_mutex);
3659 	if (!fs_info->balance_ctl) {
3660 		mutex_unlock(&fs_info->balance_mutex);
3661 		return -ENOTCONN;
3662 	}
3663 
3664 	atomic_inc(&fs_info->balance_cancel_req);
3665 	/*
3666 	 * if we are running just wait and return, balance item is
3667 	 * deleted in btrfs_balance in this case
3668 	 */
3669 	if (atomic_read(&fs_info->balance_running)) {
3670 		mutex_unlock(&fs_info->balance_mutex);
3671 		wait_event(fs_info->balance_wait_q,
3672 			   atomic_read(&fs_info->balance_running) == 0);
3673 		mutex_lock(&fs_info->balance_mutex);
3674 	} else {
3675 		/* __cancel_balance needs volume_mutex */
3676 		mutex_unlock(&fs_info->balance_mutex);
3677 		mutex_lock(&fs_info->volume_mutex);
3678 		mutex_lock(&fs_info->balance_mutex);
3679 
3680 		if (fs_info->balance_ctl)
3681 			__cancel_balance(fs_info);
3682 
3683 		mutex_unlock(&fs_info->volume_mutex);
3684 	}
3685 
3686 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3687 	atomic_dec(&fs_info->balance_cancel_req);
3688 	mutex_unlock(&fs_info->balance_mutex);
3689 	return 0;
3690 }
3691 
3692 static int btrfs_uuid_scan_kthread(void *data)
3693 {
3694 	struct btrfs_fs_info *fs_info = data;
3695 	struct btrfs_root *root = fs_info->tree_root;
3696 	struct btrfs_key key;
3697 	struct btrfs_key max_key;
3698 	struct btrfs_path *path = NULL;
3699 	int ret = 0;
3700 	struct extent_buffer *eb;
3701 	int slot;
3702 	struct btrfs_root_item root_item;
3703 	u32 item_size;
3704 	struct btrfs_trans_handle *trans = NULL;
3705 
3706 	path = btrfs_alloc_path();
3707 	if (!path) {
3708 		ret = -ENOMEM;
3709 		goto out;
3710 	}
3711 
3712 	key.objectid = 0;
3713 	key.type = BTRFS_ROOT_ITEM_KEY;
3714 	key.offset = 0;
3715 
3716 	max_key.objectid = (u64)-1;
3717 	max_key.type = BTRFS_ROOT_ITEM_KEY;
3718 	max_key.offset = (u64)-1;
3719 
3720 	while (1) {
3721 		ret = btrfs_search_forward(root, &key, path, 0);
3722 		if (ret) {
3723 			if (ret > 0)
3724 				ret = 0;
3725 			break;
3726 		}
3727 
3728 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
3729 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3730 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3731 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3732 			goto skip;
3733 
3734 		eb = path->nodes[0];
3735 		slot = path->slots[0];
3736 		item_size = btrfs_item_size_nr(eb, slot);
3737 		if (item_size < sizeof(root_item))
3738 			goto skip;
3739 
3740 		read_extent_buffer(eb, &root_item,
3741 				   btrfs_item_ptr_offset(eb, slot),
3742 				   (int)sizeof(root_item));
3743 		if (btrfs_root_refs(&root_item) == 0)
3744 			goto skip;
3745 
3746 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
3747 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
3748 			if (trans)
3749 				goto update_tree;
3750 
3751 			btrfs_release_path(path);
3752 			/*
3753 			 * 1 - subvol uuid item
3754 			 * 1 - received_subvol uuid item
3755 			 */
3756 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3757 			if (IS_ERR(trans)) {
3758 				ret = PTR_ERR(trans);
3759 				break;
3760 			}
3761 			continue;
3762 		} else {
3763 			goto skip;
3764 		}
3765 update_tree:
3766 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3767 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3768 						  root_item.uuid,
3769 						  BTRFS_UUID_KEY_SUBVOL,
3770 						  key.objectid);
3771 			if (ret < 0) {
3772 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3773 					ret);
3774 				break;
3775 			}
3776 		}
3777 
3778 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3779 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3780 						  root_item.received_uuid,
3781 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3782 						  key.objectid);
3783 			if (ret < 0) {
3784 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
3785 					ret);
3786 				break;
3787 			}
3788 		}
3789 
3790 skip:
3791 		if (trans) {
3792 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3793 			trans = NULL;
3794 			if (ret)
3795 				break;
3796 		}
3797 
3798 		btrfs_release_path(path);
3799 		if (key.offset < (u64)-1) {
3800 			key.offset++;
3801 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3802 			key.offset = 0;
3803 			key.type = BTRFS_ROOT_ITEM_KEY;
3804 		} else if (key.objectid < (u64)-1) {
3805 			key.offset = 0;
3806 			key.type = BTRFS_ROOT_ITEM_KEY;
3807 			key.objectid++;
3808 		} else {
3809 			break;
3810 		}
3811 		cond_resched();
3812 	}
3813 
3814 out:
3815 	btrfs_free_path(path);
3816 	if (trans && !IS_ERR(trans))
3817 		btrfs_end_transaction(trans, fs_info->uuid_root);
3818 	if (ret)
3819 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3820 	else
3821 		fs_info->update_uuid_tree_gen = 1;
3822 	up(&fs_info->uuid_tree_rescan_sem);
3823 	return 0;
3824 }
3825 
3826 /*
3827  * Callback for btrfs_uuid_tree_iterate().
3828  * returns:
3829  * 0	check succeeded, the entry is not outdated.
3830  * < 0	if an error occured.
3831  * > 0	if the check failed, which means the caller shall remove the entry.
3832  */
3833 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3834 				       u8 *uuid, u8 type, u64 subid)
3835 {
3836 	struct btrfs_key key;
3837 	int ret = 0;
3838 	struct btrfs_root *subvol_root;
3839 
3840 	if (type != BTRFS_UUID_KEY_SUBVOL &&
3841 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3842 		goto out;
3843 
3844 	key.objectid = subid;
3845 	key.type = BTRFS_ROOT_ITEM_KEY;
3846 	key.offset = (u64)-1;
3847 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3848 	if (IS_ERR(subvol_root)) {
3849 		ret = PTR_ERR(subvol_root);
3850 		if (ret == -ENOENT)
3851 			ret = 1;
3852 		goto out;
3853 	}
3854 
3855 	switch (type) {
3856 	case BTRFS_UUID_KEY_SUBVOL:
3857 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3858 			ret = 1;
3859 		break;
3860 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3861 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
3862 			   BTRFS_UUID_SIZE))
3863 			ret = 1;
3864 		break;
3865 	}
3866 
3867 out:
3868 	return ret;
3869 }
3870 
3871 static int btrfs_uuid_rescan_kthread(void *data)
3872 {
3873 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3874 	int ret;
3875 
3876 	/*
3877 	 * 1st step is to iterate through the existing UUID tree and
3878 	 * to delete all entries that contain outdated data.
3879 	 * 2nd step is to add all missing entries to the UUID tree.
3880 	 */
3881 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3882 	if (ret < 0) {
3883 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3884 		up(&fs_info->uuid_tree_rescan_sem);
3885 		return ret;
3886 	}
3887 	return btrfs_uuid_scan_kthread(data);
3888 }
3889 
3890 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3891 {
3892 	struct btrfs_trans_handle *trans;
3893 	struct btrfs_root *tree_root = fs_info->tree_root;
3894 	struct btrfs_root *uuid_root;
3895 	struct task_struct *task;
3896 	int ret;
3897 
3898 	/*
3899 	 * 1 - root node
3900 	 * 1 - root item
3901 	 */
3902 	trans = btrfs_start_transaction(tree_root, 2);
3903 	if (IS_ERR(trans))
3904 		return PTR_ERR(trans);
3905 
3906 	uuid_root = btrfs_create_tree(trans, fs_info,
3907 				      BTRFS_UUID_TREE_OBJECTID);
3908 	if (IS_ERR(uuid_root)) {
3909 		btrfs_abort_transaction(trans, tree_root,
3910 					PTR_ERR(uuid_root));
3911 		return PTR_ERR(uuid_root);
3912 	}
3913 
3914 	fs_info->uuid_root = uuid_root;
3915 
3916 	ret = btrfs_commit_transaction(trans, tree_root);
3917 	if (ret)
3918 		return ret;
3919 
3920 	down(&fs_info->uuid_tree_rescan_sem);
3921 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3922 	if (IS_ERR(task)) {
3923 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3924 		btrfs_warn(fs_info, "failed to start uuid_scan task");
3925 		up(&fs_info->uuid_tree_rescan_sem);
3926 		return PTR_ERR(task);
3927 	}
3928 
3929 	return 0;
3930 }
3931 
3932 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3933 {
3934 	struct task_struct *task;
3935 
3936 	down(&fs_info->uuid_tree_rescan_sem);
3937 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3938 	if (IS_ERR(task)) {
3939 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3940 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3941 		up(&fs_info->uuid_tree_rescan_sem);
3942 		return PTR_ERR(task);
3943 	}
3944 
3945 	return 0;
3946 }
3947 
3948 /*
3949  * shrinking a device means finding all of the device extents past
3950  * the new size, and then following the back refs to the chunks.
3951  * The chunk relocation code actually frees the device extent
3952  */
3953 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3954 {
3955 	struct btrfs_trans_handle *trans;
3956 	struct btrfs_root *root = device->dev_root;
3957 	struct btrfs_dev_extent *dev_extent = NULL;
3958 	struct btrfs_path *path;
3959 	u64 length;
3960 	u64 chunk_tree;
3961 	u64 chunk_objectid;
3962 	u64 chunk_offset;
3963 	int ret;
3964 	int slot;
3965 	int failed = 0;
3966 	bool retried = false;
3967 	struct extent_buffer *l;
3968 	struct btrfs_key key;
3969 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3970 	u64 old_total = btrfs_super_total_bytes(super_copy);
3971 	u64 old_size = btrfs_device_get_total_bytes(device);
3972 	u64 diff = old_size - new_size;
3973 
3974 	if (device->is_tgtdev_for_dev_replace)
3975 		return -EINVAL;
3976 
3977 	path = btrfs_alloc_path();
3978 	if (!path)
3979 		return -ENOMEM;
3980 
3981 	path->reada = 2;
3982 
3983 	lock_chunks(root);
3984 
3985 	btrfs_device_set_total_bytes(device, new_size);
3986 	if (device->writeable) {
3987 		device->fs_devices->total_rw_bytes -= diff;
3988 		spin_lock(&root->fs_info->free_chunk_lock);
3989 		root->fs_info->free_chunk_space -= diff;
3990 		spin_unlock(&root->fs_info->free_chunk_lock);
3991 	}
3992 	unlock_chunks(root);
3993 
3994 again:
3995 	key.objectid = device->devid;
3996 	key.offset = (u64)-1;
3997 	key.type = BTRFS_DEV_EXTENT_KEY;
3998 
3999 	do {
4000 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4001 		if (ret < 0)
4002 			goto done;
4003 
4004 		ret = btrfs_previous_item(root, path, 0, key.type);
4005 		if (ret < 0)
4006 			goto done;
4007 		if (ret) {
4008 			ret = 0;
4009 			btrfs_release_path(path);
4010 			break;
4011 		}
4012 
4013 		l = path->nodes[0];
4014 		slot = path->slots[0];
4015 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4016 
4017 		if (key.objectid != device->devid) {
4018 			btrfs_release_path(path);
4019 			break;
4020 		}
4021 
4022 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4023 		length = btrfs_dev_extent_length(l, dev_extent);
4024 
4025 		if (key.offset + length <= new_size) {
4026 			btrfs_release_path(path);
4027 			break;
4028 		}
4029 
4030 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
4031 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4032 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4033 		btrfs_release_path(path);
4034 
4035 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
4036 					   chunk_offset);
4037 		if (ret && ret != -ENOSPC)
4038 			goto done;
4039 		if (ret == -ENOSPC)
4040 			failed++;
4041 	} while (key.offset-- > 0);
4042 
4043 	if (failed && !retried) {
4044 		failed = 0;
4045 		retried = true;
4046 		goto again;
4047 	} else if (failed && retried) {
4048 		ret = -ENOSPC;
4049 		lock_chunks(root);
4050 
4051 		btrfs_device_set_total_bytes(device, old_size);
4052 		if (device->writeable)
4053 			device->fs_devices->total_rw_bytes += diff;
4054 		spin_lock(&root->fs_info->free_chunk_lock);
4055 		root->fs_info->free_chunk_space += diff;
4056 		spin_unlock(&root->fs_info->free_chunk_lock);
4057 		unlock_chunks(root);
4058 		goto done;
4059 	}
4060 
4061 	/* Shrinking succeeded, else we would be at "done". */
4062 	trans = btrfs_start_transaction(root, 0);
4063 	if (IS_ERR(trans)) {
4064 		ret = PTR_ERR(trans);
4065 		goto done;
4066 	}
4067 
4068 	lock_chunks(root);
4069 	btrfs_device_set_disk_total_bytes(device, new_size);
4070 	if (list_empty(&device->resized_list))
4071 		list_add_tail(&device->resized_list,
4072 			      &root->fs_info->fs_devices->resized_devices);
4073 
4074 	WARN_ON(diff > old_total);
4075 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4076 	unlock_chunks(root);
4077 
4078 	/* Now btrfs_update_device() will change the on-disk size. */
4079 	ret = btrfs_update_device(trans, device);
4080 	btrfs_end_transaction(trans, root);
4081 done:
4082 	btrfs_free_path(path);
4083 	return ret;
4084 }
4085 
4086 static int btrfs_add_system_chunk(struct btrfs_root *root,
4087 			   struct btrfs_key *key,
4088 			   struct btrfs_chunk *chunk, int item_size)
4089 {
4090 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4091 	struct btrfs_disk_key disk_key;
4092 	u32 array_size;
4093 	u8 *ptr;
4094 
4095 	lock_chunks(root);
4096 	array_size = btrfs_super_sys_array_size(super_copy);
4097 	if (array_size + item_size + sizeof(disk_key)
4098 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4099 		unlock_chunks(root);
4100 		return -EFBIG;
4101 	}
4102 
4103 	ptr = super_copy->sys_chunk_array + array_size;
4104 	btrfs_cpu_key_to_disk(&disk_key, key);
4105 	memcpy(ptr, &disk_key, sizeof(disk_key));
4106 	ptr += sizeof(disk_key);
4107 	memcpy(ptr, chunk, item_size);
4108 	item_size += sizeof(disk_key);
4109 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4110 	unlock_chunks(root);
4111 
4112 	return 0;
4113 }
4114 
4115 /*
4116  * sort the devices in descending order by max_avail, total_avail
4117  */
4118 static int btrfs_cmp_device_info(const void *a, const void *b)
4119 {
4120 	const struct btrfs_device_info *di_a = a;
4121 	const struct btrfs_device_info *di_b = b;
4122 
4123 	if (di_a->max_avail > di_b->max_avail)
4124 		return -1;
4125 	if (di_a->max_avail < di_b->max_avail)
4126 		return 1;
4127 	if (di_a->total_avail > di_b->total_avail)
4128 		return -1;
4129 	if (di_a->total_avail < di_b->total_avail)
4130 		return 1;
4131 	return 0;
4132 }
4133 
4134 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4135 	[BTRFS_RAID_RAID10] = {
4136 		.sub_stripes	= 2,
4137 		.dev_stripes	= 1,
4138 		.devs_max	= 0,	/* 0 == as many as possible */
4139 		.devs_min	= 4,
4140 		.devs_increment	= 2,
4141 		.ncopies	= 2,
4142 	},
4143 	[BTRFS_RAID_RAID1] = {
4144 		.sub_stripes	= 1,
4145 		.dev_stripes	= 1,
4146 		.devs_max	= 2,
4147 		.devs_min	= 2,
4148 		.devs_increment	= 2,
4149 		.ncopies	= 2,
4150 	},
4151 	[BTRFS_RAID_DUP] = {
4152 		.sub_stripes	= 1,
4153 		.dev_stripes	= 2,
4154 		.devs_max	= 1,
4155 		.devs_min	= 1,
4156 		.devs_increment	= 1,
4157 		.ncopies	= 2,
4158 	},
4159 	[BTRFS_RAID_RAID0] = {
4160 		.sub_stripes	= 1,
4161 		.dev_stripes	= 1,
4162 		.devs_max	= 0,
4163 		.devs_min	= 2,
4164 		.devs_increment	= 1,
4165 		.ncopies	= 1,
4166 	},
4167 	[BTRFS_RAID_SINGLE] = {
4168 		.sub_stripes	= 1,
4169 		.dev_stripes	= 1,
4170 		.devs_max	= 1,
4171 		.devs_min	= 1,
4172 		.devs_increment	= 1,
4173 		.ncopies	= 1,
4174 	},
4175 	[BTRFS_RAID_RAID5] = {
4176 		.sub_stripes	= 1,
4177 		.dev_stripes	= 1,
4178 		.devs_max	= 0,
4179 		.devs_min	= 2,
4180 		.devs_increment	= 1,
4181 		.ncopies	= 2,
4182 	},
4183 	[BTRFS_RAID_RAID6] = {
4184 		.sub_stripes	= 1,
4185 		.dev_stripes	= 1,
4186 		.devs_max	= 0,
4187 		.devs_min	= 3,
4188 		.devs_increment	= 1,
4189 		.ncopies	= 3,
4190 	},
4191 };
4192 
4193 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4194 {
4195 	/* TODO allow them to set a preferred stripe size */
4196 	return 64 * 1024;
4197 }
4198 
4199 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4200 {
4201 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4202 		return;
4203 
4204 	btrfs_set_fs_incompat(info, RAID56);
4205 }
4206 
4207 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4208 			- sizeof(struct btrfs_item)		\
4209 			- sizeof(struct btrfs_chunk))		\
4210 			/ sizeof(struct btrfs_stripe) + 1)
4211 
4212 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4213 				- 2 * sizeof(struct btrfs_disk_key)	\
4214 				- 2 * sizeof(struct btrfs_chunk))	\
4215 				/ sizeof(struct btrfs_stripe) + 1)
4216 
4217 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4218 			       struct btrfs_root *extent_root, u64 start,
4219 			       u64 type)
4220 {
4221 	struct btrfs_fs_info *info = extent_root->fs_info;
4222 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4223 	struct list_head *cur;
4224 	struct map_lookup *map = NULL;
4225 	struct extent_map_tree *em_tree;
4226 	struct extent_map *em;
4227 	struct btrfs_device_info *devices_info = NULL;
4228 	u64 total_avail;
4229 	int num_stripes;	/* total number of stripes to allocate */
4230 	int data_stripes;	/* number of stripes that count for
4231 				   block group size */
4232 	int sub_stripes;	/* sub_stripes info for map */
4233 	int dev_stripes;	/* stripes per dev */
4234 	int devs_max;		/* max devs to use */
4235 	int devs_min;		/* min devs needed */
4236 	int devs_increment;	/* ndevs has to be a multiple of this */
4237 	int ncopies;		/* how many copies to data has */
4238 	int ret;
4239 	u64 max_stripe_size;
4240 	u64 max_chunk_size;
4241 	u64 stripe_size;
4242 	u64 num_bytes;
4243 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4244 	int ndevs;
4245 	int i;
4246 	int j;
4247 	int index;
4248 
4249 	BUG_ON(!alloc_profile_is_valid(type, 0));
4250 
4251 	if (list_empty(&fs_devices->alloc_list))
4252 		return -ENOSPC;
4253 
4254 	index = __get_raid_index(type);
4255 
4256 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4257 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4258 	devs_max = btrfs_raid_array[index].devs_max;
4259 	devs_min = btrfs_raid_array[index].devs_min;
4260 	devs_increment = btrfs_raid_array[index].devs_increment;
4261 	ncopies = btrfs_raid_array[index].ncopies;
4262 
4263 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4264 		max_stripe_size = 1024 * 1024 * 1024;
4265 		max_chunk_size = 10 * max_stripe_size;
4266 		if (!devs_max)
4267 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4268 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4269 		/* for larger filesystems, use larger metadata chunks */
4270 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4271 			max_stripe_size = 1024 * 1024 * 1024;
4272 		else
4273 			max_stripe_size = 256 * 1024 * 1024;
4274 		max_chunk_size = max_stripe_size;
4275 		if (!devs_max)
4276 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4277 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4278 		max_stripe_size = 32 * 1024 * 1024;
4279 		max_chunk_size = 2 * max_stripe_size;
4280 		if (!devs_max)
4281 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4282 	} else {
4283 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4284 		       type);
4285 		BUG_ON(1);
4286 	}
4287 
4288 	/* we don't want a chunk larger than 10% of writeable space */
4289 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4290 			     max_chunk_size);
4291 
4292 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4293 			       GFP_NOFS);
4294 	if (!devices_info)
4295 		return -ENOMEM;
4296 
4297 	cur = fs_devices->alloc_list.next;
4298 
4299 	/*
4300 	 * in the first pass through the devices list, we gather information
4301 	 * about the available holes on each device.
4302 	 */
4303 	ndevs = 0;
4304 	while (cur != &fs_devices->alloc_list) {
4305 		struct btrfs_device *device;
4306 		u64 max_avail;
4307 		u64 dev_offset;
4308 
4309 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4310 
4311 		cur = cur->next;
4312 
4313 		if (!device->writeable) {
4314 			WARN(1, KERN_ERR
4315 			       "BTRFS: read-only device in alloc_list\n");
4316 			continue;
4317 		}
4318 
4319 		if (!device->in_fs_metadata ||
4320 		    device->is_tgtdev_for_dev_replace)
4321 			continue;
4322 
4323 		if (device->total_bytes > device->bytes_used)
4324 			total_avail = device->total_bytes - device->bytes_used;
4325 		else
4326 			total_avail = 0;
4327 
4328 		/* If there is no space on this device, skip it. */
4329 		if (total_avail == 0)
4330 			continue;
4331 
4332 		ret = find_free_dev_extent(trans, device,
4333 					   max_stripe_size * dev_stripes,
4334 					   &dev_offset, &max_avail);
4335 		if (ret && ret != -ENOSPC)
4336 			goto error;
4337 
4338 		if (ret == 0)
4339 			max_avail = max_stripe_size * dev_stripes;
4340 
4341 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4342 			continue;
4343 
4344 		if (ndevs == fs_devices->rw_devices) {
4345 			WARN(1, "%s: found more than %llu devices\n",
4346 			     __func__, fs_devices->rw_devices);
4347 			break;
4348 		}
4349 		devices_info[ndevs].dev_offset = dev_offset;
4350 		devices_info[ndevs].max_avail = max_avail;
4351 		devices_info[ndevs].total_avail = total_avail;
4352 		devices_info[ndevs].dev = device;
4353 		++ndevs;
4354 	}
4355 
4356 	/*
4357 	 * now sort the devices by hole size / available space
4358 	 */
4359 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4360 	     btrfs_cmp_device_info, NULL);
4361 
4362 	/* round down to number of usable stripes */
4363 	ndevs -= ndevs % devs_increment;
4364 
4365 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4366 		ret = -ENOSPC;
4367 		goto error;
4368 	}
4369 
4370 	if (devs_max && ndevs > devs_max)
4371 		ndevs = devs_max;
4372 	/*
4373 	 * the primary goal is to maximize the number of stripes, so use as many
4374 	 * devices as possible, even if the stripes are not maximum sized.
4375 	 */
4376 	stripe_size = devices_info[ndevs-1].max_avail;
4377 	num_stripes = ndevs * dev_stripes;
4378 
4379 	/*
4380 	 * this will have to be fixed for RAID1 and RAID10 over
4381 	 * more drives
4382 	 */
4383 	data_stripes = num_stripes / ncopies;
4384 
4385 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4386 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4387 				 btrfs_super_stripesize(info->super_copy));
4388 		data_stripes = num_stripes - 1;
4389 	}
4390 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4391 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4392 				 btrfs_super_stripesize(info->super_copy));
4393 		data_stripes = num_stripes - 2;
4394 	}
4395 
4396 	/*
4397 	 * Use the number of data stripes to figure out how big this chunk
4398 	 * is really going to be in terms of logical address space,
4399 	 * and compare that answer with the max chunk size
4400 	 */
4401 	if (stripe_size * data_stripes > max_chunk_size) {
4402 		u64 mask = (1ULL << 24) - 1;
4403 		stripe_size = max_chunk_size;
4404 		do_div(stripe_size, data_stripes);
4405 
4406 		/* bump the answer up to a 16MB boundary */
4407 		stripe_size = (stripe_size + mask) & ~mask;
4408 
4409 		/* but don't go higher than the limits we found
4410 		 * while searching for free extents
4411 		 */
4412 		if (stripe_size > devices_info[ndevs-1].max_avail)
4413 			stripe_size = devices_info[ndevs-1].max_avail;
4414 	}
4415 
4416 	do_div(stripe_size, dev_stripes);
4417 
4418 	/* align to BTRFS_STRIPE_LEN */
4419 	do_div(stripe_size, raid_stripe_len);
4420 	stripe_size *= raid_stripe_len;
4421 
4422 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4423 	if (!map) {
4424 		ret = -ENOMEM;
4425 		goto error;
4426 	}
4427 	map->num_stripes = num_stripes;
4428 
4429 	for (i = 0; i < ndevs; ++i) {
4430 		for (j = 0; j < dev_stripes; ++j) {
4431 			int s = i * dev_stripes + j;
4432 			map->stripes[s].dev = devices_info[i].dev;
4433 			map->stripes[s].physical = devices_info[i].dev_offset +
4434 						   j * stripe_size;
4435 		}
4436 	}
4437 	map->sector_size = extent_root->sectorsize;
4438 	map->stripe_len = raid_stripe_len;
4439 	map->io_align = raid_stripe_len;
4440 	map->io_width = raid_stripe_len;
4441 	map->type = type;
4442 	map->sub_stripes = sub_stripes;
4443 
4444 	num_bytes = stripe_size * data_stripes;
4445 
4446 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4447 
4448 	em = alloc_extent_map();
4449 	if (!em) {
4450 		kfree(map);
4451 		ret = -ENOMEM;
4452 		goto error;
4453 	}
4454 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4455 	em->bdev = (struct block_device *)map;
4456 	em->start = start;
4457 	em->len = num_bytes;
4458 	em->block_start = 0;
4459 	em->block_len = em->len;
4460 	em->orig_block_len = stripe_size;
4461 
4462 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4463 	write_lock(&em_tree->lock);
4464 	ret = add_extent_mapping(em_tree, em, 0);
4465 	if (!ret) {
4466 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4467 		atomic_inc(&em->refs);
4468 	}
4469 	write_unlock(&em_tree->lock);
4470 	if (ret) {
4471 		free_extent_map(em);
4472 		goto error;
4473 	}
4474 
4475 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4476 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4477 				     start, num_bytes);
4478 	if (ret)
4479 		goto error_del_extent;
4480 
4481 	for (i = 0; i < map->num_stripes; i++) {
4482 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4483 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4484 	}
4485 
4486 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4487 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4488 						   map->num_stripes);
4489 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4490 
4491 	free_extent_map(em);
4492 	check_raid56_incompat_flag(extent_root->fs_info, type);
4493 
4494 	kfree(devices_info);
4495 	return 0;
4496 
4497 error_del_extent:
4498 	write_lock(&em_tree->lock);
4499 	remove_extent_mapping(em_tree, em);
4500 	write_unlock(&em_tree->lock);
4501 
4502 	/* One for our allocation */
4503 	free_extent_map(em);
4504 	/* One for the tree reference */
4505 	free_extent_map(em);
4506 	/* One for the pending_chunks list reference */
4507 	free_extent_map(em);
4508 error:
4509 	kfree(devices_info);
4510 	return ret;
4511 }
4512 
4513 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4514 				struct btrfs_root *extent_root,
4515 				u64 chunk_offset, u64 chunk_size)
4516 {
4517 	struct btrfs_key key;
4518 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4519 	struct btrfs_device *device;
4520 	struct btrfs_chunk *chunk;
4521 	struct btrfs_stripe *stripe;
4522 	struct extent_map_tree *em_tree;
4523 	struct extent_map *em;
4524 	struct map_lookup *map;
4525 	size_t item_size;
4526 	u64 dev_offset;
4527 	u64 stripe_size;
4528 	int i = 0;
4529 	int ret;
4530 
4531 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4532 	read_lock(&em_tree->lock);
4533 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4534 	read_unlock(&em_tree->lock);
4535 
4536 	if (!em) {
4537 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4538 			   "%Lu len %Lu", chunk_offset, chunk_size);
4539 		return -EINVAL;
4540 	}
4541 
4542 	if (em->start != chunk_offset || em->len != chunk_size) {
4543 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4544 			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4545 			  chunk_size, em->start, em->len);
4546 		free_extent_map(em);
4547 		return -EINVAL;
4548 	}
4549 
4550 	map = (struct map_lookup *)em->bdev;
4551 	item_size = btrfs_chunk_item_size(map->num_stripes);
4552 	stripe_size = em->orig_block_len;
4553 
4554 	chunk = kzalloc(item_size, GFP_NOFS);
4555 	if (!chunk) {
4556 		ret = -ENOMEM;
4557 		goto out;
4558 	}
4559 
4560 	for (i = 0; i < map->num_stripes; i++) {
4561 		device = map->stripes[i].dev;
4562 		dev_offset = map->stripes[i].physical;
4563 
4564 		ret = btrfs_update_device(trans, device);
4565 		if (ret)
4566 			goto out;
4567 		ret = btrfs_alloc_dev_extent(trans, device,
4568 					     chunk_root->root_key.objectid,
4569 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4570 					     chunk_offset, dev_offset,
4571 					     stripe_size);
4572 		if (ret)
4573 			goto out;
4574 	}
4575 
4576 	stripe = &chunk->stripe;
4577 	for (i = 0; i < map->num_stripes; i++) {
4578 		device = map->stripes[i].dev;
4579 		dev_offset = map->stripes[i].physical;
4580 
4581 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4582 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4583 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4584 		stripe++;
4585 	}
4586 
4587 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4588 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4589 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4590 	btrfs_set_stack_chunk_type(chunk, map->type);
4591 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4592 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4593 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4594 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4595 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4596 
4597 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4598 	key.type = BTRFS_CHUNK_ITEM_KEY;
4599 	key.offset = chunk_offset;
4600 
4601 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4602 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4603 		/*
4604 		 * TODO: Cleanup of inserted chunk root in case of
4605 		 * failure.
4606 		 */
4607 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4608 					     item_size);
4609 	}
4610 
4611 out:
4612 	kfree(chunk);
4613 	free_extent_map(em);
4614 	return ret;
4615 }
4616 
4617 /*
4618  * Chunk allocation falls into two parts. The first part does works
4619  * that make the new allocated chunk useable, but not do any operation
4620  * that modifies the chunk tree. The second part does the works that
4621  * require modifying the chunk tree. This division is important for the
4622  * bootstrap process of adding storage to a seed btrfs.
4623  */
4624 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4625 		      struct btrfs_root *extent_root, u64 type)
4626 {
4627 	u64 chunk_offset;
4628 
4629 	chunk_offset = find_next_chunk(extent_root->fs_info);
4630 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4631 }
4632 
4633 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4634 					 struct btrfs_root *root,
4635 					 struct btrfs_device *device)
4636 {
4637 	u64 chunk_offset;
4638 	u64 sys_chunk_offset;
4639 	u64 alloc_profile;
4640 	struct btrfs_fs_info *fs_info = root->fs_info;
4641 	struct btrfs_root *extent_root = fs_info->extent_root;
4642 	int ret;
4643 
4644 	chunk_offset = find_next_chunk(fs_info);
4645 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4646 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4647 				  alloc_profile);
4648 	if (ret)
4649 		return ret;
4650 
4651 	sys_chunk_offset = find_next_chunk(root->fs_info);
4652 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4653 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4654 				  alloc_profile);
4655 	return ret;
4656 }
4657 
4658 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4659 {
4660 	int max_errors;
4661 
4662 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4663 			 BTRFS_BLOCK_GROUP_RAID10 |
4664 			 BTRFS_BLOCK_GROUP_RAID5 |
4665 			 BTRFS_BLOCK_GROUP_DUP)) {
4666 		max_errors = 1;
4667 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4668 		max_errors = 2;
4669 	} else {
4670 		max_errors = 0;
4671 	}
4672 
4673 	return max_errors;
4674 }
4675 
4676 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4677 {
4678 	struct extent_map *em;
4679 	struct map_lookup *map;
4680 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4681 	int readonly = 0;
4682 	int miss_ndevs = 0;
4683 	int i;
4684 
4685 	read_lock(&map_tree->map_tree.lock);
4686 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4687 	read_unlock(&map_tree->map_tree.lock);
4688 	if (!em)
4689 		return 1;
4690 
4691 	map = (struct map_lookup *)em->bdev;
4692 	for (i = 0; i < map->num_stripes; i++) {
4693 		if (map->stripes[i].dev->missing) {
4694 			miss_ndevs++;
4695 			continue;
4696 		}
4697 
4698 		if (!map->stripes[i].dev->writeable) {
4699 			readonly = 1;
4700 			goto end;
4701 		}
4702 	}
4703 
4704 	/*
4705 	 * If the number of missing devices is larger than max errors,
4706 	 * we can not write the data into that chunk successfully, so
4707 	 * set it readonly.
4708 	 */
4709 	if (miss_ndevs > btrfs_chunk_max_errors(map))
4710 		readonly = 1;
4711 end:
4712 	free_extent_map(em);
4713 	return readonly;
4714 }
4715 
4716 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4717 {
4718 	extent_map_tree_init(&tree->map_tree);
4719 }
4720 
4721 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4722 {
4723 	struct extent_map *em;
4724 
4725 	while (1) {
4726 		write_lock(&tree->map_tree.lock);
4727 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4728 		if (em)
4729 			remove_extent_mapping(&tree->map_tree, em);
4730 		write_unlock(&tree->map_tree.lock);
4731 		if (!em)
4732 			break;
4733 		/* once for us */
4734 		free_extent_map(em);
4735 		/* once for the tree */
4736 		free_extent_map(em);
4737 	}
4738 }
4739 
4740 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4741 {
4742 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4743 	struct extent_map *em;
4744 	struct map_lookup *map;
4745 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4746 	int ret;
4747 
4748 	read_lock(&em_tree->lock);
4749 	em = lookup_extent_mapping(em_tree, logical, len);
4750 	read_unlock(&em_tree->lock);
4751 
4752 	/*
4753 	 * We could return errors for these cases, but that could get ugly and
4754 	 * we'd probably do the same thing which is just not do anything else
4755 	 * and exit, so return 1 so the callers don't try to use other copies.
4756 	 */
4757 	if (!em) {
4758 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4759 			    logical+len);
4760 		return 1;
4761 	}
4762 
4763 	if (em->start > logical || em->start + em->len < logical) {
4764 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4765 			    "%Lu-%Lu", logical, logical+len, em->start,
4766 			    em->start + em->len);
4767 		free_extent_map(em);
4768 		return 1;
4769 	}
4770 
4771 	map = (struct map_lookup *)em->bdev;
4772 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4773 		ret = map->num_stripes;
4774 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4775 		ret = map->sub_stripes;
4776 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4777 		ret = 2;
4778 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4779 		ret = 3;
4780 	else
4781 		ret = 1;
4782 	free_extent_map(em);
4783 
4784 	btrfs_dev_replace_lock(&fs_info->dev_replace);
4785 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4786 		ret++;
4787 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
4788 
4789 	return ret;
4790 }
4791 
4792 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4793 				    struct btrfs_mapping_tree *map_tree,
4794 				    u64 logical)
4795 {
4796 	struct extent_map *em;
4797 	struct map_lookup *map;
4798 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4799 	unsigned long len = root->sectorsize;
4800 
4801 	read_lock(&em_tree->lock);
4802 	em = lookup_extent_mapping(em_tree, logical, len);
4803 	read_unlock(&em_tree->lock);
4804 	BUG_ON(!em);
4805 
4806 	BUG_ON(em->start > logical || em->start + em->len < logical);
4807 	map = (struct map_lookup *)em->bdev;
4808 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4809 		len = map->stripe_len * nr_data_stripes(map);
4810 	free_extent_map(em);
4811 	return len;
4812 }
4813 
4814 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4815 			   u64 logical, u64 len, int mirror_num)
4816 {
4817 	struct extent_map *em;
4818 	struct map_lookup *map;
4819 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4820 	int ret = 0;
4821 
4822 	read_lock(&em_tree->lock);
4823 	em = lookup_extent_mapping(em_tree, logical, len);
4824 	read_unlock(&em_tree->lock);
4825 	BUG_ON(!em);
4826 
4827 	BUG_ON(em->start > logical || em->start + em->len < logical);
4828 	map = (struct map_lookup *)em->bdev;
4829 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4830 		ret = 1;
4831 	free_extent_map(em);
4832 	return ret;
4833 }
4834 
4835 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4836 			    struct map_lookup *map, int first, int num,
4837 			    int optimal, int dev_replace_is_ongoing)
4838 {
4839 	int i;
4840 	int tolerance;
4841 	struct btrfs_device *srcdev;
4842 
4843 	if (dev_replace_is_ongoing &&
4844 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4845 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4846 		srcdev = fs_info->dev_replace.srcdev;
4847 	else
4848 		srcdev = NULL;
4849 
4850 	/*
4851 	 * try to avoid the drive that is the source drive for a
4852 	 * dev-replace procedure, only choose it if no other non-missing
4853 	 * mirror is available
4854 	 */
4855 	for (tolerance = 0; tolerance < 2; tolerance++) {
4856 		if (map->stripes[optimal].dev->bdev &&
4857 		    (tolerance || map->stripes[optimal].dev != srcdev))
4858 			return optimal;
4859 		for (i = first; i < first + num; i++) {
4860 			if (map->stripes[i].dev->bdev &&
4861 			    (tolerance || map->stripes[i].dev != srcdev))
4862 				return i;
4863 		}
4864 	}
4865 
4866 	/* we couldn't find one that doesn't fail.  Just return something
4867 	 * and the io error handling code will clean up eventually
4868 	 */
4869 	return optimal;
4870 }
4871 
4872 static inline int parity_smaller(u64 a, u64 b)
4873 {
4874 	return a > b;
4875 }
4876 
4877 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4878 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
4879 {
4880 	struct btrfs_bio_stripe s;
4881 	int i;
4882 	u64 l;
4883 	int again = 1;
4884 
4885 	while (again) {
4886 		again = 0;
4887 		for (i = 0; i < num_stripes - 1; i++) {
4888 			if (parity_smaller(bbio->raid_map[i],
4889 					   bbio->raid_map[i+1])) {
4890 				s = bbio->stripes[i];
4891 				l = bbio->raid_map[i];
4892 				bbio->stripes[i] = bbio->stripes[i+1];
4893 				bbio->raid_map[i] = bbio->raid_map[i+1];
4894 				bbio->stripes[i+1] = s;
4895 				bbio->raid_map[i+1] = l;
4896 
4897 				again = 1;
4898 			}
4899 		}
4900 	}
4901 }
4902 
4903 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
4904 {
4905 	struct btrfs_bio *bbio = kzalloc(
4906 		 /* the size of the btrfs_bio */
4907 		sizeof(struct btrfs_bio) +
4908 		/* plus the variable array for the stripes */
4909 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
4910 		/* plus the variable array for the tgt dev */
4911 		sizeof(int) * (real_stripes) +
4912 		/*
4913 		 * plus the raid_map, which includes both the tgt dev
4914 		 * and the stripes
4915 		 */
4916 		sizeof(u64) * (total_stripes),
4917 		GFP_NOFS);
4918 	if (!bbio)
4919 		return NULL;
4920 
4921 	atomic_set(&bbio->error, 0);
4922 	atomic_set(&bbio->refs, 1);
4923 
4924 	return bbio;
4925 }
4926 
4927 void btrfs_get_bbio(struct btrfs_bio *bbio)
4928 {
4929 	WARN_ON(!atomic_read(&bbio->refs));
4930 	atomic_inc(&bbio->refs);
4931 }
4932 
4933 void btrfs_put_bbio(struct btrfs_bio *bbio)
4934 {
4935 	if (!bbio)
4936 		return;
4937 	if (atomic_dec_and_test(&bbio->refs))
4938 		kfree(bbio);
4939 }
4940 
4941 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4942 			     u64 logical, u64 *length,
4943 			     struct btrfs_bio **bbio_ret,
4944 			     int mirror_num, int need_raid_map)
4945 {
4946 	struct extent_map *em;
4947 	struct map_lookup *map;
4948 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4949 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4950 	u64 offset;
4951 	u64 stripe_offset;
4952 	u64 stripe_end_offset;
4953 	u64 stripe_nr;
4954 	u64 stripe_nr_orig;
4955 	u64 stripe_nr_end;
4956 	u64 stripe_len;
4957 	int stripe_index;
4958 	int i;
4959 	int ret = 0;
4960 	int num_stripes;
4961 	int max_errors = 0;
4962 	int tgtdev_indexes = 0;
4963 	struct btrfs_bio *bbio = NULL;
4964 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4965 	int dev_replace_is_ongoing = 0;
4966 	int num_alloc_stripes;
4967 	int patch_the_first_stripe_for_dev_replace = 0;
4968 	u64 physical_to_patch_in_first_stripe = 0;
4969 	u64 raid56_full_stripe_start = (u64)-1;
4970 
4971 	read_lock(&em_tree->lock);
4972 	em = lookup_extent_mapping(em_tree, logical, *length);
4973 	read_unlock(&em_tree->lock);
4974 
4975 	if (!em) {
4976 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4977 			logical, *length);
4978 		return -EINVAL;
4979 	}
4980 
4981 	if (em->start > logical || em->start + em->len < logical) {
4982 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4983 			   "found %Lu-%Lu", logical, em->start,
4984 			   em->start + em->len);
4985 		free_extent_map(em);
4986 		return -EINVAL;
4987 	}
4988 
4989 	map = (struct map_lookup *)em->bdev;
4990 	offset = logical - em->start;
4991 
4992 	stripe_len = map->stripe_len;
4993 	stripe_nr = offset;
4994 	/*
4995 	 * stripe_nr counts the total number of stripes we have to stride
4996 	 * to get to this block
4997 	 */
4998 	do_div(stripe_nr, stripe_len);
4999 
5000 	stripe_offset = stripe_nr * stripe_len;
5001 	BUG_ON(offset < stripe_offset);
5002 
5003 	/* stripe_offset is the offset of this block in its stripe*/
5004 	stripe_offset = offset - stripe_offset;
5005 
5006 	/* if we're here for raid56, we need to know the stripe aligned start */
5007 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5008 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5009 		raid56_full_stripe_start = offset;
5010 
5011 		/* allow a write of a full stripe, but make sure we don't
5012 		 * allow straddling of stripes
5013 		 */
5014 		do_div(raid56_full_stripe_start, full_stripe_len);
5015 		raid56_full_stripe_start *= full_stripe_len;
5016 	}
5017 
5018 	if (rw & REQ_DISCARD) {
5019 		/* we don't discard raid56 yet */
5020 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5021 			ret = -EOPNOTSUPP;
5022 			goto out;
5023 		}
5024 		*length = min_t(u64, em->len - offset, *length);
5025 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5026 		u64 max_len;
5027 		/* For writes to RAID[56], allow a full stripeset across all disks.
5028 		   For other RAID types and for RAID[56] reads, just allow a single
5029 		   stripe (on a single disk). */
5030 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5031 		    (rw & REQ_WRITE)) {
5032 			max_len = stripe_len * nr_data_stripes(map) -
5033 				(offset - raid56_full_stripe_start);
5034 		} else {
5035 			/* we limit the length of each bio to what fits in a stripe */
5036 			max_len = stripe_len - stripe_offset;
5037 		}
5038 		*length = min_t(u64, em->len - offset, max_len);
5039 	} else {
5040 		*length = em->len - offset;
5041 	}
5042 
5043 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5044 	   it cares about is the length */
5045 	if (!bbio_ret)
5046 		goto out;
5047 
5048 	btrfs_dev_replace_lock(dev_replace);
5049 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5050 	if (!dev_replace_is_ongoing)
5051 		btrfs_dev_replace_unlock(dev_replace);
5052 
5053 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5054 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5055 	    dev_replace->tgtdev != NULL) {
5056 		/*
5057 		 * in dev-replace case, for repair case (that's the only
5058 		 * case where the mirror is selected explicitly when
5059 		 * calling btrfs_map_block), blocks left of the left cursor
5060 		 * can also be read from the target drive.
5061 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5062 		 * the last one to the array of stripes. For READ, it also
5063 		 * needs to be supported using the same mirror number.
5064 		 * If the requested block is not left of the left cursor,
5065 		 * EIO is returned. This can happen because btrfs_num_copies()
5066 		 * returns one more in the dev-replace case.
5067 		 */
5068 		u64 tmp_length = *length;
5069 		struct btrfs_bio *tmp_bbio = NULL;
5070 		int tmp_num_stripes;
5071 		u64 srcdev_devid = dev_replace->srcdev->devid;
5072 		int index_srcdev = 0;
5073 		int found = 0;
5074 		u64 physical_of_found = 0;
5075 
5076 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5077 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5078 		if (ret) {
5079 			WARN_ON(tmp_bbio != NULL);
5080 			goto out;
5081 		}
5082 
5083 		tmp_num_stripes = tmp_bbio->num_stripes;
5084 		if (mirror_num > tmp_num_stripes) {
5085 			/*
5086 			 * REQ_GET_READ_MIRRORS does not contain this
5087 			 * mirror, that means that the requested area
5088 			 * is not left of the left cursor
5089 			 */
5090 			ret = -EIO;
5091 			btrfs_put_bbio(tmp_bbio);
5092 			goto out;
5093 		}
5094 
5095 		/*
5096 		 * process the rest of the function using the mirror_num
5097 		 * of the source drive. Therefore look it up first.
5098 		 * At the end, patch the device pointer to the one of the
5099 		 * target drive.
5100 		 */
5101 		for (i = 0; i < tmp_num_stripes; i++) {
5102 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5103 				/*
5104 				 * In case of DUP, in order to keep it
5105 				 * simple, only add the mirror with the
5106 				 * lowest physical address
5107 				 */
5108 				if (found &&
5109 				    physical_of_found <=
5110 				     tmp_bbio->stripes[i].physical)
5111 					continue;
5112 				index_srcdev = i;
5113 				found = 1;
5114 				physical_of_found =
5115 					tmp_bbio->stripes[i].physical;
5116 			}
5117 		}
5118 
5119 		if (found) {
5120 			mirror_num = index_srcdev + 1;
5121 			patch_the_first_stripe_for_dev_replace = 1;
5122 			physical_to_patch_in_first_stripe = physical_of_found;
5123 		} else {
5124 			WARN_ON(1);
5125 			ret = -EIO;
5126 			btrfs_put_bbio(tmp_bbio);
5127 			goto out;
5128 		}
5129 
5130 		btrfs_put_bbio(tmp_bbio);
5131 	} else if (mirror_num > map->num_stripes) {
5132 		mirror_num = 0;
5133 	}
5134 
5135 	num_stripes = 1;
5136 	stripe_index = 0;
5137 	stripe_nr_orig = stripe_nr;
5138 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5139 	do_div(stripe_nr_end, map->stripe_len);
5140 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5141 			    (offset + *length);
5142 
5143 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5144 		if (rw & REQ_DISCARD)
5145 			num_stripes = min_t(u64, map->num_stripes,
5146 					    stripe_nr_end - stripe_nr_orig);
5147 		stripe_index = do_div(stripe_nr, map->num_stripes);
5148 		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5149 			mirror_num = 1;
5150 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5151 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5152 			num_stripes = map->num_stripes;
5153 		else if (mirror_num)
5154 			stripe_index = mirror_num - 1;
5155 		else {
5156 			stripe_index = find_live_mirror(fs_info, map, 0,
5157 					    map->num_stripes,
5158 					    current->pid % map->num_stripes,
5159 					    dev_replace_is_ongoing);
5160 			mirror_num = stripe_index + 1;
5161 		}
5162 
5163 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5164 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5165 			num_stripes = map->num_stripes;
5166 		} else if (mirror_num) {
5167 			stripe_index = mirror_num - 1;
5168 		} else {
5169 			mirror_num = 1;
5170 		}
5171 
5172 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5173 		int factor = map->num_stripes / map->sub_stripes;
5174 
5175 		stripe_index = do_div(stripe_nr, factor);
5176 		stripe_index *= map->sub_stripes;
5177 
5178 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5179 			num_stripes = map->sub_stripes;
5180 		else if (rw & REQ_DISCARD)
5181 			num_stripes = min_t(u64, map->sub_stripes *
5182 					    (stripe_nr_end - stripe_nr_orig),
5183 					    map->num_stripes);
5184 		else if (mirror_num)
5185 			stripe_index += mirror_num - 1;
5186 		else {
5187 			int old_stripe_index = stripe_index;
5188 			stripe_index = find_live_mirror(fs_info, map,
5189 					      stripe_index,
5190 					      map->sub_stripes, stripe_index +
5191 					      current->pid % map->sub_stripes,
5192 					      dev_replace_is_ongoing);
5193 			mirror_num = stripe_index - old_stripe_index + 1;
5194 		}
5195 
5196 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5197 		if (need_raid_map &&
5198 		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5199 		     mirror_num > 1)) {
5200 			/* push stripe_nr back to the start of the full stripe */
5201 			stripe_nr = raid56_full_stripe_start;
5202 			do_div(stripe_nr, stripe_len * nr_data_stripes(map));
5203 
5204 			/* RAID[56] write or recovery. Return all stripes */
5205 			num_stripes = map->num_stripes;
5206 			max_errors = nr_parity_stripes(map);
5207 
5208 			*length = map->stripe_len;
5209 			stripe_index = 0;
5210 			stripe_offset = 0;
5211 		} else {
5212 			u64 tmp;
5213 
5214 			/*
5215 			 * Mirror #0 or #1 means the original data block.
5216 			 * Mirror #2 is RAID5 parity block.
5217 			 * Mirror #3 is RAID6 Q block.
5218 			 */
5219 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5220 			if (mirror_num > 1)
5221 				stripe_index = nr_data_stripes(map) +
5222 						mirror_num - 2;
5223 
5224 			/* We distribute the parity blocks across stripes */
5225 			tmp = stripe_nr + stripe_index;
5226 			stripe_index = do_div(tmp, map->num_stripes);
5227 			if (!(rw & (REQ_WRITE | REQ_DISCARD |
5228 				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5229 				mirror_num = 1;
5230 		}
5231 	} else {
5232 		/*
5233 		 * after this do_div call, stripe_nr is the number of stripes
5234 		 * on this device we have to walk to find the data, and
5235 		 * stripe_index is the number of our device in the stripe array
5236 		 */
5237 		stripe_index = do_div(stripe_nr, map->num_stripes);
5238 		mirror_num = stripe_index + 1;
5239 	}
5240 	BUG_ON(stripe_index >= map->num_stripes);
5241 
5242 	num_alloc_stripes = num_stripes;
5243 	if (dev_replace_is_ongoing) {
5244 		if (rw & (REQ_WRITE | REQ_DISCARD))
5245 			num_alloc_stripes <<= 1;
5246 		if (rw & REQ_GET_READ_MIRRORS)
5247 			num_alloc_stripes++;
5248 		tgtdev_indexes = num_stripes;
5249 	}
5250 
5251 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5252 	if (!bbio) {
5253 		ret = -ENOMEM;
5254 		goto out;
5255 	}
5256 	if (dev_replace_is_ongoing)
5257 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5258 
5259 	/* build raid_map */
5260 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5261 	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5262 	    mirror_num > 1)) {
5263 		u64 tmp;
5264 		int i, rot;
5265 
5266 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5267 				 sizeof(struct btrfs_bio_stripe) *
5268 				 num_alloc_stripes +
5269 				 sizeof(int) * tgtdev_indexes);
5270 
5271 		/* Work out the disk rotation on this stripe-set */
5272 		tmp = stripe_nr;
5273 		rot = do_div(tmp, num_stripes);
5274 
5275 		/* Fill in the logical address of each stripe */
5276 		tmp = stripe_nr * nr_data_stripes(map);
5277 		for (i = 0; i < nr_data_stripes(map); i++)
5278 			bbio->raid_map[(i+rot) % num_stripes] =
5279 				em->start + (tmp + i) * map->stripe_len;
5280 
5281 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5282 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5283 			bbio->raid_map[(i+rot+1) % num_stripes] =
5284 				RAID6_Q_STRIPE;
5285 	}
5286 
5287 	if (rw & REQ_DISCARD) {
5288 		int factor = 0;
5289 		int sub_stripes = 0;
5290 		u64 stripes_per_dev = 0;
5291 		u32 remaining_stripes = 0;
5292 		u32 last_stripe = 0;
5293 
5294 		if (map->type &
5295 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5296 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5297 				sub_stripes = 1;
5298 			else
5299 				sub_stripes = map->sub_stripes;
5300 
5301 			factor = map->num_stripes / sub_stripes;
5302 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5303 						      stripe_nr_orig,
5304 						      factor,
5305 						      &remaining_stripes);
5306 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5307 			last_stripe *= sub_stripes;
5308 		}
5309 
5310 		for (i = 0; i < num_stripes; i++) {
5311 			bbio->stripes[i].physical =
5312 				map->stripes[stripe_index].physical +
5313 				stripe_offset + stripe_nr * map->stripe_len;
5314 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5315 
5316 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5317 					 BTRFS_BLOCK_GROUP_RAID10)) {
5318 				bbio->stripes[i].length = stripes_per_dev *
5319 							  map->stripe_len;
5320 
5321 				if (i / sub_stripes < remaining_stripes)
5322 					bbio->stripes[i].length +=
5323 						map->stripe_len;
5324 
5325 				/*
5326 				 * Special for the first stripe and
5327 				 * the last stripe:
5328 				 *
5329 				 * |-------|...|-------|
5330 				 *     |----------|
5331 				 *    off     end_off
5332 				 */
5333 				if (i < sub_stripes)
5334 					bbio->stripes[i].length -=
5335 						stripe_offset;
5336 
5337 				if (stripe_index >= last_stripe &&
5338 				    stripe_index <= (last_stripe +
5339 						     sub_stripes - 1))
5340 					bbio->stripes[i].length -=
5341 						stripe_end_offset;
5342 
5343 				if (i == sub_stripes - 1)
5344 					stripe_offset = 0;
5345 			} else
5346 				bbio->stripes[i].length = *length;
5347 
5348 			stripe_index++;
5349 			if (stripe_index == map->num_stripes) {
5350 				/* This could only happen for RAID0/10 */
5351 				stripe_index = 0;
5352 				stripe_nr++;
5353 			}
5354 		}
5355 	} else {
5356 		for (i = 0; i < num_stripes; i++) {
5357 			bbio->stripes[i].physical =
5358 				map->stripes[stripe_index].physical +
5359 				stripe_offset +
5360 				stripe_nr * map->stripe_len;
5361 			bbio->stripes[i].dev =
5362 				map->stripes[stripe_index].dev;
5363 			stripe_index++;
5364 		}
5365 	}
5366 
5367 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5368 		max_errors = btrfs_chunk_max_errors(map);
5369 
5370 	if (bbio->raid_map)
5371 		sort_parity_stripes(bbio, num_stripes);
5372 
5373 	tgtdev_indexes = 0;
5374 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5375 	    dev_replace->tgtdev != NULL) {
5376 		int index_where_to_add;
5377 		u64 srcdev_devid = dev_replace->srcdev->devid;
5378 
5379 		/*
5380 		 * duplicate the write operations while the dev replace
5381 		 * procedure is running. Since the copying of the old disk
5382 		 * to the new disk takes place at run time while the
5383 		 * filesystem is mounted writable, the regular write
5384 		 * operations to the old disk have to be duplicated to go
5385 		 * to the new disk as well.
5386 		 * Note that device->missing is handled by the caller, and
5387 		 * that the write to the old disk is already set up in the
5388 		 * stripes array.
5389 		 */
5390 		index_where_to_add = num_stripes;
5391 		for (i = 0; i < num_stripes; i++) {
5392 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5393 				/* write to new disk, too */
5394 				struct btrfs_bio_stripe *new =
5395 					bbio->stripes + index_where_to_add;
5396 				struct btrfs_bio_stripe *old =
5397 					bbio->stripes + i;
5398 
5399 				new->physical = old->physical;
5400 				new->length = old->length;
5401 				new->dev = dev_replace->tgtdev;
5402 				bbio->tgtdev_map[i] = index_where_to_add;
5403 				index_where_to_add++;
5404 				max_errors++;
5405 				tgtdev_indexes++;
5406 			}
5407 		}
5408 		num_stripes = index_where_to_add;
5409 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5410 		   dev_replace->tgtdev != NULL) {
5411 		u64 srcdev_devid = dev_replace->srcdev->devid;
5412 		int index_srcdev = 0;
5413 		int found = 0;
5414 		u64 physical_of_found = 0;
5415 
5416 		/*
5417 		 * During the dev-replace procedure, the target drive can
5418 		 * also be used to read data in case it is needed to repair
5419 		 * a corrupt block elsewhere. This is possible if the
5420 		 * requested area is left of the left cursor. In this area,
5421 		 * the target drive is a full copy of the source drive.
5422 		 */
5423 		for (i = 0; i < num_stripes; i++) {
5424 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5425 				/*
5426 				 * In case of DUP, in order to keep it
5427 				 * simple, only add the mirror with the
5428 				 * lowest physical address
5429 				 */
5430 				if (found &&
5431 				    physical_of_found <=
5432 				     bbio->stripes[i].physical)
5433 					continue;
5434 				index_srcdev = i;
5435 				found = 1;
5436 				physical_of_found = bbio->stripes[i].physical;
5437 			}
5438 		}
5439 		if (found) {
5440 			u64 length = map->stripe_len;
5441 
5442 			if (physical_of_found + length <=
5443 			    dev_replace->cursor_left) {
5444 				struct btrfs_bio_stripe *tgtdev_stripe =
5445 					bbio->stripes + num_stripes;
5446 
5447 				tgtdev_stripe->physical = physical_of_found;
5448 				tgtdev_stripe->length =
5449 					bbio->stripes[index_srcdev].length;
5450 				tgtdev_stripe->dev = dev_replace->tgtdev;
5451 				bbio->tgtdev_map[index_srcdev] = num_stripes;
5452 
5453 				tgtdev_indexes++;
5454 				num_stripes++;
5455 			}
5456 		}
5457 	}
5458 
5459 	*bbio_ret = bbio;
5460 	bbio->map_type = map->type;
5461 	bbio->num_stripes = num_stripes;
5462 	bbio->max_errors = max_errors;
5463 	bbio->mirror_num = mirror_num;
5464 	bbio->num_tgtdevs = tgtdev_indexes;
5465 
5466 	/*
5467 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5468 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5469 	 * available as a mirror
5470 	 */
5471 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5472 		WARN_ON(num_stripes > 1);
5473 		bbio->stripes[0].dev = dev_replace->tgtdev;
5474 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5475 		bbio->mirror_num = map->num_stripes + 1;
5476 	}
5477 out:
5478 	if (dev_replace_is_ongoing)
5479 		btrfs_dev_replace_unlock(dev_replace);
5480 	free_extent_map(em);
5481 	return ret;
5482 }
5483 
5484 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5485 		      u64 logical, u64 *length,
5486 		      struct btrfs_bio **bbio_ret, int mirror_num)
5487 {
5488 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5489 				 mirror_num, 0);
5490 }
5491 
5492 /* For Scrub/replace */
5493 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5494 		     u64 logical, u64 *length,
5495 		     struct btrfs_bio **bbio_ret, int mirror_num,
5496 		     int need_raid_map)
5497 {
5498 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5499 				 mirror_num, need_raid_map);
5500 }
5501 
5502 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5503 		     u64 chunk_start, u64 physical, u64 devid,
5504 		     u64 **logical, int *naddrs, int *stripe_len)
5505 {
5506 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5507 	struct extent_map *em;
5508 	struct map_lookup *map;
5509 	u64 *buf;
5510 	u64 bytenr;
5511 	u64 length;
5512 	u64 stripe_nr;
5513 	u64 rmap_len;
5514 	int i, j, nr = 0;
5515 
5516 	read_lock(&em_tree->lock);
5517 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5518 	read_unlock(&em_tree->lock);
5519 
5520 	if (!em) {
5521 		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5522 		       chunk_start);
5523 		return -EIO;
5524 	}
5525 
5526 	if (em->start != chunk_start) {
5527 		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5528 		       em->start, chunk_start);
5529 		free_extent_map(em);
5530 		return -EIO;
5531 	}
5532 	map = (struct map_lookup *)em->bdev;
5533 
5534 	length = em->len;
5535 	rmap_len = map->stripe_len;
5536 
5537 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5538 		do_div(length, map->num_stripes / map->sub_stripes);
5539 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5540 		do_div(length, map->num_stripes);
5541 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5542 		do_div(length, nr_data_stripes(map));
5543 		rmap_len = map->stripe_len * nr_data_stripes(map);
5544 	}
5545 
5546 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5547 	BUG_ON(!buf); /* -ENOMEM */
5548 
5549 	for (i = 0; i < map->num_stripes; i++) {
5550 		if (devid && map->stripes[i].dev->devid != devid)
5551 			continue;
5552 		if (map->stripes[i].physical > physical ||
5553 		    map->stripes[i].physical + length <= physical)
5554 			continue;
5555 
5556 		stripe_nr = physical - map->stripes[i].physical;
5557 		do_div(stripe_nr, map->stripe_len);
5558 
5559 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5560 			stripe_nr = stripe_nr * map->num_stripes + i;
5561 			do_div(stripe_nr, map->sub_stripes);
5562 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5563 			stripe_nr = stripe_nr * map->num_stripes + i;
5564 		} /* else if RAID[56], multiply by nr_data_stripes().
5565 		   * Alternatively, just use rmap_len below instead of
5566 		   * map->stripe_len */
5567 
5568 		bytenr = chunk_start + stripe_nr * rmap_len;
5569 		WARN_ON(nr >= map->num_stripes);
5570 		for (j = 0; j < nr; j++) {
5571 			if (buf[j] == bytenr)
5572 				break;
5573 		}
5574 		if (j == nr) {
5575 			WARN_ON(nr >= map->num_stripes);
5576 			buf[nr++] = bytenr;
5577 		}
5578 	}
5579 
5580 	*logical = buf;
5581 	*naddrs = nr;
5582 	*stripe_len = rmap_len;
5583 
5584 	free_extent_map(em);
5585 	return 0;
5586 }
5587 
5588 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5589 {
5590 	if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5591 		bio_endio_nodec(bio, err);
5592 	else
5593 		bio_endio(bio, err);
5594 	btrfs_put_bbio(bbio);
5595 }
5596 
5597 static void btrfs_end_bio(struct bio *bio, int err)
5598 {
5599 	struct btrfs_bio *bbio = bio->bi_private;
5600 	struct btrfs_device *dev = bbio->stripes[0].dev;
5601 	int is_orig_bio = 0;
5602 
5603 	if (err) {
5604 		atomic_inc(&bbio->error);
5605 		if (err == -EIO || err == -EREMOTEIO) {
5606 			unsigned int stripe_index =
5607 				btrfs_io_bio(bio)->stripe_index;
5608 
5609 			BUG_ON(stripe_index >= bbio->num_stripes);
5610 			dev = bbio->stripes[stripe_index].dev;
5611 			if (dev->bdev) {
5612 				if (bio->bi_rw & WRITE)
5613 					btrfs_dev_stat_inc(dev,
5614 						BTRFS_DEV_STAT_WRITE_ERRS);
5615 				else
5616 					btrfs_dev_stat_inc(dev,
5617 						BTRFS_DEV_STAT_READ_ERRS);
5618 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5619 					btrfs_dev_stat_inc(dev,
5620 						BTRFS_DEV_STAT_FLUSH_ERRS);
5621 				btrfs_dev_stat_print_on_error(dev);
5622 			}
5623 		}
5624 	}
5625 
5626 	if (bio == bbio->orig_bio)
5627 		is_orig_bio = 1;
5628 
5629 	btrfs_bio_counter_dec(bbio->fs_info);
5630 
5631 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5632 		if (!is_orig_bio) {
5633 			bio_put(bio);
5634 			bio = bbio->orig_bio;
5635 		}
5636 
5637 		bio->bi_private = bbio->private;
5638 		bio->bi_end_io = bbio->end_io;
5639 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5640 		/* only send an error to the higher layers if it is
5641 		 * beyond the tolerance of the btrfs bio
5642 		 */
5643 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5644 			err = -EIO;
5645 		} else {
5646 			/*
5647 			 * this bio is actually up to date, we didn't
5648 			 * go over the max number of errors
5649 			 */
5650 			set_bit(BIO_UPTODATE, &bio->bi_flags);
5651 			err = 0;
5652 		}
5653 
5654 		btrfs_end_bbio(bbio, bio, err);
5655 	} else if (!is_orig_bio) {
5656 		bio_put(bio);
5657 	}
5658 }
5659 
5660 /*
5661  * see run_scheduled_bios for a description of why bios are collected for
5662  * async submit.
5663  *
5664  * This will add one bio to the pending list for a device and make sure
5665  * the work struct is scheduled.
5666  */
5667 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5668 					struct btrfs_device *device,
5669 					int rw, struct bio *bio)
5670 {
5671 	int should_queue = 1;
5672 	struct btrfs_pending_bios *pending_bios;
5673 
5674 	if (device->missing || !device->bdev) {
5675 		bio_endio(bio, -EIO);
5676 		return;
5677 	}
5678 
5679 	/* don't bother with additional async steps for reads, right now */
5680 	if (!(rw & REQ_WRITE)) {
5681 		bio_get(bio);
5682 		btrfsic_submit_bio(rw, bio);
5683 		bio_put(bio);
5684 		return;
5685 	}
5686 
5687 	/*
5688 	 * nr_async_bios allows us to reliably return congestion to the
5689 	 * higher layers.  Otherwise, the async bio makes it appear we have
5690 	 * made progress against dirty pages when we've really just put it
5691 	 * on a queue for later
5692 	 */
5693 	atomic_inc(&root->fs_info->nr_async_bios);
5694 	WARN_ON(bio->bi_next);
5695 	bio->bi_next = NULL;
5696 	bio->bi_rw |= rw;
5697 
5698 	spin_lock(&device->io_lock);
5699 	if (bio->bi_rw & REQ_SYNC)
5700 		pending_bios = &device->pending_sync_bios;
5701 	else
5702 		pending_bios = &device->pending_bios;
5703 
5704 	if (pending_bios->tail)
5705 		pending_bios->tail->bi_next = bio;
5706 
5707 	pending_bios->tail = bio;
5708 	if (!pending_bios->head)
5709 		pending_bios->head = bio;
5710 	if (device->running_pending)
5711 		should_queue = 0;
5712 
5713 	spin_unlock(&device->io_lock);
5714 
5715 	if (should_queue)
5716 		btrfs_queue_work(root->fs_info->submit_workers,
5717 				 &device->work);
5718 }
5719 
5720 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5721 		       sector_t sector)
5722 {
5723 	struct bio_vec *prev;
5724 	struct request_queue *q = bdev_get_queue(bdev);
5725 	unsigned int max_sectors = queue_max_sectors(q);
5726 	struct bvec_merge_data bvm = {
5727 		.bi_bdev = bdev,
5728 		.bi_sector = sector,
5729 		.bi_rw = bio->bi_rw,
5730 	};
5731 
5732 	if (WARN_ON(bio->bi_vcnt == 0))
5733 		return 1;
5734 
5735 	prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5736 	if (bio_sectors(bio) > max_sectors)
5737 		return 0;
5738 
5739 	if (!q->merge_bvec_fn)
5740 		return 1;
5741 
5742 	bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5743 	if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5744 		return 0;
5745 	return 1;
5746 }
5747 
5748 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5749 			      struct bio *bio, u64 physical, int dev_nr,
5750 			      int rw, int async)
5751 {
5752 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5753 
5754 	bio->bi_private = bbio;
5755 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5756 	bio->bi_end_io = btrfs_end_bio;
5757 	bio->bi_iter.bi_sector = physical >> 9;
5758 #ifdef DEBUG
5759 	{
5760 		struct rcu_string *name;
5761 
5762 		rcu_read_lock();
5763 		name = rcu_dereference(dev->name);
5764 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5765 			 "(%s id %llu), size=%u\n", rw,
5766 			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5767 			 name->str, dev->devid, bio->bi_iter.bi_size);
5768 		rcu_read_unlock();
5769 	}
5770 #endif
5771 	bio->bi_bdev = dev->bdev;
5772 
5773 	btrfs_bio_counter_inc_noblocked(root->fs_info);
5774 
5775 	if (async)
5776 		btrfs_schedule_bio(root, dev, rw, bio);
5777 	else
5778 		btrfsic_submit_bio(rw, bio);
5779 }
5780 
5781 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5782 			      struct bio *first_bio, struct btrfs_device *dev,
5783 			      int dev_nr, int rw, int async)
5784 {
5785 	struct bio_vec *bvec = first_bio->bi_io_vec;
5786 	struct bio *bio;
5787 	int nr_vecs = bio_get_nr_vecs(dev->bdev);
5788 	u64 physical = bbio->stripes[dev_nr].physical;
5789 
5790 again:
5791 	bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5792 	if (!bio)
5793 		return -ENOMEM;
5794 
5795 	while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5796 		if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5797 				 bvec->bv_offset) < bvec->bv_len) {
5798 			u64 len = bio->bi_iter.bi_size;
5799 
5800 			atomic_inc(&bbio->stripes_pending);
5801 			submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5802 					  rw, async);
5803 			physical += len;
5804 			goto again;
5805 		}
5806 		bvec++;
5807 	}
5808 
5809 	submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5810 	return 0;
5811 }
5812 
5813 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5814 {
5815 	atomic_inc(&bbio->error);
5816 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5817 		/* Shoud be the original bio. */
5818 		WARN_ON(bio != bbio->orig_bio);
5819 
5820 		bio->bi_private = bbio->private;
5821 		bio->bi_end_io = bbio->end_io;
5822 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5823 		bio->bi_iter.bi_sector = logical >> 9;
5824 
5825 		btrfs_end_bbio(bbio, bio, -EIO);
5826 	}
5827 }
5828 
5829 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5830 		  int mirror_num, int async_submit)
5831 {
5832 	struct btrfs_device *dev;
5833 	struct bio *first_bio = bio;
5834 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5835 	u64 length = 0;
5836 	u64 map_length;
5837 	int ret;
5838 	int dev_nr = 0;
5839 	int total_devs = 1;
5840 	struct btrfs_bio *bbio = NULL;
5841 
5842 	length = bio->bi_iter.bi_size;
5843 	map_length = length;
5844 
5845 	btrfs_bio_counter_inc_blocked(root->fs_info);
5846 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5847 			      mirror_num, 1);
5848 	if (ret) {
5849 		btrfs_bio_counter_dec(root->fs_info);
5850 		return ret;
5851 	}
5852 
5853 	total_devs = bbio->num_stripes;
5854 	bbio->orig_bio = first_bio;
5855 	bbio->private = first_bio->bi_private;
5856 	bbio->end_io = first_bio->bi_end_io;
5857 	bbio->fs_info = root->fs_info;
5858 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5859 
5860 	if (bbio->raid_map) {
5861 		/* In this case, map_length has been set to the length of
5862 		   a single stripe; not the whole write */
5863 		if (rw & WRITE) {
5864 			ret = raid56_parity_write(root, bio, bbio, map_length);
5865 		} else {
5866 			ret = raid56_parity_recover(root, bio, bbio, map_length,
5867 						    mirror_num, 1);
5868 		}
5869 
5870 		btrfs_bio_counter_dec(root->fs_info);
5871 		return ret;
5872 	}
5873 
5874 	if (map_length < length) {
5875 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5876 			logical, length, map_length);
5877 		BUG();
5878 	}
5879 
5880 	while (dev_nr < total_devs) {
5881 		dev = bbio->stripes[dev_nr].dev;
5882 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5883 			bbio_error(bbio, first_bio, logical);
5884 			dev_nr++;
5885 			continue;
5886 		}
5887 
5888 		/*
5889 		 * Check and see if we're ok with this bio based on it's size
5890 		 * and offset with the given device.
5891 		 */
5892 		if (!bio_size_ok(dev->bdev, first_bio,
5893 				 bbio->stripes[dev_nr].physical >> 9)) {
5894 			ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5895 						 dev_nr, rw, async_submit);
5896 			BUG_ON(ret);
5897 			dev_nr++;
5898 			continue;
5899 		}
5900 
5901 		if (dev_nr < total_devs - 1) {
5902 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5903 			BUG_ON(!bio); /* -ENOMEM */
5904 		} else {
5905 			bio = first_bio;
5906 			bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5907 		}
5908 
5909 		submit_stripe_bio(root, bbio, bio,
5910 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
5911 				  async_submit);
5912 		dev_nr++;
5913 	}
5914 	btrfs_bio_counter_dec(root->fs_info);
5915 	return 0;
5916 }
5917 
5918 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5919 				       u8 *uuid, u8 *fsid)
5920 {
5921 	struct btrfs_device *device;
5922 	struct btrfs_fs_devices *cur_devices;
5923 
5924 	cur_devices = fs_info->fs_devices;
5925 	while (cur_devices) {
5926 		if (!fsid ||
5927 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5928 			device = __find_device(&cur_devices->devices,
5929 					       devid, uuid);
5930 			if (device)
5931 				return device;
5932 		}
5933 		cur_devices = cur_devices->seed;
5934 	}
5935 	return NULL;
5936 }
5937 
5938 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5939 					    struct btrfs_fs_devices *fs_devices,
5940 					    u64 devid, u8 *dev_uuid)
5941 {
5942 	struct btrfs_device *device;
5943 
5944 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5945 	if (IS_ERR(device))
5946 		return NULL;
5947 
5948 	list_add(&device->dev_list, &fs_devices->devices);
5949 	device->fs_devices = fs_devices;
5950 	fs_devices->num_devices++;
5951 
5952 	device->missing = 1;
5953 	fs_devices->missing_devices++;
5954 
5955 	return device;
5956 }
5957 
5958 /**
5959  * btrfs_alloc_device - allocate struct btrfs_device
5960  * @fs_info:	used only for generating a new devid, can be NULL if
5961  *		devid is provided (i.e. @devid != NULL).
5962  * @devid:	a pointer to devid for this device.  If NULL a new devid
5963  *		is generated.
5964  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
5965  *		is generated.
5966  *
5967  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5968  * on error.  Returned struct is not linked onto any lists and can be
5969  * destroyed with kfree() right away.
5970  */
5971 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5972 					const u64 *devid,
5973 					const u8 *uuid)
5974 {
5975 	struct btrfs_device *dev;
5976 	u64 tmp;
5977 
5978 	if (WARN_ON(!devid && !fs_info))
5979 		return ERR_PTR(-EINVAL);
5980 
5981 	dev = __alloc_device();
5982 	if (IS_ERR(dev))
5983 		return dev;
5984 
5985 	if (devid)
5986 		tmp = *devid;
5987 	else {
5988 		int ret;
5989 
5990 		ret = find_next_devid(fs_info, &tmp);
5991 		if (ret) {
5992 			kfree(dev);
5993 			return ERR_PTR(ret);
5994 		}
5995 	}
5996 	dev->devid = tmp;
5997 
5998 	if (uuid)
5999 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6000 	else
6001 		generate_random_uuid(dev->uuid);
6002 
6003 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6004 			pending_bios_fn, NULL, NULL);
6005 
6006 	return dev;
6007 }
6008 
6009 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6010 			  struct extent_buffer *leaf,
6011 			  struct btrfs_chunk *chunk)
6012 {
6013 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6014 	struct map_lookup *map;
6015 	struct extent_map *em;
6016 	u64 logical;
6017 	u64 length;
6018 	u64 devid;
6019 	u8 uuid[BTRFS_UUID_SIZE];
6020 	int num_stripes;
6021 	int ret;
6022 	int i;
6023 
6024 	logical = key->offset;
6025 	length = btrfs_chunk_length(leaf, chunk);
6026 
6027 	read_lock(&map_tree->map_tree.lock);
6028 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6029 	read_unlock(&map_tree->map_tree.lock);
6030 
6031 	/* already mapped? */
6032 	if (em && em->start <= logical && em->start + em->len > logical) {
6033 		free_extent_map(em);
6034 		return 0;
6035 	} else if (em) {
6036 		free_extent_map(em);
6037 	}
6038 
6039 	em = alloc_extent_map();
6040 	if (!em)
6041 		return -ENOMEM;
6042 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6043 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6044 	if (!map) {
6045 		free_extent_map(em);
6046 		return -ENOMEM;
6047 	}
6048 
6049 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6050 	em->bdev = (struct block_device *)map;
6051 	em->start = logical;
6052 	em->len = length;
6053 	em->orig_start = 0;
6054 	em->block_start = 0;
6055 	em->block_len = em->len;
6056 
6057 	map->num_stripes = num_stripes;
6058 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6059 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6060 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6061 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6062 	map->type = btrfs_chunk_type(leaf, chunk);
6063 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6064 	for (i = 0; i < num_stripes; i++) {
6065 		map->stripes[i].physical =
6066 			btrfs_stripe_offset_nr(leaf, chunk, i);
6067 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6068 		read_extent_buffer(leaf, uuid, (unsigned long)
6069 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6070 				   BTRFS_UUID_SIZE);
6071 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6072 							uuid, NULL);
6073 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6074 			free_extent_map(em);
6075 			return -EIO;
6076 		}
6077 		if (!map->stripes[i].dev) {
6078 			map->stripes[i].dev =
6079 				add_missing_dev(root, root->fs_info->fs_devices,
6080 						devid, uuid);
6081 			if (!map->stripes[i].dev) {
6082 				free_extent_map(em);
6083 				return -EIO;
6084 			}
6085 		}
6086 		map->stripes[i].dev->in_fs_metadata = 1;
6087 	}
6088 
6089 	write_lock(&map_tree->map_tree.lock);
6090 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6091 	write_unlock(&map_tree->map_tree.lock);
6092 	BUG_ON(ret); /* Tree corruption */
6093 	free_extent_map(em);
6094 
6095 	return 0;
6096 }
6097 
6098 static void fill_device_from_item(struct extent_buffer *leaf,
6099 				 struct btrfs_dev_item *dev_item,
6100 				 struct btrfs_device *device)
6101 {
6102 	unsigned long ptr;
6103 
6104 	device->devid = btrfs_device_id(leaf, dev_item);
6105 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6106 	device->total_bytes = device->disk_total_bytes;
6107 	device->commit_total_bytes = device->disk_total_bytes;
6108 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6109 	device->commit_bytes_used = device->bytes_used;
6110 	device->type = btrfs_device_type(leaf, dev_item);
6111 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6112 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6113 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6114 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6115 	device->is_tgtdev_for_dev_replace = 0;
6116 
6117 	ptr = btrfs_device_uuid(dev_item);
6118 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6119 }
6120 
6121 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6122 						  u8 *fsid)
6123 {
6124 	struct btrfs_fs_devices *fs_devices;
6125 	int ret;
6126 
6127 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6128 
6129 	fs_devices = root->fs_info->fs_devices->seed;
6130 	while (fs_devices) {
6131 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6132 			return fs_devices;
6133 
6134 		fs_devices = fs_devices->seed;
6135 	}
6136 
6137 	fs_devices = find_fsid(fsid);
6138 	if (!fs_devices) {
6139 		if (!btrfs_test_opt(root, DEGRADED))
6140 			return ERR_PTR(-ENOENT);
6141 
6142 		fs_devices = alloc_fs_devices(fsid);
6143 		if (IS_ERR(fs_devices))
6144 			return fs_devices;
6145 
6146 		fs_devices->seeding = 1;
6147 		fs_devices->opened = 1;
6148 		return fs_devices;
6149 	}
6150 
6151 	fs_devices = clone_fs_devices(fs_devices);
6152 	if (IS_ERR(fs_devices))
6153 		return fs_devices;
6154 
6155 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6156 				   root->fs_info->bdev_holder);
6157 	if (ret) {
6158 		free_fs_devices(fs_devices);
6159 		fs_devices = ERR_PTR(ret);
6160 		goto out;
6161 	}
6162 
6163 	if (!fs_devices->seeding) {
6164 		__btrfs_close_devices(fs_devices);
6165 		free_fs_devices(fs_devices);
6166 		fs_devices = ERR_PTR(-EINVAL);
6167 		goto out;
6168 	}
6169 
6170 	fs_devices->seed = root->fs_info->fs_devices->seed;
6171 	root->fs_info->fs_devices->seed = fs_devices;
6172 out:
6173 	return fs_devices;
6174 }
6175 
6176 static int read_one_dev(struct btrfs_root *root,
6177 			struct extent_buffer *leaf,
6178 			struct btrfs_dev_item *dev_item)
6179 {
6180 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6181 	struct btrfs_device *device;
6182 	u64 devid;
6183 	int ret;
6184 	u8 fs_uuid[BTRFS_UUID_SIZE];
6185 	u8 dev_uuid[BTRFS_UUID_SIZE];
6186 
6187 	devid = btrfs_device_id(leaf, dev_item);
6188 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6189 			   BTRFS_UUID_SIZE);
6190 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6191 			   BTRFS_UUID_SIZE);
6192 
6193 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6194 		fs_devices = open_seed_devices(root, fs_uuid);
6195 		if (IS_ERR(fs_devices))
6196 			return PTR_ERR(fs_devices);
6197 	}
6198 
6199 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6200 	if (!device) {
6201 		if (!btrfs_test_opt(root, DEGRADED))
6202 			return -EIO;
6203 
6204 		btrfs_warn(root->fs_info, "devid %llu missing", devid);
6205 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6206 		if (!device)
6207 			return -ENOMEM;
6208 	} else {
6209 		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6210 			return -EIO;
6211 
6212 		if(!device->bdev && !device->missing) {
6213 			/*
6214 			 * this happens when a device that was properly setup
6215 			 * in the device info lists suddenly goes bad.
6216 			 * device->bdev is NULL, and so we have to set
6217 			 * device->missing to one here
6218 			 */
6219 			device->fs_devices->missing_devices++;
6220 			device->missing = 1;
6221 		}
6222 
6223 		/* Move the device to its own fs_devices */
6224 		if (device->fs_devices != fs_devices) {
6225 			ASSERT(device->missing);
6226 
6227 			list_move(&device->dev_list, &fs_devices->devices);
6228 			device->fs_devices->num_devices--;
6229 			fs_devices->num_devices++;
6230 
6231 			device->fs_devices->missing_devices--;
6232 			fs_devices->missing_devices++;
6233 
6234 			device->fs_devices = fs_devices;
6235 		}
6236 	}
6237 
6238 	if (device->fs_devices != root->fs_info->fs_devices) {
6239 		BUG_ON(device->writeable);
6240 		if (device->generation !=
6241 		    btrfs_device_generation(leaf, dev_item))
6242 			return -EINVAL;
6243 	}
6244 
6245 	fill_device_from_item(leaf, dev_item, device);
6246 	device->in_fs_metadata = 1;
6247 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6248 		device->fs_devices->total_rw_bytes += device->total_bytes;
6249 		spin_lock(&root->fs_info->free_chunk_lock);
6250 		root->fs_info->free_chunk_space += device->total_bytes -
6251 			device->bytes_used;
6252 		spin_unlock(&root->fs_info->free_chunk_lock);
6253 	}
6254 	ret = 0;
6255 	return ret;
6256 }
6257 
6258 int btrfs_read_sys_array(struct btrfs_root *root)
6259 {
6260 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6261 	struct extent_buffer *sb;
6262 	struct btrfs_disk_key *disk_key;
6263 	struct btrfs_chunk *chunk;
6264 	u8 *array_ptr;
6265 	unsigned long sb_array_offset;
6266 	int ret = 0;
6267 	u32 num_stripes;
6268 	u32 array_size;
6269 	u32 len = 0;
6270 	u32 cur_offset;
6271 	struct btrfs_key key;
6272 
6273 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6274 	/*
6275 	 * This will create extent buffer of nodesize, superblock size is
6276 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6277 	 * overallocate but we can keep it as-is, only the first page is used.
6278 	 */
6279 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6280 	if (!sb)
6281 		return -ENOMEM;
6282 	btrfs_set_buffer_uptodate(sb);
6283 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6284 	/*
6285 	 * The sb extent buffer is artifical and just used to read the system array.
6286 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6287 	 * pages up-to-date when the page is larger: extent does not cover the
6288 	 * whole page and consequently check_page_uptodate does not find all
6289 	 * the page's extents up-to-date (the hole beyond sb),
6290 	 * write_extent_buffer then triggers a WARN_ON.
6291 	 *
6292 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6293 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6294 	 * to silence the warning eg. on PowerPC 64.
6295 	 */
6296 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6297 		SetPageUptodate(sb->pages[0]);
6298 
6299 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6300 	array_size = btrfs_super_sys_array_size(super_copy);
6301 
6302 	array_ptr = super_copy->sys_chunk_array;
6303 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6304 	cur_offset = 0;
6305 
6306 	while (cur_offset < array_size) {
6307 		disk_key = (struct btrfs_disk_key *)array_ptr;
6308 		len = sizeof(*disk_key);
6309 		if (cur_offset + len > array_size)
6310 			goto out_short_read;
6311 
6312 		btrfs_disk_key_to_cpu(&key, disk_key);
6313 
6314 		array_ptr += len;
6315 		sb_array_offset += len;
6316 		cur_offset += len;
6317 
6318 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6319 			chunk = (struct btrfs_chunk *)sb_array_offset;
6320 			/*
6321 			 * At least one btrfs_chunk with one stripe must be
6322 			 * present, exact stripe count check comes afterwards
6323 			 */
6324 			len = btrfs_chunk_item_size(1);
6325 			if (cur_offset + len > array_size)
6326 				goto out_short_read;
6327 
6328 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6329 			len = btrfs_chunk_item_size(num_stripes);
6330 			if (cur_offset + len > array_size)
6331 				goto out_short_read;
6332 
6333 			ret = read_one_chunk(root, &key, sb, chunk);
6334 			if (ret)
6335 				break;
6336 		} else {
6337 			ret = -EIO;
6338 			break;
6339 		}
6340 		array_ptr += len;
6341 		sb_array_offset += len;
6342 		cur_offset += len;
6343 	}
6344 	free_extent_buffer(sb);
6345 	return ret;
6346 
6347 out_short_read:
6348 	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6349 			len, cur_offset);
6350 	free_extent_buffer(sb);
6351 	return -EIO;
6352 }
6353 
6354 int btrfs_read_chunk_tree(struct btrfs_root *root)
6355 {
6356 	struct btrfs_path *path;
6357 	struct extent_buffer *leaf;
6358 	struct btrfs_key key;
6359 	struct btrfs_key found_key;
6360 	int ret;
6361 	int slot;
6362 
6363 	root = root->fs_info->chunk_root;
6364 
6365 	path = btrfs_alloc_path();
6366 	if (!path)
6367 		return -ENOMEM;
6368 
6369 	mutex_lock(&uuid_mutex);
6370 	lock_chunks(root);
6371 
6372 	/*
6373 	 * Read all device items, and then all the chunk items. All
6374 	 * device items are found before any chunk item (their object id
6375 	 * is smaller than the lowest possible object id for a chunk
6376 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6377 	 */
6378 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6379 	key.offset = 0;
6380 	key.type = 0;
6381 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6382 	if (ret < 0)
6383 		goto error;
6384 	while (1) {
6385 		leaf = path->nodes[0];
6386 		slot = path->slots[0];
6387 		if (slot >= btrfs_header_nritems(leaf)) {
6388 			ret = btrfs_next_leaf(root, path);
6389 			if (ret == 0)
6390 				continue;
6391 			if (ret < 0)
6392 				goto error;
6393 			break;
6394 		}
6395 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6396 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6397 			struct btrfs_dev_item *dev_item;
6398 			dev_item = btrfs_item_ptr(leaf, slot,
6399 						  struct btrfs_dev_item);
6400 			ret = read_one_dev(root, leaf, dev_item);
6401 			if (ret)
6402 				goto error;
6403 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6404 			struct btrfs_chunk *chunk;
6405 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6406 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6407 			if (ret)
6408 				goto error;
6409 		}
6410 		path->slots[0]++;
6411 	}
6412 	ret = 0;
6413 error:
6414 	unlock_chunks(root);
6415 	mutex_unlock(&uuid_mutex);
6416 
6417 	btrfs_free_path(path);
6418 	return ret;
6419 }
6420 
6421 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6422 {
6423 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6424 	struct btrfs_device *device;
6425 
6426 	while (fs_devices) {
6427 		mutex_lock(&fs_devices->device_list_mutex);
6428 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6429 			device->dev_root = fs_info->dev_root;
6430 		mutex_unlock(&fs_devices->device_list_mutex);
6431 
6432 		fs_devices = fs_devices->seed;
6433 	}
6434 }
6435 
6436 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6437 {
6438 	int i;
6439 
6440 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6441 		btrfs_dev_stat_reset(dev, i);
6442 }
6443 
6444 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6445 {
6446 	struct btrfs_key key;
6447 	struct btrfs_key found_key;
6448 	struct btrfs_root *dev_root = fs_info->dev_root;
6449 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6450 	struct extent_buffer *eb;
6451 	int slot;
6452 	int ret = 0;
6453 	struct btrfs_device *device;
6454 	struct btrfs_path *path = NULL;
6455 	int i;
6456 
6457 	path = btrfs_alloc_path();
6458 	if (!path) {
6459 		ret = -ENOMEM;
6460 		goto out;
6461 	}
6462 
6463 	mutex_lock(&fs_devices->device_list_mutex);
6464 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6465 		int item_size;
6466 		struct btrfs_dev_stats_item *ptr;
6467 
6468 		key.objectid = 0;
6469 		key.type = BTRFS_DEV_STATS_KEY;
6470 		key.offset = device->devid;
6471 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6472 		if (ret) {
6473 			__btrfs_reset_dev_stats(device);
6474 			device->dev_stats_valid = 1;
6475 			btrfs_release_path(path);
6476 			continue;
6477 		}
6478 		slot = path->slots[0];
6479 		eb = path->nodes[0];
6480 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6481 		item_size = btrfs_item_size_nr(eb, slot);
6482 
6483 		ptr = btrfs_item_ptr(eb, slot,
6484 				     struct btrfs_dev_stats_item);
6485 
6486 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6487 			if (item_size >= (1 + i) * sizeof(__le64))
6488 				btrfs_dev_stat_set(device, i,
6489 					btrfs_dev_stats_value(eb, ptr, i));
6490 			else
6491 				btrfs_dev_stat_reset(device, i);
6492 		}
6493 
6494 		device->dev_stats_valid = 1;
6495 		btrfs_dev_stat_print_on_load(device);
6496 		btrfs_release_path(path);
6497 	}
6498 	mutex_unlock(&fs_devices->device_list_mutex);
6499 
6500 out:
6501 	btrfs_free_path(path);
6502 	return ret < 0 ? ret : 0;
6503 }
6504 
6505 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6506 				struct btrfs_root *dev_root,
6507 				struct btrfs_device *device)
6508 {
6509 	struct btrfs_path *path;
6510 	struct btrfs_key key;
6511 	struct extent_buffer *eb;
6512 	struct btrfs_dev_stats_item *ptr;
6513 	int ret;
6514 	int i;
6515 
6516 	key.objectid = 0;
6517 	key.type = BTRFS_DEV_STATS_KEY;
6518 	key.offset = device->devid;
6519 
6520 	path = btrfs_alloc_path();
6521 	BUG_ON(!path);
6522 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6523 	if (ret < 0) {
6524 		printk_in_rcu(KERN_WARNING "BTRFS: "
6525 			"error %d while searching for dev_stats item for device %s!\n",
6526 			      ret, rcu_str_deref(device->name));
6527 		goto out;
6528 	}
6529 
6530 	if (ret == 0 &&
6531 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6532 		/* need to delete old one and insert a new one */
6533 		ret = btrfs_del_item(trans, dev_root, path);
6534 		if (ret != 0) {
6535 			printk_in_rcu(KERN_WARNING "BTRFS: "
6536 				"delete too small dev_stats item for device %s failed %d!\n",
6537 				      rcu_str_deref(device->name), ret);
6538 			goto out;
6539 		}
6540 		ret = 1;
6541 	}
6542 
6543 	if (ret == 1) {
6544 		/* need to insert a new item */
6545 		btrfs_release_path(path);
6546 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6547 					      &key, sizeof(*ptr));
6548 		if (ret < 0) {
6549 			printk_in_rcu(KERN_WARNING "BTRFS: "
6550 					  "insert dev_stats item for device %s failed %d!\n",
6551 				      rcu_str_deref(device->name), ret);
6552 			goto out;
6553 		}
6554 	}
6555 
6556 	eb = path->nodes[0];
6557 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6558 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6559 		btrfs_set_dev_stats_value(eb, ptr, i,
6560 					  btrfs_dev_stat_read(device, i));
6561 	btrfs_mark_buffer_dirty(eb);
6562 
6563 out:
6564 	btrfs_free_path(path);
6565 	return ret;
6566 }
6567 
6568 /*
6569  * called from commit_transaction. Writes all changed device stats to disk.
6570  */
6571 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6572 			struct btrfs_fs_info *fs_info)
6573 {
6574 	struct btrfs_root *dev_root = fs_info->dev_root;
6575 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6576 	struct btrfs_device *device;
6577 	int stats_cnt;
6578 	int ret = 0;
6579 
6580 	mutex_lock(&fs_devices->device_list_mutex);
6581 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6582 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6583 			continue;
6584 
6585 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6586 		ret = update_dev_stat_item(trans, dev_root, device);
6587 		if (!ret)
6588 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6589 	}
6590 	mutex_unlock(&fs_devices->device_list_mutex);
6591 
6592 	return ret;
6593 }
6594 
6595 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6596 {
6597 	btrfs_dev_stat_inc(dev, index);
6598 	btrfs_dev_stat_print_on_error(dev);
6599 }
6600 
6601 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6602 {
6603 	if (!dev->dev_stats_valid)
6604 		return;
6605 	printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6606 			   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6607 			   rcu_str_deref(dev->name),
6608 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6609 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6610 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6611 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6612 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6613 }
6614 
6615 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6616 {
6617 	int i;
6618 
6619 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6620 		if (btrfs_dev_stat_read(dev, i) != 0)
6621 			break;
6622 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6623 		return; /* all values == 0, suppress message */
6624 
6625 	printk_in_rcu(KERN_INFO "BTRFS: "
6626 		   "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6627 	       rcu_str_deref(dev->name),
6628 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6629 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6630 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6631 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6632 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6633 }
6634 
6635 int btrfs_get_dev_stats(struct btrfs_root *root,
6636 			struct btrfs_ioctl_get_dev_stats *stats)
6637 {
6638 	struct btrfs_device *dev;
6639 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6640 	int i;
6641 
6642 	mutex_lock(&fs_devices->device_list_mutex);
6643 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6644 	mutex_unlock(&fs_devices->device_list_mutex);
6645 
6646 	if (!dev) {
6647 		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6648 		return -ENODEV;
6649 	} else if (!dev->dev_stats_valid) {
6650 		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6651 		return -ENODEV;
6652 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6653 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6654 			if (stats->nr_items > i)
6655 				stats->values[i] =
6656 					btrfs_dev_stat_read_and_reset(dev, i);
6657 			else
6658 				btrfs_dev_stat_reset(dev, i);
6659 		}
6660 	} else {
6661 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6662 			if (stats->nr_items > i)
6663 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6664 	}
6665 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6666 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6667 	return 0;
6668 }
6669 
6670 int btrfs_scratch_superblock(struct btrfs_device *device)
6671 {
6672 	struct buffer_head *bh;
6673 	struct btrfs_super_block *disk_super;
6674 
6675 	bh = btrfs_read_dev_super(device->bdev);
6676 	if (!bh)
6677 		return -EINVAL;
6678 	disk_super = (struct btrfs_super_block *)bh->b_data;
6679 
6680 	memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6681 	set_buffer_dirty(bh);
6682 	sync_dirty_buffer(bh);
6683 	brelse(bh);
6684 
6685 	return 0;
6686 }
6687 
6688 /*
6689  * Update the size of all devices, which is used for writing out the
6690  * super blocks.
6691  */
6692 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6693 {
6694 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6695 	struct btrfs_device *curr, *next;
6696 
6697 	if (list_empty(&fs_devices->resized_devices))
6698 		return;
6699 
6700 	mutex_lock(&fs_devices->device_list_mutex);
6701 	lock_chunks(fs_info->dev_root);
6702 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6703 				 resized_list) {
6704 		list_del_init(&curr->resized_list);
6705 		curr->commit_total_bytes = curr->disk_total_bytes;
6706 	}
6707 	unlock_chunks(fs_info->dev_root);
6708 	mutex_unlock(&fs_devices->device_list_mutex);
6709 }
6710 
6711 /* Must be invoked during the transaction commit */
6712 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6713 					struct btrfs_transaction *transaction)
6714 {
6715 	struct extent_map *em;
6716 	struct map_lookup *map;
6717 	struct btrfs_device *dev;
6718 	int i;
6719 
6720 	if (list_empty(&transaction->pending_chunks))
6721 		return;
6722 
6723 	/* In order to kick the device replace finish process */
6724 	lock_chunks(root);
6725 	list_for_each_entry(em, &transaction->pending_chunks, list) {
6726 		map = (struct map_lookup *)em->bdev;
6727 
6728 		for (i = 0; i < map->num_stripes; i++) {
6729 			dev = map->stripes[i].dev;
6730 			dev->commit_bytes_used = dev->bytes_used;
6731 		}
6732 	}
6733 	unlock_chunks(root);
6734 }
6735